4 sun’

microsystems

Network Programming

Part Number: 800-1779-10
Revision A, of 9 May 1988

Sun™, Sun-2™, Sun-3™, and Sun-4™ are trademarks of Sun Microsystems,
Incorporated. Sun Workstation® is a registered trademark of Sun Microsys-
tems, Inc.

Multibus is a trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.
VMEDbus is a trademark of Motorola, Incorporated.
VAX is a trademark of Digital Equipment Corporation.

IBM-PC and IBM 370 are trademarks of International Business Machines Cor-
poration.

Cray is a trademark of Cray Research.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations

Sun equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause
interference to radio communications. It has been tested and found to comply
with the limits for a Class A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of Sun
equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Network Services

The Major Network Services
Note: ND Elimination

1.1. Network Programming Manual Overview
1.2. Sun’s Network File System

Computing Environments

Example NFS usage

Example 1: Mounting a Remote Filesystem

O 00 00 3 & L L & W

Example 2: Exporting a Filesystem
Example 3: Administering a Server Machine
NFS Architecture
Transparent Information Access

—
o

[
o

[am—y
o}

Different Machines and Operating Systems
Easily Extensible

[y
o

y—
ek

Ease of Network Administration
Reliability
High Performance

[
[

fa—y
ek

S
)

The Sun NFS Implementation

The NFS Interface ..

The NFS and the Mount Protocol

A Stateless Protocol

Note: Non-NFS Network Operations

1.3. The Portmapper

Port Registration

—iii -

Contents — Continued

1.4. The Yellow Pages Database Service
What Are The Yellow Pages?
Yellow Pages Maps ...

Yellow Pages Domains

Servers and Clients

Masters and Slaves

Naming
Data Storage

Servers
Clients
Default YP Files
Hosts

Passwd

Others
Changing your passwd
1.5. The Network Lock Manager
The Locking Protocol
1.6. The Network Status Monitor

PART ONE: Network Programming

Chapter 2 rpcgen Programming Guide

2.1. The rpcgen Protocol Compiler ...
Converting Local Procedures into Remote Procedures ...

Generating XDR Routines

The C-Preprocessor

rpcgen Programming Notes

Timeout Changes
Handling Broadcast on the Server Side

Other Information Passed to Server Procedures ..o,

RPC Language

iv.

22
22
22
23
23
23
24
24
24
25
25
25
26
26
26
26
29
30

31

35
35
36
41
45
46
46
47
47
48

Contents — Continued

Definitions 48
Structures 49

Unions 49
ENumerationseeeesscossossnens 50
Typedef 50
L8003 4 137 1 11 £ 50
Programs 51
Declarations 51

Special Cases 53
Chapter 3 Remote Procedure Call Programming Guide ... 57
Layers of RPC 57

The RPC Paradigm 59

3.1. Higher Layers of RPC 59
Highest Layer 59
Intermediate Layer 61
Assigning Program Numbers 63
Passing Arbitrary Data Types 65

3.2. Lowest Layer of RPC 68
More on the Server Side ... 68
Memory Allocation with XDR 71

The Calling Side 72

3.3. Other RPC Features 74
Select on the Server Side 74
Broadcast RPC 75
Broadcast RPC Synopsis 76
Batching 76
Authentication 79
UNIX Authentication 80

DES Authentication 83

Using Inetd ..o 86

3.4. More Examples 86
VErsions ..o 86

Contents — Continued

TCP

Callback Procedures .

Chapter 4 External Data Representation: Sun Technical Notes

Justification
A Canonical Standard

The XDR Library

4.1. XDR Library Primitives

Number Filters

Floating Point Filters

Enumeration Filters

No Data

Constructed Data Type Filters
Strings

Byte Arrays

Arrays

Opaque Data

Fixed Sized Arrays

Discriminated Unions

Pointers

Non-filter Primitives

XDR Operation Directions

XDR Stream Access

Standard I/O Streams

Memory Streams

Record (TCP/IP) Streams

XDR Stream Implementation

The XDR Object
4.2. Advanced Topics

Linked Lists

vi

101
103
103
104
105
105
105
105
106
107
109
110
110
112
114
114
114
114
115
115
117
117
118
118

Contents — Continued

PART TWO: Protocol Specifications 123

Chapter 5 External Data Representation Standard: Protocol

SPECHICALON ... e eeee e 127

5.1. Status of this Standard ... ness e 127
5.2. Introduction 127
Basic Block Size 127

5.3. XDR Data Types 128
Integer 128
Unsigned Integer 128
Enumeration 129
Boolean 129
Hyper Integer and Unsigned Hyper Integer 129
Floating-point 129
Double-precision Floating-point 130
Fixed-length Opaque Data 131
Variable-length Opaque Data 131
String 132
Fixed-length Array 132
Variable-length Array 133
Structure 133
Discriminated Union 134

Void 134
Constant 135
Typedef 135
Optional-data 136
Areas for Future Enhancement 137

5.4, DISCUSSIONooooooooeoeeeeeee oot seessnsssvessssesssssseoss 137
Why a Language for Describing Data? ... 137

Why Only one Byte-Order for an XDR Unit? ... 137

Why does XDR use Big-Endian Byte-Order? 137

Why is the XDR Unit Four Bytes Wide? 137

Why must Variable-Length Data be Padded with Zeros? ... 138

—vii—

Contents — Continued

Why is there No Explicit Data-Typing? 138

5.5. The XDR Language Specification 138
Notational Conventions 138
Lexical Notes 138
Syntax Information 139
Syntax Notes 140

5.6. An Example of an XDR Data Description 141
5.7. References 142
Chapter 6 Remote Procedure Calls: Protocol Specification ... 145
6.1. Status of this Memo 145
6.2. Introduction 145
Terminology 145

The RPC Model 145
Transports and Semantics 146
Binding and Rendezvous Independence 147
Authentication 147

6.3. RPC Protocol Requirements .. 147
Programs and Procedures 148
Authentication 148
Program Number Assignment 149

Other Uses of the RPC Protocol 149
Batching 150
Broadcast RPC 150

6.4. The RPC Message Protocol . 150
6.5. Authentication Protocols 153
Null Authentication 153
UNIX Authentication 153

DES Authentication 154
Naming 154

DES Authentication Verifiers 154
Nicknames and Clock Synchronization 155

DES Authentication Protocol (in XDR language) 156

— viil —

Contents — Continued

Diffie-Hellman Encryption
6.6. Record Marking Standard

6.7. The RPC Language

An Example Service Described in the RPC Language ...

The RPC Language Specification

Syntax Notes

6.8. Port Mapper Program Protocol

Port Mapper Protocol Specification (in RPC Language) ...

Port Mapper Operation

6.9. References

Chapter 7 Network File System: Version 2 Protocol
Specification

7.1. Status of this Standard

7.2. Introduction ..o,

Remote Procedure Call ...

External Data Representation

StatelesSs SCIVETS .o oo

7.3. NFS Protocol Definition

File System Model

RPC Information

Sizes of XDR Structures

Basic Data Types

stat

fLype
fhandle

timeval ...

fattr

sattr

filename

path
attrstat ...

(o B 1% afe) o8 o o 1= OO

—-1X -

157
158
159
159
160
160
160
161
162
163

167
167
167
167
167
168
168
168
169
169
169
170
171
171
172
172
173
173
173
174
174

Contents — Continued

diropres

Server Procedures

Do Nothing

Get File Attributes

Set File Atributes

Get Filesystem Root

Look Up File Name

Read From Symbolic Link
Read From File

Write to Cache

Write to File

Create File

Remove File

Rename File

Create Link to File

Create Symbolic Link

Create Directory

Remove Directory

Read From Directory

Get Filesystem Attributes
7.4. NFS Implementation Issues

Server/Client Relationship

Pathname Interpretation

Permission Issues

Setting RPC Parameters

7.5. Mount Protocol Definition
Introduction

RPC Information

Sizes of XDR Structures

Basic Data Types

fhandle

fhstatus

dirpath

174
174
175
175
175
176
176
176
176
177
177
177
177
178
178
178
179
179
179
180
180
181
181
181
182
182
182
183
183
183
183
183
183

Contents — Continued

TLAMIE . ..oeeereeeeeereacsseresemeresassnsacssasmssesersssasssseesesesssssansssssessassmtensasssenessssasssanssesssses

Server Proceduresoooooooeoeeeeeeeesee,
Do Nothing
Add MOount ENtryoooovcoocoveeoeeeeee e
Return Mount Entries
Remove Mount Entry
Remove All Mount Entries

Return Export List

PART THREE: Socket-Based IPC i

Chapter 8 A Socket-Based Interprocess Communications
Tuatorial ..o

8.1. GOals ...
8.2. Processes
8.3. Pipes .. eveeeeesee st
8.4. SOCKEtpairs ..o, st e
8.5. Domains and Protocols
8.6. Datagrams in the UNIX Domain
8.7. Datagrams in the Internet Domain ...

8.8. Connections e st et et st es s esees s seereeeen e

8.9. Reads, Writes, ReCVS, €1C. ...

B.10. CROICESooooooeeeeeece e s seensseeo .
8.11. WHAt t0 dO NEXLooooeeee e ssens e e sosssss s s

Chapter 9 An Advanced Socket-Based Interprocess
Communications Tutorial ...

0.1, BASICS oo oo

SOCKEL TYPES ..o

Socket Creation ereeere e st reeeseen s et
Binding Local Names ...

—xi-

184
184
184
184
185
185
185

187

191
191
192
193
196
198
200
203
206
215
217
217

221
222
222
223
224

Contents — Continued

Connection Establishment

Data Transfer
Discarding Sockets
Connectionless Sockets
Input/Output Multiplexing
9.2. Library Routines
Host Names
Network Names

Protocol Names

Service Names

Miscellaneous
9.3. Client/Server Model
Servers
Clients
Connectionless Servers
9.4. Advanced Topics
Out Of Band Data
Non-Blocking Sockets
Interrupt Driven Socket 1/O
Signals and Process Groups
Pseudo Terminals
Selecting Specific Protocols
Address Binding
Broadcasting and Determining Network Configuration
Socket Options

inetd

Chapter 10 Socket-Based IPC Implementation Notes ...
Overview

Goals

10.1. Memory, Addressing

Address Representation

Memory Management

— xii—

225
227
228
228
230
232
233
233
234
234
235
237
237
240
241
244
244
246
246
247
248
250
251
253
256
257

261
262
262
262
263

Contents — Continued

10.2. Internal LAYEIING ... icssssmsinssssneessssssssssssseesssssessssssasssnans 266
SOCKEL LLAYETooooooooeeeoesssseaeseusessessasessssssssssssssssss s st sssss s esssssssesesnsseee 267
SOCKEL SLALEoooooo oo sremsmsarssmssssssssessssssssesssessssos s s ssssssssessssssssssssssssssseess 268
Socket Data QUEUESoeecemmmmmreessssassrsess s sesessesesseesessssissssesssssssessseo 269
Socket Connection Queuing ... 270
ProtoCol LAYET(S)ooooooooeeece e evssamssnssssnessneen 270
Network-INerface LaAYET ...t e 272

10.3. Socket/ProtoCol INETFACEcooeerrrrsesneeresssenineerscsene s senssrscossiansessess 275

10.4. Protocol to Protocol Interface 278

PE_OUEPUL () e ctesssssnsetmsssssssssorcssos st o 279
PE_INPULE () oot s e 279
PT_CELINPUL () e cencnccmnesssnnsss s s s s s 280
PX_ctloutput () . i 280

10.5. Protocol/Network-Interface Interface ... 281
Packet TranSmiSSiONcoeemmneeesieessnsssanessens e 281
Packet Reception e sssssness 281

10.6. Gateways and Routing Issues 282
Routing Tables e sesarre e 282
Routing Table Interface ... 284
User Level Routing POLICIES ... 285

10.7. RAW SOCKELSooooooooeeerceer e ssssssssssssssserassssess 285
Control BIOCKS ... e snrese s 285
INPUL PIOCESSINGoooooeoceeceere e sssssnsns 280
Output PrOCESSINGcccccocvmrere e sresssssssessene e 287

10.8. Buffering, Congestion CONLIOL ... s s 287
MemOTry MANAZEINCIIL ..o eresssorieissssssssssesssessssssseses s s ssssaon 287
Protocol Buffering Policies .. 287
QUEUE LAMILING ..o ssssse s sns s 288
Packet Forwarding eeers s st s e e s anssen e 288

10.9. OutofBand Data ... 288

10.10. Acknowledgementscomeurneneronnneen e 289

10.11. References et aea e e e oA e e 289

IARX et ses e en s st e e 291

— Xiil —

Tables

Table 1-1 MOUNT: Remote Procedures, Version 1 17
Table 3-1 RPC Service Library Routines 60
Table 9-1 C Run-time Routines 235

Table 9-2 ruptime Output 241

— XV —

Figures

Figure 1-1 An Example NFS Filesystem Hierarchy 9
Figure 1-2 Mount and NES SEIVETS ... eeeeeeeesseseommmessan 15
Figure 1-3 Typical Portmapping Sequence 21
Figure 1-4 Architecture of the Locking Service ..., 28
Figure 3-1 Network Communication with the Remote Procedure Call 59
Figure 8-1 Use of a Pipe 193
Figure 8-2 Sharing a Pipe between Parent and Child 195
Figure 8-3 Use of a Socketpair 196
Figure 8-4 Sharing a Socketpair between Parent and Child ... 198
Figure 8-5 Reading UNIX Domain Datagrams 200
Figure 8-6 Sending a UNIX Domain Datagrams 201
Figure 8-7 Reading Intemet Domain Datagrams 203
Figure 8-8 Sending an Internet Domain Datagram 204
Figure 8-9 Initiating an Internet Domain Stream Connection ... 206

Figure 8-10 Accepting an Internet Domain Stream Connection ...

Figure 8-11 Using select () to Check for Pending Connections
Figure 8-12 Establishing a Stream Connection st
Figure 8-13 Initiating a UNIX Domain Stream Connect

Figure 8-14 Accepting a UNIX Domain Stream Conn 1
Figure 8-15 Varieties of Read and Write Commands rE

Figure 9-1 Remote Login Client Code

— Xvii —

Figures — Continued

Figure 9-2 Remote Login Server

Figure 9-3 rwho Server

Figure 9-4 Flushing Terminal I/O on Receipt of Out Of Band Data

Figure 9-5 Use of Asynchronous Notification of I/O Requests

Figure 9-6 Use of the SIGCHLD Signal
Figure 9-7 Creation and Use of a Pseudo Terminal

— Xviii -

237
242
245
247
248
249

Network Services

Network Services

The Major Network Services

NOte: N Bl atiOm e

1.1. Network Programming Manual Overview

1.2. Sun’s Network File System ...

Computing Environments

Example NFS usage

Example 1: Mounting a Remote Filesystem ...

Example 2: Exporting @ FIleSyStem ...

Example 3: Administering a Server Machine
NEFS ArchiteCture ...

Transparent INfOrmation ACCESSoooeeoooereeeesoeeerssereson

Different Machines and Operating Systems

Easily Extensible
Ease of Network Administration ...
REUADIILY .ooooooooooeeeeeeeeeeeeres e someeesnesee e
High PerfOrManCeooeoooeeooeeeeoeessoeeeeoseesssoss s

The Sun NFS Implementation ..
The NFS Interface et s e
The NFS and the Mount Protocoloooommoeseriisr,
Note: Non-NFS Network Operations _...........ccoccccooooooooocoocesooeses oo
1.3. The Portmapper ... ceeetemeeieninnrearen
POIT REGISITAONo ceeeeee s sesse e sse s snee e

O 00 00 N & L Lt A

— et e ek e el bmd ek e ek e ek e
O O A AN === =0 O O O

20

1.4. The Yellow Pages Database Service
What Are The Yellow Pages?

Yellow Pages Maps

Yellow Pages Domains ...

Servers and Clients

Masters and Slaves

Data Storage

Servers

Clients

Default YP Files

Hosts

Passwd

Others

Changing your passwd

1.5. The Network Lock Manager

The Locking Protocol

1.6. The Network Status Monitor

22
22
22
23
23
23
24
24
24
25
25
25
26
26
26
26
29
30

Terminology

Network Services

This guide gives an overview of the network services available in the Sun 4.0
release. To appreciate the design of these services, it’s necessary to see that
SunOS is structurally a network UNIX system, and is designed to evolve as net-
work technology changes.

SunOS originally diverged from the 4.2BSD UNIX system, a system that already
strained at the limits of the UNIX system’s original simplicity of design. It was
with 4,2BSD that many of the network services found in SunOS were first intro-
duced. Fortunately, the Berkeley designers found alternatives to wedging every-
thing into the kemel. They implemented network services by offloading certain
jobs to specialized daemons (server processes) working in close cooperation with
the kernel, rather than by adding all new code to the kernel itself. SunOS has
continued this line of development. Its expanding domain of network services is
uniformly built upon a daemon (server) based architecture. This is true of the
most fundamental network services — the Network File System (NFS)! and the
portmapper — as well as of basic system services like the network naming ser-
vice (The Yellow Pages: YP), the Remote Execution Facility (REX), the Net-
work Lock Manager, and the Status Monitor.

A machine that provides resources to the network is called a “server”, while a
machine that employs these resources is called a “client”. A machine may be
both a server and a client, and when NFS resources (files and directories) are at
issue, often is. A person logged in on a client machine is a “user” , while a pro-
gram or set of programs that run on a client is an “application” . There is a dis-
tinction between the code implementing the operations of a filesystem, (called
“filesystem operations”) and the data making up the filesystem’s structure and
contents (called “filesystem data”).

Network services are added to SunOS by means of server processes that are
based upon Sun’s RPC (Remote Procedure Call) mechanism. These servers are
executed on all machines that provide the service. Each server communicates
with the kernel proper and with its fellows on other machines as necessary to get
its job done. Sun daemons differ significantly from those that were inherited
from Berkeley in that they are all based on RPC. As a consequence, they
automatically benefit from the services provided by RPC, and the External Data

1 The NFS is somewhat of a special case here because— at least in SunOS—much of its code is in the
kemnel.

sun 3 Revision A, of 9 May 1988

4 Network Programming

The Major Network Services

Representation (XDR) that it, in turn, is built upon — for example, the data por-
tability provided by XDR and RPC’s authentication system.

Anything built with RPC/XDR is automatically a network application, as is any-
thing that stores data in NFS files, even if it doesn’t use RPC. Furthermore,
insofar as network applications can presume the functionality of other network
applications and call upon their services, all network applications are network
services as well. The XDR/RPC/NFS environment then, is inherently extensible.
New network services can be easily added by building upon the foundation
already in place. In SunOS, then, network services are analogous to UNIX com-
mands — anyone can add one, and when they do they are effectively extending
the “system”,

The Remote Procedure Call (RPC) facility is a library of procedures that provide
a means whereby one process (the caller process) can have another process (the
server process) execute a procedure call, as if the caller process had executed the
procedure call in its own address space (as in the local model of a procedure
call). Because the caller and the server are now two separate processes, they no
longer have to live on the same physical machine.

The External Data Representation (XDR)is a specification for the portable data
transmission standard. Together with RPC, it provides a kind of standard 1/0
library for interprocess communication. Thus programmers now have a stand-
ardized access to sockets without having to be concemed about the low-level
details of socket-based IPC.

The Network File System (NFS), is an operating system-independent service
which allows users to mount directories, even root directories, across the net-
work, and then to treat those directories as if they were local. There is also an
option for a secure mount involving DES authentication of user and host—for
more information about it, see the Secure Networking Features chapter of Secu-
rity Features Guide.

The portmapper is a utility service that all other services use. It’s a kind of regis-
trar that keeps track of the correspondence between ports (logical communica-
tions channels) and services on a machine, and provides a standard way for a
client to look up the port number of any remote program supported by the server.

Sun’s Yellow Pages (YP) is a network service designed to ease the job of admin-
istering the large networks that NFS encourages. The YP is a replicated, read-
only, database service. Network file system clients use it to access network-wide
data in a manner that is entirely independent of the relative locations of the client
and the server. The YP database typically provides password, group, network,
and host information.

As part of its System V compatibility program, Sun now supports System-V
(SVID) compatible advisory file and record locking for both local and NFS
mounted files. User programs simply issue 1ockf () and fcntl () system
calls to set and test file locks — these calls are then processed by Network Lock
Manager daemons, which maintain order at the network level, even in the face of
multiple machine crashes.

sun Revision A, of 9 May 1988

Chapter 1 — Network Services 5

Note: ND Elimination

NOTE

1.1. Network Programming
Manual Overview

@

The lock-manager daemons are able to manage machine crashes because they are
based upon a general purpose Network Status Monitor. This monitor provides a
mechanism by which network applications can detect machine reboots and
trigger application-specific recovery mechanisms. NFS is therefore equipped
with a flexible fault-tolerant recovery capability.

There are other network services — NeWS and REX? are two obvious examples
— and there are many others that are certainly services in the broad sense. This
section, however, is intended as an introduction, and it covers only the funda-
mental services noted above.

This release is the first that supports diskless Sun workstations entirely by way of
the NFS protocol. Previous releases depended on Sun’s proprietary ND protocol
to support diskless machines.

The elimination of ND made a number of improvements possible:

o Network administration is easier. It’s no longer necessary to guess at the
disk utilization appropriate to a diskless client when installing or
reconfiguring it.

o For this same reason, and because diskless clients now have root file systems
on their servers, rather than ND partitions, individual systems can be more
easily tuned for maximum efficiency.

o The system provides better support for heterogeneity. Because all client
filesystem resources — the root filesystem, swap, and home directories —
exist on the server as normal directories and files, the server can more easily
support clients with different architectures.

o The network software no longer contains proprietary code.

In order to serve diskless clients, NFS servers now allow client root processes
access to the client root file systems.

This Network Programming manual is divided into three parts.

PART ONE, which you are now reading, focuses on Sun’s network programming
mechanisms. It includes:

o This Network Services overview, which attempts to introduced the funda-
mental network services without dealing with any protocol or implementa-
tion related issues.

o The rpcgen Programming Guide, which introduces the rpcgen protocol
compiler and the C-like language that it uses to specify RPC applications
and define network data. In almost all cases, rpcgen will allow network
applications developers to avoid the use of lower-level RPC mechanisms.

2 These, however, are not fundamental network services, in the same sense as RPC or the NFS. REX, for
example, cannot be guaranteed to be portable to a non-UNIX environment. This is true because the
executability of a program depends on many environmental factors — from machine architecture to operating-
system services — that are not universally available.

Su g Revision A, of 9 May 1988

microsyst

6 Network Programming

1.2. Sun’s Network File
System

o The Remote Procedure Call Programming Guide, is intended for program-
mers who wish to understand the lower-level RPC mechanisms. Readers are
assumed to be familiar with the C language and to have a working
knowledge of network theory.

o The External Data Representation: Sun Technical Notes, which introduces
XDR and explains the justification for its “canonical” approach to network
data interchange. This section also gives Sun implementation information
and a few examples of advanced XDR usage.

PART TWO includes a number of number of protocol specifications. One of
these, the External Data Representation Protocol Specification, has been
accepted (as of the date of this printing) as an ARPA RFC (Request for Com-
ments). These protocol specifications include:

o The External Data Representation Protocol Specification, which includes a
complete specification of XDR data types, a discussion of the XDR approach
and a number of examples of XDR usage.

o The Remote Procedure Call Protocol Specification, which includes a discus-
sion of the RPC model, a detailed treatment of the RPC authentication facili-
ties and a complete specification of the portmapper Protocol.

o The Network File System: Version 2 Protocol Specification, which includes
a complete specification of the Mount Protocol, as well as the NFS
specification itself.

PART THREE documents Berkeley style, socket-Based Inter-Process Communi-
cations. In includes:

o A Socket-Based Interprocess Communications Tutorial, which assumes little
more that basic networking concepts and introduces socket-based IPC.
Includes many examples.

o An Advanced Socket-Based Interprocess Communications Tutorial, which
takes up where the Tutorial leaves off.

o Berkeley-Style IPC Implementation Notes, which describes the low-level
networking primitives (¢.g. accept(), bind () and select()) which ori-
ginated with the 4.2BSD UNIX system. This document is of interest pri-
marily to system programmers and aspiring UNIX gurus.

Sun’s Network File System is a facility for sharing files in a heterogeneous
environment of machines, operating systems, and networks. Sharing is accom-
plished by mounting a remote filesystem, then reading or writing files in place.
The NFS is open-ended, and users are encouraged to interface it with other sys-
tems.

The NFS was not designed by extending SunOS onto the network — such an
approach was considered unacceptable because it would mean that every com-
puter on the network would have to run SunOS. Instead, operating-system
independence was taken an an NFS design goal, along with machine indepen-
dence, crash recovery, transparent access and high performance. The NFS was
thus designed as a network services, and not as a distributed operating system.

sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 7

Computing Environments

As such, it is able to support distributed applications without restricting the net-
work to a single operating system.

Sun’s implementation of the NFS is integrated with the SunOS kemel for reasons
of efficiency, although such close integration is not strictly necessary. Other ven-
dors will make different choices, as dictated by their operating environments and
applications. And because of NFS’s open design, all these applications will be

able to work together on a single network.

The traditional timesharing environment looks like this:

Mainframe

terminal 1

terminal2

terminal3

terminal4

Revision A, of 9 May 1988

8 Network Programming

The major problem with this environment is competition for CPU cycles. The
workstation environment solves that problem, but requires more disk drives. A
network environment looks like this;

workstation2 workstation3 workstation4

Network

workstation1 server

0 88—

Sun’s goal with NFS was to make all disks available as needed. Individual
workstations have access to all information residing anywhere on the network.
Printers and supercomputers may also be available somewhere on the network.

Example NFS usage This section gives three examples of NFS usage.

Example 1: Mounting a Remote Suppose your machine name is client, that you want to read some on-line

Filesystem manual pages, and that these pages are not available on your server machine,
named server, but are available on another machine named docserv. Mount
the directory containing the manuals as follows:

client# /usr/etc/mount docserv:/usr/man /usr/man

Note that you have to be superuser in order to do this. Now you can use the man
command whenever you want. Try running the mount -p command (on
client) after you’ve mounted the remote filesystem. Its output will look

something like this:
server:/roots/client / nfs rw,hard 00
server:/usr /usr nfs ro 00
server: /home/server /home/server nfs rw,bg 00
server:/usr/local /usr/local nfs ro,soft,bg 0 0
docserv:/usr/man /usxr/man nfs ro,soft,bg 0 0

You can remote mount not only filesystems, but also directory hierarchies inside
filesystems. In this example, /usr/man is not a filesystem mount point — it’s
just a subdirectory within the /usr filesystem. Here’s a diagram showing a few
key directories of the three machines involved in this example. Ellipses
represent machines, and NFS-mounted filesystems are shown boxed. There are

@ sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 9

Figure 1-1

five such boxed directories, corresponding to the five lines shown in the

mount -p output above. The docserv:/usr/man directory is shown
mounted as the /usr /man directory on client, as it would be by the mount
command given above.

An Example NFS Filesystem Hierarchy

A

/1ib /usr /etc /1ib /usr
client /\
/usr/bin /usr/man
/ /home/server{ | /usr
/usr/bin /usr/local /usr/man

Example 2: Exporting a
Filesystem

Suppose that you and a colleague need to work together on a programming pro-
ject. The source code is on your machine, in the directory /usr/proj. It
doesn’t matter whether your workstation is a diskless node or has a local disk.
Suppose that after creating the proper directory your colleague tried to remote
mount your directory. Unless you have explicitly exported the directory, your
colleague’s remote mount will fail with a “permission denied”” message.

To export a directory, first become superuser and then edit the /etc/exports
file. If your colleague is on a machine named cohort, then you need to run
exportfs (8) (after putting this line in /etc/exports):

/usr/proj -access=cohort

If no explicit access is given for a directory, then the system allows anyone on
the network to remote mount your directory. By giving explicit access to

@? sun Revision A, of 9 May 1988

microsystems

10 Network Programming

Example 3; Administering a
Server Machine

NFS Architecture

Transparent Information Access

Different Machines and
Operating Systems

»é S un Revision A, of 9 May 1988

QS

cohort, you have denied access to others. (For more details about the
/etc/exports, see the exports (5) man page). The NFS mount request
server mountd (see The NFS Interface, below) reads the /et c/xtab file
whenever it receives a request for a remote mount. Now your cohort can remote
mount the source directory by issuing this command:

cohort# /etc/mount client:/usr/proj /usr/proj

This, however, isn’t the end of the story, since NFS requests are also checked at
request time. If you do nothing, the accesses that you’ve established in your
/etc/exports file will stay in effect, but you (and your programs) are free to
change them at any time with the export fs command and system call.

 Since both you and your colleague will be able to edit files on /usr/proj,it

would be best to use the sccs source code control system for concurrency con-
trol.

System administrators must know how to set up the NFS server machine so that
client workstations can mount all the necessary filesystems. You export filesys-
tems (that is, make them available) by placing appropriate lines in the
/etc/exports file. Hereis a sample /etc/exports file for a typical
server machine:

/ -access=systems

/exec -access=engineering: joebob:shilling
/usr -access=engineering

/home/server —-access=engineering

/home/local.sun2 -access=engineering:athena
/home/local.sun3 -access=engineering

Machine names or netgroups, such as staff (see netgroup(5)) may be
specified after the filesystem, in which case remote mounts are limited to
machines that are a member of this netgroup. For the complete syntax of the
/etc/exports file, see exports (5). Atany time, the system administrator
can see which filesystems are remote mounted by executing the showmount
command.

Users are able to get directly to the files they want without knowing the network
address of the data. To the user, all NFS-mounted filesystems look just like
private disks. There’s no apparent difference between reading or writing a file on
a local disk, and reading or writing a file on a disk in the next building. Informa-
tion on the network is truly distributed.

No single vendor can supply tools for all the work that needs to get done, so

appropriate services must be integrated on a network. NFS provides a flexible,
operating system-independent platform for such integration.

microsystemns

Chapter 1 — Network Services 11

Easily Extensible

Ease of Network Administration

Reliability

High Performance

A distributed system must have an architecture that allows integration of new
software technologies without disturbing the extant software environment. Since
the NFS network-services approach does not depend on pushing the operating
system onto the network, but instead offers an extensible set of protocols for data
exchange, it supports the flexible integration of new software.

The administration of large networks can be complicated and time-consuming,
yet they should (ideally) be at least as easy to administer as a set of local filesys-
tems on a timesharing system. The UNIX system has a convenient set of mainte-
nance commands developed over the years, and the Yellow Pages (YP), a NFS-
based network database service, has allowed them to be adapted and extended for
the purpose of administering a network of machines. The YP also allows certain
aspects of network administration to be centralized onto a small number of file
servers, e.g. only server disks must be backed up in networks of diskless clients.
An overview of the YP facility is presented in the The Yellow Pages Database
Service section of this manual.

The YP interface is implemented using RPC and XDR, so it is available to non-
UNIX operating systems and non-Sun machines. YP servers do not interpret
data, so it is easy for new databases 10 be added to the YP service without modi-
fying the servers.

NFS'’s reliability derives from the robustness of the 4.2BSD filesystem, from the
stateless NFS protocol3, and from the daemon-based methodology by which net-
work services like file and record locking are provided. See The Network Lock
Manager for more details on locking. In addition, the file server protocol is
designed so that client workstations can continue to operate even when the server
crashes and reboots. Sun achieves continuation after reboot without making
assumptions about the reliability of the underlying server hardware.

The major advantage of a stateless server is robustness in the face of client,
server, or network failures. Should a client fail, it is not necessary for a server
(or human administrator) to take any action to continue normal operation.
Should a server or the network fail, it is only necessary that clients continue to
attempt to complete NFS operations until the server or network gets fixed. This
robustness is especially important in a complex network of heterogeneous sys-
tems, many of which are not under the control of a disciplined operations staff,
and which may be running untested systems often rebooted without waming,

The flexibility of the NFS allows configuration for a variety of cost and perfor-
mance trade-offs. For example, configuring servers with large, high-performance
disks, and clients with no disks, may yield better performance at lower cost than
having many machines with small, inexpensive disks. Furthermore, it is possible
to distribute the filesystem data across many servers and get the added benefit of
multiprocessing without losing transparency. In the case of read-only files,
copies can be kept on several servers to avoid bottlenecks.

3 The NFS protocol is stateless because each transaction stands on its own. The server doesn’t have to
remember anything — about clients or files — between transactions.

sun Revision A, of 9 May 1988

12 Network Programming

The Sun NFS Implementation

Sun has also added several performance enhancements to the NFS, such as “fast
paths” for key operations, asynchronous service of multiple requests, disk-block
caching , and asynchronous read-ahead and write-behind. The fact that caching
and read-ahead occur on both client and server effectively increases the cache
size and read-ahead distance. Caching and read-ahead do not add state to the
server; nothing (except performance) is lost if cached information is thrown
away. In the case of write-behind, both the client and server attempt to flush crit-
ical information to disk whenever necessary, to reduce the impact of an unantici-
pated failure; clients do not free write-behind blocks until the server confirms
that the data is written.

In the Sun NFS implementation, there are three entities to be considered: the
operating system interface, the virtual file system (VFS) , interface, and the net-
work file system (NFS) interface. The UNIX operating system interface has been
preserved in the Sun implementation of the NFS, thereby insuring compatibility
for existing applications.

The VFS is best seen as a layer that Sun has wrapped around the traditional
UNIX filesystem. This traditional filesystem is composed of directories and files,
each of which has a corresponding inode (index node), containing administra-
tive information about the file, such as location, size, ownership, permissions,
and access times. Inodes are assigned unique numbers within a filesystem, but a
file on one filesystem could have the same number as a file on another filesystem.
This is a problem in a network environment, because remote filesystems need to
be mounted dynamically, and numbering conflicts would cause havoc. To solve
this problem, Sun designed the VFS, which is based on a data structure called a
vnode. Inthe VFS, files are guaranteed to have unique numerical designators,
even within a network. Vnodes cleanly separate filesystem operations from the
semantics of their implementation. Above the VFS interface, the operating sys-
tem deals in vnodes; below this interface, the filesystem may or may not imple-
ment inodes. The VFS interface can connect the operating system to a variety
of filesystems (for example, 4.2 BSD or MS-DOS). A local VFS connects to
filesystem data on a local device.

@:?9 sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 15

Figure 1-2 Mount and NFS Servers

Q)

Pathname
Application ~ Mount
nterface @ |1 Server
Filehandle
‘ .@ NFS
Filehandle Server

Legend: 1 Client sends pathname to mount server
2. Mount server returns corresponding filehandle
3. Client sends filhandle to NFS server

Pathname Parsing

Although many operating systems have analogs to the hierarchical NFS directory
and file structure, the conventions used by operating systems to formulate path-
names vary considerably. To accommodate the many possible path naming con-
ventions, the mount procedure is not defined in the NFS protocol but in a
separate mount protocol. At present, there is one mount protocol, the UNIX
mount protocol, but others can be defined as necessary. The mount procedure in
the UNIX mount protocol converts a UNIX pathname into a filehandle. Iflocal
pathnames can be reasonably mapped to UNIX pathnames, an NFS server
developer may wish to implement the UNIX mount protocol, even though the
server runs on a different operating system. This approach makes the server
immediately usable by clients that use the UNIX protocol and eliminates the
need to develop a new mount command for UNIX-based clients. Alternatively,
a server developer can obtain a new remote program number from Sun and define
a new mount protocol. For example, the mount procedure in a VMS Mount
protocol would take a VMS file specification rather than a UNIX pathname.
Mount protocols are not mutually exclusive; a server could, for example, support
the UNIX protocol for UNIX clients and a Multics protocol for Multics clients.
Both protocols would return filehandles defined by the NFS implementation on
their server.

The mount protocols remove pathname parsing from the NFS protocol, so that a
single NFS protocol can work with multiple operating systems. This means that

@ sSun Revision A, of 9 May 1988

microsystems

16

Network Programming

users and client programs need to know the details of a server’s path naming con-
ventions only when mounting a filesystem. Different server path naming con-
ventions therefore typically have little impact on users.

Because mounts are relatively infrequent operations, mount servers can be imple-
mented outside of operating system kernels without materially affecting overall
file system performance. Because user-level code is easier to write and far easier
to debug than kernel code, mount servers are fairly simple to put together.

Export and Mount Lists

Technically, a mount protocol needs to define only a mount procedure that
bootstraps the first filehandle for a filesystem. (By convention, a mount protocol
should also define a NULL procedure). However, adding other procedures can
simplify network management. As a convenience to clients, a mount protocol
might provide a procedure that retums a list of filesystems exported by a server.
Another useful item is a mount list, a list of clients and the pathnames they have
mounted from the server. The UNIX mount protocol defines a mount list and a
procedure called readmount () that returns the list. With the help of read-
mount (), an administrator can notify the clients of a server that is about to be
shut down.

Note that a mount list makes a mount server stateful. Recall, however, that the
business of a mount server is to translate pathnames into filehandles; the state
represented by a mount list does not affect a server’s ability to operate correctly.
Neither servers nor clients need take any action to update or rebuild a mount list
after a crash. Mount server users should regard the mount and export lists pro-
vided by a mount server as “accessories” that are usually, but not necessarily,
accurate.

UNIX Mount Protocol Procedures

The mount protocol consists of the six remote procedures listed in Table 7-1.
The mount () procedure transforms a UNIX pathname into a filehandle which
the client can then pass to the associated NFS server. The pathname passed to
the mount procedure usually refers to a directory, often the root directory of a
filesystem, but it can name a file instead. In addition to returning the filehandle,
mount adds the client’s host name and the pathname to its mount list. The
readmount () procedure returns the server’s mount list. unmount ()
removes an entry from the server’s mount list and unmountall () removes all
of a client’s mount list entries. The readexport () procedure returns the
server’s export list.

sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 17

A Stateless Protocol

Table 1-1

@

Mount Remote Procedures, Version 1

Number Name Description
0 null Do nothing
1 mount Return filehandle for pathname
2 readmount Return mount list
3 unmount Remove mount list entry
4 unmountall | Clear mount list
5 readexport | Returnexport list

The NFS interface is defined so that a server can be stateless. This means that a
server does not have to remember from one transaction to the next anything
about its clients, transactions completed or files operated on. For example, there
is no open () operation, as this would imply state in the server; of course, the
UNIX interface uses an open () operation, but the information in the UNIX
operation is remembered by the client for use in later NFS operations.

An interesting problem occurs when a UNIX application unlinks an open file.
This is done to achieve the effect of a temporary file that is automatically
removed when the application terminates. If the file in question is served by the
NFS, the call to unlink () will remove the file, since the server does not
remember that the file is open. Thus, subsequent operations on the file will fail.
In order to avoid state on the server, the client operating system detects the situa-
tion, renames the file rather than unlinking it, and unlinks the file when the appli-
cation terminates. In certain failure cases, this leaves unwanted “temporary” files
on the server; these files are removed as a part of periodic filesystem mainte-
nance.

Another example of the advantages gained by having the NFS interface to the
UNIX system without introducing state is the mount command. A UNIX client
of the NFS “builds” its view of the filesystem on its local devices using the
mount command; thus, it is natural for the UNIX client to initiate its contact
with the NFS and build its view of the filesystem on the network with an
extended mount command. This mount command does not imply state in the
server, since it only acquires information for the client to establish contact with a
server. The mount command may be issued at any time, but is typically exe-
cuted as a part of client initialization. The corresponding umount command is
only an informative message to the server, but it does change state in the client
by modifying its view of the filesystem on the network.

The major advantage of a stateless server is robustness in the face of client,
server or network failures. Should a client fail, it is not necessary for a server (or
human administrator) to take any action to continue normal operation. Should a
server or the network fail, it is only necessary that clients continue to attempt to
complete NFS operations until the server or network is fixed. This robustness is
especially important in a complex network of heterogeneous systems, many of
which are not under the control of a disciplined operations staff and may be

sSsun Revision A, of 9 May 1988

microsystems

18 Network Programming

Note: Network access to devices
such as tape drivers is a good idea,
but it is best implemented as a
separate network service whose
requirement for stateful operation is
kept separate from network access
to files.

running untested systems and/or may be rebooted without warning.

An NFS server can be a client of another NFS server. However, a server will not
act as an intermediary between a client and another server. Instead, a client may
ask what remote mounts the server has and then attempt to make similar remote
mounts. The decision to disallow intermediary servers is based on several fac-
tors. First, the existence of an intermediary will impact the performance charac-
teristics of the system; the potential performance implications are so complex
that it seems best to require direct communication between a client and server.
Second, the existence of an intermediary complicates access control; it is much
simpler to require a client and server to establish direct agreements for service.
Finally, disallowing intermediaries prevents cycles in the service arrangements;
Sun prefers this to detection or avoidance schemes.

The NFS currently implements UNIX file protection by making use of the
authentication mechanisms built into RPC. This retains transparency for clients
and applications that make use of UNIX file protection. Although the RPC
definition allows other authentication schemes, their use may have adverse
effects on transparency.

Note that the NFS, although very UNIXlike, is not a UNIX filesystem per se —
there are cases in which its behavior differs from that which would be expected
of the UNIX system proper:

o The guaranteed APPEND_MODE is the most striking of these differences,
for it simply is not supported by NFS.

o The “special file” device abstraction — inherently stateful as it is — is sup-
ported for remote mounts only when both the client and the server are run-
ning system software release 3.2 or later. In other cases, devices are imple-
mented in a local /dev virtual file system.

o There are also minor incompatibilities between NFS and UNIX file-system
interfaces that are dictated by the very nature of remote NFS mounts. For
example, a local NFS daemon simply can’t tell that a remote disk partition is
full until the remote NFS dacmon tells it so. Rather than wait for a positive
confirm on every write — a strategy that would impose unacceptable perfor-
mance problems — the local NFS code caches writes and returns to its
caller. If a remote error occurs, it gets reported back as soon as possible, but
not as immediately as would a local disk.

File locking and other inherently stateful functionality has been omitted from the
base NFS definition. In this way, Sun has been able to preserve a simple, general
interface that can be implemented by a wide variety of customers. File locking
has been provided as a NFS-compatible network service, and Sun is considering
doing the same for other other features that inherently imply state and/or distri-
buted synchronization. These features, too, will be kept separate from the base
NFS definition. In any case, the open nature of the RPC and NFS interfaces
means that customers and users who need stateful or complex features can imple-
ment them “beside” or “within” the NFS.

sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 19

Note: Non-NFS Network
Operations

1.3. The Portmapper

Sun supports a small number of non-NFS networking operations that are useful
for temporary inter-host connections, isolated file transfers, and access to non-
UNIX systems (e.g. TOPS-10 machines on the Arpanet). These operations
include rcp, rlogin, rsh, ftp, telnet, and tftp.

o rcp is aremote copy utility program that uses BSD networking facilities to
copy files from one machine to another. The r cp user supplies the path
name of a file on a remote machine, and receives a stream of bytes in retumn.
Access control is based on the client’s 1ogin name and host name.

The major problem with rcp is that it’s not transparent to the user, who
winds up with a redundant copy of the transferred file. With the NFS, by
contrast, only one copy of the file is necessary. Another problem is that rcp
does nothing but copy files. To use it a a model for additional network ser-
vices would be to introduce a remote command for every regular command:
for example, rdif f to perform differential file comparisons across
machines. By providing for the sharing of filesystems, NFS makes this
unnecessary.

o rlogin allows the user to log into a remote machine, directly accessing
both its processor and its mounted file systems. It remains useful in NFS-
based networks because, with it, users can directly execute commands on
remote machines over the network.

o rsh allows the user to execute a command on a remote machine. If no com-
mand is specified, rsh is equivalent to r1ogin. Unlike the REX-based on
command, rsh does not make a great effort to copy the users local environ-
ment to the remote machine before executing the command.

o ftp is very much like rcp, in that it supports file copying between
machines. However, £tp is more general that rcp, and is not restricted to
copies between two UNIX systems.

o telnet communicates with another host using the TELNET protocol. It
isn’t used much because rlogin is the standard mechanism for local inter-
host communication.

o tftpislike ftp, expect that it is simpler and less reliable. This is because
t £t p’s transfer protocol is very simple; it is less robust that £t p’s protocol,
and offers fewer options.

Client programs need a way to find server programs; that is, they need a way to
look up and find the port numbers of server programs.* Network transport ser-
vices do not provide such a service; they merely provide process-to-process mes-
sage transfer across a network. A message typically contains a transport address
which contains a network number, a host number, and a port number. (A port is a
logical communications channel in a host — by waiting on a port, a process
receives messages from the network).

4 The naming of services by way of the port-number segment of their IP address is mandated by the Internet
protocols. Given this, clients face the problem of determining which ports are associated with the services they
wish to use.

sun Revision A, of 9 May 1988

microsystems

20 Network Programming

Port Registration

NOTE

4

How a process waits on a port varies from one operating system to the next, but
all provide mechanisms that suspend a process until a message arrives at a port.
Thus, messages are not sent across networks to receiving processes, but rather to
the ports at which receiving processes wait for messages. Ports are valuable
because the allow message receivers to be specified in a way that is independent
of the conventions of the receiving operating system. The portmapper protocol
defines a network service that provides a standard way for clients to look up the
port number of any remote program supported by a server. Because it can be
implemented on any transport that provides the equivalent of ports, it provides a
single solution to a general problem that works for all clients, all servers and all
networks.

Every portmapper on every host is associated with port number 111. The port-
mapper is the only network service that must have such a well-known (dedicated)
port. Other network services can be assigned port numbers statically or dynami-
cally so long as they register their ports with their host’s portmapper. For exam-
ple, a server program based on Sun’s RPC library typically gets a port number at
run time by calling an RPC library procedure. Note that a given network service
can be associated with port number 256 on one server and with port number 885
on another; on a given host, a service can be associated with a different port
every time its server program is started. Delegating port-to-remote program
mapping to portmappers also automates port number administration. Statically
mapping ports and remote programs in a file duplicated on each client would
require updating all mapping files whenever a new remote program was intro-
duced to a network. (The alternative of placing the port-to-program mappings in
a shared NFS file would be too centralized, and if the fileserver went down the
whole network would go down with it).

The port-to-program mappings which are maintained by the portmapper server
are called a portmap. The portmapper is started automatically whenever a
machine is booted. As shown in the Typical Portmapping Sequence figure,
below, both server programs and client programs call portmapper procedures.>
As part of its initialization, a server program calls its host’s portmapper to create
a portmap entry. Whereas server programs call portmappers to update portmap
entries, clients call portmappers to query portmap entries. To find a remote
program’s port, a client sends and RPC call message to a server’s portmapper; if
the remote program is supported on the server, the portmapper retums the
relevant port number in an RPC reply message. The client program can then
send RPC call messages to the remote program’s port. A client program can
minimize its portmapper calls by caching the port numbers of recently called
remote programs.

Note that the portmapper provides and inherently stateful service because a port-
map is a set of associations between registrants and ports.

5 Although client and server programs and client and server machines are usually distinct, they need not be.
A server program can also be a client program, as when an NFS server calls a portmapper server. Likewise,
when a client program directs a “remote” procedure call to its own machine, the machine acts as both client and
server.

sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 21

Figure 1-3

@

Typical Portmapping Sequence

Client Machine Netw ork Server Machine
Client ®
Program I | Portmapper

Server
Program

===

Legend: 1 Server registers with portmapper
2. Client gets server’'s port from portmapper
3. Client calls server

The portmapper protocol (for details, see the Port Mapper Program Protocol
section of the Remote Procedure Calls: Protocol Specification chapter) provides
a procedure, callit(), by which the portmapper can assist a client in making a
remote procedure call. A client program passes the target procedure’s program
number, version number, procedure number (for a discussion of these numbers,
see the Remote Procedure Call Programming Guide chapter) and arguments in
an RPC call message. callit () looks up the target procedure’s port number
in the portmap and sends an RPC call message to the target procedure including
in it the arguments received from the client. When the target procedure returns
results to callit(), callit () retums the results to the client program; also
returned is the target procedure’s port number so the client can subsequently call
the target procedure directly

Note that, because every instance of a remote program can be mapped to a dif-
ferent port on every server, a client has no way to broadcast a remote procedure
call directly. However, the portmapper callit () procedure can be used to
broadcast a remote procedure call indirectly, since all portmappers are associated
with port number 111. One way for a client to find a server running a remote
program is to broadcast a call to callit(), asking it to call procedure O of the

sun Revision A, of 9 May 1988

microsystems

22 Network Programming

1.4. The Yellow Pages
Database Service

What Are The Yellow Pages?

Yellow Pages Maps

L 4

desired remote program. If this call is broadcast to all servers, the first reply
received is likely to be from the server with the lightest workload.

The Sun RPC library provides an interface to all portmapper procedures. Some
of the RPC library procedures also call portmappers automatically on behalf of
client and server programs.

This chapter explains Sun’s network database mechanism, the Yellow Pages
(YP). Although it is not intended exclusively for system administrators, it leans
towards their concems. The Yellow Pages pemnit password information and host
addresses for an entire network to be held in a single database, and, by so doing,
greatly ease system and network administration.

The Yellow Pages constitute a distributed network lookup service:

o YPis alookup service: it maintains a set of databases for querying. Pro-
grams can ask for the value associated with a particular key, or all the keys,
in a database.

o YPis a network service: programs need not know the location of data, or
how it is stored. Instead, they use a network protocol to communicate with a
database server that knows those details.

o YPis distributed: databases are fully replicated on several machines, known
as YP servers. Servers propagate updated databases among themselves,
ensuring consistency. At steady state, it doesn’t matter which server
answers a request; the answer is the same everywhere.

The Yellow Pages serve information stored in YP maps. Each map contains a set
of keys and associated values. For example, the host s map contains (as keys)
all host names on a network, and (as values) the corresponding Internet
addresses. Each YP map has a mapname, used by programs to access data in the
map. Programs must know the format of the data in the map. Most maps are
derived from ASCII files formerly found in /etc/passwd, /etc/group,
/etc/hosts, /etc/networks, and other files in /et c. The format of data
in the YP map is in most cases identical to the format of the ASCII file. Maps
are implemented by dbm (3X) files located in subdirectories of /et c/yp on YP
server machines.

The relationship between a YP map and the standard UNIX /etc file which it
relates to varies from map to map. Some files (e.g. /etc/hosts, are replaced
by their corresponding YP maps, while some (e.g. /etc/passwd are merely
augmented. For more information, see the Yellow Pages section of Network
Programming.

Maps sometimes have nicknames. Although the ypcat command is a general
YP database print program, it knows about the standard files in the YP. Thus
ypcat hosts is translated into ypcat hosts.byaddr, since there is no
file called hosts in the YP. The command ypcat -x furnishes a list of
expanded nicknames.

Ssun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 23

Yellow Pages Domains

Servers and Clients

Masters and Slaves

A YP domain is a named set of YP maps. Taken together, these maps define a
distinct network namespace and locate a distinct area of administrative control.
YP domains differ from both Intemet domains and sendmail domains, which
define similar kinds of administrative loci in their respective (IP and electronic
mail) networks. A given host will typically fall within all three domains, but
these domains will not typically coincide. A YP domain is implemented as a
directory in /et c/yp containing a set of maps.

You can determine your YP domain by executing the domainname command.
A domain name is required for retrieving data from a YP database. For instance,
if your YP domain is sun and you want to find the Internet address of host
dbserver, you must ask YP for the value associated with the key dbserver
in the map hosts.byname within the YP domain sun. Each machine on the
network belongs to a default domain, which is set at boot time. Diskfull
machines have their default domains set by a call to the domainname command
made from /etc/rc.local. Diskless clients have it set as the result of a con-
sultation with the bootparams (5) server.

A YP server holds all the maps of a YP domain in a subdirectory of /etc/yp,
named after the domain. In the example above, maps for the sun domain would
be held in /etc/yp/sun. A given host can contain maps for more than one
YP domain.

Servers provide resources, while clients consume them. The terms “server” and
“client” do not necessarily indicate machines. Consider both the NFS (network
file system), and the YP:

NFS The NFS allows client machines to mount remote filesystems and access

files in place, provided a server machine has exported the filesystem.
However, a server that exports filesystems may also mount remote filesys-
tems exported by other machines, thus becoming a client. So a given
machine may be both server and client, or client only, or server only.

YP The YP server, by contrast, is a process rather than a machine, A process
can request information out of the YP database, obviating the need to have
such information on every machine. All processes that make use of YP
services are YP clients. Sometimes clients are served by YP servers on the
same machine, but other times by YP servers running on another machine.
If a remote machine running a YP server process crashes, client processes
can obtain YP services from another machine. Thus, the network YP ser-
vice will remain available even if an individual YP host machine goes
down.

YP servers containing copies of the same databases can be spread throughout a
network. When an arbitrary machine wants information in one of the YP data-
bases, it makes an RPC call to one of the YP servers to getit. For any YP map,
one YP server is designated as the master — the only one whose database may
be modified. The other YP servers are slaves, and they are automatically updated
from time to time to keep their information in sync with that of the master.

sun Revision A, of 9 May 1988

microsystems

24 Network Programming

Naming

Data Storage

Servers

All changes to a YP map should be made on the machine which is the master YP
server for that map. The changes will then propagate to the slaves. A newly
built map is timestamped internally when it’s created by makedbm. If you build
a YP map on a slave server, you will temporarily break the YP update algorithm,
and will have to get all versions in synch manually. Moral: after you decide
which server is the master, do all database updates and builds there, not on
slaves.

A given server may even be master with regard to one map, and slave with regard
to another. This can get confusing quickly. Thus, its recommended that a single
server be master for all maps created by ypinit in a single domain. Here we
are assuming this simple case, in which one server is the master for all maps in a
database.

Imagine a company with two different networks, each of which has its own
separate list of hosts and passwords. Within each network, user names, numeri-
cal user IDs, and host names are unique. However, there is duplication between
the two networks. If these two networks are ever connected, chaos could result.
The host name, returned by the hostname command and the gethost -

name () system call, may no longer uniquely identify a machine. Thus a new
command and system call, domainname and getdomainname () have been
added. In the example above, each of the two networks could be given a dif-
ferent domain name. However, it is always simpler to use a single domain when-
ever possible.

The relevance of domains to YP is that data is stored in /et c/yp/domainname.
In particular, a machine can contain data for several different domains.

The data in YP maps is stored as dbm format databases. (See dbm(3X)). Thus
the database host s . byname for the domain sun is stored as
/etc/yp/sun/hosts.byname.pag and
/etc/yp/sun/hosts.byname.dir. The command makedbm takes an
ASCII file such as /etc/hosts and converts it into a dbm file suitable for use
by the YP. However, system administrators normally use the makefile in
/etc/yp to create new dbm files (read on for details). This makefile in turn
calls makedbm.

To become a server, a machine must contain the YP databases, and must also be
running the YP daemon ypserv. The ypinit command invokes this daemon
automatically. It also takes a flag saying whether you are creating a master or a
slave. When updating the master copy of a database, you can force the change to
be propagated to all the slaves with the yppush command. This pushes the
information out to all the slaves. Conversely, from a slave, the ypxfr command
gets the latest information from the master. The makefile in /etc/yp first exe-
cutes makedbm to make a new database, and then calls yppush to propagate
the change throughout the network.

Sun Revision A, of 9 May 1988

Chapter 1 — Network Services 25

Clients

Default YP Files

Hosts

Remember that a client machine (which is not a server) does not access local
copies of /et c files, but rather makes an RPC call to a YP server each time it
needs information from a YP database. The ypbind daemon remembers the
name of a server. When a client boots, ypbind broadcasts asking for the name
of the YP server. Similarly, ypbind broadcasts asking for the name of a new
YP server if the old server crashes. The ypwhich command gives the name of
the server that ypbind currently points at.

Since client machines don’t have entire copies of files in the YP, the commands
ypcat and ypmat ch have been provided. As you might guess, ypcat
passwd is equivalent to cat /etc/passwd. To look for someone’s pass-
word entry, searching through the password file no longer suffices; you have to
issue one of the following commands

example% ypcat passwd | grep username
example% ypmatch username passwd

where you replace username with the login name you’re searching for.

By default, Sun workstations have a number of files from /et c in their YP:
/etc/passwd, /etc/group, /etc/hosts, /etc/networks,
/etc/services, /etc/protocols,and /etc/ethers. In addition,
there is the net group (5), file, which defines network wide groups, and used
for permission checking when doing remote mounts, remote logins, and remote
shells.

Library routines such as getpwent(), getgrent(), and gethostent ()
have been rewritten to take advantage of the YP. Thus, C programs that call
these library routines will have to be relinked in order to function correctly.

The hosts file is stored as two different YP maps. The first, hosts.byname, is
indexed by hostname. The second, hosts .byaddr, is indexed by Intemet
address. Remember that this actually expands into four files, with suffixes
.pag, and .dir. When a user program calls the library routine gethost-
byname(), a single RPC call to a server retrieves the entry from the
hosts.byname file. Similarly, gethostbyaddr ()} retrieves the entry from
the hosts.byaddr file. If the YP is not running (which is caused by com-
menting ypbind out of the /etc/rc file), then gethostbyname () will
read the /etc/hosts files, just as it always has.

Nommally, the hosts file for the YP will be the same as the /et c/hosts file on
the machine serving as a YP master. In this case, the makefile in /et c/yp will
check to see if /et c/host s is newer than the dbm file. If it is, it will use a
simple sed script to recreate hosts.byname and hosts.byaddr, run them
through makedbm and then call yppush See ypmake for details.

sun Revision A, of 9 May 1988

26 Network Programming

Passwd

Others

Changing your passwd

1.5. The Network Lock
Manager

The passwd file is similar to the hosts file. It exists as two separate files,
passwd.byname and passwd.byuid. The ypcat program prints it, and
ypmake updates it. However, if getpwent always went directly to the YP as
does gethostent, then everyone would be forced to have an identical pass-
word file. Consequently, getpwent reads the local /etc/passwd file, just as
it always did. But now it interprets “+” entries in the password file to mean,
interpolate entries from the YP database. If you wrote a simple program using
getpwent to print out all the entries from your password file, it would print out
a virtual password file: rather than printing out + signs, it would print out what-
ever entries the local password file included from the YP database.

Of the other files in /etc, /etc/group is treated like /et c/passwd, in that
getgrent () will only consult the YP if explicitly told to do so by the
/etc/group file. The files /etc/networks, /etc/sexrvices,
/etc/protocols, /etc/ethers, and /etc/netgroup are treated like
/etc/hosts: for these files, the library routines go directly to the YP, without
consulting the local files.

To change data in the YP, the system administrator must log into the master
machine, and edit databases there; ypwhich -m tells where the master server
is. However, since changing a password is so commonly done, the yppasswd
command has been provided to change your YP password. It has the same user
interface as the passwd command. This command will only work if the
yppasswdd server has been started up on the YP master server machine.

SunOS includes a NFS-compatible Network Lock Manager (see the lockd(8C)
man page for more details) that supports the lockf () /fcnt1 (), System V
style of advisory file and record locking over the network. System V locks are
generally considered superior to 4.3BSD locks, implemented with the f1ock ()
system call, for they provide record level, and not merely file level, locking.
Record level locking is essential for database systems. Sun does support
flock () foruse onindividual machines, but £1lock () is not intended to be
used across the network. flock () locks exclude only other processes on the
same machine. There is no interaction between £1lock () and lock£ ().

Locking prevents multiple processes from modifying the same file at the same
time, and allows cooperating processes to synchronize access to shared files. The
user interfaces with Sun’s network locking service by way of the standard
lockf () system-call interface, and rarely requires any detailed knowledge of
how it works. The kemel maps usercalls to f1lock () and fcntl () into
RPC-based messages to the local lock manager (or, if the files in question are on
RFS-mounted filesystems, into calls to RES®). The fact that the file system may
be spread across multiple machines is really not a complication — until a crash
occurs.

All computers crash from time to time, and in an NFS environment, where multi-
ple machines can have access to the same file at the same time, the process of

6 RFS is AT&T’s Remote File Sharing. A Sun-compatible version is available as an unbundled product.

Sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 27

recovering from a crash is necessarily more complex than in a non-network
environment. Furthermore, locking is inherently stateful. If a server crashes,
clients with locked files must be able to recover their locks. If a client crashes,
its servers must have the sense to hold the client’s locks while it recovers. And,
to preserve NFS’s overall transparency, the recovery of lost locks must not
require the intervention of the applications themselves. This is accomplished as
follows:

o Basic file access operations, such as read and write, use a stateless protocol
(the NFS protocol). All interactions between NFS servers and clients are
atomic — the server doesn’t remember anything about its clients from one
interaction to the next. In the case of a server crash, client applications will
will simply sleep until it comes back up and their NFS operations can com-
plete.

o Stateful services (those that require the server to maintain client information
from one transaction to the next) such as the locking service, are not part of
the NFS per se. They are separate services that use the status monitor (see
The Network Status Monitor) to ensure that their implicit network state
information remains consistent with the real state of the network. There are
two specific state-related problems involved in providing locking in a net-
work context:

1) if the client has crashed, the lock can be held forever by the server

2) if the server has crashed, it loses its state (including all its lock infor-
mation) when it recovers.

The Network Lock Manager solves both of these problems by cooperating
with the Network Status Monitor to ensure that it’s notified of relevant
machine crashes. Its own protocol then allows it to recover the lock infor-
mation it needs when crashed machines recover.

The lock manager and the status monitor are both network-service daemons —
they run at user level, but they are essential to the kemel’s ability to provide fun-
damental network services, and they are therefore run on all network machines.
Like other network-service daemons — which provide, for example, remote-
execution services (rexd) and remote-login services (rlogind) — they are
best seen as extensions to the kemel which, for reasons of space, efficiency and
organization, are implemented as daemons. Application programs that need a
network service can either call the appropriate daemon directly with RPC/XDR,
or use a system call (like 1ock£()) to call the kernel. In this later case, the ker-
nel will use RPC to call the daemon. The network daemons communicate among
themselves with RPC (see The Locking Protocol for some details of the lock
manager protocol). It should be noted that the daemon-based approach to net-
work services allows for tailoring by users who need customized services. It’s
possible, for example, for users to alter the lock manager to provide locking in a
different style.

The following figure depicts the overall architecture of the locking service.

sSsun Revision A, of 9 May 1988

28 Network Programming
Figure 1-4 Architecture of the Locking Service
Machine A Machine B
| pAaaen | | aaniesin e]
1 1]]
1 !]]
\ local applications : ' local applications !
1] 1 1
: lock requests E E J’ lock requests E
: i]]
1 i 1 I
I] 1]
I 1] I
1 1]
! lock o RPC l%.ock Requ:ests lock !
: manager : X manager :
I ! : :
] 1 1 i
1]]]
1 1 | t\ I
1] I 1
1] t i
]] i]
' status Status Messages status 1
1 R e = == R Balialiliniialhs Kl O R 1
! monitor : ! monitor :
:]]]
1 ! 1]
i I 1]
1 i 1]
b e e e e e e e e = — i —— ———— ———] b e e e e e e e L e e e e e e e e - e e e ————— J

&

At each server site, a lock manager process accepts lock requests, made on behalf
of client processes by a remote lock manager, or on behalf of local processes by
the kemel. The client and server lock managers communicate with RPC calls.
Upon receiving a remote lock request for a machine that it doesn’t already hold a
lock on, the lock manager registers its interest in that machine with the local
status monitor, and waits for that monitor to notify it that the machine is up. The
monitor continues to watch the status of registered machines, and notifies the
lock manager is one of them is rebooted (after a crash). If the lock request is for
alocal file, the lock manager tries to satisfy it, and communicates back to the
application along the appropriate RPC path.

The crash recovery procedure is very simple. If the failure of a client is detected,
the server releases the failed client’s locks, on the assumption that the client
application will request locks again as needed. If the recovery (and, by implica-
tion, the crash) of a server is detected, the client lock manager retransmits all
lock requests previously granted by the recovered server. This retransmitted
information is used by the server to reconstruct its locking state. See below for
more details.

The locking service, then, is essentially stateless. Or to be more precise, its state
information is carefully circumscribed within a pair of system daemons that are
set up for automatic, application-transparent crash recovery. If a server crashes,
and thus loses its state, it expects that its clients will be be notified of the crash
and send it the information that it needs to reconstruct its state. The key in this
approach is the status monitor, which the lock manager uses to detect both client
and server failures.

sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Network Services 29

The Locking Protocol

Qsu

The lock style implemented by the network lock manager is that specified in the
AT&T System V Interface Definition, (see the lockf (2) and £cntl (2) man
pages for details). There is no interaction between the lock manager’s locks and
flock () -style locks, which remain supported, but which should be used for
non-network applications only.

Locks are presently advisory only, on the (well supported) assumption that
cooperating processes can do whatever they wish without mandatory locks.
Besides, mandatory locks pose serious security problems — if /etc/passwd is
locked against reading, the whole system freezes. (See the fcntl (2) man page
for more information about advisory locks).

There are four basic kemel to Lock Manager requests:

KLM LOCK
Lock the specified record.

KLM UNLOCK
Unlock the specified record.

KLM TEST
Test if the specified record is locked.

KLM_CANCEL
Cancel an outstanding lock request.

Despite the fact that the network lock managers adheres to the
lockf () /£fecntl () semantics, there are a few subtle points about its behavior
that deserve mention. These arise directly from the nature of the network:

o The first and most important of these has to do with crashes. When an
NFS-client goes down, the lock managers on all of its servers are notified by
their status monitors, and they simply releases its locks, on the assumption
that it will request them again when it wants them. When a server crashes,
however, matters are different: the clients will wait for it to come back up,
and when it does, its lock manager will give the client lock managers a grace
period to submit lock reclaim requests, and during this period will accept
only reclaim requests. The client status monitors will notify their respective
lock managers when the server recovers. The default grace period is 45
seconds.

o Itis possible that, after a server crash, a client will not be able to recover a
lock that it had on a file on that server. This can happen for the simple rea-
son that another process may have beaten the recovering application process
to the lock. In this case the STGLOST signal will be sent to the process (the
default action for this signal is to kill the application).

o The local lock manager does not reply to the kemel lock request until the
server lock manager has gotten back to it. Further, if the lock request is on a
server new to the local lock manager, the lock manager registers its interest
in that server with the local status monitor and waits for its reply. Thus, if
either the status monitor or the server’s lock manager are unavailable, the
reply to a lock request for remote data is delayed until it becomes available.

n Revision A, of 9 May 1988
osystems

30 Network Programming

1.6. The Network Status
Monitor

A

The Network Status Monitor (see the statd(8C) man page for more details) was
introduced with the lock manager, which relies heavily on it to maintain the
inherently stateful locking service within the stateless NFS environment. How-
ever, the status monitor is very general, and can also be used to support other
kinds of stateful network services and applications. Normally, crash recovery is
one of the most difficult aspects of network application development, and
requires a major design and installation effort. The status monitor makes it more
or less routine.

It is anticipated that, in the future, new network services, some of them stateful,
will be introduced into the Sun system. These services will use the status moni-
tor to keep up with the state of the network and to cope with machine crashes.

The status monitor works by providing a general framework for collecting net-
work status information. Implemented as a daemon that runs on all network
machines, it implements a simple protocol which allows applications to easily
monitor the status of other machines. Its use improves overall robustness, and
avoids situations in which applications running of different machines (or even on
the same machine) come to disagree about the status of a site — a potentially
dangerous situation that can lead to inconsistencies in many applications.

Applications using the status monitor do so by registering with it the machines
that they are interested in. The monitor then tracks the status of those machines,
and when one of them crashes’ it notifies the interested applications to that
effect, and they then take whatever actions are necessary to reestablish a con-
sistent state.

There are several major advantages to this approach:

o Only applications that use stateful services must pay the overhead — in time
and in code — of dealing with the status monitor.

o The implementation of stateful network applications is eased, since the
status monitor shields application developers from the complexity of the net-
work.

7 Actually, when one of them recovers from a crash.

sSun Revision A, of 9 May 1988

microsystems

PART ONE: Network Programming

rpcgen Programming Guide

rpcgen Programming Guide

2.1. The rpcgen Protocol Compiler
Converting Local Procedures into Remote Procedures

Generating XDR Routines

The C-Preprocessor
rpcgen Programming Notes

Timeout Changes

RPC Language
Definitions

Structures

Unions :

Enumerations

Typedef

Constants

Programs
Declarations

Special Cases

35

35
36
a1
45
46
46
48
48
49
49
50
50
50
51
51
53

2.1. The rpcgen Protocol
Compiler

rpcgen Programming Guide

The details of programming applications to use Remote Procedure Calls can be
overwhelming. Perhaps most daunting is the writing of the XDR routines neces-
sary to convert procedure arguments and results into their network format and
vice-versa.

Fortunately, rpcgen (1) exists to help programmers write RPC applications
simply and directly. rpcgen does most of the dirty work, allowing program-
mers to debug the main features of their application, instead of requiring them to
spend most of their time debugging their network interface code.

rpcgen is a compiler. It accepts a remote program interface definition written
in a language, called RPC Language, which is similar to C. It produces a C
language output which includes stub versions of the client routines, a server
skeleton, XDR filter routines for both parameters and results, and a header file
that contains common definitions. The client stubs interface with the RPC
library and effectively hide the network from their callers. The server stub simi-
larly hides the network from the server procedures that are to be invoked by
remote clients. rpcgen’s output files can be compiled and linked in the usual
way. The developer writes server procedures—in any language that observes
Sun calling conventions—and links them with the server skeleton produced by
rpcgen to get an executable server program. To use a remote program, a pro-
grammer writes an ordinary main program that makes local procedure calls to the
client stubs produced by rpcgen. Linking this program with rpcgen’s stubs
creates an executable program. (At present the main program must be written in
C). rpcgen options can be used to suppress stub generation and to specify the
transport to be used by the server stub.

Like all compilers, rpcgen reduces development time that would otherwise be
spent coding and debugging low-level routines. All compilers, including
rpcgen, do this at a small cost in efficiency and flexibility. However, many
compilers allow escape hatches for programmers to mix low-level code with
high-level code. rpcgen is no exception. In speed-critical applications, hand-
written routines can be linked with the rpcgen output without any difficulty.
Also, one may proceed by using rpcgen output as a starting point, and then
rewriting it as necessary. (If you need a discussion of RPC programming without
rpcgen, see the next chapter, the Remote Procedure Call Programming Guide).

y U 35 Revision A, of 9 May 1988

36 Network Programming

Converting Local Procedures
into Remote Procedures

Assume an application that runs on a single machine, one which we want to con-
vert to run over the network. Here we will demonstrate such a conversion by
way of a simple example—a program that prints a message to the console:

-)
/*

* printmsg.c: print a message on the console

*/

#include <stdio.h>

main{argc, argv)
int argc;
char *argv(];

char *message;

if (argc !'= 2) {
fprintf (stderr, "usage: %s <message>\n", argv([0]):
exit (1) ;

}

message = argv[1l];

if (!printmessage (message)) {
fprintf (stderr, "%s: couldn’t print your message\n",
argv(0]);
exit (1) ;
}
printf ("Message Delivered!\n");
exit (0);
}
/*
* Print a message to the console.
* Return a boolean indicating whether the message was actually printed.
*/
printmessage (msg)
char *msg;
{
FILE *£f;

f = fopen("/dev/console", "w");
if (£ == NULL) {

return (0);
}
fprintf (£, "%s\n", msqg):;
fclose(£f) ;
return(l) ;

And then, of course:

sun

microsystems

Revision A, of 9 May 1988

Chapter 2 — rpcgen Programming Guide 37

@

example% c¢c printmsg.c -o printmsg
example?% printmsg "Hello, there.”
Message delivered!

example%

If printmessage () was tumed into a remote procedure, then it could be
called from anywhere in the network. Ideally, one would just like to stick a key-
word like remote in front of a procedure to turn it into a remote procedure.
Unfortunately, we have to live within the constraints of the C language, since it
existed long before RPC did. But even without language support, it’s not very
difficult to make a procedure remote.

In general, it’s necessary to figure out what the types are for all procedure inputs
and outputs. In this case, we have a procedure printmessage () which takes
a string as input, and retums an integer as output. Knowing this, we can write a
protocol specification in RPC language that describes the remote version of
printmessage(). Hereitis:
-)
/*
* msg.x: Remote message printing protocol
*/
program MESSAGEPROG {

version MESSAGEVERS {

int PRINTMESSAGE (string)
} = 1;

Il
-
~

Remote procedures are part of remote programs, so we actually declared an
entire remote program here which contains the single procedure PRINTMES—
SAGE. This procedure was declared to be in version 1 of the remote program.
No null procedure (procedure 0) is necessary because rpcgen generates it
automatically.

Notice that everything is declared with all capital letters. This is not required,
but is a good convention to follow.

Notice also that the argument type is “string” and not *“char *”, This is because a
“char *” in C is ambiguous. Programmers usually intend it to mean a null-
terminated string of characters, but it could also represent a pointer to a single
character or a pointer to an array of characters. In RPC language, a null-
terminated string is unambiguously called a “string”.

There are just two more things to write. First, there is the remote procedure
itself. Here’s the definition of a remote procedure to implement the
PRINTMESSAGE procedure we de