


Comm-Stor IV 

PROGRAMMER M,ANUAL 



Comm-Stor IV 
PROGRAMMER MANUAL 

2nd Edition 
Copyright 1979 

11111® 
SYKES DATATRONICS, 

INC. 

All rights reserved. No part of this publication may be reproduced by any means without 
written permission from Sykes Datatronics, Incorporated. 

The information in this publication is believed to be accurate in all respects. How­
ever, Sykes Datatronics, Incorporated cannot assume responsibility for any consequences 
resulting from the use thereof, The information contained herein is subject to change 
without notice. Revisions of this publication or new editions of it may be issued to 
incorporate such change. 

Price of additional copies - $30.00 

ii 



CHAPTER 1 

CHAPTER 2 

CHAPTER 3 

CHAPTER 4 

CHAPTER 5 

CHAPTER 6 

CHAPTER 7 

CHAPTER 8 

APPENDICES: 

APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

APPENDIX E 

APPENDIX F 

APPENDIX G 

INDEX 

TABLE OF CONTENTS 

INTRODUCTION 

CONSTANTS AND VARIABLES 

GETTING STARTED 

PRINT USING AND READ USING COMMANDS 

THE FILE MANAGER 

THE REAL-TIME CONTROL SYSTEM 

COMMAND DEFINITIONS 

FUNCTION DEFINITIONS 

COMMANDS AND FUNCTIONS 

ALLOCATING USER MEMORY 

ASCII EBCDIC CODE CHART 

RESERVED WORDS 

INTERNAL FORMATS 

Comm-Stor USER DISKETTE FORMATS 

ERROR MESSAGES 

iii 

Comm-Stor IV 
PROGRAMMER MANUAL 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

iv 



CHAPTER 1 

INTRODUCTION 

CONTENTS PAGE 

1. WELCOME TO Comm-Stor IV 1-1 

2. PURPOSE 

3. POWER ON 

4. DISKETTES 

A. General 
B. Selecting the Diskette 
C. Inserting and Removing 

the Diskette 
D. Diskette Care 

5. DEFINITIONS 

6. MEMORY ORGANIZATION 

7. BASIC WITH Comm-Stor COM­
MANDS 

A. General 
B. Examples 

8. PROGRAM LIMITS AND MEMORY 
OVERHEAD 

1 • WELCOME TO Comm-Stor IV 

1-1 

1-2 

1-2 

1-2 
1-2 
1-4 

1-4 

1-4 

1-6 

1-6 

1-6 
1-8 

1-10 

The Comm-Stor<B>IV* system is a micro­
processor-based communications storage 
unit which uses IBM compatible flexible 
diskettes (floppy disks) and an extended 
BASIC language package, referred to as 
Sykes BASIC-*. (Any Commands not common 
to the computer industry will be described 
in detail.) 

* Henceforth in this manual, Comm-Stor IV 
will be referred to as Comm-Stor. 

**Sykes BASIC conforms with the NBS Mini­
mal BASIC. 

Comm-Stor IV 
PROGRAMMER MANUAL 

Comm-Stor has several new attributes 
which greatly increase programmer effi­
ciency. These include: 

a. 

b. 

c. 

d. 

A File Management System that reduc­
es the maintenance of libraries and 
the addressing of files to an abso­
lute minimum. 

A Real Time Control System that al­
lows the programmer to specify and 
control interrupts, based on time 
or changes (occurrences of change) 
in the device cables which interface 
with the unit. 

Virtual Arrays used with Sykes BASIC 
that provide the programmer with 
greater flexibility when updating 
files and reduce the amount of inter­
nal memory needed to contain an ar­
ray. 

Overlaying Programs that allow dif­
ferent programs to be temporarily 
brought into memory and executed. 
This is ideal for the execution of 
subroutines, or when a program is 
too large to fit into the memory 
available. 

Any type of peripheral device may be 
used with Comm-Stor. However, this manual 
refers to a standard ASCII terminal when 
describing the use of Comm-Stor. 

2. PURPOSE 

The purpose of this manual is to pro­
vide the programmer with all the informa­
tion necessary for successful use of the 
options available in the Comm-Stor system. 
This manual is not intended to teach the 
BASIC language; it is assumed that the 
programmer has a fundamental knowledge of 
the BASIC language prior to reading this 
document. If the programmer is not famil­
iar with the BASIC language, refer to the 
following book as a possible source of in­
formation: 

BASIC, Albrecht, Finkel and Brown 
John Wiley & Sons, New York, London, 
Sydney, Toronto 
Sykes Publication Number 1030B5000 

Page 1- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

Additionally, the programmer is ad­
vised to study the Comm-Stor IV Reference 
Manual (Sykes Publication Number 9990B0-
258A) before proceeding further in this 
manual. This is suggested as an aid in 
understanding the Comm-Stor Mode of oper­
ations. 

Al though Chapters through 3 are 
directed toward the novice programmer with 
little experience, they also introduce the 
unique Sykes BASIC features. Chapters 4 
through 6 are directed toward the more ex­
perienced programmer, or the programmer 
who has a confident knowledge of the BASIC 
language. Chapter 7 contains a brief de­
scription of all commands available in 
Sykes BASIC and Chapter 8 contains the 
available functions. The remaining chap­
ters and appendices are designed as quick 
reference sources during operation of 
Comm-Stor. 

3. POWER ON 

After connecting Comm-Stor to an ex­
ternal power line, depress the POWER/CIR­
CUIT BREAKER switch on the rear panel. 
The RESTART button on the front panel will 
illuminate, indicating that power is on. 
If the lamp does not light, press the POW­
ER/CIRCUIT BREAKER switch again. If the 
lamp still does not illuminate, service 
assistance should be sought. Power should 
also be applied to any attached peripheral 
devices. The order in which power is ap­
plied to various devices will not affect 
the operation of Comm-Stor. 

At this point, Comm-Stor will display 
an identification message. 

The system is now in the idle mode 
and ready to accept a diskette for data 
input or output. 

4. DISKETTES 

A. General 

A flexible diskette is a thin disk 
permanently enclosed in a semi-rigid, pro­
tective, flexible jacket. The recording 
surface of the diskette is divided into 

Page 1- 2 

"Tracks" and "Sectors", as illustrated in 
Fig. 1-1. 

A 11 track" is a circular band of area 
that passes beneath the read/write head as 
the diskette revolves. A diskette has 77 
tracks, the outermost being Track 0 and 
the innermost being Track 76. Each track 
is divided into 26 sectors, each of which 
contains 128 bytes. The sectors of each 
track are numbered from 1 to 26. There­
fore, there are a total of 2002 (77 x 26) 
sectors on a diskette. Each sector may be 
separately addressed by a specified track 
and sector number. However, the powerful 
file management system residing in the 
Comm-Star system keeps a record of the 
different files on the diskette; there­
fore, each file need only be referenced by 
name. 

B. Selecting The Diskette 

Configuration Diskette 

The Configuration diskette is sup­
plied by Sykes Datatronics 1 Inc. It is 
the device which allows the user to create 
User and Refresh diskettes, as well as 
vary the operations and resources of Comm­
Stor. Use of the Configuration diskette 
is covered in Sykes Publication Number 
9990B0259A, "Comm-Stor IV Configuration 
Manual." 

Refresh Diskette 

Once Comm-Star is configured, it is 
possible to store this configuration on 'a 
diskette, called a Refresh diskette. 
After a Refresh diskette has been created, 
another Comm-Stor unit can be identically 
configured by inserting the Refresh disk­
ette and pressing the RESTART button. 

User Diskette 

The User diskette contains a Direc­
tory and is used for all normal opera­
tions. If not already available, this 
diskette should be created before pro­
ceeding further in this manual. 

The User diskette is created with the 
Configurator. It is initialized with such 



Track Sector 

Sykes DISKETTE 

FIGURE #1-1 

Comm-Stor IV 
PROGRAMMER MANUAL 

-------Track l 

~------- Track 0 

INSERTING THE DISKETTE 

FIGURE #1-2 

Page 1- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

parameters as the maximum number of char­
acters in the extension, and the maximum 
file length. A detailed description of 
User diskettes can be found in Appendix F. 

c. Inserting and Removing the Diskette 

The drive doors of all Comm-Star 
units are equipped with an interlock which 
prevents them from closing unless a disk­
ette is inserted. 

To insert the diskette: 

1.) Power Up the Comm-Star Unit. 

2.) Grasp the diskette between the thumb 
and index finger. The label should 
be face up and toward the operator 
(Fig. 1-2). 

3.)· Slide the diskette into the drive. 

4.) Exert a slight inward pressure with 
the index finger and gently pull the 
drive door down with the thumb. DO 
NOT FORCE THE DOOR CLOSED!! A gentle 
horizontal pressure on the disk is 
sufficient to release the interlock. 
When the door closes, the READY light 
on the front panel will illuminate, 
indicating that the respective drive 
is ready for use. 

IT IS IMPORTANT THAT DISKETTES BE IN­
SERTED ONLY WITH POWER ON AS SPINDLE 
ROTATION ALIGNS THE DISKETTE. A 
DISKETTE NEED NOT BE REINSERTED IF 
POWER IS TURNED OFF AND ON AGAIN, 
PROVIDED THE DOOR OF THE DRIVE IS NOT 
DISTURBED. 

To remove the diskette: 

1.) Gently lift the drive door until it 
is fully open. 

2.) Slide the diskette out of the drive. 

D. Diskette Care 

A diskette must be handled with care. 
Improper treatment or carelessness may re-

Page 1- 4 

sul t in the loss of data, and possibly, 
many hours of work. Observe the following 
precautions: 

l. 

2. 

3, 

4. 

5. 

6. 

1. 

Never touch the exposed diskette sur­
face. Handle the diskette only near 
the label. 

Do not write on the diskette cover; 
write only on the label. If possi­
ble, write on the label before plac­
ing it on the diskette. 

Do not attempt to clean a dirty or 
dusty diskette; such a diskette 
should be discarded. 

Keep the disk away from potentially 
magnetic materials (paper clips, 
etc.), or magnetic sources (unshield­
ed power supplies, CRT monitors, 
etc.). A magnetic field on such ma­
terials may result in the loss of 
data from the diskette. 

Do not bend the diskette. 

Do not expose the diskette to ex­
tremes of heat or cold. 

Keep the diskette in its protective 
cover when not in use. Dust and 
liquid can damage the exposed disk­
ette surface. 

8, Store diskettes vertically in boxes 
when not in use. 

5. DEFINITIONS 

Some words contained in this manual 
may not be clear to the average program­
mer, or our intended usage may differ from 
that which is common to the industry. The 
following list defines some of these words 
as used in this manual. 

Address - a number identifying a location 
where information is stored. 

Array and Variable Buffer - that area in 
memory which contains all variable names, 
their characteristics, and their values 
(or addresses which direct the system to 
their values). 



Average File Size - that result obtained 
in the Configurator by dividing the total 
amount of disk space by the maximum number 
of files specified by the user for a par­
ticular diskette. 

BASIC Program Space - that area in the 
User Memory Space which consists of the 
File Buffer, the String Buffer, the Free 
Space Buffer, the Array and Variable 
Buffer, and the Program Text Buffer. 

BASIC Work Space - that area of the User 
Memory Space which consists of the File 
Buffer, String Buffer, Free Space, and 
Array and Variable Buffer. 

Bit - a binary digit. 

Byte - a general term used to indicate a 
measurable portion of consecutive binary 
digits. Each byte contains 8 bits. 

Byte Count - the number of bytes used to 
store data in a disk file. 

Buffer - a portion of memory used to tem­
porarily hold data input to or output from 
Comm-Stor. 

Configuration Time - the time when the 
Configurator, residing on the Configura­
tion diskette, is executed. 

Constant - a number or a string of charac­
ters enclosed in quotes. 

Device - a machine connected to Comm-Stor 
through one of the ports located on the 
back of the unit. 

Disk File - a file which resides on a 
diskette. 

Disk File Reference Number - (see file 
reference number). 

Expression - any BASIC representation of a 
numeric or character value. 

File - a collection of related records 

Comm-Stor IV 
PROGRAMMER MANUAL 

File Buffer - that area in memory used to 
temporarily hold data being transferred to 
and from disk files. 

File Reference Number - a whole number be­
t ween 4 and 24 (inclusive) which is asso­
ciated with a disk file. 

File Slot - a section on a User diskette 
which is the maximum size of the associ­
ated file name. 

Fixed Space - those areas in the User Mem­
ory Space which are specified at configur­
ation time (i.e., the Modem Buffer, the 
Terminal Buffer and the Object Buffer.) 

Free Space Buffer - that area in memory 
which contains the total number of bytes 
currently unused by Comm-Star. 

Hard-copy - Paper containing printed char­
acters, also known as a computer printout. 

Invoker - the device (Terminal or Modem) 
that places Comm-Star in the BASIC mode of 
operation. 

Image - defines the format of data for in­
put or output operations. 

Library Slot - (see file slot). 

Location - (see address). 

Modem Buffer - that area in memory used to 
temporarily hold data sent from the device 
attached to the Modem Port to the Comm­
Stor unit. 

Object Buffer - that area in memory used 
to hold Sykes supplied programs. 

Operator - special characters used to de­
fine the relation between values. 

Port Reference Number - a whole number be­
t ween 0 and 3 (inclusive) related to a de­
vice attached to Comm-Star (see Reference 
Number). 

treated as a unit. Programmer - the person interacting di­
rectly with the Comm-Star system. 

Page 1- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

Real Number - any whole number or a frac­
tion of a whole number. 

Real-Time Clock - an internal hardware 
register that interrupts the system at one 
second intervals allowing software to 
maintain the correct time of day. 

Record - a collection of related data 
items treated as a unit. 

Reference Number - a whole number (0-24) 
which is associated with a certain condi­
tion, item, or action as specified below: 

0 - 3 device numbers, where 
0 - invoker 
1 - terminal 
2 - modem 
3 - printer 

4 - 24 file reference numbers 

Stack - that area in internal memory (lo­
cated at the hexadecimal address 11 100") 
which temporarily holds intermediate 
values used by a BASIC program. It con­
sists of 256 bytes and uses a maximum of 
30 bytes for system overhead, about 20 
bytes for FOR - NEXT loops, 6 bytes for 
any GOSUBs, 11 bytes for any CALLs, and 7 
bytes for intermediate calculation values. 
The stack is constantly updated (i.e., 
when a GOSUB command is executed some 
values are placed on the stack and when a 
RETURN command is executed these values 
are removed). An "ERROR - OM" will occur 
if the programmer attempts to place too 
many items on the stack. 

String Buffer - that area in memory which 
holds all character strings used in the 
BASIC language. 

System - the internal network of Comm-Stor 
which guides the programmer's activities; 
or, the entire Comm-Stor unit. 

Terminal Buffer - that area in memory used 
to temporarily store data sent from the 
device attached to the terminal port of 
the Comm-Stor unit. 

Page 1- 6 

User - that person, or group of persons, 
regulating and defining the operation and 
functions of Comm-Stor within a given 
working environment. 

User Memory Space - All the internal memo­
ry available to the programmer for the al­
location of buffer space. 

Variable Space - that area of the User 
Memory Space consisting of the String Buf­
fer, Free Space Buffer, and Array and Var­
iable Buffer. 

Whole Numbers - the set of natural num-
bers, their negatives, and zero. 
( ... -3 ' -2 ' -1 , 0, 1 '2' 3 , ..• ) . 

6. MEMORY ORGANIZATION 

The internal memory of Comm-Stor is 
divided into two separate sections. One 
section is maintained and controlled 
solely by Comm-Sto:r itself. The other 
section is the User Memory Space and is 
maintained and controlled by the program­
mer. The programmer is able to specify, 
at configuration time, where the User 
Memory Space will begin and end. There­
fore, the size of the User Memory Space 
can be managed by the programmer, pro­
viding a greater amount of flexibility 
when programming in the BASIC language. 

User Memory Space is divided into 8 
different areas called buffers. These 
buffers temporarily hold i terns of data 
which are operated on by BASit commands. 
The size of these buffers and how they 
interact are discussed in Appendix B. 

The organization of the User Memory 
Space is illustrated in Figure 1/1-3. For 
those Sykes BASIC commands which affect 
the User Memory Space, this type of dia­
gram will be used as a descriptive aid. 

Although these buffers are not always 
used by the programmer and, in fact, do 
not all need to exist, this diagram de­
picts how the User Memory Space is parti­
tioned when all 8 buffers are present. 



User 
Memory 
Space 

Basic 
Program 
Space 

USER MEMORY 

Fixed Space [ -----------

( _____ _ 

Basic I 
Work Variable 

SpL-~T~------

Fixed Space 

._ ________ _ 

FIGURE #1-3 

Comm-Stor IV 
PROGRAMMER MANUAL 

Modem Buffer 

File Buffer 

String Buffer 

Free Space Buffer 

Array and Variable Buffer 

Program Text Buffer 

Terminal Buffer 

Object Buffer 

Page 1- 7 



Comm-Star IV 
PROGRAMMER MANUAL 

7. BASIC WITH Comm-Stor COMMANDS 

A. General 

The Comm-Star system allows Comm-Star 
commands to be issued from BASIC mode by 
the use of the BASIC command, "COM", Fig­
ure #1-4 illustrates the relationship be­
tween ·the Comm-Star and the BASIC modes 
when the following commands are issued: 

• E ABLE , 
(TEXT) , ·. 'i' if 

,-r. ) t 
[ CNTRL/C] <'A'' ,r 

.DD • 
(DIRECTORY DISPLAY) 
• BA 
READY 
>LOAD "TEST" 
READY 
>RUN 

Comm-Star Mode 

.E ABLE 
(TEXT) 

[CNTRL/C] 
.DD * 

(DIRECTORY DISPLAY) 

50 COM ".CN ABLE" 

READY 
>BYE 
.DD • 

There are many applications for 
executing Comm-Star commands from BASIC 
mode; some of these are illustrated in the 
following examples • 

B. Examples 

Example I. This is a simple example 
which illustrates the ability to name disk 
files using a BASIC program • 

230 INPUT "WHAT NAME DO YOU WISH FOR THIS 
FILE";A$ 

BASIC Mode 

Enter BASIC Mode 
.BA--------~----~-----4---+------... -READY 

Page 1- 8 

>LOAD" TEST" 

READY 

>RUN . . 
Execute Comm-Star . 

50 COM 11 .CN ABLE" Commands 
• . - . [ CN ABLE 1-...u Rl.¥..et~u~r.:.:.n.....;t~o~----~--• 

. BASIC . 
READY 

,...!,!;Re~t~u~r~n:.-.:::t~o~C~o~mm=--~S~t~o~r----+---+---------BYE 
Mode 

I 

.DD * 
FIGURE #1-4 

' ! 



240 IF ERROR #25 GOTO 500 
250 CREATE A$,M 
260 

490 END 
500 PRINT "A FILE ALREADY EXISTS BY THAT 
NAME" 
510 PRINT "HERE IS THE DIRECTORY OF DISK 
FILES:" 
520 COM ".DD*" 
530 GOTO 230 

Error number 25 (line 240) is as­
sociated with "ERROR - DE", which sig­
nifies a duplicate directory entry. If 
this error is detected by the program, the 
error message will not be displayed but 
control will be transferred to line number 
500 which then issues a Comm-Stor command 
to display the entire directory. This al­
lows the programmer to choose another file 
name which presently does not exist. Con­
trol is then returned to line number 230 
to enter a different file name. This se­
quence of steps will be executed until a 
new file name is chosen that does not pre­
sently exist on Disk. 

Example II. This example illustrates the 
use of the LOAD INITIAL command and the 
procedure for accessing the next file 
name that will be used to create a disk 
file using the .EA command. 

1 CREATE "STATUS",M 
2 OPEN#4 TO "STATUS" 
3 COM".LI TEXT<001>ABC" 
4 GOSUB 1000 
5 PRINT "ENTER THE CONTENTS OF FILE";A$ 
6 PRINT "WHEN DONE ENTERING THE DATA, EN 
TER A [CNTRL/C]" 
7 COM".EA" 
8 

850 GOT04 

990 END 
1000 COM#4;".DS" 

Comm-Stor IV 
PROGRA~R MANUAL 

1005 REWIND#4 
1010 FOR I=1 TO 5 
1020 READ#4;A$ 
1030 NEXT I 
1040 READ 14 USING "10#";A$ 
1050 RETURN 

Upon execution of the GOSUB command 
(line 4), the disk file named "STATUS" 
will receive the output of the DISPLAY 
STATUS command from Comm-Stor mode. Line 
7 is then read by Comm-Stor to obtain the 
next file name used with the next .EA com­
mand. 

Example.III. Using Dual Drive units (Spec­
ial Application) 

Suppose a company enters the current 
day's date as the EXTENSION of every disk 
file created. Suppose, too, that some of 
the 500 social security numbers entered in 
the month of December were incorrect. It 
is known that the social security numbers 
are in the form "XXX-XX-XXXX" and start in 
the thirty-sixth position of the first re­
cord in each file. It is also known that 
each file name contains 6 characters and 
that each extension is in the form of "MM­
-DD-YY". Instead of editing each one of 
the files, which could easily take a whole 
day for 500 files, a BASIC program like 
the one below could be executed to accom­
plish this task. 

100 REM CREATE A DUMMY FILE FOR HOLDING 
FILE NAMES 
110 CREATE (2) "ERROR",M 
120 OPEN #4 TO (2) "ERROR" 
130 REM RESERVE FILE BUFFER SPACE FOR EACH 
FILE 
140 OPEN #5 TO + 
150 RELEASE#5 
160 REM PUT ALL APPLICABLE FILE NAMES INTO 
THE DUMMY FILE 
170 COM#4;".DD *+12-??-78" 
180 REM GET BACK TO THE BEGINNING OF THE 
DUMMY FILE 
190 REWIND#4 
200 REM DETECT END OF FILE NAMES 
210 IF END #4 GO TO 460 
220 REM SKIP OVER BEGINNING OF DIRECTORY 
DISPLAY 
230 FOR I=1 TO 3 

Page 1- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

240 READl4;A$ 
250 NEXT 
260 FOR I=1 TO 500 
270 REM OBTAIN A LINE OF THE DIRECTORY 
DISPLAY 
280 READ#4;A$ 
290 REM GET THE FILE NAME 
300 A$=LEFT$(A$,6) 
310 REM UPDATE THE FILE 
320 ASSIGN 15 TO A$ 
330 READ #5,1 USING"P(36)11#";S$ 
340 PRINT "THE SOCIAL SECURITY NUMBER FOR 
FILE";A$ 
350 PRINT "IS";S$ 
360 INPUT "DO YOU WANT TO CHANGE IT";Z$ 
370 IF LEFT$(Z$,1)<>"Y"GOTO 430 
380 J=J+1 
390 REWIND #5 
400 PRINT "WHAT IS THE SOCIAL SECURITY 
NUMBER FOR FILE";A$;"?" 
410 INPUT S$ 
420 PRINTl5,1 USING "P(36)11#";S$ 
430 CLOSE#5 
440 NEXT 
450 REM LAST FILE COMPLETE 
460 PRINT "PROGRAM COMPLETE" 
470 PRINT J;"FILES WERE UPDATED" 
480 KILL (2) "ERROR" 

Upon execution of this program, a 
directory of all files in the upper drive 
created in the month of December will be 
stored in the disk file named "ERROR" on 
the lower drive. Each record of this file 
is read to obtain a file name. The disk 
file corresponding to this file name is 
then read and the· social security number 
stored in it will be displayed. If the 
programmer wishes to correct the social 
security number that file may be updated 
and the next file name is obtained. When 
there are no more file names left, control 
is transferred to line number 460 which 
displays the total number of updated 
files, cancels the disk file "ERROR", and 
automatically terminates the program. 

8. PROGRAM LIMITS AND MEMORY OVERHEAD 

Ranges 

Integers 

Page 1- 10 

- 8388608 to+8388608 ex­
clusive 

Single Precision - 1.7014118E+38 to 
+1.7014118E+38 inclu­
sive 

Double Precision -1.7014118346E+38 to 
+1.7014118346E+38 inclu­
sive 

String Range: Up to 255 characters 

Line Numbers Allowed: 0 to 63999 inclu­
sive 

Program Line Length: Up to 255 characters 

Memory Overhead 

Program lines require 5 bytes minimum, as 
follows: 

Line Number - 2 bytes 
Line Pointer - 2 bytes 
Carriage Return - 1 byte 

In addition, each reserved word, operator, 
special character and constant character 
requires one byte. 

Dynamic (RUN-time) Memory Allocation 

Integer variables: 5 bytes each 
(3 for value, 2 for variable name) 

Single precision variables: 7 bytes each 
(5 for value, 2 for variable name) 

Extended precision variables: 1 O bytes 
each (8 for value, 2 for variable name) 

String variables: 5 bytes minimum 
(2 for variable name, 3 for variable 
pointers, O for a null string otherwise 1 
for each character) 

Array variables: 10 bytes minimum 
(2 for variable name, 2 for size, 1 for 
number of dimensions, 2 for each dimen­
sion, and 3 , 5 or 8 [depending on array 
type] for each element in the array). 

Each active FOR-NEXT loop requires 
14-24 bytes depending on the type of 
control variable used. Each active 
(non-returned) GOSUB requires 6 bytes. 



CHAPTER 2 

CONSTANTS AND VARIABLES 

CONTENTS PAGE 

1. ASCII CHARACTER SET 2-1 

A. Alphabetic Characters 2-1 
B. Numeric Characters 2-1 
c. Control Characters 2-1 
D. Special Characters 2-2 

2. NUMERIC DATA . 2-2 

A. Constants 2-2 
B. Variables 2-4 
c. Functions 2-5 
D. Expressions 2-5 
E. Logical Operators 2-6 

3. CHARACTER DATA 2-7 

A. Constants 2-7 
B. Variables 2-7 
c. String Functions 2-7 
D. Expressions 2-8 

4. RELATIONAL EXPRESSIONS 2-8 

A. Operators 2-8 
B. Numeric Expressions 2-8 
c. Character Expressions 2-8 

5. ARRAYS 2-9 

6. DISPLAYING CONSTANTS 2-10 
AND VARIABLES 

1. DERIVED FUNCTIONS 2-10 

1. ASCII CHARACTER SET 

Sykes BASIC uses the ASCII character 
set found in Appendix C of this manual. 
BASIC program lines* are composed of in­
dividual ASCII characters which fall under 

*A BASIC program line is defined as one or 
more BASIC commands, where multiple com­
mands are separated by colons. 

Comm-Stor IV 
PROGRAMMER MANUAL 

four categories: alphabetic, numeric, 
control and special characters. 

A. Alphabetic Characters 

The alphabetic characters in Sykes 
BASIC are the letters of the English al­
phabet, A through Z and a through z, in­
clusively, and a space. 

B. Numeric Characters 

The digits 0 through 9, inclusively, 
are numeric characters. 

C. Control Characters 

Control characters are nonprintable 
characters which perform a specific func­
tion when issued. Most of these control 
characters are issued by depressing the 
"CTRL" (for Control) key and the corre­
sponding letter simultaneously, and are 
denoted in this manual by [CNTRL/letter]. 
The following is a list of the most com­
monly used control characters and their 
functions. The hexadecimal equivalent is 
provided for you in case the characters 
listed below do not appear on your ter­
minal. 

Hexadecimal Control 
Eguivalent 

03 

09 

OE 

11 

13 

14 

Character Function 

[CNTRL/C] Denotes the end of 
a Comm-Stor disk 
file. 

[CNTRL/I] Tab to next char­
acter (see Chap­
ter 7, EDIT). 

[CNTRL/N] Used for reject­
ing characters in 
Comm-Stor mode. 

[CNTRL/Q] Resume Display 

[CNTRL/S] Hold Display 

[CNTRL/T] Reset: returns 
system to idle 
state. 

Page 2- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

18 

19 

OA 

OD 

1B 

7F 

[CNTRL/X] 

[CNTRL/Y] 

[Line Feed] 
or 

[CNTRL/J] 

[RETURN] 
or 

Cancels line be­
ing entered. 

Search for char­
acter (see Chap­
ter 7, EDIT). 

Moves display up 
one line. 

[CNTRL/M] Denotes the end of 
a line. 

[ESC] 

[DEL] or 
[RUB] 

Obtain next char­
acter (see Chap­
ter 7, EDIT). 

Deletes last char­
acter entered. 

D. Special Characters 

All ASCII characters which are not 
alphabetic, numeric or control characters 
are called SPECIAL CHARACTERS. The fol­
lowing is a list of special characters 
which have syntactical meaning in Sykes 
BASIC. 

Character 

II 

11 
$ 
'.£ 
& 
( 
) 

* 
+ 

I 

Page 2- 2 

exclamation point 
double quotation mark 
number sign 
dollar sign 
percent sign 
ampersand 
left parenthesis 
right parenthesis 
asterisk or multiplication 
symbol 
plus sign or addition symbol 
comma 
minus sign or subtraction sym­
bol 
decimal point 
slash or division symbol 
colon 

semi-colon 
< "less than" symbol 
= "equal to" or "assignment" 

symbol 
> "greater than" or "BASIC 

prompt" symbol 
<> "not equal to" symbol 
? question mark 
or r exponentiation symbol 
@ "at"sign or "NEW" symbol 

kS or [SPACE) 

2. 

Spaces (or blanks) may be used 
freely throughout a BASIC program 
to improve readability. They have 
no syntactical meaning unless they 
are within character strings. 

NUMERIC DATA 

A. Constants 

Numeric data (or NUMBERS) are com­
posed of numeric characters which repre­
sent numeric values. Numeric values are 
either constants or variables. NUMBERS 
are often called numeric constants because 
they retain a constant value throughout a 
program. Numeric constants may be posi­
tive or negative; negative numbers must be 
preceded by a minus (-) sign. If a number 
is not preceded by a minus sign, its value 
is assumed to be positive. 

Numeric constants may be entered and 
displayed in three formats: integer, 
fixed point and floating point. 

Integer Format 

Numbers expressed in integer format 
are written as a number of digits followed 
by a percent sign. The precision (maximum 
number of digits a number may contain) of 
an integer number, N, is seven digits, 
provided it is in the range -8388608<N 
<b3b8608. 

Integer numbers do not contain a de­
cimal point or fractional value. They are 
stored internally using three bytes (see 
Appendix E) and consequently, are process­
ed much faster than fixed point or float-



ing point numbers. The numbers listed 
below are all examples of integer values: 

5" -255% 
304678" 

Fixed Point Format 

Numbers expressed in fixed format may 
be written with a decimal point and frac­
tional value. If a decimal point and 
fractional value are not specified, a de­
cimal point is assumed to be to the imme­
diate right of the right-most digit. A 
fixed point numb_e.f 7' N, ~1Y be any number 
in the range 1 O <N < 10 . However, the 
accuracy of the number depends on the pre­
cision specified. There are two different 
precisions available for fixed point for­
mat: SINGLE PRECISION and EXTENDED PRECI­
SION. 

1. Single Precision 

Single precision numbers have a pre­
cision of 8 digits. Although a single 
precision number, N, must be in the range 
-1. 701411oE+38SN<_1. 7014118E+38, the maxi­
mum number of digits displayed is eight. 
Any single precision value which contains 
more than eight significant digits will be 
displayed using the floating point format 
(described below). 

All numbers in Sykes BASIC are as­
sumed to be single precision unless spec­
ified otherwise. That is, any number en­
tered without being followed by a percent 
sign or number sign (see extended preci­
sion, below) will be assumed to be a sin­
gle precision value. If desired, however, 
an exclamation point may follow a number 
to clarify it as a single precision num­
ber. The following are examples of single 
precision values. 

5 or 51 
-255 or -2551 
6.7ti or 6.78! 

543.56891 or 543.56891! 

2. Extended Precision 

Comm-Stor IV 
PROGRAMMER MANUAL 

Extended precision numbers are used 
for those values that are to be accurate 
to more than eight digits. The range of 
extended precision numbers is 
-1.7014118346E+38 to 1.7014118346E+3b, 
inclusive. The precision of extended 
precision numbers is fourteen digits. 
When an extended precision value contains 
more than fourteen significant digits it 
will be displayed using floating point 
format (described below). 

An extended precision number is any 
number followed by a number sign. The 
following are examples of extended pre­
cision values. 

-5# 
6. 7811 

543.56891# 
98. 5324156713511 

Floating Point Format 

The format of floating point numbers 
is: 

(optional sign) mantissa E (optional 
sign} exponent (optional type) 

The value of the mantissa is multi­
plied by 10 raised to the power of the ex­
ponent and is an integer, single preci­
..a.ion., or extended precision value, depend­
ing on how the number was defined during 
entry. The percent sign defines integers, 
an exclamation point or nothing defines 
single precision numbers, and a number 
sign defines extended precision numbers. 
The mantissa may be a positive or negative 
whole or real number. The exponent may 
also be a positive or negative number, but 
it must be a whole number comprised of one 
or two digits. 

This format corresponds to standard 
scientific notation in which numbers are 
expressed as a power of 10. For example, 
5 .23E4% is an integer number which means 
11 5 .23 times 10 l'.'aised to the power of 411 

and is equivalent to 52350. Additionally, 
7E-2 is a single precision number which 

Page 2- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

means "7 times 10 raised to the power of 
-2" which equals 7 /100, or in BASIC nota­
tion, O .07. 

Floating point format may be used for 
entering integer, single precision, and 
extended precision numbers. However, the 
value must be within the precision and 
range of the type of number specified. 
For example, 8E10% is an illegal integer 
number since it lies outside the range for 
integer numbers. 

Floating point format will only be 
used for display purposes when the number 
of significant digits in the value of a 
number exceeds the precision of the type 
of the number. 

The following table contains some ex­
amples to further illustrate the use of 
floating point format: 

Value Entered 

1E+6% 
1E+61 
1E+6fi 
-1.5745E3'.£ 
-1.5745E3 
-1.5745E3fi 
6.93E-1:6 
6. 93E-1 ! 
6 .93E-1# 
36.9854321E7% 
36.9854321E71 
36.9854321E7i/ 

B. Variables 

Value Displayed 

1000000 
1000000 
1000000 
-1574 
-1574.5 
-1574.5 
0 
.693 
.693 
ERROR - OV 
3.6985432E+08 
369854321 

Al though the value of a numeric 
constant may never be changed, a numeric 
variable is a named data item whose value 
may be changed, and therefore, may contain 
different values for different operations. 
Numeric variables are specified by a name 
and type (single, extended or integer pre­
cision). The name of a variable consists 
of one or more alphanumeric (alphabetic 
and/or numeric) characters, the first of 
which must be alphabetic. Additionally, 
no reserved words (Appendix D) may be em­
bedded in a variable name. For example, 
LETTER and STORE are invalid names because 

Page 2- 4 

the former contains the reserved word LET, 
and the latter contains the words TO and 
OR. Although any number of characters may 
be used in a variable name, only the first 
two characters are interpreted as defining 
the name; the rest are ignored. For·ex­
ample i CAR, CAT, CALL and CAN all repre­
sent the same variable name CA. 

Numeric variables may be used to re­
present single precision, integer and ex­
tended precision values. Single precision 
is the default value for numeric varia­
bles. A single precision variable may be 
expressed by just the name or by the name 
followed by its respective type, in this 
case an exclamation point. The symbol for 
the type however, is not regarded as part 
of the name. It only associates the type 
of variable to the name. For example, A, 
A11, C3 and XX! are all single precision 
variable names. An integer variable must 
be followed by a percent sign. For exam­
ple, A%, A1%, C3% and XX% are all integer 
variable names. Similarly, if a number 
sign follows the variable name, such as 
Mi, A 1 #, C3fi and XX# 1 the variable name 
will be extended precision. Note that A, 
A% and Mi all represent different varia­
bles; although they all have the same 
name, A, they each have different types. 

Variables are assigned values by us­
ing the LET command (Chapter 7). For ex­
ample: 

LET A = 1 

will assign the single precision value of 
1 to the single precision variable A. The 
precision of the specified value is always 
set equal to the precision (or type) of 
the variable. For example, 

LET A'.£ = 1.5 

will take the single precision value of 
1 . 5 , convert it to the integer value, 1 , 
and assign that value to the integer vari­
able Aj. Note that before execution of a 
BASIC program begins, all variables are 
assigned the value of zero. 



An added convenience of Sykes BASIC 
is the SET command (Chapter 7). This com­
mand enables the programmer to establish 
certain variables as a specified type 
without requiring the respective type sym­
bol to follow each use of the variable 
name. For example, if the variables below 
are used in a program, 

A'.£ 
BG% 
E'.J, 
C3! 
N! 
K! 
L21J 

MANI/ 
ZIF 
D$ 
GG$ 
FX$ 

each time the variable name is used, its 
respective type must follow. However, 

SET'.J,A-E;IC;!K-N;#L;IM;#Z;$D;$F-G 

may be used. This eliminates the need for 
the programmer to specify the type of 
variable in each application. After the 
SET command is executed, Comm-Star will 
automatically keep track of those types of 
variables whose names begin with a speci­
fied letter. Below is a list of the names 
of those variables. 

First Letter of 
Variable Name 

A 
B 
E 
c 
N 
K 
L 
M 
z 
D 
G 
F 

integer 
integer 
integer 
single precision 
single precision 
single precision 
extended precision 
extended precision 
extended precision 
character string 
character string 
character string 

Furthermore, if the variable BC$ is 
to be used, specifying BC$ will dis tin-

Comm-Stor IV 
PROGRAMMER MANUAL 

guish this variable as a character string 
(Chapter 2) and not an integer. 

C. Functions 

Sykes BASIC includes system functions 
which perform a variety of commonly used 
mathematical operations. All arithmetic 
functions are performed as single preci­
sion values. Each is then evaluated for a 
single value, called its "argument", which 
produces a single result. 

A description of the arithmetic func­
tions is provided below. An asterisk de­
notes a function whose result is an inte­
ger value. All other functions result in 
a single precision value. 

Function 
Name 

ABS(x) 
ATN(x) 
COS(x) 
DEC(x$) 

EXP(x) 
*FRE(x) 
*INT(x) 

LOG(x) 
*PEEK(x) 

*POS(ref) 

RND(x) 
ttSENSE(x) 

*SGN(x) 

SIN(x) 
SQR(x) 
TAN(x) 

Description 

Absolute value of x 
Arctangent (in radians) of x 
Cosine (in radians) of 
Decimal value of hexadecimal 
value contained in X$ 
Natural exponent of x 
Number of free bytes in memory 
Converts x to an integer num­
ber 
Natural logarithm of x 
Contents (in decimal) of ad­
dress x 
Current position of pointer in 
the file or device associated 
with the specified reference 
number 
Random number between 0 and 
Sensing of condition x (-1 if 
true, 0 if false) 
Sign of x (-1 if negative, 0 
if zero, 1 if positive) 
Sine (in radians) of x 
Square root of x 
Tangent (in radians) of x 

D. Expressions 

An arithmetic expression may consist 
of a single element (a numeric constant; 
variable, or function), or it may be a 
combination of these separated by arith­
metic operators. 

Page 2- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

Arithmetic Operators 

An arithmetic operator separates two 
values and indicates the specific arith­
metic operat~on to be performed, The five 
arithmetic operators are listed below: 

Arithmetic Operators: 

Operator Example Meaning 

"(ori) X"Y Raise X to the power 
of Y 

* X*Y Multiply X by Y 
I X/Y Divide X by Y 
+ X+Y Add Y to X 

X-Y Subtract Y from X 

Negative Operator 

The negative operator is a spegial 
arithmetic operation. While most arith­
metic operators perform a task on two 
values, the negative operator may perform 
a task on a single value. The minus (-) 
sign is considered to be a negative oper­
ator when it does not separate two values. 
The result of the negative operator execu­
ted on a value is a value opposite in sign 
of the original value. For example, -(1) 
would result in a negative 1 and - ( -1 ) 
would result in a positive 1. 

Arithmetic Hierarchy 

When more than one arithmetic opera­
tion is specified in a single expression, 
that expression is evaluated according to 
the hierarchy (or precedence) of the op­
erators involved. Operations with a 
higher precedence, or priority level, are 
performed before those with a lower 
priority level. Operations which exist on 
the same level are performed as they are 
encountered from left to right. The hier­
archy of the operators, from highest to 
lowest, is: 

1. exponentiation 
2. negative operator 
3. multiplication and division 
4. addition and subtraction 

Page 2- 6 

For example, the expression: 

A+B*C"D/E 

is evaluated as follows: 

1. C is raised to the power of D; 
2. B is multiplied by the result Of the 

first operation; 
3. the result of the second operation is 

divided by E; 
4. the result of the third operation is 

added to A; 

Parentheses are used to change the 
order of operations, Any operations en­
closed in parentheses are performed before 
operations which are not. For example, if 
the product of B and C is to be raised to 
the power of D divided by E, the appropri­
ate expression would be: 

A+(B*C)"(D/E) 

It would be evaluated as follows: 

1. Bis multiplied by C; 
2. D is divided by E; 
3. the result of the first 

operation (B•C) is raised to the 
power of the result of the second 
operation (DIE); 

4. the result of the third 
operation is added to A. 

Parentheses may be used, even though 
they are not required, to make the expres­
sion more readable and understandable. 

E. Logical Operators 

Logical operations are defined using 
logical operators. Logical operations are 
performed on arithmetic values in the 
IF ..• GOTO, IF ... THEN and IF ... THEN .•• ELSE 
commands (see Chapter 7). Logical opera­
tors may be performed on true (-1) values, 
false (0) values, and other arithmetic 
data. Below is a list of the logical op­
erators and their meanings: 



Operator Example Meaning 

NOT NOT A The logical negative 
of A. 
NOT-1 equals 0 
NOT 0 equals -1 

AND A AND B The logical product of 
A and B. Equals -1 
only if A and B equal 
-1. 

OR A OR B The logical sum of A 
and B. Equals 0 only 
if A and B equal O. 

When other values, besides -1 and O, 
are used with the logical operators, these 
values are always treated as integer yal­
J.l.e..a.. Logical operations performed on in­
teger values require the use of Binary 
Arithmetic. (If a value is negative, it 
is stored internally in the binary two's 
complement format.) 

3. CHARACTER DATA 

Character data is data without a nu­
meric value. Sykes BASIC also processes, 
or manipulates, character data, or 
strings. A string is a sequence of char­
acters which may be alphabetic, numeric or 
special characters (except double quota­
tion marks). Like arithmetic data, char­
acter strings may be in the form of con­
stants or variables. 

A. Constants 

Character constants are character 
strings enclosed in a pair of double quo­
tation marks. The following are examples 
of valid character constants: 

"ABC" 
11 1234" 
"THE TOTAL OF ITEMS IS" 
"Iii$%&:; S" 

The length of a character constant is 
the number of characters it contains in­
cluding spaces. The length of a charac­
ter string cannot exceed 255 or an error 
will result. 

B. Variables 

Comm-Stor IV 
PROGRAMMER MANUAL 

A character variable is a named item 
of character string data whose value may 
be changed. Character variables are named 
by any legal variable name (page 2-4, Nu­
meric Variables) followed by a dollar 
sign. For example, 

A$ 
A1$ 
C3$ 
XX$ 

are all character variable names. Before 
a BASIC program is executed, the lengths 
of all character variables are set equal 
to zero (i.e. they contain nothing). 

Character constants may be assigned 
to character variables by using the LET 
statement. For example, 

LET A$ = "ABC" 

will assign the characters ABC to the var­
iable A$. As with character constants, 
the length of the contents of a character 
variable may not exceed 255. 

C. String Functions 

Besides arithmetic functions (page 
2-5), Sykes BASIC also contains system 
functions which operate on character 
strings. Each string function produces a 
single result. The string functions are 
listed and described below. 

Function 
Name 

ASC(X$) 

CHR$(x) 

HEX$(x) 

LEFT$(X$,x) 
LEN(X$) 

Meaning 

Decimal value of first 
character in X$. 
Character which is the 
ASCII equivalent to decimal 
value x. 
Converts x to a hexadecimal 
character string. 
Leftmost x characters in X$ 
Length Of X$ 

Page 2- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

MID$(X$,x) Characters of X$, starting 
at the xth character. 

MID$(X$,x,y) Characters of X$, starting 
at the xth character, for y 
characters. 

RIGHT$(X$,x) Rightmost x characters in 
X$ 

SRCH(X$,Y$) Returns the first position 
in X$ where Y$ is found. 

SRCH(X$,Y$,x) Same as above but starts 
searching in the xth posi­
tion. 

STR$(x) Character string of decimal 
value x 

VAL(X$) Decimal value of X$ 

D. Expressions 

A character expression may consist of 
a single element (character constant, var­
iable or function) or a combination of 
these separated by the string operator. 

String Operator 

The plus sign (+) is the string oper­
ator in Sykes BASIC. It separates two 
string values and specifies CATENATION. 
Catenation refers to items linked toge­
ther. The result of the catenation of two 
or more strings is one character string 
which contains all of the specified char­
acters in their respective order. For ex­
ample, 

LET A$="HERE"+" IS"+" THE"+" BOOK" 

will assign the character string "HERE IS 
THE BOOK" to the variable A$. 

Additionally, 

LET A$ = "TEST"+ STR$(1) 

will assign the character string "TEST 111 

to A$. 

4. RELATIONAL EXPRESSIONS 

A RELATIONAL EXPRESSION compares the 
values of two arithmetic expressions or 
two character expressions. The specified 
expressions are evaluated and their re-

Page 2- 8 

sul ts are then compared according to the 
relational operator specified. The re­
lational expression is either true or 
false. Relational expressions are only 
used in BASIC programs within IF ..• GOTO, 
IF •.. THEN or IF ••• THEN ... ELSE statements 
( Chapt-er 1) • 

A. Operators 

The relational operators are special 
characters. They are listed below: 

Operator 

= 

Meaning 

equal to 
not equal to 
less than 
greater than 

<> 
< 
> 

<= 
>= 

less than or equal to 
greater than or equal to 

B. Numeric Expressions 

When two numeric constants, vari­
ables, expressions, or a combination of 
these are used in a relational expression, 
the two values are compared. The follow­
ing is a list of examples to further il­
lustrate this idea. 

Relational ixpression 

1%=1 
1%= 1# 
1=1.0 

1.5=1.55 
1.5<1.55 
1.5<=1.55 
1.5>1.55 
1.5>=1.55 
1.5<> 1.55 

(22j/7%)=(22#/7#) 

C. Character Expressions 

5esult 

TRUE 
TRUE 
TRUE 
FALSE 
TRUE 
TRUE 
FALSE 
FALSE 
TRUE 
FALSE 

When applied to strings, relational 
operators indicate an alphabetic sequence. 
This sequence can be determined by refer­
ring to the ASCII Code Chart in Appendix 
C. A list of examples follows: 



Relational 
Expression 

"A"="A" 
II A"> 1111 

"A">="A II 

"A"<"B 11 

"A">="AA" 

5. ARRAYS 

Result 

TRUE 
TRUE 

FALSE 
TRUE 
FALSE 

Meaning 

11 A" is equal to "A11 

11 A11 is greater than a 
NULL string 
11 A11 is less than "A 11 

11 A" is less than "B" 
11 A" is less than "AA" 

In addition to the variables de­
scribed previously, Sykes BASIC allows the 
use of ARRAYS, or subscripted variables. 
Subscripted variables provide the program­
mer with additional computing capabilities 
for dealing with lists, tables, matrices, 
or any set of related data items. In 
Sykes BASIC, arrays are allowed to contain 
up to 255 subscripts, or dimensions, pro­
vided each dimension does not exceed 
32,767 items, or elements. 

The name of· an array may be any valid 
variable name followed by one or more nu­
meric expressions separated by qommas and 
enclosed in parentheses. · The following 
are valid arrays: 

A(1) B3(10,25) CAT(1,1,1,1,1,2) A$(5,6) 

For example, a list might be described as 
A (I) , where I varies from zero to five, 
such as: 

A(O) ,A(1) ,A(2) ,A(3) ,A(4) ,A(5) 

This allows the programmer to reference 
each of the six elements in the list as a 
one dimensional algebraic matrix, such as: 

A(O) 
A(1) 
A(2) 
A(3) 
A(4) 
A(5) 

A two dimensional matrix B(I,J), can 
be defined similarly and is illustrated 
below: 

B(O,O) 
B(1,0) 
B(2,0) 
B(3,0) 

B(I,O) 

B(O, 1) 
B( 1 , 1 ) 
B(2, 1) 
B(3,1) 

8(I, 1) 

8(0,2) 
8(1,2) 
B(2,2) 
8(3,2) 

B(I,2) 

Comm-Star IV 
PROGRAMMER MANUAL 

B(0,3) 
B( 1, 3) 
8(2,3) 
B(3,3) 

B(I,3) 

B(O,J} 
B(1,J) 
B(2,J) 
B(3,J) 

B(I,J) 

Large arrays can also be defined in 
the same manner, but there may only exist 
one array for each array name used. 

The dimensions of an array may be 
EXPLICITLY or IMPLICITLY defined. To ~ 
plicitly define an array, the DIM command 
(Chapter 7) is used. To implicitly define 
an array, the number of dimensions in the 
array is set to the number of dimensions 
specified in its first operation. How­
ever, each dimension will only contain 
eleven (0 through 10) elements. For exam­
ple, if array A was not defined in a DIM 
command and was used in its first applica­
tion as: 

A(3)=5 

it would be a one dimensional array con­
taining eleven elements, the fourth of 
which would have the value of 5. After an 
array has been dimensioned, either explic­
itly or implicitly, it cannot be dimen­
sioned again, unless an ERASE command 
(Chapter 7) is issued for that array. 

For arrays that contain character 
data, the maximum number of characters in 
each element is 255. 

The elements of an array are referred 
to by the SUBSCRIPTS of an array. For ex­
ample, the fourth element of the array A 
above was referenced by the subscript 3. 
All subscripts in the system normally 
start at O. The number at which the sub­
scripts start is called the BASE of the 
subscripts. This base may be changed by 
using the OPTION BASE command. For ex­
ample, to change the base from 0 to 1 , 
issue the following command: 

10 OPTION BASE 1 
20 DIM A(15) 

Page 2- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

When line 10 is executed, the base of all 
subscripts will be changed from 0 to 1 • 
When line 20 is executed, array A will 
contain 15 elements: A(1),A(2), .•. ,A(14), 
A ( 15) . However, if line 10 is deleted, 
then array A will contain 16 elements: 
A(O),A(1), ... A(14),A(15). The OPTION BASE 
command is described more fully in Chapter 
7. 

Virtual arrays may also be used in 
Sykes BASIC and are discussed in Chapter 
5. 

6. DISPLAYING CONSTANTS AND VARIABLES 

Data is displayed on the terminal 
device by using a PRINT command. The for­
mat of the data may differ depending on 
the variable list specified in the PRINT 
command. For example: 

PRINT A$;B$;C$ 

will display the contents of A$, B$, and 
C$ in order without any spaces separating 
the different character strings. However, 

PRINT A$,B$,C$ 

will display the contents the A$, space to 
the next tabular position, display the 
contents of B$, space to the next tabular 
position, and display the contents of C$. 
These tabular positions are determined at 
configuration time. Let us assume the 
column width is 14 characters and the line 
width (also specified at configuration 
time) of the terminal is 80 characters. 
Therefore, each line on the terminal will 
be separated into column fields which can 
be illustrated as: 

I 
11' 14 14 14 14 10 

FIGURE 12-1 

Page 2- 10 

The tabular positions point to the 
first character position in each column 
field, Therefore, the tabular positions 
in this example are 15 ,29 ,43 ,57, and 71 , 
and can be illustrated as: 

t t t t t 
15 29 43 57 71 

FIGURE 12-2 

Thus, if: 

PRINT "A","B","C";"D" 

is executed, the display will be: 

IA IB ICD 

FIGURE #2-3 

1. DERIVED FUNCTIONS 

The following is a list of functions 
which can be derived from Sykes BASIC 
arithmetic functions. 

Functigns Euncti'2n Exgc~aa~sl in Sxkea 
BASIC 

Cosecant 1/SIN(X) 

Cotangent 1/TAN(X) 

Hyperbolic 
Cosecant 2/(EXP(X)-EXP(-X)) 



Hyperbolic 
Cosine 

Hyperbolic 
Cotangent 

Hyperbolic 
Secant 

Hyperbolic 
Sine 

Hyperbolic 
Tangent 

Inverse 
Co secant 

Inverse 
Cosine 

Inverse 
Cotangent 

(EXP(X)/EXP(-X))/2 

EXP(X)/(EXP(X)-EXP(-X))*2 

2/(EXP(X)+EXP(-X)) 

(EXP(X)-EXP(-X))/2 

-EXP(-X)/(EXP(X)+EXP(-X)) 
*2+1 

ATN(1/SQR(X*X-1))+(SGN(X) 
-1)*1.5708 

-ATN(X/SQR(-X*X+1))+1.5708 

-ATN (X) + 1. 570b 

Inverse Hyper­
bolic Cose­
can t 

Inverse Hyper­
bolic Cosine 

Inverse Hyper­
bolic Cotan­
gent 

Inverse Hyper-

Comm-Stor IV 
PROGRAMMER MANUAL 

LOG((SGN(X)*SGN(X*X+1)+1) 
/X) 

LOG(X+SQR(X*X-1)) 

LOG((X+1)/(X-1))/2 

bolic Secant LOG((SQR(-X*X+1)+1/X) 

Inverse Hyper-
bolic Sine LOG(X+SQR(X*X+1)) 

Inverse Hyper-
bolic Tangent LOG((1+X)/(1-X))/2 

Inverse Sine ATN(X/SQR(-X*X+1)) 

Secant 1/COS(X) 

Page 2- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page 2- 12 



CHAPTER 3 

GETTING STARTED 

CONTENTS PAGE 

1 . COMMON BASIC COMMANDS 3-1 

2. SYKES BASIC COMMANDS 3-1 

3. BASIC MODE 3-3 

A. The Direct Mode 3-3 
B. The Run Mode 3-3 

4. Comm-Stor IV EXERCISES 3-3 

5. ERRORS 3-15 

GETTING STARTED 

The purpose of this chapter is to 
acquaint the programmer with Comm-Star by 
actually using the system. It will in­
clude a discussion of some common BASIC 
commands, those commands particular to 
Sykes BASIC, and several examples to help 
the programmer become familiar with Comm­
Stor. 

1. COMMON BASIC COMMANDS 

There are some BASIC commands within 
the computing industry which are prevalent 
in most BASIC language packages and Comm­
Stor contains such a package. we are 
assuming in this manual that the program­
mer is familiar with these commonly used 
commands. If you wish to refresh your 
memory on the subject, refer to the book 
recommended on page 1-1. 

The common BASIC commands are listed 
below. Please refer to Chapter 7 for 
their respective descriptions. 

BYE 
CLEAR 
CONT 
DATA 
DEF 
DIM 
END 
FOR 
GOSUB 
GOTO 
IF ••. GOTO 
IF ... THEN 
INPUT 

Comm-Star IV 
PROGRAMMER MANUAL 

LET 
LIST 
LOAD 
NEW 
NEXT 
PRINT 
READ 
REH 
RESTORE 
RETURN 
RUN 
SAVE 
STOP 

2. SYKES BASIC COMMANDS 

Besides the commonly used commands , 
Sykes BASIC provides some additional com­
mands. These commands are briefly de­
scribed below and are further described in 
Chapter 7. 

APPEND - permits the programmer to enter 
additional data into an existing disk 
file. See Chapter 5. 

ASSIGN - relates a disk file with a BASIC 
program, providing the File Buffer (see 
Appendix B) has been allocated. See Chap­
ter 5. 

AUTO - used to automatically supply line 
numbers when manually entering BASIC pro­
gram lines into the system. 

CALL - overlays a BASIC program on the 
current BASIC program and reloads the cal­
ler on execution of a RETURN. 

CLEARV - clears variable space from User 
Memory Space. See Appendix B. 

CLOSE - tells Comm-Star that processing a 
disk file is complete. See Chapter 5. 

COM - enables the programmer to execute a 
Comm-Star command in BASIC mode. 

CREATE - creates a disk file. See Chapter 
5. 

DEL - enables the programmer to delete a 
range of BASIC lines from User Memory 
Space. 

Page 3- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

DIM# - used for virtual arrays. See Chap­
ter 5. 

EDIT - allows the programmer to alter 
BASIC lines without having to re-enter en­
tire lines. 

ERASE - allows the programmer to delete 
specific arrays from User Memory. 

IF END# - allows the programmer to detect 
and control an end of file condition. See 
Chapter 5. 

IF ERRORll - allows the programmer to 
detect and control any error which might 
occur in the system. The error number is 
referenced in Appendix G. 

IF •.. THEN .•. ELSE - allows the programmer 
to specify a certain action when a condi­
tion is true and another action if it is 
false. 

IMAGE - specifies a format for input ting 
or outputting data using a PRINT USING, 
PRINT if USING, or READ II USING command. 
See Chapter 4. 

KILL - deletes the specified disk file 
from a diskette. 

LINK - allows the programmer to enter a 
new BASIC program into memory affecting 
~ the Free Space and BASIC Text buf­
fers. 

MERGE - allows the programmer to add a BA­
SIC program (saved in text format) to the 
current program in the User Memory Space. 
See Appendix B. 

ON •.. GOSUB - transfers program control to 
different subroutines according to the 
specified value. 

ON .•. GOTO - transfers BASIC program con­
trol to different line numbers according 
to the specified value. 

OPEN - allocates additional space to the 
I:<'ile Buffer (see Appendix B) for a disk 
file reference number and may also be used 
to change the configured size of the modem 
buffer. See Chapter 5. 

Page 3- 2 

OPTION BASE - changes the base of the sub­
scripts currently being used, 

POKE - changes a location in memory. 

POSITION - allows for the random access of 
disk files. See Chapter 5. 

PRESS - merges and strips a program of all 
REM commands and blanks. 

PRINT USING - displays data according to a 
specified format. See Chapter 4. 

PRINT ti - outputs data to any device or 
disk file. See Chapter 5. 

PRINT # USING - allows the programmer to 
output data according to a specified for­
mat to any device or disk file. See Chap­
ter 4. 

READ I - allows the inputting of data from 
any device or disk file. 

READ ti USING - allows data to be input 
according to a specified format from any 
device or disk file. See Chapter 4. 

RECSIZE - changes the record size associ­
ated with a disk file reference number. 
See Chapter 5. 

RELEASE - makes a portion of the File Buf­
f er available for use. See Chapter 5. 

RENUM - renumbers the current BASIC line 
numbers in User Memory Space. 

REWIND - returns the accessing of a disk 
file to sequential mode, starting at the 
beginning of the file. See Chapter 5. 

RTCS - enables or disables the Real-time 
Control System. See Chapter 6, 

SET - declares certain variables as par­
ticular data types. See Chapter 2. 

SETIME - specifies certain times which are 
to be used by the Real-time Control System 
or the System Clock. See Chapter 6. 



SYSTEM - loads a Sykes-supplied object 
program into the Object Buffer. 

TRACE - enables or disables the tracing of 
BASIC line numbers while the current pro­
gram is executing. 

TRUNCATE - deletes any unused space from a 
disk file. 

UNLOCK - allows return to sequential ac­
cessing of a disk file. See Chapter 5. 

use - references a command located in the 
object buffer. 

WAIT - temporarily stops the execution of 
the current program until a location in 
memory reaches the necessary operative 
value. 

WATCH 1 and WATCH2 - used for the hardware 
registers in the Real-time Control System. 
See Chapter b. 

WHEN - detects and controls certain inter­
rupts specified in the Real-time Control 
System. See Chapter 6. 

3. BASIC MODE 

Comm-Stor offers two different modes 
to the programmer: Comm-Stor mode (refer 
to the Comm-Stor IV Reference Manual 
#9990B025bA) and BASIC mode. BASIC mode 
allows the programmer to operate in the 
BASIC programming language. BASIC mode 
consists of two modes: the DIRECT mode 
and the RUN mode. 

A. The DIRECT Mode 

When Comm-Ster is not executing a BA­
SIC program, it is idle, or ready to re­
ceive a command. ln this mode, the char­
acters "READY" are displayed on the ter­
minal. Additionally, the character ">" is 
displayed to remind the programmer that 
Comm-Stor is in the BASIC mode. Any BASIC 
command may now be executed directly (fol­
lowed by a LRETURN] character telling the 
system to execute the command). 

B. The RUN Mode 

Comm-Stor IV 
PROGRAMMER MANUAL 

When Comm-Stor is in the RUN mode, it 
is executing a BASIC program. Issuing a 
(CNTRL/T} is the only way the programmer 
can interrupt the RUN mode and return 
Comm-Ster to the DIRECT mode. 

4. Comm-Star IV EXERCISES 

We will now present some examples 
which we encourage the programmer to fol­
low and execute. 

Be sure that the Comm-St or unit and 
the attached peripheral devices are pow­
ered on. 

Exercise I. The following is a list of 
some BASIC commands and their explana­
tions. Enter the indicated command 
statements, one at a time, and await the 
terminal display. Remember that a command 
will not be executed until a [RETURN) 
character is issued. Note: A guestion 
mark (?) entered without being enclosed in 
guotes reoresents the PRINT command. 

Command Statement 
& Display 

.BA 
READY 

>PRINT2+3 
5 

READY 

>?"HELLO" 
HELLO 

READY 

>?TAB(20);"HELLO" 
HELLO 

Explanation 

instructs Comm-Stor 
to enter BASIC mode. 

determines the value 
of 2 plus 3 and 
displays it. 

displays the charac­
ters "HELLO" 

positions the print­
head to the 20th po­
sition and displays 
the character 
string, HELLO. 

Page 3- 3 



Comm-Star IV 
PROGRAMMER MANUAL 

Command Statement 
& Display 

READY 

>LET A=12 

READY 

>B=4 

READY 

>?A/B 
3 

READY 

>B=B+1 

READY 

>?B 
5 

READY 

>A$="JOHN DOE" 

READY 

>?A$ 
JOHN DOE 

READY 

>?LEFT$(A$,B) 
JOHN 

READY 

Page 3- 4 

Explanation 

assigns the value of 
12 to variable A. 

assigns the value of 
4 to variable B. 

divides the value of 
A by the value of B 
and displays the re­
sult. 

adds 1 to the value 
of B and assigns the 
result to B. 

displays the value 
of B. 

assigns the charac­
ters "JOHN DOE" to 
the variable A$. 

displays the 
contents of A$. 

displays the left­
most B characters in 
M until the number 
of displayed charac­
ters equals the val­
ue of B. 

Command Statement 
& Display Explanation 

>A$=LEFT$(A$,B)+"GREEN" 

READY 

>?A$ 
JOHN GREEN 

READY 

>B$=STR$(B) 

READY 

>?B$ 
5 

READY 

>B=VAL(B$)+1 

READY 

>?B 
6 

READY 

joins the left-most 
B characters in A$ 
with the characters 
"GREEN" and assigns 
the result to A$. 

displays the con­
tents of A$. 

converts the value 
of B to a character 
string and assigns 
it to B$. 

displays the con­
tents of B$. 

converts B$ to a 
numeric value, adds 
1 to it, and assigns 
the result to B. 

displays the value 
of B. 

>10 REM THIS IS A REMARK 

>20 ?"ENTER A NUMBER" 

>30 INPUT A 

enters a REM command 
into the Program 
Text Buffer. 

enters a PRINT com­
mand into the Pro­
gram Text Buffer. 

enters an INPUT com­
mand into the Pro­
gram Text Buffer. 



Command Statement 
& Display 

>?INT( .23) 

0 

READY 

>40 Y=SQR(A) 

>?ABS(-5)+1 
6 

READY 

>50 ?Y 

>LIST 

Explanation 

converts .23 into an 
integer value and 
displays it. 

enters a LET command 
into the Program 
Text Buffer. 

determines the abso­
lute value of -5, 
adds 1 to it, and 
displays the result. 

enters a PRINT com­
mand into the Pro­
gram Text Buffer. 

displays all BASIC 
lines in the Program 
Text Buffer. 

10 REM THIS IS A REMARK 
20 PRINT "ENTER A NUMBER" 
30 INPUT A 
40 Y:SQR(A) 
50 PRINT Y 

READY 

>RUN 

ENTER A NUMBER 
?4.5 
2.1213203 

READY 

>35 FOR I=1 TO A 

>40 Y=SQR(I) 

executes the BASIC 
lines which reside 
in the Program Text 
Buffer. 

enters a FOR command 
into the Program 
Text Buffer. 

enters a LET command 
into the Program 
Text Buffer. 

Command Statement 
& Display 

>60 NEXT 

>RUN 

ENTER A NUMBER 
?5 

1 
1.4142136 
1.7320508 
2 
2.236068 

READY 

>RUN 30 

?2 
1 
1.4142136 

READY 

> 

Comm-Star IV 
PROGRAMMER MANUAL 

Explanation 

enters a NEXT com­
mand into the Pro­
gram Text Buffer. 

executes the BASIC 
lines which reside 
in the Program Text 
Buffer. 

executes the BASIC 
lines which resides 
in the Program Text 
Buffer starting with 
line 3U. 

Now, insert a User diskette into the disk­
ette drive (the upper drive of a dual 
drive unit), 

>CREATE "TEST" 

READY 

>OPEN //4 TO"TEST" 

READY 

obtains the average 
file size on the 
diskette and assigns 
it to file "TEST 11 • 

creates the File 
Buffer and assigns 
file "TEST 11 to file 
reference number 4. 

Page 3- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

Command Statement 
& Display Explanation 

>PRINT #4 ;"THIS IS A TEST" 
enters a 
string 
"TEST". 

character 
into file 

READY 

>? #4;1,2,3,4 

READY 

>CLOSE #4 

READY 

enters 4 numbers 
into file "TEST". 

deactivates 
11 TEST". 

file 

>ASSIGN #4 TO "TEST" assigns file "TEST" 
to file reference 
number 4, using the 
same space in the 
File Buffer. 

READY 

>READ :/J:4;A$ 

READY 

>?A$ 
THIS IS A TEST 

READY 

>READ :/J:4;A,B,C,D 

READY 

>?A,B,C,D 

READY 

>CLOSE 

READY 

>?B 
2 

READY 

2 

Page 3- 6 

3 4 

obtains a character 
string from file 
"TEST". 

displays the char­
acter string. 

obtains 4 num­
bers from file 
"TEST". 

displays the four 
numbers. 

deactivates all 
files. 

displays the value 
of B. 

Command Statement 
& Display 

>CLEARV 

READY 

>?B 
0 

READY 
>OPTION BASE 1 

READY 

>DIM C$(2) 

READY 

>C$(1)="HELLO" 

READY 

>C$(2)="GOOD BYE" 

READY 

Explanation 

deletes the contents 
of the Variable 
Space and r e turn s 
these bytes to the 
Free Space Buffer. 

displays the value 
of B. 

starts all sub­
scripts at 1 instead 
of O. 

dimensions C$ to 
have 2 elements. 

assigns a character 
string to the first 
element of C$. 

assigns a character 
string to the second 
element of c:p. 

>FOR !=1 TO 2;?C$(I) :NEXT 

HELLO 
GOOD BYE 

READY 

>ERASE C$ 

displays the con­
tents of both el­
ements of C$. 

deletes array C$ 
from the Array and 
Variable Buff er and 
deletes the previous 
contents of the ar­
ray from the String 
Buffer. 



Command Statement 
& Display 

READY 

Explanation 

>FOR I=1 TO 2?C$(I):NEXT 

READY 

>LIST 

displays the con­
tents of the first 
two elements 
array C$. 

in 

displays all BASlC 
lines which reside 
in the Program Text 
Buffer. 

10 REM THIS IS A REMARK 
20 PRINT "ENTER A NUMBER" 
30 INPUT A 
35 FOR I=1 TO A 
40 Y=SQR(I) 
50 PRINT Y 
60 NEXT 

READY 

>NEW 

READY 

>LIST 

READY 

>BYE 

deletes everything 
in the BASIC Program 
Space and returns 
the bytes to the 
Free Space Buffer. 

displays all BASIC 
lines which reside 
in the Program Text 
Buffer. 

exits BASIC mode. 

Exercise II. This exercise is designed to 
solve the common problem of determining 
compound interest. This problem is easily 
solved by the use of Sykes BASIC. Suppose 
we deposit a certain amount of money into 
a savings account. The savings account 
bears a certain interest rate which is 
compounded a certain number of times per 
year. How much money will we have at the 
end of a certain number of years? 

Comm-Stor IV 
PROGRAMMER MANUAL 

Let A = the original amount of money, in 
dollars, that we deposited. 

Let R = the annual interest rate, in%. 
Let T = the number of times per year that 

the interest is compounded. 
Let Y = the total number of years we will 

keep the money in the account. 

First, enter: 

.BA to enter BASIC mode 

READY 

> 

If we now enter: 

>AUTO 1, 1 

the BASIC line numbers will be automatic­
ally supplied. If a mistake is made when 
entering the following BASIC lines, simply 
enter l CNTRL/X) and re-enter the same 
line. 

Now, obtain the values for A, R, T, 
and Y. Enter: 

1 INPUT "WHAT IS THE ORIGINAL AMOUNT";A 

When this command is executed, the amount 
entered from the terminal will be assigned 
to the variable A. Enter: 

2 INPUT "WHAT IS THE ANNUAL INTEREST 
RATE";R 

When this command is executed, the amount 
entered from the terminal will be assigned 
to the variable R. Enter: 

3 INPUT "HOW MANY TIMES PER YEAR IS THE 
INTEREST COMPOUNDED";T 

When this command is executed, the value 
entered from the terminal will be assigned 
to the variable T. Enter: 

4 INPUT "HOW MANY YEARS WILL YOU KEEP THE 
MONEY DEPOSITED";Y 

Page 3- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

When this command is executed, the number 
entered from the terminal will be assigned 
to the variable Y. 

Now that the BASIC program is equip­
ped to enter the values, it must calculate 
the answer. This requires three more var­
iables. 

Let N = the total number of interest 
periods. 

Let R1 = the interest rate per period. 
Let B = the final amount of money. 

Enter: 

5 N=Y*T 

When this command is executed, the total 
number of years (Y) multiplied by the num­
ber of times per year (T) will be assigned 
to the variable N. Enter: 

6 R1=R/100/T 

When this command is executed, the annual 
interest rate (R) is divided by 100 re­
sulting in a numerical percentage. That 
result is then divided by the number of 
times per year that the interest in com­
pounded ( T). That result will be assigned 
to the variable R1. (For example, if the 
annual interest rate is 12~, divide 12 by 
100 to get the numerical percentage 0. 12. 
Assume the interest is compounded once a 
month. We then divide 0.12 by 12 (12 
months per year) and we have 0.01, or 1) 
interest each month. Next, calculate the 
final amount as follows: 

final amount = original amount multiplied 
by 1% interest per period raised to the 
number of periods 

We can do this by entering: 

7 B=A*(1+R1)"N 

The final amount will now be assigned to 
the variable B. Next, display the final 
amount. Enter: 

8 PRINT "THE FINAL AMOUNT IS $";B 

Page 3- 8 

The program, however, is still not 
ready to be executed. What would happen 
if a zero or a negative number were en­
tered as one or more of the values? If an 
answer appeared, it would be meaningless. 
Therefore, the program must have some 
logic in it which would check the values 
entered from the terminal. It would be 
best to have this check after the values 
have been entered, but before any calcula­
tions are attempted. Insert a line be­
tween lines 4 and 5. However, only whole 
numbers are allowed to be line numbers. 
Therefore, enter: 

9(RETURN] 

READY 

> 

the automatic supplying of line numbers 
will now be stopped. Enter: 

>RENUM 

and the line numbers will all be renumber­
ed according to the default incrementation 
values. Now, enter: 

>LIST 

100 INPUT "WHAT IS THE ORIGINAL AMOUNT";A 
110 INPUT "WHAT IS THE ANNUAL INTEREST 
RATE";R 
120 INPUT "HOW MANY TIMES PER YEAR IS THE 
INTEREST COMPOUNDED";T 
130 INPUT "HOW MANY YEARS WILL YOU KEEP 
THE MONEY DEPOSITED";Y 
140 N=Y*T 
150 R1=R/100/T 
160 B=A*(1+R1)"N 
170 PRINT "THE FINAL AMOUNT IS $";B 

READY 

> 

What was previously line number 4 is now 
line number 130 and line number 5 is now 
line number 140. Enter the command to 
check the entered values: 



> 135 IF A=O OR R<=O OR T<=O OR Y <=O GOTO 
200 

As this command is executed, if any values 
are equal to zero or are negative values, 
control will be transferred to line number 
200, where a prompt to enter acceptable 
values will be displayed. However, since 
we do not yet have a line number 200 in 
the program, enter: 

>200 PRINT "INCORRECT DATA. PLEASE RE­
ENTER" 

and: 

>210 GOTO 100 

so that control will be transferred back 
to line 100 and the programmer will then 
be able to enter valid values. 

Finally, enter one more command into the 
program. To avoid displaying the above 
error message after the final values, as 
is presently the case, enter: 

>180 END 

and: 

>LIST 

100 INPUT "WHAT IS THE ORIGINAL AMOUNT";A 
110 INPUT "WHAT IS THE ANNUAL INTEREST 
RATE";R 
120 INPUT "HOW MANY TIMES PER YEAR IS THE 
INTEREST COMPOUNDED";T 
130 INPUT "HOW MANY YEARS WILL YOU KEEP 
THE MONEY DEPOSITED";Y 
135 IF A<=O OR R<=O OR T<=O OR Y<=O GOTO 
200 
140 N=Y*T 
150 R1=R/100/T 
160 B=A*(1+R1)~N 
170 PRINT "THE FINAL AMOUNT IS $"; B 
180 END 
200 PRINT "INCORRECT DATA. PLEASE RE­
ENTER" 
210 GOTO 100 

READY 

> 

Comm-Stor IV 
PROGRAMMER MANUAL 

It is evident that after the final 
amount is displayed, the program will be 
terminated. Execute the program by enter­
ing: 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 100 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $179.08477 

READY 

> 

RUN the program again and enter a 
zero or negative number to verify that the 
check routine worked. 

Since the final amount contains 
.08477 cents, use the PRINT USING command 
to obtain a correct dollars and cents 
figure. 

Enter: 

>170 PRINT USING ";###.##"; "THE FINAL 
AMOUNT IS $";B 

This command establishes an image (see 
Chapter 4) that will be used to display 
the character string and the value of B. 
The semi-colon (;) in the image tells 
Comm-Stor to display the character string, 
as a regular PRINT command would do. The 
two number signs l#) following the decimal 
point (.) tell Comm-Stor to display the 
value of B using only 2 digits to the 
right of the decimal point; these 2 digits 
will be rounded. RUN the program again. 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 100 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $179.08 

READY 

Page 3- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

> 

The program works correctly. RUN the pro­
gram again, using a different value for 
the original amount. 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 1000 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $****** 
READY ' 

What happened?!? The value of B contains 
more than 3 digits to the left of the de­
cimal point. Comm-Stor displayed aster­
isks to tell the programmer that the value 
of B is larger than what was provided for 
in the image. So, change the image by en­
tering: 

>170 PRINT USING";8#.ffll";"THE FINAL AMOUNT 
IS $";B 

The image will now be able to accommodate 
any value of B which is equal to or less 
than 99,999,999.99. RUN the program once 
again. 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 1000000 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $1790847.70 
READY 

> 

Now the amount is correct, but it is hard 
to read. Change the image so that commas 
can be inserted into the display of the 
value in order to make the amount more 
readable. Enter: 

>170 PRINT USING ";##,#1#,###.#fl"; "THE 
FINAL AMOUNT IS $";B 

Page 3- 10 

If the program is executed again, the 
amount will be easier to read, 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 1000000 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $1,790,847.70 
READY 

> 

RUN the program again using the original 
values. 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 100 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $ 179.08 

READY 

> 

The dollar sign appears b character 
positions to the left of the value. A 
dollar sign may be put into the image so 
that it will "float" with the displayed 
value. Enter: 

>170 PRINT USING ";$$,$$$,$$$.##";"THE 
FINAL AMOUNT IS";B 

This will make the dollar sign appear 
to the immediate left of the displayed 
value. RUN the program once again. 

>RUN 
WHAT IS THE ORIGINAL AMOUNT? 100 
WHAT IS THE ANNUAL INTEREST RATE? 12 
HOW MANY TIMES PER YEAR IS THE INTEREST 
COMPOUNDED? 2 
HOW MANY YEARS WILL YOU KEEP THE MONEY 
DEPOSITED? 5 
THE FINAL AMOUNT IS $179.08 

READY 



> 

Notice that al though a comma follows the 
dollar sign in the image, it is not dis­
played. This is because Comm-Stor auto­
matically keeps track of commas for the 
programmer. The PRINT USING command is 
discussed in greater detail in Chapter 4. 
Now suppose the programmer wishes to exe­
cute this program many times. Entering 
RUN every time can be tedious and time 
consuming. If the END command is changed 
to a GOTO command, this will solve the 
problem. Enter: 

> mo GOTO 100 

Instead of ending execution of the 
program when the final amount is display­
ed, the programmer will now be able to en­
ter new values, but how will the program 
ever end? After the final amount is dis­
played, control will always be transferred 
to the INPUT command. Instead of making 
the programmer issue a [CNTRL/TJ to inter­
rupt execution, it would be much better if 
the program handled this automatically. 
Solve this by choosing an unlikely value 
for one of the variables and use it as a 
"flag" for stopping execution of the 
program. Use T and 99999. Enter: 

131 IF T=99999 THEN END 

When a value of 99999 is entered for 
the variable T, execution of the program 
will be terminated. Any other values for 
T will cause line 135 to be executed, and 
so on. Try executing the program until 
everything is clearly understood. After 
you are done using this program enter: 

>NEW 

to prepare for the next example. 

Exercise III. This exercise illustrates 
how to SAVE and LOAD a BASIC program. 
Again, use automatically supplied line 
numbers. This time enter: 

>AUTO 10 

Comm-Stor IV 
PROGRAMMER MANUAL 

and enter the commands exactly as shown 
below: 

10 PRINT"HELLO, MY NAME IS SAM." 
20 INPUT S 
30 S=S+1 
40 PRINT S 
50 [RETURN] 

READY 

> 

LIST the program. lThis is done to check 
that the lines were entered properly.) 

You will now need to insert a User 
diskette into the drive (the upper drive 
of a dual drive unit) which contains ei­
ther fixed length files or variable length 
files. 

Call this program "TEST" and SAVE it 
by entering: 

>SAVE "TEST" 

followed by: 

>COM".DD *" 
which proves the program was entered on 
the diskette. Entering: 

>NEW 

(to delete the program from memory) 

followed by: 

>LIST 

shows that the program is no longer in 
memory. Enter: 

>LOAD "TEST" 

to bring the program back into memory and 
enter: 

>LIST 

to prove that the program is once again in 
memory. Keep this program in memory for 
the next exercise. 

Page 3- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

Exercise IV. This exercise illustrates 
the procedures for modifying lines within 
a BASIC program. A line within a program 
can be changed simply by manually re­
entering the entire line. However, it is 
often simpler and less time consuming to 
use the EDIT command. For example, to 
change "SAM" in line 10 (Exercise III) to 
"TOM", enter: 

>EDIT 10 

Line 10 is displayed and Comm-Stor is now 

to be displayed. Simply entering: 

Z[RETURN] 

will cause a "Z" to follow the "S" and the 
edit for that line to be completed. 

Line 30 is now displayed and entering: 

s 

once again, will cause: 

waiting for a character to be entered. 30 S 
Enter: 

s 

and everything up to the first "S" in the 
line is displayed. So, we have: 

10 PRINT "HELLO, MY NAME IS 

Now enter: 

TOM. II 

to replace the previous name with "TOM" 
and enter: 

(RETURNj 

to delete (discard) the remainder of the 
line and to complete the edit for that 
line. Enter: 

>LIST 10 

to make sure that line 10 is correct. 

Now, to change the variable name "S" 
to "SZ", enter: 

>EDIT 20-40 

(because "S" appears in lines 20 through 
40) . Line 20 is displayed and Comm-Stor 
is once again waiting for a character to 
be entered. Entering: 

s 

will cause: 

20 INPUT S 

Page 3- 12 

to be displayed. Enter: 

z 

to cause a "Z" to follow the "S". 
Entering: 

[CNTRL/I) 

will cause another portion of the line, up 
to the next occurrence of an "S" to be 
displayed. Consequently, the line is now: 

30 SZ=S 

Once again, enter: 

z 

to cause a "Z" to follow the "S". To add 
5 to "S", instead of 1, enter: 

[CNTRL/Y] 1 

which causes another portion of the line, 
up to the next 11 111 , to be displayed. To 
change this 11 111 to a 11 511 , enter: 

[DEL) 

(DELETE or RUBOUT) to delete the 11 111 from 
the line. ~nter: 

5 

to cause a 11 511 to be added to the line, 
followed by: 

[CNTRL/I] 



which causes the edit for that line to be 
complete. (Actually, another "1" is 
searched for in the line and because one 
does not exist, the edit for that line is 
completed.) 

Line 40 is now displayed. Enter: 

s 

to obtain: 

40 PRINT S 

and enter: 

Z[RETURN] 

to add a "Z" to the line and to complete 
the edit for that line. 

The program is now modified; enter: 

>LIST 

to verify that it is correct. 

Now, simply entering: 

>SAVE 

to SAVE the program in its modified form, 
Comm-Stor remembers which file name was 
used with the LOAD command, and conse­
quently, 

TEST--SURE? 

is displayed. lhis is to notify the pro-

>LIST 

Comm-Stor IV 
PROGRAMMER MANUAL 

to verify the program is SAVEd in its mod­
ified form. 

To look at the contents of the file, 
enter: 

>COM".D TEST" 

The display is not very understandable. 
This is because the program was stored in 
packed format (some of the contents of the 
file are translated into binary 
representation for speed ef'f'iciency). To 
SAVE it in text format (ASCII format), 
enter: 

>SAVE "TEST",T 

(where the "T" stands for text). Comm­
Stor will again ask "--SURE?" to be 
answered with a "Y" for YES. Once again, 
enter: 

>COM11 .D TEST" 

to see the contents of the file clearly. 

Enter: 

>RUN 

HELLO, MY NAME IS TOM. 
?6 [RETURN] 
11 

READY 

grammer that a file already exists by the > 
name "TEST". Entering: 

y 

causes Comm-Stor to delete the existing 
file "TEST" and SAVE the current program 
in a file by that name. 

Enter: 

>LOAD "TEST" 

followed by: 

Keep this program in memory for the next 
exercise. 

Exercise Y. Now, suppose that the pro­
grammer would like the time of day to be 
displayed each time the value of "SZ" is 
displayed. Since the Comm-Stor system 
uses a 24-hour clock, the display must be 
converted to the 12-hour format. First, 
tell Comm-St or the current time. This is 
normally done in Direct mode when first 
powering up the unit, but is included as 
part of the program for this example. 

Page 3- 13 



Comm-Stor IV 
PROGRAMMER MANUAL 

Enter: 

>1 INPUT"WHAT IS THE TIME OF DAY";T$ 

Now, enter the current time into the sys­
tem; the time must be represented by a 
character string consisting of 6 numeric 
characters, HH MM SS. To assure that the 
time entered from the terminal is in the 
correct form, enter: 

>2 IF LEN(T$)<>6 THEN PRINT "INCORRECT 
DATA. PLEASE RE-ENTER 11 :GOTO 1 

Now, enter the correct time into the sys­
tem by: 

>3 SETIME 10 TO T$ 

This tells Comm-Stor the current time. 
The system now automatically increments 
this time every second. 

Enter: 

>50 HOUR$=LEFT$ (TIME$(0),2) 
>60 MIN$=MID$(TIME$(0),3,2) 
>70 SEC$=RIGHT$ (TIME$(0),2.) 

Line 50 assigns the current hour to the 
variable HOUR$, line 60 assigns the 
minutes to MIN$, and line 70 assigns the 
seconds to SEC$. To convert this time to 
a 12-hour clock, check the value of HOUR$, 
It should be noted here that "120000" re­
presents 12 noon and "000000" represents 
12 midnight. Therefore, a value of HOUR$ 
greater than 12 indicates that it is after 
12 noon. Enter: 

>80 IF VAL(HOUR$)=0 THEN HOUR$="12":W$= 
11A11 :GOTO 130 
>90 IF VAL(HOUR$)<12 THEN W$="A":GOTO 130 
>100 IF VAL(HOUR$)=>12 THEN W$= 11P":GOTO 
120 
> 110 W$= 11 P 11 

> 120 HOUR$= "0 11+ RIGHT$ ( STR$ (VAL (HOUR$) 
12), 1) 
> 130 PRINT "THE CURRENT TIME IS 
II ; HOUR$ ; II : II ; MIN$ ; II : II ; SEC$ ; II II ; W$ ; II • M. " 

Lines bO through 120 convert the hours 
value to that which corresponds to a 12-
hour clock. Line 130 displays the time 
according to this format. 

Page 3- 14 

The lines entered in this exercise 
were added to the program from Exercise 
IV, Execute the program: 

>RUN 
WHAT IS THE TIME OF DAY? 000000 
HELLO, MY NAME IS TOM. 
? 6 
11 
THE CURRENT TIME IS 12:00:03 A.H. 

READY 

>RUN 
WHAT IS THE TIME OF DAY? 134559 
HELLO, MY NAME IS TOM. 
?2 
7 
THE CURRENT TIME IS 01:46:00 P.M. 

READY 

>RUN 
WHAT IS THE TIME OF DAY? 090021 
HELLO, MY NAME IS TOM. 
?245 
250 
THE CURRENT TIME IS 09:00:23 A.M. 

READY 

>NEW 

READY 

> 

Note: The clock used by Comm-Stor may be 
used by the functions TIME, TIME$, CTIME, 
and CTIME$ which are described in Chapter 
b. Also, there are two software registers 
that may be used by the programmer. These 
registers are called TIMER 1 and TIMER 2; 
each can hold a specific time. The times 
are entered into the registers by using 
the SETIME command the same way it was 
used above, where SETIME 11 •.. is used for 
TIMER 1 and SETIME #2 ... is used for TIMER 
2. Additionally, the clock functions may 
be used on these registers, where the 
argument is 1 for TIMER 1 and 2 for TIMER 
2. The clock may further be used in 
conjunction with the Real-Time Control 
System, described in Chapter 6. 



5. ERRORS 

In Appendix G, there are 47 possible 
errors listed. These errors are the only 
ones which can occur in Sykes BASlC. A 
special feature of Sykes BASIC is that of 
allowing the programmer to control BASIC 
program execution when an error occurs. 
This is done by using the IF ERROR # com­
mand, where any whole number (between 0 
and 49, except 10, 15, and 29) follows the 
"#" character and corresponds to a partic­
ular error. For example: 

IF ERROR #7 GOTO 500 

will cause program control to be trans­
ferred to line 500 any time an "ERROR -
FULL DSK" occurs. The error message will 
not be displayed on the terminal when this 
command is used. This command (entered 
into a program in anticipation of a pos­
sible error) must be executed prior to 
Comm-Star's detection of the error. 

Additionally, the line number and 
error number specified in this command may 

Comm-Stor IV 
PROGRAMMER MANUAL 

be numeric variables. This allows greater 
flexibility for programming purposes. For 
example, in executing: 

10 T=500 
20 FOR I=O TO 49 
30 IF I=10 OR 1=15 OR I=29 GOTO 60 
40 T=T+1 
50 IF ERROR #I GOTO T 
60 NEXT I 

each error in the system is associated 
with a particular line number in the BASIC 
program enabling the programmer to know 
which error actually occurred. 

If the programmer wishes to stop con­
trol of a particular error, the same IF 
ERROR tt command should be executed again 
by specifying "END" in place of the line 
number. For example: 

IF ERROR #7 GOTO END 

This will return error detection control 
entirely back to the system for an "ERROR 
- FULL DSK". 

Page 3- 15 



Comm-Star IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page 3- 16 



CHAPTER 4 

PRINT USING AND READ USING COMMANDS 

CONTENTS PAGE 

1. THE IMAGE 4-1 

2. PRINT USING 4-1 

3. PRINT I USING 4-9 

4. READ I USING 4-10 

1. THE IMAGE 

As described in Chapters 2 and 3, 
Comm-Stor automatically formats data in 
output and input operations. Sykes BASIC 
provides the programmer with a simple, yet 
efficient way of controlling the formats 
used. This method of control is called an 
IMAGE. 

The image shows the exact format of 
data which is output or input. Sykes 
BASIC allows the programmer three ways to 
specify an image: 

1. String literal 
2. String variable 
3. IMAGE command 

"Ii ./NI" 
A$= "11. IFIJ II 
50 IMAGE 11. INI 

An image may contain any of the fol­
lowing options: 

# - field position 
n# - repeating field position 
S - space fill-in (Print Using) 
nS - repeating space fill-in 
S - skip feature (Read Using) 
nS - repeat skip feature 
N - null 
nN - repeating null fill-in 
() - repeat feature 
+,- - sign control 
$ floating dollar sign control 
n$ - repeating dollar sign 

Comm-Stor IV 
PROGRAMMER MANUAL 

- decimal point control 
B 
p 

- binary (transparent) format 

T 
E 
I 
D 
A 
x 

- reposition function 
- truncate field character 
- exponential notation 
- insertion character 
- delimiter assignment 
- delimiter allocation 
- suppress echo at terminal 

An image specified in any of the 
above formats may be used in different 
ways, depending on the BASIC command in 
which it appears. There are three dif­
ferent commands in which an image may be 
used: 

1 • PRINT USING 
2. PRINT I USING 
3. READ I USING 

These commands and their use of 
images are described below. 

2. PRINT USING 

The PRINT USING command may be em­
ployed in situations where a specific out­
put format is desired. The format of the 
PRINT USING command is described in Appen­
dix A. Like the regular PRINT command, 
the variable list is a list of variables, 
values, or expressions separated by commas 
and/or semi-colons. 

The image for a particular variable, 
or value, is called a field. Each field 
must contain at least one number sign (#) 
for its corresponding value. If more than 
one number sign is needed, they may be ex­
plicitly or implicitly specified. 

Example: 

Explicit Image 

IF/Ill 
INN/ti • INNI 
411. IFIJll 

Eauivalent Implicit Image 

311 
411.111111 
411. 311 

When the field for a string is not longer 
than the length of the string, such as: 

Page 4- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

PRINT USING "10l";"TEST" 

the string will be displayed and followed 
by space characters until the image for 
that field is used entirely. In this 
case, the output would be: 

(where the character "kl" signifies a 
space character) because the length of 
"TEST" equals 4 and 4+6=10. 

If the field for a string is shorter 
than the length of the string, such as: 

PRINT USING "3#";"CHAIR11 

only part of the string, starting from the 
left, will be displayed. In this case, 
the output would be: 

CHA 

because the length of "CHA" equals 3. 

The string will be fully displayed if 
the field for a string equals the length 
of the string. 

The field for a whole number may be 
longer than the number of character posi­
tions in its value, such as: 

PRINT USING "51";3 

After the number of character positions in 
the value is determined, any unused char­
acter positions in the field, to the left 
of the value, will be replaced by blanks. 
In this case, the output will be: 

since 3 uses one character position, 4 
positions in the field are unused. 

If the field for a whole number is 
shorter than the number of characters in 
its value, such as: 

PRINT USING "#";10 

Page 4- 2 

the entire number of positions in the 
field are replaced by asterisks ( *) • In 
this case, the output would be: 

• 
because 10 uses two character positions, 
but the field only contains one. 

If the field for any numeric value 
equals the number of characters in its 
value, the entire number will be display­
ed. 

When a numeric contains a decimal 
point, such as the number 5.48, all digits 
to the left and right of the decimal point 
will be aligned with the decimal point in 
the field, If there is no decimal point 
in the field, the real value will be 
rounded to a whole number and displayed 
right justified. 

If there are more character positions 
in the field to the right of the decimal 
point then there are in the value, such 
as: 

PRINT USING "##.41";5.48 

zeros will follow those characters filling 
the field. In this case, the output will 
be: 

kl5.4800 

since there are four character positions 
to the right of the decimal point in the 
field, but the value only contains two. 

Should there be less character posi­
tions to the right of the decimal point in 
the field than there are in the value, 
such as: 

PRINT USING "##.#";5.48 

only that number of character positions to 
the right of the decimal point in the 
field will be displayed. However, the 
right-most character displayed will be 
rounded. In this case, the output will 
be: 



since the field only allows for one char­
acter to the right of the decimal point to 
be displayed. If the above numeric value 
was 5.43, instead of 5.48, the display 
would be: 

"fi5.4 

Truncate 

The digit farthest to the right of 
the decimal point in any numeric value 
does not have to be rounded. Specifying a 
"T" in the beginning of the field will 
TRUNCATE (drop off or ignore) the extra 
characters. Such as, 

PRINT USING "T##.#";5.48 

will display: 

~5.4 

When a numeric field only contains 

will display: 

-5.6 

but: 

PRINT USING "#.#";-5.6 

will display: 

••• 
Additionally, 

PRINT USING "21.11";-.12 

will display: 

-0.12 

and: 

PRINT USING "#.ll;-.12 

will display: 

Comm-Stor IV 
PROGRAMMER MANUAL 

values to the right of the decimal point, -.12 
such as .56, 

PRINT USING "l.ll";.56 

will display: 

0.56 

and 

PRINT USING 11 .##";.56 

will display: 

.56 

Table #4-1 further illustrates the 
relationships between decimal values and 
images. 

If a numeric value is negative, a 
character position to the left of the 
decimal point must be included in the 
field in order to display the entire 
value. For example, 

PRINT USING 1121.l";-5.6 

Sign Control 

A field may contain a plus sign (+). 
In which case, 

PRINT USING 11+#.1";5.6 

will display: 

+5.6 

I mag~ :V:a.lu~ Qut1rnt 

fililJ. fJ# .52 550.52 
• fJfJ .67 .67 
• fi .67 .1 
T. fJ .67 .6 
fJfJfJ 25 5525 
fJfJfJ. fJ# 25.5 525.50 
#fi. ## 350 ***** 
fill 12.5 13 
fJ#. fJ 42.79 42.8 
#fJ. fi 250.5 **** 

TABLE #4-1 

Page 4- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

and: 

PRINT USING "+#.#";-5.6 

will display: 

-5.6 

Additionally, a field may contain a 
negative sign(-), such as: 

PRINT USING 11-#.#11 ;-5.6 

will display: 

-5.6 

and: 

PRINT USING 11-#.#";5.6 

will display: 

iS5.6 

If the field is longer than the nu­
meric value, with no sign indicated in the 
image, and the numeric value is negative, 
such as: 

PRINT USING "5#.2#";-66.35 

the display will be: 

iSiS-66.35 

However, 

PRINT USING "+4#.2#;-66.35 

will display: 

-iSiS66.35 

Some instances may require the sign 
of a value to follow the number, instead 
of preceding it. For example: 

Page 4- 4 

PRINT USING 11#.#+";5.6 

will display: 

5.6+ 

and 

PRINT USING "#.#+";-5.6 

will display:· 

5.6-

Table #4-3 contains some examples to 
further illustrate the use of positive and 
negative signs in PRINT USING images. 

Exponential Notation 

To display a numeric value in float­
ing point format (Chapter 2) or scientific 
notation, an "E" may be specified in the 
field. For example, 

PRINT USING "El. II"; 31. 415 

will display: 

3.14E+01 

In this format, the field should con­
tain only enough character positions to be 
displayed to the left of the "E". As 
stated previously (page 4-3) any charac­
ters that are not printed will be rounded 
unless a "T" is specified in the field. 
Several examples are shown in Table #4-2. 

Imas~ :V:alu~ Output 

EU. fi 31.465 31.5E+OO 
TEflfi. Ii OR ET##.# 31. 465 31.4E+OO 

E# 1234 1E+03 
E .fi 1234 . 1E+04 
E#.# .0000079 7.9E-06 

TABLE #4-2 



I mag~ :V:alY~ 

+111111 125 
+#INI -125 
-111111. # -113.5 
-11#11. ii 113.5 
+INN/ 45 
+INN/ -45 
-111111 45 
-1/1/11 -45 
1111- -26 
1111- 26 
1111+ 26 
IN/+ -26 

-Tl/#. ti OR T-11# .ii 12.48 
-TIN/.# OR T-1111. ii -12.48 
+T411. ii OR T+411. II 12.48 
+T411. # OR T+411. ti -12.48 

II. ii- .56 
ii. ii- -.56 
Ti/. ii- .56 
Tit. ii- -.56 

TABLE #4-3 

The Dollar Sign 

Qyt12Y.t 

+125 
-125 
-113.5 
iS113.5 
+iS45 
-iS45 
iSiS45 
-iS45 
26-
26iS 
26+ 
26-
iS12.4 
-12.4 
+iSiS12.4 
-iSiS12.4 
0.6iS 
0.6-
0.5iS 
0.5-

PRINT USING "$.##";-.12 

will display: 

-.12 

Comm-Stor IV 
PROGRAMMER MANUAL 

Note that in both cases the $ has 
been ignored. However, if the number of 
characters in the value is two or more 
greater than the specified number of po­
sitions in the field, such as: 

PRINT USING "$#";-12 

the display will consist of asterisks. 

** 

Floating (+) and (-) Signs 

Plus (+) and minus (-) signs "float" 
with dollar signs . Any unused character 
positions to the left of the decimal point 
will be replaced by space characters such 

In many instances, dollar signs ( $) as: 
must be displayed with a numeric value. 

One dollar sign may be placed into a 
field, such as: 

PRINT USING "$1#";2 

The display will be: 

$iS2 

All the rules mentioned previously hold 
true for this option. 

lf the number of characters in the 
value are one greater than the specified 
number of positions in the field such as: 

PRINT USING "$11"; 12 

the display will be: 

12 

and: 

PRINT USING "$$# 11 ;2 

In which case, the display will be: 

iS$2 

PRINT USING "$$.##";-.12 will display: 

-$ .12 

Table 114-4 lists some examples which 
illustrates the use of floating (+) and 
(-) signs and dollar signs. 

Insertion Option 

Commas may be placed within a field 
to make a numeric value easier to read, 
such as: 

PRINT USING "l,11##";1234 

Page 4- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

I mag~ 

$## 
$$# 
$# 
$:/JIU; 

4$/; OR $$$$# 
3$#. Ii OR $$$Ii.# 

-$$# 
-$$1; 
$$Ii .111;+ 
$$# .111;-
T$$1i. #Ii-
T$$# .##-
3$###.## 

:V:all.l~ 

123 
123 
-12 
12 
12 
32.65 
-5 
5 
5.367 
-5.367 
5.367 
-5.367 
1.20 

TABLE #4-4 

QJ.l:tl2!.lt 

123 
123 
II 

$M12 
lSM$12 
M$32.7 
-M$5 
M~5 
M$5.37+ 
M$5.37-
M$5.36M 
M$5.36-
M$iSM1 .20 

In this case, the display will be: 

1,234 

A comma will not be displayed if it is to 
the left of the most significant digit. 
For example: 

PRINT USING ":/J,###11 ;123 

will display: 

lSM123 

Further examples are listed below: 

Image :V:alye Q!.lt12!.lt 

1;, II##, :/Jiiii 1234567 1,234,567 
Ii, U#, 1111; 123456 lSM123,456 
Ii , ##I , ##If 123 MlSiSiSMM123 
$$' $$# .1;1 1234.56 $1,234.56 
$$ ' $$Ii • 11; 1. 15 MlHSI~$ 1 . 15 

Other characters may also be inserted 
within a field for a numeric value. For 
example, 

PRINT USING "!(THIS IS TEST)##l";123 

will display: 

Page 4- 6 

THIS IS TEST123 

If the value above was -123, the display 
would have been: 

1••••••••1••••• 
A maximum of 255 characters is allow­

ed for each "I" specified. Characters may 
not be inserted into a numeric field to 
the right of the decimal point. 

For example: 

Image 

###/11(-)### 
##I(PDB)## 

:V:al!.le 

1008125 
1213 

Mtilti:gle Field Images 

Qy:t:gut 

1008-125 
12PDB13 

One image may contain many fields. 
In this case, the fields must be separated 
by semicolons ( ; ) • These semicolons do 
not display anything; they are only used 
to permit Comm-Stor to distinguish one 
field from another. Each field is corre­
spondingly matched with the values or var­
iables in the variable list. If there are 
more fields specified in the image than 
there are values, the unused or extra 
fields will be ignored. If the image con­
tains less fields than the number of val­
ues, the image will be repeated until all 
of the values have been displayed. 

The variable list in the PRIN.T USING 
command may affect the display. If the 
variables are separated by commas, Comm­
Stor will automatically space to the next 
tabular position (described in Chapter 2) 
before displaying the specified value. If 
the variables are separated by semicolons, 
no automatic spacing by Comm-Stor will 
take place; the display will be formatted 
exactly as specified in the image. 

Some examples (using a column width 
of 14 characters) are listed below: 

PRINT USING "10#;31";"TEST";"CHAIR" 
TESTiSlSiSiSlSiSCHA 



PRINT USING "51;#;2#";3,10 
l'>l'>l'>kS3* 

PRINT USING "#l.41;1#.1";5.48,5.48 
kS5.4800l'>l'>l'>l'>l'>l'>l'>kS5.5 

PRINT USING "#";1,2 
1 l'>l'>l'>l'>l'>l'>l'>l'>l'>l'>l'>l'>kS2 

PRINT USING 11#11 ;1;2 
12 

Space Fill-In 

The last example reveals the poten­
tial difficulties in distinguishing one 
value from another. An "S" specified in a 
field will display a space for clarifica­
tion. For example: 

PRINT USING "l;Sl";1;2 

will display: 

1 kS2 

More than one "S" may be specified for 
each space desired within a field, such 
as: 

PRINT USING "f;3S#";1;2 

the display will be: 

An "N" may be specified in the begin­
ning of a field to display a NULL charac­
ter. More than one may be specified, if 
desired. A null is something which con­
tains absolutely nothing. Some devices, 
however, contain a character which repre­
sents a null. This technique can be very 
useful when communicating with other de­
vices attached to the modem port (see 
PRINT# USIN~, below). 

For example: 

PRINT USING"l;10N#";1;2 

Comm-Stor IV 
PROGRAMMER MANUAL 

will display on most terminals: 

12 

If the device in use represented a NULL by 
using an "at" sign (@), the display from 
the above PRINT USING command would be: 

1@@@@@@@@@@2 

Delimiter 

After each PRINT USING command is ex­
ecuted, the printhead or cursor pauses im­
mediately after the last displayed charac­
ter. The programmer may then issue a [RE­
TURN] after the values are displayed. 
This [RETURN] is called a DELIMITER. (The 
delimiter may be configured, but the de­
fault value is a [RETURN] character.) A 
delimiter is used to separate different 
data items. 

To issue this delimiter at the end of 
the display, a "D" should be specified at 
the end of the last field in a line. For 
example: 

PRINT USING 11#;3#D";1;"ABC" 
PRINT USING "$#D";2 

will display: 

1ABC 
$2 

followed by a [RETURN]. If the "D"s were 
not used, such as: 

PRINT USING "#;3#";1;"ABC" 
PRINT USING "$1";2 

the display would be: 

1ABC$2 

and the printhead or cursor would pause 
immediately after the 2. 

The delimiter may also be issued be­
fore the last value is displayed by speci­
fying "D" at the end of a particular 
field. For example: 

Page 4- 7 



Comm-Stor IV 
PROGRAMMER MAHUAL 

PRINT USING 11#D;##;###D;##";1;2;3;4 

will display: 

and the printhead or cursor will pause 
inmediately after the 4 since a "D" was 
not specified in that field. In some 
instances, the delimiter may temporarily 
be changed to a different character. 
Specifying 11 A11 with an argument will 
change the delimiter for a particular 
field from the current value to the speci­
fied argument. The argument must be one 
of the decimal values listed in Appendix 
c. 

For example: 

PRINT USING "A(44)#D;##;A(43)3#D;##D";1; 
2;3;4 

will display: 

1 ')5211kl3+1'54 

followed by a [RETURN]. This delimiter is 
for one-time use only and will be erased 
from memory after the field is displayed. 
That is, the comma and the plus sign in 
the above display will once again be regu­
lar characters and not delimiters. 

Repeating Field Position 

We have shown that particular options 
in a field may be repeated by specifying 
the number of desired repetitions in the 
option statement, such as: 11 1011 11 , "2S", 
"5N" and 11 6$ 11 • Additionally, entire 
fi.elds may be repeated. This is accom­
plished by surrounding the field, or 
fields, with parentheses and specifying 
the number of desired repetitions in front 
of the parentheses. Table #4-5 lists 
several examples. 

Page 4- 8 

Image Eguiyalent Image 

21;2#;21;31 
21;3S#;2#;3S#;51 
2#;4#;S#;4#;S#;4#;S#;#; 

3(21; )31 
2(2#; 3S#; )5# . 
21;3(41;Sl;)I; 

TABLE #4-5 

This completes the discussion of the 
PRINT USING command. The following fur­
ther illustrate the use of this command: 

PRINT USING "15#";"THIS IS AN EXAMPLE" 
THIS IS AN EXAM 

I$="11#;$2#;S7#" 
PRINT USING !$;"THIS COSTS";25; 11DOLLARS" 
THIS COSTS $25 DOLLARS 

300 IMAGE9#;A(46)S2(3#,)3#D 
310 PRINT USING 300;"THERE ARE";200000000 
THERE ARE 200,000,000. 

PI=3.14159 
PRINT USING 115#;S#.5#";"PI=";PI 
PI= 3.14159 

A$="PI, WHEN TRUNCATED, EQUALS" 
PRINT USING "26#;ST#.4#";A$;PI 
PI, WHEN TRUNCATED, EQUALS 3.1415 

A$="WHEN ROUNDED, PI" 
PRINT USING "16#;#;#.4#";A$;"=";PI 
WHEN ROUNDED, PI=3.1416 

200 IMAGE19#;SE#.5# 
PRINT USING 200; "PI, IN E NOTATION =";PI 
PI, IN E NOTATION= 3.14159E+OO 

3. PRINT I USING 

As described on page 3-2, the PRINT I 
command is used to output data to a disk 
file or an external device. With that 
command, Comm-Stor automatically formats 
the output. With the PRINT I USING com­
mand, however, the. programmer may specify 
the format used to output the data. 

The PRINT I USING command operates 
similarly to the PRINT USING command, ex­
cept that the output is sent to a disk 
file or external device. 



Reposition Function 

The Reposition (P) option can be 
specified in an image only when accessing 
disk files randomly (see Chapter 5). 

For example: 

PRINT #4,2 USING"P(12)31";"ABC" 

will cause the pointer to move to the 12th 
character position in the second record of 
the file associated with file reference 
number 4. The characters "ABC" will then 
be entered into the file and no other part 
of the file will be affected. This is ex­
tremely useful for file maintenance or up­
dating purposes. 

Binary Option 

The binary option, "B", is a useful 
tool for communicating with external de­
vices and for optimizing the use of disk 
space. For example, many modems receive 
and send data continuously, and special 
characters are often included in this 
data. Specifying a "B" in a field inhib­
its Comm-Stor's automatic conversion to 
ASCII code when outputting data; there­
fore, the output format of the data will 
be the internal representation of the 
specified values. The following is a list 
of the different types of values available 
in Sykes BASIC and the number of bytes 
used by each of them: 

Value Number of Bytes 

Integer 3 
Single Precision 5 
Extended Precision 8 
One Character 

Please refer to Appendix E for the inter­
nal formats of these values. When a "B" 
alone is specified in a field, the number 
of bytes for the corresponding data type 
will be output. For example, 

PRINT #4 USING "B";I%,II ,Il,1$ 

Comm-Stor IV 
PROGRAMMER MANUAL 

will cause the data to be output as 3 
bytes for 1%, 5 bytes for I!, 8 bytes for 
II, and LEN(!$) bytes for 1$. 

Number signs (/I) may also be speci­
fied after the "B" • When this is done, 
different results can occur, depending on 
the data types being used. When using 
character strings, only the number of 
characters will be output as specified by 
the number of number signs in the image. 
If more number signs are specified than 
the length of the string, nulls will be 
output until the image specifications are 
fulfilled. For example, 

PRINT 14 USING "B5#";A$ 

will output the left-most 5 bytes contain­
ed in A$. Comm-Stor will not verify the 
value of the bytes when they are output. 

When using integer data, "Bl/" will 
output the low order byte (Appendix E), 
"B2#" will output the low and middle order 
bytes, and "B3#" will be equivalent to 
"B". If more than 3 number signs are 
specified for integer values, nulls will 
be output until the image specifications 
are fulfilled. For example: 

PRINT #4 USING "B101";I% 

will output 3 bytes for the value of 1% 
followed by 7 nulls. The "B" option for 
integer values is a useful tool for con­
serving disk space and for increasing the 
rate at which data is transferred. For 
example, if we know the value of U. is 
equal to or greater than zero and equal to 
or less than 255, we know that only one 
byte, the low order byte, is needed to 
hold this value. Therefore, if we exe­
cute: 

PRINT 14 USING "Bl";I% 

we will not only be saving 2 bytes of disk 
space, but we will also be increasing the 
rate of data transfer by 2/3. This is 
because executing: 

PRINT #4 USING "B";I% 

Page 4- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

would also output the high and middle 
order bytes, which are equal to zero. 

It is strongly advised that only the 
"B" should be specified in images used by 
single and extended precisions values. 
This is because floating point format 
handles values much differently than in­
teger format. If a "B" is not specified 
alone, Comm-Stor will output the bytes as 
they are obtained internally, from left to 
right. A highly sophisticated knowledge 
of floating point formats is needed by the 
programmer in order to determine which 
bytes are required to represent the de­
sired values • Such knowledge is beyond 
the scope of this manual and, therefore, 
will not be discu'ssed herein. 

4. READ I USING 

The READ 11 USING command is an 
additional feature of Sykes BASIC which 
enables the programmer to obtain values 
from a disk file or external device ac­
cording to a specified format. Conse­
quently, this command should only be used 
if the exact format of the data is known. 

For example, suppose a device attach­
ed to the modem port on the Comm-Stor unit 
sends data to Comm-Stor in the form of one 
space followed by three digits, such as: 

••• 345 675 342 096 756 875 234 546 123 989 
675 ••• 

We would not be able to obtain the data 
without a READ # USING command, since 
there are no delimiters embedded in the 
data to separate the different values from 
one another. To obtain these different 
values, various images can be used. Below 
is a list of READ 11 USING commands which 
will correctly obtain the different values 
above. 

READ #2 USING"41";A 
READ #2 USING"+#.l";A 
READ #2 USING"S3#";A 
READ #2 USING"A(32)3#D";A 
READ #2 USING"$-##";A 

Page 4- 10 

As you can see in the third example 
above, the format used in the image for 
inputting the data may be the same format 
as that of the existing data. The various 
options available for use in images do not 
necessarily mean the same when used in in­
put and output formats. Table #4-6 shows 
the options used for inputting data which 
are .n2t. used for the same purpose when 
outputting data. 

Option 

I 
#.I 
Tl.# 
+# or #+ 
-I or I­
E# 
$1.#1 
1,##1 
#I(AB)# 
SI 

N# 
B30# 

30#0 

A(32)30#D 

Description 

obtain one character 
obtain three characters 
obtain three characters 
obtain two characters 
obtain two characters 
obtain five characters 
obtain five characters 
obtain five characters 
obtain four characters 
ignore one character and 
obtain next character 
same as above 
obtain 30 characters no 
matter what they are 
obtain 30 characters, but 
if the configured delimiter 
character is encountered, 
no more characters are as­
signed to the specific 
variable. 
obtain 30 characters, but if 
a space is encountered, treat 
it as a delimiter for the 
specified variable only. (See 
Appendix C) 

TABLE 14-6 

The READ I USING command may also be 
used to avoid a hard-copy printout or dis­
play of the characters entered from a de­
vice. There are many applications for 
this. For instance, passwords or user 
identification numbers may be entered from 
a device, but the characters will not be 
echoed (displayed or printed) on that de­
vice. Therefore, if the hard-copy were 
misplaced, this information would remain 
confidential. This is done by specifying 
an "X" in the beginning of a field. The 



characters subsequently entered for that 
field will not be displayed or printed. 
Below is an illustrative example: 

100 PRINT #1; 11PLEASE ENTER PASSWORD" 
110 READ #1 USING 11X101";A$ 

The ten characters entered by the operator 
will not be displayed on the terminal, but 
will be assigned to A$. 

Comm-Stor will always recognize the 
value of a field to be completed when the 
delimiter character is encountered unless 
the "B" option is specified in the image. 
If the B option is specified, the speci­
fied number of characters will be obtain­
ed, even if a control character is in the 
file. For example, if the data in the 
file is: 

ABC[RETURN]CD6A 

and 

READ #4 USING 11B6#";A$ 

is issued, the value of A$ will be 
"ABC[RETURN]CD". (The [RETURN] character 
is the default for the delimiter charac­
ter.) If the "B" was not specified, such 
as: 

READ #4 USING"6#11 ;A$ 

the [RETURN] tells Comm-Stor that the 
value is complete; A$ will contain "ABC". 

When the "E" option is used in an 
image, Comm-Stor will obtain four more 
characters from the file. Therefore, the 
image "E1Fll" is equivalent to the image 
11611". For example, if the data in the 
file is: 

1.26E+02 

then 

READ #4 USING"E#.#";A 

will cause A to be equal to 1 . 26E+02, or 
126. Additionally, if the data is: 

12647 

and 

READ 14 USING"E#";A 

Comm-Stor IV 
PROGRAMMER MANUAL 

is executed, it will cause A to equal 
12647 even though the data is not repre­
sented in exponential notation. 

The "N" and "S" options cause one 
character, either a null or a space, (for 
each "N" or "S" specified) to be skipped 
over or ignored. For example, if the data 
in the file is: 

)S}S)S1 (5 nulls)2 

and 

READ #4 USING"3S#;5Nl";A,B 

is issued, the "3S11 will cause the three 
spaces to be ignored, 1 will be assigned 
to A, "5N 11 will cause the five nulls to be 
ignored and 2 will be assigned to B. If 
the same READ 11 USING command is issued 
but the data in the file is: 

AB11CDE432 

A and B will still be equal to 1 and 2, 
respectively. 

If operating in random mode (see 
Chapter 5, The File Manager), a "P" can be 
specified. This will reposition the 
pointer to the specified character posi­
tion within the specified record. For ex­
ample, if the third record in a file con­
tains: 

TEST123 

and 

READ #4,3 USING"P(5)### 11 ;A 

is issued, A will be equal to 123. The 
argument used with the "P" option may be a 
nl.Jlleric constant or variable. The system 
must be in random mode to use this option. 

Page 4- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

As mentioned previously, the config­
ured delimiter character can be acknow­
ledged as such if the "D" option is speci­
fed. For example, if the data in the file 
is: 

ABC[RETURH]123 

and 

READ #4 USING"7#D";A$ 

is issued, A$ will contain "ABC". 
ever, if: 

READ #4 USING"A(50)71D";A$ 

How-

is issued on the same data, A$ will con­
tain "ABC [RETURN] 1 ". This is because the 
delimiter for that particular field was 
changed to the character 112". 

The following is a list of examples 
of equivalent images for the READ I USING 
command: 

Image 

$# 
3$31 
311 ,3# 
2(3#' )3# 
3#1(-)l#I(-)4# 
fUl-
-fNI 
411 
+4# 
fl. fl 
$/NI. fill 

Eguiyalent Image 

1111 
6# 
7# 
11# 
11 fl 
3# 
31 
4# 
5# 
311 
6# 

If the options in the above list are 
used, the variable list in the READ I 
USING command cannot be the same as the 
variable list in the PRINT # USING com­
mand. This is because dollar signs, com­
mas, inserted characters and trailing 
positive and negative signs are not nu­
meric values. To solve this problem, two 
different techniques may be used. 

The first technique allows the same 
image to be used by the READ # USING and 
PRINT # USING commands. However, each nu-

Page 4- 12 

meric value in the PRINT I USING command 
formatted with these options "Should be 
changed to a character variable in the 
variable list of the READ # USING command. 

For example, 

300 IMAGE3$#;2S#;2(3#,)3# 
310 PRINT #4 USING300;1;2;1234 

will enter: 

into the file. To access this data, 

500 READ #4 USING300;A,B,C 

cannot be used; it will result in an 
"ERROR - TM" message . (See Appendix G. ) 
To access the data without getting an 
error, 

500 READ #4 USING300;A$,B,C$ 

must be used. A$ will contain "lHS$1" , B 
will equal 2 and C$ will contain 
"~~~~»~~1,234". This technique is imple­
mented solely for the benefit of those 
programmers who wish to use the same 
images for PRINT 14 USING and READ # USING 
commands. 

The second technique uses different 
images in READ # USING commands and PRINT 
fl USING commands. Instead of the above 
READ I USING command, we could have acces­
sed the data by: 

READ #4 USING"19#";A$ 

This will assign the value of "~li$1 ~)S2 
)S~~»»M1,234" to A$. Additionally, 

READ #4 USING"3S#;2S#;7N#;N31";A,B,C,D 

or 

READ #4 USING"3S#;3#;8#;N3#";A,B,C,D 

will cause A to be equal to 1 , B to be 
equal to 2, C to be equal to 1 and D to be 
equal to 234. Consequently, if the fol­
lowing two commands are executed: 



30 IMAGE3$#;2Sl;2(3#,)3# 
PRINT 14 USING30;A;B;C 

followed by: 

60 IMAGE3S#;3#;8#;S3# 
READ #4 USING60;D,E,F,G 
F=F*1000+G 

the values of D and E will be equal to A 
and B when the READ # USING command is ex­
ecuted and F will be equal to the value of 
C when the next command is executed. 
There are many different applications of 
this technique. The programmer can best 
become familiar with the READ # USING com­
mand through experimentation. 

Character string values sent to a 
disk file by a PRINT # USING command can 
be assessed by a READ # USING command 
using the same image and variable list. 
If an empty field is specified in the 
image, such as: 

READ #4 USING"#; ;l";A,B,C 

a standard READ # (Chapter 7) will be is­
sued for that particular field. 

It should be noted that READ # USING 
commands can access data from disk files 
regardless of how the data was entered. 
The format of the data to be accessed 

Comm-Stor IV 
PROGRAMMER MANUAL 

should be closely scrutinized and experi­
mented upon until a full understanding of 
these techniques is reached. 

Many programmers wish to obtain a 
one-character response from a terminal. 
For example: 

500 PRINT 11 ;"ARE YOU DONE?" 
510 READ #1 USING"#";A$ 
520 PRINT 11; 

will display: 

ARE YOU DONE? 

on the terminal. The first character en­
tered will be obtained by statement 510 
and a [RETURN] will be issued immediately 
to the terminal by statement 520. 

Assume that data being entered from 
the terminal is sent to the modem by a 
BASIC program. Suppose this modem needs 
data sent at 128 characters at a time, 
treating all special characters as regular 
ASCII characters. The program below will 
accomplish this as follows: 

200 READ #1 USING"B1281";A$ 
210 PRINT #2 ;A$ 
220 PRINT 11 ;"ARE YOU DONE?" 
230 READ 11 USING"#";A$ 
240 PRINT 11 ; 
250 IF A$="N"GOTO 200 

Page 4- 13 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page 4- 14 



CHAPTER 5 

THE FILE MANAGER 

CONTENTS PAGE 

1. FILES 5-1 

A. General 5-1 
B. Fixed Length Files 5-2 
c. Variable Length Files 5-2 

2. DISK FILE ACCESS 5-2 

A. The OPEN Command 5-3 
B. Sequential Access 5-3 
c. Random Access 5-5 
D. The CLOSE and RELEASE 5-7 

Commands 
E. The ASSIGN Command 5-7 
F. The RECSIZE Command 5-12 
G. Functions 5-12 

3. EXTERNAL DEVICES 5-13 

4. MULTIPLE REFERENCE NUMBERS 5-13 

5. END OF FILE DETECTION 5-13 

6. VIRTUAL ARRAYS 5-14 

1 . FILES 

A. General 

Data can be entered into a BASIC pro­
gram by using the READ, DATA, and RESTORE 
commands (as the program is written) and 
by entering values from the port devices 
(while the program is executing) through 
the use of the lNPUT and READ #(0-3) com­
mands. These techniques prove to be in­
efficient when the amount of data in­
creases beyond a few items, when the data 
must be changed, or when more than one 
program needs to use the same data. In 
order to improve operations, Sykes BASIC 
provides the programmer with facilities to 
define and manipulate data files. 

A Sykes data file consists of a se­
quence of data items transmitted between a 
BASIC program and a diskette file or some 

Comm-Ster IV 
PROGRAMMER MANUAL 

external device, such as a modem or a ter­
minal. Each file on a diskette is symbol­
ically referenced by a file name which may 
contain up to twenty characters, optional­
ly followed by a plus sign and an exten­
sion of up to twelve characters, depending 
upon the particular configuration of the 
diskette. Comm-Ster supports two types of 
disk file structures: FIXED LENGTH disk 
files and VARIABLE LENGTH disk files. 
(See the Comm-Ster IV Configuration Man­
ual, Sykes Publication No. 999080259 and 
Comm-Ster IV Reference Manual, Sykes Pub­
lication No. 999080256). 

Sykes File Manager Package contains a 
set of BASIC commands which perform cer­
tain operations on disk files. These com­
mands are: 

APPEND 
ASSIGN 
CALL 
CLOSE 
CREATE 
IF END IF 
KILL 
LINK 
LOAD 
MERGE 
OPEN 
POSITION 
PRESS 
PRINT I/ 
PRINT IF USING 
READ # 
READ IF USING 
RECSIZE 
RELEASE 
REWIND 
SAVE 
TRUNCATE 
UNLOCK 

A section on each diskette (located at the 
first sector of Track 1), called the disk­
ette header (Figure #1-5), is produced at 
configuration time and contains informa­
tion about each diskette. When a CREATE 
command is executed, Comm-Ster associates 
a certain portion of the diskette, called 
a FILE SLOT, with the specified file name. 
Comm-Ster then adds information about the 
disk file into the corresponding Directory 

Page 5- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

entry (Appendix F) located in the diskette 
Directory. The CREATE command acts dif­
ferently according to which disk file 
structure is used. 

B. Fixed Length Files 

Because every file on a fixed length 
diskette is the same size, 

CREATE<file name> 

is the format of the CREATE command that 
must be used. If the command, 

CREATE"TEST" 

is executed, Comm-Ster determines if an 
empty file slot (the size is determined at 
configuration time) is available. If one 
is available, the disk header is updated, 
a Directory entry is formed, and the BASIC 
program will continue. If an empty file 
slot is not available, an "ERROR-FULL 
DISK" (Appendix G) will result. 

C. Variable Length Files 

Variable length files provide the 
programmer with a greater amount of flex­
ibility regarding the allocation of disk 
file space. If the files residing on a 
diskette are not the same size, greater 
utilization of diskette space is obtained 
when a large number of files is specified 
at configuration time. For example, if 
100 files are specified at configuration 
time, then the disk may contain from one 
up to 100 files, depending on the size of 
each file slot. 

At configuration time, the average 
file size must be calculated and stored in 
the disk header by Comm-Star. 

Using one of the following commands, 
the program can determine if an average 
size, maximum size, or specified size file 
slot is available. If 

CREATE"TEST" 

is executed, Comm-Star determines if an 
empty file slot (of average file size) is 

Page 5- 2 

available. The largest (maximum) file 
slot can be located by entering: 

CREATE"TEST",M 

To find an available file slot containing 
a specified number of sectors, the pro­
grammer might for example enter the fol­
lowing: 

CREATE"TEST",67*128 

Comm-Star will find an available file slot 
of 67 sectors (1 sector= 128 characters). 

2. DISK FILE ACCESS 

Once a disk file is CREATEd, it may 
be accessed in one of two ways: either 
SEQUENTIALLY or RANDOMLY. 

As an example, let us CREATE a file 
called "SAM" with ti sectors of disk space. 
We will execute the following command: 

CREATE"SAM",8*128 

We can represent what has happened on the 
disk as follows: 

Second Boundary 
End 

1 2 3 4 5 6 1 a+ 
SAM !--I __._____._____.____.__...____, __ .____.I 

B .t . egi.nni.ng 
First Boundary 
Byte Count = 0 

As a result of this command, note that 
nothing has been entered into the file but 
something already may be there from some 
previous disk operation. The file was not 
related to a BASIC PROGRAM, nor was it 
used in any active way, Disk space was 
allocated for 8 contiguous sectors and 
information was added to the directory en­
try showing the beginning, ending, and 
current byte count (which is the total 
number of characters contained in the file 
- 0 from a CREATE). 



Parameter 

File Reference Number 

Drive Number 

File Name 

Record Size 

Output to a Protected File 

Buffer Size 

Double Buffering 

Default value 

Specified by 
the user 

Specified by 
the user 

128 characters 

NO 

1 sector 

NO 

Requirements 

Comm-Stor IV 
PROGRAMMER MANUAL 

Must be a whole number between 4 and 
24, inclusive. 

1 is for upper drive 
2 is for lower drive 

Determined at configuration time 

1 character to total file size 

Depends on size of user memory* 

Depends on size of user memory* 

*Appendix B explains the allocation of buffers in the Comm-Ster IV system. 

TABLE #5-1 

A. The OPEN Command 

We would now like to enter data into 
disk file "SAM". First, the disk file 
must be related to the BASIC program, and 
parameters must be specified concerning 
how the file is to be accessed. The OPEN 
command is used for this purpose (page 
7-30). 

The OPEN command requires seven dif­
ferent parameters. Five of the parameters 
have default values since they are used 
quite frequently. Therefore, these five 
parameters will not be included in the 
OPEN command. The seven parameters and 
their default values, where applicable, 
are listed in Table #5-1. 

It can be seen from the table above 
that only two parameters are required: 
the FILE REFERENCE NUMBER and the FILE 
NAME. All others will default to the 
given values if they are not specified in 
the OPEN command. For our example, let us 
execute: 

OPEN#4TO"SAM"&3 

This command relates the disk file 
(on the upper drive of a dual drive unit) 
to reference number 4. Since no record 
size is specified, it defaults to 128 
characters. The buffer size is three sec­
tors, and only one buffer is allocated to 
the file reference number. Additionally, 
a file header is stored in the File Buffer 
with the specified buffer space. This 
file header contains information about the 
parameters specified for the file refer­
ence number. With this background, we can 
now discuss the two ways of accessing disk 
files. 

B. Sequential Access 

Comm-Stor keeps track of the bound­
aries of a file accessible by the program­
mer. When accessing disk files sequen­
tially, the boundaries are the first and 
last character positions of the file. 
Data may be entered into the file starting 
at the first boundary, followed consecu­
tively by additional data, until the 

Page 5- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

second boundary is encountered. For exam­
ple, if we entered 130 characters into 
file "SAM" by the command sequence: 

FOR 1=1 TO 130 
A$ = A$+"A" 
NEXT I 
PRINT 14;A$ 

The file will now look like Figure 15-1. 

Notice the 130 "A" s were entered 
consecutively from the first boundary. 
Additionally, the delimiter was entered 
into the file directly after the data. 
The · delimiter is always entered into a 
disk file after a value is entered in 
order to distinguish that value from 
others. Consequently, the total number of' 
characters, or byte count, for the file is 
131 ( 130+1=131). Also notice that the 
first boundary marker called the pointer 
(") , is now at the 132nd position in the 
file. 

Entering: 

1 2 3 

SAM I ~-AA_AA_._._.AA_A_A~'~AA~[R_ET_U_RN_]~~~3 
t 

Byte Count = 131 

FIGURE 15-1 

1 2 

PRINTl4;"A";"TEST" 

will now cause the file to look like 
Figure 15-2 and the first boundary marker 
is changed to the current position of the 
pointer, which is the 139th character po­
sition in the file. 

We can keep entering data into the 
file "SAM" in the same manner, provided 
that we do not try to exceed the second 
boundary. If we do, an "ERROR - EF" (End 
of File) will occur. 

A special feature of the Sykes File 
Manager Package is the ability to auto-, 
matically fill a file between the first 
and second boundaries with any character 
the programmer chooses. This is done by 
executing: 

PRINT 14; FILL(32) 

where 32 is the decimal value for an ASCII 
space (Appendix C). '!'he remainder of 

7 8 i 

3 7 8 t 
SAM jAAA ••• AAA I AA[RETURN]A[RETURB]TEST[RETURN] I ~ 

t 
Byte Count = 138 

FIGURE 15-2 

Page 5- 4 



"SAM" will now be filled with spaces, and 
the file will appear as illustrated in 
Figure #5-3, where the character "M" sig­
nifies a space. This is a convenient 
method of removing any data which might 
exist in the file from some previous disk 
file operation. 

Suppose that we would now like to 
obtain the data which we just entered into 
"SAM". Since the first boundary is now at 
the end of the file, we have to move it 
back to the beginning of the file in order 
to access the data. 

To do this, execute: 

REWIND 14 

This command will set the first boundary 
marker to the beginning of the file. 

Now execute: 

READ 14;A$ 

The pointer will point to each successive 
character position, and Comm-Star will 

Comm-Star IV 
PROGRAMMER MANUAL 

assign these characters to A$. When the 
pointer points to the delimiter, the sys­
tem assumes the value of the variable to 
be complete. Therefore, A$ contains 130 
"A"s. If we now execute: 

READ :/14;B$,C$ 

B$ will contain "A" and C$ will contain 
"TEST". 

The pointer, once again, is at the 139th 
character position in the file. 

C. Random Access 

To obtain the second value entered 
into "SAM", we could REWIND the file, READ 
the first value, and then READ the second 
value. However, it would be much easier 
if we could simply position the pointer to 
the beginning of the second value. We can 
do this by executing: 

READ #4,2 USING"P(4) 11 ;A$ 

This is a random access command. It posi­
tions the pointer to the beginning of the 

1 2 3 7 8 i 
SAM I AAA ••• AAA I AA[RETURN]A[RETURN]TEST[RETURN]M)US ••• I .. ~ ~_: _. ·~'-·-·_·M_M_MI 

Byte Count = 1024 
t 

FIGURE 15-3 

1 2 t 3 7 8 

SAM 'AAA ••• AAA I AA[RETURN]A[RETURN]TEST[RETURN]MM •• I ... M~. ~,-M-•• ---.-•• -.-MM--,1 

t 
Byte Count = 1024 

FIGURE #5-4 

Page 5- 5 



Comm-Ster IV 
PROGRAMMER MANUAL 

second record in the file; the boundaries 
for sequential access were changed to the 
beginning and ending of the second record. 
(Remember, the record size defaulted to 
128 characters in the OPEN command.) The 
file then looks like Figure #5-4. 

The "P" option in the image repositioned 
the pointer to the 4th character position 
from the first boundary and obtained the 
value of A$. The file now looks like the 
example in Figure 115-5, and A$ contains 
"A". 

Comm-Ster always accesses data se­
quentially until the boundaries are 
changed by the programmer. Therefore, 
when the second record was specified in 
the above command, the boundaries were 
changed and, consequently, random access 
of the data occurred. Additionally, the 
"P" option was specified in the image. 
This, too, is random access because the 
programmer changed the first boundary to 
the specified position in the record. 

1 2 

The value for A$ was obtained se­
quentially, however. lf we execute: 

READ 14;A$ 

another sequential access of the data is 
performed, and A$ contains "TEST". "SAM" 
now appears in Figure #5-6. Note that the 
first boundary marker is now at the 11th 
character position in the second record of 
the file. If we try to execute: 

A$="" 
FOR 1=1 TO 128 
A$ = A$+11 B11 

NEXT I 
PRINT #4;A$ 

We will get an "ERROR - EF" because the 
data would exceed the second boundary. We 
can, however, move the second boundary to 
the end of the file by executing: 

UNLOCK 14 

3 7 8 

SAM ,_A_A_A_. _· ._A_AA___._A_A_[ R_E_T_UR_N_J_A_[ R_E_T_UR_N_J_TE_S_T_[_RE_T_U_RN_J_M_M_. _· --'------· ._M__.M ... ) M. • I ... MM l 
t 

Byte Count = 1024 

FIGURE #5-5 

1 2 3 7 8 

SAM AAA ••• AAA AA[RETURN]A[RETURN]TEST[RETURN]~MM ••• . •• ti 

Byte Count = 1024 

FIGURE #5-6 

Page 5- 6 



This command keeps the first boundary 
stationary. lf we now executed: 

PRINT #4;A$ 

the file will appear as illustrated in 
Figure #5-7. 

D. The CLOSE and RELEASE Commands 

When operations with a file are com­
pleted, Comm-Stor must be advised. We can 
use one of two different commands to ac­
complish this: CLOSE or RELEASE. 

A CLOSE command tells Comm-Stor that 
the file associated with the file refer­
ence number should no longer be related to 
that reference number. We could execute: 

CLOSE #4 

This command would disassociate the file 
"SAM" from the BASIC program. The last 
buffer is written to disk if a WRITE op­
eration had been done, and the byte count 
in the Directory entry is updated to 
reflect the new byte count in the file. 
The buffer space, j sectors plus the space 
used by the file header, is still associ­
ated with that file reference number. 

Instead of the CLOSE command, we 
could execute: 

RELEASE #4 

Like the CLOSE command, this command also 
tells Comm-Stor that the file is no longer 
related to the reference number. 'I his 

1 2 

SAM jAAA ••• AAA I AA}· TEST[RETURN]BBB ••• BBB 

Comm-Stor IV 
PROGRAMMER MANUAL 

command also tells Comm-Stor that the File 
Buffer space associated with the file 
reference number is no longer related to 
that reference number. Since we RELEASEd 
File Buffer space, we may now use this 
space for other file reference numbers. 
(If another file reference number is used, 
it will use this same RELEASEd File Buffer 
space.) 

E. The ASSIGN Command 

The ASSIGN command is used to associ­
ate a disk file with a file reference num­
ber after File Buffer space has been per­
manently set (possibly by previous use of 
a character variable) and to use any 
available File Buffer space for that ref­
erence number. 

The first OPEN command allocated 
three sectors plus room for one file head­
er for the BASlC program's File Buffer 
space. We then RELEASEd this space making 
it available for use by other file refer­
ence numbers. Since the smallest amount 
of File Buffer space that may be used by a 
file reference number is one sector plus 
the file header, three file reference num­
bers cannot be used. This would cause an 
"ERROR - FO" as the space for three sec­
tors plus three headers is larger than the 
available File Buffer space. Therefore, 
for this example, we will use two file 
reference numbers. 

Suppose that a disk file presently 
exists which is called "PRODUCTS" and con­
tains 2, 000 records. Each record has a 
maximum length of 51 characters. The 
fields in each record are: 

3 4 7 8 i 
BBBBBBBBBB[RETURN]~M ........ M • .pf I · .. M I 

t 
Byte Count = 1024 

FIGURE #5-7 

Page 5- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

PRODUCTS 

Field Description Characteristics 

1 
2 
3 
4 

5 

Product code 
Product name 
Quantity on hand 
Unit price 

Last sale date 

1-10 characters 
1-20 characters 
1-6 digits 
1-7 digits 

(XXXXX.XX) 
8 characters 

(MM-DD-YY) 

Using the limit of two file reference 
numbers, we can easily update the "Quanti­
ty on hand" field of each record, find the 
total number of products in stock, and add 
this information to another existing file 
called "TOTALS" which will be used for 
generating a report. We can now: 

ASSIGN 15 TO "PRODUCTS",51 

which relates file reference number 5 to 
the disk file "PRODUCTS", using one sector 
plus 35 bytes for a file header, with a 
record length of 51 characters. 

We may also: 

ASSIGN 16 TO "TOTALS" 

which relates file reference number 6 to 
the disk file "TOTALS". We now have 93 
bytes of available space left in the File 

TOTALS 

Buffer ( 128*3+35 - ( 128+35) - ( 128+35) = 
93). File reference numbers 5 and 6 each 
use 163 bytes of File Buffer space. We 
can now execute the following BASIC lines: 

APPEND 16 
INPUT "WHAT IS THE DATE, IN THIS FORM: 

MM-DD-YY";D$ 
PRINT #6 USING "71;8#D";"DATE:",D$ 
FOR I=1 TO 2000 
POSITION #5,I 
READ #5 USING"10#";PC$ 
PRINT "PRODUCT CODE =";PC$ 
INPUT "NUMBER SOLD";AMT 
READ #5,IUSING "P(31)6#";QOH 
QOH = QOH - AMT 
TOT = TOT + QOH 
IF AMT <>O THEN PRINT #5,IUSING "P(31)6#; 

P(44)8#";QOH,D$ 
PRINT #6 USING "10#;5S6#D";PC$,AMT 
NEXT I 
PRINT #6USING 11 81;1,3#,31,31D"; "TOTAL=", 

TOT 
END 

Notice that there is not a CLOSE com­
mand in the above group of lines. This is 
because all active file reference numbers 
are automatically CLOSEd when a BASIC pro­
gram completes execution. 

The APPEND command is used to posi­
tion the pointer to that character posi­
tion in the disk file immediately to the 
right of the last character entered in the 
file. For example, suppose the file "TO-

1 2 18 19 20 21 215 216 • 
I ~· · ·~,.---.-------'ti 

Page 5- 8 

--­t 
Byte Count = 2550 

FIGURE 15-8 



TALS" looked like Figure 115-8 after we ex­
ecuted the ASSIGN command for file refer­
ence number 6. 

The "cross-hatching" signifies data 
stored in the file. After the APPEND com­
mand is executed, the file will look like 
Figure 115-9, and the pointer is at the 
2551 st character position in the disk 
file. After the date is obtained from the 
terminal (for example, h06-22-7b"), it is 
entered into the file, which will now ap­
pear as in Figure #5-10. 

Assuming that when we executed the 
ASSIGN command for file reference number 5 
the disk file look as in Figure 115-11, 
where the numbers 1 through 2000 refer to 
the record numbers and not the sectors. 

The first POSITION command then 
causes the file to look like the Figure 
115-12. 

Let us also assume that the first 
record contains the following values: 

TOTALS 

Value 

11 0102-ABC-3" 
"MUSHROOM SOUP" 
21567 
0.43 
"05-25-78" 

Comm-Stor IV 
PROGRAMMER MANUAL 

Field 

Product code 
Product name 
Quantity on hand 
Unit price 
Last sale date 

When the next READ 115 USING command is 
executed, the first ten characters are 
obtained from this record and assigned to 
the variable PC$. The disk file now ap­
pears as illustrated in Figure #5-13, and 
PC$ contains the characters "0102-ABC-3". 

This "Product code" is displayed on 
the terminal and the operator enters the 
corresponding number of items sold; this 
number is assigned to the variable AMT. 
The next READ 115, I USING command reposi­
tions the pointer to the 31st character 
position in the record; six digits are 
obtained from the file and assigned to the 
variable QOH. The disk file now looks 
like Figure #5-14, and the variable QOH is 
equal to 21567. 

1 2 18 19 20 21 215 216 

-···~., 
Byte Count = 2550 

FIGURE #5-9 

TOTALS 

19 20 21 22 215 216 

DATE: 06j22-78[RETURN] 

Byte Count = 2566 
t 

FIGURE #5-10 

Page 5- 9 



Comm-Star IV 
PROGRAMMER MANUAL 

PRODUCTS 

1 2 3 1998 1999 

-··· t Byte Count = 102000 

FIGURE #5-11 

PRODUCTS 

1 2 3 1998 1999 

Byte Count = 102000 

FIGURE 15-12 

PRODUCTS 

2000 i 

2000 

i2 1999 2000 

,..-0-10-2--A-B-C--3MU-S-H-RO_O_M_S_OU_P ___ 2_15_6_7 __ 0 .-4-30-5--2-5--7-8~1""' ••• -

t Byte Count = 102000 

FIGURE 15-13 

PRODUCTS 

1 i 2 1999 2000 

10102-ABC-3MUSHROOM SOUP 21567 0.4305-25-78- •• ·-· ~ 
~~~~~~t~~~ 

Byte Count = 102000 

FIGURE 15-14 

Page 5- 10 



The number of items sold (AMT) is 
then subtracted from this number to find 
the number of items left in stock. This 
result is then added to the total number 
of items in stock (TOT). lf the number of 
i terns sold for this product equals zero, 
there is no change to the record, and the 
file is not changed. Assuming the opera­
tor entered the value 253 into the varia­
ble AMT, QOH now would equal 21314 (21567 
- 253 = 21314). The PRINT #5 command then 
repositions the pointer back to the 31st 
character position, enters the value of 
QOH, repositions the pointer to the 44th 
character position, and enters the con­
tents of D$. Only these fields will be 
changed; the other part of the record is 
not changed in any way by using the "P" 
option in the image. Therefore, the disk 
file now appears as shown in Figure #5-15. 

The "Product code" and number of 
items sold for the product are then enter­
ed into the "TOTALS" disk file which now 
looks like Figure #5-16. 

PRODUCTS 

Comm-Stor IV 
PROGRAMMER MANUAL 

These operations are then performed 
for the other 1999 records which exist in 
the disk file "PRODUCTS". When these 
records are completely processed, the last 
PRINT 116 USING command will be executed, 
entering the total number of items sold on 
this date. The disk file "TOTALS" is now 
shown in Figure #5-17 and processing for 
this example is now complete. 

If a COM 11 .D TOTALS" is now executed, 
the portion of the file just entered will 
look like: 

DATE: 06-22-78 
0102-ABC-3 253 

(other 1999 products) 

TOTAL = 226,789,431 

This completes the discussion of this ex­
ample. 

1 ~ 2 1999 2000 

j0102-ABC-3MUSHROOM SOUP 21314 0.4306-22-78 ~ • • . ~ 
.__~~~~~~~t~ 

Byte Count = 102000 

FIGURE #5-15 

TOTALS 

1 20 21 22 215 216 i 
~···~ 22-78[RETURN]0102-ABC-3 253[RETURN] I ~ · · ·~---~_____.I 

Byte Count = 2588 
t 

FIGURE #5-16 

Page 5- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

F. The RECSIZE Command 

Another command is used in the File 
Manager Package to instruct Comm-Stor to 
change the record size parameter . in the 
corresponding file header. For example, 

OPEN 15 TO "TEST" 

causes the record size to be 128 charac­
ters long. To change the size of each 
record in "TEST" from the default value of 
128 characters to a specified value, the 
RECSIZE command is used. Entering: 

RECSIZE 15 TO 80 

changes the record size from 128 charac­
ters to 80 characters. If this command 
were not available, the programmer would 
need to first CLOSE #5 and then ASSIGN it 
with a new record size. 

G. Functions 

There are two functions in Sykes 
BASIC, POS and FILL, which may be used 
with the File Manager Package. When the 
file reference Number is used with the POS 
function, the pointer is returned to the 
current position in the file. If a file 
has been accessed sequentially, the result 
of POS will be the last accessed character 
position in relation to the beginning of 

TOTALS 

1 20 21 

the file. (If the file has not been 
accessed, the result of POS will be 1 • ) 
If the file has been accessed randomly, 
the result of POS will be the current 
record number. For example, using the 
file reference number 5 that has a record 
size one sector long and has been accessed 
sequentially, the pointer is positioned at 
the first position in the second record. 

A = POS(5) 

will assign the value of 128 to the vari­
able A. If we had positioned the first 
boundary to the second record, however, A 
would be assigned the value 2. 

As described on page 5-4, the FILL 
function is used to output a character to 
the file repeatedly until the second 
boundary is encountered. The argument of 
the FILL function is a decimal number 
which is equivalent to an ASCII character 
(obtained from Appendix C). For example, 
if a file has been accessed sequentially 
(in this case, through file reference num­
ber 6) and: 

PRINT 16;A;FILL(32) 

is executed, the value of A would be out­
put to the file and the remainder of the 
file will consist of spaces. However, if: 

22 215 216 

~···~TOTAL = 226,789,431[RETURN] I ~.. . ~,________.__~ 
Byte Count = 2610 

t 

FIGURE 15-17 

Page 5- 12 



POSITION li6 , 2 
PRINT #6;A;FILL(32) 

is executed, the value of A will be output 
to the second record of the file and the 
remainder of the record will consist of 
spaces. 

3, EXTERNAL DEVICES 

The only external devices which can 
be attached to the Comm-Stor unit are a 
modem, terminal, and printer. Data is 
transferred to and from these devices 
through a port reference number. 

Port Reference Number 

0 
1 
2 
3 

Device 

invoker 
terminal 
modem 
printer 

The invoker is the device which issues the 
11 .BA" command to Comm-Stor. 

As described in Appendix B, the buf­
fer sizes for the terminal and modem de­
vices are specified at configuration time; 
the size of the modem buffer may be 
changed during a BASlC program using the 
OPEN command. These buffers are used by 
Comm-Stor to temporarily store incoming 
data. When data is output, no buffers are 
used since the data is transferred one 
character at a time to the device. 

Data is transferred to and from these 
devices by the following commands: 

PRINT II 
PRINT IF USING 
READ fJ 
READ fl USING 

PRINT l 
PRINT USING (invoker 
INPUT 

only) 

Data from these devices can only be 
accessed sequentially. Additionally, the 
POS function can be used for the modem, 
terminal, or invoker's buffer by passing 
the port reference number as the argument. 

Comm-Stor IV 
PROGRAMMER MANUAL 

4. MULTIPLE REFERENCE NUMBERS 

When a PRINT IF or PRINT # USING com­
mand is issued, more than one reference 
number may be specified. For example, to 
enter the characters "TEST" into a file 
associated with file reference number 5 
and output the data to the printer, modem, 
and terminal, we could execute: 

PRINT fi5&11 &IF2&1F3; "TEST"; 

The reference numbers must appear in 
a certain order in the command. The rules 
for entering and outputting data are de­
termined by the first reference number 
specified. For example, a disk file ref­
erence number is specified first, so the 
delimiter will be output after "TEST". 
However, if the above command was changed 
to: 

PRINT IF1&#5&#2&13;"TEST"; 

the delimiter would not be output. 

5, END OF FILE DETECTION 

As was described on page 3-14, the 
programmer can control the procedure in a 
BASIC program when an error condition 
arises using the IF ERROR # command. For 
example, if the command: 

IF ERROR #27 GOTO 5000 

is specified in a BASIC program when an 
end of any file is encountered, program 
control will be transferred to line 5000. 

lf the programmer is using more than 
one file at a time, this command will not 
enable the programmer to know in which 
file the error was detected. Therefore, 
the File Manager Package supplies the com­
mand, IF END #, which allows the program­
mer to specify a particular file reference 
number. 

For instance, if the commands: 

IF END #4 GOTO 5000 
IF END #5 GOTO 5500 

Page 5- 13 



Comm-Stor IV 
PROGRAMMER MANUAL 

are executed, program control will be 
transferred to a particular line in the 
BASIC program depending upon the file in 
which the error occurred. 

6. VIRTUAL ARRAYS 

A special feature of Sykes BASIC is 
the implementation of virtual arrays. 
Virtual arrays are the same as regular 
arrays (page 2-9) except that: 

1.) the values for the array's elements 
are automatically obtained by Comm­
Stor, 

2.) a disk file contains the current 
values of the array, and 

3.) a total of 11 bytes, plus the number 
of bytes determined by multiplying 
the number of dimensions by 2, is al­
located in internal memory for each 
array. 

As an example, suppose a disk file 
named "INVENTORY" resides on the disk in­
serted in the drive (the upper drive of a 
dual drive unit). "INVENTORY" contains 
200 values; the first 100 values are the 
product numbers and the last 100 values 
are the quantities in stock. If virtual 
arrays are not used, the following com­
mands would have to be executed to obtain 
the values of the array: 

Example I: 

OPEN #4 TO "INVENTORY" 
DIM INV(99, 1) 
FOR J:O to 1 
FOR I=O to 99 
READ #4;INV(I,J) 
NEXT I 
NEXT J 

Virtual arrays operate more effi­
ciently and simplify programming. To ob­
tain the values for the virtual array, 
!NV, from file "INVENTORY", only two com­
mands are required: 

Page 5- 14 

Example II: 

OPEN 14 TO "INVENTORY" 
DIM 14 TO INV(99,1) 

Each element of array, INV, is now as­
signed a value from the "INVENTORY". It 
should be noted that the order in which 
the two commands above are executed does 
not matter. 

The OPEN or ASSIGN statement for 
virtual arrays may specify a buffer size 
if desired. If a record size is issued in 
this command, it will be ignored since the 
virtual array specifies its own record 
size. 

More than one virtual array may be 
associated with a file by issuing: 

DIM 14 TO PROD(99), QUANT(99) 

instead of the previous DIM command. 

CHARACTER ARRAYS may also be used as 
virtual arrays. 32 characters in the file 
are automatically assigned to each ele­
ment. For example: 

OPEN #5 TO "TEST" 
DIM #5 TO C$(5,2) 

will cause C$(0,0) to contain the first 32 
characters in "TEST", C$(1,0) will contain 
the next 32 characters, and so on. If the 
programmer wishes to have 50 characters 
assigned to each element, 

DIM 15 TO C$(5,2)=50 

may be issued. Remember, however, that a 
character string cannot contain more than 
255 characters. 

Another important function of virtual 
arrays is to change the value of an ele­
ment or elements. lf we had a program 
containing the commands in Example I and 
at some later time we executed: 

INV(60,1):A/B 



the value of INV(60,1) would be changed in 
internal memory; the disk file "INVENTORY" 
would not be changed in any way. However, 
if the program contained the commands in 
Example II and we executed the command 
above, the value in the disk file "INVEN­
TORY" which is associated with INV(60,1) 
will now be changed to the value of A di­
vided by B. This occurs because each ele­
ment of a virtual array is an index to a 
disk file; a table is not stored in inter­
nal memory for each virtual array. This 
minimizes program execution time and sim­
plifies updating stored data. 

The virtual arrays are always associ­
ated with the file reference number speci­
fied in the DlM command unless an ERASE 
command is executed. For example: 

10 OPEN 114 TO "TEST 1" 
20 DIM #4 TO B(250,5),D$(10,10):40 

90 CLOSE #4 
100 ASSIGN 114 TO "TEST2 11 

190 CLOSE #4 
200 ERASE B,D$ 
210 ASSIGN 114 TO "TEST3" 

The values of virtual arrays B and D$ 
are first obtained from disk file "TEST1" 
in line 20. When line 100 is executed, 
the data in file "TEST2" is assigned to 
the virtual arrays. When line 200 is 
executed, the use of virtual arrays would 
no longer be possible (Chapter 7, ERASE); 
and consequently, when line 210 is execut­
ed, no virtual arrays will be associated 
with file "TEST3". However, if line 200 
is changed to: 

200 ERASE B 

then virtual array D$ will be associated 
with file "TEST3" when line 210 is execu­
ted. 

Comm-Stor IV 
PROGRAMMER MANUAL 

Disk files associated with virtual 
arrays may be treated as regular files. 
That is, PRINT commands may change the 
contents of the files but will also change 
the affected element(s) of the virtual 
array(s). 

Virtual arrays may also be associated 
with different files in one DIM command. 
For example: 

DIM #4 TO B(10,10);#5 TO C$(2,2),F(5) 

will associate virtual array B with file 
reference number 4 and virtual arrays C$ 
and F with file reference number 5. 
Additionally, a regular array may be de­
fined in the same DIM command as a virtual 
array, such as: 

DIM #4 TO B(10,10);#5 TO C$(2,2),F(5);D 
(5,5) 

Array D is not a virtual array. Cau­
tion is advised when creating a disk file 
to be used with virtual arrays. As with 
any newly created file, it contains mean­
ingless characters. Therefore, it is sug­
gested to fill newly created files with 
zeros or spaces so that the virtual arrays 
will not contain these erroneous values. 

Additionally, the size of a disk file 
must be equal to or greater than the num­
ber of storage bytes used by the virtual 
array(s). To calculate the number of 
bytes needed to store a virtual array, the 
following table may be helpful: 

Number of storage 
Element tyQe bytes Qer element 

integer 3 
single precision 5 
extended precision 8 
character 1 plus the length of 

each element 

TABLE #5-2 

Determine the number of bytes needed 
for each virtual array; the result will be 

Page 5- 15 



Comm-Stor IV 
PROGRAMMER MANUAL 

the smallest number of bytes possible to 
create a disk file which will be associ­
ated with the virtual array(s). For exam­
ple, if we wanted to use the integer vir­
tual array Aj(19), we would determine that 
3 bytes multiplied by 20 elements equals 
60 bytes. Therefore, at least 60 bytes 
must be in the corresponding disk file. 

If the disk file is not large enough, 
an End of File condition ("ERROR - EF") 
will occur when referencing an element 
outside the bounds of the file. If the 
virtual array(s) reference an address out-

Page 5- 16 

side the bounds of the entire disk, a 
diskette error ("ERROR - DISKETTE") will 
occur. A good way to ensure that the 
virtual array elements do not overflow the 
boundary is to reference the last element 
before performing calculations. If an 
error does not occur, you know that you 
have enough disk space associated with the 
virtual array(s) used. 

As a final note, the OPTION BASE com­
mand (Chapters 2 and 7), if executed, will 
also affect virtual arrays. 



CHAPTER 6 

THE REAL-TIME CONTROL SYSTEM 

CONTENTS PAGE 

1. GENERAL 6-1 

2. THE TIMERS 6-2 

3. THE REGISTERS 6-3 

1. GENERAL 

The Real-Time Control System (RTCS) 
is a powerful tool used to detect external 
conditions from within a BASIC program. 
These external conditions are often called 
INTERRUPTS since they cause a break in the 
continuity of a BASIC program when de­
tected. The different interrupts that can 
be detected by the programmer are classi­
fied by seven major interrupt categories. 
Each category has a reference number 
associated with it, as shown below: 

Reference 
Number 

2 
3 
4 
5 
6 
7 

Interrupt 

TERMINAL 
MODEM 
PRINTER 
TIMER 1 
TIMER 2 
REGISTER 1 
REGISTER 2 

Usually, when a BASIC program is exe­
cuting, and does not request any data from 
a device by a READ or INPUT command, any 
characters entered from a device will be 
stored in the buffer for that device. For 
instance, a character sent to the modem 
port will be stored in the Modem Buffer 
and a character entered from the terminal 
will be stored in the Terminal Buffer. 

When the program does request input 
from a device, Comm-Stor first checks to 

Comm-Stor IV 
PROGRAMMER MANUAL 

see if there is data in the corresponding 
buffer. If there is not, Comm-Stor will 
delay execution of the program until data 
is entered from the specified device. 
Consequently, time can be wasted if there 
is not any input for a period of time; the 
program could possibly be performing other 
operations until interrupted and told that 
data is ready to be input. Without using 
the Real-Time Control System, a [CNTRL/T] 
could be issued, data could be entered, 
and the program could then continue .l2I'..Q.=. 
yided that no errors occur when this is 
done. Utilizing the Real-Time Control 
System, however, provides the programmer 
with the security that all operations will 
be carried out at the most efficient 
level. 

A program can be prepared to accept 
and deal with any inter)upts that might 
occur by using the WHEN command. The com­
mand format looks like: 

{
GOTO } [{&<priori-} 

WHEN #<ref> GOSUB <line num> ty>][,E] ] 
END &E 

Substituting in the corresponding refer­
ence number and the desired line number, 
the program will then be able to acknow­
ledge the interrupts and take the appro­
priate actions. For example, these com­
mands: 

WHEN #2 GOTO 5000 
WHEN #4 GOSUB 6000 

will cause program control to be transfer­
red to line 5000 if a MODEM interrupt oc­
curs and to execute the subroutine start­
ing at line 6000 whenever a TIMER 1 inter­
rupt occurs. 

Example: Company XYZ processes the pay­
roll for each of its employees on a Comm­
Stor unit. Because the employees get paid 
only once a month, XYZ offers a special 
service to them; any employee can enter 
his/her employee number at the terminal 
while the payroll program is executing and 
can immediately obtain his/her current ac­
count status. This is done by the follow­
ing program: 

Page 6- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

10 WHEN #1 GOSUB 5000 
20 RTCS 1 
30 OPEN #5 TO "PAYROLL" 

Payroll l : 
Program • 

4000 END 
5000 RTCS 0 
5001 READ #1; EMPNUM 
5010 READ #5,EMPNUM;A$ 
5020 PRINT "YOUR CURRENT STATUS 

IS:" 
5030 PRINT A$ 
5040 RTCS 1 
5050 RETURN 

Line 10 tells Comm-Stor to execute 
the subroutine starting at line 5000 if a 
TERMINAL interrupt occurs. Line 20 ena­
bles interrupts, or activates the Real­
Time Control System. Therefore, the main 
body of the payroll program can be execut­
ing and, if an employee number is entered 
from the terminal, the appropriate record 
of the payroll file will be displayed. 
Upon execution of the RETURN command, the 
program will then continue where it left 
off before the interrupt occurred. 

The format of the RTCS command is: 

RTCS <log exp> 

Whenever the logical expression pro­
duces a nonzero (true) result, all inter­
rupts specified by WHEN commands will be 
enabled. 

All interrupts specified by WHEN com­
mands are checked after one BASIC line has 
been executed and before the next BASIC 
line is executed. As more than one inter­
rupt may occur at the same time (such as a 
character being entered through the termi­
nal port at the same time a TIMER 2 inter­
rupt occurs), priorities can be specified 
in WHEN commands. Since there are seven 
different interrupt categories, there are 
seven priority levels. The commands be­
low: 

WHEN #1 GOSUB 6550&1 
WHEN #2 GOTO 7000&3 

Page 6- 2 

WHEN #6 GOTO 596&6 
WHEN #4 GOSUB 5000&7 
WHEN #3 GOSUB 7500&5 

will cause the priority of BASIC oper­
ations, from first to last, to be: 

TIMER 1 
REGISTER 1 
PRINTER 
MODEM 
TERMINAL 

Therefore if the interrupt routine 
caused by REGISTER 1 is executing (Priori­
ty 6), only a TIMER 1 interrupt (Priority 
7) could interrupt it. 

The detection of an interrupt can be 
stopped when necessary. For example, 
suppose a certain program will execute for 
two days or longer. Suppose, too, that we 
only want to perform a BASIC operation the 
first time a TIMER 1 interrupt occurs. By 
specifying: 

WHEN #4 END 

after the subroutine starting at line 5000 
has been completed, Comm-Stor will no 
longer check the TIMER 1 interrupt. It 
should be noted here that when a 
[CNTRL/T), a [CNTRL/S), or a [CNTRL/Q] is 
entered through the terminal port, it is 
considered a special character in this 
case. These characters will not be con­
sidered as a TERMINAL interrupt for the 
Real-Time Control System; they will be op­
erated on in their normal fashion, as de­
scribed in Chapter 2. 

2. THE TIMERS 

In order to use TIMER 1 or TlMER 2, 
Comm-Stor must first know the actual time. 
The SETIME command is used for this pur­
pose. When a specific time is recorded 
into Comm~Stor, it must be a character 
string (containing 6 numeric characters) 
and must be entered according to a 24-hour 
clock, where the last two digits represent 
seconds. Midnight is considered the 
"zero" hour and is denoted by "000000". 



For example, suppose it is 5 seconds 
past 2:18 P.M. We can enter. this actual 
time into Comm-Star by executing: 

SETIME #0 TO 11 141805" 

Suppose, too, that at 5: 00 P .M. and at 
10:15 P.M. we would like to perform some 
BASIC operations. We can enter these two 
times into Comm-Star by executing: 

SETIME 11 TO "170000" 
SETIME #2 TO "221500 11 

These two commands will enter 5: 00 P. M. 
into TIMER 1 and 10:15 P.M. into TIMER 2. 

After the TIMERs are established, the 
respective WHEN commands must be executed 
for this example by executing: 

WHEN #4 GOTO 5000 
WHEN 15 GOTO 6000 

a TIMER 1 interrupt will occur at 5: 00 
P .M., a TIMER 2 interrupt will occur at 
10:15 P.M., and the appropriate BASIC op­
erations will be executed. 

3. THE REGISTERS 

There are two hardware registers that 
may be used by the programmer in the Real­
Time Control System. To use these regis­
ters, the WATCH commands must be executed. 
The format for these commands is: 

WATCH { ~ } <address>, <val 1 > [ , <val 2>] 

The address signifies a location in 
memory which the programmer associates 
with a hardware register. Each location 
consists of one byte and contains 8 bi ts. 
Each bit represents a condition which can 
be detected by the programmer. The first 
value specified is called the "AND value" 
and the second value specified is called 
the "TEST value". (If the test value is 
not specified, it is assumed to be 0. ) 
Listed below are the values of the condi­
tions and the location and bit where each 
of them can be found. 

Comm-Stor IV 
PROGRAMMER MANUAL 

BIT LOCATIONS ON ONE BYTE 

I 1 1 6 1 5 1 4 1 3 1 2 1 1 I o 1 

Value Location .fil..i 

"Diskette READY" 
"Diskette 2 READY" 

READY = 0 
not READY = 1 

"Request to Send" line 
from the printer 

Asserted = 0 
not Asserted = 1 

"Sec. Request to Send" 
line from the printer 

Asserted = 0 
not Asserted = 1 

"Data Terminal Ready" 
line from the printer 

Asserted = 0 
not Asserted = 1 

"Clear to Send" line 
from the modem 

Asserted = 0 
not Asserted = 

"Data Set Ready" line 
from the modem 

Asserted = 0 
not Asserted = 

"Carrier Detect" line 
from the modem 

Asserted = 0 
not Asserted = 1 

"Secondary Carrier Detect" 
line from the modem 

Asserted = 0 
not Asserted = 1 

"Ring" line 
from the modem 

Asserted = 0 
not Asserted = 

16 6 
16 5 

9 2 

9 

9 0 

3 4 

3 3 

3 2 

3 

3 0 

Page 6- 3 



Comm-Star IV 
PROGRAMMER MANUAL 

Value Location Bit 

Binary Switch Setting 
Enter mode = 0 
Exit mode = 1 

"Request to Send" line 
from the terminal 

Asserted = O 
not Asserted = 

"Sec. Request to Send" 
from the terminal 

Asserted = O 
not Asserted = 1 

"Data Terminal Ready" 
from the terminal 

Asserted = O 
not Asserted = 1 

4 

1 2 

0 

This list is illustrated on the following 
page. 

Because all values are stored inter­
nally as binary values, the values speci­
fied in the WATCH commands should be deci­
mal values which represent the bit posi­
tions in the desired location. For ex­
ample, to detect a change in the binary 
switch setting, the AND value would be 16. 
This is because tnat condition is found in 
the 4th bit and 2 =16. (It should be not­
ed that the 8 bits in a byte are numbered 
0 through 7, from right to left.) Below 
is a sample program which uses REGISTER 1 
and the binary switch setting. 

100 WATCH1 1,16,16 
110 WHEN #6 GOSUB 150 
120 RTCS 1 
130 PRINT "PROGRAM IS IN PROGRESS" 
140 GOTO 130 
150 PRINT "THE BINARY SWITCH IS IN THE 
ENTER POSITION." 
160 PRINT "THE PROGRAM WILL NOT RESUME 
EXECUTION" 
170 PRINT "UNTIL IT IS RETURNED TO THE 
EXIT POSITION." 
180 WAIT 1, 16 
190 RETURN 

This program displays the message 
"PROGRAM IS IN PROGRESS" repeatedly. If 

Page 6- 4 

the binary switch is put into the ENTER 
position, another message will be dis­
played and the program will not continue 
until the switch is put back into the EXIT 
position. 

Line 100 sets up REGISTER 1, wher~ 
the location is 1, the AND value is 16 (2 
= 16) and the TEST value is 16. Assume 
location 1 contains the value of 63. This 
value is represented in binary code as 
001.11111. Notice that the fifth bit from 
the right (bit ://4) contains a 1 • There­
fore, the binary switch is in the EXIT po­
sition. When line 100 is executed, Comm­
Stor EXCLUSIVE OR 1 s this value with the 
test value. This can be illustrated by: 

00111111 
XOR 00010000 

00101111 

The result of this operation yields 
the value 47. Next, Comm-Star ANDs this 
result with the AND value, illustrated by: 

00101111 
AND 00010000 

00000000 

The result of this operation is equal 
to 0. Comm-Stor performs these operations 
every 16 milliseconds (if interrupts are 
enabled). If the final result is equal to 
zero, no interrupt will occur. Any non­
zero result produces a "true" condition 
and an interrupt will occur. Line 11 O 
tells Comm-Star to execute the subroutine 
starting at line 150 if a REGISTER 1 in­
terrupt occurs. Line 120 enables inter­
rupts. Lines 130 and 140 produce an in­
finite loop. (The only way this program 
can end is if a [CNTRL/T] is issued.) 
Lines 150 - 170 display a message that the 
binary switch was put into the ENTER posi­
tion. As this may cause problems in some 
applications, line 180 is used to delay 
execution of the program until the switch 
is put back into the EXIT position. 

If this program is running and the 
binary switch is moved to the ENTER posi­
tion, the fourth bit in location 1 is now 



DATA SET READY 
REQUEST TO SEND CLEAR TO SEND 

Comm-Sto:r IV 
PROGRAMMER MANUAL 

TERMINAL SEC. REQUEST TO SEND CARRIER DETECT MODEM 
LDATA TERMINAL READY SEC. CARRIER DETECT 

'--~~__,J rt_._~t~1_.___.-L-j-'l+~~~R~I=NG=--~~~J 
~ 

·PRINTER 
REQUEST TO SEND 
SEC. REQUEST TO SEND 
DATA TERMINAL READY 

Comm-St or 

FIGURE #6-1 

BINARY SWITCH 
DISKETTE 1 READY 
DISKETTE 2 READY 

Page 6- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

"turned off" (i.e. its value is 0). A 
sample decimal value containing a zero in 
this position might be 44,) which is 
001.Q. 1100 represented in binary mode. 
Comm-Stor will then perform: 

00101100 
XOR 00010000 

00111100 

and: 

00111100 
AND 000100QO 

00010000 

This produces the result of 16 (which is a 
nonzero quantity and an interrupt will oc­
cur). Program control will then be passed 
to the subroutine starting at line 150. 
The message will be displayed and Comm­
Stor will then execute the WAIT command. 
As mentioned on page 3-3, this command 
causes a BASIC program to delay execution 
until the specified location reaches an 
appropriate value. This is the major dif­
ference between the WAIT and WATCH com­
mands. Therefore, if the binary switch is 
still in the ENTER position, line 180 
causes Comm-Stor to perform: 

00101100 
XOR OQOOOOOO 

00101100 

and: 

Page 6- 6 

00101100 
AND OOQ1QOOO 

00000000 

This yields a value of zero and the pro­
gram will delay. lf the binary switch is 
returned to the EXIT position, location 1 
will again contain the value of 63 and 
Comm-Star will then perform: 

00111111 
XOR OOQOOOOQ 

00111111 

and: 

00111111 
AND 00010000 

00010000 

This produces a nonzero value and line 190 
will then be executed. 

The RETURN command causes the program 
to resume execution from the line at which 
it left off when the REGISTER 1 interrupt 
occurred. Therefore, control will be 
transferred to either line 130 or 140, 
which causes the infinite loop to resume. 



APPEND 

CHAPTER 7 

COMMAND DEFINITIONS 

All commands are described in this chapter 
and are accompanied by their respective 
formats where: <xxxx> = the description 
of the parameter, xxx = the actual (liter­
al) parameter, [xxx] = the parameter is 
optional, and {xxx} = either xxx or yyy. 

yyy 

APPEND 

Format: APPEND#<ref> 

where: ref = A file reference number 
(4-24) associated with a 
disk file which may be a 
numeric constant, numeric 
variable, or numeric ex­
pression. 

Purpose: 

To start the processing of a disk 
file immediately after the last character 
in the file. 

Description: 

When the APPEND command is executed, 
the pointer associated with the disk file 
(related to the specified file reference 
number) is positioned immediately to the 
right of the last character in the file. 
This allows new data to be added to exist­
ing data in a file. See Chapter 5, The 
File Manager, for a more detailed descrip­
tion of this command. 

Examples: 

1.) APPEND #4 Positions the point­
er associated with 
the disk file (re­
lated to file refer­
ence #4) immediately 
to the right of the 
last character in 
the file. 

Comm-Stor IV 
PROGRAMMER MANUAL 

ASSIGN 

2.) APPEND #I Same as example 1, 
except the file ref­
erence number is the 
value of I. 

3.) APPEND #(I+1) Same as examples 1 
and 2, except the 
file reference num­
ber is the value of 
I+1. 

ASSIGN 

Format: 

{ *<trk>, <sec> } 
ASSIGN #<ref>TO[(<drive>)] <file name> 

[,<char/rec>][,W][&<sec/buff>[,D]][;# ••• ] 

where: 

ref 

drive 

= A file reference number (4-24) 
which may be a numeric con­
stant or numeric variable. 

= 1 for the upper drive or 2 for 
the lower drive; if this op­
tion is not specified, it de­
faults to 1. 

file name = The name of a disk file which 
may be a character constant or 
a character variable. 

trk 

sec 

= A track on the diskette which 
may be a numeric constant or 
numeric variable. 

= A sector within the specified 
track on the diskette which 
may be a numeric constant or 
numeric variable. 

char/rec = The number of characters per 
record which may be a numeric 
constant, numeric variable, or 
numeric expression; if this 
option is not specified, it 
defaults to 128. 

Page 7- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

ASSIGN 

w = If the disk file is "Write 
Protected", no error will oc­
cur when outputting to the 
file. 

sec/buff = The number of sectors to be 
used with the file reference 
number which may be a numeric 
constant, numeric variable, or 
numeric expression; if this 
option is not specified, it 
defaults to 1 if File Buffer 
space has not been previously 
allocated for the file refer­
ence number. 

D = Double buffered. 

Purpose: 

To assign a disk file or a track and 
sector to a file reference number. 

Description: 

The ASSIGN command may operate two 
different ways, depending on how the con­
tents of the File Buffer have been alloca­
ted. 

Case 1 : Assume an OPEN command has only 
allocated space in the File Buffer for a 
file reference number, such as: 

OPEN #6 T0+&4,D 

(which reserves eight sectors, plus 35 
bytes for a file header in the File Buf­
fer) and the file reference number has 
been CLOSEd or RELEASEd. The File Buffer 
may be illustrated as follows: 

file 
reference 
number 
table 

Page 7- 2 

8 sectors 

FIGURE #7-1 

ASSIGN 

A subsequent ASSIGN command using the 
same file reference number will cause only 
certain parameters to be recorded into the 
corresponding file header. For example, 
if the following command is executed: 

ASSIGN 16 TO "TEST",W 

the File Buffer may now be illustrated as 
shown in Figure #7-2. 

16 
8 sectors ability to output 

to a write-pro-

1-#"'-'6'-'-"'""5 ,,_4__.__12..,...8__._t tecT file 

location (trtk) ~number of char­
and sector) of 
disk file "TEST" 

acters per 
record 

FIGURE #7-2 

If the "sec/buff" option had been 
specified in the ASSIGN command, an error 
would have occurred because File Buffer 
space had previously been allocated for 
file reference number 6. 

Case 2: Assume an OPEN command has allo­
cated space in the File Buffer for a file 
reference number and has also related a 
disk file to the file reference number, 
such as: 

OPEN 18 TO 11 DATA 11 ,40,W&7 

the File Buffer may be illustrated as 
follows: 

7 sectors 
119 

/18 12,3 40 w 

FIGURE 17-3 



ASSIGN 

As can be concluded from the above 
diagram, a subsequent ASSIGN command would 
cause an error to occur because the file 
reference number already has disk file 
parameters associated with it. Therefore, 
a CLOSE or RELEASE command must be execut­
ed prior to an ASSIGN command. 

If a CLOSE command is executed, the 
File Buffer can be illustrated as: 

#8 
7 sectors 

#9 

FIGURE 17-4 

The file header has been cleared of 
its contents and the pointer from the file 
reference number table is still directed 
to the file header. This signifies that 
this File Buffer is still associated with 
file reference number 8, but that the file 
reference number has been CLOSEd (deacti­
vating disk file "DATA".) 

An ASSIGN command using file refer­
ence number 8, such as: 

ASSIGN #8 TO "DATA2" 

may now be executed, causing the File Buf­
fer to appear as follows: 

7 sectors 

#8 10 5 128 

FIGURE 17-5 

Now assume a RELEASE command is exe­
cuted. The File Buffer now will appear as 
in Figure fi-6. 

~ 
~ 

931 bytes 

Comm-Stor IV 
PROGRAMMER MANUAL 

ASSIGN 

(7x128)+35 = 931 

FIGURE #7-6 

There are now 931 bytes not associ­
ated with any file reference number(s). A 
subsequent ASSIGN command will not only 
associate a portion of the diskette with 
the file reference number, but will also 
allocate space in the File Buffer for that 
reference number. For example, 

ASSIGN 11 TO 11 DATA2",W 

will cause the File Buffer to appear as 
shown below: 

1 sector 

16 
11 11 o , 5 l 128 I w 

11 

6 sectors 

FIGURE #7-7 

As there are six sectors of unused 
File Buffer space, another ASSIGN command, 
such as: 

ASSIGN #6 TO "TEST",80&3 

can be executed. The File Buffer will 
then appear like Figure # 7-8. 

Page 7- 3 



Comm-Ster IV 
PROGRAMMER MANUAL 

ASSIGN AUTO 

1 sector characters per record and the ability 

#7 10,5 128 w 
16 

11 3 sectors 

16 5,4 80 

349 bytes 

FIGURE 17-8 

When a track and sector are specified 
in this command, everything will be per­
formed as described above; however, a 
track and sector will be used instead of a 
disk file. ASSIGNing a track and sector 
to a file reference number gives the pro­
grammer the ability to access that track 
and sector through the end (Track 76, Sec­
tor 26) of the diskette. Please refer to 
Chapter 5 for a further description of 
this command. 

Examples: 

1.) ASSIGN #4 TO "TEST" 

Associates disk file "TEST" with file 
reference number 4 and uses 1 sector 
plus a file header in the File Buf­
fer. 

2.) ASSIGN #4 TO "TEST";#5 TO *1,3&4 

Same as example 1. It further asso­
ciates the third sector of track 1 
with file reference number 5 and uses 
four sectors plus a file header in 
the File Buffer. 

3.) ASSIGN #I TO (2) A$,50,W 

Associates the disk file on the lower 
drive, whose name is contained in A$, 
with the file reference number which 
is the value of I (specifying 50 

Page 7- 4 

to output to the disk file if it is 
Write Protected) and uses 1 sector 
plus a file header in the File Buf­
fer. 

4.) ASSIGN II TO (2) A$,50,W&5,D 

Same as example 4, except it uses 10 
sectors (5 sectors, double buffered) 
plus a file header in the File Buf­
fer. 

AUTO 

Format: AUTO [<line num>][,<inc>] 

where: 

Purpose: 

line num = the number of the 
first BASIC program 
line to be prompted; 
the default value is 
100. 

inc = the increment used 
for each successive 
line number; the de­
fault value is 10. 

To automatically prompt line numbers 
when entering a BASIC program from the 
terminal. 

Description: 

Entering AUTO and optionally a line 
number and/or increment, will cause the 
line number specified to be displayed. A 
BASIC program line may then be entered. 
Entering a [CNTRL/X) (Line Delete charac­
ter) will cause the current line to be 
deleted and its line number to be redis­
played. Upon entering the [RETURN] char­
acter, another line number will be dis­
played. This line number will be equal to 
the previous line number plus the speci­
fied increment. This will continue until 
the [RETURN] character is entered immedi­
ately after a supplied line number. Both 
the line number and the increment must be 



AUTO 

positive integers when the AUTO command is 
issued. 

AUTO 

Examples: 

1 . ) AUTO Start with line 100, in-
crement by 10. 

2. ) AUTO 40 Start with line 40' inc re-
ment by 10. 

3.) AUTO 25, 1 Start with line 25, inc re-
ment by 1. 

4.) AUTO ,5 Start with line 100, in-
crement by 5. 

BYE 

Format: BYE 

Purpose: 

To exit the BASIC mode and return to 
Comm-Stor mode. 

Description: 

The BYE command will cause Comm-Ster 
to exit the BASIC mode and enter the Comm­
Stor mode without clearing the entire User 
Memory Space. This means that: 

1.) A BASIC program currently resident in 
memory will be left intact and may be 
RUN without reloading. 

2.) Variable and File Space will not be 
cleared. 

3.) Data currently residing in the Termi­
nal or Modem Buffer will be cleared. 

If TRACE is active when BYE is is­
sued, it will not be automatically re­
stored when the BASIC mode is re-entered 
(via .BA). 

Example: BYE 

CALL 

Comm-Stor IV 
PROGRAMMER MANUAL 

CALL 

Format: CALL [(<drive>)] <file name> 

where: 

Purpose: 

drive = 1 for the upper 
drive or 2 for the 
lower drive; if this 
option is not speci­
fied, it will default 
to 1. 

file name = The name of a BASIC 
program saved in 
packed format which 
may be a character 
constant, character 
variable, or charac­
ter expression. 

To cause the loading and execution of 
a BASlC program, with the ability to re­
store and continue the BASIC program which 
requested the CALL. 

Description: 

This command, when issued from a 
BASIC program saved in packed format, 
causes Comm-Stor to LINK to the specified 
file (i.e. the file is loaded into the 
Program Text Buffer and executed without 
clearing the BASIC Work Space or the Fixed 
Space. ) A RETURN command is used to re­
turn to the program that issued the CALL. 
That program will be restored (transferred 
from disk back into the Program Text Buf­
fer) and execution will resume following 
the CALL command. 

A CALLed program may, in turn, CALL 
another program. The number of CALLs that 
may be executed in this manner is limited 
only by the depth of the stack. Since 
only one program is resident in memory at 
one time, programs written to be CALLed 
(usually subroutines) may have line num­
bers that are the same as those in the 
program which issued the CALL without re­
sulting in duplicate line numbers. 

Page 7- 5 



Comm-Ster IV 
PROGRAMMER MANUAL 

CALL 

Variables are treated "globally". 
That is, variables created by a program 
will remain intact when another program is 
CALLed and may be freely used by the 
CALLed program. Similarly, variables cre­
ated by the CALLed program will remain in­
tact when the program RETURNs to the pro­
gram which issued the CALL. After a CALL 
(and also after a RETURN) is executed, all 
user-defined functions and pending IF ER­
ROR# commands are cleared. 

It should be noted that if a CLEAR 
operation is performed within a CALLed 
program, an "ERROR - RG" will occur (be­
cause the stack is cleared) when the RE­
TURN command is executed. 

Examples: 

1.) CALL "SUB3" 

CAL Ls the file "SUB3 11 • 

2.) CALL A$ 

CALLs the file whose name is con­
tained in A$. 

3.) CALL (2) LEFT$ (A$,5) 

CALLS the program located on the 
lower drive, whose file name is the 
first 5 characters in A$. 

CLEAR 

Format: CLEAR [#<ref>] 

where: ref = a port reference number 
(0-3) as follows: 

Page 7- 6 

0 - invoker 
1 - terminal 
2 - modem 
3 - printer 

CLEAR 

Purpose: 

To clear BASIC Work Space, or the 
Terminal or Modem or Printer Buffer. 

Description: 

The CLEAR command without an argument 
will clear the contents of BASIC Work 
Space leaving the BASIC program, the con­
tents of the Terminal, Modem, Printer and 
the Object Buffers intact. The CLEAR com­
mand may also be used to clear only the 
Terminal Buffer, or Modem Buffer, or 
Printer Buffer by specifying the appropri­
ate reference number. The Invoker Buffer 
(Invoker is the port that issued the .BA 
command) may be cleared by specifying re­
ference number 0. 

Note: A CLEAR command is executed inter­
nally when: 

1.) A BASIC line is added, deleted 
or edited, 

2.) A RUN is executed, 

3.) An OPEN #2 (Modem) is execu­
ted. 

Examples: 

1.) CLEAR Clear BASIC Work Space 

2.) CLEAR #1 Clear Terminal Buffer 

3.) CLEAR #I Clear the buff er whose 
port reference number is 
the value of I. 

Figure #7-9 reveals the changes that 
occur in User Memory after a CLEAR command 
is executed. 



CLEAR 

USER MEMORY SPACE 

BEFORE AFTER 

Modem Buffer Modem Buffer 

File Buffer 

String Buffer 
Free Space 

Free Space Buffer 
Buff er 

Array and Variable 
Buffer 

Program Text Program Text 
Buffer Buff er 

Terminal Buffer Terminal Buffer 

Ob_1ect Buffer Object Buffer 

FIGURE #7-9 

CLEA RV 

Format: CLEARY 

Purpose: 

To clear Variable Space. 

Description: 

The CLEARV command results in the 
clearing of all variables, arrays, and 
strings. This leaves the Modem, Terminal, 
Object, File, and Program Text Buffers in­
tact. Figure 117-10 indicates the changes 
that occur in User Memory after a CLEARV 
command is executed. 

Example: CLEARV 

Comm-Star IV 
PROGRAMMER MANUAL 

CLOSE 

USER MEMORY SPACE 

BEFORE AFTER 

Modem Buffer Modem Buffer 

File Buffer File Buffer 

String Buffer 
Free Space 

Free Space Buffer 
Buffer 

Array & Variable 
Buff er 

Program Program 
Text Text 
Buffer Buffer 

Terminal Buffer Terminal Buffer 

Object Buffer Object Buffer 

FIGURE #7-10 

CLOSE 

Format: CLOSE [l<ref>[,T][;# .•. ]] 

where: 

Purpose: 

ref = A file reference number 
(4-24) associated with a 
disk file which may be a 
numeric constant or numeric 
variable. 

T = Truncate 

To deactivate a file previously used 
in an OPEN or ASSIGN command. 

Page 7- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

CLOSE 

Description: 

Issuing a CLOSE command causes Comm­
Stor to deactivate a disk file (referenced 
by an OPEN or ASSIGN command) from a BASIC 
program. If a CLOSE alone is issued, all 
active files will be automatically deacti­
vated. If a reference number is specified 
in the command, only the file associated 
with that reference number will be CLOSEd. 

When a CLOSE is executed, the buffer 
size specified in the OPEN or ASSIGN com­
mand will still be associated with the 
file reference number(s). That same ref­
erence number may be ASSIGNed further on 
in the program with no specified buffer 
size (the buffer size will be the same as 
the originally OPENed size). 

If a "T" is specified in the CLOSE 
command, any unused sectors within the 
file ( s) will be released for further file 
space on the diskette. This will happen 
immediately if the file is the last direc­
tory entry on the disk. If it is not, the 
file will be truncated when a Comm-Stor 
SQUISH (.SQ) command is executed. 

Examples: 

1.) CLOSE 

2.) CLOSE #4 

CLOSEs all files that 
are open. 

CLOSEs file reference 
number 4. 

3,) CLOSE #4;#5;#I CLOSEs file reference 
numbers 4,5, and the 
value of I. 

4.) CLOSE #4,T;#5 CLOSEs file reference 
numbers 4 and 5 and 
truncates any unused 
sectors in the disk 
file which were asso­
ciated with reference 
number 4. 

Page 7- 8 

CLOSE 

EXAMPLE OF FILE BUFFER ALLOCATION 

OPEN #4 TO "ABC 11 &10;#7 TO 11 DEF 11 &8 

1280 bytes (10 sectors) 

Reference #4 ____... 
Number 
Table 115 , ABC (35 bytes) 

1024 bytes (8 sectors) 

DEF (35 bytes) 

CLOSE #4 

:: 111280 bytes 

#6 (35 bytes) 

tn 1.-j 1024 bytes 

DEF (35 b_ytes) 

ASSIGN #4 TO "XYZ" 

f/4 

f/5 

f/6 
1280 bytes 

XYZ (35 b tes) 

1024 bytes 

DEF (35 bytes) 

FIGURE 17-11 



CLOSE 

Sample Program: 

10 CREATE "SAM",128 
20 OPEN 14 TO "SAM" 
30 PRINT 14;"THIS IS IT" 
40 CLOSE 14 
50 END 

Line 10 CREATEs a disk file called 
"SAM" which is one sector long. The file 
"SAM" is related to file reference number 
4 in line 20 and one sector plus 35 bytes 
are reserved in the File Buffer for refer­
ence number 4. Line 30 causes the charac­
ters "THIS IS IT" to be written to file 
"SAM" (through reference number 4). "SAM" 
is then CLOSEd (or deactivated) in line 
40. 

COM 

Format: 

COM [#<ref>[&#<ref>[&# •. ]];]<command> 

where: ref = a number between 0 and 24 
representing the destination 
(port or disk file) of any 
output data generated by the 
Comm-Star command being is­
sued. 

Ref Destination 

0 lnvoker (the port which is­
sued the command to cause 
Comm-Star to enter the BASIC 
mode). If the invoker is the 
Comm-Star User Command Table, 
the output will be directed 
to the terminal. 

Terminal 

2 Modem 

3 Printer 

4-24 Diskette File (only one per 
command) 

Comm-Stor IV 
PROGRAMMER MANUAL 

COM 

command = any valid Comm-Star command, 
except .BA or .AL, which may 
be a character constant, 
character variable or char­
acter expression. 

Purpose: 

To execute Comm-Star commands while 
in BASIC mode. 

Description: 

Any Comm-Stor command, except .BA or 
.AL, may be issued under BASIC control. 
Output generated as a result of the com­
mand may be directed to one or more ports, 
and/ or to a diskette file. lf more than 
one reference number is specified, only 
one may be assigned to a diskette file. 
For example, COM #4&#5 is illegal. (Note 
that it will not be flagged as an error, 
the right-most reference specified will be 
used, in this case, #5.) 

Examples: 

1.) COM11 .DS" 

Issues the Comm-Star command to Dis­
play Status. 

2.) COM D$ 

Issues the Comm-Star command which is 
contained in the string D$. 

3.) COM #3;".DS" 

Issues the Comm-Star command to Dis­
play Status on the printer. 

4.) COM #3&#4; 11 .DS" 

Issues the Comm-Star command to Dis­
play Status on the printer and store 
it in the file associated with file 
reference number 4. 

Page 7- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

COM 

5.) COM #0;".DD *" 
Output entire directory to the port 
that commanded Comm-Stor to enter 
the BASIC mode (invoker). 

CONT 

Format: CONT 

Purpose: 

To continue execution of a program 
previously interrupted by a STOP command 
or a [CNTRL/T]. 

Description: 

'!'he CONT command, issued after a STOP 
command has been executed or after a 
[CNTRL/T] has been issued, will cause the 
program to resume execution starting at 
the line following the last line that was 
executed. The CONT command may not be 
used after: 

1. a line is entered to modify the pro-
gram, 

2. a NEW command is executed, 

3. a CLEAR command is executed, 

4. a LOAD, MERGE, PRESS, or LINK command 
is executed, 

5. an OPEN IF2 is executed. 

Entering a CONT command under any of 
the above conditions will cause an "ERROR 
- CN" to occur. 

Example: CONT 

CREATE 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; if the option 
is not specified, it 
defaults to 1. 

Purpose: 

file name = The name of a disk 
file which may be a 
string literal or var­
iable. 

char/file = The number of charac­
ters per file which 
will be rounded to the 
next multiple of 128 
(sector). (i.e., 115 
= 128 characters ( 1 
sector), 258 = 384 
characters (3 sec­
tors). 

M = The maximum space 
available. 

To create a Directory entry (disk 
file) and allocate disk space to it. 

Description: 

On execution of the CREATE command, a 
directory entry is set up for the given 
file name with the specified amount of 
disk space being allocated to that file. 
If the "char/file" of "M" parameter is 
omitted, the amount of space allocated 
will be set to the "average file size" 
(described on page 1-5). Specifying "M" 
will result in allocating the largest con­
tinuous area of diskette space to that 
file. 

The following is a list of potential 
error situations that may occur when a 

CREATE CREATE command is issued. 

Format: 

CREATE[(<drive>)]<file name>[,{M }] 
<char/file> 

[;[(<drive>)] ••• ] 

Page 7- 10 



CREATE 

Error Description 

BD (BAD DRIVE "NUMBER) If "Drive #11 is 
not 1,2 or a space 

NO ROOM Not enough room 
for the Directory 
entry's disk space 

DE (DUPLICATE ENTRY) A file with the 
specified name al­
ready exists 

Examples: 

1.) CREATE "SAM" 

Create a Directory entry named SAM on 
drive 1. The "average file length 11 

is the amount of disk space allocated 
to it. 

2.) CREATE (2) "BOBBY,500 

Create a Directory entry named BOBBY 
on drive 1 allocating 512 bytes 
(128*4) or four sectors of disk space 
to it. 

3.) CREATE "TEST",M 

Create a Directory entry named TEST 
on drive 1. The largest available 
contiguous diskette space is allocat­
ed to it. 

4.) CREATE (2) 11DATA",100;A$,600 

Create a Directory entry named DATA 
on drive 2 allocating 128 bytes of 
disk space. Create a Directory entry 
named by the string A$ on drive 1 al­
locating 640 bytes of disk space. 

DATA 

Format: DATA <val>[,<val>[, ••• ]] 

where: val = A numeric or character 
constant. 

Comm-Stor IV 
PROGRAMMER MANUAL 

DATA 

Purpose: To prepare data for READ com­
mands. 

Description: 

When the first READ command in a pro­
gram is executed, an internal data pointer 
is associated with the first value in the 
first DATA command. (DATA commands may be 
placed anywhere in a program.) This first 
value is assigned to the variable speci­
fied in the READ command; the pointer then 
moves to the next value in the DATA com­
mand. 

If all DATA commands in a program 
have been accessed and another READ com­
mand is executed, an "ERROR - OD" will 
occur unless a RESTORE command has been 
executed prior to the READ. 

A comma terminates a data item, ex­
cept when the comma is enclosed within 
quotation marks. Quotes are needed only 
for character data items when the char­
acter string contains commas, colons, or 
leading or trailing spaces. 

If a numeric variable is specified in 
a READ command and the internal data 
pointer corresponds with a character con­
stant, an "ERROR - TM" will occur in the 
line number of the DATA command. 

Examples: 

1.) DATA 1 

2.) DATA A 

3,) DATA "C,2 11 

= Provides the value 
1 for a READ com­
mand. 

= Provides the charac­
ter "A" for a READ 
command. 

= Provides the charac­
ters "C,2 11 for a 
READ command. 

4.) DATA 1,A,"C,211 =Provides the value 
1, the character 
"A", and the charac­
ters "C,2 11 for a 
READ command. 

Page 7- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

DEF 

DEF 

Format: DEF FN<name>[(<arg>)]=<num exp> 

where: name = Any numeric variable 
name joined to the char­
acters "FN" to form the 
name of the function. 

arg = The argument of the 
function which may be a 
numeric variable name. 

num exp = A numeric expression. 

DEL 

Examples: 

1 . ) DEF FNA=X+ 1 

Defines a user function whose name 
is FNA which is equal to the program 
variable, X plus one. 

2.) DEF FNB3(Y):Y/2 

Defines a user function, whose name 
is FNB3 which is equal to the value 
passed to the function divided by 
two. 

Purpose: 3.) DEF FNX:FNB3 (Aj)+X 

To define a user-written numeric 
function. 

Description: 

The DEF command must be executed 
prior to any reference to the function 
name. The DEF command allows the program­
mer to define functional expressions simi­
lar to COS(X) or INT(X). 

An argument is not required in the 
DEF command, but if one is specified, its 
value will be set equal to the value 
passed to the function. Additionally, the 
argument is a dummy variable. The argu­
ment may have the same name as a numeric 
variable used in the program, but the two 
are not considered to be the same varia­
ble. The numeric expression is one which 
contains the argument but may also contain 
program variables, arithmetic functions 
and other user-defined functions. It may 
not, however, contain a reference to its 
own function either directly or indirect­
ly. 

If' an argument is not specified in 
the DEF command, all variables used in the 
user-defined function will be regular pro­
gram variables. 

A user-defined function may appear in 
any command containing a numeric expres­
sion. 

Page 7- 12 

DEL 

Defines a user function, whose name 
is FNX which is equal to X plus the 
result of FNB3 {Aj). 

Format: DEL<range> 

where: range = A range of line numbers 
as described in the LIST 
command. 

Purpose: 

To delete a range of lines from a 
BASIC program. 

Description: 

When this command is executed, only 
those BASIC program lines whose line num­
bers are included in the range will be 
deleted from the Program Text Buffer. The 
following conditions apply: 

2. 

Specifying only one line number will 
delete only that line number and the 
corresponding line from the program. 

If only one line number is specified 
and a hyphen precedes it, only those 
line numbers (and their corresponding 
lines) greater than the one specified 
will remain in memory. 



DEL 

3. 

4. 

5. 

If only one line number is specified 
and a hyphen follows it, only those 
line numbers (and their corresponding 
lines) less than the one specified 
will remain in memory. 

If two line numbers are specified 
(separated by a hyphen), the first 
one must be less than or equal to the 
second one and all line numbers (and 
their corresponding lines) greater 
than or equal to the first one and 
less than or equal to the second one 
will be deleted from memory. 

If no line numbers in the program are 
included in the specified range, 
Comm-Stor will return to an idle 
state. 

Examples: 

1.) DEL 20 Deletes line 10 from the 
current program. 

2.) DEL 10-50 Deletes line 10 through 50 
in the current program. 

3.) DEL - 100 Deletes the first line 
through line 100 of the 
current program. 

Description: 

Comm-Stor IV 
PROGRAMMER MANUAL 

DIM+ 

When this command is executed, memory 
space is allocated in the Array and Varia­
ble Buffer for the entire array and each 
element is initialized to zero (or null 
strings for character arrays). A total of 
255 dimensions. are allowed for an array, 
providing each dimension is not greater 
than 32767 and there is sufficient User 
Memory Space to accommodate the array. 

After an array has been dimensioned, 
it cannot be redimensioned or an "ERROR -
DD" will occur unless an ERASE command (or 
a CLEAR or CLEARV operation) is executed. 

Examples: 

1.) DIM A$(2) 

Dimensions the character array, A$, 
to have three elements: A$(0), 
A$( 1), and A$(2). 

2.) DIM A3(K),D$(20,40,60) 

Dimensions the numeric array, A3, to 
have K+1 elements and the character 
array, D$, to have elements: 
D$(0,0,0),D$(1,0,0), ... ,D$(19,40,60), 
and D$(20,40,60). 

DIM 3.) DIM A3(B(N ,J), I-2) 

Format: DIM<array name>(<rows>[,<columns> Dimensions numeric array A3 to have 
(I-2)+1 columns and the number of 

[, ... ]])[,<array name> ..• ] rows equals the value of the array 
element (B(N,J))+1. 

where: array name = Any valid variable 
name. 

Purpose: 

rows = The number of rows in 

columns 

the array. 

= The number of columns 
in the array. 

To allocate space in memory for an 
array. 

DIM+ 

Format: 

DIM #<ref> TO 
{<num array> 

<char array> 

(<rows>[,<cols>[, .•. ]]) } 
(<rows>[,<cols>[, ••. ]]) [=<num exp>] 

[, ..• ][;ft ... ] 

Page 7- 13 



Comm-Stor IV 
PROGRAMMER MANUAL 

DIM# 

where: ref = 

num array = 

char array = 

rows = 

cols = 

A file reference num-
ber (4-24) associated 
with a disk file and 
the specified ar-
ray(s) which may be a 
numeric constant, nu-
meric variable or nu-
meric expression. 

A numeric variable 
name. 

A character variable 
name. 

The number of rows in 
the array. 

The number of columns 
in the array. 

EDIT 

will cause Comm-Stor to associate 50 char­
acters in the disk file associated with 
file reference number 4 with each element 
of virtual array A$. 

The virtual array(s) will be associ­
ated with the specified file reference 
number unless an ERASE command (or a CLEAR 
or a CLEARV operation) is executed. 

Refer to Chapter 5 for a more de­
tailed description of virtual arrays. 

Examples: 

1.) DIM #6 TO A3(6) 

Dimensions the numeric virtual array 
A3 (to have 7 elements) and obtains 
the values for these elements from 
the disk file associated with refer-

num exp = A numeric expression. ence number 6. 

Purpose: 

To associate a virtual array with a 
file reference number. 

Description: 

When this command is executed, the 
size of the virtual array(s) is stored in 
memory 1 but the contents of the array(s) 
are not. The values for the array(s) are 
obtained when the file reference number is 
associated with a disk file. A reference 
to an element of an array causes Comm-Stor 
to obtain the corresponding value from the 
disk file. When an element of a virtual 
array is changed, Comm-Stor automatically 
changes the corresponding value in the 
disk file. 

If a character array is specified in 
this command, Comm-Stor will automatically 
associate 32 characters in the disk file 
with each element of the array. If this 
DIM# is not desired, the programmer can 
specify the length of each element. For 
example, 

DIM#4 TO A$(25)=50 

Page 7- 14 

2.) DIM II TO A3(A(N)) 

Dimensions the numeric virtual array 
A3 (to have the value of the array 
element A(N) plus 1 elements) and ob­
tains the values for these elements 
from the disk file associated with 
the reference number whose value is 
I. 

3.) DIM II TO A3(A(N));D$(9) 

Same as example #2, but also di­
mensions character array D$ to have 
10 elements. 

4.) DIM #ITO A3(A(N));D$(9);#9TO 
A$(2),B3(7) 

EDIT 

Same as example #3, but also dimen­
sions virtual arrays A$ and B3 whose 
elements are obtained from the disk 
file associated with reference number 
9, 

Format: EDIT [<range>] 



EDIT 

where: range = A range of line numbers 
as described in the LIST 
command. 

Examples: 

1.) EDIT 

Comm-Stor IV 
PROGRAMMER MANUAL 

EDIT 

Purpose: Starts the edit of all lines in the 
Program Text Buffer. 

To alter BASIC program lines which 
reside in the Program Text Buffer. 2.) EDIT 10-

Description: 

Upon issuing the EDIT command, the 
first line that is included in the range 
will be displayed. At this time, any op­
tions listed in Table #7-1 may be entered 
from the terminal device. 

Starts the edit for all lines (whose 
line numbers are equal to or greater 
than 10) in the Program Text Buffer. 

3.) EDIT-100 

If a character was entered but does 
not exist in the line, the line will re­
main unchanged. The EDIT for the next 
line in the range will then be started or, 
if there are no more lines in the range, 
Comm-Stor will return to an idle state. 
If the character does exist, the left-most 
portion of the line (up to and including 
the character) will be displayed and any 
options listed in Table #7-2 may be en­
tered. 

Starts the edit for the lines in the 
Program Text Buffer, beginning with 
the first line through line 100. 

Operation 

[RETURN] 

[CNTRL/T] 

any character 

4.) EDIT 100-150 

Starts the edit for lines 100 through 
150, residing in the Program Text 
Buffer. 

Description 

causes the current line to 
remain unchanged and will 
start the EDIT for the 
next line. 

causes the line to remain 
unchanged and will return 
Comm-Stor to an idle 
state. 

causes Comm-Stor to search 
for the first occurrence 
of that character. 

TABLE 17-1 

Page 7- 15 



Comm-Stor IV 
PROGRAMMER MANUAL 

Operation 

[RETURN] 

[CNTRL/I] 

[CNTRL/Y] 

[ESC) 

Description 

causes the remainder of 
the current line to be 
deleted, completing the 
EDIT for that line. 

causes Comm-Stor to search 
for the next occurrence of 
that character. lf anoth­
er occurrence does not ex­
ist, the EDIT for that 
line will be complete. If 
the character does exist, 
any options in this table 
may again be entered. 

allows the SEARCH charac­
ter to be changed to the 
next character typed after 
a [CNTRL/Y] is entered. 

causes the next character 
in the line to be dis­
played and any option in 
this table may again be 
entered. If another char­
acter does not exist in 
the line, the EDIT for 
that line will be com­
plete. 

Operation 

[CNTRL/T] 

[DEL] 

[CNTRL/X] 

any 
character(s) 

TABLE 17-2 

Page 7- 16 

Description 

causes the line to remain 
unchanged and returns 
Comm-Stor to an idle 
state. 

causes the last displayed 
character to be deleted 
from the line and any op­
tions listed in this table 
may now be entered. 

causes the EDIT for that 
line to be started again, 
at which time any options 
listed in Table 117-1 may 
be entered. 

causes the character(s) to 
be inserted to the right 
of the last character dis­
played and any options 
listed in this table may 
now be entered. 



END 

Format: END 

Purpose: 

To terminate the execution of a BASIC 
program. 

Description: 

When an END command is executed, the 
program currently being executed is ter­
minated. The program and variables will 
still reside in the Program Text Buffer 
and Variable Space and may be modified 
and/or re-executed. Additionally, any 
active files are automatically closed by 
Comm-Stor; the system will then return to 
the Direct Mode. 

An END command is optional. Normal­
ly, when the highest numbered BASIC pro­
gram line is executed, the program will 
automatically terminate in the manner de­
scribed above. 

Example: 550 END 

ERASE 

Format: ERASE<array list> 

where: 

Purpose: 

array list = A list of array 
names separated by commas. 

To delete an array from the Array and 
Variable Buffer. 

Description: 

Upon execution of the ERASE command, 
each specified array will no longer exist. 
This allows the programmer to use the 
available room in memory for creating ad­
ditional arrays or for creating a larger 
Free Space Buffer size. 

Example: 

1.) ERASE A3 Erases array A3. 

Comm-Stor IV 
PROGRAMMER MANUAL 

FOR ... TO 

2.) ERASE A3,A$,BB Erases arrays A3, A$, 
and BB. 

FOR ... TO 

Format: 

FOR<control var>=<init val>TO<final val> 

[STEP<inc>] 

where: control var = The control variable 
for the loop; it may 
be any numeric vari­
able. 

Purpose: 

init val = A numeric constant, 

final var 

inc 

numeric variable, or 
numeric expression 
whose value initial­
izes the control 
variable. 

= A numeric constant, 
numeric variable, or 
numeric expression 
whose value termi­
nates the loop when 
exceeded by the val­
ue of the control 
variable. 

= A numeric constant, 
numeric variable, or 
numeric expression 
whose value is the 
increment (positive 
or negative) for the 
control variable 
when a NEXT command 
is executed; de­
faults to 1 if this 
option is omitted. 

To allow repetition of a sequence of 
BASIC program lines. 

Page 7- 17 



Comm-Stor IV 
PROGRAMMER MANUAL 

FOR ... TO 

Description: 

When this command is executed, the 
control variable is set equal to the ini­
tial value. lt is then checked to see if 
it has exceeded the value of the final 
value. If it has, program control will be 
transferred to the line following the cor­
responding NEXT command. If the control 
variable has not exceeded the value of the 
final value, the BASIC lines following the 
FOR .•. TO command will be executed until 
the corresponding NEXT command is encount­
ered. The NEXT command causes the control 
variable to be incremented by the value of 
the specified increment. The control var­
iable is then checked against the final 
value. If it has exceeded the final val­
ue, program control will be transferred to 
the BASIC line following the NEXT command. 
If it has not exceeded the final value, 
control will then be transferred to the 
line following the FOR •.• TO command. 

FOR/NEXT loops can be nested. That 
is, a loop can contain another loop. 
Nesting may occur up to the depth of the 
stack (approximately 14 deep) • The 
following is an example of three-deep 
nesting: 

.---- 50 FOR I= 1 TO 10 STEP 2 

90 FOR J:l TO 6 

[
13~ FOR K=A TO B STEP A/B 

170 NEXT K 

200 NEXT J 

...__ __ 250 NEXT I 

Page 7- 18 

The following loops are illegal: 

10 FOR I=1 TO 5 

50 FOR J=A TO B 

100 NEXT I 
110 NEXT J 

If a control variable is not speci­
fied in a NEXT command, it is assumed to 
be the control variable of the last exe­
cuted FOR ... TO command. If a control var­
iable is specified, the system will search 
for the corresponding FOR •.• TO command and 
execute that FOR/NEXT loop. 

The value of the control variable may 
be changed within a loop. All other para­
meters, however, are set after the 
FOR ••. TO command is executed and cannot be 
modified. 

Control may be transferred out of a 
loop. ln such a case, care should be 
taken when returning to the loop that the 
FOR ..• TO command is not re-executed. 

Examples: 

1.) FOR I=l TO 5 

Specifies a loop that is dependent on 
I, whose initial value is 1 and whose 
final value is 5, using 1 as the in­
crement value. 

2.) FOR I=1 TO 5 STEP 2.5 

Same as the above example, except 2.5 
is the increment value. 

3.) FOR I=A TO B STEP C 

Specifies a loop to be dependent on 
I, whose initial value is the value 
of A and whose final value is the 
value of B, using the value of C as 
the increment value. 



FOR ... TO 

4.) FOR I:A{N) TO C/5 STEP H+1 

Specifies a loop to be dependent on 
I, whose initial value is the value 
of the array element A(N) and whose 
final value is the value of C divided 
by 5, using the value of H +1 as the 
increment value. 

5.) FOR I=5 TO 4 

As the final value is less than the 
initial value, control will be trans­
ferred to the statement after the 
corresponding NEXT statement. 

GOSUB 

Format: GOSUB<line num> 

where: line num = A line number in a 
BASIC program. 

Purpose: 

To transfer program control to a 
subroutine starting at the specified line 
number. 

Description: 

When a GOSUB command is executed, 
control is transferred to the subroutine 
starting at the specified line number. 
(The subroutine may contain more than one 
RETURN command. However, when a RETURN is 
executed, control is transferred back to 
the line following the GOSUB command.) 
Nesting is permitted (i.e. a subroutine 
may be called from another subroutine). 
After each GOSUB is executed, the line 
number to which program control is to be 
returned is placed on the stack. When RE­
TURN commands are encountered, the last 
line number placed on the stack is the 
first one to which control is transferred 
and cleared from the stack. If a RETURN 
command is executed and the stack is 
empty, an "ERROR - RG" will occur. 

Comm-Stor IV 
PROGRAMMER MANUAL 

IF END # ••• 

If the specified line number does not 
exist in the program, an "ERROR - US" will 
occur. 

Examples: 

1.) GOSUB 500 Transfers program control 
to the subroutine start­
ing at line number 500. 

GOTO 

Format: GOTO<line num> 

where: 

Purpose: 

line. num = A line number in a 
BASIC program. 

To transfer program control to a 
specific line in a program. 

Description: 

When this command is executed, pro­
gram control is transferred to the line 
corresponding to the specified line num­
ber. If the line number does not exist in 
the program, an "ERROR - US" will occur. 

Examples: 

1.) GOTO 500 Transfers program control 
to line number 500. 

IF END # ••• 

Format: 

where: 

{ <line num>} 
IF END#<ref>GOTO END 

ref = A file reference num­
ber (4-24); may be a 
numeric constant or 
numeric variable. 

line num = A line number in a 
BASIC program, which 
may be a numeric con­
stant or a numeric 
variable. 

Page 7- 19 



Comm-Stor IV 
PROGRAMMER MANUAL 

IF END + ... 

END 

Purpose: 

= Terminates the program 
detection of the end 
of file condition. 

To transfer program control to a spe­
cified line number when an end of file 
condition occurs. 

Description: 

This command must be executed prior 
to the detection of the end of file con­
dition. If the end of a disk file asso­
ciated with the specified file reference 
number is reached, program control will be 
transferred to the specified line number. 
If END is specified in this command, the 
program detection of the end of file con­
dition will be terminated. 

Examples: 

1.) IF END #4 GOTO 500 

If the end of the disk file associ­
ated with file reference number 4 
is reached, program control will be 
transferred to line number 500. 

2.) IF END #I GOTO 60 

If the end of the disk file associ­
ated with the file reference number, 
which is the value of I, is reached, 
control will be transferred to line 
number 60. 

3.) IF END #4 GOTO J 

If the end of the disk file associ­
ated with the file reference number 4 
is reached, program control will be 
contained in line number J. 

IF ·ERROR + ... 

Format: 
{<line num>} 

IF ERROR#<code>GOTO END 

Page 7- 20 

IF ERROR + •.. 

where: code = The number related to 
an error condition 
(see Appendix G) which 
may be a numeric con­
stant or numeric vari­
able. 

line num = A line number in a BA­
SIC program which may 
be a numeric constant 
or a numeric variable. 

END = Terminates the program 
detection of the spe­
cified error condi­
tion. 

Purpose: 

To transfer program control to a spe­
cific line number when a particular error 
condition is detected. 

Description: 

This command must be executed prior 
to the detection of the specified error 
condition. When this command is used, 
program control will be transferred to the 
specified line number when the error con­
dition is detected. This will happen any 
time the error occurs, unless END is spec­
ified in another IF ERROR /I command. 
Specifying END instead of a line number 
terminates program detection and control 
of the error condition. 

Examples: 

1.) IF ERROR #8 GOTO 600 

2.) 

If an "ERROR - NO FIND" occurs, pro­
gram control will be transferred to 
line number 600. 

IF ERROR #8 GOTO END 

Terminates program detection and con­
trol of an "ERROR - NO FIND". 



IF ERROR+ ... 

3.) IF ERROR #I GOTO T 

If an error occurs whose "code" is 
the value of I, program control will 
be transferred to the line number 
whose value is T. 

IF ••. GOTO 

Format: IF <rel exp>GOTO<line num> 

where: rel exp = A relational ex pres-
sion. 

line num = A line number in a BA-
SIC program. 

Purpose: 

To transfer program control based on 
the evaluation of a relational expression. 

Description: 

Upon execution of the IF ... GOTO com­
mand, the relational expression is evalu­
ated. If the result is true, program con­
trol will be transferred to the specified 
line number. lf the result is false, con­
trol is passed to the next line following 
the lF ... GOTO command. If the specified 
line number does not exist in the program, 
an "ERROR - US" will occur. 

Examples: 

1.) IF A=B GOTO 500 

If the value of A and B are equal, 
program control will be transferred 
to line number 500. 

2.) IF LEFT$(A$,1)="*" GOTO 100 

If an asterisk is the left-most char­
acter in A$, program control will be 
transferred to line number 100. 

Comm-Stor IV 
PROGRAMMER MANUAL 

IF ••• THEN 

3.) IF A>K+2 GOTO 10 

4.) 

If the value of A is greater than the 
value of K plus 2, program control 
will be transferred to line number 
10. 

IF NOT A = NOT (B OR C) GOTO 453 

If the value of NOT A is equal to the 
value of NOT (B OR C), program con­
trol will be transferred to line num­
ber 453. 

IF ... THEN 

Format: 

{ <line num>} 
IF<rel exp> THEN <command> 

[:<command>[: .•• ]] 

where: 

Purpose: 

rel exp = A relational expres­
sion. 

line num = A line number in a BA­
SIC program. 

command = A BASIC command. 

To make a decision regarding the exe­
cution of BASIC commands based on the 
evaluation of a relational expression. 

Description: 

Upon execution of this command, the 
relational expression is evaluated. If 
the result is true, the specified BASIC 
commands will be executed or, if a line 
number is specified, program control will 
be transferred to that line number. If 
the result is false, control is passed to 
the line following the IF ... THEN command. 

Examples: 

1.) IF A=B THEN PRINT A 

Page 7- 21 



Comm-Stor IV 
PROGRAMMER MANUAL 

IF ••• THEN 

If the values of A and B are equal, 
the value of A will be displayed. 

2.) IF A>C THEN 500 

If the value of A is greater than the 
value of c, program control will be 
transferred to line number 500. 

3.) IF A$:"ABC" THEN B$:A$ : GOTO 500 

If A$ contains the characters "ABC", 
B$ will be assigned those characters 
and program control will be transfer­
red to line number 500. 

4.) IF X:Z THEN Y:5:B:X:X:FNA(Z+3) 

If the value of X is equal to the 
value of Z, Y will be assigned the 
value of 5, B will be assigned the 
value of X, and X will be assigned 
the value of FNA(Z+3). 

IF ..• THEN •.• ELSE 

Format: 
{ <line num> } 

IF<rel exp>THEN <command> 

[:<command>[: ••• ]] ELSE<command>[: ••• ] 

where: rel exp = A relational ex pres-
sion. 

line num = A line number in a BA-
SIC program. 

command = A BASIC command. 

Purpose: 

To make a decision regarding the exe­
cution of BASIC commands based on the 
evaluation of a relational expression. 

Description: 

The lF .•. THEN ... ELSE command is simi­
lar to the IF ... THEN command, except that 
if the relational expression is evaluated 
to be false, all of the commands following 
the "ELSE" will be executed. 

Page 7- 22 

IMAGE 

Nesting IF ••• THEN ••• ELSE commands is 
acceptable, however, the command, includ­
ing spaces, must not be longer than 255 
characters. The programmer may have an 
IF ••. THEN command within an IF •.• THEN ••• 
ELSE command by specifying "ELSE ELSE". 

Examples: 

1.) IF A=B THEN 400 ELSE PRINT A,B 

If the values of A and B are equal, 
program control will be transferred 
to line number 400. Otherwise, the 
values of A and B will be displayed. 

2.) IF A$:C$ THEN IF C:D THEN A=A+1 ELSE 
ELSE D$:A$ 

If the contents of A$ and C$ are.the 
same and if the values of C and D are 
equal, then A will be assigned the 
value of A+l. If the contents of A$ 
and C$ are not the same, D$ will be 
assigned the contents of A$. 

3.) IF XA3<>Z/Y THEN Z:Z-1:Y:Y+2 ELSE 
Z=Z+2:Y=Y-1 

4.) 

If the value of X raised to the power 
of 3 does not equal the value of Z 
divided by the value of Y, Z will be 
decremented by 1 and Y will be incre­
mented by 2. Otherwise, Z will be 
incremented by 2 and Y will be decre­
mented by 1. 

IF LEFT$(A$,1)="A" THEN B$=A$ ELSE 
B$=C$:GOTO 500 

If the first character in A$ is the 
character "A", then B$ will be as­
signed the characters in A$. Other­
wise, B$ will be assigned the charac­
ters in C$ and program control will 
be transferred to line number 500. 

IMAGE 

Format: IMAGE<format> 



IMAGE 

where: 

Purpose: 

format = The format used to input 
or output data. 

To provide a format for inputting or 
outputting data. 

Description: 

This command provides a format to be 
used with PRINT USING, PRINT # USING, and 
READ # USING commands. The options avail­
able for use in an image are listed below: 

# field position 
n# - repeating field position 
S - space fill-in (Print Using) 
nS - repeating space fill-in 
S - skip feature (Read Using) 
nS - repeat skip feature 
N - null 
nN - repeating null fill-in 
() - repeat feature 
+,- - sign control 
$ - floating dollar sign control 
n$ - repeating dollar sign 

- decimal point control 
B - binary (transparent) format 
P - reposition function 
T - truncate field character 
E - exponential notation 
I - insertion character 
D - delimiter assignment 
A - delimiter allocation 
X - suppress echo at terminal 

Please refer to Chapter 4 for a more 
detailed description of an IMAGE. 

Example: 

1.) 50 IMAGE 2S3# 
Provides a format equal to two spaces 
and three character positions. 

INPUT 

Format: INPUT[<char constant>;J<var list> 

Comm-Stor IV 
PROGRAMMER MANUAL 

INPUT 

where: char constant = A character con­
stant. 

var list 

Purpose: 

= A list of varia­
bles, separated 
by commas. 

To assign values entered from the 
terminal device to variables. 

Description: 

If a character constant is specified 
in this command, its contents will be dis­
played on the terminal. A question mark 
is displayed when the INPUT command is 
executed. 

The values entered from the terminal 
must be separated by commas or a (RETURN] 
character. If less values are entered 
from the terminal than the number of var­
iables in the variable list, two question 
marks, "?? 11 , will be displayed; this will 
occur until all of the variables are as­
signed values. If more values are entered 
than are requested, a warning "?EXTRA IG­
NORED" will be displayed and program exe­
cution will resume normally. 

Character data which contains commas 
or leading or trailing spaces should be 
enclosed in quotes. 

Examples: 

1.) INPUT A 

The value entered from the terminal 
will be assigned to A. 

2.) INPUT "ARE YOU DONE";A$ 

The characters "ARE YOU DONE?" are 
displayed on the terminal and the 
characters entered from the terminal 
are assigned to A$. 

Page 7- 23 



Comm-Stor IV 
PROGRAMMER MANUAL 

KILL 

KILL 

Format: 

KILL[(<drive>)]<file name>[;[(<drive>)] 
... ] 
where: drive = 1 for the upper drive 

or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1. 

Purpose: 

file name = The name of a disk 
file; may be a charac­
ter constant or char­
acter variable. 

To remove a Directory entry (disk 
file) and release file space on a disk­
ette. 

Description: 

When the KILL command is executed, 
Comm-Stor searches for the specified disk 
file on the diskette inserted into the 
specified drive. If the file is not 
found, an "ERROR - NO FIND" will occur. 
If the file is found, it will be removed 
from the diskette in the same manner as 
the Comm-Stor CANCEL (.CN) command. 

Examples: 

1.) KILL "TEST" 

Removes disk file "TEST" from the 
diskette inserted in the drive (upper 
drive of a dual drive unit). 

2.) KILL "TEST";(2)A$ 

Same as example #1, but also removes 
the disk file on the lower drive (of 
a dual drive unit) whose name is con­
tained in A$. 

Page 7- 24 

LET 

3.) KILL LEFT$(A$,7) 

LET 

Removes the disk file on the drive 
(upper drive of a dual drive unit) 
whose name is the first 7 charac­
ters in A$. 

Format: [LET]<var>= I ~~~:~tant>I 
<exp> 

where: 

Purpose: 

var = A numeric variable or 
character variable. 

constant = A numeric constant or 
a character constant. 

exp = A numeric expression 
or character expres­
sion. 

To assign a value to a variable. 

Description: 

When the LET command is executed (the 
characters "LET" are optional), Comm-Stor 
evaluates the variable, constant, or ex­
pression (to the right of the equal sign) 
and obtains a value. This value may be 
either a numeric value or a character 
string. 

Comm-Stor then checks to see if the 
variable to the left of the equal sign, 
the ASSIGNMENT variable, is the same type 
as the value. lf it is not, such as a 
numeric assignment variable and a charac­
ter string value, an "ERROR - TM" will 
occur. The assignment variable may either 
be a variable or an element of an array. 
If the assignment variable is a numeric 
and the precision of it is not the same as 
the precision of the numeric value, the 
numeric value will be converted to the 
precision of the assignment variable. For 
example, if the assignment variable is an 



LET 

integer and the numeric value is single 
precision, the numeric value will be 
changed into integer format when it is as­
signed to the variable. 

Examples: 

1.) LET A%=1*1.5 

Determines the value of 1 multiplied 
by 1.5, which is 1.5, converts it to 
an integer value, 1, and assigns 1 to 
Aj,. 

2.) A$:LEFT$("TEST 11 ,1) 

Assigns the character "T" to A$. 

3.) LET A=FNXYZ(Z)/2 

Assigns the value of FNXYZ(Z) divided 
by 2 to numeric variable A. 

4.) Z$=Z$+"123" 

LINK 

Joins the characters in Z$ to the 
characters "123" and assigns the re­
sult to character variable Z$. 

Format: LINK[(<drive>)] <file name> 

where: 

Purpose: 

drive = 1 for the upper drive 
or 2 for the lower 
drive; it defaults to 
1 if this option is 
not specified. 

file name = The name of a disk 
file which contains 
a packed BASIC pro­
gram; it may be a 
character constant or 
character variable. 

To enter a program into the Program 
Text Buffer without affecting any other 
buffer except the Free Space Buffer, and 
execute it. 

Description: 

Comm-Stor IV 
PROGRAMMER MANUAL 

LIST 

When the LINK command is executed, 
Comm-Stor searches for_ the BASIC program 
(saved under the specified file name) 
which is in packed format. It then deter­
mines if this program can fit into the 
User Memory Space . To do this, the cur­
rent program's byte count plus the number 
of bytes in the Free Space Buffer is com­
pared to the LINKed program's sector byte 
count. If the former is less than the 
latter, an "ERROR - OM" will occur. If 
the former is greater than or equal to the 
latter, the current program will be de­
leted from the Program Text Buffer and the 
LINKed program will be entered into that 
buffer. Any bytes needed to accommodate 
the LINKed program or any which are left 
over after the program is entered into the 
buffer will be obtained from or directed 
to the Free Space Buffer. 

After the LINK is executed, any user­
defined functions and program control of 
error conditions are cleared from the User 
Memory Space. The LlNKed program will be 
automatically executed after being loaded 
into memory. 

One LINKed program may LINK to 
another program with no limit to the 
number of LINKs. 

Examples: 

1.) LINK "PROG 211 

LINKs "PROG 211 • 

2.) LINK (2)A$ 

LINKs the file, whose name is con­
tained in A$, on the lower drive of 
a dual drive unit. 

LIST 

Format: 

LIST[l<ref>[&#<ref>[&# •.• J];][<range>] 

Page 7- 25 



Comm-Stor IV 
PROGRAMMER MANUAL 

LIST 

where: ref = A port reference number 
(1-3), a file reference 
number (4-24), or 0 (for 
the invoker of the .BA 
command), any of which may 
be a numeric constant or a 
numeric variable. 

Purpose: 

range = One line number alone or 
one line number preceded 
or followed by a hyphen, 
or two line numbers sep­
arated by a hyphen. 

To sequentially output a BASIC pro­
gram's lines. 

Description: 

Upon execution of this command, the 
current program's lines will be output. 
If no reference numbers are specified, the 
output will be displayed on the terminal 
device. If reference numbers are speci­
fied, the output will be directed to the 
specified device ( s) and/or disk file. 
Only one file reference number should ap­
pear in this command. If more than one is 
specified, the output will only be direct­
ed to the disk file associated with the 
last file reference number specified. 

The following rules apply when 
specifying line numbers: 

1.) If a range of line numbers is speci­
fied, only those line numbers includ­
ed in that range will be output. 

2.) If one line number alone is speci­
fied, only that line number (and the 
line associated with it) will be out­
put. 

3.) If only one line number is specified 
and a hyphen precedes it, the output 
will consist of all lines from the 
beginning of the program up to and 
including the specified line number 
(and corresponding line). 

Page 7- 26 

LIST 

4.) If only one line number is specified 
and a hyphen follows it, the output 
will consist of that line number (and 
its corresponding line) and all other 
successive lines through the end of 
the program. 

5.) If two line numbers are specified, 
only those line numbers included in 
the range will be output. If a range 
is not specified in this command, all 
lines of the current program will be 
output. 

6.) If a line number cannot be found that 
is included in the range, the execu­
tion of this command will be termi­
nated. 

Examples: 

1.) LIST 

Displays the entire program on the 
terminal. 

2.) LIST#1&#4;10-100 

Outputs all line numbers from 10 
through 100 to the terminal and to 
the disk file associated with file 
reference number 4. 

3.) LIST #0;100-

Outputs lines 100 through the end of 
the current program on the device 
which the .BA command was issued. 

4.) LIST #O&#I;-500 

Outputs the lines from the beginning 
of the current program through line 
number 500 to the invoker's device 
and the disk file (or device) associ­
ated with the reference number whose 
value is I. 



LOAD 

LOAD 

Format: 

LOAD[(<drive>)]<file name>[,R][,<range>] 

where: 

Purpose: 

drive = 1 for the upper drive 
or 2 for the lower 
drive; it defaults to 
1 if this option is 
not specified. 

file name = The name of a disk 
file which contains a 
BASIC program; it may 
be a character con­
stant or a character 
variable. 

R 

range 

= RUN 

= A range of line num­
bers as described in 
the LIST command. 

To enter a BASIC program into the 
Program Text Buffer. 

Description: 

When the LOAD command is issued in 
the Direct Mode, Comm-Ster searches the 
diskette inserted in the specified drive 
for the specified file name. (If no drive 
is specified, the upper drive is assumed.) 

The following conditions apply to the 
LOAD command: 

1.) The contents of the file are checked 
to see if they consist of BASIC pro­
gram lines. If they do not, Comm­
Stor will return to an idle state 
(or an "ERROR - PT" will occur if the 
file is not in packed format, text 
format, ASCII format, or in Sykes 
"RUN" format). 

2.) If the contents do consist of BASIC 
program lines, the lines will be en-

Comm-Ster IV 
PROGRAMMER MANUAL 

LOAD 

tered into the Program Text Buffer 
and the contents of the BASIC Work 
Space will be deleted (these bytes 
will be returned to the Free Space 
Buffer). 

3,) If an "R" is specified in the LOAD 
command, the program will be automat­
ically executed. 

4.) When a range of line numbers is spec­
ified in the LOAD command, only the 
BASIC program lines included in the 
range will be entered into the Pro­
gram Text Buffer provided the file is 
in text or ASCII format. 

5.) If the file is in packed or Sykes 
"RUN" format, the specified range 
will be ignored. 

6.) When the LOAD command is issued in 
the RUN Mode and an "R" is not speci­
fied, everything is done exactly as 
described above. 

7,) If an "R" is specified, only the con­
tents of the Variable Space will be 
deleted (these bytes will be returned 
to the Free Space Buffer); the File 
Buffer will not be affected in any­
way. 

Examples: 

1.) LOAD "PROG 1" 

The program "PROG 1" is loaded into 
the Program Text Buffer. 

2.) LOAD (2) A$,R 

The program (on the lower drive) 
whose name is contained in A$ is 
loaded into the Program Text Buff er 
and executed. 

3.) LOAD "PROG 1",R,10-68 

Lines 10 through 68 in the program 
"PROG 1" are loaded into the Program 
Text Buffer and executed. 

Page 7- 27 



Comm-Stor IV 
PROGRAMMER MANUAL 

MERGE 

MERGE 

Format: 

MERGE[(<drive>)]<file name>[,<range>] 
[;[(<drive>)] ••• ] 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; it defaults to 
1 if this option is 
not specified. 

Purpose: 

file name = The name of a disk 
file, which contains a 
BASIC program in text 
format; it may be a 
character constant or 
a character variable. 

range = A range of line num­
bers as described in 
the LIST command. 

To load a BASIC program into the Pro­
gram Text Buffer without deleting the pre­
vious contents of that buffer. 

Description: 

When the MERGE command is issued, 
Comm-Stor searches the diskette inserted 
in the specified drive for the specified 
file name. (If no drive is specified, the 
upper drive is assumed.) 

The following conditions apply to the 
MERGE command; 

1.) If the file is in text format, the 
contents of the file will be entered 
into the Program Text Buffer. Any 
previous lines in the Program Text 
Buffer will remain in that buffer. 
If the file is not in text format, an 
"ERROR - PT" will occur. 

2.) If a range of line numbers is speci­
fied in the MERGE command, only those 
lines included in the range will be 
entered into the Program Text Buffer. 

Page 7- 28 

NEW 

3.) The line numbers of the merged file 
must be greater than those currently 
in the Program Text Buffer. 

4.) When a MERGE is executed, a CLEAR op­
eration is automatically executed by 
Comm-Stor. Therefore, it is advisa­
ble to put any BASIC program lines 
containing MERGE commands in the very 
beginning of the BASIC programs. 

5.) If the MERGE command is issued in the 
RUN Mode, the MERGE (and implicit 
CLEAR) will be executed and the exe­
cution of the program will resume at 
the line following the MERGE command. 

Examples: 

1.) MERGE "ABC" 

2.) 

Adds the contents of the file "ABC" 
to the Program Text Buffer and per­
forms a CLEAR operation. 

MERGE (2)A$, 10-100 

Adds lines 10 through 100 in the file 
(on the lower drive) whose name is 
contained in A$ to the contents of 
the Program Text Buffer and performs 
a CLEAR operation. 

3,) MERGE "ABC";{2)A$,10-100 

Performs a combination of the opera­
tions as described in the two above 
examples. 

4.) MERGE A$;B$;C$;D$;E$ 

NEW 

Merges the text programs whose file 
names are contained in A$,B$,C$,D$, 
and E$ into the Program Text Buffer 
and performs a CLEAR operation. 

Format: NEW[((<drive>)]<file name>] 



NEW 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; if not speci­
fied, this option de­
faults to 1. 

file name = The name of the disk 
file, which holds a 
program, not enclosed 
in <;motes. 

Purpose: 

To load and execute a program or to 
delete everything in the BASIC Program 
Space and return all bytes to the Free 
Space Buffer. 

Description: 

When this command is executed without 
an argument, everything in the BASIC Pro­
gram Space is cleared. 

If a file name is specified, the com­
mand is equivalent to: 

LOAD "file name",R in Direct Mode. 

The character @ is symbolically 
equivalent to the characters NEW and may 
be directly substituted (see example be­
low). 

Examples: 

1.) NEW 

2.) NEW PROO 1 

3.) @PROG 

NEXT 

Clear BASIC Program 
Space 

Clear BASIC Program 
Space; load and exe­
cute the program 
"PROG 111 

Same as example #2 

Format: NEXT [<control var>] 

where: control var = The control variable 
corresponding to the 
FOR ... TO command. 

Purpose: 

Comm-Stor IV 
PROGRAMMER MANUAL 

ON ••• GOSUB 

To end the loop of BASIC lines initi­
ated by a FOR ... TO command. 

Description: 

See the FOR ... TO command. 

ON .•. GOSUB 

Format: ON<num exp> GOSUB<line num list> 

where: num exp = A numeric con-
stant, numeric 
variable, or 
numeric ex pres-
sion. 

line num list = A list of line 
numbers in a pro-
gram separated by 
commas. 

Purpose: 

To transfer program control to one of 
a group of subroutines based on the evalu­
ation of a numeric expression. 

Description: 

When this command is executed, the 
numeric constant, numeric variable, or nu­
meric expression is evaluated and then 
converted into integer format. This inte­
ger value then points to a position in the 
specified list of line numbers. The line 
number in that position is the start of 
the subroutine to which program control 
will be transferred. Upon execution of a 
RETURN command, control will be transfer­
red to the next line following the 
ON ... GOSUB command. 

If the integer value is less than or 
equal to zero or greater than the number 
of line numbers in the list of line num­
bers, an "ERROR - FC" will occur. All 
non-integer numbers are rounded to the 
nearest integer. 

Page 7- 29 



Comm-Stor IV 
PROGRAMMER MANUAL 

ON .•• GOSUB 

Examples: 

1.) ON A GOSUB 10,20,30 

If A is equal to 1, 2, or 3, program 
control will be transferred to line 
10, 20, or 30, respectively. If A is 
less than or equal to zero or is 
greater than 3, an "ERROR - FC" will 
occur. 

2.) ON Z/D GOSUB 10,20,30 

If the integer value of Z divided by 
the value of Dis equal to 1,2 or 3, 
program control will be transferred 
to the subroutine starting at line 
number 10, 20 or 30, respectively. 

ON •.• GOTO 

Format: ON<num exp> GOTO <line num list> 

where: 

Purpose: 

num exp = A numeric con­
stant, numeric 
variable, or nu­
meric expression. 

line num list = A list of line 
numbers in a pro­
gram separated by 
commas. 

To transfer program control to one of 
a group of line numbers based on the eval­
uation of a numeric expression. 

Description: 

The ON ... GOTO command is similar to 
the ON ••. GOSUB command, except that con­
trol is not passed to a subroutine, but 
transferred to a line number. 

Example: 

1.) ON A GOTO 10,20,30 

If A is equal to 1, 2, or 3, program 
control will be transferred to line 

Page 7- 30 

OPEN 

10, 20, or 30, respectively. If A is 
leas than or equal to zero or is 
greater than 3, an "ERROR - FC" will 
occur. 

2.) ON Z/D GOTO 10,20,30 

OPEN 

If the integer value of Z divided by 
the value of D is equal to 1, 2 or 3, 
program control will be transferred 
to line number 10, 20, or 30, re­
spectively. 

Format: 

{<file name> } 
{ [(<drive>)] •<trk>,<sec> 

OPEN#<ref>TO +[&<sec/buff>(,D]] 

[,<char/rec>](,W][&<sec/buff>[,D]]} 
' [;# •.• ] 

where: ref 

drive 

= 2 for the modem device, 
or a file reference 
number (4-24) which may 
be a numeric constant 
or numeric variable. 

= 1 for the upper drive 
or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1. 

file name = The name of a disk file 
which may be only a 
character constant. 

trk 

sec 

= A track on the diskette 
which may be a numeric 
constant or a numeric 
variable. 

= A sector within a track 
on the diskette which 
may be a numeric con­
stant or a numeric var­
iable. 



OPEN 

Comm-Stor IV 
PROGRAMMER MANUAL 

OPEN 

char/rec = The number of charac- file 
ters per record which 
may be a numeric con­
stant, numeric varia­
ble, or numeric expres­
sion; if this option is 
not specified, it de­
faults to 128 if a file 
name or a track and 
sector are specified in 
this command. 

W = If the disk file is 
"Write-Protected", no 
error will occur when 
outputting to the file. 

sec/buff = The number of sectors 
to be allocated to the 
file reference number 
which may be a numeric 
constant, numeric vari­
able, or numeric ex­
pression; if this op­
tion is not specified, 
it defaults to 1. 

D = Double buffered. 

Purpose: 

To allocate space in the File Buffer 
for a file reference number. 

Description: 

When this command is executed and 
only the file reference number and the 
number of sectors per buffer are speci­
fied, such as: 

OPEN #4 T0+&3,D 

the specified amount of space in the File 
Buffer (plus 35 bytes for a file header) 
will be allocated for the file reference 
number. In the example above, 6 sectors 
(3 sectors double buffered) plus 35 bytes 
are reserved in the File Buffer for file 
reference number 4 and can be illustrated 
as: 

reference 
number 
table f/5 6 sectors 

FIGURE 17-12 

When the OPEN command consists of a 
file name, the disk file will then be as­
sociated with the file reference number. 
This will be recorded into the file header 
related to the file reference number, 
along with the other parameters specified 
in the command. For example: 

OPEN #5 TO "TEST",80,W&2 

reserves two sectors of File Buffer space 
for file reference number 5, associates 
disk file "TEST" with the reference number 
and records all of the parameters corre­
sponding to the reference number in the 
file header. This can be illustrated as: 

file 
reference 
number 
table 

f/4 
2 sectors ability 

to output 
#5 10,3 80 W to a 

track and sector ~ 
where disk file 
"TEST" is located 

1 t I ;~~~=~ted Lfile 

number of charac­
ters per record 

FIGURE 17-13 

When an OPEN command specifies a 
track and sector, everything is performed 
as described above using a track and sec­
tor instead of a disk file. OPENing a 
track and sector to a file reference num­
ber gives the programmer the ability to 
access that track and sector through the 
end (Track 76, Sector 26) of the diskette. 

Page 7- 31 



Comm-Stor IV 
PROGRAMMER MANUAL 

OPEN 

Note: No character variables or character 
arrays may be used prior to the execution 
of an open command. 

Please refer to Chapter 5 for a more de­
Tailed description of this coll'.llland. 

. Examples: 

1.) OPEN 14 T0+&5 

Allocates 5 sectors plus a file 
header for file reference number 4 in 
the File Buffer. 

2.) OPEN #4 T0+&5;#5 TO "TEST",50 

Similar to the example above, but 
also assigns disk file "TEST" to file 
reference number 5 with 50 characters 
per record, and allocates 1 sector 
plus a file header in the File Buf­
fer. 

3,) OPEN #I TO "TEST 11 ,K&XYZ 

Allocates the value of XYZ sectors 
plus a file header for the file re­
ference number whose value is I and 
assigns it to disk file "TEST" having 
the value of K number of characters 
per record. 

4.) OPEN 14 TO *1,3;#I TO 11TEST 11 ,W&2,D 

Allocates one sector and a file 
header for reference number 4 and 
assigns it to the third sector of the 
first track, and allocates 4 sectors 
(2 sectors, double buffered) plus a 
file header for the reference number 
whose value is I and assigns it to 
the disk file "TEST". Outputs can 
be directed to this disk file if it 
is Write-protected. 

OPTION BASE 

Purpose: 

To change the base of all dimensions 
in all arrays. 

Description: 

As stated previously, the base of all 
subscripts starts at zero. For example, 
DIM A( 10) actually reserves 11 elements 
for array A; A ( O) , ••• A ( 1 o) • If the pro­
grammer wishes to change the base of the 
subscripts to 1 , the OPTION BASE command 
is used and the logical expression must be 
true. Whenever the specified expression 
evaluates to O, the base of all subscripts 
will be zero. 

For example, if the following com­
mands are executed: 

10 OPTION BASE 1 
20 DIM X(lOO) 

array X will contain 100 elements; 
X( 1), ... ,X( 100). However, if the follow­
ing commands are executed: 

10 DIM X(100) 
20 OPTION BASE 

array X will contain 101 elements; 
X(1), .•• ,X(101). 

Examples: 

1.) OPTION BASE A 

Changes the base to 1 or O, depending 
on the value of A. 

2.) OPTION BASE 1 

Changes the base to 1. 

3,) OPTION BASE 0 

OPTION BASE Changes the base to O. 

Format: OPTION BASE <num exp> 

where: num exp = a numeric expression 
which is evaluated to 0 or 1. 

Page 7- 32 



POKE 

POKE 

Format: POKE <address>,<val> 

where: 

Purpose: 

address = A memory address in 
decimal format which 
may be a numeric con­
stant or a numeric var­
iable. 

val = A decimal value which 
may be a numeric con­
stant or a numeric var­
iable. 

To change the contents of a location 
in memory. 

Description: 

When this command is executed, Comm­
Stor determines if the specified address 
is a valid location. If it is, Comm-Stor 
changes the location to the specified 
value. 

If the value is less than zero or 
greater than 255, an "ERROR - FC" will 
occur. 

Examples: 

1.) POKE 1,60 

Places 60 into location 1. 

2.) POKE A,B 

Places the value of B into the loca­
tion which is the value of A. 

3.) POKE DEC( 11 838 11 ),0 

Places zero in the location refer­
enced by the hexadecimal value 838. 

4.) POKE A+Z,C/5 

Collllll-Stor IV 
PROGRAMMER MANUAL 

POSITION 

Places the value of C divided by 5 
into the location referenced by the 
value of A plus the value of Z. 

POSITION 

Format: POSITION #<ref>,<rec> 

where: 

Purpose: 

ref = A file reference number 
(4-24) which is associated 
with a disk file that may 
be a numeric constant or a 
numeric variable. 

rec = A record number within the 
disk file which may be a 
numeric constant, numeric 
variable, or a numeric ex­
pression. 

To reposition the pointer to the 
beginning of a record in a disk file and 
to set the boundaries for the file to the 
boundary of that record. 

Description: 

The POSITION command is used in con­
junction with the sequential READ II and 
PRINT # commands. Its purpose is to repo­
sition the pointer to a logical record so 
that a READ # or PRINT # command (with no 
record numbers specified) may be executed. 

When a POSITION command is executed, 
the boundaries of the disk file are 
changed to the boundaries of the logical 
record. If the programmer attempts to 
outpu~ data to or input data from the file 
outside the boundaries, an "ERROR - EF" 
will occur. 

After a POSITION command is executed, 
followed by a sequential PRINT # command, 
the data will be output in a sequential 
manner. If another POSITION command is 

Page 7- 33 



Comm-Stor IV 
PROGRAMMER MANUAL 

POSITION 

then executed, the previous POSITIONed 
record will be filled with nulls following 
the data already there. 

Examples: 

1.) POSITION #4,5 

Repositions the pointer to the first 
position in the fifth logical record 
of the disk file associated with re­
ference number 4. 

2.) POSITION #I,J 

Similar to the above example, except 
the record number is the value of J 
and the file reference number is the 
value of I. 

PRESS 

Format: 

PRESS[(<drive>)]<file name>[,R][,<range>] 

where: drive = for the upper drive 
or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1. 

Purpose: 

file name = The name of a disk 
file saved in text 
format which may be a 
character constant or 
a character variable. 

R 

range 

= RUN 

= A range of line num­
bers as described in 
the LIST command. 

To enter a BASIC program into the 
Program Text Buffer without any REM com­
mands or spaces. 

Page 7- 34 

PRINT 

Description: 

This command works similarly to the 
MERGE command except that any BASIC Lines 
consisting of a REM command and any spaces 
which appear in the program are deleted 
from the program before it is loaded into 
the Program Text Buffer. This can be use­
ful if the program does not quite fit into 
the User Memory Space in its original 
form. 

Examples: 

1.) 

2. ) 

PRESS "PROG 111 

Merges "PROG 1" into the Program Text 
Buffer without any REM commands or 
spaces. 

PRESS (2) A$,10-100 

Merges lines 10 through 100 from the 
file on the lower drive whose name is 
contained in A$, and deletes any REM 
commands and spaces from those lines. 

PRINT 

Format: PRINT [<list>(;]] 

where: list = A list of constants and/or 
variables separated by 
commas or semi-colons. 

Purpose: 

To display values of characters to 
the invoker device. 

Description: 

When a PRINT command is executed, the 
specified values or characters will be 
displayed to the invoker device (terminal 
or modem port). If the parameters in the 
list are separated by commas, the display 
will be tabulated across a line on the 
terminal. If the parameters in the list 
are separated by semi-colons, no spaces 
(except those for the sign of a number) 



PRINT 

will appear in the display. When a semi­
colon follows the list, a [RETURN] will 
not be issued to the terminal device after 
the values are displayed. 

Specifying a PRINT command alone will 
cause a [RETURN] to be issued to the in­
voker device. 

Examples (with the terminal as the invok­
er): 

1.) PRINT A,C 

Displays the values of A and C tabu­
lated on the terminal, and issues a 
[RETURN] to the terminal. 

2 • ) PRINT A, C; 

Similar to example #1, except a [RE­
TURN] is not issued to the terminal 
after the value of C is displayed. 

3.) PRINT "A$=";A$ 

Displays the characters "A$=" immedi­
ately followed by the contents of A$ 
and a [RETURN] . 

4.) PRINT A+1,B/C;"****"; 

Displays the value of A plus 1, tabs 
to the next field, and displays the 
value of B divided by the value of C 
immediately followed by four aster­
isks. 

PRINT USING 

Format: PRINT USING <image>;[<list>[;]] 

where: image = The line number of an 
IMAGE command or a charac­
ter constant which is an 
image format or a charac­
ter variable containing an 
image format. 

list = A list of constants and/or 
variables separated by 
commas or semi-colons. 

Purpose: 

Comm-Ster IV 
PROGRAMMER MANUAL 

PRINT USING 

To display values of characters to 
the invoker device according to a speci­
fied format. 

Description: 

The PRINT USING command may be em­
ployed in situations where a specific out­
put format is desired. The display is 
controlled by the image used and by the 
commas or semi-colons in the list (in the 
same manner as the PRINT command). 

The following is a list of the op­
tions available in an image and their 
brief descriptions. Please refer to 
Chapter 4 for a more detailed explanation 
of this command. 

Option 

Tti .# 

+ti 

Ii+ 
-Ii 

li­
E#. ti 
$Ii. II 

$$$.# 
II, IF/Fii 
UI (<chars> )II# 

s 
N 
B 
D 

A( <val> )D 

, 
P( <val>) 

x 

Description 

one character position 
round the least signifi­
cant digit 
truncate the least signi­
ficant digit 
+ if positive, - if nega­
tive 
same as above 
space if positive, - if 
negative 
same as above 
exponential notation 
dollar sign 
floating dollar sign 
insert a comma 
insert any characters 
space 
null 
binary mode 
configured delimiter 
temporarily change the 
delimiter to ASC<xx> 
field separator 
random access for PRINT IF 
USING 
used for READ IF USING 

Page 7- 35 



Comm-Stor IV 
PROGRAMMER MANUAL 

PRINT # 

PRINT # 

Format: 

PRINT #<ref>[,<rec>)[&#<ref>[,<rec>] 

[&# ••• ]];[<list>[;]] 

where: ref = A port reference number 

Purpose: 

( 0-3) or a file reference 
number ( 4-24) which is as­
sociated with a disk file 
that may be a numeric con­
stant or a numeric varia­
ble. 

rec = A logical record number 
within a disk file which 
may be a numeric constant 
or a numeric variable. 

list = A list of constants and/or 
variables separated by com­
mas or semi-colons. 

To output data to a device or a disk 
file. 

Description: 

More than one port reference number 
is allowed in this command, but if more 
than one file reference number is speci­
fied, output will only be directed to the 
disk file associated with the right-most 
file reference number. 

This command is similar to the PRINT 
command except that the output may be di­
rected to any device or file. Additional­
ly, a [RETURN] character will follow each 
different value or character string when 
the output is directed to a disk file. 

If a record number accompanies a file 
reference number in this command, the 
pointer in the disk file will be reposi­
tioned to the first position in that rec­
ord and the boundaries of the file will be 
changed to the boundaries of that logical 
record. 

Page 7- 36 

PRINT # USING 

Examples: 

1.) PRINT #0&#4;"ABC" 

Outputs the characters "ABC" (fol­
lowed by a [RETURN]) to the device 
which issued the .BA command and to 
the file associated with reference 
number 4. 

2.) PRINT #I;A,B,C 

Outputs the values of A,B, and C 
(each followed by a [RETURN]) to a 
port or disk file associated with the 
reference number whose value is I. 

3.) PRINT #I,J;A$ 

Outputs the contents of A$, followed 
by a [RETURN], into the J record of 
the disk file associated with the 
reference number whose value is I. 

PRINT + USING 

Format: 

PRINT l<ref>[,<rec>][[&#<ref>[,<rec>] 

[&# ••• ]] USING<image>;[<list>[;]] 

where: ref = A port reference number 
(0-3) or a file reference 
number (4-24) which is as­
sociated with a disk file 
which may be a numeric 
constant or a numeric var­
iable. 

rec = A logical record number 
within a disk file which 
may be a numeric constant 
or a numeric variable. 

image = A line number of an IMAGE 
command or a character 
constant which is an image 
format or a character var­
iable containing an image 
format. 



PRINT + USING 

Purpose: 

list = A list of constants and/or 
variables separated by 
commas or semi-colons. 

To output data to a device or a disk 
file using a specified format. 

Description: 

This command is a combination of the 
PRINT # and PRINT USING commands. Opera­
tions proceed as described for the PRINT 
USING command except that the output is 
sent to a device or a disk file. Please 
refer to Chapter 4 for a more detailed 
explanation. 

Examples: 

1.) PRINT #0&#4 USING 10;"ABC" 

Outputs the characters "ABC" to the 
device which issued the .BA command 
and the disk file associated with 
file reference number 4 using the 
format specified in the IMAGE command 
in line 10. 

2.) PRINT #I,5 USING IM$;A,B,C 

Outputs the values of A,B, and C into 
the fifth record of the disk file as­
sociated with the reference number 
whose value is I using the image con­
tained in IM$. 

3. ) PRINT 12 USING 11 10#D11 ; A$ 

Outputs to the modem device the con­
tents of A$ using 10 character posi­
tions followed by a [RETURN]. 

RANDOMIZE 

Format: RANDOMIZE 

Purpose: 

Comm-Stor IV 
PROGRAMMER MANUAL 

READ 

To generate a new sequence of random 
numbers. 

Description: 

When the RND function is used without 
any arguments, this command will generate 
a new sequence of random numbers for that 
function. 

Example: RANDOMIZE 

READ 

Format: READ <var list> 

where: var list = A list of variables 
separated by commas. 

Purpose: 

To assign values from DATA commands 
to variables. 

Description: 

The READ command assigns values as­
sociated with the internal data pointer to 
the specified variables in their respec­
tive order. The internal data pointer is 
associated with values specified in DATA 
commands. 

A pointer is positioned at the first 
value in the first DATA command when the 
first READ command is executed. The in­
dicated value is assigned to a variable 
and the pointer is moved to the next value 
in the DATA command. 

Subsequent READ commands take values 
from the location at which the data 
pointer is positioned. The pointer moves 
sequentially through the DATA commands un­
less it is repositioned by a RESTORE com­
mand. 

If all the DATA commands have been 
accessed and a READ command is executed, 
an "ERROR - OD" will occur. 

Page 7- 37 



Comm-Star IV 
PROGRAMMER MANUAL 

READ 

When the pointer is positioned at a 
numeric value and a character variable is 
specified in the variable list, the nu­
meric value will be converted to a charac­
ter string and an attempt will be made to 
READ a numeric variable; however, an "ER­
ROR - TM" will occur. 

Examples: 

1.) READ A,B$ 

Obtain a numeric value from the loca­
tion of the pointer and assign it to 
A; obtain a character string and as­
sign it to B$. 

2. READ A(N) ,A$(A(N)) 

Obtains the numeric value for A(N) 
and uses this value as a reference to 
an element in array A$ and obtains 
the value for this element. 

READ+ 

Format: READ f<ref>[,<rec>];<var list> 

where: 

Purpose: 

ref 

rec 

= A port reference num­
ber (0-3) or a file 
reference number 
( 4-24), associated 
with a disk file which 
may be a numeric con­
stant or a numeric 
variable. 

= A logical record num­
ber within a disk file 
which may be a numeric 
constant or a numeric 
variable. 

var list = A list of variables 
separated by commas. 

To obtain data from a device or a 
disk file. 

Page 7- 38 

READ # 

Description: 

If the reference number specified is 
a file reference number, Comm-Star will 
obtain a data item from the disk file 
associated with that reference number and 
assign it to the specified variable. Each 
data item in a disk file should be termi­
nated by a [RETURN] character so that the 
data may be obtained correctly. If there 
is no [RETURN] character following each 
data item and two or more character vari­
ables are specified in the variable list, 
the first 255 characters will be assigned 
to the first character variable, the next 
255 characters will be assigned to the 
next character variable, and so on. Spec­
ifying a record number in this command 
will cause the boundaries of the disk file 
to be changed to the boundaries of the lo­
gical record. 

If a port reference number is speci­
fied, Comm-Stor will wait until data is 
entered from the specified device in order 
to assign that data to the specified vari­
able( s). 

Examples: 

1.) READ 12 ;A$ 

Obtains a character string from the 
modem device and assigns it to A$. 

2.) READ #4,3;A$ 

Similar to example #1 except that the 
characters are obtained from the 
third record of the disk file associ­
ated with reference number 4. 

3.) READ #1;X,Y,Z 

Obtains three values from the termi­
nal and assigns them to X,Y, and Z. 



READ# 

4.) READ II;X,Y,Z 

Obtains three values from the device 
or disk file associated with the 
reference number whose value is I and 
assigns_ these values to X,Y, and Z. 

READ# USING 

Format: 

READ #<ref>[,<rec>]USING<image>;<var list> 

where: ref 

rec 

image 

= A port reference number 
(0-3) or a file refer­
ence number ( 4-24) as­
signed to a disk file 
which may be a numeric 
constant or a numeric 
variable. 

= A logical record number 
within a disk file 
which may be a numeric 
constant or a numeric 
variable. 

= A line number of an IM­
AGE command, or a char­
acter constant which is 
an image format , or a 
character variable con­
taining an image for­
mat. 

var list = A list of variables 
separated by commas. 

Purpose: 

To obtain data from a device or a 
disk file, using a specified format. 

Description: 

Values are obtained for the specified 
variables for this command just as for the 
READ II command except that the specified 
format indicates how the values will be 
obtained. 

Comm-Stor IV 
PROGRAMMER MANUAL 

READ# USING 

Please refer to Chapter 4 for a more 
detailed description of this command. 

The following is a list of the op­
tions available in an image and their 
brief descriptions. 

Option Description 

# 
# .11 

T#.11 
+# 
-II 
II+ 
11-
$11 

II, 1111# 

one character position 
three character positions 
same as above 
two character positions 
same as above 
same as above 
same as above 
same as above 
four character positions 

/NII (AB) 1111 
s 

six character positions 
ignore next character posi­
tion 

N 
B 
D 

same as above 
binary mode 
acknowledge the configured 
delimiter 

A(xx) acknowledge the temporarily 
changed delimiter . 

' field separator 
P(xx) reposition within a record 
x do not echo characters en­

tered from the terminal de­
vice 

Examples: 

1.) READ #2 USING 10;A$ 

Obtains characters according to the 
IMAGE command in line 10 and assign 
them to A$ from the modem device. 

2.) READ #4,3 USING 10;A$ 

Similar to the above example, but the 
characters are obtained from the 
third record in the disk file associ­
ated with reference number 4. 

3.) READ #1 USING "101";A$ 

Obtains 10 characters from the termi­
nal and assigns them to A$. 

Page 7- 39 



Comm-Stor IV 
PROGRAMMER MANUAL 

READ# USING 

4.) READ #0 USING IM$;A,B 

Obtains two values from the invoker 
device according to the image con­
tained in IM$ and assigns them to A 
and B. 

RECSIZE 

Format: RECSIZE #<ref> TO <num exp> 

where: 

Purpose: 

ref = A file reference number 
(4-24) associated with 
a disk file which may 
be a numeric constant 
or a numeric variable. 

num exp = A ·numeric constant, a 
numeric variable, or a 
numeric expression. 

To change the number of characters 
per record associated with a file · refer­
ence number. 

Description: 

As stated in the ASSIGN and OPEN com­
mands, the number of characters per record 
associated with a disk file and a file 
reference number is recorded in the file 
header. To change this parameter, the 
RECSIZE command may be used. When the 
RECSIZE command is executed, the numerical 
expression is evaluated; this value is 
recorded in the file header associated 
with the specified file reference number. 

Examples: 

1.) RECSIZE #4 TO 80 

Changes the number of characters per 
record for file reference number 4 to 
80. 

Page 7- 40 

RELEASE 

2.) RECSIZE #I TO J 

3.) 

Similar to the example above except 
that the reference number is the 
value of I and the number of charac­
ters per record is the value of J. 

RECSIZE #I TO LEN(B$) 

Changes the record size for the ref­
erence number whose value is I to the 
number of characters in B$. 

RELIASE 

Format: RELEASE [f<ref>][,T][;# ••• ]] 

where: 

Purpose:· 

ref = A file reference number 
(4-24) associated with a 
disk file which may be a 
numeric constant or numeric 
variable. 

T = Truncate 

To deactivate a disk file from a BA­
SIC program and to release a portion of 
the File Buffer. 

Description: 

Issuing a RELEASE command causes 
Comm-Stor to deactivate a disk file (ref­
erenced by an OPEN or ASSIGN command) from 
a BASIC program. Additionally, the area 
in the File Buffer related to the speci­
fied reference number will no longer be 
associated with that reference number. 
That is, the RELEASEd File Buffer space 
may be used with a new file reference 
number or several reference numbers, de­
pending on the amount of space RELEASEd 
and the buffer size allocated to each new 
reference number by an ASSIGN command. 

As discussed in Chapter 5, a 35-byte 
file header is reserved in the File Buffer 
along with the number of sectors specified 
in the OPEN or ASSIGN command. This file 



RELEASE 

header does not need to be considered if 
every disk file reference number used in 
the BASIC program is specified in an OPEN 
command; it should only be considered when 
RELEASE is used when other file reference 
numbers utilize the resultant available 
space in the File Buffer. This is il-
1 ustrated in the following example: 

10 CREATE 11 TEST1"; "TEST2"; 11TEST3" 
20 OPEN 14TO"TEST1";15TO"TEST2"; 
16TO"TEST3" 

The example below shows how the file 
header must be considered: 

10 OPEN 14T0+&4 
20 RELEASE 1/4 
30 CREATE 11 TEST1";"TEST2";"TEST3" 
40 ASSIGN 14TO"TEST1 11 ;#5TO"TEST2"; 
/J6TO"TEST3" 

If only three sectors were allocated 
in the File Buffer in line 10 above, an 
"ERROR - FO" would occur since three sec­
tors plus two extra file headers are 
needed for the file reference numbers 4, 
5, and 6, in line 40. 

If a "T" is specified in the RELEASE 
command, any unused sectors within the 
file( s) will be released for further file 
space on the diskette. This will happen 
immediately if the file is the last Direc­
tory entry on the disk. If it is not, the 
file will be truncated when a Comm-Star 
SQUISH (.SQ) command is executed. 

Examples: 

1.) RELEASE 

Closes all files and releases the 
File Buffer space used by their as­
sociated file reference numbers. 

2. ) RELEASE 14 

Comm-Stor IV 
PROGRAMMER MANUAL 

RELEASE 

Closes and releases file reference 
number 4. 

3.) RELEASE 15;14;1I 

Closes and releases file reference 
numbers 4, 5 and the value of I. 

4.) RELEASE #4;15,T 

Closes and releases file reference 
numbers 4 and 5 and truncates the 
disk file which was associated with 
reference number 5. 

Sample Program: 

10 CREATE "BOB",128*100;"ROY11 ,128*100 
20 OPEN 14 TO "ROY"&10 
30 FOR 1=1 TO 128*50 
40 PRINT #4;USING"#";"A" 
50 NEXT 
60 RELEASE 14,T 
70 ASSIGN #4 TO"R0Y"&5;#5TO"BOB"&4 
80 FOR 1=1 TO 128*50 
90 READ #4 USING "#";A$ 

100 PRINT 15 USING "#";A$ 
110 NEXT 
120 CLOSE 15,T 
130 END 

Two files, "BOB" and "ROY", are cre­
ated to contain 12,800 characters (each) 
in line 10. "ROY" is then OPENed with a 
buffer size of 10 sectors and the charac­
ter "A" is writ ten 6 , 400 times to "ROY 11 • 

"ROY" is then RELEASEd in line 60 (which 
frees its 10 sector buffer plus its file 
header) and is truncated, reducing its 
file size from 12,800 characters to 6,400 
characters. "ROY" is ASSIGNed to file 
reference number 4 using 5 sectors plus 35 
bytes of File Buffer space. One character 
is then obtained from "ROY" and is written 
to "BOB" 6, 400 times. File reference 
number 5 is CLOSEd and truncated (in line 
120), reducing the size of "BOB" from 
12,800 characters to 6,400 characters. 
(When execution of the program is com­
plete, file reference number 4 will be au-

Page 7- 41 



Comm-Stor IV 
PROGRAMMER MANUAL 

RELEASE 

tomatically CLOSEd.) This is illustrated 
in Figure #7-14 below. 

EXAMPLE OF FILE BUFFER ALLOCATION 

OPEN 14 TO "ABC"&10;#7 TO "DEF"&8 

Reference 
Number 
Table 

RELEASE 14 

lt4 

115 

lt6 

117 

lt4 

lt5 

116 

I 

1280 bytes (10*128) 

ABC 

1024 bytes (8*128) 

DEF 

1024 bytes 

DEF 

1280 + 35 bytes 

ASSIGN #5 TO "BOB"&4; 16 TO "ROY" &3 

lt4 

#5 

#6 
I 
I 

.___I 

1024 bytes 

DEF 

512 bytes 

BOB 

384 bytes 

ROY 

349 bytes r 
349 bytes of available File Buffer 
space remain and is calculated by: 

1280+35-(512+35)-(384+35)=349 

FIGURE 17-14 

Page 7- 42 

REN UM 

REM 

Format: REM [<comment>] 

where: comment = A group of characters 
which comment on the 
operations of a pro­
gram. 

Purpose: 

To insert a comment or description 
into a program. 

Description: 

The REM command permits comments to 
be inserted into a program to clarify and 
improve readability. It is never execut­
ed, but program control may be transferred 
to it. The command is terminated by a 
[RETURN] character rather than a colon. 

For example, the following line will 
not cause P to equal 1.5. 

10 REM SET UP PERCENT:P:1.5 

The following line will cause P to equal 
1. 5. 

10 P:1.5:REM SET UP PERCENT 

Examples: 

1.) REM 

2.) REM THIS PROGRAM COMPUTES COMPOUND 
INTEREST 

REN UM 

Format: RENUM[<line num>][,<inc>] 

where: line num = The line number in the 
first line of the cur­
rent program, which 
may only be a numeric 
constant. 



REN UM 

Purpose: 

inc = The increment used for 
each successive line 
number which may only 
be a numeric constant. 

To renumber the line numbers of the 
current program. 

Description: 

The following conditions apply to the 
RENUM command: 

1.) If this command is entered alone, the 
first line number in memory will be 
100. Each successive line number 
will then be incremented by 10. 

2.) If a line number is specified in this 
command, the first line in the Pro­
gram Text Buffer will have that line 
number associated with it. If an 
increment is also specified, each 
successive line number will be in­
creased by this increment. 

3.) If just a line number is specified, 
the increment is assumed to be 10. 

4.) If just an increment is specified, 
the first line number is assumed to 
be 100. 

5.) Whenever the line numbers are renum­
bered, all references to line numbers 
except the characters in character 
constants and REM commands will also 
be changed. If an attempt is made to 
change a line number when that line 
number is nonexistent, asterisks will 
be printed in place of the line num­
ber. 

Examples: 

1.) RENUM 

RENUMber all line numbers starting 
with 100 and incremented by 10. 

2.) RENUM 1 

Comm-Stor IV 
PROGRAMMER MANUAL 

RESTORE 

Similar to the above example, but the 
first line number is 1. 

3.) RENUM,5 

RENUMber all lines starting at 100 
and incremented by 5. 

4 • ) REN UM 1 , 5 

RENUMber all lines starting at 1 and 
incremented by 5. 

RESTORE 

Format: RESTORE [<line num>] 

where: line num = A line number in the 
current program. 

Purpose: 

To reset the pointer to the beginning 
or to another place in the internal data 
table. 

Description: 

If this command is entered alone, the 
pointer will be repositioned to the begin­
ning of the internal data table allowing 
the data items to be read again. 

If a line number is specified in this 
command, the pointer will be repositioned 
to the first data item specified in the 
DATA command associated with the specified 
line number. 

Examples: 

1.) RESTORE 

Repositions the pointer to the begin­
ning of the internal data table. 

Page 7- 43 



Comm-Stor IV 
PROGRAMMER MANUAL 

RESTORE 

2. ) RESTORE 100 

Repositions the pointer to the first 
data item in line number 100. 

RETURN 

Format: RETURN 

Purpose: 

To terminate execution of a subrou­
tine, a CALLed program, or an RTCS inter­
rupted program. 

Description: 

The RETURN command is the last com­
mand to be executed in a subroutine, a 
CALLed program, or an RTCS interrupted 
program. 

There Iliay be more than one RETURN 
command, but the first one encountered 
during execution of the program terminates 
the routine and returns control to the 
line number following the last executed 
GOSUB, ON .•. GOSUB, CALL, or the line fol­
lowing the line where the RTCS interrupt 
occurred. 

REWIND 

Format: REWIND #<ref> 

where: ref = A file reference number 
(4-24) which is associated 
with a disk file; it may be 
a numeric constant or a nu­
meric variable. 

Purpose: 

To start the accessing of a disk file 
at the first character position in the 
file. 

Description: 

When this command is executed, the 
pointer related to the disk file associ-

Page 7- 44 

RTCS 

ated with the specified file reference 
number will be repositioned to the begin­
ning of the disk file. The second bound­
ary of the disk file will be repositioned 
to the last character position in the 
file. 

Please refer to Chapter 5 for a more 
detailed explanation of this command. 

Examples: 

1.) REWIND 14 

Rewinds the disk file associated with 
reference number 4. 

2.) REWIND II 

Rewinds the disk file associated with 
the reference number whose value is 
I. 

RTCS 

Format: RTCS<log exp> 

where: log exp = A logical expression. 

Purpose: 

To enable or disable the Real-Time 
Control System. 

Description: 

When this command is executed and the 
logical expression is evaluated to be true 
(any value but 0), the Real-Time Control 
System will be enabl,ed. In other words , 
detection of all interrupts specified by 
the programmer will be turned on. 

If the logical expression is evaluat­
ed to be false (O), all interrupts will be 
disabled. Program detection of interrupts 
will not be active. 

Please refer to Chapter 6 for more 
information on the Real-Time Control Sys­
tem. 



RTCS 

Examples: 

1.) RTCS 1 

Enables the Real-Time Control System. 

2.) RTCS 0 

Disables the Real-Time Control Sys­
tem. 

3.) RTCS A 

Depending on the value of A, enables 
or disables the Real-Time Control 
System. 

4 . ) RTCS NOT A 

Depending on the value of NOT A, en­
ables or disables the Real-Time Con­
trol System. If A=O, the system will 
be enabled; any other value will dis­
able the system. 

Comm-Stor IV 
PROGRAMMER MANUAL 

SAVE 

A program may be re-executed without 
performing the CLEAR operation by entering 
GOTO with a line number. 

Examples: 

1.) RUN 

2.) RUN 100 

SAVE 

Format: 

SAVE[(<drive>)][<file name>[,T][,<range> 

]][;[(<drive>)] •.• ] 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1 . 

file name = The name of a disk 
RUN file which will con-

Format: RUN[<line num>] 

where: line num = A line number in a 
program. 

Purpose: 

To execute the program which resides 
in the Program Text Buffer. 

Description: 

When a RUN command is executed, a 
CLEAR operation is automatically executed. 
If a line number is specified in this com­
mand, execution will start at that line 
number. If a line number is not speci­
fied, execution will begin at the lowest 
numbered line number. 

Program execution can be interrupted 
by entering a [CNTRL/T]; all variables 
return to a value of zero. 

T 

range 

Purpose: 

tain the current pro­
gram; it may be a 
character constant or 
a character variable. 

= Text format; if this 
option is omitted, it 
defaults to packed 
format. 

= A range of line num­
bers as described in 
the LIST command. 

To create a disk file and store the 
current program into it. 

Description: 

Upon execution of the SAVE command, 
the diskette inserted in the specified 
drive is searched to find a file whose 
name is the same as the specified file 

Page 7- 45 



Comm-Stor IV 
PROGRAMMER MANUAL 

SAVE 

name. lf one is found while in DIRECT 
MODE, "--SURE?" will be displayed on the 
terminal. A programmer response of "Y" 
(for yes) will execute the SAVE command 
and, consequently, will destroy all of the 
previous contents of that disk file and 
enter the current lines into that file. A 
response of "N" (for no) will not execute 
the SAVE command, at which time the pro­
grammer may choose a different file name 
to save the program. 

A "T" specified in the SAVE command 
will store the program in text format. 
This enables the future use of a MERGE 
and/or PRESS command to be issued on that 
file and a Comm-Stor command of .D will 
display the file in an understandable for­
mat. If the program is saved in text for­
mat, "TXT" will appear to the right of the 
sector byte count in a Directory display, 
(.DD * or .DS L). If a "T" is not speci­
fied in this command, the program will be 
saved in packed format and "PAK" will ap­
pear to the right of the sector byte 
count. 

If a range of line numbers is speci­
fied in this command, only those line num­
bers which are included in the specified 
range will be entered into the disk file. 

If this command is issued without any 
parameters, the program will be saved in 
its original format and in the same disk 
file as it was originally. If the disk 
file was a standard ASCII file, an "ERROR 
- NO FIND" will occur. 

When a SAVE command is executed, the 
total number of characters including 
spaces which reside in the Program Text 
Buffer, is calculated by the system. This 
figure is known as the ACTUAL BYTE COUNT 
and is the first number which appears 
after the file name (or extension) in a 
Directory display. Comm-Stor then calcu­
lates the number of sectors ( 128 charac­
ters each) needed to hold the actual byte 
count. This figure is called the SECTOR 
BYTE COUNT and is found to the right of 
the actual byte count in a long Directory 

Page 7- 46 

SET 

display. For example, if the actual byte 
count of a file is 2548, the sector byte 
count will be 2560 because 2548 divided by 
128 equals 19.9 and 128 multiplied by 20 
equals 2560. The actual and sector byte 
counts are determined in this manner for 
every disk file, not only those created by 
a SAVE command. 

Examples: 

1.) SAVE "ABC" 

Stores the current program in the 
disk file "ABC" in packed format. 

2.) SAVE "ABC",T,10-100 

Stores lines 10 through 100 of the 
current program in disk file "ABC" in 
text format. 

3.) SAVE A$ 

Saves the current program in the disk 
file whose name is contained in A$ 
and is in packed format. 

4.) SAVE(2)A$,T 

SET 

Saves the current program, in text 
format, in the disk file whose name 
is contained in A$ located on the 
lower drive. 

Format: 

where: $ = Character variables. 

= Single precision varia-
bles. 

= Integer variables. 

= Extended precision varia-
bles. 



SET 

range = 1 or 2 letters (A-Z) sep­
arated by a hyphen. 

Purpose: 

To declare variables as specified 
types. 

Description: 

Upon execution of a SET command, any 
variables starting with the specified 
range of letters will be declared as a 
specified type of variable. For example, 
if 

SET $E-G 

is specified, any variables whose names 
begin with an "E", "F", or "G" will be 
character variables. If the type of a 
variable is to be changed, another SET 
command may be issued. 

Examples: 

1.) SET %1 

Declares any variables whose names 
start with an "I" to be integer vari­
ables. 

2.) SET $A;!B;%C;#D 

Declares all variables beginning with 
the letter "A", "B", "C", and "D" to 
be character, single precision, inte­
ger, and extended precision varia­
bles, respectively. 

Note: The programmer may also change the 
type of a variable by specifying $, ! , 41, 
or % after a variable name. However, when 
the variable name alone is specified, its 
type remains the same as specified in the 
SET command (or default = single preci­
sion). For example, after SET #A is exe­
cuted and A%= 1 is executed, A and A% are 
not the same variable. 

SETIME 

Comm-Stor IV 
PROGRAMMER MANUAL 

SETI ME 

Format: SETIME #<code> TO <char exp> 

where: code = 0 for the actual time, 
1 for TIMER 1, or 2 

Purpose: 

for TIMER 2; this op­
tion may be a numeric 
constant or a numeric 
variable. 

char exp = A character expression 
consisting of 6 numeric 
characters that are in 
24 hour format. 

To enter the time of day into the 
Comm-Stor system. 

Description: 

When this command is executed, the 
character expression is evaluated and the 
time is entered into the system. 24 hour 
time is used (i.e., twelve midnight is 
11 000000" and one second before midnight is 
"235959") . 

These times can be used with the 
Real-Time Clock functions and with WHEN 
commands. 

Please refer to Chapter 6 for a more 
detailed description of this command. 

Examples: 

1.) SETIME #0 TO "001000" 

Enters 10 minutes past midnight as 
the actual time. 

2.) SETIME #1 TO 11 120000 11 

Enters 12 noon into TIMER1. 

3.) SETIME #2 TO A$ 

Enters the time contained in A$ into 
TIMER2. 

Page 7- 47 



Comm-Stor IV 
PROGRAMMER MANUAL 

SETI ME 

4.) SETIME #I to A$ 

Enters the time contained in A$ into 
the current time or one of the TI­
MERs, depending on the value of I. 

STOP 

Format : STOP 

Purpose: 

To interrupt execution of a program. 

Description: 

Upon execution of the STOP command, 
the program in progress is interrupted and 
the message "BREAK", followed by the line 
number where the BREAK occurred, is dis­
played on the terminal. This is useful 
for debugging purposes, such as determin­
ing the value of a variable at a particu­
lar moment within a program. 

To resume execution of the program, a 
CONT command should be used. Please see 
the description of the CONT command. 

Example: 

35 STOP 

SYSTEM 

Format: SYSTEM [{<drive>)] <file name> 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1. 

file name = The name of a disk 
file containing an 
object program which 
may be a character 
constant or a charac­
ter variabl.e. 

Page 7- 48 

TRACE 

Purpose: 

To load an object program into the 
Object Buffer. 

Description: 

When the SYSTEM command is executed, 
the object code residing in the specified 
disk file is loaded into the address spec­
ified by the first two bytes of the object 
code being loaded (normally the Object 
Buffer). 

The object program is specially pro­
duced by Sykes Datatronics, Inc., and is 
accessed by the BASIC language using the 
USC command and USF function. 

Examples: 

1.) SYSTEM "PROG 1" 

Loads object program (in disk file 
"PROG 1") into the Object Buffer. 

2.) SYSTEM (2) A$ 

Loads the object program whose file 
name is contained in A$, which exists 
on the lower drive of a dual drive 
unit into the Object Buffer. 

3.) SYSTEM LEFT$(A$,10) 

Loads the object program (in the disk 
file whose name is the first 10 char­
acters in A$) into the Object Buffer. 

TRACE 

Format: 

TRACE[#<ref>[&#<ref>[&# ••• ]]; ]<log exp> 

where: ref = A port reference number 
(0-3) or a file refer­
ence number (4-24) which 
is associated with a 
disk file; it may be a 
numeric constant or a 
numeric variable. 



TRACE 

log exp = A logical expression. 

Purpose: 

To trace execution of a program. 

Description: 

Upon execution of the TRACE command, 
the logical expression is evaluated. If 
it is false (0), tracing of the program 
will not occur. Otherwise, tracing will 
take place. 

Tracing enables the programmer to see 
which lines in the current program are 
being executed; this is extremely helpful 
for debugging purposes. The order of the 
executed lines is shown by displaying 
their corresponding line numbers surround­
ed by brackets, [). Any PRINT commands 
will cause the data to be displayed on the 
same line as the bracketed line number. 

If reference numbers are specified, 
the display of line numbers will be output 
to a device or a disk file. If more than 
one file reference number is specified, 
the output will be directed to the disk 
file associated with the last file refer­
ence number specified in the command. 

The TRACE command may be entered into 
the system in Direct Mode or in RUN mode. 
If it is executed within a program, trac­
ing will begin at the next line following 
the TRACE command. 

Examples: 

1.) TRACE 1 

Traces the execution of the current 
program. 

2.) TRACE #2&#4;1 

Traces the current program and dis­
plays it to the modem and the disk 
file associated with file reference 
number 4. 

3.) TRACE A 

Comm-Stor IV 
PROGRAMMER MANUAL 

TRUNCATE 

Depending on the value of A, enables 
or disables the tracing of the execu­
tion of the program. 

4. ) TRACE 13; A 

Depending on the value of A, enables 
or disables the tracing of the execu­
tion of the program on the printer. 

TRUNCATE 

Format: 

TRUNCATE[(<drive>)]<file name> 

[;[(<drive>)] •.. ] 

where: drive = 1 for the upper drive 
or 2 for the lower 
drive; if this option 
is not specified, it 
defaults to 1 • 

file name = The name of a disk 
file, which may be a 
character constant or 
a character variable. 

Purpose: 

To delete any unused disk space from 
a disk file. 

Description: 

Execution of this command removes any 
unused bytes from the specified disk file, 
if possible. If it is not possible at the 
time, the file will be truncated when a 
Comm-Stor SQUISH (.SQ) command is execut­
ed. 

Examples: 

1.) TRUNCATE "TEST" 

Truncates disk file "TEST". 

Page 7- 49 



Comm-Stor IV 
PROGRAMMER MANUAL 

TRUNCATE 

2.) TRUNCATE (2) A$ 

Truncates the disk file on the lower 
drive whose name is contained in A$. 

3.) TRUNCATE LEFT$(A$,10);"TEST 11 

Truncates the disk file whose name is 
the first 10 characters in A$ and the 
disk file "TEST" . 

UNLOCK 

Format: UNLOCK #<ref> 

where: ref = A file reference number 
(4-24), which is associated 
with a disk file; it may be 
a numeric constant or a nu­
meric variable. 

Purpose: 

To reposition the second boundary of 
a disk file to the end of the file. 

Description: 

The UNLOCK command is used when the 
boundaries of a disk file have been repo­
sitioned to a logical record in the file 
and when the second boundary of the file 
is to be changed to the end of the file 
(for sequential access). 

Please refer to Chapter 5 for a more 
detailed explanation of this command. 

Examples: 

1.) UNLOCK #4 

Unlocks the second boundary of the 
disk file associated with reference 
number 4. 

2. ) UNLOCK #I 

Similar to the example above except 
that the reference number is the 
value of I. 

Page 7- 50 

WAIT 

USC 

Format: USC<code> 

where: code = A value between 0 and 127 
which may be a numeric 
constant or a numeric var­
iable. 

Purpose: 

To execute a command located in the 
Object Buffer. 

Description: 

After a SYSTEM command is executed, 
the object code is available to the BASIC 
language through the use of an USC com­
mand. 

Example: 

1.) USC 6 

Executes the object code which cor-
responds to the code, 6. 

2.) USC A 

Executes the object code which cor-
responds to the value of A. 

WAIT 

Format: WAIT<address>,<val 1>[,<val 2>] 

where: address = A location in memory 
which may be a numeric 
constant or a numeric 
variable. 

val 1 = A numeric constant, nu­
meric variable, or a 
numeric expression 
which is greater than 
or equal to zero and 
less than or equal to 
255. 



WAIT 

val 2 = Same as the description 
for "val 1". 

Purpose: 

To delay program execution until a 
location in memory contains an appropriate 
value. 

Description: 

When the WAIT command is executed, 
the value of "val 1" is ANDed with the 
value in the specified location. If the 
result is false (0) the program will de­
lay. If it is true (not equal to zero) 
execution of the program will resume nor­
mally. 

If the "val 2 11 option is specified in 
this command, its value is EXCLUSIVE ORed 
with the value in the specified location. 
This result is then ANDed with the value 
in "val 1" and the execution of the pro­
gram will be exactly as described above. 

Examples: 

1.) WAIT A,B 

Delays program execution until the 
value of B ANDed with the value in 
location A is true. 

2 . ) WAIT A, B, C 

Delays program execution until the 
value in location A EXCLUSIVE ORed 
with the value of C and ANDed with 
the value of B is true. 

3.) WAIT 16,16 

Delays program execution until 16 
ANDed with the value in location 16 
is true. 

WATCH 1 
WATCH 2 

Format: 

Comm-Stor IV 
PROGRAMMER MANUAL 

WATCH 1 
WATCH 2 

WATCH{~}<address>,<val 1>[,<val 2>] 

where: address = A location in memory 
which may be a numeric 
constant or a numeric 
variable. 

val 1 

val 2 

Purpose: 

=A numeric constant, nu­
meric variable, or a nu­
meric expression which 
is greater than or equal 
to zero and less than or 
equal to 255. 

= Same as the description 
for "val 1". 

To prepare a hardware register for an 
interrupt condition. 

Description: 

The WATCH commands prepare the two 
hardware registers of the Real-Time Con­
trol System for the use of interrupts. 

The operation of these commands is 
similar to that of the WAIT command, ex­
cept a false value does not cause an in­
terrupt to occur and a true value does 
cause an interrupt to occur. 

Please refer to Chapter 6 for a more 
detailed explanation of this command. 

Examples: 

1.) WATCH1 A,B 

Determines if the value of B ANDed 
with the value in location A is true. 

Page 7- 51 



Comm-Stor IV 
PROGRAMMER MANUAL 

WATCH 1 
WATCH 2 

2.) WATCH2 A,B,C 

Determines if the value of C EXCLU­
SIVE ORed with value in location A 
and ANDed with the value of B is 
true. 

3.) WATCH1 16,16 

Determines if 16 ANDed with the value 
in location 16 is true. 

WHEN 

Format: 

WHEN#<ref> I g~i~B l 
END 

<line num>[{!~priority>][,EJ}J 

where: ref = A reference number 
which corresponds to 
an interrupt condi­
tion, it may be a nu­
meric constant or a 
numeric variable. 

line num = A line number in a 
program which may be a 
numeric constant. 

priority = A number signifying 
the priority of an in­
terrupt condition; it 
may be a numeric con­
stant or a numeric 
variable. 

E = If specified, will 
give an ERROR if a 
double interrupt oc­
curs. 

Page 7- 52 

WHEN 

Purpose: 

To detect an interrupt and to specify 
what should happen when an interrupt oc­
curs. 

Description: 

The WHEN command specifies that the 
current program will take proper action 
when an interrupt occurs. The WHEN com­
mand will only take effect if the Real­
Time Control System is enabled. (See 
RTCS.) 

If a priority is specified, the spec­
ified interrupt condition will have that 
priority associated with it. This is use­
ful when multiple interrupt conditions oc­
cur at the same time. 

If an "E" is specified in this com­
mand, an error will occur if the same in­
terrupt occurs prior to the completion of 
a particular action for that interrupt 
condition. 

Please refer to Chapter 6 for a more 
detailed explanation of this command. 

Examples: 

1.) WHEN #1 GOTO 500&7,E 

This command specifies that program 
control should transfer to line 500 when a 
character is entered from the terminal. 
This detection is given highest priority 
of all WHEN commands. An error will re­
sult if another interrupt occurs at the 
same time as the terminal interrupt. 

2.) WHEN #A GOSUB 1000 

Depending on the value of A, this 
command specifies that the program should 
execute the subroutine starting at line 
2000 when the interrupt occurs. 



ABS 

CHAPTER 8 

FUNCTION DEFINITIONS 

ABS 

Format: ABS(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression. 

Result: The absolute value of "X". 

Example: A = ABS(-5) A is equal to 5 

ASC 

Format: 

where: 

Result: 

ASC(X$) 

X$ = A character constant, a 
character variable, or a 
character expression. 

The decimal value corresponding 
to the first (left-most) ASCII 
character in "X$". (See Appen­
dix C.) 

Example: A = ASC("ABC") A is equal to 65 

ATN 

Format: 

where: 

Result: 

Example: 

A = ATN( ,5) 

ATN(X) 

X = A numeric constant, a nu­
meric variable, or a numer­
ic expression. 

The arctangent (in radians), in 
the range of - lf/2 to n/2, of 
"X". 

A is equal to .4364761 

CHRS 

Comm-Stor IV 
PROGRAMMER MANUAL 

CTIME 

Format: CHR$(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which is equal to or 
greater than 0 and less than 
or equal to 255. 

Result: The ASCII character which is 
equivalent to the decimal value 
of "X". 

Example: A$ = CHR$(65) A$ contains "A" 

cos 
Format: COS(X) 

where: X = A numeric constant, a nu­
meric variable, or a nu­
meric expression which rep­
resents the measure of an 
angle in radians. 

Result: The cosine of "X". 

Example: 

A = COS( 1) A is equal to .54030231 

CTIME 

Format: CTIME(X$) 

where: X$ = A character constant, a 
character variable, or a 
character expression which 
contains 6 numeric charac­
ters. 

Result: The number of seconds in "X$" 
relative to midnight. 

Example: 

A = CTIME("051543") A is equal to 18943 

Page 8- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

CTIME$ 

CTIMES 

Format: CTIME$(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which represents a 
number of seconds. 

Result: A character string containing 6 
numeric characters which repre­
sents "X" as a time relative to 
midnight. 

Example: 

A$= CTIME$(18943) A$ contains "051543" 

DEC 

Format: DEC(X$) 

where: X$ =A character constant, a 
character variable, or a 
character expression con­
sisting of 1 to 6 characters 
which represent a hexadeci­
mal value. 

Result: The decimal equivalent of the 
hexadecimal number contained in 
"X$" • 

Example: A = DEC("FF") A is equal to 255 

EXP 

Format: EXP(X) 

where: · X = A numeric constant, a nu­
meric variable, or a nu­
meric expression. 

Result: The natural exponent raised to 
the power of "X". 

Example: 

A= EXP(2) A is equal to 7.3890561 

Page 8- 2 

HEX$ 

FILL 

Format: FILL(X) 

where: X = A numeric constant, a numer­
ic variable, or a numeric ex­
pression. 

Result: When outputting to a disk file, 
this function will cause the 
ASCII equivalent of the decimal 
value of "X" (obtained from Ap­
pendix C) to be output to the 
disk file until the second bound­
ary is reached. If the accessing 
of a disk file has been purely 
sequential, this function will 
FILL the remainder of the entire 
diskette file. If random access 
has been used, this function will 
FILL the remainder of the entire 
record. 

FRE 

Format: FRE(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression. 

Result: The number (in integer format) of 
bytes in the Free Space Buffer. 

HEX$ 

Format: HEX$(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression. 

Result: A character string containing the 
hexadecimal representation of de­
cimal value "X". 

Example: 

A$ = HEX$(31) A$ contains "1F" 



INT 

INT 

Format: INT(X) 

where: X = A numeric constant, a numer­
ic variable, or a numeric ex­
pression. 

Result: The integer which is the largest 
integer less than or equal to 
"X". 

Example: A = INT(5.263) A is equal to 5 

LEFT$ 

Format: LEFT$(X$,X) 

where: X$ = A character constant, a char­
acter variable, or a charac­
ter expression. 

X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which is greater 
than zero and less than or 
equal to 255. 

Result: The left-most "X" characters in 
"X$ II. 

LOG 

Comm-Stor IV 
PROGRAMMER MANUAL 

MID$ 

Format: LOG(X) 

where: X = A numeric constant, a numer­
ic variable, or a numeric ex­
pression. 

Result: The natural logarithm of "X". 

Example: 

A= LOG(7.6) A is equal to 2.0281482 

MIDS 

Format #1: MID$(X$,X) 

Format #2: MID$(X$,X,Y) 

where: X$ = A character constant, a char­
acter variable, or a charac­
ter expression. 

X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which is greater 
than zero and less than or 
equal to 255. 

Y = Same as the description for 
Example: "X". 

A= LEFT$("ABCDEFG",3) A$ contains "ABC" 

LEN 

Format: LEN(X$) 

where: X$ =A character constant, a 
character variable, or a 
character expression. 

Result: The number of characters in "X$". 

Example: A = LEN("ABC") A is equal to 3 

Result: If Format #1 is used, the charac­
ters in "X$" starting at position 
"X" are the result. If "X" is 
greater than the number of char­
acters in "X$", the result will 
be a null string. 

If Format #2 is used, the charac­
ters in "X$" starting at position 
"X" for "Y" characters are the 
result. If "Y" is greater than 
the number of characters in "X$ 11 , 

the system will ignore "Y" and 
treat the function as for Format 
If 1 • 

Page 8- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

M.IDS 

Examples: 

A$=MID$("ABCDEFG11 ,4) 
A$=MID$("ABCDEFG",4,2) 

A$ contains "DEFG" 
A$ contains "DE" 

PEEK 

Format: PEEK(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which represents a 
location in memory. 

Result: The value in location "X". 

POS 

Format: POS(X) 

where: X = A port reference number (0-3) 
or a file reference number 
(4-24) which is associated 
with a disk file. 

Result: If "X" is a port reference num­
ber, the result will be the cur­
rent position of the pointer of 
that port. 

Example: 

If "X" is a file reference number 
and the disk file has been acces­
sed only by sequential means, the 
result will be the last character 
position accessed. If no charac­
ter has been accessed in the 
file, or if a REWIND command is 
executed, the result will be 1. 

If the disk file has been acces­
sed randomly, the result of this 
function will be the current rec­
ord number. 

PRINT TAB(5);"HELL0"; 
A = POS(1) A is equal to 10 

Page 8- 4 

AND 

AIGHTI 

Format: RIGHT$(X$,X) 

where: X$ = A character constant, a 
character variable, or a 
character expression. 

X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which is greater 
than zero and less than or 
equal to 255. 

Result: The right-most "X" characters in 
"X$". 

Example: 

A$:RIGHT$("ABCDEFG",3) A$ contains "EFG" 

AND 

Format #1: RND 

Result: A random number between 0 and 1, 
obtained from the sequence gener­
ated by the RANDOMIZE command. 

Format #2: RND(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression. 

Result: If "X" is negative, a new se­
quence of random numbers is gen­
erated and the result will be the 
first random number in that se­
quence. 

If "X" is positive 1 the result 
will be the next random number in 
the current sequence. 

If "X" is zero, the result will 
be the last random number gener­
ated from the current sequence. 



SENSE 

SENSE 

Format: SENSE(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which is equal to or 
greater than 1 and less than 
or equal to 17 . 

Result: -1 if condition "X" is true, or 0 
if it is false. 

Below are the corresponding condi­
tions for "X": 

= TERMINAL CHARACTER PRESENT? 
2 = MODEM CHARACTER PRESENT? 
3 = DRIVE 1 READY? 
4 = DRIVE 1 VARIABLE LENGTH DISK? 
5 = DRIVE 1 DISK PROTECTED? 
6 = DRIVE 2 READY? 
7 = DRIVE 2 VARIABLE LENGTH DISK? 
8 = DRIVE 2 DISK PROTECTED? 
9 = INVOKED BY TERMINAL? 

10 = INVOKED BY MODEM? 
11 = PARITY ERROR DETECTED (TERMINAL)? 
12 = FRAMING ERROR DETECTED (TERMINAL)? 
13 = PARITY ERROR DETECTED (MODEM)? 
14 = FRAMING ERROR DETECTED? 
15 = STANDBY MODE? 
16 = BINARY SWITCH IN ENTER POSITION? 
17 = PRINTER CHARACTER PRESENT? 

SGN 

Format: SGN(X) 

where: x = A numeric constant, a numeric 
variable, or a numeric ex-
pression. 

Result: The sign of "XII . 

-1 if "X" is negative 
0 if "X" is zero 
1 if "XII is positive 

Example: A = SGN(3-5) A is equal to -1 

SIN 

Format: SIN(X) 

Comm-Stor IV 
PROGRAMMER MANUAL 

SQR 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression which represents the 
measure of an angle in ra­
dians. 

Result: The sine of "X". 

Example: 

A = SIN( .5) A is equal to .47942554 

SPC 

Format: SPC(X) 

where: X = A numeric constant, a numer­
ic variable, or a numeric 
expression. 

Result: This function can be used with 
the PRINT command. It causes "X" 
number of spaces to be displayed 
on the terminal device. 

The value of "X" must be equal to 
or greater than zero and equal to 
or less than 255. 

Example: 

>PRINT 1;SPC(10);2:PRINT 1;" II j 2 
1 2 
1 2 

SQR 

Format: SQR(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric expres­
sion. 

Result: The square root of "X". 

Example: A = SQR (9) A is equal to 3 

Page 8- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

SRCH 

Formats: 

SRCH (<String 1>,<String 2>) 
SRCH (<String 1>,<String 2>,<pos>) 

where: String 1 = a character string 
which may be a charac­
ter constant, variable 
or expression. 

Purpose: 

String 2 = a character string, 
containing the charac­
ters searched for in 
String 1; it may be a 
character constant, 
variable or expression. 

pos = the character position 
in String 1 (where the 
search begins) which 
may be a numeric varia­
ble, constant or ex­
pression. 

To find the starting position of the 
first occurrence of specified characters 
within a character string. 

Description: 

The result of this function is a nu­
meric value equal to the starting position 
in String 1 where the character(s) in 
String 2 begin. String 1 is scanned (from 
left to right) to find the contents of 
String 2 within it. If a match is found, 
the result is equal to the character posi­
tion in String 1 which contains the char­
acter equal to the first character in 
String 2. 

When Comm-Stor performs this func­
tion, it evaluates certain relationships 
among the specified options in a specific 
order. These evaluations and their re­
sults are described below. 

1. If the number of characters in String 
1 is less than that of String 2, the 
result will equal zero. 

Page 8- 6 

2. 

3. 

4. 

5. 

6. 

SRCH 

If String 1 is a null string, the re­
sult will equal zero. 

If String 2 is a null string, the re­
sult will equal the value of "pos". 
If "pos" is omitted, the result will 
equal one. 

If the entire contents of String 1 
are searched and the contents of 
String 2 were not found, the result 
will equal zero. 

If "pos" is not specified, or is 
specified and equal to one, the 
search will begin from the left-most 
(first) character position in String 
1. 

If "pos" is specified, its integer 
value must be greater than zero and 
less than or equal to 255. The 
search will begin at that character 
position in String 1. If "pos" is 
greater than the length of String 1, 
the result will equal O. 

Examples: 

Command 

X:SRCH("ABC","A") 
X=SRCH("CATABCAT","CAT",3) 
X:SRCH("ABC","D") 

Result 

x = 1 
x = 6 
x = 0 

Contents Contents 
of String of String 

2 Position Result 

null A 1 0 
null A1BC 5 0 
A1BC null 5 0 
A1BC null 4 4 
ABC null *N/S 1 
ABC D 5 0 
ABC D *N/S 0 
ABC A *N/S 1 
ABC A 2 0 
ABAB A *N/S 1 
ABAB A 2 3 
ABAB AB *N/S 1 
ABAB AB 2 3 

*N/S = not specified 



STR$ 

STR$ 

Format: STR$(X) 

where: X = A numeric constant, a numeric 
variable, or a numeric ex­
pression. 

Result: A character string which is the 
equivalent of the value of "X". 

Example: 

A$ = STR$(2+3) A$ contains " 5" 

TAB 

Format: TAB(X) 

where: X =A numeric constant, a numer­
ic variable, or a numeric ex­
pression. 

Result: Depending where the output is di­
rected, this function will cause 
the pointer of the specified de­
vice to be repositioned to the 
character position "X". If the 
line width of the device is con­
figured to be O, inaccurate re­
sults will occur if "X" is equal 
to or greater than 256. 

If the current position of the 
pointer is after position "X", a 
[RETURN] will be issued before 
the pointer is repositioned to 
the specified character position. 

If the current position of the 
pointer is equal to "X", the . 
pointer will not be repositioned. 

If "X" is greater than the con­
figured line width, the pointer 
will be repositioned to the value 
of: 

"X"MOD<line width> 

TAN 

Comm-Stor IV 
PROGRAMMER MANUAL 

TIMES 

which is equal to the remainder 
obtained from dividing "X" by the 
line width. 

Format: TAN(X) 

where: X =A numeric constant, a numeric 
variable, or a numeric ex­
pression which represents the 
measure of an angle in ra­
dians. 

Result: The tangent of "X". 

Example: 

A:TAN(.5) A is equal to .54630249 

TIME 

Format: TIME(X) 

where: X = 0 for the current time 
1 for TIMER1 
2 for TIMER2 

Result: The total number of seconds in 
the current time or in the TIMERs 
relative to midnight. 

TIME$ 

Format: TIME$(X) 

where: X = 0 for the current time 
1 for TIMER1 
2 for TIMER2 

Result: A character string containing 6 
numeric characters which repre­
sents the current time or the 
time in TIMER1 or TIMER2. 

Time is returned in 24-hour for­
mat. 

Page 8- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

USF 

USF 

Format: USF<code> 

where: code = A numeric constant or a 
numeric variable. 

Description: 

When this function is executed, the 
system finds the function in the Object 
Buffer which corresponds to the specified 
"code". The SYSTEM command must be exe­
cuted prior to the execution of this 
function. 

Page 8- 8 

VAL 

Format: VAL(X$) 

where: X$ = A character constant, a 
character variable, or a 
character expression. 

VAL 

Result: The numeric value of the contents 
of "X$". 

Example: A:VAL("2") A is equal to 2 



APPENDIX A 

COMMANDS AND FUNCTIONS 

Comm-Stor IV 
PROGRAMMER MANUAL 

All commands are described in this appendix and are accompanied by their respective 
formats where: 

<xxxx> = the description of the parameter 
xxx = the actual (literal) parameter 

APPEND 
ASSIGN 
AUTO 
BYE 
CALL 
CLEAR 
CLEARV 
CLOSE 
COM 
CONT 
CREATE 
DATA 
DEF 
DEL 
DIM 
DIM/I 
EDIT 
END 
ERASE 
FOR 
GOSUB 
GOTO 
IF END/I 
IF ERROR/I 
IF ... GOTO 
IF ..• THEN 

COMMANDS 

IF ... THEN ... ELSE 
IMAGE 
INPUT 
KILL 
LET 
LINK 
LIST 
LOAD 
MERGE 
NEW 
NEXT 

ON .•. GOSUB 
ON ... GOTO 
OPEN 
OPTION BASE 
POKE 
POSITION 
PRESS 
PRINT 
PRINT USING 
PRINT # 
PRINT II USING 
RANDOMIZE 
READ 
READ II 
READ # USING 
RECSIZE 
RELEASE 
REM 
REN UM 
RESTORE 
RETURN 
REWIND 
RTCS 
RUN 
SAVE 
SET 
SETIME 
STOP 
SYSTEM 
TRACE 
TRUNCATE 
UNLOCK 
USC 
WAIT 
WATCH 1 
WATCH2 
WHEN 

[xxx] = the parameter is optional 

{;;;} = either xxx or yyy 

FUNCTIONS 

NUMERIC FUNCTIONS 

ABS 
ATN 
cos 
DEC 
EXP 
FRE 
INT 
LOG 
PEEK 
POS 
RND 
SENSE 
SGN 
SIN 
SQR 
TAN 
USF 

SYSTEM CLOCK FUNCTIONS 

TIME 
TIME$ 
CTIME 
CTIME$ 

STRING FUNCTIONS 

ASC 
CHR$ 
HEX$ 
LEFT$ 
LEN 
MID$ 
RIGHT$ 
SRCH 
STR$ 
VAL 

OUTPUT FUNCTIONS 

TAB 
FILL 
SPC 

Page A- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

APPEND 

APPEND#<ref> 

Starts sequential access of a disk 
file after the last character in 
the file. 

ASSIGN 

APPEND#4 
APPEND#! 

(page 7-1) 

(page 7-1) 

ASSIGN#<ref>TO[(<drive>)] {*<trk>,<sec> }[,<char/rec>)[,W][&<sec/buff>[,D]][;# ••• ] 
<file name> 

Associates a disk file with a file 
reference number using the available 
space in the File Buffer. 

AUTO 

AUTO[<line num>][,<inc>] 

BYE 

BYE 

Automatically supplies line numbers 
for manually entered BASIC lines. 

Exits BASIC mode and returns the 
system to Comm-Stor mode. 

CALL 

CALL[(<DRIVE>)] <file name> 

Loads and executes a BASIC program, 
with the ability to restore and con­
tinue the BASIC program which issued 
the CALL. 

Page A- 2 

ASSIGN#4 TO D$ 
ASSIGN#! TO (2)"TEST",120&2,D 
ASSIGN#4 TO A$,50;#7 TO "TEST",30&5 

AUTO 
AUTO 10 
AUTO 32, 1 

BYE 

CALL 11 SUB3" 
CALL A$ 
CALL (2) LEFT$ (A$,5) 

(page 7-4) 

(page 7-5) 

(page 7-5) 



CLEAR 

CLEAR[#<ref>] 

Deletes all nonconfigured buffers 
except the BASIC text buffer, or 
erases the contents of a specific 
buffer. 

CLEARY 

CLEARY 

Erases all arrays, variables and 
constants from User Memory. 

CLOSE 

CLOSE[l<ref>[,T][;# .•. ]] 

COM 

Deactivates all, or specified, 
file reference numbers. 

COM[#<ref>[&l<ref>[&# ••• ]];]<command> 

Allows execution of a Comm-Stor 
command in BASIC mode. 

CONT 

CONT 

CLEAR 
CLEARIO 

CLEARV 

CLOSE 
CLOSE#! 
CLOSEl5,T 
CLOSE#I;#5,T 

COM".DS" 
COM#! j II .DD ... 
COM#0&#1&14; 11 .DS11 

Allows the execution of a program CONT 
to continue after a stop command or 
a CNTRL/T has been entered. 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-6) 

(£~e 7-7) 

(page 7-7) 

(page 7-9) 

(page 7-10) 

Page A- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

CREATE 

CREATE[(<drive>)] <file name>[,{ M } ][;[(<drive>)] .•• ] 
<char/file> 

Assigns disk space to a specified 
file name. 

DATA 

DATA<val>[,<val>[, ••• ]] 

DEF 

Places constants in the internal 
data table. 

DEF FN<name>[(<arg>)] = <num exp> 

DEL 

Allows the programmer to define 
a numeric function. 

DEL<range> 

Allows the programmer to delete 
a range of BASIC lines from User 
Memory. 

DIM 

CREATE" TEST" 
CREATE A$,M 
CREATE (2) "TEST";A$,100 

DATA1 
DAT A 1 , II A II I c 

DEF FNA (x) = x+1 
DEF FNB3(y) = FNA (y)/2 

DEL -10 
DEL 10-50 

DIM<array name>(<rows>[,<columns>[, ... ]])( ,<array name> •.. ] 

Specifies the size and name of an 
array, and reserves space in User 
Memory for that array. 

Page A- 4 

DIM A$(2) 
DIM A3 (K) 
DIM B (255,2,3),A(5) 

(page 7-10) 

(page 7-11) 

(page 7-12) 

(page 7-12) -

(page 7-13) 



DIM# 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-13) 

DIMl<ref>TO {<num array >(<rows>[,<cols>[, ••• ]]) } [, ••• ][;# ••. ] 
<char array>(<rows>[,<cols>[, ••• ]]) = <num exp> 

Specifies the size and name of a 
virtual array, and the disk file 
reference number associated with 
that array. 

EDIT 

EDIT[<range>] 

Allows for changes in a BASIC 
program line without re-entering 
the entire line. 

END 

END 

Indicates the completed execu­
tion of a BASIC program. 

ERASE 

ERASE<array list> 

Permits erasure of specific 
arrays from User Memory. 

DIM#6 TO A3 (6) 
DIM#5 TO A3 (7),D$ (8) 
DIM#7 TO A3 (7);#9 TO A1(5),A$(8) = 40 

EDIT 10 
EDIT 
EDIT -10 
EDIT 10-50 
EDIT 10-

END 

ERASE A 
ERASE A,A$,F 

(page 7-14) 

(page 7-17) 

(page 7-17) 

Page A- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

FOR .•. TO 

FOR<control var> = <init val> TO <final val>[STEP <inc>] 

Indicates the number of times that 
a group of BASIC lines will be 
executed. 

GO SUB 

GOSUB<line num> 

Transfers program control to a 
subroutine at the specified line 
number. 

GOTO 

GOTO<line num> 

Transfers program control to the 
specified line number. 

IF END# 

IF END#<ref> GOTO { <line num> } 
END 

Notifies the programmer of an "End of 
File" condition, and allows for pro­
gram control. 

IF ERROR# 

IF ERROR#<code> GOTO {<line num>} 
END 

Notifies the programmer that a 
specific error has occurred, and 
allows for program control. 

Page A- 6 

FOR 1=1 TO 3 
FOR 1=1 TO Z-3 STEP B 

GOSUB 2000 

GOTO 80 

IF END#5 GOTO 200 
IF END#! GOTO END 

IF ERROR#45 GOTO 220 
IF ERROR#! GOTO T 

(page 7-17) 

(page 7-19) 

(page 7-19) 

(page 7-19) 

(page 7-20) 



IF ••• GOTO 

IF<rel exp> GOTO <line num> 

Transfers program control based on 
the result of the relational ex­
pression. 

IF ••. THEN 

IF A$<>B$ GOTO 80 
IF NOT A AND B GOTO 75 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-21) 

(page 7-21) 

{ <line num>} IF<rel exp>THEN ~command> [:<command>[: ••• ]] 

Allows the programmer to request 
a specified action, based on a 
TRUE value of the relational ex­
pression. 

IF ••. THEN ••• ELSE 

IF A<B THEN A=A+1 
IF A$<>B$ THEN PRINT A$:?100 

(page 7-22) 

{ <line nwn>} IF<rel exp>THEN <command> [:<command>[: •.• ]] ELSE <command>[:<command>[: •.• ]] 

Allows the programmer to specify 
particular actions if the relational 
expression is true, and other actions 
if that expression is false. 

IMAGE 

IMAGE< format> 

Specifies the format for inputting or 
outputting data. 

INPUT 

INPUT[<char constant>;]<var list> 

Assigns constants entered from the 
terminal to specific variables. 

IF A<B THEN A=A+1ELSE A=B 
IF A$<>B$ THEN PRINT A$:PRINT 
200 ELSE IF B$ = C$ THEN PRINT B$ 

50 IMAGE 791 
100 IMAGE 51;2591 

INPUT "WHAT IS THE DATE";D$ 
INPUT A,B,C 

(page 7-22) 

(page 7-23) 

Page A- 7 



Comm-Ster IV 
PROGRAMMER MANUAL 

KILL 

KILL[(<drive>)] <file name>[;((<drive>)] ••• ] 

Deletes the specified disk file from a 
diskette. 

LET 

I <var> l 
[LET]<var> = <constant> 

<exp> 

Assigns a value to a variable or 
an array element. 

LINK 

LINK[(<drive>)] <file name> 

Allows the programmer to enter a new 
BASIC program while affecting only 
the free space and BASIC text buffers, 
and execute it. 

LIST 

LIST[#<ref>[&l<ref>[&# ••. ]];][<range>] 

Permits the programmer to output 
a range of BASIC lines presently 
residing in User Memory. 

Page A- 8 

KILL A$ 
KILL A$; (2) "TEST" 
KILL (2) "TEST" 

LET A=B 
C:5 
LET A$=LEFT $ (Y$,5) 
D:F *20 

LINK "PROG 211 

LINK (2) D$ 

LIST 
LIST 10 
LIST -10 
LIST 10-50 
LIST 13; 10-60 

(page 7-24) 

(page 7-24) 

(page 7-25) 

(page 7-25) 



LOAD 

LOAD[(<drive>)]<file name>[,R][,<range>] 

Enters a previously saved disk file 
into memory. 

MERGE 

LOAD "sum" 
LOAD (2) A$ 
LOAD "sum", R 
LOAD A$,R, 20-900 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-27) 

(page 7-28) 

MERGE[(<drive>)]<file name>[,<range>][;[(<drive>)] ••• ] 

NEW 

Adds a disk file text program, 
previously saved, to the existing 
program in User Memory. 

NEW[[(<drive>)]<file name>] 

Deletes all buffers in User Memory, 
except the configured buffers. 

NEXT 

NEXT[<control var>] 

Denotes the end of that group of 
BASIC lines starting with a FOR 
command. 

ON ••• GOSUB 

ON<num exp> GOSUB<line num list> 

Uses the rounded whole number result 
of the specified expression as an 
index to the list of subroutine line 
numbers. 

MERGE "sum" 
MERGE (2) A$, 20-90 
MERGE A$, 10-60; "sum" 

NEW 
NEW SUM 

NEXT 
NEXT I 
NEXT I: NEXT J 

ON A GOSUB 10,20,30 
ON A+B GOSUB 110,120,130,140 

(page 7-28) 

(page 7-29) 

(page 7-29) 

Page A- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

ON ••• GOTO 

ON<num exp> GOTO <line num list> 

Uses the rounded whole number result 
of the specified expression as an 
index to the list of line numbers. 

OPEN 

(page 7-30) 

ON A GOTO 10,20,30 
ON A+B GOTO 110,120,130,140 

(page 7-30) 

{ <file name> } 
OPENl<ref> TO {[(<drive>)] •<trk> , <sec> [,<char/rec>][,W][&<sec/buff>[,D]]}[;f ••• ] 

+[&<sec/buff>[,D] 

By activating a file reference number, 
memory in the File Buffer is reserved 
for inputting and outputting data and 
for characteristics of the reference 
number, itself. This command may be 
used to change the size of the modem 
buffer. 

OPTION BASE 

OPTION BASE<num exp> 

Changes the base of subscripts for all 
arrays in use. 

POKE 

POKE<address>,<val> 

Enters the specified value into the 
specified address. 

Page A- 10 

OPEN #4 TO + 
OPEN #4 TO *20,15 
OPEN #5 TO +&3,D 
OPEN #4 TO 11TEST",30 
OPEN 16 TO +;#5 TO "TEST", 50,W 
OPEN #4 TO (2) "TEST" 40&2;#6 TO+ 

OPTION BASE 1 
OPTION BASE A 

POKE A,B 
POKE 250,J 
POKE J,250 
POKE 250,250 

(page 7-32) 

(page 7-33) 



POSITION 

POSITIONl<ref>,<rec> 

Positions the first boundary to 
a record in random access disk 
files. 

PRESS 

PRESS[(<drive>)]<file name>[,<range>J 

Merges a previously saved BASIC text 
program deleting all REM commands and 
spaces. 

PRINT 

PRINT [<list>[;]] 

Displays specified values on the 
terminal device. 

PRINT USING 

PRINT USING <image>;[<list>[;J] 

Displays specified values on the 
terminal device according to user 
specified format. 

PRINT II 

POSITION 114,2 
POSITION fll,J 

PRESS "PROG 111 

PRESS (2) A$ 
PRESS "PROG 111 , 10-68 
PRESS A$, 100-520 

PRINT 
PRINT A, C+A; A$ 
PRINT "HELLO",; 
PRINT 5 

PRINT USING 200;A$ 
PRINT USING "26#";A$ 
PRINT USING A$;"HELLO" 

PRINT #<ref>[,<rec>J[[&#<ref>[,<rec>][&# ... J];[<list>(;JJ 

Output specified values to a device 
or disk file. 

PRINT 1/4 
PRINT #1 & 114 ;A 
PRINT #R & #I;A,B;e$ 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-33) 

(page 7-34) 

(page 7-34) 

(page 7-35) 

(page 7-36) 

Page A- 11 



Comm-Stor IV 
PROGRAMMER MANUAL 

PRINT IJ USING (page 7-36) 

PRINT #<ref>[,<rec>][[&l<ref>[,<rec>][&# ••. ]]USING<image>;[<list>[;)] 

Output specified values to a terminal 
device according to a user-specified 
format. 

RANDOMIZE 

RANDOMIZE 

Generates a new sequence of random 
numbers. 

READ 

READ<var list> 

Assigns values from an internal data 
table to specified variables or 
array elements. 

READ # 

READ #<ref>[,<rec>];<var list> 

Assigns values from a device or disk 
file to specified variables or array 
elements. 

READ fl USING 

READ #<ref>[,<rec>] USING<image>;<var list> 

Assigns values from a device or disk 
file to specified variables or array 
elements according to a user-specified 
format. 

Page A- 12 

PRINT #5 USING 200;A$ 
PRINT #0&#2&#4, J USING "26# 11 ;A$ 
PRINT #I, 10 USING R$; A$,B,C; 

RANDOMIZE 

READ A,B$ 
READ A3 (7),B$(K), F# 

READ #5; A$ 
READ #1,J;B,C 
READ #5,2;B$,A 

READ #5, USING 200;A 
READ #I,J USING R$; A,B,C$(K) 
READ #1 USING "26#";A$ 

(page 7-37) 

(page 7-37) 

(page 7-38) 

(page 7-39) 



RECSIZE 

RECSIZE#<ref> TO <num exp> 

Changes the record size associated 
with the specified file reference 
number. 

RELEASE 

RELEASE[#<ref>(,T](;# .•• ]] 

Deactivates a disk file reference 
number releasing that space in the 
file buffer for later use. 

REM 

REM[<comment>] 

Allows documentation or remarks 
to reside in a program, but not 
be operated on by the system. 

RENUM 

RENUM[<line num>][,<inc>] 

Renumbers the BASIC line numbers 
residing in User Memory. 

RESTORE 

RESTORE[<line num>] 

Permits internal data tables to be 
reused in whole or in part. 

RECSIZE #4 TO 80 
RECSIZE #I TO A+B 

RELEASE #5 
RELEASE #5, T;IJ 
RELEASE 15,T 

REM 
REM THIS IS A REMARK 

RENUM 
RENUM 3, 1 
RENUM 20 

RESTORE 
RESTORE 59 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-40) 

(page 7-40) 

(page 7-42) 

(page 7-42) 

(page 7-43) 

Page A- 13 



Comm-Stor IV 
PROGRAMMER MANUAL 

RETURN 

RETURN 

Denotes the end of a subroutine, a 
CALLed program, or an RTCS inter­
ruption program, and transfers 
control to the next line after the 
command. 

REWIND 

REWIND#<ref> 

Returns disk file access to 
sequential access starting at 
the beginning of the file. 

RTCS 

RTCS<num exp> 

RUN 

Enables or disables the Real-Time 
Control System. 

RUN[<line num>] 

Executes the BASIC program residing 
in User Memory. 

SAVE 

RETURN 

REWIND #4 
REWIND #I 

RTCS 1 
RTCS A1 

RUN 
RUN 200 

SAVE[(<drive>)][<file name>[,T][,<range>]][;[{<drive>)] ••• ] 

Saves the current BASIC program in 
that disk file associated with the 
indicated file name. 

Page A- 14 

SAVE 
SAVE (2) F$, T 
SAVE "PROG 111 

SAVE (2) F$,T,10-50; "PROG 111 

(page 7-44) 

(page 7-44) 

{page 7-44) 

(page 7-45) 

(page 7-45) 



SET 

SET m <range> [ ;m <range>[; ••• ]] 

Declares a range of variable names as 
particular data types. 

SETIME 

SETIME l<code> TO <char code> 

Issues the current time or 
interrupt times into the Real­
Time Control System. 

STOP 

STOP 

Suspends execution of a BASIC 
program. 

SYSTEM 

SYSTEM [(<drive>)] <file name> 

Loads a Sykes supplied object program 
into the object buffer. 

TRACE 

TRACE[#<ref>[&l<ref>[&# •.. J];]<log exp> 

Displays the numbers of the BASIC lines 
on the specified device as they are 
executed. 

SET $A 
SET !A-F 
SET %G;#H;%A-F 

SETIME :/JO TO A$ 
SETIME #1 TO "081433" 

STOP 

SYSTEM "ADD" 
SYSTEM (2) A$ 

TRACE 0 
TRACE #3;A1 

.... 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-46) 

(page 7-47) 

(page 7-48) 

(page 7-48) 

(page 7-48) 

Page A- 15 



Comm-Ster IV 
PROGRAMMER MANUAL 

TRUNCATE 

TRUNCATE[(<drive>)]<file name>[;[(<drive] •• ,] 

Deletes any unused space from a 
specified disk file. 

UNLOCK 

UNLOCK #<ref> 

USC 

Returns disk file access to sequential 
access starting at the current position 
in the file. 

USC<code> 

Executes commands residing in the 
object buffer. 

WAIT 

WAIT<address>,<val 1> , <val 2> 

Delays execution of the current 
program until the specified 
location contains the necessary 
operative value. 

WATCH 

WATCH{~}<address><val 1>[,<val 2>] 

Prepares those hardware registers to 
be used in the Real-Time Control 
System. 

Page A- 16 

TRUNCATE "TEST" 
TRUNCATE "TEST11 ;(2)A$ 
TRUNCATE (2) A$ 

UNLOCK #4 
UNLOCK #I 

USC 20 
USC A 

WAIT 650, 5 
WAIT A,B,C 

WATCH 1 650, 5 
WATCH 2 A,B,C 

(page 7-49) 

(page 7-50) 

(page 7-50) 

(page 7-50) 

(page 7-51) 



WHEN 

WHEN l<ref> I ~~~~Bl<line num> [{&<priority>][ ,E]}] 
END &E 

Controls the actions to be taken when 
the specified interrupt is detected. 

WHEN #4 GOTO 500 
WHEN 17 GOSUB 5000, 8 
WHEN #1 GOTO 100,E 
WHEN #6 END 

Comm-Stor IV 
PROGRAMMER MANUAL 

(page 7-52) 

Page A- 17 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page A- 18 



APPENDIX B 

ALLOCATING USER MEMORY 

CONTENTS 

1. THE MODEM BUFFER 

2. THE TERMINAL BUFFER 

3. THE OBJECT BUFFER 

4. THE FILE BUFFER 

5. THE STRING BUFFER 

6. THE PROGRAM TEXT BUFFER 

7. THE ARRAY AND VARIABLE BUFFER 

8. THE FREE SPACE BUFFER 

Fixed Space 

9. ALLOCATING BUFFERS 

Comm-Stor IV 
PROGRAMMER MANUAL 

10. COMMANDS AFFECTING THE USER 
MEMORY SPACE 

A. CLEAR 
B. CLEARY 
C. LINK 
D. LOAD 
E. MERGE 
F. NEW 

The Comm-Stor User Memory Space can 
contain up to eight different buffer 
areas. Since these buffers interrelate, 
it is important that the advanced program­
mer understands how these buffers are 
used. The eight buffers are pictured in 
Figure llB-1 and all may be used in BASIC 
mode. Only two may be used in Comm-Stor 
mode and are denoted by asterisks. 

Modem Buffer * 
File Buffer 

String Buffer 

r--_( ___ :__--_-_~ 
Basic I 

User 
Memory 
Space 

Work Variable 

E~~~am SpL _ Spal _ -----

L_. _________ _ 
Fixed Space 

~-------~---

FIGURE IB-1 

Free Space Buffer 

Array and Variable Buffer 

Program Text Buffer 

Terminal Buffer * 
Object Buffer 

Page B- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

1 • THE MODEM BUFFER 

The Modem Buffer temporarily holds 
incoming data from the device connected to 
the modem port. This buffer may be used 
in both the Comm-Stor and BASIC modes. 

The size of this buffer is specified 
at configuration time; a maximum of 32K 
bytes is available. When the Comm-Stor 
unit is powered-up, the amount of memory 
specified will be allocated for this buf­
fer. Its size, however, can be changed by 
the programmer if desired. This is done 
by using the ".AL" command in Comm-Stor 
mode. For example, the command 

.AL M/5235 

will allocate 5235 bytes of User Memory 
for the Modem Buffer. When this command 
is executed, the contents of the BASIC 
Program Space are destroyed becoming part 
of the Free Space Buffer which will be the 
only buffer existing in the BASIC Program 
Space. 

In BASIC mode, the size of the Modem 
Buffer may be changed by using the OPEN 
command. For example, the command 

OPEN #2 TO + & 35 

will allocate 4480 bytes (35 sectors x 128 
bytes = 4480 bytes) of User Memory for the 
Modem Buffer. When this command is exe­
cuted, the contents of the BASIC Work 
Space are destroyed becoming part of the 
Free Space Buffer. Only the Free Space 
Buffer will exist in the BASIC Work Space. 
Therefore, OPENing the Modem Buffer should 
be the first command in the BASIC program. 

2. THE TERMINAL BUFFER 

The Terminal Buffer temporarily holds 
incoming data from the device connected to 
the terminal port. This buffer may be 
used in both the Comm-Stor and BASIC 
modes. The size of this buffer is speci­
fied at configuration time and cannot be 
changed by any Comm-Stor or BASIC command. 
A maximum of 32K bytes is available for 
terminal buffering. 

Page B- 2 

3. THE OBJECT BUFFER 

The Object Buffer holds BASIC object 
code which is loaded into the User Memory 
Space by using the SYSTEM command. The 
size of this buffer is specified at con­
figuration time and cannot be changed by 
any BASIC command. A maximum of 16K bytes 
is available for object buffering. 

4. THE FILE BUFFER 

The File Buffer temporarily holds 
data transferred to and from disk files. 
The size of this buffer is determined by 
the number of sectors used in OPEN com­
mands for disk file reference numbers (see 
page 5-3). Once a character variable is 
used in BASIC mode, the size of the buffer 
may no longer be changed. Therefore, the 
total size needed for all disk file opera­
tions should be reserved before referenc­
ing any character variables. 

5. THE STRING BUFFER 

The String Buffer holds any character 
strings used in BASIC mode. When a char­
acter constant is specified in a command, 
it is temporarily held in this buffer and 
then deleted once the command has been 
executed. Once a character variable is 
used in a command, however, its contents 
are entered into this buffer and will not 
be deleted unless specified by another 
command. 

6. THE PROGRAM TEXT BUFFER 

The Program Text Buffer holds all BA­
SIC program lines used in BASIC mode. 

7. THE ARRAY AND VARIABLE BUFFER 

The arrays and variables used in BA­
SIC mode are stored in this buffer. When 
character variables and character arrays 
are used, their names are placed in this 
buffer accompanied by an address to locate 
their contents in the String Buffer. Ad­
ditionally, any functions created by a DEF 
command are stored in this buffer. 



8. THE FREE SPACE BUFFER 

The Free Space Buffer is the amount 
of unused space which exists in the User 
Memory Space. The numeric function FRE is 
used by the programmer to determine the 
size of this buffer. 

9. ALLOCATING BUFFERS 

As described previously, the Modem, 
Terminal and Object Buffer sizes are spe­
cified at configuration time. When the 
Comm-Star unit is powered-up, these buf­
fers are automatically allocated in the 
User Memory Space. 

For example, assume that the total 
size of the User Memory Space is 16K (or 

Mem-End 
Modem Buffer 
( 1280 bytes) 

Free-End 

Free Space Buff er 
(12146 bytes) 

I 

Free-Start 
Terminal Buffer 

(526 bytes) 

Obj-End 

Object Buffer 
(2048 bytes) 

Mem-Start 

FIGURE IB-2 

Comm-Star IV 
PROGRAMMER MANUAL 

16,000 bytes). Suppose too, the Modem 
Buffer was configured to be 1280 bytes, 
the Terminal Buffer to be 526 bytes and 
the Object Buffer to be 2048. After pow­
ering up Comm-Stor, the User Memory Space 
can be illustrated in Figure #B-2. 

Entering the .BA command at this time 
places the system into the BASIC mode and 
the Direct mode. The Free Space Buffer 
now contains 12,146 bytes (becauses 16,000 
- 1 , 280 - 256 - 2, 048 = 12, 146) . LOAD a 
BASIC program in packed format containing 
370 characters. Since the program is in 
packed format, its size is rounded up to 
the nearest sector for loading purposes. 
Therefore, there must be enough room in 
the User Memory Space to accommodate the 
required number of bytes. Once the pro-

Mem-End 
Modem Buff er 
( 1280 bytes) 

Free-End 

Free Space Buffer 
( 11776 bytes) 

Free-Start 

BASIC Text Buffer 
(370 bytes) 

BASIC-Start 

Terminal Buffer 
(526 bytes) 

Obj-End 

Object Buffer 
(2048 bytes) 

Mem-Start 

FIGURE IB-3 

Page B... 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

gram is loaded into the Program Text Buf­
fer, the buffer is reduced to the actual 
character count of the program. For ex­
ample, the Program Text Buffer is first 
allocated 3ti4 bytes, or 3 sectors ( 370 
characters + 128 characters = 2. 89 sec­
tors). The program is then ioaded into 
this buffer which is then reduced to 370 
bytes and the User Memory Space will now 
look like Figure llB-3. The Free Space 
Buffer now contains 11 , 776 bytes (because 
12,146 - 384 = 11,762). 

The required number of bytes used by 
a BASIC program in text format can be de­
termined by loading the program, saving it 
in packed format, and then looking at the 
byte count (in a long Directory display, 
II .DS L"). 

Mem-End 
Modem Buff er 
( 1152 bytes) 

Free-End 

Free Space Buffer 
( 11904 bytes) 

Free-Start 

BASIC Text Buffer 
(370 bytes) 

BASIC-Start 

Terminal Buffer 
(526 bytes) 

Obj-End 

Object Buffer 
(2048 bytes) 

Mem-Start 

FIGURE #B-4 

Page B- 4 

Suppose we now want to change the 
size of the Modem Buffer. As we have only 
loaded our BASIC program and did not allo­
cate any other nonconfigured buffers, now 
would be the best time to do this. 

Suppose the first line of the BASIC 
program is 

OPEN #2 TO + & 9 

and we execute the program. Since this 
command changed the size of the Modem Buf­
fer to 9 sectors, the User Memory Space 
now looks like Figure #B-4. 

Now, in order to transfer information 
to and from a disk file, the next command 
in the BASIC program should be an OPEN 

Mem-End 
Modem Buffer 
( 1152 bytes) 

File-End 

File Buffer 
(419 bytes) 

Free-End 

Free Space Buffer 
(11485 bytes) 

Free-Start 
BASIC Text Buffer 

(370 bytes 

BASIC-Start 
Terminal Buff er 

(526 bytes) 

Obj-End 

Object Buffer 
(2048 bytes) 

Mero-Start 

FIGURE #B-5 



command using a disk file reference number 
such as: 

OPEN /t4 TO + & 3 

This command allocates 3 sectors of file 
space for temporarily holding data plus 35 
bytes for holding the different parameters 
associated with disk file reference number 
4. The User Memory Space now appears as 
in Figure #B-5. The space needed for the 
File Buffer was taken from the Free Space 
Buffer. 

Now, suppose the BASIC program per­
forms some numeric calculations and OPENs 
another disk file reference number reserv­
ing 2 more sectors. The User Memory Space 
could then be shown as in Figure #B-6. 

Mem-End 
Modem Buffer 
( 1152 bytes) 

File-End 

File Buffer 
(710 bytes) 

Free-End 

Free Space Buffer 
( 11178 bytes) 

Free-Start 
Arrays and Variables 

Buffer 
_(_16 b_y_tesl 

BASIC-End 
BASIC Text Buffer 

(370 bytes) 
BASIC-Start 

Terminal Buffer 
(526 bytes) 

Obj-End 
Object Buffer 
(2048 bytes) 

Mem-St9-rt 

FIGURE #B-6 

Comm-Stor IV 
PROGRAMMER MANUAL 

The size of the File Buffer was in­
creased by 291 bytes (2 sectors x 128 
bytes +35 bytes = 291 bytes) which were 
taken from the Free Space Buffer. Addi­
tionally, the numeric calculations used 
some variables and, consequently, the 
Array and Variable Buffer was allocated 
(for this example, 16 bytes). These bytes 
were also taken from the Free Space Buf­
fer. 

Now, suppose the next line in the BA­
SIC program is 

A$ = "TEST" 

This command stores the characters 
"TEST" in the String Buffer. The name A$ 
and an address which points to the above 

Mem-End 
Modem Buffer 
( 1152 bytes) 

File-End 
File Buffer 
(710 bytes) 

Str-End 
String Buffer 

(4 bytes) 
Free-End 

Free Space Buffer 
( 11169 bytes) 

Free-Start 
Arrays and Variables 

Buffer 
(21 bytes) 

BASIC-End 

BASIC Text Buffer 
(370 b_y_tes) 

BASIC-Start 
Terminal Buff er 

(526 bytes) 
Obj-End 

Object Buffer 
(2048 bytes) 

Mem-Start 

FIGURE IB-1 

Page B- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

characters are stored in the Array and 
Variable Buffer. By allocating space in 
the String Buffer, the size of the File 
Buffer is fixed. The User Memory Sp<:lce 
now is shown in Figure #B-7. Five bytes 
were needed to store the name and address 
of A$ in the Array and Variable Buffer, 
and 4 bytes were needed to store the four 
were needed to store the four characters 
"TEST" in the String Buffer. As you can 
see from Figure llB-7 , a disk file refer­
ence number can no longer be OPENed be­
cause the extra File Buffer space would 
have to be obtained from the String Buffer 
which is not allowed, 

10. COMMANDS AFFECTING THE USER MEMORY 
SPACE 

Modem Buffer 
(384 bytes) 

t--

File Buffer 
(873 bytes) 

String Buffer 
( 1530 bytes) 

Free Space 
Buff er 

(10914 bytes) 

Array and Variable Buffer 
(896 bytes) 

Terminal Buffer 
(384 bytes) 

Object Buffer 
(768 bytes) 

FIGURE #B-8 
Page B- 6 

The commands: 

CLEAR 
CLEA RV 
LINK/CALL 
LOAD 
MERGE 
NEW 

are discussed in this chapter because the 
requirements for buffering in the User 
Memory Space play a major role in the ex­
ecution of these commands. Prior to the 
description of each command, the User Mem­
ory Space will appear as in Figure #B-8. 

A. CLEAR 

When a CLEAR command is executed, the 
contents of the BASIC Work Space are de-

Modem (384) 

Free Space (13,568) 

Program Text 
(896) 

Terminal (384) 

Object (768) 

FIGURE #B-9 



leted and these bytes are returned to the 
Free Space Buffer. Additionally, if any 
IF END # or IF ERROR # commands were exe­
cuted prior to this command, they will be 
deleted from Comm-Stor. Also, if an OP­
TION BASE, a SET, or RTCS INTERRUPT com­
mand were executed prior to the CLEAR, 
they will be returned back to their origi­
nal default values. After executing a 
CLEAR command, the User Memory Space would 
look like Figure #B-9. 

B. CLEARV 

When a CLEARV command is executed, 
the contents of the Variable Space are de­
leted and these bytes are returned to the 
Free Space Buffer. Everything else will 
remain the same except that any program-

Modem (384) 

File (873) 

Free Space (12695) 

Program Text (896) 

Terminal (384) 

Object (768) 

FIGURE flB-10 

Comm-Star IV 
PROGRAMMER MANUAL 

mer-defined functions and the precisions 
specified in a SET command will be delet­
ed. If we were to execute a CLEARV com­
mand, the User Memory Space would look 
like Figure #B-10. 

C. LINK/CALL 

The LINK command enables the program­
mer to enter a new BASIC program into the 
User Memory Space affecting only the Free 
Space Buffer and the Program Text Buffer. 
When a LINK command is executed, Comm-Star 
determines if the number of bytes in the 
Free Space Buffer plus the number of bytes 
in the Program Text Buffer is large enough 
to accommodate the new program. If it is, 
the number of bytes in the new program is 
rounded up to the nearest sector. Comm-

Modem (384) 

File (873) 

String (1530) 

Free Space (10603) 

Array and Variable (251) 

Program Text (1207) 

Terminal (384) 

Object (768) 

FIGURE IB-11 

Page B- 7 



Comm-Stor IV 
PROGRAMMER MANUAL 

Stor then determines if the Program Text 
Buffer is large enough to contain the re­
quired number of bytes. If it is not, 
enough bytes are transferred from the Free 
Space Buffer into the Program Text Buffer. 
The new program is then entered into the 
Program Text Buffer. Any unused bytes 
will be transferred back into the Free 
Space Buffer and the new program is auto­
matically executed. A LINK causes DEF and 
IF ERROR II commands to be CLEA Red . CALL 
works similarly in allocating Buffer 
Space. 

For example, consider a program saved 
in packed format which contains 1207 
bytes. If we executed the LINK command 
for this program, the User Memory Space 
would be like Figure #B-11. 

Modem (384) 

File (873) 

Free Space (13012) 

Program Text (579) 

Terminal (384) 

Object (768) 

FIGURE #B-12 

Page B- 8 

D. LOAD 

Loading a program in Direct mode is 
previously described in this appendix 
(page B-3 ) . A LOAD and RUN command may 
also be executed within a BASIC program. 
When this is done, however, the operation 
is different from that previously de­
scribed. Suppose a BASIC program is exe­
cuting and the command 

LOAD "PROGRAM 1",R 

is in the program. Assume "PROGRAM 1" is 
a program in packed format and contains 
579 bytes. If the above command is exe­
cuted from within the current BASIC pro­
gram, Comm-Star will issue a CLEARV before 
entering the new program into memory (and 

Modem (384) 

Free Space (13029) 

Program Text (1435) 

Terminal (384) 

Object (768) 

FIGURE #B-13 



executing it). Therefore, if the above 
command was executed, the User Memory 
Space would appear as in Figure #B-12. 

E. MERGE 

The MERGE command allows the program­
mer to add a BASIC program saved in text 
format to the current contents of the Pro­
gram Text Buffer. Suppose we wanted to 
MERGE a program which contained 596 ASCII 
characters. Suppose too, that the number 
of actual bytes (in packed format) used by 
the program is 539. When a MERGE command 

Comm-Ster IV 
PROGRAMMER MANUAL 

is executed, the system issues a CLEAR be­
fore the program is added to the Program 
Text Buffer. If we executed a MERGE with 
the above program, the User Memory Space 
would appear as in Figure #B-13. 

F. NEW 

A NEW command is used to tell the 
system to delete the contents of the BASIC 
program space and to return these bytes to 
the Free Space Buffer. Therefore, if we 
issued a NEW command, the User Memory 
Space would look like Figure #B-14. 

Modem (384) 

Free Space (14464) 

Terminal (384) 

Object (768) 

FIGURE IB-14 

Page B- 9 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page B- 10 



Hexa-
Deci- deci-
mal Octal mal 

0 000 00 
1 001 01 
2 002 02 
3 003 03 
4 004 04 
5 005 05 
6 006 06 
7 007 07 
8 010 08 
9 I 011 09 

10 012 OA 
11 013 OB 
12 014 OC 
13 015 OD 
14 016 OE 
15 017 OF 
16 020 10 
17 021 11 
18 022 12 
19 023 13 
20 024 14 
21 025 15 
22 026 16 
23 027 17 
24 030 18 
25 031 19 
26 032 1A 
27 033 1B 
28 034 1C 
29 035 1D 
30 036 1E 
31 037 1F 
32 040 20 

APPENDIX C 

ASCII/EBCDIC CODE CHART 

CHARACTER CODE TABLE: 

DECIMAL/OCTAL/HEXADECIMAL TO EBCDIC/ASCII 
Hexa-

Deci- deci-
EBCDIC ASCII mal Octal mal 

NUL NUL 33 041 21 
SOH SOH 34 042 22 
STX STX 35 043 23 
ETX ETX 36 044 24 

PF EOT 37 045 25 
HT ENQ 38 046 26 
LC ACK 39 047 27 

DEL BEL 40 050 28 
BS 41 051 29 
HT 42 052 2A 

SMM LF 43 053 2B 
BT VT 44 054 2C 
FF FF 45 055 2D 
CR CR 46 056 2E 
so so 47 057 2F 
SI SI 48 060 30 

DLE DLE 49 061 31 
DC1 DC1 50 062 32 
DC2 DC2 51 063 33 

TM DC3 52 064 34 
RES DC4 53 065 35 

NL NAK 54 066 36 
BS SYN 55 067 37 
IL ETB 56 070 38 

CAN CAN 57 071 39 
EM EM 58 072 3A 
cc SUB 59 073 3B 

CU1 ESC 60 074 3C 
IFS FS 61 075 3D 
!GS GS 62 076 3E 
IRS RS 63 077 3F 
!US us 64 100 40 

DS SP 65 101 41 

Comm-Stor IV 
PROGRAMMER MANUAL 

EBCDIC ASCII 

sos I 
FS II 

II 
BYP $ 

LF % 
ETB & 
ESC / 

( 
) 

SM * 
CU2 + 

, 
ENQ -
ACK . 
BEL I 

0 
1 

SYN 2 
3 

PN 4 
RS 5 
UC 6 

EQT 7 
8 
9 
: 

CU3 . , 
DC4 < 
NAK = 

> 
SUB ? 

SP @ 

A 

Page C- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

ASCII/EBCDIC CODE CHART (cont.) 

Hexa-
Deci- deci-
mal Octal mal EBCDIC 

66 102 42 
67 103 43 
68 104 44 
69 105 45 
70 106 46 
71 107 47 
72 110 48 
73 111 49 
74 112 4A Ill 
75 113 4B . 
76 114 4C < 

·1-1 115 4D ( 

78 116 4E + 
79 117 4F I 
80 120 50 & 
81 121 51 
82 122 52 
83 123 53 
84 124 54 
85 125 55 
86 126 56 
87 127 57 
88 130 58 
89 131 59 
90 132 5A I 
91 133 5B $ 
92 134 5C • 
93 135 5D ) 
94 136 5E . 

' 95 137 5F , 
96 140 60 -
97 141 61 I 
98 142 62 
99 143 63 

100 144 64 
101 145 65 
102 146 66 
103 147 67 

Page C- 2 

ASCII 

B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 

z 
[ 
\ 
] 
... 
-
\ 
a 
b 
c 
d 
e 
f 
g 

Hexa-
Deci- deci-
mal Octal mal EBCDIC ASCII 

104 150 68 h 
105 151 69 i 
106 152 6A 1 j 

' 107 153 6B ' k 
108 154 6C % 1 
109 155 6D m -
110 156 6E > n 
111 157 6F ? 0 

112 160 70 p 
113 161 71 q 
114 162 72 r 
115 163 73 s 
116 164 74 t 
117 165 75 u 
118 166 76 v 
119 167 77 w 
120 170 78 x 
121 171 79 ' y 
122 172 7A : z 
123 173 7B # ( 
124 174 7C @ . . 
125 175 7D I ) 
126 176 7E = /'\) 

127 177 7F II DEL 
128 200 80 
129 201 81 a 
130 202 82 b 
131 203 83 c 
132 204 84 d 
133 205 85 e 
134 206 86 f 
135 207 87 g 
136 210 88 h 
137 211 89 i 
138 212 8A 
139 213 8B 
140 214 Be 
141 215 8D 



ASCII/EBCDIC CODE CHART (cont.) 

Hexa-
Deci- deci-
mal Octal mal EBCDIC 

142 216 BE 
143 217 8F 
144 220 90 
145 221 91 j 
146 222 92 k 
147 223 93 1 
14B 224 94 m 
149 225 95 n 
150 226 96 0 

151 227 97 p 
152 230 9B q 
153 231 99 r 
154 232 9A 
155 233 9B 
156 234 9C 
157 235 9D 
15B 236 9E 
159 237 9F 
160 240 AO 
161 241 A1 (\) 

162 242 A2 s 
163 243 A3 t 
164 244 A4 u 
165 245 A5 v 
166 246 A6 w 
167 247 A7 x 
16B 24B AB y 
169 251 A9 z 
170 252 AA 
171 253 AB 
172 254 AC 
173 255 AD 
174 256 AE 
175 257 AF 
176 260 BO 
177 261 B1 
17B 262 B2 
179 263 B3 

Deci-
mal Octal 

I 1BO 264 
1B1 265 
1B2 266 
1B3 267 
1B4 270 

I 
1B5 271 
1B6 272 
1B7 273 
1BB 274 
1B9 275 
190 276 
191 277 
192 300 
193 301 
194 302 
195 303 

I 
196 304 
197 305 
19B 306 
199 307 
200 310 
201 311 
202 312 
203 313 
204 314 
205 315 
206 316 
207 317 
20B 320 
209 321 

i 210 322 
211 323 
212 324 
213 325 
214 326 
215 327 
216 330 
217 331 

Comm-Stor IV 
PROGRAMMER MANUAL 

Hexa-
deci-
mal EBCDIC 

B4 
B5 
B6 
B7 
BB 
B9 
BA 
BB 
BC 
BD 
BE 
BF 
co ( 
C1 A 
C2 B 
C3 c 
C4 D 
C5 E 
C6 F 
C7 G 
CB H 
C9 I 
CA 
CB 
cc 
CD 
CE 
CF 
DO j 
D1 J. 

D2 K 
D3 L 
D4 M 
D5 N 
D6 0 
D7 p 

DB Q 
D9 R 

Page C- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

ASCII/EBCDIC CODE CHART (cont.) 

Deci-
mal 

218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 

Page C- 4 

Octal 

332 
333 
334 
335 
336 
336 
340 
341 
342 
343 
344 
345 
346 
347 
350 
351 
352 
353 
354 
355 
356 
357 
360 
361 
362 
363 
364 
365 
366 
367 
370 
371 
372 
373 
374 
375 
376 
377 

Hexa-
deci-
mal EBCDIC 

DA 
DB 
DC 
DD 
DE 
DF 
EO \ 
E1 
E2 s 
E3 T 
E4 u 
E5 v 
E6 w 
E7 x 
EB y 
E9 z 
EA 
EB 
EC rf 
ED 
EE 
EF 
FO 0 
F1 1 
F2 2 
F3 3 
F4 4 
F5 5 
F6 6 
F7 7 
F8 8 
F9 9 
FA I 
FB 
FC 
FD 
FE 
FF 



Comm-Ster IV 
PROGRAMMER MANUAL 

APPENDIX D 

RESERVED WORDS 

Words which have a special meaning to 
the BASIC Interpreter are called RESERVED 
WORDS. They command the Comm-Stor IV unit 
to perform a specific operation. 

Since these words are used as com­
mands, they must not be used wtihin a var­
iable name (page 2-4) or within a line. 
For example, the statement: 

IF N>NO THEN ••• 

ABS END 
AND ERASE 
APPEND ERROR 
ASC EXP 
ASSIGN FILL 
ATN FN 
AUTO FOR 
BASE FRE 
BYE GOSUB 
CALL GOTO 
CHR$ HEX$ 
CLEAR IF 
CLEARV IMAGE 
CLOSE INPUT 
COM INT 
CONT KILL 
cos LEFT$ 
CREATE LEN 
CTI ME LET 
CTIME$ LINK 
DATA LIST 
DEC LOAD 
DEF LOG 
DEL MID$ 
DIM MERGE 
DIM# NEW 
EDIT NEXT 
ELSE 

is unacceptable (the message ERROR-SN is 
displayed) because BASIC ignores blanks; 
the characters NO T are interpreted as the 
reserved word NOT. The statement should 
be corrected to read: 

IF NO<N THEN ••• 

A list of the reserved words is pro­
vided below. Comm-Ster IV will act on the 
first reserved word encountered in a BASIC 
LINE. 

NOT SE TIME 
ON SGN 
OPEN SIN 
OPTION SPC 
OR SQR 
PEEK SRCH 
POKE STEP 
POS STOP 
POSITION STR$ 
PRESS SYSTEM 
PRINT TAB 
RANDOMIZE TAN 
READ THEN 
RECSIZE TIME 
RELEASE TIME$ 
REM TO 
REN UM TRACE 
RESTORE TRUNCATE 
RETURN UNLOCK 
REWIND USC 
RIGHT$ USF 
RND USING 
RTCS VAL 
RUN WAIT 
SAVE WATCH1 
SENSE WATCH2 
SET WHEN 

Note: An "ERROR - SN" will occur if any 
of the above words appear within 
a variable name or BASIC line. 

Page D- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page D- 2 



APPENDIX E 

INTERNAL FORMATS 

Sykes BASIC uses two different types 
of formats for storing numeric values. 
They are: INTEGER and FLOATING POINT for­
mats. 

1. Integer Format 

When a number is specified as an in­
teger, its value is stored in the system 
using 3 bytes. These bytes, from left to 
right, are called the HIGH ORDER, MIDDLE 
ORDER, and LOW ORDER bytes. Each byte 
contains 8 bits. The first bit of the 
high order byte is used to contain the 
sign of the value. Integer format may be 
illustrated as: 

2 3 

MO LO 

The range of integer values lies between 
-8388608 and +8388608. 

2. Floating Point Formats 

When the system stores a value in 
floating point format, it separates the 
value into an exponent and a mantissa; and 
each of these contains a sign. The range 
of_frloating 3foint values lies between 
1 O and 10 . There are two types of 
floating point formats: SINGLE PRECISION 
and EXTENDED PRECISION. 

Single Precision Format 

The single precision format is used 
to store all numeric values unless they 
are specified otherwise, and provides 
economical storage capabilities. 

Comm-Stor IV 
PROGRAMMER MANUAL 

This format can be illustrated as: 

2 3 4 5 

Is i Is! HO MI M2 LO - ............... -I It. exponent man issa 

Extended Precision Format 

When a value is declared as an ex­
tended precision value, its accuracy is 
greater than if it was a single precision 
value. This is because more memory space 
is used to represent extended precision 
values; this can be illustrated as: 

2 3 4 5 6 7 8 

I 
s• 

I I s;Ho I M1 M2 M3 M4 M5 LO 

---- ~ -----I I t. exponent man issa 

3. Character Format 

Character strings are stored inter­
nally as one byte per character. One 
string can contain up to 255 characters 
and the internal format of the string de­
pends on the number of characters in that 
particular string. 

Page E- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page int~ntionally blank. 

Page E- 2 



APPENDIX F 

Comm-Stor USER DISKETTE FORMATS 

User diskettes are created by using 
the program which resides on the Configur­
ation diskette. The procedure for using 
this program is described in the Comm.-Stor 
IV Configuration Manual (Sykes Publication 
No. 9990B0259). The Configuration program 
creates the Directory (initialized to ze­
ro) and writes the Diskette Header in ac­
cordance with the parameters specified by 
the user. The general format of a User 
diskette is as follows (see Figure #F-1): 

Track Sector 

Track 

0 

Sector 

1-26 

1 
2 
3 
1 
1 

Comm-Stor IV 
PROGRAMMER MANUAL 

Meaning 

IBM Index Track 
(unused) 
Diskette Header 
Reserved 
Start of Directory 
Unused 
Start of Library 

1. IBM Index Track (Track 0) 

The Comm-Stor IV system uses IBM 3741 
compatible diskettes. The "Data Set La­
bels" which reside on the track are pre­
recorded by IBM and are not affected by 

:__ _____ Track 1 

.__ _______ Track O 

FIGURE #F-1 

Page F- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

·the Comm-Stor system in any way. (The 
user may freely READ and PRINT on this 
track without affecting Comm-Stor oper­
ations.) 

2. Diskette Header (Track 1, Sector 1) 

The Diskette Header contains various 
parameters which define the characteris­
tics of the files which will reside on the 
diskette. 

The format of the Diskette Header is 
as follows: 

1-3 
4 

5-6 

7 

8-9 

10-11 
12-13 

14 
15 
16 

17 

18 

Page F- 2 

ASCII characters "USR" 
Internal use 
Number of active files in Li­
brary 
Miscellaneous parameters as 
follows: 

Bit Position 

7 (MSB) 

6 

5 

4 

3 

0-2 

1=Variable Length 
files 

1=Ignore CRC er­
rors 

1=Diskette is 
Write Protected 

1=Double sided 
diskettes 

1=Use IBM spare 
tracks 

Unused 

Unused by Comm-Stor; start of 
scratch pad 
Total number of Library slots 
If fixed length = Maximum size 
per Library slot 
If variable length = Hex. value 
"OF27 II ( 9999 ) 
M . l' 10 aximum ines per message 
Maximum characters per line 
Maximum characters per file 
name 
Maximum characters per ex ten-
sion 
Number of characters per Direc-
tory Entry 

19 Number of Directory Entries per 
Directory Block 

20-21 If fixed length = Unused 
If variable length = Average 
file size 

22-128 Reserved 

NOTES: 

1. All bytes contain binary values ex-

2. 

3, 

4. 

cept 1 , 2, 3, and 7. The byte pairs 
(5-6), (10-11), and (12-13) are each 
used to represent one value, where 
the first byte holds the least signi­
ficant eight bits and the second byte 
holds the most significant eight 
bits. 

Byte 18 was included in the Diskette 
Header for convenience and can be de­
termined by adding 6 to the sum of 
the values in bytes 16 and 17. 

Byte 19 was also included for conven­
ience and can be determined by divid­
ing 256 by the value in byte 18 and 
disregarding the remainder. 

For compatibility reasons, User disk­
ettes configured for variable length 
files contain the binary value of 
9999 in bytes (12-13) because the 
maximum size of variable length files 
is the largest available size. Also, 
the bytes (20-21) on diskettes con­
figured for fixed length files are 
not used because all files are of the 
same size. 

The two hexadecimal dumps shown in 
Figures #F-2 and #F-3 are examples of a 
Diskette Header. 

3. Directory (Starts at Track 1, Sector 
3) 

The length of the Directory is calcu­
lated by the Configurator program and is 
directly proportional to: 

a. maximum number of files/diskette 
b. maximum number of characters/File 

Name 
c. maximum number of characters/Exten-

sion 



Fixed Length Files 

55 53 52 OF 05 00 08 
QC 26 06 oc DB 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 

Variable Length Files 

55 53 52 OF 05 00 88 
QC 26 06 1E 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 
00 00 00 00 00 00 00 

For each file that is stored on a User 
diskette, there exists one Directory entry 
in the Directory. An illustration of a 
Directory Entry is shown in Figure #F-4. 

Field I I ABLE I DEPTX I I I I 
~ ~ 

ControlJJ _J 
File Name 
File Extension 
Starting Track~~~~~~~~ 
Starting Sector~~~~~~~---' 
File Size~~~~~~~~~~~~--l 

FIGURE #F-4 

I I 

The Control field consists of eight bits 
which are described as follows: 

02 01 40 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

FIGURE #F-2 

02 01 40 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

FIGURE #F-3 

7(MSB) 

6 

5 
4 
2 
3' 1 ' and 0 

Comm-Stor IV 
PROGRAMMER MANUAL 

1E 00 00 50 14 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

OF 27 00 50 14 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

Value and Meaning 

O=Library slot is unoccu­
pied 

1=Library slot is occupied 
1=Truncate pending (used by 

variable length files) 
1=File is protected 
Unused 
Internal use 
OOO=Standard Data File 
001=BASIC Text File 
010=Forms Data File 
011=Binary Data File 
100=RUN Packed File 
101=BASIC Packed File 
110=Reserved 
111=BASIC Object File 

Page F- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

. The other fields in each Directory Entry 
are explained below. 

Field 

File Name 

File Extension 

Description 

Contains the (ASCII) 
file name which is left­
j ust ified. The unused 
bytes are set to binary 
value 0. 

Contains the (ASCII) 
file extension 
left-justified. 
used bytes are 
binary value O. 

which is 
The un­
set to 

Directory Print-out 

UNUSED ENTRIES = 59 

TEST 
PROG 1 
PROG 2 
PROG 3 
BIN TEST 

Starting Track Contains the track 
(1-byte binary) number 
where the file begins. 

Starting Sector Contains the sector 
(1-byte binary) number 

.where the file begins. 

File Size Contains the byte count 
(3-byte binary: LO,MO, 
HO) of the file. 

The Directory is made up of one or 
more Directory Blocks; each Directory 
Block is two sectors long. Directory 
Blocks are generated by the Configurator 
program and contain Directory Entries. 

343 
1997 PAK 
1999 TXT 
1997 OBJ 

73 BIN 

FIGURE IF-5 

Fixed Length Files 

80 54 45 53 54 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 02 01 57 01 00 89 50 52 4F 47 20 31 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 03 05 CD 07 00 81 50 52 4F 
47 20 32 00 00 00 00 00 00 00 00 00 00 00 00 00 
07 00 BB 50 52 4F 47 20 33 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 05 OD CD 07 00 83 42 49 4E 54 45 53 54 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 06 11 49 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 07 
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

FIGURE IF-6 

Page F- 4 



Variable Length Files 

80 54 45 53 54 00 
00 00 00 00 00 00 
00 02 01 57 01 00 
00 00 00 00 00 00 
00 00 00 00 00 00 
47 20 32 00 00 00 
00 00 00 00 00 00 
07 00 BB 50 52 4F 
00 00 00 00 00 00 
00 00 00 03 OA CD 
00 00 00 00 00 00 
00 00 00 00 00 00 
00 00 00 00 00 00 
00 00 00 00 00 00 
01 00 00 00 00 00 
00 00 00 00 00 00 

(Directory Blocks provide Comm-St or with 
an efficient means of searching the Direc-
tory.) The number of Directory Entries 
per Directory Block can be determined by 
di Viding 256 by the number of characters 
per Directory Entry and disregarding the 
remainder. Figures #F-6 and #F-7 consist 
of a hexadecimal dump of a Directory Block 
and Figure #F-5 represents the correspond-
ing Directory print-out. 

00 00 00 00 00 
00 00 00 00 00 
89 50 52 4F 20 
00 00 00 00 00 
00 02 04 CD 07 
00 00 00 00 00 
00 00 00 00 00 
47 20 33 00 00 
00 00 00 00 00 
07 00 83 42 49 
00 00 00 00 00 
00 00 00 03 1A 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

00 00 
00 00 
31 00 
00 00 
00 81 
00 00 
00 00 
00 00 
00 00 
4E 54 
00 00 
49 00 
00 00 
00 00 
00 00 
00 00 

Comm-Stor IV 
PROGRAMMER MANUAL 

00 00 00 
00 00 00 
00 00 00 
00 00 00 
50 52 4F 
00 00 00 
02 14 CE 
00 00 00 
00 00 00 
45 53 54 
00 00 00 
00 00 00 
00 00 00 
00 00 04 
00 00 00 
00 00 00 

FIGURE /tF-7 

F. Library 

The starting location of the Library 
depends on the size of the Directory. 

The Library contains the contents of 
each file on the diskette. 

Page F- 5 



Comm-Stor IV 
PROGRAMMER MANUAL 

This page intentionally blank. 

Page F- 6 



Number 

0 

2 

3 

4 

5 

6 

Error 
Message 

SYSTEM 

? 

Bell 

NOT RDY 

DISKETTE 

BAD READ 

PROTECT 

WRONG DK 

PREP SYS 

APPENDIX G 

Comm-Stor IV ERROR MESSAGES 

Description 

Comm-Stor IV 
PROGRAMMER MANUAL 

Indicates that the system has detected an equipment 
problem or a diskette with a bad Directory. 

If the error occurs again when another diskette is 
used, the operator should note the conditions which 
created the error and contact maintenance personnel. 

An improper command has been entered. 
Example; .CM was entered instead of .CN 

A character was entered at the terminal and sent to 
the modem when Data Set Ready was not present. This 
error is usually due to the operator forgetting to 
enter a period to symbolize the start of a command. 

Note: The bell signal is also used to indicate the 
completion of an Enter or Enter Automatic op­
eration, or to alert the operator that a line 
is to be continued on the next display line. 

Indicates an attempt to access a drive when a diskette 
was either not inserted or improperly inserted, or an 
attempt to access Drive 2 in a single drive system. 

Indicates the system was unable to locate the proper 
location on a diskette where a file is stored or will 
be stored. The probable cause of this error is a bad 
diskette. 

Indicates a file or part of a file could not be read 
without errors in eight attempts to read the file. 
The file should be rewritten on the diskette. If the 
error still occurs, that area of the diskette is prob­
ably bad. 

Indicates an attempt to write on a protected diskette 
or file. 

Indicates the diskette is not a User diskette or it is 
a bad User diskette. 

Indicates the baud switch was not set to KYBD position 
when a Baud command was input. 

Page G- 1 



Comm-Stor IV 
PROGRAMMER MANUAL 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Page G- 2 

Error 
Message 

FULL DSK 

NO FIND 

ILLEGAL 

USR TABL 

MODEM 

NO ROOM 

OVERRUN 

AU 

BB 

Description 

Indicates the Directory is full. Either a file must 
be canceled from the diskette before entering a new 
file or a new diskette must be used. 

Indicates a requested file does not exist in the Di­
rectory. Check to see that the file name and exten­
sion completely agree with the Directory entry. 

An illegal operation has been attempted such as enter­
ing a file name longer than the configured maximum 
file name length. 

(Reserved for future expansion.) 

Indicates the system detected an improper command from 
the User Command Table. The User Command Table must 
be corrected using the Configuration diskette. 

Indicates an improper condition has been detected at 
the modem interface. One of the following conditions 
exist: 

Clear to Send was not asserted within 400 msec after 
Request to Send was asserted, 

or 

Data Set Ready was not asserted when attempting to 
perform a Send, Send Directory or Send Status Command. 

The program being resaved cannot fit into an available 
file slot. (The file is deleted from the diskette, 
but the program still remains in memory.) 

Input data in either the Enter or Receive Mode has ex­
ceeded the input rate of the system and data was lost. 
Example: A diskette search error has caused the data 
throughput of the system to be slowed down resulting 
in a data overrun condition. The probable cause is a 
bad diskette. 

(Reserved for future expansion.) 

Indicates that the File Reference # has already been 
used. For example, the operator tried to open a file 
to a reference # already in use. 

Bad Buffer Size: The buffer size must be within the 
range 1-255. 



Number 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

Error 
Message 

BP 

BF 

BN 

BR 

BS 

CN 

DD 

DE 

DZ 

EF 

FC 

FO 

ID 

II 

IU 

LN 

Description 

Comm-Stor IV 
PROGRAMMER MANUAL 

Bad Drive #: Drive number must be 1 or 2. 

Bad File Operation: Kxample: trying to reposition in 
a mode other than random, or specifying an illegal 
file name in a CREATE or KILL command. 

Bad Reference II: The reference number must be within 
the range 0-24. 

Bad Record Size: Record sizes must be within the 
range of 1 to the total file size. 

Bad Subscript: Tried to reference a matrix element 
outside the dimensions of the array. 

Can't Continue: Tried to continue a program that does 
not exist, or tried to continue after a new line has 
been entered. 

Doubly Dimensioned Array: Tried to redimension a 
previously dimensioned array. 

Duplicate Entry: Attempt to create two files with the 
same name. 

Divide by Zero: Tried to divide by zero, which is 
illegal. 

End of File: Reached End of File during a Print or 
Read operation. 

Illegal Function Call: Called a function with 
improper arguments. 

(Reserved for Future Expansion) 

File Manager Buffer Overflow: Tried to assign memory 
space to a file in excess of available memory. 

Illegal Direct: This statement may not be used in the 
Direct Mode. 

Improper Image: The image does not correspond to the 
data or the image itself contains a conflict. 

Illegal User Routine: Incorrect format of a USC 
command or USF function call. 

Line Number Out of Range: All line numbers must be 
between 0 and 64000. 

Page G- 3 



Comm-Stor IV 
PROGRAMMER MANUAL 

Number 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

Page G- 4 

Error 
Message 

LS 

NF 

NO 

OB 

OD 

OE 

OM 

ov 

PT 

RG 

SN 

ST 

TM 

UF 

us 

Descriotion 

String Too Large: Attempted to create a string longer 
than 255 characters. 

Next Without For: There is no FOR Statement corre­
sponding to the next statement, or a branch was made 
in the middle of the FOR/NEXT loop. 

File Reference Number Not Opened: Did not open a file 
to this particular reference number. 

Not Open at Beginning: All files used in a program 
must be opened prior to a string operation. 

Out of Data: Ran out of data while trying to satisfy 
the Read Statement requirements. 

Option Error: An option (1 char letter) specified in 
the Create, Open, Assign, Merge or Save commands is an 
illegal character. 

Out of Memory: Ran out of available memory. 

Overflow: The result of a calculation was too large 
to be represented in the specified variable type. If 
the result of a calculation is too small to be repre­
sented, then the result will be zero. 

The file required for this operation is not in the 
correct format. Select another file or change the 
format of the required file. 

Return Without Prior GOSUB: A Return Statement was 
executed before a corresponding GOSUB, CALL, or RTCS 
INTERRUPTed. 

Illegal Syntax: The syntax in this line is incorrect. 

String Formula Too Complex: The string expression was 
too complex to be evaluated. This can be solved by 
breaking up the expression into two or more smaller 
ones. 

Type Mismatch: The variable type (i.e. string-inte­
ger-single-double precision) is not correct for this 
situation. 

Undefined Function: Tried to reference a user func­
tion that does not exist. 

Undefined Statement: Tried to branch to a nonexistent 
line. 



INDEX 

PAGE 

A F 

Alphabetic Characters 2-1 

Arithmetic Hierarchy 2-6 

Arrays 2-9 

Regular 2-9 
Virtual 1-1,5-14 

B 

BASIC Mode Command 1-8, 3-3 

c 

Clock (24 Hour) 3-13 

Comm-St or Mode Command 1-6, 3-3 
I 

Compound Interest 3-7 

Configuration Diskette 1-2 

Constants 2-2,7,10 

Control Characters 2-1 

D 

Direct Mode 3-3 

Dual Drive Unit 1-9 

E 

Editing, Line 3-12 

Errors 3-15 L 

Expressions 

Arithmetic 2-5 M 
Character 2-8 
Relational 2-8 

Extended Precision 2-3 

File Management System 

Files 

Fixed Length 
Variable Length 

Fixed Point Format 

Floating Point Format 

Functions 

Arithmetic 
Derived 
File Manager 
String 

Image (Options) 

Binary 
Delimiter 
Dollar Sign 
Exponential 
Insertive (Character) 
Minus Sign (Floating) 
Multiple Fields 
Null 
Plus Sign (Floating) 

Comm-Stor IV 
PROGRAMMER MANUAL 

PAGE 

1-1 

5-2, F-3 
5-2, F-3 

2-3 

2-3 

2-4 
2-11 
5-12 
2-7 

4-1 

4-9,11 
4-7, 12 

4-5 
4-4, 11 

4-6 
4-5 
4-6 

4-7, 11 
4-5 

Repeating Field Position 4-b 
Reposition Function 4-9,11 
Sign Control 4-3 
Space Fill-In 4-7,11 
Truncate 4-3 

Load Initial Command 1-9 

Matrix 2-9 

Memory Allocation 1-10, App. B 



Comm-Stor IV 
PROGRAMMER MANUAL 

PAGE PAGE 

N Real Time Control System (RTCS) 1-1 

Numeric Characters 2-1 Refresh Diskette 1-2 

0 Reserved Words 2-4, D-1 

Operators Run Mode 3-3 

Arithmetic 2-6 s 
Logical 2-6 
Negative 2-6 Sequential Access 5-3 
Relational 2-8 
String 2-8 Special Characters 2-2 

Overlaying Programs 1-1 Subscripts 2-9 

p u 

Precision User Diskette 1-2 

Double 1-10 User Memory (see Memory Allocation) 1-7, 
Extended 2-3 B-1 
Single 1-10, 2-3 

v 
R 

Variables 2-4, 7, 10 
Random Access 5-5 



Comm-Stor IV 
PROGRAMMER MANUAL READER'S COMMENTS 

Your comments and suggestions will help us to maintain the quality and effectiveness of 
our publications. We will accept marked photocopies of those pages which you feel may 
require our further attention. Forward your comments to: 

SYKES DATATRONICS, INC. 
Dept. of Technical Publications 
375 Orchard Street 
Rochester, New York 14606 

Does this manual satisfy the need you think it was intended to satisfy? 

c 
0 

•r-1 
~ 
ro 
~ 

Does this manual satisfy your needs? 

o Would you please indicate any factual errors you have found. 
~ 

~ 
~ 
~ 

~ 
c 
0 
M 
ro What faults do you find with this manual? 
~ 
< 
~ 
~ 

~ 
c 
ro 

5 General Comments: 
0 
~ 

Please describe your position: 

Street 

257A 

Zip or Country ~~~~~~-






