
Read This First
Software READ THIS FIRST

Programmer's Guides Minibox

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: 800-1789-10
Revision A, of 9 May 1988

Sun Microsystems® is a registered trademark of Sun Microsystems, Inc.
Sun Workstation® is a registered trademark of Sun Microsystems, Inc.
The Sun logo is a registered trademark of Sun Microsystems, Inc.
Sun TM is a trademark of Sun Microsystems, Inc.
SunOS™ is a trademark of Sun Microsystems, Inc.
NFSTM is a trademark of Sun Microsystems, Inc.
Sun-2TM is a trademark of Sun Microsystems, Inc.
Sun-3™ is a trademark of Sun Microsystems, Inc.
Sun-4™ is a trademark of Sun Microsystems, Inc.
SP ARCTM is a trademark of Sun Microsystems, Inc.
PostScript® is a registered trademark of Adobe Systems, Inc.
UNIX® is a registered trademark of AT&T.
V AXTM and VMSTM are trademarks of Digital Equipment Corp.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any fonn, or by any means manual,
electric, electronic, electromagnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written pennission from Sun Microsystems.

Introduction

Read This First
Software READ THIS FIRST

Programmer's Guides Minibox

This document supplements the manuals contained in the Programmer's Guides minibox for Release 4.0 of the Sun
Operating System.

Getting Help

If you have any problems installing or using product name, call Sun Microsystems at: 1-800-USA-4SUN (1-800-
872-4786). Have your system's model number,product name release number (for software), and Sun Operating sys­
tem (SunOSTM) release number ready to give to the dispatcher.

You can also send questions by electronic mail to sun! hotline. Be sure to include your name, company, phone
number, product name release number, and SunOS release number in your mail message.

If you have questions about Sun's support services or your shipment, call your sales representative.

o To see the SunOS release number, type: cat /etc/motd

o To see the product name release number, type: instructions go here

Documentation Errata and Additions

Sun-4 Assembler Errata
Per Bugtraq #1009152, if you need it.

In the Sun-4 Assembly Language Reference Manual on page 11, and the SPARe Architecture Manual, Appendix A,
first page, a s register syntax is described in the fonn

reg
%0 %31

%gO %g7 same as %0 %7
%00 %07 same as %8 %15
%10 %17 same as %16 %23
%iO %i7 same as %24 %31

as was changed to the following form:

Rev A of 9 May 1988 Part No: 800-1789-10

Programmer's Guides Minibox READ THIS FIRST

reg
%rO %r31
%gO %g7 same as %rO %r7
%00 %07 same as %r8 %r15
%10 %17 same as %r16 %r23
%iO %i7 same as %r24 %r31

Register references of the fonn %<registernumber> are now of the fonn %r<registernumber> .

FPA Programmer's Guide Addendum

Insert this addendum at the end of the Floating-Point Programmer's Guide:

Rev A of 9 May 1988 Part No: 800-1789-10

Introduction

Sun Floating-Point Options

ce OptimiZlltion Levels

FORTRAN Optimization
Levels

NOTE

Floating-Point.Programmer's Guide
Addendum

The 3.2 Floating-Point Programmer's Guide for the Sun lVorkstation, which
described floating-point programming issues under pre-4.0 versions of SunOS,
has been completely rewritten. It now encompasses floating-point programming
on both the Sun-4 and the Sun-3 with MC68881 or FPA. This errata summarizes
key changes for SunOS 4.0, based upon an early version of the SunOS 4.0 imple­
mentation; final results may vary as to speed or correctness. Most of what fol­
lows also applies to the special SunOS Sys4-3.2 release.

For more infonnation about the Sun-4, see The SP ARC Architecture Manual.

This Supplement refers to the C compiler, ce, included as part of SunOS 4.0,
and to the corresponding FORTRAN compiler, f 7 7 , sold as a separate product
FORTRAN 1.1.

Four optimization levels are available for ec, namely -04, -03, -02, and -01,
described in ce(1). -01 corresponds to -0 in SunOS 3.2. Generally, floating­
point code may be compiled at -04 or -03 unless excessively long compilation
time results; then -02 should provide satisfactory optimization. The default is
unoptimized code generation.

Three optimization levels are available for f77, namely -03, -02, and -Ol.

Generally, floating-point code may be compiled at -03 unless exsessively long
compilation time results; then -02 should provide satisfactory oppIij:i~ation. The
default is unoptimized code generation. -03 and -0 2 corre~pQritfto<Lband - p
in SunOS 3.2.

foption(1) is better than -fswiteh
.

foption(1) allows interactive or programmable de~ririiruifionOf(rv~il~bie:<>.>
floating-point hardware on Sun-3. It's particularly intendegJ6rsijeJ.f~(;riptS>tliat
determine at run time which of several executable files to iIlv6kebased On avail­
able hardware. For instance, such a shell script may select amopg<niwtiple exe­
cutables by first switching according to the result of areh(1),angthenwithin
one CPU architecture, switch according to the FPU architecture willi fop­
tion(1). This executable-level switching is the preferred alternative to the -
fswi tch code-generation option, which imposes a substantial performance
penalty on code intended to run on a Sun-3 FPA.

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

Sun-3 Multiple Libraries and
Inline Expansion Templates

On a Sun-3, the multiple directories

/usr/lib/{ffpa,f68881,fswitch,fsoft}

contain versions of libm. a and libm. il optimized for the indicated floating­
point code-generation option. The correct version of 1 ibm. a is selected
automatically when the compilation option is included on the link-step line:

[cc -ffpa anyc.o -1m
f77 -ffpa anyf.o

will both link automatically with /usr / lib/ ffpa/ 1ibm. a.

]
Inline expansion templates are not used automatically by the compilers; they
must be explicitly specified by the programmer when needed. Inline expansion
templates are especially recommended for use when compiling any FORTRAN
program using complex or doublecomplex variables, and may provide significant
perfonnance increases in some other FORTRAN and C programs as well.

The names of the Sun-supplied inline expansion template files have changed
since SunOS 3.2. The correct template file is 1ibm. i 1 in the directory
corresponding to the floating-point code generation option:

cc -04 -ffpa anyc.c /usr/1ib/ffpa/libm.il
f77 -03 -f68881 anyf.f /usr/1ib/f68881/1ibm.il

The correct template file must be specified by the programmer.

NOTE For maximum performance, link -1m prior to -IF 7 7 on a Sun-3.

Constant Expression
Evaluation

FORTRAN 1.1 contains only one version of libF77 . a, compiled for default
floating point code generation (-fsoft for Sun-3). Certain FORTRAN library
routines are also contained in 1 ibm, optimized for specific code generation
options. Thus in the following:

[f77 -ffpa any.o
f77 -ffpa any.o -1m

the first link will search libraries in the order -lF77 -1177 -lU77 -1m
-le, while the second will search in the order -1m -lF77 -1177 -lU77
-1m -leo Any FORTRAN-required routines contained both in 1ibm and
libF77 will be linked from the -fsoft-compiled library

]

/ us r /1 ib / 1 ibF 7 7 • a in the first case, and from the - f fpa -compiled library
/usr/lib/ffpa/libm. a in the second case.

Some early versions of the manual were incorrect about constant expression
evaluation. e e and f 7 7 evaluate expressions involving only integer constants at
compile time. ee also evaluates expressions involving floating-point constants
at compile time. f 7 7 , however, evaluates expressions involving floating-point
constants at run time whenever possible; exceptions arise in cases like

Rev Aof9 May 1988 Part No: 800-1789-10

Suppressing Mixed-Code­
Generation Warnings

Sun-4 Considerations

No - £ . . . Code Generation
Options

Some SP ARC Instructions
Implemented in Software

Boating-Point Programmer's Guide Addendum - Continued

[parameter(f=1.0+epsilon)]
which must be evaluated at compile time.

Sun-3 compilers attempt to prevent accidentally mixing -£68881 and -££pa
modules by means of a low-technology trick: such modules include an
unsatisfied reference to f 68881_ used and f fpa _used respectively. These
entry points are only defined in / lib/Mertle 0 and / lib/Wertl. 0 respec­
tively; ld chooses one of these according to the - £ . .. option it gets. Modules
compiled with the wrong option cause the following error messages:

(
or

[

Undefined:
ffpa_used

Undefined:
f68881 used

]

1
This safety method no longer works in SunOS 4.0 when programs are linked
dynamically (the default); the unsatisfied reference, which is never actually used,
may remain unresolved indefinitely. Consequently the sequence

cc -c -ffpa any.c
cc -f68881 any.o

will link but will not execute correctly because the Sun-3 FPA initialization code
nonnally included in the link step has been omitted.

Static linking, the default in SunOS 3.2, is invoked with -Bstatie in 4.0, and
will detect such errors. Occasionally sophisticated users will have valid reasons
to bypass such error checking. This may easily be done by including assembly­
language modules that define the unsatisfied externals. Users doing so are
responsible for correctly initializing any floating-point devices they do use.

Release 4.0 is the first SunOS release to support both Sun-3 and Sun-4.

Unlike Sun-3, there is only one Sun-4 floating-point architecture, SPARC, so no
-£ ... option is needed to specify it. But -£single and -£single2 are
available on Sun-4 just as on Sun-3 floating-point architectures.

The SPARC architecture specifies certain instructions that are not implemented
in the Sun-4/260 or 280 hardware. These instructions are therefore not generated
by the Sun compilers. However the instructions are recognized by the Sun-4

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

SPARe Floating-Point
Controller

Don't Forget to MAKEDEV

fpa!

assembler and implemented (slowly) by software in the Sun-4 kernel under
SunOS 4.0 (but not Sys4-3.2), so that they may be invoked by assembly­
language coding if desired. These instructions include:

o fsqrt [sdx]

o all extended-precision instructions

Other instructions were listed in early editions of the SP ARC manual, but later
deleted from the architecture, without ever being implemented. These include:

0 fint[sdx]

0 fintrz[sdx]

0 fclass[sdx]

0 fexpo [sdx]

0 fscale[sdx]

0 frern[sdx]

0 fquot[sdx]

0 f[sdx]toir

The SPARC CPU board contains two large Fujitsu gate arrays, the SPARe CPU
and the floating-point controller (FPC) next to the Weitek 1164/1165. All such
prototype FPC's in early Sun-4's should have been replaced by Sun Customer
SeIVice with a "F AB-4" FPC. The suffix is at the end of the part number on the
first line of the label on the FPC. If the FPC is examined and a prototype FPC
found, notify Sun Customer SeIVice. Prototype FPC numbers include:

o MB610303 MB610303A MB610303B MB86910

o FAB-4 FPC's may be numbered

o MB610303C or MB86910A

New I/O devices are not usable on a Sun until they have entries in /dev. In
most cases these entries are not built into the distributed Sun software and must
be done manually, once, by system administrators.

The Sun-3 FP A (and the Sun-2 Sky FFP) are treated as I/O devices by vrnunix
and must have / dev entries made and then the system rebooted in order to get
the microcode loaded. The / dev entries must be remade every time a major
software installation occurs. The simple but often-overlooked procedure is to
become root and then:

* cd /dev * MAKEDEV fpa * fastboot

Rev A of 9 May 1988 Part No: 800-1789-10

FPAandNFS

Floating-Point Numerics

Floating-Point Types

Floating-Point Programmer's Guide Addendum - Continued

As a rule, computational seNers and file seNers don't mix very well; seNers
should be allocated to one purpose or the other. In particular, Sun-3 's with a
heavily-used FP A sometimes provide very poor NFS response. The VMEbus
timeout setting of the FP A seems to have a significant effect; changing it from 5
microseconds to 4 has helped several systems. If NFS response is a problem in a
system with a heavily-used FP A, try the following; if it does not help, undo the
change you made in case it was incorrect

On the Sun-3 FP A, change the settings on the dip switch near the VMEbus from:

to:

[

X=closed O=open

123 4 5 6 7 8
o x 0 x 0 x x x

1 2 3 4 5 6 7 8
x x 0 x 0 x x x

1

Despite extensive documentation available in the IEEE Floating-Point Standard,
the MC68881 manual, and the SP ARC definition, many questions arise about the
details of IEEE floating-point format. For machine-independent coding, the fol­
lowing suffices:

IEEE Fonnat Exponent
Bits

IEEE Single: 8
C float
Fortran REAL

IEEE Double: 11
C double
Fortran DOUBLEPRECISION

IEEE Double-extended: 15

Significand
Bits

24

53

64

Equivalent
Decimal Precision

6-9

15-17

18-21

IEEE Double-extended is the type of the MC68881 's floating-point data registers
but is not directly available in Sun's high-level programming languages.

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

New Include Files

New libmFunctions

"Equivalent decimal precision" is defined as a range; the smaller number is the
greatest number of significant decimal digits that is never more precise than the
binary type; the larger number is the least number of significant decimal digits
that is never less precise than the binary type.

The ranges of floating-point types can be conveniently determined with a simple
program like:

real r_min_subnormal, r max subnormal
real r_min_normal, r_max_normal
doubleprecision d_min_subnormal, d_max_subnormal
doubleprecision d_min_normal, d_max_normal

print * r min subnormal () , - -
print * r max subnormal () , - -
print * r min _normal () ,
print * r_max_normal () ,
print * d min subnormal () , - -
print * , d max subnormal () - -
print * d_min_normal () ,
print * d_max_normal () ,
end

whose output is

1.40129846E-45
1.17549421E-38
1.17549435E-38
3.40282347E+38
4.9406564584124654-324
2.2250738585072009-308
2.2250738585072014-308
1.7976931348623157+308

Floating-point definitions are now contained in three files. <5 y 5/ ieeefp. h>
contains certain definitions of IEEE floating point required in the kernel.
<floatingpoint . h> contains definitions required and functions imple­
mented in libc. a, including the necessary definitions for correctly-rounded
base conversion. <math. h> defines the functions implemented in each version
of the expanded libm. a. <math. h> includes <floatingpoint. h>,
which in turn includes <sys/ieeefp. h>. See floatingpoint(3) and
intro (3M).

The mathematical function library, libm. a, has been substantially respecified
and reimplemented. All (3M) man pages should be reviewed. Some of the
changes affect atan2(O,O), pow(x,O), hypot (00, x), and so on.

Rev A of9 May 1988 Part No: 800-1789-10

FORTRAN libmFunctions

abru-pt_u-nd-erflvw Mude

Floating-Point Programmer's Guide Addendum - Continued

All relevant 1 ibm functions are provided in double-precision and single­
precision versions designed to be called from FORTRAN. Thus the C double and
single-precision codes

iinclude <math.h>

double x, Yi
Y = asinh(x)

float x, Yi
FLOATFUNCTIONTYPE ti
t = r_asinh_(&x)i
ASSIGNFLOAT(y, t)i

correspond to the FORTRAN codes

doubleprecision x, y, d_asinh{)
y = d_asinh(x)

real x, y, r_asinh()
y = r_asinh(x)

as described in singleyrecision(3M), libID_single(3F), and
libm _ double(3F).

Unlike the asynchronous MC68881, synchronous high-performance floating­
point chips, such as the Weitek 1164/1165, used in the Sun-3 FPA and in the
Sun-4, are unable to efficiently handle subnormal operands or results in the
manner intended by the IEEE floating-point standard. Consequently, software
emulation is required to remedy the deficiencies of the hardware by "recomputa­
tion" of the correct result from the operands. This is occasionally observed to
cause numerical programs to suffer extremely poor perfonnance, consuming a
very large amount of system time relative to user time. Part of the system time is
due to kernel overhead, and part due to the time required to do the recomputa­
tion.

There are three common cases in which such recomputation adversely affects
performance.

1) Underjlowed results on multiplication or division, which are not directed to
be trapped by ieee _ handler(3M), are recomputed to determine the
correct subnormal or zero result.

2) Subnormal operands, usually the result of previous underflows, are recom­
puted to determine the correct result.

3) Exponentials of large negative arguments, such as double­
precisionexp (x) for x < -709, are recomputed to determine the correct
subnonnal or zero result.

Rev A of9 May 1988 Part No: 800-1789-10

Hoating-Point Programmer's Guide Addendum - Continued

SunOS 4.0 provides a unifonn way to obtain abrupt_underflow mode treat­
ment of the 1164/1165; the C and FORTRAN calls

call abrupt_underflow()

enable abrupt_underflow mode treatment on Sun-3 FPA and Sun-4, which
partially corresponds to the "FAST" hardware mode bit of the 1164/1165.
abrupt _underflow has no effect with other Sun-3 floating-point options. Its
effects in the three common cases are currently as follows:

1) Underjiowed results: abrupt_underflow does not affect this case in
SunOS4.0.

2) Subnormal operands: On Sun-3 FPA and Sun-4,
causesabrupt _under f lowmode to be treated as zero without causing
any exception.

3) Exponentials of large negative arguments: On Sun-3 FPA and Sun-4,
abrupt_underflow mode causes exponentials, that would nonnally underflow
to subnonnal or zero results, to return zero without causing any exception.

In each case, the abrupt _ underf low mode may only improve perfonnance
when the other modes affecting rounding direction and precision have their
default values.

abrupt_underflow mode does not confonn to the IEEE Standard, and
IEEE-based exception handling should not be relied upon when running in
abrupt_underflowmode. To return to Standard-conforming behavior in a
program, use the following calls:

gradual_underflow();

call gradual_underflow()

NOTE Avoid the obsolete fpamode () .

Porting Applications from
non-IEEE Systems

In general, the Weitek 1164/5 FAST mode is intended to bypass normal IEEE
exception handling. Thus not only may the numerical results differ from nonnal
IEEE results, but neither IEEE exception reporting, through ieee_flags () ,
nor IEEE trapping, through ieee_handler () and S IGFPE, should be relied
upon. The abrupt_underflow function call is thus named for FAST mode's
principal application, although FAST mode could affect other exceptions besides
underflow, depending on the floating-point chips and their controllers in a partic­
ular implementation.

Porting an application from one computer to another always produces interesting
side effects, particularly when floating point is involved. The most common
porting situation involVIng Suns is converting applications written for DEC's
V AX hardware, VMS operating system, and extended VMS FORTRAN compiler.

Rev A of9 May 1988 Part No: 800-1789-10

Trigonometric Argument
Reduction Mode

Floating-Point Programmer's Guide Addendum - Continued

Sun FORTRAN 1.1 now supports most VMS FORTRAN extensions, so that use of
non-standard FORlRAN is no longer a serious impediment. However, running
programs developed under non-IEEE arithmetic for the first time on an IEEE sys­
tem often reveals previously unsuspected properties of the programs. Often
these have to do with exceptions, particularly underflow. VMS FORlRAN pro­
grams typically expect that underflow will be treated by underflowing to zero
without generating any exception, and that overflow and division by zero will
generate a S IGFPE that is fatal unless a S IGFPE handler has been established.
SIGFPE handlers often assume that the only cause of SIGFPE is an overflow or
division by zero. Therefore:

o Programs that underflow frequently and therefore perform poorly may some­
times benefit from abrupt _ underf low () as described above. Changing
from gradual to abrupt underflow may have an adverse effect on accuracy,
however, previously abrupt underflow may have been degrading results
silently on the non-IEEE system.

o Programs that depend on halting in the event of overflow or division by zero
should use ieee _handler () to obtain such treatment since the IEEE
Standard requires default non-stop exception handling.

o Programs that install their own S IGFPE handlers must be rewritten to work
properly with the Sun-3 FPA, to recognize and treat appropriately the partic­
ular S IGFPE code, FPE _ FPA _ERROR, as described in the 3.2 floating­
point manual.

That floating-point exceptions are occurring in the normal mode might be
inferred from very slow performance with much system time relative to user
time, or from messages produced by ieee_retrospective ().

Trigonometric functions for radian arguments outside the range [-1t/4,1t/4] are
usually computed by "reducing" the argument to the indicated range by subtract­
ing integral multiples of 1t/2.

Since 1t is not a machine-representable number, it must be somehow approxi­
mated; the error in the final computed trigonometric function depends on the
rounding errors in argument reduction with an approximate 1t as well as the
rounding and approximation errors in computing the trigonometric function of
the reduced argument. Even for fairly small arguments, the relative error in the
final result may be dominated by the argument reduction error, while even for
fairly large arguments, the error due to argument reduction may be no worse than
the other errors. See the March 1981 issue of the IEEE's Computer magazine,
page 71.

There is a widespread misapprehension that trigonometric functions of all large
arguments are inherently inaccurate, and all small arguments relatively accurate,
based on the simple observation that large enough machine-representable
numbers are separated by a distance greater than 1t. However there is no inherent
boundary at which computed trigonometric function values suddenly become
bad, nor are the "inaccurate" function values useless. Provided that the argument
reduction be done consistently, the fact that the argument reduction is performed
with an approximation to 1t is practically undetectable, since all essential

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

identities and relationships are as well preseIVed for large arguments as small.

There are several consistent ways to perfonn trigonometric argument reduction;
SunOS 4.0 provides three. Perhaps most satisfying to mathematicians is to gen­
erate an approximation to 1t of such precision that the roundoff due to argument
reduction is never worse than any other roundoff in the final answer. That's as
good as having 7t to infinite precision. For IEEE double precision, this is
equivalent to an approximation to 7t of over one thousand bits of accuracy, so this
method is slowest.

Most satisfying to Sun-3 users is to perform argument reduction with the 66-
significant-bit approximation to 1t used in the MC68881 hardware and mimicked
in the Sun-3 FPA hardware. This is most efficient on Sun-3's.

Some users prefer that trigonometric argument reductions be performed with an
approximation to 7t representable as an ordinary floating-point variable; for those
users, the nearest 53-significant-bit double-precision approximation to 1t is avail­
able. Call that approximation P: it has the property that computed sin (P)
o just as the correct sin (1t) == 0; furthennore tan (P) == co. 53-bit
reduction is the most efficient on Sun-4' s.

The trigonometric argument reduction mode is selected by assigning to a global
C variable fp yi. Its allowed values are described in <math. h>:

enum fp-pi_type {
fpyi_infinite
fp-pi_66 1,
fpyi_53 = 2
}

o , / * Infinite-precision approximation to pi * /
/ * 66-bit approximation to pi * /
/* 53-bit approximation to pi * /

extern enum fpyi_type fp-pi;

fpyi is initialized to fpyi_66 in order to produce the same results as for
programs previously run on Sun-3's. fp yi is directly available to C programs;
from FORTRAN it is necessary to call a short C program like this:

#include <math.h>

void
setyi_53_ ()
{

The relative perfonnance of infinite, 66-bit, and 53-bit argument reduction varies
considerably depending on available hardware and on the magnitudes of the
arguments. When most trigonometric arguments are typical ones of magnitude <
10, then the choice of argument reduction constant usually has insignificant

Rev Aof9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

perfonnance impact.

NOTE Using the f68881/1ibm. il or ffpa/libm. il inline expansion template

IEEE-Standard Conformance

Correctly-Rounded Base
Conversion

ieee handler

Special IEEE Functions

files will always cause 66-bit argument reduction to occur regardless of the set­
ting of fp yi.

C and FORlRAN input and output of decimal floating-point numbers is now
correctly rounded to or from the internal binary representation. For extreme
exponents, "correctly rounded" is more exacting than the IEEE minimal require­
ment. Correctly-rounded base conversion is obtained through the usual C func­
tions strtod(3), scanf(3), and printf(3), and through the usual FORTRAN
input and output. These functions now can read, as well as write, ASCII
representations such as "inf," "infinity," and "NaN."

Finer control, including access to rounding modes and exception flags, can be
obtained by use of string_to_decimal(3), decimal_to_floating(3),
and floating_to_decimal(3).

The number of significant digits in implicitly-fonnatted FORlRAN list-directed
output ()print*,x,y,z has been increased so that sufficient decimal digits are
printed to uniquely specify the binary value held internally.

ieee_flags(3M) or f77 _ieee_environment(3F) provide a unifonn way
of accessing the IEEE modes for rounding direction and rounding precision, and
the IEEE exception-occurred accrued status bits, for Sun-3 with - f 68881 or -
ffpa, and for Sun-4. Use ieee_flags () instead of fpstatus_ () and
fpmode_ ().

ieee_handler(3M) or f77 _ieee_environment(3F) provide a unifonn
way of enabling IEEE traps on floating-point exceptions. Trapped exceptions
result in SIGFPE signals. To conveniently exploit IEEE trapping, use
ieee_handler () rather than fpmode (), signal(3), or sigvec(2).

libm now contains implementations of all functions needed for the IEEE Stan­
dard, its Appendix, or the IEEE Test Vectors, replacing the special functions
listed in Appendix D of the SunOS 3.2 version of the Floating-Point
Programmer's Guide manual. Use these (3M) functions or their d _ or r _ coun­
terparts:

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Guide Addendum - Continued

sqrt(3M)
remainder(3M)
irint(3M)
rint(3M)
decimal_to _floating(3)
floatin!Lto_decimal(3)
ieee _flags(3M)
ieee_handler(3M)

copysign(3M)
scalb(3M)
scalbn(3M)
logb(3M)
ilogb(3M)
nextafter(3M)
finite(3M)
isnan(3M)
isnan(x)lIisnan(y)
fp_class(3M)

logb(3M)
scalb(3M)
significand(3M)

Suppressing
ieee_retrospective
Warnings

IEEE Standard:

square root
remainder
convert floating-point value to integral value in integer fonnat
convert floating-point value to integral value in floating-point fonnat
convert decimal record to binary floating point
convert binary floating point to decimal record
get/set modes/status
enable/disable trapping
IEEE Appendix:

copysign
scalb - scale by base b to power n in floating-point form
scale by base b to power n in integer fonn
10gb - exponent in floating-point form
exponent in integer fonn
nextafter
finite
isnan
unordered
class
IEEE Test Vectors:

L test vector
S test vector
F test vector

Note that the <math. h> function class () and the <floatingpoint . h>
struct member decimal_record.class, defined in the Sys4-3.2 release and some
preliminary versions of SunOS 4.0, present an irreconcilable conflict with the
"class" reserved word in C++ and other languages. Accordingly class () ,
d_class_ (), r_class_ (), and decimal_record. class are named
fp_class(),d_fp_class_(),r_fp_class_() ,and
decimal_record. fpclass in the released version of Sun OS 4.0.

ieee_retrospect i ve is a libm function invoked whenever a FORTRAN
program tenninates nonnally or abnonnally for any reason (not necessarily
because of a floating-point exception). Under IEEE arithmetic, exception­
occurred bits accrue until explicitly cleared by the programmer. If any IEEE
exceptions, other than inexact, occur but are not cleared by the time the program
tenninates, a message listing all the exceptions still uncleared is appended to
standard error:

Warning: the following IEEE floating-point arithmetic exceptions
occurred in this program and were never cleared:
Inexact; Underflow;

.\'sun ~ microsystems
Rev A of9 May 1988 Part No: 800-1789-1

Benchmarks

Floating-Point Programmer's Guide Addendum - Continued

No message is printed if the only outstanding exception is inexact. Note that
IEEE exceptions arise only on Sun-3 compiled with - f 6 8 881 or - f fpa, or on
Sun-4.

The significance of the warning may be difficult to detennine. "Inexact" implies
a nonnal rounding error, which is to be expected in floating-point programs,
while "Underflow" and "Overflow" warn of rounding errors that may have been
relatively larger than usual. Whether the underflowed or overflowed result
affected the final answer can only be detennined by analyzing the program. For
instance, a small underflowed result may suffer significant relative rounding
error, which matters if it is ultimately multiplied by a large number, but not if it
is ultimately added to a large number.

The best way to suppress the message is to detennine which operations are gen­
erating the exceptions, then altering the algorithm to avoid the exceptions.
ieee _ handler(3F) may be helpful in this search.

A second method is to clear all the exceptions at the end of the program by cal­
ling ieee_flags(3F). The ieee_retrospective message won't appear
except possibly as part of an unplanned abnonnal termination.

Finally the message can be fully suppressed by defining a function in the FOR­
TRAN source

[
subroutine ieee_retrospective()]

"'----en_d ___ ___

C programs do not call ieee _ retrospecti ve automatically. To obtain its
effect, insert a call manually in a C program:

extern void ieee_retrospective_();

While abrupt_underflow is enabled, exception handling need not confonn
to IEEE requirements. Thus in a program that enables abrupt_underflow,
no message from ieee _retrospective does not imply that the results were
not potentially corrupted by underflow. That possibility is presumed to have
been eliminated by analysis prior to enabling abrupt_underflow.

The following benchmarks indicate maximum performance for a Sun-3/280 com­
piled -f68881 or -ffpa, and fora Sun-4/280. FORTRAN programs were
compiled with -03; the C program spice3b1 -02; the Sun-supplied
libm. il inline expansion templates were used. Benchmark sources are usually
slightly modified for testing purposes; therefore comparisons to results obtained
by others on non-Sun systems may be misleading.

The lOOxlOO Linpack benchmark results in KFLOPS pertain to FORTRAN code
with ROLLED BLA's.

Rev A of 9 May 1988 Part No: 800-1789-10

Boating-Point Programmer's Guide Addendum - Continued

The 1000x1000 Linpack benchmark results in KFLOPS pertain to the best per­
fonnance obtained from FORTRAN codes that do "higher-level granularity"
unrolling of 4, 8, or 16 times.

The 100xlOO Zlinpack benchmark results in complex-KFLOPS measure perfor­
mance on a complex or doublecomplex arithmetic translation of the Linpack
benchmark. A complex-KFLOP is equivalent to 4 real KFLOPS.

The double-precision Doduc benchmark results in elapsed SECONDS of real
time measure perfonnance on the non-linear nuclear reactor simulation bench­
mark distributed and reported by N. Doduc (uunet . uu . net! mcvax
! inria ! ftc! ndoduc).

The double precision FORTRAN and C versions of SPICE, 2G6, and 3Bl
respectively, measure elapsed SECONDS of real time for three representative
decks: EDGEREG, a Schottky edge-triggered register, COMPARATOR, a differen­
tial comparator, and D IGSR, a CMOS digital shift register.

BENCHMARK RESULTS 3/280 3/280 4/280
KFLOPS -f68881 -ffpa

100 Linpack double 115 470 1070
100 Linpack single 125 900 1600

1000 Linpack double 160 600 1140
1000 Linpack single 180 1050 1700

100 Zlinpack complex 28 110 150
100 Zlinpack doublecomplex 26 80 170

BENCHMARK RESULTS 3/280 3/280 4/280
ELAPSED SECONDS -f68881 -ffpa

Doduc double 2000 880 530

spice2g6 EDGEREG 220 120 61
spice2g6 COMPARATOR 260 130 68
spice2g6 DIGSR 730 380 220

spice3b 1 EDGEREG 210 100 61
spice3b1 COMPARATOR 260 125 72
spice3bl DIGSR 810 390 270

The Sun-4 complex Zlinpack results are affected by the choice of inline expan­
sion templates for complex multiplication. Double-precision products are used
to maximize robustness against rounding errors and intennediate overflows and
underflows, just as on the Sun-3 with

(/usr/lib/fI68881,fPaJ/libm o il]

• sun Rev Aof9 May 1988 Part No: 800-1789-10
~ microsystems

C

Floating-Point Programmer's Guide Addendum - Continued

When such robustness is not needed, performance can be significantly improved
by substituting a user-coded single-precision complex multiplication template.

The Linpack benchmarks incorporate a slight modification in the distributed
EP SLON routine. Without the modification the normalized residual is not com­
puted correctly when compiled with - f 6 8 881 -03 without - f store. The
modifications to EP S LON don't affect the benchmark itself or the computation of
the actual residual, only the scaling factor applied to compute the normalized
residual. The modifications are necessary as a result of improvements in the glo­
bal optimizer, which is now able to allocate more variables to registers. The fol­
lowing extract reveals the modification in lower case:

REAL FUNCTION EPSLON (X)
REAL x
REAL A,B,C,EPS

C THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS
C SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
C 1. THE BASE USED IN REPRESENTING FLOATING POINT
C NUMBERS IS NOT A POWER OF THREE.
C 2. THE QUANTITY A IN STATEMENT 10 IS REPRESENTED TO
C THE ACCURACY USED IN FLOATING POINT VARIABLES
C THAT ARE STORED IN MEMORY.
C THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
C FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING
C ASSUMPTION 2.
C

A = TOREAL(4)/TOREAL(3)
call dummy (a)

10 B A - ONE
C = B + B + B
EPS = ABS(C-ONE)
IF (EPS .EQ. ZERO) GO TO 10
EPSLON = EPS*ABS(X)
RETURN
END

subroutine dumrny(a)
REAL a
end

The -f store option may adversely affect performance and is usually useful
only in code very much like EP SLON which attempts to determine properties of
machine arithmetic.

MC68881 Mask Differences

New MC6888X varieties rnc68881version(8) has been expanded to differentiate B96M MC68882's
and B81G MC68881 's as well as the A79J and A93N MC68881 's previously dis­
tinguished. Future Sun products may incOlporate B81G MC68881 's and B96M

Rev A of9 May 1988 Part No: 800-1789-10

Floating-Point Programmer's Ouide Addendum - Continued

Suppressing A79} Warnings

68882's, so it is worthwhile reviewing the differences. Note that chips which
me 68 881 ver sion classifies as "A93N" or "B8l0" may be physically marked
as a different, functionally equivalent, mask set.

o A79J MC6888l's are the original chips shipped in early Sun-3's. They have
not been shipped by Sun since mid-1986. Their bugs are listed in an appen­
dix to the SunOS 3.2 version of the Floating-Point Programmer's Guide
manual.

o A93N MC68881 's are the standard chips in most Sun-3's. They have one
known bug: extended precision addition and subtraction occasionally round
the wrong way when the correct result is very nearly half-way between two
representable extended-precision numbers. This bug is almost undetectable
on Sun systems since extended precision data types are not directly available
in compiled languages. The bug may be obseIVed by running IEEE test vec­
tors directly on extended-precision operands and results through assembly­
language coding; it also shows up in the computed residual of the Linpack
benchmark program and may affect any other computed result which is
essentially roundoff noise. Since most application programs avoid printing
out such results, they aren't much affected by the bug.

o B810 MC68881 's are identical to A93N's except that the bug has been
fixed. As of the end of 1987, no Sun products used B810's.

o B96M MC68882's are functionally identical to B810 MC68881's in user
mode. Because they implement some parallel execution, their internal state
is more complex than MC68881 's, so the size of the infonnation dumped by
the privileged FSAVE instruction is greater. Consequently MC68882's can't
be used on Sun operating systems prior to 4.0. As of the end of 1987, no
Sun products used MC68882's.

In order to improve perfonnance of the correctly-functioning later masks, SunOS
4.0 no longer attempts to work around the shortcomings of the early A 79J
MC6888l's. The 3.2 manual describes some of these shortcomings, and men­
tions that some have no software workaround anyway.

SunOS 4.0 will print a warning message on standard error if a program compiled
-f68881 is executed on a Sun-3 with an A79J MC68881:

NOTE Please note: MC68881 upgrade to A93N mask may be advisable. See Floating­
Point Programmer's Guide.

Economical Sun-3 upgrades from A79J to A93N MC68881 's are available from
Sun, and include a perfonnance boost of up to 20%: the A93N MC68881 's run at
16.7 MHz instead of the A79J's 12.5 MHz.

A program that does not require extensive floating point can bypass the message
by recompiling with -fsoft.

If it can be detennined that none of the A 79J shortcomings affects a particular
program, then the message can be suppressed by including a C function

Rev A of9 May 1988 Pan No: 800-1789-lC

System V Interface
Compliance

Floating-Point Programmer's Guide Addendum - Continued

int rna 93n_ ()
{

return 1;

or a FORTRAN function

integer function rna93n()
rna93n=1
end

or by modifying the executable image with adb(1).

Unlike SunOS 3.2, SVID compliance on SunOS 4.0 is the same for all Sun-3
floating-point code generation options and for Sun-4. Compliance is not claimed
for certain aspects of SVID that are contrary to the intent of the IEEE Standard.
See matherr(3M).

The libm. il inline expansion templates do not call matherr(3M) or set
errno and therefore should not be used if detailed SVID compliance is
required.

Rev A of9 May 1988 Part No: 800-1789-10

