4y sun’ |

microsystems

Sun SourceBrowser Reference
Manual

R

ot

XACERR

s

e

AT

v

e

et

RRRRERY

Part No: 800-3464-10
Revision A of 16 March 1990

NFS, the Sun logo, Sun Microsystems and Sun Workstation are registered trademarks of Sun
Microsystems, Inc.

NSE, Sun, SunOS, SunPro, SunView, Sun-2, Sun-3, Sun-4, and Sun386i are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of AT&T. OPEN LOOK is a trademark of AT&T.

POSTSCRIPT is a registered trademark of Adobe Systems Inc. Adobe also owns copyrights related to the
POSTSCRIPT language and the POSTSCRIPT interpreter. The trademark POSTSCRIPT is only used herein tc
refer to material supplied by Adobe or to programs written in the POSTSCRIPT language as defined by
Adobe.

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations and Sun Microsystems, Inc. disclaims any
responsibility for specifying which marks are owned by which companies or organizations.

Copyright © 1989, 1990 Sun Microsystefns, Inc.—Printed in the U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form o
by any means—agraphic, electronic, or mechanical—including photocopying, recording, taping, or storag
in an information retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: Use, duplication, or disclosure by the U.S. Government is subject to restriction
set forth in subparagraph c.1.ii of the Rights in Technical Data and Computer Software clause at DFAR
52.227-7013 and in similar clauses in the FAR and NASA FAR Supplement.

Sun’s Graphical User Interface was developed by Sun Microsystems for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to th
Xerox Graphical User Interface, which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232
4,745,407 4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications
pending.

This software and documentation is based in part on the 4th Berkeley Software Distribution, under licen:s
from the Regents of the University of California. Sun acknowledges the following individuals and

institutions for their role in its development: the Regents of the University of California, the Electrical
Engineering and Computer Sciences Department at the Berkeley campus of the University of Californi
and other contributors. /

Contents

1.1
1.2

Window and Command Line Environmentscceeeevvvnenns 3
HOW 18 WWOTKS .t cececeeeeseteevemesneeseeesesennssnnssesseiemnnennans 4

Using Sun SOUrcEBrOWSETcccceeviereseerenerrensereenereenueneaseans 1

2.1 A Sample Programu........c.ooeeciniinniniennencncceneenneceneeennees 8
2.2 Compiling with the Source- Browser Optionccccccceee. 9
23 Starting SourceBrowser eeeeeseeeseesseneens reeteeeeetesreee e naeeenas 11
24 Changing the Current Working Directorycccccceevunenn. 12
2.5 Building the SourceBrowser Database Index 13
2.6 Querying Options.......ccoveeeeveereercreresnecnns cevreens ceeeeeennanans 13
2.7 Issuing QUETIes ..cocooorverveereerrerreracennns vt aennans 13
The Initial Queryccccoevevveveeene e 14
Subsequent QUETIESccocueeuererreerrerererinternenaeseesneaeees 15
2.8 The SourceBrowser Windowccceecceeeneeecineronninieenneenne. 17
The Frame Header........ccccovvviniinniiinncnniniicnsiecieeeeen. 17
The Control Subwindowcccccervceienirneenncennenaannnn. 17
The Match Subwindowccccoiviiviiiiiiinnniiniiecciecenen, 19
The Source Subwindowcccceceerreiciiieneenianeccerinaenns 19
Displaying SourceBrowser Menus.......c.cccocevvecvnnnnenne. 20
Scrolling in SourceBrowser Windows........cccccveeevenen. 21
29 Redisplaying the Current Match......cccoeeeveeeniencniiceinnnnn. .22
2.10 Viewing Matches........... et 22
Using the Next Command to View Matches................. 22

—1iii -

Contents Continued

Selecting a Different Current Match.........ccoeecveucnnncnee. 24
2.11 Erasing MatChes......cocceiminininninnceninnnniinenecnecinneenneneens 25
2.12 Moving Between QUETIESccccoeeienrenreenieneecieeneennesannne. 26
Selecting Queries from the Query Menu 26
Cycling Through QUETies.......cccoceeeenerneeienrercneneeennnnne 27
Using the Any Match Command.........cccccevenieniaaninnnns 27
2.13 Removing QUETIESccoviivureennrenirnieenneneeeseeeeaneeneesesestanens 28
2.14 Searching for String Constantsccccceceeeeereerseesenrvenrenne 28
2.15 Using Wildcards in QUeries........cccceeverreenenreenreesencecennanen. 29
2.16 Using the Filter Command to Narrow a Search................. 32
A Special Case: Filtering Functions in Macro
DefINIHONS .cceieeiiieiecnecreretceeeeseaeseaeenreeseesseasseeeasenes 34
Removing the Filter.......coociiiiviiiiiiiinieinnerieceenieee e, 35
2.17 Using the Focus Command to Narrow a Search................ 35
2.18 Editing Code from SourceBrowser.........cccceceerveeeveevuennanen. 38
2.19 Customizing SOUrCeBrOWSerooeererrerrrennees eeeeeeneeaeees 40
220 Using SourceBrowser with dbXtool.........ccccceeveeveiiuecnanne. 40
Browsing Large Programs........cccccevveeeveeenrercnteeneeneesnecnnnn 45
3.1 Overview: The SourceBrowser Database........cccceceeurennnnens 46
3.2 Browsing From Multiple Machines........ccccceeveivuenreenrinnnns, 47
3.3 Creating and Updating the Databasecccceecevveeieennnnne, 47
3.4 More about .bd Files......cccccceerurninninnvcniinniinienecieene e, 49
Compiling and Browser Data Files........ccocecectrenenna, 49
Linking and Browser Data Filesccccoceevveeveinecnnnn. 49
Libraries and Browser Data Files......ccccccoevuenriannnnnn... 50
3.5 Working with Multiple Directories........ccccecveevevnienerenenn.e. 50
3.6 Installing a Symbolic Link......cccccooievinniinininiiiriein. 50
37 UsIng .Shinit...coeoiiiiiiiceceee et 51
. The import Commandc.ccceeereeereeeieeeeieeeecrieeneae 52
The export Command.............coouiieiiiiieniciiencnceenecnes 53
The split Command..........cccoceevinieininicnenenineniennnnnne. 56

Using the Previous Command to View Matches 23/

—iv—

Contents Continued

38
39

File Protection........ccccceeecrerecanns ceeeteeeesesssseeaeeeseaaaaaanannnes .58
Performance Considerations.................. teeeeeeeseneteaneenenaaes 58
Building the Index File.........ccccccueee ceeeeseesenees reeeeenees 58
Conducting @ QUETYccecereerenrerenecsseeessesseesncnnasonenes .58

Window Command Referenceueeeeeeveeeeevecccevecervessennennes. 01

4.1 SourceBrowser Menu Commandsccceeeecvennncraneecnnncens 61
THE SHOW MENU --vvvveeereerensenseseseneessssmsssseessesessssssssssssssnns 61

The Erase Menuccoivveeninivenecnvicnncnncs cereeeteeeaeeas 62

The Previous Menu........ eetteenteeate st st et e as s nt e sre e s e aenee 62

The Next Menu eeeeaseseeansadarasesasertans reeraentteaenaas 63

The Focus Menu........ccoevcverceievecvcnnnnne reereeree et saeenas 63

The Filter Command.............. vesesaionsanarsnraserasoniessbeissases 64

The Query Button........ccovueieiennieiineiceieceeeeeceee e 65

The Update Button........ccccceceeunenee sessssestrestasasssessontasnass 65

4.2 SourceBrowser Property Sheet............ teeeeeeaestansnnesaanananes 65
Match Window........cccceeueee. RN coresssensonessasesasesiasssine 66

Match Window Contents........c.cccccereerverenee R e 66

Selection Handling........... eatsasnessisusbssnesetennastantenanaratonans 66

Arrows Displayed in Source Window........ccccccoveeeunnnn. 66

Arrows Positioning.......cccccevveevieerrenneennveenenne crereeeennes ...66

Query MatChing ...ccveecivcninnciiniecicnenreneeeseeeseeesaveeaas 66

Wildcard Style....ooiiieiiiiiiiciiniieciccecne e 67

Keep Database Index Updatedccooceviicceeneiiannnnannen. 67

Database Update Memory Allocation.......ccccceeceeennnnee. 67
Command-Line Reference reeeeererteenantaaaeanes L1
5.1 Sample Program.........c.ccooiieiienneninnencnreescenneeenieenveeeens 71
5.2 Viewing Command-Line Options.......cccceeeveeeerivresceeannenns 73
53 ISSUINE @ QUETY ceomuieieieeeeeeeeteeeeeeee et eee e 73
54 Command-Line OPtionsc.ccceieieerueinereeenceneeseeceneneeneas 74
~DIEAK_LOCK.orerererrrereseeees e sesesessssssssssssssssssssnenennee oo w74
SNO_UPAALE ...oivveiiarireiiaecnrteeeieeesieesneeessne e saneeeesseeeennrans 74

Contents Continued

/

-files_onlyccoeruvennenene ceerenreneanans cevenreneerennes ceererenens 74

~help_fOCUS....ivuinirniicininrenenee ettt 75

ShelP_fIlter ..ttt 76
.

-MAX_MEMOTY <SIZE> ..icvurnrerraenracsessseesueesuessaesenccsnansecsae 1 1

“TIO_CASCuerrecressesseesaessessassesssassassaassssssessasssassnsnsessassnsssnos d 1

“NO_SOUTCE ...ccuverivrurssessosessessossesssssassessesssassosesarssaesssives | |

0 ELED> ..ttt cttrccsrtecrercesrne e ree st aeseaeas s nsaesnnnaan 78

5.5 Non-Standard Installation Procedure......ococeeiveeveveseeeeeeenens 78

Browsing FORTRAN Programs........ccccceeveeececcercvvenccnenen.. 81
A.1 Startup......... rreestessnanaens eeiasassssessetennserssesansesnsisnras eveesereneeenas 81
A.2 Sample Program..................... cerereesseineens eeveeneennae RS 82
A.3 Browsing from the Window Environment.............c.c.c....... 83

Issuing a Query ORISR . X
Issuing a Filtered Query......ccccevvuevvecnnenans eeeeeresnnrnenes 84“‘
A4 Using the Command-Line Environment......c..cccceeccenuennn. 85
A.5 Tuming Off Case.............. ceearenes saisesssnesssesnssssissssnsebyrisasas 85

Browsing Pascal Programs........cccccueveeeveenecceccnnnnnecenenee. 89
B.l Startup.....cecceeneenenn. eeteerteesttesteeteestaestaeeae e ba et aenntansans 89
B.2 Sample Program.......ccocvuiiicnienninnecinneientcneeeneeneeenennneas 90
B.3 Browsing from the Window Environment......................... 91

Issuing a Query eresesiesatsssassstasa s asesassrassntesneesasiens 91
Issuing a Filtered Query......ccceeeevennes reeeveenaesraenne 92

B.4 Issuing a Query from the Command Line 92

—Vvi-—

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
* Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20

Sample Program.........cccooveeeeeeicenninncinneecnneeeeesieesneenes 9

Enabling Browsing from C........ccccccierniinionnnnnninncnnns 10
Enabling Browsing from FORTRAN 77.........ccccc.... 10
Enabling Browsing from Pascalcccccoeivvinncnicn. 10
Browsing Lint Library Specification Files 10
Starting SOUTCEBrOWSETcccoeeeruerrerrueensereneeenaeeneens 11
SourceBrowser Window at Start-Upcceeecceeeeieennnen. 11
Changing the Current Working Directory 12
Issuing @ QUETY ..ccouieieeniiecieeieneieenceeeeneneceeseseeeneeneans 14
Issuing a Subsequent QUETY......cccviierieveccnreereccruenennens 16
The SourceBrowser Windowcccvueeieniinnninnnnn 17
The Control Subwindowcccceecceenviienieecniiannecinennne. 18
The Match Subwindowccceeirrencenncciennnnrneeneene. 19
The Source SUBWINAOWc..veueemmecumeesecesmecmscesareenne 20
Displaying the SourceBrowser Menu.............c..cu.n.... 21
The Show Current Match Command..........cccccueeeenen. 22
The Next Match: This Query Command 22
The Next Function Command........cccccevveeniinvcinnnnenen. 23
The Previous Match:This Query Command................ 23
The Previous Function Commandcccocvocvenenen.... 24

— Vil —

Continued

Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29
Figure 2-30
Figure 2-31
Figure 2-32
Figure 2-33
Figure 2-34
Figure 2-35
Figure 2-36
Figure 2-37
Figure 2-38
Figure 2-39
Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

The Show Selected Match Command........................ 25/
The Erase This Match Commandcccceeccieeecrennnne. 26
Displaying the Query Menu......ccccccceviniennnuenecnsennencne 26
The CycCle ICON.....ucieiiiirinititnieeennaene e e 27
The Next Match: Any Query Command............c.o.... 27
The Previous Match: Any Query Command 28
The Erase This Query Command........cc.ccceeuerrnrannnnee. 28
Searching for String Constantsccccceeeeecrvecneeceeennnn. 29
Including Wildcards in @ QUery......cccceeveieeecceneecceneennns 31
The Filter Panel.......c.ccccooviiininiiiiiinienciieeniecnenniens 32
The Filter Panel after Specifying a Filter..................... 33
Issuing a Filtered QUeTy....cccccovievinnerncieniennieenneeaennnn. 34
Removing the Filtercooveoeeeeeieeeeeeceeeeeeeceeee e, 35
The FOCUS MENUecvoveiereeereeree e eeeeereeeeses e 36/
The Focus Panel..........ocoiiviinninnininiennicneceneieine 36
The Focus Panel with One Function Activated 37
Issuing a Focused QUETY....ccccccevcrirnierininreeneenrenrenienns 38
The Enable Edit Menucooeeiicenneniininnnininneinene 39
The SourceBrowser Property Sheet........cccoeeeeennnnnn. 40
The SourceBrowser Database.......cccccceevveeeeceeeneennenne. 46
Creating and Updating the Databasecccuveu........ 48
Compiling with the -sb Optioncccococeevencninncn.. 49

Installing a Symbolic Link......ccccoeiinvnnnnniinninnininnn. 50
Consolidating Databases......cccceeceeerreraesceresuersieeaneeens 51
Using the import Command..........ceceeveecreereeeeraennennnne 53
Using the export Command for Shared

System Files.......ocoviiviiininiiiiiecninc et 55

— viii —

Continued

Figure 3-8

Figure 3-9
Figure 4-1
Figure 4-2
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6

Figure 5-7
Figure 5-8
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure B-1
Figure B-2
Figure B-3
Figuré B-4
Figure B-5

Using the export Command for Shared Project

Include Files....ouuiniininsiinninninniniiiniineinccncincienenens 56
Using the split Command..........c.ccceveueeeereereercecreenenns 57
The Focus Windowcccioeeinviencinincscincnnencnencennens 63
The SourceBrowser Property Sheet.......cccuoveeueveerunnes 65
Sample Program..........cocoueeeeieennneienensssieresnercnienennen, 72
SourceBrowser Command-Line Options..................... 73
Issuing a Query from the Command Line 73
Using -help_focus To Display Focusing Options........ 75
Using -help_focus To Issue a Focused query 75

Using -help_filter To Display Supported

LanGUAZES ..veereeeeneereeeerraeecenternereeesteeenteneconesnnesacenes 76
Using -help_filter To Display Filtering Options.......... 76
I‘ssuing a Filtered Query............ eeete e aae et e e et et ens 77
Enabling Browsing from FORTRANcccecveunene. 81
Sample FORTRAN PrOZram............oorvveveeeeeerseeseerseeen 82
Issuing @ QUETY ...ccccevciovirenueeneenreennecnnas sivessaeserssasiessneen 83

Issuing a Filtered QUery.......cccocceeevinniecenreeneecenennans k...84
Issuing a Query from the Command Line 85
Enabling Browsing from Pascalccccoeueiveenennes 89
Sample Pascal Programccccccecevviiinnninncneenennens 90
Issuing a Query eeetesetesteteseeeta st et e aeanaeestansaanrans 91

Issuing a Filtered QUery.......ccocceerceeiicnecennenennecnnn. 92
Issuing a Query from the Command Line 93

—IX —

Audience

Organization

Preface

This manual explains how to use Sun SourceBrowser, a software tool
for software developers. '

This manual is written for programmers who want to use

SourceBrowser on Sun™ workstations running Sun C, FORTRAN, or
Pascal.

SourceBrowser can be used in either a window or command-line
environment. If you want to use SourceBrowser in the window
environment, you should be familiar with the SunView1 window

environment. For information about SunView™ , see the SunViewl .

Beginner's Guide.
This book includes five chapters and two appendices:

Chapter 1, “Introduction,” provides an overview of the capabilities of
SourceBrowser.

Chapter 2, “Using Sun SourceBrowser,” provides step-by-step
instructions for using SourceBrowser in a window environment.

Chapter 3, “Browsing Large Programs,” explains the procedures you
will follow to use SourceBrowser in conjunction with large software
projects.

Chapter 4, “Window Command Reference,” provides a concise
description of each SourceBrowser window command.

Chapter 5, “Command-Line Reference,” describes how to use
SourceBrowser in the command-line environment.

Appendix A, “Browsing FORTRAN Programs,” provides a brief
explanation of browsing FORTRAN programs.

—Xi- Revision A of 16 March 1990

Preface Continued

Typographical
Conventions

Revision A of 16 March 1990

Appendix B, “Browsing Pascal Programs,” provides a brief explanation!:
of browsing Pascal programs.

This book follows these typographical conventions:
Times Roman font, Italic face indicates:

¢ A variable name

* A command argument

Courier font indicates:

« A listing

* A command name

* A menu name

* A program name

Courier font, Bold face indicates what the user types.

— Xil —

Introduction

1.1 Window and Command Line Environmentscccooeeeeeveeeeereee 3
1.2 How it Works . 4

secscsces

1.1 Window and
Command Line
Environments

Introduction

Sun SourceBrowser is an interactive tool to aid programmers in the
development and maintenance of software systems, particularly large
ones.

During the course of a programming project, new programmers often
join the programming team to enhance, maintain, and port code. But
before becoming productive team members, these individuals need to
fully understand the code that they will modify. SourceBrowser is a
powerful tool for helping programmers quickly grasp large programs.
Specifically, SourceBrowser assists programmers by finding all
occurrences of any symbol of their choice, including those found in
header files.

SourceBrowser uses a “what you see is what you browse” paradigm. In
other words, the source code you manipulate is the same source code
SourceBrowser uses in its searches. '

SourceBrowser is an extensible, open system that has been designed to
be used with multiple languages. Currently, SourceBrowser can be used
with Sun C, FORTRAN, and Pascal.

You can use SourceBrowser in either the SunView1 window
environment or a command-line environment. The SunViewl
environment, in particular, is extremely easy to use. To issue a query, for
example, you simply type the symbol you want SourceBrowser to find;
then press Return.

While the SourceBrowser window environment can be accessed only
from Sun workstation, the command-line environment can be used from
character terminals and from workstations emulating terminals.

Revision A of 16 March 1990

Introduction

1.2 How it Works

Revision A of 16 March 1990

You use SourceBrowser by issuing queries which instruct
SourceBrowser to find all occurrences of the identifier, string constant,
or search pattern that you have specified. You then view matches
(occurrences of the symbol you requested SourceBrowser to find) with
their surrounding source code. SourceBrowser maintains a list of all
queries you have conducted during a SourceBrowser session. This
makes it easy to issue a query, view the matches associated with that
query, conduct another query and then return to your original query —
all with a minimum number of commands.

In addition to basic commands for issuing, adding, deleting, and moving
between queries, SourceBrowser includes many powerful features. The
Filter command, for example, lets you search for symbols based on
the way in which they are used in a program, so you can issue very
specific queries, such as “Show all occurrences of the variable age when
age is used as a structure field name.” To limit your search to specific
items of certain classes of code, such as files or functions, you can use
SourceBrowser’s Focus command. You also can edit code from
within SourceBrowser.

SourceBrowser maintain a high level of efficiency regardless of the size
of the code you are browsing. That’s because, once SourceBrowser has
built the database it uses to respond to queries, the size of the code you ,
are browsing has only minimal impact on SourceBrowser’s speed. (See
Section 3.8, “Performance Considerations,” for details.)
SourceBrowser also includes several features specially designed for use
with large programming projects. Chapter 3, “Browsing Large
Programs,” describes those features. Note that, because SourceBrowser
uses the selection service, it is integrated with other software
development tools such as dbxtool.

Using Sun SourceBrowser

2.1 A Sample Program cenrenns ceereeeertesnressts st e sssstrassssnasastesees O
2.2 Compiling with the Source- Browser Option.........ccccccceveenucee 9
2.3 Starting SourceBrowser......... ceveseresesssensiarsesasesrasssesssisetesasssnres 11
24 Changing the Current Working Directory........ccceivevivniennens 12
2.5 Building the SourceBrowser Database INdeX..........ccoooo........ 13
2.6 Querying Options ceeeeaeeneieeneeneenn sasssassainsssssesaesasasssanss 13
277 Issuing Queries............ esssasnedans sesessssarassasasstesnesaisaasrssasasnet ...13
The Initial Query........ ceenreeeesetensaaneesanaans eeveeeaenne ceeeaaes cereeeee 14
Subsequent Queries....... ceveenaes vevisinnsanses eeeeetreetee e saneenne s 15

2.8 The SourceBrowser Windowcccccevveeeeseceseecsecneenseeseecsnees 17
' The Frame Header................ retreetrereenaaaens sesasasesssssnenaas .17
The Control Subwindow...........cccoceuueeee. cetreereaesreasste s nane 17

Buttons and Menus........ccccvvcvceniniinseinninnensinisesnsenns e 18

Text Fields and Other Ttems...cccooveeceivvicnniensenennneneeenns 18

The Match Subwindowcccocvvevieiiinninnniinniiniinneenieens 19

The Source SubWINAOWccocvvinieiiienneienienninciceeceeseenans 19
Displaying SourceBrowser Menusccceeeeeceeecerrneesuecseene 20
Scrolling in SourceBrowser Windows........c.ccccceeecccuenne. 21

29 Redisplaying the Current MatCh......ccccceeeeieveenenrenccceenrencanenne 22
2.10 Viewing MatChes......cocovviiiiiiiiiniiiiniinicneine e 22
Using the Next Command to View Matches............ccc........ 22

Using the Previous Command to View Matches................ 23
Selecting a Different Current Match.......ccceevieiinencenencannnn. 24

2.11
2.12

2.13
2.14
2.15
2.16

2.17
2.18
2.19
2.20

Erasing MatChes.......couiiiiiriieneenereneneceecsenesesesensecnsonussssossesaes 25
Moving Between Queries cveseresstessatesatasaseseessaensane 26
Selecting Queries from the Query Menu...........ccciecennencneee 26
Cycling Through Queries............... teteesaeesseessaesssesstensaessasnne 27
Using the Any Match Command.........cc...... cvestesussnnnss -y
Removing QUETIEScccceireenueneeraianeecenscsascnsossnssssasassnessas 28
Searching for String COnStantsc.cccccvceeceecrcrcrecsuerecracsneeseensi 28
Using Wildcards in QUETIEScuevuereecuerenseeciorceneeescsseeseensenens 29
Using the Filter Command to Narrow a Search..........cccc..... 32

A Special Case: Filtering Functions in Macro Definitions .34

Removing the Filter.......c.ccoviiirnininiienirnicinnceneeeeseeesaenens 35
Using the Focus Command to Narrow a Search..................... 35
Editing Code from SourceBrowser.........ccccccceervereneeecneecneennn 38
Customizing SOUTCEBIOWSETcccevieeimurreecrienscnsussicnesneeseenne 40

Using SourceBrowser with dbXtool........cc.cveeverererenrereceereneenn. 40

Using Sun SourceBrowser

This chapter gives you the information you need to use Sun
SourceBrowser in a window environment. If you want to use
SourceBrowser in the command-line environment, see Chapter 5,
“Command-Line Reference.”

All of the examples in this chapter are written in C. If you want to use
SourceBrowser with FORTRAN programs, see Appendix A. If you want
to use SourceBrowser with Pascal programs, see Appendix B.

This chapter tells you how to

start SourceBrowser
change the current working directory

specify when SourceBrowser should build the index it uses to locate
information in the SourceBrowser database

use SourceBrowser’s window environment
display the current match

view matches

remove matches

move between queries

remove queries

search for string constants
use wildcards in queries

use the Filter command to search for identifiers and string
constants based on how they are used in a program

Revision A of 16 March 1990

Using Sun SourceBrowser

2.1 A Sample
Program

Revision A of 16 March 1990

L]

use the Focus command to restrict a query to classes of code, such |
as files and libraries

edit code from SourceBrowser
use the property sheet to customize SourceBrowser

use SourceBrowser with dbxtool

Throughout this chapter, the following sample program is used as the
basis for all examples.

Using Sun SourceBrowser 9

Figure 2-1 Sample Program

textedit - sample.c, dir: /home/examples/brouser

4| Scratch window

4| #ident "Source Browser Demo"
#include <stdio.h>
#define SECONDARY_DEMO times

extern void hello();
extern wvoid world();

, argv)
i argc;
*argv[];

int times = 1;

if (argc > 1) {
if (sscanf(argv[1], "%d", ×) !
times = 1;
}

}

for (; times > 8; times—-) {
hello(stdout);
world(stdout);

}

static void
hello(file)
FILE *file;

(void)fprintf(file, "Hello ");
¥

static void
world(file)
. FILE *file;

(void)fprintf(file,. "world\n");

2.2 Compiling with SourceBrowser responds to queries by searching in a specialized
the Source- database that contains pertinent information about the files you are
Browser Option browsing. SourceBrowser’s default is to build that database in the

current working directory. If you want SourceBrowser to construct a
database in a directory that is not the current working directory, see
Chapter 3, “Browsing Large Programs.”

Revision A of 16 March 1990

10 Using Sun SourceBrowser

Before using SourceBrowser, you must recompile each of the source
files you want to browse.

To turn on SourceBrowser if you are using make:

e« Add -sb to CFLAGS in the makefile for C programs
¢ Add -sb to FFLAGS in the makefile for FORTRAN 77 programs
« Add -sb to PFLAGS in the makefile for Pascal programs

The —sb option causes the compiler to add information to the
SourceBrowser database. The information that is included depends on
the particular compiler. In general, only identifiers and strings are
included; that is, reserved words are not included.

To turn on SourceBrowser if you are not using make:
« add the —sb option to the compiler command line

Figure 2-2 Enabling Browsing from C

cc -Sbhelloc : .

Figure 2-3

Figure 2-4 Enabling Browsing from Pascal

NOTES: To generate correct SourceBrowser information, you must issue a
compile run that does not generate any warnings or error messages.

Each source file compiled with the —sb option must have the same
absolute path regardless of the machine from which it is referenced. If
this is not the case, see Section 3-2, “Browsing From Multiple
Machines.”

You may find it useful to use SourceBrowser to browse declarations in
Lint library specification files. To do that, compile the appropriate
library specification file with the —sb option, as shown in Figure 2-5.

Figure 2-5 Browsing Lint Library Specification Files

‘venus% cc “c -sb /usr/lib/lint/ilib-lc=.c -0 /temp/junk.o

. Depending on which libraries you use, you may want to compile other
files in /usr/lib/lint in the same fashion.

Revision A of 16 March 1990

Using Sun SourceBrowser 11

2.3 Starting
SourceBrowser

Figure 2-6

Figure 2-7

NOTE:

Note that the =.c portion of the command is necessary to inform the
Compiler that you are compiling a C file, even though the filename
doesn’t end with .c . The —o portion of the command is included to
indicate that the result of the compilation is useless information. See
Lint (1) for more about Lint files.

To start SourceBrowser:

* type sbrowsers& at the command prompt

Starting SourceBrowser

SourceBrowser appears as a window similar to the following.

SourceBrowser Window at Start-Up

SunSourceBrowser -- Current directory: /home/examples/brouwser

(Show_J(Previous]}(_Focus J(_ Query }
[("Erase) Next J(Fiiter)
Scr‘atch:.

i
|
|
|
i
|

The content of the SourceBrowser window is explained in Section 2.8,
“The SourceBrowser Window.”

To bypass additional introductory information and learn how to issue a
query, see section 2.7, “Issuing Queries.”

Revision A of 16 March 1990

12 Using Sun SourceBrowser

4 Commpng e St e st i
Current Working . g ry. 2hecu g ry

is displayed in the frame header, the dark stnpe that runs across the top

Directory of the SourceBrowser window.

To change the current working directory from within SourceBrowser:

1. Select the path to the desired directory. See the SunView 1
Beginner’s Guide for information about making selections.

2. Position the pointer in the match subwindow (the middle
subwindow) or the source subwindow (the bottom subwindow) and
hold down the right mouse button to select Set Directory from
the File pull-right menu of the Text Menu.

Figure 2-8 Changing the Current Working Directory
SunSourceBrowser -- Current directory: /haome/examples/textedit

r—hom J(Previous](Focus J(Query]
¢[Erase J{ Next J(Filter]

Scratch: ATy

Text Menu
Query
Next
Previous
Shouw
Erase
Filter
Focus =»
Enable Edit=

Il save Current File
Store as New File I
Load File
Include File
Set Birectory
Espty Dacument
Finishing Up -

Revision A of 16 March 1990

Using Sun SourceBrowser 13

2.5 Building the
SourceBrowser
Database Index

2.6 Querying Options

2.7 Issuing Queries

When you issue a query, SourceBrowser searches in a specialized
database containing data about your source code. When you issue your
initial query following a compilation or recompilation, SourceBrowser
builds an index for this databaseand then processes your query.

You can, however, instruct SourceBrowser to conduct a query each time
you run make. That way, the index will already be built when you issue
your first query, so the query will be performed faster.

To automatically rebuild the database index every time you run make,
add the following lines to your makefile.

.DONE: query
query:
-sbquery symbol not_in prog

where symbol_not_in_prog is a symbol that does not appear in the code
you are compiling. '

Another option is to instruct SourceBrowser to only update its database
when you explicitly instruct it to do so. You do this by changing the
Update Database for Each Query option in the property sheet
to No. See Section 4.2, “The SourceBrowser Property Sheet,” for
details.

As stated in the Introduction, a query is an instruction to SourceBrowser
to find a specified symbol. To issue a query, you first need to determine
the symbol you want SourceBrowser to search for. SourceBrowser can
search for

+ identifiers
+ string constants
« search patterns that contain wildcards

SourceBrowser’s default is to search for identifiers. See Section 2.14,
“Searching for String Constants,” and Section 2.15, “Using Wildcards
in Queries,” for instructions on searching for string constants and using
wildcards in queries.

To issue a query to SourceBrowser, simply select the identifier you want
SourceBrowser to search for and click left on the Query button.

The identifier you select can appear in any open window.

Revision A of 16 March 1990

14

Using Sun SourceBrowser

The Initial Query

Figure 2-9

Revision A of 16 March 1990

To issue the first query of a session (or to issue a query when no other {
query is displayed):

1. Select the identifier you want to search for. The identifier can be:
+ an identifier you have typed in the Scratch field
« an identifier in another window

2. Click left on the Query button.

For example, in Figure 2-9, the user instructed SourceBrowser to find all
instances of file by typing file in the Scratch field; selecting file; then
clicking left on the Query button.

Issuing a Query

SunSourceBrowser -- Current directory: /home/examplies/browser
(Show) (Previous){ Focus)|) Query: < file
{ Erase J(Next J(Filter) Match 1(4)

Scratch: [ERB

In function: hello Symbol: file
File: sample.c Lines 28-41

2 “sample.c”, line 38:(hellc] hello(file)
“sample.c", line 31:[hello] FILE *file;
“sample.c", line 37:[world] world(file)
"sample.c", line 38:[worid] FILE *file;

static void
hello(file)
= FILE *file;

(void)fprintf(file, "Hello ");
static void

world(file)
SFILE =*file;
{

(void)fprintf(file, "world\n");
}

See Section 2.8, “The SourceBrowser Window,” for a description of the
content of each SourceBrowser subwindow.

Using Sun SourceBrowser 15

Subsequent Queries

The following is important additional information about issuing a query.

When using the Scratch field to issue a query, you can simply type
the query in the Scratch field and press Return.

You can reduce the time it takes to respond to a query by half by not
including the source code in the match subwindow. You do this by
setting the Match Window Contents option in the property
sheetto Filename and Linenumber Only. See Section 4.2,
“SourceBrowser Property Sheet,” for details. See Section 3.9,
“Performance Considerations,” for more about SourceBrowser
performance. :

To abort a query, press the Stop or L1 function key.

If you receive a message starting “Request for xxx bytes of memory
failed” you have run out of swap space. Use the mkfile (8)
command to create more swap space or the swapon (8) command
to abort existing processes (windows) and free up existing
swapspace. To determine which processes occupy significant swap
space, use the ps uagx command and look in the SZ column. To
determine how much swap space you have, use the pstat -s
command.

If SourceBrowser displays messages indicating that it is having
difficulty conducting a query (for example, if it says it is unable to
find . bd--browser data--files), remove the .sb directory (that is, the
directory containing the SourceBrowser database) and recompile
everything with the —sb option. If you receive a message stating that
the database is locked, you can either issue the -break lock
option or remove the .sb subdirectory and recompile. See Section
5.4, “Command-Line Options,” for a description of the —
break lock option.

SourceBrowser uses standard C notation to display non-printing
characters included in queries.

Issuing subsequent queries is similar to issuing the initial query. The
only difference is that you now have the option of choosing as your
search symbol text that is displayed in the match subwindow or source
subwindow.

To issue a subsequent query:

1.

Select the identifier you want to search for. The selected identifier
can be an identifier that you have typed in the Scratch field or an

Revision A of 16 March 1990

16

Using Sun SourceBrowser

Figure 2-10

Revision A of 16 March 1990

identifier that appears in a SourceBrowser subwindow or in another |
window.

2. Click left on the Query button.

For example, in Figure 2-10, the user has instructed SourceBrowser to
find all instances of void by selecting void in the source subwindow and
then clicking left on the Query button.

Issuing a Subsequent Query

SunSourcebrowser -- Current directorv: /home/examples/browser
(Show_J(Previous)(Focus]:m@ery: C void

{ Erase }J{ Next J(Filter) Match 1(8)

Scratch: file

Symbol: void
File: sample.c Lines 1-38
"sample. line 7:extern void hello();
"sample.c", line B:extern void world();

“sample.c", line 18:void
“sample.c"”, line 29:static void
"sample.c", line 33:[hello] (void)fprintf(file, "Hello ");

#ident “Source Browser Demo"

#include <stdio.h>
#define SECONDARY_DEMO times

extern hella();
extern void world();

void
main(argc, argv)
int argc;
char *argv(];
{
int times = 1;
if (arge > 1) {
if (sscanf(argv[1], "%d", ×) != 1) {
times = 1;
}
}
for (; times > 8; times--) {
hello(stdout);
world(stdout);
}
}
static void
Phello(file)

Using Sun SourceBrowser 17

2.8 The
SourceBrowser
Window

Figure 2-11

v

frame header

control subwindow

5

match subwindow

5

source subwindow

The Frame Header

The Control Subwindow

The SourceBrowser window consists of a frame header and three
subwindows: the control subwindow, the match subwindow, and the
source subwindow.

The SourceBrowser Window

SunSourcebBrowser -- Current directory: /home/examples/browser

(Show J(Previous}{ Focus J(Query) Query: < void
[Erase J{ Next][Filter] Match 1(8)
Scratch: filg
Symbol: void
File: sample.c) Lines 3-32
"sample.c", line 7:extern void helle();
“sample.c", line B:extern void world();

"sample.c”, line 18:void
“sample.c”, line 29:static void
“sample.c", line 33:[hello] (void)fprintf(file, "Hello ");

#include <stdio.h>
#define SECONDARY_DEMO times

extern hello();

extern void world();
void
main(argc, argv)
int argc;
char *argv[];
{
int times = 1;

if (arge > 1) {
if (sscanf(argv[i], "%d", ×) != 1) {

times = 1;
3
}
for (; times > 8; times--) {
hello(stdout);
world(stdout);
}
}
static void
hello(file)

=>FILE *file;

{

The SourceBrowser header is the stripe that runs across the top of the
SourceBrowser window. When SourceBrowser is invoked, the header
consists of SourceBrowser followed by the current working directory.
The frame header also tells you whether filtering and/or focusing is
turned on.

The control subwindow contains the controls needed to manipulate
SourceBrowser. Specifically, the buttons and underlying menus in the
control subwindow let you issue queries, move between matches
(occurrences of the symbol specified by the query), move between
queries, erase matches and queries, and narrow your search.

Revision A of 16 March 1990

18

Using Sun SourceBrowser

Figure 2-12

Buttons and Menus

Text Fields and Other Items

Revision A of 16 March 1990

The Control Subwindow
C Show_)(Previous)(Focus)(Query)Query: & file

[Erase J{ Next J{ Filter) Match 1(6)

Scratch: file

In function: hello Symbol: file
File: sample.c Lines 38-41

You use standard SunView conventions to manipulate buttons in the
control subwindows.

« To activate a button, position the pointer on the button and click the
left mouse button

« Todisplay a menu under a button, position the pointer on the button
and hold down the right mouse button

Clicking left on a button is equivalent to choosing the first option in the
menu behind the button.

The control subwindow contains one text field, called Scratch, that
contains strings that you type. To issue a query you can simply type the
identifier you want to search for in the Scratch field and press Return.

After you have issued a query, the control subwindow also contains the
following items: '

» Infunction specifies the function containing the current match (if
applicable)

» File specifies the file containing the current match
* Query shows the current query

* Matchdisplays the total number of matches found during the current
query and the number of the current match. For example, in Figure
2-13, the current query has resulted in six matches, the first of which
is the current match. The Match field also displays the number of
secondary matches. See Section 2.16, “Using the Filter Command to
Narrow a Search,” for details.

» Symbol displays the identifier or string constant for the current
match

» Lines displays the line numbers of the source code displayed in the
source subwindow

Using Sun SourceBrowser 19

The Match Subwindow

Figure 2-13

The match subwindow is a subwindow that displays all matches found
by the current query. When you issue a query, the first match
SourceBrowser finds is defined as the current match. The current match
is identified by a black arrow in the match subwindow. Matches
containing declarations appear first in the match subwindow, followed
by all other matches.

The Match Subwindow

"sample.c",
“sample.c",
"sample.c",
“sample.c",

“"sample.c",

line 7:extern void hella();

1ine B:extern void world();

1ine 1B8:void

1ine 29:static void

1ine 33:[hello] (void)fprintf(file, "Hello “);

NOTE:

The Source Subwindow

Information about each match listed in the match subwindow includes

» the name of the file in which the match appears, without the
preceding path

+ the line number in the file on which the match appears
« if applicable, the function in which the match appears

« the line of code containing the match with preceding white space
removed (optional)

SourceBrowser’s default is to display lines of code in the match
subwindow and to truncate lines of code that don’t completely fit in the
subwindow. If you want to eliminate source code from the match
subwindow altogether, or wrap lines of code in the match subwindow,
you can modify SourceBrowser’s property sheet. See Section 4.2, “The
SourceBrowser Property Sheet,” for details.

The source subwindow displays the portion of source code that contains
the current match. The source subwindow may also contain markers in
the form of arrows that identify matches found during the current and
other active queries.

Revision A of 16 March 1990

20

Using Sun SourceBrowser

Figure 2-14

The Source Subwindow

black arrow

void
main(argc, argv)
gray arrow int argc; '
char *argv[];
{
int times = 1;

}

3

hollow arrow

#inciude <stdio.h>
#define SECONDARY_DEMO times

extern hello();
extern void world();

if (arge > 1) {

times = 1;
}
for (; times > 8; times--) {
hello(stdout);
world(stdout);

static void
=> hello(file)
=FILE *file;

if (sscanf(argv[1], "%d", ×) != 1) {

NOTE:

Displaying
SourceBrowser Menus

Revision A of 16 March 1990

+ A solid black arrow indicates the current match

« A gray arrow indicates a match other than the current match that has
been found by the current query

» A hollow arrow indicates a match found by a query other than the
current query

» Asolid arrow with a line through it indicates a secondary match, that
is, an identifier inside a macro definition. This marker only appears
when you are using the Filter command. See Section 16, “Using
the Filter Command to Narrow a Search,” for details.

You can use the property sheet to instruct SourceBrowser not to display
any of these markers in the source subwindow or to indent the markers.
See Section 4.2, “The SourceBrowser Property Sheet,” for details.

You can display SourceBrowser menus in either the match subwindow
or the source subwindow by positioning the pointer in the subwindow in
which you want the menu to appear and holding down the right mouse
button.

Using Sun SourceBrowser 21

Figure 2-15

Scrolling in
SourceBrowser Windows

Displaying the SourceBrowser Menu

SunSourcebrowser -- Current directory: /home/examples/browser

:[-_§how J(Previous)(" Focus)(Query]Query: Cvoid

f[Erase J{ Next J(Filter) Match' 1(8)
rScratch: filg
: Symbol: void
fFile: sample.c Lines 3-32
“sample.c", line 7:extern void hello();
"sample.c", line B:extern vaid world();

"sample.c", line 18:void
"sample.c", line 28:static void
“sample.c", line 33:[hello] (void)fprintf(file, "Hello ");

#include <{stdio.h>

#define SECONDARY_DEMO times

extern void hella();
extern void wor1d();
void Text Menu =
main(argc, argv) Query
int argc; ! Next Match: This Query
char *argv(]; previous ([ETEEED
{ Show Next Function
int times = 1; Erase Next Match: Any Query
Filter
if (arge > 1) { Focus -

if (sscanf(arg) 1= 1) {

times =

Enable Edit=

3
}
for (; times > 8; times--) {
: hello(stdout);
world(stdout);
}

}

static void
®hello(file)

DFILE *file;
{

You can scroll through the match subwindow and the source subwindow
using the scroll bars and can move and resize these subwindows by
dragging their borders. For information about scrolling and resizing
windows, see the SunView I Beginner's Guide.

Revision A of 16 March 1990

22

Using Sun SourceBrowser

2.9 Redisplaying the
Current Match

Figure 2-16

Often, when using SourceBrowser, you’ll scroll through several
screenfuls of source code in the source subwindow, so that the current
match is no longer displayed.

To redisplay the current match in the source subwindow:

» Hold down the right mouse button and choose Current Match
from the Show menu

The Show Current Match Command

Scratch:

File: sample.c

Selected Match
SCurvont watcis | o8

(CQuery) Query: C void
Match 1(8)

Symbol: void
Lines 3-32

2.10 Viéwing Matches

SourceBrowser provides several ways to specify a different match as the
current match. .

Using theNext Command Ty make the next match in the match subwindow the current match and
to View Matches display the source code surrounding that match in the source
subwindow:
» Click lefton the Next button. This is equivalent to choosing Next
Match: This Query from the Next menu.
Figure 2-17 The Next Match: This Query Command
(Show)(Previous)(Focus)(Query)Query: < void
Corees)) (Frveer) Match 1(8)
Scratch: file
Symbol: void
File: sample.c Lines 3-32

Revision A of 16 March 1990

Using Sun SourceBrowser 23

Figure 2-18

You can also make the first match that occurs in the next function or file
that contains a match the current match. When you do, SourceBrowser
displays the source code surrounding that match in the source
subwindow. :

To make the first match that occurs in the next function or file the
current match:

+ Hold down the right mouse button and choose Next File or
Next Function from the Next menu

The Next Function Command

{ Show J(Previous)(Focus J(Query]Query: C void

{ Erase J[Next

Next Match: This Query fh 3(8)

Scratch: file

File: sample.c

Next File g

xt Functi i
Ne unction Symbol: void

Lines 3-32

Next Match: Any Query |

Using the Previous
Command to View
Matches

Figure 2-19

To make the previous match in the match subwindow the current match
and display the source code surrounding that match in the source
subwindow:

* Click left on the Previous button. This is equivalent to choosing
Previous Match: This Query from the Previous menu.

The Previous Match:This Query Command

Show

Focus [Query)Query: £ void

{ Erase J{ Next [Filter]

Match 2(8)

Scratch: file

File: sample.c

Symbol: void
Lines 6-35

Revision A of 16 March 1990

Using Sun SourceBrowser

Figure 2-20

You can also make the last match that occurs in the previous function or .

file that contains a match the current match. When you do,
SourceBrowser displays the source code surrounding that match in the
source subwindow. '

To make the last match that occurs in the previous function or file the
current match:

* Hold down the right mouse button and choose Previous File
or Previous Function from the Previous menu

The Previous Function Command

{ Show)(Previous] Previous Match: This Query gvoid

{ Erase J(Next

Previous File

)

Scratch: file

File: sample.c

1 0
Previous Match: Any. Query
Symbol: void
Lines 1-38

Selecting a Different
Current Match

Revision A of 16 March 1990

It’s often convenient to scroll through the match subwindow until you
find a match that you want to examine more closely.

To make a match in the match subwindow the current match:

1. Use the scroll bar in the match subwindow to scroll until the match /

you want to select is displayed.

2. Select the match by clicking left anywhere on the line containing the
match.

3. Click left on the Show button. This is equivalent to choosing Show
Selected Match from the Show menu.

14

Using Sun SourceBrowser 25

Figure 2-21

2.11 Erasing Matches

The Show Selected Match Command

SunScurceBrowser -- Current directory: /home/exsmples/browser
1 | (Previous)(Focus)(Query JQuery: Cfile .
(Erase Next J{ Filter) Match 4(6)
Scratch: file
In function: worild Symbol: file
File: sample.c Lines 26-41
"sample.c”, line 38:(hellc] hello(file)
“sample.c", line 31:[hello] FILE *file;
"sample.c", line 37:[wor1d] world(file)
"Bample.c", line 38:[worid] FILE *file;
“sample.c”, line 33:[hello] (void)fprintf(file, "Hello “);
}
}
¥static void
hello(file)

= FILE *file;
=¥ (void)fprintf(file, “Hella “);
Pstatic void
world(file)
= FILE *file;
{

= (void)fprintf(file, "world\n");

For example, in Figure 2-21, the user selected the fourth line in the
match subwindow and then clicked left on the Show button. The black
arrow moved to the selected match in the match subwindow and the
surrounding source code was displayed in the source subwindow.

When viewing matches, you may want to erase matches that are no
longer of interest.

To erase a match:
1. Make the match you want to erase the current match.

2. Hold down the right mouse button and choose This Match from
the Erase menu.

The number of matches shown by the Match item in the control
subwindow is reduced by one.

Revision A of 16 March 1990

26 Using Sun SourceBrowser

Figure 2-22 = The Erase This Match Command

(Show) (Previous)(Focus)(Query)Query: Cvoid

Erase
Scratch:

File: sample.c

This Query

A11 Queries

lter Match 1(8)

Symbol: void
Lines 3-32

2.12 Moving Between
Queries

Selecting Queries from
the Query Menu

Figure 2-23

During a SourceBrowser session, you often will issue several queries.
SourceBrowser maintains a list of these queries, called active queries,
so you can easily move between them.

When you move between queries, SourceBrowser retains the current
match for each query. Thus, you can easily move between queries
without losing your place in the code you are browsing.

SourceBrowser provides multiple ways to move between queries.

* You can choose a current query from the menu of active queries

[

You can cycle through the active queries

L]

You can make the next match marked by a gray or hollow arrow the
current match. (That is, you can make the next match appearing in
the source code after the current match the current match even if the °
match was obtained by another query.) The query used to obtain that
match then becomes the current query.

* You can make the previous match marked by a gray or hollow arrow
the current match (that is, you can make the previous match
appearing in the source code before the current match the current
match even if the match was obtained by another query.) The query
used to obtain that match then becomes the current query.

To choose a new current query from the menu of active queries:

« Click right on the Query item and choose a query from the menu of
active queries

Displaying the Query Menu

{ Show J(Previous]{ Focus J(_ Query Query:

[Erase J[Next][Filter]

Match

Scratch: file

File: fusr/include/stdio.h

Symbol: void
Lines 48-73

Revision A of 16 March 1990

Using Sun SourceBrowser 27

Cycling Through Queries

Figure 2-24

The cycle icon provides a quick way to view active queries.
To cycle forward through the active queries:

« Position the pointer on the cycle icon and click the left mouse button
The Query item changes accordingly.

The Cycle Icon

(C Show)(Previous)(Focus)(Query)Query: &file

{ Erase][

Next J{ Filter] Match 1(6)

In function:

Scratch: file

File: sample.

hello
c

Symbol: file
Lines S-38

Using the Any Match
Command

Figure 2-25

To cycle backward through the active queries:

Position the pointer on the cycle icon, hold down the Shift key and
click the left mouse button

As you scroll through your source code, you may want to make the next
match or previous match in the source code the current match. If the new
current match was found by another query, that query becomes the
current query and the Query item in the control subwindow changes
accordingly.

To make the next match the current match:

*

Hold down the right mouse button and choose Next Match: Any
Query from the Next menu

The Next Match: Any Query Command

(Show)(Previous)(Focus J(Query)Query: < file

[Erase J[Next

P T oK e b | Adede b

1(6)

Scratch: file
In function:

File: sample.

Next Match: This Query §
Next File g
Next Function

hello _ :
Next Match: Any Query |

C

Symbol: file
Lines 9-38

Revision A of 16 March 1990

28 Using Sun SourceBrowser

To make the previous match the current match:

¢ Hold down the right mouse button and choose Previous Match:
Any Query from the Previous menu

Figure 2-26 The Previous Match: Any Query Command

[Show J(Previous| Previous Match: This Query pfile

[Erass][7 Next Previous File
Previous Function

Scratch: file Previous Match: Any Query ||

In function: hello ¥ Symbol: file
File: sample.c Lines 26-41
2.13 Removing When a query is no longer of interest, you can remove it from the list of

Queries active queries.
To remove the current query from the list of active queries:

« Click left on the Erase button. This is equivalent to choosing
Erase This Query from the Erase menu.

Figure 2-27 The Erase This Query Command

(Show)(Previous)(Focus)(Query)Query: Cfile

- -

.M Next J(Filter) Match 1(6)
Scratch: file

In function: hello Symbol: file
File: sample.c Lines 26-41
2.14 Searching for SourceBrowser’s default is to search for identifiers. To instruct

String Constants SourceBrowser to search for string constants:

1. Select the string constant you want to search for. You can type the
string constant in the Scratch field, enclosed in quotation marks, or
you can select a string constant in the source subwindow or in
another window.

2. Click left on the Query button.

For example, in Figure 2-28, the user instructed SourceBrowser to find
all occurrences of “Hello”.

Revision A of 16 March 1990

Using Sun SourceBrowser 29

Figure 2-28

2.15 ‘Using Wildcards
in Queries

Searching for String Constants

SunSourcebrowser -- Current directory: /homz/examples/browser
(Show_)(Previous)(Focus]:m“)uer‘yt C “Hello *

[Erase J{ Next J{ Filter) Match 1(1)

Scratch:

In function: hello

File: sample.c

Symbgl: “Hello "
Lines 7-36

P "sample.c”, line 33:[hello] (void)fprintf(file, "Hello ");

extern wvoid hello();
extern void wor1d();
void
main(argc, argv)

int argc;

char *argv(];
int times = 1;

if (argc > 1) {
if (sscanf(argv[1], "%d", ×) != 1) {

times = 1;
}
}
for (; times > 8; times--) {
. hello(stdout);
wor 1d(stdout);
}

}
static void
hello(file)

FILE *file;

= (void)fprintf(file, "Hello ");

static void

When issuing a query, you can use wildcards to specify a search pattern.
When using wildcards, SourceBrowser gives you two options:

» shell-style patterns
» regular expressions
See sh(1) for information about shell-style pattern matching.

A regular expression specifies a set of strings of characters. A member
of this set of strings is said to be matched by the regular expression. In
the following specification for regular expressions character means any
character except NULL.

1. Any character except a special character matches itself. Special
characters are the regular expression delimiter plus “\”, “[”,

L

.” and sometimes “A”, “ *” and “$”.

2. A “.” matches any character.

Revision A of 16 March 1990

30

Using Sun SourceBrowser

NOTE:

Revision A of 16 March 1990

3. A“\” followed by any character except a digit or “()” matches that ‘
character. - :

4. A nonempty string s bracketed [s] (or [*s]) matches any character
in (or not in) s. In s, “\” has no special meaning, and “]” may only
appear as the first letter. A substring a-b, with a and b in ascending
ASCII order, stands for the inclusive range of ASCII characters.

5. A regular expression of the form shown in items 1 through 4
followed by “*” matches a sequence of 0 or more matches of the
regular expression.

6. A regular expression, x, as in items 1 through 8, bracketed \(x)
matches what x matches.

7. A ‘N’ followed by a digit n matches a copy of the string that the
bracketed regular expression beginning with the nth “\(”” matched.

8. A regular expression of the form shown in items 1 through 8, x,
followed by a regular expression of the form shown in item 7, y,
matches a match for x followed by a match for y, with the x match
being as long as possible while still permitting a y match.

9. A regular expression of the form shown in items 1 through 8
preceded by “A” (or followed by “$”) is constrained to matches that |
begin at the left (or end at the right) end of a line.

10. A regular expression of the form shown in items 1 through 9 picks
out the longest among the leftmost matches in a line.

SourceBrowser’s default is shell-style expressions. If you want to use
regular expressions, you need to change the SourceBrowser property
sheet. See Section 4.2, “The SourceBrowser Property Sheet,” for details.

To limit the number of matches you receive when including wildcards in
a query, it is often useful to use the Filter command to search for
items based on how they are used in a program. See Section 2.16,
“Using the Filter Command to Narrow a Search,” for details.

Using Sun SourceBrowser 31

Figure 2-29

To include wildcards in a query:

1. Select the search pattern you want to search for. You can type the
search pattern in the Scratch field or you can select a search pattern
in another window.

2. Click left on the Query button. Or, if you typed the pattern in the
Scratch field, press Return.

For example, in Figure 2-29, the user instructed SourceBrowser to find
all instances of arg?

Including Wildcards in a Query

SundourceBrowser -~ Current directory: /home/exanples/browser

(Show J{Previous](Focus jwq‘lﬁ:ery: Carg?
(Erase J{ Next J[Filter } atch 1(6)
Scratch:

In function: main
File: sample.c

2 matches for source line
Symbol: argc
Lines 11-48

"sample.c", line 11:[main] main(argc, argv)
“sample.c”, line 11:[main] main(arge, argv)
"sample.c”, line 12:[main] int argc;
“sample.c", line 13:[main] char *argv(];

“sample.c”, line 17:[main] 1f (argc > 1) {

main(argc, argv)

- int argc;

~% char *argv[];
{

int times = 1;

=*if (arge > 1) {
=+ if (sscanf(argv[1], "%d", ×) != 1) {

times = 1;
}
}
for (; times > 8; times--) {
hello(stdout);
world(stdout);
}
}
vstatic void
hello(file)

FILE *file;
= (void)fprintf(file, "Hello ");
> static void

world(file)
FILE *file;

= (void)fprintf(file, "world\n");

“The Symbol item in the control subwindow displays the current

identifier or string constant that matches the search pattern you have

specified.

Revision A of 16 March 1990

32

Using Sun SourceBrowser

2.16 Using the
Filter
Command to
Narrow a Search

NOTE:

The Filter command lets you search for symbols based on how they
are used in a program.

You might, for example, want to limit your search to declarations of
variables.

If you issue a filtered query that is identical to another active query,
SourceBrowser will ignore your request and redisplay the existing
query. Thus, if you want to issue a filtered query that uses the same
symbol as an existing query, you must first delete the existing query
using the Erase Current Query command.

You can have only one Filter setting for any query.

When you choose a different current query, the settings in the Filter
panel change to reflect the settings you used when issuing that query.
Thus, if you are moving between queries with different filters, you will
avoid confusion by leaving the Filter panel in view.

To use the Filter command to filter a query:
1. Click left on the Filter button.

The Filter panel is displayed. The content of the Filter panel is
determined by the language(s) of the code you are browsing.

Figure 2-30 The Filter Panel

Revision A of 16 March 1990

SunSou
e
8

: @ A1t Matches

g @ Deciarations

& O References

D cpp Flow Control
@ strings
Pragmas

Grep

M [Make

rceBrowser Query Filter

2. Click left on the menu item that describes the filter you want to use
in your search.

Depending on the item you choose, the Filter panel may expand to
include additional menu items which you can use to further narrow your
search. In Figure 2-31, for example, the user instructed SourceBrowser
to search only for symbols that are used as declarations of variables.

Using Sun SourceBrowser 33

Note that after you have specified a filter, the SourceBrowser frame
header displays a message telling you that filtering is turned on.

Figure 2-31 The Filter Panel after Specifying a Filter

Browser Query Filter ~— Active languages:
@ a11 Matches @ A11 Declarations W A1 Variables
@ peclarations @ variables @ static variables
References Functions Extern Variables
cpp Flow Control @ Typedefs @ 1oplevel variables
Strings Type Tags Local Variables
@ rragnas @ Labels CFields
Grep Constants
Make cpp Symbols

3. If you want to close the Filter window, choose Done from the frame
menu.

4. Activate the SourceBrowser window and issue a query.

In Figure 2-32, for example, the user instructed SourceBrowser to find
all instances in which times is used as a variable declaration.

Revision A of 16 March 1990

34

Using Sun SourceBrowser

Figure 2-32

secondary match

A Special Case: Filtering
Functions in Macro
Definitions

Revision A of 16 March 1990

A 4

Issuing a Filtered Query

SunSourceBrowser ~- [Filter on] Current directory: /home/examples/browser:

(Show) (Previous)(Focus) .mQuery : Ctimes [Filtered]

[Erase J(Next][Filter]
Scratch:

In function: main
File: sample.c

Match 1(1+1)

Filtered query
Symbol: times
Lines 2-31

2 "sample.c”, line 15:[main] int times = 1;
“sample.c", line S:#define SECONDARY_DEMO times

#include <{stdio.h>

#define SECONDARY_DEMO times

extern void hello();
extern void world();
void
main(argc, argv)

int argc;

char *argv(];

“*int times = 1;
SunSourceBrowger iter Active languages:

Sun_c

@41 Declarations WA variabies “

M variables D static variables

Functions Extern Variables

cpp Flow Control Typedefs Toplevel Variables
i Strings Type Tags Local Variables

- Pragnas D@ rabels @rfields

Grep Constants
cpp Symbols

eSO PN

‘.m.,ww..«wmw o
B

A1l Matches
Declarations

References

s 2 R 0 K0 6y 8 Do e

Notice that the current match is marked as a secondary match, that is, as
a solid arrow with a white line through it. See the next section for an
explanation of secondary matches.

When SourceBrowser browses through source code, it is unable to
determine how identifiers inside macro definitions are used. For
example, in this code fragment from the sample program used in this
chapter

#define SECONDARY DEMO times

. o

int times = 1

SourceBrowser does not know how times in the macro definition will be
used. Consequently, when you use the Fi1ter command to search for
identifiers, as in Figure 2-32, SourceBrowser displays identifiers inside

Using Sun SourceBrowser 35

Removing the Filter

Figure 2-33

2.17 Using the Focus
Command to
Narrow a Search

macro definitions as secondary matches. When it is the current match, a
secondary match is marked in the match subwindow as a solid arrow
with a line through it. Whenever SourceBrowser finds a secondary
match, the total number of secondary matches is displayed in the Match
item after the plus (+) sign. Thus in Figure 2-32, SourceBrowser has
found one primary match and one secondary match.

To disable the filter and instruct SourceBrowser to find all occurrences
of the symbol identified in your query:

1. Activate the Filter panel.
2. Selectthe A11 Matches item in the left column.

Removing the Filter

A1l Matches

v All Matches
Declarations Variables
; Functions

cpp Flow Control Types

Strings Type Tags
: Pragnas Labels
H Ocrep Constants

Make cpp Symbols

3. If you want to close the Filter window, choose Done from the frame
menu.
4. Activate the SourceBrowser window and issue a query.

The Focus command lets you focus your search on instances of
specific classes of code, such as programs, functions, or libraries. For
example, you might want SourceBrowser to limit its search to specified
functions. SourceBrowser then searches for occurrences of the symbol
in any of the functions you have activated.

Because SourceBrowser searches all source files described by the
database in the current working directory, the Focus command is
especially useful when you want to limit your query to selected files in
a directory.

You can use the Focus command to focus your query on more than one
class of code. For example, you could conduct a query that was limited
to certain files and libraries.

Revision A of 16 March 1990

36

Using Sun SourceBrowser

Once you use the Focus command to specify a focus, the focus remains ‘i
in effect for all subsequent queries until you change the settings in each
Focus panel.

If you issue a focused query that is identical to another active query,
SourceBrowser will ignore your request and redisplay the existing
query. Thus, if you want to issue a focused query that is the same as an
existing query, you must first delete the existing query using the Erase
Current Query command.

To issue a focused query:

1.

Figure 2-34

Hold down the right mouse button and choose the class of code you
want to focus on from the Focus menu. The content of the Focus
menu changes depending on the language(s) of the source code you
are browsing.

The Focus Menu

{ Show J(Previous}(Focus

[Erase J[Next [Filten

Scratch: file

File: sample.c

In function: hello

Program g Query: Ctile
Library |

Fle E Match 1(6)
Nacro

Function |:

: Symbol: file
Language §

Lines 29-41

After a menu item is chosen, all of the available items for the selected

Figure 2-35

class of code are displayed.

The Focus Panel

Focusing on Function -- 3 entries, all are active
Activate](Deactivate)Scratch: J

Revision A of 16 March 1990

Using Sun SourceBrowser 37

Figure 2-36

Activate or deactivate the items you want to use in your search using
commands found on the Activate and Deactivate menus. For
example, in Figure 2-36, the user limited the search to identifiers found
in the hello function by choosing Deactivate All Lines from
the Deactivate menu, selecting hello; then choosing Activate
Selected Lines fromthe Activate menu. Note that after you
have specified a Focus item, the SourceBrowser frame header displays
a message telling you that focusing is turned on.

The Focus Panel with One Function Activated

Focusing on Function -- 3 entries, 1 active
{(Activate}(Deactivate]Scratch: |

2. If you want to close the Focus window, choose Done from the frame
menu.

3. Activate the SourceBrowser window and issue a query. Note that
SourceBrowser tells you when you are conducting a focused query.

Revision A of 16 March 1990

38

Using Sun SourceBrowser

Figure 2-37

Issuing a Focused Query

sunSourcebrowser —— [Focus on] Current directory: /home/examples/hrowser

(CShow_) (Previous) (CFocus)|) Query: < file [Focused]

{ Erase J{ Next J{ Filter } Match 1(3)

Scratch: time Focused query

In function: hello Symbol: file

File: sample.c Lines 26-41
Nsample.c', 1ine 31:\hel10] FILE sfile;

“sample.c”, line 33:[hello] (void)fprintf(fi]é, “"Hello “);

1}
}
static void
hello(file)
SFILE <N

=¥ (void)fprintf(file, “Hello “);
3

static void
world(file)

FILE *file;
{

(void)fprintf(file, "world\n");

Focusing on Function -- 3 entries, 1 active

2.18 Editing Code
from
SourceBrowser

Revision A of 16 March 1990

You can edit code without leaving SourceBrowser using SunView Text

Edit’s editing commands. For information about these commands, see
the SunView I Beginner’'s Guide.

To edit code from SourceBrowser:

1. Position the pointer in the source subwindow and hold down the

right mouse button to display the SourceBrowser menu.

+ If your code is not part of the SCCS (or VCS for NSE™) file
control system, choose the Enable Edit item

+ If the code is part of a file control system, choose Check Out;
Then Enable fromthe Enable Edit pull-right menuin the
SourceBrowser menu

Using Sun SourceBrowser 39

Figure 2-38 The Enable Edit Menu

SunSourceBrowser -- Current directory: /home/examples/browser
f[Show) (Previcus){ Focus){ Query)Query: & file
(" Erase) Next ([Filter) Match 4(6)
Scratch: filg .

| In function: world Symbol: file
File: sample.c Lines 26-41
“sample.c", line 37:[world] world(file)

“sample.c", 1ine 38:[world] FILE *file;

“sample.c", line 33:[hello] (void)fprintf(file, "Hello “);
"sample.c", line 48:[world] (void)fprintf(file, "“worid\n");

}
}

*static void
hello(file)

- FILE *file; Text Menu
Query
= (void)fprintf(file, "Hello Next

Shouw
Erase
Filter
Focus

=

Previous = K
=
2

»static void
world(file)
=< FILE *file;

= (void)fprintf(file, “world\ ;
Check OQut; Then Enable Edit §

AN The pointer changes to a pencil.
2. Edit the code.
3. Disable editing.

» To save your changes, choose Disable Edits from the
SourceBrowser menu

+ If youdon’t want to save your edits, choose Ignore Changes
from the Disable Edits pull-right menu item in the
ScurceBrowser menu

NOTE: Youcannot check files back in to SCCS or VCS from SourceBrowser. You
must check them in manually.

Revision A of 16 March 1990

40

Using Sun SourceBrowser

2.19 Customizing
SourceBrowser

Figure 2-39

The SourceBrowser property sheet lets you customize SourceBrowser
to suit your specific needs.

To change SourceBrowser properties:
1. Choose Props from the frame menu or press the L3 or Props key.

The SourceBrowser Property Sheet

SunSourceBrowser Properties

Match ¥indow Contents: @ Filename and Linenumber Only M A1so Show Source

Arrows Displayed in Source Vindow: & &= &~

Keep Database Index Updated: @ves @No
Database Undate Memorv Allocation: <2 Mbyte

Match Window: @ Truncate Lines ‘drap Lines
Selection Handling: Do Not Change Selection @ Move Setection To Show Match
Arrow Positioning: @ 1ndented @ In Margin

Query Matching: @ use case Ignore Case
¥ildcard Style: @ sShell D Rreguiar Expression

lAEE]Z’ |Reset| |Done]

2.20 Using
SourceBrowser
with dbxtool

Revision A of 16 March 1990

2. Change the appropriate options.
3. Click left on the Apply button.

4. If you want to close the property sheet window, choose Done from
the frame menu, or click the Done button.

For a complete description of each item in this panel, see Section 4.2,
“The SourceBrowser Property Sheet..”

You may find it convenient to use SourceBrowser in conjunction with
dbxtool. Specifically, you can use SourceBrowser to search for a
variable; then, make the appropriate occurrence of that variable a
breakpoint in dbxtool.

When using SourceBrowser with dbxtool, set the Selection Handling
option in the SourceBrowser property sheet to Move Selection to Show
Match. That way, each time you move to another match, that match will
automatically be selected.

Begin by issuing a query that instructs SourceBrowser to find a variable
that appears on the line at which you want to break. Then, use
SourceBrowser commands to move between matches until the line of
code at which you want to set a breakpoint is selected.

Using Sun SourceBrowser 41

Finally, click the stop at button in dbxtool. The breakpoint will be
set at the selected line of source code in the SourceBrowser window.
For more information about dbxtool, see dbxtool (1).

Revision A of 16 March 1990

42

Using Sun SourceBrowser

Revision A of 16 March 1990

Browsing Large Programs

3.1
3.2
33
34

35
3.6
3.7

3.8
3.9

Overview: The SourceBrowser Database......ccccceerrerveenecenccnn.. 46

Browsing From Multiple Machines..........co.ccceueverueriernnenennenes 47
Creating and Updating the Databaseccccecceeeveeveernccvennnenne 47
. More about .bd Files............. cvesearsanens eeeeetee st te sttt esae et e neas 49
Compiling and Browser Data Files.................. ceeeeeeesaraeaes 49
Linking and Browser Data Filescccccoeceeevcannnene ceereneenae .49
Libraries and Browser Data Filescc.coccevveccnenene ceeanene 50
Working with Multiple Directoriescccceceveeceenieiercccenens. 50
Installing a Symbolic Link reeesttesteattete e sa e at e aaane 50
Using .sbinit......... ceeetetete et st s ressasansanesae eesreeeeiraeaeas RS |
The import Command......... cereerrenerreaeaaes vttt 52
The export Command eeteseeesntesneretesaaesttesaastesaassennans 53
The split Command............. eeteesetesteeseaestaesaesnaaane voreeenrseaene 56
File Protection ettt et et et e et e as et aeenteraeneeneannas 58
Performance Considerations..........cceioeeeeveeruesuessnerasiensesessaanns 58
Building the Index Fileccooceeviivinieniienieieecie e, 58

Conducting @ QUETY ..ccceeecieeiciiarreenirenreeneeeneeeseeesaseeesaeesseeenas 58

% AR ARERR00.
SRR i

NOTE:

Browsing Large Programs

Sun SourceBrowser responds to queries by searching in a specialized
database that contains pertinent information about the files you are
browsing. Knowledge of the layout of that database is especially
important when you want to browse large programs whose source files
are located in more than one directory.

This chapter introduces you to the SourceBrowser database and the
commands you used to manipulate it. Specifically, this chapter
describes:

« components of the SourceBrowser database

» using SourceBrowser from multiple machines

« creating and updating the SourceBrowser database

+ information about .bd (browser data) files

+ procedures for using symbolic links to organize databases

+ options for browsing databases contained in more than one directory

+ the .sbinit file, a textfile used by SourceBrowser to obtain
information about the database structure and to improve
SourceBrowser’s performance when browsing large programs

« information about database file protection
» performance considerations

This chapter contains very general information that is likely to change
in the future. Note too that the description of the structure of the .sb
(SourceBrowser) subdirectory explained later in this chapter has been
simplified. In reality, the structure of the subdirectory is more complex
than the description included here.

Revision A of 16 March 1990

46 Browsing Large Programs

3.1 Overview: The The SourceBrowser database consists of two parts:
SourceBrowser

one file with an extension of .bd (browser data) for each source file
-Database

for which you have generated SourceBrowser information. Browser
data files are created by the compiler when you use the —sb option.

» anindex file created by SourceBrowser which SourceBrowser uses
to locate information in the .bd files

The .bd files and the index file are stored in the .sb (SourceBrowser)
subdirectory. Unless you specify otherwise, the .sb subdirectory is
created in the current working directory from which the compiler is
executed.

For example, in Figure 3-1, SourceBrowser databases are created in the
.sb subdirectories in the sourcel and source2 directories.

Figure 3-1 = The SourceBrowser Database

project

sourcel / \ 50““352\

ec.xbd 'f.c.“*.b'i

b

NOTE: The asterisk (*) in each .bdfile is a place holder for a random string that
is a hash value computed from the contents of the file.

NOTE: The programatic interface to the SourceBrowser database is available
to third party compiler writers.

NOTE: The SourceBrowser database is architecture independent. Thus, you can
build a database on a Sun-3™ machine and then browse it on a Sun-4
machine™.

Revision A of 16 March 1990

Browsing Large Programs 47

3.2

3.3

Browsing From
Multiple
Machines

Creating and
Updating the
Database

Each source file compiled with the —sb option must have the same
absolute path regardless of the machine from which it is referenced.
That’s because the .bd (browser data) files that are created when you run
the compiler contain the absolute path for each source file. This
information is used to display the source file when a query is issued. If
the absolute path is not uniform across machines, SourceBrowser won’t
be able to display the source files when it responds to a query.

If SourceBrowser users are working on different machines, make sure ‘
that all source files are mounted at the same mount point.

The first time you compile a source file with the —sb option, the
compiler creates a .bd file for each file that you compiled. Then, prior to
responding to your initial query following a compilation,
SourceBrowser creates an index file which it uses to locate information
in the .bd files.

Each subsequent time that you compile a source file with the —sb
option, new .bd files are created for source files that have been modified
since the last compilation. When you issue your initial query following
the compilation, SourceBrowser updates the index file before it
responds to your query.

Figure 3-2 illustrates the process.

Revision A of 16 March 1990

48

Browsing Large Programs

Figure 3-2

S0BBBSDIEDIBEGOBOIHBOITOBODIOBEOSVIE

Compile with |
—sboption §

Compiler creates
.bd files for each
source file

Issue initial

SourceBrowser
creates Index
file

SourceBrowser

displays
match Kst

Issue subsequent

Revision A of 16 March 1990

query

Creating and Updating the Database

Edit
source

FO0000REIP0RAROAOCRRIIRVOTTOTINR 0

Recompile with
-sb option

Compiler create?
.bd files for mod-
ified source file

Issue initial

SourceBrowser
updates Index
file

N

|

Browsing Large Programs 49

3.4 More about .bd

Files

Compiling and Browser

Data Files

Linking and Browser Data

This section describes the process of creating .bd files when you
compile, link, or build a library. Note that this section presents very
general information.

When you compile with the -sb option, browser data (.bd) files are
created for each source file. They are stored in the current working
directory from which the compiler was executed.

If it is the first time the source files have been compiled with the

-sb option, the compiler creates a .sb subdirectory as well as a .bd file
for each source file. For example, in Figure 3-3, the C compiler creates
a c.c.*.bd file while the FORTRAN 77 compiler creates an f.f.*.bd file.

If it is a recompile, .bd files are created for those files that have been
changed since the last compile.

To generate correct .bd information, you must issue a compile run that
does not generate any warnings or error messages.

When you link files that have been compiled with the —sb option, an

Files additional .bd file is created by the linker that lists the object files used
to construct the program. For example, in Figure 3-3, the linker creates
an a.out.*.bd file.

Figure 3-3 Compiling with the -sb Option
comptrie stdio.h.*.bd
3 c.c.* bd
f.f.¥.bd {— sbquery —>matches
sbrowser
a.out. *. bd
£77
f.f—>
(compile)
Index

c.0 1d
f.O-——-) (lmk) f— ad .0ut

Revision A of 16 March 1990

50

Browsing Large Programs

Libraries and Browser
Data Files

3.5 Working with
Multiple
Directories

3.6 Installing a
Symbolic Link

Figure 3-4

sourcel

a.c

Revision A of 16 March 1990

When you build a library with files that were compiled with the -sb
option, a .bd file is created that lists the object files contained in the

library.

SourceBrowser’s default is to build its database in the current working
directory, then search in that database when you issue a query. If you
want to work with source files whose database information is stored in
multiple directories, you have the following options:

You can create a common database that is used by all directories
from which the compiler will be executed. To do this you must
install a symbolic link to the common directory. See Section 3.6,
“Installing a Symbolic Link,” for details.

You can browse multiple databases. To do this, you must include the
import command in a text file called .sbinit. See Section 3-7,
“Using .sbinit,” for details.

You can store SourceBrowser databases in directories other than the
current working directory. To do this, you must include the
export command in a text file called .sbinit. See Section

3-7, “Using .sbinit,” for details.

To browse databases stored in multiple directories, you can install a
symbolic link to a common .sb directory from all directories in which
the compiler will be executed. Figure 3-4 shows a conceptual view of
installing a symbolic link to a common subdirectory.

Installing a Symbolic Link

project

source2

f.c

Browsing Large Programs 51

Figure 3-5

3.7 Using .sbinit

Use one of the following options to create a symbolic link to a common
.sb subdirectory:

» Execute this command:
1n -s path/.sb
¢ Include the following code fragment in your makefile:
.INIT: .sb
.Sb:
-ln -s path/.sb
Note that path can be relative or absolute.

It often is useful to consolidate several databases into a single database.
Suppose you wanted to move the databases in the .sb subdirectories in
the source directories in Figure 3-1 to the project directory, as in Figure
3-4. Figure 3-5 shows the steps you would follow to complete that
process.

Consolidating Databases

s cd p ct.

The second and third lines of code use the t ar command to move the .sb
subdirectories in sourcel and source2 up one level. The fourth line of
code removes the .sb subdirectories in sourcel and source2. The fifth
and sixth lines of code create symbolic links to the .sb subdirectory in
the project directory. The final line removes the Index file in the .sb
subdirectory. Then, when you issue a query, a new Index file will be
created in the .sb subdirectory in the project directory.

The .sbinit file is a text file used by SourceBrowser to obtain
information about the database structure. The .sbinit file is limited to
these commands:

e The import command: reads databases in directories other than
the current working directory used by SourceBrowser.

Revision A of 16 March 1990

52

Browsing Large Programs

NOTE:

The import Command

Revision A of 16 March 1990

» The export command: writes databases associated with specified
source files to directories other than the current working directory
used by SourceBrowser and the compiler. When you include the
export command in the .sbinit file, there is an implied import
command.

* The split command: speeds up SourceBrowser’s performance by
only updating relevant portions of the database used by
SourceBrowser when the database is updated following a
recompilation.

These commands are explained in subsequent sections of this chapter.

SourceBrowser’s default is to look in the current working directory for
the .sbinit file. If the .sbinit file is in another directory, or if you want to
give the .sbinit file a different name, set the environment variable
SUN_SOURCE_BROWSER_INIT FILE to the appropriate pathname.
Setting SUN_SOURCE_BROWSER _INIT FILE also causes compilers to
turn on the —sb option.

The import command tells SourceBrowser which databases to read
each time it performs a query.

If you don’t include the import command or the export command
in the .sbinit file, SourceBrowser only browses the database in the
current working directory. (The export command is explained in the
next section.)

In contrast to installing a symbolic link, which creates a common
database, the import command enables you to retain separate
databases. For example, you may want to set up administrative
boundaries so that programmers working on Project A cannot write into
directories for Project B and vice versa. In that case, Project A and
Project B will each need to maintain its own SourceBrowser database,
both of which can then be read but not written by programmers working
on the other project.

The import command has the form:
import <path>

where path is the path to the directory that contains the .sb subdirectory
containing the database you want to import.

Browsing Large Programs 53

Figure 3-6

sourcel

For example, in Figure 3-6, if your current working directory is /project/
sourcel, and you want to instruct SourceBrowser to read the
SourceBrowser database in source2, the import command in
sourcel’s .sbinit file would be

import /project/source?2
or
import ../source2

Similarly, if your current working directory is /project /source2, and you
want to instruct SourceBrowser to read the SourceBrowser database in
sourcel, the import command in source2’s .sbinit file would be

import /project/sourcel
. or
import ../sourcel

When you recompile and issue a subsequent query, the databases for
both sourcel and source2 are updated as appropriate if they can be
written.

Using the import Command

/OJCCt

source2

A SRR TR OISO I P,
o e,
o o™ i,
it "'.r,
e %
,w.« waenemenn N,

b.c .Sbinit

e

a.c .*.bd

The export Command

\,.%_‘~
sblmt

\/\

b.c.*bd index ec.*bd f.c.*bd index

You use the export command to cause the compiler to store specified
browser data (.bd) files in a directory other than the current working
directory. This enables you to save disk space by placing .bd files
associated with identical files, such as #include files from /usr/include,
in a single SourceBrowser database while still retaining distinct
databases for individual projects. If you don’t include a éxport
command in the .sbinit file, the compiler writes all .bd files in the
current working directory.

Revision A of 16 March 1990

54

Browsing Large Programs

Revision A of 16 March 1990

The export command has this form:
export <prefix> into <path>

Whenever the compiler processes a source file whose absolute path
starts with prefix, the resulting browser data (.bd) file will be stored in
<path>/.sb .

Note that the export command provides instruction for writing .bd
files while the import command provides instructions for reading .bd
and index files.

In Figure 3-7, to place the .bd file and index file created for files from /
usr/include in a .sb subdirectory in the sys subdirectory, the export
command in the .sbinit file for sourcel would be

export /usr/include into /project/sys

If your configuration had included a source2 directory with a .sbinit file
containing the same export command shown above, you would save
disk space because, instead of creating two identical stdio.h.*.bd files,
the compiler would create a single stdio.h.*.bd file in the sys
subdirectory.

Note that the .sbinit file contains an implied
export / into .

that instructs the compiler to put .sb files created by source files not
explicitly mentioned by a export command in the current working
directory. Thus, in Figure 3-7, the .bd files associated with a.c and b.c
are placed in the .sb subdirectory in the sourcel directory.

When you include the export command in the .sbinit file, there is an
implied import command which causes SourceBrowser to read each
database that you have instructed the compiler to create. Thus, based on
the configuration in Figure 3-7, SourceBrowser will search in the
database in the sys subdirectory, as well as in the database in the sourcel
directory, each time you issue a query.

Browsing Large Programs 55

Figure 3-7 Using the export Command for Shared System Files

project usr

Export flow

include

ac bc .sbinit .sb stdio.h

1IN

a.c .*.bd b.c.*.bd index

nuss cd /project/sourcel

Figure 3-8 illustrates how to use the export command to store .bd
files in a common subdirectory when the include file is located in a non-
standard location. In this example, to place the .bd file and index file
created for files from /project/include in a .sb subdirectory in the /
project/include subdirectory, the export command in the .sbinit file
for sourcel would be

export /project/include into /project/include

Here again, using the export command will save disk space when
your program includes multiple references from many different
directories to the same include file.

Because the export command includes an implied import
command, SourceBrowser will read the database in the include
subdirectory as well as the database in the sourcel subdirectory each
time you issue a query.

Revision A of 16 March 1990

56

Browsing Large Programs

Figure 3-8 Using the export Command for Shared Project Include Files

project '
/npon‘ﬂow \ r_—_

/:ourc 1
|

a.c .sbinit

include export

AN
AN PN |

.sb

a.c.x.bd ~ index x.h.*.bd index

cd’ /project/sourcel
“I/project

NOTE: If a .sbinit files includes multiple export commands, they are scanned
in the same order that they are encountered in the .sbinit file. Thus,
export commands should be arranged from most specific to least
specific.

The split Command The purpose of the split command is to improve performance when

working with large numbers of programs.

The split command, which must be included in the .sbinit file, has
this form:

split <size>

where <size> is the size in bytes of the database index when the
database will be split by SourceBrowser.

The split command causes the SourceBrowser database to be split
into a “new” and an “old” database whenever the database’s index file
exceeds a specified number of bytes. Then, when you recompile,
SourceBrowser places those .bd files that have changed since the last
compilation into the new database, leaving the old database unchanged.

Revision A of 16 March 1990

Browsing Large Programs 57

When you issue the initial query following compilation, a new index file
is created in the new database, while the index file in the old database
remains unchanged. This greatly speeds up SourceBrowser’s
performance, since the time it takes to build the index file is proportional
to the number of .bd files that require indexing. Consequently, it takes
far less time to build the small index file in the new database than to
build one large index file for the entire database.

For example, in Figure 3-9, the database has exceeded the number of
bytes specified by the split command in the .sbinit file in sourcel;
consequently, the old database has moved down a subdirectory level and
a new database is created in its place. In this example, the only source
file that has been modified since the split is a.c; thus, the new database
contains a.c.*.bd and an index file.

Figure 3-9 Using the split Command

project

sourcel

/N

a.c b.c .sbinit

new database

old
database

- If the new database reaches the number of bytes specified by the size
parameter of the split command, the old and new database files are
N merged, then split again.

Revision A of 16 March 1990

58

Browsing Large Programs

3.8 File Protection

3.9 Performance
Considerations

Building the Index File

Conducting a Query

Revision A of 16 March 1990

UNIX® file protection modes control whether the SourceBrowser
database will be updated when you recompile. If you have Read/Write
access, the database will be updated. If you have Read Only access, the
database will not be updated.

This section describes those factors that determine the speed with which
SourceBrowser builds the index file and conducts queries. Note that this
is very general information.

The time it takes SourceBrowser to build the index file the first time you
query is proportional to the following:

e The number of .bd files
e The number of symbols in the .bd files
« The size of the resulting index file

The time it takes SourceBrowser to rebuild the index file following
recompilation is proportional to the following:

+ the number of new .bd files
+ the sum of the number of symbols in all .bd files
+ the size of the index file

The time required to conduct a query is determined by the number of .bd
files that contain matches and the number of source files that contain
matches. ‘

If the Match Window Contents option in the property sheet is set
toAlso Show Source, the speed of the query is also affected by the
number of source files that contain matches. You can halve the time
required to respond to a query by setting thisoptionto Filename and
Linenumber Only.

The time required to conduct a query that includes wildcards is based on
the time it takes to conduct a query without wildcards as well as the size
of the index file.

Window Command Reference

4.1

4.2

SourceBrowser Menu Commands.......couveeeeecissinensssnseenseness 61

The ShOW MENU......cutiiiiiiieicciiceeececesteeeeesessnaesscsasassesssens 61
The Erase Menu............. venrens reerrreeeeesenrarans rrveerrrrseensanensss 02
The Previous Menu........... rereeeeeenararaes teeerrereeeerteeennnsnreaann 62
The Next Menu............... ceversresesssssasansesnse tereeeeeeenreeeasrntanans 63

" The Focus Menuoeeeeveeeanns teeeeersssssessrsnsassseasesssssassssasascans O3

The Activate Menu.......ccovvieviviininnecncssensenans ceecreeneenn. 64
The Deactivate MenUcoceeeeereneennessensenessmssesssesanns 64
Command-Line EQUIValent..........ccoceruereerersenressenessenee. 64
The Filter Command........ccccovevirniininncnsensnnnenscnscssncsensennns 64
Command-Line Equivalent.......cccccccevevenieveniecceeeseenee. 65
The Query Buttoncicovvvivencncncnunenns cevereneereeneesansses 09
The Update Button........ceeevceecucencnnes ceeeeereesessneseesseseesassaes 03

SourceBrowser Property Sheet.........oooevvnicnncinnnincnncinennn. 65

atc INAOW..ciiiiaiinnannne. Creteeretestesisettntiteattttetcrcnsenanans

-Match Window Contents........... eeeraeens teeeresssssssessressssssesensss OO

Command-Line Equivalent.........c.cceceu..e.. ceeeretesntenaaees 66
Selection Handling.........ccccoeevevenene ceeeeneane eeeieeeneneeneesseneees OO
Arrows Displayed in Source Window cereteseeeennenne 66
AITOWS POSItIONING .oeoevrieinierienieeniiecieneeeneeeseeeseeeneneeeseeesacess 00
Query MatChingcoceceevvenienveerienvensescereesannrecsesesnecsceneene 00

Command-Line Equivalent...........ccccueveruerrereerenne vererenrn 06

Wildcard Style.......ocveeieenenininrensencnecccssecesens cresseseressaes 67

Command-Line Equivalent cevesrassenansns cevecnnace 67
Keep Database Index Updated ceresesseneans ceoseeanes .67
Command-Line Equivalent eeterenesassasessasaasas veeneee07
Database Update Memory Allocation.................. cereeereaiane 67
Command-Line Equivalent creesanesnes ceesraeanece 67

B

4.1 SourceBrowser
Menu Commands

NOTE:

The Show Menu

Show Selected Match
Current Match
Yersion

D R R AR,

Window Command Reference

This chapter provides reference information about Sun Source Browser
window commands. Specifically, it includes

+ adescription of each SourceBrowser menu command with its
command line equivalent

* adescription of each option on the SourceBrowser property sheet,
with its command-line equivalent

SourceBrowser commands can be activated either by clicking the
appropriate button in the control subwindow or choosing the appropriate
menu item in the control subwindow, or by accessing the
SourceBrowser menu from the match subwindow or the source
subwindow.

Clicking left on a button in the control subwindow is equivalent to
choosing the first option in the menu behind the button.

The only SourceBrowser-specific menu commands that are not
accessible through menus in the control subwindow are the Enable
Edit and Disable Edit commands. These commands must be
activated by displaying the SourceBrowser menu in the source
subwindow. See Section 2.18, “Editing Code from SourceBrowser,” for
details. :

The following sections describe each command as it appears in the
control subwindow.

Holding down the right mouse button when the pointer is positioned on
the Show button activates a menu with the following items.

Selected Match:; (This is the default.) Makes the selected match in
the match subwindow the current match and displays the appropriate
line of code in the source subwindow. This command is useful when you

Revision A of 16 March 1990

62

Window Command Reference

The Erase Menu

| Erase This Query

This Match
A1l Queries

The Previous Menu

[Previoug Previous Match: This Query
Previous File

Previous Function

Previous Match: Any Query

Revision A of 16 March 1990

want to scroll through the match subwindow until you find a match that "
you want to make the current match.

Current Match: Displays the current match in the source
subwindow. This command is useful when you have scrolled through
the source subwindow and want to redisplay the current match in that
subwindow. '

Version: Displays SourceBrowser’s current version number. This
command is equivalent to the ~-version command line option.

Holding down the right mouse button when the pointer is positioned on
the Erase button activates a menu with the following items.

This Query: (Thisis the default.) Erases the current query. Once a
query is erased, it is removed from the Query menu. Using this
command reclaims memory.

This Match: Erases the current match. This command is useful when
you are reviewing matches and only want to retain those matches that
are of interest to you.

All Queries: Erases all active queries. Using this command
reclaims memory.

Holding down the right mouse button when the pointer is positioned on'
the Previous button activates a menu with the following items:

Previous Match:This Query: (This is the default.) Makes the
previous match found by the active query the current match and displays
it in the match subwindow and the source subwindow.

Previous File: For the current query, makes the last match that
occurs in the previous file that contains a match the current match and
displays that match in the match subwindow and the source subwindow.

Previous Function: For the current query, makes the last match
that occurs in the previous function that contains a match the current
match and displays that match in the match subwindow and the source
subwindow. '

Previous Match: Any Query: Makes the previous match in the
source subwindow the current match. If the new current match was
found by another query, that query becomes the active query and the
Query item in the control subwindow changes accordingly.

Window Command Reference 63

The Next Menu

| Next

. Next Match: This (Query

Next File

Next Function
Next Match: Any Query

The Focus Menu

Program
Library
File
Macro
Function
Language

Figure 4-1

Holding down the right mouse button when the pointer is positioned on
the Next button activates a menu with the following items:

Next Match: This Query: (This is the default.) Makes the next
match found by the active query the current match and displays it in the
match subwindow and the source subwindow.

Next File: For the current query, makes the first match that occurs in
the next file that contains a match the current match and displays that

“match in the match subwindow and the source subwindow.

Next Function: For the current query, makes the first match that
occurs in the next function that contains a match the current match and
displays that match in the match subwindow and the source subwindow.

Next Match: Any Query: Makes the next match in the source
subwindow the current match. If the new current match was found by
another query, that query becomes the active query and the Query item
in the control subwindow changes accordingly.

Holding down the right mouse button when the pointer is positioned on
the Focus button activates a menu with items representing classes of
code.

The content of this menu changes depending on the language(s) used to
write the source files you are browsing.

After you choose an item from the Focus menu, all of the available items
from the class of code you have selected are displayed in a Focus
window. Use the Activate and Deactivate menus described
below to activate and deactivate the items you want to use in your
focused query. Note that when you first open this window, all items are
activated.

The Focus Window

Focusing on Function -- 3 entries, all are active
| (Activate Deactivate] Scratch: |

Revision A of 16 March 1990

Window Command Reference

The Activate Menu

(Activats Activate Selected Lines
Activate Not Selected Lines

Activate A1l Lines

Activate According ta Pattern

The Deactivate Menu

(Deactivatd Deactivate Salected Lines
Deactivate Not Selected Lines
Desactivats A1l Lines

Deactivate According to Pattern

Command-Line Equivalent

The Filter Command

SunSourcebrowser Query Filter

B @ 211 Matches
Declarations
@ Refarences
cpp Flow Control
M @ strings
:‘ Pr‘agnas
: Grap
QHake

Revision A of 16 March 1990

s

See Section 2.17, “Using the Focus Command to Narrow a Search,” for

more about the Focus command.

The Focus window contains two menus; Act ivate and
Deactivate.

The Act ivate menu in the Focus window is used to activate specific
code items. The Activate menu contains these items:

Activate Selected Lines (This is the default.) Activates
selected items.

Activate Not Selected Lines activates all items that are not
selected.

Activate All Lines activates all items.

Activate According to Pattern activates items based on the
search pattern you have selected.

The Deactivate menu in the Focus window is used to deactivate
specific code items. The Deact ivate menu contains these items:

Deactivate Selected Lines (Thisis the default.) Deactivates
selected items.

Deactivate Not Selected Lines deactivates all items that are

not selected
Deactivate All Lines deactivates all items.

Deactivate According to Pattern deactivates items based
on the search pattern you have selected.

This item is equivalent to using the —in * command-line option to
specify a focusing option. To receive a list of command-line focusing
options, use the —help focus option. See

~help focus in Section 5.4, “Command-Line Options,” for details.

Clicking left on the Filter button displays the Filter panel.

You use the Filter panel to conduct a search based on how symbols are
used in a program.

The content of the Filter panel changes depending on the language(s)
used to write the files you are browsing. See Section 2.16, “Using the
Filter Command to Narrow Your Search” for more about the Filter
command.

Window Command Reference : ‘ 65

Command-Line Equivalent

The Query Button

The Update Button

4.2 SourceBrowser
Property Sheet

Figure 4-2

To receive a list of filtering options from the command line, use the
-help_filter option followed by the language of the source code
you are browsing. See -help filter in Section 5.4, “Command-
Line Options,” for details.

Clicking left on the Query button causes SourceBrowser to search for
the selected symbol.

You also can issue a query by typing the symbol in the Scratch field and
then pressing Return.

Clicking left on the Updat e button causes SourceBrowser to update the
Index file.

This button only appears if you have set the Keep Database
Index Updated item in the SourceBrowser property sheet to no. If
that is the case, you need to click the Update button whenever you
want SourceBrowser to update the database.

If you have set this item to yes, SourceBrowser updates the database,
then processes your query when you issue your initial query following a
compilation or recompilation.

To display the SourceBrowser property sheet, choose Props from the
frame menu or press the F3 or Props button.

The SourceBrowser Property Sheet

SunSourceBrowser Properties

Match Window Contents: @ Filename and Linenumber Only M Atso Show Source

Arrows Displayed in Source Window: @™ & &

Keep Database Index Updated: @Wves @No
Database Update Memory Allccation: 2 Mbyte

Match ¥indow: @ Truncate Lines Vrap Lines
Selection Handling: M Do Not Change Selection [@Move Selection To Show Match
Arrow Positioning: @ Indented Qin Margin

Query Matching: W use Case Ignore Case
¥ildcard Style: @Wshel) @ Regular Expression

(Apply) (Reset} (Done]

To hide the Property sheet, but retain the current settings, click Done.

The items in the SourceBrowser property sheet are explamed in the
following sections.

Revision A of 16 March 1990

Window Command Reference

Match Window

Match Window Contents

Command-Line Equivalent

Selection Handling

NOTE:

Arrows Displayed in
Source Window

Arrows Positioning

Query Matching

Command-Line Equivalent

Revision A of 16 March 1990

Truncate Lines truncates lines of code in the match subwindow.
This is the default. Wrap Lines wraps lines of code so that the
complete line of source code is displayed.

Filename and Line Number Only does not display the source
code line in the match subwindow. Choosing this option causes a fifty
percent improvement in performance when conducting queries. Also

Show Source displays the source code line, along with the filename
and line number, in the match subwindow. This is the default.

See —no_source in Section 5.4, “Command-Line Options,” for
information about the equivalent command-line option.

Do Not Change Selection does not move the selection bar to the
current match in the source subwindow when a new current match is
displayed. This is the default. Move Selection to Show Match
selects the current match in the source subwindow when a new current
match is displayed.

This item does not take effect until you choose a different match as the
current match.

Determines which arrows are displayed in the source subwindow.
» A black arrow indicates the current match

* A gray arrow indicates a match other than the current match that has
been found by the current query

* A hollow arrow indicates a match found by a query other than the
current query

If you click the black arrow box, only black arrows will be displayed. If
you click the gray arrow box, gray and black arrows will be displayed.
If you click the hollow arrow box, all three kinds of arrows will be
displayed.

Indented indents arrows so that they line up with the first line of
source code. This is the default. In margin places arrows in the left
margin.

Ignore Case causes SourceBrowser not to look at case when
searching for symbols in the source code that match the query symbol.
Use Case causes SourceBrowser to only make a match when the case
of the symbol matches the case of the symbol in the source code. This is
the default. '

See -no_case in Section 5.4, “Command-Line Options,” for
information about the equivalent command-line option.

¢

Window Command Reference 67

Wildcard Style

Command-Line Equivalent

Keep Database Index
Updated

Command-Line Equivalent

Database Update Memory
Allocation

Command-Line Equivalent

Shell informs SourceBrowser that you are using shell-style patterns
when using wildcards in a query. This is the default. Regular
Expressions informs SourceBrowser that you are using regular
expressions when issuing a query that includes wildcards.

See Section 2.15, “Using Wildcards in Queries,” for more about using
wildcards in a query and about pattern matching using regular
expressions. See sh(1) for information about shell-style pattern
matching.

See —reg expr in Section 5.4, “Command-Line Options,” for
information about the equivalent command-line option.

Yes instructs SourceBrowser to update the index file before the initial
query after a compilation is processed. This is the default. No instructs
SourceBrowser not to automatically update the database. When you

choose No, a new button, Update, is added to the control subwindow.
You click left on this button each time you want to update the index file.

See —no_update in Section 5.4, “Command-Line Options,” for
information about the equivalent command-line option.

This is a cycle item that tells SourceBrowser the approximate amount of
memory that should be allocated before SourceBrowser uses temporary
files when building the index file.

See -max memory in Section 5.4, “Command-Line Options,” for
information about the equivalent command-line option.

Revision A of 16 March 1990

68

Window Command Reference

Revision A of 16 March 1990

Command-Line Reference

5.1
52
5.3
54

Sample Programcccecceececrcnseiecnnenscnreesecsessennens ceseesaeeneinne 71
Viewing Command-Line Options cresesunesaseaanas rreseeeene .73
Issuing a Query......... evesssecsssrasessisesnesensnes ettt e eas 73
Command-Line Optionsccceeeeverrerneercereeseersecreesossoseesaenses 14
SDIEAK_LOCK «ooeeieiiiecieiieeett ettt neeseneesesesens ereeereneeens 74
-no_update......... creesarennaees reerrseesteestensssanerssersssssesssssessssaesece 14
Menu Command Equivalentccccovvervevcrcccccicnneneee. 74
-files_onlycccceeveenceeencens cereereaesnnesaaennes reisonsentisasses ceeeenneea 14
-help_focus.......cccceveveenuncne eeeereeesneetesseesssssssesssssessinssassaassane 1O
Menu Command Equivalent ceveeserssesasesseserasnsesass 10
shelp filter. .o crevereesnsasns ceerarersiensenees 10
Menu Command Equivalentc.ccccccecceeeen. ensiesessansanses 77
-Max_memory <size>.............. eeeereeeeeeeneeenesananans teeveeeeeeeeens 77
Menu Command Equivalent cetesstssenisnisnsins ceeeenee 77
-NO_Case reveeetesssantessnnee cereeeesaeeeenaees ettt eaaeas 77
Menu Command Equivalentcccccccovcvnnniinnniccncnnnens 7
“NO_SOUTCE.....ceuireerrrennanrecsssreessssessssnees et e 77
Menu Command Equivalent ceeeeteeenranenee 77

-0 <file> ..ot veesssusssadssisasnasiveneres reneetenaens 78
TEE_EXPI cuvvecenennccnnnn e RSN sesesshsrssnssaissssanes 78
Menu Command Equivalentcccccovervieveenerneraneennne 78
-symbols_only......... ceeereteseeereeetasaeeseensannas certentesasins crveereienns 18

-

SVETSION .ccceeeirrrereeessorsereencsssssssresssssonsassossssrsasaassosssnnssosssossns § 8
Menu Command Equivalent...........coeeecccenvcnnincnrcesseece. 78
5.5 Non-Standard Installation Procedure.........occue..... ceveecreeessenees 18

5.1 Sample Program

T ————
S R

Command-Line Reference

The Sun SourceBrowser command-line environment is a conventional
command-style interface that can be accessed from Sun workstations, as
well as from character terminals and from workstations emulating
terminals.

This chapter explains how to issue a query from the command line and
how to use SourceBrowser’s command-line options.

Throughout this chapter, the following sample program is used as the
basis for all examples. This program is written in C. For information
about using SourceBrowser with Sun FORTRAN programs, see
Appendix A. For information about using SourceBrowser with Sun
Pascal programs, see Appendix B.

Revision A of 16 March 19909

72 Command-Line Reference

Figure 5-1 Sample Program

textedit - sample.c, dir: /home/examples/brouser
4| Scratch window)

"Source Browser Demo"
#include <{stdio.h>
#define SECONDARY_DEMO times

extern wvoid hello();
extern wvoid world();

void

main(argc, argv)
int argc;
char *argv[];

int times = 1;

if (arge > 1) {
if (sscanf(argv[1], "%d", ×) != 1) {
times = 1;
} ,
}

for (; times > 8; times--) {
hello(stdout);
world(stdout);

1

static void
hello{file)

FILE *file;
{

(void)fprintf(file, "Hello ");
static void

world{(file)
FILE *file;

(void)fprintf(file, "world\n");

Revision A of 16 March 1990

Command-Line Reference 73

To obtain a list of the SourceBrowser’s command-line options,

5.2 Viewing
Command-Line * type sbquery when the Unix she}l prompt is displayed
Options

Figure 5-2 SourceBrowser Command-Line Options

5.3 Issuing a Query To issue a query from the command line:

* type sbquery, followed by any command-line options and their |
arguments, followed by the symbol you want to search for

For example, in Figure 5-3 the user instructed SourceBrowser to ignore
all case information and display all the appropriate matches, that is, all
lines of code in the current working directory that contain the symbol
times.

SourceBrowser then displays a listing that includes the file in which the
symbol appears, the line number on which the symbol appears, the
function, if any, in which the symbol appears, and the line of source
code containing the symbol.

Figure 5-3 Issuing a Query from the Command Line

Revision A of 16 March 1990

74 Command-Line Reference

NOTE: SourceBrowser’s default is to search for symbols in the SourceBrowser \
database in the current working directory. If you want to browse a
database stored in another directory, see Chapter 3, “Browsing Large
Programs.”

NOTE: SourceBrowser can search for identifiers, string constants, and search
patterns that contain wildcards. SourceBrowser’s default is to search
for identifiers. For instructions on searching for a string constant, see
Section 2.14, “Searching for String Constants.” For instructions on
using wildcards in a query, see Section 2.15, “Using Wildcards in

Queries.”
5.4 Command-Line The following is a description of each SourceBrowser command-line
Options option.
-break_lock Breaks the lock on a locked database. If the update of the index file is

aborted for some reason (e.g. a power failure), SourceBrowser will
display a message telling you that the database is locked the next time
you issue a query. When you use the -break lock option to break
the lock, your database may be in an inconsistent state. To ensure
consistency, remove the .sb subdirectory and recompile.

-no_update Causes SourceBrowser not to rebuild the index file when you issue a
query following compilation. If you do not include this option and issue .
a query following compilation or recompilation, SourceBrowser
updates the database; then processes your query.

For more information, see section 2.5, “Building the SourceBrowser
Database.”

Menu Command Equivalent This option is equivalent to setting the Keep Database Index
Updated item in the property sheet to no.

-files_only Lists the files in which the symbol you are searching for appears. When
you use this command with back quotes, you can take SourceBrowser
output and use it as an argument to another command. For example, this
command :

edit ‘sbquery -files only hello‘

reads into the editor all files containing the symbol hello. For
information about using back quotes to redirect output to another
command see sh(l) or csh(l).

Revision A of 16 March 1990

Command-Line Reference 75

-help_focus

Figure 5-4

Displays a list of the classes of code that you can focus on. You then can
issue a focused query, that is, a query that is limited to specific classes
of code such as specific programs or functions. Because SourceBrowser
automatically searches through all files described by the database in the
current working directory, the Focus option is especially useful when
you want to limit your search to certain programs in a directory.

Issuing the -help focus option without any arguments displays a
list of the classes of code that you can use to limit your search.

Using -help_focus To Display Focusing Options

Figure 5-5

To limit your search to a specified class of code, type sbquery
followed by the class of code you want to focus on, followed by the
specific unit of code you want to search in, followed by the symbol you
want to search for. Note that you can include multiple classes of code in

a query.

Because SourceBrowser automatically searches through all files
described by the database in the current working directory, the Focus
option is especially useful when you want to limit your search to certain
programs in a directory.

In Figure 5-5, the user instructed SourceBrowser to find all instances in
which times is used in function main. Notice that SourceBrowser
displays one fewer match than in Figure 5-3, which was not a focused
query.

Usmg help _focus To Issue a Focused Query

Revision A of 16 March 1990

76

Command-Line Reference

Menu Command Equivalent

-help_filter

Figure 5-6

This option is equivalent to the Focus command in SourceBrowser’s *
window environment.

Issuing this option without any arguments causes SourceBrowser to
display a list of the languages for which filtering options are available.
(You use filtering options to search for symbols based on how they are
used in a program.)

Using -help_filter To Display Supported Languages

Figure 5-7

Issuing this option followed by a language supported by SourceBrowser /
causes SourceBrowser to display a list of filtering options for that ‘
language. Figure 5-7 shows a partial listing of these options for Sun C.

Using -help_filter To Display Filtering Options

Revision A of 16 March 1990

‘Specifying the filter followed by the symbol you want to search for
causes SourceBrowser to conduct a filtered query.

Command-Line Reference 77

Figure 5-8

For example, in Figure 5-8 the user instructed SourceBrowser to find all
instances in which zimes is used as a variable declaration.

Issuing a Filtered Query

Menu Command Equivalent

-INax_memory <size>

- Menu Command Equivalent

-no_case

Menu Command Equivalent

-no_source

Menu Command Equivalent

The filter can be shortened between the dashes as long as it still is a
unique filter. For example, -declaration-variables could be shortened to
-decl-var.

Note that the question mark (?) that appears in the final line of output in
Figure 5-8 represents a secondary match. Because SourceBrowser is
unable to determine precisely how identifiers inside macro definitions
are used in a program, SourceBrowser identifies all identifiers inside
macro definitions as secondary matches. For more about secondary
matches, see Section 2-16, Using the Filter Command to Narrow a
Search.

This option is equivalent to the Fi 1t er command in SourceBrowser’s
window environment.

Tells SourceBrowser the approximate amount of memory, in
Megabytes, that should be allocated before SourceBrowser uses
temporary files when building the index file.

This option is equivalent to specifying the Database Update
Memory Allocation item in the property sheet.

Instructs SourceBrowser not to look at case when searching for symbols
in the source code that match the query symbol. If you do not use this
option, SourceBrowser only makes a match when the case of the symbol
matches the case of the symbol in the source code.

This option is equivalent to setting the Query Matchingitem in the
property sheet to Ignore Case.

Causes SourceBrowser to display only the filename and line number
associated with each match. If you do not include this option,
SourceBrowser also displays the line of source code containing the
match.

This option is equivalent to setting the Match Window Contents
option in the property sheet to Filename and Line Number
Only.

Revision A of 16 March 1990

78

Command-Line Reference

-0 <file>
-reg_expr

Menu Command Equivalent

-symbols_only

-version

Menu Command Equivalent

5.5 Non-Standard
Installation
Procedure

Revision A of 16 March 1990

Sends SourceBrowser output to a file instead of to standard out.

Indicates that you are using regular expressions when issuing a query
that includes wildcards. If you do not include this option,
SourceBrowser assumes you are using shell-style patterns.

See Section 2.15, Using Wildcards in Queries, for more about using
wildcards in queries and about regular expressions. See sh(1) for
information about shell-style pattern matching.

This option is equivalent to setting the Wildcard Style item in the
property sheet to Reqular Expressions.

Displays a list of all symbols that match the pattern specified in your
search pattern. This option is only useful when you use wildcards in a

query.
Displays SourceBrowser’s current version number.

This option is equivalent to choosing Version fromthe Show menu.

SourceBrowser relies on finding the file sun_source_browser.ex in a
certain location. If you install in a non-standard way such that the file is
not found where expected, the system returns an error message when
you run a SourceBrowser. To correct the error, set the environment
variable SUN_SOURCE_BROWSER_EX_FILE to the absolute pathname
of sun_source_browser.ex. The variable must be set each time you run
SourceBrowser.

Browsing FORTRAN Programs

Al
A2
A3

A4
A5

Startup...ceeceeereeereennen ceeesteessestessestesstesresessesasestestsates USRI .3
Sample Programccceevvvnnniinininnnnns cerearetssesssssessssessseees 82
Browsing from the Window Environment.............. SRRROROIR . X |

Issuing a QUETY ...ccvevuenrcernecvenncns ceeeesteneeneentes reeeneeeeneenns ...83

Issuing a Filtered Query......... eeteeeseeerteesaete st ee st as st aesaae s sares 84
Using the Command-Line Environmentc.ccccecevcevireceeee. 85
Turning Off Case.....cccceveevvvvninninvinnccnnnns ceeeetenieeaneresbesasas ...85

A.1 Startup

Figure A-1

Browsing FORTRAN Programs

This appendix explains those features of Sun SourceBrowser that are
unique to browsing FORTRAN files. Specifically, this appendix

« explains how to enable SourceBrowser from FORTRAN

+ shows how to browse a FORTRAN program from the window
environment '

» shows how to browse a FORTRAN program from the command-line

* describes how to set the case option so it is suitable for browsing
FORTRAN programs in the window and command line
environments

To turn on SourceBrowser if you are using make, add —sb to FFLAGS
in the makefile.

To turn on SourceBrowser if you are not using make, add the -sb
option to the FORTRAN compiler command line.

Enabling Browsing from FORTRAN

_venus¥ £77 -sb hello.f -c

Revision A of 16 March 1990

82 Browsing FORTRAN Programs

A.2 Sample Program Throughout this appendix, the following sample FORTRAN program is \
used as the basis for the examples.

Figure A-2 Sample FORTRAN Program

textedit - example.f (edited), dir: /home/examples/browser/fortran

E!Scratch window

program example
integer argc
integer times
character*4@ argv

data times/1/

argc = iargc()
if (argc .le. @) goto 10
call getarg(l, argv)
read (unit=argv, fmt=*, err=99) times
goto 10
99 times = 1
18 do 28 count = 1, times
call hello(B)
call world(8)
continue

end

subroutine hello(ud)
integer ud
write (ud, *) “Hello ’
end

subroutine world{ud)
integer ud

write (ud, *) ‘world’

end

Revision A of 16 March 1990

Browsing FORTRAN Programs

83

A.3 Browsing from
the Window
Environment

Issuing a Query

Figure A-3

Chapter 2, Using Sun SourceBrowser, provides a complete description
of the SourceBrowser window environment. This section provides two
brief examples of browsing FORTRAN source code.

You use the same procedure to query a FORTRAN program that you use
to query a C program. For example, in Figure A-3, the user instructed
SourceBrowser to find all instances of argv by typing argv in the
Scratch field selecting argv, and then clicking left on the Query button.

Issuing a Query

SunSourceBrowser -- Current directory:

Jusr2/ch/£77

(__Show__J(Previous])(_ Focus]mwery: Cargv

(Erase][Next J(Filter]

Scratch: HEE

In function: example
File: example.f

Match 1(3)

Symbol: argv
Lines 1-38

"example.f", line 18:(examplie] call getarg(l, argv)
"example.f", line 11:[exampie] read (unit=argv, fmt=*, err=93) times

99
10

28

program example
integer argc
integer times

=» character*48 argv

data times/1/

arge = iarge()

if (arge .le. 8) goto 18
~»call getarg(l, argv)
= read (unit=argv, fmt=*, err=99) times

goto 18
times = 1
do 28 count = 1, times
call hello(6)
call world(6)
continue

end

subroutine hello{ud)
integer ud

write (ud, *) ‘Hello ’
end

subroutine worid(ud)
integer ud

write (ud, *) ‘worid”

Revision A of 16 March 1990

84

Browsing FORTRAN Programs

Issuing a Filtered Query

Figure A-4

Revision A of 16 March 1990

SourceBrowser’s filtering options are determined by the language of
the source code you are browsing. Figure A-4 shows an example of the
Filter panel that is displayed when you query a FORTRAN program. In
that example, the user instructed SourceBrowser to find all instances in
which argc is used as a variable declaration.

Issuing a Filtered Query

SunSourceBrowser -- [Filter on] Current directary: /usr2/ch/f77

(Show) (Previous)(Focus) Query: < arge [Filtered]

(Erase J[Next J(Filter] atch 1(1)

Scratch: Qg Returning to existing query
In function: example Symbol: argc
File: example.f Lines 2-31

1 "example.f", line 2:[example] integer argc

=* integer argc
integer times
character*48 argv

oo

data times/1/

argc = iargce()
if (argc .le. 8) goto 18
call getarg(l, argv)
read (unit=argv, fmt=*, err=99) times
goto 18

98 times = 1

18 do 28 count =1, times

call hello(6)

SunSourceBrowser Query Filter Active langu

@ a1 Matches @ a1 Declarations MA11 variables
Declarations Variables FORTRAN Formals
2 References Programs Common Block Members
cpp Flow Controil Functions Pointer Variables
Strings Volatiles Data Words
Grep Save Items Fields
B Namelist Ttems
Intrinsics
Implicits
Equivalences
©@ common Blocks
Block Data Labels
D Type Tags
Labels
Constants
D cpp Symbols

B

Browsing FORTRAN Programs 85

A.4 Using the
: Command-Line
Environment

Chapter 5, “Command-Line Reference,” contains a complete
description of the SourceBrowser command-line environment. This
section contains a brief example of browsing a FORTRAN program
from the command line.

To issue a query from the command line:

* type sbquery, followed by anyv command-line options and their
arguments, followed by the symbol you want to search for

For example, in Figure A-5 the user has instructed SourceBrowser to
ignore all case information and display all the appropriate matches, that
is, all lines of code in the current working directory that contain the
symbol argv.

SourceBrowser then displays a listing that includes the file in which the
symbol appears, the line number on which the symbol appears, the
function in which the symbol appears, and the line of source code
containing the symbol.

Figure A-5

Issuing a Query from the Command Line

A.5 Turning Off Case

When browsing FORTRAN programs, SourceBrowser should ignore
case. There are two ways to set the case option:

» If you are using SourceBrowser from the window environment, set
the Query Matching option in the Property Sheet to Ignore
-Case. See Section 4.2, “SourceBrowser Property Sheet,” for more
information.

» If you are using SourceBrowser from the command line, include the
-no_case option when issuing a query, as in Figure A-5.

Revision A of 16 March 1990

86

Browsing FORTRAN Programs

Revision A of 16 March 1990

R s
e

B.1
B.2
B3

B4

Issuing a QUETYcoceevverivnuenvcvcnnnnnnes reeeeeneenes ceeseeteneennane .91
Issuing a Filtered Query.......ccccovueeucnnee revesneennees cererenneeeesn 92
Issuing a Query from the Command Line.........ccccccevveenuanenen. 92

B.1 Startup

Figure B-1

Browsing Pascal Programs

This appendix explains those features of Sun SourceBrowser that are
unique to browsing Pascal files. Specifically, this appendix

« explains how to enable SourceBrowser from Pascal

« shows examples of using SourceBrowser’s window environment to
query a Pascal program

+ shows an example of using SourceBrowser’s command-line
environment to query a Pascal program

To turn on SourceBrowser if you are using make, add —sb to PFLAGS
in the makefile.

To turn on SourceBrowser if you are not using make, add the -sb
option to the Pascal compiler command line.

Enabling Browsing from Pascal

venusi pe -sb hello.p —c

Revision A of 16 March 1990

90

Browsing Pascal Programs

B.2 Sample Program

Throughout this appendix, the following sample Pascal program is used |
as the basis for all examples.

Figure B-2 Sample Pascal Program
textedit - example.p, dir: /home/examples/browser/pascal

4] Scratch window

program example(input, output);

argv_type = packed array[1..188] of char;

argc_cnt: integer;

count: integer;

argv_string: argv_type;
format: argv_type;

procedure sscanf(ptr, format: univ_ptr; var i: integer); external;

' procedure hello(var fd: text);

begin

write(fd, ’Hello ’);

end;

procedure world(var fd: text);

begin

writeln(fd, ‘world’);

end;

if argc > 1 then begin
argv(l, argv_string);

format

1= ’%d7;

sscanf(addr(argv_string), addr(format), argc_cnt);

end else begin

argc_cnt := 1;

end;
for count

:= 1 to argc_cnt do begin

hello(output);
world(output);

end;

Revision A of 16 March 1990

Browsing Pascal Programs 91

Chapter 2, “Using Sun SourceBrowser,” provides a complete

B. ing from o .) : :
3 Browsing fro description of the SourceBrowser window environment. This section

the Wmdow provides two brief examples of browsing Pascal source code.
Environment
Issuing a Query You use the same procedure to query a Pascal program that you use to

query a C program. For example, in Figure B-3, the user instructed
SourceBrowser to find all instances of argv by typing argv in the
Scratch field, selecting argv, and then clicking left on the Query
button.

Figure B-3 Issuing a Query

SunSourceBrowser -- Current directory: /usr2/cb/pc
(Show J{Previous](Focus]: Query: < argv
{ Erase J[Next J{ Filter] Match 1(1)

Scratch:
In function: example Symbol: argv
File: example.p : Lines 23-35

2 "example.p”, line 24:[example] argv(l, argv_string);

if argc > 1 then begin
= argv(l, argv_string);
format := ’‘%d’; -
sscanf(addr(argv_string), addr(format), argc_cnt);
end else begin
arge_cnt := 1;

end;

for count := 1 to argc.cnt do begin
hello(output);
world(output);

end;

end.

Revision A of 16 March 1990

92 Browsing Pascal Programs

SourceBrowser’s filtering options are determined by the language of the -
source code you are browsing. Figure B-3 shows an example of a Fllter
panel that is displayed when you query a Pascal program. In that
example, the user instructed SourceBrowser to find all instances in
which argc_cnt is used as a variable declaration.

Issuing a Filtered Query

Figure B-4 Issuing a Filtered Query

SunSourcefrouser -- [(Filter on] Current directory: /usr2/cb/pe

(Show)(Previous)(Focus]: ' Query: < arge_cnt [Filtered]

(Erase J{ Next J(Filter } Mateh 1(1)

Scratch: PIRTENE] Filtered query
In function: example Symbol: argc_cnt
File: example.p Lines 1-38

-
>

"example.p", line S:[example] argc_cnt: integer;

program example(input, output);
type

argv_type = packed array[1..188] of char;
var

=»argc_cnt: integer;

count: integer;

argv_string: argv_type;

format: argv_type;

procedure sscanf(ptr, format: univ_ptr; var i: integer); external;

procedure hello(var fd: text); s
begin

JunqourceBrowser‘ Quer‘y Fﬂter Active languages: sun_pascal

B @11 Matches @11 Declarations W A1T variables

@ Declarations M variables OPublic Variables
S @ References Programs B Local variables
© cpp Flow Control @Routines OFields

: Strings D Types - Private Variables
Grep Labels
Make Constants
cpp Symbols

B.4 Issuing a Query To issue a query from the command line:
from the

Command Line * type sbquery, followed by any command-line options and their

arguments, followed by the symbol you want to search for

For example, in Figure B-5, the user instructed SourceBrowser to
display all the appropriate matches, that is, all lines of code in the current
working directory that contain the symbol argv.

Revision A of 16 March 1990

Browsing Pascal Programs V 93

SourceBrowser then displays a listing that includes the file in which the
symbol appears, the line number on which the symbol appears, the
function, if any, in which the symbol appears, and the line of source
code containing the symbol.

Figure B-5 Issuing a Quéry from the Command Line

Revision A of 16 March 1990

94

Browsing Pascal Programs

Revision A of 16 March 1990

Index

.bd files 46, 47-50
.sbinit file 51-57

A

aborting queries 15
Activate menu 37, 64
active queries
defined 26
arrows
and Filter command 34
in source subwindow 20
arrows in source subwindow 66

B

bd files 46, 47-50
break_lock option 15, 74
browsing

FORTRAN programs 81-85

Pascal programs 89-93

source code 14-38
browsing in multiple directories 50
buttons 18

Erase 62

Focus 63

Next 63

Previous 62

Query 65

Show 61

Update 65

C
case 66,77

and FORTRAN programs 85
CFLAGS 10
changing directories 12
characters
non-printing 15
command line
issuing queries from 73, 92
viewing options = 73
command line options
symbols only 78
command-line options 74-78
break_lock 74
files_only 74
help_filter 76
help_focus 75
max_memory 77
no_case 77
no_source 77
no_update 74
o 77
reg_expr 78
symbols only 78
version 78
commands
Disable Edit 39
Enable Edit 38
Erase All Queries 62
Erase This Match 25, 62
Erase This Query 28, 62
Filter 32-35, 64
Focus 35-37,63
NextFile 23,63
Next Function 23, 63
Next Match: Any Query 27, 63

-95-—

Continued

Next Match: This Query 63
Next Match:This Query 22
Previous File 24, 62
Previous Function 24, 62
Previous Match
This Query 23
Previous Match: Any Query 28, 62
Previous Match: This Query 62
Query 65
Show Current Match 22, 62
Show Selected Match 24, 61
Show Version 62
Update 65
compilererrors 10
compiler options 10
compiler writers 46
compiling
and .bd files 49
with -sb option 4749
control subwindow 17-18
current directory
changing 12
current match
defined 19
cycleicon 27

D

database 13
contents 46 .
creating 13, 47
exporting 53
importing 52
locked 15,74
updating 47, 67, 74
databases
browsing multiple 50, 52
dbxtool 40
Deactivate menu 37, 64
deleting queries 28
directories
changing 12
multiple 50
Disable Edit command 39
disk space
saving 53

E

editing source code 38-39

Enable Edit.command 38

Erase All Queries command 62
Erase menu 62

Erase This Match command 25, 62
Erase This Query command 28, 62
erasing matches 25

erasing queries 28

error messages 10, 15

export command 53-56

F

FFLAGS 10, 81
file protection 58
files_only option 74
filter
removing 35
Filter command 32-35, 64
and FORTRAN programs 84
and Pascal programs 92
Filter command-line option 76
Filter panel 32
Focus command 35-37, 63
Focus command-line option 75
Focus menu 63
FORTRAN programs 81-85
frame header 17

H

hash value

in .bd files 46
help_filter option 76
help_focus option 75

I

identifiers
searching for 14
import command 52-53
include files 53
index
updating 67
index file 4648
creating 13

—96—

Continued

speed in building 58
interface 46

K
Keep Database Index Updated item 65

L

libraries
and .bd files 50
library specification files 10
linking
and .bd files 49
List library files 10
locked database 15,74

M

macro definitions 34
makefile
and enabling SourceBrowser 10
rebuild database using 13
match
current 19
Match item
in control subwindow 18
match subwindow 19

matches
displaying 22-25
erasing 25

secondary 35
viewing 22-25
max_memory option 77

memory 15
memory allocation 67, 77
menu commands 61-65
menus
Activate 37
Deactivate 37
displaying 18, 20
Erase 62
Focus 63
Next 63
Previous 62
Show 61
mkfile command 15

multiple directories 50

N

Next File command 23, 63
Next Function command 23, 63

Next Match: Any Query command 27, 63
Next Match: This Query command 22, 63

Nextmenu 63

no_case option - 77
no_source option 77
no_update option 74
non-printing characters 15
NSE 38

0

ooption 77
output 77

P

Pascal programs 89-93
performance 58

performance, see split command
PFLAGS 10, 89

Preface x

Previous File command 24, 62
Previous Function command 24, 62

Previous Match: Any Query command 28

Previous Match: This Query command 23, 62

Previous Match:Any Query command 62

Previous menu 62

problems 15

property sheet 40, 65-67
Arrow Positioning 66

Arrows Displayed in Source Window 66
Database Updated Memory Allocation 67

Keep Database Index Updated 67
Match Window Contents 66
Match Window Item 66
Query Matching 66
Selection Handling 66
Wildcard Style 67

protection 58

—97_

Continued

Q

~ queries

aborting 15

cycling through 27
erasing 28

issuing 14,73
moving between 26-28
redundant 32
speedingup 15

time required 58

query

_ defined 13
Query button 14, 65
R

reg_exproption 78
regular expressions 29, 67, 78

S

-sb compiler option 10, 47
sb compiler option 10, 47
sbinit commands
export 53-56
import 52-53
split 56-57
sbinit file 51-57
sbquery 73
sbrowser 11
SCCS 38
Scratch field 14, 15 -
scrolling 21
searching
for identifiers 14
for string constants 28
in multiple directories 50
using wildcards 29
secondary matches 35
second-level headers 17, 19, 22, 26, 27
selection bar 66
shell-style expressions 29, 67, 78
Show Current Match command 22, 62
Show menu 61
Show Selected Match command 24, 61
Show Version command 62

source code
browsing 14
displaying 19, 77
editing 38-39
truncating lines 66
source subwindow 1920
arrowsin 20

SourceBrowser
command-line options 74—78
enabling 10
menu commands 61-65
starting 11

SourceBrowser database, see database
split command 56-57
stdioh 54
Stopkey 15
string constants
searching for 28

Sun SourceBrowser property sheet, see Property Sheet

sun_source_browser.ex 78

SUN_SOURCE_BROWSER_EX_FILE 78

SUN_SOURCE_BROWSER_INITFILE

Sun3 46

Sud 46

swap space 15
Symbol item 31
symbolic link 50-51
symbols-only option 78

T

third-level headers 18
U

Update button 65
\%

VCS 38

version option 78
viewing matches 22-25

A%
wildcards 29, 67, 78

-98—

52

Revision History

Version Date Comments

A 16 March 1990 FCS of Sun SourceBrowser 1.0

-99 - Revision A of 16 March 1990

