
sun
microsystems

Systetn V Enhancetnents Overview

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Sun Workstation® is a registered trademark of Sun Microsystemst Inc.
UNIXTM is a trademark of AT&T Bell Laboratories.
NFSTM is a trademark of Sun Microsystemst Inc.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law t with all rights reserved.
No part of this publication may be reproducedt stored in a retrieval systemt

translated t transcribed t or transmitted t in any form t or by any means manual t

electrict electronic t electro-magnetic, mechanical, chemical t optical, or other­
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 System V Compatibility Package .. 3

1.1. Introduction ... 3

1.2. A Brief History ... 3

1.3. How the Compatibility Tools Work ... 4

1.4. Conformance to Base-Level SVID .. 5

1.5. Commands in Release 3.2 .. 6

1.6. System Calls in Release 3.2 .. 7

1.7. Library Routines in Release 3.2 .. 8

Chapter 2 Library Compatibility Issues .. 11

2.1. System Calls ... 11

2.2. Library Routines .. 12

2.3. Execution Environment ... 14

Chapter 3 System Calls in 4.2 BSD and System V... 19

3.1. Introduction ... 19

3.2. Comparison of System Calls ... :c++:!:!.~....... 19

3.3. New System Calls on System V ... ~~.~+*~.t~~ .. ;·.!~~~~~b:. 23

3.4. New System Calls on 4.2 BSD .. ~.~:;:;:~::,5M~1.J.t~t~~~·;:.::l~U~<,~~:::~;;~.t> 24:.:-... .

Chapter 4 Library Routines in 4.2 BSD and Systeni::V:·:·w,.~ .. ~:;,.:.:.:.:~:.!~~~~~~.~:.~;$.~~~~.i:};::::::;::'2:9:'
4.1. Introduction .. u~~~~~~ •• ;~~~~~~,,;.;;:;~~t·t·~~<~{>·.;·· 29

4.2. Comparison of Library Routines .. ::.::m~~~:;ML...... 30

-iii-

Contents - Continued

Chapter 5 The System V Terminal Driver .. 39

5.1. Introduction ... 39

5.2. Setting the Interrupt Character ... 40

5.3. Read Without Waiting .. 41

5.4. Two-Way Control Flow ... 42

5.5. Full Screen Software ... 44

Chapter 6 File and Record Locking .. 49

6.1. Introduction ... 49

6.2. File and Record Locking on System V ... 49

6.3. File Locking on 4.2 BSD .. 51

6.4. Locking in a Network Environment ... 52

Chapter 7 Tuning IPC System Parameters .. 55

7.1. Introduction ... 55

7.2. Why Reconfigure IPC Parameters? ... 55

7.3. IPC Message Parameters ... 56

MSGPOOL .. 56

MSGMNB ... 56

MSGMNI ... 57

MSGTQL ... 57

7.4. IPC Semaphore Parameters ... 57

7.5. IPC Shared Memory Parameters ... 58

-iv-

Tables

Table 1-1 Commands in Release 3.2 ... 6

Table 1-2 System Calls in Release 3.2 ... 7

Table 1-3 Library Routines in Release 3.2 .. 8

Table 3-1 Comparison of System Calls ... 20

Table 4-1 Comparison of Library Routines ... 30

-v-

1
System V Compatibility Package

System V Compatibility Package .. 3

1.1. Introduction ... 3

1.2. A Brief History ... 3

1.3. How the Compatibility Tools Work ... 4

1.4. Conformance to Base-Level SVID .. 5

1.5. Commands in Release 3.2 .. 6

1.6. System Calls in Release 3.2 .. 7

1.7. Library Routines in Release 3.2 .. 8

1.1. Introduction

1.2. A Brief History

1
System V Compatibility Package

This overview document is intended for both users and programmers who want
to learn about System V enhancements in Release 3.2. The chapters on system
calls and library routines, and the chapters on System V programming considera­
tions, are of interest only to programmers.

Release 3.2 offers Sun users nearly complete System V compatibility. The com­
patibility package allows programmers to write software that meets the Base
Level of the System V Interface Definition (SVID) in all but a few minor cases,
documented below. This release represents the first phase of joint efforts by
AT&T and Sun to unify the different versions of UNIX.

System V and Berkeley UNIX are not radically different, either in the interface
they present to the user, or the routines they provide for the programmer. They
are derived from UNIX systems written by Ken Thompson and Dennis Ritchie in
the mid-seventies, and many features are essentially unchanged since then. Both
versions have their merits: because of support by AT&T, System V is well-suited
to the commercial marketplace; and because of its advanced features, Berkeley
UNIX is well-suited to the technical marketplace. Nonetheless, a converged ver­
sion suited to both markets is even better.

The System V compatibility package permits programmers to write and test
software targeted for either System V or Berkeley UNIX. Users who acquire
software that runs only on System V can run it by means of the compatibility
library. Commands, system calls, and library routines can be drawn concurrently
from either the Berkeley or System V set. It's possible to have one window that
uses Berkeley UNIX by preference, and another window that runs System V by
preference.

In early 1985, AT&T released the System V Interface Definition (SVID). This
was a major step because it made explicit exactly what was standard about Sys­
tem V, and by omission, what was not. In late 1985, Sun and AT&T agreed to
work together to converge the two major strands of UNIX into a single system.
Sun's Release 3.2 combines System V with Berkeley UNIX. In the second phase
of Sun's System V compatibility package, System V programs will be able to
make use of Sun View and other Sun-enhanced libraries (now this is possible only
with BSD programs).

3 Revision A of 15 October 1986

4 System V Enhancements Overview

1.3. How the Compatibility
Tools Work

There were seven cases to be considered in the process of convergence:

1. Features common to both versions - do nothin~.

2. Features with minor differences - do nothing (no difference in typical
usage).

3. Features where System V is superset of Berkeley UNIX - add to regular
release.

4. Features where Berkeley UNIX is a superset of System V -leave it that way.

5. Features that exist only in System V - put in a compatibility directory.

6. Features that exist only in Berkeley UNIX -leave it that way.

7. Features that cannot coexist - resolve on a case-by-case basis.

System V programs that are upwards compatible with those in Berkeley UNIX
have already been added to the regular system directories. For example,
/bin/ sh is the new improved Bourne shell, and /bin/make has all the Sys­
tem V enhancements.

Programs that existed only on System V have been added to a regular system
directories as well. For example, the text manipulation programs cut and
paste both reside in /usr /bin.

System V programs that are incompatible with those in Berkeley UNIX reside in
the directory /usr / Sbin. For example, /usr / Sbin/ stty has an entirely
different set of options from /bin/ stty. If you want to use System V pro=
grams by preference, simply include /usr / Sbin early in your path, as in these
lines from the .login or . profile files:

(csh) set path = (/usr/Sbin /bin /usr/bin /usr/ucb .)

(sh) PATH=/usr/ Sbin: /bin: /usr/bin: /usr/ucb: :
export PATH

The directories / usr / Sbin, / usr / Slib, and / usr / Sinclude contain
material that can't yet be converged.

Libraries and include files for compiling System V software reside in
/usr/Slib and /usr/Sinclude respectively. If you want to compile a
program written for System V, don't use /bin/ cc but rather /usr / Sbin/ cc,
which will read all the correct include files and load the correct libraries. You
may want to make an alias or shell function that invokes the System V compiler,
to obviate the need for changing your PATH:

(csh) alias cc5 /usr/5bin/cc

(sh) cc5 () {
/usr/Sbin/cc $*

The directories that constitute the System V compatibility package are optional,

~\Slln ,~ microsystems
Revision A of 15 October 1986

1.4. Conformance to Base­
Level SVID

Chapter 1 - System V Compatibility Package 5

requiring 3th MB of disk space. The set up program lets you decide whether or
not to load these directories. Because of the merging of System V programs and
the kernel additions required to support System V libraries, the root filesystem is
about ~ MB larger than for Sun's Release 3.0.

In what ways does Sun's System V compatibility package not meet the require­
ments specified by the Base Level of the SVID? The package does have impor­
tant System V features such as record locking, named pipes, shared memory,
semaphores, messages, and an emulation of the revised terminal driver. Here are
the only known ways in which Sun's Release 3.2 does not conform to the Base
Level of the SVID:

[J The creat () and open () system calls use the Berkeley semantics to
assign files the group of their parent directory. System V assigns files the
group of the creating process.

[J For security reasons, the chown () system requires root privileges. On Sys­
tem V the owner of a file can give it away. This would make the Berkeley
quota mechanism completely unenforceable.

[J The utime () system call can't set file time stamps to the current time on
NFS-mounted files, and only works on files owned by the caller. System V
allows file time stamps to be set by any process with write permission on a
file.

[J The kill () system call only allows processes to send signals to other
processes with the same effective UID. The SVID specifies that a process
can send a signal to processes with an effective or real UID that matches the
effective or real UID of the sender. Super-user processes can send signals to
any other process.

[J The mknod () system call cannot be used to create directories, as specified
by the SVID; use the mkdir () system call instead.

[J The fcntl () system call with the F _SETFL command setting the
o _NDELAY flag affects all references to the underlying file. On System V,
this fcntl () call affects only file descriptors associated with the same file
table entry.

Also, the first phase of the System V compatibility package does not fully sup­
port some System V terminal interface specifications:

[J 5-bit and 6-bit characters are not supported.

[J VMIN is always set to 1 and VT IME is always set to O.

[J The initial default erase and kill characters are not 41= and @ respectively, but
rather (DEL I and (CTRL-U 1.

~\sun ,~ microsystems
Revision A of 15 October 1986

6 System V Enhancements Overview

1.5. Commands in Release
3.2

This table shows the intersection and union of commands in the System V and
Berkeley sets.

Table 1-1 Commands in Release 3.2

uncompact
~~at hostname

Common: csh indent refer
unpack awk ctags indxbib reset

bc cu last ~f;'gin val cmp dbx lastcomm
dirname vc 4.2 are comm deroff Id rm
env what Su§erset crypt edit leave rmail uulog
get xargs of ys. V: false Path Dependent

enroll In rsh uuname
~etopt base name graph eqn login rwho uusend

admin iJlp calendar lex (System V + 4.2 error lookbib ruptime uux
diff lorder bi~A~~s supplied): lpq sccs vfontinfo cdc !pcrm kill makekey lpr s~ript v~rind cflow cat Is

IpCS ptx mkdir cb lprm size VI comb hne tail nice
mesg mail soelim vip cpio logname cc m4 sortbib System V pwd chgrp nohup man vplot csplit nl

~~e4~~g§~~t ratfor chmod mkstr strings vpr ctrace pack pr more strip
cut sleep chown sed vtroff

paste cal join mt su vwidth cxref pcat sno col sh mv talk
delta cd make spline date sort pg spell neqn tar
diffmk cpp sync dd split tbl prs de tee diff3 nm dircmp rmdel stty nroft telnet

sact Potential true du sum pagesize tip
sccsdiff tsort echo tabs Common ex passwd tplot
sdiff Superset: um~!k ed test expand P! troff
tic file

~~i\~
egrep time eyacc piX tset

tput maJh'~
expr touch fmt printenv ul

una me wait fgrep told prmail unexpand
unget od wc firep pr prof uptime

write mt from ps users
fsplit pti uucp
ftp px uuenconde
gcore pxp uudeco
gprof pxref

~~~':fs ranlib 

hostid 
rcp 

SunOS Release 3.2(total of 258 commands) 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



Chapter 1 - System V Compatibility Package 7 

1.6. System Calls in 
Release 3.2 

This table shows the intersection and union of system calls in the System V and 
Berkeley sets. 

Table 1-2 System Calls in Release 3.2 

accept 
execlp acct 
execvp bind read link 

access exit mknod chown readv 
alarm exit pa~se connect reboot 
brk,sbrk fcntl pipe creat recv 
chdir fork profil dup2 recvfrom 
chroot getpid ptrace 

flock 
recvmsg 

chmod getppid setgid rename 
lockf close getuld stat fsync rmdir sigsetmask 
msgctl dup geteuid sync ftlme select s!gstack 
msgget exeel getgid time ftruncate send slgvec 
msgop execv setegid umask getdtablesize sendto socket 
semctl execle lOCt! umount ~~~~~~~Fcts sendmsg socket~air 
semget execve link unlink :~~ft~~~FJ symlin 
semop gethostname truncate 
shmctl getitimer sethostname 
shmget Path Dependent getpagesize setitimer utimes 
sb:mop (System V & 4.2BSD getpeername setpriority vadvise 
stlme versions supplied): getpriority setquota vfork ulimit getpgrp nice signal getrlimit setregid 

~ha'l~:fuP uname getrusage setreuid 
ustat kill open times getsockname setrlimit writev lseek read utime getsock0r,t settimeofday 

mount setpgrp wait gettimeo day shutdown 
setuid killpg s!gblock 

listen slgpause 
!stat 
mkdir 
quota 

65 
SunOS Release 3.2 (total oj 134 system calls) 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



8 System V Enhancements Overview 

1.7. Library Routines in 
Release 3.2 

This table shows the intersection and union of library routines in the System V 
and Berkeley sets. 

Table 1-3 Library Routines in Release 3.2 

clock 
ctermid 
cuserid 

drand48 
erand48 

erf 
erfc 

fgetgrent 
fgetpwent 

fmod 
ftok 
ftw 

getcwd 
getopt 
gsignal 
licreate 

h~::!~~h 
jrand48 

164a 
l<:ons48 

Ihnd 
Irand48 
Isearch 

mallinfo 
mal!opt 
matherr 
memccpy 
memchr 
memcmp 
memcpy 
memset 
nrand48 
putenv 

f::g:sent 

setvbuf 
shmat 
shmdt 

:~rf~18 
strcspn 
strpork 
strspn 
strtod 
strtok 
5trtol 
tdelete 

m::gnam 

tmpfile 
tmpnam 
tsearch 
twalk 

abs 
acos 

advance 
asin 
assert 

atan 
atan2 

atof 
atoi 

atol 
calloc 
ceil 
clearerr 
cos 
cosh 

~Z~! 
encrypt 
end 
endgrent 
errno 
etext 
exp 
fa6s 

fclose 
(dopen 
feof 
ferror 

(flush 
fileno 
floor 

fputc 
fputs 
free 
freopen 
frexp 
fseek 
fstat 
ftell 
fwrite 
gamma 
getenv 
getgre!lt 
getgrgld 

~~~f~;tnm 
getpw
hypot
isalnum
isalpha
isascii
isatty
isdiglt
~sgraph
Islower
isprint
isspace
isupper
!&X(hgit

11
In
Idexp
log
10g10

SunOS meets the specifications for
System V Base Level Interface Definition,
except for handling of error conditions in
some math library routines.

malloc
mktemp
modf
monitor to ascii
nice tty name
nlist ungetc
pclose varargs
perror
popen
pow

g~~~har
puts
putw

~~fI~c
rewind
setbuf
:~~~~;nt
sin
sinh
sleep
sqrt
strcat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
sys_errlist
sys_nerr
system
swab
tan

alphasort
bcmp
bcopy
bzero
cloaedir
closelog
dysize

Path Dependent
(System V & 4.2BSD
versions supplied):
abort ispunct
asctime localtime
ctim~ longjmp
dayhght printf
ecvt rand
fcvt scanf
~~~~n setj.mp 
fprintf :~:~ratf 
fread sscanf 
fscanf strchr/index 
gcvt strrchr/rindex 
~~~g~:nt timezone' 
getc tolower
getchar toupper
getw tzname
gets tzset
gfetc
gmtime
iscntrl

endfsent
endhostent
endnetent
endprotoent
endservent
ffa
getfsent
gettsfile
getfsspec
getfstype
gethostbyaddr
gethostbyname
gethostent

getnetbyname
getnetent
getprotobyname
getprotobynumber
getprotoent

I~I~~~~g~~~we
getservent
getwd
blonl
htons
inet addr
ineClnaof
ineC makeaddr
ineCnetof
ineCnetwork
ineCntoa
initgroups
initstate

~~~~~Tmp 
moncontrol 
monstartup 

total: 
SunOS Release 3.2 (total of 287 library routines) 

ntohl 
ntohs 
opendir 
openlog 
psignal 
ranClom 
rcmd 
re_comp 
re exec 
readdir 
remque 
rewinddir 
rexec 
rresvport 
ruserok 
scandir 

. seekdir 
setbuffer 
setrgid 
setruid 
setfsent 
sethostent 

s:fN:~Uf 
setnetent 
setprotoent 
setegid 
setruid 
setservent 
sets tate 
srandom 
sys siglist 
sysfog 
telldir 
ttyslot 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



2 
Library Compatibility Issues 

Library Compatibility Issues ............................................................................................... 11 

2.1. System Calls ....................................................................................................................... 11 

2.2. Library Routines .............................................................................................................. 12 

2.3. Execution Environment ............................................................................................... 14 





2.1. System Calls 

2 
Library Compatibility Issues 

This chapter describes differences between the System V and Berkeley UNIX 
programming environments in Release 3.2. Programmers' who wish to write 
software that works in either environment will be interested in the material here. 

When using System V compatibility libraries, programmers may use Berkeley 
library routines as long as names don't conflict with any System V routines. This 
means that System V environment programs can use sockets and other Berkeley 
features, even when they are linked using the System V library. 

The following list describes differences in Release 3.2 between the System V and 
Berkeley system calls. 

getpgrp () and setpgrp ( ). There is currently no way to get the Berkeley 
behavior of getpgrp () or setpgrp () using the same code in both environ­
ments. The undocumented routines _getpgrp () and _ setpgrp () in the 
System V library provide Berkeley functionality, but those routines are not in the 
Berkeley library. There is a proposal before the IEEE PI003.1 committee for a 
job control facility that provides getpgrp2 () and setpgrp2 () calls to pro­
vide the Berkeley functionality. If the Berkeley getpgrp () and setpgrp () 
functionality is required, we can provide these routines in both libraries. 

open (). In the Berkeley environment, opening a file with the 0_ NDELAY bit 
set in the open mode does not leave the file descriptor returned, nor the object 
referred to by that file descriptor, in non-blocking mode. In the System V 
environment it does. 

read (). In the Berkeley environment, a read () on a file descriptor or from 
an object in no-delay mode will return -1 and set errno to EWOULDBLOCK if 
no data are available. In the System V environment, the read () will return a 
count of 0, which is indistinguishable from end-of-file. The PI003.1 standard 
has a separate' 'non-blocking" mode that acts like the Berkeley no-delay mode, 
except that it sets errno to EAGAIN, not EWOULDBLOCK, if no data are avail­
able. 

write (). As with read (), the two environments differ in how a write () 
in no-delay mode indicates that there is no buffer space available to store the data 
to be written. 

11 Revision A of 15 October 1986 



12 System V Enhancements Overview 

2.2. Library Routines The following list describes differences in Release 3.2 between the System V and 
Berkeley library routines. 

toupper () and tolower (). In the Berkeley environment, they are macros 
that do not check that their argument is in the domain of the function in question. 
In the System V environment, they are functions that do check, and 
_toupper () and _tolower () are the names of the macros. Using 
toupper () and tolower () in either environment as if they were the Berke­
ley versions is safe but inefficient in the System V environment. 

assert () .In the Berkeley environment, assert () is an (undocumented) 
synonym for assert (). This is not the case in the System V environment. 
(This is probably not a concern, since as sert () is a macro and the version to 
be used is selected when the library routine is compiled, not when the library is 
linked with the C library.) 

timezone (). In the Berkeley environment, this routine returns the name of 
the time zone associated with a particular offset from GMT and an indication of 
whether daylight savings time is in effect or not. This is done in a different 
fashion in the System V environment, and there is no way to do this in a way that 
works in both environments. 

fopen (). In the Berkeley environment, opening a file using fopen () with an 
append argument (" a " or "a + ") causes the file pointer to be placed at the end of 
the file when it is opened, but performs no other special functions. In the System 
V environment, the file descriptor for the stream returned has the forced append 
flag 0_ APPEND set, so that all subsequent writes to that stream will be forced to 
append to the file. It is as if an fseek (stream, OL, 2) ; were to be per­
formed before every write. 

fread ( ). In the Berkeley environment, if the standard output or error output is 
line-buffered, fread () will write out any buffered data for that stream before 
reading from the standard input, whether the standard input is line-buffered or 
not. In the System V environment, if input is read from any line-buffered stream, 
all data for all line-buffered streams is written out before the input is read. This 
is not done if the stream being read from is not line-buffered. 

scanf ( ). Note: the Berkeley behavior, in all the cases below, can be con­
sidered buggy. Future releases of Sun may be changed to match the System V 
behavior. 

1. In the Berkeley environment, scanf () considers space, tab, and newline to 
be the only whitespace characters; in the System V environment, it also con­
siders formfeed and vertical-tab to be whitespace. 

2. In the Berkeley environment, if a match against ordinary characters in the 
format string (that is, not against a format specification) gets an end-of-file, 
scanf () returns EOF, regardless of whether any matches against a format 
specification have occurred or not. In the System V environment, it returns 
the number of matches that have already occurred. 

3. In the Berkeley environment, if a match against a format specification fails, 
s canf () doggedly continues matching subsequent fields until it runs out of 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



Chapter 2 - Library Compatibility Issues 13 

input or out of format string. In the System V environment, it quits immedi­
ately, leaving the stream pointer positioned to the character that failed to 
match, and returning the number of successful matches. 

4. In the Berkeley environment, scanf () considers a string consisting only of 
a decimal point to match a %f, %e, or %g specification, and returns the value 
0.0 for that field. In the System V environment, s canf () does not con­
sider this to be a match. 

getpass (). In the Berkeley environment, if getpass () can't open 
/ dev / tty, it reads from the standard input. In the System V environment it 
returns an error. 

nice (). In the Berkeley environment, nice () returns either 0 for success, or 
-1 for failure, and permits the priority to be put into the range -20 to 20. In the 
System V environment, nice () returns either the new value of the priority for 
success, or -1 for failure, and does not permit the priority to be outside the range 
-20 to 19. 

sprintf (). In the Berkeley environment, sprintf () returns a pointer to 
the string which was its first argument. In the System V environment, it returns 
the number of characters placed into that string (not counting the terminating null 
character). 

rand (). In the Berkeley environment, rand () returns a value in the range 0 
to 231 - 1. In the System V environment, on the other hand, it returns a value in 
the range 0 to 215 

- 1. 

Standard I/O Buffering. In the Berkeley environment, if the streams stdout or 
stderr refer to a terminal, they are line-buffered. All other streams are fully 
buffered. In the System V environment, any stream that refers- to a terminal is 
line-buffered. 

set uid ( ). In the Berkeley environment, set uid () sets both the real and 
effective user ID to the given argument, if this is permitted. In the System V 
environment, if the current process has an effective user ID of super-user, both 
the real and effective user ID are set; otherwise, just the effective user ID is set. 
In this case, the effective user ID can be repeatedly switched between the real 
user ID and the user ID that the process had when it last did an exec () ; this 
permits a setuid program to switch between its real user ID and the user ID to 
which it was setuid. The setreuid () call can be used to perform this function 
in the same way in both environments (including switching). 

signal (). In the Berkeley environment, if you catch a signal with sig-
nal () , the signal action is not changed when the signal handler is entered, but 
the signal is blocked while in the signal handler. Also, any reads on terminals 
and other slow devices will, if interrupted, be re-entered as long as no data has 
been transferred. In the System V environment, the signal action will be reset to 
S I G _ DFL when the signal handler is entered, and the signal is not blocked. 
There is a possible race condition here; the sigvec () call can be used to estab­
lish race-free condition handling in the same way in both environments. Reads 
on slow devices will return -1 and set er rno to E INTR if interrupted. 

Revision A of 15 October 1986 



14 System V Enhancements Overview 

2.3. Execution 
Environment 

sleep (). In the Berkeley environment, signals other than SIGALRM cause that 
signal's action to take place, but will not break out of the sleep (). In the Sys­
tem V environment, they will break out of the sleep ( ) , and sleep () will 
return the amount of time remaining before it finishes. 

time s ( ). In the Berkeley environment, time s () returns either 0 for success, 
or -1 for failure. In the System V environment, it returns either the number of 
60ths of a second since some point in the past for success, or -1 for failure; the 
point in the past does not change unless the machine is rebooted. 

tty slot ( ). In the Berkeley environment, tty slot () returns 0 if it cannot 
find the slot in / etc/utmp for the terminal. In the System V environment, it 
returns -1. 

Return from main ( ). A C program's main () routine that falls off the end 
with no explicit exit () exits with a status of 0 in the Berkeley environment. In 
the System V environment, it returns a random exit status. 

There are several programs that do not function the same way in the Berkeley 
and System V environments. If you plan to execute a specific system command 
(as opposed to executing a command string supplied by the user), you should 
consider either hard-coding the path (so that a particular version is used) or set­
ting the PATH environment variable before running the command. The former 
would cause problems if the command were to move later. The latter, in addition 
to ensuring that the version from the Berkeley environment, rather than the Sys­
tem V environment, is run, also ensures that a version that the user has in a 
private bin directory is not run. The latter is the recommended approach, and 
can be accomplished by doing: 

char *path_val, *save-path, *malloc(); 

path_val = getenv(IPATH"); 
if (path_val != NULL) { 

/* 

save-path = malloc«unsigned) (strlen(path_val) + 6»; 
(void)strcpy(save-path, "PATH="); 
(void)strcat(save-path, path_val); 
putenv("PATH=/usr/ucb:/bin:/usr/bin"); 

* run the program 
*/ 

if (path_val != NULL) 
putenv(save-path); /* restore previous value of PATH */ 

Any shell scripts should also set PATH to a standard value (again, the recom­
mended path is /usr /ucb: /bin: /usr /bin), but without exporting it. That 
way, any interactive shells invoked by that script will have the proper PATH. 
This can be done in the Bourne shell by saying 

[PATH=/usr/uCb:/bin:/usr/bin ] 
Revision A of 15 October 1986 



Chapter 2 - Library Compatibility Issues 15 

without also saying: export PATH. Both of these changes are actually a good 
idea under any circumstances, as they prevent pri vate commands with the same 
name as the official command from being run. It would be painful, for example, 
if a user had a special editor interacti ve editor command named sed in his 
private bin directory. 

Revision A of 15 October 1986 





3 
System Calls in 4.2 BSD and System V 

System Calls in 4.2 BSD and System V ..................................................................... 19 

3.1. Introduction ......................................................................................................................... 19 

3.2. Comparison of System Calls ..................................................................................... 19 

3.3. New System Calls on System V ............................................................................. 23 

3.4. New System Calls on 4.2 BSD ................................................................................ 24 

3.5. Conclusion ........................................................................................................................... 26 





3.1. Introduction 

3.2. Comparison of System 
Calls 

3 
System Calls in 4.2 BSD and System V 

This chapter compares system calls in System V to those in 4.2 BSD. It is 
intended as background information for programmers. If you are already familiar 
with the two strains of UNIX, or if you are not a programmer, skip this chapter. 

In universities, Berkeley UNIX predominates over System V. There are historic, 
economic, and technical reasons for this. Back when AT&T was prohibited from 
selling computer systems, they could not legally support UNIX as a product. 
Because talented people at Berkeley cared about it, and because DARPA chose 
UNIX as their standard operating system, the University of California took over 
the development, and in a weird way the support, of UNIX. UC Berkeley never 
performed normal support functions such as consulting, but they did act as a 
clearing-house for bug reports and enhancements. Berkeley Software Distribu­
tions (BSD) require a Version 7 license from AT&T (the VAX requires a 32V 
license, which is similar). This license used to cost only $200 for educational 
institutions. When AT&T came out with System III and System V, they lowered 
the license fee for commercial organizations, but raised it to $800 for educational 
institutions. Berkeley UNIX continued to be based on Version 7, so that it would 
be more affordable for universities. Corporations can purchase less expensive 
System V licenses, and still obtain Berkeley UNIX. 

The table on the following pages compares the system calls available on System 
V and 4.2 BSD. The remainder of this chapter describes, and in some cases 
justifies, extensions made to these two releases. 

~\sun ,~ microsystems 
19 Revision A of 15 October 1986 



20 System V Enhancements Overview 

Table 3-1 Comparison of System Calls 

Comparison of System Calls 
Version 7 System V 4.2BSD description 

accept () accept a connection on a socket 
access 0 access 0 access 0 test file accessibility 
acct () acct () acct () tum proc~ss_accounting on or off 
alarm () alarm() schedule an alann signal for a process 

bind() bind a name to a socket 
brk 0 brkO brkO allocate memory by setting data segment size 
chdir () chdir () chdir 0 change the current working directory 
chmod() chmod() chmod() change file access protection mode 

fchmodO ditto, given file descriptor 
chown () chown () chown () change file owner and group assignment 

fchown 0 ditto, given file descriptor 
chroot () chroot () chroot () change the root directory for path name searches 
close () close () close () close a file descriptor 

connect () initiate a connection on a socket 
creat 0 creat 0 creat 0 create a new file or overwrite an existing file 
dup() dup() dup() duplicate an open file descriptor 
dup2() dup2 () duplicate a specific open file descriptor 
exec () exec () exec () execute a file 
_exit () _exit () _exit () tenninate a process 

fcntl () fcntl () control open file descriptors 
flock () apply or remove an advisory lock on an open file 

fork () fork () fork () create a new process 
fsync () synchronize file's in-core state with that on disk 

fstat () fstat () fstat () locate file status infonnation by file descriptor 
getuid() getuid() getuid() get real user identity 
geteuid() geteuid() geteuid() get effective user identity 
getgid() getgid() getgid() get real group identity 
getegid() getegid() getegid() get effective group identity 

getgroups ( ) get group access list 
gethostid () get unique identifier of current host 
gethostname ( ) get name of current host 
sethostname() set name of current host 
getitimer () get value of interval timer 
setitimer () set value of interval timer 
getpagesize() get system page size 
getpeername() get name of connected peer 

getpgrp () getpgrp () get process group ID 
getpidO getpid() getpid() obtain process ID of the current process 

getppid() getppidO obtain process ID of the parent process 
getpriority () get program scheduling priority 
setpriority () set program scheduling priority 
getrlimit () get limit on system resource consumption 
setrlimit () set limit on system resource consumption 
getrusage () get infonnation about resource usage 
getsockname() get socket name 

Revision A of 15 October 1986 



Chapter 3 - System Calls in 4.2 BSD and System V 21 

Table 3-1 Comparison of System CaIls- Continued 

Comparison of System Calls 

Version 7 System V 4.2 BSD description 

getsockopt() get options on sockets 
setsockopt() set options on sockets . 
gettimeofday () get date and time 
settimeofday () set date and time 

ioctl () ioctl () ioctl () perform device control maintenance functions 
kill () kill () kill () send a signal to a process or a group of processes 

killpg () send a signal to a process group 
link () link () link () create a new link to a file 

listen () listen for connections on a socket 
lock () lock a process in primary memory 
lseek () lseek () lseek () reposition random read/write pointer 

mkdir () make a directory file 
mknod () mknod() mknod() make a directory, ordinary file, or special file 

mmap () map pages of memory onto a file 
mount () mount () mount () mount a removable file system for use 
mpx() create and manipulate multiplexed files 

msgctl () maintain a message queue access control structure 
msgget () create message queue, ID, and access control structure 
msgrcv () retrieve a message from a message queue 
msgsnd() add a message to a message queue 

nice () nice () change process priority 
open () open () open () open a file descriptor 
pause () pause () suspend a process until receiving a signal 
phys () allow a process to access physical addresses 
pipe () pipe () pipe () create an interprocess data stream 
pkon () establish packet protocol 
pkoff () tum off packet driver 

plock () lock and unlock program segments in memory 
profil () profil () profil () tum profiling on or off 
ptrace () ptrace () ptrace () process tracing for breakpoint debugging 

quota () mani pulate disk quotas 
read () read () read () read from a file 

readv () read from a file into vector of buffers 
readlink () read value of a symbolic link 
reboot () reboot system or halt processor 
recv () recei ve a message from a socket 
rename () change the name of a file 
rmdir () remove a directory file 

sbrk () sbrk () sbrk () allocate memory by increasing data segment size 
select () synchronous 110 multiplexing 
send () send a message from a socket 

semctl () maintain a semaphore access control structure 
semget () create semaphores, semaphore ID, with access control 
semop () perform array of semaphore maintenance operations 

setgroups ( ) set group access list 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



22 System V Enhancements Overview . 

Table 3-1 Comparison of System Calls- Continued 

Comparison of System Calls 
Version 7 System V 4.2 BSD description 

setuid () setuid () setruid() set real and effective user ID 
setuid () set effective user ID 

setgid () setgid() setrgid () set real and effective group ID 
setgid() set effective group ID 

setpgrp () setpgrp () set process group ID 
setquota () enable and disable quota on file system 

shmat () attach shared memory segment to calling process 
shmctl () maintain shared memory access control structure 
shmdt () detach shared memory segment from calling process 
shmget () create shared memory ID and access control structure 

shutdown () shut down part of full-duplex socket 
signal () signal () specify action to perform upon receipt of a signal 

sigblock () block signals 
sigpause () release blocked signals and wait for interrupt 
sigsetmask () set current signal mask 
sigstack () set and get signal stack context 
sigvec () establish signal vectors 
socket () create an endpoint for communication 
socketpair () create a pair of connected sockets 

stat () stat () stat () locate file status information by file name 
lstat () ditto, for symbolic link 

stime () stime () set system time 
swapon () add a swap device for interleaved paging 
symlink () make a symbolic link to a file 

sync () sync () sync () update the super-block 
syscall() syscall() indirect system call 
tell () tell () return seek position in file 
time () time () obtain the current system time 
ftime () fill in structure with system time 
times () times () times () obtain a process' time accounting data 

truncate () truncate a file to a specified length 
ulimit () establish a process' file size and data segment limits 

umask () umask () umask () set default access mode for file creation 
umount () umount () umount () remove a file system from use 

uname () obtain system name, release, version, machine ID 
unlink () unlink () unlink () remove a directory entry for a link 

ustat () obtain mounted file system status 
utime () utime () utimes () set file update and access time fields 

vadvise () give advice to the paging system 
vfork () span new process in virtual memory 

wait () wait () wait () wait for a process to signal or terminate 
wait3 () non-blocking wait 

write () write () write () write to a file 
writev () write to a file from vector of buffers 

Revision A of 15 October 1986 



3.3. New System Calls on 
System V 

Chapter 3 - System Calls in 4.2 BSO and System V 23 

What follows is an brief overview of system calls on System V. 

The ul imi t () system call allows a process to establish a maximum file size for 
itself and for any child processes. A subsequent wr it e () system call returns an 
error status when it would increase a file's size beyond the maximum. This is a 
cheap form of resource limit or quota facility. 

The ustat () system call obtains information about mounted filesystems. This 
information includes the total number of free blocks and free inodes, as well as 
filesystem and disk pack names. 

The uname () system call allows programs to obtain the network node name, 
UNIX system release and version number, and a hardware identification string. 
This is similar in function to the gethostname () system call on 4.2 BSD. 

Processes can lock text segments, data segments, or both, into memory. Process 
segments are immune to swapping when locked using the plock () system call. 
Process locking is useful for real-time applications. 

The fcntl () system call allows programs to obtain new file descriptors, and 
retrieve or set status information for open files. It is such a useful facility that it 
was picked up on 4.2 BSD. 

The concept of process group was added in System III, and also by Berkeley. 
Each process has a process group identity associated with it. The process group 
identity is really the process identity of an ancestor that invoked the 
setpgrp () system call. The ancestor is the group leader. The group identity 
is inherited when new processes are created, and like tty groups, process groups 
establish commonality for sending signals. 

System V includes first-in-first-out (FIFO) files, which are also called named 
pipes. This allows processes to open this special file, using it for communication 
just like a pipe, but between possibly unrelated processes. FIFO files are created 
using the mknod () system call. 

The System V shared-memory facility provides common areas in memory for 
sharing data between processes. Facilities are also provided to control access to 
shared memory, and to synchronize updating by multiple processes. Shared 
memory is useful for database applications, among other things. 

The System V semaphore facility provides a process synchronization mechan­
ism, which can be used to schedule processes that modify shared system 
resources. Resources are locked for updating by one process at a time, and 
update ordering is supported. 

The System V message queue facility provides another form of inter-process 
communication. Messages are a convenient way for unrelated processes to share 
data. Since only the message is shared, processes can remain independent of 
each other's internal data structures. The message queue facility is used to estab­
lish one or more queues for inter-process communication. Messages are placed 
on specific queues for subsequent retrieval. A control data structure is included 
to allow restricted access to individual message queues. 

4}\sun 
~~ microsystems 

Revision A of 15 October 1986 



24 System V Enhancements Overview 

3.4. New System Calls on 
4.2 BSD 

Many internal perfonnance improvements were included in System· V, some 
inspired by Berkeley UNIX. File system block sizes were doubled to implement 
a lK filesystem. A physical 110 buffer facility, and a larger buffer pool are avail­
able. Improved system table search algorithms, faster fork () and open () 
system calls, C compiler improvements, and faster versions of C library 110 rou­
tines all contributed to system performance gains. However, the 4.2 BSD fast 
filesystem is significantly faster than the System V lK filesystem in many appli­
cations. 

The networking enhancements in 4.2 BSD were one reason for its success. The 
Berkeley inter-process communication (IPC) facilities have already gained wide 
acceptance. Here are the system calls that relate to networking: accept () , 
bind() ,connect (),getpeername() ,getsockname() ,get­
sockopt(),setsockopt(),listen(),recv(),select(),send(), 
shutdown () , socket () , and socketpair ( ). Sockets andIPC facilities 
are discussed in the "IPC Primer" chapter of the manual, Networking on the Sun 
Workstation. 

The fchmod () and fchown () system calls are like the traditional chmod () 
and chown () system calls, except they work with file descriptors instead of file 
names. 

The flock () system call performs advisory file locking. Because it does not 
deal with record locking, it is inferior to, and should be replaced by, lockf () in 
the System V Inter/ace Definition (SVID). 

The fsync () system call is like sync () , except it writes a single file's buffer, 
rather than all system buffers, to disk. It is useful for database work. 

On Berkeley UNIX, it is possible to be a member of more than one group at a 
time, which makes the group mechanism more useful than on System V. The 
getgroups () system call yields the group access list for a process, while 
setgroups () changes the group access list. 

Like the uname () system calion System V, gethostname () retrieves the 
name of the host machine, while sethostname () changes its name. This is 
particularly valuable in a network environment. 

The geti timer () and seti timer () system calls provide user access to 
interval timing. This is useful for program measurement and instrumentation. 
No good facility for this exists on System V, although times () provides a 
rough approximation. 

The nice () system call was replaced by setpriority (), which provides 
finer control over scheduling. Previously it was impossible to ask for a process' 
priority, but this is now possible with getpriority (). 

Limits can be set on system resources such as file size, data size, stack size, 
coredump size, and memory usage. These limits can be obtained with 
getrlimit () and changed with setrlimit (). The system's resource 
usage can also be queried with getrusage () . 

Revision A of 15 October 1986 



Chapter 3 - System Calls in 4.2 BSD and System V 25 

The system clock keeps time in thousandths of a second, rather than in sixtieths 
of a second. This was an attempt to make timing more accurate, but given the 
current state of hardware, it is an idea whose time hasn't come yet. The clock 
can be queried with gettimeofday (), and set with settimeofday (). 
Library routines provide backward compatibility with the old time () system 
call. 

On 4.2 BSD, filenames are no longer limited to 14 characters, because of a new 
filesystem and directory format. The new systems calls mkdir () and 
rmdi r () provide atomic means to create and remove directories. Files can be 
moved with the rename () system call. It is also possible to truncate files to a 
specified length with truncate () . 

The mmap () system call is an attempt to provide shared memory by mapping 
virtual memory into a file. Unfortunately it is incompletely implemented. 

Unlike System V, 4.2 BSD provides disk quotas, which are valuable for heavily 
used filesystems. The setquota () system call enables and disables quotas for 
a filesystem, while quota () allows these quotas to be altered. 

Symbolic links are like hard links except they can cross filesystems. They are 
created with symlink ( ) , manipulated with readlink ( ) , and queried with 
lstat (). Symbolic links are useful for networking, because they can span not 
only filesystems, but machine boundaries as well. 

It is possible to set just the real user or group ID with setruid () and 
setrgid (), or just the effective user or group ID with seteuid () and 
setegid (). Of course, both may still be set with setuid () and set­
gid ( ). All these library routines are based on the system calls setreuid ( ) 
and setregid () . 

The designers of 4.2 BSD felt that the old signal niechanism was broken, because 
signals could interrupt previous signals, sometimes causing dangerous race con­
ditions. t Signal delivery on 4.2 BSD resembles the model of hardware interrupts: 
the signal is blocked from further occurrence, the current process context is 
saved, and a new one is built. A process may specify a signal handler with 
sigvec () , or specify that a signal be blocked, or restore a default action on 
receipt of signal. Signals are sent to a process with kill () , or to an entire pro­
cess group with killpg (). Signals can be blocked for a section of code with 
sigblock () , and restored with sigsetmask (). In blocked conditions, pro­
grams can wait for a signal with sigpause (). Layered signal handlers can be 
built with sigstack (). Fortunately, the old signal () facility is imple­
mented as a library routine, so old programs don't need to be modified (although 
signal behavior is incompatible). 

Since 4.2 systems have virtual memory, the vfork () system call is provided to 
prevent unnecessary copying on forks, and the vadvise () call is available to 
influence paging behavior. However, the System V fork () is fater then the 4.2 
vfork () and doesn't have a problem with children modifying parents' address 
space. 

t Interestingly. IBM expropriated the Berkeley signal facility for their implementation of System V. 

Revision A of 15 October 1986 



26 System V Enhancements Overview 

3.5. Conclusion Both Berkeley UNIX and System V contain many new system calls, some of 
which may gain wider acceptance in the long run. To achieve maximum porta­
bility, application programmers should avoid any system calls not available on 
both major versions of UNIX. System programmers, on the other hand, may 
require non-standard facilities to get the job done. Look before you leap. 

Revision A of 15 October 1986 



Library Routines in 4.2 BSD and Sys­
temV 

4 

Library Routines in 4.2 BSD and System V ............................. ~.............................. 29 

4.1. Introduction ......................................................................................................................... 29 

4.2. Comparison of Library Routines ............................................................................ 30 





4.1. Introduction 

4 
Library Routines in 4.2 BSD and 

System V 

How can a piece of code that is an order of magnitude too large be 
considered reliable? There is that much more that must be under­
stood in order to make changes. Library functions ... are one way to 
reduce the apparent complexity of a program; they help to keep pro­
gram size manageable, and they let you build on the work of others, 
instead of starting from scratch each time. 

Kernighan and Plauger, The Elements of Programming Style 

Anyone who peruses old UNIX code is shocked by the sheer number of instances 
where programmers obviously have coded their own functions in preference to 
using common library routines. Especially prevalent are private string-handling 
routines, analagous to strepy () and stremp (). One reason for this is that 
many programs were written before such library routines became available. 
Another is that the UNIX system continues to grow, making it difficult to keep 
up with all the new library functions that appear. To counter this trend, here is a 
comparison of library routines available on Version 7, System V, and4.2BSD. 

Years from now, we win look back on today's software with a jaundiced eye. No 
doubt, we will be surprised to see custom binary search algorithms, tree manage­
ment routines, and record locking schemes, despite the existence of perfectly 
good library routines for these purposes. In particular, the System V Interface 
Definition (SVID) includes specifications for each of these functions. 

There are good reasons to use library routines in preference to "rolling your 
own". First, programs are easier to understand and maintain when other pro­
grammers are already familiar with - and can trust - calls to library routines. 
Second, library routines are often faster than hand-coded functions because of 
library optimizations. Sun, for example, delivers improved versions of mal­
Ice () and the Standard 110 Library. Third, library routines are maintained by 
other people, and changes can be coordinated with those made to other parts of 
the system. Finally, library routines are documented, and get improved. Private 
versions of functions tend to be undocumented and hidden in specific programs, 
waiting to surprise users when new releases are installed. 

29 Revision A of 15 October 1986 



30 System V Enhancements Overview 

4.2. Comparison of Library 
Routines 

Table 4-1 

routine V7 

a64l () 
abort () x 
asctime () x 
atof () x 
atoi () x 
atol () x 
bcmp () 
bcopy () 
bzero () 
bsearch () 
calloc () x 
clock () 
crypt () x 
ctime () x 
ecvt () x 
encrypt () x 
endgrent () x 
endpwent () x 
endutent () 
fcvt () x 
free () x 
frexp () x 
ftok () 
ftw () 
gcvt () x 
getcwd () 
getenv () x 
getgrent () x 
getgrgid () x 
getgrnam() x 
getlogin () x 
get opt () 

As is evident from the table below, System V has the most library routines, with 
4.2BSD placing a distant second. More than half of the System V additions were 
actually part of System III, but they are credited to System V here. The curses 
package and the termcap library routines are listed as one-line items. 

The C compilers on System V and 4.2BSD (almost identical versions of the Port­
able C Compiler) have been improved since Version 7. Both compilers support 
enumeration data types, non-unique structure member names, and the void data 
type (for functions not returning a value). Long program identifiers are sup­
ported in 4.2, but were not added to System V until release 2. Both System V 
and 4.2BSD offer profiled function libraries as an aid for software performance 
analysis. 

Comparison of Library Routines 

Comparison of Library Routines 
SV 4.2 description 

x convert base 64 ASCII string to long integer 
x x create a program fault 
x x convert a time zone data structure to string format 
x x convert character string to floating point 
x x convert character string to integer 
x x convert character string to long integer 

x compare a byte array 
x copy a byte array 
x zero a byte array 

x binary table search routine 
x x allocate an initialized array space 
x obtain process CPU time 
x x encrypt a password using setkey and encrypt functions 
x x convert datlpe and time to string format 
x x convert floating point to string format 
x x encrypt a key using the DES algorithm 
x x end group file processing 
x x end password file processing 
x end processing of the accounting file 
x x convert floating point to Fortan F string format 
x x free an allocated storage block 
x x split a number into mantissa and exponent 
x construct access key for IPC using messages or semaphores 
x descend directory hierarchy applying a function everywhere 
x x convert floating point to Fortan F or E string fonnat 
x obtain the current directory name in string format 
x x obtain values for process environment variables 
x x read group file entries sequentially 
x x read group file entries by group ID 
x x read group file entries by group name 
x x obtain a pointer to a user login name entry 
x obtain command lne options 

Revision A of 15 October 1986 



Chapter 4 - Library Routines in 4.2 BSD and System V 31 

Table 4-1 Comparison of Library Routines-- Continued 

Comparison of Library Routines 
routine V7 SV 4.2 description 

getpass () x x x read a password from a terminal without echoing 
getpw () x x x obtain a user name from a user ID 
getpwent () x x x read password file entries sequentially 
getpwnam(} x x x read password file entries by group name 
getpwuid () x x x read password file entries by group ID 
getutent () x read accounting file entries sequentially 
getutid(} x search an accounting file by type 
getutline () x search an accounting file by device 
gmtime () x x x obtain a time data structure containing the GMT time 
gsignal () x send a signal to a process or a group of processes 
hcreate () x create a hash-table 
hdistroy () x remove a hash-table 
hsearch () x search for an entry in a hash-table 
ini tgroups () x initialize group access list 
irand48 () x return double precision random numbers from 0.0 to 1.0 
isalnum( } x x x test for alphanumeric character 
isalpha () x x x test for alphabetic character 
isascii () x x x test for ASCII character 
isatty () x x x test whether a file is associated with a terminal 
iscntrl () x x x test for control character 
isdigit () x x x test for digit character 
isgraph () x test for printable character excluding spaces 
islower () x x x test for lower case character 
isprint () x x x test for printable character 
ispunct () x x x test for punctuation character 
isspace () x x x test for white space character 
isupper () x x x test for upper case character 
isxdigit () x test for hexadecimal format data 
jrand48 () x return long integer random numbers from -2"31 to 2"31 
krand48 () x return double precision random numbers from 0.0 to 1.0 
13tol () x x x convert from 3 byte integers to long integers 
164a () x convert long integer to base 64 ASCII string 
Idexp () x x x combine mantissa and exponent 
localtime(} x x x obtain a time data structure adjusted for local time 
longjmp () x x x restore stack environment information 
lrand48 () x return long integer random numbers from 0 to 2"31 
lsearch () x linear table search and update routine 
Ito13 () x x x convert from long integers to 3 byte integers 
malloc(} x x x allocate a storage block 
memccpy () x copy memory stopping after a specified character 
memchr () x search memory for characters 
memcmp () x compare memory locations lexicographically 
memcpy () x copy memory to memory 
memset () x initialize memory to a constant value 
mktemp () x x x make a unique file name using a template 

Revision A of 15 October 1986 



32 System V Enhancements Overview 

Table 4-1 Comparison of Library Routines-- Continued 

Comparison of Library Routines 
routine V7 SV 4.2 description 

modf () x x x split mantissa into integer and fraction 
monitor () x x x prepare execution profile for a program 
mrand48 () x return long integer random numbers from -2"31 to 2"31 
nlist () x x x get entries from an executable file's symbol table 
nrand48 () x return long integer random numbers from ° to 2"31 
perror () x x x produce error messages using standard output 
pkopen () x packet driver simulator 
putpwent () x write a password file entry 
pututline () x write accounting file entries 
qsort () x x x quicker sort algorithm 
rand () x x x obtain successive pseudo random numbers range (0,32767) 
random() x better random number generator than randO 
realloc() x x x change the size of a storage block 
setgrent () x x x reposition to the start of the group file 
setjmp () x x x save stack environment information 
setkey () x x x initialize a key for use in encryption 
setpwent () x x x reposition to the start of the password file 
setutent() x reposition to the start of an accounting file 
sleep () x x x suspend process execution for an interval of time 
srand () x x x reset random number generator at a random starting point 
swab () x x x exchange adjacent bytes 
tdelete () x remove a binary tree node 
timezone () x x get the name of the time zone 
toascii () x convert integer values to ASCII 
tolower () x x x translate characters to lower case (function in System V) 
toupper () x x x translate characters to upper case (function in System V) 
_tolower () x macro version of the tolower function 
_toupper () x macro version of the toupper function 
tsearch () x create and search a binary tree 
ttyname () x x x obtain the file name of a terminal in string format 
ttyslot () x x x locate the accounting file entry for a terminal user 
twalk () x traverse (walk) through nodes of a binary tree 
tzset () x set time zone variables using an environment variable 
utmpnane () x specify the accounting file to be examined 
string functions 

index () x x search for occurrence of character 
rindex () x x search backwards for occurrence of character 
strcat () x x x concatenate two full strings 
strchr () x search for occurrence of character: index ( ) 
strcmp () x x x lexical comparison of two full strings 
strcpy () x x x copy a string into a second string 
strlen () x x x obtain the length of a string 
strncat () x x x append up to n characters to a string 
strncmp () x x x lexical comparison of no more than n characters 
strncpy () x x x copy n characters of a string 

Revision A of 15 October 1986 



Chapter 4 - Library Routines in 4.2 BSD and System V 33 

Table 4-1 Comparison of Library Routines- Continued 

Comparison of Library Routines 

routine V7 SV 4.2 description 

strnspn () x obtain length of 1 st string not matching characters of 2nd string 
strpbrk () x search for a member of a set of characters 
strrehr () x search backwards for occurrence of character: r index ( ) 
strspn () x obtain length of 1 st string matching characters of 2nd string 
strtok () x search a string one token at a time 

standard lID 

elearerr () x x x reset error, end of file indicators 
etermid( ) x obtain the file name for a terminal 
euserid () x obtain the login name of user as a string 
exit () x x x terminate process after cleaning up 
felose () x x x close a data stream 
fdopen () x x x connect a data stream to an open file 
feof () x x x test for an end of file condition 
ferror () x x x test for error conditions 
fflush () x x x flush a data stream without closing it 
fgete () x x x read a character from an input data stream 
fgets () x x x read a string, but no more than n characters 
fileno () x x x obtain the file descriptor for a data stream 
fopen () x x x open a data stream 
fprintf () x x x place output in a named output stream 
fpute () x x x write a character on a data stream 
fputs () x x x write a string onto an output stream 
fread () x x x read buffered input from a data stream 
freopen () x x x redirect output of an open data stream 
fseanf () x x x scan input data from a named input stream 
fseek () x x x reposition random read/write pointer 
ftell () x x x determine current positio in a data stream 
fwrite () x x x write buffered output to a data stream 
gete () x x x read a character (macro version of fgete) 
getehar () x x x read a character from the standard input (macro) 
gets () x x x read a string up to a newline 
getw () x x x read a word from an input stream 
pelose () x x x close an interprocess data stream 
popen () x x x open an interprocess data stream 
printf () x x x place output in the standard output 
pute () x x x write a character (macro version of fpute) 
putehar () x x x write a character to the standard output (macro) 
puts () x x x write a string and append a newline 
putw () x x x write a word on an output stream 
rewind () x x x reposition to the beginning of a data stream 
seanf () x x x scan input data from the standard input 
setbuf () x x x assign a buffer to a data stream 
sprintf () x x x place output in a character stream 
sseanf () x x x scan input data from a character string 
ssignal() x specify action to perform upon receipt of a signal 

Revision A of 15 October 1986 



34 System V Enhancements Overview 

Table 4-1 Comparison of Library Routines- Continued 

Comparison of Library Routines 
routine V7 SV 4.2 description 

system () x x x issue a shell command 
tempnam() x obtain file name for temporary file in any directory 
tmpfile () x create a temporary file 
tmpnam() x obtain file name for temporary file in Itmp 
ungetc () x x x put a character back into the input data stream 

math library 

hypot () x x x Euclidean distance 
acos () x x x arccosine function 
asin () x x x arcsine function 
ceil () x x x ceiling function 
loglO () x x x common logarithm 
cos () x x x cosine function 
exp () x x x exponential 
floor () x x x floor function 
cosh () x x x hyperbolic cosine function 
sinh () x x x hyperbolic sine function 
tanh () x x x hyperbolic tangent function 
fabs () x x x floating point absolute value 
abs () x x x integer absolute value 
matherr () x math library error handling function 
log () x x x natural logarithm function 
pow () x x x raise a value to a given power 
sin () x x x sine function 
sqrt () x x x square root 
tan () x x x tangent function 
gamma () x x log gamma function 
fmod () x remainder function - modulo 
erfc () x complementary error function: 1 - erf(x) 
erf () x error function: erf(x) 
atan () x x x arctangent function 
atan2 () x x x arctangent function 
j[Oln] () x x x Bessel functions of the first kind 
y[Oln] () x x x Bessel functions of the second kind 

miscellaneous 
arc () x x x draw arc given the center and end points 
assert () x x x debugging macro for embedding diagnostic code 
circle () x x x draw circle given center and radius 
closepl () x x x close a plotting device, writing buffered output 
cont () x x x draw line between current position and second point 
curses x x cursor addressing and screen updating library 
dbm x x database management subroutines 
directory x x directory operations 
erase () x x x clear the plotting area 
label () x x x supply labels for plotting 

~~sun ~iW microsystems 
Revision A of 15 October 1986 



Chapter 4 - Library Routines in 4.2 BSD and System V 35 

Table 4-1 Comparison of Library Routines-- Continued 

Comparison of Library Routines 
routine V7 SV 4.2 description 

line () x x x connect two data points with a line 
linemod () x x x specify style for connecting lines 
logname () x obtain the login name of a user 
move () x x x reposition the cursor 
mp x x multiple precision integer arithmetic library 
openpl () x x x prepare plotting device to receive data 
point () x x x plot a data point 
compile () x compile a regular expression 
step () x match regular expression anywhere in string 
advance () x match regular expression at beginning of string 
re_comp () x compile a regular expression 
re_exec () x execute regular expression for a pattern match 
space () x x x define the perimeter of a plotting space 
termlib x x terminal-independent operation library 
varargs x variable argument list 

networking 

byteorder x convert values between host and network byte order 
gethostent () x get network host entry 
getnetent ( ) x get network entry 
getprotoent() x get protocol entry 
getservent () x get service entry 
inet_addr () x Internet address manipulation 
rcmd () x return stream to remote command (superuser) 
rexec () x return stream to remote command 

Revision A of 15 October 1986 





5 
The System V Terminal Driver 

The System V Terminal Driver ......................................................................................... 39 

5.1. Introduction ......................................................................................................................... 39 

5.2. Setting the Interrupt Character ................................................................................. 40 

5.3. Read Without Waiting .................................................................................................. 41 

5.4. Two-Way Control Flow ............................................................................................... 42 

5.5. Full Screen Software ..................................................................................................... 44 





5.1. Introduction 

5 
The System V Terminal Driver 

The tenninal driver for System V is completely incompatible with the Version 7 
tenninal driver, and hence with the 4.2 BSD terminal driver. This chapter gives 
some tips for programmers who want to know the differences between these ter­
minal drivers. 

The System V tenninal driver provides the following advantages over the "old" 
Version 7 and the "new" Berkeley tenninal drivers: 

[J Input modes, output modes, control modes, and local modes, can all be con­
trolled separately. However, different input and output baud rates are not 
supported. 

[J The programming interface is more elegant. Naming is more consistent, and 
everything is together in one structure. On 4.2 BSD there are three separate 
structures! 

[J The command set is orthogonal. You can, for example, send and receive 8 
bit wide data, without having to resort to RAW mode.t 

It is only fair to mention that Berkeley's "new" tenninal driver has a much 
better user interface. than the System V tenninal driver. Here are some advan­
tages of the Berkeley interface: 

[J Line erase (or kill) and word erase using I CTRL-W J remove characters as 
they are erased. On System V, only character erase does this. There is no 
word erase in System V. 

[J Control characters are displayed as printable characters when they are typed, 
which helps naive users to identify typing errors. Erasing of tabs and control 
characters is done properly. On System V, column alignment is not 
attempted. 

[J The new tenninal driver gives the user access to job control facilities, so that 
processes may be suspended with I C'IRL-Z J, placed in the background, or 
brought back into the foreground. 

[J Separate inputJoutput baud rates are theoretically possible, although it usu­
ally doesn't work in practice, because of device limitations. 

t On 4.3 BSD this can be done by using the new PAS S 8 bit. 

39 Revision A of 15 October 1986 



40 System V Enhancements Overview 

5.2. Setting the Interrupt 
Character 

From a programming standpoint, the System V terminal driver is easier to work 
with, but from a user's standpoint, the Berkeley interface is greatly superior. 

The rest of this chapter contains pairs of programs that show how to perform 
several common operations on the terminal interface. Compile the first program 
in a pair with /bin/ cc, and the second program with /usr/ Sbin/ cc. The 
Version 7 (and 4.2 BSD) header file for terminal control, sgtty. h, is replaced 
on System V by termio. h. The System V header file fcntl. h gives 
definitions for controlling open files; 4.2 BSD provides the same facilities and 
include file, but earlier Berkeley UNIX systems did not 

In the programs below, the Berkeley features were tested with /bin/ cc, and the 
System V features with /usr / Sbin/ cc. 

Over noisy transmission lines, the DEL character (which was the default inter­
rupt character before 4.2 BSD) looks too much like a string of ones (line closed). 
If you work over phone lines during a storm, for example, you may find your 
work getting interrupted by transmission errors, which generate extraneous DEL 
characters. One solution is to change your interrupt character to something else, 
such as control-C. That's what the following program does. Of course, this 
could also be accomplished with the stty command, but that's too easy. First 
the program for 4.2 BSD: 

iinclude <sgtty.h> 

main () 
{ 

/* set interrupt to control-C */ 

struct tchars ctIs; 

ioctl(O, TIOCGETC, &ctIs); 
ctls.t_intrc = 003; /* should use argv[l] */ 
ioctl(O, TIOCSETC, &ctIs); 

Now the program for System V: 

iinclude <sgtty.h> 

main () 
{ 

/* set interrupt to control-C. */ 

struct termio term; 

ioctl(O, TCGETA, &term); 
term.c_cc[VINTR] = 003; 
ioctl(O, TCSETA, &term); 

/* should use argv[l] */ 

There was no way to reset your interrupt character from the shell on vanilla Ver­
sion 7 systems. On Berkeley UNIX, the tchars structure contains the actual 
interrupt character, along with the quit signal, the start and stop characters, and 
the end-of-file character. On System V, these characters (with the exception of 
start and stop) are part of an array in the termio structure. This arrangement is 

Revision A of 15 October 1986 



5.3. Read Without Waiting 

Chapter 5 - The System V Terminal Driver 41 

more elegant than having two structures, s gt t yb and t char s. However, Sys­
tem V provides no way to reset the stop ("S) and start ("Q) characters. 

When writing interactive software, and packet-based communications packages, 
it is often necessary to perform a read to look for input, returning immediately if 
there is nothing to be read. On System V, this is called read-no-delay. On 4.2 
BSD, there is a special ioctl call that tells how many characters are waiting in 
the input queue. The following program sleeps two seconds, reads a line without 
hanging if there's nothing to read, and prints what has been typed before exiting. 
First the version for 4.2 BSD: 

#include <stdio.h> 
#include <sgtty.h> 
#include <fcntl.h> 

main (argc, argv) 
int argci 

/* read from terminal with no delay */ 

char *argv[]i 
{ 

char buf[BUFSIZ]; 
long n = 0; 
int fdi 

putS("You have 2 seconds to type a line:"); 
sleep(2); 
fd = open("/dev/tty", O_RDONLY); 
ioctl(fd, FIONREAD, &n); 
if (n == 0) 

putS("You didn't type anything."); 
else { 

read(fd, buf, sizeof(buf»; 
printf("You typed: %S", buf); 

Now the version for System V: 

~~sun ~~ microsystems 
Revision A of 15 October 1986 



42 System V Enhancements Overview 

5.4. Two-Way Control 
Flow 

#include <stdio.h> 
#include <ter.mio.h> 
#include <fcntl.h> 

main (argc, argv) 
int argc; 

/* read from terminal with no delay */ 

char *argv[]; 
'{ 

char buf[BUFSIZ]; 
long n = 0; /* so on v7 sure to read nothing */ 
int fd; 

puts ("You have 2 seconds to type a line:"); 
sleep(2); 
fd = open("/dev/tty", O_RDONLY); 
fcntl(fd, F_SETFL, O_NDELAY); 
n = (long)read(fd, buf, sizeof(buf»; 
if (n == 0) 

puts ("You didn't type anything."); 
else 

printf("You typed: %s", buf); 

On 4.2 BSD, you call ioetl (FIONREAD) to check if there are characters wait­
ing to be read; if there are, you read them. On System V, you call 
fentl (O_NDELAY) to specify that further reads should be done without wait­
ing. This can also be accomplished from the open () call. Vanilla Version 7 
systems provide no features for doing non-blocking reads, so on such systems, 
the above program will always say, "You didn't type anything" (if it compiles at 
all). 

The following program causes the terminal driver to send a control-S when its 
buffer is half full, and a control-Q when it is ready to receive data again. The ter­
minal driver does not normally do control flow. This is helpful when you are 
uploading data from a microcomputer onto a UNIX system. Unless two-way 
control flow is enabled, data will probably be lost when buffers overflow . You 
can set this mode from the shell simply by typing stty tandem on 4.2 BSD, 
or stty ixoff on System V. However, for writing file transfer software, it 
would be best to set this mode from within a C program, for the sake of 
efficiency. First the program for 4.2 BSD: 

Revision A of 15 October 1986 



Chapter 5 - The System V Terminal Driver 43 

#include <stdio.h> 
#include <sgtty.h> 

main (argc, argv) 
int argc; 
char *argv[]; 
{ 

/* enable 2way XON/XOFF control flow */ 

struct sgttyb term; 

if (argc == 1) { 
fprintf(stderr, "Usage: %s [onloff]\n", argv[O]); 
exit(l); 

if (strcmp(argv[l] , "on") == 0) 
ioctl(O, TIOCGETP, &term); 
term.sg_flags 1= TANDEM; 
ioctl(O, TIOCSETP, &term); 

if (strcmp(argv[l] , "off") == 0) 
ioctl(O, TIOCGETP, &term); 
term.sg_flags &= -TANDEM; 
ioctl(O, TIOCSETP, &term); 

Now the program for System V. 

#include <stdio.h> 
#include <termio.h> 

main (argc, argv) 
int argc; 

/* enable 2way XON/XOFF control flow */ 

char *argv[]; 
{ 

struct termio term; 

if (argc == 1) { 
fprintf(stderr, "Usage: %s [onloff]\n", argv[O]); 
exit(l); 

if (strcmp(argv[l], "on") == 0) 
ioctl(O, TCGETA, &term); 
term.c_iflag 1= IXOFF; 
ioctl(O, TCSETA, &term); 

if (strcmp(argv[l], "off") == 0) { 

ioctl(O, TCGETA, &term); 
term.c_iflag &= -IXOFF; 
ioctl(O, TCSETA, &term); 

On Version 7, the terminal control structure was called sgt tyb; on System V it 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



44 System V Enhancements Overview 

5.5. Full Screen Software 

is called termio. Most of the differences here are matters of name only. What 
used to be called TANDEM is now called IXOFF. The Version 7 field 
sg_flags was separated for System V into c_iflag for input, and c_oflag 
for output. The arguments to ioctl are now TCGETA and TCSETA rather 
than TIOCGETP and TIOCSETP. Note that we could have used gtty and 
stty instead of the ioctl calls for 4.2 BSD; however, gtty and stty are 
considered obsolete. 

When writing screen-oriented software such as editors, database forms editors, 
and visual games, it's best to use a terminal control state somewhere between 
cooked and raw mode. This half-baked mode is sometimes called "rare" mode. 
On Version 7 and all BSD systems, you set CBREAK mode. On System V, you 
disable canonical input processing. 

The following program sets the terminal line to rare mode, after saving the origi­
nal state. It then calls a function that would ordinarily handle the screen. In this 
example, however, it just executes the s tty command, to show the terminal line 
settings. Finally, it resets the terminal to its original state, and exits. The 
screen function would normally be filled in with code to handle screen input 
and output. Note that for most programming applications, however, it would be 
better to use cur s e s, if this package is available at your site. First the program 
for 4.2 BSD: 

*include <stdio.h> 
*include <sgtty.h> 

main (argc, argv) 
int argc; 

/* set tty to rare for screen work */ 

char *argv[]; 
{ 

struct sgttyb tty, save; 

ioctl(O, TIOCGETP, &save); 
ioctl(O, TIOCGETP, &tty); 
tty.sg_flags 1= CBREAK; 
tty.sg_flags &= -(ECHOIXTABSICRMOD); 
ioctl(O, TIOCSETP, &tty); 
screen(); 
ioctl(O, TIOCSETP, &save); 
exit(O); 

screen () 
{ 

/* handle screen-oriented functions */ 

system ("stty") ; /* just test for now */ 

Now the program for System V: 

Revision A of 15 October 1986 



Chapter 5 - The System V Terminal Driver 45 

#include <stdio.h> 
#include <termio.h> 

main (argc, argv) 
int argc; 

/* set tty to rare for screen work */ 

char *argv[]; 
{ 

struct termio tty, save; 

ioctl(O, TCGETA, &save); 
ioctl(O, TCGETA, &tty); 
tty.c_iflag &= -ICRNL; 
tty. c_oflag &=. - (TAB31 ONLCR) ; 
tty.c_lflag &= -(ECHOIICANON); 
ioctl(O, TCSETA, &tty); 
screen(); 
ioctl(O, TCSETA, &save); 
exit(O); 

screen () 
{ 

/* handle screen-oriented functions */ 

system (" st ty") ; /* just test for now */ 

On System V, you tum off the input mapping of carriage return to newline by 
doing a bitwise and of the one's complement of I CRNL into the input flags. You 
tum off the output mapping of tab to spaces, and the output mapping of carriage 
return to newline, by doing likewise with TAB3 and OCRNL, into the output 
flags. Finally, you tum off local echoing and canonical input processing by 
doing the same thing with ECHO and ICANON, into the local flags. 

On Version 7 and all BSD systems, input and output modes are together, so turn­
ing off CRMOD accomplishes the same thing as turning off I CRNL and OCRNL. 
Echoing is turned off by twiddling the bit for ECHO, and the mapping of tab to 
spaces is turned off by using XTABS (which is a slightly better name for this than 
TAB3 on System V). On the other hand, CBREAK has to be turned on, so you 
should bitwise or it into the tty flags. 

~~sun ,~ microsystems 
Revision A of 15 October 1986 





6 

File and Record Locking 

File and Record Locking ........................................................................................................ 49 

6.1. Introduction ......................................................................................................................... 49 

6.2. File and Record Locking on System V............................................................... 49 

6.3. File Locking on 4.2 BSD ............................................................................................ 51 

6.4. Locking in a Network Environment ..................................................................... 52 





6.1. Introduction 

6.2. File and Record 
Locking on System V 

6 

File and Record Locking 

Locking prevents multiple processes from modifying a file at the same time. File 
locking works on an entire file, while record locking works on a region of a file; 
actually file locking is an extreme case of record locking. Records can be locked 
either against reading or writing. Generally read locks are shared (allowing other 
processes to read the record), while write locks are exclusive (allowing no other 
processes to read or write the record). Locks can be blocking or non-blocking -
that is, they can wait until the record is no longer locked, or they can return 
immediately with an error. 

Locks may be advisory, in which case the cooperation of all processes is 
required, or mandatory, so that no process can violate the lock. Mandatory locks 
pose serious security problems: for example, what would happen if 
/ etc/pas swd were locked against reading? Sun's locking scheme is advisory 
rather than mandatory. 

The most primitive locking method is to create a temporary file that acts as a 
lock. This is inelegant, inefficient, and insecure. Without inter-process com­
munication (IPC), the best alternative is to create a lock device driver, which 
must be configured into the kernel. With the IPC facilities of 4.2 BSD, locking 
could be done with sockets. With the IPC facilities of System V, locking can be 
done quite easily with semaphores. Neither is necessary, because release 3.2 
includes the standard file and record locking facilities from the System V I nter­
face Definition (SVID). 

In the spring of 1981, John Bass published a paper in the Usenix newsletter 
;login:, detailing the interface and implementation of a locking () system call 
for file and record locking. His proposal called for mandatory locks. About a 
year later, lusrlgroup published a standard including the lockf () system call, 
with the same parameters and locking modes. The difference was that the 
lusrlgroup standard allowed for both mandatory and advisory locks. Advisory 
locks may be circumvented by programs not using lockf (), while mandatory 
locks cannot. Only files with the setgid bit set are subject to mandatory lock­
ing under this standard. 

Mandatory locks are probably not necessary. Both OS/360 and VAX/VMS have 
survived for years with advisory locks only. Many large databases, including air­
line reservation systems, have been implemented on these operating systems. 
Furthennore, mandatory locks are a potential security problem. Some user 

49 Revision A of 15 October 1986 



50 System V Enhancements Overview 

program could lock /etc/passwd (if it had the setgid bit set) and then go to 
sleep, causing the entire protection subsystem to hang. 

The lockf () system call allows a process to lock sections of a file. Other 
processes that attempt to lock that section will either return an error value, or 
block until the section becomes unlocked. All locks on a file are removed when 
the file is closed, and all locks for a process are removed when the process ter­
minates. The call looks like this: 

lockf(fd, mode, length) 
int fd, mode; 
long length; 

The file descriptor fd must come from a successful open () , creat () , 
pipe ( ) , or dup () system call. The mode may be F _LOCK to lock a region for 
exclusive use, F _TEST to test for other locks, F _ TLOCK to both test and lock, 
and F _ ULOCK to unlock a region. Actually F _ TLOCK is a non-blocking lock: if 
a region is locked, it returns an error, rather than sleeping. The third parameter 
length is the number of bytes to lock, specified from the current position in the 
file. This can of course be changed with the lseek () system call. Negative 
values indicate how far back to lock, from the current position. Locking past end 
of file protects against appending. If locked regions overlap, they are combined 
into a single region. 

The potential for deadlock occurs if a process controlling a locked resource gets 
put to sleep by accessing another process's locked resource. Thus, calls to 
lockf () scan for a deadlock before sleeping on a locked resource. An error is 
returned if sleeping on a locked resource would cause a deadlock. Sleeping on a 
resource is interrupted by any signal. Thus, the alarm () system call can be 
used to provide a timeout facility if necessary . 

Record locking for a simple ISAM database is relatively straightforward: lock the 
data, and lock the index pointer for the data. But in a B-tree database, record 
locking is much harder. Modifying a record may require shuffling the leaves of 
the tree. The safest and easiest thing is to lock the entire B-tree, but this may not 
be acceptable in highly sophisticated applications. 

Originally, System V had no file or record locking features. However, the SVID 
finally included the lusrlgroup locking standard, with advisory locks only. Man­
datory locking will be included in future specifications. The programming usage 
is the same as in the lusrl group standard, as are the modes F _ LOCK, F _ TE S T, 
F _ TLOCK, and F _ ULOCK. 

The most interesting part of the AT&T specification is that locking can be con­
trolled with the fcntl () system call. This affords a distinction between read 
locks and write locks, something not present in the lusrlgroup standard. 

Locks may also be established with the F _ SETLK or F _ SETLKW command to 
fcntl () ; the distinction is that F _ SETLKW blocks (or waits), whereas 
F _ SETLK is non-blocking. Either command takes the arguments F _ RDLCK and 
F _ WRLCK to lock, and F _ UNLCK to unlock. A read lock using F _ RDLCK 
prevents other processes from write-locking the protected area. More than one 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



6.3. File Locking on 4.2 
BSD 

Chapter 6 - File and Record Locking 51 

read lock may exist for a given region at any given time. The file descriptor in 
question must have been opened with read access. A write lock with F _ WRLCK 
prevents any process from read-locking or write-locking the protected area. Only 
one write lock may exist for a given segment of a file at any time. The file 
descriptor in question must have been opened with write access. 

In a production database system, it is best to place a read lock on a record during 
browsing. If the record gets modified, the read lock can be upgraded to a write 
lock (if no other read locks exist), the record quickly updated, and the write lock 
removed. The system must arbitrate race conditions, as when two processes are 
both waiting for a write lock. 

The first major release to include file locking was 4.2 BSD with the flock () 
system call, which allows processes to place advisory locks on files. Since 
advisory locks are not enforced by the operating system, flock () is useful pri­
marily for cooperating processes that have already agreed upon a locking proto­
col. When a process attempts to lock a file already locked by another process, 
flock () blocks until the first process releases the lock. If called with the 
LOCK_NB (noblock) option, however, flock () returns the error EWOULD­
BLOCK when a file is already locked, instead of blocking. Both exclusive and 
shared locks are available. At anyone time, a file may have only one exclusive 
lock, but multiple shared locks are permitted. This call establishes an exclusive 
lock, and will block until the lock in effect is released: 

if (flock(fd, LOCK_EX) < 0) 
perror("fatal error: flock"); 

This call establishes a shared lock. It will block if the file has an exclusive lock, 
but not if there are multiple shared locks: 

if (flock(fd, LOCK_SH) < 0) 
perror("fatal error: flock"); 

This call establishes an exclusive, non-blocking lock. It can be used when it is 
acceptable to try again later, rather then waiting until a lock is released: 

if (flock (fd, LOCK_EX I LOCK_NB) < 0) 
perror("try again later: flock"); 

This call releases any of the above locks: 

( (void) flock (fd, LOCK_UN); 

In all the examples above, the file descriptor fd is obtained from a system call 
such as open (). The flock () system call returns -1 if the file descriptor is 
invalid, or if it does not refer to a file. 

J 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



52 System V Enhancements Overview 

6.4. Locking in a Network 
Environment 

Some Berkeley UNIX commands that establish locks are tip (when writing a 
log of the call), dump (when recording information about incremental dumps), 
and some versions of mail (for locking the spool file during mail browsing). 

The main problem with the flock () facility is that it lacks record locking. 
Database applications could perform record locking by using a socket-based lock 
manager, but this would be slow compared to record locking done by the kernel. 
Another problem with flock () is that its semantics fail to generalize to a 
networked environment. 

In order for 10 ckf () to work on remote-mounted filesystems, the network lock 
daemon rpc .lock has to be running on the NFS server machine. See 
lockd(8c) for details. 

Revision A of 15 October 1986 



7 
Tuning IPC System Parameters 

Tuning IPC System Parameters ......................................................................................... 5S 

7.1. Introduction ......................................................................................................................... 55 

7.2. Why Reconfigure IPC Parameters? ....................................................................... 55 

7.3. !PC Message Parameters ............................................................................................. 56 

MSGPOOL ........................................................................................................................ 56 

MSGMNB ........................................................................................................................... 56 

MSGMNI ........................................................................................................................... 57 

MSGTQL ........................................................................................................................... 57 

7.4. !PC Semaphore Parameters ....................................................................................... 57 

7.5. !PC Shared Memory Parameters ............................................................................. 58 





7.1. Introduction 

7.2. Why Reconfigure IPC 
Parameters? 

7 
Tuning IPC System Parameters 

The Systein V Inter-Process Communications (IPC) extensions to UNIX are now 
implemented in the Sun UNIX operating system. These !PC extensions provide 
mechanisms for message passingt semaphorest and shared memory. 

Data structures that describe and control various IPC functions are allocated in 
the Sun UNIX kernel at system initialization and remain resident in memory as 
long as the operating system is running. The size of these structures is deter­
mined by a variety of tunable parameters in the system configuration file. Some 
IPC parameters also exist to control and limit the resources dynamically allo­
cated by !PC subsystems. 

This document describes these parameters and gives some guidelines for tuning 
them. Before attempting to modify any of these parameterst you should be 
thoroughly familiar with the capabilities provided by the IPC systemt and with 
your particular application's needs. 

Refer to the AT&T System V Interface Definition (SVID) and Sun's UNIX Inter­
face Reference Manual for a detailed description of the IPC system interface. 
But note that there are now two separate IPC subsystems - the one from 4.2 BSD 
involving sockets, and the one from System V discussed here. 

The Sun Operating Systemt as shipped, is configured to support a modest level of 
IPC activity. Applications that require more !PC resources than are provided in 
the distributed system must be run with reconfigured kernels. 

Note: in general t Sun recommends that all system kernels be reconfigured in 
order to reduce the base-level memory requirements. Instructions on doing this 
may be found in the manual Installing UNIX On The Sun Workstation. The fol­
lowing paragraphs assume a working knowledge of the system configuration pro­
cedure. 

IPC parameters may be tuned by editing the system configuration file 
/usr / sys/ conf/SYSTEM_NAME and rebuilding the kernel. In order to 
adjust the default setting of a particular parametert insert a line of the following 
fonn into the configuration file: 

options OPTION NAME = OPTION VALUE - -
Default values are assumed for all unspecified parameters. Note: do not change 
the options lines that refer to the IPC subsystems unless you wish to disable 
the entire subsystem. 

55 Revision A of 15 October 1986 



56 System V Enhancements Overview 

7.3. !PC Message 
Parameters 

MSGPOOL 

MSGMNB 

Users of System V may note that there is not an exact correspondence between 
Sun's tunable parameters and those found in the AT&T System V release. This 
is because several implementation algorithms have been changed, rendering 
some of the parameters meaningless. In particular, certain static structures in 
System V are allocated dynamically by the Sun kernel, obviating the need for 
configurable limits. In future Sun releases, there are likely to be even fewer tun­
able parameters. It should be noted that although some parameters have been 
omitted, there are no semantic differences in the IPC system call operation. 

For the remaining tunable parameters, reasonable values may be estimated using 
information about the application programs' !PC usage. The following sections 
specify the default values and attempt to give tuning guidelines. It is generally a 
good idea to write application programs that recover gracefully from resource 
allocation failures, so that system configuration requirements surface early in the 
development cycle. Applications that require large amounts of IPC resources are 
often poorly designed and should be carefully reviewed before making drastic 
increases in the IPC parameters. 1 

These parameters control system characteristics associated with inter-process 
message passing. 

MSGPOOL defines the size (in kilobytes) of the kernel message memory pool. 
All queued IPC messages are stored in this pool. The behavior of the msgsnd(2) 
system call when the message pool is full depends on the value of the msgflg 
argument; see msgop(2). Attempts to queue messages larger than the message 
pool return EINV AL. 

The IPC message pool is allocated at system initialization and is never made 
available for other uses. Thus, tuning the MSGPOOL parameter involves a trade­
off between the performance of processes that depend upon a high level of mes­
sage activity, and the degradation of overall system performance due to wasted 
memory. This parameter may not exceed 255. 

options MSGPOOL=8 

MS GMNB defines the maximum number of message bytes that may be queued on 
any particular message queue. Attempts to queue messages that would exceed 
this limit either sleep or return EAGAIN; see msgop(2). MSGMNB is used as a 
default value for msg_ qbytes when message queues are created; this limit may 
be lowered by any process but only the super-user may raise the limits on a par­
ticular message queue; see the msgctl(2) option named IPC_SET. 

options MSGMNB=2048 

1 The total amount of memory available for user processes may be estimated using the vmstat(8) program. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



MSGMNI 

MSGTQL 

7.4. !PC Semaphore 
Parameters 

SEMMNI 

SEMMNS 

SEMUME 

SEMMNU 

Chapter 7 - Tuning IPC System Parameters 57 

MSGMNI defines the maximum number of uniquely identifiable message queues 
that may exist simultaneously. Attempts to create more than MSGMNI message 
queues return ENOSPC; see msgget(2). Each increment ofMSGMNI reserves 49 
bytes of kernel memory. 

options MSGMNI=50 

MSGTQL defines the total number of undelivered messages that may exist at any 
instant. Attempts to queue more than MSGTQL messages either sleep or return 
EAGAIN; see msgop(2). Since zero-length messages are allowed, this limit could 
theoretically be set arbitrarily high. Each increment ofMSGTQL reserves 12 
bytes. 

options MSGTQL=50 

These parameters control system characteristics associated with inter-process 
semaphores. 

SEMMNI defines the maximum number of uniquely identifiable semaphore clus­
ters that may exist simultaneously. Attempts to create more than SEMMNI sema­
phore clusters return ENOSPC; see semget(2). Although SEMMNI may be set 
arbitrarily high, there is no reason to set it to be larger than SEMMNS. Each 
increment of SEMMNI reserves 32 bytes of kernel memory. 

options SEMMNI=10 

SEMMNS defines the maximum number of semaphores in the system. Attempts 
to create semaphore clusters when there are not enough semaphores available 
result in an ENOSPC error; see semget(2). Attempts to create semaphore clusters 
with more than SEMMNS semaphores return E INVAL. Each increment of 
SEMMNS reserves 8 bytes. 

options SEMMNS=60 

SEMUME defines the maximum number of semaphores (per process) that may 
simultaneously have non-zero adjust-on-exit values. The adjust-on-exit values 
are manipulated when semaphore operations are requested in conjunction with 
the SEM UNDO flag. Attempts to exceed this limit return EINVAL; see 
semop(2), The value of SEMUME affects the number of bytes aIIocated for sema­
phore undo structures (see SEMMNU below). The value of SEMUME must be less 
than 32768. 

options SEMUME=10 

SEMMNU defines the maximum number of processes that may simultaneously be 
using the IPC SEM _UNDO feature. Attempts to exceed this limit result in an 
ENOSPC error; see semop(2). There is no reason to set SEMMNU larger than the 
maximum number of processes that can run on the system (approximately 
16*maxusers, where maxusers is configurable, defaulting to 4). Therefore, 

Revision A of 15 October 1986 



58 System V Enhancements Overview 

7.5. IPC Shared Memory 
Parameters 

SHMPOOL 

SHMSEG 

SHMMNI 

SEMMNU need not exceed 64, under nonnal drcumstances. Each increment of 
SEMMNU allocates 14 + ( 8 * SEMUME) bytes. 

options SEMMNU=30 

These parameters control system characteristics associated with inter-process 
. shared memory. 

SHMPOOL defines the total amount of shared· memory (in kilobytes) that may be 
in use in the system at any given time. Attempts to exceed this limit result in an 
ENOSPC error. In the current implementation, shared memory is allocated in 
non-paging memory, and can lead to system lockup if indiscriminately allocated. 
This restriction will be removed in a future Sun release. SHMPOOL is specified 
in kilobytes, but is rounded up to the page size of the target machine (2048 bytes 
on Sun-2, and 8192 bytes on Sun-3). 

options SHMPOOL=512 

SHMSEG defines the maximum number of shared memory segments that may be 
attached to a single task. Attempts to attach to more than SHMSEG segments 
return EMFILE; see shmop(2). Each increment of SHMSEG reserves 4 bytes for 
each process that can run on the system (approximately 16*maxusers, where 
maxusers is configurable, defaulting to 4). Therefore, each increment of 
SHMSEG ordinarily allocates 256 bytes. 

options SHMSEG=6 

S HMMNI defines the maximum number of shared memory segments that may 
simultaneously exist in the system. Attempts to exceed this limit return 
ENOSPC; see shmget(2). Each increment of SHHMNI reserves 42 bytes. 

options SHMMNI=100 

Revision A of 15. October 1986 





Corporate Headquarters 
Sun Microsystems, Inc. 
2250 Garcia Avenue 
Mountain View, CA 94043 
415960-1300 
TLX 287815 

For U.S. Sales Office 
locations, call: 
800821-4643 
In CA: 800821-4642 

European Headquarters 
Sun Microsystems Europe, Inc. 
Sun House 
31-41 Pembroke Broadway 
Cambedey 
Surrey GU15 3XD 
England 
027662111 
TLX 859017 

Australia: 61-2-436-4699 
Canada: 416477-6745 
France: (1) 46 30 23 24 
Germany: (089) 95094-0 
Japan: (03) 221-7021 
The Netherlands: 02155 24888 
UK: 0276 62111 

Europe, Middle East, and Africa, 
call European Headquarters: 
027662111 

Elsewhere in the world, 
call Corporate Headquarters: 
415960-1300 
Intercontinental Sales 


