
I'sun®
microsystems

A RIse Tutorial

Part Number: 800-1795-10
Revision A of 9 May, 1988

The Sun logo, Sun Microsystems, Sun Workstation, NFS, and TOPS are
registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SPARCstation, SPARCseIVer, NeWS, NSE,
OpenWindows, SPARC, SunInstall, SunLink, SunNet, SunOS, SunPro, and Sun­
View are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T; OPEN LOOK is a trademark of AT&T.

All other products or seIVices mentioned in this document are identified by the
trademarks or seIVice marks of their respective companies or organizations, and
Sun Microsystems, Inc. disclaims any responsibility for specifying which marks
are owned by which companies or organizations.

Copyright © 1988 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reseIVed. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical­
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,1904,527,2324,745,4074,679,0144,435,792 4,719,569 4,550,368 in
addition to foreign patents and applications pending.

Contents

Chapter 1 Introduction .. 1

1.1. Scalable Processor Architecture .. 1

1.2. What is RISC? ... 1

1.3. RISC Architecture ... 3

1.4. Earlier Architectures .. 4

1.5. Early RISC Machines .. 5

1.6. RISC's Speed Advantage .. 7

Chapter 2 SPARe Architecture ... 9

2.1. Instruction Categories ... 10

2.2. Register Windows ... 10

2.3. Traps and Exceptions .. 12

2.4. Memory Protection ... 12

Chapter 3 An Open Architecture .. 13

3.1. Advantages of Open Architecture .. 13

3.2. SPARC Design and RISC 13

3.3. How SPARC Design is Different 14

3.4. Speed Advantage of SP ARC Systems " ~.),~ :,;~~;~~~.;.;:;:;:;:,;: " : ;:::::

3.5. SPARC Machines and Other RISC Machines .. , ..• :.:.: .. ,.,;,;:;: .. ; : ,: 0:;:.::.:.:.:" ••• :::::::::.

3.6. Conclusion , .. ";+0:.0:.;; .. ,,;;+~;,.+ii'~ ;~;;;;:;.;:.,:,; ..

- iii-

Figures

Figure 1-1 Genealogy of RIse Architectures .. 6

Figure 2-1 Sample SP ARC Implementation ... 9

Figure 2-2 Overlapping Register Windows ... 11

Figure 3-1 Processor Performance .. 15

-v-

1.1. Scalable Processor
Architecture

1.2. What is RISe?

1
Introduction

Sun Microsystems has designed a RISC architecture, called SP ARCTM, and has
implemented that architecture with the Sun-4™ family of supercomputing work­
stations and servers. SP ARC stands for Scalable Processor ARChitecture,
emphasizing its applicability to large as well as small machines. SPARC sys­
tems have an open computer architecture - the design specification is published,
and other vendors are producing microprocessors implementing the design. As
with the Network File System (NFSTM), we hope that the intelligent and aggres­
sive nature of the SP ARC design will become an industry standard.

The term "scalable" refers to the size of the smallest lines on a chip. As lines
become smaller, chips get faster. However, some chip designs do not shrink well
- they do not scale properly - because the architecture is too complicated.
Because of its simplicity, SPARe scales well. Consequently, SP ARC systems
will get faster as better chip-making techniques are perfected.

Although this document is neither detailed nor highly technical, it assumes that
you are acquainted with the vocabulary of a computer architecture. (An architec­
ture is an abstract structure with a fixed set of machine instructions.) The first
chapter answers the questions: what is RISC, and why is it useful? The second
chapter gives an overview of the SPARC architecture. The third chapter com­
pares the SPARC design with other RISe architectures, pinpointing the advan­
tages of Sun's design.

RISC, an acronym for Reduced Instruction Set Computer, is a style of computer
architecture emphasizing simplicity and efficiency. RISe designs begin with a
necessary and sufficient instruction set. Typically, a few simple operations
account for almost all computations - these operations must execute rapidly.
RISC is an outgrowth of a school of system design whose motto is "small is
beautiful. " This school follows Von Neumann's advice on instruction set
design:

The really decisive consideration in selecting an instruction set is
"simplicity of the equipment demanded by the [instruction set], and
the clarity of its application to the actually important problems,
together with [its speed] handling those problems."

Simpler hardware, by itself, would seem of marginal benefit to the user. The
advantage of a RISC architecture is the inherent speed of a simple design and the
ease of implementing and debugging this simple design. Currently, RISe

1 Revision A, of 9 May 1988

2 A RIse Tutorial

machines are about two to five times faster than machines with comparable tradi­
tional architectures, t and are easier to implement, resulting in shorter design
cycles.

RISe architecture can be thought of as a delayed reaction to the evolution from
assembly language to high-level languages. Assembly language programs occa­
sionally employ elaborate machine instructions, whereas high-level language
compilers generally do not. For example, Sun's e compiler uses only about 30%
of the available Motorola 68020 instructions. Studies show that approximately
80% of the computations for a typical program requires only about 20% of a
processor's instruction set.

RISe is to hardware what the UNIX operating system is to software. The UNIX
system proves that operating systems can be both simple and useful. Hardware
studies suggest the same conclusion. As technology reduces the cost of process­
ing and memory, overly complex instruction sets become a performance liability.
The designers of RISe machines strive for hardware simplicity, with close
cooperation between machine architecture and compiler design. At each step,
computer architects must ask: to what extent does a feature improve or degrade
performance and is it worth the cost of implementation? Each additional feature,
no matter how useful it is in an isolated instance, makes all others perform more
slowly by its mere presence.

The goal of RISe architecture is to maximize the effective speed of a design by
performing infrequent functions in software, including in hardware only features
that yield a net performance gain. Performance gains are measured by conduct­
ing detailed studies of large high-level language programs. RISe improves per­
formance by providing the building blocks from which high-level functions can
be synthesized without the overhead of general but complex instructions.

The UNIX system was simpler than other operating systems because its develop­
ers, Thompson and Ritchie, found that they could build a successful timesharing
system with no records, special access methods or file types. Likewise, as a
result of extensive studies, RISe architectures eliminate complicated instructions
requiring microcode support, such as elaborate subroutine calls and text-editing
functions. Just as UNIX retained the important hierarchical file system, recent
RISe architectures retain floating-point functions because these functions are
performed more efficiently in hardware than in software.

Portability is the real key to the commercial success of UNIX, and the same is
true for RISe architectures. At the mere cost of recompilation, programs that run
on V AXes or systems that use the various 68000 CPUs will run faster on RISe
machines. RISe architectures are more portable than traditional architectures
because they are easier to implement, thus permitting the rapid integration of
new technologies as they become available. Users benefit because architectural
portability allows more rapid improvements in the price/performance of comput­
ing.

t By comparable we mean architectures that cost about the same to implement. A Cray-2 supercomputer is
not comparable to an IDM PC in this sense.

sun
microsystems

Revision A, of 9 May 1988

1.3. RISe Architecture

Chapter 1 - Introduction 3

For computer architects, the word technology refers to how chips are made -
how lines are drawn, how wide these lines are, and the chemical process
involved. The use of gallium arsenide in fabrication, which creates faster chips,
is an example of a recent development in chip technology.

The following characteristics are typical of RISe architectures. Although none
of these are required for an architecture to be called RISe, this list does describe
most current RISe architectures, including the SPARe design.

D Single-cycle execution. Most instructions are executed in a single machine
cycle.

D Hardwired control with little or no microcode. Microcode adds a level of
complexity and raises the number of cycles per instruction.

D Load/Store, register-to-register design. All computational instructions
involve registers. Memory accesses are made with only load and store
instructions.

D Simple fixed-format instructions with few addressing modes. All instruc­
tions are the same length (typically 32 bits) and have just a few ways to
address memory.

D Pipelining. The instruction set design allows for the processing of several
instructions at the same time.

D High-performance memory. RISe machines have at least 32 general-purpose
registers and large cache memories.

D Migration of functions to software. Only those features that measurably
improve performance are implemented in hardware. Software contains
sequences of simple instructions for executing complex functions rather than
complex instructions themselves, which improves system efficiency.

D More concurrency is visible to software. For example, branches take effect
after execution of the following instruction, permitting a fetch of the next
instruction during execution of the current instruction.

The real keys to enhanced performance are single-cycle execution and keeping
the cycle time as short as possible. Many characteristics of RISe architectures,
such as load/store and register-to-register design, facilitate single-cycle execu­
tion. Simple fixed-format instructions, on the other hand, permit shorter cycles
by reducing decoding time.

Note that some of these features, particularly pipelining and high-performance
memories, have been used in supercomputer designs for many years. The differ­
ence is that in RISe architectures these ideas are integrated into a processor with
a simple instruction set and no microcode.

Moving functionality from run time to compile time also enhances performance
- functions calculated at compile time do not require further calculating each
time the program runs. Furthennore, optimizing compilers can rearrange pipe­
lined instruction sequences and arrange register-to-register operations to reuse
computational results.

Revision A, of 9 May 1988

4 A RIse Tutorial

1.4. Earlier Architectures The IBM System/360, introduced in 1964, was the first computer to have an
architecture (an abstract structure with a fixed set of machine instructions)
separate from a hardware implementation (how computer designers actually built
that structure). The IBM 360 architecture is still used today; IBM has brought
out many computers implementing this architecture (or extensions of it) in vari-
0us ways. Sometimes instructions are performed in hardware; other times in
microcode.

Microcode is composed of low-level hardware instructions that implement
higher-level instructions required by an architecture. At first, microcode was
programmed by an elite group of engineers and then burned into ROM (read-only
memory) where it could only be changed by replacing the ROM. In the early
1970s ROM was already quite dense - 8192 bits of ROM took up the same
space as 8 bits of register.

The biggest problem was that the microcode was never bug-free and replacing
ROMs became prohibitively expensive. So microcode was placed in read-write
memory chips called control-store RAMs (random-access memory). In the mid
1970s, RAM chips offered a good solution, because RAM was faster, although
more expensive, than the ferrite-core memory used in many computers. Thus,
microcode ran faster than programs loaded into core memory.

Given the slow speed and small size of ferrite-core memory, complicated instruc­
tion sets were the best solutions for reducing program size and therefore, increas­
ing program efficiency. Instruction set design placed great emphasis on increas­
ing the functionality and reducing the size of instructions. Almost all computer
designers believed that rich instruction sets would simplify compiler design, help
alleviate the software crisis, and improve the quality of computer architectures.

Because of the scarcity of programmers and the intractability of assembly
language, software costs in the 1960s rose as quickly as hardware costs dropped.
This led the trade press to make dire predictions of an impending software crisis.
The software crisis was somewhat diminished in the commercial sector by the
development of high-level languages, the packaging of standard software pro­
ducts, and increases in CPU speed and memory size that allowed programmers to
use medium-level languages. Clearly, complicated instruction sets did nothing to
alleviate the software crisis.

The improvement of the integrated circuit in the 1970s made microcode memory
even cheaper and faster, encouraging the growth of microprograms. The IBM
370/168 and the VAX 11/780 each have more than 400,000 bits of microcode.
Because microcode permitted machines to do more, enhanced functionality
became a selling point.

However, not all computer designers held these opinions. Seymour Cray, for
one, believed that complexity was bad, and continued to build the fastest com­
puters in the world by using simple, register-oriented instruction sets. The eDC
6600 and the Cray-l supercomputer were the precursors of modem RISe archi­
tectures. In 1975 Cray made the following remarks about his computer designs:

H[Registersl made the instructions very simple ... That is somewhat
unique. Most machines have rather elaborate instruction sets

sun
microsystems

Revision A, of 9 May 1988

1.5. Early RISe Machines

Chapter 1 - Introduction 5

involving many more memory references in the instructions than the
machines I have designed. Simplicity, I guess, is a way of saying it. I
am allfor simplicity. If it' s very complicated, I can't understand it."

Many computer designers of the late 1970s did not grasp the implications ofvari­
ous technological changes. At that time, semiconductor memory began to
replace ferrite-core memory; integrated circuits were becoming cheaper and per­
fonning 10 times faster than core memory. Also, the invention of cache
memories substantially improved the speed of non-microcoded programs.
Finally, compiler technology had progressed rapidly; optimizing compilers gen­
erated code that used only a small subset of most instruction sets. All of this
meant that architectural assumptions made earlier in the decade were no longer
valid.

A new set of simplified design criteria emerged:

D Instructions should be simple unless there is a good reason for complexity.
To be worthwhile, a new instruction that increases cycle time by 10% must
reduce the total number of cycles executed by at least 10%.

D Microcode is generally no faster than sequences of hardwired instructions.
Moving software into microcode does not make it better, it just makes it
harder to modify.

D Fixed-format instructions and pipelined execution are more important than
program size. As memory gets cheaper and faster, the space/time tradeoff
resolves in favor of time - reducing space no longer decreases time.

D Compiler technology should simplify instructions, rather than generate more
complex instructions. Instead of substituting a complicated microcoded
instruction for several simple instructions, which compilers did in the 1970s,
optimizing compilers can fonn sequences of simple, fast instructions out of
complex high-level code. Operands can be kept in registers to increase
speed even further.

In the mid 1970s, some computer architects observed that even complex comput­
ers execute mostly simple instructions. This observation led to work on the IBM
801- the first intentional RISC machine (although the term RISC had yet to be
coined). Built from off-the-shelfECL (emitter-coupled logic) and completed in
1979, the IBM 801 was a 32-bit minicomputer with simple single-cycle instruc­
tions, 32 registers, separate cache memories for instructions and data, and
delayed branch instructions. The 801 was the predecessor of the chip now used
as the CPU for the IBM PC/RTTM, introduced early in 1986.

The tenn RISC was coined as part of David Patterson's 1980 course in micropro­
cessor design at the University of California at Berkeley. The RISC-I chip
design was completed in 1982, and the RISC-II chip design was completed in
1984. The RISC-II was a 32-bit microprocessor with 138 registers, and a 330-ns
cycle time (for the 3-micron version). Even then, without the aid of elaborate
compiler technology, the RISe-II outperformed the VAX 11/780 at integer arith­
metic.

Revision A, of 9 May 1988

6 A RIse Tutorial

Figure 1-1

RISCI

RISC II

SOAR

The MIPS project began at Stanford a short time later, with a group under the
direction of John Hennessy. Hennessy's group declared that the acronym MIPS
stood for Microprocessor without Interlocked Pipeline Stages, however, it is also
a pun for Millions of Instructions Per Second. This group entrusted the compiler
with pipeline management. The main goal of their design was high performance,
perhaps at the expense of simplicity. The Stanford MIPS was a 32-bit micropro­
cessor with 16 registers, and a 500-ns cycle time. The commercial processor
marketed by the mips computer company is an outgrowth of the Stanford MIPS
architecture.

Several other companies have announced RISC-type machines, including Ridge,
Pyramid, and Hewlett-Packard with the Precision Architecture (Spectrum). The
figure below shows how these various RISC architectures are related.

Genealogy of RIse Architectures

CDC 6600

Cray 1

.....

Ridge

SPARC

IBM 709

IBM 801

HIP
Spectrum

Pyramid MIPS

MIPS-X

mips

Revision A, of 9 May 1988

1.6. RISe's Speed
Advantage

Chapter 1 - Introduction 7

Using any given benchmark, the performance, P , of a particular computer is
inversely proportional to the product of the benchmark's instruction count, I, the
average number of clock cycles per instruction, C , and the inverse of the clock
speed, S:

P = 1

I· C· ~

Let's assume that a RISe machine runs at the same clock speed as a correspond­
ing traditional machine; S is identical. The number of clock cycles per instruc­
tion, C, is around 1.3 to 1.7 for RISe machines, but between 4 and 10 for tradi­
tional machines. This would make the instruction execution rate of RISe
machines about 3 to 6 times faster than traditional machines. But, because tradi­
tional machines have more powerful instructions, RISe machines must execute
more instructions for the same program, typically about 20% to 40% more.
Since RISe machines execute 20% to 40% more instructions 3 to 6 times more
quickly, they are about 2 to 5 times faster than traditional machines for executing
typical large programs.

Compiled programs on RISe machines are larger than compiled programs on
traditional machines, partly because several simple instructions replace one com­
plex instruction and partly because of decreased code density. All RISe instruc­
tions are 32 bits wide, whereas some instructions on traditional machines are nar­
rower. But the number of instructions actually executed may not be as great as
the increased program size would indicate. Global registers, for example, often
simplify call/return sequences so that context switches become less expensive.

Designers of RISe machines dramatically reduce the clock cycles per instruction
while slightly increasing the instruction count per program, resulting in an
overall performance increase. Moreover, RISe architectures scale better to new
technology than more complicated architectures. Sometimes architectural clev­
erness backfires - because of complicated design, the performance of a machine
will not improve at the same rate as technology advances. Simple RISe architec­
tures, by contrast, will scale upwards as cycle times decrease and memory sizes
increase.

Revision A, of 9 May 1988

8 A RIse Tutorial

Revision A, of 9 May 1988

Figure 2-1

2
SP ARC Architecture

An architecture, or abstract design, often spans several hardware implementa­
tions. This chapter introduces the SP ARC architecture, without going into
specifics about particular implementations.

The SP ARC CPU is composed of an Integer Unit (IU) that performs basic pro­
cessing and a Floating-Point Unit (FPU) that perfonns floating-point calcula­
tions. According to the architecture, the IU and the FPU mayor may not be
implemented on the same chip. Although not a fonnal part of the architecture,
SP ARC-based computers from Sun Microsystems have a memory management
unit (MMU), a large virtual-address cache for instructions and data, and are
organized around a 32-bit data and instruction bus.

Sample SP ARC Implementation

-
IU FPU

1< J>.

I' I

~ \

I instruction and data bus I

,

main MMU VME -- ~ - ~.""

memory - cache I/O

The integer and floating-point units operate concurrently. The IU extracts
floating-point operations from the instruction stream and places them in a queue
for the FPU. The FPU performs floating-point calculations with a set number of
floating-point arithmetic units (the number is implementation-dependent). The
SP ARC architecture also specifies an interface for the connection of an additional
coprocessor.

9 Revision A, of 9 May 1988

lOA RIse Tutorial

2.1. Instruction Categories

2.2. Register Windows

The SP ARC architecture has about 50 integer instructions, a few more than ear­
lier RISC designs, but less than half the number of Motorola 68000 integer
instructions. SP ARC instructions fall into five basic categories:

1. Load and store instructions (the only way to access memory). These instruc­
tions use two registers or a register and a constant to calculate the memory
address involved. Half-word accesses must be aligned on 2-byte boundaries,
word accesses on 4-byte boundaries, and double-word accesses on 8-byte
boundaries. These alignment restrictions greatly speed up memory access.

2. Arithmetic/logical/shift instructions. These instructions compute a result
that is a function of two source operands and then place the result in a regis­
ter. They perfonn arithmetic, tagged arithmetic, logical, or shift operations.
Tagged instructions are useful for implementing artificial intelligence
languages such as LISP, because tags provide interpreters with the type of
arithmetic operands.

3. Coprocessor operations. These include floating-point calculations, opera­
tions on floating-point registers, and instructions involving the optional
coprocessor. Floating-point operations execute concurrently with IV
instructions and with other floating-point operations when necessary. This
architectural concurrency hides floating-point operations from the applica­
tions programmer.

4. Control-transfer instructions. These include jumps, calls, traps, and
branches. Control transfers are usually delayed until after execution of the
next instruction, so that the pipeline is not emptied every time a control
transfer occurs. Thus, compilers can be optimized for delayed branching.

5. Read/write control register instructions. These include instructions to read
and write the contents of various control registers. Generally the source or
destination is implied by the instruction.

A unique feature contributing to the high performance of the SP ARC design is its
overlapping register windows. An analogy can be made comparing the register
windows with a rotating, high-perfonnance tire. Some part of the tire's tread is
always on the ground. As it rotates, the tire's zigzag tread grips a different por­
tion of the road. The zigzag tread is analogous to the overlap of register win­
dows. Results left in registers become operands for the next operation, obviating
the need for extra load and store instructions.

According to the architectural specification, there may be anywhere between 6
and 32 register windows, each window having 24 working registers, plus 8 global
registers. t Each register window is logically divided into three groups: 8 in
registers, 8 local registers, and 8 out registers. The out registers for one
window become in registers for the next; they are, in fact, the same registers.
The current window pointer keeps track of which window is currently active.
The figure below is a diagram of a SP ARC implementation with 6 register

t The first implementation has 7 register windows with 24 registers each (but count only 16 since 8 overlap),
plus 8 global registers, for a total of 120 registers.

Revision A, of9 May 1988

Figure 2-2

Chapter 2 - SP ARC Architecture 11

windows. Note that the first actual SP ARC implementation has 7 windows, so in
addition to the windows in this diagram, there would also be wO in, wO local,
and wO out.

Overlapping Register Windows

t return

t Current Window Pointer

For a function call, the register windows rotate counterclockwise; for a return
from a function call, they rotate clockwise.

The alternative to register windows encompasses slower, more elaborate register
allocations, which must be performed during compile time. For languages such
as C, Pascal, and Modula-2, this strategy is merely time consuming. For explora­
tory programming environments such as Lisp and Smalltalk, where compiler
speed is crucial to improving programmer productivity, users may find slow
optimizing compilers unacceptable, and unable to achieve the potential perfor­
mance available on SP ARC machines.

Recent research suggests that register windows and tagged arithmetic, found in
SP ARC systems but not in other commercial RISC machines, are sufficient to
provide excellent perfonnance for expert system development requiring AI

sun
microsystems

Revision A. of 9 May 1988

12 A RIse Tutorial

2.3. Traps and Exceptions

2.4. Memory Protection

languages such as Lisp and Smalltalk. t Recent benchmark experience with
SP ARC systems supports earlier evidence.

The SP ARC design supports a full set of traps and interrupts. They are handled
by a table that supports 128 hardware and 128 software traps. Even though
floating-point instructions can execute concurrently with integer instructions,
floating-point traps are precise because the FPU supplies (from the table) the
address of the instruction that failed.

Some SPARC instructions are privileged and can only be executed while the pro­
cessor is in supervisor mode. This instruction execution protection ensures that
user programs cannot accidentally alter the state of the machine with respect to
its peripherals and vice versa.

The SP ARC design also provides memory protection, which is essential for
smooth multitasking operation. Memory protection makes it impossible for user
programs that have run amok to trash the system, other user programs, or them­
selves.

t D. Ungar, R. Blau, P. Foley, A.D. Samples, D. Patterson, "Architecture of SOAR: Smalltalk on a RISe,"
in Proceedings of the 11th Annual International Symposium on Computer Architecture, Ann Arbor, 1984.

Revision A, of 9 May 1988

3.1. Advantages of Open
Architecture

3.2. SPARC Design and
RISC

3
An Open Architecture

The SP ARC design is the first open RISC architecture, and one of the few open
CPU architectures. An architectural standard would lift the industry out of often
useless debates over the merits of various microprocessors. Standard products
are more beneficial than proprietary ones, because standards allow users to
acquire the most cost-effective hardware and software in a competitive multi­
vendor marketplace. Integrated circuits would come from chip vendors, while
software would be supplied by systems vendors. This advantage is lost when
users are limited by a processor with proprietary hardware and software.

RISC architectures, and the SPARC design in particular, are easy to implement
because they are relatively simple. Since they have short design cycles, RISC
machines can absorb new technologies almost immediately, unlike complicated
computer architectures.

The SP ARC architecture is an aggressive, forward-thinking design. Even in the
first implementation, processor cycle time is very fast - equivalent to the access
time of static random-access memory (SRAM) rather than dynamic random­
access memory (DRAM). Because registers are used intensively in a load/store
architecture, the high cost of fast memory (as with SRAM) can be concentrated
where it is used the most - in registers. Because the clock cycles per instruction
are kept to a minimum, pipelining is simple and fast, since few restarts are neces­
sary. So the high performance of SP ARC systems results from both simple
design and technological leverage.

Like other RISC architectures, SP ARC systems provide:

D Single-cycle execution. All instructions except loads, stores, and fioating­
point operations can be executed in one machine cycle.

D Simple instruction format. All instructions are 32 bits wide and word­
aligned in memory. Op-codes and addresses are always in the same place,
so decoding hardware can be simplified.

D Register-intensive architecture. Instructions operate on two registers or on a
register and a constant, placing the result in a third register. The only way to
access memory is with load and store instructions.

D Large register windows. The processor has access to a large number of
registers configured into overlapping sets, so that compilers can automati­
cally cache values and pass parameters in registers.

13 Revision A, of 9 May 1988

14 A RIse Tutorial

3.3. How SP ARC Design is
Different

3.4. Speed Advantage of
SPARC Systems

o Delayed control transfer. The processor fetches the next instruction follow­
ing a control transfer before completing the transfer. Compilers can rear­
range code, placing useful instructions after a delayed control transfer, thus
maximizing throughput.

SP ARC systems were designed to support:

o the C programming language and the UNIX operating system,

o numerical applications (using FORTRAN), and

o artificial intelligence and expert system applications using Lisp and Prolog.

Supporting C is relatively easy; most modern hardware architectures are able to
do so. The one essential feature is byte addressability. However, numerical
applications require fast floating point and artificial intelligence applications
require large address spaces and interchangeability of data types.

The floating-point processor, with pipelined floating-point operation capabilities,
achieves the high performance needed for numerical applications. Floating-point
coprocessors are generally not part of RISC machines, but they are available for
microprocessors such as the Motorola 68020 and the Intel 80386, and for SPARC
systems as well.

For artificial intelligence and expert system applications, SP ARC systems offer
tagged instructions and word alignment. Because languages such as Lisp and
Prolog are often interpreted, word alignment makes it easier for interpreters to
manipulate and interchange integers and different types of pointers. In the
tagged instructions, the two low-order bits of an operand specify the type of
operand. If an operand is an integer, most of the time it is added to (or subtracted
from) a register. If an operand is a pointer, most of the time a memory reference
is involved. Language interpreters can leave operands in the appropriate regis­
ters, greatly improving the performance of exploratory programming environ­
ments.

The SP ARC architecture does not specify a memory management unit (MMU)
because we expect the same processor to be used in different types of machines.
For example, a single-user machine with embedded applications, such as the
Macintosh, does not need an MMU. By contrast, a multitasking machine used
for timesharing, such as a traditional UNIX box, needs a paging MMV. Further­
more, a multiprocessor such as a vector machine or hypercube requires special­
ized memory management facilities. The SP ARC architecture can be imple­
mented with a different MMU configuration for each of these purposes, without
affecting user programs.

Recall the equation in the first chapter, where the performance, P , of a processor
is inversely proportional to the product of a benchmark's instruction count, I, the
average clock cycle per instruction, C , and the inverse of the clock speed, S :

P = 1

I·e· ~
Working this equation for SPARC systems and for two popular microprocessors,

+~!!!! Revision A, of 9 May 1988

Figure 3-1

3.S. SPARC Machines and
Other RISC Machines

3.6. Conclusion

Chapter 3 - An Open Architecture 15

we come up with these numbers (/ indicates millions of instructions so P is in
MIPS):

Processor Performance

Processor Performance
cpu / C S P

Motorola 68030 1.0 5.2 16.67 3.21
Intel 80386 1.1 4.4 16.67 3.44
SPARC 1.2 1.3 16.67 10.69

Thus, SP ARC systems have a considerable theoretical perfonnance advantage
over other microprocessors on the market. The table compares three processors
running at the same clock speed; higher clock speeds are possible with all three
processors.

The SPARC design has more similarities to Berkeley's RISC-II architecture than
to any other RISC architecture. Like the RISC-II architecture, it uses register
windows in order to reduce the number of load/store instructions. The SP ARC
architecture allows 32 register windows, but the initial implementation has only
7 windows. The tagged instructions are derived from SOAR, the "Smalltalk On
A RISC" processor developed at Berkeley after implementing RISC-II.

Until recently, RISC architectures have perfOlmed poorly on floating-point calcu­
lations. The IBM 801, for example, implemented floating-point operations in
software. The Berkeley RISC-I and RISC-II outperfoImed a VAX 11/780 in
integer arithmetic, but not in floating-point arithmetic. This was also true of the
Stanford MIPS processor. SP ARC systems, on the other hand, are designed for
optimal floating-point perfoImance, and support single-, double-, and extended­
precision operands and operations, as specified by the ANSI/IEEE 754 floating­
point standard.

High floating-point perfonnance results from concurrency of the IV and FPV.
The integer unit loads and stores floating-point operands, while the floating-point
unit perfonns calculations. If an error (such as a floating-point exception) occurs,
the floating-point unit specifies precisely where the trap took place; execution is
expediently resumed at the discretion of the integer unit. FurtheImore, the
floating-point unit has an internal instruction queue; it can operate while the
integer unit is processing unrelated functions.

SP ARC systems deliver very high levels of performance. The flexibility of the
architecture makes future systems capable of delivering performance many times
greater than the perfonnance of the initial implementation. Moreover, the open­
ness of the architecture makes it possible to absorb technological advances
almost as soon as they occur.

Revision A, of 9 May 1988

I

