
Writing Device Drivers

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: 800-1780-10
Revision A, of 24 April 1989

PART ONE: Regular Device Drivers

2.1. Multibus Machines

Multibus Memory Address
Space and I/O Address Space

2
Hardware Context

Computer I/O architectures are far more dependent upon bus structure than they
are upon CPU type, and device drivers, oriented as they are towards I/O, must
have intimate knowledge of the bus characteristics of the machines on which
they are running. For example, many Multibus machines do not support vectored
interrupts 1 and thus drivers for interrupt driven devices which are intended to
run on Multibus machines must provide polling facilities. Fortunately, the Sun
kernel provides facilities (described in the Other Kernel/Driver Interfaces section
of the Overall Kernel Context chapter) by which a driver can detennine the type
of the machine upon which it's running.

The MC680XO family of processors does all its I/O via a process known as
"Ipemory mapping." What this means is that the processor sees no difference
between memory and peripheral devices - all input-output operations are per­
fonned by storing data and fetching data from the same memory space. The
Multibus, on the other hand, was originally designed for processors, like those of
the Intel 8080 family, which have two separate address spaces. Such processors
have one kind of instruction for storing data in memory or fetching data from
memory (instructions such as MOV), and another, different kind of instruction
(such as IN and OUT) for transferring data to or from peripheral devices.
Reflecting the architecture of such processors, the Multibus has two address
spaces.

Multibus memory space
is used for memory or devices that look like memory. Many devices -
commonly known as "memory mapped" devices - are designed to be
accessed as memory, and drivers for such devices can "map" them into user
virtual memory space and then perfonn device I/O by simply reading and
writing the device's memory as part of nonnal address space. Such
memory-mapped drivers tend to be quite simple, and so it's notable that dev­
ices not explicitly designed to be memory mapped can, under a restricted set
of circumstances, be driven by memory mapping. The restrictions are,

1 The Multibus itself, as it turns out, actually does support vectored interrupts, but not in a way that can
reasonably be used with the MC680XO family of processors.

13 Revision A, of 24 April 1989

14 Writing Device Drivers

however, fairly severe. Such drivers cannot, for example, have xxioctl ()
routines. See the Mapping Devices Without Device Drivers section of the
Driver Development Topics manual for more details. The Sun-2 Color
Board is a good example of a device that is designed to be memory mapped,
and a listing of its driver can be found in the Sample Driver Listings appen­
dix.

Multibus 110 address space
is another "space" entirely separate from nonnal memory. Typically used as
an area to which device registers can be mapped, I/O space was originally
introduced to keep such registers out of limited primary address space by
providing a means of making peripherals, rather than system memory,
respond to the bus whenever given I/O control lines were asserted by the
CPU. (Such a setup also reduces hardware costs by keeping the number of
address lines small.) Devices which have their control and status registers
mapped to Multibus I/O address space are said to be "I/O mapped" devices.

The MC680XO family, of course, no longer suffers the addressing limitations that
made the dual-space architecture of the Multibus so attractive. The VMEbus, in
similar regard, is no longer structured around ~parate "memory" and "I/O"
spaces. (The tenn "I/O space" does continue to be used, from time to time, with
reference to VMEbus-based systems and devices. Such use, however, is largely
by way of analogy with Multibus systems, and it shouldn't be taken too literally).

Be aware that generic Multibus memory space can be either 20-bit or a 24-bit.
(Sun nonnally uses 20-bit Multibus memory addresses, though when a Multibus
card is installed in a VMEbus system with a VMEbus/Multibus adapter, 24-bit
addresses are used). In similar regard, a generic Multibus can provide either an
8-bit or 16-bit I/O space, and Sun uses only the 16-bit Muliibus I/O space. Note,
however, that some older Multibus boards accept only 8-bit Multibus I/O
addresses.

Sun Multibus systems actually have four "address spaces," corresponding to the
four types of memory (each type has an identifying number associated with it, a
number which is used by the MMU in computing PTE's (page Table Entries).
See the Sun-2 Address Mapping section of the Driver Development Topics
chapter for details. Though you will seldom deal with the on-board address
spaces, you're best off understanding what they are. The following table thus
contains not only the two Multibus spaces, but the "on board" memory and I/O
spaces as well. It's within these spaces, resident on the CPU board itself, that
SunOS is run.

Table 2-1 Sun-2 Multibus Memory Types

Type Description Address Size Address Range

0 On-Board Memory 23 bits OxO - Ox7FFFFF
1 On-Board I/O Space 14 bits OxO - Ox3FFF
2 Multibus Memory 20 bits OxO - OxFFFFF
3 Multibus I/O Space 16 bits OxO - OxFFFF

~~sun ~~ microsystems
Revision A, of 24 April 1989

CPU

Chapter 2 - Hardware Context 15

The following schematic view of the Sun-2 Multibus may help the driver
developer to visualize the larger hardware context within which drivers operate
(when running on a Sun-2 Multibus machine.)

Figure 2-1 Sun-2 Multibus Address Spaces

24 bits

"
Vi~al
Address

(CPU orpVMA)

:
:

16 bits
Multibus

I/O

type
2 bits 20 bits

Multibus

23 bits Memory
MMU

"
Phy~ical 14 bits OnBoard

Address I/O

23 bits OnBoard
Memory

Note some significant aspects of addressing layout as indicated in this table.

D The Memory Management Unit is at the center of the picture, a position that
reflects its importance in the addressing scheme of all Sun machines,
VMEbus based as well as Multibus based. (The centrality of the MMU will
become quite clear when you later set out to allocate a physical address to
your device, and then examine/set it with the PROM monitor.)

Revision A. of 24 April 1989

16 Writing Device Drivers

Allocation of Multibus
Memory

[] Secondly, the input address of the MMU is a 24-bit virtual address. It may
originate with the CPU, or come from a DMA bus master; it makes "no
difference.

[] The output is a 23-bit physical address and a 2-bit address type. The
address type specifies one of the four address spaces indicated at the right of
the diagram.

[] The four address spaces are to the right. The space corresponding to the
incoming virtual address is a function of both the address and the memory
type. Note that only the top two memory spaces (Multibus I/O and Multibus
Memory) are accessible by way of the Multibus; the two On-Board memory
spaces are accessed directly and are seldom of concern to non-Sun driver
developers.

Programs can only reference driver address spaces in tenns of virtual addresses
which are then translated by the MMU into physical addresses within the
appropriate physical address space.

Here are some notes about the allocation of Multibus Memory resources in the
Sun system.

No devices may be assigned addresses below Ox40000 in Multibus memory
space since the CPU uses these addresses for DVMA. (See the end of this
chapter for a discussion of DVMA).

The table on the next page shows a map of how Multibus Memory space is laid
out in the Sun system. Note that this memory map, as well as all of those that
follow, is only a general guide. To be sure that you are not installing a device at
a location that will put it in conflict with existing devices, it's necessary to check
the configuration of the specific systems into which it will be installed. The best
way to do so is to check the local config file for the physical addresses of the dev­
ices installed within the bus of interest. This will probably give you enough
infonnation, but if you still think that there may be a conflict, and if you have a
Sun source license, you can check the driver header files to determine the amount
of space consumed on the busby existing devices. With the exception of the Sky
board, these devices can be rearranged. Also note the possibility that your
machine will have devices attached to it, and taking up bus space, even though
those devices do not appear in the config file. This possibility exists because the
xxrmnap () system call can sometimes be used to drive a device without instal­
ling it in the formal sense - see the Mapping Devices Without Device Drivers
section of the Driver Development Topics chapter for more details .

• \sun ~~ mlcrosystems
Revision A, of 24 April 1989

Table 2-2

Allocation of Multibus I/O
Space

Table 2-3

Chapter 2 - Hardware Context 17

Sun-2 Multibus Memory Map

Address Device

OxOOOOO - Ox3FFFF DVMA Space (256 Kilobytes)
Ox40000 - Ox7FFFF Sun Ethernet Memory (#1) (256 Kilobytes)
Ox80000 - Ox83800 SCSI (#1) (16 Kilobytes)
Ox84000 - Ox87800 SCSI (#2) (16 Kilobytes)
Ox88000 - Ox8B800 Sun Ethernet Control Info (#1) (16 Kilobytes)
Ox8COOO - Ox8F800 Sun Ethernet Control Info (#2) (16 Kilobytes)
Ox90000 - Ox9F800 *** FREE *** (64 Kilobytes)
OxAOOOO - OxAF800 Sun Ethernet Memory (#2) (64 Kilobytes)
OxBOOOO - OxBF800 *** FREE *** (64 Kilobytes)
'OxCOOOO - OxDF800 Sun Model IOO/l50 Frame Buffer (128 Kilobytes)
OxEOOOO - OxE1800 3COM Ethernet (#1)
OxE2000 - OxE3800 3COM Ethernet (#2)
OxE4000 - OxE7COO *** FREE *** (16 Kilobytes)
OxE8000 - OxF7800 Reserved for Color Devices (64 Kilobytes)
OxF8000 - OxFF800 *** FREE *** (16 Kilobytes)

Multibus I/O address space is specified in the config file as mbio. From the
PROM monitor, Multibus I/O space begins at OxEBOOOO, and extends to
OxECOOOO.

Prior to Sun Release 3.0, the system made the assumption that any address lower
than OxlO 0 0 0 that it found in its coilfig file was a Multibus I/O address. With
current releases this is no longer true; now the bus type of every address must be
explicitly given.

The following table of generic Multibus I/O usage, like the table above, is
intended only as a guide.

Sun-2 Multibus I/O Map

Address Device Type

OxOO40 - OxOO47 Interphase Disk Controllers
OxOOAO - OxOOA3 CPC TapeMaster Controllers
Ox0200 - Ox020F Archive Tape Drives
Ox0400 - Ox047F Ikon 10071-5 MultibusNersatec Interface
Ox0480 - Ox057F Systech VPC-2200 Versatec/Centronics Interfaces
Ox0620 - Ox069F Systech MTI-800/I600 terminal Interface
Ox2000 - Ox200F Sky Board
OxEE40 - OxEE4F Xylogics 450/451 Disk Controller
OxEE60 - OxEE6F Xylogics 472 Multibus Tape Controller

Revision A, of 24 April 1989

18 Writing Device Drivers

2.2. VMEbus Machines

Sun-2 VMEbus Address
Spaces

VMEbus machine architecture is generally more complex than Multibus machine
architecture - it makes no distinction between I/O space and Memory space, but
on the other hand it supports multiple address spaces. It does so for reasons of
both cost and flexibility. The VMEbus was designed to be cost-effective for a
range of applications. It is expensive (in terms of money, power, and board
space) to provide the hardware for a full 32-bit address space. If installed dev­
ices only respond to 16-bit addresses, it makes sense to be able to put them all
into a 16-bit address space and save the cost of 16-bits' worth of address
decoders Cl!ld the like. The 24 and 32-bit address spaces are similar compromises
between cost and flexibility.

The driver writer has to understand which address space his board uses (gen­
erally, this is completely out of his /her control), and make an appropriate entry in
the config file. For DMA devices, the driver writer has to know the address space
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space).

The Sun-2 VMEbus machines are based upon the 24-bit subset of the generic
VMEbus - they support only a 16-bit and a 24-bit address space. These address
spaces are known as vrne16d16 (16 address bits and 16 data bits respectively)
and vrne2 4d16 (24 address bits and 16 data bits). Sun-2 VMEbus machines
also contain on-board memory and I/O space, of course, but these aren't accessed
by way of the VMEbus and are only barely relevant to the driver developer.

There are four types of memory on Sun-2 VMEbus machines:

Table 2-4 Sun-2 VMEbus Memory Types

Description Address Size Address Range

On-Board Memory 23 bits OxO - Ox7FFFFF
. On-Board I/O Space 23 bits OxO - Ox7FFFFF
vrne24d16 23+1 bits OxO - OxFEFFFF
vrne16d16 - Stolen from top 64K ofvrne24d16 (OxO - OxFFFF)

The four address spaces are laid out as follows:

Revision A, of 24 April 1989

CPU

Chapter 2 - Hardware Context 19

Figure 2-2 Sun-2 VMEbus Address Spaces

24 bits

fs

Vi$al
Adcfress

(CPU orpVMA)

:

23 bits vme24d16
(High Bank)

L

~ type
2 bits vme24d16

vme16d16
23 bits (Low Bank)

MMU
23 bits

-
fs

Phy~ical 23 bits OnBoard

Addi-ess I/O

23 bits OnBoard
Mem

Note a few details:

o In all Sun-2 machines (as in Sun-3's, Sun-3x's and Sun-4's), the address
input into the MMU is a virtual address, and may originate with either the
CPU or a DVMA (Direct Virtual Memory Access) bus master. (See the Sun
Main-Bus DVMA section, later in this chapter, for a discussion of DVMA).

o Unlike Sun-2 Multibus systems, in which each memory type maps cleanly to
one address space, vrne2 4d16 maps to two different memory banks.
Addresses from OxO to Ox7FFFFF are "type 2" memory, while those from
Ox800000 and up are "type 3". This is because Sun-2 VMEbus machines
have only 23 output address bits, and this trick is necessary to generate the
full range of a 24-bit address space. (See Sun-2 Address Mapping in the

+!!n Revision A, of 24 April 1989

20 Writing Device Drivers

Driver Development Topics chapter for more details).

o Multibus boards, connected to VMEbus to Multibus adapters, can be
plugged into physical memory anywhere within vrne2 4 d16 (which means
that they can also be in vrne16d16).

o The 24 bits in the vrne2 4d16 address space are referred to in the above
table as 23+ 1 bits. This is because, as should be clear in the diagram above,
the Sun-2 MMU outputs only the lower 23 bits of the address, and the 24th
bit is actually one of the MMU's type bits.

o Note especially that vrne16d16 is stolen from vrne24d16. It's selected by
addresses in the fonn 0 xFFXXXX, that is, addresses which have the 8 high
bits set

Sun-3/Sun-3x/Sun-4 Address Sun-3, Sun-3x and Sun-4 machines are all based on the full 32-bit VMEbus, so
Spaces let's begin their discussion with a listing of the address types supported by the

generic VMEbus. In all these memory references, we are referring to virtual
VMEbus addresses, not Sun physical memory locations.

Table 2-5 Generic VMEbus (Full Set)

VMEbus-Space Address Data Transfer Physical Address
Name Size Size Range

vrne32d16 32 bits 16 bits OxO - OxFFFFFFFF
vrne24d16 24 bits 16 bits OxO - OxFFFFFF
vrne16d16 16 bits 16 bits OxO - OxFFFF
vme32d32 32 bits 32 bits OxO - OxFFFFFFFF
vme24d32 24 bits 32 bits OxO - OxFFFFFF
vme16d32 16 bits 32 bits OxO - OxFFFF

Not all of these spaces are commonly used, but they are all nevertheless sup­
ported by the Sun-3 and Sun-4Iines. The following table indicates their sizes
and physical address mappings.

Table 2-6 Sun-3/Sun-4 VMEbus Address types

Type Address-Space Name Address Size Address Range

o On-board Memory 32 bits OxO OxFFFFFFFF
IOn-board I/O 24 bits OxO OxFFFFFF
2 vme32d16 32 bits OxO OxFEFFFFFF
3 vrne32d32 32 bits OxO OxFEFFFFFF
2 vme24d16 - Stolen from top 16M ofvrne32d16 COxO - OxFEFFFF)
2 vrne16d16 -Stolenfrom top 64Kofvrne24d16 COxO - OxFFFF)
3 vme2 4 d3 2 - Stolen from top 16M of vrne3 2 d3 2 COxO - OxFEFFFF)
3 vme16d32 - Stolen from top 64K of vme2 4d32 (OxO - OxFFFF)

The Sun-3x is different than the Sun-3 and Sun-4 in that the hardware does not
use page table entries (PTE's) with a type identifier to map the devices into phy­
sical memory. The Sun-3x uses absolute physical address when mapping devices .

• \sun ~ microsystems
Revision A, of 24 April 1989

Chapter 2 - Hardware Context 21

Therefore the type field is not used as an identifier of physical address mapping.
The next two tables show the virtual VME addresses and the corresponding phy­
sical addresses for the specific ranges. Note for the Sun-3x there is no
vme 32 d16 entry and there is a hole in the address space usage from the end of
the on-board I/O area to the beginning of the vme16d16 area.

Table 2-7 Sun-3x VMEbus Address types

Type Address-Space Name Address Size Address Range

o On-board Memory 32 bits OxO OxFFFFFFFF
IOn-board I/O 24 bits OxO OxOOFFFFFF
2 vme24d16 32 bits OxO OxFEFFFFFF
3 vme32d32 32 bits OxO OxFEFFFFFF
2 vme16d16 - Stolen from top 64K of vme2 4d16 (OxO - OxFFFF)
3 vme2 4 d3 2 - Stolen from top 16M of vme3 2 d3 2 (OxO - OxFEFFFF)
3 vme I6d3 2 - Stolen from top 64K of vme 24 d3 2 (OxO - OxFFFF)

Table 2-8 Sun-3x Physical Address map

Typet Address-Space Name Address Size Address Range

On-board Memory 32 bits OxOOOOOOOO - Ox57FFFFFF
On-board I/O 32 bits Ox58000000 - Ox6EFFFFFF
vme16d16 32 bits Ox7COOOOOO - Ox7COOFFFF
vrne16d32 32 bits Ox7DOOOOOO - Ox7DOOFFFF
vrne24d16 32 bits Ox7EOOOOOO - Ox7EFFFFFF
vrne24d32 32 bits Ox7FOOOOOO - Ox7FFFFFFF
vrne32d32 32 bits Ox80000000 - OxFFFFFFFF

t Types are not used with the Sun-3x architecture.

Sun-3/Sun-3x/Sun-4 space overlays are much more complex than those of the
Sun-2, as is evident from both the tables above and the diagrams below. The
principle, however, is the same - when a space overlays a larger space, its
memory is stolen from that larger space and is considered by the MMU to be in
the the overlaid space. One simply cannot address above OxFFOOOOOO in 32-
bit Vl\1Ebus space or above 0 x 00 FF 0000 in 24-bit Vl\1Ebus space.

As the following diagrams illustrate, Sun-3 and Sun-4 addressing schemes are
almost identical. They differ only in the size of the virtual address which - out­
put by the CPU or a DVMA Bus Master - is fed to the MMU.

The Sun-3x, which has the MMU on the CPU chip, is a different hardware archi­
tecture than the Sun-3's and Sun-4's. There is a full 32 bit input to the MMU
from the CPU, and all 32 bits are used for input to the OnBoard and vme
modules. No devices use the vme32d16 so it is not part of the memory map.

~\sun ~ microsystems
Revision A, of 24 April 1989

22 Writing Device Drivers

Figure 2-3 Sun-3 VMEbus Address Spaces

32 bits
vrne32d32

vrnel6d32

type vrne24d32

2 bits
32 bits vrne32d16

CPU
28

MMU
32 bits

bits

ft
ft

vrnel6d16

Viriual Phy~ical 24 bits OnBoard

AddTess Addi'ess I/O
(CPU orpVMA)

vrne24d16
32 bits OnBoard

Mern

~\sun ~ microsystems
Revision A, of 24 Apri11989

Chapter 2 - Hardware Context 23

Figure 2-4 Sun-3x VMEbus Address Spaces

L ~ 32 bits
vmel6d32

vme32d32

L

type vme24d32

2 bits
32 bits vme24d16

CPU-
32

MMU
32 bits

bits

Ii
Ii

vmel6d16

:
Viriual Phy~ical 32 bits OnBoard

Addl-ess Adc&-ess I/O
(CPU or:OVMA)

:

32 bits OnBoard
Mem

Revision A, of 24 April 1989

24 Writing Device Drivers

Figure 2-5 Sun-4 VMEbus Address Spaces

CPU
32

MMU
bits

"
Viriual
AddTess

(CPU orpVMA)

Allocation of VMEbus
Memory

32 bits
vme32d32

vmel6d32

type vme24d32

2 bits
32 bits vme32d16

32 bits

"
vmel6d16

Phy~ical 24 bits OnBoard

Address I/O

vme24d16
32 bits OnBoard

Mem

This section summarizes the typical use of the 16,24 and 32-bit VMEbus address
spaces by Sun devices. Note that the usages summarized here are only for the
generic configuration, and there's no guarantee that they match the exact usage
on your machine. They will, however, help you to decide where to attach your
device. The "Allocated From" field shows whether bus space is allocated from
the high end of the given range or from the low end. The idea is to keep the
maximum size "hole" in the middle in case the boundary needs to be shifted
later.

~\sun ~~ microsystems
Revision A, of 24 April 1989

Chapter 2 - Hardware Context 25

Table 2-9 16-bit VMEbus Address Space Allocation

Address Range Allocated
From

Description of Use

OxOOOO-Ox7FFF
Ox8000-0xFFFF

Low
High

Reserved for OEM/user devices
Reserved for Sun devices

16-bit VMEbus space is mapped into the topmost 64K of 24-bit VMEbus space
at OxOOFFOOOO to OxOOFFFFFF (on Sun-2s) or OxFFFFOOOO to
OxFFFFFFFF (on Sun-3's, Sun-3x's, and Sun-4's). Note: The
MultibusNMEbus Adapter will map the Multibus I/O addresses of Multibus
cards that use Multibus I/O into the same addresses in the 16-bit VMEbus space.
This may place the standard Multibus addresses for some cards into the
OEM/user area in the above table. These addresses can be changed, if necessary,
by physically readdressing the device and then changing its entry in the config
file.

Table 2-10 24-bit VMEbus Address Space Allocation

Address Range Allocated
From

Description of Use

OxOOOOOO-OxOFFFFF
OxIOOOOO-OxIFFFFF
Ox200000-0x2FFFFF
Ox300000-0x3FFFFF
Ox400000-0x7FFFFF
Ox800000-0xBFFFFF
OxCOOOOO-OxCFFFFF
OxDOOOOO-OxDFFFFF
OxEOOOOO-OxEFFFFF
OxFOOOOO-OxFEFFFF
OxFFOOOO-OxFFFFFF

Low
High
(Taken)
High
Low
High

CPU board DVMA space
Reserved by Sun
Reserved for small Sun devices
Reserved for large Sun devices
Reserved for huge Sun devices
Reserved for huge OEM/user devices
Reserved for large OEM/user devices
Reserved for small OEM/user devices
Multibus-to-VMEbus memory space
Reserved for the Future
Stolen by 16-bit VMEbus space

Table 2-11 32-bit VMEbus Address Space Allocation (Sun-3' s, Sun-3x's, and Sun-4'~)

Address Range

OxOOOOOOOO - OxOOOFFFFF
OxOOIOOOOO - Ox7FFFFFFF
Ox80000000 - OxFEFFFFFF
OxFFOOOOOO - OxFFFFFFFF

Description of Use

DVMASpace
Reserved by Sun
Reserved for OEM/user devices
Stolen by vme 24 d16

Revision A, of 24 April 1989

26 Writing Device Drivers

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus
accesses. Note that, at least in the GENERIC kernel, there are some Sun devices
(tmO, tml, vpcO, vpcl and mtiO -4) installed in the OEM/user area.
It's always best to check, when choosing an installation address, that you aren't
going to conflict with an already installed device.

Table 2-12 VMEbus Address Assignments for Some Devices

The Sun VMEbus to Multibus
Adapter

Interrupt Vector Assignments

Device Addressing Addresses Used

VMEbus SKY Board vmel6dl6 Ox8000 - Ox8FFF (Sun-2 only)
VMEbus SCSI Board vme24dl6 Ox200000-0x2007FF
VMEbus TOO Chip vme24dl6 Ox200800 - 0x2008FF (Sun-2 only)
Graphics Processor vme24dl6 Ox210000 - Ox210FFF
Sun-2 Color Board vme24dl6 Ox400000-0x4FF7FF

The VMEbus Sky board occupies addresses SOOO-SFFF in 16-bit address
space, and it requires that the high nibble of the address be '8'. Unlike other
pre-installed devices, it cannot be moved.

This table is, of course, not complete. There is always a variety of devices on the
bus, as can be easily detennined by examining the config file. This table, how­
ever, does include the standard devices that use a significant amount of space on
the VMEbus. Note that, in machines which came after the Sun-2line, several of
these devices have been replaced by on-board devices and have thus disappeared
from the VMEbus address space.

Multibus devices that are to be attached to VMEbus machines must be attached
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul­
tibus boards). An adapter can be used to take over one and only one chunk of
vme24dl6. However, that chunk can overlap all or part ofvmel6dl6
(because vmel6dl6 is a proper subset of vme2 4d16). In any case, the adapter
must be told how much space the board attached to it actually expects, for by
default it will take over a full megabyte. Note that the Multibus Adapter sup­
ports fully vectored interrupts, and that drivers for Multibus devices attached by
way of adapters need not poll, since the adapters contain switches by which Mul­
tibus devices can be assigned vectors.

The table below shows the assignments of interrupt vectors for those devices that
can supply interrupts through the VMEbus vectored interrupt interface. To pick
one for your device, examine the kernel config file for an unused number in the
range reserved for customer use, 0 xC S to 0 xFF.

~\sun ~ microsystems
Revision A, of 24 April 1989

Chapter 2 - Hardware Context 27

Table 2-13 Vectored Interrupt Assignments

Vector Numbers Description

Ox40 thru Ox43 scO, sc? siO, si? - SCSI Host Adapters
Ox48 thru Ox4B xycO, xycl, xyc? - Xylogics Disk Controllers
Ox4C thru OxSF future disk controllers
Ox60 thru Ox63 tInO, tIn I, tIn? - TapeMaster Tape Controllers
Ox64 thru Ox67 xtcO, xtcl, xtc? - Xylogics Tape Controllers
Ox68 thru Oc6F future tape controllers
Ox70 thru Ox73 ec? - 3COM Ethernet Controller
Ox74 thru Ox77 ieO, iel, ie? - Sun Ethernet Controller
Ox78 thru Ox7F future ethernet devices
Ox80 thru Ox83 vpc? - Systech VPC-2200
Ox84 thru Ox87 vp? -. Ikon Versatec Parallel Interface
Ox88 thru Ox8B mtiO, mti? - Systech Serial Multiplexors
Ox8C thru Ox8F dcpl, dcp? - SunLink Comm. Processor
Ox90 thru Ox9F zsO, zsl- Sun-3/Sun-3x Tenninal/Modem Controller
OxAO thru OxA3 future serial devices
OxA4 thru OxA7 pcO, pcl, pc2, pc3 - SunIPC
OxA8 thru OxAB future frame buffer devices
OxAC thru OxAF future graphics processors
OxBO thru OxB3 skyO, ? - SKY Floating Point Board
OxB4 thru OxB7 SunLink Channel Attach
OxB8 thru OxC7 Reserved for Sun Use

OxC8 thru OxFF Reserved for Customer Use

2.3. ATbus Machines The Intel 80386 processor handles I/O devices placed in either memory space or
in I/O space. On the 80386, memory:mapped I/O provides additional program­
ming flexibility. Any memory instruction can access any I/O port located in the
memory space. For example, the MOV instruction transfers data between any
register and any port. The AND, OR, and TEST instructions manipulate bits in
the internal registers of a device.

On some devices, reading a register will not read back what was written. There­
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex­
pected results because the instruction reads' a good location, changes it, and
writes it back. See the Other Device Peculiarities section, ahead.

Memory-mapped I/O can use the full complement of instructions. The 16 MB
memory of AT memory exists in the 4 GB physical address space of the Sun386i
at 0 xE 0 00 0000. For example, a device that, on an AT, shows up in memory
at DO 0000 will show up in the Sun386i physical memory at 0 xE 0 D 0 0000.
Virtual addresses are assigned during the autoconfiguration process.

If an I/O device is mapped into the I/O space then the IN, OUT, INS, and OUTS
instructions are used to communicate to and from the device. All I/O transfers

~\sun ~ microsystems
Revision A, of 24 April 1989

28 Writing Device Drivers

are performed via the AL (8-bit), AX (16-bit), or EAX (32-bit) registers. The
first 256 bytes of the I/O space are directly addressable. The entire 64 Kbyte I/O
space is indirectly addressable through the DX register.

The Sun386i has 21 interrupt channels, but only 11 are available to devices on
the AT bus. The following list of interrupt channel assignments shows all of the
interrupt channels.

Table 2-14 Interrupt Channel Assignments

3
4
5
6
7
8
9
10
11
12
13
14
15

ATChannel*

* Available to AT Cards

Assignee
ATPinB25
ATPinB24
ATPinB23
Not available (system diskette)
Not available (parallel port)
SCSI
ATPinB04
ATPinD03
ATPinD04
AT Pin D05
Not available (Ethernet)
ATPinD07
ATPinD06

When you add an AT card to the AT bus, you must select one of the values in the
Channel column for the AT card's jumpers. For example, if you select channel
10 for a serial card, the "device" line in the config file might look as follows:

device nsO at atio ? csr Ox3f8 irq 10 priority 6

The Sun386i does not permit two AT cards to use the same interrupt channel.

Some cards will also use DMA and will have jumpers to select a DMA channel
to use. The following list shows that DMA channels 0-3 and channel 5 are avail­
able for AT cards. Note that channel 0 and 5 can be used with 16-bit DMA dev­
ices; 1,2, and 3 can be used only with 8-bit DMA devices. Note also that chan­
nels 4, 6, and 7 are pre-assigned.

Revision A, of 24 April 1989

Loadable Drivers

DOS and SunOS
Environments

Chapter 2 - Hardware Context 29

Table 2-15 Sun386i DMA Channel Assignments

Channel Assignee Size (bits)

0 AT Bus 16
1 AT Bus 8
2 AT Bus 8
3 AT Bus 8
4 Software Not Available
5 AT Bus 16
6 Ethernet 16
7 SCSI 16

For example, you might set up a controller that uses DMA channel 3. For this,
the "controller" line in the config file might look like: this:

controller wdsO at atio ? csr Ox320 dmachan 3 irq 3 priority 3

The Sun386i does not penn it two AT cards to use the same DMA channel.

In these examples, "priority" refers to the spllevels used in the driver. That is,
the phrase "priority 3" implies that the driver uses sp13 () to protect its critical
regions.

On Sun386i machines, device drivers can be dynamically loadable. That is, they
can be attached to a system without rebuilding its kernel and without having to
bring the system down and restart it. See the Adding and Removing Loadable
Drivers section of the Configuring the Kernel chapter for details.

The Sun386i system supports both DOS drivers and SunOS drivers.

You can attach a DOS device driver in the standard DOS way, but it will be
usable only from within the DOS environment. Usually, all you need to do is to
first plug in an add-in board. Then you insert an installation diskette (which
comes with the board) into Drive A> and re-boot the system. The device driver
is already compiled and linked. Generally, the diskette contains programs called
"INSTALL" or something similar. You execute this program by typing its name.
It copies the driver file from the diskette to the hard disk. At the same time, this
procedure will modify the disk's config. sys file.

The DOS system must be re-booted. The device driver will automatically be
loaded into memory, its options will be parsed, and the driver will be initialized.

NOTE The DOS driver on the Sun386i is running under SunOS and DOS, but the driver
is unaware of this. SunOS might switch control to another task during device
operation, so strict timing dependencies couldfail. Real time devices,for exam­
ple, may not work properly. If a peripheral and controller have strict timing
requirements, their drivers should be written in the standard SunOS style. DOS
drivers do not run at the elevated priority of SunOS drivers .

• \sun ~~ microsystems
Revision A, of 24 April 1989

30 Writing Device Drivers

2.4. Hardware Peculiarities
to Watch Out For

Multibus Device Peculiarities

Multibus Byte-Ordering Issues

SunOS drivers, of course, are parts of the system kernel. Thus the timing
requirements of most devices can be met under SunOS. SunOS drivers are
accessible from the DOS environment.

There is a variety of device peculiarities that the driver developer must be·aware
of. The most common of them are related to the Multibus and Multibus-based
devices, but there are others as well.

The IEEE Multibus is a source of problems for two separate reasons. The first of
these, discussed immediately below, is the fact that the Multibus has a different
notion of byte order than does the either Motorola MC680XO family or the Sun
SP ARC processor (the reduced instruction set CPU upon which Sun-4 machines
are built). The second is simply that the Multibus has been around for a long
time, and thus brings with it a variety of older devices, many of which have
addressing limitations and other characteristics which make for a less than per­
fect fit with the Sun architecture.

The Sun-2, Sun-3, and Sun-3x processors are members of the Motorola
MC680XO family, while Sun-4 processors are based on the SPARe CPU. All of
these processors address bytes within words by what we shall call IBM conven­
tions - the most significant byte of a word is stored at the lowest addressed byte
of the word. The Multibus, on the other hand, uses DEC conventions - the least
significant byte of a word is stored at the lowest address, and significance
increases with address.

This class of byte-addressing conventions leads to two separate problems,
with two separate solutions:

o The first problem occurs when you're moving a single byte across the inter­
face between the MC680XO/SP ARC and the IEEE Multibus. Because the
two devices don't agree about the end of the word that the byte actually
appears in, you have to change the byte address before the move - what
you want to do, in effect, is move every byte to the other side of the word
which it occupies - the most CPU-efficient way of doing so is to toggle the
least significant bit of every byte address.

o The second problem, also related to the Multibus, is a higher level version of
the first. It occurs when machine words with significant internal structure
(or structures that contain words) are moved across the bus interface. (If you
write only words, and the device uses only words, there's no problem). The
Multibus byte-ordering incompatibility will cause structures to be scrambled
when they're moved across the bus interface, unless the bytes within them
are physically swapped first.

Here are a few pictures describing the problems in detail:

~\sun ~ microsystems
Revision A, of 24 April 1989

Chapter 2 - Hardware Context 31

Motorola (IBM) Byte Ordering)

bit 15 bit 0

Byte 0 Byte 1

Multibus (DEC) Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, the MC680XO and SPARC CPUs place byte 0 in bits 8 through 15 of the
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every­
thing with the CPU, or everything on the Multibus, there wouldn't be any
conflict, since things would be consistent. However, as soon as you cross the
boundary between them, the byte order is reversed. Thus, you have to toggle the
least significant bit of the address of any byte destined for the Multibus - this
will have the effect of swapping adjacent addresses and thus reordering the bytes.

To clarify this, consider an interface for a hypothetical Multibus board containing
only two 8-bit I/O registers, namely a control and status register (csr) and a data
register (we actually use this design later on in our example of a simple device
driver). In this board, we place the command and status register at Multibus byte
location 600, and the data register at Multibus byte location 601. The Multibus
picture of that device looks like this:

Hypothetical Board Registers

bit 15

Location 601

DATA

bit 0

Location 600

CSR

But the MC680XO and SP ARC processors view that device as looking like this:

~~sun ~~ microsystems
Revision A, of 24 Apri11989

32 Writing Device Drivers

Other Multibus-related
Peculiarities

Hypothetical Board Registers

bit 15

Location 600

CSR

bit 0

Location 601

DATA

so that if you were to read location 600 from the point of view of the processor,
you'd really end up reading the DATA register off the Multibus instead. So,
when we define the skdevice data structure for that board, we define it by starting
with the register definition in the device manual, and then swapping bytes to take
account of the expected byte swapping:

struct skdevice {

} ;

char
char

sk_data;
sk_csr;

/ * 01: Data Register * /
/ * 00: command(w) and status(r) * /

This rule (flipping the least significant bit of the address) holds good for all byte
transfers which cross the line between the MC680XO/SP ARC CPU and the Mu1-
tibus.

CJ Many Mu1tibus device controllers are geared for the 8-bit 8080 and Z80
style chips and don't understand 16-bit data transfers. Because of this, such
controllers are quite happy to place what's really a word quantity (such as a
16-bit address which must be two-byte aligned in the MC680XO) starting on
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many
don't know about 24-bit addresses), and it often happens that you have to
chop an address into bytes by shifting and masking, and assign the halves or
thirds of the address one at a time, because the device controller wants to
place word-aligned quantities on odd-byte boundaries. Note also that many
Mu1tibus boards are geared for the 8086 family with its segmented address
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we're talking about here,
see the code for vp. c in the Sample Driver Listings appendix to this
manual.

CJ Although there are a myriad of vendors offering Mu1tibus products,
remember that the Multibus is a "standard" that evolved from a bus for 8":bit
systems to a bus for 16-bit systems. Read vendors' product literature care­
fully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is supposed to be 20 or 24 bits wide
and the I/O address space of the Multibus is supposed to be 16 bits wide. In
practice, some older boards are limited to 16 bits of address space and 8 bits

.sun
~ microsystems

Revision A, of 24 Apri11989

Sun-4!SPARC Peculiarities

Chapter 2 - Hardware Context 33

of I/O space. In particular, watch for the following addressing peculiarities:

o For a memory-mapped board, ensure that the board can actually handle
a full twenty bits of addressing. Older Multibus boards often can only
handle sixteen address lines. The Sun system assumes there is a 20-bit
Multibus memory space out there. If the Multibus board you're talking
to can only handle 16-bit addresses, it will ignore the upper four address
lines, and this means that such a board "wraps around" every 64K,
which means that on a Sun the addresses that such a board responds to
would be replicated sixteen times through the one-megabyte address
space on the Multibus. This may conflict with some other device.

o Some Sun-2 Multibus systems, notably Sun-2/170s, have a backplane
structure that complicates the installation of 24-bit memory-mapped
devices. The internal "bus" on these systems (often called the P2 bus) is
divided into multiple segments, each mapped to a portion of the back­
plane slots. In such systems, 24-bit memory-mapped devices must be
installed in a different segment than that used by standard Sun-2 dev­
ices. See the Sun-2/170 Configuration Guide for more infonnation.

o For an I/O-mapped board (one that uses I/O registers), make sure that
the board can handle 16-bit I/O addressing. Some older boards support
only 8-bit I/O addressing. In our system, the address spaces of such
boards would find themselves replicated every 256 bytes in the I/O
address space. Trying to fit such a board into the Sun system would
severely curtail the number of I/O addresses available in the system.

o Finally, watch out for boards containing PROM code that expects to find a
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of
course useless in the Sun system.

There are two peculiarities which are specific to machines built upon the Sun
SPARC CPU (currently, just Sun-4's) which can impact device drivers. For
more infonnation about the Sun-4 machine architecture, see Porting C, Fortran
and Pascal Programs to the Sun-4.

o The first problem is structure alignment. In MC680XO family processors,
structures are aligned on half-word boundaries, but on Sun-4 's, the
structure-alignment requirements are imposed by the most strictly-aligned
structure components. For example, a structure containing only bytes and
characters has no alignment restrictions, while a structure containing a dou­
ble word must be constructed so as to guarantee that that this word falls on
a 64-bit boundary.

Programmers must be aware of these rules when writing drivers, for Sun-4
compilers will pad structures to enforce them, and such padding will not
always be correct for structures intended to map to device registers. Also,
structures must be carefully designed if drivers are to be portable across
machine architectures.

o The second problem is data alignment. In MC680XO family processors,
characters are aligned on byte boundaries, while integers of all sizes are

Revision A, of 24 April 1989

34 Writing Device Drivers

Other Device Peculiarities

aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities
must be aligned on their "natural" boundaries: 16-bit half words on 16-bit
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on
64-bit boundaries.

In normal programs, details such as these are handled by the compiler. In
drivers, however, more care must be taken.SPARC (unlike the MC68010)
doesn't break down 32-bit transactions into successive 16-bit transactions.
Thus, there are times when 32-bit entities have to be broken down by the
driver if they are to get across the bus correctly. More specifically, 32-bit or

. 64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all
data paths exist

There are other device peculiarities of interest to the driver developer. These
peculiarities are particularly unfortunate in that they tend to require special han­
dling of various kinds - byte swapping, bit shuffling, timing delays, etc. -
whenever the driver contacts the device. Such special handling precludes the
most obvious and desirable means of interfacing the driver to the device, by map­
ping the device registers into a C-structure declaration and then accessing them
by way of references to structure fields.

o One of the most infuriating of these peculiarities is internal sequencing
logic. Devices with this strange characteristic (a vestige of microcomputer
systems with extremely limited address space) map multiple internal regis­
ters to the same externally addressable address. There are various kinds of
internal sequencing logic:

o The Intel 8251A and the Signetics 2651 alternate the same external
register between two internal mode registers. Thus, if you want to put
something in the first mode register of an 8251, you do so by writing to
the external register. This write will, however, have the invisible side
effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the alternate, or second, internal register.

o The NEC PD7201 PCC has multiple internal data registers. To write a
byte into one of them, it's necessary to first load the first (register 0)
with the number of the register into which the following byte of data
will go - you then send that byte of data and it goes into the specified
data register. The sequencing logic then automatically sets up the chip
so that the next byte sent will go into data-register O.

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a
data pointer register for pointing at the data register into which a data
byte will go. When you send a byte to the data register, the pointer gets
incremented. The design of the chip is such that you can't read the
pointer register to find out what's in it!

o In fact, it's often true that device registers, when read, don't contain the
same bits that were last written into them. This means that bitwise opera­
tions (like register &= -XX_ENABLE) that have the side effect of

.~sun ~ microsystems
Revision A, of 24 April 1989

2.5. DMA Devices

Sun Main-Bus DVMA

Chapter 2 - Hardware Context 35

generating register reads must be done in a software copy of the device
register, and then written to the real device register.

o Another problem is timing. Many chips specify that they can only be
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery
time" of 1.6 microseconds, is an ex~ple. This means that a delay has to be
enforced (with DELA Y) when writing out characters with an 8530. Things
can get worse, however, for there are instances when it's unclear what delays
are needed, and in such cases it's left to the driver developer to determine
them empirically.

o And peripheral devices can contain chips that use a byte-ordering convention
different from that used by the Sun system into which they're installed. The
Intel 82586, for example, supports DEC byte-ordering conventions; this
makes it perfectly compatible with Multibus-based, but not VMEbus-based,
Sun machines. Drivers for such peripheral devices will have to swap bytes,
as indicated above, and to take care that, in doing so, they don't inadver­
tently reorder the bits in any control fields greater than 16 bits in length.

o Finally, there are some common interrupt-related peculiarities worth noting:

o When a controller interrupts, it does not necessarily mean that both it
and one of its slave devices are ready. Some controllers are designed in
this way, but others interrupt to indicate that the controller or one of its
devices but not necessarily both is ready.

o Not all devices power up with interrupts disabled and then start inter­
rupting only when told to do so.

o While there should be a way to determine that a board has actually gen­
erated an interrupt - an attention bit or something equivalent - some
devices have no such thing.

o Finally,.an interrupting board should shut off its interrupts when told to
do so (and also after a bus reset). Not all do.

Many device controller boards are capable of what is known as Direct Memory
Access or DMA. This means that the CPU can tell the device controller for such
devices the address in memory where a data transfer is to take place and the
length of the data transfer, and then instruct the device controller to start the
transfer. The data transfer then takes place without further intervention on the
part of the processor. When it's complete, the device controller interrupts to say
that the transfer is done.

NOTE Sun-2, Sun-3, Sun-3x, and Sun-4 machines use Direct Virtual Memory Access
(DVMA) to allow devices on the Main Bus (either a VMEbus or a Multibus) to
perform DMA transfers from and to system virtual address space. In the Sun386i
system, however, the Memory Management Unit (MMU) is incorporated directly
on the Intel 80386 chip itself; devices need to use physical addresses. Sun386i

Revision A. of 24 April 1989

36 Writing Device Drivers

DMA is discussed in the next Section.

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun
Memory Management Unit to allow devices on the Main Bus (either a VMEbus
or a Multibus) to perfonn DMA directly to Sun processor memory. It also allows
Main Bus master devices to do DMA directly to Main Bus slaves without the
extra step of going through processor memory. DVMA works by ensuring that
the addresses used by devices are processed by the MMU, just as if they were
virtual addresses generated by the CPU. This allows the system to provide the
same memory protection and mapping facilities to DMA devices as it does to the
system CPU (and thus to programs).

When setting up a driver to support DMA, it's necessary to know the device's
DMA address size. This address size is the primary factor used in detennining
which of the system address spaces will host the device. Multibus devices gen­
erally have a DMA address size of 20 bits, while VMEbus devices generally have
a 24 or 32-bit DMA address size.

b Since, on Sun-2 Multibus machines, DMA addresses are generally 20-bits
long, the system DVMA hardware responds to the first 256K of Multibus
address space (OxO to Ox3FFFF). When an address in this range appears
on the bus, the DVMA hardware adds 0 xF 00000 to it (the system places
the Multibus memory address space at OxFOOOOO in the system's virtual
address space) and then uses the MMU to map to the location in physical
memory that will be used for the data transfer.

[J On Sun-2 VMEbus systems, the DVMAhardware responds to the entire
lower megabyte ofVMEbus address space (OxO to OxFFFFF). The system
maps addresses in this range into the most significant megabyte of system
virtual address space (OxFOOOOO to OxFFFFFF).

[J On the Sun-3, Sun-3x, and Sun-4 systems the DVMA hardware responds to
the lowest megabyte of VMEbus address space in both the 24-bit and 32-bit
VMEbus spaces. It maps addresses in this megabyte into the most
significant megabyte of system virtual address space (0 xO FF 0 0.000 to
OxFFFFFFF for the Sun-3 and OxFFFOOOOO to OxFFFFFFFfforthe
Sun-3x and Sun-4). The Sun-3, Sun-3x, and Sun-4 DvMA hardware use
supervisor access for checking protection.

The driver writer must account for these mappings, as should be evident from the
diagram below.

Revision ~ of 24 April 1989

CPU

Figure 2-6 System DVMA

Slave
Decoder

DMADevice

Vl\1EBUS

(If Address in Low megabyte)
--\ Map it to High megabyte

Chapter 2 - Hardware Context 37

OnBoard
Mem

On-Board Bus Masters
Oike the Ethernet chip)

Devices can only make DVMA transfers in memory buffers which are from (or
redundantly mapped into - see below) the low-memory areas reserved as
DVMA space. The memory-management hardware will then recognize refer­
ences to these areas and map them into the high megabyte of system virtual
address space,.an area known as DVMA space. Likewise, if a driver needs to
allocate space for a DMA transfer, it must do so by way of a mechanism that
guarantees its allocation from DVMA space. There are several ways of making
this guarantee:

o rmalloc () can be used with the iopbmap argument. This will get a
small block of memory from the beginning of the DVMA space. Such small
blocks of memory are usually used for control infonnation, and not for large

Revision A, of 24 April 1989

38 . Writing Device Drivers

blocks of data.

o For a large buffer, the driver can statically declare a buf structure (which is
a buffer header that contains a pointer to the data) and then use mbsetup ()
to allocate a buffer for it from DVMA space. This mechanism is primarily
intended for block devices but is perfectly adaptable for use by character

- devices that need large DMA buffers.

When dealing with addresses which are in DVMA space, the driver must strip off
the high bits by subtracting the external variable DVMA, which contains the
address of DVMA (declared as an array of characters). DVMA is initialized by the
system to either OxOOFOOOOO (forSun-2s) or OxFFFOOOOO (forSun-3's,
Sun-3x's and Sun-4's). If the driver fails to make this adjustment, the device will
attempt to use a null address - in the high megabyte - and the CPU board will
not respond to it

NOTE Addresses received by way ofmbsetup () (andMBI_ADDR()) do not have to be
adjusted in thisfashion, as mbsetup () will have already adjusted them to be
relative to the start of DVMA space.

When the device, in tum, uses the address, the address reference comes down the
bus and through a slave decoder, which adds the machine-specific offset to it to
map it back into the high megabyte of system virtual memory.

Sun DMA is called DVMA because the addresses which the device ·uses to com­
municate with the kernel are virtual addresses like any others. The driver, as part
of the kernel, is privy to implementation dependent infonnation, and knows that
it must chop off the high-bits of any address intended for the device. This allows
the MMU to recognize the addresses destined for the Main Bus and to act accord­
ingly. The device, however, knows nothing of this except that its buffers are
mapped to the high megabyte of system virtual memory.

User processes, it should be noted, cannot do DVMA directly into their own
address spaces. The kernel, however, provides a way of getting around this limi­
tation by supporting the redundant mapping of physical memory pages into mul-

-tiple virtual addresses. In this way, a page of user memory (or, for that matter, a
page of kernel memory) can be mapped into DVMA space in such a way that
transferred data immediately appears in (or immediately comes from) the address -
space of the process requesting the I/O operation. All that a driver need do ~o
support such direct user-space DVMA is to set up the kernel page maps with the
routine mbsetup () -the details of the mapping will then be automatically
handled by the kernel.

If you wish to do DMA over the Main Bus, you must make the appropriate
entries in the kernel memory map. There are two functions, mbsetup () and
mbrelse () , to help with this chore.

DMA on ATbus Machines The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the
I/O devices cannot access the Sun MMU address-translation facility and there­
fore must use physical addresses to access memory directly.

To do DMA on the Sun386i, you must make certain changes in the kernel's
memory map (its page tables). Use the mbsetup () ,dIna_setup (),

~\sun ~ mlcrosystems
Revision A, of 24 April 1989

Chapter 2 - Hardware Context 39

mbrelse (), and drna_done () routines to make these changes. The changes
you must make to the kernel memory map are described with these routines in
the Kernel Support Routines appendix.

Revision A. of 24 April 1989

5.1. Installing and
Checking the Device

Setting the Memory
Management Unit

5
Driver Development Topics

The central processor board (CPU) of the Sun Workstation has a set of PROMs
containing a program generally known as the "Monitor". (See the appropriate
PROM Commands chapter of the PROM User's Manual for detailed descriptions
of the monitor commands and their syntax). The monitor has three basic pur­
poses:

1) To bring the machine up from power on, or from a hard reset (monitor k2
command).

2) To provide an interactive tool for examining and setting memory, device
registers, page tables and segment tables.

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb.

If you simply power up your computer and attempt to use its monitor to examine
your device's registers, you will likely fail. This is because, while you may have
correctly installed your device (a process that includes specifying its virtual
memory mapping in the config file) those mappings are SunOS specific, and
don't become active until SunOS is booted. The PROM will, upon power up,
map in a set of essential system devices -like the keyboard - but your device
is almost certainly not among them.

When installing a new device, you will use the monitor primarily as a means of
examining and setting device registers. But before even beginning the develop­
ment of your driver, it's a good idea to attach your device to the system bus and
use the monitor to manually probe and test it. This will give you a chance to
become familiar with the details of its operation, and to ensure that it works as
you expect it to.

Upon power-up, the PROM monitor:

o Maps the beginning of on-board memory, up to 6 megabytes, to low virtual
addresses starting at virtual 0 x 0 .

o Sun-2 machines only. Maps the bus spaces into virtual address space, for the
pUIpose of supporting Multibus devices. Multibus 10 space is mapped from
OxEBOOOO to OxEBFFFF on Sun-2 Multibus machines. On Sun-2
VMEbus machines, vme16d16 is mapped from OxEBOOOO to OxEBFFFF
so that Multibus cards attached by way of VMEbus adapter cards can be
accessed. These two address spaces, Multibus I/O and vrne16d16, are not

75 Revision A, of 24 Apri11989

76 Writing Device Drivers

Selecting a Virtual Address

remapped by the SunOS kernel. This means, for example, that kernel virtual
address OxEBEE 4 0 can be used to talk to a device at 0 xEE 40 in Multibus
10 space without setting up a mapping. (This shortcut is only possible for the
two 16-bit Sun-2 spaces).

Later, using the autoconfiguration process, SunOS makes a pass through the
config file (actually, through the ioconf file that was produced as output by
config when it processed the con fig file). For each device, SunOS selects an
unused virtual address (using an algorithm that doesn't presently concern us) and
maps it into the device's physical address as specified in the config file.

SunOS then calls the xxprobe () routine for each device, passing it the chosen
virtual address. In this way, xxprobe () is kept from having any knowledge of
the physical address to which the device is mapped. xxprobe () then deter­
mines whether or not the device is present. If it isn't, the virtual address can be
reused.

To test a device, ignore the SunOS mappings and use the monitor to manually set
the MMU to map your device registers to a known address in physical memory.
Then you can use the monitor to verify its proper operation. This verification
process will consist primarily of using the monitor's 0 (open a byte), E (open a
word) and L (open a long word) commands to examine and modify the device's
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in
length.

The process of setting up the device for initial testing consists of three discrete
steps.

o The selection of an appropriate virtual address for the testing of the device.

o The determination of the physical address of the device, as well as the
address space that it occupies.

o The use of the monitor to map the system's virtual address to the device's
physical address. Detailed discussion of these three steps follow.

Since SunOS initializes the MMU in the course of its autoconfiguration process,
it's possible to test a device by actually installing it, and then booting and halt­
ing SunOS. (You can halt SunOS by pressing the 'L1' and 'A' keys simultane­
ously, or, on a terminal console, by hitting the <BREAK> key). Having gonen to
the monitor by this route, the MMU will be initialized to its SunOS run-time
state. You can then use the monitor to test the device, or, if you wish, boot
kadb. (A hard reset- the monitor's k2 command-will set the to MMU to its
pre-SunOS power-up state). But while using the SunOS memory maps may occa­
sionally be useful, it's not what you want to do during the first stages of device
integration.

First, understand that the MMU, when mapping a virtual address to a physical
address, is actually mapping to a page of physicai memory and an offset within
that page. The low-order bits of a virtual address, those that specify the offset,
do not get mapped - an address that is X bytes from the beginning of its virtual
page will be X bytes from the beginning of whatever physical page it gets

Revision A, of 24 April 1989

24 bits
Input

Ii
Vi~al
Addfess

:

28 bits
Input

Ii
Vit1ual
Addfess

Chapter 5 - Driver Development Topics 77

mapped into.

The mapping mechanism is essentially the same for all Sun systems, although the
details of address size and page mapping differ. This can be seen in the follow­
ing diagrams:

Figure 5-1 Sun-2 Address Mapping

high
:MM:U

high 23 bits .. _ ...

"' 13 12 / Output

Ii
Phy~ical
Addfess

low
11

Figure 5-2 Sun-3 Address Mapping

high
:MM:U

high .. 32 bits ..
'"\ 15 19 / Output

Ii
Phy~ical
Addfess

low
13

Revision A. of 24 April 1989

78 Writing Device Drivers

32 bits
Input

Ii
Vitiual
Adcfress

:
:

,

32 bits
Input

Ii
Vitiual
Address

Figure 5-3 Sun-3x1Sun-4 Address Mapping

- high
MMU

high 32 bits

"' 19 19 /' Output

Ii
Phy~ical
Address

low
13

Figure 5-4 l Sun386i Address Mapping

-'\
high

MMU
high 32 bits

20 20 / Output

Ii

- Phy~ical
Addfess

low
12

The easiest way to select a virtual address for PROM-monitor testing is to use
one between Ox4000 and OxlOOOOO on Sun-2, Sun-3, Sun-3x and Sun-4 sys­
tems,·or Ox20000 and OxlOOOOO on Sun386i systems. Addresses in these
ranges are unused by the monitor in the respective Sun models, and are thus

-

.~sun
" microsystems

Revision A, of 24 April 1989

Finding a Physical Address

Selecting a Virtual to Physical
Mapping

Sun-2/Sun-3/Sun-4 Virtual to
Physical Mapping

Chapter 5 - Driver Development Topics 79

available. (Note that these addresses, while convenient for testing, are not those
that the kernel will choose when your device is finally installed).

It's most convenient to select a virtual address which has only zero's in its low­
order bits. This way you select the first address in a virtual page. The low-order
bits in the address you choose will remain unchanged. With' X' representing
the unmapped low-order bits (11 for a Sun-2, 13 for a Sun-3, Sun-3x or Sun-4, 12
for a Sun386i) the test address 0 x 4000 is, in binary:

Sun-2 : 0000 0000 0010 OXXX XXXX XXXX
Sun-3 : 0000 0000 0000 100X XXXX XXXX XXXX
Sun-3x:
Sun-4

Sun386i :

0000 0000 0000 0000 100X XXXX XXXX XXXX
0000 0000 0000 0000 100X XXXX XXXX XXXX
0000 0000 0000 0000 0100 XXXX XXXX XXXX

(24
(28
(32
(32
(32

bits)
bits)
bits)
bits)
bits)

Your board may be preconfigured to some address. If it is, then use that address
unless it conflicts with the address of an already installed device. If it does, you '
will have to find an unused physical address at which you can install your device.
To do so, examine the kernel config file for the system upon which you are work­
ing. Tables in the Hardware Context chapter show memory layouts correspond­
ing to typical configurations, but if your system has departed at all from the
norm, you will have to consult your kernel's config file (to determine where dev­
ices have been installed) and the header files for the corresponding device drivers
(to determine how much space they consume on the bus).

When selecting a virtual to physical mapping, it's best if you understand a bit
about the internals of the Memory Management Unit. The Sun-2, Sun-3, and
Sun-4 all use the same proprietary MMU architecture. The Sun-3x uses the
MMU that is on the same chip as the CPU. This MMU works completely dif­
ferent than the Sun MMU.

The following' description is about the Sun MMU operation as it pertains to the
Sun-2, Sun-3 and Sun-4. There is also an example of how to perform a mappings
using sample numbers. The Sun-3x description follows the Sun-21 Sun-3/Sun-4
description and includes a page mapping example.

Up to this point we've only stressed that the MMU maps the top bits of the vir­
tual address, leaving the offset bits unchanged. Now it will be necessary to
explain the mapping process in more detail.

Some new concepts are necessary to discuss the details of virtual to physical
memory mapping.

o The context register (of real concern only on the Sun-2) is a register specify­
ing which of memory contexts should be used when mapping virtual
addresses to physical addresses. Sun-2 and Sun-3 Context Registers contain
3 bits, and specify one of eight memory contexts; Sun-4/260 Context Regis­
ters contain four bits, and specify one of 16 memory contexts. ,Each SunOS
process segment (containing either code, data or stack) is kept within a sin­
gle memory context.

Revision A, of 24 Apri11989

80 Writing Device Drivers

Cl Sun-3s have user and kernel address spaces in the same hardware con­
text. That is to say, there is only one virtual address space, a portion of
which is used by the kernel and the rest by user processes. Sun-4 virtual
address spaces are divided into two chunks. One of them is at the top of
the addressable virtual memory space and the other is at the bottom.
The size of the unused space between these two spaces varies with the
model- in the Sun-4/260 each of the two virtual address spaces is 512
megabytes in size, and the space between them consumes 15 Gigabytes.

Cl Sun-2s, on the other hand, segregate kernel and user processes into
separate hardware contexts with separate address maps. Kernel
processes are run in the supervisor context (context 0) and only
processes in context 0 have access to the I/O devices.

Cl The segment map is used in conjunction with the context register to select
the page map entry group (pMEG) corresponding to the virtual address
being mapped. The eight bits in the segment register specify one of a group
of256P~Gs.

Cl Within eachpage map entry group there are 16 page table entries.

Cl The page map maps the PMEG returned from the segment mapping with a
second sub field of the incoming virtual address to exactly specify a single
page table entry describing the physical page within which the virtual
address is mapped.

Cl The page table entry (PTE) is the final output of the MMU. A PrE specifies
the physical address of a page, as well as its type (e.g., on-board memory
space), protection, and the state of its access and modified flags.

Note (for Sun-2 machines only): when testing your device, it's necessary to
ensure both that you are in supervisor state and that you are in context zero (the
kernel context). The monitor normally initializes to supervisor state, but if you
enter it by way of an abort from SunOS, you will remain in whatever context you
were in at the time of the abort. To be on the safe side, begin all of your monitor
sessions with the command S 5. This will put you into supervisor data state,
where you want to be. Note one important exception to this rule: if you've
mmap () , ed the device into your (user) program's address space and want to
check that this worked, you must use the S 1 command instead of the S 5 com­
mand. This will cause user function codes to be used when accessing page maps
and data.

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 81

Sun-2 Address Mapping Note the following diagram of the Sun-2 MMU:

supervisor _ ..
user

24 bits
Input "

Vidual
Addtess

Figure 5-5 Sun-2 MMU

Context
Register

9

.............

.

3
type -

. protection

~
accessed .. Segment 8

PMEG

~
modified

Map

12 23 bits
I

Page I' Output

Map

Ph~ical
Addtess .

4

11

Note that:

D The lower 11 bits of the incoming virtual address are passed through the '
MMU without being mapped - these are the bits that specify the position
within the page, regardless of whether that page is physical or virtual.

D Multiple segment maps can specify the same PMEG, and often do.

D The PTE, on the output side of the MMU, specifies a variety of kinds of
status information for the specified page, as w~ll as the top bits of its physi­
cal address.

The process of mapping a virtual to a physical address' consists, in practice, of
plugging the right number into the right PrE. The monitor provides a simple
means of addressing the right PTE, but you will have to calculate the right value
to plug into it

Revision A. of 24 April 1989

82 Writing Device Drivers

On Sun-2 systems, hardware PTEs are 32-bit numbers with the following struc­
ture.

V r w x r w x Type

I I I I I
a 1m Unused (8) Physical Page # (12)

Most of the PTEs that we will deal with will have similar structures, and so we
can begin by making a "template" bit mask that we can use to construct our stan­
dard PTEs. One acceptable mask will assume values as follows:

v (valid) = 1
rwxrwx = 111111
(a/m) accessed/modified = 00
unused = 00000000

Thus, we can see that our template will be:

1 1 1 1 1 1 1 Type o 0 o 0 0 0 0 0 0 0

I I I I I I I I I I I I I

Physical Page # (12)

This gives us a mask of ax FE a a a a a a (if we assume that the type field is
a a a 0). Now, as already mentioned, there are four types of memory, represented
in the PTE by values of 0, 1, 2 and 3 in the type field indicated above. (Types 0
and 1 have the same meaning in both Multibus and VMEbus machines, but types
2 and 3 do not.) Type 2 is used, on Sun-2 VMEbus machines, to designate the
first 8 megabytes of the 24-bit VI\.1Ebus space - axa to ax7FFFFF - and type
3 is used to designate the second 8 megabytes - a x 8 a a a a a to a xFFFFFF.
(But remember that the top 64K of the 24-bit space is stolen for the 16-bit space).
This use of two memory types to designate physical memory is necessary
because the Sun-2 physical address size, 23 bits, is not sufficient to address all 16
megabytes of VIne 24 d16.

Table 5-1 Sun-2 PTE Masks

Type Description Mask

0 On Board Memory OxFEOOOOOO
1 On Board I/O Space 0xFE400000
2 (Multibus) Memory. Space OxFE800000
3 (Multibus) I/O Space OxFECOOOOO
2 (VI\.1Ebus) VMEbus Low OxFE800000
3 (VI\.1Ebus) VMEbus High OxFECOOOOO

To determine the value which we need to plug into the PTE, we must add the
appropriate mask to the appropriate physical page number, thus giving us the full
32-bit number that we need. Here, we will cease to explain details and simply
give a series of rules for calculating physical page numbers.

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 83

If Sun-2 Multibus:

If Multibus I/O Space, use Type-3 Template
If Multibus Memory Space, use Type-2 Template

Physical Page Number = Physical Address » 11

If Sun-2 vrne24d16:

If Physical Address >= Ox800000
Use Type-3 Template
Physical Page Number =

(Physical Address - Ox800000) » 11

If Physical Address < Ox800000
Use Type-2 Template
Physical Page Number = Physical Address » 11

If Sun-2 vrne16d16

Use Type-3 Template
Physical Page Number

(Physical Address + Ox7FOOOO) » 11

Revision A, of 24 April 1989

84 Writing Device Drivers

Sun-3 and Sun-4 Address Consider the following diagram of address mapping on the Sun-3.
Mapping

supelVisor ...
user

28 bits
Input

"
Virtual
Addtess

Figure 5-6 Sun-3 MMU

Context
Register

11

.............

:
3 .. type

protection ..

8
accessed/modified

~ Segment
PMEG

Map don't cache ..

11112119 24125132 , ~ -""

Page bits bits

Map

Phy4ical
Addtess

4

13

As you can see, the general scheme is the same as it was in the Sun-2, but the
details have changed:

-

o The MMU is getting a 28-bit virtual address as its input, as opposed to a 24-
bit address in the Sun-2.

o The number of mode and pennission bits in the PTE has been reduced.

o The number of high-order bits reported out of the MMU, and thus the size of
the physical address, is variable. The address size is fixed for any given
Sun-3 machine, and varies only with the model- there are different kinds
of Sun-3 machines and they have different physical address sizes.

The Sun-4 MMU is almost the same:

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 85

Figure 5-7 Sun-4 MMU

............

supervisor Context
user Register

413
type ...

protection ...
accessed/modified ... Top 2 Bits Segment 918

PMEG don't cache

32biJbits
Input Passed

ViPlual
Address

12

'\'\

Map

.~ 19 32

Page bits / bits

Map

Ph~ical
Address

5

13

As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The
differences are that:

Cl The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a
28-bit address in the Sun-3. The top two bits are immediately shunted off.
They must be either 00 or 11, and are used to specify one of the two
"chunks" in the virtual address space. (See Selecting a Virtual to Physical
Mapping above).

Cl The number of bits coming off the Context Register is 4 (to specify one of
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/110s.

Cl The number of bits coming off the Segment map is 9 for Sun-4/260s and 8
for Sun-4/11 Os.

On both Sun-3 and Sun-4 systems, PTEs are 32-bit numbers with the following
structure.

~\sun ~ microsystems
Revision A, of 24 Apri11989

86 Writing Device Drivers

v w s c Type a m Unused (5) Physical Page Number (19)

I I I

As we did with Sun-2 PrEs, we will make a "template" bit mask that we can use
to construct our standard PTEs. One acceptable mask assumes values as follows:

v (valid) = 1
w/s (write ok/supervisor only) = 11
c (don't cache) = 1
(a/m) accessed/modified = 00
unused = 00000

(A one (1) in the don't cache position only disables caching if the type is zero
(0), since other types of pages are never cached). With the above values, our
template will be:

Physical Page Number (19)

This gives us a mask of 0 xF 00 00 0 0 0 (if we assume that the type field is 00).
Thus, the four masks for the four types of memory are:

Table 5-2 Sun-3ISun-4 PTE Masks

Type Description Mask

0 On Board Memory OxFOOOOOOO
1 On Board I/O Space OxF4000000
2 vrne16d16 OxF8000000
2 vrne24d16 OxF8000000
2 vrne32d16 OxF8000000
3 vrne16d32 OxFCOOOOOO
3 vrne24d32 OxFCOOOOOO
3 vrne32d32 OxFCOOOOOO

To detennine the value to be plugged into the PTE, we must add the appropriate
mask to the appropriate physical page number, thus giving us the full 32-bit
number that we need. Here, again, we will give rules instead of details.

If vrne16d16

~\sun ~ microsystems

or vme24d16
or vme32d16

Use Type-2 Template

Revision A, of 24 April 1989

Sun-3x Virtual to Physical
Mapping

If vme16d32
or vme24d32
or vme32d32

Use Type-3 Template

If vme32d16
or vme32d32

Chapter 5 - Driver Development Topics 87

Physical Page Number Physical Address » 13

If vme24d16
or vme24d32

Physica.l Page Number =
(Physical Address +OxFFOOOOOO) » 13

If vme16d16
or vme16d32

Physical Page Number =
(Physical Address +OxFFFFOOOO) » 13

In the previous CPU board designs, such as the Sun-3 architecture, a discrete
MMU was designed and implemented to handle Demand Paging (off chip). That
MMU was implemented mostly in hardware, with a dedicated register for the
Context and separate high speed RAM for the Segment and Page values. In the
Sun-3x architecture where the MC68030 is used as the CPU, a fully programm­
able Memory Management Unit (MMU) integrated into the silicon (on the 68030
chip) will be used to handle demand paging. A similar MMU has been offered
by Motorola for some time (the MC68851 MMU) but was not used by Sun due to
certain architectural incompatibilities.

This Memory Management Unit is drastically different in operation from the
popu1ar discrete version of its processors. Some of the MMU's most significant
changes involve how the Translation· Tables are initialized, accessed, and
updated and also the way the Address Translation procedure, or Table Walk, is
completed. This next discussion provides the process of how the finnware
builds, i.nitializes, and updates the entries in the MMU Translation Tables, how
the Table Walk is accomplished, and how the MMU perfonns Address Transla­
tion. An example is shown how to use the monitor to map virtual addresses into
physical addresses to access devices through the PROM.

The MMU handles the translation of addresses from virtual to physical using
translation tables stored at arbitrary locations in memory. The MMU has an

Revision A, of 24 April 1989

88 Writing Device Drivers

\

The Table Walk

Address Translation Cache (ATC) that holds recently used virtual to physical
address translations. When the CPU passes a virtual address to the MMU for
translation, it will first search the A TC for the corresponding physical address. If
the requested entry is not in the ATC, the processor will search the translation
tables in main memory for the infonnation. An A TC access operates in parallel
with the other on-chip caches, namely the CPU's Instruction Cache and Data
Cache. In order for the MMU to operate correctly, its internal registers must be
initialized to a known state.

The MMU has several internal registers that are initialized to known values
before the MMU is Enabled (Address Translation Enabled) and during various
Reset (k2 or power-on) operations. These registers include the CPU Root Pointer
(CRP), the Supervisor Root Pointer (SRP), and the Translation Control (TC)
register, all of which are initialized while the MMU is Disabled (Translation Dis­
abled). The CRP and SRP are discussed in the Motorola 68030 Manual, but for
now it is important to say that these registers contain the starting addresses for
the MMU's table walk.

The MMU's principal function is address translation, which involves converting
a virtual or logical address to a physical address. This process is known as a
Table Walk. For the Sun-3x architecture a three level MMU has been designed
and requires that a three level table walk be initiated to perfrom address transla­
tion. This process tenninates when either an INV ALID Entry or PAGE Descrip­
tor is encountered. The three levels of address translation are referred to as TIA,
TIB, and PAGE respectively.

The three level table walk is needed to evenly divide the four gigabyte address­
ing range of the MC68030. This could have been accomplished several different
ways, but a specified design goal was to have the Finnware, the Executive Diag­
nostic and the Unix Operating System all use the same Translation Table fonnat.

The first level of lookup, the TIA table entry, must be able to map in the entire
four gigabyte addressing range all at once. The largest block. of virtual memory
that is· required at anyone time will be 32 megabytes. By dividing 4 gigabytes
by 32 megabytes we get 128 entries for the first level of address translation. For
the second level of translation, the TIB entries will take each of the 32 megabyte
TIA entries and divide them by 64. This will allow each TIA entry to be
accessed as 64 separate 512 Kbytes (1/2 megabyte) blocks. Each of the 64 TIB
entries are then divided into 64 again which results in 8 Kbyte page sizes.

It is because of this table traverse that the name Table Walk is used. Each virtual
address is translated to a physical one by taking parts of the virtual address and
using them as indexes into the three tables, the resulting output being a Page
Table Entry (PrE) which will detennine that exact physical address. See the
table below for how the entire virtual address range is divided into 8 Kbyte
ranges .

• \sun ~ mlcrosystems
Revision A, of 24 April 1989

40

First Level

1 0 - 32M bytes

2 33 - 64M bytes

3 65 - 96M bytes

128 3.68 - 40 bytes

Chapter 5 - Driver Development Topics 89

Second Level Third Level

512K bytes 8K bytes

512K bytes 2 8K bytes

The beginning of the table walk starts with a pointer to the location of the MMU
tables in main memory. The P~U has two pointers, one that is used by the
CPU (CPU Root Pointer), and one that is used by the CPU while in supervisor
state (SupelVisor Root Pointer). For the firmware's use, both the CRP and the
SRP are initialized to the same value, which means they will both point to the
base of the MMU tables.

When the ~U is Enabled, the CPU will pass virtual addresses to be translated
to the MMU. If the requested entry is not in the ATe, a table walk of the transla­
tion table will be initiated. The table walk sequence is described below.

Step One: The CRP contains the base address of the TIA table in memory. The
top seven bits of the Virtual Address are used to calculate the index into the TIA·
table. This index is added to the CRP to generate the specific TIA table entry.
The TIA entry contains the base address of the TIB table for the next step.

Step Two: The next six bits of the virtual address are used as an index into the
TIB table. When added to the base address from the TIA table the specific TIB
table entry is generated. The TIB entry contains the base address of the PAGE
Table.

Step Three: The next six bits of the virtual address are used as an index into the
PAGE table. The base address from the TIB table plus the index result in the
PAGE Table Entry (PrE). The PTE contains a 32 bit PAGE Descriptor of which
19 bits are the Page address, 5 are unused, and the remaining 8 are Status bits.

The Physical address is calculated by taking the top 19 bits from the PTE and the
lower 13 bits from the Virtual address. These 13 bits are an offset into the physi­
cal memory page that is selected from the 19 bits.

The table walk is completed by passing the physical address back to the CPU. If
an INV ALID descriptor is ever encountered the table walk tenninates.

Revision A, of 24 April 1989

90 Writing Device Drivers

32 BIT VIRTUAL ADDRESS

7 Bits 6 Bits 6 Bits 13 Bits

TIAIndex TIB Index Page Index Physical Address

TIA

Root
....... ,.,

Ptr

TIB

-7 TIB Base Addr
....... ,.,

PTE I
31

I
31

A Few Example PTE
Calculations

Sun-3 Solution

Page Address

\V
Page Address

PAGES

~ Page Base Addr .~

"

~ Page Descriptor -

I Not Used 10 CI o I M I U IWPlDT DTf::

13 7 6 5 4 3 2 1 0

~

I Lower Physical Address Bits I
13 o

Example One: You wish to map a device which you have attached at physical
Ox280008 onto bus type vme24d16 which will be mapped into virtual
memory at address 0 xE 000000. What is the corresponding PrE?

Well, since 'we are mapping the device into vme 24 d16, we will use
o xF 8000000 as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to 0 xFF 000000. This yields
oxFF280008. In binary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

xxxx xxx x XXXX X111 1111 1001 0100 0000

+~t!! Revision A. of 24 April 1989

Sun-3x Solution

Chapter 5 - Driver Development Topics 91

Adding the template, OxF8000000, we get values for the 13 bits that are
undefined from the shift. Thus the PrE is:

1111 1000 0000 0111 1111 1001 0100 0000

Which is OxF807F940.

A final note: we've now calculated the PrE that maps the virtual page beginning
at 0 xEO 0 0 000 to the physical page containing 0 x2 80008. To get the virtual
address by which to access the device it's necessary to take the lower 13 bits of
the physical installation address - the bits that are just passed through the MMU
- and add them to virtual OxEOOOOOO. The lower 13 bits of physical
Ox280008 are 0008, and adding them to OxEOOOOOO yields OxE000008,
the virtual address by which the device can be accessed.

Our variables are:

physical address
virtual address
bus type

280008
EOOOOOO
vrne24d16

The base address for vrne2 4d16 for the Sun-3x, which is in Table 2-8 in
Chapter 2, is 0 x 7 eO 0 0 000 So we add the physical memory address to the vme
base pointer which gives us a specific physical address.

vrne24d16
physical

physical

7EOOOOOO
280008

7E280008

Then we take off the top 19 bits to mask out just the vme page, which gives us
the physical page of memory. We then need to logically 'or' in some status bits
to allow us to write to this page. The value 1 enables the write status.

physical 7E280008
and mask 7E280000

page 7E280000
or flag 1

PTE 7E280001

To use the monitor to perfonn the mapping, use the 'p' command for displaying
and changing the Page Table. The syntax is

p[virtual address]

where the virtual address is the original virtual memory given in the problem ini­
tially. The monitor returns the current PTE and asks you for a new value. The
newly calculated PTE is input, which modifies the PTE to map to a new physical
memory location

Revision A, of 24 April 1989

92 Writing Device Drivers

Sun-3 Solution

Sun-3x Solution

monitor cmd
return value
new PTE
exit monitor

>pEOOOOOO<cr>
xxxxxxxx
?7E280001<cr>

Now every reference to the virtual memory location E000008 will be mapped
to the device. Note that since the original physical address was folded into the
virtual address and then was masked, we still have the 8 offset at the end of the
memory reference to index into the physical page of memory to access the dev­
ice.

Example Two: You wish to map physical 0 xEE 48 on bus type vrne 16 d3 2 on a
Sun-3. Using virtual address 0 xE 000000, what is the PrE?

Since we are mapping the device into vrne 16 d3 2, we will use
OxFCOOOOOO as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to 0 xFFFF 0 000. This yields
OxFFFFEE48. In binary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right·by 13 yields:

xxxx XXXX XXXX X111 1111 1111 1111 i111

Adding the template, OxFCOOOOOO, we get values for the 13 bits that are
undefined from the shift. Thus the PrE is:

1111 1100 0000 0111 1111 1111 1111 1111

Which is OxFC07FFFF.

To get the virtual address by which to access the device at physical OxEE48, add
i~ lower 13 bits, OxE48, to OxEOOOOOO -this yields OxEOOOE48.

Using the same steps above, this is how the solution looks:

Revision A, of 24 April 1989

Getting the Device Working
and in a Known State

Chapter 5 - Driver Development Topics 93

physical EE48
virtual EOOOOOO
bus type vme16d32

vme16d32 7DOOOOOO
physical EE48

physical 7DOOEE48

physical 7DOOEE48
and mask 7DOOEOOO 0111 1101 0000 0000 111

masked page 7DOOEOOO
or flag 1

PTE 7DOOE001

This is the new PrE value that can be used in the monitor as shown in the previ­
ous example.

Before you even think about writing any code you should check out your device.
You must get to know it, finding out early if it has any peculiarities that will
affect its driver. It may, for example, have addressing and data-bandwidth limi­
tations. Or, if it's a bus master, it may not implement the release on request
bus-arbitration scheme the Sun supports. Know the peculiarities of your device
early, and then test it to verify that it's working before proceeding further with
driver development.

Make sure that the board is set up as specified in the vendor's manual. Device
characteristics which, in general, have to be set properly before the device can
successfully be used include:

o I/O register addresses for I/O mapped Multibus boards,

o Memory base addresses for Multibus boards that use Multibus memory
space,

o Address and data widths,

o Interrupt levels,

o Interrupt vector numbers for VMEbus device,

o VMEbus address modifiers,

o The bus grant level for VMEbus devices should be set at 3.

Then, take down your system and power it off. Plug the device into the card
cage and attempt to bring the system back up. If you can't boot the system, then
there's a problem. Perhaps the board isn't really working, or perhaps it's
responding to addresses used by other system devices. You must resolve this
problem before proceeding further.

Revision A, of 24 April 1989

94 Writing Device Drivers

Take SunOS down again and attempt to contact the device using the PROM
monitor. To do so, you will need to set up a PrE on the Sun-2, Sun-3, or Sun-4
which maps to the device's physical installation address. Use the procedures
given above to calculate a PrE, then:

o Issue the monitor command that puts you into supervisor data state. This
will be a B for Sun-4 machines and a5 for all others. So, if you have a
Sun-3, give the

>85

command.

o Calculate, using the procedures given above, the PTE appropriate to the phy­
sical address you've chosen.

o Set the position in the kernel page map that corresponds to your physical
address to contain the calculated PrE. This will map your chosen physical
address, thus putting you in contact with your device. You may use the
monitor's p command to perfonn this mapping. The p command takes a
virtual address as its argument, displays the PTE that corresponds· to that vir­
tual address, and gives you the option of modifying the PTE. For example:

>pF32000

selects the page map entry that corresponds to the virtual address of
OxF32000 and displays it. It also displays a '1', which indicates that you
may type in a new value to replace the one displayed. (See the appropriate
PROM Commands chapter of the PROM User's Manual for more details).
Note that all virtual addresses within a page select the same PTE.

Having contacted the device from the monitor, try some of the following:

o Try reading from the device status register(s), if there are any.

o Try writing to the device control and data registers(s), if there are any. Then
try reading the data back to see if it got written properly (this assumes, of
course, that the device allows the reading of these register(s).

o Try actually getting the device to do something by sending it data.

o If the device is a controller with separate slave devices, then switch a slave
on and off and watch for changes in the controller status bits.

Your goal is to try to actually operate the device, for a moment, from the moni­
tor. For example, if you have a line printer, try to print a line with a few charac­
ters. Be aware that bit and byte ordering issues are critical in this process. The
reason you're doing this is to ensure that the device works and that you under­
stand the way it works. When you understand the device's peculiarities, you can
proceed to write a driver for it.

~\sun ~~ microsystems
Revision A. of 24 April 1989

A Warning about Monitor
Usage

5.2. Installation Options
for Memory-Mapped
Devices

Memory-Mapped Device
Drivers .

Chapter 5 - Driver Development Topics 95

When you use the monitor's 0, e or 1 commands to open a location, the monitor
reads the present contents of that location and displays them before giving you
the option to rewrite them. In the best of all possible worlds, this would present
no problems, but many devices don't respond to reads and writes in as straight­
forward a fashion as does normal memory.

For example, the Intel 8251 A and the Signetics 2651 use the same externally
addressable register to access two separate internal mode registers, and they have
internal state logic that alternates accesses to the external register between the
two internal registers. So suppose that you want to put something in mode regis­
ter 1 of the 8251. You open the external register, the monitor displays its con­
tents, and you then do your write. If, being cautious, you then read the external
register to check that the data you wrote is there, you will find that it's not­
because the read will sequence you on to the second register.

To deal correctly with such devices, it's necessary to use the monitor's "write
without looking" facility and then read the locations back later to check them.
You can write without looking with any of the monitor commands that "open" an
area of memory; all that's necessary is that you enter a value after the
addres s argument. For example:

>1 [address] [value]

This will cause value to be written into address without first reading its
current contents. For more infonnation on hardware peculiarities and the prob­
lems that they can cause for the monitor, the Hardware Peculiarities to Watch
Out For section of the Hardware Context chapter.

Memory-mapped devices are the simplest types of devices to write drivers for.
Frequently, however, their essential simplicity isn't obvious from a quick glance
at their source code. This is because many memory-mapped devices are frame
buffers, and frame-buffer drivers must set up and manage the low-level interface
for the Sun window system as well as the standard device interface. Conse­
quently, they tend to be littered with declarations and manipulations related to
the "pixrect" (pixel rectangle) system. See the Pixrect R eference Manual for
more details.

Memory-mapped devices are most frequently installed into Sun systems with
simple drivers that map them into user address space (there are sometimes alter­
natives to such drivers, as you will see below). Such memory-mapped drivers
don't really do much. Obviously, xxprobe () and xxmmap () must exist, for
the kernel must be able to check the device installation and perfonn the actual
device mapping. And, in addition, xxintr () must be real if the device is inter­
rupt driven. But xxopen () and xxclose () are usually stubs, and xxread ()
and xxwri te () can be calls to nulldev.

Revision A. of 24 April 1989

96 Writing Device Drivers

Keep in mind that the major purpose of a memory-mapped driver is to support
the rnmap () system call. This is very important because user processes which
call window code must first map the frame buffer into their address space. They
do so with the mmap () system call, which is translated by the kernel into a
series of calls to the driver's rnmaproutine. Each of these calls returns page
table entry infonnation which the kernel needs to map a single page (the next
page) of frame-buffer memory into a virtual address space. Here's some very
simple driver xxmmap () code.

/*ARGSUSED*/
cgonemmap (dev, off,prot)

dev_t deVi
off_t offi
int proti

return (fbmmap(dev,off,prot,NCGONE,cgoneinfo,CG1SIZE»i

/*ARGSUSED*/
int fbmmap(dev, off, prot, numdevs, mb_devs, size)

dev_t devi
off_t offi
int prot, numdevsi
struct mb_device **mb_devsi
int sizei

int kpfnumi

if «u_int) off >= size)
return -li

kpfnum =
hat_getkpfnum(mb_devs[minor(dev)]->md_addr + off)i

return kpfnumi

dev is, of course, the device major and minor number, and off is the offset into
the frame buffer (passed down from the user's rnmap () system call). prot is also
passed down from the user's call, but it is not currently used. As you can see,
there's a bit of shuffling around and then a call to hat_getkpfnum, which
returns a Page Frame Number which xxnuna p () is expected to return.

Note that rob dev->md addr is the address of the frame buffer from the Main
Bus device structure. This is the device installation address as given in the ker­
nel config file. The offset is checked to be sure the user isn't mapping beyond
the end of the frame buffer.

Revision A, of 24 April 1989

Mapping Devices Without
Device Drivers

Chapter 5 - Driver Development Topics 97

Under a restricted set of circumstances, it's possible to avoid writing a device
driver altogether by using the nunap () system call to overlay the device's regis­
ters and memory onto user memory. Having done this, you can read and write
the registers - as if they were nonnal user memory - from a user program.

What this really amounts to is piggybacking the new device onto an another, sys­
tem standard, virtual memory device (and its driver). The nunap () routine of a
system virtual memory device is then used to do the user-device mapping, and
the "instalhition" is accomplished without the development of a driver specific to
the user device. Instead, a user level program is written, one that calls the
nunap () system call.

The restrictions on this shortcut are, however, fairly severe.

D The device must not require any special handling of the type that would go
into xxioctl () .

D The device (including all its control registers) must work with user function
codes, since that's what it will get when mapped into and then accessed from
user space.

NOTE MC680XO processors, SPARC processors and the Intel 80386 all run in either
luser' or 'supervisor' state. Many devices, in turn, restrict certain 0/ their
operations, and will only perform them when the processor is in supervisor state.
The Sun CPU is in supervisor state only when executing kernel code. This means
that device drivers, which are part 0/ the kernel, can issue device commands
which are not available/rom user processes. Also note that, when the CPU is in
supervisor state, as it is when driver code is executing, the device will receive
different VMEbus address modifier codes than when the CPU is in user state.
For details about these codes see the VMEbus specification.

D The device must not require any other sort of special handling - it cannot,
for example, be multiplexed, interrupt driven, or do DMA.

D Finally, there are security problems associated with this sort of installation.
Since the system virtual-memory devices are nonnally owned by and res­
tricted to the superuser, your programs will either have to change their per­
missions to allow nonnal users to access them, or will have to run with
superuser privileges. The fonner strategy is usually not acceptable in the
long run, because it creates a gaping hole in the security of the system. And
it's far from clear that the second alternative is desirable either.

The virtual-memory devices of interest here are those that support mapping over
the entire range of a virtual address space. They are:

Revision'A. of 24 Apri11989

98 Writing Device Drivers

Table 5-3 Virtual Memory Devices

Machine Type

Multibus (Sun-2 only)
Multibus (Sun-2 only)
VMEbus (All Sun's)
VMEbus (All Sun's)
VMEbus (Sun-3 and Sun-4)
VMEbus (Sun-3/Sun-3x1Sun-4)
VMEbus (Sun-3/Sun-3x1Sun-4)
VMEbus (Sun-3/Sun-3x1Sun-4)
A Thus (Sun386i only)

Memory Device Name

mbmem
mbio
vrne16d16
vrne24d16
vrne32d16
vrne16d32
vrne24d32
vrne32d32
atmem

In addition, there are memory pseudo-devices that support access to the on-board
devices that users are allowed to access. These are / dev / fb, / dev /mem and
/ dev / kmem (See the mem (4) manual page for details).

/ dev / fb is a memory device which, on any given system, is set up to address
the local frame-buffer device. It can be used as if it were a system memory dev­
ice - on any given system, / dev / fb can be rnmap () 'ed into user memory and
then written to, with the effect of writing the local frame buffer memory.

To use rnmap () with one of the system memory devices, you must do three
things:

[J Open the device.

[J Calculate the offset which you will need to call mma p (). This offset is
merely the device address on the appropriate system memory device rounded
to a page boundary. That is to say that you get the offset from the device
manual and/or the switches on the device itself.

[J Call rnma p () to allocate virtual space and map in the physical bus address
of your device, which you must know. (See the Hardware Context chapter
for a discussion on how to pick a good physical address from the infonna­
tion in the system config file).

The following example program uses / dev / fb rather than one of the virtual
memory devices. It makes a good example because it maps the system frame
buffer into user memory so that it can then be written from a user program. It
uses mmap () to set things up, but doesn't bother with calling munmap () ,
because unmapping occurs automatically when the memory device is closed.
This close occurs implicitly when the program ceases execution. (The machine
segment size is 128K for the Sun-2 and Sun-3; 256K for the Sun-4; and 4Mbytes
for the Sun386i. Areas greater than the machine segment size should be mapped
only with special care. The Sun-3x has no segment size so any input value will
work. For details, see the discussion of rnma p () in the User Support Routines
appendix) .

• Slln
~ microsystems

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 99

Once the device has been mapped into user space it can be treated as a piece of
local user memory. (Remember that memory accesses perfonned by way of this
mechanism will be reflected - at the device level- as non-privileged (user)
accesses. This is because nunap () accesses inherit the privilege of the process
that calls nunap (). Thus, if memory is mapped by a driver, subsequent accesses
to it will have the standard supeIVisor data access privilege, but if it's called from
a user process, as described here, subsequent accesses will be non-privileged.
Attempts to access supeIVisor-only device registers without supeIVisor privilege
might produce a bus error, Le., they're inaccessible from a user program, and
thus a kernel level driver must be written to manipulate them. The device will
also receive different address modifier codes when accessed from a user process
than when accessed via a device driver).

iinclude <stdio.h>
iinclude <sys/file.h>
iinclude <sys/mman.h>
iinclude <sys/types.h>

I * Width and Height of Frame Buffer in Bits * I
idefine WIDTH 1152
#define HEIGHT 900

main ()
{

int fd;
unsigned len;
char *addr;

I * Open the frame-buffer device * I
if «fd = open ("/dev/fb",O_RDWR)) < 0)

syserr("open");

I * Compute total number of bytes * I
len = «WIDTH * HEIGHT)/8);

1*
* offset must be page aligned. Ic?-ev/fb
* is already aligned with frame-buffer memory
*1

offset = 0;

I * Map device memory to user space * I
addr = mmap«caddr_t)O, len, PROT_READ I PROT_WRITE,

MAP_SHARED, fd, 0);
if (addr == (caddr_t)-l)

syserr("mmap failed");

writeFB(addr);
exit(O);

Revision A, of 24 April 1989

100 Writing Device Drivers

wr i teFB (addr) / * Write to frame buffer * /
char *addr;

char color;
int i,j;

color = OxFF;
for (i = 0; i < HEIGHT; i++)

color = -color;
for (j = 0; j < WIDTH/8; j++)

*addr++ = color;

syserr (msg) /* print system call error message and terminate * /
char *msg;

extern int errno, sys_nerr;
extern char *sys_errlist[]i

fprintf(stderr,"ERROR: %s (%d", msg, errno);
if (errno > 0 &&. errno < sys_nerr)

fprintf(stderr, n i %s)\n", sys_errlist[errno])i
else

fprintf(stderr,")\n");
exit(l);

NOTE This example uses the special memory device / dev / fb, since this device is
always set up to address the frame buffer memory.

Direct Opening of Memory
Devices

So, despite the plethora of limitations on the sorts of devices that can be installed
by way of mapping them into user space, it's quite an easy thing to do. If your
device characteristics are such that this is an option, you may well wish to take it .
And even if such an installation isn't an attractive long-tenn option (for example,
because of unacceptable security problems) it may still be attractive as a short­
tenn alternative to driver development. Even in environments where security
considerations make it unacceptable in the long tenn, it can allow you to get your
device up and running very quickly. Sometimes this counts for a lot.

It should be noted, for the purpose of completeness, that there's another approach
to avoiding driver development, one that's even easier than the use of mmap ()
described here, and even more limited. That is, it's possible to simply open the
virtual memory device that contains your board, to seek to the location of its
registers, and then to read and write those registers as if they were regular
memory.

This approach has most of the same problems as does the use ofmmap (), and is
notable mainly because, with it, the device receives supervisor function codes. It
does, however, introduce new problems. It doesn't give you the same degree of
control as does mmapO, and you often need that control when dealing with .

~\sun ~ microsystems
Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 101

devices. When you use mma pO, the device actually becomes part of your user
memory space, and it's left to the compiler to generate exactly the I/O accesses
which you implicitly specify in your structure and variable declarations. You
can always access exactly what you want, and the accesses occur directly as
move byte and move word operations. Thus they are very fast.

When, however, you simply open a system memory device as a file and then read
and write to it, your communication with your board is mediated by the I/O sys­
tem. The I/O systems will always try to do the "right thing" (if you request I/O
at an odd address or for an odd number of bytes it will perfonn byte access as
appropriate; otherwise it will use short integers), but it still doesn't give you the
kind of control that can be had using mmapO. Furthennore, I/O operations
involve lots.of code, and take hundreds of times as long as direct references to
mmap () 'ed references, which proceed by way of the MMU and use low-level
store and move instructions to directly access device registers and memory as
physical memory.

So the bottom line is that, unless you need to access a device only a few times, or
if you need to receive supervisor function codes (and the corresponding VMEbus
address-modifier codes) and perfonnance isn't critical, you can do your installa­
tion by opening a system memory device and then seeking to your device regis­
ters and memory space. Otherwise, use mmap () or write a driver. If you do
decide to use the open () /1 seek () method, do so with low-level I/O rather
than with the standard I/O library. The standard I/O library implements a buf­
fered I/O scheme which will add considerably to your problems.

The following user program is similar to the example above, in that it writes the
same pattern to the memory of a frame buffer. This time, though, the write is
done by way of the I/O system rather than by using mma pO, and the frame buffer
is taken to be installed at OFFSET (whatever the device physical installation
address is) in the vrne24d16 memory space.

NOTE Since all Sun VMEbus machines have a built-in, on-board/rame buffer, this
example is only meaningful/or color frame buffers. On Sun-2 Multibus
machines, however, this code would work with / dev / obmem and an offset 0/
BW2MB FB.

#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>

void syserr();
long lseek();

/ * Width and Height of Frame Buffer in Bits * /
#define WIDTH 1152
#define HEIGHT 900

main ()
{

Revision A, of 24 April 1989

102 Writing Device Drivers

5.3. Debugging Techniques

int fd;

/ * Open the system memory device containing the frame buffer * /
if «fd = open ("/dev/vme24",O_RDWR)) < 0)

syserr("open");

/ * Seek to the frame buffer memory * /
if (lseek(fd, (long) OFFSET, L_SET) -lL)

syserr("lseek");

writeFB(addr);
exit(O);

writeFB (fd) /* Write toframe buffer */
int fd;

char color;
int i,j;

color = OxFF;
for (i = 0; i < HEIGHT; i++)

color = -color;
for (j = 0; j < WIDTH/8; j++) {

if (write (fd, &color, 1) == -1)
syserr ("write") ;

As described above, it's a good idea to begin debugging by using the monitor to
check that the device has been installed at the intended address, and that it works,
before proceeding to debug your device driver. This allows you to avoid debug­
ging the device simultaneously with the driver, and experience that you'd like to
avoid for as long as possible. Alternatively, if you're confident in both yourdev­
ice and the correctness of your installation, you can simply make a new kernel,
boot it and proceed with debugging. In this case you should put some
printf () messages - see below- into the xxprobe () routine. Then you
can at least see the device get contacted and initialized.

Debugging drivers is significantly more difficult than debugging regular user pro­
grams, for a number of reasons:

o In the first place, device drivers are part of the system kernel. This means
that the system is not protected from their errors. Addressing errors, for
example, will frequently trip hardware traps and crash the system.

o As mentioned above, there's the possibility that the device hardware will be
buggy. For this reason, you can't really trust your environment in the same
way as you can when writing a user program on a mature computer system.

~\sun ~ microsystems
Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 103

[J Some devices behave in rather peculiar ways. (See A Warning about Moni­
tor Usage, above).

[J Finally, the debugging environment in the kernel is thinner than it is in user
space. There is a kernel debugger, kadb, and this a a big step towards mak­
ing life easier for driver developers. Still, life remains more difficult when
debugging in kernel space.

It's possible to prototype drivers in user address space by using techniques
similar to those described in the Mapping Devices Without Device Drivers
section of this chapter. The same constraints given there apply to prototyp­
ing. In particular, it's not possible to run an interrupt routine, or to probe
for non-existent devices without generating bus errors from prototype
drivers in user space. If the device generates no interrupts, and if it doesn't
do DMA, the entire driver might be able to run in user space.

For all these reasons, you should give extra care to desk-checking your code, and
check a reference manual when not absolutely sure of the meaning of a given
construction. Don't take chances.

Also, make changes incrementally. Don't try to save time by making many
changes at once. You will save time in the long run if you take the time to add
and test a few parts at a time. Keep your feet on solid ground.

Use trace output from printfO, as described below. Drivers can act in surpris­
ing ways, and the best way to proceed is by making the flow of operations highly
visible.

NOTE On the Sun386i system, the loadable drivers feature makes driver development
much easier because the code-compile-reboot-test cycle is reduced to code­
compile-Load-test.

Debugging with pri.ntf () With the availability of kadb, the kernel debugger, the importance of

The window systems should not be
up when you use printf () to
debug a driver because its output
will go to the console window. On

pr in t f () in the debugging of device drivers has been significantly reduced.
Still, even with kadb available, pr intf () statements remain useful as means
of providing synchronous tracing of overall driver flow and structure. kadb can
be made to provide a similar sort of tracing (by tying print commands to strategi­
cally chosen breakpoints) but this won't altogether eliminate the printf ()
statement. The pr in t f () -has long found application in driver debugging, and,
as a matter of taste and experience, some programmers will continue to use it.
For this reason, we will discuss its use in some detail.

The kernel pr intf () sends its message directly to the systems console,
without going through the tty driver. As a consequence, the printing is
uninterruptible-the characters aren't buffered. Furthermore, printf () runs at
high priority, and no other kernel or user process activity takes place while its
output is being produced. printf () thus radically limits overall system perfor­
mance (though this is usually ok while device drivers are being debugged).

Revision A. of 24 April 1989

104 Writing DeviceDrivers

the Sun386i system, it is best to set
the global variable newlog to o.

There is a second kernel print statement, uprintfO. uprintfO, however, is
of little use to driver developers. It attempts to print to the current user tty as
identified in the user structure, and prints to the console only if there's no
current user tty (at which point it becomes identical to printfO). uprintf ()
cannot be called from lower-half routines, which run in interrupt context and can­
not make any assumptions about the user structure (where uprintf () looks
to determine the current user tty). u pr in t f () is most useful for production
drivers, like tape drivers that encounter media errors, which want to report errors
not to a programmer but to the user.

There are occasions in which the use ofprintf () (or uprintf()) statements
will change the behavior of your driver. printf () statements,for example,
can affect the timing of operations in the driver being tested as well as in other
drivers. The output may be so slow relative to other device operations that inter­
rupts are lost and systemfailures are introduced; thus, it isfrequently impossible
to synchronously trace a device interrupt routine. Driver code may begin to fail
only when printf () s are introduced, or, even worse, only when printf () s
are disabled. If you' re debugging a tty driver, you may even face a situation
where pr int f () -based tracing generates new calls to the driver being
debugged. Thus, there are situations in which it cannot be used. In such situa­
tions, you should use kadb or the techniques suggested below in the section on
Asynchronous Tracing.

The best way to use pr intf () statements for tracing driver execution is by set­
ting things up so that you can toggle printing by using the kernel debugger,
kadb (see below) to set and reset print-control variables. Doing so is very sim­
ple. At the top of the driver source file, include statements like:

#ifdef XXDEBUG
int xxdebug = 0;
#define XXDPRINT if (xxdebug > 0) printf
#endif

(It's important that the variables like xxdebug be global, so that you can later
access them freely from the debugger - remember that all drivers are part of one
program, the kernel, and name your print-control variables so as to avoid naming
conflicts).

Then, instead of calling printf() inside the driver routines, call XXDPRINT.

Each call should be in the fonn:

#ifdef XXDEBUG
XXDPRINT ("driver name ... ", ...) ;
#endif

which will only call printf () if XXDEBUG is defined and xxdebug is set to a
value greater than O.

Make sure that each call to XXDPRINT identifies the driver, for it's possible that
you, or some other programmer, will want to see debugging output from several
drivers at once. And leave the debugging code in for a while after you're

~\sun ~ microsystems
Revision A, of 24 April 1989

Event -Triggered Printing

Chapter 5 - Driver Development Topics 105

finished - bugs may surface later.

Having set things up like this, you can turn the printf () 's on or off at any
time by using kadb to set unset or change the print-control variable xxdebug.
Or you can use adb if you wish, running it at user level in a separate window:

example adb -w /v.munix /dev/kmem

(adb won't allow you to set breakpoints in the kernel, but it will allow you to set
and unset variables - you can change the value of xxdebug, or even reset a
variable which has caused your driver to hang). Remember that you're in the
kernel and BE CAREFUL.

Incidentally, / dev /kmem represents the kernel virtual address space, which is
why it's used here. adb - k / vmunix / dev /rnem, in contrast, generates a
view of the physical address space, because / dev/mem represents the physical
memory. This latter command is useful for examining core files.

Good places to put printf () statements include:

o driver routine entry points

o before critical subroutine calls

o upon reading status information from the device

o before writing of commands or data to the device

o at intermediate points in complex routines

o at routine exit points

Note again that you don't have to restrict yourself to a single xxdebug variable,
or to binary tests that check to see if a variable is on or off. You can use as many
variables, and as many values for each variable, as necessary to reflect the func­
tional divisions most appropriate to your driver. It might even be useful to get
truly esoteric, and send certain trace statements directly to the user tty (by calling
uprintfO) while the rest use printf () and go to the console.

In the above discussion, the xxdebug variable was initialized by the compiler,
and toggled with a debugger. However, it's just as easy to have the driver rou­
tines themselves set a trigger variable under pre-chosen conditions.

For example, if you wanted to enable tracing after a given condition had
occurred, you could declare xxdebug, just as was shown above, but define
XXDPRINT somewhat differently:

#ifdef XXDEBUG
int xxdebug = 0;
#define XXDPRINT(v,msg,al,a2) \

if (xxdebug> (v» printf(msg,al,a2);
#endif

and then, in the code that checks for the condition:

.~sun ~ mlcrosystems
Revision A, of 24 April 1989

106 Writing Device Drivers

Asynchronous Tracing

#ifdef XXDEBUG
if (condition) xxdebug = 1;
#endif

Then to call XXDPRINT:

#ifdef XXDEBUG
XXDPRINT(O,"driver name ... \n",a,b);
#endif

One major disadvantage of using the kernel printf () is that its output doesn't
go through a device driver, and thus can't be paused with Control-S or redirected
to a file. It's possible, then, that printf () will overwhelm you with output.
There are a number of things that you can do if you run into this problem:

D If you haven't used multivalued print-control variables, then do so. This
gives you more control than you have with simple on/off print control, and
will allow you to reduce the amount to trace noise.

D You can use a debugger to set the global variable noprintf. This will
keep p r i n t f () 's output from being sent to the console~ but that output
will still go to a buffer where kernel error messages are kept before being
transferred to /var/adm/messages. You can examine the message
buffer at your leisure, in one of two different ways:

D From a user window, you can use dme s g.

D From kadb (or adb on /dev/kmem) you can typemsgbuf+l0/s.

D It's also possible to reconfigure your system so that it uses a hardcopy tenni­
nal as its console over a RS-232 line. Then, you won't lose any of the
printf () output.

D Best of all, you can get another machine and connect it to your machine over
a RS-232 line. Having done so, use tip to open a window on the second
machine as the console of the test machine. You can then use tip's record
feature (see the tip man page) to make a record of all the stuff that
p r i n t f () is sending to the test machine's console.

As mentioned above, there are occasions when timing problems forbid the use of
the printf statement. In these cases, it's a good idea to give up any attachment
that you might have to printf () statements and use kadb.

Or, if you prefer, it's possible to deal with timing problems by using kadb to
patch the noprintf variable, and then to check the message buffer to see
what's going on. Doing so:

D allows you to continue using the debugging code that you installed before
encountering the timing problem, and

~~sun ~ microsystems
Revision A. of 24 April 1989

kadb - A Kernel Debugger

Chapter 5 - Driver Development Topics 107

D presents you with a sequential list of the events in your driver, a list spelled
out in English phrases and including interrupt-level events.

Or, you can simply use kadb for everything.

NOTE kadb does not work with versions of the kernel earlier than 3.2.

kadb is an interactive debugger similar in operation to adb. kadb differs in
several key respects from adb. It runs as a standalone program under the PROM
monitor, rather than as a user process in user address space. And it allows you to
set breakpoints and single step in the kernel!

Thus, running a kernel under kadb is significantly different than running it
under adb -k. The k option to adb merely makes it simulate the kernel
memory mappings while kadb actually runs in the kernel address space. And
unlike adb, which runs at user level and as a separate process from the process
being debugged, kadb runs in system space as a co process. It shares not only
the kernel address space but its CPU supervisor mode as well.

kadb, for all intents and purposes, is a version of adb. It has the same com­
mand syntax and almost the same command set. Thus, you can see the kadb and
adb manual pages, as well as Debugging Tools for the Sun Workstation, for
more details on its use. Note, however, the following points of special interest to
driver developers:

D All interrupts are disabled while interacting with kadb (except non­
maskable interrupts). Thus, when using kadb to examine memory, the ker­
nel remains stable. However, while single stepped instructions are being
executed, the actual standing priority of the kernel is temporarily restored,
and interrupts can get dispatched, run and return. You won't notice unless
you have a break point set in the interrupt routine, which works just fine.

D kadb is installed so that, when a program is being run under it, an abort
sequence (LI-A) will transfer control not to the PROM monitor but to kadb
itself. Once in kadb, you can abort again and be transferred to the monitor.
The transfer is direct and immediate, so you can use the monitor to examine
control spaces (e.g. page and segment maps) which are not accessible from
kadb. The monitor c command will return you to kadb.

D kadb runs in the same virtual memory space as the kernel itself, and with
the CPU in supervisor mode. This means that kadb uses the kernel memory
maps when calculating virtual addresses, and that it can directly examine
kernel structures. This is in contrast to the situation with adb -k, where
software copies of the page table entries are used to map virtual addresses to
physical pages.

D kadb's memory view is almost the same as that resulting from adb
/vrnunix / dev /kmem. In other ways, however, kadb is much different.
To give just one example: on Sun-3 and Sun-3x machines, where users and
supervisors share the virtual address space, kadb allows the user to examine
the user virtual address space (this is not true with adb - k).

Revision A, of 24 April 1989

108 Writing Device Drivers

5.4. Device Driver Error
Handling

Error Recovery

D Finally, be aware that kadb - as a consequence of the way that adb works
- always does 32-bit memory reads. Even if you tell kadb to read a byte it
will read a long. This leads to a lack of control that can cause problems
when reading device registers. (This problem does not exist on the Srin386i.
On the Sun386i, when kadb is told to read a byte, it does. Within kadb,
the B command is used to read a single byte and the v command to write
one).

There are various types of errors: "expected" errors like those generated by
xxprobe () routines, transient errors in operations that can reasonably be
retried, fatal errors that require controlled shutdowns, and others. The kinds of
errors that you will face depends upon the kinds of drivers that you write and the
peculiarities of your devices; few generalizations can usefully be made.

To further complicate matters, the detection and treatment of errors varies greatly
from device to device. You should begin by carefully reading your device
specification manual to determine the error indications that can arise and the
responses that should be made when they do. Most devices have at least an error
bit in the controVstatus register, and usually more detailed error information is
available. Ideally, you should understand all potential errors, avoid those that
you can and recover from the rest. This ideal isn't always achievable, but try not
to leave any obvious holes. If you do nothing else, checkfor device errors and
use the kernel printf () function to report them to the system console.

There are various error reporting and management mechanisms available to the
driver developer. Most of them have already been mentioned as they've become
relevant; here they are collected and summarized:

It's difficult to generalize about error-recovery mechanisms, for they are largely
device specific. It's worth noting, however, that:

D Some errors are worth retrying and some aren't; the matter is entirely device
specific.

D Error-recovery routines should be able to run at the interrupt level. This is
because errors can occur either synchronously or aSynchronously with
respect to the dispatch of device commands, and, therefore, recovery rou­
tines must be callable from interrupt routines.

D If you do implement error recovery logic, you must do so consistently. The
data structure that contains retry-status information must be global, and must
be protected by critical sections. Error-recovery routines, like interrupt rou­
tines in general, must take special pains to protect data-structure integrity;
indeed, they must restore such integrity upon encountering errors they can't
recover from.

Revision A. of 24 April 1989

Error Returns

Error Signals

Error Logging

Kernel Panics

Chapter 5 - Driver Development Topics 109

There are three mechanisms by which driver routines can report errors up to their
calling routines. The first, of course, is by way of the values that the driver rou­
tines return to their callers. The second, and most important, is the error­
reporting mechanism based upon the buffer-header. This is the only mechanism
that can be used when returning errorsfrom xxstrategy (), xxstart (), and
xxintr (). (See the discussion of xxint;r () error reporting in the Swnmary of
Device Driver Routines chapter. Finally, it is possible to directly set the global
error register, u . u _error, from routines in the top half of the driver.

It is sometimes desirable to have a driver send a software interrupt to the process
or processes. It's possible, for example, that a device will fail in an unrecover­
able fashion - in this case it's perhaps a good idea to signal the user processes,
rather than merely returning an extraordinary error code. It's also possible
(though rare) for a driver to encounter serious errors from which it can recover by
restarting the device - user processes may also need to be notified in this case.
The kernel psignal () and gsignal () routines can signal either a single
process or all the processes in a given process group.

When you use the kernel printf () statement to report errors to the console,
those errors are also placed into a system error-message buffer accessible to the
dmesgo daemon. dmesg can be, and typically is, run every 30 minutes by the
crontab daemon, for the purpose of appending the messages in the buffer to
/var / adm/messages. Note that the message buffer is small, and that if a lot
of entries are being written into it, some of them will get lost before being
transferred into /var / adm/messages.

The most unequivocal way of dealing with an error is to panic when you get it.
The pani c () routine is provided to help you do so in a somewhat controlled
fashion - panic () is called only on unresolvable fatal errors. It prints "panic:
mesg" on the console, and then reboots. (Or, if you're running under the
debugger, it transfers control to kadb). panic () also keeps track of whether
it's already been called, and avoids attempts to sync the disks (by flushing all
pending write buffers) if it has, since this can lead to recursive panics.

The final production version of a driver should call panic () only when
"impossible" situations are encountered; lesser errors should be recovered from.
During debugging, though, panic () can be used to implement a passable assert
mechanism.

:/f:ifdef XXDEBUG
if (inconsistent condition)

panic("Assertion Failed: ... ");
:If:endif

(It's possible to write a fancier assert mechanism, for example by having an
ASSERT macro which calls an assert () routine which prints error context
infonnation and then calls pani c () , but this minimal hack will perhaps do).

Revision At of 24 Apri11989

110 Writing Device Drivers

5.5. System Upgrades

5.6. Loadable Drivers

Finally, note that in cases where it's very important to halt the system immedi­
ately after detecting an inconsistent condition, kadb can be used. The driver
code can test for the inconsistent condition, and then set a debugging variable:

[

if (inconsistent conditio.n)
, junk = 1;]
kadb can then be used to set a breakpoint at the machine instruction generated
from the assignment to junk.

System upgrades generally have minimal effects on user-written device drivers.
The changes that are necessary are rare and release specific.

Some changes must be made if user-written drivers are to work. with new release
software. In Release 2.0, for example, there was a minor change in one of the
bus-interface structures. There wasn't much involved in adapting user-written
drivers, but it had to be done.

In other cases, changes are optional. When VMEbus machines were introduced,
for example, drivers had to be adapted to run on them; however, it was possible
to upgrade Multibus machines without rewriting user-written drivers.

In any case, any release upgrades that imply changes - either optional or man­
datory - to user-written device drivers will be documented in the System Sum­
mary and Change Notes for the release in question.

The Sun386i supports 10 ad able drivers. This feature allows you to add a device
driver to a running system without rebooting the system or rebuilding the kernel.
The load able drivers feature reduces time spent on driver development, and
makes it easier for users to install drivers from other vendors.

This section explains how to convert a non-Ioadable driver to be a loadable
driver.

Conversion of a non-Ioadable driver to a loadable driver requires ~ initialization
or "wrapper" module to be written. The module z z i ni t . c below is an exam­
ple of a wrapper module that contains the same kind of infonnation ordinarily
provided by a config file and by the linker. Almost all wrappers are identical to
the example below. Usually, only the actual structure initialization values are
different.

The following module is a typical example of an initialization routine for a driver
named z z that has one controller and one device on that controller.

#include <sys/types.h>
#include <sys/conf.h>
#include<sys/buf.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sundev/mbvar.h>
#include <sun/autoconf.h>

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 111

iinclude <sun/vddrv.h>

extern zzopen(), nulldev(), zzstrategy(), zzdump();
extern zzsize(), zzread(), zzwrite(), zzioctl();
extern zzint(), nodev(), seltrue();

extern struct rob_driver zzcdriver; / * defined in driver * /

1*
* Driver block device entry points (normally in <sun/ conf . c»
*1
struct bdevsw zzbdev - {

zzopen, nulldev, zzstrategy, zzdump, zzsize, 0
} ;

1*
* Driver character device entry points (normally in <sun/ conf . c»
*1

struct cdevsw zzcdev = {

} ;

1*

zzopen, nulldev, zzread, zzwrite, zzioctl, nodev,
nulldev, seltrue, 0

* Controller structure (normally in ioconf. c) (see <sundev/robvar. h»
*1
struct rob_ctlr zzcctlr[] = {

&zzcdriver, 0, 0, (caddr_t) OxOOOOlOOO, 2, 6,
SP_ATMEM, 0

} ;

1*
* Device structure (normally in ioconf . c) (see <sundev /robvar. h»
*1
struct rob_device zzcdevice[] = {

&zzcdriver, 0, 0, 0, (caddr_t) OxOOOOOOOO, 0, 0, OxO,
0, OxO

} ;

1*
* Thefollowing structure is defined in <sun/vddrv. h>

*
* If the number of controllers is 0, then the address of the
* controller structure array must be NULL. Similarly, if the number
* of devices is 0, then the address of the device structure array
* must be NULL. The bdevsw or cdevsw entries can be NULL if there
* is no block or character device for the driver.
*1
struct vdldrv vd

VDMAGIC_DRV,
"zzdrv",
zzcctlr,

{

/ * Type of module. This one is a driver. * /
/* Name of the module. * /
/ * Address of the mb _ ctlr structure array * /

Revision A, of 24 April 1989

112 Writing Device Drivers

&zzcdriver,
zzcdevice,
1,

/ * Address of the mb _driver structure * /
/ * Address of the mb _device structure array * /
/ * Number of controllers * /

1, / * Number of devices * /
&zzbdev,
&zzcdev,

/ * Address of the bdevsw entry * /
/ * Address of the cdevsw entry * /

0,
0,

/ * Block device number. 0 means let system choose. * /
/ * Char. device number. 0 means let system choose. * /

} ;

/*
* This is the driver entry point routine. The name of the default entry point
* is xxxinit. It can be changed by using the "-entry" command to modload.

*
* inputs: function code - VDLOAD, VDUNLOAD, or VDSTAT.

* pointer to kernel vddrv structure/or this module.
* pointer to appropriate vdioctl structure for this function.
* pointer to vdstat structure (for VDSTAT only)

*
* return: 0 for success. VDLOAD function must set vdp->vdd _ vdtab.
* non-zero error code (from errno.h) if error.

*
*/

xxxinit(function_code, vdp, vdi, vds)
unsigned int function_code;
struct vddrv *vdp;
addr t vdi;
struct vdstat *vds;

switch (function code)
case VDLOAD:

vdp->vdd_vdtab
return (0);

case VDUNLOAD:

(struct vdlinkage *)&vd;

return (unload (vdp, vdi»;
case VDSTAT:

return (0);
default:

return (EIO);

static unload(vdp, vdi)
struct vddrv *VdPi
struct vdioctl unload *vdii

. extern struct buf zztabi

struct buf *dp;

dp = &zztab;
if (dp->b_actf)

Revision A, of 24 April 1989

Chapter 5 - Driver Development Topics 113

ret urn (-1); / * The driver still has an active request. * /

/ * The driver can do any device shutdown stuff that it needs to do * /

return(O);

Your driver routines can be placed in the wrapper module if you like. If your
driver is big, it is more appropriate to break it into several modules.

If you decide to place your driver in the wrapper module, then the driver can be
compiled with the following command line:

example# cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c

However, if the driver consists of more than one module, then you must use the
link editor, Id(l), with the -r option to preserve relocation information. For
example you might type:

example# cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c

example# cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzl.c

example# cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zz2.c

example# ld -r -0 zz.o zzinit.o zzl.o zz2.0

Thus the object module can be created either by the cc(1) command, when the
driver resides in one module, or by the Id(1) command, when the driver resides
in several modules.

In either case the resulting object file (z z ini t . 0 or z z . 0) is a normal COFF
file and can then be used with the modload command. 1 The driver is just like

1 "COFF" = Common Object File Fonnat. a UNIX object-file standard to which Sun386i assembler and
link-editor output files (nonnally a. out) comply. See coff(5).

Revision A. of 24 April 1989

114 Writing Device Drivers

any other program, except its text segment starts somewhere in the range
OxFDOOOOOO to OxFEOOOOOO.

Revision A, of 24 April 1989

