
I .
SYCOR INC Model 340

Intelligent
Communications

Terminal

Programmers
Manual

S Y C 0 R, I N C.

Model 340

Intel I igent

Communications Terminal

PROGRAMMER'S MANUAL

Prepared at Ann Arbor, Michigan
Revised September, 1974

INTRODUCTION

The basic Sycor Model 340 Communications Terminal consists of control logic
and peripherals. The control logic incorporates a powerful microprocessor
which executes instructions stored in a high-speed read only memory and
extended memory. In addition, a high speed random access memory is
provided to allow buffering of data transfer operations between peripherals.
The basic terminal is shown in block diagram form below. The extended
memory option may be thought of as an expansion of read only memory
al lowing the customer to choose additional features from the Sycor program
library.

KEYBOARD

I EXTENDE~l
1 MEMORY

L READ ONLY
MEMORY

MICRO­
PROCESSOR

BUFFERS

COMM

CRT

---INPUT/
OUTPUT

Updating Existing Data
Updating and Printing

Preparing a Format Tape
One Page Formats
Multiple Page Formats

Data Flow in Format Mode

TAL PROGRAMMING
Introduction
logical and Physical Records
Field Programs
Extended Memory Field Control Characters

Must Tab Field - Mixed (I, K)
May Tab Field - Mixed (:N, Y)
Must Tab Field - Numeric (J, l)
May Tab Field - Numeric (X, Z)

Tables
Sharing Elements of a Table
Sharing Complete Tables

TAL Programming Form
Program Name
Switches, Registers, and Accumulator

Indicators
Extended Memory Field Control Character
Field Label
Op Code
Table Number
Table Definition
Op Codes Used

T Al Abbreviations
Registers (R,0'-R9)
Index Register (IR)
Accumulators (SA, TA)
Switches (SW or 1-8)
Fields (F)

T Al Conventions
Location (LOC)
Constant (CON)
Relationship (REL)

Arithmetic Instructions
Addition
Subtraction
Multiplication
Division

ADD
SUB
MPY
DIV

1-20
1-21
1-23
1-23
1-24
1-26

1-1
1-2
1-4
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-6

1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10
1-10

2-1
2-3
2-5
2-9

iv

Input/Output Control Instructions
Read ROX 7-1
Write WRT 7-3
Insert INS 7-5
Search SRH 7-7
Rewind REW 7-9
Backspace BSP 7-11

Programming Techniques 8-1
Eliminating Compare Instruction 8-1
Eliminating Duplicate Instruction 8-2
Eliminating Move Instruction for Mixed 8-2

Data
Eliminating the Move Instruction for 8-3

Numeric Data
Eliminating Shift Instruction 8-3
Replacing Right Justify with Edit 8-3
Replacing Right Justify and Move with 8-4

Minus Over Punch
Editing a Field with Floating Doi lar 8-4

Si gn and Left Fi II with Asterisks
Placing a File Separator in the 1/0 Buffer 8-5

Memory Requirements 9-1

PERIPHERAL DRIVERS
Introduction
Punch Cards

Card Reader
Card Punch

Printer Drivers
Models 3481, 3482, and 3484 and
3485 Serial Printers

Model 3480 Serial Printer
Model 3486 Line Printer

Magnetic Tape
Merge and Print

PROGRAM GENERATION
Introduction
Preparation
Set Up
Required Operations
Tables
Field Programs
End

Her
Hsr
#pr

MAP

1-1
1-1
1-1
1-2
1-2

1-5
1-6
1-6
1-6
1-7

1-1
1-2
1-6
1-9
1-10
1-11
1-12

vi

Load and Test
Program Generator Error Recovery
Program Generation with Overlays
Program loading with Overlays

APPENDIX A
Printer Vertical Tab Codes
Octal/Decimal Conversion Table
Peripheral Driver Character Conversion Table
Memory Map

1-12
1-14
1-19
1-23

A-1
A-2
A-3
A-7

MODES
OF

OPERATION

FORMATTING

TAL
PROGRAMMING

PERIPHERAL
DRIVERS

PROGRAM
GENERATION

APPENDIX

vii

FORMATTING
Figure l
Figure 2
Figure 3
Figure 4

Figure 5
Figure 6

Figure 7

Figure 8

LIST OF ILLUSTRATIONS

Payrol I Format and Data
Order Form and Invoice
Invoice Printing Formats
Invoice Data and Printing

Formats
Payroll Update Format
Format Tape Structure, One

Page Formats
Format Tape Structure,

Multiple Page Formats
Alternate Format Tape

Structure

PROGRAM GENERATION

1-15
1-17
1-18
1-19

1-20
1-24

1-25

1-25

Figure l Source Tape Organization 1-2
Figure 2 T Al Program Form 1-3
Figure 3 Memory Map of Program 1-7

Generation
Figure 4 Source Tape Structure 1-24
Figure 5 Object Tape 1-25
Figure 6 Final Object Tape 1-25

viii

MODES
OF

OPERATION

INTRODUCTION

Al I Model 340 Communications Terminal operations have been divided into
four classes or modes: format, search, batch and auto communication. The
terminal is placed in these modes by a job selection sequence. The job
selection sequence also es tab I ishes the normal input and output devices to be
used on a particular job. A fifth class, program, has been defined and will
be discussed in the extended memory section of the manual.

Job selection sequences are initiated by depressing JOB SELECT followed by
an F for format, an S for search, a B for batch, an A for auto, or a P for
program. Input/output codes are then entered as follows:

INPUT OUTPUT

Cassette one Cassette one

Cassette two 2 Cassette two 2

Communications L Communications L

Extended memory input C Printer p

None Space Extended memory output c

FORMAT MODE

Depressing job select followed by an F causes the status line* of the screen
to display:

FMA T I N_, OUT

Format I
Input ~---------'

Secondary
Input ~--------~

l_______secondary
Output

-----Primary
Output

*The status line is the top line of the display and contains the job selections,
status messages, and accumulators.

Sep 74
1-1

Modes of Operation

with the cursor positioned in the location reserved for the format input. The
implied primary input in format mode is always the keyboard or an accumula­
tor. As legitimate 1/0 device codes are entered, the cursor moves to the
next input or output location. When all locations have been filled with
codes or spaces, depressing ENTER completes the job selection sequence.
The Format Mode sequences described in detail in the Operator's Manual
are:

Task Job Selection Seguence

Enter data FMAT IN 1 , OUT2,

Enter data and print FMAT I Nl , OUT2,P

Update FMAT IN ' 1 OUT2,

Update and print FMAT IN ' 1 OUT2,P

If other format operations are used, we suggest writing special operating
instructions similar to the standard instructions given in the Operator's
Manual.

The Format Mode is primarily used to collect source data under format control.
For this application the program control (PROG CTL) switch is on and all
input and output devices are controlled by the job selection sequence, the
format, the ENTER key and the NEXT FORMAT key. The auto operation
(AUTO OPRT) switch is also active and determines whether the ENTER key
will be required to initiate data output.

Another aspect of Format Mode is format program preparation. When program
control is off the 1/0 controls specified by the job selection are not in
effect and the format programmer can create a format page on the CRT
display. Each format page is then written on tape (using the tape control
keys) and used later, with the PROG CTL switch on, to col le ct data.

Format Mode with program control off may be thought of as a 11 free form 11

mode where all display and tape controls are performed manually.

Sep 74
1-2

Modes of Operation

\

SEARCH/EDIT MODE

Depressing JOB SELECT followed by an S causes the status line of the screen
to display:

SRCH IN OUT ,

Input~~~~~~~~~~~~- I
Primary
Output ~~~~~~~~~~~~~----'

Secondary
~~~~~~~~~~~~~~-' 

Output 

with the cursor in the location provided for the input device. As 1/0 codes 
are entered, the cursor moves to the next location. Depressing ENTER after 
al I the job selection locations are used completes the job selection sequence 
and conditions the terminal to accept a search identifier. The search mode 
sequences described in detail in the Operator's Manual are: 

Program 
Task Control Job Selection Sequence 

Search off SRCH OUT 

Search 2 off SRCH 2 OUT 

Search and copy off SRCH OUT2, 

Search and print off SRCH OUTP, 

Edit and copy on SRCH OUT2, 

If other search or edit operations are to be used special operating instructions 
similar to the standard ones given in the Operator's Manual should be used. 

Sep 74 

1-3 
Modes of Operation 



The PROG CTL switch is used in Search Mode to copy either matching 
records (Search) or non-matching records (Edit). The AUTO OPRT Switch 
is used to determine if the copy operation will be done automatically or 
only after ENTER is depressed. 

OFF 

ON 

Search Identifiers 

OFF 

Skip non-match 
Stop on match 
Depress ENTER to out­
put match and 
continue 

Stop on file separator 

Skip non-match 
Output a 11 matches 
Stop on fi I e separator 

ON 

Stop on non-match 
Depress ENTER to output 

non-match and continue 
Skip match 
Stop on fi I e separator 

Output al I non-matches 
Stop on match 
Depress ENTER to skip 
match and continue 
Stop on file separator 

A Search Identifier may be up to 256 characters in length and, like all 
records, must be fol lowed by a record separator. Search identifiers may be 
continuous or compound. Compound Search Identifiers may be used to find 
a record when the unique, identifying characters are not next to each other 
in the data stream. For example, a last name and first name might be 
separated by an unknown number of spaces, and since spaces are recognized 
in a search identifier, the record would be difficult to find using a 
continuous Search Identifier. The compound Search Identifier to find a 
record on Mary Jones would be: 

MARY:JONES• 

Sep 74 

1-4 
Modes of Operation 



Compound Search Identifiers must be written in the same order as the 
characters in the data stream because the 340 terminal finds a match with 
the first component of the Search Identifier and then searches the remainder 
of the record for a match with the second component. If the record 
contained names in reverse order, the search identifier would be written: 

JONES:MARY• 

A Search Identifier may be broken into any number of components so long as 
its total length (including colons) does not exceed 256 characters. 

The operator depresses the LOAD ID key to store the Search Identifier and 
start the search. The Search Identifier is entered right after the job 
selection sequence. The Search Identifier may be changed after a match is 
found or after an end of file is encountered. 

BATCH MODE 

Depressing JOB SELECT followed by a B causes the status line of the screen 
to display: 

BATCH IN OUT , 

with the cursor in the location reserved for the input device. As 1/0 codes 
are entered, the cursor moves to the next location. Depressing enter after 
al I locations are used completes the job selection sequence and starts the 
batch operation. The Batch Mode sequences described in detail in the 
Operator's Manual are: 

1-5 
Modes of Operation 



Task Job Selection Sequence 

Batch printing BATCH IN2 OUTP 

Batch copying BATCH I Nl OUT2 

Receiving BATCH INL OUTl 

Transmitting BATCH I Nl OUTL 

Unattended Comm B-AUT IN OUT 

Batch printing is illustrated in the Operator's Manual using cassette recorder 
two (2) as an input because batch printing often fol lows formatted data entry 
and the data tape to be printed is al ready on cassette recorder two (2). If 
other batch operations are used, we suggest writing special operating 
instructions similar to the standard instructions given in the Operator's 
Manual. 

AUTO COMMUNICATION 

Depressing job select followed by an A causes the status line of the screen 
to display: 

B-AUT IN OUT 

Input----' I 
Output~~~~~~~~--' 

with the cursor not displayed and the keyboard locked. The remote master 
station has control of further entries in the status line and can select one 
input and one output for collecting from or transmitting data to the 340. If 
cassette one is selected as input or output cassette two will be automatically 
selected when end of tape is sensed on cassette one before sensing the end 
of file. Both cassette are rewound after data has been collected from an 
unattended terminal. The cassettes do not rewind, however, after data is 
received on the unattended terminal. 

Sep 74 

1-6 
Modes of Operation 



PROGRAM MODE 

Depressing JOB SELECT fol I owed by a P causes the status Ii ne of the screen 
to display: 

PROG IN OUT 

Primary 
Output ~~~~~~~~~~~~~ 

Secondary 
Output ~~~~~~~~~~~~~-

with the cursor positioned in the input position. Program mode operation is 
a function of a software loaded in extended memory and wi 11 be discussed 
in that section. 

Sep 74 

1-7 
Modes of Operation 



Additional Notes 

Sep 74 
1-8 

Modes of Operation 



FORMATTING 

"'· j 



INTRODUCTION 

This part of the manual provides instructions for planning, designing and 
preparing formats for the Model 340 Communications Terminal. Formats can 
utilize 340 features to simplify data entry and detect certain operator errors. 
Model 340 features contained in the read only memory can control: 

field and record length 

input/output devices: cassette tapes, communications, printer 

character mode: mixed, alphabetic, numeric 

automatic duplication 

data field compression 

data omission 

data capacity 

right justification (left space fill) 

accumulators (add/subtract) 

In addition to the read only memory features, the extended memory option 
allows expansion of the Model 340 capabilities to include additional 
input/output devices, format control routines and communication routines. 
Extended memory features are described in the latter sections of the 
Programmer's Manua I • 

FORMAT CHARACTERS 

The first step in designing a format is to consider the form of the input data 
(cards, cassette tape, etc.) and the form the output wil I take (cassette tape, 
printed forms, etc.). A job selection sequence establishes the normal inputs 
and outputs and the format can be used to make exceptions for specific data 
fields. 

Sep 74 

1-1 
Formatting 



A format program divides the 512 characters of the display into protected 
fields and data fields. The protected fields are separated from the data fields 
by field definition characters. Protected fields contain labels (or instructions 
to the operator), 1/0 controls, and data field control characters. Under 
program control, the operator fills in the data fields while the terminal 
automatically controls format and input/output operation. Entry in each data 
field is controlled by a preceeding protected field. 

--FIELD DcFINITION-----
---PROTcCTE.D--

LABE.L ----
1/0 cooe.--
r-11:.Lo ---­
C.ONTQOL 

Typical Fonnat Sequence 

DATA 

As illustrated above, a protected field may contain labels, 1/0 controls, 
and data field controls. However, if labels or instructions are not nec~ssary, 
the protected fields may be reduced to just 1/0 control and data fie Id control: 
[4M], for example is a legitimate format control field. If 1/0 control is to be 
as specified in the job selection sequence, the format control field may be 
reduced further to a single protected data field control character such as [M]. 

Al I field definition characters, 1/0 control characters, and data field control 
characters are defined in the pages that fol low. 

Sep 74 

1-2 
Formatting 



FIELD DEFINITION CHARACTERS 

Brackets [ ] 

Brackets are the most common field definition characters. Brackets enclose the 
protected fields that define data mode and 1/0 control. Other field definition 
characters may enclose protected label fields or may stand alone as one 
character protected fields. A left bracket ends a data field and starts a 
protected field. A right bracket starts a data field and ends a protected 
field. Brackets must be used in pairs and must enclose at least one character 
(one of the field control characters defined later in this section}. 

Automatic Cursor Advance I 

The vertical line symbol is used for automatic cursor advance. The vertical 
line defines the end of a data field and the start of a pr~tected label field. 
When the cursor encounters a vertical line it moves at once to the first 
position in the next data field. 

Display Tab Stop '-. 

The display tab stop is translated into a horizontal tab character for the 
printer and acts as a kind of data field 11ditto 11 in the format. A backslash 
defines the beginning of a new data field that has the same mode and 1/0 
control as the previous data field. A backslash is written by the tab/skip 
key when program control is off. 

The auto cursor advance and backslash are often used in pairs to partition the 
display into separate data fields. The sequence which fol lows, for example, 
defines four mixed entry data fields separated from one another by horizontal 
tab characters. 

[MJ I\ I\ I\ I 

New Line Symbol I 

The new line symbol is translated into a printer carriage return/line feed code. 
The hook also behaves like a backslash in defining the data field following it 
as having the same mode and 1/0 control as the previous data field. The 
hook is written by the new I ine key when program control is off. When a 
hook appears in a format control program and program control is on, depressing 

Sep 74 
1-3 

Formatting 



the new line key will move the cursor to the first data field following the 
hook. 

The auto cursor advance and the hook are often used together in much the 
same way as the auto cursor advance and backslash. In the example below, 
the data from the four mixed entry fields will be separated by carriage 
return/I ine feed codes. 

[M] I 

Record Separator I 

A record separator defines the end of a record. It is used to define the end 
of a search identifier (see Modes of Operation Section) and the end of each 
format page. The record separator automatically becomes the last character 
in each data record created under format control. 

LABELS 

A label is an optional part of a protected field. A label may fol low a left 
bracket or an auto cursor advance. Labels can be used to identify the data 
field that follows or to give special instructions to the operator. Labels may 
be any length or may be eliminated completely. 

Some labels are ii lustrated in the four sample formats below: 

[NAME M] 
,, 

[ADDRESS M] 
,, 

[CITY, STATE M] I 
[ZIP 9 ] ..,. 

[NAME M] 

ADDRESS! 

CITY, STATE! 

[ZIP 9] ..,. 
Sep 74 

1-4 
Formatting 



NAME ADDRESS CITY, STATE ZIP 

M] ., ., [9] .,. 
NAME ADDRESS CITY, STATE ZIP 

[M] ., ., [9] .,. 
All four format samples would create identical data records which if printed 
would have the form: 

Mary Smith 
100 Phoenix Drive 
Ann Arbor, Michigan 48104 

When T AL Programming is used, labels within bracketed protected fields 
take on additional meaning. 

DATA FIELD CONTROL CHARACTERS 

The last character before the right bracket 11 ] 11 in a protected field is the data 
field control character. Thirty data field control characters are defined for 
the Model 340 Communications Terminal. Many of these 30 characters are 
used to implement the special optional functions and may not be present in a 
particular Model 340. The data field control character controls the mode of 
the data field that follows it. 

Normal Data Entry M,A, N 

No special option is required to use these field control characters. 

Sep 74 

[M] Mixed entry data field. Alphabetic, numeric 
and special symbols are legal entries. 

[A] Alphabetic entry data field. All letters, space, 
comma, and period are legal entries. 

[N] Numeric entry data field. All numbers, minus, 
comma, period, and space are legal entries. 

1-5 
Formatting 



Tab Compression 1,2,3 

The tab compression option provides varible length in mixed, alphabetic, or 
numeric data fields. When the operator depresses tab/skip to exit a tab com­
pression field, a backslash appears in the data field and a horizontal tab 
character is inserted in the data in place of fhe remaining spaces in the data 
field. 

[1] Mixed, like M above but spaces may be replaced by a 
horizontal tab character. 

[2] Alphabetic, like A above but spaces may be replaced 
by a horizontal tab character. 

[3] Numeric, like N above but spaces may be replaced by 
a horizontal tab character. 

Omission Detection 4,5,6 

The omission detection option allows you to define data fields that must be 
used by the operator. At least one legal character must be entered in an 
omission detection data field or the keyboard wil I lock and a TAB error 
message wi 11 appear on the top I ine of the screen, 

[4] Mixed, I ike M above but at least one character must be 
entered. 

[5] Alphabetic, like A above but at least one character 
must be entered. 

[6] Numeric, like N above but at least one character must 
be entered. 

Capacity Control 7,8, 9 

The capacity control option allows you to define data fields that the operator 
must fi 11 to capacity or encounter a TAB error, 

[7] Mixed, like M above but must be filled completely. 

[8] Alphabetic, like A above but must be filled completely. 

[9] Numeric, like N above but must be filled completely. 

Sep 74 

1-6 
Formatting 



Right Justified Numbers R 

Every Mpdel 340 Provides this feature, a [RJ specifies a numeric entry field 
where the numbers are automatically right justified (left space filled) when 
the operator tab/skips to the next field. 

Constant Data C 

A [CJ data field may be set-up to use the same data over and over. The 
data for constant fields may be a part of the format tape, or may be entered 
from the keyboard with program control off. Once program control is turned 
on, a constant data field is protected, cannot be typed over and becomes a 
part of each data record created with the format. 

Automatic Format Paging * 

If [*J appears anywhere in the format page, a new page of format will be 
automatically displayed on the screen as soon as the current data is on the 
way to its outputs. This data field control character also does double duty 
by defining the next field as a constant data field like [CJ above. 

Accumulator Fie Ids +, T ,(, &,S ,),$ 

A ten-digit plus sign total accumulator and a ten-digit plus sign sub-total 
accumulator are available as an optional function. The following data field 
control characters define numeric, right justified (left space filled), 
accumulator data fields. · Each accumulator data field should be long enough 
to accomodate the number plus a sign (tab/skip for addition, minus for 
subtraction). 

Sep 74 

[+J Add or subtract in the total accumulator. 

[TJ Move the total accumulator value to the data field and 
clear the total accumulator. 

[> J Move the total accumulator value to the data field 
but do not clear the total accumulator. 

[&J Add or substract in the sub-total accumulator. 

[SJ Move the sub-total accumulator value to the data field 
and clear the sub-total accumulator. 

1-7 
Formatting 



[<] Move the sub-total accumulator value to the data 
field but do not clear the sub-total accumulator. 

[$] Move the sub-total accumulator value to the data 
field, add the sub-total value to the total accumulator, 
and clear the sub-total accumulator. 

With the exception of subtracting in [+] or [&] data fields where the minus 
key is used, al I accumulator operations are activated by tab/skip, new line 
or enter. 

Extended Memory l,J, K, L, W ,X, Y ,Z 

The extended memory field control characters are paired to provide mixed 
entry or numeric entry fields for up to four groups at a time. 

The actual functions provided are described in the TAL PROGRAMMING 
Section of the Programmer's Manual. 

INPUT/OUTPUT CONTROL CHARACTERS 

The next to last character in a protected field is an 1/0 control character. 
If the 1/0 control character is omitted, input is from the keyboard or the 
accumulator and output is as defined in the job selection. When an 1/0 
control character is used it selects from the 1/0 devices defined in the job 
selection sequence by cal ling for primary or secondary input or output only. 
The 1/0 control character controls the data field that fol lows it. The format 
1/0 control characters are defined below: 

Sep 74 

None Keyboard or accumulator input, outputs specified selection 
by the job slection sequence. 

Secondary input, outputs specified by the job selection sequence. 

2 Keyboard or accumulator input, primary output. 

3 Secondary input, primary output. 

4 Keyboard or accumulator input, secondary output. 

5 Secondary input, secondary output. 

1-8 
Formatting 



~\ 

6 Keyboard or accumulator input, no output. 

7 Secondary input, no output. 

For example [SA] calls for alphabetic data to be brought into the data field 
from the secondary input device and to be sent to the secondary output device 
only. 

PRINTER CONTROL 

In addition to the hook 11 , 11 and backslash 11 , 11 , special control characters 
are provided for designing printer control programs. The additional printer 
control characters are not protected and must be enclosed in constant data 
fields. The printer control codes are as follows: 

VT Used to set a vertical tab record. 

HT Used to set a horizontal tab record and to correct data in batch or 
search modes. To write formats, use the backslash, 

FF Form feed, the form is advanced to channel A (top of form). 

CR Carriage return, the carriage is returned and the form is 
advanced one line. Use this character to correct data in 
batch or search modes. To write formats, use the 11 hook 11 , 

LF Line feed, the form is advanced one line. 

ESC Special Model 340 code to identify a printer control sequence. 

The printer control codes listed above are non-displayed characters created 
with the shift key and the numeric keys 4, 2, 5, 3, 6 and 7 respectively. 
The printer control codes appear to be blanks or spaces on the display except 
that when the cursor shares the location of a non-displayed character the 
cursor itself disappears. A I ine feed may be used only after a carriage return/ 
line feed sequence and may not be used in the middle of a print line. 

Horizontal Tab Record 

The horizontal tab record is a special record which makes use of the ESC 
and HT characters to set the horizontal tabs. 

Sep 74 

1-9 
Formatting 



For example: 

E 
* s~12x4567a9m1x3456xa9x I 

c 

sets horizontal tabs in character positions 3, 12, 17 and 20. The numbers 
in the example are included only for convenience and may be replaced by 
spaces or any non-X alphanumeric characters. The backslash character 11 '- 11 

is used in subsequent format pages to tab to the locations set by the 
horizontal tab record. 

Vertical Tab Record 

The codes in the Printer Vertical Tab Code Table (Appendix A) are used in 
conjunction with the ESC and VT characters to set the vertical tab record 
for the incremental printer. Each vertical tab record consists of an ESC, a 
VT and seven, two-letter, alphabetic codes. These codes define the number 
of I ines on a form and the I ine numbers where vertical tabs A through F are 
set • For examp I e: 

E 
* S~DBPKAGBBBEBJCD I 

c 

defines the vertical tab record for a form 66 lines long (DB) with vertical 
tab channel A at line 11 (PK), channel B at line 23 (AG) and so forth. 
The alphabetic codes may be calculated if the Printer Vertical Tab Code 
Table is not available. The scheme is hexadecimal (base 16) with A through 
P representing the numbers 1 through 15 and zero. Line 58 for example is 
CJ. 

3 
16 rrs-

48 c J 
10~~~~~~~_.. 

The following sequences are used in subsequent format pages to tab to the 
locations set by the vertical tab record: 

Sep 74 
1-10 

Formatting 



E 
[C]SA 

c 

E 
[C]SB 

c 

E 
[C]SC 

c 

E 
[C]SD 

c 

E 
[C]SE 

c 

E 
[C]SF 

c 

Sep 74 

Used to cause the printer to return the carriage and tab to 
vertical tab channel A. (Line 11 in the example above). 

Used to cause the printer to return the carriage and tab to 
vertical tab channel B. (Line 23 in the example above). 

Used to cause the printer to return the carriage and tab to 
vertical tab channel C. (Line 34 in the example above). 

Used to cause the printer to return the carriage and tab to 
vertical tab channel D. (Line 37 in the example above}. 

Used to cause the printer to return the carriage and tab to 
vertical tab channel E. (Line 42 in the example above). 

Used to cause the printer to return the carriage and tab to 
vertical tab channel F. (Line 52 in the example above). 

1-11 
Formatting 



Setting Tabs 

The horizontal and vertical tab records discussed above are stored in a special 
buffer and used by the terminal to interpret tab commands (HT, ESCA, etc.) 
that occur in the print data, 

The terminal will store the HT and VT records only if the job selection 
includes the printer as an output device. In format mode, the VT and HT 
formats are used to set the tabs: 

and 

FMAT INl OUT2,P 

E 
[*] S~ 12X456789,0'3456X89X• 

c 

FMAT INl OUT2,P 

E 
[*] S ioBPKAGBBBEBJCD• 

c 

In batch mode, the HT and VT data records are used to set the tabs: 

and 

Sep 74 

BATCH IN2 OUTP 

EH 
S Tl2X456789,0'3456X89X• 
c 

BATCH IN2 OUTP 

Ev 
S TDBPKAGBBBEBJCD• 
c 

1-12 

Formatting 



FORMAT PROGRAMS 

Sycor has designed a special Model 340 Fomlat Layout Foml to aid in 
planning follTlat programs (refer to next page). Each of the three sets of 
I ines on the fomlat sheet represent a follTlat page. Each page consists of 
eight (8), 64 character lines for a total of 512 possible characters. All 
t-Aodel 340 fomlat program characters are defined on the back of the Fomlat 
Layout Foml for easy reference. 

The first character on the first line of a format page must be either a left 
bracket or a cursor advance character ([ or I ) and each format page must end 
with a record separator. The strategy in writing formats is to make the display 
on the screen resemble the source data while using the 1/0 controls, constant 
data fields, and printer controls to structure the data and the printed forms. 

The operator should be able to relate what he sees on the screen to the source 
documents he is using for data entry and should not have to think about the 
form of the output data. 

One Page Format, No Printing 

The major consideration in this application is to construct data fields that are 
compatible with the requirements of the central processor, and to design a 
format that detects and prevents common operator errors. A payrol I data 
collection format is shown as an illustration. The data collected for computing 
a payroll must be processed before the checks can be printed. Therefore, the 
printing is done from the processed data and not from the source data. 
Alphabetic, numeric, omission detection, capacity control and numeric right 
justified are used in this format illustration. The format is shown on a format 
layout sheet in Figure 1. A sample data record is shown below the format as 
it would appear on the display in search or batch modes. The non-displayed 
HT and CR (LF) characters are indicated with arrows. 

Sep 74 

1-13 
Formatting 



Si 
SYCOR INC 

'..l!llODE L 340 Format Layout Form 

FMAT IN_,_ OUT_,_ 
Ap~icat~"~~~~~~~~~~~~~~~~­
Dam~~~~-B•~~~~~~~~~~~~ 

·u 

905002 

Format layout Form {Front) 

II 

1 

' 

M 

FIELD DEFINITION CHARACTERS 

Enclose protected fields 

New line symbol, outputs a carriage return code 

Display tab stop, outputs a horizontal tab code 

Automatic cursor advance to the next field 

Record separator, outputs a record separator code 

NORMAL Fl ELD CONTROL CHARACTERS 

Mixed entry 

A Alphabetic entry 

N Numeric entry 

R Numeric entry, right justify (left space fill) 

C Constant data 

Automatic paging and constant data 

OPTIONAL FIELD CONTROL CHARACTERS 

Mixed mode tab compression 

Alpha mode tab compression 

Numeric mode tab compression 

Mixed mode omission detection 

Alpha mode omission detection 

Numeric mode omission detection 

Mixed mode capacity controlled 

Alpha mode capacity controlled 

Numeric mode capacity controlled 

T 

> 
& 

< 

ACCUMULATOR FIELD CONTROL CHARACTERS 

Add/subtract total accumulator 

Move total accumulator to data field and clear 

Move total accumulator to data field, do not clear 

Add/subtract sub-total accumulator 

Move sub-total accumulator to data field and clear 

Move sub-total accumulator to data field, do not clear 

Move sub-total accumulator to data field, add to total 

accumulator, clear sub-total accumulator 

EXTENDED MEMORY FIELD CONTROL 

Mixed Numeric 

ffiB::: 
INPUT/OUTPUT DEVICE CONTROL 

Normal 
Input 

[or space 

2 

4 

6 

Secondary 
Input 

1 

3 

5 

7 

Both 
Outputs 

Primary 
Output 

Secondary 
Output 
No 
Output 

Format layout Form {Back} 

Sep 74 
1-14 

Formatting 



MODEL 3-40 Format Layout Form 

FMAT IN..L,_ OUT.£,_ 
Appllcstion PAYROLL DATA CoLL.f.C"TIO"l 
!MU rte.10 tc;>71 By N-~- -e.AE>E:JALEY 

[ 5pjG 5 E: C NE'.i 9 J 
11 1 Ji [INITIA.L5 oJ 

~ \)JR L]Y 1( Afr E ~ J II 

T\ T IT 
U N I 1f:)D!Nl5! J f. R 1U N I blH° M I~ R J 

I\ ITllJ ~J. 1 
llT l!T 
l J 

I lJ 1 I< ?' _,, • " I'• IC '1 '1 U "' !') -,,, Tl <e " ' j ,; t' 44 <~ ... U .. •t "'! '1 '' "1 !>< •• rl tl "" ''°' 111,! ~1 &1 Li IA 

It I 

I ;/ J • o • 1 I I 1u !• lJ '1 '< "· 1i •I '" I• 1ll 11 n .'1 l< }» JI l1 ?~ 1' Jtl l1 J} U ~ )I Y. 11 111 1' 00 •1 t1 ~.I U •• ·~ u U - ~" ~1 ~I ~! •• ~· ,,. \; ,. nt1 IC II JI loll 14 

I 

l 
l 

Figure l Payrol I Format and Data 

Entering Data for Printing and Processing 

Many Model 340 applications will involve data that is to be printed directly 
on a prepared form. An order form and invoice (Figure 2 ) have been chosen 
to illustrate this application. The format program, shown in Figure 3, offers 
a choice of different job selection sequences. The job selection sequence 
FMAT IN l, OUT2, P cal Is for the invoices to be printed as the data is being 
entered. If batch printing is preferred, the data could be entered with the 
job selection sequence BATCH IN2, OUTP. 

1-15 

Sep 74 Formattin!=l 



The printer control format program example in Figure consists of six format 
pages: a horizontal tab sequence, a vertical tab sequence, an address page, 
a header page, an item page and a trailer page. Notice that the trailer page 
advances the printer to the first line of the next form: 

E 
[C]SF, I 

c 

The strategy in writing formats of this type is to make the display on the 
screen resemble the source data sheet while using printer control codes to 
make the output data fit the preprinted form. 

Preparing Separate Data for Printer ·and Central Processor 

In the previous example the data contained special printer control codes, 
horizontal tabs, vertical tabs, and carriage return codes. For this reason it 
was possible to elect to print during formatted data entry or in a batch mode 
after data entry was complete. However, the central processor would have 
to have been programmed to ignore the printer codes. An alternate approach 
to combining printing and processing is to write the original Model 340 format 
in a form which sends the printer codes to the printer only and not to the 
cass.ette tape that will contain the data to be processed (see Figure 4 ). In 
this case, since the tape will not contain the printer control codes, the 
printing must be done during data entry and not as a separate batch process. 
However, the central processor need not be specially programmed to ignore 
the printer control codes. The job selection sequence, then, for data entry 
will be FMAT INl, OUT2,P. The printer control codes are kept out of the 
data stream on tape 2 by the use of a constant data field with secondary 
output only, [4C]. The format illustrated is exactly the same as the one used 
in the previous example. A comparison of the data tapes from these two 
examples would show that the only difference is the presence or absence of 
printer control codes. 

Sep 74 

1-16 
Formatting 



Sep 74 

ORDER FORM 

Shipped To: 

Changed To: 

Customer Order No. __________ _ 

Invoice No. ________ _ 

Shipping Point ______ ~ Via: P.P. ___ Express ____ Freight 

Our Order No. Date Salesman 1 s No. 

Tax Code ______ _ Shipment: Complete _____ Release--------

Qty Description Product Price Amount 

Net Amount 1 Tax % f Tax Amount J Shipping ChargesJ:lnvoice Total 

I T 1 

Figure 2 Order Form and Invoice 

1-17 
Formattina 



Sep 74 

MODEL 340 Format Layout Form Al>PI- iwoice PRINTING 
-===-~~..,..-,~-=--~ 

FM AT IN~ OUT..£..,.£_ ~ "''°~ 171 1'171 8Y -=J"-'. N=uc.=e'----. 
OR F' .. A'T 1"1 I, OVT 2 f'oLLOWE.O ~y eATCH '"' 2., OUT P 

.p,, " .. '·' .. ' :r_, .. ' " . . .. . . . •· ,, . . . . " . ... ,,, ·' '., ... '"., ., .. .. . ". 
H 
0 
a 
I 
l 

T 
A 
~ 

v 
E 
R 
T 

T 
A 
B 

A 
0 
0 
R 
~ 
'j 

5 

ll J [[I !)([)( IX rx rx 
iXD( IXI 

_.L..L-L......J 

-~ ' rn:~ ~· l + r 11 J[[lf e LPl'. et!_ e L e[L. ~LJ.eTLI · · tP 1 
I ] i' 1 

11 ! ' 1 
1]] 
, : ~ 

JII I 

1 11 . " n In\ ~ 
NA 'tL11 

SH IP P[ 0 ]Io: [ A'D O, 1c1~~ 1 
c~ ll:l'lVl,j~T 

i '! 
~H 

[N A~ ]J 
HA 1H1 100 T I (A DIDr-. tj~~ 

i: c. 11!Iv ~T JATE 

]5 D< P<D< ~ 
l 
I 

I 

i 

l i 

ll 
I 

· l· · ·F r·.:IIJI:TJ.:_ l ' .. ., . ., 

I 1j jtJ_T I I I 
j [ I J 1 J ' ! --j ' J_ I 

I I j I ' J1 
i -'- I ]' 

11 I _TT, ' 1 
!' j_ • I I J :r 

Hi }: ' 1 
-r 

1 :Jj_l 

,. , . "}' ·:Y· ' . .. .. . . .. "" . -" .. "" ' .. '"' '" v ... . " . ,. ' ... 

~M J ! 

~~ }M] 
l.1,P jMJ ,, ~ 

I I 

]M.J ,~ 

_MJ , l'ilSJS 
!I P ]MJ ,, ,. 

MODEL 340 Format Layout Form 

FMAT IN_,__ OUT_,_ 
Awlicotion ll•JVOICE Nll'JTINEJ (Caf<JT'D) 

Dabl-~~-'·-~~~~~~~ 

-,- · r-.r,_·- . J· J_n .......... , ..... , ......... , .............. " 
r *l[slS!SlSK[NEJ:!:. 11.~lOuNT R.J 1 1n ~ 
R [TA,)( ,,; : RD I ~ I 

A ( TfAX A.jN 1µ NT +- R.J I }j tlSli. 
I OEI PPIN~ ~:; RJ l 1J ~~11 
L j jj 
E: (I NV 1 ]qE. rt'P!TJAIL R] i j Cf'.:JI! F-J:!I 

R -'--'--'---'---'--'-'--'- 1.-'-L...L..L..L-'-'LLl . ..L.1~~~1~1~~~~~~~~~~-~~--

Figure 3 1nvoice Printing Formats 
1-18 

Formatting 



Sep 74 

SVC00 Iii( 

MODEL 340 Format Layout Form 

FMAT IN_!_,_ OUT.£.,2-

-,---,----; --,-

MODEL 340 Format Layout Form 

FMAT IN_,_ OUT_,_ 

L _\_: !_ J_ _ _i __ -

i ~~r 
~ 'l-'----'---i--' ~ - 'li:f ' 

Aw1oca,,on INVO\C1" DATA Al-JD PRlNTING 
Dato Fee el:,1971 By N l< &'>GGALcY 

I 

I 

-'--+ t 

Application INVOICt:. DAii\ J F'kiNTING (eom-'D) 
Date By 

--, 1 ... '. f: +---r----. ___.._ __ .. 

- ~----<-- ~ ,_ - -

~~--+~---+-~,,:.;:~-i:.:;;:;.::.::.::~.,..J--l-~~~-J~--~4-~,,....!;~:.=..~..1--~.,+-,,,.,.,..:+-,n--.-.-~.....---t--'---i 
" .R). 

'i 

Figure 4 

I( J 

Invoice Data and Printing Formats 

1-19 
Formatting 



'• .. , ·.. ;,,._) 

Updating Existing Data 

An update program can be written for any existing data set. The ability to 
cal I data in from a secondary input (present in al I Model 340 terminals) and a 
second cassette recorder make updating possible. An update format distinguishes 
between data that will change and data that will remain the same. Data that 
does not change is cal led in from the secondary input and used as is in the 
output data stream, [JM]. Data that will be replaced is called in from the 
secondary but with 11 no output 11 specified, [7M]. At this point in the update, 
new data is keyed in from the keyboard and entered in the output data stream. 
These operations are alternated where necessary throughout the update format. 

figure 5 is an update format program to update the payrol I data coliected with 
the format shown in figure 1 • This update could be used regularily for every 
employee every week to enter the number of hours worked. 

The update operation is very useful when all records in a data set are being 
changed. If you want to revise the data in a single record out of a group, 
you should use a combination of search and insert operations. Search for the 
data record, type over the data that needs to be changed, depress tape 1 or 
tape 2, and depress insert. 

II 
0 
u 
R 
5. 

Sep 74 

. ' 
[ 

U!M l 
[ I ~J 

CH ouR 

MODEL 340 Format Layout Form 

FMAT IN_..L OUT.£.,_ 
--ion PAYROLL lJP'DAiE. f-'ROE>l(M.' 
o... ~ 10 1q71 av N.o::. l!!>AEiGALE.Y 

. ' .. .. ,. ,, " "" .. I•• .. ". »ll . ... ' ' " . . ' " . .. "" .... ~. ". -· 
1115 ~f e.tc. ']:;. IH VI~ IP!Atl le 1!2]0 E.[N ~I IN]~: JI j_ 

r. ~J I 

MH N~E 1 l"lJ 
I\ JS JS , 1 

1 [Be L[A)R I/ER il~E D uro IJ.e Tl t.IE I .i ' 
ll I\ ll ~ l J_ J_ ±-1 J_ 

T J_ 

... 
I I .l. 

I I 

± 
'4' I. H 

T I 
I l 

J_ 

Figure 5 Payroll Update Format 

1-20 
Formatting 



Updating and Printing 

A feature of the Model 340 updating procedure is automatic removal of al I 
printer control characters (ESC, HT, VT, LF, CR, FF) from the secondary data 
before bringing it into the data fields on the display. Update formats, 
therefore, generally contain the same printer control characters, hooks and 
backslashes as were used in the original data collection format (Figures 1 and 
5 for example). However, this feature may be used to change the print 
format by using an update format program that contains different printer control 
characters. The original printer control characters will be removed and the 
output data wil I contain only the printer control characters created by the 
update format. This feature is extremely useful in situations where data files 
exist and a new or different print requirement arises. 

If escape sequences have been used in the original data, (ESC, A through F) 
only the escape characters will be automatically removed when the data comes 
in as secondary input. To restore the original printer controls, only the 
escape character need be included as constant data in the update format. To 
eliminate the original printer controls, the A, B, C, D, E or F wil I have to 
be eliminated in a one character 7M data field. 

Examples: 

Preserve Original 
Printer Control 

Eliminate Original 
Printer Control 

Change Original 
Printer Control 

Sep 74 

ORIGINAL FORMAT 

E 
[C]SA I 

c 

E 
[C]SA I 

c 

E 
[C]SA I 

c 

UPDATE FORMAT 

E 
[C]S[lM] 

c 

[7M] 

E 
[C]SB[7M] 

c -

1-21 
Formatting 



Below is a format that might be used to print the payroll data collected 
and updated in Figures 1 and 5 • 

" 0 
e 
I z 

0 
t.I 
T 
A 
L 

T 

~ 

S'iCOR II\(. 

C* J[I~ 
D< 

MODEL 340 Format Layout Form 

FMAT IN~ OUT.£.,_ 

"• ,, " " .. ·~ "11 IA I~ 11l J1 n J~ 14 ,,, 16 77 i .. ,., ... ,, ll " . 
~ 
I)( !)( 

I 
[)( f) 

. 

Application P"VR.OLL !>A.TA PRINTOUT 

Dete IO/p/?I By N. K. e-.AGC:.ALE.Y 

• w • . ~ "" u " GM " . .. ~ •• ~1 "~ "' ~ ~· ~· 
... . .. ., . , . 

f) ~ I)( 
[) ~ ]}( 

H-H 
-H ~ ll 

~± 

. H--' +-H-- .... _+-+ _ e~+-ti +- ·dl 

lj +-
1--+--+-+__._..-+-1_._..._._+-+-+-+-~-~-l-+-W-l--l-l-l-l--+-+.J.-++++++-~-+-IH-+-++++++~-+-t-+-IH-t-+-·t-t--H-rJ t+-t-+-TT I 

·. ·1.· .·.· f...; - -. !- . I-+-+~.' - t-._'--_+-l--l-+-+-t-+-1-1-~-+-+++++-+-+-+-l-+-f-+-+-+-++++~-+-t-t-t-t-++ ~~ 1' .. -4-- i-i-W -
-- -'--'-~--'--'---'---'--'~--'--"- ,__,_ _, -"--'- .L L.l. _,__ . ~ LJ. L .. ... - L t..l _L 

Sep 74 
1-22 

formatting 



PREPARING A FORMAT TAPE 

Format tape structure depends on the length of the format (number of pages) 
and on whether or not printing is being done. A single cassette tape may be 
used to store many one page formats but, because of the format tape rewind 
feature, a separate cassette tape must be used for each multiple page format. 

Fill out a Sycor Format Layout Form with the format you have designed. 
Select a suitable format mode job. selection and work with program control 
off. Key in the formats on the terminal and write them on tape manually 
(tape l or tape 2 fol lowed by write). Turn program control on and test each 
format as soon as it is written on tape. When format errors occur, turn 
program control off, correct the format on the display and correct the format 
tape by doing an insert (tape l or tape 2 followed by insert). 

One Page Formats 

This is the simplest case. The format tape consists of a single record: the 
format, exactly as written on the format layout form. However, if several 
one page formats are to be stored on the same tape each format should be 
preceeded by a separate format title record. The format title record is used 
to locate a format in search mode without having the tape head positioned 
after the actual format record. A convenient form for a title record is: 

[TITLE 6MJ_I 

Using a format structure for the title record makes it possible to advance 
through the format tape using the next format key without turning program 
control off. This method may be used for locating formats near the beginning 
of the tape and saves the operator the trouble of changing to a search mode 
job selection to locate the correct format. 

An index of titles may be recorded at the beginning of the tape to remind the 
operator of the exact search identifiers and of the order of the formats on tape. 

TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 

Sep 74 

TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 
TITLE 6Ml_I 

1-23 
Formatting 



When the data generated by a one page format is to be printed, a horizontal 
tab format and a vertical tab format may preceed the format on the format tape. 
Format tape structure for a tape containing a mixture of one page formats with 
and without printing is illustrated in Figure 6. Automatic paging, [*], is 
used only for the horizontal and vertical tab formats. 

r=:l r;;i 
.L.::.J ~ 

~ 
~ 

r;;-i f;l 
~ L:2J 

Figure 6 Format Tape Structure, One Page Formats 

Multiple Page Formats 

Multiple page formats generally consist of a combination of single use pages 
and item pages. The pages that are used once will contain a protected 
asterisk, [*], and will be cleared when data entry is complete. Item pages 
do not contain a protected asterisk and are used a number of times for each 
source document. The operator depresses next format to advance to the next 
format page when an item page is no longer needed. 

When the Model 340 encounters a file separator on the format input tape, the 
tape automatically rewinds and the first format page is displayed again. To 
minimize the time spent waiting for the format tape to rewind, we recommend 
repeating the formats on the input tape so that a number of records may be 
entered before the tape rewinds. A typical format tape would contain format 
pages 1,2,3,4 •••. N; 1,2,3,4 ••• N; 1,2,3,4, ••• N; ••• 
followed by a file separator. The format pages should be repeated enough 
times to al low an operator to complete a two hour work period without having 
the tape rewind. 

When printing is combined with multiple page formats, repeated recordings of 
the format pages becomes even more necessary. A typical format tape for 
printing from a multiple page format would contain a horizontal tab record, 
a vertical tab record, format pages 1,2,3, ••• N; 1,2,3, ••• N; 1,2,3, 
• • • N; • • • , and a file separator. In the printing situation, the printer 
tabs are reset by the horizontal and vertical tab formats each time and format 
tape is rewound. Therefore, in the interest of the throughput, it is important 
to record many sets of the format pages on the format tape. 

Sep 74 
1-24 

Formatting 



Figure 7 Format Tape Structure, Multiple Page Formats 

An alternate method of arranging printer format tapes 
requires more operator set-up time but provides assurance 
that the HT and VT records wil I be used only once. If 
the alternate tape organization is used (Figure 8 ) the 
Model 340 operation instructions will have to be changed 
so that the operator positions the tape after the first 
file separator before turning program control on. 

Figure 8 Alternate Format Tape Structure 

A convenient way of advancing past a file of formats is to use a batch job 
selection with no output specified and with auto operation off. When EOF 
is reached the operator can turn auto operation and program control on and 
select a format mode job selection. The HT and VT records will be executed, 
the tape wil I rewind, and the first format wil I be displayed on the screen. 
Multiple copies of the format sequence are recommended to maximize tape life. 

Sep 74 
1-25 

Formatting 



DATA FLOW IN FORMAT MODE 

Model 340 format mode data flow is illustrated below. The CRT buffer 
contains both the format and data characters exactly as they appear on the CRT. 
When program control is on and the operator releases the data to the outputs, 
the format program is executed by the microprocessor in the fol lowing sequence. 

I"""" 

STATUS 64 
__j 

~ 

FORMAT ~------- CRT I I-:- 256 --1 INPUT 

- .. - -CRT- _ ___, -
I--' 256 

,........, PRIMARY 
KEYBOARD OUTPUT 

~ 

Lr 
256 

SECONDARY 1/0 .___ SECONDARY 
INPUT OUTPUT 

1. Scan each character on the CRT and collect all 
primary output characters. 

2. Store the primary output data characters in the 1/0 
buffer as they are collected. 

3. If a primary output is specified in the job selection 
sequence, transfer the contents of the 1/0 buffer to 
the primary output. 

4. If the primary output data set is greater than 256 
characters, repeat steps two and three for the 
additional characters. 

5. Scan each character on the CRT again and collect all 
secondary output data characters (only if the secondary 
output set is not identical to the primary output set). 

Sep 74 
1-26 

Formatting 



6. Store the secondary output data characters in the 1/0 
buffer as they are collected. 

7. If the secondary output data set is greater than 256 
characters, repeat steps 5 and 6 for the remaining 
characters. 

8. Check for auto paging etc., and prepare for the next 
data entry operation. 

9. If a secondary output is specified in the job selection 
sequence, transfer the contents of the 1/0 buffer to 
the secondary output. 

NOTE: Step 8 and data entry may overlap step 9. 

1 O. When the operator rel eases the next data page, the 
sequence is repeated beginning with step 1. 

The 1/0 buffer is also used when the job selection sequence and the 
format call for secondary input. For example: 

Sep 74 

FMAT INl,C OUT2,P 

[M] 1234[1M]ABCDEFGHl[M]567 

[ 1 M]JKLMN[2M]89,0'1 [4M]234 

[5M]OPQRSTUVWXYZ I 

1-27 
Formatting 



The operator enters data in the first field, [M] 1234. When the cursor enters 
the next data field, [lM], the microprocessor executes the secondary input 
command, reads a record from the secondary input, stores the record in the 
1/0 buffer and brings nine characters from the buffer into the data field on 
the CRT. The 1/0 buffer pointer is then left in position 10. The operator 
then comp I etes the next data field, [M]567, and the next secondary input 
field is filled from positions 10 through 14 in the 1/0 buffer. This process 
can be repeated until the record in the 1/0 buffer is exhausted, a data page 
is released, a new format page is displayed or the tape control keys are used. 
After one of these four events, a cal I for additional secondary input data wil I 
cause a new record to be read into the 1/0 buffer. 

The following events occur when the data in Figure 
operator. 

is released by the 

1. Primary data is collected and stored in the 1/0 buffer: 

1234ABCDEFGH1567JKLMN89,0'1 I 

2. Primary data is written on the cassette tape. 

1234ABCDEFGH 1567 J KLMN89,0'1 I 

3. Secondary data is collected and stored in the 1/0 buffer. 

1234ABCDEFGHl567JKLMN2340PQRSTUWVXYZ I 

4. The data fields are cleared to prepare for additional 
data entry. 

NOTE: Step 4 and data entry may overlap step 5. 

5. The secondary data is printed. 

1234ABCDEFGH 1567 J KLMN2340PQRSTUWVXYZ I 

Since the 1/0 buffer is never cleared, it may also be used for auto 
duplication. In this case the job selection sequence should not specify a 
secondary input or a secondary output. For example, in the following format: 

FMAT INl, OUT2, 

[2N] [lM] [*]I 

Sep 74 
l-28 

Formatting 



/ 

since no secondary input device is specified, the secondary input fields wil I 
be filled from the data left in the 1/0 buffer by the previous operation. This 
fact can be used to recal I data from the 1/0 buffer and re-use it in the next 
format page. 

For this example assume that the 1/0 buffer contained the letters A through 
H and a record separator before the preceeding sample format page was used. 

FMAT INl, OUT2, 

[2N]12345[1M]ABCDEFGH[*] I 

The operator enters data in the primary input field [2N] and the [ lM] field is 
fi I led from the 1/0 buffer. 

When the operator releases the data the fol lowing steps occur. 

1. Primary data is collected and stored in the 1/0 buffer. 

12345ABCDEFGH I 

2. Primary data is written on the cassette tape. 

12345ABCDEFGH I 

3. Secondary data is collected and stored in the 1/0 buffer. 

ABCDEFGH I 

4. A new format page is advanced onto the screen. 

5. No secondary output is specified in the job selection so no 
output is executed but notice that the 1/0 buffer again contains 
the letters A through H in the first eight positions. 

Other format pages in the sequence may not require any of these characters 
but they must be saved to be re-used when the first format page comes up 
again. The 11 saving 11 is accomplished by bringing in the eight characters in a 
[5M] field (secondary input, secondary output) at the beginning of each format 
page. For .example, the format: [5M]ABCDEFGH[N]37915I would result in 
having 37915 I written on cassette tape and ABCDEFGH37915 I left in the 
1/0 buffer after the format was executed. 

By careful use of the format 1/0 control characters and the job selection 
sequence, almost any auto duplication task amy be accomplished. 

Sep 74 
1-29 

Formatting 



Additional Notes 

Sep 74 

1-30 

Formatting 



TAL 
PROGRAMMING 



INTRODUCTION 

The Extended Memory Feature expands the capability of the Model 340 
terminal. Customized data editing programs can be easily written by 
the user in Terminal Application Language (TAL). Additional input/ 
output peripherals drivers and communications systems are preprogrammed. 

A Program Generator is provided by Sycor to translate T AL programs into 
machine language instructions and can be used on any 340 Terminal with 
the Extended Memory Feature. 

This same generator is used to select the peripheral drivers and communica­
tion systems from the Software Library and "bring it al I together". 

The end product of generation is a User Program which can be transmitted 
in any Model 340 communications mode. This object program is loaded 
into the terminal by a 11 loader 11 • The loader is one record in length and 
is the only portion of the Software Library that consists of characters 
outside the graphic character set. This means that the loader must be 
distributed by copying cassettes and mailing them. 

The communication systems, once loaded, run under their own control; while 
the data editing programs are loaded and run under format control. There­
fore, the first task is to design a format and indicate which fields will 
require the more extensive T AL Programming; and which will require ROM 
features. 

Sep 74 
1-1 

TAL Programming 



LOGICAL ANO PHYSICAL RECORDS 

Direct control of the input/output devices through the use of certain T AL 
instructions is possible. Therefore, an understanding of the differences between 
a Physical Record and a Logical Record is necessary. 

A Logical Record is a group of characters terminated by a RS (record separator). 
The maximum length of a logical record (including the RS) is 512 characters. 
A record that long is rare, however, since some of the 512 character-positions 
on the CRT are used to display the format. 

A Physical record has a maximum length of 256 characters. 

The 1/0 Buffer in the terminal is 256 characters long, meaning that a 
maximum of 256 characters can be input or output at one time. If the logical 
record is longer than 256 characters, it is input or output in two cycles or 
two physical records. 

A logical record of 350 characters would be output through the 1/0 Buffer 
as two physical records, which the following diagram shows. 

PHYSICAL 
RECORD 

LOGICAL 
RECORD 

--~~~~------~~~~~-' 
characters I .. 

IRG 

r 

194 

PHYSICAL 
RECORD 

A. 

characters ·'I I 
& 

IRG 

r 

The 11 IRG 11 is an Inter Record Gap, a physical space on the tape between the 
two physical records. The IRG is required to allow for starting and stopping 
the tape over the read/write head of the recorder. 0 

If the logical record is 256 characters or less, the length of the physical 
record is the same as that of the logical record. The following diagram 
illustrates this. 

1-2 
Sep 74 T AL Programming 



LOGICAL RECORD 

PHYSICAL RECORD 

\ I ~ 256 characters I I ( 
A 
IRG 

The CRT is divided into eight lines of 64 characters each. The first four lines 
consist of 256 characters; one physical record. If the format on the screen 
occupies any portion of the bottom half of the screen, it will require two 
physical records to output the format to the format tape. 

Status Line 

4 Lines { 256 characters 

4 Lines { 256 characters 

Most formats wi 11 occupy at least part of the bottom half of the screen and 
will therefore require two write cycles (two physical records) to record the 
format on the format tape. 

While the format usally requires two physical records, the data collected with 
the format may require only one physical record. This is because the protect­
ed fields are not output during data collection; only the contents of the data 
fields are output and this can be less than the 256 character limit of a 
physi ca I record. 

Sep 74 
1-3 

TAL Programming 



FIELD PROGRAMS 

A field program must be written for each format field which has an 
extended memory field control character in the field control position of 
the protected field. A field program can consist of up to 63 instructions. 
Each instruction consists of an OP CODE and a TABLE NUMBER. 

EXTENDED MEMORY FIELD CONTROL CHARACTERS 

The main function of an Extended Memory field control character is that 
it informs the format processor that a field program has been written for 
the field in which the character resides. It has the effect of linking the 
format with extended memory. There are eight extended memory fie Id 
control characters which can be used with a programmed field. The 
chart below shows these characters with their specific functions. 

EXTENDED MEMORY FIELD CONTROL 

Mixed Numeric 

I J Must Tab 
K L 

w x May Tab 
y z 

Must Tab Field-Mixed (I, K) 

A must tab field requires that the operator depress the TAB/SKIP key in order to 
execute the field program,whether the field is partially or completely filled by data. 

May Tab Field-Mixed 01/, Y) 

A may tab field requires that the operator depress the TAB/SKIP key to execute the 
field program only if a field is partially filled with data. If the defined field is 
completely filled with data by keyed input or from other input devices, program 
execution is automatic. 

Must Tab Field-Numeric (J, L) 

Same as mixed with the exception that the rules of a numeric field applies. 

May Tab Field-Numeric (X, Z) 

Same as mixed with the exception that the rules of a numeric field apply. 

1-4 
Sep 74 T AL Programming 



TABLES 

The operands for each TAL operation is written in a table format. Each 
table can consist of from one to n elements, limited only by the capacity 
of the CRT (512 characters). Some operations require fixed length tables 
whereas others allow a variable number of elements within a table. 
Elements of a table are separated by a backslash character 11 ' 11 • 

A record separator, immediately following the last element, defines the end of 
table. 

Sharing Elements of a Table 

An operation that requires one element in a table can utilize a table which 
has been defined with more than one element, assuming the first element of 
the multi-element table satisfies the requirements of that operation. An 
example of element sharing is shown below with the ADD and JUMP operation. 
The ADD operation requires a three element table which in this case specifies 
that Element 1, a constant of 3, is added to Element 2, register fl. and is 
stored in Element 3, also Register f1 the JMP operation requires a one 
element table which specifies the number of program steps to be skipped 
relative to the JMP instruction. 

FIELD PROGRAMS 

FIELD 
LABEL 

Since the table was defined with the ADD operation the table need only 
be referenced by its number, for the JMP operation. The execution of JMP 
instruction will result in skipping 3 program steps relative to that instruction. 
The JMP operation will ignore the last two elements of the table. The GTO 
operation uses table 3flf1 which utilizes only the first element of the table. 

Sep 74 
1-5 

TAL Programming 



Sharing Complete Table 

Al I of the elements or part of the elements of a table can be shared by an 
unlimited number of operations. 

FIELD PROGRAMS 

FIELD 
LABEL 

The ADD instruction results in the contents of the field being added to 
Register l and the result stored in Register 9. The SUB instruction utilizing 
the same table, results in the contents of Register l being subtracted from the 
field with the result stored in Register 9. 

Table 2fdfd was defined once; and satisified the requirements of both the ADD 
and SUB operations. 

T AL PROGRAM FORM 

The Model 340 TAL Program Form is provided for the writing of field programs 
and for the definition of tables associated with the operations in the field 
programs. A copy of the program form is on the next page. 

Program Name 

Three positions are allocated for the specifying of a Program Name. This name 
will be used to call the program from the program library. 

Switches, Registers and Accumulator Indicators 

Three boxes are located at the top of the TAL Programming Form which al low the 
programmer to indicate the specific Switches, Registers or Accumulators used in 
the application program. This al lows the programmer to account for those used. 

Sep 74 
1-6 

TAL Programming 



-I 
)> .. 
'"tJ a 
co ., 
c 
3 
3 I 

::J " co 

51 MODEL 340 TAL PROGRAM FORM 
SYCOR INC 
ISWITCHES"I 8 

I 
7 6 5 4 3 2 REGISTERS" Ril Rl 

X IF USED X IF USED 

FIELD PROGRAMS 
IJ 
KL 

WX FIELD OP TABLE 2 

1~~~~RAM I I 
R2 R3 R4 

TABLES 
3 

I I 
APPLICATION 

DATE 

RS R6 R7 

4 

0!% l ?(-,4 

SHEET OF ___ 

BY 

RS R9 ACCUMULATORS SA TA 
X IF USED 

6 
YZ LABEL CODE NO. 

TABLE 
NO. 45 678 901 234 56 789 012 34 56 78 90 123 45 678 901 

5 
234 56 7890 12 34 567 890 1234 

r-- t-T-r-~ r--i-r-1 
t-+-+- t-+-+- t-+-t-1 
t-+-+- I-+--+- i--+-+-; 

t-+-+- 1-+--t- t--+-+-
1-+--t-- I-+--+- t---+---1-

t-+-+- t--t-t--1 t---+---1-

t-+-+-- t-t-t-- t--+-+­
t-+-+- I-+--+- t---+---1-

t-t--+- t--t-t--1 t---+---1-

t-+-+- I-+--+- t---+---1-

t-+-+- t--t-t--1 i---+-+­
t---+--+-- I-+--+- t---+---1-

t-+-+- I-+--+- t---+---1-

t-+-+-- I-+--+- t-t-+--1 
t-+-+- I-+--+- t-t---t-1 

t--+---+-j I-+--+- t--+-t--1 
f--t--+- t-+-t--: t-t-+--1 
t-+--+- I-+--+- t-t-t-­
t-+-+- 1--1-+- 1-+--+­

t-+-+-- t-t-t-- 1-1--+­
t-+-+-- t-t-t-- t-t-t-­
t-+-+- t-t--+-1 1-+--+­

t-+-+-- t-+-t--: 1-+--+­

t-+-+- t-t--+-1 I-+--+-
.___. .............. ~ ............... 

OP CODES 
Circle those used 

ACP ADD ANS BEL 
EXF GET GTI GTO 
SHF SIR SMA SRH 
#M7 #M9 #PT #ST 

BSP CKA CK1 CK2 CK3 CK4 CK5 CK6 CK7 
INS IXR JMP LMA LOO MAP MOP MPY MVE 
SSW STR SUB TCP TLU TSC TSW VFY WRT 

* the REG op code must be specified if the Registers or Switches are used 

CK8 
MVM 
#AP 

CK9 CKO CMP CRC CVB CVD DIV 
NFT NXF NXT OVL PTI PUT ROX 
#AR #CP #CR #CT #CO #MA #MG 

DUP EBC EDT 
REG'' REW RNG 
#MH #MN #MS 

ERR 
RT J 
#MT 

ETC 
SCN 
#MX 



Extended Memory Field Control Character 

The first column on the left is labelled IJ, KL, WX, YZ. This is the Field Control 
Character column. Each field program is associated with an Extended Memory 
Field Control character and should be entered in the column next to the field 
program. During program generation these characters specify the sequence in 
which the field programs will be presented to the generator. The field for which 
the field program is written will also have this character associated with it in the 
format. 

Field Label 

Each field program must be identified by a Field Label which is the first three 
characters of the label identifying that field in the format. 

The fol lowing diagram shows the linkage between the format and the field 
program. The field program is linked with the format by a combination of the 
extended memory field control character and the field label. 

1 ~ :.i 4 r> € ., e 9 10 11 

(p RT No ) 
IJ 
KL 
wx 
vz 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

++-+--I Ii I!~ ....-+--1-~ 
During the program execution the specific field program will be located by the 
first three characters of the field label and the associated field control character. 

OP Code 

For each TAL instruction an OP Code must be entered from the list of available 
OP Codes at the bottom of the T AL form • 

Table Number 

For each TAL instruction a three character Table Number must be entered which 
references a table defined on the right side of the TAL form. The first character 
must be a numeric, followed by any two characters. 

Sep 74 
1-8 

TAL Programming 



Table Definition 

Tables are to be defined on the right hand side of the TAL fonn under the section 
marked Tables. Tables do not have to be defined in the same line as the OP code 
which references it; however, for clarity and convenience it is recommended 
that it be done that way. Tables are presented to the TAL assembler separately 
from the field programs. Software routines such as #pr do not require a table. 

A table consists of a three character number(columns 1-3) and one or more 
elements(starting in column 5). Elements in a table are separated by a " 11 

character and a RS must end the table. The operation detennines the number of 
elements and their content. 

OP Codes Used 

A list of available OP codes in the TAL library is printed at the bottom of the TAL 
program fonn. It is the responsibility of the programmer to circle each OP code 
used in the program. Multiple use of the same OP code requires that it only be 
circled once. This infonnation is used as input to the TAL generator. 

TAL ABREVIATIONS 

Abreviations are used in the coding of tables. What fol lows is a general description 
of the abreviations. Many instructions impose their own limitations on the elements 
of a table and will be explained in the section pertaining tp that instruction. 

Registers (R,0'-R9) 

There are ten Registers avai I able in TAL. Each Register consists of 11 positions, 
ten for data and one for sign in arithmetic operations. When using the Registers 
for unsigned data al I positions can be used for storage. The Registers are allocated 
to 110 contiguous positions in the 3401s memory(lO Registers, 11 positions each). 
To set aside this space in memory the REG OP code must be specified during 
generation. Registers %-9 are referenced in T AL as R,0'-R9. 

Index Register (IR) 

This is a one byte register, made up of eight bits, which is not to be confused 
with registers %-9. It is nonnal ly used to store a byte address for the 1/0 buffer. 
The Index Register is referenced as JR. 

1-9 
Sep 74 T AL Programming 



Accumulators (SA, TA) 

The Subtotal and Total Accumulators which are accessible through the formatting 
feature of ROM can also be referenced by T AL. The physical makeup of the 
Accumulators are identical to the registers with the exception that they are dis­
playable on the status line of the CRT. The Accumulators are referenced as 
fol lows: SA for the Subtotal Accumulator and TA for the Total Accumulator. 

Switches (SW or 1-8) 

There are eight programmable switches in TAL. The Switches can be set to ON (1) 
or OFF (JD). The REG OP code must be specified during generation in order to 
allocate a position in memory for the switches. Switches 1-8 are referenced by a 
1-8. All eight switches can be referenced at once by specifying SW, which refers 
to the byte where the Switches are located. 

Fields (F) 

Fields are defined in the program format but can be referenced through TAL. Field 
size is limited only by the capacity of the data entry portion of the CRT. By specify­
ing F, a field can be referenced in a program. F always refers to the current field, 
i.e. where the cursor is located at the time of execution. 

T AL CONVENTIONS 

In addition to the abreviations covered in the previous paragraphs the T AL instruc­
tions use the following conventions. 

Location (LOC) 

Whenever LOC is specified as a table element tbe fol lowing abreviations may be 
used: F, SA, TA or R,0'-R9. 

Constant (CON) 

Whenever CON is specified as a table element the element may contain numeric, 
alphabetic or mixed information. Refer to the individual instructions for any 
restrictions. 

Relationship (REL) 

REL is used in branching instructions to denote Relationships such as =,I,(,), ( 
ood~. -

Sep 74 
1-10 

T AL Programming 



ADDITION I A D D I 

ADD LOC,CON\ LOC,CON\ LOC. 

The contents of Element 1 are added to the contents of Element 2 and the 
result is stored in Element 3. 

NOTES: 

• Commas and decimal points are ignored. 

• Leading and trailing blanks are ignored. 

• Embedded non-numerics cause truncation. 

• The result is left-justified in Element 3, with insignificant zeros 
eliminated. 

• Overflow occurs if the result exceeds the capacity of Element 3, 
or if Element 1, 2, or 3 exceeds 10 digits. 

• If Element 1 or 2 is null, a value of zero is assumed. 

EXAMPLES: 

Addition of a field and a register, storing the result in another register: 

FIELD PROGRAMS 

FIELD 
LABEL 

Before 

R 1 I ;>..j ¢11 I b I I I I I I I 

R2 I A Ii I s-1 I I I I I I I I 

After 

Rl J.;il¢l1l6I I I I I I I I 
R2 I 318 I' I 1 I I I I I . , I I 

2-1 
Sep 74 T AL Programming 



Addition of a constant to a register: 

FIELD PROGRAMS 

FIELD OP TABLE 
LABEL CODE NO. 

~_._._ I A Io loi 1 1:, s 

Before After 

R9 11 !Lflsl I I I I I I I I R9 l 1 141 &I I I I I 

Addition of a field to a register with embedded non-;1umerics: 

FIELD PROGRAMS 

FIELD 
LABEL 

Before After 

[ I 

R6 Li l.;l.IAltlY.l~I I I I I I R6 1~1;;>.1 Bl71 I I I I I [ I 

Sep 74 
2-2 

TAL Programming 



SUBTRACTION 

SUB LOC,CON \ LOC, CON\ Loe• 

The contents of Element 2 are subtracted from the contents of Element 1, 
and the result is stored in Element 3. 

NOTES: 

• Commas and decimal points are ignored. 

• Leading and trailing blanks are ignored. 

• Embedded non-numerics cause truncation. 

• The result in Element 3 is left justified with insignificant zeros 
eliminated. 

S U B 

• Overflow occurs if the result exceeds the capacity of Element 3, or 
if Element 1, 2, or 3 is more than 10 digits. 

• If Element 1 or Element 2 is null, a value of zero is assumed. 

EXAMPLES: 

Subtraction of a register from a field and storing the result in another 
register. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

__.___.__. I s I u Isl L..1-L~ 

Before After 

R 1 l.:tl¢l 1 I "I I I I I I I I I 
R2 l.311 Isl I I I I I I I I I 

Sep 74 

(FIEL 

R 1 I .ii c; i 1 I 6 I I I I 

R2I11111 i I I I I I I I I 
2-3 

TAL Programming 



Subtraction of a register from a constant: 

FIELD PROGRAMS. 

FIELD OP 
LABEL CODE 

....._..__.___. I s I u I si "--L-L.~ 

Before After 

R 9 , , I 'l I 'l ,__, -'--' _._I --'--'-_.____..____.__.. R9 l 1 lqlsl I 1 I I I I I I 

Subtraction of a field from a register with an embedded non-numeric: 

FIELD PROGRAMS 

FIELD 
LABEL 

Before 

[FIE LI> )(]I J.A14J. I 

R6 I 1 is l'f I s-1 I I I I I I I 

Sep 74 

After 

(FIEL 

R6 I gj(i)l 3 I I I I I I I I l 

2-4 
TAL Programming 



MULTI PICA TION M p y I 

MPY LOC,CON \ LOC,CON \ LOC \CON • 

The contents of Element l are multiplied by the contents of Element 2, and 
the result is stored in Element 3. Element 4, which is optional, specifies 
the number of digits to be rounded off in the product. 

NOTES: 

• Commas and decimal points are ignored. 

• Embedded non-numerics cause truncation. 

• The result is left-justified in Element 3, with insignificant zeros 
eliminated. 

• Element l can not exceed 10 digits. 

• If the third Element is a field it can be defined up to twenty-one 
positions, including the sign. 

• If Element l or 2 is blank, a value of zero is assumed. 

• Overflow occurs if the result exceeds the capacity of Element 3. 

• Rounding does not ts;ike place, when Element 4 is not specified. 

2-5 
Sep 74 T AL Programming 



EXAMPLES: 

Multiplication of a field and a register, storing the result in another 
register, while rounding 2 places. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.....__.__.__.. IM Ip I y I 11-%..L..!..J...Z 

Before After 

X]l333 

R l I 31 I I II I I I I I I 
R2 I~ I I I I I I I .1 I I 

R1 131 I I I I I I I I I I 
R2 141¢1 I I I I I I I I I 

Multiplication of a register by a constant and storing the product in the 
to ta I accumulator. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

IA lelvl ~!.U:;. 

Before After 

R3 111~1 I I l_J __ I I ]]] R3 111~1 I I ! ..... I I I I I I 
' 

TA l<bl I I I I I I .. I I I l TA !1ld..I I I I I I I I I I 

2-6 
Sep 74 T AL Programming 



Multiplication of a field by a register with an embedded non-numeric: 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~---- 111 IP I y I L.3C..l...E-.UC. 

Before After 

R7 l~IAl31 I l I I I I LJ R7 111~111 I I I I I ITI 

2-7 
Sep 74 T AL Programming 



Additional Notes 

Sep 74 
2-8 

TAL Programming 



DIVISION D I V 

DIV LOC,CON \ LOC,CON\ Loe\ LOC,CON • 

The contents of Element l are divided by the contents of Element 2, and 
the result is placed in the location specified by Element 3. 

If Element 4, which is optional, is a constant it states the number of 
additional significant digits to carry out the calculation of Element 3 and 
rounding takes place on the last significant digit. If Element 4 is a 
location, the remainder is placed in that location. 

NOTES: 

• Commas and decimal points are ignored. 

• Embedded non-numerics ca use truncation. 

• The result is left-justified in Element 3, with insignificant zeros 
eliminated. 

• If Element or 2 is blank, a value of zero is assumed • 

• If Element 3 is a field, it can be defined up to twenty-one positions, 
including the sign. 

• If Element 2 equals zero, overflow occurs. 

• Overflow will occur if the calculation or remainder exceeds the 
capacity of Elements 3 or 4 respectively. 

2-9 
Sep 74 T AL Programming 



EXAMPLES: 

Division of a field bY' a register and storing the result in another register 
while carrying out the calculation two extra places: 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.__.__..._ .... 1$ I 1 ivi ~~ 

Before 

[Fl£L 

R1 [31 I I I I I I I I I I 

R2 I '1>1 I I I I I I I I I I 

After 

Rl 131 I I I I I I I I I I 

R2 161~1&1.&111 I I I I I I 

Division of a register by a constant and storing the remainder in the 
total accumulator. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

__ __.__ h>l 1 lvl LZ-J...:~ 

Before 

R3 I ;l.l s-1 I I I I I I · I I I 

TA lfkl I I I I I I I I I I 

Sep 74 

After 

R3 rt1 1 1 1 1 1 1i_m 
TA 111 I I I I I I I I I I 

2-10 
TAL Programming 



Division of a field by a register with an embedded non-numeric: 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~-..1-..... ID I , I vi IL..C-'-'::..-&..Z:J 

I 2 l 4 

(FIEL 

R7 I.ii A\3\ I I I I I I I I 

SA ls-191 I I I I I I I I I 

Sep 74 

R7 \g\4\1\ I I I I I I I I 

SA \.ii I I I I I I I I I I 

2-11 
TAL Programming 



Additional Notes 

Sep 74 
2-12 

TAL Programming 



ASCII COMPARE 

ACP LOC,CON \ REL\ LOC,CON \ CON • 

Element l is compared to Element 3, by the relationship in Element 2. If 
the comparison fails program control jumps the number of steps specified in 
Element 4. 

NOTES: 

• Valid relationships for Element 2 are =, /=,>, <, > = and < =. 

• 11/= 11 in Element 2 represents an unequal relationship. 

• Any ASCII character is valid; therefore all spaces are significant. 

EXAMPLES: 

Test the product number entered to make sure it rs less than 8300. 

(PROl>Vt:.T NUHBEI? I 5 I 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

----1!~1~ .....-.+~ 
NOTE: 

• Refer to the ASC 11 chart in Appendix. 

3-l 
Sep 74 TAL Programming 



If the invoice is repeated in two distinct places, cal I in the next 
format. 

1 } l ., c " I " • w ~ 1 ,, i'..i ••• 1;:; h'• 11 '" Fl 

CI N ~. ~ )( J ~I 4 S' _I 

LI 

(I N v. ~ )( ] r I 7 ;l I 

FIELD PROGRAMS 

FIELD OP 

NOTE: 

• Since the Z145 entered in the INV. # field is unequal to the 
Z172 entered in the *INV. # field, program control jumps to the 
GTO j12fd instruction. 

3-2 
Sep 74 T AL Programming 



CHECK DIGITS CK_ j 

CK LOC \CON • 

Check digit verification is performed on data located in Element l. If the 
check digit is not verified, program control jumps according to the value in 
Element 2. 

NOTES: 

• 

OP 
CODES 

CK¢ 

CKl 

CK2* 

CK3 

CK4* 

CK5* 

CK6** 

CK7k 

CK8* 

CK9** 

The check digit instruction is capable of performing different 
verifications, depending upon the last character of the instruction. 
These check digit OP CODES, and their algorithms, are listed below. 

MULTIPLIERS Sum of 
MOD right justified Digits Products 

10 7, 6, 5, 4, 3, 2 x 

10 2, l I 2, l, 2, l t 2 x 

11 2, 7, 6, 5, 4, 3, 2 x 
• 

10 l I 3, 7, l, 3, 7 x 

11 2, 8, 7, 6, 5, 4, 3, 2 x 

11 2, 7, 6, 5, 4, 3, 2 x 

7 NONE N/A 

11 2, 9, 8, 7, 6, 5, 4, 3, 2 x 

11 2, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 x 

NONE 2, l I 2, l I 2 x 

CKA** 11 9, 8, 7, 6, 5, 4, 3, 2 x 

* 

** 

Sep 74 

Base numbers resulting in a check digit of ten should be eliminated 
from the numbering system. 
These check digits have unique algorithms. An example of each is 
contained in the following section. 

3-3 
TAL Programming 



• Multipliers continue the series by repeating the basic factor. 
Example: Series 137. Number to be verified 1234567. Multiply 
factor 7137137. 

METHODS OF CALCULATION: 

Sum of Digits method of calculating a check digit using the algorithm for 
CK 1. 

NOTE: 

1567429 
121212-

1+1+0+6+1+4+4+4 = 21+10 = 2 with remainder of 1 

10 - 1 = i 

• Individual digits of the products are added in the algorithm. 

Sum of Products method of calculation a check digit using the algorithm 
for CK 3. 

NOTE: 

4756428 
137137-

4+21+35+6+12+14 = 92 + 10 = 9 remainder of 2. 

10 - 2 = 8 

• Individual products are added in the algorithm. 

3-4 
Sep 74 T AL Programming 



Special method of calculating the check digit for CK 9. 

1253462 
121212-

1+4+5+6+4+12 = 3~ 

Special method for calculating the check digits for CKA. 

975321167 
765432-

63+42+25+12+6+2 = 150 + 11 = 13 remainder of 7. 

NOTE: 

• If the remainder is ten or eleven do not precede it with a zero. 

3-5 
Sep 74 T AL Programming 



Additional Notes 

Sep 74 
3-6 

TAL Programming 



EQUAL TABLE COMPARE 

ETC LOC \CON \CON ••••• 
Data in Element 1 is compared to elements 3 through N (if used). 
If no match is found, program control will jump the number of 
instructions specified in Element 2. 

NOTES: 

• The table may contain as few as 3 elements or as many 
elements as needed, limited only by the size of the screen. 

• Trailing blanks in the table are not allowed. 

• Leading and trailing blanks contained in Element 1 are ignored. 

ET C 

Sep 74 
3-7 

TAL Programming 



EXAMPLES: 

Insuring that the operator enters county one, two, or six. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

c.ou E T c. 
lr T 0 
c f ~ 

NOTE: 

• Since the operator entered a value unequal to Elements 3, 4, or 5 
of Table /dl/d program control jumps two positions forward. The ERR 
fd3fd command is then executed. 

Insuring that the operator enters either OHIO or MICHIGAN for the state: 

W]OHIO 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

_s __ 1111--'-+~ 

Sep 74 

2 

~· 

3-8 
T AL Programming 



JUMP J M p 

JMP CON. 

Move program control forward or backward, by the value in Element l, 
relative to the current instruction. 

NOTES: 

• Maximum jump is 99 instructions. 

• To jump backwards, use the minus symbol after the number, 
i.e. 2-. 

• The JMP instruction operates only within the same extended 
memory fie Id control groups, l and J, K and L, W and X, or 
Y and Z, i.e. jumping from group l to group L is not allowed. 

• It is not possible to completely jump over a field program. 
The procedure is to move program control into the field program 
and then out via another jump. 

• When jumping into another field program within the same extended 
memory field control group a count of one must .be added for the field 
label. 

3-9 
Sep 74 T AL Programming 



EXAMPLES: 

Assuming that information for some labels has already been stored in the 
1/0 buffer multiple copies of the label can be produced as fol lows: 

FIELD PROGRAMS 

FIELD 

Jumping into another field program to continue an editing operation. 

Sep 74 

FIELD PROGRAMS 

FIELD 
LABEL 

SP 

3-10 
TAL Programming 



NUMERIC COMPARE I c M p 

CMP LOC,CON\ REL\ LOC,CON \CON • 

Element 1 is compared to Element 3, by the numeric relationship specified 
in Element 2. If the comparison fails, program control jumps the number of 
steps, forward or backward, specified in Element 4. 

NOTES: 

• Valid relationships for Element 2 are=,/=,>,<,>= and<=. 

• . "/=" Element 2 represents an unequal relationship. 

• If Element 3 is a blank, only the "=" and "/=" relationships are valid. 

• Commas and decimal points in Elements 1 and 3 are ignored. 

• Embedded non-numerics cause truncation. 

• Comparison is made from right t6 left and truncates when it reaches 
either an alpha character or a start of field. 

3-11 
Sep 74 T AL Programming 



EXAMPLES: 

When the total accumulator equals 24 go to the next format; otherwise, 
go to the next field. 

TA lil41 I I I I I I I I] 

FIELD PROGRAMS 

FIELD 
LABEL 

OP 
CODE 

-T---1~ !!I! I--'-+'=-+= 

When Register 3, which contains total hours worked for the week, is less 
than or equal to 40.00 skip the overtime calculation. 

FIELD PROGRAMS 

Sep 74 
3-12 

T AL Programming 



Comparing a field having an embedded non-numeric. 

(t?ATE K]3~AS"I 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

---~~ 
NOTE: 

• The CMP instruction treats 3A5 as a 5, because it stops comparing 
the number when it comes to a non-numeric character. The GTO %8% 
command is then executed. 

Forcing operator to enter hours to two decimal places. 

21 ?2 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

_...._~ I~~ 18 1-'-t--L-t= 

NOTE: 

• The eight entered in the field does not equal the 11800 11 called for; 
therefore, ERR 12% is executed. 

Sep 74 

3-13 
T AL Programming 



Here the digits have been entered correctly; but the required decimal 
point has been omitted. 

[CARD HOURS 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

--"-IE!l~ 
NOTE: 

• Since decimals are ignored, the 118.00 11 equals 11800 11 and no error 
results. 

Sep 74 
3-14 

T AL Programming 



RANGE CHECK 

RNG LOC \CON \CON \coN ••••• 
Data in Element l is compared to pairs of elements, starting with the 
pair Element 3 and Element 4. If the value of Element l does not fall 
within these designated inclusive ranges, program control jumps the 
number of steps specified in Element 2. 

NOTES: 

• The first element of the pair must have a smaller value than the 
second i.e., Element 3 must be less than Element 4, Element 5 
must be less than Element 6, etc. 

• Element pairs can be negative numbers as long as each successive 
element is larger in value than the previous one. 

• Comparison goes from right to left, until coming to an alpha 
character, a value that falls out of the range check, or the end 
of comparison, for that pair of values. 

• All decimal points and commas are ignored. 

• The table may contain as few as pair of ranges or may contain 
as many as needed, limited only by the size of the screen. 

• The negative sign is entered after the number, i.e. 2-. 

RN GI 

3-15 
Sep 74 T AL Programming 



EXAMPLES: 

Insuring that the operator enters a tax rate between 1 and 4 or 
between 8 and 9~ 

[TA)( RATE 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

-....i---1--1 l!l!I~ ~~ 
NOTE: 

• Since the operator entered a value that does not foll within 
the parameters of the range check, program control advances 
2 positions forward. The ERR %3% command is then executed. 

Range check involving negative numbers. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

...__...__.___. IR IN ltl ~..J....,LE. 

Range check involving positive and negative numbers: 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

_...___.___. IR IN 1,1 ~=-<-.I... 

Sep 74 
3-16 

T AL Programming 



Range check involving embedded non-numerics: 

[PROPUC.T NU 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

-M~ 
NOTE: 

Sep 74 

• Since comparison is made from right to left and stops upon 
reading an Alpha Character, the 2A3, in the field, wil I be 
read as a 3. 

3-17 
T AL Programming 



Additional Notes 

Sep 74 
3-18 

TAL Programming 



SCAN THE 1/0 BUFFER SC N 

SCN CON\ CON • 

Starting at the byte address indicated by the index register, the 1/0 Buffer is 
scanned for a match with any character of Element l. When found the index 
register is set to the relative byte address of the character in the 1/0 Buffer. 
A jump is taken according to Element 2 if a RS or no match if found. If no 
match is found and no RS encountered, the index register is set to 256. 

NOTES: 

• Element l can be any displayable string of characters except 
backslash or RS. 

• Element 2 may be positive or negative. 

• If a RS is encoo ntered the index register is set to the position of 
the RS; then the jump is taken according to element 2. 

Sep 74 
3-19 

TAL Programming 



EXAMPLE: 

Scan the 1/0 Buffer for the letters A, B, or C. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

i--+---+--11 I ~, 
Before After 

1/0 Buffer 

2 
123 45 678 901 234 56 789 012 

CE(s.11( 

Sep 74 
3-20 

T AL Programming 



SET SWITCH s s w I 

SSW CON\ CON • 

The switch specified in Element l is set to the value of Element 2. 

NOTES: 

• Element is a constant from 1-8. 

• Element 2 is a ¢ or 1. 

• When the program is loaded into extended memory, all switches 
are set to ¢. 

• A switch stays set until it is reset by another SSW instruction or 
an instruction using SW for a location. 

• Include REG in the list of OP CODES when specifying the SSW 
command during program generation. 

Sep 74 
3-21 

TAL Programming 



EXAMPLE: 

If the operator keys in a tax rate greater than zero set Switch 3 to 1. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~[I~ 

Before After 

87654221 8765.:321 

SW l~ICB<Pl<il 1 1(/)l¢IJJ sw khld>1@101mm 

To set Switch 5 to one and the rest to zero with one instruction. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~~ 111 Iv lei ....,-"~I.JI::. 

Before 

87654321 

SW 1¢111¢1¢1¢101~' I 

Sep 74 

After 

87654?:1 

SW l~cJ>lci>l<b\<f>\ I \ct>JcJ>l 

3-22 
T AL Programming 



TABLE LOOK UP 

nu LOC \CON\ CON\ CON ••••• 

The data in Element l is compared to the first member of element 
pairs starting with Elements 3 & 4. If a match _occurs, the second 
member of the element pair is placed into the location specified 
by Element l. If no match occurs, program control jumps the number 
of steps specified by Element 2. 

NOTES: 

• Commas, decimal points, minus symbols and alpha characters 
are compared. 

• Leading and trailing blanks in Element l are ignored. 

• The table can contain as few as l pair or contain as 
many pairs as needed, limited only by the size of the screen. 

• Overflow will occur, if the second member of the element 
pair exceeds the capacity of Element l. 

T L U 

Sep 74 
3-23 

T AL Programming 



EXAMPLES: 

If the operator enters a 1, 2, or 3 place 11T AX 11 , 11FRT 11 , or 
11MISC 11 in the field, respectively. If the operator enters anything 
else place "NONE 11 in the field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

-"---l~~EI ~~ 
Before After 

8 9 10 11 12 1'l 

R 6-E X ] 3 ( C. HA 

NOTE: Since the operator Keyed in a code matching Element 7, 
Element 8 replaced the 3 in the CHARGE field. 

2 

As product codes are entered in the code field the corresponding 
price is placed in register 1 for use later on. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.__P~o__. ~ 1-?-1-~ 

Sep 74 

2 

3-24 
TAL Programming 



TEST CHARACTER 

TSC LOC \ CON\ REL\ CON • 

Compare each character in Element l to the list of characters in 
Element 4, according to the relationship in Element 3, True or False. 
If Element 3 is true, Element l can contain only characters specified in 
Element 4. If Element 3 is false, Element l must not contain any 
characters specified in Element 4. If the comparison fails, program 
control jumps the number of commands stated in EI ement 2. 

NOTES: 

• Element 3 is a T or F (true or false). 

• Repeating characters in Element 4 is redundant. i.e., 2 is as 
effective as 22. 

EXAMPLE: 

Insure that the operator ent-ers no commas or periods. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~-4--11 I~!~ 1--T+-~ 
NOTE: 

• Since the operator did enter a comma and the F in Element 3 
means that Element l must not contain any of the characters in 
Element 4, program control jumps to the ERR /d3/d instruction. 

TS C 

Sep 74 
3-25 

T AL Programming 



Insure that the operator keys in al I four digits of the rate and leaves no 
blank spQces or minus symbols. 

ld~l~IM~l" lxl ]i~I~" l;I"' l'i I 
FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~[fi~ 

Another method of insuring that the operator keys in al I four digits of the 
field. 

[RA 

FIELD PROGRAMS 

FIELD OP 2 
LABEL CODE 

11--+---+--ll l~lil~ 1-!!i!!....l-.IZ-~ 
NOTE: 

• Since a space is not included in table /370, ERR /39% is the next 
instruction executed. The operator either keyed in a space or failed 
to enter all four digits of the rate. 

Sep 74 
3-26 

TAL Programming 



TEST SWITCH TS W 

TSW CON \ CON \CON • 

The switch specified in Element 1 is tested for the value specified in 
Element 2. If equal, program control passes to the next instruction. If 
unequal program control jumps the number of instructions stated in Element 3. 

NOTES: 

• Element is a constant from 1 thru 8. 

• Element 2 is a constant of either ¢ or 1. 

• Program initialization sets all switches to zero. 

• Include REG in the list of OP CODES entered during program 
generation. 

Sep 74 
3-27 

TAL Programming 



EXAMPLE: 

Switch 1 is set by the operator with a yes or no at the beginning of 
processing. As each invoice is entered this switch is checked before 
entering the tax calculation routine. 

' :1 ' 
,, 

" 
,, :J ~ ~' 1'., ),» ~,.- i / ,, ,,, I> ;i; I' )!, ) '•11::, 20 ·~,, :; l :: ;,e ' 

[ A R E IN v 01 ' e s T A l( A 6 L E' w ] I 'I e s 0 R 

tG ~ 0 s s A 11 0 u " lIJ x ] I 
( T lA ~ x l1 I 
[N E T ~ ltt 0 u N T )(. ] 

FIELD PROGRAMS 

FIELD 
1 2 3 

,;\, '::'f :;, 30 

N 0 

Sep 74 
3-28 

TAL Programming 



CONVERT TO Bl NARY I c v sl 

CVB Loe• 

Converts the data specified by Element 1 to a binary number and places the 
result in the Index Register. 

NOTES: 

• Any positive decimal number between 1 and 256 can be converted to 
binary. 

• Conversion takes place from right to left. 

• Minus signs and spaces are ignored. 

EXAMPLES: 

Convert the contents of the quantity field to binary. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

L>lll<UOWJ!::l..9 I c: I v ls I L-"s~~ 

IR = w 1 l~i 1 l<t>iaSI 1 iel 

Convert the contents of Register 1 to binary. 

R 1 = IA ic.l<AlS' Id> I I I I I I I 

FIELD PROGRAMS 

FIELD OP TABLE 
LABEL CODE NO . 

.__.____.___. I c. i" isl b -b 3 

IR = 1¢i<6i t i I 1¢1(jl I 1(61 

4-1 
Sep 74 T AL Programming 



Additional Notes 

4-2 
Sep 74 T AL Programming 



CONVERT TO DECIMAL I c v DI 

CVD LOC. 

Converts the index register from a binary to a decimal number and places 
the result in the location specified by Element 1. 

NOTES: 

• The result is left justified in the location and padded with blanks 
if necessary in the specified location. 

EXAMPLES: 

Load Register ,0 with the contents of the index register. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 9 !') 1 2 

Before After 

IR l(f)l<AI I I 1 lcblii>l 1 I~ IR l<iSl(i)J 1 I 1 libl(h[il~J 

R,0 11 I.ii sl I I I I I I I I R,0 I ?I~ I I I I I I I I I 

NOTE: 

• The index register contains a one byte representation of the 
decimal number 50, but it cannot be used until it is converted 
and placed in a register. 

Sep 74 

4-3 
TAL Programming 



EXAMPLES: 

Convert the contents of the quantity field to binary. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE NO. 

a..:zi....:::...u:u I c.I vial c:; s 

Before After 

IR I I I I I I I IR l 1 l 1 kbl I khl<Al I ld>l 

Convert the contents of Register 1 to binary. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.__.___.__ I c. Iv I Bl ..__.._~ 

Before After 

R 1 !Alc..l~s-l<bLI I I I I I Rl IAlc.i~sl<t>I I I I 11 

IR I I I I I I I I I 

Sep 74 

IR l<J)l<bl 1 I 1 '~"''' I~ 

4-4 
TAL Programming 



DUPLICATE D U P 

DUP CON. 

The duplicate instruction can perform one of two functions; depending on 
the operator action. If data is keyed into the field it will replace Element 
in the table. If the TAB/SKIP Key is depressed, instead, Element 1 will be 
replace the previous contents of the field. 

NOTES: 

• The data field must be the same size as the space al located in 
the table. 

• An OFL error occurs, when Element 1 is larger than the data field. 

4-5 
Sep 74 T AL Programming 



EXAMPLES: 

The DUP instruction can be used to give the operator a choice between 
using the previous date entered or keying in a new date. 

[];>ATE W] 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 45 678 901 23 

,__,_,_.._.............. I I> lu I Pi ~~ 

Table after keying in a date. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

...__._~ i:D lu !Pi 11...2...J..'~ 

Table after depressing TAB/SKIP in position 1. 

FIELD PROGRAMS 

FIELD 
LABEL 

OP 
CODE 

...__._~ l:r>lu lei 

NOTE: 

45 678 901 23 

• The table is empty because the original instruction is still intact. 
If a date had been keyed in, it would still be there. 

Sep 74 
4-6 

TAL Programming 



Displaying the data keyed into one field in a subsequent field. 

FIELD PROGRAMS 

FIELD 
LABEL 

So L 

Before depressing TAB/SKIP. 

After depressing TAB/SKIP. 

' :J ' " " l 
,. •J 10 \ ~ 12 "' 1'1 !'.i 

(S OL l> -T () w 11 J' 0 14 N 
__{ 

~ 
(S H IP -T 0 l1 gj ~ 0 H ~ 

~ 
...! 

Sep 74 

1':) 1"1 !fi 19 '.,?{) ~':'\ Zi : 1j 24 2''- J:f, ?l ?S :ht 

1121 A N lE J e L bl I 

~ A tJ F IE L ~ l 

2 

4-7 
TAL Programming 



Additional Notes 

Sep 74 
4-8 

TAL Programming 



GET FROM BUFFER G E T 

GET LOC\ CON\ CON • 

The numbers of characters specified in Element 3 is transferred from the 
1/0 Buffer into Element l starting at the position specified in Element 2. 

NOTES: 

• The GET instruction terminates upon reaching a Record Separator 
in the 1/0 Buffer, or when the number of characters specified 
by Element 3 transfers to the location specified in Element 1. 

• Element 2 and 3 must be between l and 256. 

• The field pointer fol lows the data being transferred from 
1/0 Buffer. 

• If Element l is a data field, and Element 3 exceeds the capacity 
of the data field, data transfer continues into additional data 

. fields. 

• If Element l is the subtotal accumulator, and Element 3 is 
greater than 11, the additional data gets transferred into the 
total accumulator. 

• If Element l is a register, and Element 3 is greater than 11, 
additional characters will transfer into the next register. 

• Do not exceed the capacity of the ten registers or the total 
accumulator. 

• Al I printer control characters, HT, CR, LF, LT, FF, and ESC, 
in the data, wil I be treated as normal data characters. 

4-9 
Sep 74 T AL Programming 



EXAMPLES: 

Transfer the characters in positions 1 thru 5 of the 1/0 Buffer to the 
Previous Balance field. 

I 2 ] ' ' ;~ I HJ ti 12 LI "' Vi "' 1J 
[N 0 • l9 F I T e. 1'15 WJ J ll• 
[p R E v . 8 A. L • NJ I 

FIELD PROGRAMS 

FIELD 
LABEL 

Before 

Sep 74 

1 2 3 4 5 6 7 8 9 0 

10 In " 10:, I 
I 

After 

12 345 678 90 

4-10 
T AL Programming 



Transfer the contents of the 1/0 Buffer into Registers R/3 thru R9. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

'---'---'----" I &I E lT I 

1/0 Buffer 

R/3 LLl.J..L--1...L.......l""'-'-=-'-=--'-__,___,_-+----<--1 

Rl 
R2 ~~n+-I-~c.+=--l--1-----1-----+--+--J 
R3 ~l-=4.f1_j_J=--1--'~-----l---1-+-+-l----l 
R4 
R5 
R6 
R7 L!'"!__JJ____J_~--u~~"-1---'--_j__~ 
RB 
R9 

L.L~~""---"--=-u-'-'-""---'-""~~~~ 

NOTE: 

• Since Element l is Register ¢ and Element 3 contains more than 11 
elements, the transfer of data continues until all 110 characters are 
transferred into Registers ¢ thru 9. 

4-11 
Sep 74 T AL Programming 



Moving the contents of locations 9 thru 30 of the 1/0 Buffer to both the 
Subtotal and Total Accumulators. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

...__.___.__ i 6-l E ff1 a...x....i.=~ 

2 3 
12 345 678 91'.ll 234 56 789 ell2 34 56 78 91'.l 

Before After 

SA I I I I I I I I I I I I 
TA I J Ji JI J 1 Jm 

sA !.llsl'tlsl I I I I I I I 
TA 1~1ols-l1!s-ld I I I I I 

Terminating the transfer of data from the 1/0 Buffer upon the 
recognition of an RS code. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~......_,O:;..a I& IE IT I L!E:..L"'"--'-""' 

12345 678 91'.ll 

1/0 Buffer ;). S 3 3 

Before After 

Sep 74 

4-12 

T AL Programming 



GET FROM THE 1/0 BUFFER INDEXED 

GTI LOC \CON. 

The number of data characters specified by Element 2 is transferred from 
the 1/0 Buffer, according to the position indicated by the index register, 
to a location named in Element 1. 

NOTES: 

• Element 2 must be a positive integer from l to 256. 

• After the GTI is executed the index register is incremented by 
Element 2. 

• The field pointer fol lows the data being transferred to the 1/0 
Buffer. 

• The location in Element l is not space filled if its capacity is 
greater than the number of characters in Element 2. 

EXAMPLE: 

Trans fer the first 8 characters of the 1/0 Buffer to Register 5. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

123 45 678 91')1 

1/0 Buffer s 

Before After 

GT I 

Sep 74 
4-13 

TAL Programming 



Additional Notes 

Sep 74 
4-14 

TAL Programming 



INCREMENT INDEX REGISTER I X R 

IXR CON • 

The index register is incremented or decremented by the value in Element 1. 

NOTES: 

• Element 1 must be a numeric constant from 127- to 127 decimal. 

EXAMPLE: 

Put a carriage return at every tenth position of the 1/0 Buffer. 

Sep 74 

FIELD PROGRAMS 

FIELD 
LABEL 1 234 56 

4-15 
TAL Programming 



Additional Notes 

Sep 74 
4-16 

TAL Programming 



LOAD FROM A TABLE 

LOD LOC,CON \ CON • 

Transfer to Element l the number of characters specified in Element 2, 
that are located in Element 3. Element 2 must equal the number of 
positions in Element 3. 

NOTES: 

L 0 D 

• If Element l is a data field, and Element 3 exceeds the capacity of 
the data field, data transfer continues into additional data fields in 
the CRT format, while the field pointer moves with the data. Data 
transfer will continue until the last data field on the screen has been 
fi 11 ed or the number of characters specified has been transferred. 

• If EI ement l is the subtotal accumulator, and EI ement 2 is 
greater than 11, additional characters ore transferred into 
the total accumulator. 

• Do not load more than 11 characters into the total accumulator. 

• If Element l is a register, and Element 2 is greater than 11, 
additional characters transfer into subsequent registers. 

• If Element l is the switch, and Element 2 is greater than one, 
additional data characters transfer into the registers, starting 
with ~. 

• Do not exceed the capacity of the· ten registers. 

• Al I printer control characters, HT, CR, LF, VT, FF, and ESC wil I 
be treated as normal data characters. 

Sep 74 
4-17 

TAL Programming 



EXAMPLE: 

Key data into the 11SOLD T0 11 field and redisplay the data in the 
"SHIP TO" field. 

I 1 l 4 ~ tl 1 B • HJ 11 12 13 ~4 ·1~ 16 17 t8 t9 20 21 ?.2 7.3 .?A 25 

[S 0 L ~ T 0 w 'J lJ I 
lt 
~ 

[ s H I p t:r:J 0 b w IJ lJ I 

FIELD PROGRAMS 
2 FIELD 

LABEL l 234 56 789 012 

SOL 

s 

NOTE: 

• Both the STR and LOD instructions use Table No. ¢1¢. 

4-18 
Sep 74 T AL Programming 



LOAD FROM MEMORY ADDRESS 

LMA LOC \ CON\ CON\ CON • 

The data at the memory location specified by Elements 2 and 3 is 
transferred to the location in Element 1. Element 4 specifies the 
number of bytes to be transferred. 

NOTES: 

• The field pointer follows the data being transferred from 
memory. 

• EI ement 2 must be a numeric address from ¢ thru 31, specifying 
the page location in decimal. 

• EI ement 3 is the byte address, from 1-256, i ndi ca ting the 
starting position of the data to be transferred in decimal. 

• Element 4 must be a positive numeric constant indicating 
the number of characters to be transferred. 

• Data stored in memory from previous programs may be accessed 
by following programs if the memory address has not been 
exceeded during Loading. 

IL MA 

Sep 74 

4-19 
T AL Programming 



EXAMPLES: 

Seven data characters stored in memory page 15, location 030 are to 
be loaded to a field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.__.___.___. IL l,l.1 I Al ~~ 

An amount stored in page 14, location 100 is to be transferred to the 
Subtotal Accumulator. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

....._._~ I L lM IAI ............:!IE..1-L. 

Sep 74 

4-20 
TAL Programming 



MOVE 

MVE LOC,CON \ LOC • 

The data in Element l is moved to the location specified in Element 2. 
Data is moved one character at a time, starting with left most character. 
If necessary, Element 2 is filled with trailing blanks. 

NOTES: 

• Only the left-most character moves to Element 2 if Element 2 is 
SW. 

• If Element 2 is a register or an accumulator, up to 11 characters 
from Element 1 may move to Element 2. 

• If Element 1 is a literal, F-T, place a space as the first character 
of Element l • 

EXAMPLES: 

Move the constant of 4.00 to the tax field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~-~ 
Before After 

[TAX. RATE Nl 

Sep 74 

; :.; ,,;. r; b r a [J w 11 i;- n 

[TAX RATE N]~. 

4-21 
TAL Programming 



Move the constant "ERROR 11 to the subtotal accumulator. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 45 678 901 23 

..__.__....__. IM Iv I E.i ~~ ERROR' 

Before After 

SA 1 I I 111 I I I I I I I SA IEIRIRIOIRI I I I I I I 

Moving more than 11 characters to Register 2. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~__.__ IM Iv IE I ~=:...u::c 

Before After 

R2 I I I I I I I I I I I I 

Sep 74 

2 

4-22 
T AL Programming 



MOVE MEMORY 

MVM CON\ CON\ CON,IR\ CON\ CON,IR. 

Starting at the memory location specified by elements 2 and 3, data is 
transferred to the memory location starting in elements 4 and 5 until the 
number of bytes in element l is satisfied. 

NOTES: 

• Element one is a numeric constant from 1-256 decimal. 

• Elements 3 and 5 must be either a constant between l and 256 
decimal, or the index register, specifying the byte address. 

• Elements 2 and 4 must be a constant, between % and 31, 
specifying the page location in decimal. 

• Where IR is specified as on element the contents of the index 
register ore used as the address. 

• The index register does not increment with the MVM instruction. 

• Do not move into page % or page 16, bytes /4-32. 

4-23 
Sep 74 T AL Programming 



EXAMPLES: 

Move 20 bytes from page 3, bytes 27 thru 46 to page 11, bytes 120 thru 
139. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

....._...__.__ IHI v IMI L.-L....l.'~ 

Using the value of the index register as the receiving byte address, move 
100 bytes from page 10, byte 60 to page 3, byte location specified by 
contents of index register. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

L--'--~ IM '" IHI L.%3.U~ 

Sep 74 
4-24 

T AL Programming 



PUT TO BUFFER 

PUT LOC,CON \ CON\ CON • 

Copy the contents of Element 1 into the 1/0 Buffer starting at the position 
in Element 2. Element 3 contains the number of characters to be copied. 

NOTES: 

• The PUT instruction terminates when the number of characters 
transferred exceeds the capacity of the 1/0 Buffer or when 
the number of characters specified in Element 3 is transferred 
into the 1/0 Buffer. 

• Elements 2 and 3 must be between 1 and 256. 

• The field pointer fol lows the data being transferred to the 1/0 
Buffer. 

• 

• 

• 

• 

• 

• 
• 

• 

Sep 74 

If Element 1 is a data field, and Element 3 exceeds the capacity 
of the data field, data transfer continues from additional fields. 
The field pointer fol lows the data. 

If Element 1 is the subtotal accumulator, the Element 3 is 
greater than 11, additional data is transferred from the total 
accumulator. 

If Element 1 is 11 RS 11, Record Separator, the single RS character 
moves into the 1/0 Buffer. 

If Element 1 is a one character literal, except F-T, place a blank 
as the first character of Element 1. 

If Element 1 is a register, and Element 3 is greater than 11, 
additional characters will be transferred from subsequent register. 

Do not exceed the capacity of the ten registers or the accumulator • 

Printer control characters HT, VT, CR, LF, FF, and ESC wil I be 
treated as normal data characters. 

The 11 , 11 and 11 \ 11 are ignored when they appear on the CRT • 

4-25 
TAL Programming 



EXAMPLES: 

Put the contents of Registers R~ thru R9 into the 1/0 Buffer. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

L-...L--L..-11 IP I u ITI L;E.~--

RflJ 3 s !ikii 
RI L7 J fS~ 
R2 61~51"5 
R3 'ilq '7 5 
R4 [AS "l­
R5 I 3 25" 
R6 l'f S" lB .l 
R7 I o[; l&_ S 
RS I Ii ~10 
R9 ~ I SI S 

1/0 Buffer 

NOTE: 

7 8 9 0 l 2 3 4 5 6 7 B 9 0 < 2 3 4 

• Since the field pointer moves with the PUT instructions and the 
registers are located next to one another in memory all the registers 
are put into the 1/0 Buffer with one PUT instruction. 

Sep 74 
4-26 

TAL Programming 



Format with 11 -, 11 and 11 \ 11 • 

[')) esc. RI PT I ON 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.....-.........~ lelulTI ~~ 

1 2 3 4 5 

1/0 Buffer 

NOTE: 

• The PUT command ignores the 11 I 11 and "' 11 when they appear on the 
CRT. 

Format with CR and HT 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~~ [Piu ITI ~=-cc 

1 2 3 4 5 

1/0 Buffer 

Sep 74 
4-27 

TAL Programming 



Place the literal "Invoice Number" with a Record Separator following in 
positions 10 thru 25 of the 1/0 Buffer. 

FIELD PROGRAMS 

FIELD OP 2 
LABEL CODE 

~e~ 

2 
12 3 45 678 901 234 56 789 012 34 56 78 9 

1/0 Buffer 

Moving the contents of both the Subtotal and Total Accumulator to the 
1/0 Buffer. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

..__.___..__.. IP lu lrl ~~ 

Before 

sA i 1 ki~&~lsl-1 I I I I I 

TA lsl1l113bl5"1 I I I I I 

After 

SA I 1 lrJl<i>l;tlslWd I. I I I I 
TA isl• I 1 f31JJsr1· 1 I I I 

2 
123 45 678 901 234 56 789 012 

Sep 74 
4-2.8 

T AL Programming 



PUT TO THE 1/0 BUFFER INDEXED P T I 

PTI LOC,CON \CON • 

The number of data characters specified in Element 2 is transferred to the 
1/0 Buffer, according to the index register, from the location specified 
by Element 1. 

NOTES: 

• EI ement 2 must be a constant from 1 to 256. 

• Data transfer continues from the location in Element 1 until 
Element 2 is satisfied, or a record separator is detected. 

• If Element 1 is a 1 character literal, except F thru T, this 
character wil I be in the 1/0 Buffer the number of times 
specified in Element 2. 

• After the PTI instruction is executed the index register is 
incremented by Element 2. 

EXAMPLES: 

Fil I the 1/0 Buffer with blanks. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE ----u lt-"~'-t-"'-11-"-'-

Sep 74 

4-29 
TAL Programming 



Put the first 40 characters of the field into positions 10-49 of the 
1/0 Buffer. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

---t---11 INltl~ ........+-'""-+= 

Sep 74 
4-30 

T AL Programming 



\ 
_j 

SET INDEX REGISTER S I R 

SIR CON • 

The index register is set to the binary value of Element 1. 

NOTES: 

• Element l must be a numeric constant from l to 256 decimal. 

EXAMPLE: 

Put blanks into the 1/0 Buffer in positions 60-69. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

---- lil~I~ ~z;+-1--
~fure A~r 

IR lt)JCJ>J t l I ld>J(jJ(hJ(bl IR l~(IQ 11111 11 l<lSQl = 60 decimal 

Sep 74 
4-31 

T AL Programming 



Additional Notes 

Sep 74 
4-32 

TAL Programming 



ST ORE AT MEMORY ADDRESS 

SMA LOC,CON \Loe\ LOC\ CON • 

The number of data characters indicated by Element 4 is transferred from 
Element l to the memory address specified in Elements 2 and 3. 

NOTES: 

• Element 2 is a decimal page location from ~-31. 

• Element 3 is a decimal byte address from 1-256 indicating the 
starting position where the data is to be stored. 

• The data in Element l is stored starting from the left and data 
transfer continues until Element 4 is satisfied. 

• Do not store information on page 16, bytes 1-32. 

• An 11RS 11 in Element l will indicate a record separator is to be 
stored in memory. 

• Data can be stored in memory by one program and accessed by 
another as long as the memory requirement does not exceed the 
storage address. 

4-33 
Sep 74 TAL Programming 



EXAMPLES: 

The eight data characters entered in the field are to be stored in pages 
15, location 13131. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~~isiHIAI~~ 

A total is being stored on page 15, location 200. It can be updated 
with the contents of the field as fol lows: 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

i----+--+--11 If lij~ ~ 

Sep 74 
4-34 

T AL Programming 



STORE IN A TABLE 

STR LOC \CON\ CON • 

Transfer the number of characters specified in Element 2 from Element 1 to 
Element 3. 

NOTES: 

• If Element 1 is a field, data is transferred intil the last data field 

s T R I 

or the number of characters specified in Element 1 has been transferred. 

• If Element l is a data field, and Element 2 exceeds the capacity 
of the data field, data transfer continues from additional data fields 
in the CRT format. The field pointer moves with the data. 

• If Element l is the subtotal accumulator, and Element 2 is greater 
than 11, additional characters are transferred from the total 
accumulator. 

• Do not store more than 11 characters from the tota I accumulator. 

• If Element 1 is a register, and Element 2 is greater than 11, 
additional characters will transfer from subsequent registers. 

• If Element l is the switch, and Element 2 is greater than ONE, 
additional data characters transfer from the registers, 
starting with RJ3. 

• Do not exceed the capacity of the ten registers. 

• All printer control characters, HT, VT, CR, LF, FF and ESC will be 
treated as normal data characters, from the transferred data. "I 11 

and 11 \ 11 are stripped. 

Sep 74 
4-35 

T AL Programming 



EXAMPLE: 

Store the product code in the field to the table. 

Before 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 91'll 234 5 

~!<..f.'c.=-t ~ 11,.::i~l.L 

Table 301 after execution 

TABLE 
NO. 4 5 6 7 8 9 l'l l 2 3 4 5 

Sep 74 
4-36 

T AL Programming 



EDIT E D T 

EDT LOC\ CON\ LOC • 

The data in Element l is edited according to the mask in Element 2 
and place in the location specified in Element 3. The result in Element 3 
is right justified. 

NOTES: 

• Mask control characters: 

9 Represents a data position in the mask. 

Represents a decimal. 

Represents a comma. 

* As the first character of the mask it causes left fill of 
leading spaces with an asterisk. 

$ As the first character it causes a $ to float just to the 
left of the first significant digit. 

- As the last character of the mask it ca·uses the sign of 
Element l to be placed in Element 3 as the last character. 
A space for a positive number, and a minus symbol 11 - 11 

for a negative number. 

• Zeros wil I fol low to the right of tl-e decimal, if necessary, up 
to the first significant digit. 

• Overflow will occur if Element l exceeds the capacity of the 
mask, Element 2. 

• If Element 2 is larger than Element 3 erroneous data will be 
placed in Element 3. 

5-1 
Sep 74 T AL Programming 



EXAMPLES: 

Editing a field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

u N I Elt> lTI L...ZO-L~ 

Before After 

~~-,---,--.--,---,,.....,.._,--~----r-..,..--,--w--,---, .-r----r-.--i--.-ir-r-~.--~----r-..,..--,--w---..--. 

l J 3 4 G tl 1 b g W ~1 i ) 3 4 '.) G l U E! lD 

[U N I TS )(] 

Editing a signed field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

............ "-'-""-" I E I I> lrl ....,..,,..._=...-

Before After 

~~.,......-,---.--,---,~.---~~~~ 

I J 3 ,1 :; ti 'i 8 g lG 11 

5-2 
Sep 74 T AL Programming 



Zero suppression. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~mm~ 

Before After 

Editing a field with a floating dollar sign. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

LL-J..L.s.J-L..JI I EID Iii a.=.1.-~ 

Before After 

5-3 
Sep 74 T AL Programming 



Editing a field with asterisk protest. 

FIELD PROGRAMS 

FIELD OP 
2 

LABEL CODE 

~ ............ iElDliJ ~~ 

Before 

1 / 13 

TA I I I I I I I I I I I I 

Editing a fie Id with a floating dollar sign and asterisk protect. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE NO. 

~----R .~, 
~IS 

Before After 

5-4 
Sep 74 T AL Programming 



MINUS OVER PUNCH 

MOP LOC\ LOC \CON • 

The data at the location specified by Element 1 is edited for sign. The 
sign character is dropped and the units character is replaced with an 
overpunch character and placed in Element 2 right justified, and left filled 
with the character in Element 3. 

NOTES: 

• Arithmetic computation may not be performed on a field after 
the minus overpunch instruction has been executed. 

• The overpunch characters for negative numbers are: 

Sep 74 

¢ - Non 
l - J 
2 - K 
3 - L 
4-M 
5 - N 
6-0 
7 - p 
8 - Q 
9 - R 

Displayable (ASCII OCTAL 175) 

5-5 
TAL Programming 



EXAMPLE: 

Minus overpunch the field and left fil I with zeros. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

..........,~L=-- e ~J.-.L-.i~ 

Before After 

NOTE: 

• M is the overpunch character that replaces 114- 11 • 

Sep 74 

5-6 
TAL Programming 



RIGHT JUSTIFY 

RTJ LOC \CON • 

The data in Element 1 is right justified and left filled with the 
character in Element 2. 

NOTES: 

R T J 

• The characters 11 l 11 and 11 \ 11 are invalid entries for Element 2 • 

EXAMPLES: 

Right justify the subtotal accumulator and fil I with zeros. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.___.___..__.. ii~ IT[ii ~.:__.__ 

Before After 

SA I 'I l Isl 1 I I I I I I I I SA 1¢10101010101d>lb ll. ICi,, I 

Right justify the field and fill with asterisks. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

.___,___.____. I g I Tl~I ~"-Lz::: 

Before After 

~~~~~~.-~~~~--,--, 

1 ; l .1 0 r, 7 ti a 11: ~, 1;o

[flELt> X]l~3

Sep 74

5-7
TAL Programming

Right justify a field that contains a negative value and left fill with
spaces.

FIELD PROGRAMS

FIELD OP
LABEL CODE

0 • I RlTlil ~~

Before After

,- ,-
4 0 " ' B g F; " ' ' 3 " l " ' 1G ';1 !H

[N • X]'f3~J - [MD.)(] -
"
I

5-8
Sep 74 T AL Programming

SHIFT

SHF LOC\ CON\ CON •

Data in Element l is shifted in the direction of Element 2 the number of
places specified in Element 3.

NOTES:

• Element 2 is an R or L for a shift right or left, respectively.

• EI ement 3 is a constant from 1-9.

• Any characters shifted beyond the capacity of Element l are not
retained; therefore, these characters should be stored prior to
the execution of the SHF instruction if they are required further
on in the program.

S H F

Sep 74
5-9

TAL Programming

EXAMPLES:

Shift the contents of the field six positions to the right.

FIELD PROGRAMS

FIELD OP
LABEL CODE NO .

......_.__,___.. Is I HIE I ._,l'-1-L.JL.llll!

Before After

1 2 3 4

[FIEL [FIEL'P ~]

Save the original contents of Register 1; then shift Register 1 left
seven positions.

FIELD PROGRAMS

FIELD OP
LABEL CODE NO . ._.___.. g I ;;.

Before After

Rl I I I I I I '*'''~ISl31

R2 UJ J I I I I I I I I

Sep 74

R 1 I &I,., Si3 I I I I I I I I

R2 I I I I I I l&1-l~l"lsl3f

5-10
T AL Programming

TAB COMPRESSION

TCP LOC •

A 11 \ 11 is inserted in the position fol lowing the last non blank character
of Element l .

NOTES:

• No action occurs, if there are no trailing blanks.

• Only the data and the horizontal tab character are released to
the output device.

EXAMPLES:

Tab compression of the name field.

FIELD PROGRAMS

FIELD OP
LABEL CODE

~~~ 

Before After 

TC P 

5-11 
Sep 74 T AL Programming 



Tab compress the 11 NAME", 11ADDRESS 11 , and "CITY-STATE" fields. 

FIELD PROGRAMS 

FIELD OP 

Before 

j ? 1 4 '.; " I • 1(j ·12 l<\ 17 W Tl rn ts 2:0 :n n l3 V. '" 20 ?7 I!$ ''' :J') 3': .J?.: 

C.N A }1 E w ]J 0 E 'D 0 E l 
[A D DR ES 5 w J I ~ 3 ~ ]A_ IN s T RE E T 1 
[ c. IT y - s T A T E w 11? 0 M E !.!. 

,.,, . '/ . I 
(~ IP N ) I ~ ~ 15 

After 

' J " <) 6 I '-~ '.) 1\l 1 i? ,,, 
1' 1" n 13 'I') )') '2 

/'l "' 
,, I \'7 71 2S 2\ J( (j :?\ 

(N lA M E w ) J" 0 E ~ 0 E. ~ I 
[A )) 'P ~ E SS w J I ~ 3 lt1 lA IN s T RE E T ~ l 
(C I T y - ST A T E w JR 0 H E L!. tJ. ~ . ~ l 
(~ IP rJ J I ~ " IS 

NOTE: 

• The following is outputted to the 1/0 Buffer. 
/ 

JOE DOE~ 123 MAIN STREET~ROME, N.Y. ~ 12415 • 

Sep 74 
5-12 

T AL Programming 



VERIFY VFY 

VFY LOC\ CON\ LOC • 

If the data keyed in the current field, Element 1, differs from the original 
data read in from cassette, program control jumps the number of instructions 
specified by Element 2. Unverified data is stored in the location specified 
by Element 3. Element 3 is optional. 

NOTES: 

• Data record lengths are I imited to 256 characters or less. 

• Printer control codes (' and "1 ) and printer control sequences (FF, 
LF and ESC followed by HT, VT, A-F) which are constant data fields 
must be included in both the data collection and verify formats. 

• The job selection sequence must specify a 11 Dummy 11 primary output 
as fol lows: 

Format Input 
1 or 2 

Data Input 
1 or 2 

FMAT IN 

I OUTL= 
Space 

Dummy Output 
Must be C 

• So long as the data typed in a field being verified matches the data 
input from cassettes the verify operation does not differ from normal 
data entry. However, if a miss-match is found a VFY error will be 
displayed when the operator completes the field. When verify errors 
occur, the cursor is left under the first incorrect character in the 
field. The operator must then check the source document carefully 
and either change the letter on the screen or type the same letter 
again to correct the previously keyed data. Each error in the field 
wil I be flagged individually. In cases where the entire field is wrong, 
the operator can use the clear field key to clear the data and permit 

5-13 
Sep 74 T AL Programming 



re-entry of the complete field. The field will then automatically 
clear again so that the new entry can be immediately verified. When 
errors are found, the data is corrected by an automatic insertion on 
the data tape. 

EXAMPLES: 

Verify the name, customer number and ship via fields of the following 
record. 

Data Collection Format 

[NAME 
[CUSTOMER NO. 

[C]FRAGILE 'I 

[SHIP VIA Ml 

Al 
Rl ,, I 

E 
[';~]SA • 

c 

Data Verification Format 

[NAME 
[CUSTOMER NO. 

Cl Ml \I 

W] 
Xl ,, I 

E 
[SHIP VIA WJ [*]SA. 

c 

Sep 74 

,, 

,, 

5-14 
T AL Programming 



Field programs to be used with the verification format 

FIELD PROGRAMS 

FIELD 

NOTE: 

• "FRAGILE" will be brought into a secondary input field (lM) 
without operator action and will not have to be verified. 

In a case where the original data collection format was used with an 
application program, some reprocessing may have to be done during data 
verification. The following example illustrates this point. 

Data Collection Format with Processing 

[SITE NO. C] 3791 

[ITEM NO. Rl 
[QUANTITY Xl 
[PR I CE X] 
[AMOUNT NJ • 
[TOTAL X] [*]. 

Sep 74 
5-15 

T Al Programming 



Data Verification Format with Processing 

[6M1 [SITE NO. 1M1 

[ITEM NO. X1 
[QUANTITY X] 
[PR I CE X] 
[AMOUNT N1 [7Ml • 
[TOTAL X] C*l • 

Field Programs to be used with Verification Format 

FIELD PROGRAMS 

2 

NOTES: 

• Since the data being verified contains an item record (a record 
that may be repeated an indefinite number of times) the 
verification format must begin with a [6M] I field and, like the 
format, must not contain a [*]. The [6M] I field provides a 
pause for the operator to use the next format key after the last 
item has been verified. 

Sep 74 
5-16 

T AL Programming 



BELL I B E L I 

BEL Any defined table can be used. 

The alarm is sounded once. Program execution continues uninterrupted. 

EXAMPLE: 

If the Straight Time Hrs. field is blank move three fields, into the Misc. 
Hrs. column. 

I ; -' ' '.'! ,, 1 ,. ' l!i n n u t,t !$ H: !l 18 H~ 20 21 n 73 ?.<: '1!1 J.G 

ts tr ~ A ,, u T lrJ I M E lli ~ .. s x J l 
[ () 'I/ E It T IM e wi s >( J I 
(. J> 0 0 13 L. E lJj ' 11 E HR s )(. ] l 
[. M ' s ". 1-1 ~ s x ] 1 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~s [I~ 

6-1 
Sep 74 T AL Programming 



Additional Notes 

Sep 74 
6-2 

TAL Programming 



ERROR 

ERR CON. 

Element l contains a three character error message which appears on the status 
line when the ERR instruction is executed. The alarm sounds and the keyboard 
locks except for the ERROR RESET key. After the operator depresses the 
ERROR RESET key, the error message disappears, the cursor returns to the 
beginning of the current data field, and the field program may be reexecuted. 

NOTES: 

• The depression of ERROR RESET after the execution of the ERR command 
does not clear the field that caused the error condition. 

EXAMPLE: 

Insuring that the operator enters at least eight hours in a field. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

---+--II I~~~ .........,~ 
Before After 

NOTE: 

• After depression of the ERROR RESET key the cursor returns to the 
beginning of the hours field. The seven will remain on the screen 
until new data is keyed over it. 

ERR 

Sep 74 

6-3 
TAL Programming 



Additional Notes 

6-4 
Sep 74 T AL Programming 



EXECUTE FIELD E X F 

EXF CON. 

The field pointer moves forward or backward for the number of fields 
specified by Element 1. Additional instructions in the field program may 
refer to a different field, after execution of EXF. 

NOTES: 

• To move the field pointer backwards use the minus symbol 
after the number, i.e. 2-. 

• The programmer has the responsibility to stay within the 
fields of the current format. 

• The EXF instruction may move the field pointer, but execution of the 
current field program continues. 

• The EXF instruction considers constant fields the same as any 
other fields. 

6-5 
Sep 74 T AL Programming 



' ; 

[F 
(S 
[I 

EXAMPLES: 

.l 4 

After the freight charge is entered, the sales tax and invoice total is 
displayed in the two subsequent fields. Register 1 contains the invoice 
total. 

FIELD PROGRAMS 

FIELD 

Before After 

' u ' B ' lil ~ 1 '\ :.! .'.J '~ i<;; h~ 11 113 19 20 

RE I '"' T x ] J [Fr?EI &HT 

IA LE s T A I)( IN ] ~ [SALES TA 
N v TO T t./J [ltJV ToT 

R 1 I 1 l¢laSl(bl15bSI I I I I I R 1 I 1 I~ I 6 I sla?lc61 I I I I I 

6-6 
Sep 74 T AL Programming 



To move program control from the TAX CODE field back to the 
TAX field to display the amount of tax, the EXF instruction would 
be coded as fol lows: 

; ; ,, 
'. .. 'I " ' rn n .2 :3 :. ~ ~-

[.DJ A T E. )( J ti> 1 ~ Id> lJ 'f I 
[T A 'j.__ N ] I 
[ I N 'V N 0 w ]IA I ;». ; .... 
[T e ~ ~ tJ 0 N 1 ... 5' I 
(T A 'A_ (. 0 J> E. xll ~ I 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~~ iel1'iFi "------'-'--~ 

Sep 74 

m 11 \8 

'3 J. I 

6-7 
T AL Programming 



Additional Notes 

6-8 
Sep 74 T AL Programming 



GO TO 

GTO CON • 

Element l specifies the number of fields, forward or backward, to move 
the cursor. The execution of the current field program stops and control 
returns to the operator. 

NOTES: 

• To move the cursor backward, use the minus symbol after 
the number i.e. 2-. 

• The programmer has the responsibi I ity to stay within the 
fields of the current format. 

• GTO l in the last field of a format causes output to the 1/0 
Buffer. 

• The GTO instruction counts constant fields the same as any other 
field. 

EXAMPLES: 

Display the dollar amount in its own field and advance the cursor to the 
tax rate field. 

I • 

RS 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

____ o ___ L_ m .......+-L-µc: 

6-9 
Sep 74 T AL Programming 



If the tax rate entered is zero skip the tax amount field. 

l 2 3 4 ,, 
' I 9 10 11 12 1J 14 "' t~ 1'f '" 19. 20 I ?I 22 " 

[ls (( os s )( ] 1 
(T A l'iJ R A I E. lX J I 
[T A ~ A 11 0 llL N T N 1 I 
[N E T Li ] I 

FIELD PROGRAMS 

FIELD 

Sep 74 
6-10 

T AL Programming 



NEXT FORMAT/UNCONDITIONAL 

NFT Any defined table can be used. 

Replace the current format on the CRT with the next format from the 
format input device. The field program is terminated. 

NOTES: 

• The NFT advances the format input device l logical record. 

• Since the NFT instruction terminates the field program and 
replaces the format on the CRT process and output any 
required data before executing the NFT instruction. 

EXAMPLE: 

NF T 

Enter a blank in the quantity column after al I the line items for the invoice 
have been entered. This will cause the trailer format to be automatically 
advanced onto the screen. 

r-r---r-

' ' ·; ' " l .. ' •;· '.1 

!:IQ u A N )( J 
( t> e s c. RI PTI 0 tJ 
[p Rl c. E )( J 
(A H C> " tJT 

"' 
] 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~1~ 

Sep 74 

1:1 " ''· 11': ,., F 

I 
H ] 
I 

I 

,., 
,~- l , . ;:/ ',? '·l z: "' 

l 

6-11 
T AL Programming 



Additional Notes 

Sep 74 
6-12 

TAL Programming 



NEXT FORMAT/CRT N X F 

NXF CON. 

Advances the format device, forward or backward, by the number of physical 
records specified in Element 1. The next format is then read onto the CRT, 
replacing the previous format. The field program is terminated. 

NOTES: 

• The NXF instruction advances physical records from the device 
specified by the format input in the status line. 

• The minus sign is placed after the number to indicate backward 
movement (i.e. 2-). 

• If the format input is a C, representing magnetic tape or card reader, 
Element 1 can not be negative. 

• If Element 1 is zero, the format input is neither advanced nor 
backspaced, before the next format is read onto the CRT. 

• Since the NXF instruction terminates the field program and 
replaces the format on the CRT, process and output any required 
data, before executing the NXF instruction. 

Sep 74 
6-13 

TAL Programming 



EXAMPLES: 

If the operator enters 11YES 11 , read a new format onto the CRT. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

......-+--+--I~ ~ 

Referring to the diagram below and assuming that the third format, F3, 
is on the CRT, the following is true. 

Fl 

NXF Format that will be read onto the CRT 

% F4 
2 F5 
3 F6 
1- F3 (reread the record) 
4- Fl 

I I ! I 
F2 F3 

Read/Write 
Head 

F4 F5 
I ! I 

F6 

NOTE: 

Sep 74 

• A dotted line means that two physical records comprise one 
format. 

6-14 
TAL Programming 



NEXT FORMAT/BUFFER N X T 

NXT CON • 

Move the format device, forward or backward, the number of physical 
records specified in Element l • The next format is then read onto the CRT, 
replacing the previous format. The field program is terminated. 

NOTES: 

• NXT differs from NXF in that the skipped records are read into 
the 1/0 Buffer; therefore, the 1/0 Buffer contains the last record 
skipped when the NXT instruction terminates. 

• The NXT moves physical records, 256 or fewer characters, not 
logical records. 

• The format device is specified by the format input in the status 
I ine. 

• The minus sign is placed after the number to indicate backward 
movement. i.e. 2-. 

• If the format input is a C, representing magnetic tape or card 
reader, Element l con not be negative. 

• If Element l is zero, the format device is neither advanced nor 
backspaced, before the next format is read onto the CRT. 

• Since the NXT instruction terminates the field program and replaces 
the format on the CRT, process and output any required data before 
excuting the NXT instruction. 

Sep 74 

6-15 
TAL Programming 



EXAMPLE: 

Referring to the cassette tape diagram below and assuming that the 
records shown are under 256 characters in I ength the following would 
be true if the first two records have been read. 

NXT 

l 
3 
1-

Record Read onto CRT 

F2 
F3 
Fl (Reread the Record) 

Data Contained in the 
1/0 Buffer after Execution 
of the NXF Instruction 

Data 2 
Data 3 
Remains Unchanged 

Data l Fl Data 2 F2 Data 3 F3 

Sep 74 

• 
Read/Write 

Head 

6-16 
TAL Programming 



OVERLAY I 0 v L 

Loads the overlay module from the primary input device into memory and 
brings the logical record fol lowing it onto the CRT as the next format. The 
cursor appears in the first data field of this format. The field program is 
termi noted. 

OVL Any defined table can be used. 

NOTES: 

• In multiple page applications a programmer can divide the program 
into overlay modules to make more memory available for each page 
of format. 

• Since the OVL instruction terminates the field program and replaces 
the format on the CRT, process and output any required data before 
executing the OVL instruction. 

EXAMPLES: 

The extended memory field control character, W, and the 1/0 device 
control character, 7, are combined to allow the program to execute 
without operator interaction., No data is output sinee the 1/0 device 
control character prevents it. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

L..L.J...K;llLL.!J,._. I ol \/IL I ~~ 

Sep 74 
6-17 

T AL Programming 



It is not necessary to have a separate field program to read in the overlay. 
After the data on the CRT has been output OVL can be specified in place 
of a GTO and it will read in the overlay and end the current field pro­
gram. 

FIELD PROGRAMS 

FIELD OP 
LABEL CODE 

~~~ 

The format below is to be used only once before the next overlay is read
in. To eliminate the procedure of putting the record to the 1/0 Buffer
and then writing it out; an alternate procedure may be used. Switch 1
is set to zero when the format shown below is advanced onto the screen.
It is changed to one after failing the test and processing continues on
thru the rest of the format. The record is written out and control returns
to the [7W] field when [7W] is activated this time, an overlay will be
read in because Switch 1 is set to 1.

' ' 3 • " ' I s ') 1t' 1'J 12

[1 w J I
[A ' l 0 ON T N ()

[p R 0 D "' T ' 0 I>
(A t1 0 u N T

FIELD PROGRAMS

FIELD

Sep 74

1~~ 14 j!J

x J
E lH

IX J

1(; ,., HJ 1.J

]

20 2·~ :,:,::.:

I

iJ

6-18
T AL Programming

REGISTERS AND SWITCHES RE G

REG NONE

The REG instruction al locates memory for Registers ¢ thru 9 and the switch
byte.

NOTES:

• Never include REG within Field Program.

• REG should be circled at the bottom of the T AL Program form
along with the other OP CODES used and enter with them during
program generation.

• REG requires no table because it 1s never entered within a field
program.

Sep 74
6-19

T AL Programming

Additional Notes

Sep 74
6-20

TAL Programming

READ

ROX CON.

Element l specifies the input device from which a physical record will be
read into the 1/0 Buffer.

NOTES:

• Element l can be a 1, 2 or C for Cassette 1, Cassette 2 or
Magnetic Tape, respectively.

• A physical record from cassette 1 that contains 300 characters and
store it in memory.

• When an EOF is encountered, the field program is terminated
and an EOF error message is displayed.

EXAMPLE:

Read the next logical record from cassette one and store the entire
record in memory. The record is JJOJO characters in .length.

FIELD PROGRAMS

FIELD OP
LABEL CODE 9 0 1

-m~
NOTE:

• ROX 111 wi 11 read the first 256 characters and ROX 113 wil I read
the last 44.

Sep 74
7-1

TAL Programming

Additional Notes

Sep 74
7-2

TAL Programming

WRITE

WRT CON.

Write the contents of the 1/0 Buffer onto the output device specified in
Element 1.

NOTES:

• Element 1 can be a 1, 2, C or P for Cassette 1, Cassette 2,
Magnetic Tape or Printer, respectively.

• The WRT instruction has no affect upon any data displayed on the
CRT or the execution of any subsequent steps of the program.

• Element 1 may differ from the output device selected in the FORMAT
output device in the status line.

• Caution should be used when Element 1 matches the output device
selected in the FORMAT output device. The data could be
outputted twice; once via the WRT instruction and once when the
format is completed.

• Data is transferred from Buffer to 1/0 device until a RS or the end
of the Buffer is encountered. If encountered anywhere in the Buffer
an error wil I occur.

7-3
Sep 74 T AL Programming

EXAMPLES:

Write the contents of the 1/0 Buffer onto cassette 2.

FIELD PROGRAMS

FIELD OP
LABEL CODE

....__.___.___. I wl R 51 11..i::J.....!....I.»!!

NOTE:

• Cassette 2 need not be specified as either primary or secondary output
in the status line to execute the above instruction.

Write the contents of the 1/0 Buffer onto magnetic tape.

FIELD PROGRAMS

FIELD OP
LABEL CODE

....__..___........... I WR lrl ._,_.L...LJL...L

7-4
Sep 74 T AL Programming

INSERT I N S

INS CON •

The cassette specified by Element 1 is backspaced one physical record;
and the contents of the 1/0 Buffer is written onto it.

NOTES:

• Element 1 can be a 1 or 2.

• The record in the 1/0 Buffer must be the same length as the
original record on the tape.

EXAMPLE:

Insert the contents of the 1/0 Buffer onto cassette 2.

FIELD PROGRAMS

FIELD OP
LABEL CODE

.___._.......___. I r I rJ Is I '"-"'--'--...__._...,

7-5
Sep 74 T AL Programming

Additional Notes

7-6
Sep 74 T AL Programming

SEARCH

SRH CON\ CON.

Search the device specified in Element l for the identifier in the
current data field. Each physical record is read into the 1/0 Buffer,
until a match is found. If no match is found, a jump forward or backward
is taken according to Element 2.

NOTES:

• Element l can be a 1, 2, or C.

• The SRH instruction is not position oriented. The complete
identifier can be present in any part of the physical record.

• Leading and trailing blanks in the identifier are significant.

• The search instruction can only operate on physical records.

• During the search a record separator temporarily appears on the
screen after the last character in the identifier.

• The search instruction can search on compound identifiers, as in
Search Mode.

• The jump in Element 2 cannot jump over other field programs; but
must jump thru them.

• To jump two instructions back use 2-.

7-7
Sep 74 T AL Programming

EXAMPLES:

Search the magnetic tape for the record containing 11 712 11 •

FIELD PROGRAMS

FIELD OP
LABEL CODE

I TE l!m
i---r--;--tl mJ ~

NOTE:

• The operator must depress the TAB/SKIP key to initiate the search.

• The RS shown in the format above is not a permanent part of the
search identifier; but is temporarily displayed in the field as a
function of SRH.

Search cassette 1 for the compound identifier 11 JONES:ELM:FORD 11 •

FIELD PROGRAMS

FIELD OP
LABEL CODE

i---r--;--tl I ~
NOTE:

• The compound identifier 11JONES:ELM:FORD 11 must appear in the same
order on the physical record.

7-8
Sep 74 T AL Programming

REWIND

REW CON.

Element 1 specifies the 1/0 device to be rewound.

NOTES:

• Element 1 can be a 1, 2, or C for Cassette 1, Cassette 2, or
Magnetic Tape, respectively.

• If the tape device specified in Element 1 is already rewound, the
execution of a REW instruction will cause an End of Tape, 11 EOT 11 ,

to occur.

EXAMPLES:

Rewind cassette 2.

FIELD PROGRAMS

FIELD OP
LABEL CODE

,___,__...__.. I g I e. &'JI ~.........._

Rewind the magnetic tape.

FIELD PROGRAMS

FIELD OP
.LABEL CODE

~~- I Rie WI ..__._....__._

7-9
Sep 74 TAL Programming

Additional Notes

Sep 74
7-10

TAL Programming

BACKSPACE B s p I

BSP CON\ CON,IR •

Element l is backspaced the number of physical records specified by
Element 2.

NOTES:

• Element l can be a l, 2 or C for Cassette l, Cassette 2 and
Magnetic Tape, respectively.

• The maximum number of physical records you may backspace with one
instruction is 256.

Sep 74
7-11

TAL Programming

EXAMPLES:

Backspace cassette l two physical records.

FIELD PROGRAMS

FIELD OP
LABEL CODE

~---- I BI s I el --=5::....J...:C..Ji-.

NOTE:

• Position of Read/Write head before •

•
R l I R2 I R3 I R4 :i

• Position of Read/Write head after •

•
R l I R2 I R3 I R4 I

Backspace cassette 2 the number of records contained in the index register.

FIELD PROGRAMS

FIELD OP
LABEL CODE

....._.___.___. I Bl s I Pl,_._..........,.._
IR 101()10~1011 l~f61

NOTE:

• Since the index register contains the value four, the cassette
will be backspaced four physical records.

Backspace the magnetic tape four physical records.

FIELD PROGRAMS

FIELD OP
LABEL CODE

...._.___.___.. I el s I Pl L-&-1-...L..L..L..

7-12

Sep 74 TAL Programming

TAL PROGRAMMING TECHNIQUES

Various programming techniques have been developed through experience
which enables the programmer to conserve memory, and/or to accomplish
certain required results not readily apparent to the new programmer.
Each instruction added to a program requires the loading of subroutines
which provide for the execution of that particular instruction. As a
general rule, when the memory requirements of the program are known
to be approaching the memory limits of the terminal in which the program
is to be executed, the number of OP codes used should be limited as
much as possible. OP codes already used in a program can sometimes
be used to accomplish the same results without having to introduce new
ones into the program. Following are samples of some of these techniques:

Eliminating Compare Instruction

FIELD PROGRAMS

FIELD OP
LABEL CODE

t--+--1~r1a ..-.+.!~
FIELD PROGRAMS

FIELD OP
LABEL CODE

___ lfili~ ~

Sep 74

•

8-1
TAL Programming

Eliminating Duplicate Instruction

FIELD PROGRAMS

FIELD OP
LABEL CODE

__..~£=-- l~I~ I~ 11-=-+""i-F"-

FIELD PROGRAMS

FIELD

Eliminating Move Instruction for Mixed Data

FIELD PROGRAMS

FIELD OP
LABEL CODE

~~ IM Iv I el L.-..1-......_.__

FIELD PROGRAMS

FIELD OP
LABEL CODE

t--+--+--1 M ~

Sep 74

2 3 4 5

8-2
TAL Programming

Eliminating the Move Instruction for Numeric Data

FIELD PROGRAMS

FIELD OP
LABEL CODE

............. _..___. lu Iv 1£ I l...Wl<.1-~

FIELD PROGRAMS

FIELD OP
LABEL CODE

'--'--'--"' I A l .t> I Di ~-...-:

Eliminating Shift Instruction

FIELD PROGRAMS

FIELD OP
LABEL CODE

.__,____.__. I s I u I Fi 0...-.U~

FIELD PROGRAMS

FIELD OP
LABEL CODE

~-~
Replacing Right Justify with Edit

FIELD PROGRAMS

FIELD OP
LABEL CODE

~~ hdTl:ri ~~

FIELD PROGRAMS

FIELD OP
LABEL CODE

.__,__.___. I E Ip fii ll...3EJ.:~

Sep 74
8-3

TAL Programming

Replacing Right Justify and Move with Minus over Punch

FIELD PROGRAMS

FIELD OP
LABEL CODE

-Iii)~

FIELD PROGRAMS

FIELD OP
LABEL CODE

.__.___.__ IM 161 el aM.Ll.I

Editing a Field with a Floating Doi lar Sign and Left Fill with Asterisks

FIELD PROGRAMS

FIELD OP
LABEL CODE

-Im!~

Sep 74

2

8-4
TAL Programming

Placing a File Separator in the 1/0 Buffer

FIELD PROGRAMS

FIELD OP
LABEL CODE

~--l!lt~~:c::...µ...
NOTE:

• A File Separator consists of the transparent octal ASCII character
,034 and a Record Separator. Si nee it is not possible to generate
a table which contains a File Separator, we can simulate the
operation by setting the switch byte to the ASCII byte configura­
tion for a File Separator (bit sequence ,0,0,0111,0,0). The closest
valid character configuration is the character 11 (11 (bit sequence
,0,01111,0,0). By changing switch 6 to ,0, we create the File
Separator. This is put in the 1/0 Buffer in position 1, followed
by a Record Separator in position 2.

Sep 74
8-5

TAL Programming

Additional Notes

Sep 74
8-6

TAL Programming

MEMORY REQUIREMENTS

The number of bytes that a table requires equals the number of characters
in the table, including the record separator, less the sum of the number of
elements in the table plus three.

Table Bytes required = R - (n + 3)

R = number of characters in the table.

n = number of table elements.

The number of bytes that a field program requires is the number of
instructions plus one multiplied by four.

Program Bytes required = 4 (n + 1)

n = number of instructions.

The number of bytes required by each OP CODE varies. The table on the
next page contains the number of bytes required for each OP CODE and
the subroutines the OP CODE cal Is. The OP CODE bytes are counted
only one time, though the OP CODE itself may be used several times in
one field program or several field programs. Subroutine bytes are counted
only once also. Subroutine one is cal led by almost every OP CODE; but
the 36 bytes need to be counted only once.

The number of bytes required by each OP CODE varies. The table on the
next page contains the number of bytes required for each OP CODE and
the subroutines the OP CODE calls. The OP CODE bytes are counted
only one time, though the OP CODE itself may be used several times in
one field program or several field programs. Subroutine bytes are counted
only once also. Subroutine one is called by almost every OP CODE; but
the 36 bytes need to be counted on I y once.

Sep 74
9-1

TAL Programming

OP
CODE BYTES

ACP 126

ADD 8

BEL 4
BSP 72
CKO 105
CKl 102
CK2 105
CK3 96
CK4 105
CK5 90
CK6 99
CK7 105
CK8 105
CK9 119
CKA 133
CMP 151

CVB 72
CVD 99
DIV 472

DUP 92
EDT 188
ERR 25
ETC 32

EXF 10
GET 12

GTI 36
GTO 40
INS 12
IXR 34
JMP 6
LMA 32
LOD 10

MOP 87
MPY 247

MVE 61

Sep 74

Ut' CUIJt: BYTE REQUIREMENTS

SUBROUTINES CALLED

1 I 2 I 3 I 4 I 5 f 6 I 7 I 8 I 9 I 10 I 12 I 18 I 19 I 24 I 35 I 36 I
37

1, 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 f 19 I 20 I 21 , 22,
24, 27,

l, 2, 3, 5, 8, 9, 15, 17, 24, 29, 30, 37
l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 24
1 I 2 f 3 I 4 I 5 I 6 1 7 I 8 I 9 I 10 I 18 I 19 I 20 I 24
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 18 I 19 I 20 I 24
l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 f 10 I 18 I 19 I 20 I 24
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 24
1, 2 I 3 I 4 I 5 I 6 I 7, 8 I 9 I 10 f 18 I 19 I 20 I 24
1, 2 I 3 I 4 I 5 I 6 I 7, 8 I 9 I 10 I 12 I 18, 19 I 20 I 24
1 I 2 f 3 I 4 I 5 I 6 I 7 I 8 f 9 I 10 I 18 I 19 I 20 I 24
1 , 2, 3 I 4 f 5 I 6 I 7, 8 I 9 I 10 I 18 I 19 I 20 I 24
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 18 I 19 I 20 I 24
1, 2, 3 I 4 I 5 I 6 I 7 I 8 I 9 I l 0 I 18, 19 I 20 I 24
1, 2 f 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 13 I 18 I 19 I 20 I

26, 33, 34
24, 25,

l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 , 15 I 18 I 19 I 22
1 I 2, 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 19 I 24 I 2 7
l I 2, 3 I 4 I 5 I 6 I 7 I 8 I 9 I l 0 I 11 I 12 I 15 I 19 I 20 I 22 I

24, 27
l I 2 I 3 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 19 I 23 I 24
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 20, 24
l I 2 I 3 I 5 f 8 I 9 I 10 I 19 I 24
1 I 2 I 3 I 4 I 5 I 6 1 7 I 8 I 9 I 10 I 13 I 14 I 18 I 19 I 20 I 24 I

25 '
1 I 2 I 3 I 5 f 8 f 9 I 10 I 15 I 17 f 19 I 24
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 15 I 17 I 19 I 24 I 33 I

34
1, 2 I 3 I 4 I 5 1 6 I 7 I 8 I 9 I 10 I 12, 15 I 17, 19 I 24 I 34
0 I 1, 2 I 3 I 5 I 6 I 7 I 8 I 9 I 10 I 15 I 17 1 19 1 24
1, 2, 3, 8, 9, 17, 24, 29, 30, 37
l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 15 I 1 7 I 19 f 24 I 34
1, 2, 3 I 5 f 8 I 9 I 10 I 18 I 19 I 24
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 15 I l 7 I 19 I 24 I 34
1 , 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 15 I 17 I 19 I 24 I 32 I

34
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 20, 24
1 , 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1 0 I 11 , 12, 19 I 20 I 22, 24 I

27
1 , 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 12 I 19 I 24

9-2
TAL Programming

OP CODE BYTE REQUIREMENTS

OP
CODE BYTES SUBROUTINES CALLED

MVM 80 1, 2, 3, 5, 8, 9, 10, 12, 15, 17, 19, 24, 34
NFT 22 1, 37
NXF 106 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 17, 19, 24, 28,

29, 30, 37
NXT 106 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 17, 19, 24, 28,

29, 30, 37
OVL 153 0, 1, 6, 7, 8, 9
PTI 127 l ' 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 19' 24, 34
PUT 41 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17' 19' 33, 34
RDX 10 1, 2, 3, 8, 9, 17, 24, 28, 29, 37
REG* 111
REW 40 1, 2, 3 f 8 I 9, 17, 24, 29, 30, 37
RNG 50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17, 18, 19, 20, 24,

25, 26
RT J 61 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17' 18, 24
SCN 80 1, 2, 3, 5, 8, 9, l 0 I 18 I 19 f 24
SHF 90 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 19, 20
SIR 13 l ' 2, 3, 5, 8, 9, 15 I 19 f 24
SMA 57 1 ' 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 19, 24, 35
SRH 122 l ' 2, 3, 5, 6, 7, 8, 9, 10, 17, 18, 19, 24, 28, 29, 37
SSW 39 2, 8, 9, 16, 17
STR 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17 I 19 I 24, 33,

35
SUB 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19' 20, 21, 22,

24, 26
TCP 33 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 20, 24
TLU 52 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19 I 20,

23, 24, 25
TSC 87 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 18, 19, 20, 24, 25
TSW 43 1, 2, 3, 5, 8, 9, 10, 16, 18, 19
VFY 614 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 19, 24
WRT 10 1, 2, 3, 8, 9, 17, 24, 29, 31, 37

* REG must be specified when using switches or registers.

9-3
Sep 74 T AL Programming

SUBROUTINE BYTE REQUIREMENTS

SUBROUTINE
BYTES NUMBER

1111 84
¢1 36
¢2 26
¢3 26
¢4 176
¢_5 39
¢6 1¢
¢7 1¢
¢8 13
¢9 13
1¢ 13
11 28
12 26
13 1¢
14 51_
15 69
16 8
17 74
18 1¢5
19 17
2¢ 28
21 154
22 8¢
23 4¢
24 55
25 1¢
26 141
27 47
28 47
29 16
~ 59
31 43
32 24
33 26
34 93
35 34
36 35
37 17

Sep 74
9-4

TAL Programming

INTRODUCTION

The Software Library contains several peripheral drivers for magnetic tapes,
punch cards and printers. These drivers are included in both library cassettes
(TAL and COMM); and they may be combined with either TAL programs or
package programs. The Generator must be used to link the drivers to other
programs. Detailed operating instructions are provided in the program
generation section of this manual. A description of each driver and a uti I ity
program follows.

PUNCH CARDS

Card Reader #cR

This hardware reads 80 column cards at a rate of 250 cards per minute. To
use the card reader a C is selected as input in the job selection sequence.
Each card constitutes an 80 character record with a record separator appended.
Upon sensing an empty hopper in program mode a file separator is constructed
in place of the last card read. Therefore, a blank card should be placed at
the end of the card file.

In format and batch modes a "CRD" message is displayed when the hopper
empty condition is sensed, the last card read is not output, and no file
separator record is constructed.

In batch mode the settings of the PROG CTL and MEM CTL switches produce
the following results:

Program
Control

ON Fi le separator constructed on
"hopper empty" condition.

OFF "CRD" message is displayed
"hopper empty" condition.

Sep 74

Memory
Control

Three cards are blocked
into one 240 character
record.

One card is read into
80 character record.

one

1-1
Peripheral Drivers

In al I modes the AUTO OPRT switch controls the termination of the card
read operation,

ON - Two file separators are required to terminate operation (2 or 6 blank
cards),

OFF One file separator rs required to terminate operation (l or 3 blank
cards).

Card Punch #cp

This hardware punches 80 column cards at a rate of 25 character per second.
A card that contains a record with less than 80 characters is released anytime
a record separator is output to the card punch. The card will not be released
if the record separator is in column one such as an 80 character record. This
is to avoid releasing blank cards with no punch in them, A card is released
after 80 characters are output even if not followed by a record separator as
in the case of larger than 80 character records.

PRINTER DRIVERS

The following drivers provide control for Models 3480, 3481, 3482, 3484,
3485 and 3486 printers. To use a software driver, Op}ion Zero must be
activated by the Sycor customer engineer. Th is is a permanent change and
the hardware driver is no longer accessible when Option Zero is activated.
These drivers can be used with a package program under program control;
with T AL instructions under format mode; or alone under batch mode,

Use a P when selecting the printer as output during the job selection sequence.

The software drivers use the same vertical control characters recognized by the
ROM driver plus six additional ones for Her, Hco and #pr. The table on
the following page lists these characters and their function.

Sep 74
1-2

Peripheral Drivers

Sep 74

PRINTER VERTICAL CONTROL CHARACTERS

Vertical
Control

Characters

ESC A

ESC B

ESC C

ESC D

ESC E

ESC F

ESC G

ESC H

ESC I

ESC J

ESC K

ESC L

FF

VT

Function

Skips to Tab Channel A

Skips to Tab Channel B

Skips to Tab Channel c

Skips to Tab Channel D

Skips to Tab Channel E

Skips to Tab Channel F

Skips to Tab Channel G

Skips to Tab Channel H

Skips to Tab Channel I

Skips to Tab Channel J

Skips to Tab Channel K

Skips to Tab Channel L

Skips to TOP OF FORM. Line count is
reset to value assigned to Channel
in the vertical format record.

Skips to Channel B

A

1-3
Peripheral Drivers

All the drivers provide automatic page restore. This takes place when
Channel 6 overflows. After the line defined as Channel L is printed, the
paper is slewed to the top of form as defined in the vertical format tape.

A vertical format tape (VFT) must be installed on the printer that corresponds
to the length of the form. Any standard punch tape will work. The length
of the VFT is proportional to the printed form used. Each sprocket hole
represents one line on the form (10 sprocket holes to the inch).

Al I printers use an eight channel (one inch) VFT except for Model 3480
which requires none. A five channel tape may be used instead of eight on
Models 3484 and 3485. Following is a chart of the printer drivers and
their VFT requirements.

Channels Vertical Format Tape
Driver Printer to be defined Cl1anneT
Name Model No. in Vertical Minimum of First

Tab Record Length Line Punch

Her 3481, 82 12 6.6 7
3484, 85 4.8 1 thru 5

Hco Same as #er with the exception that the zero is not
slashed when printed.

Hsr 3480 6 N/A N/A

#pr 3486 12 5.6 1

* The 3484 and 3485 printers also require a channel 3 punch in every frame.

Sep 74

1-4

Peripheral Drivers

The diagram below shows a standard 11 inch continuous invoice form and the
VFT required for a Model 3481 or 3482 printer. After the VFT has been
installed depression of the TOP OF FORM key causes the VFT to be positioned
at the channel A punch. The form is then manually lined up to the first print
line, which is the "SOLD TO" in this case.

After "SOLD TO" has been keyed in, an ESC B should be specified in the
format. This will cause the paper to move to I ine 14 in the body of the
invoice. Any time an FF is specified in the format on the CRT the paper wil I
move to the first print line of the next form. If, however, printing does
occur on the 60th line, the Auto Page Restore will be activated and cause an
FF to occur. The paper will move to the first print line on the next form,
providing Channel L in the vertical tab record is set to 60.

LINE l

6 SOLD TO:

14
QUANTITY DESCRIPTION

60
INVOICE

66

PRICE AMOUNT

Channel

__ IQP _QF_.EQRM

11 inches

6.6
inches

Models 3481, 3482, 3484 and 3485 Serial Printers #(T

8 7654 321

•

A carriage return character wil I be automatically placed at the end of the
132 character print record unless a carriage return is already in position
132 or 133.

Sep 74
1-5

Peripheral Drivers

Model 3480 Serial Printer #sr

A carriage return character will be automatically placed at the end of a 132
character print record unless the data contains carriage return codes within
the 133 characters.

Model 3486 Line Printer #pr

A carriage return character will be automatically placed at the end of a 132
character print record unless a carriage return is already in position 132 or 133.

MAGNETIC TAPE

The Magnetic Tape drivers available on the 340 use half-inch magnetic tape
encoded at either 556 or 800 bits per inch. The 340 input/output operations
are overlapped; therefore, a magnetic tape may not be used as both input
and output in the same job selection. A 11C 11 is specified for either input or
output in the job selection sequence. To manually control the magnetic tape
(writing a tape mark, rewinding, etc.) refer to the 340 Operators Manual.
The table below lists the available drivers.

Driver Computer No. of
Name Manufacturer Tracks

#M7 IBM 9

#M9 IBM 9

#MA NCR 9

#MG GE 7

#MH Honeywell 7

#MN NCR 7

#Ms IBM 9

#MT Honeywell 7

#MX IBM 9

Sep 74

Code

BCD

EBCDIC

ASCII

BCD

BCD

BCD

EBCDIC

BCD

EBCDIC

Parity

Even

Odd

Odd

Odd

Odd

Odd

Odd

Odd

Odd

Notes

1600 BPI

No FS written

1-6
Peripheral Drivers

MERGE AND PRINT MAP

The merge and print program takes data from two separate input sources,
merges the data from both sources according to a fi 11 character and outputs
the final result to one device. The terminal brings the fixed data on the
CRT. The variable data is read into the buffer. The presence of a fi 11
character brings the data from the buffer to overlay the fil I characters. The
results are released to the output device.

The fixed data input source contains the constant data, such as headings and
specifies by a fill character an area to be filled with variable data. When
a file separator is read from the fixed input device it rewinds this device.
The fixed data tape also determines the printed format by the presence of
printer control characters (HT, CR, ESC and A-F). The fixed data tape
can contain a special fill character, form feed (FF), to insure the merging
remains synchronous.

The variable data input source must contain as many data characters as the
number of fi 11 characters on the fixed data source. However, to avoid
using blanks to specify no data for a particular field or to fill the remainder
of a filed, a single HT character may be used. The presence of a HT
character in the variable data will fill one entire field or the remainder of
one field with blanks. If the special fill character FF is detected on the
fixed data then the next character from the variable data source must be a
FF.

The following is an example of fixed and variable sources and the resulting
print out.

FIXED DATA:

FC BALL POINT PENS
FR

c RULED PADS R

c STAPLES A-84 R

Sep 74

$.@@

$.@@

$.@@

QTY @@@

QTY @@@

QTY @@@ •

1-7
Peripheral Drivers

VARIABLE DATA:

F 2504475123HH • F TT

MERGED RESULTS:

BALL PO I NT PENS

RULED PADS

STAPLES A-84

$.25

$.75

$

QTY 044

QTY 123

QTY

The presence of two HT characters cause the last price and quantity fields
to be blank. If the FF did not correspond the program will issue an error
(SEQ).

The job selection for the merge and print program has the following options:

PROG IN A, OUT~,~ D

A: fixed data input device

B: variable data input device

C: output device

D: fi 11 character

Sep 74

l or 2

1,2, or C

1,2,C, or P

Any keyboard character

(Use a visible keyboard
character not present
elsewhere in the fixed
data).

1-8
Peripheral Drivers

The fol lowing package programs and peripheral drivers are available in the
Sycor Software Library:

Program Available on Locations Memory Required Transfer

Name Terminal* (Octal) Decimal Bytes Location**

#AP 340B Relocatable 217 RO
#AR 340B Relocatable 653 RI
Hco 340 4;040-5;374 477 p

Hep 340 Relocatable 346 RO
#cR 340 Relocatable 164 RI
Her 340 Relocatable 382 p

#M7 340Al/B 10;000-17; 150 1896 RI I RO
#M9 340Al/B 10;000- l 7;233 1947 RI, RO
#MA 340Al/B 10;000-17;220 1936 RI, RO
#MG 340Al/B 10;000-17;150 1896 RI, RO
#MH 340Al/B 10;000-17;150 1896 RI, RO
#MN 340Al/B 10;000-17;236 1950 RI, RO
#Ms 340Al/B 10;000-17;300 2092 RI, RO
#MT 340Al/B 10;000-17;150 1896 RI, RO
#MX 340Al/B 10;000-17;300 2092 RI, RO
#pr 340 4;376-5;332 335 P, RI
#sT 340 Relocatable 362 p

ANS 340Al/B Relocatable 230 MC
B5K 340B 11; 140-17;377 1696 None
B7K 340B 31; 140-37;377 1696 None
ccs 340Al/B Relocatable 507 MC, MS
CRl 340A 21 ;000-23;777 994 None
CRC 340 6;000-6;34 l 226 None
DTP 340B Relocatable 1588 PM
EBC 340 7;000-7;377 256 None
ITS 340B 13;060-17;377 1232 RO, PM
MAP 340 Relocatable 279 PM
MRT 340B Relocatable 4 None
MSA 340B Relocatable 1403 PM, MS, MC
RJE 340Al/B Relocatable 2515 MS, PM
SEC 340B Relocatable 4 None
TCM 340 Relocatable 219 MC, PM
TCS 340 Re I oca tab I e 20 MC, PM
TID 340B Relocatable 4 None
UBP 340 Re I oca tab I e 902 PM

* 340 Indicates that the program is available on al I 340 models.

** Transfer Location: MC-Memory Control, MS-Memory Select, P-Printer,
PM-Program Mode, RI-RAM Input, RO-RAM Output.

Sep 74
1-9

Peripheral Drivers

Additional Notes

Sep 74
1-10

Peripheral Drivers

PROGRAM
GENERATION

TAL PROGRAM GENERATION

The Sycor Customer uses the Program Generator in a Model 340 terminal
equipped with a minimum of 3K of extended memory to generate special
purpose application programs. The program routines and Program
Generator constitute the Software Library. The library is stored on
two cassettes (TAL Library and COMM Library). Both cassettes are furnished
when the Library is ordered; but either cassette can stand alone. Figure
contains a list of the programs routines on each cassette. During generation
application programs are recorded on a cassette tape to be loaded by an
operator and used during formatted data collection. Below is shown how the
generator acts on a keyboard entered name, the Sycor I ibrary, tables and
field programs to generate an application program on cassette tape.

entry Keyboard
of nam e

Cassette
Sycor Lib
(Operatic

1 or 2 of
rary
ns and Subroutines)

Tables fro
Source Ta

m
pe

Field
Programs
from Sour
Tape

"E" from
keyboard

Sep 74

ce

G
E
N
E
R
A
T
0
R

Name record

Selected Set of
Operations and
Subroutines

Tables

Linkages between
tables, operations and
format data fields.

End record

1-1
Program Generation

Program generation involves a series of wel I defined steps:

1 • Preparation

2. Set Up

3. Required Operations

4. Tables

5. Field Programs

6. End

7. Load and Test

The steps are described in the subsections below.

Preparation

Figure 2 is a sample TAL Program which can be used as a guide during
program preparation and generation. The program name has been filled out
and the OP CODES have been circled. Since registers one thru four are
used in the program REG has also been circled in the OP CODE section at
the bottom of the TAL form.

The tables and field programs should be recorded ahead of time on a source
tape and advanced onto the CRT during program generation. The source tape
should be organized as shown in Figure 1 • A record separator is required
at the end of each table and field program. A record separator is also
used, by itself, to separate tables and field program groups. The source
tape is prepared by typing the tables and field tables on the CRT and
manually writing them out one by one in the order shown in Figure

Sep 74

ONE CHARACTER<-~----------~---------------,
RECORD (RS ONLY)

ALL TABLES
ONE BYONE

FIELD I
PROGRAM

FIELD I
PROGRAM

DECLARATIVE PROGRAM AND
ALL FIELD PROGRAMS
USING I OR J AS
FIELD CONTROL

FIELD I
PROGRAM

ALL FIELD PROGRAMS
USING KOR l AS
FIELD CONTROL

Figure 1 Source Tape Organization

1-2
Program Generation

/

Si
S'tCORINC

" u FIELD PPIOGAAMS

"" YI JllLO OI' TA.all

KL ~~ ~ rgi1
~ .. ~ ~

MODEL 340
TAl PROGRAM FORM

,.,IZ II I I

"'l3J F 111121 •

l

I

I

I l

l

l

+
l
I
J.
I

.. _ TIME: 2E:Po2T __ I_ Of_z. __

°"'" 8/l(o IU. By _N_K_~---------

Aocumul•ton SA TA

TABLES

'' I
J.

J. l I

h

~ I~ F.[\J•J'\. 121 l II'
~ I I

l
I

FIELD 11'"00"AMI

TA•ll

"°
~I t?J
~I~

1)§

I

:&:

OP CODEI
c

Sep 74

II I
± I
I I

I I ±
I

........... n TIME: 12.E:.POeT s,.__£_ Of_£_

Doto 8/16 /?Z. av _N_.O::_B ________ _

TABLES

4' c ' ~ ' ~ l I l" s' '" '' ''
12 I ['::,<".

!Zh "• _l
±

I

·~ F

" 11
~" ZI

I
I

:

I

:-::
I I

:
J.

I

I I
I

'
'.L

0-T.) ~ ; : ct±b
s ""

I I If, 1

ei:.J_::::_G_:) Rl ~

Figure 2 T AL Program Form

1-3
Program Generation

Cassette
TAL

ACP CRC LMA

ADD CVB LOD

BEL CVD MAP

BSP DIV MOP

CK,0 DUP MPV

CKA EBC MVE

CKl EDT MVM

CK2 ERR NFT

CK3 ETC NXF

CK4 EXF NXT

CK5 GET OVL

CK6 GTI PTI

CK7 GTO PUT

CK8 INS RDX

CK9 IXR REG

CMP JMP REW

Sep 74

SOFTWARE LIBRARY
PROGRAM ROUTINES

Cassette 2
Communications

RNG B5K

RTJ B7K

SCN ccs

SHF CRJ

SIR CRC

SMA DTP

SRH EBC

SSW ITS

STR MRT

SUB MSA

TCP RJE

TLU SEC

TSC TCM

TSW TCS

VFY TID

WRT UBP

Common to
Both cassettes

#AP

#AR

Hco

Hep

#cR

Her

#M7

#M9

#MA

#MG

#MH

#MN

#MS

#MT

#MX

#pr

Hsr

ANS

1-4
Program Generation

The steps in preparing a source tape are:

1 • Load a blank tape on cassette one.

2. Turn program control off.

3. Depress job select, F, space four times and enter.

4. Type a table and a record separator {RS) on the CRT.

Example:

,0'15_R4\ F •

5. Write the table on tape 1 (tape 1, write).

6. Repeat step 4 and 5 unti I al I of the tables have been recorded
on the source tape (record each table only once).

7. Type a record separator {RS) in position one on the first line
of the CRT.

•
8. Write the record separator on tape 1 {tape 1, write). This

single record separator marks the end of the tables.

9. Organize the field programs into up to four
fie Id control characters used in the format.
wil I be one group, K and L another group,
and Y and Z another group.

groups according to the
I and J field programs

W and X another group

10. Do steps 11 through 15 below for each of the letter pair groups you
have used.

11. Type a field program and a record separator {RS) on the CRT. The
field program should be typed from left to right, top to bottom,
leaving at least one space after the three letter label and between
OP CODES and table numbers. The record separator is always the
last character in a field program.

Sep 74

1-5
Program Generation

Example:

EMP YNG _!/61_ GTO _!f62 _ERR _!/63· •

12. Write the field program on tape l (tape l, write).

13. Repeat steps 11 and 12 until all of the field programs in the group
have been recorded on tape l.

14. Type a record separator (RS) in position one on the first line of the
CRT.

•
15. Write

record
pair.

16. Repeat
used.

the record separator on tape l (tape l, write)·. This single
separator marks the end of the field programs for a letter

steps 11 through 15 for each of the letter pairs you have

17. Optional: Write a file separator on tape l (tape l, .shift FS).

18. Rewind and remove tape l (tape l, rewind) and mark it "Source
Tape 11

• This tape will be used as input during program generation.

When a source tape has been prepared, the systems analyst is ready to set up
the generator and generate the actual application program. If errors occur
during program generation, refer to the error recovery procedures at the
end of this section.

Set Up

The set up for program generation consists of copying the Loader on the
output cassette tape (so that it wi 11 be convenient for the operator to use)
and using the Loader to load the Generator. The systems analyst then selects
program mode and types a three character application program name. (This
is the name the operator wil I use later to load the program). The systems
analyst then depresses enter and three 11pointers 11 are displayed in the status
line for reference during program generation.

BUF XX XXX SYM YY YYY MEM ZZ ZZZ

Each pointer consists of two octal numbers that identify a location in memory

Sep 74
1-6

Program Generation

by page (04 through 17) and byte (000 through 377). BUF and SYM refer
to locations in the terminal being used to generate the program tape.
Figure 3 shows how extended memory is utilized during program generation.
The generator is stored in pages 03 through 10 (shaded area). The buffer
(BUF) starts at the "top" of the remaining memory in page 10 and the symbol
table (SYM) starts at the "bottom" of memory in page 17. The systems
analyst must check to be sure that BUF and SYM do not overlap during
program generation. MEM (Figure 3) refers to the amount of memory needed
in the terminal that will use the application program.

00 00

01 01

02
CRT CRT

02

03 1/0 03

04 MEM 04

05 05

06 06

07 07

10 10

11 11

16 SL 16

17
3K OPTION _J ~ Tl

20 10-17 20

26 §L k~r 27
SK OPTION _J 27

30 20-27 30

33 33

34 34

35 35

36

L 7KOPTION
_J

36

37 SYM 37

30-37
PROGRAM GENERATION PROGRAM EXECUTION

Figure 3

1-7

Sep 74 Program Generation

The steps for setting up program generation are:

l. Put the appropriate Sycor library cassette (TAL or COMM) on tape
l and a b I ank cassette on tape 2.

2. Turn AUTO OPRT and MEM CTL off.

3. Depress JOB SELECT, F, SPACE, SPACE, SPACE, and ENTER.

4. Advance tape l (TAPE l, ADV RCD).

5. Write the loader on tape 2 (TAPE 2, WRITE).

6. Load the loader (Depress SHIFT and LOAD simultaneously).

7. Depress JOB SELECT, P, l, SPACE, SPACE, and ENTER.

8. Type GEN (the three character name for the generator) and depress
ENTER.

9. The I oader wi II search for the program name GEN.

10. When GEN is found it will be loaded by the loader.

11. Loading is complete.

12. Depress JOB SELECT, P, l, 2, SPACE, and ENTER.

13. The status line will display:

PROG INl OUT2, BUF XX XXX SYM YY YYY MEM ZZ ZZZ

14. Type the three character TAL program name (SAL for instance).

15. Depress ENTER, the name will be written out to the program tape
as a name record.

16. The CRT now displays a list of the OP CODES available in the
Sycor Software Library.

When set up has been completed the systems analyst is ready to select the
required operations.

Sep 74
1-8

Program Generation

(

Required Operations

The status line will display 110 11 and a list of the names of all the operations
in the library will be displayed on the CRT. Type in the names of the
operations required, leaving one space between each. When all of the
required operations are on the CRT put a record separator and depress the
enter key. At this point the I ibrary tape is searched and as the operations
are found they are relocated (addresses changed on CRT) and copied on
cassette 2. A list of required subroutines is also being created by the
program generator. When al I the operation names have been erased from the
CRT by the generator, the required subroutines wil I be loaded. When an
EOF appears in the status line, the library tape may be rewound, removed
and replaced by the source tape containing the tables and field programs.

The actual steps in selecting required operations are:

1. Type in the required operations, with one space (refer to the TAL
Program Form). Don 1t forget that REG is required if the registers
or switches are being used~

2. When only the names of the operations you need are left on the
CRT, put a record separator fol lowing the instructions and depress
enter.

3. As the operations are copied on cassette 2, their names wil I be
erased from the CRT.

4. When al I the names have been erased and an EOF appears in the
status line, depress error reset.

5. Rewind and remove tape 1 (tape 1, rewind).

6. Leave tape 2 in place to collect further program output.

7. Depress enter to end the operation phase of program generation.

8. The cursor will be in the status line.

9. Make a note of the ME M address.

Continue with the next phase of program generation.

Sep 74

1-9
Program Generation

Tables

The systems analyst types T (for tables) in the status line. The tables can be
entered automatically or manually, depending if PROG CTL is on or off.

To Enter The Tables.

1. Load the program source tape containing the tables and field
programs on tape 1. (Refer to Figure for source tape format).

2. Type T for tables.

3. If PROG CTL is on, go to step 4. If PROG CTL is off, go to
step 5. *

4. Depress ENTER. The tables will be converted to object form and
written out on tape 2. Go to step 8.

5. Advance a table from tape 1 (TAPE 1, ADV RCD).

6. Depress ENTER. The table wi II be converted to object form and
written out to tape 2.

7. Repeat steps 5 and 6 until all of the tables and a single record
separator have been entered.

8. The cursor will be in the status line.

9. Make a note of the ME M address.

Continue with the next phase of program generation.

* If Any editing must be done to the tables turn PROG CTL off.

Sep 74
1-10

Program Generation

Field Programs

The eight extended memory field control letters are matched to form four
pairs.

and J

K and L

Wand X

Y and Z

The fie Id programs are similarly arranged into four groups and recorded on the
source tape.

Each group of field programs is started by typing one of the field control
letters for the froup in the status line (W, for instance, for W and X).
The field programs for the group may be entered automatically or manually
depending if PROG CTL is on or off. The systems analyst may then start
another field program group, by typing another field control letter in the
status I ine.

The steps for entering the field programs are:

Sep 74

1. Type I or J, K or L, W or X, Y or Z in the status line.

2. If PROG CTL is on, go to step 3. If PROG CTL is off go to
step 4.

3. Depress ENTER. The field programs w i II be converted to object
form and written on tape 2. Go to step 7.

4. Advance the first field program from the source tape.

5. Depress ENTER. The field program will be cleared from the CRT.

1-11
Program Generation

End

6. Repeat steps 4 and 5 until all of the field programs for the
letter pair and a single record separator have been entered.

7. Start over with step l for another letter pair, until all field
program groups have been entered.

8. The cursor wi II be in the status Ii ne.

9. Make a note of the MEM address.

Continue with the next page of program generation.

After the groups of field programs have been entered, note should be made
of the MEM (memory) address. This address gives an indication of the
amount of extended memory required for the terminal that will use the
application program. If MEM is less than or equal to 10,000, the program
can be used in a terminal equipped with l K of extended memory. MEM
must be less than or equal to 20,000 for use in a terminal equipped with
3K of extended memory. If the MEM address exceeds the available memory,
consult Appendix D for hints on how to reduce the size of the program.

The steps for ending the program are:

1. Make a note of the address in the status line after MEM.

2. Type E for end.

3. Rewind and remove tape 1 , the source tape.

4. Rewind tape 2, the program tape and leave it in place for
program loading and testing.

Load and Test

The systems analyst must load the application program and test it. The
first record on the program tape is the loader which is loaded manually with
the shift/load key. The systems analyst then goes into program mode, types
the three character program name (SAL for instance) and depress enter. The

Sep 74
1-12

Program Generation

program tape is then automatically searched and the program is loaded.
When the cassette stops advancing the system analyst rewinds and removes
the application program cassette and loads the format and a blank cassette.
The systems analyst should load and test each program and format to be
sure they are working properly.

The steps for loading and testing an application program are:

Sep 74

I. The program tape should be on tape 2.

2. Advance the loader onto the CRT from the program tape (tape 2,
adv red).

3. Depress shift/load to load the loader.

4. Depress job select, P, 2, space twice and enter.

5. Type the three character name you gave the program (SAL for
instance) and depress enter.

6. The I oader wi 11 search for the program name.

7. When the program is found it will be loaded by the loader.

8. When loading is complete, rewind and remove tape 2, the
application program tape.

9. Load the format tape on tape l .

10. Load a blank tape on tape 2.

11. Depress job select, turn program control and auto operation on,
Depress F, l, space, 2, space (or another suitable job selection)
and enter.

12. Test each data field.

1-13
Program Generation

PROGRAM GENERATOR ERROR RECOVERY

The error recovery instructions in this section refer to errors that may occur
during program generation or program testing. For general error recovery
instructions consult section three of the Model 340 Operator's Manual.

FM T Format error, field program phase of program generation.

SITUATION

The OP CODE is misspelled or
is missing.

The 0 P CODE is correct but the
operation was not included during
the operation phase of program
genera ti on.

Typing I, J, K, L, W, X, Y or
Z in the status I ine

ACTION

Depress ERROR RESET 1 correct
the field program and depress
enter.

Depress JOB SELECT. Program
generation will have to be
started over to include the
missing opera ti on.

Depress ERROR RESET. The
field letter pair you are using
has al ready been used once.
Enter the field programs under
a different letter pair (and
change the format accordingly)
or depress JOB SELECT and
start program generation over
again.

LBL The field program label has already been used in the current field
program group.

SITUATION

The I abe I is incorrect.

Sep 74

ACTION

Depress ERROR RESET, correct
the label and depress enter.

1-14
Program Generation

I
/

SITUATIONS

The label is correct.

The label error was intentionally
created to correct a previously
entered field program.

ACTION

Change the label or use this
field program in a different
field program group.

Depress ERROR RESET and ENTER
(no intervening key depression).
The field program on the CRT
will replace the field program
previously entered with the same
label. When substitution occurs,
al I field programs fol lowing the
replaced field program are
destroyed and must be re­
entered.

MOD The character you have typed is inappropriate at this point in
program generation. Depress ERROR RESET and read the generator
instructions in carefully.

PGM Program error.

SITUATION

During program testing.

Operation phase just started.

Sep 74

ACTION

The current field program
contains a table that does not
meet the requirements of the
operation. The program will
have to be re-generated.

The I ibrary tape is out of
sequence. Program generation
must be restarted. Depress
JOB SELECT or ERROR RESET.
Rewind both cassettes and
reload the generator.

1-15
Program Generation

SITUATION

Two operations have been
specified that require the
same memory locations.

C as format input and a
negative constant in a
next format instruction.

The same operation has been
specified twice.

During field program entry
(I, J, K, L, W, X, Y or Z
just typed in the status

During field program entry (a
field program just entered and
BUF ~ 20 000)

During table or field program
entry (SY M S. 20 040)

ACTION

Program generation must be
restarted and one of the 11over­
lappi ng 11 operators must be
omitted. Depress JOB SELECT
or ERROR RESET. Rewind both
cassettes and reload the
generator.

Revise the application program
or change the job selection to
use a cassette tape as the
format input •

Program generation must be
restarted. Depress JOB SELECT
or ERROR RESET. Rewind both
cassettes and reload the
generator.

Program generation must be
started over to include GTO.
Depress ERROR RESET or JOB
SELECT. Rewind both
cassettes and reload the
generator.

Break the field programs into
smaller groups and regenerate
the program.

The terminal does not have
enough memory to generate
the program.

RD Read error during the operation phase of program generation.

Sep 74

Restart program generation using e- fresh I ibrary tape.

1-16
Program Generation

TAB Table error during program generation.

SITUATION

During the table
phase.

During field pro­
gram entry. The
cursor i ndi cotes
the table number
that is causing
the error.

PROBABLE CAUSE

Two tables with the
same number or a
table number starting
with an alpha charact­
er.

The field program cal Is
for a table that has
not been entered.

Table number incorrect:

Table omitted:

ACTION

Depress ERROR RESET

Correct the table
number.

Depress ENTER.

Depress ERROR RESET,
correct the table
number and depress
enter.

Depress JOB SELECT.
The program wi 11
have to be regener­
ated to include the
missing table.

TPl or There may be a hardware error on one of the cassette drives.
If this happens at the beginning of a tape remove the cassette
and check the protect tabs. You may be trying to write on a
protected cassette. Replace the cassette, making sure it is
firmly seated and the door is properly closed.

Sep 74

1-17
Program Generation

SITUATION

Operation phase of program
generation.

Table phase or field program
phase of program generation.

Sep 74

ACTION

Depress ERROR RESET twice,
correct the tape problem and
depress ENTER.

Input tape: Depress ERROR
RESET twice, correct the tape
problem and (if necessary)
reposition the input tape
before continuing.

Output tape: Depress ERROR
RESET twice, correct the tape
problem and depress ENTER.

1-18
Program Generation

PROGRAM GENERATION WITH OVERLAYS

The program using overlays is divided into two modules, the resident and the
overlays. The resident module contains all of the OP CODES (including
OVL) that are used in the entire program, and any tables and field programs
that are used in more than one overlay module. The resident module resides
in memory for the duration of the program. After the resident module is
loaded into memory, overlay module # 1 is automatically loaded into memory.
The memory used by the resident module is the base from which each of the
overlay modules will start.

The overlay instruction can use any table previously defined in the field
program. Each overlay module contains only the tables and field programs
necessary for the subsequent format page(s). The overlay module is loaded
into memory and stays there, until the next overlay is called for by the
program. As a result, the total memory for an application is defined by the
resident module plus the largest overlay module, since only one overlay is
present in memory at any one time.

Because of these features, the source tape has a different structure. The
preparation is the same as described under Preparation. Refer to
Figure 2 for the source tape structure.

The steps for setting up program generation are:

1. Load the Sycor TAL Library cassette on tape· 1 and a blank cassette
on tape 2, making sure both are rewound.

2. Turn AUTO OPRT and MEM CTL off.

3. Depress JOB SELECT, F, SPACE, SPACE, SPACE, SPACE and
ENTER.

4. Advance tape 1 (TAPE 1, ADV RCD).

5. Write the loader on tape 2 (TAPE 2, WRITE).

6. Load the loader (Depress SHIFT and LOAD simultaneously).

7. Depress JOB SELECT, P, 1, SPACE, SPACE, and ENTER.

8. Type GEN (the three character name for the generator) and depress
ENTER.

Sep 74
1-19

Program Generation

9. The loader will search for the program name GEN.

10. When GEN is found it will be loaded by the loader.

11. Loading is complete.

12. Depress JOB SELECT, P, l, 2, SPACE and ENTER.

13. The status line will display:

PROG INl OUT2, BUF XX XXX SYM YY YYY MEM ZZ ZZZ

14. Type the three character TAL program name (I NV for instance).

15. Depress ENTER, the name will be written out to the program tape
as a name record.

16. The CRT now displays a list of the program routines available in
the Sycor Software Library.

17. Type in all of the required operations on the CRT,
record separator (refer to the TAL Program FORM).
REG (if the registers or switches are being used).

followed by a
Don't forget

18. Depress ENTER to start the generation of the program
routines on to the object cassette.

19. As the operations are copied on cassette 2, their names will be
erased from the CRT.

20. When al I the names have been erased and an E OF appears in the
status line, depress ERROR RESET.

21. Rewind and remove tape 1 (TAPE 1, REW).

22. Leave tape 2 in place to collect further program output.

23. Depress ENTER to end the operation phase of program generation.

24. The cursor will be in the status line.

25. Make a note of the MEM address.

1-20
Sep 74 Program Generation

NOTE: The fol lowing steps are included, if there are tables and field
programs in the resident module; otherwise, skip to step 45.

26. Load the program source tape containing the tables and field
programs on tape 1 • (Refer to figure 4 for source tape format).

27. Type T for tables.

28. To automatically enter the tables, go to step 29. To manually enter
the tab I es, go to step 30.

29. Turn PROG CTL on and depress ENTER.
to object form and written on Tape 2.

30. Turn PROG CTL off.

The tab I es w i 11 be converted
Go to step 34.

31. Advance a table from tape 1 (TAPE 1, ADV RCD).

32. Depress ENTER. The table wi 11 not be converted to object form and
written out to tape 2, until a block is filled. The block size varies
depending upon memory a 11 oca ti on.

33. Repeat steps 31 and 32, until all of the tables and a single record
separator have been entered.

34. The cursor will be in the status line.

35. Make a note of the MEM address.

36. Type I, or J, K or L, W or X or Y or Z in the status line.

37. To automatically enter the group, go to step 38. To manually enter
the group, go to step 39.

38. Turn PROG CTL on and depress ENTER. Go to step 43.

39. Turn PROG CTL off.

40. Advance the first field program from the source tape.

41. Depress ENTER. The field program will be cleared from the CRT.

42. Repeat steps 40 and 41, until all of the field programs for the
letter pair and a single record separator have been entered.

Sep 74

1-21

Program Generation

43. Start over with step 36 for another letter pair, until all field
programs have been entered.

44. The cursor will be in the status line.

45. Make a note of the MEM address.

NOTE: Any letter group or field program name in the resident module
cannot be used in any of the overlay modules.

46. Type R. (The R signifies that overlay modules will follow, this R
goes on the status I ine but not in the same location as the T, E,
etc.).

47. Type T (for tables).

48. Write a file separator on tape 2 to separate the resident
module from the overlay module # l. (TAPE 2, SHIFT, FS).

49. Repeat the tab I e phase for overlay # 1. Steps 28-35.

50. Continue the field program phase for overlay # 1. Steps 36-45.

51. Type E (End of overlay module),

The terminal is in free form. The first format can be advanced
from the source tape onto the CRT, or it may be created from the
keyboard at this time.

52. Depress ENTER. (The page of format is written on the program
tape). Continue entering format(s), until a single record separator
has been entered. The cursor is now in the status I ine, and the
generation of overlay module #2 can begin.

53. Type T. Steps 28-45.

This sequence repeats until the last page of formats of the last
overlay module has been entered on the object tape.

54. Depress TAPE 2, FS (file separator). The resulting object tape
should be similar to the structure of the tape in Figure 5

Sep 74

1-22
Program Generation

PROGRAM LOADING WITH OVERLAYS

Because the file separator automatically rewinds the format input device, and
the resident module and overlay module # 1 are loaded together, it is
necessary to change the structure of the object program tape. Refer to
Figure 6 This structure wil I insure that the loader, name record and
resident module will be encountered only once.

The final version of the program tape is ready for testing.

1. Position the object tape immediately after the first file separator.
A convenient way of advancing the tape to this position is a batch
job selection with no output and AUTO OPRT off.

2. Depress JOB SELECT, F, SPACE, SPACE, SPACE, SPACE, and
ENTER.

3. Advance the loader on the CRT.

4. Depress SHIFT and LOAD simultaneously.

5. Depress JOB SELECT.

6. Depress P.

7. Depress 1 •

8. Depress SPACE, SPACE, and ENTER.

9. Type in the 3 character name (INV for example).

10. Depress ENTER, the resident module and overlay # 1 is read into
memory.

11. Depress JOB SELECT.

12. Switch PROG CTL and AUTO OPRT on.

13. Enter the required job selection as specified on the Format Layout
Form.

14. The file separator wil I rewind the tape and the first page of format
wi 11 be read onto the screen.

1-23
Sep 74 Program Generation

Figure 4

Sep 74

TABLES
(RESIDENT)
(MODULE)

R.S.

OPTIONAL

FIELD PROGRAMS
(RESIDENT)
MODULE

R.S.

TABLES

R.S.

FIELD PROGRAMS
IJ;KL;WX;YZ

OVERLAY #J

R.S.

PAGE(S) OF
FORMAT

R.S.

TABLES

R.S.

FIELD PROGRAMS
IJ;KL;WX;YZ

OVERLAY #2

R.S.

PAGE(S) OF
FORMAT

R.S

Source Tape Structure

1-24
Program Generation

LOADER

NAME RECORD

RESIDENT
MODULE

F.S.

OVERLAY #J

END RECORD
#]

FORMAT(S) FOR
OVERLAY #J

OVERLAY #2

END RECORD
#2

FORMAT(S) FOR
OVERLAY #2

OVERLAY #3

END RECORD
#3

FORMAT(S) FOR
OVERLAY #3

OVERLAY #4

Figure 5 Object Tape Figure 6

Sep 74

FORMAT(S) FOR
OVERLAY #J

OVERLAY #2

END RECORD
#2

OVERLAY N

END RECORD
N

FORMAT(S) FOR
OVERLAY N

OVERLAY N

THE ABOVE BLOCK
IS REPEATED A

NUMBER OF TIMES

F.S.

LOADER

NAME RECORD

RESIDENT
MODULE

OVERLAY #J

END RECORD
#1

F.S.

Final Object Tape

1-25
Program Generation

Additional Notes

Sep 74
1-26

Program Generation

APPENDIX

PRINTER VERTICAL TAB CODES

0 1 2 3 4 5 6

0 PA PB PC PD PE PF

10 PJ PK PL PM PN PO AP

20 AD AE AF AG AH Al AJ

30 AN AO BP BA BB BC BO

40 BH Bl BJ BK BL BM BN

50 CB cc CD CE CF CG CH

60 CL CM CN co DP DA DB

70 OF DG DH DI DJ DK DL

80 EP EA EB EC ED EE EF

90 EJ EK EL EM EN EO FP

100 FD FE FF FG fH Fl FJ

110 FN FO GP GA GB GC GD

120 GH GI GJ GK GL GM GN

130 HB HC HD HE HF HG HH

140 HL HM HN HO IP IA I B

150 IF IG IH II IJ IK IL

160 JP JA JB JC JD JE JF

170 JJ JK JL JM JN JO KP

180 KO KE KF KG KH Kl KJ

190 KN KO LP LA LB LC LO

200 LH LI LJ LK LL LM LN

210 MB MC MD ME MF MG MH

220 ML MM MN MO NP NA NB

230 NF NG NH NI NJ NK NL

240 OP OA OB oc OD OE OF

250 OJ OK OL OM ON 00

Sep 74

7

PG

AA

AK

BE

BO

Cl

DC

OM

EG

FA

FK

GE

GO

HI

IC

IM

JG

KA

KK

LE

LO

Ml

NC

NM

OG

8

PH

AB

AL

BF

CP

CJ

DD

ON

EH

FB

FL

GF

HP

HJ

ID

IN

JH

KB

KL

LF

MP

MJ

ND

NN

OH

9

Pl

AC

AM

BG

CA

CK

DE

DO

El

FC

FM

GG

HA

HK

IE

10

JI

KC

KM

LG

MA

MK

NE

NO

01

A-1
Appendix A

Octal/Decimal Conversion Table

0 2 3 5

0 0 1 2 3 4 5
1 8 9 10 11 12 13
2 16 17 18 19 20 21
3 24 25 26 27 28 29
4 32 33 34 35 36 37
5 40 41 42 43 44 45
6 48 49 50 51 52 53
7 56 57 58 59 60 61

10 64 65 66 67 68 69
11 72 73 74 75 76 77
12 80 81 82 83 84 85
13 88 89 90 91 92 93
14 96 97 98 99 100 101
15 104 105 106 107 108 109
16 112 113 114 115 116 117
17 120 121 122 123 124 125
20 128 129 130 131 132 133
21 136 137 138 139 140 141
22 144 145 146 147 148 149
23 152 153 154 155 156 157
24 160 161 162 163 164 165
25 168 169 170 171 172 173
26 176 177 178 179 180 181
27 184 185 186 187 188 189
30 192 193 194 195 196 197
31 200 201 202 203 204 205
32 208 209 210 211 212 213
33 216 217 218 219 220 221
34 224 225 226 227 228 229
35 232 233 234 235 236 237
36 240 241 242 243 244 245
37 248 249 250 251 252 253

Sep 74

6

6
14
22
30
38
46
54
62
70
78
86
94
102
110
118
126
134
142
150
158
166
174
182
190
198
206
214
222
230
238
246
254

7

7
15
23
31
39
47
55
63
71
79
87
95
103
111
119
127
135
143
151
159
167
175
183
191
199
207
215
223
231
239
247
255

A-.2
Appendix A

~
'"O
(!)
:J
0... -· x)>
)> ~

Char-
acter

Space
I .
II

$
%
&
I

(
)
·k

+

' -
.
I
0
1
2
3
4
5
6
7
8
9
:
;

=

?

USASCll

Octal

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex #M9*

20 40
21 4F
22 7F
23 7B
24 58
25 6C
26 50
27 7D
28 4D
29 5D
2A 5C
2B 4E
2C 6B
2D 60
2E 4B
2F 61
30 FO
31 F1
32 F2
33 F3
34 F4
35 F5
36 F6
37 F7
38 F8
39 F9
3A 7A
3B SE
3C 4C
3D 7E
3E 6E
3F 6F

PERIPHERAL DRIVER CHARACTER CONVERSION TABLE

Peripheral Driver Program Name

#M7 #MH
T

#MG #MA #MN #MT #CR

20 1 5 20 040 14 1 5
I 52 40 77 041 20 57 12-8-7

57 52 76 042 33 55 8-7
13 1 3 13 043 61 52 8-3
53 53 53 044 54 53 11 -8-3
34 74 74 045 52 35 0-8-4
60 37 32 046 15 17 12
77 32 57 047 74 12 8-5
35 75 35 050 55 74 12-8-5
74 34 55 051 56 34 11-8-5
54 54 54 052 60 54 11 -8 -4
37 77 60 053 40 20 12-8-6
33 73 73 054 1 3 73 0-8-3
40 57 52 055 17 40 11
73 33 33 056 16 33 12-8-3
21 61 61 057 57 61 0-1
12 00 00 060 00 00 0
01 01 01 061 01 01 1
02 02 02 062 02 02 2
03 03 03 063 03 03 3
04 04 04 064 04 04 4
05 05 05 065 05 05 5
06 06 06 066 06 06 6
07 07' 07 067 07 07 ..,

I

10 10 10 070 10 10 8
11 11 11 071 11 11 9
15 60 15 072 35 14 8-2
56 56 56 073 32 32 11-8-6
76 36 36 074 72 60 12-8-4
17 17 75 075 53 1 3 8-6
16 16 16 076 73 16 0-8-6
72 20 17 077 34 37 0-8-7

PERIPHERAL DRIVER CHARACTER CONVERSION TABLE

Peripheral Driver Program Name
USASCll

Char- Octal Hex 7fM9* #M7 #MH 7f MG 7f MA #MN #MT #cR
acter

140 60 40 20 15 20 100 14 15 8-1
a 141 61 40 20 15 20 101 14 15 12-0-1
b 142 62 40 20 15 20 102 14 15 12-0-2
c 143 63 40 20 15 20 103 14 15 12-0-3
d 144 64 40 20 15 20 104 14 15 12-0-4
e 145 65 40 20 1 5 20 105 14 15 12-0-5
f 146 66 40 20 15 20 106 14 15 12-0-6
g 147 67 40 20 15 20 107 14 15 12-0-7
h 150 68 40 20 15 20 110 14 15 12-0-8
i 1 51 69 40 20 15 20 111 14 15 12-0-9
j 152 6A 40 20 15 20 112 14 15 12-11-1
k 153 68 40 20 15 20 113 14 15 12-11-2
1 154 6C 40 20 15 20 114 14 15 12-11-3
m 155 60 40 20 15 20 115 14 15 12-11-4
n 156 6E 40 20 15 20 116 14 15 12-11-5
0 157 6F 40 20 15 20 117 14 15 12-11-6
p 160 70 40 20 15 20 120 14 15 12-11-7
q 161 71 40 20 15 20 121 14 15 12-11 -8
r 162 72 40 20 15 20 122 14 15 12-11-9
s 163 73 40 20 15 20 123 14 15 11-0-2
t 164 74 40 20 15 20 124 14 15 11-0-3
u 165 75 40 20 15 20 125 14 15 11-0-4
v 166 176 40 20 15 20 126 14 15 11-0-5
w 167 77 40 20 15 20 127 14 15 11-0-6
x 170 78 40 20 15 20 130 14 15 11-0-7
y 171 79 40 20 15 20 131 14 15 11-0-8
z 172 7A 40 20 15 20 132 14 15 11-0-9

173 78 40 20 15 20 133 14 15 12-0
I 174 7C 40 20 15 20 134 14 15 12-11

-o 175 7D 40 20 15 20 135 14 40 11-0
176 7E 40 20 15 20 136 14 15 11-0-1

DEL 177 7E 40 20 15 20 137 14 15 12-9-7

~
-0

CD
::s
0... -· ><)>

)> 6,

Char-
acter

@

A
B
c
0
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
v
w
x
y

z
0

,,

0
0
0
0

USASCll

Octal Hex #M9*

100 40 7C
1 01 41 Cl
102 42 C2
103 43 C3
104 44 C4
105 45 C5
106 46 C6
107 47 C7
11 0 48 C8
111 49 C9
112 4A 01
11 3 4B 02
114 4c 03
11 5 40 04
116 4E 05
117 4F 06
120 50 07
121 51 08
122 52 09
123 53 E2
124 54 E3
125 55 E4
126 56 E5
127 57 E6
130 58 E7
131 59 E8
132 5A E9
133 58 4A
134 5C 6A
135 50 5A
136 5E 5F
137 5F 40

PERIPHERAL DRIVER CHARACTER CONVERSION TABLE

Peripheral Driver Program Narne

#M7 #MH #MG #MA #MN #MT #cR

14 14 14 100 12 72 8-4
61 21 21 101 21 21 12-1
62 22 22 102 22 22 12-2
63 23 23 103 23 23 12-3
64 24 24 104 24 24 12-4
65 25 25 105 25 25 12-5
66 26 26 106 26 26 12-6
67 27 27 107 27 27 12-7
70 30 30 110 30 30 12-8
71 31 31 111 31 31 12-9
41 41 41 11 2 41 41 11 -1
42 42 42 113 42 42 11-2
43 43 43 114 43 43 11 -3
44 44 44 11 5 44 44 11 -4
45 45 45 116 45 45 11-5
46 46 46 117 46 46 11-6
47 47 47 120 47 47 11 -7
50 50 50 121 50 50 11-8
51 51 51 122 51 51 11 -9
22 62 62 123 62 62 0-2
23 63 63 124 63 63 0-3
24 64 64 125 64 64 o-4
25 65 65 126 65 65 0-5
26 66 66 127 66 66 0-6
27 67 67 130 67 67 0-7
30 70 70 131 70 70 0-8
31 71 71 132 71 71 0-9
75 35 12 133 75 56 12-8-2

72-34 72-34 37 134 77 36-34 0-8-2
55 55 34 135 76 75 11 -8-2
36 76 40 136 37 76 11-8-7
20 1 5 20 137 14 77 0-8-5

Vl
CD

"'O

~

Char-
acter

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI
OLE
DC 1
DC2
DC3
DC4
NAK
SNY
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

lJSASCll

Octal Hex #M9*

000 00 00
001 01 01
002 02 02
003 03 03
004 04 37
005 05 20
006 06 2E
007 07 2F
010 08 16
011 09 05
012 OA 25
013 OB OB
014 oc oc
015 OD OD
016 OE OE
017 OF OF
020 10 10
021 11 11
022 12 12
023 13 13
024 14 3C
025 15 30
026 16 32
027 17 26
030 18 18
031 19 19
032 lA 3F
033 1B 27
034 lC 22
035 10 10
036 1E lE
037 1F 1F

PERIPHERAL DRIVER CHARACTER CONVERSION TABLE

Peripheral Driver Program Name

#M7 #MH #MG #MA #MN #MT #cR

32-40 72-40 72-40 000 36-40 36-40 12-0-9-8-1
32-01 72-01 72-01 001 36-01 36-01 12-9-1
32-02 72-02 72-02 002 36-02 36-02 12-9-2
32-03 72-03 72-03 003 36-03 36-03 12-9-3
32-04 72-04 72-04 004 36-04 36-04 9-7
32-05 72-05 72-05 005 36-05 36-05 0-9-8-5
32-06 72-06 76-06 006 36-06 36-06 0-9-8-6
32-07 72-07 72-07 007 36-07 36-07 0-9-8-7
32-10 72-10 72-10 010 36-10 36--10 11-9-6
32-11 72-11 72-11 011 36-11 36-11 12-9-5
32-12 72-12 72-12 012 36-12 36-12 0-9-5
32-13 72-13 72-13 013 36-13 36-13 12-9-8-3
32-14 72-14 72-14 014 36-14 36-14 12-9-8-4
32-15 72-15 72-15 015 36-15 36-15 12-9-8-5
32-16 72-16 72-16 016 36-16 36-16 12-9-8-6
32-17 72-17 72-17 017 36-17 36-17 12-9-8-7
32-20 72-20 72-20 020 36-20 36-20 12-11-9-8-1
32-21 72-21 72-21 021 36-21 36-21 11 -9-1
32-22 72-22 72-22 022 36-22 36-22 11-9-2
32-23 72-23 72-23 023 36-23 36-23 11-9-3
32-24 72-24 72-24 024 36-24 36-24 9-8-4
32-25 72-25 72-25 025 36-25 36-25 9-8-5
32-26 72-26 72-26 026 36-26 36-26 9-2
32-27 72-27 72-27 027 36-27 36-27 0-9-6
32-30 72-30 72-30 030 36-30 36-30 11-9-8
32-31 72-31 72-31 031 36-31 36-31 11-9-8-1
32-32 72-32 72-32 032 36-32 36-32 9-8-7
32-33 72-33 72-33 033 36-33 36-33 0-9-7
32-35 72-35 72-35 034 36-35 36-35 11-9-8-4
32-41 72-41 72-41 035 36-41 36-41 11-9-8-5
32-36 72-36 72-36 036 36-36 36-36 11-9-8-6
32-37 72-37 72-37 037 36-37 36-37 11-9-8-7

OCTAL
SYSTEM

CRT

1/0 BUFFER

SYSTE_ML_DISK BUFFER

l LATCHES

Sep 74

MEMORY MAP

% %

2 2

3 3

4 4

5 5
6 6

7 7

1% 8
11 9
12 1%
13 11
14 12
15 13

16 14
17 15
2% 16
21 17

22 18
23 19
24 2%
25 21
26 22

27 23

3% 24

31 25
32 26
33 27
34 28

35 29
36 3%
37 31

DECIMAL

SYSTEM

CRT

1/0 BUFFER

SYSTEM/DISK BUFFER

l LATCHES

A-7
Appendix A

OCTAL

BOOT LOADER (ROM)

MIXER

SYSTEM

KEYBOARD

RESIDENT LOADER
JOB SELECT/SYSTEM

CASSETTE 1/0

PRINTER 1/0

SYSTEM 1/0 &
ERROR MESSAGES

DISK DRIVER

DISK HANDLER

FREE-FORM

RESIDENT
CONTROL
PROGRAM

Sep 74

MEMORY MAP

4% 32

41 33
42 34

43 35
44 36
45 37

46 38
47 39

5% 4%
51 41

52 42
53 43

54 44

55 45

56 46
57 47

6% 48
61 49

62 5%
63 51

64 52
65 53
66 54
67 55
7% 56
71 57
72 58
73 59
74 6%
75 61

76 62
77 63

DECIMAL

BOOT LOADER (ROM)

MIXER

SYSTEM

KEYBOARD

RESIDENT LOADER
JOB SELECT/SYSTEM

CASSETTE 1/0

PRINTER 1/0

SYSTEM 1/0 &
ERROR MESSAGES

DISK DRIVER

DISK HANDLER

FREE-FORM

RESIDENT
CONTROL
PROGRAM

A-8
Appendix A

(!) ...
(!)

...c:

(!) ...
(!)

...c:
....
:;)
u

REVISION REQUEST AND COMMENT FORM

Please send me copies of all revisions and additions to the

MODEL 340 PROGRAMMER 1S MANUAL

ISSUED SEPTEMBER, 1974

-----------------------------------ro1a-her;-----------------------------------

Suggested improvements:

Errors noted:

...

General comment:

Please print or type:

Name:
Title:.
Company: •••••
Address:
city:

. ..

....

fold here

• • Phone: •

State: Zip Code:

When complete, please fold and staple or tape closed with the return address facing
outward. Thank you for your selection of Sycor Data Communications Systems.

FIRST CLASS
PERMIT NO. 1531

ANN ARBOR
MICHIGAN

Business Reply Card No postage stamp nec"8&Bry if mailed in the United States

Postage will be paid by

SYCOR INC.
TRAINING AND DOCUMENTATION DEPARTMENT
100 PHOENIX DRIVE
ANN ARBOR, MICHIGAN 48104

100 Phoenix Drive
Ann Arbor, Michigan 48104

	001
	002
	003
	004
	005
	006
	007
	008
	1_1-00
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	2_1-00
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_1-09
	2_1-10
	2_1-11
	2_1-12
	2_1-13
	2_1-14
	2_1-15
	2_1-16
	2_1-17
	2_1-18
	2_1-19
	2_1-20
	2_1-21
	2_1-22
	2_1-23
	2_1-24
	2_1-25
	2_1-26
	2_1-27
	2_1-28
	2_1-29
	2_1-30
	3_1-00
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_1-07
	3_1-08
	3_1-09
	3_1-10
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_2-12
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_3-18
	3_3-19
	3_3-20
	3_3-21
	3_3-22
	3_3-23
	3_3-24
	3_3-25
	3_3-26
	3_3-27
	3_3-28
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_4-05
	3_4-06
	3_4-07
	3_4-08
	3_4-09
	3_4-10
	3_4-11
	3_4-12
	3_4-13
	3_4-14
	3_4-15
	3_4-16
	3_4-17
	3_4-18
	3_4-19
	3_4-20
	3_4-21
	3_4-22
	3_4-23
	3_4-24
	3_4-25
	3_4-26
	3_4-27
	3_4-28
	3_4-29
	3_4-30
	3_4-31
	3_4-32
	3_4-33
	3_4-34
	3_4-35
	3_4-36
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_5-11
	3_5-12
	3_5-13
	3_5-14
	3_5-15
	3_5-16
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_6-06
	3_6-07
	3_6-08
	3_6-09
	3_6-10
	3_6-11
	3_6-12
	3_6-13
	3_6-14
	3_6-15
	3_6-16
	3_6-17
	3_6-18
	3_6-19
	3_6-20
	3_7-01
	3_7-02
	3_7-03
	3_7-04
	3_7-05
	3_7-06
	3_7-07
	3_7-08
	3_7-09
	3_7-10
	3_7-11
	3_7-12
	3_8-01
	3_8-02
	3_8-03
	3_8-04
	3_8-05
	3_8-06
	3_9-01
	3_9-02
	3_9-03
	3_9-04
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_1-05
	4_1-06
	4_1-07
	4_1-08
	4_1-09
	4_1-10
	5_1-00
	5_1-01
	5_1-02
	5_1-03
	5_1-04
	5_1-05
	5_1-06
	5_1-07
	5_1-08
	5_1-09
	5_1-10
	5_1-11
	5_1-12
	5_1-13
	5_1-14
	5_1-15
	5_1-16
	5_1-17
	5_1-18
	5_1-19
	5_1-20
	5_1-21
	5_1-22
	5_1-23
	5_1-24
	5_1-25
	5_1-26
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	replyA
	replyB
	xBack

