
Sun-4 Assembly Language Reference Manual

Part Number: 800-3806-10
Revision A of 27 March, 1990

SP ARC™ is a trademark of Sun Microsystems, Inc.

Sun Workstation® is a trademark of Sun Microsystems, Incorporated.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an infonnation retrieval
system, without the prior written pennission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(I)(ii) of the Rights in
Technical Data and Computer Software clause at DF ARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,1904,527,2324,745,4074,679,014 4,435,7924,719,5694,550,368 in
addition to foreign patents and applications pending.

Contents

Chapter 1 Assembler Syntax .. 1

1.1. Introduction 1

1.2. Oilier References .. 1

1.3. A Short Example .. 1

1.4. Syntax Notation .. 2

1.5. Statement Syntax ... 2

1.6. Lexical Features ... 2

Case Distinction ... 3

Comments ... 3

Numbers ... 3

Strings .. 3

Symbol Names ... 3

Labels .. 4

Special Symbols .. 4

OJ>erators and Expressions .. 5

1.7. a s Error Messages .. 5

Chapter 2 Instruction-Set Mapping , ,. , ,. ,. ;:;:;'m" ••• :.;:.;" .. ;;~~~:.<.,

2.1. Table Notation , ... , ,..~+<,,:. ;~:,.,.;';:~';:;:;:,.~.;, ... ,.:; ,~>;:::::

2.2. Integer Instructions , ,.;~~~.;'; .. ;"m::: ~:;"".;,; •. ~ ••• ,';~~:;;,;:;,;:;' ... ,!~:,:,::

2.3 . Floating-Point Instructions ;;@;,',:~; ... ,,%:;;~ .. + •• ,.,., :.: ... , .. ;;H;;:;:;"~,e:::::

2.4. Coprocessor Instructions , " ;';.,m;'''''· •.•••• " .. :;:;.,:;;,;; .. ,.'.i •• i: ';' ... ,.;:::::::,"

2.5. Synilietic Instructions " " " ;;.;<;:<.,~ .• :~.~~:.;'': •.• ;+:;;:;:''.,;; ..

2.6. Leaf Procedures " ... ' ;;,;,~;~;,~,~,

- iii-

Contents - Continued

Appendix A Pseudo-Operations ... 19

Appendix B The Sun-4 Assembler ... 23

B.I. as Options .. 23

Index ... 25

-iv-

Tables

Table 1-1 Special Symbols 4

Table 2-1 Notation ... 7

Table 2-2 SPARC to Assembly Language Mapping .. 9

Table 2-3 Floating-point Instructions ... 14

Table 2-4 Coprocessor Instructions .. 15

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping 15

Table A-I List of Pseudo-Operations ... 19

-v-

1
Assembler Syntax

1.1. Introduction Sun Microsystems' Sun-4 Assembler takes assembly language programs, as
specified in this document, and produces relocatable object files for processing
by the Sun-4 link editor. The assembly language described in this document
corresponds with the SPARC instruction set defined in the SP ARC™ Architecture
Manual, Version 8, is intended for use on Sun-4s and SPARCStations.

1.2. Other References You should also become familiar with the manual pages as(l), ld(l), cpp(l),
a.out(5), and the SP ARC Architecture Manual.

1.3. A Short Example The following example illustrates how a short assembly language program might
look.

/*
* a simple program to copy a string
* showing correct syntax, delay slots, and use of annul bit.
* pseudo-operations: .seg, .global, .asciz, .skip
* synthetic instructions: set, ret, retl, mov, inc, deccc, nop
* numeric label: 1
* symbolic substitution: WINDOWSIZE

*/

#include <sun4/asm_Iinkage.h>

main:

.seg "text"

.global main

%sp, -WINDOWSIZE, %sp
str, %0
out, %01
_bcopy

source string
destination location

save
set
set
call
mov 24, %02 delay slot, length to copy

ret
restore %00, 0, %00 return value from main

.global _bcopy

sun
microsystems

1 Revision A of 27 March, 1990

2 Sun-4 Assembly Language Reference

1 :
inc %00 inc from address
stb %04, [%01] write to address
inc %01 in the delay slot: inc to address

_bcopy:
deccc %02 dec count, set condition codes
bge,a 1b loop until done
1dub [%00], %04 delay slot, read from address
retl leaf routine return
nop delay slot

.seg "data"
str:

.asciz "this is a sample string"

.seg "bss"
out:

.skip 30

1.4. Syntax Notation

1.5. Statement Syntax

1.6. Lexical Features

reserve 30 bytes

In the descriptions of assembly language syntax in this chapter, brackets" []"
enclose optional items, and the star "*,, indicates items to be repeated zero or
more times. Braces" { }" enclose alternate item choices, which are separated
from each other by vertical bars "I". Wherever blanks are allowed, arbitrary
numbers of blanks and horizontal tabs may be used.

The syntax of assembly language lines is:

[statement [; statement] *] [! comment]

[! comment]

The syntax of an assembly language statement is:

([label:] [instruction]]
In the above syntax, label is a symbol name (described below), instruction is an
encoded pseudo-op, synthetic instruction, or instruction, and comment is any text
up to the line end.

This section describes lexical features of the assembler's syntax.

Revision A of 27 March, 1990

Case Distinction

Comments

Numbers

Strings

Symbol Names

Chapter 1 - Assembler Syntax 3

Upper and lower case are distinct everywhere, except in the names of special
symbols (see below), where there is no case distinction.

A comment is preceded by an exclamation mark; the "!" and all following char­
acters up to the end of the line are ignored. C-style comments with" / * ... * / "
are also pelTIlitted, and may span multiple lines.

Decimal, hexadecimal, and octal numeric constants are recognized, and are writ­
ten as in the C language. For floating-point pseudo operations, floating-point
constants are written with Or or OR (for REAL) followed by a string acceptable
to atof(3): an optional sign followed by a nonempty string of digits with
optional decimal point and optional exponent, or followed by a special name, as
shown below.

The special names Ornan and Orinf represent the special floating-point values
Not-A-Number and INFinity, respectively. Negative Not-A-Number and Nega­
tive INFinity are specified as Or-nan and Or-inf, respectively.

NOTE Notice that the names of these /loating-point constants begin with a zero, not the
letter" 0 "

Strings may be quoted with either double-quote (n) or single-quote (') marks.
When used in an expression, the numeric value of a string is the numeric value of
the ASCII representation of its first character.

The suggested style is to use single quote marks for the ASCII value of a single
character, and double quote marks for quoted-string operands, such as used by
pseudo-ops. Here is some assembly code in the suggested style:

add %gl,'a'-'A' ,%gl
.seg "data"
.ascii "a string"
.byte 'M'

! gl + ('a' - 'A') --> gl

The following escape codes are recognized in strings; they are derived from C:

\b backspace
\ f fOlTIlfeed
\ n newline (linefeed)
\ r carriage return
\ t horizontal tab
\nnn octal value nnn

The syntax for a symbol name is:

({ letter I _ I $ I .) {letter I _ I $ I . I digit) *

Upper-case and lower-case letters are distinct, and the underscore, dollar sign,
and period are treated as alphabetic characters.

]

Revision A of 27 March, 1990

4 Sun-4 Assembly Language Reference

Symbol names that begin with L are assumed to be compiler-generated local
symbols, and, to simplify debugging somewhat, are best avoided in hand-coded
assembly language routines.

The symbol" . " is predefined, and always refers to the address of the beginning
of the current assembly language statement.

NOTE By convention, system run-time routine names start with u." and namesfrom C,
assembly language and f7 7 begin with a u_".

Labels A label is either a symbol or a single decimal digit n (0 ... 9). Note that a label is
immediately followed by a colon.

Numeric labels may be defined repeatedly in an assembly, whereas normal sym­
bolic labels may be defined only once.

A numeric label n is referenced after its definition (backward reference) as nb,
and before its definition (forward reference) as nf.

Special Symbols Special symbol names begin with % so as not to conflict with user symbols, and
include:

Table 1-1 Special Symbols

Symbol Object Name Comment

general-purpose registers %rO ... %r31
general-purpose global registers %gO ... %g7 (same as %rO . .. %r7)
general-purpose "out" registers %00 .. . %07 (same as %r8 ... %r15)
general-purpose "local" registers %10 ... %17 (same as %r16 . .. %r23)
general-purpose "in" registers %iO ... %i7 (same as %r24 . .. %r31)

stack -pointer register %sp (%sp - %06 - %14)
frame-pointer register %fp (%fp == %i6 == %30)

floating-point registers %fO ... %f31
floating-point status register %fsr
front of floating-point queue %fq

coprocessor registers %cO ... %c31
coprocessor status register %csr
coprocessor queue %cq

program status register %psr
trap vector base address register %tbr
window invalid mask %wim
Y register %y

unary operators %10 (extracts least significant 10 bits)
%hi (extracts most significant 22 bits)

There is no case distinction in special symbols; therefore using something like
%P SR is equivalent to %psr. Use of all lower-case is the suggested style. The
lack of case distinction allows for the use of non-recursive preprocessor

Revision A of 27 March, 1990

Operators and Expressions

1.7. a s Error Messages

Chapter 1 - Assembler Syntax 5

substitutions, such as

(#define psr %PSR

The special symbols %hi and % 10 are true unary operators which can be used in
any expression, and like other unary operators have higher precedence than
binary operations. For example:

%hi a+b
%10 a+b

(%hi a}+b
(%10 a) +b

It is a good idea to enclose operands of % hi or % loin parentheses to avoid
ambiguity. For example:

J

(%hi (a) + b]

,---. ---------'"

The following operators are recognized in constant expressions:

Binary Operators Unary Operators

+ Integer Addition + (no effect)
- Integer Subtraction - 2's Complement

* Integer Multiplication - l' s Complement
/ Integer Division %10 (see above)
% Modulo %hi (see above)
... Exclusive OR
« Left Shift
» Right Shift
& Bitwise AND
I Bitwise OR

Note that the modulo operator % must not be immediately followed by a letter or
digit, to avoid confusion with register names or with % hi or % 10. The modulo
operator is typically followed by a space or left parenthesis.

Although the above operators have the same precedence as in the C language,
parenthesization of expressions is recommended to avoid ambiguity.

Messages generated by the assembler are generally self explanatory and give
sufficient information to allow one to correct a problem. Certain conditions will
cause the assembler to issue warnings associated with delay slots following Con­
trol Transfer Instructions (CTIs):

o set instructions in delay slots

o labels in delay slots

o segments that end in control/transfer instructions

Revision A of 27 March, 1990

6 Sun-4 Assembly Language Reference

These are not necessarily incorrect, but point to places where a problem could
exist. If you have intentionally written code this way, you can inform the assem­
bler that you know what you are doing by inserting a pseudo-op in a manner
similar to a C programmer's using casts.

The . empt y pseudo-operation in a delay slot tells the assembler that the delay
slot can be empty or contain whatever follows, because you have verified that
either the code is correct or the content of the delay slot doesn't matter. Avoid
using . empt y in assembly-language programs just as you would avoid using
casts in C programs. The . empt y pseudo-operation is used only in programs
written in assembly language; Sun's compilers don't generate it.

Revision A of 27 March, 1990

2.1. Table Notation

Table 2-1

Symbol Describes

reg %rO · .. %r31
%gO · .. %g7
%00 · .. %07
%10 · .. %17
%iO · .. %i7

freg %fO
~

· .. %f31

creg %cO · .. %c31

value

const13 value

const22 value

asi value

reg
rd

reg
rs1

' reg
rs2

regaddr reg
rs1

reg + reg
rsl rs2

address reg
rs1

+ reg
rs2

reg
rs1

+ const13
reg - const13

rsl
const13 + reg

rsl
const13

2
Instruction-Set Mapping

The tables in this chapter describe the relationship between hardware instructions
of the SPARC architecture, as defined in SPARe Processor Architecture, and the
instruction set used by Sun Microsystems' SPARC Assembler.

The following table describes the notation used in the tables in the rest of the
chapter to describe the instruction set of the assembler.

Notation

Comment

(same as %rO ... %r7)
(same as %r8 ... %r15)
(same as %r16 ... %r23)
(same as %r24 ... %r31)

(an expression involving at most one relocatable symbol)

(a signed constant which fits in 13 bits)

(a constant which fits in 22 bits)

(alternate address space identifier; an unsigned 8-bit value)

Destination register.

Source register 1, source register 2.

Address formed with register contents only.

Address formed from register contents,
immediate constant, or both.

7 Revision A of 27 March, 1990

8 Sun-4 Assembly Language Reference

Table 2-1 Notation-- Continued

Symbol Describes Comment

reg_or_imm reg
rs2

Value/rom either a single register, or
const13 an immediate constant.

2.2. Integer Instructions The following table outlines the correspondence between SPARe hardware
integer instructions and SPARe assembly language instructions. The following
notations are suffixed repeatedly to assembler mnemonics (and in upper case for
SPARe architecture instruction names):

sr - status register.

a - instructions dealing with alternate space.

b - byte instructions.

h - halfword instructions.

d - doubleword instructions.

/ - referencing :Boating-point registers.

c - referencing coprocessor registers.

rd - as a subscript, refers to a destination register in the argument list of an
instruction.

rs - as a subscript, refers to a source register in the argument list of an
instruction.

NOTE The syntaxo/individual instructions is designed so that a destination operand (if
any), which may be either a register or a reference to a memory location, is
always the last operand in a statement.

In the table below, curly brackets ({ }) mark optional arguments. Square brack­
ets ([]) mark indirection: the contents of the addressed memory location are
being read from or written to.

NOTE All Bicc and Bfcc instructions, described in thefollowing table, may indicatp
that the annul bit is to be set by appending ", a" to the opcode; e.g. "bgeu, a
label" .

Revision A of 27 March, 1990

Chapter 2 - Instruction-Set Mapping 9

Table 2-2 SPARe to Assembly Language Mapping

SPARC Mnemonic Argument List Name Comments

ADD add reg , reg or imm, reg Add
ADDcc addcc

rsl - -, rd
Add and modify icc reg , reg or lmm, reg d

ADDX addx
rsl - -, Ti

Add with carry reg , reg or lmm, reg
ADDXcc addxcc

rsl - -, rd
reg

rs1
' reg_or _lmm, reg

rd

AND and reg , reg or imm, reg And
ANDcc andcc

rsl - -, rd
reg

rs1
' reg_or _lmm, reg

rd
ANDN andn reg ., reg or imm, reg
ANDNcc andncc

rsl - -, rd
reg

rs1
' reg_or _lmm, reg

rd

Bicc bn{, a} label Branch on integer condi- (branch never)
tion codes

bne{, a} label (synonym: bnz)
bel, a} label (synonym: bz)
bg{, a} label

Bicc ble{,a} label
bge{, a} label
bl {, a} label
bgu{, a} label
bleu{, a} label
bcc{,a} label (synonym: bgeu)
bcs{,a} label (synonym: blu)
bpos {, a} label
bneg{, a} label
bvc{, a} label
bvs{,a} label
ba{, a} label (synonym: b)

CALL call Labell , n} (n = # of out registers used
as arguments)

CBccc cbn{, a} label Branch on coprocessor (branch never)
cb3{, a} label condition codes
cb2 {, a} label
cb23 {, a} label
cbl {, a} label
cb13{,a} label
cb12{,a} label
cb123{,a} label
cbO{,a} label
cb03{,a} label
cb02 {, a} label
cb023 {, a} label
cbOl{,a} label
cb013{,a} label
cb012{,a} label
cba{, a} label

Revision A of27 March, 1990

10 Sun-4 Assembly Language Reference

Table 2-2 SP ARC to Assembly Language Mapping- Continued

SPARC Mnemonic Argument List Name Comments

FBfcc fbn{, a} label Branch on floating-point (branch never)
fbu{,a} label condition codes
fbg{,a} label
fbug{, a} label
fbl{,a} label
fbul{, a} label
fblg{,a} label
fbne{,a} label (synonym: fbnz)
fbe{,a} label (synonym: fbz)
fbue{,a} label
fbge{,a} label
fbuge{,a} label
fble{,a} label
fbule{,a} label
fbo{,a} label
fba{,a} label

FLUSH flush address Instruction cache flush

JMPL jrnpl address, reg
rd

Jump and link

LDSB ldsb [address] , reg Load signed byte
rd

LDSH Idsh [address] , reg Load signed halfword
rd

LDSTUB Idstub [address] , reg Load-store unsigned byte
rd

LDUB Idub [address] , reg Load unsigned byte
rd

LDUH lduh [address] , reg Load unsigned halfword
rd

LD Id [address] , reg Load word
rd

Load double word (reg must be even) LDD Idd [address] , reg
rd

Load floating-point regis-
rd

LDF Id [address] , freg
rd

ter
LDFSR ld [address] , %fsr
LDDF Idd [address] ,Jreg Load double floating-point

rd
LDC Id [address] , creg Load coprocessor

rd
LDCSR Id [address] , %csr
LDDC Idd [address] , creg Load double coprocessor

rd

LDSBA Idsba [regaddr] asi, reg Load signed byte from
rd

alternate space
LDSHA Idsha [regaddr] asi, reg
LDUBA Iduba dd . rd [rega r] aSl, reg

rd
LDUHA Iduha [regaddr] asi, reg

rd
LDA Ida [regaddr] asi, reg
LDDA Idda dd . rd (reg must be even) [rega r] aSl, reg

rd rd

LDSTUBA Idstuba [regaddr] asi, reg
rd

Revision A of27 March, 1990

Chapter 2 - Instruction-Set Mapping 11

Table 2-2 SP ARC to Assembly Language Mapping- Continued

SPARe Mnemonic Argument List Name Comments

MULSce mulscc reg ,reg or imm, reg
rsl - - rd

MUltiply step (and modify
icc)

NOP nop no operation

OR or reg , reg or imm, reg Inclusive or
ORee

rsl - -. rd
orcc reg

rs1
' reg_or _zmm, reg

rd
ORN orn reg , reg or imm, reg
ORNee

rsl - -. rd
orncc reg rsl ' reg_or _zmm, reg rd

RDASR rd %asrn rsl' regrd
RDY rd %y, reg (see synthetic instructions)

rd
RDPSR rd %psr, reg (see synthetic instructions)

rd
RDWIM rd %wim, reg (see synthetic instructions)

rd
(see synthetic instructions) RDTBR rd %tbr, reg

rd

RESTORE restore reg ,reg or imm, reg (see synthetic instructions)
rsl - - rd

RETT rett address Return from trap

SAVE save reg ,reg or imm, reg
rsl - - rd

(see synthetic instructions)

SDIV sdiv reg ,reg or imm, reg signed divide
SDIVee sdiv

rsl - -. rd
signed divide and modify reg

rs1
' reg_or _zmm, reg

rd
icc

SMUL smul reg ,reg or imm, reg signed multiply
SMULee smulcc

rsl - -. rd
signed multiply and modify reg

rs1
' reg_or _zmm, reg

rd
icc

SETHI sethi const22 , reg Set high 22 bits of r regis-
rd

ter
sethi %hi (value) ,reg (see synthetic instructions)

rd

SLL s11 reg ,reg or imm, reg Shift left logical
rsl - - rd

SRL srI reg ,reg or imm, reg Shift right logical
SRA

rsl - -. rd
Shift right arithmetic sra reg

rs1
' reg_or _zmm, reg

rd

STB stb regaddr, [address] Store byte. (synonyms: stub, stsb)
STH sth regaddr, [address] (synonyms: st uh, stsh)
ST st reg , [address]

rd
STD std reg , [address] (reg must be even)

rd rd
STF st freg , [address]

rd
STDF std freg , [address]

rd
Store floating-point status STFSR st % f s r, [address]
register

STDFQ std % fq, [address] Store double floating-point
queue

STC st creg , [address] Store coprocessor
rd

.\sun ~ microsystems
Revision A of27 March, 1990

12 Sun-4 Assembly Language Reference

Table 2-2 SPARe to Assembly Language Mapping- Continued

SPARC Mnemonic Argument List Name Comments

STDC std creg , [address]
rd

STCSR st %esr, [address]
STDCQ std %eq, [address] Store double coprocessor

queue

STBA stba regaddr, [regaddr] asi Store byte into alternate (synonyms: stuba,
space stsba)

STHA stha regaddr, [regaddr] asi (synonyms: stuha, stsha)
STA sta reg , [regaddr] asi

rd
STDA stda reg , [regaddr] asi (reg must be even)

rd rd

SUB sub reg , reg or imm, reg Subtract
SUBcc subee

rsl - -. rd
Subtract and modify icc reg , reg or lmm, reg

SUBX subx
rsl - -. rd

Subtract with carry reg , reg or zmm, reg
SUBXcc subxee

rsl - -. rd
reg

rs1
' reg_or _zmm, reg

rd

SWAP swap [address] , reg Swap memory word
rd

SWAPA swapa [regaddr] asi, reg with register
rd

Ticc tn address Trap on integer condition (trap never)
code. (See note.)

tne address (synonym: tnz)
te address (synonym: t z)
tg address
tIe address
tge address
tl address
tgu address
tleu address
tlu address (synonym: tee)
tgeu address (synonym: tes)
tpos address
tneg address
tve address
tvs address
ta address (synonym: t)

TADDcc taddee reg , reg or imm, reg d
rsl - - r

Tagged add and modify icc
TSUBcc tsubee reg , reg or imm, reg
TADDccTV taddeetv

rsl - -. rd
Tagged add and modify icc reg

rs1
' reg_or _zmm, reg

rd
and trap on overflow

TSUBccTV tsubeetv reg , reg or imm, reg
rsl - - rd

UDIV udiv reg ,reg or imm, reg unsigned divide
UDIVcc udivee

rsl - -. rd
unsigned divide and reg

rs1
' reg_or _zmm, reg

rd
modify icc

UMUL umul reg , reg or imm, reg d
rsl - - r

unsigned mUltiply

.\sun ~ microsystems
Revision A of 27 March, 1990

Chapter 2 - Instruction-Set Mapping 13

Table 2-2 SP ARC to Assembly Language Mapping- Continued

SPARe Mnemonic Argument List Name Comments

UMULcc umulcc reg , reg or imm, reg unsigned multiply and
rsl - - rd

modify icc

UNIMP unimp const22 Unimplemented instruction

WRASR wr reg or imm, %asrn
- - rsl

WRY wr reg , reg or imm, %y (see synthetic instructions)
rsl --

WRPSR wr reg , reg or imm, %psr (see synthetic instructions)
rsl --

WRWIM wr reg , reg or imm, %wim (see synthetic instructions)
rsl --

WRTBR wr reg , reg or imm, %tbr (see synthetic instructions)
rsl --

XNOR xnor reg ,reg or imm, reg Exclusive nor
XNORcc

rsl - -. rd
xnorcc reg

rs1
' reg_or _lmm, reg

rd

XOR xor reg ,reg or imm, reg Exclusive or
XORcc

rsl - -. rd
xorcc reg

rs1
' reg_or _lmm, reg

rd

NOTE Trap numbers 16-31 are availablefor use by the user, and will not be usurped by
Sun. Currently-defined trap numbers are those defined in

2.3. Floating-Point
Instructions

/usr / include/ sun4/trap. h, asfollows:

OxOO ST SYSCALL

OxOl ST BREAKPOINT

Ox02 ST DIVO

Ox03 ST FLUSH WINDOWS

Ox04 ST CLEAN WINDOWS

Ox05 ST RANGE CHECK

Ox06 ST FIX ALIGN

Ox07 ST INT OVERFLOW

In the table below, the types of numbers being manipulated by an instruction are
denoted by the following lowercase letters:

i-integer

s- single

d-double

q-quad

In some cases where more than numeric type is involved, each instruction in a
group is described. Otherwise, only the first member of a group is described .

• \sun ,~ microsystems
Revision A of27 March, 1990

14 Sun-4 Assembly Language Reference

Table 2-3 Floating-point Instructions

SPARC Mnemonic Argument List Description

FiTOs fitos freg , /reg Convert integer to single.
rs2 rd

FiTOd fitod freg , freg Convert integer to double.
rs2 rd

FiTOq fitoq freg 2' freg Convert integer to quad.
rs rd

FsTOi fstoi freg , freg Convert single to integer.
rs2 rd

FdTOi fdtoi freg , freg Convert double to integer.
rs2 rd

FqTOi fqtoi freg , freg Convert quad to integer.
rs2 rd

FsTOd fstod freg 2' freg Convert single to double.
rs /r rd Convert single to quad. FsTOq fstoq freg ,
rs2

eg
rd

FdTOs fdtos freg , freg Convert double to single.
rs2 /r rd FdTOq fdtoq freg , Convert double to quad.
rs2

eg
rd

FqTOd fqtod freg 2' /reg Convert quad to double.
rs /r rd Convert quad to single. FqTOs fqtos freg 2' rs

eg
rd

FMOVs frnovs freg , /reg Move
rs2 rd

FNEGs fnegs freg 2' freg Negate
rs rd

Absolute value FABSs fabss freg 2' freg
rs rd

FSQRTs fsqrts freg , /reg Square root
rs2 /r rd FSQRTd fsqrtd freg ,
rs2

eg
rd

FSQRTq fsqrtq freg , freg
rs2 rd

FADDs fadds freg , freg , freg Add
rsl rs2 rd

FADDd faddd freg , freg , freg
rsl rs2 rd

FADDq faddq freg , freg , freg
rsl rs2 rd

FSUBs fsubs freg , freg , freg Subtract
rsl rs2 rd

FSUBd fsubd freg , freg , freg
rsl rs2 rd

FSUBq fsubx freg , /reg , freg
rsl rs2 rd

FMULs frnuls freg , freg , freg Multiply
rsl rs2 rd

FMULd frnuld freg , freg , freg
rsl rs2 rd

FMULq frnulq freg ,
rsl

freg , freg
rs2 rd

FdMULq frnulq freg , freg , freg Multiply double to quad.
rsl rs2 rd

FsMULd fsmuld freg l' /reg , freg Multiply single to double.
rs rs2 rd

FDIVs fdivs freg , freg , freg Divide
rsl rs2 rd

FDIVd fdivd freg l' /reg , freg
rs rs2 rd

FDIVq fdivq freg , freg , freg
rsl rs2 rd

FCMPs fcmps freg , freg Compare
rsl rs2

FCMPd fcmpd freg , freg
rsl fi rs2 FCMPq fcmpq freg , reg

rs2 rsl

Revision A of27 March, 1990

Chapter 2 - Instruction-Set Mapping 15

Table 2-3 Floating-point Instructions- Continued

SPARC Mnemonic Argument List Description

FCMPEs fcmpes
FCMPEd fcmped
FCMPEq fcmpeq

2.4. Coprocessor
Instructions

freg , rsl
freg l' rs
freg , rsl

NOTE

Table 2-4

SPARC Mnemonic

freg Compare, Generate exception if unordered. rs2
fregrs2
freg rs2

All cpopn instructions take all operands from and return all results to coproces­
sor registers. The data types supported by the coprocessor are coprocessor­
dependent. Operand alignment is coprocessor-dependent.

If the EC field of the PSR is 0, or if no coprocessor is present, a cpopn instruc­
tion causes a cp _disabled trap.

The conditions causing a cp _except ion trap are coprocessor-dependent.

A non- cpopn (non-coprocessor-operate) instruction must be executed between
a cpop2 instruction and a subsequent cbccc instruction.

Coprocessor Instructions

Argument List Name Comments

CPopl cpopl opd, reg , reg , reg rsl rs2 rd Coprocessor operation
CPop2 cpop2

2.5. Synthetic Instructions

Table 2-5

Synthetic Instruction

cmp reg , reg or imm rsl --

jmp address

call reg_or_imm

tst reg rsl
ret
retl

restore
save

set value, reg rd

opd, reg , reg , reg rsl rs2 rd Coprocessor operation (may modify ccc's)

This section describes the mapping of synthetic instructions to hardware instruc­
tions.

Synthetic Instruction to Hardware Instruction Mapping

Hardware Equivalent(s) Comment

subcc reg , reg or imm, %gO (compare) rsl --

jmpl address, %gO

jrnpl reg_or_imm, %07

orcc reg , %gO , %gO (test) rsJ

jrnpl %i7+8,%gO (returnfrom subroutine)
jrnpl %o7+8,%gO (returnfrom leaf subroutine)

restore %gO,%gO,%gO (trivial restore)
save %gO,%gO,%gO (trivial save)

Warning: trivial save
should only be used in kernel
code!

or %gO, value, reg (if -4096 $; value $; 4095) rd

Revision A of 27 March, 1990

16 Sun-4 Assembly Language Reference

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping-- Continued

Synthetic Instruction Hardware Equivalent(s) Comment
set value, reg

nJ
sethi %hi (value) , reg

rd
(if((value&Ox1ffJ == 0))

set value, reg sethi %hi (value) , reg ; (otherwise)
rd rd

or reg , % 10 (value) , reg
rd rd

Warning: do not use set in
an instruction's delay slot.

not reg
rsl

, reg
rd

xnor reg , %gO, reg
ral rd

(one's complement)

not reg
rd

xnor reg
rd

, %gO, reg
rd

(one's complement)

neg reg
rs2

, reg
rd

sub %gO, reg , reg
rs2 rd

(two's complement)

neg reg
rd

sub %gO, reg , reg
rd rd

(two's complement)

inc reg
rd

add reg ,1, reg (increment by 1)
rd J inc const13, reg add reg
rd

, const1 ,reg
rd

(increment by const13)
rd

inccc reg
rd

addcc reg ,1, reg (increment by 1 and set icc)
rd rd

inccc const13,reg addcc reg , const13,reg (increment by const13 and
rd rd rd

set icc)

dec reg
rd

sub reg ,1, reg
rd rd

(decrement by 1)

dec const13, reg sub reg , const13,reg (decrement by const13)
rd rd rd

deccc reg
rd

subcc reg ,1, reg (decrement by 1 and set icc)
rd rd

deccc const13, reg subcc reg , const13,reg (decrement by const13 and
rd rd rd

set icc)

btst reg or imm, reg andcc reg , reg or imm, %gO (bit test)
bset

- -. ral ral --:
(bit set) reg_or _~mm, reg

rd
or reg , reg or lmm, reg

bclr andn
rd - -. rd

(bit clear) reg_or_~mm, reg
rd

reg , reg or lmm, reg
btog

rd - -. rd
(bit toggle) reg_or_zmm, reg

rd
xor reg

rd
, reg_or _'mm, reg

rd

clr reg or %gO, %gO, reg
rd

(clear(zero) register)
clrb [aitdress] stb %gO, [address] (clear byte)
clrh [address] sth %gO, [address] (clear halfword)
clr [address] st %gO, [address] (clear word)

mov reg_or_imm, reg
rd

or %gO, reg or imm, reg
- - rd

mov %y, reg rd %y, reg
rs1 ral

mov %psr, reg rd %psr, reg
ra1 rsl

mov %wim, reg rd %wim, reg
rs1 ral

mov %tbr, reg rd %tbr, reg
ra1 ral •

mov reg_or_imm, %y wr %gO, reg_or _'mm, %y
mov reg_or_imm, %psr wr %gO, reg_or _imm, %psr
mov reg_or_imm, %wim wr %gO, reg_or _imm, %wim
mov reg or imm, %tbr wr %gO, reg or imm, %tbr

Revision A of27 March, 1990

2.6. Leaf Procedures

Chapter 2 - Instruction-Set Mapping 17

Leaf procedures are the outennost routines on the tree of a program, as a tree's
leaf is at the end of a stem on the branch of a tree.

Some leaf procedures can be made to operate without their own register window
or stack frame, using their caller's instead. Such a leaf procedure is called an
optimized leaf procedure. This can be done when the candidate procedure
meets all of the following conditions:

o it contains no CALLs or JMPLs to other procedures

o it contains no references to % sp, except in its SAVE instruction

o it contains no references to % fp

o it refers to, or can be made to refer to, no more than 8 of the 32 integer regis­
ters, inclusive of %07, the "return address".

If a procedure conforms to all of the above conditions, it can be made to operate
using its caller's stack frame and registers an optimization that saves both time
and space. When optimized, the procedure may only safely use registers which
its caller already assumes to be volatile across a procedure call: %00... %05,
%07, and %gl. This may be expanded to registers %gl ... %g7 if SPARe ABI
compliance isn't required.

Leaf routines are most useful when they prevent expensive window
overflow/underflow situations, saving many tens of cycles each.

sun Revision A of27 March, 1990
microsystems

18 Sun-4 Assembly Language Reference

Revision A of 27 March, 1990

A
Pseudo-Operations

The following pseudo-operations are supported by the Sun-4 assembler:

Table A-I List of Pseudo-Operations

Mnemonic Argument(s) Description

.alias Turns off preceding . noalias. (Compiler-generated
only.)

.noalias %regl, %reg2 %regl and %reg2 will not alias each other (point to the
same destination) until a . alias is issued. (Compiler-
generated only.)

.ascii "string" [, "string"] * Generates the given sequence(s) of ASCII characters.

.asciz "string" [, "string"] * Generates the given sequence(s) of ASCII characters, with
each string followed by a null byte.

.optim "string" Any optimization that can also be given as a flag in the com-
mand line, such as -0 [n] with n = {O,1,2,3}. (Compiler-
generated only.)

.seg "string" Changes the current segment to the one named, and sets the
location counter to the location of the next available byte in
that segment. The default segment at the beginning of
assembly is text. Currently, only segments text, data,
datal, and bss are supported.

. skip n Increments the location counter by n, which allocates n bytes
of empty space in the current segment.

.align boundary Aligns the location counter on a O-mod-boundary boundary;
boundary may be 1 (which has no effect), 2, 4, or 8.

.byte 8bitval [, 8bitval] * Generates (a sequence of) initialized bytes in the current seg-
ment.

.half 16bitval [, 16bitval] * Generates (a Sequence of) initialized halfwords in the current
segment. The location counter must already be aligned on a
halfword boundary (use. align 2).

19 Revision A of 27 March, 1990

20 Sun-4 Assembly Language Reference

Table A-I List of Pseudo-Operations- Continued

Mnemonic Argument(s)

· word 32bitval [, 32bitval] *

· single Orfloatval [, Orfloatval] *

· double Orfloatval [, Orfloatval] *

· quad Orfloatval [, Orfloatval] *

· global symboCname [, symbol_name] *

· common symbol_name, size [, "segment"]

· reserve symbol_name, size
[, "segment" [, boundary]]

. empty

sun
microsystems

Description

Generates (a sequence of) initialized words in the current
segment. The location counter must already be aligned on a
word boundary (use . align 4).

Generates (a sequence of) initialized single-precision
floating-point values in the current segment. The location
counter must already be aligned on a word boundary (use
. align 4).

Generates (a sequence of) initialized double-precision
floating-point values in the current segment. The location
counter must already be aligned on a doubleword boundary
(use. align 8).

Generates (a sequence of) initialized quad-precision
floating-point values in the current segment (. quad
currently generates quad-precision values with only double­
precision significance). The location counter must already
be aligned on a doubleword boundary (use. align 8).

Marks the (list of) user symbols as "global". Note that when
a symbol is both declared to be global and defined (that is,
used as a label, used as the left operand of an = pseudo-op,
or used as the first operand of a . reserve pseudo-op) in
the same module, the . global must appear before the
definition.

Declares the name and size (in bytes) of a FORTRAN-style
COMMON area. If "segment" is "bss" or not specified, then
the common area will appear in either the b s s or the data
segment, depending on how symbol_name is defined else­
where. These are the only choices currently supported.

Defines symbol symbol_name, and reserves size bytes of
space for it in segment segment (optionally aligned on a
boundary-byte address boundary). This is equivalent to:

. s eg "segment"
[. align boundary]

symbol_name: . skip size
. seg "< previous segment>"

If" segment" is not specified, space is reserved in the
current segment.

Used in the delay slot of a Control Transfer Instruction
(CTI), this suppresses assembler complaints about the next
instruction's presence in a delay slot. Some instructions
should not be in the delay slot of a CTI. See the SP ARC
Architecture Manual for details.

Revision A of 27 March, 1990

Mnemonic

.proc

.stabs

.stabn

.stabd

Appendix A - Pseudo-Operations 21

Table A-I List of Pseudo-Operations- Continued

Argument(s)

n

"string", const4, 0, const16, const32

const4, 0, const16, const32

const4, 0, const16

Description

Signals the beginning of a "procedure" (unit of optimization)
to the peephole optimizer in the Sun-4 assembler; n specifies
which registers will contain useful information upon return
from the procedure, as follows:

o no return value
6 return value in % f 0
7 return value in %fO and %fl

(other) return value in % i 0 (caller's % 00)
The pseudo-operation . pro c may be produced by code
generators for higher-level languages. See note below.

Inserts a symbol table entry consisting of "string", followed
by a 4-bit constant const4, a literal zero, a 16-bit constant
const16, and a 32-bit constant const32. Used by Sun com­
pilers only to pass information through the object file to
symbolic debuggers.

Inserts a symbol table entry consisting of a 4-bit numeric
entry const4, followed by a literal zero, a 16-bit constant
const16, and a 32-bit constant const32. Used by Sun com­
pilers only to pass line-number information through the
object file to symbolic debuggers.

Inserts a symbol-table entry consisting of a 4-bit numeric
entry const4, followed by a literal zero and a 16-bit constant
co nstl6. Used by Sun compilers only to pass location­
counter information through the object file to symbolic
debuggers.

symbol name = constant expression Assigns the value of constant expression to symbol name.

NOTE Since peephole optimization is not performed on hand-written assembly­
language code, there is no need/or. proc statements in such code.

Revision A of 27 March, 1990

22 Sun-4 Assembly Language Reference

Revision A of 27 March, 1990

B.I. a s Options

B
The Sun-4 Assembler

You invoke as as follows:

(~ ___ a_s __ [_o_p_ti_on_S_] __ [_in_p_U_¢_k_] __________________________________ ~J
as translates the assembly language source files, inputfiZe into an executable
object file, obffile. The Sun-4 assembler recognizes the filename argument '-' as
the standard input.

All undefined symbols in the assembly are treated as global.

The Sun-4 assembler supports macros, #include files, and symbolic substitu­
tion through use of the C preprocessor cpp. The assembler invokes the prepro­
cessor before assembly begins if it has been specified from the command line as
an option (see - P below).

- L Save defined labels beginning with an L, which are normally discarded to
save space in the resultant symbol table. The compilers generate many such
temporary labels.

- R Make the initialized data segment read-only by concatenating it to the text
segment.

-a objfile
The next argument is taken as the name of the object file to be produced. If
the -a flag isn't used, the object file is named a . aut.

- P Run cpp, the C preprocessor, on the files being assembled. The preproces­
sor is run separately on each input file, not on their concatenation. The
preprocessor output is passed to the assembler.

- k Generate position-independent code as required by

[~ _______ C_C __ -_P_i_C_/-_P_I_C _____________________________________ J

WARNING Don't apply the - k flag to hand-coded assembler programs unless they are
written to be position-independent.

23 Revision A of27 March, 1990

II

Index - Continued

pseudo-operations, continued
.optim, 19
.proc,20
. quad, 20
· reserve, 20
· seg, 19
· single, 20
· skip, 19
· stabd, 21
· stabn, 21
· stabs, 21
· word, 19

R
register routines

RESTORE, 17
SAVE, 17

registers
GLOBAL, 17
OUT, 17

RESTORE, 17

S
SAVE, 17
segments

bss,19
data, 19
datal, 19
text, 19

special symbols
%cq,4
%csr,4
%fp,4
%fq,4
%fsr,4
%hi,4
%10,4
%psr,4
%sp,4
%tbr,4
%wim,4
%y,4

ST_BREAKPOINT,13
ST_CLEAN_WINDOWS,13
ST_DIVa,13
ST_FIX_ALIGN,13
ST_FLUSH_WINDOWS,13
ST_INT_OVERFLOW,13
ST_RANGE_CHECK,13
statement syntax, 2
syntax, 1

assembler, 1
notation, 2
statement, 2

synthetic instructions, 15 thru 16
hardware equivalents, 15

text, 19
traps

T

ST BREAKPOINT, 13
ST=CLEAN_WINDOWS,13

traps, continued

-26-

ST DIva, 13
ST-RANGE CHECK, 13
ST-SYSCALL,13
S(::WINDOWS,13

