USER’S GUIDE TO THE GENERIC BUS INTERFACE

June 1986



USER’S GUIDE TO THE GENERIC BUS INTERFACE

June 1986

This document was prepared by the Graphics Division of Symbolics, Inc.

The software, data, and information contained herein are proprietary to, and
comprise valuable trade secrets of, Symbolics, Inc. They are given in confidence
by Symbolics pursuant to a written license agreement, and may be used, copied,
transmitted, and stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Copyright @ 1986 Symbolics, Inc. All rights reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLICS-LISP,
ZETALISP, MACSYMA, Document Examiner, S-DYNAMICS, S-GEOMETRY, S-PAINT,
and S-RENDER are trademarks of Symbolics, Inc. PDP-11, UNIBUS, and VAX

are trademarks of Digital Equipment Corporation. MULTIBUS is a trademark
of Intel Corporation.

Restricted rights legend.

- Use, duplication, or disclosure by.the government is subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer
Software Clause at FAR 52.227-7013.

Printed in the USA.



TABLE OF CONTENTS

INTRODUCTION

GBI ARCHITECTURE

Interface

How the 3600 Sees It
Interrupts

MULTIBUS Option

UNIBUS Option
Address Map

68000 Processor

Devices and ‘Addresses
Gbus Memory Space
Gbus I/0 Space

INSTALLATION
MULTIBUS

UNIBUS
Software

PROGRAMMING THE GBUS

GBI Software
Flavor gbus-interface

Bus Cycle Error Flavors
Control Word Messages

Use of Buffer Memory

Buffer Memory Messages

Flavor unibus-interface
Serial Ports

Parallel Port

Defining Peripherals

Other Kinds of Interfaces

[y

00 ~J~IH Ut A pwWH

13

13
22
27

29

29
29
32
33
37
37
39
43
44
45
47



APPENDIXES

Appendix A--UNIBUS Registers, Interrupts, and Priorities 51
Appendix B--Parallel and Serial Port Connectors 59
Appendix C--Assembler for the Gbus MC68000 Processor 67

Appendix D--Symbolics 4-Slot MULTIBUS Card Cage and Backplane 75

INDEX 79
LIST OF ILLUSTRATIONS

Figures

Figure 1.1 Logical relationship of devices on the Gbus 2

Figure 2.1 Gbus paddle board 14

Figure 2.2 MULTIBUS interface board 16

Figure 2.3 Symbolics 4-slot MULTIBUS backplane, front view 19
Figure 2.4 UNIBUS interface board

23
Figure A.1 UNIBUS address map register 57
Tables
Table B.1 Gbus-to-Centronics device pin connections 60
Table B.2 16-bit parallel-in cable pins 62
Table B.3 16-bit parallel-out cable pins 63

Table D.1 Pin assignments on MULTIBUS backplane P1 connectors 75



INTRODUCTION

This document describes the Generic Bus Interface (GBI). Both hardware and
software are covered as well as specific examples and suggestions covering several
kinds of applications. This document also includes installation instructions for ‘
both hardware and software.

This document is divided into the following chapters:

1.  "GBI Architecture" provides'a physical description of the GBI and includes a

block diagram to show the logical location of devices on the Generic Bus
(Gbus). '

2. "Installation" is divided into hardware and software installation; hardware
installation includes jumper connections and DIP switch settings. Diagrams
of the interface boards are included.

3. "Programming the Gbus" describes the Lisp messages and flavors used to
control devices on the Gbus.

4. Several appendixes are included. Appendix A describes the available hard-
ware registers and the values to which they can be programmed. Appendix B
lists the pinouts used for connecting the GBI to serial or parallel devices
other than UNIBUS or MULTIBUS. Appendix C describes how to use the
68000 assembler provided on the Gbus system tape. Appendix D gives
specific information about pin assignments on the Symbolics-manufactured
MULTIBUS backplane.

In this document, the term 3600 refers to any member of that family of computers.
unless specifically contrasted or compared with other specific model numbers (such
as 3670).

Although the term Gbus refers specifically to the external Gbus (the 60-conductor
ribbon cable that connects to the UNIBUS or MULTIBUS interface board), it is also
used to refer to the entire package of GBI boards and cables.



GBI ARCHITECTURE

Interface

The architecture of the Generic Bus Interface package can be more easily understood

by making a logical separation at the rear bulkhead of the 3600. Installed within the
3600 backplane is the Generic Bus Interface (GBI), consisting of an Lbus board and

a paddle board. Extending from the bulkhead is the Generic Bus (Gbus, or some-

times external Gbus), a pair of 60-conductor ribbon cables that connects the GBI to a
UNIBUS or MULTIBUS interface board installed in the backplane of an external system.

The GBI forms the interface between the high-speed Lisp Machine world and the

slower, asynchronous world supported by devices with UNIBUS or MULTIBUS back-
planes. Through this interface, which supports UNIBUS and MULTIBUS backplane
interface boards, the Symbolics 3600 can originate cycles on the Gbus, and both the

3600 and bus masters on the external bus have read-write access to a dual-ported
memory buffer on the GBI.

The GBI consists of two boards that are installed in the Lisp Machine: a 16" x 18"
Lbus board and a paddle board. Software is included for the GBI. An optional 68000
microprocessor is available for the GBI and can be used to manage Gbus devices when

fast response to external events is required. An assembler is prov1ded with the Gbus
software for use in programming this optional 68000.

The external Gbus consists of a pair of 60-conductor ribbon cables that connects the
GBI to the external device. It is an asynchronous bus functionally similar to that
specified by the MULTIBUS standard. (For background on the MULTIBUS, refer to
Intel MULTIBUS specification, Intel part no. 9800683-4.) Although the internal
circuits of the GBI are buffered electrically from the external Gbus by the paddle
board, the external Gbus is logically the same as the bus internal {o the GBI

The data path is 16 bits wide; the Gbus can handle either 8- or 16-bit transfers (the
number of bits is specified by the bus master when the cycle is initiated). Like the
MULTIBUS, Gbus address space is divided into memory and I/O: memory address
space is 1 Mbyte (optionally 16 Mbytes) and I/O address space is 64 Kbytes.

The block diagram on the next page shows the major functional components of the
Gbus. As shown in this diagram, the Gbus has master and slave devices. A master
device can request and gain control of the bus; a slave is accessible for read or write
operations by a bus master.



neC o

DUAL- PORT
HIGH-SPEED
»1  RAM BUFFER
®)
PARALLEL PORT,
A SERIAL PORT
INTERFACES
LBUS—GBUS )
> PORT i SERIAL,
™) PARALLEL
, '} Y PORTS
A
Y >
: GENERIC BUS PADDLE GEI)!(JS
\
ARBITER | o T 1 cARD [“@=P> DEVICES
M,9)
* y
- 68000
68000
~»| PROCESSOR PROGRAM
RAM
(M) )
(S) = GBUS SLAVE
(M) = GBUS MASTER
[t
INTERRUPT l<t— INTERRUPT
e MAP l.«— SOURCES

- GBI CONTROL REGISTER

Figure 1.1 Logical relationship of devices on the Gbus



A master can initiate either a read or a write cycle in memory space or I/O space,
using the messages :memory-read, :memory-write, :io-read, and :io-write. The
master devices on the Gbus are the Lbus—Gbus port and the optional 68000 processor.
The other devices, including the 68000 program RAM as well as parallel- and serial-
type interface devices, are slaves. The UNIBUS interface board has slave devices on
it. Each slave is assigned a specific address on the bus. A slave can be either some
sort of memory or an I/O device such as a UART.

Both slave and master devices can exist within the external UNIBUS or MULTIBUS
backplane. However, master devices on the external backplane must observe the
following two restrictions:

1.  The 3600 does not permit external processors to have direct memory access
(DMA) to 3600 memory. Communication between the 3600 and the external
- device must take place in one of two ways: by either the Gbus or the
external device using the dual-ported memory on the Gbus interface board; or
by the 3600 doing bus cycles.

2. The Gbus cannot interrupt the 83600. Neither 3600 hardware nor software
supports interrupts. The 3600 must poll the state of the Gbus and/or
external devices to determine interrupt status. The 68000, however, does
field interrupts and is recommended for real-time response to external
stimuli.

How the 3600 Sees It

The 3600 can use the Lbus—Gbus port to initiate cycles on the Gbus by executing
functions provided in the support software. In this way, the 3600 can read from
or write to any slave device on the Gbus and any attached external bus. The
68000’s program memory is accessed in this manner.

The 3600 can also directly read from and write to the dual-port high-speed RAM
buffer as its own memory. A displaced array can be made to point to the buffer.
This array can be used as any normal array would be. High-speed data transfers
between external bus masters and the 3600 are made using the buffer. In the
example of a UNIBUS option and a DR11-W DMA controller, the 3600 sets the

device’s registers using the Lbus—Gbus port, causing it to transfer data to or
from the buffer.



Interrupts

Although it is not possible to interrupt the 3600 or to access 3600 memory
directly from the Gbus, interrupts can be handled by interrupting the 68000
processor. Interrupting the 68000 processor is the preferred method for dealing
with devices or problems that require very fast response. The 68000 can respond
to an interrupt request in approximately 6 microseconds, from assertion to
executing the first instruction of the service routine.

Fifteen interrupt sources are on the Gbus: seven "external bus" interrupts, plus
eight from devices on the board. Interrupt requests from external devices can be
stored in a 2K x 8-bit RAM called the interrupt map, where the 3600 can then
read and determine the type and priority of the incoming interrupt request. A
macro for defining this interrupt map is provided in the Gbus software and is
described on pages 35 and 36.

MULTIBUS Option

With the MULTIBUS interface board, the Gbus can be connected to a MULTIBUS
backplane, which can be either in an existing computer system or in a card cage
with various MULTIBUS devices.

Since Gbus address space is logically the same as MULTIBUS address space, the
MULTIBUS interface board performs only electrical buffering. With a MULTIBUS
interface board, it is as if the Gbus is directly connected to the backplane, with no
address mapping or restriction. Bus masters in the MULTIBUS backplane can access
any slave on the Gbus board, including the buffer and 68000 program memory. Both
the 3600 (through the Lbus—Gbus port) and the 68000 can access any slave on the
MULTIBUS backplane. The MULTIBUS interface board can be jumpered to supply
the bus-clock signals if necessary (see step 4 of MULTIBUS installation on page 15).

When designing or installing a Gbus/MULTIBUS system, be especially careful of
address assignment conflicts between slave devices on both sides of the bus. Do
not assign MULTIBUS devices to any of the addresses assigned to Gbus devices or
designated "reserved" in the section "Devices and Addresses" (see page 7). In
addition, caution must be exercised when interfacing MULTIBUS devices that use
only 8 bits of I/O addressing. The MULTIBUS interface board does not decode any
of the I/O address bits, so MULTIBUS devices that use only 8 I/O address bits
should be assigned only addresses 0 through 177 (octal).



UNIBUS Option

The UNIBUS interface board interfaces the Gbus with a UNIBUS backplane in e1ther
an existing computer system or a card cage containing only I/O devices.

An 18-bit-range of Gbus addresses is mapped directly into UNIBUS, and access of
an address in that range initiates a UNIBUS cycle. A 15-bit (16-Kword) range of
UNIBUS addresses can be mapped via a set of software-settable mapping registers
to either Gbus memory or I/O space. The mapping registers can be set from either
side. The actual UNIBUS address of the mapped area is set by switches on the
interface board, and the size of the mapped area is likewise selected.

You can configure the UNIBUS interface board to be the primary CPU in the back-
plane. The primary CPU fields interrupts and arbitrates bus mastership. The
UNIBUS cannot interrupt the 3600, but it can interrupt the 68000 processor. When
the UNIBUS interface board is not the primary CPU, it can, under the control of a
Gbus master, generate interrupts of specified vectors and priorities.

' The registers, interrupts, and priorities of the UNIBUS interface board are described
in Appendix A--"UNIBUS Registers, Interrupts, and Priorities."

Address Map

The address map is accessible in UNIBUS address space at a location that can be
switch-programmed anywhere above 760,000(8). The Map Register Address DIP
switch on the interface board is provided to select the address offset. (See page 24
for the settings.)

The map must be accessed in word mode.

Switches 7 and 8 (size 1 and size 0, respectively) select the size of the mapped
area. The choices are 4, 8, 16, and 32 Kbytes. Each 2-Kbyte segment has a map
register. When less than the full mapped area is selected, only the first map
registers are used, for example, when 4 Kbytes are mapped, the first two map
registers are used. See page 25 for instructions on setting these switches.

The UNIBUS Select DIP switch locates the mapped portion of UNIBUS address space.
Six switches select the high 6 bits of the address of the mapped area (see page 25).
The mapped area can be placed anywhere in UNIBUS address space.



68000 Processor

The 68000 processor on the Gbus works like any other 68000 processor, with the
following peculiarities:

The very top 64 Kbytes of the 68000’s 24-bit address space map into Gbus I/O
space. The base address of 68000 I/O space is 77,600,000(8), or FF0,000(16).

Byte addressing is reversed from standard 68000 practice. That is, when doing
a byte transfer when address bit <AO> is cleared, data bits <0-7> are selected;
when <A0> is set, data bits <8-15> are selected. This byte-addressing scheme is
compatible with DEC processor practice, as opposed to Motorola (and IBM-360)
practice and should be noted when trying to port programs from other 68000
processors. '

All interrupts are auto-vectored. The three interrupt lines to the 68000 come
from the three high-order outputs of the interrupt map.

The 68000 processor uses an 8-MHz clock. Reads of the 68000 program memory
occur with no wait states; writes cause one wait state. Reads and writes of all
other Gbus devices cause at least one wait state; the exact number varies from
device to device.

A watchdog timer is included on the GBI; the timer can be enabled and disabled under
control of the 3600. When enabled, the 68000 processor must perform a write to a

certain I/0 space address at least once every 8 seconds, or the timer asserts 68000
Reset.



Devices and Addresses

The Gbus address space, for historical reasons, supports a 20-bit memory-space
addressing mode. In this mode, the high 4 bits of any Gbus memory-space address
are ignored. A setting in the control register enables or disables 20-bit mode.

If full 24-bit addressing is used, the high-order 4 bits for the address comparison
are taken from a field of the control register. If the MULTIBUS option is used
with an existing computer system, you almost certainly want to use full 24-bit
addressing. Gbus masters always generate 24-bit addresses, so care should be
taken in assigning addresses of 1/O devices if the MULTIBUS option is used in a
standalone backplane. The functions in the supplied software always take high-
address bits into account when addressing the on-board slave devices.

Gbus Memory Space

Note that the following addresses are 20-bit addresses. If 24-bit addressing is
enabled, the following are offsets within the 24-bit address space. In that
case, the 4 high-order bits are determined by the high-address-bit field in the
control register (see :enable-hi-addr message on page 34). Addresses are in

octal.
0 - 377,777 128 Kbytes reserved for 68000 program RAM.
400,000 - 1,377,777 Reserved.
1,400,000 - 1,777,777 Dual-port high-speed buffer.
2,000,000 - 2,777,777 UNIBUS option, if present. Memory

cycles made to this block of addresses are
performed on the UNIBUS.

Note: The UNIBUS option decodes only the low 20 address bits and so does not
function correctly when 24-bit addressing is enabled.

When the MULTIBUS interface board is used, Gbus and MULTIBUS address spaces
are the same. When the Gbus is used in a currently operating computer system, it
might be wise to set the high-address-bit field of the control register to some
nonzero value to avoid collision between the computer’s low-address memory and
the 68000 program RAM. In such an installation it seems unlikely to be using the
on-board 68000, so moving the 68000 program memory should not be a problem.



Gbus I/O Space

The location of the 1/0 device registers on the GBI depends on the setting of the
high-address-bit field of the control register. The base address for the devices

is 140,000(8) plus 1,000(8) times the high-address bits. The following addresses
are in octal.

High-Address Bits I/0O Base Address
- <A20-A23>
0 140,000
1 141,000
2 142,000
15 | 155,000

The offsets given on the next page are added to the base address in order to obtain
the device-specific address. Hence, when high-address bits contain 0, the first serial
port device register is at 140,200(8). '

See Appendix A--"UNIBUS Registers, Interrupts, and Priorities" for addresses and
bit assignments of I/O devices on the UNIBUS interface board.



Serial Ports (Byte mode only)

Refer to Intel 8274 Data Sheet for programming information for the Multi-Protocol
Serial Controllers (MPSC).

Offset(8) Register

200 MPSC A Channel A Data

201 MPSC A Channel B Data

202 MPSC A Channel A Control

203 MPSC A Channel B Control

204 MPSC B Channel A Data

205 MPSC B Channel B Data

206 MPSC B Channel A Control

207 MPSC B Channel B Control

342 Serial Clock Control
Bit <4> MPSC A Channel A Ext Clock Enable (1 = Enable)
Bit <5> MPSC A Channel B Ext Clock Enable
Bit <6> MPSC B Channel A Ext Clock Enable
Bit <7> MPSC B Channel B Ext Clock Enable

354 Serial Baud Rate (word mode only; write only)

Bits <0-3> MPSC A Channel A Baud
Bits <4-7> MPSC A Channel B Baud
Bits <8-11> MPSC B Channel A Baud
Bits <12-15> MPSC B Channel B Baud

Each four-bit field is coded as follows:

Value(8) Baud Rate
0 50
1 75
2 110
3 134.5
4 150
5 300
6 600
7 1200
10 1800
11 2000
12 2400
13 3600
14 4800
15 7200
16 9600

17 19,200



10

Parallel Port (Word mode only)

Offset(8)

370

372

Other Registers
Offset(8)
210-213
240 - 277

340

600

602

Register

Data bits
16-bit interface ,
Bits <0-15> Parallel Port Data 0-15 In/Out

8-bit interface
Bits <0-7> Parallel Port Data 0-7 In/Out
Bits <8-13> Not used
Bit <14> Select (read only) ,
Bit <15> Paper Empty (read only)

Control bits
Bit <0> Data OQut Accepted (read only)
Bit <1> Data In Ready (read only)
Bit <2> Start Write Transfer
Bit <3> Not used
Bit <4> Data In Ready Interrupt Enable
Bit <5> Need Data Interrupt Enable
Bit <6> Spare Write Signal
Bit <7> Spare Read Signal

Register
Reserved
Paddle Board ID Prom (read only)

68000 Control Register

Bit <0> 68000 Interrupt Enable
Bit <1> Lisp—68000 Doorbell
Bit <2> Doorbell Interrupt Enable

Calendar Address Register
Bits <8-11> Address input to the calendar chip

Calendar Data Register

Bits <8-11> Data to/from the calendar chip. To
access the calendar, the 4-bit address
must first be written into the Address
Register, and the data then read from
or written into the Data Register.
(Also refer to the data sheet for the
National Semiconductor MM58274
Clock/Calendar chip.)



Offset(8)

604

612

614

Register

Timer (word mode only; write only)

(Timer rate is selected by jumpers on the paddle board.)
Bit <8> Enable Timer Interrupts
Bit <9> Clear Timer Interrupt
Bit <10> Reset Timer

Keep-Alive Register

The 68000 should perform a write to this address

at least once every 8 seconds when the watchdog
timer is enabled. See the message :enable-timeouts
on page 33.

Reserved

1






INSTALLATION

MULTIBUS

1.

Set the 68000 interrupt timer.

The Gbus paddle board is wired at the factory to support 31.25 KHz. To
select a different rate, cut the wire in R6 and solder a wire into one of four
pins on the paddle board. (See page 14 for the location of devices on the

Gbus paddle board.)

The following frequencies are available:

Jumper position

R6
R7
R8
R9

Frequency

31.25 KHz
62.5 KHz
125 KHz
250 KHz

Configure the 8-bit parallel port.

Period

32 usec (factory frequency)
16 usec
8 usec
4 usec

If the 8-bit parallel port option is included and you intend to use it, you must
configure the GBI paddle board for the type of electrical interface you want.
The four types of interface are Symbolics Enhanced Line Printer (ELP),
Centronics, Data Products Long Lines, and Data Products TTL.

e ELP and Data Produbts Long Lines interfaces:

Load SIP resistor networks RN12, RN13, and RN14, and remove SIP

resistor network RN20.

¢ Centronics and Data Products TTL interfaces:

Remove SIP resistor networks RN12, RN13, and RN14, and load SIP

resistor network RN20.

(See Appendix B for more information about parallel port cabling.)

13



SALTON PRL

H

j Y]
& Mot |
§l' CARTRIDCE
2y
g; [:Z::Z::;::::I:::3:2::::::22::
5‘ e ]
g. e e
g —
Z4  LorrcentmoNics .
H

—

PRRALLEL 1/0 TN

i:ﬁﬁ[ltiﬁm ::@:1
— mﬂm prre ﬂﬂ&@i‘:ﬂ mﬂa

PARALLEL 170 OUT

g N Lm,JLam_J pacrrram | broen I e Da
;lT::::::::::::':': | :: ﬁ n
gs ExTERNAL BUS ROORESY * 2»' ]Lz e o M Same ]
a'l Do T t:t"] m[“ *D_ﬂ U e

ﬂ- []rﬁn X ﬂ@ m;.eqjg

Figure 2.1 Gbus paddle board

Interrupt timer

Bulkhead connector
LGP/Centronics connector
Parallel 1/0 input connector
Parallel 1/0 output connector
External bus address connector
External bus data connector
RN13 SIP resistor network
RN14 SIP resistor network
RN12 SIP resistor network
RN20 SIP resistor network

FBwooaoohwir

[y



5.

Install the GBI boards.

The GBI Lbus board can be installed in any Lbus backplane slot that is not
wired for the color bus. This wiring is accomplished by either backplane
hard-wiring or the installation of the baby backplane.

The paddle board installs behind the Lbus board.

Set the Bus Clock jumpers.

The MULTIBUS interface can be configured to drive the BCLK and CCLK

signals if no other device in the MULTIBUS card cage generates these clocks.

To enable driving the clocks, install the jumpers between the following pins
in the group marked MBUS CTRL:

LOC BCLK to BCLK
LOC CCLK to CCLK

Do not install these jumpers if another device in the MULTIBUS card cage
generates these clocks or if the MULTIBUS interface is used in existing
computer systems, since microprocessor boards generate these signals.

Note: Certain jumpers in the MBUS CTRL group might not be labeled in
early versions of the board. The following diagram shows the correct
placement of jumpers:

EXT INIT o o INIT
PWR RST o o INIT
LOC BCLK o o BCLK
LOC CCLK o o CCLK
GND o o BPRN
CBRQ OUT o o CRBQ
CBRQ OUT o o CRBQIN
HI o o CBRQIN

Set the MULTIBUS INIT configuration.

The MULTIBUS interface can be configured to assert the MULTIBUS INIT
signal under one or both of the following conditions:

e When the card cage containing the MULTIBUS is powered up.

e When, under 3600 program control, the MULTIBUS INIT line is asserted
by the Gbus.

15



TLitTiiiiiL L IT::::::::::::::::::::::::::::
] o=l e e I
T ) I |

~CE] mu ?%F“ e | O v |
taal.e czaumn R e R e
wnﬂéﬂ@m ot (T O

t:fﬁﬁjﬂm CERICRR OB e 3OER cES3

TITE

ii’ et e ol Jesen e pf

Figure 2.2 MULTIBUS interface board

Bus Arbitration jumpers

-Bus Clock jumpers

INIT configuration jumpers
Interrupt jumpers
High-Address-Bit jumpers
External bus address connector
External bus data connector

OOtk WM




17

To enable an INIT signal when the MULTIBUS card cagé is powered up,
install a jumper between the following pin_s in the MBUS CTRL group:

PWR RST to INIT

To enable INIT under the control of the Gbus in the 3600, install a jumper
between the following pins:

EXT INIT to INIT
If you want the MULTIBUS interface to assert the INIT signal when the

card cage is powered up and under control of the GBI in the 3600, install
both jumpers.

Note: It is essential that a device in the MULTIBUS environment generate

INIT at power-up.

Set the Bus Arbitration jumpers.

The way in which the arbitration jumpers are configured depends on the type
of other MULTIBUS devices present.

a. When the MULTIBUS interface board is the only master-type device,
install jumpers between the following pins in the MBUS CTRL group:

HI to CBRQIN
GND to BPRN

(These pins might not be marked in early versions of the board. Refer
to step 4.)

Make sure jumpers are not installed on the CBRQIN and CBRQ OUT
pins.

b. When one or more other master-type devices are in the MULTIBUS card
cage and none of them uses the Common Bus Request (CBRQ) signal,
install a jumper between the following pins:

HI to CBRQIN

Make sure jumpers are not installed on the CBRQ, BRPN, GND, and
CBRQ OUT pins.



18

7.

c. When some master-type devices that use Common Bus Request are in

the MULTIBUS card cage, install jumpers between the following pins:

CBRQ OUT to CBRQ
CBRQ OUT to CBRQIN

Make sure nothing is connected to the HI pin.

d. When the MULTIBUS interface is to be the highest priority device in a
serial-priority resolution scheme, add a jumper between the following
pins:

GND to BPRN

(These pins might not be marked in early versions of the board. Refer
to step 4.)

Set the High-Address-Bit jumpers.

The MULTIBUS interface supports MULTIBUS systems using either 20- or
24-address bits. The four jumpers in the MBUS HI ADDR group connect P2
edge connector pins 55, 56, 57, and 58 to the address transceivers on the
MULTIBUS interface board.

The High-Address-Bit jumpers should always be installed in 24-address-bit
systems. They can also be installed in 20-address-bit systems unless those P2
connector pins are used for some other purpose.

Note: In early versions of the MULTIBUS interface, the silkscreened labels
for the pairs of jumper pins might be incorrect. When the board is viewed
from the component side with the cable connectors at the top, A20 is the
rightmost jumper.

Set the Interrupt jumpers.

The MULTIBUS interface can be jumpered so that any two of the eight
MULTIBUS INT lines generate interrupts to the Gbus. The jumper group
labeled INT1 MBUS INT2 determines which MULTIBUS interrupt lines affect
the Gbus.

The 8 MULTIBUS INT lines (numbered 0 through 7) terminate in the jumper
group labeled INT1 MBUS INT2. Two of these interrupts can be selected by



19

using a jumper to connect them to ahy of the pins under the labels INT1 and
INT2. All pins under the label INT1 connect to Gbus Interrupt 1; all pins

~under INT2 connect to Gbus Interrupt 2.

For example, setting the jumpers indicated in the following diagram connects
MULTIBUS INTO to Gbus Interrupt 1 and connects MULTIBUS INTS5 to
Gbus Interrupt 2:

Interrupt
Lines INT1T MBUS INT2
0 e 0 o
1 0 0 o]
2 o o o
3 0 (0} o
4 0 o (o]
5 o (o '
6 o o 0
7 o o o]

Configure the MULTIBUS backplane jumper for priority resolution.

The MULTIBUS interface can be used with either serial- or parallel-priority
resolution schemes.

¢ For serial-priority resolution, the Bus Priority In (BPRN) and BPRO
signals must be chained correctly between boards in the card cage through
use of backplane jumpers and/or ensuring that no empty slots exist between
boards. Figure 2.3 shows the location of the jumpers on the Symbolics
4-slot MULTIBUS backplane (as seen from the front):

&
® )
L

SLOT 1 SLOT 2 SLOT 3 SLOT 4
1 1 ‘_ L L A ,L 1 1
-~ e . o s —_ - P T
15 —@ 15 —@ 15 15 | BPRN/
® ® i, _ ®
16 \@7 16 \_) ‘/E@\ \{ 16 U“ \| 16 | BPRO/
18 | BREQ/
18 PPN 18 e o 18 PPN
L L J A Ll J

Figure 2.3 Symbolics 4-slot MULTIBUS backplane, front view



20

10‘

11.

a. Make sure the jumper labeled A is installed.

b. Install jumpers labeled B when the slot to the left does not contain a
: master-type device.

c. Install jumpers labeled C when the slot to the left contains a
master-type device.

¢ A parallel-priority resolution scheme must be accomplished by a resolution
circuit external to the Symbolics MULTIBUS interface. If you are using a
parallel-priority scheme, remove serial-priority jumpers from the backplane
and all wirewrap connections between BREQ and BPRN (Bus Priority In)
pins and the parallel-priority resolver. ‘

Configure the MULTIBUS backplane for 24-bit addressing, if necessary.

Some backplanes, such as the Symbolics 4-slot backplane, require additional
wiring to support 24 bits of memory addressing. For 24-bit addressing, the

following four pins in each slot must be bussed across the P2 connectors of
the backplane: '

Pin 55 (ADR16/)
Pin 56 (ADR17))
Pin 57 (ADR14/)
Pin 58 (ADR15/)

In the case of other MULTIBUS backplanes, refer to the relevant manu-
facturer’s documentation.

Install the MULTIBUS interface board.

Install the MULTIBUS interface board into one slot in a standard MULTI-
BUS card cage. The slot that the board is plugged into is determined by the
number and type of other MULTIBUS devices in the card cage. The MULTI-
BUS environment can fall into one of the following three categories:

a. The Symbolics MULTIBUS interface is the only master-type device in

the MULTIBUS card cage, that is, all other MULTIBUS boards are
either memory or non-DMA 1/0 devices.

In this case, plug the MULTIBUS interface board into any MULTIBUS
slot. , :



12.

13.

14.

b.  Other master-type devices are in the MULTIBUS card cage; none of
them uses the Common Bus Request (CBRQ) signal.

In this case, plug the MULTIBUS interface board into the slot that has
lowest bus priority. If a serial-priority resolution scheme is being used,
the MULTIBUS interface must be the master-type board located furthest
from the board whose BPRN input is grounded.

c.  Other master-type devices are in the MULTIBUS card cage; at least one
of them uses Common Bus Request.

In this case, install the MULTIBUS interface board at a priority that is
either lower or higher than other boards that use Common Bus Request
but lower than all master-type devices that do not use Common Bus
Request.

Connect the MULTIBUS-Gbus external cables.

The interface between the MULTIBUS interface board and the Gbus paddle

board uses two 60-conductor cables. One cable is used for address, the other
for data.

Plug one end of one cable in the external bus address connector on the
paddle board. Plug one end of the other cable in the external bus data
connector on the paddle board.

Plug the free end of the cable connected to the external bus address
connector into the address connector on the MULTIBUS interface board.

~ Plug the free end of the cable connected to the external bus data connector

into the data connector on the MULTIBUS interface board.

Connect the serial and parallel port cables (if included).

a. = Connect the Gbus serial port cable to the bulkhead connector on the
Gbus paddle board. '

b. Connect the 8-bit parallel port cable to the LGP/Centronics connector on
the Gbus paddle board.

Load the software.

See the section "Software" starting on page 27.



22

UNIBUS

Set the 68000 interrupt timer.

The Gbus paddle board is wired at the factory to support 31.25 KHz. To
select a different rate, cut the wire in R6 and solder a wire into one of four
pins on the paddle board. (See page 14 for the location of devices on the
Gbus paddle board.)

The following frequencies are available:

Jumper position Frequency Period
R6 31.25 KHz 32 usec (factory frequency)
R7 62.5 KHz 16 usec :
R8 125 KHz 8 usec
R9 250 KHz 4 usec

Configure the 8-bit parallel port.

If the 8-bit parallel port option is included and you intend to use it, you must
configure the Gbus paddle board for the type of electrical interface you want.
The four types of interface are Symbolics Enhanced Line Printer (ELP),
Centronics, Data Products Long Lines, and Data Products TTL.

e ELP and Data Products Long Lines interfaces:

Load SIP resistor networks RN12, RN13, and RN14, and remove SIP
resistor network RN20.

¢ Centronics and Data Products TTL interfaces:

Remove SIP resistor networks RN12, RN13, and RN14, and load SIP
resistor network RN20.

(See Appendix B for more information about parallel port cabling.)

Install the GBI boards.

The GBI Lbus board can be installed in any Lbus backplane slot that is not
wired for the color bus. This wiring is accomplished by either backplane
hard-wiring or the installation of the baby backplane.

The paddle board installs behind the Lbus board.



> 9

i Y,

+—®
— O
+—®

©

Y E
R s .
i -]
LA
{y b IMEWL
i ﬂm‘\m

I'l
WE
1 K [ 4z ¢ X4l
T o] e b
% wewr QR [Comwid [

Co=f
[mow
]
r:m:qg
['azn}n Eg:
1

[T 25\
M

fe=g

el
Gezisig
Ceeg
| oo,
£85I Lo g "
g
B ==
LR e
-
"
wn w0d

3--

s B Ncacxd: Becicod oo
r'-'ﬁ..m* (e Er—'—'—g‘a,&ga.;'r—“*ﬁ“ Ca E T g Tk
"...‘: s .;‘.‘ . l;lhl .....L.‘.“.‘.‘. nagscess ————

[ ox o s ]
[ E ﬁﬁﬁiﬁ ﬁ#ﬁ?ﬁﬁﬁﬁﬁ?ﬁ
= —— B "
;'. S e s .
e [ b P -

Eﬁﬁ e B s (e B em

r“*“‘em.*«‘v ot R B oxd ]

.......................................................
......................................................

HIIIIIIIIIIIIIIIIHIlIIIIIIIIIII IlllﬂllllllllllllllllIlﬂlllllllllllll”lll

Figure 2.4 UNIBUS interface board

UNIBUS Select DIP switch

MAP Register Address DIP switch
" 4-unit DIP switch

Address-In connector

Address-Out connector

Data-In connector

Data-Out connector

GO N

23



24

4.

5.

Set the 4-unit DIP switch on the UNIBUS interface board.
The DIP switch in position B20 uses only switches 2, 3, and 4.

Switch 2: Open - Activating the Gbus INIT line automatically
' activates the UNIBUS INIT line.

Closed - Activating the Gbus INIT line does not
activate the UNIBUS INIT line.

Switch 3: Must be closed
Switch 4:- Open - The 3600 is the UNIBUS primary CPU.

Closed - The 3600 is not the UNIBUS primary CPU.
See the section "Address Map" on page 5.

Set the Map'Register Address DIP switch.

This 8-unit DIP switch, which is in location F1 on the UNIBUS interface
board, selects part of the address offset for the UNIBUS map registers in
UNIBUS address space.

The address offset must fall between 760,000 and 777,760. Hence bits
<A13-Al17> of the offset are preset to 1s. The switches select bits <A5-A12> of
the offset. Switch 1 selects bit <A12>, switch 2 selects bit <A13>. The other
switches follows this pattern until switch 8, which selects bit <A5>. When
the switch is open, the corresponding address bit is a 1.

For example, if you wanted to assign the starting location of the map :
registers to UNIBUS address 770,000 (octal), you would set the Map Register
Address switches as follows:

Open (1
Closed (0)
Closed
Closed
Closed
Closed
Closed
Closed

OO W



7.

Set the UNIBUS Select DIP switch.

This 8-unit switch, which is in location E1 on the UNIBUS interface board,
selects the size and offset for the FEP in UNIBUS address space. Switches 7
and 8 (size 1 and size 0, respectively) are used to select the size. They map
as follows:

Size 1 Size 0
(Switch 7). (Switch 8)
4 Kbytes Closed Closed
8 Kbytes Closed Open
16 Kbytes Open Closed
32 Kbytes Open Open

The remaining 6 switches select the offset. Switch 1 selects bit <A17>,
switch 2 selects bit <A16>; the switches follow this pattern until switch 6,
which selects bit <A12>. If the switch is open, the corresponding address bit
is a 1.

If the size is 8 Kbytes, only 5 of the switches are needed; if the size is

16 Kbytes, only 4 of the switches are needed, etc. All unused switches must
be set closed. '

For example, if you wanted to map 8 Kbytes of UNIBUS address space into
Gbus space starting at UNIBUS address 100,000 (octal), you would set the
UNIBUS Select DIP switch as follows:

Closed (0)
Closed
Open (1)
Closed
Closed
Closed
Closed
Open

IO U WNH-

Install the UNIBUS interface board.

If you are installing the UNIBUS interface board in an existing computer
system, install it at a lower priority than the processor or UBA. Otherwise,
install it in the highest priority slot of the UNIBUS backplane. This is the
top slot in the Symbolics-supplied Wesperline backplane; use connectors C, D,
E, and F (the rightmost connectors).

Be sure to refer to the manufacturer’s documentation for specific installation
instructions when installing the UNIBUS board into an existing computer
system.

25



26

10.

Connect the UNIBUS-Gbus external cables.

The interface between the UNIBUS interface board and the Gbﬁs paddle

board uses two 60-conductor cables. One cable is used for address, the other
for data.

Plug one end of one cable in the external bus address connector on the
paddle board. Plug one end of the other cable in the external bus data
connector on the paddle board.

Plug the free end of the cable connected to the external bus address
connector into the connector labeled "Address-In" on the UNIBUS interface
board. Plug the free end of the cable connected to the external bus data
connector into the connector labeled "Data-In" on the UNIBUS interface
board.

Connect the serial and parallel port cables (if included).

a. Connect the Gbus serial port cable to the bulkhead connector on the
Gbus paddle board.

b. Connect the 8-bit parallel port cable to the LGP/Centronics connector on
the Gbus paddle board.

Load the software.

See the section "Software" starting on page 27.



Software

27

Load the tape.

Software comes on a standard distribution format cart tape. To load it, use
the function dis:load-distribution-tape. This creates the directory
SYS:Gbus; on the system host, and loads the files for the systems Gbus and
Gbus-ASSEMBLER.

Load the system.

Type the command :Load System Gbus (or :Load System Gbus-
ASSEMBLER) to bring the system into memory. When the Gbus system is
loaded, the world, which now contains the Gbus system, can be saved to disk
for transfer to other Lisp machines. The Gbus system facilitates this transfer

by clearing itself of any machine-specific knowledge when the world is saved
to disk.

When a cold boot is executed, the Gbus system reconfigures itself to account
for the current machine-specific information, ensuring up-to-date values for
the variables representing the GBI boards. The world can be saved with the
Gbus system and transferred to other machines; when the world is saved, the
Gbus system clears all knowledge of the particular machine on which it is
running and reconfigures itself upon cold boot.

Update the namespace entry.

If a UNIBUS interface board is connected to the Gbus board, it must be
declared in the namespace entry for the host because there is no way to
detect the presence or absence of the UNIBUS optlon, the program must rely
on the peripheral field of the host’s namespace entry.

Since the MULTIBUS is electrically identical to the Gbus and since all
signals sent to the Gbus are therefore sent through buffers to the
MULTIBUS, the MULTIBUS need not be declared as a separate item in the
namespace. A MULTIBUS device should be declared using interface type
GBUS <n> (for example, GBUS 0). A Gbus that connects to a MULTIBUS
need only be declared as Gbus in the peripheral namespace entry.



28

For the purpose of the namespace entry, multiple Gbus boards are identified
by number. Numbering starts at 0 at the leftmost Gbus board and increases
by 1 for each Gbus board to the right. A lone Gbus board is always 0. This
corresponds to the position of the corresponding instance in the list in the
variable *gbus-interfaces®, that is, the instance for unit <n> can be located
by (nth <n> *gbus-interfaces®).

Enter a peripheral entry in the following manner:

Peripheral: Pair: UNIBUS Set: Pair: GBUS 0
Pair: NUMBER 0

Pair: ACCESS-BASE 140000 Pair: ACCESS-SIZE 2048

You assign unit numbers to the UNIBUS board via the Number attribute.
When other peripheral entries refer to a UNIBUS number, it is the Number
attribute of the namespace entry that refers to the UNIBUS board.

ACCESS-BASE is the octal address of the beginning of the mapped area in
the UNIBUS address space, as set in the switches on the UNIBUS board.
ACCESS-SIZE is the decimal size of the mapped area in words as set in the
switches and must be one of 2048, 4096, 8192, or 16384.

If you want the Gbus software to automatically configure peripheral devices
connected to the UNIBUS, you can have entries in the namespace entry for

~ their hosts.

An example enfry might be:
Peripheral Pair: PS-300 Set: Pair: UNIBUS 0

More information using the namespace to set up interface software can be
found on page 46 in the section "Defining Peripherals."



29

PROGRAMMING THE GBUS

GBI Software

The file sys:gbus;gbus.lisp provides a software model of the GBI and the UNIBUS
interface board to make writing software applications more convenient. You are
welcome to use this software and to modify it as you see fit.

All Lisp symbols mentioned in this section are implicit in the package GBUS (which
uses GLOBAL) unless qualified with a package name.

Flavor gbus-interface

An instance of the flavor gbus-interface is the model of a single GBI board. It
supports a set of messages relevant to the operation of the GBI. The GBI control
word is accessed, in whole or by individual fields, through messages to a gbus-
interface instance. Bus cycles are done similarly.

A gbus-interface can have one or more external-interfaces, which are models of
the various option boards. The MULTIBUS interface board has no software model;
its function is purely electrical.

*gbus-interfaces* Variable

Contains a list of gbus-interface instances, one for each board in the machine,
sorted by ascending slot number (slot 0 being the slot furthest from the data
path and other CPU boards in the backplane). In multiboard systems, the proper
way to select the correct instance is to add peripherals entries to the host’s
namespace entry and use the function gbus:find-peripheral-model. The position
in this list of each instance corresponds to the unit number of the board it
represents. See page 27 for information on using the namespace system.



:unit Message to gbus-interface

Returns a fixnum, the number of the unit in which the corresponding Gbus board
resides.

:external-bus-interfaces Message to gbus-interface

Returns a list of several elements, either an instance of flavor external-interface,
a dependent, or nil.

The software does not automatically notice external interfaces; they must be declared
on the local host’s Peripheral attribute in its namespace record. This procedure is
described on page 45 in the section "Defining Peripherals.” Note that a MULTI-

BUS interface board has no software model; it is only an electrical extension of
the Gbus. ‘ ‘

:buffer-memory-size Message to gbus-interface

Returns a fixnum, the count of 32-bit words in the dual-port high-speed RAM
buffer. Double this number for the count of 16-bit words.

:buf-base Message to gbus-interface

Returns a fixnum, the virtual address of the beginning of buffer memory in Lisp
Machine address space. This number can be used as the target of a displaced

array. An array of type art-16b is recommended since buffer memory is accessed
as 16-bit words by the Gbus.

:device-io-base , Message to gbus-interface
Returns a fixnum, the base Gbus I/O space address of the GBI on-board I/O devices.
"This fixnum is dependent on the high-address bits in use on the board; it is there-
fore a message and not a constant.

:memory-read memory-address &optional byte-mode-p Message to gbus-interface

Reads from memory location memory-address. A single fixnum is returned.



31

:memory-write memory-address data Message to gbus-interface
&optional byte-mode-p

Writes data to memory location memory-address. nil is returned.

sio-read  i/o-address &optional byte-mode-p  Message to gbus-interface

Reads from location i/o-address. A single fixnum is returned.

zio-write i/o-address data &optional byte-mode-p Message to gbus-interface

Writes data to location i/o-address. nil is returned.

:device-read device-offset &opi;ional byte-mode-p Message to gbus-interface

Reads from the 1/O device located at the address derived from adding the on-
board I/0 device base address to device-offset. This is equivalent to using the

message :io-read, adding device-offset to the value returned by the message
:device-io-base.

:device-write device-offset data &optional byte-mode-p Message to gbus-interface

Writes to the I/O device located at the address derived from adding the on-
board I/O device base address to device-offset. This is equivalent to using the
message :io-write, adding device-offset to the value returned by the message
:device-io-base.



32

Bus Cycle Error Flavors

When a bus error occurs when performing any of the mentioned bus cycles, the
condition is signaled by the following flavors:

gbus-cycle-error | ‘ : Flavor

Base flavor of the following five flavors, built on the flavor gbus-error, which
is built on error. ‘

no-transfer-acknowledge Flavor
Signaled when a slave device does not respond to the bus cycle within
2 milliseconds.

bus-conflict Flavor

Signaled when an interface board cannot get access to its external bus (such
as when the UNIBUS is continuously busy). The software automatically retries
such a transfer five times before signaling this error.

bus-grant-timeout ' Flavor

Signaled when some other bus master had control of the Gbus and the

Lbus—Gbus port was not granted the bus within 2 milliseconds of
requesting it.

external-bus-not-present Flavor

Signaled when a cycle is done on some external interface that is declared
in the namespace but not actually attached. Discovery of an unattached

external interface is made by detecting recursive bus errors while trying
to signal an external bus error.

external-bus-error Flavor

Base flavor for errors involving cycles on external bus interfaces. The
UNIBUS errors are based on this flavor and are documented in section on
the UNIBUS software on page 39.



33

Control Word Messages

The following messages are supported for manipulating fields of the control word.

:enable-slaves

Message to gbus-interface
:disable-slaves

Message to gbus-interface

Enable/disable the on-board slave devices, includirig the 68000 program memory,
serial I/0, and buffer memory.

senable-timeouts

Message to gbus-interface
:disable-timeouts

Message to gbus-interface

Enable/disable the 68000 watchdog timer. When the watchdog timer is enabled,
the 68000 must write to the Keep-Alive Register in I/O device space at least once

every 8 seconds, or the watchdog timer resets the 68000. The board is initialized
with timeouts disabled.

:reset-68000 Message to gbus-interface

Halts and resets the 68000. The Reset line is asserted only momentarily, then
cleared, as it resets the serial I/O ports also. 68000 program execution, when
started, begins by taking the reset vector at address 0.

Note: Be careful using :reset-68000 when high-address bits are nonzero. (See
the message :enable-hi-addr (page 34). The high-address bits apply to the 68000
program memory as well, that is, setting that field changes the address of 68000
program memory. The 68000 always takes the reset vector at address 0 no matter
the setting of the high-address bits, while the program memory might have been
moved. Resetting the 68000 then causes it to halt from bus errors.

:halt-68000

Message to gbus-interface
sstart-68000

Message to gbus-interface

Halt/start the 68000. 68000 program execution continues where it left off. The
board is initialized with the 68000 halted.



34

:reset-and-start-68000 Message to gbus-interface

Halts, resets, and starts the 68000. 68000 program execution, when started, begins
by taking the reset vector at address 0.

:gbi-auto-cmd Message to gbus-interface
:gbi-manual-cmd Message to gbus-interface

Affect the way the Lbus—Gbus port handles bus cycles for the 3600. You do not
need to use these messages unless the timing of bus cycles must be handled
manually. The board is initialized to auto-cmd and must be in that state when
the bus-cycle messages are used.

:ring-doorbell Message to gbus-interface

Asserts the 68000’s Lbus interrupt request line. Interrupt requests must be

enabled by the 68000 control register to actually interrupt the 68000. This
bit is cleared only by the 68000.

:hog-gbus Message to gbus-interface
:dont-hog-gbus Message to gbus-interface

Assert/deassert Bus-Request at the Lbus—>Gb1is port, locking out other bus
masters. Useful when doing many bus cycles on a busy bus.

:gbi-init Message to gbus-interface

Momentarily asserts Bus-INIT. Resets and disables/halts all devices including
the 68000.

:enable-hi-addr high-address-bits Message to gbus-interface

Enables 24-bit addressing mode, setting the high-address bits to the 4-bit fixnum
“value supplied. 20-bit vs. 24-bit mode applies to on-board slave devices in memory
space, although the on-board devices in I/O space are affected by high-address

bits as well. See the section "Devices and Addresses" on page 7. Be careful when
using the 68000 when the high-address bits are set to other than 0, since the
reset vector might not come from the currently assigned 68000 program memory.



35

zignore-hi-addr Message to gbus-interface

Changes to 20-bit addressing mode. This message also clears the high-address
bits. See the section "Devices and Addresses" on page 7.

:turn-on Message to gbus-interface

Enables local arbitration, local devices, buffer memory, and halts the 68000.

:wait-for-interrupt Message to gbus-interface
&optional (bit-mask #0l17) timeout

Waits for one of the Gbus—Lisp Machine interrupts to be asserted. Four different
signals can be selected from the 15 interrupt signal sources via the Gbus map. The
optional argument bit-mask allows testing of a subset of the four. timeout is given
multiples of 1/60th of a second and defaults to no timeout. The method for this
uses process-wait; therefore, the response time is likely to be longer than 1/60th

of a second. The message :wait-for-interrupt-hard can be used when it is
necessary to spend time in a tight loop awaiting the assertion of an interrupt line.

:wait-for-interrupt-hard Message to gbus-interface
&optional (bit-mask #017) (timeout-in-msec 1000.)

Waits in a tight loop with scheduling inhibited for one of the four Gbus—Lisp
Machine interrupts to be asserted. Note: The timeout argument is now in
milliseconds and cannot be nil.

construct-interrupt-map &rest specs ‘ Macro

Makes an interrupt-map array that can be loaded into the Gbus interrupt map using
the :install-interrupt-map message. The arguments should all be lists of the form
source-name destination-name. The space of names is as follows:

Sources Destinations
:external-bus-<1 through 7> :Lbus-<0 through 3>
:mpsc-<a or b> :68000-<1 through 7>
:paddle-timer
:pio
:lisp-flag

:doorbell



36

Note: The Lbus interrupt requests signified in this mapping scheme consist of
four independent integers representing the four possible Lbus interrupt requests.
The seven 68000 interrupt request lines, however, are determined by reading the
bit-weighted value of three separate interrupt request lines. When no lines are
asserted, the value is zero. When one or more lines are asserted, the combination
of interrupt requests makes up one of the integers 1 through 7. For more infor-
mation, see page 51 in Appendix A--"UNIBUS Registers, Interrupts, and Priorities."

- Furthermore, external bus interrupts are "priority-coded," as are the 68000 inter-
rupt inputs. This means that asserting one 68000 interrupt might mean that
another interrupt is blocked. In the case of simultaneous interrupt requests,
the order in which arguments to this macro are specified is significant, and
priority proceeds in ascending order. That is, the later specification(s) have
priority over the earlier one(s) For example, given the following specifications

in the following order:
(:pio :68000-7)
(:doorbell :68000-3)
the doorbell interrupt preempts the PIO interrupt even though the PIO interrupt

has a numerically higher priority. The order in which they are declared is the
deciding factor.

construct-interrupt-map is used as the initial value in a defconst or defvar
form, as shown:

(defconst foo-interrupt-map (construct-interrupt-map (:mpsc-a :68000-1)
' (:mpsc-b :68000-1)))

Use the :install-interrupt-map message to actually load the map into the interface.

:install-interrupt-map interrupt-map-array Message to gbus-interface
Loads the supplied interrupt-map array into the Gbus interface. The previous
contents of the interface’s interrupt map are lost.

:set-interrupt-map slot value Message to gbus-interface
Changes the contents of one slot of the interface’s interrupt map. This is a

primitive interface and is included for compatibility only. New programs should
use the facilities above.



37

Use of Buffer Memory

The dual-port high-speed RAM buffer provides fast communication between the two
worlds. While not really "dual-ported" in the original sense, access to the memory

is arbitrated between the two busses. It is both readable and writable from the Lbus
and Gbus, and its cycle time is fast enough that even with both sides doing block trans-
fers, wait states are kept to a minimum. When both sides request access simultaneously,
the Gbus side has priority. '

Each gbus-interface instance has a displaced array pointing to its buffer memory.
This array is available by sending the :buffer-memory-array message. It is an
art-fixnum array and is as long as the actual buffer memory in the board. This

array can be used by itself, or it can be used as the host for other indirect and index-
offset arrays.

In applications in which a DMA peripheral or external processor must communicate
blocks of data with the 3600, the buffer memory can be used as the staging area.
Blocks of several hundred words or a few Kwords can be set aside for transfers, and
blocks of several words can be used as flags and simulated "control registers."

Since the array returned is an art-fixnum-type array, writing IEEE single-precision,
floating-point numbers to the buffer memory is not possible using simple aref and
aset calls. It is recommended that you either indirect a like-sized art-g-type array

to it or use the subprimitive %fixnum to coerce the data type of the flonum to
fixnum before using aset. Be careful, however, using an art-q pointing to buffer
memory; objects that are neither fixnums nor single-floats will not be stored meaning-
fully because the buffer memory is only 32 bits and does not record the type field.

All data read from the buffer memory array using aref are fixnums, regardless of
the type of array used to read them. The subprimitive %flonum can be used to

coerce the data type in the cases where the data in the buffer memory are actually
IEEE single-precision, floating-point numbers.

Buffer Memory Messages

. The buffer memory messages are provided for using the buffer memory. They are not
required to use the buffer memory, but might be useful when different activities
are sharing the Gbus.

:buffer-memory-array Message to gbus-interface

Returns an art-fixnum-type array, displaced to the board’s buffer memory.



:buffer-base-address Message to gbus-interface

Returns, as a fixnum, the Gbus address of the base of buffer memory. If the
high-address bits are in use, they are included in the address returned. This

gives the program the address needed by external bus DMA devices or the
UNIBUS—Gbus map.

:allocate-buffer-memory elements array-type Message to gbus-interface
&key (wait-p t) less-is-ok

Assigns a portion of the buffer memory for use. This message is to be used when
concurrent processes are using the Gbus. elements should be the number of array
elements to allocate, of the specified array type. array-type should be either an
array-type symbol (such as art-8b or art-string) or an array (or string) object.
Conversion from array elements to words is done internally. wait-p is t when

the message waits for space to be available, or is nil when the message returns
nil immediately if the requested space cannot be given. less-is-ok allows the
largest available portion to be allocated, even if it is smaller than requested.

The three values returned are buffer-index, gbus-address, and elements-allocated.
buffer-index is the index into the buffer memory if it were accessed through an
array of type array-type. gbus-address is the Gbus byte address of the first
element of the allocated area. elements-allocated is the number of elements
allocated, which might not be the number requested if the message was passed

with less-is-ok being other than nil.

:deallocate-buffer-memory buffer-index array-type Message to gbus-interface
Frees the allocated portion of buffer memory. An error is signaled when the
specified portion was not allocated.

:copy-array?to-buffer array start-index n-elements Message to gbus-interface

buffer-index
Copies the specified portion of array to the buffer memory, starting at buffer-index.
buffer-index should be the first value returned from :allocate-buffer-memory.

:copy-buffer-to-array array start-index n-elements Message to gbus-interface

buffer-index

Copies the specified portion of the buffer memory to array, starting at buffer-index.
buffer-index should be the first value returned from :allocate-buffer-memory.



39

Flavor unibus-interface

The flavor unibus-interface models the UNIBUS interface board. Instances of
this flavor can be found using gbus:find-peripheral-model, passing a device type
of :unibus and 0 in the keyword argument number.

:read-register offset Message to external-interface
Reads the I/O-space register located at the interface’s base address plus offset.

This message and the following one are useful for manipulating the registers
of the UNIBUS interface.

swrite-register offset data Me.ésage to external-interface
Writes data to the 1/0- -space register located at the interface’s base address
" plus offset.

:unibus-read address Message to unibus-interface
Performs a read cycle to the address specified. The read cycle is done via a
:memory-read. :unibus-read is available in word-mode only. The result of
the cycle is returned as a fixnum, or an error is signaled.

:unibus-write address data Message to unibus-interface
Performs a write cycle to the address specified. The write cycle is done via a
.memory-write :unibus-write is available in _bype-mode only and either returns
nil or signals an error. » SR p

sunibus-interrupt vector _ Message to unibus-interface
Initiates an interrupt. An interrupt can be done only when the UNIBUS interface
board is configured not to be the prlmary CPU. vector should be a fixnum in the
range 100(8) to 476(8).

zinterrupting-unibus-p Message to unibus-interfa‘ce

Returns t if an interrupt has been initiated with the :unibus-interrupt
message and has not yet been handled by the CPU. Returns nil otherwise.



40

:set-priority level Message to unibus-interface
Sets the interrupt and bus mastership priority of the interface board. Priority

depends on whether the board is configured as the primary CPU. See page 51
for information about the UNIBUS Priority Register.

:priority Message to unibus-interface

Returns the current priority level.

:interrupt-vector Message to unibus-interface
Returns the vector for the most recent UNIBUS interrupt. This message is
useful only when the UNIBUS interface board is configured as the primary CPU,
since it does not field interrupts otherwise.

:interrupt-request-p , Message to unibus-interface
Tells whether a device is requesting an interrupt. This message is useful only
when the UNIBUS interface board is configured as the primary CPU.

:clear-interrupts &optional (mask #o17) Message to unibus-interface
Clears any interrupts that are currently being passed into the Gbus. The optional
argument mask can be used to selectively clear the interrupts.

:enable-interrupts &optional (mask 1) Message to unibus-interface
Allows the specified interrupt signals to be passed into the Gbus. The default
mask is 1 since 1 corresponds to UNIBUS Interrupt, which is the interrupt
most likely to be in use.

:disable-interrupts &optional (mask 1) Message to unibus-interface

Disables the passing of UNIBUS interface board interrupts-into the Gbus. The bits V
specified in mask are cleared in the Gbus Interrupt Enable/Disable Register.

The UNIBUS interface board does not have a separate :wait-for-interrupts method.
It can generate an external bus priority 7 interrupt, which can be mapped by the



41

interrupt map into one of the Gbus—Lbus interrupt request lines. This can be

tested much more efficiently than repeatedly checking the Gbus Interrupt Read/
Clear Register.

swrite-map UNIBUS-address Gbus-address Message to unibus-interface
&optional io-space-p byte-mode-p (byte-number 0)

Writes the proper slot in the UNIBUS—Gbus access map. The Gbus address can
be in memory space or I/O space. Since there is no byte-mode read cycle on the
UNIBUS and some Gbus registers require being addressed in byte mode, the map
entry can specify byte-mode access and the low bit to be used. The 11 low-order
bits of the two addresses must be the same. An error is signaled when the low-
order bits are not the same, when the address is outside the mapped area of
UNIBUS space, or when the mapped area was not specified in the namespace entry.

The map is composed of 16 registers, each one corresponding to 1 Kword (2 Kbytes).
Only one use of this message is needed for each 1-Kword segment.

Note that a CPU on the UNIBUS can set the map itself, because it is mapped ‘into
the UNIBUS address space as well.

:read-map-register register-number Message to unibus-interface
Returns the 12-bit fixnum stored in the addressed map register. register-number
should be a fixnum in the range 0 to 15. The low 9 bits of this fixnum are bits
<19:12> of the Gbus address. The other bits are documented on page 56 in

Appendix A--"UNIBUS Registers, Interrupts, and Priorities.” Three other values
are also returned:

1. t if the register maps to I/O space or nil if it maps to memory space;

2. t if the register specifies byte-mode accesses or nil if it specifies
word-mode accesses;

3. the low-order bit used for byte-mode accesses.

The following conditions might be signaled while performing :read-map-register:

unibus-error g Flavor

Base flavor for the following flavors. It is based on external-bus-error,
which is based on gbus-cycle-error.



42

unibus-grant-timeout ‘ Flavor
The UNIBUS was continuously busy for 200 microseconds.

unibus-non-existent-memory Flavor
No slave responded within 6 microseconds.

unibus-parity-error Fldvor
A parity error occurred reading from UNIBUS memory.

unibus-interrupt-still-pending ' Flavor

The :unibus-interrupt message was sent, but the last interrupt requested
was still pending.



43
Serial Ports

:make-serial-stream &rest keyword-args Message to gbus-interface

‘Makes a serial stream that connects to the serial hardware in the Gbus board.
The same keyword arguments used in si:make-serial-streamv apply.

Note: The :unit keyword value should be between 1 and 3, inclusive. Unit 1
corresponds to the EIA 5 serial connector, unit 2 corresponds to EIA 6, and
unit 3 corresponds to EIA 7. Likewise, unit 1 corresponds to MPSC A,
channel B; unit 2 corresponds to MPSC B, channel A; and unit 3 corresponds
to MPSC B, channel B.

gbus:serial-binary-stream Flavor
gbus:serial-character-stream Flavor

Instances of these flavors control Gbus serial streams. They support the same
messages as regular serial streams. They are not, however, handled by an ex-
ternal processor, the way the FEP handles the regular serial ports. Thus input
from these streams is not as simple a thing, since characters might be missed.

If an application cannot afford to have the 3600 spending much of its time polling
the Gbus serial hardware, it is recommended that you use the 68000 processor to
handle serial 1/0.

:transmit-buffer-not-full Message to basic-gbus-serial-stream

Returns t when the hardware for the port is ready to transmit another character
or byte, and nil when it is not ready. This can be used in places where letting
the :tyo method wait using process-wait takes too much time and the application
needs more control of how it waits for the hardware to be ready. This message is
supported in addition to the regular protocol for a serial stream.



44

Parallel Port

Since there is only one parallel port on a Gbus board, the gbus-interface instance
handles its protocol directly.

:parallel-port-output 8-or-16-bit-value Message to gbus-interface
:parallel-port-set 8-or-16-bit-value Message to gbus-interface

Place the given value in the Parallel Port Output Register. The first message
waits until any previous cycle has been acknowledged, as when a handshaking,

stream-oriented device is connected. The second message just sets the register
and returns.

Note: If the Gbus parallel port is configured as an 8-bit interface, only the
lower-order 8 bits of the data value are relevant.

:parallel-port-input : Message to gbus-interface
:parallel-port-read _ Message to gbus-interface

Read the data on the parallel port inputs. The first message waits until a data-
ready signal appears, as when a handshaking, stream-oriented device is connected.
The second message just reads the register. A 16-bit fixnum is returned.

If the parallel port is configured as an 8-bit interface, bits <0-7> of the value

returned contain the data, and bits <14> and <15> contain the value of the Select
and Paper Empty Status, respectively.

:parallel-port-listen Message to gbus-interface -

Returns t if the attached device is assei'ting data ready, nil if not.

:parallel-port-ready Message to gbus-interface
Returns t when the hardware is ready to begin an output cycle, nil when a cycle
is in progress. ‘
:parallel-start-write Message to gbus-interface

Forces :parallel-port-ready to return t. This message is to be used at the beginning
of any handshaking output interaction when the state of the handshaking is unknown.



Defining Peripherals

By using some utilities provided in the namespace system, ybu can automatically
configure device interfaces upon loading the application system and cold booting.

The peripherals field in a host’s namespace entry allows you to declare peripheral
devices on the host. The UNIBUS is declared in this way, as shown in the chapter
"Installation” (page 27). The kind of connection between peripherals and the
machine is declared by specifying an interface type. The interface type should

be the first attribute declared for the peripheral.

The following interface types are significant to the Gbus user:
Type Significance

UNIT The peripheral uses some type of serial interface.

GBUS The peripheral uses a Generic Bus Interface. (Select this
interface type if your Gbus connects to a MULTIBUS.)

UNIBUS The peripheral uses a UNIBUS interface board.

Other external interfaces can define their own interface types.

The kind of peripheral is declared by the device type, which is the first token in the
peripheral entry. The following is an example of a peripheral entry in the namespace:

Peripheral: MODEM UNIT 1 MODEL CDS-224 PHONE-NUMBER 2134780681 AUTO-ANSWER Yes

Here, the device type is MODEM and the interface type is UNIT, which implies a
serial interface. Other options are present as well.

The namespace system allows you to declare the recognized options to devices and
their interface types, so that the system can parse the options (into numbers, for
example) for the application. In the above example, the UNIT option is declared an
integer by the UNIT interface type, and the AUTO-ANSWER option is declared to be
boolean by the MODEM device type.

For more information, see the source code of the Gbus system, in uses of
neti:define-peripheral-interface-type and neti:define-peripheral-device-type.



46

The Gbus system uses these utilities to automatically configure the Gbus system by
the information on the local host’s namespace entry, both when the Gbus system is
loaded, and at cold-boot time if the Gbus system was previously saved in a world.

If you are programming Gbus applications, you can also use the namespace utilities

and the Gbus system’s hooks to initialize the state of your own software. This way,

the Gbus software notes that your peripheral is declared on the local host and either
calls a user-defined function or instantiates a user-defined flavor.

If you anticipate having more than one possible interface for a device, you should have
setup functions or flavors for each interface type.

Each gbus-interface instance, when being initialized, looks over the host’s peripherals

for peripherals that use the Gbus interface type, with the unit number for each instance
(counting from 0 at the leftmost). For each interface type, it looks for two properties

on the device-type keyword symbol, either :gbus-peripheral-setup or :gbus-peripheral-flavor.
These properties do not apply to UNIBUS devices; UNIBUS devices, of course, have

their own interface type--UNIBUS. The names of the properties used for UNIBUS devices are
:unibus-peripheral-flavor and :unibus-peripheral-setup.

On the one hand, if gbus-interface finds the keyword symbol :gbus-peripheral-setup,
it expects the value of the property to be a function. gbus-interface then calls the
function it finds, passing it two arguments:

o the value of gbus-interface itself

e the structure neti:peripheral

The software then expects the function called by gbus-interface to return either an
instance that is a software model of the peripheral, or nil. If the returned value
is nil, the instance is collected into the gbus-interface’s peripherals instance variable.

On the other hand, if gbus-interface finds the property :gbus-peripheral-flavor,
gbus-interface calls make-instance, using the property’s value as the flavor.
gbus-interface also passes its own value in the INIT keyword argument :interface,
followed by the rest of the peripheral’s options as listed in the namespace entry. The
flavor must handle all the INIT keywords presented, or the instance is not made (the
error is trapped with catch-error). Use of :init methods (or make-instance methods

in the new scheme) can smooth out differences between the flavor’s instance variables a
nd the namespace’s entry option names.



47

The following example shows how to define the peripheral Slithy-Tove.

(neti:define-peripheral-device-type :slithy-tove
(:gyre :boolean)
(:gimbling-index :integer :range 0 9)
(:frabjousity :integer))

(defprop :slithy-tove gbus-élithy—tove :gbus-peripheral-flavor)

Now when the software sees a Slithy-Tove peripheral attached to a Gbus interface,
flavor gbus-slithy-tove is instantiated.

You could, instead of declaring that flavor, define an arbii:rary function:

(defun (:property :slithy-tove :gbus-peripheral-setup) (interface peripheral)

)

Note that a peripheral on the Gbus does not need to be a board on the external bus;
for example, it can be something attached to one of the serial or parallel ports. A
peripheral can be modeled only by a serial stream, if that is the logical thing.

Other Kinds of Interfaces

If you have your own kind of interface, you can also use peripherals-mixin to
define the interface.

peripherals-mixin Flavor

Provides the instance-variable peripherals and the mechanism for using the name-
space peripheral entry of the local host. The flavor containing this mixin must
provide a method for :interface-type, returning the same keyword symbol as used
in the neti:define-peripheral-interface-type definition for the interface type in '
question. For Gbus, the interface type is :gbus; for UNIBUS, the interface type

is :unibus.

In an :after :init (or make-instance :after) method, the local host’s peripherals
are scanned. For each one with the correct interface type, the peripheral’s device-
type symbol is checked for the properties :<interface type name>-peripheral-setup
and :<interface type name>-peripheral-flavor. For each one found, either the
function is called or the flavor is instantiated.



48

The following steps demonstrate how to set up a software interface.

1. Declare the interface type to the namespace. For this exercise, assume the

3.

4.

interface type is GPIB.

ii; For devices using the mythical GPIB interface:
(neti:define-peripheral-interface-type :gpib :gpib
(:gpib :integer)) ;number of the GPIB in question

Declare the device type of the interface box itself, so the Gbus knows to
initialize it. Also declare the flavor to make the interface model

;i:; For the (mythical) GPIB interface option to the Gbus.
(neti:define-peripheral-device-type :gpib) ;no device options.

(defprop :gpib gbus-gpib-interface :gbus-peripheral-flavor)

Mix peripherals-mixin into the interface flavor, so that when the (mythical)

GPIB interface is instantiated, any peripherals declared on the GPIB
interface are set up.

(defflavor gbus-gpib-interface (interface) ;a Gbus-interface
(peripherals-mixin))

Make a (mythical) device called an audio-oscillator and presume it lives on
the GPIB. Make only a GPIB interface for it.

(defprop :audio-oscillator gpib-audio-oscillator-interface :gpib-peripheral-flavor)

Presuming that a flavor Was called gpib-audio-oscillator-interface and that both
the GPIB and audio-oscillator were on the local host’s namespace entry, the
software is set up accordingly.

This setup takes place when the Gbus system is loaded and when the world is
cold-booted. The application software, since it is most likely to be loaded after

the Gbus system, must decache the state of the Gbus system for new peripherals
to be noticed.



49

init-gbus-interfaces &optional forget-old-interfaces Function
This function should be called, with argument forget-old-interfaces given t, after
defining new peripheral types as described above. This function resets the state of

the Gbus system, making new instances and initializing them. It is automatically
done at cold-boot.

find-peripheral-model device-type Function
&rest options &key &allow-other-keys

Searches through the local host’s peripheral entries and the known peripheral

model instances to find the corresponding instance. If there is more than one

device of device-type, more of the device’s options can be specified in options.

This returns the model of the first peripheral description found for the given
specification.






APPENDIX A

51

UNIBUS Registers, Interrupts, and Priorities

The registers on the UNIBUS interface board are in Gbus I/O space.

UNIBUS Priority Register (I/0 address 1000(8))

This 4-bit register performs two functions.

1.  When the interface board is configured as the primary CPU (and hence is
arbitrating the UNIBUS), this register selects the arbitrator priority. The
following table explains the meaning of the contents of this register:

0000-0011

0100

0101

0110

0111
1000

- 1001-1111

Any priority level can access the UNIBUS

Only BR5 priority level and above can
access the UNIBUS

Only BR6 priority level and above can
access the UNIBUS '

Only BR7 priority level and above can
access the UNIBUS

Only NPR can access the UNIBUS
Only the Gbus can access the UNIBUS
No priority level



52

2. When the interface board is not configured as the primary CPU, this register
selects the level of its interrupts to the UNIBUS. The following table
explains the meaning of its contents:

0000-0011 No interrupts are executed; they
Jjust remain pending until cleared.

0100 BR4

0101 BR5

0110 : BR6

0111 BR7

1000-1111 No interrupts are executed; they

just remain pending until cleared.

This register is set to 0111 (decimal 7) upon power-up, a Gbus or UNIBUS initial-
ization, or any UNIBUS interrupt if the UNIBUS is configured as the primary CPU
(consistent with PDP-11 processors.)

INIT and Power Register (Write only) (I/O address 1002(8))

This register has three bits:

<D0O> Setting this bit activates the UNIBUS initialization
line. The line remains activated until <D0> is cleared.

<D1> Setting this bit activates the UNIBUS DC LO line.
The line remains activated until <D1> is cleared.

<D2> Setting this bit activates the UNIBUS AC LO line.
The line remains activated until <D2> is cleared.

These bits are not readable. To find out whether the UNIBUS INIT, DC LO,
or AC LO line is set, read the FEP Interrupt Read/Clear Register.



53

Gbus Interrupt Enable/Disable Register (I/O address 1004(8))

This 4-bit register enables and disables the four possible interrupts to the Gbus.
Note: Even if a particular interrupt is disabled, the appropriate bit in the Gbus
Interrupt Read/Clear Register is set if the correct conditions for an interrupt occur.

Clearing the interrupt via the Gbus Interrupt Read/Clear Register also clears the bit.

Setting the appropriate bit enables an interrupt; clearing the appropriate bit disables
an interrupt. The bits are assigned as follows:

<D0>: Interrupt A UNIBUS Interrupt Gbus Priority 7
<D1>: Interrupt B UNIBUS INIT Gbus Priority 6
<D2>: Interrupt C UNIBUS DC LO Gbus Priority 3
<D3>: Interrupt D UNIBUS AC LO Gbus Priority 4

Interrupt A is the interrupt used for UNIBUS interrupts of the Gbus. It is
activated only when the Gbus is the primary CPU.

Interrupt B is the interrupt used when you have activated the UNIBUS INIT line.
As long as this interrupt is set (whether enabled or disabled), the Gbus receives a
bus error when it tries to access the UNIBUS.

Interrupt C is the interrupt used when you have activated the UNIBUS DC LO line.
As long as this interrupt is set (whether enabled or disabled), the Gbus receives a
bus error when it tries to access the UNIBUS.

Interrupt D is the interrupt used when you have activated the UNIBUS AC LO line.
Unlike the previous two interrupts, the Gbus can still access the UNIBUS when this
interrupt is set.

All interrupts are disabled by a Gbus or UNIBUS initialization.



Gbus Interrupt Read/Clear Register (I/O address 1006(8))

Reading this register indicates what interrupts to the Gbus are set regardless of
whether they are enabled or disabled. Writing a 1 to any bit of this register
clears the corresponding interrupt when it is set and has no effect when it is
clear. Writing a 0 to any bit of this register has no effect.

The bits are assigned similarly to the Gbus Interrupt Enable/Disable Register:

<D0>: Interrupt A Gbus Interrupt Priority 7
<D1>: Interrupt B - Gbus Interrupt Priority 6
<D2>: Interrupt C Gbus Interrupt Priority 3
<D3>: Interrupt D Gbus Interrupt Priority 4

UNIBUS Interrupt Request/Vector Read Register (/O address 1010(8))
This 16-bit register serves two purposes:

1. When the Gbus is fielding interrupts from the UNIBUS, this register

contains the interrupt vector from the last UNIBUS interrupt. Writing to
this register when the Gbus is the primary CPU does nothing.

2. When the Gbus is not the primary CPU, writing to this register initiates an
interrupt to the UNIBUS. The value written to this register is the vector
used for the interrupt. A bus error is generated and the write not executed
if the Gbus already has an interrupt to the UNIBUS pending and it attempts
another. :

UNIBUS Interrupt Clear Register (Write only) (/O address 1012(8))

A write of anything to this register clears any interrupt to the UNIBUS that the
Gbus has pending.



55

Bus Error Read Register (Read only) (I/O address 1014(8))

This register performs two functiohs: it indicates the reasons the last Gbus
bus error occurred and it indicates whether a Gbus interrupt to the UNIBUS
has been serviced yet. The bits are assigned as follows:

<D0> This bit is set when the last bus error occurred because
the Gbus was trying to make a UNIBUS access and the
‘NPG did not arrive within 200 microseconds.

<D1> This bit is set when the last bus error occurred because
the Gbus was either accessing the UNIBUS or performing
an interrupt to the UNIBUS and SSYN was not received

within 6 microseconds after MSYN or INTR were originally
asserted.

<D2> This bit is set when the last bus error occurred because
the Gbus was performing a read of the UNIBUS and the
UNIBUS parity lines indicated an error.

<D3> This bit is set when the last bus error occurred because
the Gbus tried to interrupt the UNIBUS and its last
interrupt to the UNIBUS was still pending.

<D4> Not used.
<D5> This bit is set when a Gbus interrupt of the UNIBUS

is pending.

Not all bus error conditions are indicated by the Bus Error Read Register. An INIT
or DC LO condition is indicated by reading the Gbus Interrupt Read/Clear Register.



UNIBUS Map Registers (I/O address 1040(8)-1076(8))

These sixteen 12-bit registers are used to map UNIBUS addresses to Gbus addresses.
This address map is also accessible by Gbus masters and masters on the UNIBUS.

Each 12-bit register supplies information for mapping a 2-Kbyte (11-bit) sector of
UNIBUS address into a 2-Kbyte sector of Gbus address. If the total mapped UNIBUS
address space selected by the UNIBUS select DIP switch is 4 Kbytes, only the first two
map registers are significant. If the total UNIBUS address space selected by the DIP
switch is 8 Kbytes, only the first 4 map registers are significant, etc.

Within each register thé bits have the following significance:

<0-8> Indicate the 9 most significant Gbus address bits
(<A19-A11>) of the 2-Kbyte sector to which that
register corresponds. The low 11 bits of the
address come directly from the UNIBUS master.

<9> When this bit is set, the corresponding sector maps
to I/0 space. When the bit is clear, the corresponding
sector maps to memory space. Note that I/O space is
only 16 bits, hence only bits <0-4> in the above-
mentioned field are meaningful when this bit is set.

<10> When this bit is set, all accesses to the Gbus in this
sector appear to the Gbus as 8-bit accesses. When
this bit is clear, all accesses to the Gbus in this
sector appear as either 8- or 16-bit accesses, what-
ever the UNIBUS access is.

Note: If this bit is set, the UNIBUS should be
performing 16-bit accesses. Bit <10> is provided

to help when a UNIBUS master accesses a Gbus

or MULTIBUS slave that requires byte-mode access,
since UNIBUS has no byte-read cycle.

<11> This bit is used only when bit <10> is set. Bit <11>
supplies the value that is used for <A0O> for an 8-

bit access of the Gbus resulting when bit <D10> is
set.



57

1 10 9 8 7 6 5 4 3 2 1 0
BYTE BYTE 10
MODE MODE SPACE HIGH 9 BITS OF GBUS ADDRESS

A0

Figure A.1 UNIBUS address map register

The first UNIBUS map register is for the first 2K memory locations after the UNIBUS
address offset selected by the UNIBUS Select DIP switch. The second UNIBUS map

register is for the second 2K memory locations after the UNIBUS address offset
selected by the DIP switch, etc.






APPENDIX B

Parallel and Serial Port Connectors

External devices that have serial or parallel interfaces can be connected to 3600-
family machines through the Gbus interface paddle board. This appendix describes
the serial and parallel ports that connect to peripheral devices that do not use
either the MULTIBUS or UNIBUS interface option boards.

8-Bit Parallel Port Connectors

The 8-bit parallel port option, if included, connects to a 36-pin CHAMP-type
connector on the 3600 bulkhead. Cabling for the most commonly used configuration,
the Centronics interface, is given on the next page. If you use the Centronics-

type interface, you must remove SIP resistor networks RN12, RN13, and RN14 from
the paddle board and install SIP resistor network RN20.

Use Belden 9515 or an equivalent cable, that is, a shielded round cable with at least
12 twisted pairs, 24 AWG stranded.

Make no external connection to pins 14, 15, 19-27, 32, and 33 of the Gbus connector.

59



60

Table B.1 Gbus-to-Centronics device pin connections

Gbus (Bulkhead)

AMP-Shielded CHAMP
- Screw-Lock Connector*

Centronics Device

AMP-Shielded CHAMP
Bail-Lock Connector*

Signal ; Pin

Pin
l-emmmm e Data Strobe (active LOW)----------- 1
35------memmmm e Return----------—ooemcm e 19
2mmmmmm e Data 1-----------ommmmmmmm e 2
35— Return----------ccccmmm e 20
3o Data 2----------emmmm e 3
35— Return---------cemcce e 21
§---memmeeee e Data 3------=mmmmm e 4
35------mmmmmm e Return----------=-- e 22
L e — Data 4------nm-mmmmmmmmmmcmoee- 5
K ittt Return---------ccccmmmc e 23
6o Data 5-------=-mcmmmm e 6
35— Return----------c-cmmcmm o 24
Trmmmmm e mmee Data 6----------=cmmmccmcc e 7
K b el b Return---=-~-==--cmmmm e 25
8- eee Data 7-----===---mmmmemeee oo 8
35-----mmmm e Return-----------cccmmm e 26
e T Data 8--------mmem e 9
35— Return----------rccmcc e 27
10-memmmmm oo Acknowledge (LOW)------=-c-emcmunan 10
Kty Return--------—-=cccccmmc e 28

*AMP connector component part numbers:

GBI Centronics Device
Housing 554257-1 554259-1
Shield 554255-1 & 554256-1 554254-1 & 554256-1
Strain relief 554263-1 554263-1 '
Cover 554264-1 & 554265-1 554264-1 & 554265-1
Inner ferrule 554266-6 554266-6

Screws 229996-4 000000 eeeeaa



61

Table B.1 Gbus-to-Centronics device pin connections (continued)

Gbus (Bulkhead)

AMP Shielded CHAMP
Screw-lock Connector*

Pin

12

Centronics Device

AMP Shielded CHAMP
Bail-lock Connector*

Signal Pin
PE (paper empty = 1) 12
SLCT 13 |
RD REQ DIFF +

ELP (Centronics = LOW)

ELP ENBL L (Gbus printer
interface = LOW)

GND

ACK DIFF -
RD REQ DIFF -
PE DIFF -

SLCT DIFF -
ELP TTL BIAS



62

16-Bit Parallel Port Connectors

The 16-bit parallel interface is present at a pair of 40-pin ribbon cable connectors
on the Gbus paddle board. (The connectors are labeled Parallel I/O In and Parallel
I/O Out.) All signals are single-ended TTL lines. All input signals are terminated
on the Gbus paddle board with a 220-ohm resistor to +5V and a 330-ohm resistor
to GND.

Make sure all outputs are terminated in the same manner on the external device.

Cabling to these connectors is probably not supplied by Symbolics. You can, however,
construct your own cables by following the pinouts in tables B.2 and B.3.

Note: If the 16-bit parallel port is used; the 8-bit parallel port cable must be
removed from the LGP/Centronics connector on the Gbus paddle board.

Table B.2 16-bit parallel-in cable pins

Paddle Board Direction

Signal Connector Pin (Relative to Gbus Board)
DATA IN 0 2 Input
DATA IN 1 4 Input
DATA IN 2 6 Input
DATA IN 3 8 Input
DATA IN 4 10 Input
DATA IN 5 12 Input
DATA IN 6 » 14 Input
DATA IN 7 16 Input
DATA IN 8 18 Input
DATA IN 9 20 Input
DATA IN 10 22 Input
DATA IN 11 24 Input
DATA IN 12 26 Input
DATA IN 13 28 Input
DATA IN 14 30 Input
DATA IN 15 32 Input
DATA IN ACCEPTED 34 Output
EXT WR L 36 Input
SPARE READ OUT 38 Qutput
SPARE READ IN 40 Input

GND ' All odd-numbered pins



Table B.3 16-bit parallel-out cable pins

~ Paddle Board Direction
Signal Connector Pin (Relative to Gbus Board)
DATA OUT 0 2 Output
DATA OUT 1 4 Output
DATA OUT 2 6 Output
DATA OUT 3 8 Output
DATA OUT 4 10 Output
DATA OUT 5 12 Output
DATA OUT 6 14 Output
DATA OUT 7 16 Output
DATA OUT 8 18 Output
DATA OUT 9 20 Output
DATA OUT 10 22 Output
DATA OUT 11 24 Output
DATA OUT 12 - 26 Output
DATA OUT 13 - 28 Output
DATA OUT 14 30 Output
DATA OUT 15 : 32 Output
ACCEPT DATA OUT 34 Input
DATA OUT AVAIL : 36 Output
SPARE WRITE IN 38 Input
SPARE WRITE OUT 40 Output

GND All odd-numbered pins



64

Serial Port Connectors

The Gbus serial port option, if included, connects to three 25-pin male DB25-type
connectors on the 3600 bulkhead. These connectors are labeled EIA 5, EIA 6, and
EIA 7. The EIA 5 connector corresponds to MPSC A, channel B; the EIA 6 connector
corresponds to MPSC B, channel A; and the EIA 7 connector corresponds to MPSC B,
channel B. Likewise, EIA 5 corresponds to unit 1, EIA 6 corresponds to unit 2, and

- EIA 7 corresponds to unit 3.

All signals use RS-232 levels.

The pinouts for these three connectors are as follows:

EIA-5 Pin

QU0 W+

20

EIA-6 Pin

NS Ttk Wi+

1
17

Signal Name

GND

Serial TXD 1
Serial RXD 1
Serial RTS 1
GND

Serial CTS 1
Serial DTR 1
Serial CD 1

Signal Name

GND

Serial TXD 2
Serial RXD 2
Serial RTS 2
GND

Serial CTS 2
Serial DTR 2
Serial CD 2

Serial Ext TX Clk 2
Serial Ext TX Clk 2

Direction (Relative to Gbus Board)

Output
Input
Output

Input
Output
Input

Direction (Relative to Gbus Board)

Output
Input
Output

Input
Output
Input
Input
Input



EIA-7

Pin

oNoapwnwr

Signal Name

GND

Serial TXD 3
Serial RXD 3
Serial RTS 38
GND

Serial CTS 3
Serial DTR 3
Serial CD 3

65

Direction (Relative to Gbus Board)

Output
Input
Output

Input
Output
Input






67

APPENDIX C

Assembler for the Gbus_ MC68000 Processor

About this Appendix

This appendix describes how to construct, within the Lisp environment, segments of
code that have meaning to the 68000 assembler program provided with the Gbus soft-
ware. Invoked by executing the message :assemble, the 68000 assembler described

- in this appendix compiles the defined source code and loads the resulting object code
into 68000 program memory in Gbus memory space.

This appendix does not purport to teach how to write assembly language programs for
the 68000. For information about 68000 assembly language programming and the 68000
instruction set, see the MC68000 User’s Manual.

About the Assembler

The assembler is provided for users of the Gbus 68000 processor. It accepts programs
written in a list-structured assembly language based on the 68000 instruction set and

- loads the assembled programs directly into the processor’s memory in Gbus address
space. It can also generate listings into Zmacs editor buffers. It has no macro or
cross-reference facilities. The source code for the assembler is distributed on the

Gbus software tape in order for you to customize the assembler program to your own
specifications.

68000 Assembly Language Program Structure

The assembly language accepted by the assembler is a list-structured language that looks
similar to Lisp. Programs are defined using the special Lisp form define-program,
which is described in greater detail on page 68.



Assembly language programs written for the optional 68000 on the Gbus are expected
to have the following three types of elements, all of which are formatted as Lisp
forms: .

¢ Pseudo-operations, or pseudo-ops. Pseudo-ops take the form of lists
(non-atomic forms). Pseudo-ops are instructions to the assembler and do not
literally convert to object code, although they might control the format, type, or
memory location of the object code. The assembler interprets pseudo-ops as
having the structure (function &rest argument(s)), where function represents the
mnemonic for the operation performed by the pseudo-op, and argument(s)

represents one or more arguments or operands that can be passed to the
pseudo-op.

s Machine instructions. Machine instructions also take the form of lists
(non-atomic forms). The assembler converts them into 68000 object code. The
assembler interprets machine instructions as having the structure (function)
&rest argument(s)), where function represents the mnemonic for the operation
performed by the instruction, and argument(s) represents one or more arguments
or operands that can be passed to the instruction. Machine instruction operands
can also take one of several addressing modes, which are described on page 69.

o Labels. Any atomic form contained in the Lisp special form define-program is
interpreted by the assembler as a label.

The following example shows how the Lisp special form define-program is used to
provide source code for the assembler:

(define-program foo ()

(oxg 40) ;a pseudo-op

(alloc junk) ;another pseudo-op

start ;a label

(move /§ 3 + junk) ;a machine instruction with two operands

)

In this example, the 68000 program "foo" is defined; it uses one label, one
instruction, and two pseudo-operations.



Addressing Modes

In the 68000, all instructions that take operands have an associated addressing
mode, which directs how the operand’s location is computed. Instructions can take
either one or two operands. In this assembler, each operand is expressed by two
elements, which take the following form:

1. the addressing mode, and

2. an expression that evaluates to a numeric value.

The following symbols are used to express addressing modes:

Mode Symbol Mode Name Traditional Form

D Data register direct D5

A Address register direct A5

% Immediate #foo

@# Absolute (short address) @#foo

@@# Absolute (long address) @#foo
(assembler
deciding which)

+ PC relative foo

+X PC relative, indexed foo(D7)

@ Address register indirect @A7 or (A7)

@++ Indirect postincremented (AD)+

-@ Indirect predecremented -(AD)

@+ Indirect displaced A7(foo)

@+X Indirect indexed A7(foo,D5)

Examples of instructions that take one operand:

(stop /# 44)
(addq # 1 + foo)
(subq # 1 --@ 7)

;Stops immediate 44.

;Increments (relative) FOO.

;Decrements A7 then decrements the word
;it points to.

Examples of instructions that take two operands:

{add + foo d 7)
{add d 3 @++ 2)

;Adds (relative) FOO to D7
;Adds D3 to the word to which A2 points,
;then increments A2,



70

An expression is interpreted differently for each mode:
Mode Expects
D, A, @, @++, -@ A register number (interpreted as a data or address
register depending on the mode). A warning is given if
the value of the expression is not suitable as a register

number (that is, in the range 0 to 7).

+, I#, @#, @@# A datum or address.

The remaining three modes expect a list with more information:

+X A list: (expression (D-or-A reg-number) &optional WORD-or-LONG)
@+ A list: (address-reg-number expression)
@+X A list: (address-reg-number expression (D-or-A reg-number)

&optional WORD-or-LONG)
Register numbers are actually treated as expressions and evaluated.
For +X and @+X, D-or-A means either the symbol D or the symbol A, denoting
which kind of register the index should come from. WORD-or-LONG means either
the symbol WORD or the symbol LONG, depending on the size of indexing desired
(the default is WORD).

The following are examples of the latter three cases:

(incf +X foo (d 3)) i/ Increments the word at FOO+(D3)
(move @+x (7 0 (d 3))) ; Increments the word at (A7)+0+(D3)
(move d 4 @+ (0 foo-slot)) ;Moves the value in D4 to the word

7 (A0) +foo-slot (presumably a slot offset
;in some structure).

The relative addressing modes (+ and +X) always treat the effective address as
absolute; therefore, subtract the current PC value from it. Be careful. This method
of addressing works correctly for Branch and Jump, as well as for referring to
variables using relative mode (for example, . . .+ foo-variable. . . gets the value of
that variable), but it does not work to say . . .+ 8. . . when you mean "3(PC)".

You need to say . . .+ (+ 3 /.) .. ., that is, you need to "add the PC back in"

so it comes out correctly. This applies to relative-indexed mode (+X) as well.



(f!

Expressions

Expressions are evaluated much like Lisp expressions, except that any symbols (aside
from the names of functions) are interned in the assembler’s symbol table. It there-
fore works to use an expression like (+ some-label 32). Expressions can be nested;
however, some special forms do not work, because the expression-parsing function only
knows about lists that are function forms (for example, let does not work because

it has clauses that are lists but not function forms).

One symbol is reserved. That symbol is /. (a period, but it must be "quoted" with

the slash), which always references the current location. It is updated whenever the
current location counter is changed. It does not work to set it, because the assembler
always sets it back. Use org to reference the current location.

Machine Instructions

All the instruction names listed in the MC68000 User’s Manual are supported in all
the appropriate length modes (byte, word, and long). Length modes are specified by
appending the letter for the mode to the instruction name (for example, MOVE in
byte mode becomes MOVEB).

Some instructions take one operand and therefore expect a form with three elements

(the instruction name [or op-codel, address mode, and expression). Others take two
operands and therefore expect a form with five elements (the instruction name, followed
by two sets each of address mode and expression). The remaining instructions (save one)
take no operands; therefore, the form should just be a list containing the op-code. Refer
to the MC68000 User’s Manual for the list of instructions and usage.

The one exception to this rule is MOVEM. It works as follows:

(MOVEM(L) mode expression IN-or-OUT
&optional list-of-data-registers list-of-address-registers)

Moving to or from the Status Register, Condition Code Register, or User Stack
Pointer is accomplished by using the special symbols .SR., .CCR., and USP.,
respectively.

mode and expression express the place to put or get the data, IN-or-OQUT specifies
the direction of the transfer (into or out of the processor), and the lists of registers
specify which ones are to be saved or restored. '



Pseudo-ops

Pseudo-ops control the assembler itself and are not part of the 68000 program.
They are listed here:

org expression

Sets the current location to the valuebo_f expression.

define symbol expression

Permanently defines symbol to have the value of expression. In essence it makes
the symbol a label with an arbitrary value.

assign symbol expression

Temporarily defines symbol to have the value of expression. The value of
symbol can be changed at any time. assign is the equivalent of the Lisp
function setq.

alloc symbol &optional (size 1) (units words)
Defines symbol to be the current location and leaves size units of room. In

essence, it makes a variable called symbol. units should be one of the symbols
bytes, words, or longs. The size is rounded to an integral number of words.

bytes &rest byte-values

Deposits the byte values, rearranged for 68000 byte order preference. A trailing
0 can be added to make an integral number of words.

word &rest word-values

Deposits the word values.

long &rest long-values

Deposits the long values.



char-string string

Deposits the character string, rearranged for 68000 byte order preference. A
trailing 0 can be added to make an integral number of words.

char-string-and-length string

Deposits the character string as above, with the length of the string (word
value) first. - v

vector vector-number address

Places the value of address (long value) at the specified vector-number (speci-
fically at address 4*vector-number). A warning is given if vector-number is not
valid as a vector number (in the range 0 to 255).

Labels

Labels are pseudo-ops in a way. They permanently define the symbol that repre-
sents the value of the current location. Any attempt to redefine or reassign the
symbol is an error.

Defining Programs

The special form define-program defines an assembler program, rather like
defconst defines variables. It is in the ASSEMBLER package and so must be used
with the qualifier asm:.

Note: Symbols in the program itself (except for imported ones) are not affected
by the package they are in, since they are re-interned in other packages anyway.
asm:define-program name options &rest forms

name is declared special and set to a flavor instance which contains the forms.

instance can later be told to assemble the program. options is a list of
keyword-value pairs that can contain the following:

73



74

:import-symbols &rest symbols

Declares the specified symbols to be imported and not be re-interned when
used in the program. Be careful; if one is used as a label or otherwise
assigned, its value is changed. Example: :import-symbols sys:page-size.
Imported symbols are dependent on the package they are in.

Once the program is defined, you can assemble it and load it into the Gbus pro-
cessor by using the :assemble message.

:assemble &key (destination :ignore) Message to assembler-program
(listing nil)

The argument destination can be :gbus to load the program into the pro-
cessor. When the argument listing is not nil, the assembler generates a
listing in an editor buffer (which is called "Assembler program <name> listing").



75

APPENDIX D

Symbolics 4-Slot MULTIBUS Card Cage and Backplane

This appendix contains information about the P1 and P2 connectors located in the
Symbolics-manufactured 4-slot MULTIBUS card cage and backplane that is installed
inside the 3600 cabinet. '

P1 Connectors

Table D.1 lists the signals present on the P1 (top) connector of each slot. Note
that not all signals are used by the Symbolics MULTIBUS interface board.

Table D.1 Pin assignments on MULTIBUS backplane P1 connectors

Component Side Circuit Side
Pin Signal Pin  Signal
1 GND 2 GND
3 +5v 4 +5v
5 +5V 6 +5V
7 +12v 8 +12v
9 -5v 10 -5v
11 GND 12 GND
13 BCLK/ 14 INIT/
15 BPRN/ 16 BPRO/
17 BUSY/ 18 BREQ/
19 MRDC/ 20 MWTC/
21 IORC/ 22 IoWC/
23 XACK/ 24 INH1/
25 LOCK/ 26 INH2/
27 BHEN/ 28 AD10/
29 CBRQ/ 30 AD11/
31  ccix/ 32 AD12/

33 INTA/ 34 AD13/



76

Table D.1 Pin assignments on MULTIBUS backplane P1 connectors continued

35
37
39
41

43
45
47
49
51
53
55
57

59
61
63
65
67
69
71
13

75
7
79
81
83
85

INT6/
INT4/
INT2/
INTO/

ADRE/
ADRC/
ADRA/
ADRS/

- ADR6/

ADR4/
ADR2/
ADRO/

DATE/

DATC/

DATA/
DAT8/
DAT6/
DAT4/

" DAT2/

DATO/

GND
(Bussed)
-12v
+5v

+5v

GND

36
38
40
42

44

46

48
50
52
54
56
58

60
62
64
66
68
70
72
14

76
78

80

82
84
86

INT7/
INTS/
INT3/
INT1/

ADRF/
ADRD/
ADRB/
ADR9/
ADR7/
ADR5/

~ ADR3/

ADR1/

DATF/
DATD/
DATB/
DAT9/
DAT7/
DAT5/
DAT3/
DAT1/

GND
(Bussed)
-12v
+5V

+5v

GND



77

P2 Connectors (24-bit addressing memory)

The P2 (bottom) connector of each slot is a wirewrap-type connector, with no
factory-installed wiring. You can add wiring to suit your application.

To accommodate 24 bits of MULTIBUS memory addressing, the following four pins
in each slot must be bussed across the backplane:

Pin 55 (ADRI16/)
Pin 56 (ADR17/)
Pin 57 (ADR14/)
Pin 58 (ADRI15/)

Note: The pin numbers stamped on the P2 connector housings might not match
the actual MULTIBUS P2 numbering scheme. Viewed from the rear (wiring side) of

the backplane, pin 1 is on the top right of the P2 connector and pin 60 is on the
bottom left. ‘






INDEX

68000 processor I, 6
Byte addressing 6
Control word messages 33
Interrupting 4
Setting interrupt timer 13, 22

A

Address assignment conflicts 4
Address map, UNIBUS 5, 56
Address map register, UNIBUS 24, 57
Address offset, UNIBUS 24
Address space, Gbus 1, 7
Address space, MULTIBUS 4«
Address space, UNIBUS

20-bit mode 7

24-bit mode 7

Mapping into Gbus space 25

Selecting 24, 25
Assembler 1, 67

Addressing modes 69

Expressions 71

Labels 68

Machine instructions 68, 71

Pseudo-operations 68, 72
Attributes, namespace entry

Number 28

B

Buffer memory 37
Messages 37, 38
Bus-clock signals, MULTIBUS
Jumpering to supply 4, 15
Bus cycle error flavors 32

79



80

C

Centronics interface
Configuring 8-bit parallel port 13, 22
Gbus-to-Centronics device pin connections
Configuring MULTIBUS for 24-bit addressing
Control word messages 33

D

Data path, Gbus 1
Data Products ,
Long Lines interface 13, 22
TTL interface 13, 22
Direct Memory Access (DMA) by external
processors, restrictions on 3, 37
Displaced array 4, 37 . '
Dual-port, high-speed RAM buffer 37

E

Enhanced Line Printer interface 13, 22
Expressions, 68000 assembler 71
external-interface messages
:read-register 39
:write-register - 39

F

FEP in UNIBUS address space, size
and offset selection of 25
Flavors
bus-conflict 32
bus-grant-timeout 32
external-bus-error 32
external-bus-not-present 32
gbus-cycle-error 32
gbus:serial-binary-stream 43
gbus:serial-character-stream 43
no-transfer-acknowledge 32
peripherals-mixin 47
unibus-error 41
unibus-grant-timeout 40
unibus-interface 39
unibus-interrupt-still-pending 42
unibus-non-existent-memory 42
unibus-parity-error 42
Functions
init-gbus-interfaces 49
find-peripheral-model 49

60, 61

20



G

GBI 1

Block diagram 2
Installation of boards 13, 22
Gbus 1

Address space 1, 7

Data path 1

I/0O space 1, 7

Master devices 1, 3
Memory space 1, 7
Paddle board diagram 14
Slave devices 1, 3
gbus-interface messages
:allocate-buffer-memory 38
:buf-base 30
:buffer-base-address 38
:buffer-memory-array 37 = -
:buffer-memory-size 30
:copy-array-to-buffer 38
:copy-buffer-to-array 38
:deallocate-buffer-memory 38
:device-io-base 30
:device-read 31
:device-write 31
:disable-slaves 33
:disable-timeouts 33
:dont-hog-gbus 34
:enable-hi-addr 3«4
:enable-slaves 33
:enable-timeouts 33
:external-bus-interfaces 30
:gbi-auto-cmd 34
:gbi-init 34
:gbi-manual-cmd 34
:halt-68000 33

thog-gbus 34
:ignore-hi-addr 35
:install-interrupt-map 36
:io-read 3, 31

dio-write 3, 31
:make-serial-stream 43
:memory-read 3, 30
:memory-write 3, 31
:parallel-port-input 44
:parallel-port-listen 44
:parallel-port-output 44
:parallel-port-read 44
:parallel-port-ready 44

81



gbus-interface messages (continued)
:parallel-port-set 44
:parallel-start-write 44
:reset-68000 33
:reset-and-start-68000 34
:ring-doorbell 34
:set-interrupt-map 36
:start-68000 33
:turn-on 35
:unit 30
:wait-for-interrupt 35
:wait-for-interrupt-hard 35
Generic Bus See Gbus.
Generic Bus Interface See GBL

H

High-address-bit field

In control register 7, 8

:enable-hi-addr message (to set high-address bits)
High-address-bit jumper

Installation 18

Backplane configuration (MULTIBUS) 20

I

I/0 space, Gbus 1, 7, 8
INIT configuration, MULTIBUS 15
Interface type 45

Interrupting the 3600, restrictions on master devices
Interrupt map
Gbus—Lisp Machine <«
Interrupts
Lisp—68000 4, 10
Interrupt timer
Setting 13, 22

L

Labels 68
Lbus—Gbus port 3

M

Machine instructions 68, 71
Macros
construct-interrupt-map 35
Mapping UNIBUS addresses to Gbus addresses 13

34



Master device 1, 3

Restrictions on accessing the 3600 3
Memory space, Gbus 1, 7 ’
MULTIBUS 4

Backplane diagram 19

Configuring for 24-bit addressing 20
~ INIT signal assertion 15
MULTIBUS interface board

Backplane configuration for 24-bit addressing 20

Configuring priority resolution 19

Diagram 16

INIT configuration 15

Installation 20

P1 connectors 75, 76

P2 connectors 77

N

Namespace entry
Peripherals field 45
Updating 27

(0]
Offsets, Gbus I/O space 9-11
P

Parallel port
8-bit connectors 59
16-bit connectors 62
Cable installation 21
Centronics pin configuration 59
Configuring 13, 22
Offsets 10
Programming information 44
Registers 10
Parallel-priority resolution, MULTIBUS 19
Peripherals
Declaring 45
Defining 46
Primary CPU &5
Priority resolution, configuring MULTIBUS backplane
Pseudo-operations 68

19

83



84

R

Registers, UNIBUS
Bus Error Read Register 55
Gbus Interrupt Enable/Disable Register 53
Gbus Interrupt Read/Clear Register 54
INIT and Power Register 52
UNIBUS Interrupt Clear Register 54
UNIBUS Interrupt Request/Vector Read Register
UNIBUS Map Registers 56
UNIBUS Priority Register 51, 562

S

Serial ports
Cable installation 21, 26
Connectors 64
Offsets 9
Programming information 43
Registers -9
Slave device 1, 3
Enabling, disabling 33
Software 29
Installation 27
Setting up an interface 48
Symbolics 4-slot MULTIBUS backplane diagram 19

T

Transfers, Gbus 1
U

UNIBUS 5

Address map §
Address space §

UNIBUS interface board
Declaring to Gbus 27
Diagram 23
Installation 25

unibus-interface messages
:clear-interrupts 40
:disable-interrupts 40
:enable-interrupts 40
:interrupt-request-p 40
:interrupt-vector 40
:interrupting-unibus-p 39

54



unibus-interface messages (continued)
:priority 40
:read-map-register 41
:set-priority 40
:unibus-interrupt 39
:unibus-read. 39
:unibus-write 39
:write-map 41

- Unit number 29

w

Watchdog timer, 68000 6
Disabling 33
Enabling 33

\'4

Variables
gbus-interfaces 29

85



	0001
	0002
	0003
	0004
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85

