sun’

microsystems

Commands Reference Manual

Sun WMicrosystems,’ Inc. 2550 Garéia Avenue * Mountain View, CA 94043 . 415-960—1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.
Intel® and Multibus® are registered trademarks of Intel Corporation.
DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica-
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

INTRO(1)

USER COMMANDS INTRO(1)

NAME
intro — introduction to commands
DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinctions of purpose
are made in the headings:
1) Commands of general utility, many with enhancements from 4.3 BSD. Wherever possible, we
have incorporated System V versions of commands and utilities into our standard UNIX release.
Where a command has both a System V and a BSD version, and it has been possible to merge
them, we have done so. In some cases, where the System V version was compatible with BSD
and offered significant added value, we adopted that version as our standard.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.
(1V) Optionally installed commands from System V, or commands with versions from System V.
These commands either depend upon System V functionality, or have incompatibities with the
corresponding BSD version. They are included in the System V Software installation option.
Once installed, they can be found in the directory /usr/5bin.
In most cases, versions that differed were similar enough so that only the differences for the Sys-
tem V version needed to be noted on the manual page. In a few cases, however, a different
manual page for each version was required.
SEE ALSO
. Section 6 in this manual for computer games.
. Section 7 in this manual for descriptions of publicly available files and macro packages for docu-
ment preparation.
. Section 8 in this manual for system administration procedures, system maintenance and operation
commands, local daemons, and network-services servers.
. Getting Started With UNIX: Beginner's Guide
. Setting Up Your UNIX Environment: Beginner's Guide
. Windows and Window-Based Tools: Beginner's Guide
. Using the Network: Beginner's Guide
. Programming Utilities for the Sun Workstation
DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system giving the cause
for termination, and (in the case of ‘normal’ termination) one supplied by the program, see wait and
exit(2). The former byte is O for normal termination, the latter is customarily O for successful execution,
nonzero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other inability to
cope with the task at hand. It is called variously "exit code," "exit status” or "return code," and is described
only where special conventions are involved.
Sun Release 3.2 Last change: 26 March 1986 1

ADB (1) USER COMMANDS ADB(1)

NAME
adb — debugger

SYNOPSIS
adb[—w][-k][-Idir][objfil [corfil]]
DESCRIPTION
adb is an interactive, general-purpose debugger. It can be used to examine files and provides a controlled
environment for the execution of UNIX programs.
objfil is normally an executable program file, preferably containing a symbol table. If the file does not con-

tain a symbol table, it can still be examined, but the symbolic features of adb cannot be used. The default
for objfil is a.out. corfil is assumed to be a core image file produced after executing objfil. The default for

corfil is core.
OPTIONS
-w Create both objfil and corfil if necessary and open them for reading and writing so that files can be
modified using adb.

-k Do UNIX kernel memory mapping; should be used when core is a UNIX crash dump or /devimem.

-1 specifies a directory where files to be read with $< or $<< (see below) will be sought; the default
is /usr/libladb.
USAGE
Refer to adb in Debugging Tools for the Sun Workstation for more complete information on how to use
adb. (Note: Some commands require that you compile progams to be debugged with the —go compiler
flag; see cc(1V) for details.)
Commands
adb reads commands from the standard input and displays responses on the standard output. It ignores the

QUIT signal. INTERRUPT invokes the next adb command. adb generally recognizes command input of the
form:

[address 1 [, count] command | ;]

address and count (if supplied) are expressions that result, respectively, in a new current address, and a
repetition count. command is composed of a verb followed by a modifier or list of modifiers.

The symbol . represents the current location. It is initially zero. The default count is 1.
Verbs

? Print locations starting at address in objfil.
/ Print locations starting at address in corfil.
= Print the value of address itself.
@ Interpret address as a source address. Print locations in objfi! or lines of source, as appropri-
ate.
: Manage a subprocess.
$r Print names and contents of CPU registers.
$R Print names and contents of MC68881 registers, if any.
$x Print the names and contents of FPA registers 0 through 15, if any.
$X Print the names and contents of FPA registers 16 through 31, if any.
> Assign a value to a variable or register.
RETURN Repeat the previous command with a count of 1. Increment .
! Shell escape.
Modifiers
Modifiers specify the format of command output. Each modifier consists of a letter, preceded by an integer
repeat count.

2 Last change: 27 February 1986 Sun Release 3.2

ADB (1) USER COMMANDS ADB(1)

Format Modifiers
The following format modifiers apply to the commands ?, /, @, and =. To specify a format, follow the
command with an optional repeat count, and the desired format letter or letters:

[vllirlf...]

where v is one of these four command verbs, r is a repeat count, and f is one of the format letters listed
below:

(. increment: 2) Print 2 bytes in octal.

(4) Print 4 bytes in octal.

(2) Print in signed octal.

(4) Print long signed octal.

(2) Print in decimal.

(4) Print long decimal.

(2) Print 2 bytes in hexadecimal.

(4) Print 4 bytes in hexadecimal.

(2) Print as an unsigned decimal number.

(4) Print long unsigned decimal.

(4) Print a single-precision floating-point number.
(8) Print a double-precision floating-point number.
(12) Print a 96-bit MC68881 extended-precision floating-point number.
(1) Print the addressed byte in octal.

(1) Print the addressed character.

(1) Print the addressed character using " escape convention.
(n) Print the addressed string.

(n) Print a string using the " escape convention.

(4) Print 4 bytes in date format.

(n) Print as machine instructions.

(n) Print with MC68010 machine instruction timings.
(0) Print the source text line specified by .

(0) Print the value of . in symbolic form.

(4) Print the addressed value in symbolic form.

(0) Print the value of . in source-symbol form.

(4) Print the addressed value in source-symbolform.
(0) Tab to the next appropriate tab stop.

(0) Print a space.

(0) Print a newline.

(0) Print the enclosed string.

(0) Decrement .

(0) Increment .

(0) Decrement . by 1

Modifiers for ? and | Only
1value mask Apply mask and compare for value; move . to matching location.
L value mask Apply mask and compare for 4-byte value; move . to matching location.
w value Write the 2-byte value to address.
W value Write the 4-byte value to address.
m bl el fI[?/] Map new values for b1, el, fI. If the ‘Y or ‘/’ is followed by # then the second segment
(b2, e2,42) of the address mapping is changed.

.

B R RT R NN N AR TR XY OROS OO

I+

: Modifiers
bc Set breakpoint, execute ¢ when reached
Bc Set breakpoint using source address, execute ¢ when reached
d Delete breakpoint
D Delete breakpoint at source address
r Run objfil as a subprocess

Sun Release 3.2 Last change: 27 February 1986 3

ADB (1)

Cs

Ss

$ Modifiers

<file
<<file

[=" [— L SRR
a A
S

Te g <R 0o wgeo

<=

Variables

USER COMMANDS ADB (1)

The subprocess is continued with signal s

Single-step the subprocess with signal s

Single-step the subprocess with signal s using source lines

Add the signal specified by address to the list of signals passed directly to the subprocess
Remove the signal specified by address from the list implicitly passed to the subprocess.
Terminate the current subprocess, if any.

Read commands from the file file.

Similar to <, but can be used in a file of commands without closing the file.

Append output to file, which is created if it does not exist.

Print process id, the signal which stopped the subprocess, and the registers.

Print the general registers and the instruction addressed by pec.

If a MC68881 is present, print its registers.

Print all breakpoints and their associated counts and commands.

C stack backtrace.

C stack backtracea with names and (32 bit) values of all automatic and static variables for
each active function.

Set the default radix to address and report the new value. Note that address is interpreted in
the (old) current radix. Thus ‘‘q10$d’’ never changes the default radix.

Print the names and values of external variables.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Print a list of known source filenames.

Print a list of known procedure names.

(Kernel debugging) Change the current kernel memory mapping to map the designated user
structure to the address given by _u, (the address of the user’s proc structure).

Show which signals are passed to the subprocess with the minimum of adb interference.
Reopen objfil and corfile for writing, as though the —w command—line argument had been
given.

Named variables are set initially by adb but are not used subsequently.

0
1
2
9

The last value printed.

The last offset part of an instruction source.
The previous value of variable 1.

The count on the last $< or $<< command.

On entry the following are set from the system header in the corfil or objfil as appropriate.

~ogmeawT

Expressions

+

The base address of the data segment.

The number of an address register that points to the FPA page.
The data segment size.

The entry point.

A value of ‘1° indicates FPA disassembly.

The ‘magic’ number (0407, 0410 or 0413).

The stack segment size.

The text segment size.

The value of dot.
The value of dot incremented by the current increment.
The value of dot decremented by the current increment.

Last change: 27 February 1986 Sun Release 3.2

ADB (1) USER COMMANDS ADB (1)

& The last address typed. (Used to be ““"*’.)

integer A number. The prefixes 0o and 0O indicate octal; Ot and OT, decimal; Ox and 0X, hexade-
cimal (the default).

int frac A floating-point number.

’ceec’ ASCII value of up to 4 characters.

<name The value of name, which is either a variable name or a register name.

symbol A symbol in the symbol table. An initial _will be prepended to symbol if needed.

_symbol An external symbol.
routine.name The address of the variable name in the specified routine in the symbol table. If name is
omitted, the address of the most recent stack frame for routine.

(exp) The value of exp.
Unary Operators
*exp The contents of location exp in corfil.
% exp The contents of location exp in objfil (Used to be @).
—exp Integer negation.
“exp Bitwise complement.
#exp Logical negation.
“Fexp {Control-F) Translate program address to source address.
“Aexp (Control-A) Translates source address to program address.
‘name {Backquote) Translates procedure name to sourcefile address.
"file" The sourcefile address for the zero-th line of file.
Binary Operators

Binary operators are left associative and have lower precedence than unary operators.
+ Integer addition.
- Integer subtraction.
* Integer multiplication.
Yo Integer division.
& Bitwise conjunction.
| Bitwise disjunction.
lhs rounded up to the next multiple of rhs.

FILES
a.out
core

SEE ALSO
cc(1V), dbx(1), kadb(1), ptrace(2), a.out(5), core(5)
Program Debugging Tools for the Sun Workstation

DIAGNOSTICS
adb, when there is no current command or format. Comments about inaccessible files, syntax errors,
abnormal termination of commands, etc. Exit status is O, unless last command failed or returned nonzero
status.

BUGS

There doesn’t seem to be any way to clear all breakpoints.

adb uses the symbolic information in an old and now obsolete format generated by the —go flag of cc(1V);
it should be changed to use the new format generated by —g.

Since no shell is invoked to interpret the arguments of the :r command, the customary wild-card and vari-
able expansions cannot occur.

Since there is little type-checking on addresses, using a sourcefile address in an inappropriate context may
lead to unexpected results.

Sun Release 3.2 Last change: 27 February 1986 5

ADDBIB (1) USER COMMANDS ADDBIB (1)

NAME
addbib — create or extend bibliographic database

SYNOPSIS
addbib [—p promptfile] [-a] database

DESCRIPTION

When addbib starts up, answering ‘“‘y’’ to the initial ‘‘Instructions?”’ prompt yields directions; typing “‘n’’
or RETURN skips them. Addbib then prompts for various bibliographic fields, reads responses from the ter-
minal, and sends output records to a database. A null response (just RETURN) means to leave out that field.
A minus sign (—) means to go back to the previous field. A trailing backslash allows a field to be continued
on the next line. The repeating ‘“Continue?’’ prompt allows the user either to resume by typing ‘‘y’’ or
RETURN, to quit the current session by typing ‘‘n’’ or ‘‘q’’, or to edit the database with any system editor
(vi, ex, edit, ed).

OPTIONS

-a suppress prompting for an abstract; asking for an abstract is the default. Abstracts are ended with
a CTRL-d.

-p use a new prompting skeleton, defined in promptfile. This file should contain prompt strings, a tab,
and the key-letters to be written to the database.

BIBLIOGRAPHY KEY LETTERS
The most common key-letters and their meanings are given below. Addbib insulates you from these key-
letters, since it gives you prompts in English, but if you edit the bibliography file later on, you will need to
know this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number

%H Header commentary, printed before reference
%1 Issuer (publisher)

%] Journal containing article

%K Keywords to use in locating reference

%L Label field used by —k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%0 Other commentary, printed at end of reference
%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer
%Y,Z ignored by refer

Except for ‘A’, each field should be given just once. Only relevant fields should be supplied. An example
is:

%A Bill Tuthill

%T Refer — A Bibliography System
%1 Computing Services

6 Last change: 26 August 1985 Sun Release 3.2

ADDBIB (1)
%C
%D
%0
FILES
promptfile
SEE ALSO

USER COMMANDS

Berkeley
1982
UNX 43.5.

optional file to define prompting

"refer" in Formatting Documents on the Sun Workstation
refer(1), sortbib(1), roffbib(1), indxbib(1), lookbib(1)

Sun Release 3.2

Last change: 26 August 1985

ADDBIB (1)

ADJACENTSCREENS (1) USER COMMANDS ADJACENTSCREENS (1)

NAME
adjacentscreens — notify the window driver of the physical relationships of screens

SYNOPSIS
adjacentscreens [— |—m] center-screen [[1| —r|—t|—b] side-screen 1 [—x]

DESCRIPTION
Adjacentscreens tells the mouse cursor tracking mechanism of the window driver how to move between
screens that contain windows. Once properly notified using adjacentscreens , the mouse cursor slides from
one screen to another when the user moves the cursor off the edge of a screen.

OPTIONS
—C center-screen
center-screen is a frame buffer device name, such as /dev/fb. All the other physical screen-
positions are relative to this reference point. The —c¢ flag (c for center) is optional. If no further
arguments are present on the command line, center-screen is set to have no neighbors.

—m center-screen
The —m flag (m for middle) may be used instead of —c.

—1 side-screen
side-screen is also a frame buffer device name, such as /dev/cgone0. The —1 flag means that side-
screen is to the left of center-screen. Up to four repetitions of ‘‘flag side-screen”” may be
specified on the command line to define the four neighbors of center-screen.

—r side-screen

Like —1, but means that side-screen is to the right of center-screen.
—t side-screen

Like —1, but means that side-screen is on t op of center-screen.

—b side-screen
Like —1, but means that side-screen is b elow center-screen.

-X Suppresses the normal notification to a side-screen cursor tracker that center-screen is its only
neighbor. This option is useful if you have a large number of screens or want strange inter-
window cursor movement.

EXAMPLE
A common configuration would be two screens, a monochrome (/dev/fb) and a color screen (/dev/cgone0).
Let us assume that the user has set up an instance of suntools on each screen (the window systems must be

running before adjacentscreens is run). He would notify the window driver that the color screen was to the
right of the monochrome screen by running

% adjacentscreens /dev/fb -r /dev/icgone0

in a Shelltool (see suntools(1)). This sets up cursor tracking so that the cursor slides from the monochrome
screen to the color screen when the cursor moves off the right hand side. Similarly, the cursor slides from
the color screen to the monochrome screen when the cursor moves off the left hand side of the color
screen.

FILES
lusrlbin/adjacentscreens

SEE ALSO
suntools(1), login(1), switcher(1)

BUGS
Window systems on the screens have to be initialized before running adjacentscreens.

8 Last change: 3 June 1986 Sun Release 3.2

ADMIN(1) USER COMMANDS ADMIN (1)

NAME

admin - create and administer SCCS files

SYNOPSIS

lusr/sccs/admin [—n] [—i[name]] [—rrel] [-t [name]] [fflag [flag-val]] ...
[—dAlag [flag-val]] ... [—alogin] ... [—elogin]... [—m [mrlist]]
[—y[comment]] [-h][-z]flename...

DESCRIPTION

Admin creates new SCCS files and changes parameters of existing ones. Options and SCCS file names may
appear in any order on the admin command line. SCCS file names must begin with the characters ‘s.’. A
named file is created if it doesn’t exist already, and its parameters are initialized according to the specified
options. Any parameter not initialized by an option is assigned a default value. If a named file does exist,
parameters corresponding to specified options are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files
are silently ignored. A name of — means the standard input — each line of the standard input is taken as
the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently ignored.

OPTIONS

Options are explained as though only one named file is to be processed, since options apply independently
to each named file.

-n A new SCCS file is being created.

~i[name]
Initial text: the file name contains the text of a new SCCS file. The text is the first delta of the file
— see —r option for delta numbering scheme. If name is omitted, the text is obtained from the
standard input. Omitting the —i option altogether creates an empty SCCS file. You can only create
one SCCS file with an admin —i command. Creating more than one SCCS file with a single admin
command requires that they be created empty, in which case the —i option should be omitted.
Note that the —i option implies the —n option.

—rrel Initial release: the rel ease into which the initial delta is inserted. —r may be used only if the —i
option is also used. The initial delta is inserted into release 1 if the —r option is not used. The
level of the initial delta is always 1, and initial deltas are named 1.1 by default.

—t[name]
Descriptive text: The file name contains descriptive text for the SCCS file. The descriptive text file
name must be supplied when creating a new SCCS file (either or both —n and —i options) and the
—t option is used. In the case of existing SCCS files: 1) a —t option without a file name removes
descriptive text (if any) currently in the SCCS file, and 2) a —t option with a file name replaces the
descriptive text currently in the SCCS file with any text in the named file.

—fflag Set flag: specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS file. Several
—f options may be supplied on a single admin command line. Flags and their values appear in the
FLAGS section after this list of options.

—dflag Delete flag from an SCCS file. The —d option may be specified only when processing existing
SCCS files. Several —d options may be supplied on a single admin command. See the FLAGS
section below.

—llist Unlock the specified list of releases. See the —f option for a description of the 1 flag and the syntax
of a list.

—alogin Add login name, or numerical UNIX group ID, to the list of users who may make deltas (changes)
to the SCCS file. A group ID is equivalent to specifying all login names common to that group ID.
Several —a options may appear on a single admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultaneously. If the list of users is empty, anyone may
add deltas.

Sun Release 3.2 Last change: 1 February 1985 9

ADMIN (1)

FLAGS

10

USER COMMANDS ADMIN (1)

—e login Erase login name, or numerical group ID, from the list of users allowed to make deltas (changes)

to the SCCS file. Specifying a group ID is equivalent to specifying all login names common to that
group ID. Several —e options may be used on a single admin command line.

-y [comment]

The comment text is inserted into the SCCS file as a comment for the initial delta in a manner
identical to that of delta(1). If the —y option is omitted, a default comment line is inserted in the
form:

date and time created YY/MM/DD HH:MMSS by login

The —y option is valid only if the —i and/or —n options are specified (that is, a new SCCS file is
being created).

—m [mrlist]

The list of Modification Requests (MR) numbers is inserted into the SCCS file as the reason for
creating the initial delta in a manner identical to delta(1). The v flag must be set and the MR
numbers are validated if the v flag has a value (the name of an MR number validation program).
Diagnostics are displayed if the v flag is not set or MR validation fails.

Check the structure of the SCCS file (see sccsfile(S)), and compare a newly computed check-sum
(the sum of all the characters in the SCCS file except those in the first line) with the check-sum that
is stored in the first line of the SCCS file.

The —h option inhibits writing on the file, so that it nullifies the effect of any other options sup-
plied, and is, therefore, only meaningful when processing existing files.

recompute the SCCS file check-sum and store it in the first line of the SCCS file (see —h, above).
Using the —z option on a truly corrupted file may prevent future detection of the corruption.

The list below is a description of the flags which may appear as arguments to the —f (set flags) and —d

(delete flags) options.

b When set, the —b option can be used on a get(1) command to create branch deltas.

cceil The highest release (ceiling) which may be retrieved by a get(1) command for editing. The ceil-
ing is a number less than or equal to 9999. The default value for an unspecified ¢ flag is 9999.

ffloor The lowest release (floor) which may be retrieved by a gez(1) command for editing. The floor is a
number greater than O but less than 9999. The default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(1) command.

i Treats the ‘No id keywords (ge6)’ message issued by get(1) or delta(1) as a fatal error. In the
absence of the i flag, the message is only a warning. The message is displayed if no SCCS
identification keywords (see get(1)) are found in the text retrieved or stored in the SCCS file.

j Concurrent get(1) commands for editing may apply to the same SID of an SCCS file. This allows
multiple concurrent updates to the same version of the SCCS file.

Llist A list of locked releases to which deltas can no longer be made. A get—e fails when applied
against one of these locked releases. The list has the following syntax:

<list>
<range> .= RELEASE NUMBER | a
The character a in the list is equivalent to specifying all releases for the named SCCS file.

n The delta(1) command creates a ‘null’ delta in each release (if any) being skipped when a delta is

made in a new release. For example, releases 3 and 4 are skipped when making delta 5.1 after
delta 2.7. These null deltas serve as ‘anchor points’ so that branch deltas may be created from
them later. If the n flag is absent from the SCCS file, skipped releases will be non-existent in the
SCCS file, preventing branch deltas from being created from them in the future.

Last change: 1 February 1985 Sun Release 3.2

ADMIN (1) USER COMMANDS ADMIN (1)

FILES

qtext Text is defined by the user. The fext is substituted for all occurrences of the %Q% keyword in
SCCS file text retrieved by ger(1).

m module
Module name of the SCCS file substituted for all occurrences of the %M % keyword in SCCS file

text retrieved by get(1). If the m flag is not specified, the value assigned is the name of the SCCS
file with the leading s. removed.

ttype Type of module in the SCCS file substituted for all occurrences of %Y % keyword in SCCS file text
retrieved by get(1).

v[program]
Validity checking program: delta(1) prompts for Modification Request (MR) numbers as the rea-
son for creating a delta. The optional program specifies the name of an MR number validity
checking program (see delta(1)). If this flag is set when creating an SCCS file, the —m option must
also be used even if its value is null.

The last component of all SCCS file names must be of the form s.file-name. New SCCS files are given mode
444 (see chmod(1V)). Write permission in the pertinent directory is, of course, required to create a file.
All writing done by admin is to a temporary x-file, called x.file-name, (see get(1)), created with mode 444
if the admin command is creating a new SCCS file, or with the same mode as the SCCS file if it exists.
After successful execution of admin, the SCCS file is removed (if it exists), and the x-file is renamed with
the name of the SCCS file. This ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of the directories allows only the owner to modify SCCS files contained in the direc-
tories. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the
owner allowing use of a text editor. "Care must be taken!” The edited file should always be processed by
an admin —h to check for corruption followed by an admin —z to generate a proper check-sum. Another
admin -h is recommended to ensure the SCCS file is valid.

Admin also uses a transient lock file (called z.file-name), to prevent simultaneous updates to the SCCS file
by different users. See get(1) for further information.

SEE ALSO

sces(1), delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(5).
Programming Ultilities for the Sun Workstation.

DIAGNOSTICS

Use help(1) for explanations.

Sun Release 3.2 Last change: 1 February 1985 11

AR (1) USER COMMANDS AR(1)

NAME
ar — archive and library maintainer
SYNOPSIS
ard|m|p|q|r|t|x[ab position-name] [cilouv] archive file-entry ...

DESCRIPTION
ar maintains library archives. A library is a set of files that have been combined into a single archive file
(see ar(5)). ar is normally used to create and update library files used by the link editor Id(1), but can be

used for any similar purpose.
archive is the archive file. file-entry is a file contained in the archive.
OPTIONS

You must indicate one of: d, m, p, q, r, t, or x, which may be followed by one or more of the modifiers

abcilouv.

d Delete the named files from the archive file.

m Move the named files to the end of the archive.

p Display the named files in the archive.

q Quick append. Append the named files to the end of the archive file without searching the archive
for duplicate names. Useful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

r Replace the named files in the archive.

t Display a table of contents of the archive file. If no names are given, all files in the archive are
listed; if names are given, only those files are listed.

X Extract the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file.

MODIFIERS

a Place new files after posname (posname argument must be present). Applies only to the r and m
options.

b Place new files before posname (posname argument must be present). Applies only to the r and m
options.

¢ Normally ar creates archive when it needs to, and displays a message to this effect. The ¢
modifier suppresses this message.

i Identical to the b modifier.

1 Local. Ar places its temporary files in the directory /tmp. The 1 modifier places them in the local
directory instead.

0 Old date. When files are extracted with the x option, o sets the "last modified" date to the date
recorded in the archive.

u Replace only those files that have changed since they were put in the archive. Used with the r
option.

v Verbose. Give a file-by-file description of the creation of a new archive file from the old archive
and the constituent files. When used with t, it gives a long listing of information about the files.
When used with p, it precedes each file with a name.

EXAMPLES

Creating a new archive:
orpheus% ar rcv archive file.o
a- file.o
Adding to an archive:
orpheus% ar rav file.o archive next.c

12 Last change: 19 May 1986 Sun Release 3.2

AR(1) USER COMMANDS

a - next.c
Extracting from an archive:
orpheus% ar xv archive file.o

x - file.o
orpheus% Is file.o
file.o
Seeing the table of contents:
orpheus% ar t archive
file.o
next.c
FILES
/tmp/v* temporaries
SEE ALSO
lorder(1), 1d(1), ranlib(1), ar(5)
BUGS

If the same file is mentioned twice in an argument list, it is put in the archive twice.

AR(1)

The "last-modified" date of a file will not be altered by the o option unless the user is either the owner of

the extracted file or the superuser.

Sun Release 3.2 Last change: 19 May 1986

13

ARCH(1) USER COMMANDS

NAME
arch — display the Sun Workstation architecture of the current host

SYNOPSIS
arch
DESCRIPTION
The arch command displays the architecture of the current Sun host.

SEE ALSO
mach(1), machid(1)

14 Last change: 29 May 1986

ARCH(1)

Sun Release 3.2

AS(1)

NAME

USER COMMANDS AS(1)

as — Sun-1, Sun-2 and Sun-3 assembler

SYNOPSIS
as [—-d2

DESCRIPTION

1[—e][-h1[=J1[-J]1[-L][-mc68010] [-mc68020] [0 objfile][-O1]
[-R] filename

as translates assembly code in the named filename into executable object code in the specified objfile.
All undefined symbols in the assembly are treated as global.
The output of the assembly is left in the file objfile.

OPTIONS
—d2

-

-J

-L

Specifies that instruction offsets involving forward or external references and having sizes
unspecified in the assembly language are two bytes long. The default is four bytes. See also the —j
option.

Allows control sections to begin on any two-byte boundary, rather than only four-byte boundaries.

Suppress span-dependent instruction calculations and force all branches to be of medium length,
but all calls to take the most general form. This is used when assembly must be minimized, while
program size and run-time are unimportant. This option results in a smaller and faster program
than that produced by the —J option, but some very large programs may not be able to use it
because of the limits of the medium-length branches.

Use short (pc-relative) branches to resolve jump’s and jsr’s to externals. This is for compact pro-
grams which cannot use the -d2 flag because of large program relocation.

Suppress span-dependent instruction calculations and force all branches and calls to take the most
general form. This is used when assembly time must be minimized, but program size and run time
are not important.

Save defined labels beginning with an ‘L’, which are normally discarded to save space in the
resultant symbol table. The compilers generate such temporary labels.

-mc68010

Accept only MC68010 instructions and addressing modes, and put the MC68010 machine-type
tag in the object file. This is the default on Sun-2’s.

-mc68020

FILES
Itmplas*

SEE ALSO

Accept the full MC68020, MC68881 and the Sun FPA instruction sets and addressing modes, and
put the MC68020 machine-type tag in the object file. This is the default on Sun 3’s.

The next argument is taken as the name of the object file to be produced. If the —o flag isn’t used,
the objfile is named a.out. '

Perform span-dependent instruction resolution over entire files rather than just over individual
procedures.

Make initialized data segments read-only by concatenating them to the text segments. This elim-
inates the need to run editor scripts on assembly code to make initialized data read-only and
shared.

default temporary file

1d(1), nm(1), adb(1), dbx(1), a.out(5)
Assembly Language Reference Manual

Sun Release 3.2

Last change: 20 March 1986 15

AS(1) USER COMMANDS AS(1)

BUGS
The Pascal compiler, pc, qualifies a nested procedure name by chaining the names of the enclosing pro-
cedures. This sometimes results in names long enough to abort the assembler, which currently limits
identifiers to 512 characters.

16 Last change: 20 March 1986 Sun Release 3.2

AT(1)

NAME

USER COMMANDS AT(1)

at — execute commands at a later time

SYNOPSIS

at [—csm] time [date] [week] [script]

DESCRIPTION

at spools a copy of the named script for execution at a later date or time. script is the name of a file to be
used as command input for the Bourne shell, sk(1), the C-Shell, ¢sh(1), or an arbitrary shell specified by
the SHELL environment variable.

The time argument consists of 1 to 4 digits, followed by an optional ‘A’ or ‘P’ for AM or PM (if no letters
follow the digits, a 24-hour clock is assumed). One- and two-digit numbers are taken to be hours; three
and four digits specify hours and minutes. An optional colon (‘:’) may be used to separate the hour and
minute fields. Alternatively, ‘N’ or “M’, optionally preceded by ‘12°, ‘1200, or ‘12:00’, may be used to
specify noon or midnight.

The optional date argument is either the name of a month, followed by a day-of-the-month number, or a
named day-of-the-week; if the keyword week follows, execution is moved out by seven days. Names of
months and days can be abbreviated, as long as the abbreviation is unambiguous.

If script is omitted, command input is accepted from the standard input.

The spool file includes a four-line header that indicates the owner of the job, the name of the scripr the
shell is to use, and whether mail is to be sent.

This header is followed by a cd command to the current directory (from which at was called) and a umask
command to set the modes on any files created by the job. at also copies all relevant environment variables
to the spool file.

script is run with the user and group IDs of whoever created the spool file (the user who invoked the at
command).

at jobs are started by periodic execution of the command /usr/lib/atrun from cron(8). The precise timing
of each at job depends upon the how often atrun is executed.

OPTIONS

—c C-Shell. csh(1) is used to execute script.
—s Standard (Bourne) shell. sk (1) is used to execute the job.

If neither —¢, nor —s is specified, at uses the value of the SHELL environment variable to determine which
shell to use.

—m Mail. Send mail after the job has been run. If errors occur during execution of the script, then
resulting error messages are included in the mail message. When —m is omitted, error output is
lost (unless redirected within the script itself).

EXAMPLES

at 8am jan 24

at -s 1200n week

at -c -m 1530 fr week
DIAGNOSTICS

FILES

Complains about various syntax errors and times that are out of range.

lusrispoollat spooling area
lusrispoollatlyy.ddd.hhhh.* job file

lusrispoollatipast directory where jobs are executed from
lusrispoollat/lasttimedone last time atrun was run

lusriliblatrun job initiator (run by cron(8))

Sun Release 3.2 Last change: 17 July 1986 17

AT(1)

USER COMMANDS AT(1)

SEE ALSO

BUGS

18

atq(1), atrm(1), cron(8)

Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling jobs almost
exactly 24 hours ahead.

If the system crashes, mail stating that the job was not completed is not sent to the user.

Sometimes old spool files are not removed from the directory /usr/spool/at/past. This is usually due to a
system crash, and requires that these files be removed by hand.

Shell interpreter specifiers (e.g., #!/bin/csh) in the beginning of script are ignored.

Last change: 17 July 1986 Sun Release 3.2

ATQ(1) USER COMMANDS ATQ(1)

NAME
atq — print the queue of jobs waiting to be run

SYNOPSIS
atq[—c][-n] username ...

DESCRIPTION
atq prints the queue of jobs, created with the az(1) command, that are waiting to be run at later date.

With no flags, the queue is sorted in chronological order of execution.

If no usernames are specified, the entire queue is displayed; otherwise, only those jobs belonging to the
named users are displayed.

OPTIONS
- By creation time. Sorted the queue by the time that the ar(1) command was given, the most
recently created job first.
-n Number of jobs. Print the total number of jobs currently in the queue. Do not list them.
FILES
lusrispool/at spool area
SEE ALSO

at(1), atrm(1), cron(8)

Sun Release 3.2 Last change: 17 July 1986 19

ATRM(1) USER COMMANDS ATRM(1)

NAME
atrm — remove jobs spooled by at
SYNOPSIS
atrm [—fi] [—] [job-number]... [username]...
DESCRIPTION
atrm removes delayed-execution jobs that were created with the af(1) command. The list of jobs can be
displayed by atq(1).
atrm removes each job-number you specify, and/or all jobs belonging to username, provided that you own
the indicated jobs.
Jobs belonging to other users can only be removed by the super-user.
OPTIONS
—f Force. All information regarding the removal of the specified jobs is suppressed.
—i Interactive. atrm asks if a job should be removed; a response of 'y’ verifies that the job is to be
removed.
- Remove jobs that were queued by the current user. If invoked by the super-user, the entire queue
will be flushed.
FILES
lusrispoollat spool area
SEE ALSO

at(1), atq(1), cron(8)

20 Last change: 17 July 1986 Sun Release 3.2

AWK (1) USER COMMANDS AWK (1)

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [—f program file] [-Fc][program] [variable=value ...][file ...]

DESCRIPTION

Awk scans each of its input files for lines that match any of a set of patterns specified in program. The
input files are read in order; the standard input is read if there are no files. The filename — means the stan-
dard input.

The set of patterns may either appear literally on the command line as program, or, by using the —f option,
the set of patterns may be in a program_file; a program_file of — means the standard input. If the program
is specified on the command line, it should be enclosed in single quotes (*) to protect it from the shell.

awk variables may be set on the command line using arguments of the form variable=value. This causes
the awk variable variable to be set to the value value before the first record of the next file argument that
follows the variable=value argument is read.

With each pattern in program there can be an associated action that will be performed when a line of a file
matches the pattern. See the discussion below for the format of input lines and the awk language. Each
line in each input file is matched against the pattern portion of every pattern-action statement; the associ-
ated action is performed for each matched pattern.

OPTIONS
—f program _file
Use the contents of program_file as the source for the program.

—F ¢ Use the character c as the field separator (FS) character. See the discussion of FS below.

LINES, STATEMENTS, AND THE AWK LANGUAGE
Input Lines
An input line is made up of fields separated by white space. The field separator can be changed by using
FS — see below. Fields are denoted $1, $2, ..., up to $9; $0 refers to the entire line.

Pattern-action Statements
A pattern-action statement has the form

pattern { action }
A missing action means copy the line to the output; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ...}

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Format of the Awk Language

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for the
whole line.

Expressions take on string or numeric values as appropriate, and are built using the operators +, —, *, /, %,
and concatenation (indicated by a blank). The C operators ++ , — , += , —= , *=, /= , and %= are also
available in expressions.

Sun Release 3.2 Last change: 1 February 1985 21

AWK (1) USER COMMANDS AWK (1)

Variables may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric, providing a form of associative
memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if >file is present), separated by
the current output field separator, and terminated by the output record separator. The printf statement for-
mats its expression list according to the format template format (see printf(3S) for a description of the for-
matting control characters).

Built In Functions

The built-in function length returns the length of its argument taken as a string, or of the whole line if no
argument. There are also built-in functions exp, log, sqrt, and int, where int truncates its argument to an
integer. substr(s,m,n) returns the n-character substring of s that begins at position m.
sprintf(format, expr, expr, ...) formats the expressions according to the printf(3S) format given by format
and returns the resulting string.

Patterns

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expressions and rela-
tional expressions. Regular expressions must be surrounded by slashes and are as in egrep. Isolated regu-
lar expressions in a pattern apply to the entire line. Regular expressions may also occur in relational
expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for *‘contains’’) or !”
(for ‘“does not contain’’). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special pattern BEGIN may be used to capture control before the first input line is read, in which case
BEGIN must be the first pattern. The special pattern END may be used to capture control after the last
input line is read, in which case END must be the last pattern.

Special Variable Names
A single character ¢ may be used to separate the fields by starting the program with

BEGIN{FS="c" }
or by using the —Fc¢ option.

Other variable names with special meanings include NF, the number of fields in the current record; NR, the
ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output field
separator (default blank); ORS, the output record separator (default newline); and OFMT, the output for-
mat for numbers (default %.6g).

EXAMPLES

22

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=%1}
END { print "sumis", s, " average is", /NR }

Last change: 1 February 1985 Sun Release 3.2

AWK (1) USER COMMANDS AWK (1)

Print fields in reverse order:
{ for (i =NF;i> 0; —i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/
Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }
SEE ALSO
Using UNIX Text Utilities on the Sun Workstation
sed(1V), grep(1V), lex(1)
BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number add O to it; to force it to be treated as a string concatenate the null string (" ") to it.

Syntax errors result in the cryptic message "awk: bailing out near line 1."

Sun Release 3.2 Last change: 1 February 1985 23

BANNER(1) USER COMMANDS BANNER(1)

NAME
banner ~ make posters

SYNOPSIS
/usr/Sbin/banner strings

DESCRIPTION
Note: Optional Software (System V Option). Refer to Installing UNIX on the Sun Workstation for infor-
mation on how to install this command.

banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

SEE ALSO
echo(1V)

24 Last change: 17 April 1986 Sun Release 3.2

BASENAME(1) USER COMMANDS BASENAME (1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix, if present in string. It directs the result to the stan-
dard output, and is normally used inside substitution marks (" *) within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES
This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file and moves the
output to cat in the current directory:

cc $1
mv a.out “basename $1 .c’

The following example will set the shell variable NAME to /usr/src/cmd:
NAME-="‘dirname /usr/src/cmd/cat.c®

SEE ALSO
sh(1)

Sun Release 3.2 Last change: 13 March 1986 25

BC(1) USER COMMANDS BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be[—<c][-1][file...]

DESCRIPTION
Bc is an interactive processor for a language which resembles C but provides unlimited precision arith-
metic. Bc takes input from any files given, then reads the standard input. The syntax for bc programs is as
follows; L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L[E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,...,E)
Operators
+ — * | % " (% is remainder; " is power)
++ — (prefix and postfix; apply to names)
== <=>=I!= <>
= 4= —= *= [= Gp= "=
Statements
E
{S;...;8}
if(E)S
while (E) S

for(E;E;E)S
null statement

break
quit
Function definitions
define L(L,...,L){
autoL,...,L
S;...S
return (E)
}
Functions in —1 math library
s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent
j(n,x) Bessel function

26 Last change: 1 April 1981 Sun Release 3.2

BC(1) USER COMMANDS BC(1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment. Either
semicolons or newlines may separate statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(1). Assignments to ibase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables
are global to the program. ‘Auto’ variables are pushed down during function calls. When using arrays as
function arguments or defining them as automatic variables empty square brackets must follow the array

name.
EXAMPLES
Define a function to compute an approximate value of the exponential function:
scale = 20
define e(x){
autoa, b,c,i,$
a=1
b=1
s=1
for(i=1; 1==1; i++){
a=a*x
b =b*i
c=ab
if(c == 0) return(s)
=S§+C
}
}

Print approximate values of the exponential function of the first ten integers:
for(i=1; i<=10; i++) e(i)

OPTIONS

-1 is the name of an arbitrary precision math library.

—C Compile only: bc is actually a preprocessor for dc(1), which it invokes automatically, unless the

—c (compile only) option is present. In this case the dc input is sent to the standard output instead.

FILES

/ust/lib/lib.b mathematical library

dc(1) desk calculator proper
SEE ALSO

dc(1)

Games, Demos and Other Pursuites: Beginner’s Guide

BUGS
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

Sun Release 3.2 Last change: 1 April 1981 27

BIFF(1) USER COMMANDS BIFF(1)

NAME

biff — mail alarm

SYNOPSIS

biff [yin]

DESCRIPTION

biff informs the system whether you want to be notified when mail arrives during the current terminal ses-
sion. The command:

biff y
enables notification; the command:

biff n
disables it; finally, the command:

biff
on its own tells you whether the notification is y or n. When mail notification is enabled, the header and
first few lines of the message are printed on your screen whenever mail arrives. A biff y command is often
included in the file .login or .profile to be executed at each login.

biff operates asynchronously. For synchronous notification use the MAIL variable of sh or the mail variable
of csh.

SEE ALSO

28

csh(1), sh(1), mail(1), comsat(8)

Last change: 23 September 1985 Sun Release 3.2

BINMAIL (1) USER COMMANDS BINMAIL (1)

NAME

binmail — send or receive mail among users

SYNOPSIS

/bin/mail [-i]1[-p]1[—q] [f filename]
/bin/mail address ...

DESCRIPTION

Note: This is the old version 7 UNIX system mail program. The default mail command is described in
mail(1), and its binary is in the directory /usr/ucb.

Ibin/mail with no address prints a user’s mail, message-by-message in last-in, first-out order. /bin/mail
accepts commands from the standard input to direct disposition messages.

When addresses are named, /bin/mail takes the standard input up to an end-of-file (or a line with just “.")
and adds it to each person’s ‘mail’ file. The message is preceded by the sender’s name and a postmark.
Lines that look like postmarks are prepended with ‘>’. A person is usually a user name recognized by
login, or a network address (see aliases(5)).

If there is any pending mail, login tells you there is mail when you log in. It is also possible to have the C-
Shell, or the daemon biff tell you about mail that arrives while you are logged in.

To forward mail automatically, add the addresses of additional recipients to the forward file in your home
directory. Note that forwarding addresses must be valid, or the messages will "bounce.” (You cannot, for
instance, reroute your mail to a new host by forwarding it to your new address if it is not yet listed in the
YP aliases domain.)

OPTIONS

Printing Mail

—i continue after interrupts — an interrupt normally terminates the /bin/mail accepts the following
interactive commands when printing messages.

-p print messages without prompting for commands. Exit immediately upon receiving an interrupt.

-q quit immediately upon interrupt.

—f filename
use filename as if it were the mail file.

Sending Mail

—d deliver mail directly, don’t route the message through sendmail. This option is often used by pro-
grams that send mail.

—i continue after interrupts — an interrupt normally terminates the /bin/mail command and leaves the
mail file unchanged.

—r name
specify a string to appear as the name of the sender.

COMMANDS

? print a command summary.

EOT (control-D)
put unexamined mail back in the mail file and quit.

'command
escape to the Shell to do command.

- go back to previous message.

+ £0 on to next message.

newline go on to next message.
d delete message and go on to the next.

Sun Release 3.2 Last change: 23 September 1985 29

BINMAIL(1) USER COMMANDS BINMAIL (1)

FILES

dq delete message and quit.

m [person] ...
mail the message to the named persons (yourself is default).

n £0 On to next message.
p print message (again).
q same as EOT.

s [file] ...

save the message in the named files (‘mbox’ default). If saved successfully, remove it from the
list and go on to the next message.

w[file]..
save the message, without a header, in the named files (‘mbox’ default). If saved successfully,
remove it from the list and go on to the next message.

x exit without changing the mail file.

/etc/passwd to identify sender and locate address
/usr/spool/mail/* incoming mail for user *
mbox saved mail

/tmp/max* temp file
/usr/spool/mail/* lock lock for mail directory
deadletter unmailable text is saved here
$HOME/.forward list of forwarding recipients

SEE ALSO

BUGS

30

mail(1), biff(1), write(1), uucp(1C), uux(1C), xsend(1), sendmail(8), aliases(5), csh(1)
Race conditions sometimes result in a failure to remove a lock file.

The superuser can read your mail, unless it is encrypted by des, encrypt, or xsend. Even if you encrypt it,
the superuser can delete it.

Last change: 23 September 1985 Sun Release 3.2

CAL(1) USER COMMANDS CAL(1)

NAME
cal — display calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION

Cal displays a calendar for the specified year. If a month is also specified, a calendar for that month only is
displayed. If neither is specified, a calendar for the present month is printed.

Year can be between 1 and 9999. Be aware that ‘cal 78’ refers to the early Christian era, not the 20th cen-
tury. Also, the year is always considered to start in January, even though this is historically naive.

month is a number between 1 and 12.
The calendar produced is that for England and her colonies.
Try September 1752.

Sun Release 3.2 Last change: 17 February 1986 31

CALENDAR(1) USER COMMANDS CALENDAR(1)

NAME

calendar — reminder service
SYNOPSIS

calendar [-]
DESCRIPTION

Calendar consults the file calendar in the current directory and displays lines that contain today’s or
tomorrow’s date anywhere in the line. Most reasonable month-day dates — such as ‘Dec. 7,” ‘december
7,” and ‘12/7° — are recognized, but ‘7 December’ or ‘7/12’ are not. If you give the month as ‘‘*’* with a
date — for example, “* 1’> — that day in any month will do. On weekends ‘tomorrow’ extends through
Monday.

When the optional — argument is present, calendar does its job for every user who has a file calendar in
his login directory and sends him any positive results by mail(1). Normally this is done daily in the wee
hours under control of cron(8).

The file calendar is first run through the C preprocessor, /lib/cpp, to include any other calendar files
specified with the usual “#include’’ syntax. Included calendars are usually shared by all users, and main-
tained by the system administrator.

FILES
“/calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
letc/passwd
/tmp/cal*
Nlib/cpp subprocess
fust/bin/egrep subprocess
/bin/sed subprocess
/bin/mail subprocess
SEE ALSO
at(1), cron(8), mail(1)
BUGS

Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

32 Last change: 17 February 1986 Sun Release 3.2

CAT(1V)

NAME

USER COMMANDS CAT(1V)

cat — concatenate and display

SYNOPSIS

cat[-u][-n][-b][-s][-v][-e][-t]1[—][filename...]

SYSTEM V SYNOPSIS
cat[-u][-s][-v][—e][-t]1[-][Alename...]

DESCRIPTION

cat reads each file in sequence and displays it on the standard output. Thus

% cat goodies

displays the contents of goodies on the standard output, and

% cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no filename argument is given, or if the argument ‘-’ is given, cat reads from the standard input. If the
standard input is a terminal, input is terminated by an EOF signal, usually “D.

OPTIONS
—u

-V

—-e

-t

Unbuffered. If —u is not used, output is buffered in blocks, or line-buffered if standard output is a
terminal.

precedes each line output with its line number.
numbers the lines, as —n, but omits the line numbers from blank lines.
substitutes a single blank line for multiple adjacent blank lines.

displays non-printing characters (with the exception of tabs and newlines) so that they are visible.
Control characters print like “X for Control-X; the DEL character (octal 0177) prints as “?. Non-
ASCII characters (with the high bit set) are displayed as M—x where M- stands for ‘‘meta’’ and x
is the character specified by the seven low order bits.

displays non-printing characters, as —v, and in addition displays a $ character at the end of each
line.

displays non-printing characters, as —v, and in addition displays tab characters as “I.

SYSTEM V OPTIONS

—s

-V

_e
-t
SEE ALSO

suppresses messages about files which can’t be opened.

displays non-printing character (with the exception of tabs, newlines, and formfeeds) so that they
are visible.

if the —v option is specified, displays a $ character at the end of each line.
if the —v option is specified, displays tab characters as "I and formfeeds as L.

cp(1), ex(1), more(1), pr(1V), pg(1V), tail(1)

BUGS

Beware of ‘cat ab >a’ and ‘cat a b >b’, which destroy the input files before reading them.

Sun Release 3.2

Last change: 24 April 1986 33

CB(1) USER COMMANDS CB(1)

NAME
¢b — C program beautifier
SYNOPSIS
cb[—s][—jl[dleng]l filename...]

DESCRIPTION
cb reads C programs either from its arguments or from the standard input and writes them on the standard
output with spacing and indentation that displays the structure of the code.

indent(1) is preferred.

OPTIONS
With no options, cb preserves all user NEWLINES.

-s Standard C style. Canonicalizes the code to the style of Kernighan and Ritchie in The C Pro-
gramming Language.

-j Split lines are put back together.
—1leng Split lines longer than leng.

SEE ALSO
indent(1)

BUGS
Punctuation hidden in preprocessor statements can cause indentation errors.

34 Last change: 16 April 1986 Sun Release 3.2

CC(1V) USER COMMANDS CC(1Vv)

NAME

cc — C compiler

SYNOPSIS

cc[—a][—align block][—c]1[—C]{—dryrun][—Dname[=def1]1[-E] [float_option]
[—fsingle] [—g][—go] [—help] [-Ipathname) [-J][-lib]
[-Ldir[-M]1[—ooutfile] [-O)[-p]1[—pg] [—pipe] [-P]
[—Qoption prog opt 1 { —Qpath pathname] [—-Qproduce sourcetype] [-R]1[-S]
[—temp=dir] [time] [-Uname 1 [—v][—w] sourcefile ...

SYSTEM V SYNOPSIS

lusr/5bin/cc arguments

Note: arguments to /usr/5bin/cc are identical to those listed above.

DESCRIPTION

cc is the C compiler. It translates programs written in the C programming language into executable load
modules, or into relocatable binary programs for subsequent loading with the /d(1) linker.

In addition to the many options, cc accepts several types of filename arguments. For instance, files with
names ending in .c are taken to be C source programs. They are compiled, and each resulting object pro-
gram is placed in the current directory. The object file is named after its source file — the suffix .o replac-
ing .c in the name of the object. In the same way, files whose names end with .s are taken to be assembly
source programs. They are assembled, and produce .o file. Filenames ending in .il are taken to be inline
expansion code template files; these are used to expand calls to selected routines in-line when the -O option
is in effect. See FILES, below for a complete list of compiler-related filename suffixes.

Other arguments refer to assembler or loader options, object programs, or object libraries. Unless —¢, —S,
—E —P or —Qproduce is specified, these programs and libraries, together with the results of any specified
compilations or assemblies, are loaded (in the order given) to produce an output file named a.out. You can
specify a name for the executable by using the —o option.

If a single C program is compiled and loaded all at once, the intermediate file is deleted.

OPTIONS

See ld(1) for link-time options.

-a Insert code to count how many times each basic block is executed. Creates a .d file for
every .f file compiled. The .d file accumulates execution data for the corresponding
source file. The tcov(1) utility can then be run on the source file to generate statistics
about the program.

—align block Cause the global symbol block to be page-aligned: its size is increased to a whole number
of pages, and its first byte is placed at the beginning of a page.

- Suppress linking with Id(1) and produce a .o file for each source file. A single object file
can be named explicitly using the —o option.

-C Prevent the C preprocessor, cpp(1), from removing comments.

—dryrun Show but do not execute the commands constructed by the compilation driver.

—Dname[=def] Define a symbol name to the C preprocessor (cpp(1)). Equivalent to a #define directive
in the source. If no def is given, name is defined as ‘1°.

-E Run the source file through c¢pp(1), the C preprocessor, only. Sends the output to the
standard output, or to a file named with the —o option. Includes the cpp line numbering
information. (See also, the —P option.)

float_option Floating-point code generation option. Can be one of:

—f68881
Generate in-line code for Motorola MC68881 floating-point processor (sup-
ported only on Sun-3 systems).

Sun Release 3.2 Last change: 20 August 1986 35

CC(1V)

36

USER COMMANDS CC(1V)

—ffpa Generate in-line code for Sun Floating Point Accelerator (supported only on
Sun-3 systems).

—fsky Generate in-line code for Sky floating-point processor (supported only on Sun-
2).

—fsoft Generate software floating-point calls (this is the default).

—fswitch
Run-time-switched floating-point calls. The compiled object code is linked at
runtime to routines that support one of the above types of floating point code.
This was the default in previous releases. Only for use with programs that are
floating-point intensive, and must be portable to machines with various
floating-point hardware options.

—fsingle Use single-precision arithmetic in computations involving only float expressions — that
is, do not convert everything to double, which is the default. Note that floating-point
parameters are still converted to double precision, and functions returning values still
return double-precision values.

Although not standard C, certain programs run much faster using this option. Be aware
that some significance can be lost due to lower-precision intermediate values.

-g Produce additional symbol table information for dbx(1) and dbxtool(1) and pass the —lg
flag to ld(1). When this option is given, the —O and —R options are suppressed.

-go Produce additional symbol table information for adb(1). When this option is given, the
—0 and —R options are suppressed.

—help Display helpful information about cc.

—Ipathname Add pathname to the list of directories in which to search for #include files with relative
filenames (not beginning with slash /). The preprocessor first searches for #include files
in the directory containing sourcefile, then in directories named with —I options (if any),
and finally, in /usr/include .

-J Generate 32-bit offsets in switch statement labels.

—lib Link with object library lib (for ld(1)).

—Ldir Add dir to the list of directories containing object-library routines (for linking using
ld(1).

-M Run only the macro preprocessor on the named C programs, requesting that it generate
makefile dependencies and send the result to the standard output (see make (1) for details
about makefiles and dependencies).

—o outfile Name the output file outfile. outfile must have the appropriate suffix for the type of file to
be produced by the compilation (see FILES, below). outfile cannot be the same as
sourcefile (the compiler will not overwrite the source file).

-0 Optimize the object code. Ignored when either —g or —go is used.

-p Prepare the object code to collect data for profiling with prof(1). Invokes a run-time
recording mechanism that produces a mon.out file (at normal termination).

-pg Prepare the object code to collect data for profiling with gprof(1). Invokes a run-time
recording mechanism that produces a gmon.out file (at normal termination).

—pipe Use pipes, rather than intermediate files, between compilation stages. (Very cpu-
intensive.)

-P Run the source file through cpp(1), the C preprocessor, only. Puts the output in a file
with a .i suffix. Does not include cpp-type line number information in the output.

—Qoption prog opt

Last change: 20 August 1986 Sun Release 3.2

CC(1V) USER COMMANDS CC(1V)

Pass the option opt to the program prog. The option must be appropriate to that program
and may begin with a minus sign. prog can be one of: as, cpp, inline, or 1d.
—Qpath pathname

Insert a directory pathname into the compilation search path (to use alternate versions of
programs invoked during compilation).

—Qproduce sourcetype
Produce source code of the type sourcetype. sourcetype can be one of:
. C source (from bb_count).
Jd Preprocessed C source from cpp (1).
0 Object file from as (1).
S Assembler source (from ccom, inline or c2).
-R Merge data segment with text segment for as(1). Data initialized in the object file pro-

duced by this compilation is read-only, and (unless linked with 1d -N) is shared between
processes. Ignored when either —g or —go is used.

-S Do not assemble the program but produce an assembly source file.
—temp=dir Set directory for temporary files to be dir.

—time Report execution times for the various compilation passes.
—Uname Remove any initial definition of the cpp(1) symbol name. (Inverse of the —D option.)
-V Verbose. Print the version number of the compiler and the name of each program it exe-
cutes.
-w Do not print warnings.
ENVIRONMENT

FILES

FLOAT_OPTION When no floating-point option is specified, the compiler uses the value of this environ-
ment variable (if set). Recognized values are: f68881, ffpa, fsky, fswitch and fsoft.

a.out executable output file

file.a library of object files

filec C source file

filed tcov(1) test coverage input file

filed C source file after preprocessing with cpp(1)
file £ FORTRAN 77 source file

file.F FORTRAN 77 source file for cpp(1)

file il inline expansion file

file.o object file

filep Pascal source file

file x Ratfor source file

files assembler source file

file S assembler source for cpp(1)

file tcov output from rcov(1)

/liblc2 object code optimizer

/liblccom compiler

lliblcompile compiler command-line processing driver
/liblcpp Macro preprocessor

flibicrt0.0 runtime startoff

/liblFcrtl.o startup code for —fsoft option
lliblgcrt0.o0 startoff for profiling with gprof(1)
/libllibc.a standard library, see intro(3)

Nlibimcrt0.0 startoff for profiling with prof(1) intro(3)
/libiMcrtl .o startup code for —f68881 option

Sun Release 3.2 Last change: 20 August 1986 37

CC(1V)

/ibiScrtl .o
1ibiWcrtl.o
lusrlinclude
lusrilib/bb_count
lusrilibibb_link.o
lusrllibllibc_p.a
lusrilib/libF77.a
lusr/liblinline
lusrilibllibl77 .a
lusrilib/libm.a
lusrilibllibU77.a
lusri5Slibllibc.a
lusri5libflibc_p.a
Itmpl

mon.out
gmon.out

SEE ALSO
monitor(3), prof(1), gprof(1), tcov(1), adb(1), ar(1), Id(1), dbx(1), as(1), cpp(1), make(1)

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
UNIX Programming in Programming Utilities for the Sun Workstation

BUGS

38

USER COMMANDS CC(1V)

startup code for ~fsky option

startup code for —ffpa option

standard directory for #include files

block counting preprocessor

basic block counting routine

profiling library, see gprof(1) or prof(1)
FORTRAN 77 library

inline expander of library calls

FORTRAN 77 library

math library

FORTRAN 77 library

System V standard compatibility library, see intro(3V)
System V profiling library, see gprof(1) or prof(1)
compiler temporary files

file produced for analysis by prof(1)

file produced for analysis by gprof(1)

Floating-Point Programmer’s Guide for the Sun Workstation
UNIX Interface Overview

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional obscure messages
may be produced by the preprocessor, assembler, or loader.

The program context given in syntax error messages is taken from the input text after the C preprocessor
has performed substitutions. Therefore, error messages involving syntax errors in or near macro references
or manifest constants may be misleading.

Last change: 20 August 1986 Sun Release 3.2

CD(1) USER COMMANDS CD(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permission in
directory. If cd is used without arguments, it returns you to your login directory. In csh(1) you may
specify a list of directories in which directory is to be sought as a subdirectory if it is not a subdirectory of
the current directory; see the description of the cdpath variable in csh(1).

SEE ALSO
csh(1), sh(1), pwd(1)

Sun Release 3.2 Last change: 26 April 1983 39

CDC(1) USER COMMANDS CDC(1)

NAME
cdc — change the delta commentary of an SCCS delta

SYNOPSIS
lusr/ucb/sces/cde —xSID [—-m [mrlist 1] [-y [comment]] filename ...

DESCRIPTION
cdc changes the delta commentary, for the SID specified by the —r option, of each named SCCS filename.

Delta commentary is defined to be the Modification Request (MR) and comment information normally
specified via the delta command (—m and —y options).

If a directory is named, cdc behaves as though each file in the directory were specified as a named
Jfilename, except that non-SCCS files (last component of the path name does not begin with s.) and unread-
able files are silently ignored. If a name of — is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of options and file names.

OPTIONS
All the described options apply independently to each named file:

—rSID Specifies the SCCS ID entification (SID) string of a delta for which the delta commentary is to
be changed.

—m [mrlist] If the SCCS file has the v flag set (see admin(1)), a list of MR numbers to be added and/or
deleted in the delta commentary of the SID specified by the —r option may be supplied. A null
MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of delta. In order to delete
an MR, precede the MR number with the character ! (see EXAMPLES). If the MR to be
deleted is currently in the list of MRs, it is removed and changed into a ‘‘comment’” line. A
list of all deleted MRs is placed in the comment section of the delta commentary and preceded
by a comment line stating that they were deleted.

If —m 1is not used and the standard input is a terminal, the prompt MRs? is issued on the stan-
dard output before the standard input is read; if the standard input is not a terminal, no prompt
is issued. The MRs? prompt always precedes the comments? prompt (see —y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line character
terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name of a program (or
shell procedure) which validates the correctness of the MR numbers. If a non-zero exit status
is returned from the MR number validation program, cdc terminates and the delta commen-
tary remains unchanged.

—y [comment]
Arbitrary text used to replace the comment(s) already existing for the delta specified by the —r
option. The previous comments are kept and preceded by a comment line stating that they
were changed. A null comment has no effect.

If —y is not specified and the standard input is a terminal, the prompt comments? is issued on
the standard output before the standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates the comment text.

The exact permissions necessary to modify the SCCS file are documented in Source Code Control System.
Simply stated, they are either (1) if you made the delta, you can change its delta commentary; or (2) if you
own the file and directory you can modify the delta commentary.

EXAMPLES

40 Last change: 23 September 1985 Sun Release 3.2

CDC(1) USER COMMANDS CDC(1)

tutorial% cdc —r1.6 —m" bl78-12345 'b177-54321 b179-00001" —ytrouble s.file
adds bl78-12345 and bl179-00001 to the MR list, removes bl77-54321 from the MR list, and adds the com-
ment trouble to delta 1.6 of s.file.

tutorial% cdc —r1.6 s.file
MRs? !b177-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input (— on the command line), then
the -m and —y options must also be used.

FILES
x-file (see delta(1))
z-file (see delta(1))
SEE ALSO
admin(1), comb(1), delta(1), get(1), help(1), prs(1), sccs(1), scesdiff(1), sccsfile(S), val(1), what(1)
Programming Ultilities for the Sun Workstation.
DIAGNOSTICS

Use help for explanations.

Sun Release 3.2 Last change: 23 September 1985 41

CFLOW (1) USER COMMANDS CFLOW (1)

NAME

cflow— generate C flow graph

SYNOPSIS

cllow [-r] [—ix] [-i_] [—dnum] files

DESCRIPTION

cflow analyzes a collection of C, YACC, LEX, assembler, and object files and attempts to build a graph
charting the external references. Files suffixed in .y, ., .c, and .i are YACC’d, LEX’d, and C-preprocessed
(bypassed for .i files) as appropriate and then run through the first pass of lint(1V). (The —I, —D, and -U
options of the C-preprocessor are also understood.) Files suffixed with .s are assembled and information is
extracted (as in .o files) from the symbol table. The output of all this non-trivial processing is collected and
turned into a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a suitable number of tabs indi-
cating the level. Then the name of the global (normally only a function not defined as an external or begin-
ning with an underscore; see below for the —i inclusion option} a colon and its definition. For information
extracted from C source, the definition consists of an abstract type declaration (e.g., char *), and, delimited
by angle brackets, the name of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the file name and location counter under which the symbol
appeared (e.g., text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain only the reference
number of the line where the definition may be found. For undefined references, only <> is printed.

As an example, given the following in file.c:

nt 1;
main()
{
£0;
g0;
f0;
}
fO
{
i=h();
}
the command:
cflow —ix filec
produces the output
1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>
5 g <>

When the nesting level becomes too deep, the —e option of pr(1V) can be used to compress the tab expan-
sion to something less than every eight spaces.

SYSTEM V DESCRIPTION

The System V version of "cflow" in /usr/5bin/cflow makes the C preprocessor cpp(l) search in
/usr/Sinclude for include files before it searches in /usr/include.

OPTIONS

42

The following options are interpreted by cflow:
- Reverse the “‘caller:callee’’ relationship producing an inverted listing showing the callers of each

Last change: 10 April 1986 Sun Release 3.2

CFLOW (1) USER COMMANDS CFLOW (1)

function. The listing is also sorted in lexicographical order by callee.
—ix Include external and static data symbols. The default is to include only functions in the flowgraph.

—i_ Include names that begin with an underscore. The default is to exclude these functions (and data if
—ix is used).

—dnum The num decimal integer indicates the depth at which the flowgraph is cut off. By default this is a
very large number. Attempts to set the cutoff depth to a nonpositive integer will be met with con-
tempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only believes the first. Other mes-
sages may come from the various programs used (e.g., the C-preprocessor).

SEE ALSO
as(1), cc(1V), cpp(1), lex(1), lint(1V), nm(1), pr(1V), yacc(1).

BUGS

Files produced by lex(1) and yacc(1) cause the reordering of line number declarations which can confuse
cflow. To get proper results, feed cflow the yacc or lex input.

Sun Release 3.2 Last change: 10 April 1986 43

CHECKNR(1) USER COMMANDS CHECKNR(1)

NAME

checknr — check nroff/troff files

SYNOPSIS

checknr [s][fl[-axl.ylx2y2... xnyn][—c xIx2x3... xn][filename ...]

DESCRIPTION

Checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors involving mismatched
opening and closing delimiters and unknown commands. If no files are specified, checknr checks the stan-
dard input. Delimiters checked are:

1 Font changes using \fx ... \fP.

2) Size changes using \sx ... \sO.

3) Macros that come in open ... close forms, for example, the .TS and .TE macros which must

always come in pairs.

Checknr knows about the ms(7) and me (7) macro packages.

Checknr is intended to be used on documents that are prepared with checknr in mind. It expects a certain
document writing style for \f and \s commands, in that each \fx must be terminated with \fP and each \sx
must be terminated with \s0. While it will work to directly go into the next font or explicitly specify the
original font or point size, and many existing documents actually do this, such a practice will produce com-

plaints from checknr. Since it is probably better to use the \fP and \sO forms anyway, you should think of
this as a contribution to your document preparation style.

OPTIONS

-5 Ignore \s size changes.
—f Ignore \f font changes.

-a Add pairs of macros to the list. The pairs of macros are assumed to be those (such as .DS and
DE) that should be checked for balance. The —a option must be followed by groups of six char-
acters, each group defining a pair of macros. The six characters are a period, the first macro name,
another period, and the second macro name. For example, to define a pair .BS and .ES, use
-a.BS.ES

- define commands which checknr would otherwise complain about as undefined.

SEE ALSO

BUGS

44

nroff(1), troff(1), ms(7), me(7), checkeq(1)

There is no way to define a 1 character macro name using —a

Last change: 13 March 1984 Sun Release 3.2

CHGRP(1) USER COMMANDS CHGRP(1)

NAME

chgrp — change group
SYNOPSIS

chgrp [][-R] group filename ...
DESCRIPTION

chgrp changes the group-ID of the filename(s) given as arguments to group. The group may be either a
decimal GID or a group name found in the group-ID file, /etc/group.

You must belong to the specified group and be the owner of the file, or be the superuser.
OPTIONS
—f Force. Do not report errors.

-R Recursive. chgrp descends through diretories supplied as arguments, setting the specified group-

ID as it proceeds. When symbolic links are encountered, their group is changed, but they are not
traversed.

FILES
letc/group

SEE ALSO
chown(2), passwd(5), group(5)

Sun Release 3.2 Last change: 25 July 1986 45

CHMOD(1V) USER COMMANDS CHMOD(1V)

NAME
chmod - change mode

SYNOPSIS
chmod [—fR] mode filename ...

DESCRIPTION
Change the permissions, or mode, of a file or files. Only the owner of a file (or the superuser) may change
its mode.
The mode of each named file is changed according to mode, which may be absolute or symbolic.

Absolute Modes
An absolute mode is an octal number constructed from the OR of the following modes:
400 read by owner
200 write by owner
100 execute (search in directory) by owner
040 read by group
020 write by group
010 execute (search) by group
004 read by others
002 write by others
001 execute (search) by others

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, (see chmod (2) for more information) -

Symbolic Modes
A symbolic mode has the form:

[who] op permission [op permission 1...

who is a combination of:

u user’s permissions
g group permissions
0 others

a all, or ugo

If who is omitted, the default is a, but the setting of the file creation mask (see umask in sk (1) or
csh(1) for more information) is taken into account. When who is omitted, chmod will not override
the restrictions of your user mask.

op is one of:

+ to add the permission

- to remove the permission

= to assign the permission explicitly (all other bits for that category, owner, group, or others, will be reset).

permission is any combination of:

read

write

execute

give execute permission if the file is a directory or if there is execute permission for one of the other user
set owner- or group-ID. This is only useful with u or g.

set the sticky bit to save program text between processes.

nmxxi-l

The letters u, g, or o indicate that permission is to be taken from the current mode for the user-
class.

Omitting permission is only useful with =, to take away all permissions.

46 Last change: 25 July 1986 Sun Release 3.2

CHMOD(1V) USER COMMANDS CHMOD(1V)

Multiple symbolic modes, separated by commas, may be given. Operations are performed in the order
specified.

SYSTEM V DESCRIPTION
If who is omitted in a symbolic mode, it does not take the file creation mask into account, but acts as if who
were a.

OPTIONS
—f Force. chmod will not complain if it fails to change the mode of a file.

-R recursively descend through directory arguments, setting the mode for each file as described
above. When symbolic links are encountered, their mode is not changed and they are not
traversed.

EXAMPLES

The first example denies write permission to others, the second makes a file executable by all if it is execut-

able by anyone:
chmod o—-w file
chmod +X file

SEE ALSO
1s(1V), sh(1), csh(1), chmod(2), chown(8)

Sun Release 3.2 Last change: 25 July 1986 47

CHSH(1) USER COMMANDS CHSH(1)

NAME
chsh — change default login shell

SYNOPSIS
chsh username [shell]

DESCRIPTION
Chsh changes the login shell field of the user’s password file entry. If no shell is specified, the shell reverts
to the default login shell /bin/sh. To specify a shell other than /bin/csh, you must be the super-user.

EXAMPLES
angel% chsh bill /bin/csh

SEE ALSO
csh(1), passwd(1), passwd(5)

48 Last change: 22 December 1983 Sun Release 3.2

CLEAR (1) USER COMMANDS CLEAR(1)

NAME

clear — clear screen
SYNOPSIS

clear

DESCRIPTION

Clear clears your screen if this is possible. It looks in the environment for the terminal type and then in
letcitermcap to figure out how to clear the screen.

FILES
/etc/termcap terminal capability data base

Sun Release 3.2 Last change: 12 February 1985 49

CLEAR_COLORMAP(1) USER COMMANDS CLEAR_COLORMAP(1)

NAME
clear_colormap — clear the color map

SYNOPSIS
clear_colormap

DESCRIPTION
Clear_colormap clears your hardware colormap.

50 Last change: 21 August 1985 Sun Release 3.2

CLEAR FUNCTIONS (1) USER COMMANDS CLEAR_FUNCTIONS (1)

NAME
clear_functions — reset state of selection service

SYNOPSIS
clear_functions

DESCRIPTION
clear_functions instructs the selection service that no function keys are currently depressed. It is useful in
cases where erroneous programs have reported a key press but not the corresponding release. The usual
symptom for this situation is that all selections are secondary (underscored rather than inverted), even
though no function keys are down.

FILES
/ust/bin/selection_svc

SEE ALSO
Editing and the Text Facility, in Windows and Window-Based Tools, Beginner's Guide

Sun Release 3.2 Last change: April 4 1986 51

CLICK (1) USER COMMANDS CLICK (1)

NAME
click — control the keyboard keystroke click sound

SYNOPSIS
click [-y] [—n] [—d keyboard device]

DESCRIPTION
Change the setting of the audible keyboard click. The default is no keyboard click. If you want to turn
clicking on then a good place to do it is in /etc/rc.local.

Only keyboards that support a clicker respond to this command. At the time of this writing, the only key-
board known to have a clicker is the Sun 3 keyboard.

OPTIONS

-y Yes, enable clicking.

-n No, disable clicking.

~d keyboard device

Specify the keyboard device being set. The default is /dev/kbd.

SEE ALSO

kb(4S)
DIAGNOSTICS

A short help message is printed if an unknown flag is specified or if the —d switch is used and the keyboard
device name is not supplied. A diagnostic is printed if the keyboard device name can’t be opened or is not
a keyboard type device.

BUGS
There is no way to determine the state of the keyboard click setting.

52 Last change: 18 December 1985 Sun Release 3.2

CLOCK (1) USER COMMANDS CLOCK (1)

NAME

clock, clocktool — display the time in a window

SYNOPSIS

clock[-s]{-t][-r][—dmdyaw][-f]

DESCRIPTION

clock is a standard tool provided with the SunView environment.

clock displays the current time in its own window. In its open state, clock shows the date and time textual
form. In its closed state, clock appears as a clock face which keeps time.

Note: In previous releases clock was known as clocktool. In the current release, clocktool is retained as a
symbolic link to clock.

OPTIONS

-r causes clock to use a square face with roman numerals in the iconic state. This replaces the
default round clock face.

—d display date information in a small area just below the clock face. The date information to be
displayed may include:
m the month,
d the day of the month (1-31),
y the year,
a the string AM or PM, as appropriate,
w the day of the week (Sun—Sat).

There is only room for 3 of these, but any 3 may be displayed in any sequence.
—f Display the date and day of week on the clock face.

-s start clock with the seconds turned on. By default, the clock starts with seconds turned off, and
updates every minute. With seconds turned on, it updates every second, and, if iconic, displays a
second hand.

-t Test mode — ignore the real time, and instead run in a loop continuously incrementing the time by
one minute and displaying it.

clock also accepts all of the generic tool arguments discussed in suntools(1).
‘When open, clock listens for keyboard input, toggling its state on four characters:
sorS toggles the display of seconds.

torT toggles the ‘test’ mode.

SEE ALSO

FILES

BUGS

suntools(1), date(1)
/usr/lib/fonts/fixedwidthfonts/sail.r.6

If you reset the system time, clock will not reflect the new time until you change its state — open it if
closed, close it if open. To reset the system time, see date(1).

The date display doesn’t go well with the round clock face.
The clock sometimes freezes. Bringing up the Frame Menu will unstick it.

Sun Release 3.2 Last change: 29 May 1986 53

CMDTOOL (1) USER COMMANDS CMDTOOL(1)

NAME

cmdtool — Run a shell (or other program) from the SunView text facility

SYNOPSIS

cmdtool [-C] [P nr][program[args]]

DESCRIPTION

cmdtool is a standard tool provided with the SunView environment.

When invoked, cmdtool runs a program (usually a shell) in a text-based command subwindow. Typed
characters are inserted at the caret. If this program is a shell, it accepts commands and runs programs in
the usual way. (See BUGS below).

Text can be edited anywhere on the command line the same way as in any other text subwindow. Com-
mands and their output are kept in a log which can be scrolled using the scrollbar. The log file can also be
edited, or even saved using the Save command in the text facility’s pop-up menu. The Split command, also
in the pop-up menu, can be used to create two or more independently scrolling views of the log.

DEFAULTS OPTIONS

/Tty/Append_only_log
TRUE is the standard default; it means that only the command line may be editted. FALSE per-
mits editting of the entire log. See the descripton of Enable Edit below.

/Tty/Insert_makes_caret_visible

This entry describes how hard the command subwindow should try to keep the caret visible.

Same_as_for text Is the standard default; it means that the setting for
Insert_makes_caret_visible will be taken from the Text category instead
of Tty when a command subwindow is created.

If auto scroll If the caret is showing, and an inserted newline would position it below the
bottom of the screen as determined by /Text/Lower_context, the text is
scrolled to keep it showing. The amount scrolled is controlled by
{Text/Auto_scroll_by. See textedit (1) for more information.

Always Upon any input action, if the caret is positioned off the screen, it is scrolled
back into view.

[Tty/Checkpoint_frequency
0 is the standard default; it means that no checkpointing will take place. For a value n greater than
zero, checkpointing will take place after every nth edit. Each character typed, each Get, and each
Delete counts as an edit. If the transcript file is named /emp/tty.txt.000xxx, at each checkpoint, an
updated copy of the transcript will be saved in /tmp/tty.txt.000xxx%%.

/Text/Edit_back_char

Set the character for deleting the character preceding the caret. Note: Stty erase has no effect; text
based tools only refer to the defaults database. The standard default is the DEL key.

[Text/Edit_back_word
Set the character for deleting the word preceding the caret. Note: Stty werase has no effect; text
based tools only refer to the defaults database. The standard default is CTRL-W.

/Text/Edit_back_line
Set the character for deleting from the newline preceding the caret to the caret. Note: Stty kill has
no effect; text based tools only refer to the defaults database. The standard default is CTRL-U.

COMMANDLINE OPTIONS

54

—C Redirect system console output to this instance of the cmdtool. This will prevent system error
messages from being printed in unexpected places on the screen. Moreover, since a cmdtool win-
dow is scrollable, messages that go off the top of the window can be scrolled back for re-
examination.

—Pn Set the checkPoint frequency to n.

Last change: 30 September 1985 Sun Release 3.2

CMDTOOL (1) USER COMMANDS CMDTOOL (1)

cmdltool also takes generic tool arguments; see suntools (1) for a list of these arguments.

program{ args]

If a program argument is present, cmdtool executes it. Subsequent arguments will be assumed to
be arguments of the program argument, and will be passed to it for execution. If there are no
arguments, cmdtool runs the program corresponding to the SHELL environment variable. If this
environment variable is not available, then cmdtool runs /bin/sh.

THE COMMAND SUBWINDOW

FILES

The subwindow of c¢mdtool is a command subwindow, which is also found in dbxtool and potentially in
other tools as well. The command subwindow is based on the text facility. For more information about the
text facility, see Windows and Window-Based Tools: Beginner's Guide. The pop-up menu associated with
command subwindow is the same as that for the text facility (see textedit (1)), with one additional item,
Enable Edit. The generic text menu items will not be described here except for Put, then Get, as it
approximates the functionality of Stuff in shelltool (1), and is also implemented for shelltool.

Put, then Get
When there is a selection, this item reads Put, then Get. It causes the selection to be copied both
to the shelf and to the caret.

Put, then Get
When there is no selection but there is text on the shelf, Put, then is grayed out, though Get
remains active. Selecting this item causes the contents of the shelf to be copied to the caret. When
there is no selection and nothing is on the shelf, this item is inactive.

Enable Edit
If the defaults entry Append_only_log is set to TRUE, but at some point you want to edit the log,
selecting this menu item makes editting the log possible. When the log is editable, this item reads
Disable Edit, and selecting it makes the log read-only before the start of the command line.

Certain text facility accelerators that are especially useful in command subwindows are described here. See
textedit (1) for more information.

CTRL-RETURN
Holding down the control key while typing newline (carriage return) positions the caret at the bot-
tom and scrolls it into view, as determined by the defaults option /Text/Lower_context.

CTRL-P is an accelerator for the Put, then Get menu item described above.

CAPS-lock
Bound to F1, it causes subsequent keyboard input to be uppercase. This key is a toggle; striking it
a second time undoes the effect of the first strike.

/tmp/tty txt.nnnnnn
“/ textswrc

SEE ALSO

BUGS

shelltool(1), suntools(1), textedit(1), defaultsedit(1),
Windows and Window-Based Tools: Beginner's Guide

Full terminal emulation is not yet supported. Programs that use CBREAK or RAW mode, NO ECHO, or curses
do not work as expected. Some examples of manifestations of this deficiency include:

« To send a command to more other than newline, the desired command must be followed by CTRL-D.
* vicomes up in open mode.
» The "h command in mail doesn’t work.

» The password to su is echoed.

Sun Release 3.2 Last change: 30 September 1985 55

CMDTOOL(1) USER COMMANDS CMDTOOL (1)

e CTRL-C from a cmdtool running su but not started from a shell owned by root doesn’t work.
« The select system call never notices input on stdin.

 rlogin double echos and CTRL-D kills rlogin, not just the program running from it.
Occasionally the program run from cmdtool unexplainably hangs.

56 Last change: 30 September 1985 Sun Release 3.2

CMP(1) USER COMMANDS CMP(1)

NAME
cmp — compare two files

SYNOPSIS
cmp [-1][—s] filel file2

DESCRIPTION
Cmp compares filel and file2. If filel is ‘—’, cmp reads from the standard input. Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other, that fact is noted.

OPTIONS
-1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
-S Print nothing for differing files; return codes only.

SEE ALSO
diff(1), comm(1)

DIAGNOSTICS

Exit code O is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argu-
ment.

Sun Release 3.2 Last change: 29 April 1983 57

COL(1V) USER COMMANDS COL(1V)

NAME

col - filter reverse paper motions
SYNOPSIS

col [—bfhp]

SYSTEM V SYNOPSIS

/usr/Sbhin/col [—bfpx]

DESCRIPTION

col copies the standard input to the standard output and performs line overlays implied by reverse line
feeds (ESC-7 in AsCII) and by forward and reverse half line feeds (ESC-9 and ESC-8). co! is particularly use-
ful for filtering multicolumn output made with the .rt command of aroff and output resulting from use of
the bl preprocessor.

The control characters SO (ASCII code ‘017°’), and SI (016) are assumed to start and end text in an alternate
character set. The character set (primary or alternate) associated with each printing character read is
remembered; on output, SO and SI characters are generated where necessary to maintain the correct treat-
ment of each character.

All control characters are removed from the input except space, backspace, tab, return, newline, ESC (033)
followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an alternate form of full reverse line
feed, for compatibility with some other hardware conventions. All other non-printing characters are
ignored.

SYSTEM V DESCRIPTION

The System V version of col converts spaces to tabs by default.

OPTIONS
-b col assumes that the output device in use is not capable of backspacing. In this case, if several
characters are to appear in the same place, only the last one read will be taken.
—f Fine. Although col accepts half line motions in its input, it normally does not produce them on

output. Instead, text that would appear between lines is moved to the next lower full-line boun-
dary. The —f option suppresses this treatment — in this case the output from col may contain for-
ward half line feeds (ESC-9), but will still never contain either kind of reverse line motion.

-h Convert strings of blanks to tabs to decrease the printing time.

-p Pass escape-sequences that col does not know about to the output, rather than stripping them out.
This option is highly discouraged unless you are fully aware of the position of the escape
sequences within the text.

SYSTEM V OPTIONS

The —b, ~f, and —p options are described above.
—x Suppress converting spaces to tabs.

SEE ALSO

BUGS

58

troff(1), tbl(1)

col can’t back up more than 128 lines.

At most 1600 characters, including backspaces, are allowed on a line.

Local vertical motions that would result in backing up over the first line of the document are ignored. As a
result, the first line must not have any superscripts.

Last change: 29 March 1986 Sun Release 3.2

COLCRT(1) USER COMMANDS COLCRT(1)

NAME

colcrt — filter nroff output for CRT previewing
SYNOPSIS

colert [—]1[-2][filename ...]
DESCRIPTION

Colcrt provides virtual half-line and reverse line feed sequences for terminals without such capability, and
on which overstriking is destructive. Half-line characters and underlining (changed to dashing ‘-’) are
placed on new lines in between the normal output lines.

OPTIONS
- Suppress all underlining — especially useful for previewing allboxed tables from bl(1).

-2 Print all half-lines, effectively double spacing the output. Normally, a minimal space output for-
mat is used which suppresses empty lines. Colcrt never suppresses two consecutive empty lines,
however. The —2 option is useful for sending output to the line printer when the output contains
superscripts and subscripts which would otherwise be invisible.

EXAMPLE
A typical use of colcrt would be

tbl exum2.n | nroff —ms | colcrt — | more

SEE ALSO
nroff(1), troff(1), col(1V), more(1), ul(1)

BUGS
Can’t back up more than 102 lines.

General overstriking is lost; as a special case |’ overstruck with ‘~’ or underline becomes “+’.
Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and subscripts in documents which are already
double-spaced.

Sun Release 3.2 Last change: 13 April 1983 59

COLRM(1) USER COMMANDS COLRM(1)

NAME
colrm — remove columns from a file

SYNOPSIS
colrm [startcol [endcol 1]

DESCRIPTION
Colrm removes selected columns from a text file. The text is is taken from standard input and copied to the

standard output with the specified columns removed.

If only startcol is specified, the columns of each line are removed starting with startcol and extending to
the end of the line. If both startcol and endcol are specified, all columns between startcol and endcol,
inclusive, are removed.

Column numbering starts with column 1.

SEE ALSO
expand(1)

60 Last change: 13 April 1983 Sun Release 3.2

COMB(1) USER COMMANDS COMB(1)

NAME
comb — combine SCCS deltas

SYNOPSIS
lusr/sces/comb [—0 1 [—s] [—p SID] [—c list] filename ...

DESCRIPTION
Comb generates a shell procedure (see sh(1)) which, when run, will reconstruct the given SCCS files. If a
directory is named, comb behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of — is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

OPTIONS

Options are explained as though only one named file is to be processed, but the effects of any option apply
independently to each named file.

~pSID The SCCS IDentification string (SID) of the oldest delta to be preserved. All older deltas are dis-
carded in the reconstructed file.

—clist A list of deltas to be preserved. All other deltas are discarded. See ger(1) for the syntax of a list.

-0 For each get —e generated, the reconstructed file is accessed at the release of the delta to be
created. In the absence of the —o option, the reconstructed file is accessed at the most recent
ancestor. Use of the —o option may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s Generate a shell procedure which, when run, will produce a report giving, for each file: the file
name, size (in blocks) after combining, original size (also in blocks), and percentage change com-
puted by:

1007+ (original™—"combined)”/“original
It is recommended that before any SCCS files are actually combined, you should use this option to
determine exactly how much space is saved by the combining process.

If no options are specified, comb preserves only leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb???7?? Temporary.

SEE ALSO

sccs(1), admin(1), delta(1), get(1), help(1), prs(1), sccsfile(S).
Programming Utilities for the Sun Workstation.

DIAGNOSTICS
Use help(1) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possible for the
reconstructed file to actually be larger than the original.

Sun Release 3.2 Last change: 6 March 1984 61

COMM(1) USER COMMANDS COMM(1)

NAME

comm — select or reject lines common to two sorted files

SYNOPSIS

comm [— [123]] filel file2

DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(1V)), and pro-
duces a three column output: lines only in filel; lines only in file2; and lines in both files. The filename —
means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints only the lines com-
mon to the two files; comm —23 prints only lines in the first file but not in the second; comm —123 does
nothing.

SEE ALSO

62

cmp(1), diff(1), unig(1)

Last change: 17 February 1986 Sun Release 3.2

COMPACT (1) USER COMMANDS COMPACT (1)

NAME

compact, uncompact, ccat — compress and uncompress files, and cat them

SYNOPSIS

compact { filename...]
uncompact [filename ...]
ccat [filename ...]

DESCRIPTION

FILES

Compact compresses the named files using an adaptive Huffman code. If no file names are given, the stan-
dard input is compacted to the standard output. Compact operates as an on-line algorithm. Each time a
byte is read, it is encoded immediately according to the current prefix code. This code is an optimal Huff-
man code for the set of frequencies seen so far. It is unnecessary to prepend a decoding tree to the
compressed file since the encoder and the decoder start in the same state and stay synchronized. Further-
more, compact and uncompact can operate as filters. In particular:
...| compact | uncompact | ...
operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting file is placed in file.C; file is removed.
The first two bytes of the compacted file code the fact that the file is compacted. This code is used to
prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed. Typical values
of compression are: Text (38%), Pascal Source (43%), C Source (36%) and Binary (19%). These values
are the percentages of file bytes reduced.

Uncompact restores the original file from a file called file.C which was compressed by compact. If no file
names are given, the standard input is uncompacted to the standard output.

Ccat cats the original file from a file compressed by compact, without uncompressing the file.

*C compacted file created by compact, removed by uncompact

SEE ALSO

Gallager, Robert G., ‘Variations on a Theme of Huffman’, 1.E.E.E. Transactions on Information Theory,
vol. IT-24, no. 6, November 1978, pp. 668 - 674.

Sun Release 3.2 Last change: 1 November 1983 63

COMPRESS(1) USER COMMANDS COMPRESS(1)

NAME
compress, uncormnpress, zcat — compress and expand files

SYNOPSIS
compress [} [—f][—vI[-bbdits] [filename...]

uncompress [—¢] [—v] [filename ...]
zcat [filename . ..)

DESCRIPTION
compress teduces the size of the named files using adaptive Lempel-Ziv coding. Whenever possible, each
file is replaced by one with the extension .Z, while keeping the same ownership modes, access and
modification times. If no files are specified, the standard input is compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of bits per code, and the
distribution of common substrings. Typically, text such as source code or English is reduced by 50-60%.
Compression is generally much better than that achieved by Huffman coding (as used in pack), or adaptive
Huffman coding (compact), and takes less time to compute. The bits parameter specified during compres-
sion is encoded within the compressed file, along with a magic number to ensure that neither decompres-
sion of random data nor recompression of compressed data is subsequently allowed.

Compressed files can be restored to their original form using uncompress.
zcat produces uncompressed output on the standard output, but leaves the compressed .Z file intact.

OPTIONS
—c Write to the standard output; no files are changed. The nondestructive behavior of zcat is identical
to that of uncompress —c.
—f Force compression of name, even if it does not actually shrink or the corresponding name Z file
already exists.
Except when run in the background under /bin/sh, if —f is not given and compress is run in the
foreground, the user is prompted as to whether an existing name .Z file should be overwritten.
—v Verbose. Display the percentage reduction for each file compressed.
—b bits Set the upper limit (in bits) for common substring codes. bits must be between 9 and 16 (16 is the
default).
DIAGNOSTICS

Exit status is normally O; if the last file was not compressed because it became larger, the status is 2. If an
€ITOr OCCurS, exit status is 1.

Usage: compress [-fvc] [-b maxbits] [file ...]
Invalid options were specified on the command line.

Missing maxbits Maxbits must follow —b.

Jile: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
file was compressed by a program that could deal with more bits than the compress code on this
machine. Recompress the file with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file already exists; do you wish to overwrite (y or n)?
Respond "y" if you want the output file to be replaced; "n" if not.

uncompress: corrupt input
A SIGSEGYV violation was detected, which usually means that the input file is corrupted.

64 Last change: 17 July 1986 Sun Release 3.2

COMPRESS(1) USER COMMANDS COMPRESS (1)

Compression: xxxx%

Percentage of the input saved by compression. (Relevant only for —v.)
-- not a regular file: unchanged

When the input file is not a regular file, (e.g. a directory), it is left unaltered.
-- has xx other links: unchanged

The input file has links; it is left unchanged. See In(1) for more information.
-- file unchanged

No savings are achieved by compression. The input remains uncompressed.

SEE ALSO

A Technique for High Performance Data Compression , Terry A. Welch, IEEE Computer, vol. 17, no. 6
(June 1984), pp. 8-19.

compact(1), pack(1)
BUGS

Although compressed files are compatible between machines with large memory, —b12 should be used for
file transfer to architectures with a small process data space (64KB or less).

compress should be more flexible about the existence of the .Z suffix.

Sun Release 3.2 Last change: 17 July 1986 65

CP(1) USER COMMANDS CP(1)

NAME
cp — copy files
SYNOPSIS
cp [—i][—plfilel file2
cp[—i1[-pl[—rR1file...directory
DESCRIPTION

filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the mode of the
source file, modified by the current umask, is used otherwise.

In the second form, one or more named files are copied into directory with their original filenames.
cp refuses to copy afile onto itself.

OPTIONS
—i Interactive: prompt the user with the name of the file whenever the copy would overwrite an old
file. Answering with 'y’ means that cp should go ahead and copy the file. Any other answer will
prevent cp from overwriting the file.
-p Preserve: attempt to preserve (duplicate) in its copies the modification times and modes of the
source files, ignoring the present umask.
-r
-R Recursive: if any of the source files are directories, cp copies each subtree rooted at that name; in
this case the destination must be a directory.
EXAMPLES

To make a backup copy of goodies :

% cp goodies old.goodies
To copy an entire directory hierarchy:

% cp —r /usr/wendy/src /usr/wendy/backup
However, BEWARE of a recursive copy like this one:

% cp —r lusr/wendy/src /usr/wendy/src/backup
which keeps copying files until it fills the entire file system.

SEE ALSO
cat(1V), pr(1V), mv(1), rcp(1C)

66 Last change: 16 February 1984 Sun Release 3.2

CPIO(1) USER COMMANDS CPIO(1)

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio—o [aBcv]
cpio —i [bedfmrsStuvé] [patterns]
cpio —p [adlmruv] directory
DESCRIPTION

cpio copies files into and out from a cpio copy archive. The archive (built by cpio —0) contains pathname
and status information, along with the contents of one or more archived files.

OPTIONS
cpio —o0 Copy out as an archive. Reads the standard input for a list of pathnames, then copies the named
files to the standard output in archive form — including pathname and status information.

a Reset the access times of input files after they have been copied.

B Input/output is to be blocked at 5120 bytes to the record. This does not apply to the pass
option. This option is only meaningful with data directed to or from raw magnetic dev-
ices, such as /dev/rmt?

c Write header information in ASCII character form for portability.

v Verbose option. A list of filenames is displayed. When used with the t option, the table
of contents looks like the output of an Is —1 command (see Is(1V)).

cpio—i Copy in an archive. Reads in an archive from the standard input and extracts files with names
matching filename substitution patterns, supplied as arguments.

patterns are similar to those in sh or csh, save that within cpio, the metacharacters ?, * and [...]
also match the slash (/) character. If no patterns are specified, the default is * (select all files).

b Swap both bytes and halfwords after reading in data.

d directories should be created as needed.

f Copy in all files except those matching patterns.

m Retain previous file modification time. This option is ineffective on directories that are
being copied.

r Interactively rename files. If the user types a null line, the file is skipped.

s Swap bytes after reading in data.

S Swap halfwords after reading in data.

t Print a table of contents of the input archive. No files are created.

u Copy unconditionally. Normally, an older file will not replace a newer file with the same
name.

6 Process a UNIX Version 6 file or files.

cpio —p One pass. Copies out and in in a single operation. Destination pathnames are interpreted relative
to the named directory.
1 Whenever possible, link files rather than copying them.

EXAMPLES
To copy the contents of a directory into an archive:

tutorial% Is | cpio —o > /dev/mt0

Sun Release 3.2 Last change: 17 February 1986 67

CPIO(1) USER COMMANDS CPIO(1)

To duplicate the olddir directory hierarchy in the newdir directory:
tutorial% cd olddir
tutorial% find . —depth —print | cpio —pdl newdir
The trivial case
find . —depth —print | cpio —oB >/dev/rmt0
can be handled more efficiently by:
find . —cpio /dev/rmt/Om

cpio archive tapes from other sites may have bytes swapped within the archive. Although the s option only
swaps the data bytes and not those in the header cpio recognizes tapes like this and swaps the bytes in the
header automatically.

SEE ALSO
ar(1), find(1), cpio(5), tar(1)

BUGS
Pathnames are restricted to 128 characters. If there are too many unique linked files, cpio runs out of
memory and linking information is lost thereafter. Only the superuser can copy special files.

68 Last change: 17 February 1986 Sun Release 3.2

CPP(1)

NAME

USER COMMANDS CPP(1)

cpp — the C language preprocessor

SYNOPSIS

Mib/cpp [-P1[-C 1[-M1[~Uname][—Dname] [-Dname=def 1[-T] [-R][-1dir]
[ifile [ofile 1]

DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using the
cc(1V) command (cpp may optionally be invoked as the first pass of a FORTRAN 77 or Pascal compila-
tion — see f77(1) or pc (1)). Thus the output of cpp is designed to be in a form acceptable as input to the
next pass of the compiler. The preferred way to invoke cpp is through the c¢c (1V) command. See m4(1V)
for a general macro processor.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively the input and output
for the preprocessor. They default to standard input and standard output if not supplied.

OPTIONS

-P Preprocess the input without producing the line control information used by the next pass of the C
compiler.
—C Pass all comments (except those which appear on cpp directive lines) through the preprocessor.

By default, cpp strips out C-style comments.

-M Generate a list of makefile dependencies to the standard output. This list indicates that the object
file which would be generated from the input file depends on the input file and all the include files
referenced.

—Uname
Remove any initial definition of name, where name is a reserved symbol that is predefined by the
particular preprocessor. Following is the current list of these possibly reserved symbols. On Sun
computers, unix, m68k, and sun are defined (mc68000 is defined as well for backward compati-
bility). On Sun-2 computers, M68010 is also defined (mc68010 is defined as well for backward
compatibility); on Sun-3 computers, M68020 is also defined (mc68020 is defined as well for

backward compatibility).
operating system: ibm, gcos, 0s, tss, unix
hardware: interdata, pdp11, u370, u3b, u3b5, vax, m68k, M68010, M68020,
sun
UNIX system variant: RES, RT
lint(1V): lint
—Dname

Define name as 1 (one). This is the same as if a —~Dname=1 option appeared on the cpp command
line, or as if a #define name 1 line appeared in the source file that cpp is processing.

—Dname=def
Define name as if by a #define directive. This is the same as if a #define name def line
appeared in the source file that cpp is processing. The —D option has lower precedence than the
—U option. That is, if the same name is used in both a —U option and a —D option, the name will
be undefined regardless of the order of the options.

-T Use only the first eight characters for distinguishing different preprocessor names. This option is
include for backward compatibility with systems which always use only the first eight characters.

—Idir Change the algorithm for searching for #include files whose names do not begin with / to look in
dir before looking in the directories on the standard list. Thus, #include files whose names are
enclosed in " " will be searched for first in the directory of the current source file, then in direc-
tories named in —I options, and last in directories on a standard list. For #include files whose
names are enclosed in <>, the directory of the ifile argument is not searched. See the section enti-
tled DETAILS below, for exact details of the search order.

Sun Release 3.2 Last change: 20 February 1986 69

CPP(1) USER COMMANDS CPP(1)

-R Allow recursive macros.

DIRECTIVES
All cpp directives start with lines begun by #. White space (blanks or tabs) can appear after the #. The
directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name (arg, ..., arg) token-string
There can be no space between name and the ‘(. Replace subsequent instances of name followed
by a °(’, a list of comma-separated tokens, and a ‘(’ by token-string where each occurrence of an
arg in the token-string is replaced by the corresponding token in the comma-separated list.

#undef name
Forget the definition of name (if any) from now on.

#include "filename"”

#include <filename>
Include at this point the contents of filename (which is then run through cpp). When the
<filename> notation is used, filename is only searched for in the standard places. See DETAILS
below.

#line integer-constant "filename"”
Generate line control information for the next pass of the C compiler. Integer-constant is inter-
preted as the line number of the next line and filename is interpreted as the file where it comes
from. If "filename” is not given, the current filename is unchanged.

#endif comment
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test directive must
have a matching #endif. The comment can be used to associate the #endif with its opening #if.

#ifdef name
The lines following will appear in the output if and only if name has been the subject of a previous
#define or a —D option without being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of a pre-
vious #define or a —D option without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-expression evaluates to
nonzero. All binary non-assignment C operators, including &&, ||, and ,, are legal in constant-
expression. The ?: operator, and the unary —, !, and ~ operators, are also legal in constant-
expression. The precedence of the operators is the same as defined by the C language. There is
also a unary operator defined, which can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the effect of #ifdef and #ifndef in a #if directive.
Only these operators, integer constants, and names which are known by cpp should be used in
constant-expression. In particular, the sizeof operator is not available.

#else commentary
Reverses for the following lines the notion of the test directive currently in effect. So if lines pre-
vious to this directive are ignored, the following lines will appear in the output, and vice versa.
The commentary can be used to associate the #else with its opening #if.

The test directives and corresponding #else directives can be nested.

DETAILS
Directory search order for #include files is:

1. the directory of the file which contains the #include request (that is, #include is relative to the file
being scanned when the request is made)

70 Last change: 20 February 1986 Sun Release 3.2

CPP(1) USER COMMANDS CPP(1)

2. the directories specified by —I options, in left-to-right order.
3. the standard directory(s) (/usr/include on UNIX systems).

Special Names: Two special names are understood by cpp. The name _ _LINE_ _ is defined as the
current line number (a decimal integer) as known by cpp, and _ _FILE _ is defined as the current
filename (a C string) as known by cpp. They can be used anywhere (including in macros) just as any other
defined name.

A newline terminates a character constant or quoted string.

An escaped newline (that is, a backslash immediately followed by a newline) may be used in the body
of a #define statement to continue the definition onto the next line. The escaped newline is not included in
the macro body.

Comments are removed (unless the —C option is used on the command line). Comments are also
ignored, except that a comment terminates a token.

Macro formal parameters are recognized in #define bodies even inside character constants and quoted
strings. The output from:

#define abc(a) '\a’

abc(xyz)
is the seven characters "\xyz’ (space, single-quote, escape character, X, y, z, single-quote). Macro names
are not recognized inside character constants or quoted strings during the regular scan. Thus:

#define abe xyz

printf("abc");
does not expand ‘abc’ in the second line, because it is inside a quoted string which is not part of a #define
macro definition.

Macros are not expanded while processing a #define or #undef. Thus:

#define abc bletch

#define xyz abc

#undef abc

XyZ
produces ‘abc’. The token appearing immediately after a #ifdef or #ifndef is not expanded.
Macros are not expanded during the scan which determines the actual parameters to another macro
call. Thus:

#define reverse(first,second)second first

#define greeting hello

reverse(greeting,

#define greeting goodbye

)
produces ‘ goodbye’ (and warns about the redefinition of ‘greeting’).

Output consists of a copy of the input file, with modifications, plus lines of the form:
lineno “filename " "level" — indicating the original source line number and filename of the following
output line and whether this is the first such line after an include file has been entered (level=1), the first
such line after an include file has been exited (level=2), or any other such line (level is empty).

FILES

/usr/include standard directory for #include files
SEE ALSO

cc(1V), m4(1V), £77(1), pc(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory. The line number and filename
where the error occurred are printed along with the diagnostic.

Sun Release 3.2 Last change: 20 February 1986 71

CPP(1) USER COMMANDS CPP(1)

NOTES
When newline characters were found in argument lists for macros to be expanded, some previous versions
of cpp put out the newlines as they were found and expanded. The current version of cpp replaces these
newlines with blanks.

72 Last change: 20 February 1986 Sun Release 3.2

CRYPT(1) USER COMMANDS CRYPT(1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

crypt encrypts and decrypts the contents of a file. crypt reads from the standard input and writes on the
standard output. The password is a key that selects a particular transformation. If no password is given,
crypt demands a key from the terminal and turns off printing while the key is being typed in. crypt
encrypts and decrypts with the same key:

tutorial% crypt key <clear.file >encrypted.file

tutorial% crypt key <encrypted.file | pr
will print the contents of clear file.

Files encrypted by crypt are compatible with those treated by the editors ed, ex and vi in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve;
direct search of the key space must be infeasible; ‘sneak paths’ by which keys or cleartext can become visi-
ble must be minimized.

crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-
element rotor. Methods of attack on such machines are widely known, thus crypt provides minimal secu-
rity.

The transformation of a key into the internal settings of the machine is deliberately designed to be expen-
sive, that is, to take a substantial fraction of a second to compute. However, if keys are restricted to (say)

three lower-case letters, then encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps or a
derivative command. To minimize this possibility, crypt takes care to destroy any record of the key
immediately upon entry. No doubt the choice of keys and key security are the most vulnerable aspect of
crypt.

/devi/tty for typed key

SEE ALSO

des(1), ed(1), ex(1), makekey(8), vi(1)

RESTRICTIONS

This program is not available on software shipped outside the U.S.

Sun Release 3.2 Last change: 23 September 1985 73

CSH(1) USER COMMANDS CSH(1)

NAME

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—bcefinstvVxX] [argument . ..]

DESCRIPTION

csh, the C-Shell, is a command interpreter with a syntax remeniscent of C. It provides a number of con-
venient features for interactive use that are not available with the standard (Bourne) shell, including
filename completion, command aliasing, history substitution, job control, and a number of builtin com-
mands. As with the standard shell, the C-Shell provides variable, command and filename substitution.

Initialization and Termination

When first started, the C-Shell normally performs commands from the .cshrc file in your home directory, if
that file exists and you own it. If the shell is invoked with a name that starts with —, as when it is started by
login(1), it is treated as a login shell, in which case the shell then executes commands from the .login file
(if owned by you) in your home directory. Typically, the .login file contains commands to specify the ter-
minal type and environment. As a login shell terminates, it perfforms commands from the .logout file (if
owned by you) in your home directory.

Interactive Operation

After startup processing is complete, an interactive C-Shell begin reading commands from the terminal,
prompting with hostname % (or hostnamei for the super-user). The shell then repeatedly performs the fol-
lowing actions: a line of command input is read and broken into words. This sequence of words is placed
on the history list and then parsed, as described under USAGE, below. Finally, the shell executes each com-
mand in the current line.

Noninteractive Operation

When running noninteractively, the shell does not prompt for input from the terminal. A noninteractive C-
Shell can execute a command supplied as an argument on its command line, or interpret commands from a
script.

OPTIONS
-b Force a "break” from option processing. Subsequent command-line arguments are not interpreted
as C-Shell options. This allows the passing of options to a script without confusion. The shell
does not run a set-user-ID script unless this option is present.
- Read commands from the first filename argument (which must be present). Remaining arguments
are placed in argv, the argument-list variable.
—. Exit if a command terminates abnormally or yields a nonzero exit status.

74

—f Fast start. Read neither the .cshrc file, nor the .login file (if a login shell) upon startup.

—i Forced interactive. Prompt for command-line input, even if the standard input does not appear to
be a terminal (character-special device).

-n Parse (interpret), but do not execute commands. This option can be used to check C-Shell scripts
for syntax errors.

-s Take commands from the standard input.

-t Read and execute a single command line. A backslash (1) can be used to escape each NEWLINE
for continuation of the command line onto subsequent input lines.

-V Verbose. Set the verbose predefined variable; command input is echoed after history substitution
(but before other substitutions) and before execution.

-V Set verbose before reading .cshrc.

—x Echo. Set the echo variable; commands are echoed after all substitutions are performed, just
before execution.

-X Set echo before reading .cshrc.

Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

Except with the flags —¢, —i, —s or —t, the first nonflag argument is taken to be the name of a command or
script. It is passed as argument zero, and subsequent arguments are added to the argument list for that
command or script.

USAGE

Refer to Doing More With UNIX: Beginner’s Guide for tutorial information on how to use the various
features of the C-Shell.

Filename Completion
When enabled by setting the variable filec, an interactive C-Shell can complete a partially typed filename
or user name. When followed by an ESC character on the terminal input line, the shell fills in the remaining
unambiguous characters of partial filename. For instance, if the current directory contains the files:
dsc.old chaos xmpl.o
dsc.new xmpl.c xmpl.out
and the input line typed so far is

manual% Is chESC

the shell fills in the remaining characters from the filename chaos on the input line:
manual% Is chaos __

However, with the partial input line
manual% Is D ESC

for which more than one filename matches, the shell fills in only the unambiguous portion contained by all
the matching filenames

manual% Is dsc.
and sounds the terminal bell to indicate that the expansion remains incomplete.

If a partial filename is followed by the end-of-file character (usually typed as “D), the shell lists all
filenames matching "prefix", and then reprompts (for further input) with the partial command line typed in
so far:

manual% Isd "D
dsc.new dsc.old
manual% Isd _

The same system of ESC and EOF characters expands (or lists matches for) partial user names when the
current input word begins with the tilde character (~):

manual% c¢d “ro"D
may produce the expansion
manual% cd “root __
This is useful for specifying the home directory of another user.

The terminal bell signals errors or multiple matches; this can be inhibited by setting the variable nobeep.
Normally, all files in the particular directory are candidates for filename completion. Files with certain
suffixes can be excluded from consideration by setting the variable fignore to the list of those suffixes to be
ignored:

manual% set fignore = (.0 .out)

manual% Is x ESC

results in:
manual% vi xmpl.c__

while ignoring the files xmpl.o and xmpl.out. If, however, the only possible completion includes one of
these suffixes, it is not ignored. fignore does not affect the listing of filenames by “D.

Sun Release 3.2 Last change: 24 July 1986 75

CSH(1) USER COMMANDS CSH(1)

Lexical Structure
The shell splits input lines into words at SPACE and TAB characters, except as noted below. The characters
& | ; < > (and) form separate words; if paired, the pairs form single words. These shell metacharacters
can be made part of other words, and their special meaning can be suppressed by preceding them with a
backslash (\). A NEWLINE preceded by a\ is equivalent to a SPACE.

In addition, a string enclosed in matched pairs of single-quotes (*), double-quotes ("), or backquotes (),
forms a partial word; metacharacters in such a string, including any SPACE or TAB characters, do not form
separate words. Within pairs of backquote () or double-quote (") characters, a NEWLINE preceded by a
backslash (\) gives a true NEWLINE character. Additional functions of each type of quote are described,
below, under Variable Substitution, Command Substitution, and Filename Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that continues to the end of
the input line. Its special meaning is suppressed when preceded by a \ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The first word (that is not part of an I/O redirec-
tion) specifies the command to be executed. A simple command, or a set of simple commands separated by
| or |& characters, forms a pipeline. With |, the standard output of the preceding command is redirected to
the standard input of the command that follows. With | &, both the standard error and the standard output
are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed sequentially. Pipelines that
are separated by && or || form conditional sequences in which the execution of pipelines on the right
depends upon the success or failure, respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses "()" to form a simple command that can be a
component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously, or "in the background” by appending an &;
rather than waiting for the sequence to finish before issuing a prompt, the shell displays the job number
(see Job Control, below) and associated process IDs, and prompts immediately.

History Substitution
History substitution allows you to use words from previous command lines in the command line you are
typing. This simplifies spelling corrections and the repetition of complicated commands or arguments.
Command lines are saved in the history list, the size of which is controlled by the history variable. The
most recent command is retained in any case. A history substitution begins with a ! (although you can
change this with the histchars variable) and may occur anywhere on the command line; history substitu-
tions do not nest. The ! can be escaped with \ to suppress its special meaning,

Input lines containing history substitutions are echoed on the terminal after being expanded, but before any
other substititions take place or the command gets executed.

Event Designators
An event designator is a reference to a command-line entry in the history list.

! Start a history subsititution, except when followed by a SPACE, TAB, NEWLINE, = or (.

" Refer to the previous command. By itself, this substitution repeats the previous com-
mand.

n Refer to command-line n. !—n Refer to the current command-line minus 7.

Istr Refer to the most recent command starting with str.
12str[?] Refer to the most recent command containing str.
¥{...} insulate a history reference from adjacent characters (if necessary).
Word Designators
A : separates the event specification from the word designator. It can be omitted if the word designator
begins with a ~, §, *,— or %.

The entire command line typed so far.
0 The first input word (command).
n The n’th argument.

76 Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

- The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x—y A range of words; —y Abbreviates 0—y.
* All the arguments, or a null value if there is just one word in the event.
x* Abbreviates x—$.
x— Like x* but omitting word $.
Modifiers
After the optional word designator, you can add a sequence of one or more of the following modifiers, each
preceded by a:.
h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form ".xxx ", leaving the basename,

e Remove all but the suffix.

s/l/r[/1 Substitute 7 for .

Remove all leading pathname components, leaving the tail.

Repeat the previous substitution.

Apply the change globally, prefixing the above, for example, ‘g&’.
Print the new command but do not execute it.

Quote the substituted words, escaping further substitutions.

Like q, but break into words at each SPACE, TAB or NEWLINE.

Unless preceded by a g the modification is applied only to the first string that matches /; an error results if
no string matches.

®.0 T g

The left-hand side of substitutions are not regular expressions, but character strings. Any character can be
used as the delimiter in place of /. A backslash quotes the delimiter character. The character &, in the
right hand side, is replaced by the text from the left-hand-side. The & can be quoted with a backslash. A
null / uses the previous string either from a / or from a contextual scan string s from !?s. You can omit the
rightmost delimiter if a NEWLINE immediately follows r; the rightmost ? in a context scan can similarly be
omitted.
Without an event specification, a history reference refers either to the previous command, or to a previous
history reference on the command line (if any).

Quick Substitution
~lar[~] This is equivalent to the history substitution: !:s~l~r[+].

Aliases
The C-Shell maintains a list of aliases that you can create, display, and modify using the alias and unalias
commands. The shell checks the first word in each command to see if it matches the name of an existing
alias. If it does, the command is reprocessed with the alias definition replacing its name; the history substi-
tution mechanism is made available as though that command were the previous input line. This allows his-
tory substitutions, escaped with a backslash in the definition, to be replaced with actual command-line
arguments when the alias is used. If no history substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias. Nested aliases are
expanded before any history substitutions is applied. This is useful in pipelines such as

alias Im “Is -1 \!* | more”
which when called, pipes the output of Is(1V) through more (1).

Execpt for the first word, the name of the alias may not appear in its definition, nor in any alias referred to
by its definition. Such loops are detected, and cause an error message.

T/0 Redirection
The following metacharacters indicate that the subsequent word is the name of a file to which the
command’s standard input, standard output, or standard error is redirected; this word is variable, command,
and filename expanded separately from the rest of the command.

Sun Release 3.2 Last change: 24 July 1986 717

CSH(1) USER COMMANDS CSH(1)

78

< Redirect the standard input.

<<word
Read the standard input, up to a line that is identical with word, and place the resulting lines in a
temporary file. Unless word is escaped or quoted, variable and command substitutions are per-
formed on these lines. Then, invoke the pipeline with the temporary file as it’s standard input.
word is not subjected to variable, filename or command substitution, and each line is compared to
it before any substitutions are performed by the shell.

> > >& >&!
Redirect the standard output to a file. If the file does not exist, it is created. If it does exist, it is
overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files. It also prevents redirec-
tion to terminals and /dev/null, unless one of the ! forms is used. The & forms redirect both stan-
dard output and the the standard error (diagnostic output) to the file.

>> >>& >35! >>&!
Append the standard output. Like >, but places output at the end of the file rather than overwriting
it. If noclobber is set, it is an error for the file not to exist, unless one of the ! forms is used. The
& forms append both the standard error and standard output to the file.

Variable Substitution

After an input line is aliased and parsed, and before each command is executed, variable substitution is per-
formed. I/O redirections are recognized before variable expansion is applied, and are variable-expanded
separately. Strings enclosed in backquotes (), even when they contain variable references, are interpreted
later (see Command Substitution). Otherwise, variable substitution is performed on the command name
and argument list together.

The C-Shell maintains a set of variables, each of which is composed of a name and a value. A variable
name consists of up to 20 letters and digits, and starts with a letter (the underscore is considered a letter).
A variable’s value is a space-separated list of zero or more words. A references to a variable starts with a
$, and is replaced the words of that variable’s value, by selected words from the value, or by information
about the variable, as described below. Braces can be used to insulate the reference from subsequent char-
acters, which might otherwise be interpreted as part of it.

Variable substitution can be suppressed by preceding the $ with a \, except within double-quotes where it
always occurs. Within single-quotes, variable substitution is suppressed. A $ is escaped if followed by a
SPACE, TAB or NEWLINE.

Variables can be created, displayed, or destroyed using the set and unset commands. Some variables are
maintained or used by the shell. For instance, the argv variable contains an image of the shell’s argument
list. Of the variables used by the shell, a number are toggles; the shell does not care what their value is,
only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ builtin). With numeric operations, an
empty value is considered to be zero; the second and subsequent words of multiword values are ignored.
For instance, when the verbose variable is set to any value (including an empty value), command input is
echoed on the terminal.

Command and filename substitution is subsequently applied to the words that result from the variable sub-
stitution, except when suppressed by double-quotes, when noglob is set (suppressing filename substitu-
tion), or when the reference is quoted with the :q modifier. Within double-quotes, a reference is expanded
to form (a portion of) a quoted string; multiword values are expanded to a string with embedded SPACEs.
When the :q modifier is applied to the reference, it is expanded to a list of SPACE-separated words, each of
which is quoted to prevent subsequent command or filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var
${var} These are replaced by words from the value of var, each separated by a SPACE. If var is an

Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

environment variable, its value is returned (but : modifiers and the other forms given below are
not available).

$var [index]

${var[index]}
These select only the indicated words from the value of var. Variable substitution is applied to
index, which may consist of (or result in) a either single number, two numbers separated by a —,
or an asterisk. Words are indexed starting from ‘1’; a * selects all words. If the first number of a
range is omitted (as with ‘$argv[-21’), it defaults to ‘1’. If the last number of a range is omitted
(as with ‘$argv[1-]’), it defaults to $#var (the word count). It is not an error for a range to be
empty if the second argument is omitted (or within range).

S#name
${#tname}
These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is being read. An error occurs if
the name is not known.

$n ${n} Equivalent to $argv[~].
$* Equivalent to $argv[#*].

The modifiers :h, :t, :r, :q and :x can be applied (see History Substitution), as can :gh, :gt and :gr. If
braces ({ }) are used, then the modifiers must appear within the braces. The current implementation allows
only one such modifier per expansion.

The following references may not be modified with : modifiers.

$?var
${?var} Substitutes the string ‘1’ if var is set or ‘0’ if it is not set.

$20 Substitutes ‘1’ if the current input filename is known, or ‘0’ if it is not.
$$ Substitute the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation thereafter. It can be used
to read from the keyboard in a C-Shell script.

Command and Filename Substitutions
Command and filename substitutions are applied selectively to the arguments of builtin commands. Por-
tions of expressions that are not evaluated are not expanded. For non-builtin commands, filename expan-
sion of the command name is done separately from that of the argument list; expansion occurs in a sub-
shell, after I/O redirection is performed.

Command Substitution
A command enclosed by backquotes (" ...") is performed by a subshell. Its standard output is broken into
separate words at each SPACE, TAB and NEWLINE; null words are discarded. This text replaces the
backquoted string on the current command line. Within double-quotes, only NEWLINES force new words;
SPACE and TAB characters are preserved. However, a final NEWLINE is ignored. It is therefore possible
for a command substitution to yield a partial word.

Filename Substitution
Unquoted words containing any of the characters *, ?, [, or {, or that begin with ~, are expanded (also
known as globbing) to an alphabetically sorted list of filenames, as follows:

* Match any (zero or more) characters.
? Match any single character.

[...]1 Match any single character in the enclosed list(s) or range(s). A list is a string of characters. A
range is two characters separated by a minus-sign (=), and includes all the characters in between
in the ASCII collating sequence (see ascii(7)).

Sun Release 3.2 Last change: 24 July 1986 79

CSH(1)

80

USER COMMANDS CSH(1)

{str,str,...}
Expand to each string (or filename-matching pattern) in the comma-separated list. Unlike the
pattern-matching expressions above, the expansion of this construct is not sorted. For instance,
"{b,a}" expands to ‘b’ ‘a’, (not ‘a’ ‘b’). As special cases, the characters { and }, along with the
string { }, are passed undisturbed.

“luser]
Your home directory, as indicated by the value of the variable home, or that of user, as indicated
by the password entry for user.

Only the patterns * ? and [...] imply pattern matching; an error results if no filename matches a pattern
that contains them. The dot character (.), when it is the first character in a filename or pathname com-
ponent, must be matched explicitly. The slash (/) must also be matched explicitly.

Expressions and Operators

A number of C-Shell builtin commands accept expressions, in which the operators are similar to those of C
and have the same precedence. These expressions typically appear in the @, exit, if, set and while com-
mands, and are often used to regulate the flow of control for executing commands. Components of an
expression are separated by white space.

Null or missing values are considered ‘0’. The result of all expressions are strings, which may represent
decimal numbers.

The following C-Shell operators are grouped in order of precedence:

(...) grouping

-~ one’s complement
! logical negation

* /| %

multiplication, division, remainder (These are right associative, which can lead to unexpected
results. Group combinations explicitly with parentheses.)

+ — addition, subtraction (also right associative)

<< >> bitwise shift left, bitwise shift right

< > <= >=
less than, greater than, less than or equal to, greater than or equal to

— e -

equal to, not equal to, filename-substitution pattern match (described below), filename-substitution

pattern mismatch
& bitwise AND
A bitwise XOR (exclusive or)
| bitwise inclusive OR
&& logical AND
|1 logical OR
The operators: ==, !=, =~, and !~ compare their arguments as strings; other operators use numbers. The

oprators =~ and !~ each check whether or not a string to the left matches a filename substitution pattern on
the right. This reduces the need for switch statements when pattern-matching between strings is all that is
required.
Also available are file inquiries:

—r file Returns true, or ‘1’ if the user has read access. Otherwise it returns false, or ‘0’.

—w file True if the user has write access.

—x file True if the user has execute access.
—e file True if file exists.
—o file True if the user owns file.

—z file True if file is of zero length (empty).
—f file True if file is a plain file.
—d file True if file is a directory.

Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

If file does not exist or is inaccessible, then all inquiries return false.
An inquiry as to the success of a command is also available:

{cmd} If cmd runs successfully, the espression evaluates to true, ‘1°. Otherwise it evaluates
to false ‘0’. (Note that, conversely, cmd itself typically returns ‘0’ when it runs suc-
cessfully, or some other value if it encounters a problem. If you want to get at the
status directly, use the value of the status variable rather than this expression).

Control Flow
The shell contains a number of commands to regulate the flow of control in scripts, and within limits, from
the terminal. These commands operate by forcing the shell either to reread input (to loop), or to skip input
under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if.. .then and else builtin must appear as the first word on its
own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The shell performs secks
within the internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows,
backward goto commands will succeed on nonseekable inputs.)

Command Execution
If the command is a C-Shell builtin, the shell executes it directly. Otherwise, the shell searches for a file by
that name with execute access. If the command-name contains a /, the shell takes it as a pathname, and
searches for it. If the command-name does not contain a /, the shell attempts to resolve it to a pathname,
searching each directory in the path variable for the command. To speed the search, the shell uses its hash
table (see the rehash builtin) to eliminate directories that have no applicable files. This hashing can be dis-
abled with the —c or —t, options, or the unhash builtin.

As a special case, if there is no / in the in the name of the script and there is an alias for the word shell, the
expansion of the shell alias is prepended (without modification), to the command line. The system attempts
to execute the first word of this special (late-occurring) alias, which should be a full pathname. Remaining
words of the alias’s definition, along with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new process and passes it,
along with its arguments to the kernel (using the execve (2) system call). The kernel then attempts to over-
lay the new process with the desired program. If the file is an executable binary (in a.out(5), the kernel
succeeds, and begins executing the new process. If the file is a text file, and the first line begins with #!, the
next word is taken to be the pathname of a shell (or command) to interpret that script. Subsequent words
on the first line are taken as options for that shell. The kernel invokes (overlays) the indicated shell, using
the name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file (the execve (2) call fails); the C-
Shell then attempts to execute the file by spawning a new shell, as follows:

» If the first character of the file is a #, a C-Shell is invoked.
s Otherwise, a standard (Bourne) shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals generated from the key-
board, including hangups. Other signals have the values that the C-Shell inherited from its environment.
The shell’s handling of interrupt and terminate signals within scripts can be controlled by the onintr buil-
tin. Login shells catch the TERM signal; otherwise this signal is passed on to child processes. In no case
are interrupts allowed when a login shell is reading the .logout file.

Job Control
The shell associates a numbered job with each command sequence, to keep track of those commands that
are running in the background or have been stopped with TSTP signals (typically "Z or "Y). When a com-
mand, or command sequence (semicolon separated list), is started in the background using the & metachar-
acter, the shell displays a line with the job number in brackets, and a list of associated process numbers:

Sun Release 3.2 Last change: 24 July 1986 81

CSH(1) USER COMMANDS CSH(1)

82

[1] 1234

To see the current list of jobs, use the jobs builtin command. The job most recently stopped (or put into the
background if none are stopped) is referred to as the current job, and is indicated with a +. The previous
job is indicated with a —; when the current job is terminated or moved to the foreground, this job takes its
place (becomes the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop and % builtins,
A reference to a job begins with a %. By itself, the percent-sign refers to the current job.

% %+ %%

The current job.

%o— The previous job.

% j Refer to job j as in: kill -9 %j. j can be a job number, or a string that uniquely specifies the
command-line by which it was started; fg %vi might bring a stopped vi job to the foreground, for
instance.

%0 ?string
Specify the job for which the command-line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Background jobs can
normally produce output, but this can be suppressed using the stty tostop command.

Status Reporting

While running interactively, the shell tracks the status of each job and reports whenever a finishes or
becomes blocked. It normally displays a message to this effect as it issues a prompt, so as to avoid disturb-
ing the appearance of your input. When set, the notify variable indicates that the shell is to report status
changes immediately. By default, the notify command marks the current process; after starting a back-
ground job, type notify to mark it.

Builtin Commands

Builtin commands are executed within the C-Shell. If a builtin command occurs as any component of a
pipeline except the last, it is executed in a subshell.

: Null command. This command is interpreted, but performs no action.

alias [name[def]]
Assign def to the alias name. def is a list of words that may contain escaped history-
substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the alias
name is displayed along with its current definition. If both name and def are omitted, all

aliases are displayed.
bg [%job] ...
Run the current or specified jobs in the background.
break Resume execution after the end of the nearest enclosing foreach or while loop. The remaining

commands on the current line are executed. This allows multilevel breaks to be written as a
list of break commands, all on one line.

breaksw Break from a switch, resuming after the endsw.
case label: A label in a switch statement.

cd [dir]

chdir [dir] Change the shell’s working directory to directory dir. If no argument is given, change to the
home directory of the user. If dir is a relative pathname not found in the current directory,
check for it in those directories listed in the cdpath variable. If dir is the name of a shell vari-
able whose value starts with a/, change to the directory named by that value.

continue Continue execution of the nearest enclosing while or foreach.

default: Labels the default case in a switch statement. The default should come after all case 1abels.
Any remaining commands on the command line are first executed.

Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

dirs [-1]
Print the directory stack, most recent to the left; the first directory shown is the current direc-
tory. With the -1 argument, produce an unabbreviated printout; use of the ~ notation is
suppressed.

echo [—n] list
The words in list are written to the shell’s standard output, separated by spaces. The output is
terminated with a NEWLINE unless the —n option is used.

eval arg ... Reads the arguments as input to the shell, and executes the resulting command(s). This is usu-
ally used to execute commands generated as the result of command or variable substitution,
since parsing occurs before these substitutions. See tset(1) for an example of how to use eval.

exec command
Execute command in place of the current shell, which terminates.

exit [(expr)]
The shell exits, either with the value of the status variable, or with the value of the specified
by the expression expr.

fg %[job] Bring the current or specified job into the foreground.
foreach var (wordlist)

end The variable var is successively set to each member of wordlist. The sequence of commands
between this command and the matching end is executed for each new value of var. (Both
foreach and end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the builtin
command break to terminate it prematurely. When this command is read from the terminal,
the loop is read up once prompting with ‘?’ before any statements in the loop are executed.

glob wordlist
Perform filename expansion on wordlist. Like echo, but no \ escapes are recognized. Words
are delimited by null characters in the output.

goto label The specified label is filename and command expanded to yield a label. The shell rewinds its
input as much as possible and searches for a line of the form label: possibly preceded by
SPACE or TAB characters. Execution continues after the indicated line.

hashstat Print a statistics line indicating how effective the internal hash table has been at locating com-
mands (and avoiding execs). An exec is attempted for each component of the path where the
hash function indicates a possible hit, and in each component that does not begin with a */°.

history [-hr] [~]
Display the history list; if n is given, display only the n most recent events.
-T Reverse the order of printout to be most recent first rather than oldest first.
—h display the history list without leading numbers. This is used to produce files suitable

for sourcing using the —h option to source.

if (expr) command
If the specified expression evaluates to true, the single command with arguments is executed.
Variable substitution on command happens early, at the same time it does for the rest of the if
command. command must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Note that I/O redirection occurs even if expr is false, when com-
mand is not executed (this is a bug).

if (expr) then

else if (expr2) then

Sun Release 3.2 Last change: 24 July 1986 83

CSH(1)

84

else

endif

jobs [-1]

USER COMMANDS CSH(1)

If expr is true, commands up to the first else are executed. Otherwise, if expr2 is true, the
commands between the else if and the second else are executed. Otherwise, commands
between the else and the endif are executed. Any number of else if pairs are allowed, but only
one else. Only one endif is needed, but it is required. The words else and endif must be the
first nonwhite characters on a line. The if must appear alone on its input line or after an else.)

List the active jobs under job control.

-1 List process ids, in addition to the normal information.

kill [-sig] [pid] [%job] ...

kill -1

Send the TERM (terminate) signal, by default, or the signal specified, to the specified process
id, the job indicated, or the current job. Signals are either given by number or by name. There
is no default. Typing ‘kill’ does not send a signal to the current job. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as
well.

-1 List the signal names that can be sent.

limit [—h] [resource [max-use]]

login

logout

Limit the consumption by the current process or any process it spawns, each not to exceed
max-use on the specified resource. If max-use is omitted, print the current limit; if resource is
omitted, display all limits.

-h Use hard limits instead of the current limits. Hard limits impose a ceiling on the
values of the current limits. Only the superuser may raise the hard limits.

resource is one of:

cputime Maximum CPU seconds per process.

filesize Largest single file allowed.

datasize Maximum data size (including stack) for the process.
stacksize Maximum stack size for the process.

coredumpsize = Maximum size of a core dump (file).

max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).
nk n kilobytes. This is the default for all but cputime.
nm n megabytes or minutes (for cputime).

mm:ss Minutes and seconds (for cputime).
Terminate a login shell and invoke login(1). The .logout file is not processed.

Terminate a login shell.

nice [+n | —n] [command]

Increment the nice value for the shell or for command by n. The higher the nice value, the
lower the priority of a process, and the slower it runs. When given, command is always run in
a subshell, and the restrictions placed on commands in simple if commands apply. If com-
mand is omitted, nice increments the value for the current shell. If no increment is specified,
nice sets the nice value to 4. The range of nice values is from —20 to 20. Values of » outside
this range set the value to the lower, or to the higher boundary, respectively.

+n Increment the nice value by n.
-n Decrement by n. This argument can be used only by the super-user.

nohup [command]

Run command with hangups ignored. With no arguments, ignore hangups throughout the
remainder of a script. When given, command is always run in a subshell, and the restrictions
placed on commands in simple if commands apply. All processes detached with & are

Last change: 24 July 1986 Sun Release 3.2

CSH(1)

USER COMMANDS CSH(1)

effectively nohup’ed.

notify [%job] ...

Notify the user asynchronously when the status of the current, or of specified jobs, changes.

onintr [— | label)

popd [+~]

Control the action of the shell on interrupts. With no arguments, onintr restores the default
action of the shell on interrupts. (The shell terminates shell scripts and returns to the terminal
command input level). With the — argument, the shell ignores all interrupts. With a label
argument, the shell executes a goto label when an interrupt is received or a child process ter-
minates because it was interrupted.

Pops the directory stack, and cds to the new top directory. The elements of the directory stack
are numbered from O starting at the top.

+n Discard the »’th entry in the stack.

pushd [+ | dir]

rehash

Push a directory onto the directory stack. With no arguments, exchange the top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.
dir push the current working directory onto the stack and change to dir.

Recompute the internal hash table of the contents of directories listed in the path variable to
account for new commands added.

repeat count command

Repeat command count times command is subject to the same restrictions as with the one-line
if statement.

set [var [=value 1]

set var[n] =

setenv [var [word]]

word

With no arguments, set displays the values of all shell variables. Multiword values are
displayed as a parenthesized list. With the var argument alone, set assigns an empty (null)
value to the variable var. With arguments of the form var = value set assigns value to var,
where value is one of:

word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set var[n] =
word replaces the n’th word in a multiword value with word.

A"

With no arguments, setenv displays all environment variables. With the var argument sets the
environment variable var to have an empty (null) value. (By convention, environment vari-
ables are normally given upper-case names.) With both var and word arguments setenv sets
the environment variable name to the value word, which must be either a single word or a
quoted string. The most commonly used environment variables, USER, TERM and PATH, are
automatically imported to and exported from the csh variables user, term, and path; there is no
need to use setenv for these. In addition, the shell sets the PWD environment variable from the
csh variable cwd whenever the latter changes.

shift [variable]

The components of argv, or variable, if supplied, are shifted to the left, discarding the first
component. It is an error for the variable not to be set, or to have a null value.

source [-h] name

Sun Release 3.2

Reads commands from name. source commands may be nested, but if they are nested too dee-
ply the shell may run out of file descriptors. An error in a sourced file at any level terminates
all nested source commands.

Last change: 24 July 1986 85

CSH(1) USER COMMANDS CSH(1)

86

-h Place commands from the the file name on the history list without executing them.

stop [%job] ...
Stop the current or specified background job.

suspend Stops the shell in its tracks, much as if it had been sent a stop signal with "Z. This is most
often used to stop shells started by su.

switch (string)
case label:

breaksw

default:

breaksw

endsw Each label is successively matched, against the specified string, which is first command and
filename expanded. The file metacharacters *, ? and [...] may be used in the case labels,
which are variable expanded. If none of the labels match before a ‘default’ label is found, exe-
cution begins after the default label. Each case statement and the default statement must
appear at the beginning of a line. The command breaksw continues execution after the

endsw. Otherwise control falls through subsequent case and default statements as with C. If
no label matches and there is no default, execution continues after the endsw.

time [command]
With no argument, print a summary of time used by this C-Shell and its children. With an
optional command, execute command and print a summary of the time it uses.

umask [value]
Display the file creation mask. With value set the file creation mask. value is given in octal,
and is XORed with the permissions of 666 for files and 777 for directories to arrive at the per-
missions for new files. Common values include 002, giving complete access to the group, and
read (and directory search) access to others, or 022, giving read (and directory search) but not
write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed by
unalias *.

unhash Disable the internal hash table.

unlimit [-h] [resource]
Remove a limitation on resource. If no resource is specified, then all resource limitations are
removed. See the description of the limit command for the list of resource names.

-h Remove corresponding hard limits. Only the super-user may do this.

unset pattern
Remove variables whose names match (filename substitution) pattern. All variables are
removed by unset *; this has noticeably distasteful side-effects.

unsetenv variable
Removes variable from the environment. Pattern matching, as with unset is not performed.

wait Wait for background jobs to finish (or for an interrupt) before prompting.
while (expr)
end While expr is true (evaluates to non-zero), repeat commands between the while and the match-

ing end statement. break and continue may be used to terminate or continue the loop prema-
turely. The while and end must appear alone on their input lines. If the shell’s input is a

Last change: 24 July 1986 Sun Release 3.2

CSH(1)

%[job] [&]

USER COMMANDS CSH(1)
terminal, it prompts for commands with a question-mark until the end command is entered and
then performs the commands in the loop.

Bring the current or indicated job to the foreground. With the ampersand, continue running
Jjob in the background.

@ [var =expr]
@ [var[n] =expr

With no arguments, display the values for all shell variables. With arguments, the variable
var, or the n’th word in the value of var, to the value that expr evaluates to. (If [#] is supplied,
both var and its » ’th component must already exist.)

If the expression contains the characters >, <, & or |, then at least this part of expr must be
placed within parentheses.

The operators *=, +=, etc., are available as in C. The space separating the name from the
assignment operator is optional. Spaces are, however, mandatory in separating components of
expr that would otherwise be single words.

Special postfix operators, ++ and —— increment or decrement name, respectively.

Environment Variables and Predefined Shell Variables

Unlike the standard shell, the C-Shell maintains a distinction between environment variables, which are
automatically exported to processes it invokes, and shell variables, which aren’t. Both types of variables
are treated similarly under variable substitution. The shell sets the variables argv, cwd, home, path,
prompt, shell, and status upon initialization. The shell copies the environment variable USER into the shell
variable user, TERM into term, and HOME into home, and copies each back into the respective environ-
ment variable whenever the shell variables are reset. PATH and path are similarly handled. You need only
set path once in the .cshrc or .login file. The environment variable PWD is set from cwd whenever the
latter changes. The following shell variables have predefined meanings:

argv
cdpath

cwd
echo
fignore

filec

hardpaths
histchars

history

home

ignoreeof

mail

Sun Release 3.2

Argument list. Contains the list of command line arguments supplied to the current invocation
of the shell. This variable determines the value of the positional parameters $1, $2, and so on.

Contains a list of directories to be searched by the cd, chdir, and popd commands, if the direc-
tory argument each accepts is not a subdirectory of the current directory.

The full pathname of the current directory.
Echo commands (after substitutions), just before execution.

A list of filename suffixes to ignore when attempting filename completion. Typically the sin-
gle word “.0’.

Enable filename completion, in which case the EOT character ("D) and the ESC character have

" special significance when typed in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preceding string.
ESC Replace the preceding string with the longest unambiguous extension.

If set, pathnames in the directory stack are resolved to contain no symbolic-link components.

A two-character string. The first character replaces ! as the history-substitution character. The
second replaces the carat (~) for quick substitutions.

The number of lines saved in the history list. A very large number may use up all of the C-
Shell’s memory. If not set, the C-Shell saves only the most recent command.

The user’s home directory. The filename expansion of ~ refers to the value of this variable.

If set, the shell ignores end-of-file from terminals. This protects against accidentally killing a
C-Shell by typing a “D.

A list of files where the C-Shell checks for mail. If the first word of the value is a number, it

Last change: 24 July 1986 87

CSH(1) USER COMMANDS CSH(1)

specifies a mail checking interval in seconds (default 5 minutes).

nobeep Suppresses the bell during command completion when you ask the C-Shell to extend an ambi-
guous filename.

noclobber Restricts output redirection so that existing files are not destroyed by accident. > redirections
can only be made to new files. >> redirections can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts once filenames (if any) are
obtained and no further expansion is desired.

nonomatch
Returns the filename substitution pattern, rather than an error, if the pattern is not matched.
Malformed patterns still result in errors.

notify If set, the shell notifies you immediately as jobs are completed, rather than waiting until just
before issuing a prompt.
path The list of directories in which to search for commands. path is initialized from the environ-

ment variable PATH, which the C-Shell updates whenever path changes. A null word
specifies the current directory. The default is typically: (. /usr/ucb /bin /usr/bin). If path
becomes unset only full pathnames will execute. An interactive C-Shell will normally hash the
contents of the directories listed after reading .cshrc, and whenever path is reset. If new com-
mands are added, use the rehash command to update the table.

prompt The string an interactive C-Shell prompts with. Noninteractive shells leave the prompt vari-
able unset. Aliases and other commands in the .cshrc file that are only useful interactively, can
be placed after the following test: if ($?prompt == 0) exit, to reduce startup time for nonin-
teractive shells. A ! in the prompt string is replaced by the current event number. The default
prompt is hostname % for mere mortals, or hostname# for the super-user.

savehist The number of lines from the history list that are saved in ~/.history when the user logs out.
Large values for savehist slow down the C-Shell during startup.

shell The file in which the C-Shell resides. This is used in forking shells to interpret files that have
execute bits set, but that are not executable by the system.

status The status returned by the most recent command. If that command terminated abnormally,
0200 is added to the status. Builtin commands that fail return exit status ‘1’, all other builtin
commands set status to ‘0’.

time Controls automatic timing of commands. Can be supplied with one or two values. The firstis
the reporting threshold in CPU seconds. The second is a string of tags and text indicating
which resources to report on. A tag is a percent sign (%) followed by a single upper-case
letter (unrecognized tags print as text):
%D Average amount of unshared data space used in Kilobytes.
%E Elapsed (wallclock) time for the command.
%F Page faults.
%1 Number of block input operations.
%K Average amount of unshared stack space used in Kilobytes.
%M Maximum real memory used during execution of the process.
%0 Number of block output operations.
%P Total CPU time — U (user) plus S (system) — as a percentage of E
(elapsed) time.
%S Number of seconds of CPU time consumed by the kernel on behalf of the
user’s process.
%U Number of seconds of CPU time devoted to the user’s process.
%W Number of swaps.
%X Average amount of shared memory used in Kilobytes.

The default summary display outputs from the %U, %S, %E, %P, %X, %D, %1, %0, %F

88 Last change: 24 July 1986 Sun Release 3.2

CSH(1) USER COMMANDS CSH(1)

and %W tags, in that order.
verbose Display each command after history substitution takes place.

DIAGNOSTICS
You have stopped jobs.
You attempted to exit the C-Shell with stopped jobs under job control. An immediate second
attempt to exit will succeed, terminating the stopped jobs.
FILES
“l.cshre Read at beginning of execution by each shell.
“1.login Read by login shells after ‘.cshrc’ at login.
“I.logout Read by login shells at logout.
" /.history Saved history for use at next login.
Ibin/sh Standard shell, for shell scripts not starting with a “#’.
tmp/sh* Temporary file for ‘<<’.
letclpasswd Source of home directories for ““ name’ .
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 10240 characters. The
number of arguments to a command which involves filename expansion is limited to 1/6’th the number of
characters allowed in an argument list. Command substitutions may substitute no more characters than are
allowed in an argument list. To detect looping, the shell restricts the number of alias substitutions on a sin-
gle line to 20.

SEE ALSO

BUGS

sh(1), printenv(1), access(2), execve(2), fork(2), pipe(2), tty(4), environ(5V)
Getting Started With UNIX: Beginner’s Guide
Doing More With UNIX: Beginner’s Guide

When a command is restarted from a stop, the shell prints the directory it started in if this is different from
the current directory; this can be misleading (that is, wrong) as the job may have changed directories inter-
nally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form a ; b ; ¢ are also not
handled gracefully when stopping is attempted. If you suspend b, the shell never executes c. This is espe-
cially noticeable if the expansion results from an alias. It can be avoided by placing the sequence in
parentheses to force it into a subshell.

Control over terminal output after processes are started is primitive; use the Sun Window system if you
need better output control.

Shell procedures, as with the standard shell, should be provided.
Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as builtin commands. This would allow
control commands to be placed anywhere, to be combined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. There are two prob-
lems with : modifier usage on variable substitutions: not all of the modifiers are available, and only one
modifier per substitution is allowed.

Quoting conventions are contradictory and confusing.
Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

set path should remove duplicate pathnames from the pathname list. These often occur because a shell
script or a .cshrc file does something like set path=(/usr/local /usr/hosts $path) to ensure that the named
directories are in the pathname list.

Sun Release 3.2 Last change: 24 July 1986 89

CSH(1) USER COMMANDS CSH(1)

The only way to direct the standard output and standard error separately is by invoking a subshell, as fol-
lows:

tutorial% (command > outfile) >& errorfile

Although robust enough for general use, adventures into the esoteric periphery of the C-Shell may reveal
unexpected quirks.

90 Last change: 24 July 1986 Sun Release 3.2

CSPLIT(1) USER COMMANDS CSPLIT(1)

NAME

csplit — context split
SYNOPSIS

csplit [fprefix]1[-k][—s]filenameargl [... argn]
DESCRIPTION

csplit reads the file whose name is filename and separates it into n+1 sections, defined by the arguments
argl through argn. If the filename argument is a —, the standard input is used. By default the sections are
placed in files named xx00 through xxn. n may not be greater than 99. These sections receive the follow-
ing portions of the file:

xx00 From the start of filename up to (but not including) the line indicated by argl (see OPTIONS
below for an explanation of these arguments.)
xx01: From the line indicated by arg! up to the line indicated by arg2.

xxn: From the line referenced by argn to the end of file.

csplit prints the character counts for each file created, and removes any files it creates if an error occurs.

OPTIONS
—f prefix name the created files prefix00 through prefixn.

-k suppress removal of created files when an error occurs.
~S suppress printing of character counts.
The arguments argl through argn can be a combination of the following selection operators:

frexp/ A file is to be created for the section from the current line up to (but not including) the line con-
taining the regular expression rexp. The current line then becomes the line containing rexp.
This argument may be followed by an optional + or — some number of lines (e.g., /Page/—5).

%rexp% This argument is the same as /rexp/, except that no file is created for the selected section.

lineno A file is to be created from the current line up to (but not including) lineno. The current line
becomes lineno.

{num} Repeat argument. This argument may follow any of the above arguments. If it follows a rexp
type argument, that argument is applied num more times. If it follows lineno, the file will be
split every lineno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful to the shell in the
appropriate quotes. Regular expressions may not contain embedded new-lines.

EXAMPLES
This example splits the file at every 100 lines, up to 10,000 lines.

csplit -k file 100 {99}

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the beginning
of the line, this example will create a file containing each separate C routine (up to 21) in prog.c.

csplit —k prog.c ‘%main(%” ‘/*}/+1’ {20}

SEE ALSO
ed(1), sh(1), regexp(3)

DIAGNOSTICS
Self-explanatory except for:

arg — out of range

Sun Release 3.2 Last change: 28 March 1986 91

CSPLIT(1) USER COMMANDS CSPLIT(1)

which means that the given argument did not refer to a line between the current position and the end of the
file.

92 Last change: 28 March 1986 Sun Release 3.2

CTAGS (1) USER COMMANDS CTAGS (1)

NAME

ctags — create a tags file

SYNOPSIS

ctags [—aBFtuvwx] [—ftagsfile] file . ..

DESCRIPTION

ctags makes a tags file for ex(1) from the specified C, Pascal, FORTRAN, YACC, and LEX sources. A tags
file gives the locations of specified objects (in this case functions and typedefs) in a group of files. Each
line of the tags file contains the object name, the file in which it is defined, and an address specification for
the object definition. Functions are searched with a pattern, typedefs with a line number. Specifiers are
given in separate fields on the line, separated by blanks or tabs. Using the tags file, ex can quickly find
these objects definitions.

Normally ctags places the tag descriptions in a file called tags; this may be overridden with the —f option.

Files with names ending in .c or .h are assumed to be C source files and are searched for C routine and
macro definitions. Files with names ending in .y are assumed to be YACC source files. Files with names
ending in .1 are assumed to be LEX files. Others are first examined to see if they contain any Pascal or FOR-
TRAN routine definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C programs. The tag formed is created by prepending M to the name of
the file, with a trailing .c removed, if any, and leading pathname components also removed. This makes use
of ctags practical in directories with more than one program.

OPTIONS
-a append output to an existing tags file.
-B use backward searching patterns (?...7).
-F use forward searching patterns (/.../) (default).
- produce a list of object names, the line number and file name on which each is defined, as well as

the text of that line and prints this on the standard output. This is a simple index which can be
printed out as an off-line readable function index.

-t create tags for typedefs.

-V produce on the standard output an index of the form expected by vgrind(1). This listing contains
the function name, file name, and page number (assuming 64 line pages). Since the output will be
sorted into lexicographic order, it may be desired to run the output through sort —f. Sample use:

ctags —v files | sort —f > index
vgrind —x index

-w suppress warning diagnostics.

-u update the specified files in tags, that is, all references to them are deleted, and the new values are
appended to the file. Beware: this option is implemented in a way which is rather slow; it is usu-
ally faster to simply rebuild the tags file.

FILES

tags output tags file
SEE ALSO

ex(1), vgrind(1), vi(1)
BUGS

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a very sim-
pleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures in dif-
ferent blocks with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.

Sun Release 3.2 Last change: 17 July 1986 93

CTAGS (1) USER COMMANDS CTAGS(1)

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of —tx
shows only the last line of typedefs.

94 Last change: 17 July 1986 Sun Release 3.2

CTRACE(1) USER COMMANDS CTRACE(1)

NAME

ctrace — C program execution trace

SYNOPSIS

ctrace [—f functions] [—v functions [o] [—=x]1[—ul[—-e]l[-1n]1[-s][-tn][-P]1[-b]1[—-p’s]
[—rfllfile]

DESCRIPTION

ctrace allows you to follow the execution of a C program, statement by statement. The effect is similar to
executing a shell procedure with the —x option. ctrace reads the C program in file (or from standard input
if you do not specify file), inserts statements to print the text of each executable statement and the values of
all variables referenced or modified, and writes the modified program to the standard output. You must put
the output of ctrace into a temporary file because the cc(1V) command does not allow the use of a pipe.
You then compile and execute this file.

As each statement in the program executes it will be listed at the terminal, followed by the name and value
of any variables referenced or modified in the statement, followed by any output from the statement.
Loops in the trace output are detected and tracing is stopped until the loop is exited or a different sequence
of statements within the loop is executed.

A warning message is printed every 1000 times through the loop to help you detect infinite loops. The
trace output goes to the standard output so you can put it into a file for examination with an editor or the
bfs(1) or tail(1) commands.

OPTIONS

The only options you will commonly use are:
—f functions Trace only these functions.
—v functions Trace all but these functions.

You may want to add to the default formats for printing variables. long and pointer variables are always
printed as signed integers. Pointers to character arrays are also printed as strings if appropriate. char,
short, and int variables are also printed as signed integers and, if appropriate, as characters. double vari-
ables are printed as floating point numbers in scientific notation. You can request that variables be printed
in additional formats, if appropriate, with these options:

-0 Octal.

—x Hexadecimal.

-u Unsigned.

—e Floating point.

These options are used only in special circumstances:

~1n Check n consecutively executed statements for looping trace output, instead of the default
of 20. Use 0 to get all the trace output from loops.

~§ Suppress redundant trace output from simple assignment statements and string copy func-
tion calls. This option can hide a bug caused by use of the = operator in place of the ==
operator.

—tn Trace n variables per statement instead of the default of 10 (the maximum number is 20).
The DIAGNOSTICS section explains when to use this option.

-P Run the C preprocessor on the input before tracing it. You can also use the —D, I, and -U
cc (1V) options.

These options are used to tailor the run-time trace package when the traced program will run in a non-UNIX
system environment:

-b Use only basic functions in the trace code, that is, those in ctype(3), printf(3S), and
string(3). These are often available even in cross-compilers for microprocessors. In partic-
ular, this option is needed when the traced program runs under an operating system that
does not have signal (3), flush(3S), longjmp(3), or setjmp(3).

—p’s Change the trace print function from the default of *printf(. For example, ’fprintf(stderr,’

Sun Release 3.2 Last change: 11 April 1986 95

CTRACE(1) USER COMMANDS CTRACE(1)

would send the trace to the standard error output.
-rf Use file f in place of the runtime.c trace function package. This lets you change the entire
print function, instead of just the name and leading arguments (see the —p option).

EXAMPLE
If the file lc.c contains this C program:
1 #include <stdio.h>

2 main() /* count lines in input */
3{
4 intc, nl;
5
6 nl=0;
7 while ((¢ = getchar()) != EOF)
8 if (c = "\n%)
9 ++nl;
10 printf("%d\n", nl);
11}
and you enter these commands and test data:
ccle.c
a.out
1
CTRL-D,

the program will be compiled and executed. The output of the program will be the number 2, which is not
correct because there is only one line in the test data. The error in this program is common, but subtle. If
you invoke ctrace with these commands:
ctrace Ic.c >temp.c
cc temp.c
a.out
the output will be:
2 main()
6 nl =0;
/¥ nl==04%
7 while ((c = getchar()) != EOF)
The program is now waiting for input. If you enter the same test data as before, the output will be:
J¥*c==49 0r’1’ */

8 if (c="\n")
/*¢c==100r"\n’ */
9 ++nl;
/*nl==1%/

7 while ((c = getchar()) != EOF)
/* c==100r’\n’ */

8 if c="\n")
/¥c==100r "\n’ */
9 ++nl;
/¥nl==2 %/
/* repeating */

If you now enter an end of file character (cntl-d) the final output will be:
/* repeated <1 time */
7 while ((c = getchar()) != EOF)

J¥c==-1%
10 printf("%d\n", nl);
/#nl==2 %2
/* return */

96 Last change: 11 April 1986 Sun Release 3.2

CTRACE(1) USER COMMANDS CTRACE(1)

Program output is printed at the end of the trace line for the nl variable. Also note the return comment

added by ctrace at the end of the trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable c is assigned the value ’1’ in line 7, but in line 8 it has the value *\n’.
Once your attention is drawn to this if statement, you will probably realize that you used the assignment
operator = in place of the equal operator ==. You can easily miss this error during code reading.

USAGE
Execution-Time Trace Control
The default operation for ctrace is to trace the entire program file, unless you use the —f or —v options to
trace specific functions. This does not give you statement by statement control of the tracing, nor does it let
you turn the tracing off and on when executing the traced program,

You can do both of these by adding ctroff() and ctron() function calls to your program to turn the tracing
off and on, respectively, at execution time. Thus, you can code arbitrarily complex criteria for trace con-
trol with if statements, and you can even conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (c=="0 && i> 1000)
ctron();
ffendif

You can also call these functions from dbx(1) if you compile with the —g option. For example, to trace all
but lines 7 to 10 in the primary source file, enter:

dbx a.out

when at 7 { call ctroff(); cont; }
when at 11 { call ctron(); cont; }
run

You can also turn the trace off and on by setting the static variable tr_ct_to O and 1, respectively. This is
useful if you are using a debugger that cannot call these functions directly, such as adb(1).

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1V), since the traced code often gets

some cc warning messages. You can get cc error messages in some rare cases, all of which can be
avoided.

ctrace Diagnostics
warning: some variables are not traced in this statemert
Only 10 variables are traced in a statement to prevent the C compiler "out of tree space; simplify
expression” error. Use the —t option to increase this number.

warning: statement too long to trace

This statement is over 400 characters long. Make sure that you are using tabs to indent your code,
not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in the middle of a C statement, or
by a semicolon at the end of a #define preprocessor statement.

'if ... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try —P option
Use the —P option to preprocess the ctrace input, along with any appropriate —D, -1, and U
preprocessor options. If you still get the error message, check the WARNINGS section below.

Sun Release 3.2 Last change: 11 April 1986 97

CTRACE(1) USER COMMANDS CTRACE(1)

Cc Diagnostics

warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.
compiler takes size of function
See the ctrace "possible syntax error" message above.
yacc stack overflow
See the ctrace "if ... else if” sequence too long” message above.
out of tree space; simplify expression
Use the —t option to reduce the number of traced variables per statement from the default of 10.
Ignore the "ctrace: too many variables to trace” warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(3), or remove it and #include <signal.h>.

Warnings

You will get a ctrace syntax error if you omit the semicolon at the end of the last element declaration in a
structure or union, just before the right brace (}). This is optional in some C compilers.

Defining a function with the same name as a system function may cause a syntax error if the number of
arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are #defined constants.
Declaring any of these to be variables, e.g. "int EOF;", will cause a syntax error.

BUGS
ctrace does not know about the components of aggregates like structures, unions, and arrays. It cannot
choose a format to print all the components of an aggregate when an assignment is made to the entire
aggregate. ctrace may choose to print the address of an aggregate or use the wrong format (e.g., %e for a
structure with two integer members) when printing the value of an aggregate.
Pointer values are always treated as pointers to character strings.
The loop trace output elimination is done separately for each file of a multi-file program. This can result in
functions called from a loop still being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

FILES
runtime.c run-time trace package

SEE ALSO
signal(3), ctype(3), fllush(3S), longjmp(3), printf(3S), setjmp(3), string(3)

98 Last change: 11 April 1986 Sun Release 3.2

CUT(1)

NAME

USER COMMANDS CUT (1)

cut — remove selected fields from each line of a file

SYNOPSIS

cut —clist [filename . ..}
cut —flist[—dc]1[—s][filename...]

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of a file; in data base parlance, it imple-
ments the projection of a relation. The fields as specified by list can be of fixed length, i.e., character posi-
tions as on a punched card, or of variable length can vary from line to line and be marked with a field del-
imiter character like tab (—f option). Cut can be used as a filter; if no files are given, the standard input is

used.
OPTIONS
—clist By character position. list is a comma-separated list of integer field numbers (in increasing order),
with an optional — to indicate ranges:
14,7 characters 1,4 and 7
1-3,8 characters 1 through 3, and 8
—5,10 characters (1) through S, and 10
3- characters 3 through (last)
—flist By field position. Instead of character positions, list specifies fields that are separated a delimiter
(normally a TAB):
14,7 fields1,4 and 7
Lines with no field delimiters are normally passed through intact (to allow for subheadings).
—dc Set the field delimiter to c¢. The default is a TAB. SPACE, or a character with special meaning to
the shell must be quoted.
—-s Suppress lines with no delimiter characters.
EXAMPLES
cut —d: —£f1,5 /etc/passwd mapping of user IDs to names
name=who am i | cut —f1 —d"™ " to set name to the current login name.
DIAGNOSTICS
line too long A line can have no more than 1023 characters or fields.

bad list for c | f option Missing —¢ or —f option or incorrectly specified list. No error occurs if a line

has fewer fields than the list calls for.

no fields The list is empty.
SEE ALSO
grep(1V), paste(1).
Sun Release 3.2 Last change: 28 March 1986 99

CXREF(1) USER COMMANDS CXREF(1)

NAME
cxref — generate C program cross-reference

SYNOPSIS
cxref [—¢] [—wlnum]} 1[—ofile] [t] files

DESCRIPTION .
cxref analyzes a collection of C files and attempts to build a cross-reference table. cxref utilizes a special
option of cpp to include #define’d information in its symbol table. It produces a listing on standard output
of all symbols (auto, static, and global) in each file separately, or with the —c option, in combination. Each
symbol contains an asterisk (*) before the declaring reference.

SYSTEM V DESCRIPTION
The System V version of cxref, run as /usr/5bin/cxref, makes the C preprocessor search for include files in
fusr/Sinclude before searching for them in /usr/include.

OPTIONS
In addition to the -D, -I and -U options (which are identical to their interpretation by
cc(1V)),thefollowingoptions are cxref:
—c Print a combined cross-reference of all input files.

—wlnumy}
Width option which formats output no wider than num (decimal) columns. This option will
default to 80 if num is not specified or is less than 51.

—ofile Direct output to named file.
-s Operate silently; does not print input file names.
—t Format listing for 80-column width.

SEE ALSO
cc(1V)
DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot compile these files, anyway.

BUGS
cxref considers a formal argument in a #define macro definition to be a declaration of that symbol. For
example, a program that #includes ctype.h, will contain many declarations of the variable c.

100 Last change: 10 April 1986 Sun Release 3.2

DATE(1V) USER COMMANDS DATE(1V)

NAME
date — display or set the date

SYNOPSIS
date [—u] [—a [Isssfff 1 [yymmddhhmm(.ss] } [+format]

SYSTEM V SYNOPSIS
date [—u] [—a [Isss.fif 1 [mmddhhmm([yy] 1 [+format]

DESCRIPTION
DESCRIPTION

If no argument is given, or if the argument begins with +, date displays the current date and time. Other-
wise, the current date is set. Only the super-user may set the date.

yy is the last two digits of the year; the first mm is the month number; dd is the day number in the month; ~A
is the hour number (24 hour system); the second mun is the minute number; .ss (optional) specifies seconds.
The year, month and day may be omitted; the current values are supplied as defaults.

If the argument begins with +, the output of date is under the control of the user. The format for the output
is similar to that of the first argument to printf(3S). All output fields are of fixed size (zero padded if neces-
sary). Each field descriptor is preceded by % and will be replaced in the output by its corresponding value.
A single % is encoded by % %. All other characters are copied to the output without change. The string is
always terminated with a new-line character.

Field Descriptors:

insert a new-line character
insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

TR g g noeag ~s

SYSTEM V SYNOPSIS
When setting the date, the first mm is the month number; dd is the day number in the month; khk is the hour
number (24 hour system); the second »m is the minute number; yy is the last 2 digits of the year number
and is optional. The current year is the default if no year is mentioned.
OPTIONS
-u Display the date in GMT (universal time). The system operates in GMT; date normally takes
care of the conversion to and from local standard and daylight time. —u may also be used to
set GMT time.
—a [Flsssfff Using the adjtime(2) system call, tell the system to slowly adjust the time by sss fff seconds
(fif represents fractions of a second). This adjustment can be positive or negative. The
system’s clock will be sped up or slowed down until it has drifted by the number of seconds
specified.
EXAMPLES
date 10080045
would set the date to Oct 8, 12:45 AM.

Sun Release 3.2 Last change: 16 July 1983 101

DATE(1V) USER COMMANDS

FILES

If the year were 1986, and the date were so set,

date ‘+DATE: %m/%d/%y%nTIME: %H:%M:%S’
would generate as output:

DATE: 08/01/86

TIME: 14:45:05

/usr/adm/wtmp to record time-setting

SEE ALSO

printf(3S), utmp(5)

DIAGNOSTICS

102

date: Failed to set date: Not owner

if you try to change the date but are not the super-user.
date: bad format character

if the field descriptor is not recognizable.

Last change: 16 July 1983

DATE(1V)

Sun Release 3.2

DBX(1) USER COMMANDS DBX(1)

NAME

dbx — source-level debugger for C, FORTRAN 77 and Pascal programs

SYNOPSIS

dbx[-r]1[-i][-Xdir][-k][—kbd][objfile[corefile]]

DESCRIPTION

dbx is a utility for source-level debugging and execution of programs written in C, FORTRAN 77 and Pascal.
It accepts the same commands as dbxtool (1), using a standard terminal interface rather than the window
system,

objfile is an object file produced by cc(1V), f77(1) or pc(1) (or a combination of them) with the appropriate
flag (—g) specified to produce symbol information in the object file.

If no objfile is specified, use the debug command to specify the program to be debugged. The object file
contains a symbol table which includes the names of all the source files translated by the compiler to create
it. These files are available for perusal while using the debugger.

If a file named corefile exists in the current directory or a corefile is specified, dbx can be used to examine
the state of the program when it faulted.

Debugger commands in the file .dbxinit are executed immediately after the symbolic information is read, if
that file exists in the current directory, or in the user’s home directory if .dbxinit doesn’t exist in the current
directory.

OPTIONS
-r Executes objfile immediately. Parameters follow the object file name (redirection is handled prop-
erly). If the program terminates successfully, dbx exits. Otherwise, dbx reports the reason for ter-
mination and waits for user response. dbx reads from /dev/tty when —r is specified and standard
input is a file or pipe.
—i Forces dbx to act as though standard input is a terminal or terminal emulator.

USAGE

—I dir Adds dir to the list of directories that are searched when looking for a source file. Normally dbx
looks for source files in the current directory and in the directory where objfile is located. The
directory search path can also be set with the use command.

-k Kernel debugging.

—kbd Debugs a program that sets the keyboard into up/down translation mode. This flag is necessary if
the program you are debugging uses up/down encoding.

Refer to dbx in Program Debugging Tools for the Sun Workstation.

The most useful basic commands to know about are run to run the program being debugged, where to
obtain a stack trace with line numbers, print for displaying variables, and stop for setting breakpoints.

Filenames

Filenames within dbx may include shell metacharacters. The shell used for pattern matching is determined
by the SHELL environment variable.

Expressions

dbx expressions are combinations of variables, constants, procedure calls, and operators. Hexadecimal
constants must be preceded by a ‘Ox’ and octal constants by a ‘0’. Character constants must be enclosed in
single quotes. Expressions cannot involve strings, structures, or arrays, although elements of structures or
arrays may be used.

Sun Release 3.2 Last change: 23 July 1986 103

DBX(1) USER COMMANDS DBX(1)

104

Operators

+—*[div %
add, subtract, multiply, divide, integer division, and remainder

<<>> & |~
left shift, right shift, bitwise AND, bitwise OR, and bitwise complement

& * address of operator and contents of operator

<> <=>===!=!
less than, greater than, less than or equal, greater than or equal, equal to, not equal to, and
not

&& || logical AND, logical OR

sizeof (cast) size of variable or type, and type cast
. > Field reference, pointed-to field reference (dot works for both in dbx).
Precedence and associativity of operators are the same as in C, and parentheses can be used for grouping.

If there is no corefile file, only expressions containing constants are available. Procedure calls require an
active child process.

Scope Rules

dbx uses the variables file and func to resovle scope conflicts. Their values are updated as files and func-
tions are entered and exited during execution. You can also change them explicitly. When func is
changed, file is updated along with it, but not vice versa.

Execution and Tracing Commands

INTERRUPT Stop the program being debugged and enter dbx.
run [args 1 [<infile] [>| >> outfile]
Start executing objfile, reading in any new information from it. With no args, use the argu-
ment list from the previous run command.
args Pass args as command-line arguments to the program.
<|>|>> Redirect input or output, or append output to a file.
rerun [args] [<infile 1[>| >> outfile]
Like the run command, except that when args are omitted, none are passed to the program.
cont [at sourceline] [sig signal]
Continue execution from where it stopped.
at sourceline Start from sourceline
sig signal Continue as if signal had occurred. signal may be a number or a name as with
catch.
trace [in function] [if condition]
trace sourceline [if condition]
trace function [if condition]
trace expression at sourceline [if condition]
trace variable [in function] [if condition]
Display tracing information. If no argument is specified, each source line is displayed before
execution. Tracing is turned off when the function or procedure is exited.
in function Display tracing information only while executing the function or procedure
function.
if condition Display tracing information only if condition is true.
sourceline Display the line immediately prior to executing it. Source line-numbers from
another file are written as "filename" :n.
Sfunction Display the routine and source line called from, parameters passed in, and
return value.
expression at sourceline
Display the value of expression whenever sourceline is reached.
variable Display the name and value whenever variable changes.

Last change: 23 July 1986 Sun Release 3.2

DBX(1) USER COMMANDS DBX(1)

stop at sourceline [if condition]

stop in function [if condition]

stop variable [if condition]

stop if condition
Stop execution when the sourceline is reached, function is called, variable is changed, or con-
dition becomes true.

when in function { command ; [command ;] ...}

when at sourceline { command ; [command ;1...}

when condition { command ; [command ;] ...}
Execute the dbx command(s) when function is called, sourceline is reached, or condition is
true.

status [> filename]
Display active trace, stop and when commands, and associated command numbers.

delete all

delete cmd-no [,cmd-no] ...
Remove all traces, stops and whens, or those corresponding to each dbx cmd-no (as
displayed by status).

clear [sourceline]
Clear all breakpoints at the current stopping point, or at sourceline.

catch [signal [, signal]...]
Display all signals currently being caught, or catch signal before it is sent to the program
being debugged. A signal can be specified either by name (with the SIG prefix omitted, as
with kill(1)) or number. Initially all signals are caught except SIGHUP, SIGEMT, SIGFPE,
SIGKILL, SIGALRM, SIGTSTP, SIGCONT, SIGCHLD, and SIGWINCH.

ignore [signal [, signal] ...]
Display all signals currently being ignored, or stop catching signal, which may be specified
by name or number as with catch.

step[n] Execute the next n source lines. If omitted, n is taken to be ‘1’. Steps into functions.

next [n] Execute the next n source lines. If omitted, » is taken to be ‘1’. Steps past functions.

Naming, Printing and Displaying Data
Variables from another function or procedure with the same name as one in the current block must be
qualified as follows:

[sourcefile *] function™ variable

For Pascal variables there may be more than one function or procedure name, each separated by a

backquote.

print expression [, expression] ...
Print the value of each expression, which may involve function calls. Program execution
halts when a breakpoint is reached, and dbx resumes.

display [expression [, expression]...]
Print a list of the expressions currently being displayed, or display the value of each expres-
sion whenever execution stops.

undisplay [expression [, expression] ...]
Stop displaying the value of each expression whenever execution stops. If expression is a
constant, it refers shown by the display command with no arguments.

whatis identifier

whatis type Print the declaration of the given identifier or type. fypes are useful to print all the members
of a structure, union, or enumerated type.

which identifier
Print the fully-qualified name of the given identifier.

whereis identifier
Print the fully qualified name of all symbols matching identifier.

Sun Release 3.2 Last change: 23 July 1986 105

DBX(1) USER COMMANDS DBX(1)

106

assign variable = expression

set variable = expression
Assign the value of expression to variable. There is no type conversion for operands of differ-
ing type.

set81 fpreg=wordl word2 word3
Treat the concatenation of wordl word2 word3 as a 96-bit, IEEE floating-point value and
assign it to the MC68881 floating-point register fpreg. (Supported only on Sun-3).

call function(parameters)
Execute the named function. Arguments are passed according to the rules for the source-
language of function.

where [n] List all, or the top n, active functions on the stack.

dump [function]
Display the names and values of local variables and parameters in the current or specified
Junction.

up[n]

down[n] Move up (towar