Function Calling, Message Passing, Stack-Group Switching

This file is confidential. Don’t show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardcopy and leave it lying around, don’t talk
about it on airplanes, don’t use it as sales material, don’t give it as background to
TSSEs, don’t show it off as an example of our (erodable) technical lead, and don’t
let our competition, potential competition, or even friends learn all about it Yes,
this means you. This notice is to be replaced by the real notice when someone

defines what the real notice is.

Stack Groups on the I Machine
A stack group is the object of computation. It contains the memory image of a

process. This includes many things, all of which eventually need to be enumerated.
For now, the list includes the following:
¢ Control Stack |
¢ Control Stack Base
¢ Control Stack Pointer
¢ Control Stack Limit
¢ Control Stack Extra Limit
¢ Frame Pointer
¢ Local Pointer
¢ Binding Stack
¢ Binding Stack Base
° Binding Stack Pointer
¢ Binding Stack Limit
e Data Stack
¢ Data Stack Base
¢ Data Stack Pointer
¢ Data Stack Limit
¢ Catch Block Head
¢ PC

Function Calling, Message Passing, Stack-Group Switching Page 2

¢ Control Register
¢ Continuation Register
¢ Floating Point State?
¢ Mode - rounding, underflow-to-0, ?

° Status - sticky-over/underflow, ?

®

Notes: What to do with these items: OK-to-run bit maintained in wired storage by
paging system. Different set of known-by-microcode fields? More registers to be
saved as part of the context.

Stacks
The architecture defines three stacks:

¢ control stack,
¢ binding stack, and
¢ data stack.

Each type of stack is described in the sections that follow. All the stacks grow in
the direction of increasing memory addresses. A stack pointer addresses the top
word on a stack. A stack limit is the address of the highest location that can be
used. A stack base register addresses the lowest word in the stack. Stack limit and
stack base registers are not hardware registers, just software slots in the stack
group.

Control Stack

The control stack holds control information necessary on a per function invocation
basis. It also holds the arguments and local and temporary variables of a function.

Control Stack Frames

The environment of an executing function is stored in a frame on the control
stack. A control stack frame consists of a two-word header, the arguments, and
then the local variables and temporaries. Note that there are no separate copies of
the arguments for caller and callee; in this respect the I Machine architecture is
like the LM-2 and unlike the 3600.

See Figure CONTROL-STACK.SCH.

Function Calling, Message Passing, Stack-Group Switching Page 3

[Figure caption: An I-machine control stack frame.]

The first word in a control stack frame header contains a saved copy of the
caller’s Continuation register. This is either the caller’s caller’s PC or the address
of a function the caller is going to call later. The second word in a frame header
contains a saved copy of the caller’s Control register.

When a function returns, the saved values are restored into the Continuation and
Control registers. At the same time, the caller’s PC is restored from the previous
contents of the Continuation register. When a function is first entered, the
contents of the Continuation register normally points at the next instruction after
a finish-call instruction, except in a trap handler, where it points either at the
instruction that trapped or at the following instruction, depending on the type of
trap.

Note that the Continuation and Control registers stored in a frame header belong
to the caller’s frame, not to the frame where they are stored. The values for the
current frame are kept in live (hardware) registers instead of the stack because
special hardware uses them. The maximum size of a control stack frame is 256
words.

Base Registers

There are three base registers that point to the current control stack frame. These
can be used to calculate instruction operand addresses. See the section
"Macroinstruction Set".

The frame pointer (FP) points to the first word of the frame header. This register
is used to locate the function’s arguments, which start at a fixed offset past FP.
The local pointer (LP) points after the spread arguments. (Spread arguments are
arguments that are not part of a &rest parameter.) It is used to locate local
variables to the function. The stack pointer (SP) points to the highest word in the
frame. SP is incremented or decremented as execution proceeds and pushes or
pops the stack. These registers are discussed further in another section. See the
section "Registers Important to Function Calling and Returning".

Binding Stack

Binding is the temporary replacement of a memory cell’s contents. The Binding
Stack saves the address and contents of memory cells that have been bound so the
original contents can later be restored. Note that binding affects only the contents
of a cell, not its edr code.

Entries on the binding stack are two words long. The fields of an entry are as
follows:

Word Position Field Comments
0 <38> Binding-stack-chain-bit =1 if the previous entry is
for the same frame.
0 <37:0> Binding-stack-cell Locative to the memory cell
that is bound.
1 <37:0> Binding-stack-contents Saved contents of bound cell.

The binding-stack-cell field contains a user::dtp-locative pointer to the memory

Function Calling, Message Passing, Stack-Group Switching Page 4

cell that is bound. This indicates which location has had its contents temporarily
replaced. In the case of a dynamic closure, however, a new memory cell is created,
and the old value cell is loaded with a user::dtp-external-value-cell-pointer to this
new cell. The new cell is referenced by the closure.

The binding-stack-contents field contains the contents of the bound cell. Bindings
do not persist across stack groups, and must be undone when control is
transferred to another group. Binding-stack-contents contains the "former" contents
of the cell when the binding stack belongs to the currently executing stack group;
otherwise it contains the "current" contents of the cell. See the section
"Stack-Group Switching".

The binding-stack-chain-bit is 1 if the previous entry on the binding stack is
associated with the same function invocation as this entry. This bit is set by the
user::bind instruction, and groups entries on the binding stack into frames
associated with a function. Binding stack frames are removed at function return
time.

The Binding Stack Pointer points to the top of the binding stack (word 1 of the
topmost entryl) There is also a Binding Stack Limit register.

Bindings are performed by the user::bind-locative or user::bind-locative-to-value
instruction. A bind instruction checks the Control register binding cleanup bit. If
this bit is 0, then this binding is the first associated with the current frame. The
instruction will set the binding cleanup bit in the Control register, and set the
chain bit for the entry on the binding stack to 0. If the cleanup bit is 1, then
there are already bindings associated with the current frame. The instruction will
set the chain bit for the entry to 1.

Note that an unbind instruction (user::unbind-n or user::%restore-binding-stack)
will clear the Control register cleanup bit if it removes an entry from the binding
stack with the chain bit 0.

£

Notes: Deleted -- 0 <39> Binding-stack-closure-bit 1 if this binding was created by
dynamic closure or instance (for the debugger). The binding-stack-closure-bit is
just for the debugger. The hardware never sets this bit and never looks at it.

Note the change in the paragraph following the table.
What about a base register?

>>> Where is unbinding described - instruction chapter?

Data Stack

The purpose of the data stack is to provide an allocation area for temporary data
whose lifetime is associated with a function’s lifetime. This allows less expensive
allocation/deallocation than the general mechanism.

This is implemented in software in the same manner as on the 3600.

Registers Important to Function Calling and Returning
The following processor registers are relevant to function calling and returning:

Function Calling, Message Passing, Stack-Group Switching Page 5

Program Counter (PC)
Address of the current instruction.
user::dtp-even-pc or user::dtp-odd-pc

Frame Pointer (FP)Address of the current stack frame.
user::dtp-locative

Local Pointer (LP) Address of the local-variable part of the current stack frame.
user::dtp-locative

Stack Pointer (SP) Address of the highest in-use word in the stack.
user::dtp-locative

Continuation register (CONT)
Address of the first instruction to be executed after the next
function call or return.
user::dtp-even-pe or user::dtp-odd-pc

Control register (CR)
A bunch of bits and fields to be described below.
user::dtp-fixnum

The program counter contains the address of the current instruction.

The frame pointer points to the first word of the control stack frame header. This
register is used to locate the function’s arguments, which start at a fixed offset (2)
past FP. It can also be used to locate the function’s locals if the function does not
accept a &rest argument. When a function returns, the SP is set to FP-1 to
remove the function’s frame.

After a finish-call instruciton, the local pointer points to the word after the spread
arguments. Thus it points to the rest argument if there is one; otherwise it points
to the first local variable. When there are optional arguments and no rest
argument, LP points at the first optional argument not supplied by the caller, if
there is one.

LP is used to locate local variables to the function. FP cannot always be used for
this since in general the number of arguments the function accepts is variable. LP
may be adjusted by the user::entry and user::locate-locals instructions.

The stack pointer points to the highest word in the control stack. SP is
incremented or decremented as execution proceeds and pushes or pops the stack.

The Continuation register contains the address of the instruction to be executed
after the next finish-call or return instruction. Whether this is the return address
in the caller, or the first instruction in a function about to be called, depends on
context. It is the address of the function to call between the start-call and
finish-call instructions, and the return address in the caller between the finish-call
and return instructions.

The Control register contains a fixnum with several packed fields:

Position Size Name

<7:0> 8 bits Argument-size
<17> 1 bit Apply

<19:18> 2 bits Value-disposition
<26:24> 3 bits Cleanup-bits

<26> cleanup-catch
<25> cleanup-bindings
<24> trap-on-exit

<21:20> 2 bits Instruction-state

Function Calling, Message Passing, Stack-Group Switching Page 6

<31:30> 1 bit Trap-mode

<8> 1 bit Extra-argument
<16:9> 8 bits Frame-size-of-caller
<22> 1 bit Call-started

<23> 1 bit Cleanup-in-progress
<29> 1 bit Instruction-trace
<28> 1 bit cCall-trace

<27> 1 bit Trace-pending

Argument-size is the offset of LP from FP in the frame. It is used to restore the
LP when the function resumes execution after calling another function. It is also
used by the user::entry instruction to determine how many explicit arguments
were supplied with the call. This field is set by the finish-call instructions (for the
new frame). It is also adjusted by the user:locate-locals instruction.

Apply, if 1, indicates that a rest argument list has been supplied following the
spread arguments and is stored in LP|0. This bit is set by the finish-call
instructions, and is used to implement the Common Lisp apply function. This can
be reset by the user::entry instruction doing a pull-apply-args operation.

Value-disposition specifies what the caller wants done with the result(s) produced
by the function. It is set by the finish-call instructions. All three bits are cleared
by a finish-call instruction. The interpretation of value-disposition is:

0 Effect The function has been called for effect. Discard any values
the function may produce.

1 Value Only a single value is desired by the caller. Push this on the
control stack, discarding any extra values.

2 Return The value(s) returned by the function are also the value(s)
returned by the caller. Pass the value(s) along to this frame’s
caller.

3 Multiple The caller wants multiple values returned. Push any number

of values on the stack, followed by a fixnum specifying the
number of values.

The requested disposition is performed by a return instruction. Returned results
are pushed onto the stack after the function’s frame has been removed from the
stack. If a function terminates abnormally, it does not return a value so
Value-disposition is ignored.

Cleanup-bits specifies what actions need to be performed prior to removing the
function’s frame from the control stack. The actions are normally performed by a
return instruction. In the case of abnormal termination, these actions are
performed by the throw function (which uses a return instruction internally). The
bits are: ‘

Catch This bit indicates there are catch/unwind-protect blocks in the
frame. The catch cleanup bit is set whenever a catch or
unwind-protect block is created. The bit is cleared when the
outermost catch/unwind-protect block in a frame is destroyed.
See the section "Catch Instructions".

Bindings This bit indicates there is a non-empty binding-stack frame
associated with this control-stack frame, in other words that
this function has bound some special variables. This bit is set
by the binding instructions (user::bind-locative) and can be

Function Calling, Message Passing, Stack-Group Switching Page 7

cleared by the unbinding instructions (user::unbind-n). See the
section "Binding Instructions".

Trap-on-Exit This bit causes a trap to software when the frame is exited.
Used for bottom frame in stack, debugger ¢-X command,
phantom stacks, metering, and so forth. The software can use
the cdr-code bits of the two header words in the frame, which
are initially set to 11 by the hardware to distinguish these
cases. The trap-on-exit bit is set and cleared only by software,
and only in copies of the Control register saved in memory, not
in the live register.

For details: See the section "Frame Cleanup".

Instruction-state is set to zero upon successful completion of any instruction. If
these bits are nonzero, the next instruction may behave differently than normal. If
an instruction is interrupted in the middle these bits are sometimes set nonzero to
allow the instruction to be retried correctly if it has not completely restored its
initial state.

Trap-mode controls the handling of exception traps. The four modes, explained
elsewhere (See the section "Trap Modes".), are:

0 Emulator
1 Extra Stack
2 High-Speed 1/0

3 FEP

The trap-mode field is adjusted when a trap is taken. It is set to (max 1
current-trap-mode) by the user::%allocate-list-block or
user::%allocate-structure-block instruction.

Extra-argument is set to 1 to indicate an extra argument has been supplied to the
function by a start-call instruction. This happens when calling a lexical closure, a
generic function, an instance, or any interpreted function or illegal data type. See
the section "Starting a Function Call". This bit is just used to transmit
information from a start-call instruction to the corresponding finish-call instruction
and then is no longer needed. It is cleared by a finish-call instruction.

Frame-size-of-caller contains the size of the caller’s stack frame (callee’s FP minus
caller’s FP). It is used by return instructions to locate the start of the caller’s
frame when the function returns. This field is set by the finish-call instructions.

Call-started is set by start-call instructions and cleared by the finish-call
instructions.

Cleanup-in-progress

Trace-pending when 1, causes a trap to occur before the next instruction executes.
Note that a sequence break can intervene before the trap actually goes off. There
is only one trap vector location for trace-pending, regardless of the semantic
significance of the trap to the software. If a return instruction restores a control
register value with the trace-pending bit set, the trap occurs after completion of
the return instruction and before execution of the instruction returned to. The
interaction of trace-pending with the repeated returns caused by Value-disposition
Return is not defined.

Function Calling, Message Passing, Stack-Group Switching Page 8

Instruction-trace when 1 at the beginning of an instruction, causes completion of
the instruction to set trace-pending and causes a trap before the next instruction
executes. If a post-trap occurs when instruction-trace is 1, trace-pending is set in
the control register saved as part of taking the trap. This is not true of a pre-trap.
If a return instruction restores a control register value with the instruction-trace
bit set, the instruction returned to is executed before the trap occurs.

Call-trace when 1, causes the finish-call instructions to set trace-pending and
causes a trap before the first instruction of the called function executes. If stack
overflow occurs simultaneously, trace-pending is set in the saved control register
in the frame header of the stack overflow trap handler’s frame. When the stack
overflow handler returns, the trace trap occurs. Call-trace does not affect the
?nplicit finish-call performed when a trap occurs, because call-trace gets cleared
1rst.

Spare bit not allocated yet.
Py
3 vfe e 3 e s afe ok ofe e s ole 3 2 fe o ofe e ok sfe ke ofe e e sfe 3k o sfe e s sfesfe o ofe e sfeofe s o sfe e sfesle sk s sfe e sfeofe e s sfe it st sfe s sfeofe o skt 3 2fe e sfesfe ol sfe e sfe e e sfesfe sfe e oo e v

Notes:

The exact value stored in the argument-size field may be adjusted to simplify the
hardware and/or microcode. For example, it might store LP-FP-2 instead of LP-FP.

About the instruction-state field -- [Details elsewhere.] This is probably going
away.

The phantom-stack scheme, if we decide to implement it, may require a bit that is
1 if any objects in this frame have been evacuated from the stack. The bit changes
the way a few instructions execute.

DCP would like to have the user::abort-call instruction back.
sfe sfe sfe sje she e sje sie sfe she e sfe sfe sfe ofe e ofe ofe sfe s ofe ofe o afe s e sfe sfe sfe sfe s sfe sfe sfe sfe e o€ ofe s e sfe sfe s sfe sfe sfe sfe s sfe ofe o sfe ofe s s s s e sfe S5k sfe sfe s s sfe ok ofe sfe ofe e ofe she sfe sk e s sy e sk

Function Calling

A function call requires three different actions: specifying the function to call,
pushing the arguments to the function, and finishing the call by building the new
stack frame and entering the target function. The instructions that accomplish
these actions are described below.

Starting a Function Call

A function call is begun by executing one of the start-call types of instructions,
whose single argument is the function to be called. These instructions create the
header of the callee’s stack frame, possibly push an extra argument onto the stack,
and set the continuation according to the type of function being called.

The most general start-call instruction, user::start-call itself, takes its argument
from the top of stack or from a local variable. Several full-word instructions are
also supplied; these contain an address that specifies the function and possibly its
data type. In summary:

user::start-call Takes a general stack operand.

user::dtp-call-compiled-eVen and user::dtp-call-compiled-odd
Address a compiled-function directly, specifying whether to

Function Calling, Message Passing, Stack-Group Switching Page 9

start with the even or odd halfword instruction in the
addressed location.

user::dtp-call-indirect
Addresses a function cell and fetches its contents.

user::dtp-call-generic
Addresses a generic function directly.

Each full-word start-call type of instruction comes in prefetching and
nonprefetching versions. Semantically these are identical, but the prefetching
version is a hint to the hardware that a finish-call instruction appears soon enough
after the start-call instruction that it would be worthwhile to prefetch the first few
instructions of the called function rather than continuing to fetch ahead
instructions from the calling function. The decision of when to use the prefetching
version is up to the compiler; it is probably appropriate when there are no nested
function calls in the arguments and the number of instructions in the arguments
is less than a certain constant (around half a dozen). Prefetching makes the
ensuing finish-call operation run faster. The hardware does not necessarily actually
prefetch when the prefetching version is executed; it depends on the particular
instruction, on the data type of the function, and on how complex the hardware
turns out to be. The prefetching versions of the indirect and generic calls are
almost certainly not treated any differently from the normal versions by the
hardware: they exist entirely for software reasons.

The start-call instructions push the Continuation and Control registers (in that
order) onto the control stack with their cdr codes both set to 3; they will become
the header of the callee’s control stack frame. After the Control register is pushed,
the CR.call-started bit is set to 1.

Depending on the data type of the function being called, a start-call instruction
may push a third word which is called the "extra argument". Its cdr code is set to
0. All data types other than user::dtp-compiled-function receive an extra
argument. In the case of instance or generic function, the word pushed on the
stack is just a placeholder for the real extra argument the function will be called
with, since this cannot be computed until the first argument is known. (This extra
argument mechanism is necessary because in general the data type of the function
being called is not known until run time. Note that if a method is called directly,
as from a combined method, or if a lexically internal function is called directly, as
from its parent, the extra argument is passed instead as a normal argument. Any
given function always receives its arguments in the same format, and does not
need to know whether the first argument was supplied normally by the caller or
was an "extra" argument.)

If the start-call instructions push an extra argument, they set the extra-argument
bit in the Control register to 1; otherwise they clear the bit to 0. This information
is saved for the finish-call instruction. The setting or clearing of this bit takes
place after the Control register is saved on the stack.

After Continuation and Control registers are saved, the Continuation register is set
to a PC value pointing at the beginning of the function to be called (the argument
of the start-call). Depending on the data type of the function, this continuation can
be computed from the function itself or can be fetched from one of 64 trap-vector
locations, indexed by the data-type of the function. The effect of the function’s
data type on a start-call is as follows:

compiled-function There is no extra argument. The continuation is set to

Function Calling, Message Passing, Stack-Group Switching Page 10

user::dtp-even-pe with the address of the function.

symbol Fetch the contents of the symbol’s function cell and try again.
Trap if the function cell contains user::dtp-null.

instance Push the instance as the extra argument. The continuation
comes from the trap vector.

generic Push the generic function as the extra argument. The
continuation comes from the trap vector.

lexical closure Fetch the enclosed function and the environment from memory.
If the enclosed function is compiled, push the environment as
the extra argument and set the continuation to dtp-even-pec and
the function’s address, producing a call to the enclosed
function with the environment as its extra argument. If the
enclosed function is not compiled, push the lexical closure as
the extra argument and take the continuation from the trap
vector.

anything else Push the original function as the extra argument. Use the data
type of the function as an index into the trap vector to fetch
the appropriate interpreter function and set the continuation to
that.

After a start-call insfruction the continuation is guaranteed to be a PC pointing
into a compiled function, assuming the trap-vector has been initialized correctly.

For the instance and generic function cases, the real function (the method) and
the real extra argument (the mapping table) cannot be computed until the value of
the first argument is known, so these have to be deferred until a finish-call
instruction is executed.

Note that after doing a start-call a program does not know the exact depth of the
stack, because it does not know whether an extra argument was pushed. The
compiler avoids using SP-relative addressing to access variables deeper in the
-stack than the incipient frame header.

>>> Picture of stack at end of start-call

Pushing the Arguments

After starting a function call, the caller computes the arguments and pushes them
onto the stack, in order. Results of instructions normally are user::cdr-next, to
facilitate the linking of the arguments into a list to be passed to an &rest
argument. The resetting of the final cdr code is performed by the user:entry
instruction.

>>>Picture of stack at end of pushing args

Finishing the Call

After starting a function call and pushing the arguments, the caller executes a
finish-call instruction. This instruction builds the new stack frame, checks for
control stack overflow, and enters the callee at the appropriate starting
instruction. ’

Instructions at the beginning of the callee are in charge of checking the number
of arguments and rearranging them to suit its needs, or signalling an error if the

Function Calling, Message Passing, Stack-Group Switching Page 11

wrong number of arguments were supplied. Every compiled function should contain
code to do this, but the linker (which places user::dtp-call-compiled-even or
user::dtp-call-compiled-odd instructions into compiled callers) can optimize calls
by bypassing those instructions and arranging for the called function to be entered
directly at the right place.

There are two finish-call instructions, user::finish-call-n, and user::finish-call-tos
which differ only in how they obtain their argument. user::finish-call-n takes its
argument as an 8-bit field of a 10-bit immediate, and user::finish-call-tos pops its
argument from the top of stack.

The operand, called N-Args, indicates the number of arguments explicitly supplied
with the call. Thus it does not include the apply argument, if any, or the extra
argument, if any.

Three additional bits supplied with the instruction, 1<9:8> of the 10-bit immediate
field, are used as follows.

Value-disposition A 2-bit field taken from the operand field that specifies what
to do with the result(s) produced by the function being called:

0 Effect The function is being called for effect.
Discard any values it may produce.

1 Value Only a single return value is desired.
Discard any additional values the function
may produce.

2 Return The value(s) returned by the function
being called are also the value(s) returned
by this function. Pass the value(s) along to
thif frame’s caller. This is illegal in nested
calls.

3 Multiple Multiple values are desired. These should
be returned along with a fixnum specifying
the number of values returned.

Apply A 1-bit field taken from the opcode, which is a 1 if the top
word in the stack is a list of arguments. The list may be
spread or packed by the entry instruction. This implements the
Common Lisp apply function.

There are a number of applications for calling a function with the number of
arguments not known at compile time, where the arguments do not come from a
list, including the user::%finish-function-call and multiple-value-call special
forms and things built on them. These are handled by using the
user::finish-call-tos instruction.

The operations of finish-call are described sequentially below, although in the
actual hardware many of them happen in parallel.

The first thing finish-call does is to check for Apply = 1 but the top word on the
stack is nil (an empty list). In this case it pops the stack and clears its copy of the
Apply bit, turning into a normal call. This canonicalization simplifies the argument
match-up procedure described later.

The finish-call instruction next builds the new stack frame with the following
procedure:

Function Calling, Message Passing, Stack-Group Switching Page 12

FP <

SP - Apply - N-Args - cr.extra argument - 1
Lp <= SP + 1 - Apply ;this could be past SP

Continuation <= the address of the next instruction after the
finish-call.

SP, Binding-stack-pointer, and Data-stack-pointer are unchanged.
Save the old contents of Continuation temporarily (see below).

The control register is adjusted as follows:

Argument-Size <= N-Args + cr.extra arqument + 2

(that is, new LP - new FP)
Apply <= Apply bit in the instruction
Value-Disposition <= Value Disposition bits in the instruction
Cleanup-Bits <= 0

Instruction-State <= 0

Trap-Mode <= unchanged

Extra-Argument <= 0 ;actually this doesn’t matter
Frame-size-of-caller <= new FP minus old FP

Call-started <= 0

After building the new frame, finish-call checks for a control stack overflow. If the
stack overflows in normal mode, it switches to extra stack mode and traps to the
stack-overflow handler. Extra-stack mode turns on function trace. If the stack
overflows in extra stack mode, the machine halts with a fatal error.

The finish-call instruction copies cr.call-trace to cr.trace-pending, forcing a trace
pre-trap upon execution of the next instruction if call-trace was 1.

Finally execution proceeds with the instruction at the halfword address specified in
the Continuation register before it was set to the return address.

Trapping Out of Finish-call and Restarting

Traps in the finish-call instructions always occur after building the new frame and
setting the Control register, the Continuation register, and the Program Counter
to their new values. Thus any trap occurring in a finish-call instruction looks like
a pre-trap in the first instruction of the called function. No special action is
required to restart after such a trap.

Aborting Calls

It is sometimes necessary to abort a call that has been started, instead of finishing
it with a finish-call instruction. Aborting a call consists of popping the stack back
to the level before the call was started and restoring some of the Continuation and

Function Calling, Message Passing, Stack-Group Switching Page 13

Control register values saved by the start-call instruction. This is performed by
Lisp code.

£
#******************************

Notes: About canonicalization: [This is what it does on the 3600; it’s actually a
matter for detailed design of the I Machine to determine whether this
canonicalization is worth anything to it.]

NOTE: the exact value stored in the N-Args operand of the FINISH-CALL
instruction will be adjusted to suit the convenience of the hardware. For example,

the computation of the new FP might be eased by storing N-Args + Apply + 1 in
this field.

Trap handling in finish-call is no different from any other trap. After the
FINISH-CALL completes, and before the instruction it jumped to is executed, the
trap is taken, building another new frame. When the trap handler returns, the

first instruction in the called function is executed. :

Function Entry

A compiled function starts with a sequence of instructions that are involved in
receiving the arguments. The first instruction is known as the entry instruction. It
is followed by a possibly-empty sequence of instructions known as the entry vector.
The function can be entered at the entry instruction, which will check the number
of arguments and select the first instruction to be executed, either an element of
the entry vector or the first instruction after the entry vector. Alternatively, this
selection can be made by the linker when the number of arguments is known
statically, and the function can be entered directly at an element of the entry
vector or at the first instruction after the entry vector. In either case, execution
proceeds from the selected instruction according to normal instruction sequencing,
possibly executing additional instructions from the entry vector. After completing
the entry vector, some additional argument-taking instructions may be executed,
depending on the particular function. Thus a compiled function consists of:

Object header (2 words)

Entry instruction

Entry-vector instructions

Other argument-taking instructions
Body instructions

See the section "Representation of Compiled Functions".

Each entry-vector element is two half-word instructions long. For each &optional
or &rest argument, there is an element of the entry vector. (This includes an
automatically-generated &rest argument in a function with &key arguments.) The
element of the entry vector corresponding to an argument contains instructions
that are executed if that argument is not supplied by the caller. These instructions
compute the default value (nil for a &rest argument) and push it on the stack. If
this computation will not fit in an entry-vector element, the compiler inserts a
branch to the rest of the code, which ends in a branch back. If the computation is
smaller than the size of an entry-vector element, it ends with a branch to the next
element, some kind of no-op padding, or cdr-code sequencing that skips an
instruction, whichever is fastest.

The entry instruction contains the following information:

Function Calling, Message Passing, Stack-Group Switching Page 14

Number of required arguments
Number of optional arguments
Number of rest arguments (zero or one)

An entry instruction performs an argument match-up process that either traps (for
wrong number of arguments) or adjusts the stack and then branches to the
appropriate instruction of the entry vector, or to the instruction after the entry
vector. The first entry-vector element follows immediately after the entry
instruction. Adjusting the stack is done by performing one of two operations
described later: pull-apply-args or push-apply-args.

The following conditions are computed by an entry instruction:

* Too few spread arguments (N-Args+2 < min-args+2) [min-args+2 = req]

¢ Too many spread arguments (N-Args+2 > max-args+2) [max-args+2 = req+opt]
¢ Maximum spread arguments (N-Args+2 = max-args+2)

* Rest argument wanted (rest-arg = 1)

* Rest argument supplied (cr.apply = 1)

Note that the argument comparisons are all biased by plus 2. cr.arg-size in the
control register is two greater than the actual number of arguments in the frame
because it includes the two frame header words (this makes return faster). To
simplify these entry comparisons, the arguments min-args and max-args in the
entry instructions are correspondingly biased by two.

If "rest argument wanted" and "rest argument supplied" are both false, this is the
simple case. If there are too few or too many arguments, take a wrong number of
arguments trap. Otherwise, enter the function at entry-vector element (N-Args -
min-args); this skips over the default-initialization instructions for those optional
arguments that had values supplied.

If "rest argument wanted" is false and "rest argument supplied” is true, then if
there are too few spread arguments do a pull-apply-args operation. Otherwise, take
a wrong number of arguments trap because there are too many arguments.

If "rest argument wanted" is true and "rest argument supplied" is false, then if
there are too many spread arguments do a push-apply-args operation. Otherwise,
not enough arguments were supplied to create a rest argument. If there were too
few spread arguments, take a wrong number of arguments trap. Otherwise, enter
the function at entry-vector element (N-Args - min-args); this skips over the
default-initialization instructions for those optional arguments that had values
supplied. The last element of the entry vector will be executed; it pushes nil to
default the rest argument. :

If "rest argument wanted" and "rest argument supplied" are both true, a
push-apply-args operation is required if there are too many spread arguments;
otherwise a pull-apply-args operation is required unless there are the maximum
number of spread arguments. If neither operation is required, set the cdr code of
the top word in the stack to user::cdr-nil and enter the function at entry-vector
element (max-args - min-args + 1). This skips over the default-initialization
instructions for the optional arguments and for the rest argument.

Function Calling, Message Passing, Stack-Group Switching Page 15

Push-apply-args

The push-apply-args operation is invoked when there are too many spread
arguments and a rest argument is wanted. It pushes some spread arguments back
into the rest argument, after which the function is started at its
all-arguments-supplied entry point. This operation does not involve any memory
references nor any possibility of trapping.

In detail, push-apply-args does the following:
e Set the cdr code of the last word in the stack to user::cdr-nil.

o If a rest argument was supplied, set the cdr code of the second to last word in
the stack (the last spread argument) to user::cdr-normal.

Since arguments are pushed with user::cdr-next, the stack now contains a list
of all of the arguments.

e Make a rest argument out of the arguments after the max number of spread
arguments wanted by the function by creating a user::dtp-list pointer to
(frame-pointer + max-args + 2). Push this rest argument onto the stack.

o If apply=0, leave cr.arg size and cr.apply alone. They describe the arguments
preceding the rest argument that was just pushed, which is regarded as a local
variable of the callee rather than an argument supplied by the caller.

e If apply=1, increment LP and cr.arg_size, and leave cr.apply alone. LP now
points at the revised rest argument that was just pushed, instead of the original
rest argument, which has been turned into the cdr word of a two-word cons.

The function is entered at entry vector element (max-args - min-args + 1) [past
the &rest argument default].

Pull-apply-args

The pull-apply-args operation is invoked when there are fewer than the maximum
number of spread arguments and a &rest argument was supplied. It pulls some
additional spread arguments out of the &rest argument.

In detail, pull-apply-args pops the list of arguments off the stack, extracts some
arguments from the list, pushes them into the stack, pushes the tail of the list
into the stack, adjusts cr.arg_size, and retries the argument match-up process. If
the &rest argument is too short, the cr.apply bit is turned off; the retry may then
signal too few arguments or may simply default some optional arguments. The
pull-apply-args operation occurs even if the callee did not want a &rest argument;
if the desired number of arguments are pulled out of the &rest argument and
more arguments remain, a wrong number of arguments trap will occur when the
argument match-up process is retried.

Following the entry vector, the following instructions may appear.

In a function with both &optional and &rest arguments, it is necessary to adjust
the LP register to make sure that the &rest argument is in LP|0. (If there is a
&rest argument but not &optional arguments, LP will already contain the correct
value.) Any function that takes a &rest argument may be called with an arbitrary
number of spread arguments; push-apply-args will generate the correct &rest

Function Calling, Message Passing, Stack-Group Switching Page 16

argument, but there remains an arbitrary distance between FP and SP at the time
the function is entered and starts creating its local variables. This is the reason
why the local pointer exists; it permits such functions to address their local
variables. Functions without &rest arguments do not normally use the local
pointer. The first instruction after the entry vector, when there are both
&optional and &rest arguments, is a user::locate-locals instruction, which does
the following:

¢ Push (cr.arg_size - 2) onto the stack, as a fixnum. This is the number of spread
arguments that were supplied, which is less than the number of spread
arguments now in the stack if some &optional arguments were defaulted.

e Set LP to (new-SP - 1). Thus LP|0 is the &rest argument and LP|1 is the
argument count. new-SP here refers to the SP after the incrementation caused
by the locate-locals instruction.

e Set cr.arg size to (LP - FP) as always.

The next step is to create the auxiliary user::supplied-p variables for optional
arguments. Each of these variables is stored as a local variable (after all the
arguments) whose initial value is created by arithmetic comparison between the
number of arguments supplied and an appropriate constant. The number of
arguments supplied is cr.arg size - 2 except in functions with both &optional and
&rest arguments, where it is LP|1. The computation can be performed with a
sequence of existing instructions. The initialization of user::supplied-p variables
recomputes information that waas available while exectuting the entry vector, but
there was no space in the stack to store that information then.

The next step takes care of any arguments that were declared special by binding
the special variables to the values using the normal instructions for that purpose.
If there are any non-special arguments after the special arguments, orphan words
will be left in the stack since the values of the special arguments cannot be
popped off.

If there are problematic dependencies among optional-argument default-value
computations, special care is required. A problematic dependency occurs if the
default value for an optional argument depends on a user::supplied-p variable of a
previous optional argument or can be affected by a previous argument that is
declared SPECIAL. The 3600 handles this with an alternate function entry
sequence that the compiler generates if necessary. The I Machine will handle it by
using nil as the default value in the entry vector and then generating code after
the entry vector that tests whether the argument was supplied (just as if
initializing a user::supplied-p variable) and if not computes the default value and
pops it into the argument’s slot in the stack. This code is interleaved with the
binding of special variables so that everything happens in the right order.

Note that if a user::supplied-p variable is used in a read-only way, the value can
simply be computed where it is needed, rather than waiting until a stack slot is
allocated for the variable, and the problematic case need not occur.

The next step is to compute the values of &key arguments and push them on the
stack as local variables. This is done with code that looks at the rest argument,
just as on the 3600.

This completes the function entry sequence. If the body of the function creates
local variables (or &aux variables) pushing the initial value of the variable on the

Function Calling, Message Passing, Stack-Group Switching Page 17

stack allocates a stack slot, just as on the 3600. These stack slots can be addressed
from the top of the stack frame (relative to SP) or can be addressed from the
bottom of the stack frame (relative to FP if the function does not take a &rest
argument or relative to LP if it does).

Trapping Out of Entry and Restarting

Traps can occur in an entry instruction. Error traps such as wrong number of
arguments are handled in a totally ordinary way.

The pull-apply-args operation references memory, so it is possible for it to trap.
Usually, however, the &rest argument will be a cdr-coded list in the stack and no
trap will occur; these cases are handled quickly by microcode. It is
implementation-dependent whether the pull-apply-args microcode handles the full
generality of car and edr, including non-cdr-coded lists and invisible pointers.
Cases it does not handle make the stack frame self-consistent and then call a
special trap handler that performs the rest of the pull-apply-args operation and
then returns to the user::entry instruction, which will not need a pull-apply-args
this time. (The trap handler needs to use the user::return-kludge instruction.)
Ordinary traps, such as page faults, are handled by making the state of the stack
frame self-consistent and then calling the ordinary trap handler. After the reason
for the trap has been rectified, the trap handler returns to the user::entry
instruction, which will go back into pull-apply-args and should make further
progress this time.

E

S e s e ok 2 ofe ol s ofe ofe s e s fe oje sfe e sle s sfe sfesfe e e o e sfe e ok s sfe sfesfe ofe e afe s ofe s ik sheofe sfe s sfe s sfe sfesfe s sfe fe sfe sje e sfe sfe e sfe ofesfe sfe sfesfe sfesfe oo s s s e sk s s s g sk sk

Notes: In Release 6.0, the function with the largest number of required+optional
arguments is TV:DRAW-TRIANGLE-SETUP, which takes 15 arguments.

she e e e o she e e 2 s sfesle ik s s sfesfe o s sfesfesfe e sfe o o sfesfesfesfe s s s sfeofe fe e o s sfesfefe e s s s s sfe ol e fe fe o s s sfe e o s sfe e 3 s sfesfe e s sfesfesfe o sfe s s sfe e s e o

Function Returning

Function Return Instructions

A function returns to its caller by executing one of the return instructions. These
instructions specify the value(s) to be returned, remove the returning function’s
frames from the various stacks, restore the state of the caller, and resume
execution of the caller with the returned values on the stack in the form desired
by the caller.

The value(s) to be returned can be constant or can be some number of words at
the top of the stack; the number of words can be either fixed or variable.

The form of values desired by the caller can be to throw all the values away, to
push the first value on the stack, or to push on the stack all the values and a
fixnum which is the number of values excluding itself. The caller uses the
value-disposition field of the Control register to specify the desired form of values.
Note that any form of values supplied to the return instruction can be converted
to any form of values desired by the caller. In addition to this format conversion,
the return instruction must move the values from one place in the stack to
another, from the callee’s frame to the caller’s frame.

The return instructions are:

Function Calling, Message Passing, Stack-Group Switching Page 18

user::return-single
Return a single value.

user::return-multiple
Return multiple values (zero or more).

user::return-kludge
Return multiple values in a non-standard form.

user::return-single has an immediate operand that addresses an internal register
that supplies the value to be returned. The values that can be returned include
nil, t, and the top-of-stack. user::return-single does not do anything that cannot be
done with user::return-multiple (accompanied by a push in some cases), but it is
likely that user::return-single can be implemented to be much faster than the
corresponding user::return-multiple, which will speed up important special cases.

user::return-multiple has a standard operand that specifies the number of values
to be returned. The values themselves are on the top of the stack. The operand
must be a non-negative fixnum. If there is an implementation dependent upper
limit on the number of values, it must be at least 16. Although
user::return-multiple takes a standard operand, only immediate and sp-pop
operands are legal. (The reason for this is discussed below.)

user::return-kludge takes the same argument as user::return-multiple, but it
returns the values in a different way. user::return-kludge ignores the value
disposition and simply places the values at the top of the caller’s stack, without
pushing the number of values. user::return-kludge also ignores the Cleanup Bits
in the Control register. user::return-kludge is used for certain internal
stack-manipulating subroutines. Note that because user:return-kludge does not
return values according to the standard calling sequence, it can only be used in
subroutines that are specially known by the compiler, and in certain trap handlers.

Note that the description of return values in the instructions above is from the
callee’s perspective. In other words, this represents what the function would
normally return upon completion. The value-disposition field in the Control
register, set by the caller, specifies what should actually be done with the return
value(s) (that is, they could be discarded).

Before return can remove the frame from the stack, it may have to perform other
cleanup actions. These are specified by the Cleanup Bits in the Control register
being nonzero. The actions include popping the binding stack, popping the catch
stack (a list threaded through the control stack), executing unwind-protect
instructions (which may pop the data stack), and escaping to arbitrary software.
See the section "Frame Cleanup".

Once these cleanups have been taken care of, the return instruction restores the
state of the caller using the information saved in the frame header of the frame
being abandoned, according to this procedure:

PC <= Continuation register (unless user::vd is return)
Continuation register <= FP|0

temp <= FP|1

sp <= FP -1

Fp <= FP - cr.frame-size-of-the-caller

Control Register <= temp .

Lp <= FP + cr.argument-size

At this point the function’s frame has been removed from the control stack. The

Function Calling, Message Passing, Stack-Group Switching Page 19

stack cache now is either empty or contains part or all of the caller’s frame. Since
the frame that was just removed from the stack was entirely in the stack cache,
the lowest word in the stack cache is less than or equal to SP+1; if equal, the
stack cache is empty. The return instruction does not worry about refilling the
stack cache at this stage.

The return instruction now places the values being returned at the top of the
control stack, according to the value disposition field in the old Control Register
and the particular type of return instruction being executed. The
user::return-single instruction can simply push its argument, but the
user::return-multiple and user::return-kludge instructions may have to transfer a
block of values. The source and destination locations of this block can overlap,
both in virtual memory and in stack-cache memory, so care must be taken when
copying the block of values to its new location.

The specific handling of the value disposition is as follows:

Effect Leave the stack alone. This leaves the TOS register invalid.

Value Push the first value being returned onto the stack. If no values
were being returned, use nil as the first value.

Multiple Copy the values down from the old top of the stack to the new

top of the stack, and form them into a multiple group by
appending a count.

Return Copy the arguments to the Return instruction down to the new
top of the stack and then re-execute the instruction. If the
instruction was user::return-multiple and its operand was
sp-pop, the count of values must be pushed back on the stack.

The final thing the return instruction does is to make sure that the frame being
returned to is contained in the stack cache. If necessary, words in the frame are
fetched from main memory. If a trap or interrupt occurs during this process, PC
points at the instruction in the caller being returned to, not at the return
instruction, so that the return instruction is not retried (which would return from
an extra level of call). When the trap/interrupt handler returns, its return
instruction will continue loading the frame into the stack cache. Note that the
stack cache must be refilled in decreasing order of addresses, so that if a trap
occurs the range of addresses validly contained in the stack cache will be
contiguous.

When the value disposition is Return, the stack cache is refilled if necessary and
then the return instruction is re-executed, causing the value(s) to be returned
from the caller. This process can be repeated any number of times.

If the callee returns more values than will fit in the caller’s frame, the hardware
takes an error trap out of the callee’s return instruction, before the stack becomes
illegal. The checking for oversize stack frame caused by returning too many values
can be done at compile-time if the compiler imposes a limit on the maximum
number of values returned by any function and the limit is much smaller than the
maximum size of a stack frame. Sixteen would be a reasonable limit. The
maximum frame size is limited to 256 by the 8-bit field in the Control register
[and may be limited to a smaller value by the design of the stack cache].

In order to allow smooth trapping out of the middle of a return, it is required)
that all return instructions keep their state, if any, at the top of the stack. This
means that we cannot have a user::return-local instruction that returns the value

Function Calling, Message Passing, Stack-Group Switching Page 20

of a local variable; you have to first push the value on the stack and then return
it from there with user::return-single. Similarly, the number-of-values operand of
a user::return-multiple instruction cannot be addressed with FP-relative
addressing; only immediate and sp-pop operands are allowed. This restriction
eliminates any need to play around with special macro-PCs; any trap out of a
return leaves the PC pointing at the original return instruction and the stack set
up so that the instruction can be retried.

Returning from a call that had Value-disposition equal to Effect does not restore
the TOS register from the top of the stack. This is because there is no time to do
it: three reads from the stack cache would be required in this case, whereas when
the Value-disposition equals Value two reads from the stack cache plus one write
are required and the user::return-single instruction executes in only two cycles.
This is normally not a problem, since the compiler can compensate, just as it does
on the 3600 for other instructions that leave TOS invalid. The compiler simply
knows that a finish-call instruction with a value disposition of Effect has the
smashes-stack attribute. However, a trap handler for a pre-trap must return with
TOS valid, since the trapped instruction might depend on it. It is the responsibility
of the person writing such a trap handler to end it by returning the value of the
macro user::trap-handler-restore-tos which expands into (user::%p-contents-offset
(user::%stack-frame-pointer) -1) or something equivalent. The effect of this is to -
fetch the proper value from the top of the caller’s frame and return it; it will be
discarded by the value disposition of Effect, but will cause the proper value to be
left in TOS.

et s sie st sk sfesfefesfe s e sfe s e sl sfesiesfe s stesie sk sfesiesfe s s sfesieskesfe ke s sk sl sesfeste s s sfe s s e s s s o sk ol s e e s e e s s sfe s s e e s se e s s e e sk e e ke

Notes: Because the handling of Multiple and Return value dispositions is similar,
the user::return-single and user::return-multiple instructions can be implemented
by starting with a four-way dispatch to these cases:

1. Cleanup Bits non-zero — Perform the cleanup and then retry the instruction.
2. Value Disposition = Effect — Just return without worrying about the values.
3. Value Disposition = Value — Just return the first value.

4. Value Disposition = Multiple or Return — Take complex actions.

e 30 e e e o e e e e e o e o e s s o s s sfe s s o o sk e e e e seofesfeofe ol sl sl sfe s sfesfe s s sfe s sfesfe o st s e e e e et e sfesfe e e e e s s e sl s sl s s sfesie s sfe e e sfe s

Frame Cleanup

The Cleanup Bits in the Control register specify actions necessary before the
frame can be exited. Traps, such as page faults, can occur while cleaning up. After
handling the trap, the return instruction is retried. The state of the stack while
cleaning up is always self-consistent.

The bits and the cleanup actions they cause are as follows, listed in the order that
they are processed:

Catch This bit indicates there are catch/unwind-protect blocks to be
unthreaded. Unthreading a block examines the words in the
stack addressed by the %catch-block-list register. If the
cleanup-handler-executing bit is set, there i1s an unwind-protect
cleanup handler that must be invoked, and the following

Function Calling, Message Passing, Stack-Group Switching Page 21

Bindings

Trap-on-Exit

Value Matchup

actions are performed:

Restore stack-pointer to its original value, if it was popped
by an sp-pop operand.

If the catch-block-binding-stack-pointer is less than the
binding-stack-pointer, unbind special variables until the two
pointers are equal. Note that this can clear the Bindings
cleanup bit.

Push the current PC onto the stack.

Set the PC to the catch-block-PC, which is the address of
the cleanup handler.

Set the cleanup-handler-executing bit in the Control register.

Set control-register.cleanup-bits.catch in accordance with the
cdr code.

Set the %catch-block-list register to the catch-block-previous,
which is the address of the previous catch block or nil if
there is none.

Transfer control to the first instruction of the cleanup
handler. When the cleanup handler exits the return
instruction will be retried.

If the cleanup-handler-executing bit is not set, there is only a
catch block to be removed. The following actions are
performed:

Set control-register.cleanup-bits.catch in accordance with the
cdr code.

Set the %catch-block-list register to the catch-block-previous,
which is the address of the previous catch block or nil if
there is none.

Check the cleanup bits again.

This bit indicates there is a non-empty binding-stack frame
associated with this control-stack frame, in other words that
this function has bound some special variables. Pop the binding
stack and undo bindings until a binding stack entry whose
binding-stack-chain-bit is zero is encountered. Then clear
control-register.cleanup-bits.bindings and check the cleanup bits
again.

Take a trap. If the trap handler clears the Trap-on-Exit bit and
returns, the return instruction can proceed.

When Value-disposition is Multiple, the instruction after a finish-call instruction

Function Calling, Message Passing, Stack-Group Switching Page 22

will usually be a user::take-values instruction. As on the 3600, this converts the
multiple group left on the stack by return into the desired number of values,
popping extra values or pushing nil as a default for missing values.

Catch, Throw and Unwind-Protect

A catch block is a sequence of words in the control stack that describes an active
catch or unwind-protect operation. All catch blocks in any given stack are linked
together, each block containing the address of the next outer block. They are
linked in decreasing order of addresses. An internal register named
catch-block-pointer contains the address of the innermost catch block, as a
dtp-locative, or contains nil if there are no active catch blocks. The address of a
catch block is the address of its catch-block-pc word.

The format of a catch block for a catch operation is as follows:

Word Name Bit 39 Bit 38 Contents
catch-block-tag 0 invalid flag any object reference
catch-block-pe 0 0 catch exit address
catch-block-binding-stack-pointer 0 0 binding stack level
catch-block-previous extra-argument cleanup-catch previous catch block
catch-block-continuation value disposition continuation

The format of a catch block for an unwind-protect operation is as follows:

HWord Name Bit 39 Bit 38 Contents
catch-block-pc 0 0 cleanup handler
catch-block-binding-stack-pointer 0 1 binding stack level
catch-block-previous extra-argument cleanup-catch previous catch block

The catch-block-tag word refers to an object that identifies the particular catch
operation. The catch-block-invalid-flag bit in this word is initialized to 0, and is set
to 1 by the throw function when it is no longer valid to throw to this catch block;
this addresses a problem with aborting out of the middle of a throw and throwing
again. This word is not used by an unwind-protect operation and is only known
about by the throw function, not by hardware.

The catch-block-pc word has data type user::dtp-even-pc or user::dtp-odd-pec. For a
catch operation, it contains the address to which throw should transfer control.
For an unwind-protect operation, it contains the address of the first instruction of
the cleanup handler. The cdr code of this word is set to zero (user::edr-next) and
not used. For a catch operation with a value disposition of Return, the
catch-block-pc word contains user::nil.

The catch-block-binding-stack-pointer word contains the value of the
binding-stack-pointer hardware register at the time the catch or unwind-protect
was established. When undoing the catch or unwind-protect, special-variable
bindings are undone until the binding-stack-pointer again has this value. The
cdr-code field of this word uses bit 38 to distinguish between catch and
unwind-protect; bit 39 is set to zero and not used.

The catch-block-previous word contains a dtp-locative pointer to the catch-block-pc
word of the previous catch block, or else contains user::nil. The cdr-code field of
this word saves two bits of the control register that need to be restored.

The catch-block-continuation word saves the Continuation hardware register so that

Function Calling, Message Passing, Stack-Group Switching Page 23

throw can restore it. The cdr-code field of this word saves the value disposition of
a catch; this tells the throw function where to put the values thrown. This word
is not used by unwind-protect.

An unwind-protect cleanup handler terminates with a user::%jump instruction.
This instruction checks that the data type of the top word on the stack is
user::dtp-even-pc or user::dtp-odd-pe, jumps to that address, and pops the stack.
In addition, if the bit 39 of the top word on the stack is 1, it stores bit 38 of that
word into control-register.cleanup-in-progress. If bit 39 is 0, it leaves the control
register alone.

The compilation of the catch special form is approximately as follows:

Code to push the catch tag on the stack.

Push a constant PC, the address of the first instruction after the catch.
A user::catch-open instruction.

The body of the catch.

A user::catch-close instruction.

Code to move the values of the body to where they are wanted; this
usually includes removing the 5 words of the catch block from the stack.

The compilation of the unwind-protect special form is approximately as follows:

Push a constant PC, the address of the cleanup handler.

A user::catch-open instruction.

The body of the unwind-protect.

A user::catch-close instruction.

Code to move the values of the body to where they are wanted; this
usually includes removing the 3 words of the catch block from the stack.

Somewhere later in the compiled function:

The body of the cleanup handler.
A user::%jump instruction.

*
s sfe e e s sfe s e e ok sfe e sfe e s s sfe s sfe e s s s s ofeofe e ok s sk e e s s s sfeshe e e 3 s s sfe sfe ke e e s s s ofe o afe e s s sfe sfe e s s afesfe e afe sfe e e s e sfesfe e o sfe s sk sl s

Notes:

Each active catch or unwind-protect operation has an associated catch-block stored
in the control stack and linked onto a list whose root is a processor register,
named user::%catch-block-list, that is saved in the stack group by context switch.

>>> How is the data stack unwound? But, the idea is that all the frames between
the current and the destination of the throw are "unwound" individually, and the
data stack is taken care of by this. Each frame that uses the data-stack has an
unwind-protect to clean it up. The binding stack is also taken care of by this; the
only reason for the binding SP in the catch block is because bindings can happen
at any point in the function, and only those that happened after the throw should
be undone (the binding stack itself only says with which frame the bindings are
associated, not where in the frame).

return from a frame with catch blocks in it automatically removes the catch
blocks, via the Cleanup Bits mechanism. What return does is similar to the
user::catch-close instruction.

The implementation of throw is somewhat similar to the way it is done on the
3600, but simpler and with less special kludgery. A throw special form

Function Calling, Message Passing, Stack-Group Switching Page 24

(throw <tag> <values>)
is compiled as
(multiple-value-call #’$THROW (VALUES <tag>) <values>)

which calls user::%throw with the value of <tag> as its first argument and the
values of <values> as its remaining arguments. user::%throw starts by searching
the list of catch blocks for one with the correct tag. If it doesn’t find one, or if the
catch-block-invalid bit is set in the block it finds, it signals an error. Having
located the destination catch block, user::%throw prepares to discard all
intervening stack frames and catch blocks; this requires invoking any
unwind-protect cleanup handlers that are present, each in its proper stack frame
and special-variable binding environment. user::%throw changes the value
disposition of each intervening stack frame to Return, and sets the
catch-block-invalid bit in each intervening catch block. Next, user::%throw
examines the restart PC and value disposition of the destination catch block, and
modifies the return PC and value disposition of the next frame in the stack, the
one that was called by the frame containing the catch block. There are two cases:

If the catch value disposition is Return, user::%throw sets the frame value
disposition to Return and returns the values to be thrown. These values are passed
back through all the intervening frames, since their value dispositions are Return,
and eventually arrive at the desired destination.

Otherwise, user::%throw sets the frame value disposition to Multiple, sets the
frame return PC to the address of a hand-crafted helping routine, pushes the
following values on the stack, and executes a user::return-multiple instruction
that returns these values through all of the intervening frames. The values pushed
are:

e the words to be left in the stack when control reaches the catch’s restart PC.
This depends on the catch’s value disposition and could be nothing, one word, or

a multiple group. These are derived from the values to be thrown passed to
%THROW as its arguments.

¢ The catch’s restart PC.

e The number of catch blocks to be closed in the destination frame. This is at
least 1, and will be more if there are other catches inside the destination catch
in the same frame.

¢ The number of special variable bindings to be undone. This is always zero in
this context, but the same helping routine is used for other purposes.

¢ A count of the total number of values, to make this a valid multiple group.
The hand-crafted helping routine proceeds as follows:

¢ Loop executing user::catch-close instructions the specified number of times.
¢ Loop executing user::unbind instructions the specified number of times.

e Pop the top three words off the stack.

e Do a POPJ instruction, which jumps to the catch’s restart PC and leaves the
values thrown in the stack.

Function Calling, Message Passing, Stack-Group Switching Page 25

>>>Note: Think about frame-too-large error in the middle of %THROW.

Note that the return PC and value disposition that need to be modified are
actually stored in the frame header of the frame two frames up in the stack from
the frame containing the destination catch block. The frame containing the
destination catch block could be the same one that called user::%throw. In order
to avoid having to modify the internal processor registers (Return PC and Control
register), user::%throw calls itself recursively in this case.

The purpose of the catch-block-invalid bit is to detect the case where a throw
begins, is interrupted part way through, and the interrupt handler does another
throw to a catch that is inside the original catch. This can also happen if an
unwind-protect cleanup handler gets an error and a throw occurs from the
Debugger. Since the stack has already been clobbered by changing the value
disposition of the frame containing this new catch, the program would operate
incorrectly if the second throw was permitted to occur. The 3600 deals with this
differently; it doesn’t modify the value disposition of each frame until it is just
about to return from it. This still has a possibility of the same bug, since there
could be a catch in the frame being returned from, but the timing window is open
for a much smaller time. The 3600’s method is more difficult to do on the IMach
because of the Control register.

catch-block-invalid catches nonlocal, but lexical, gos and returns too, since they
are compiled as throw to a special tag. It does not catch local GOs and returns

out of unwind-protect cleanup handlers, but those are thoroughly illegal!
*************#***

Generic Functions and Message Passing

The flavor system deals with flavors, instances, instance variables, generic
functions, and message passing. A flavor describes the behavior of a family of
similar instances. An instance is an object whose behavior is described by a flavor.
An instance variable is a variable that has a separate value associated with each
instance. A generic function is a function whose implementation dispatches on the
flavor of its first argument and selects a method that gets called as the body of
the generic function. In message passing, an instance is called as a function; its
first argument, known as the message name, is a symbol that is dispatched upon
to select a method that gets called. Message passing is the current excuse for
generic functions; we plan to phase it out eventually (over a couple of years).

Flavor

A flavor is a structure that contains information shared by all its instances. The
header of each instance points into the middle of the structure, at three words
known by hardware. Other portions of the flavor are architecturally defined, but
not known by hardware. Still other portions of the flavor are known only by the
guts of the flavor system.

The data-representation chapter lists the architecturally defined fields of a flavor.
See the section "Flavor Instances".

Handler Table
A handler table is a hash table that maps from a generic function or a message to

Function Calling, Message Passing, Stack-Group Switching Page 26

the method to be invoked and a parameter used by that method to access instance
variables. The details concerning the contents of a handler table are presented
elsewhere. See the section "Flavor Instances".

The hashing function used to search the handler table is designed to maximize
speed and simplify hardware implementation, not to maximize density. It is
optimized assuming that the search succeeds on the first or second probe of the
hash table. It operates as follows:

* Run the generic function or message name through a hash box to improve its
distribution. Bit-reversing and XORing would suffice. The 3600 uses the
"identity" hash box that does nothing, and perhaps that is adequate. The hash
box computation can be overlapped with memory access delay for the instance
header and the two words fetched from the instance descriptor.

e logand the result with the hash mask from the flavor.
e Multiply the result by 3 (this is just a shift and an add).

e Add the product to the handler hash table address from the flavor and initiate a
block read of sequential locations starting at that address.

* For each block of three words, if the first word does not match the generic
function or message name, and is not nil, skip the next two words and go on to
the next block.

* When a block is found whose key matches or is nil, accept the method and the
parameter and terminate the search.

Note that when a mismatch occurs, the hash search proceeds through consecutive
addresses; it does not rehash. It also does not wrap around when it gets to the end
of the table. Consequently the software must allocate sufficient room at the end of
the table, after the highest address defined by the hash mask, to accomodate
overflow from the end of the table and a final entry with a key of nil that is
guaranteed to terminate the search.

The hash mask is normally a power of 2 minus 1.

Methods are normally user::dtp-even-pc or user::dtp-odd-pec. An interpreted
method traps to a special entry point to the Lisp interpreter; this is implemented
by storing the interpreter (the PC that points to its first instruction) as the
method and storing the actual method as the parameter.

s

S 3o s s s s s s o o o s o s o 3 o o s o o s s e ok o ik ok e feofesfe sl sfe e e s sfe s st s s st s e s o o e s sfe ol afesfe slesfe sfesfe sl sfe e s e e sk sk R R R R R R

As a special optimization to minimize I-Cache perturbation, a trivial method that
simply sets or gets an instance variable is not implemented as a compiled function.
Instead, a fixnum is stored in the handler table. The sign of the fixnum is 0 to get
or 1 to set; the remaining bits are the offset in the instance of the slot to be
accessed. Hardware must verify that the right number of arguments were supplied.

>>>Note: This feature is only an optimization and can be omitted if necessary.
e e e e 3 s sfeofe e e o o sk e i e o s sfe sfe s sfe sfe afe e e e s sfe s she e e fe ok o s sfe shesfe ofe sk sk s sfe sfe e e 3 3 ofe o s sfesfe s 3 o sfe ke e e s s sfe ofe ok o sfe e i o sfesfesfe sgesfe e e

Calling a Generic Function
A call to a generic function can be started by user::dtp-call-generic,

Function Calling, Message Passing, Stack-Group Switching Page 27

user::dtp-call-generic-prefetch, user::dtp-call-indirect,
user::dtp-call-indirect-prefetch that finds a user::dtp-generic-function, or a
user::start-call instruction whose operand is a user::dtp-generic-function. In any
case, the generic function is pushed as the extra-argument to the call and the
continuation is set to the trap-vector element for calling a
user::dtp-generic-function. When the call is finished, control transfers to the
continuation, which is always a function that consists of nothing but a
user::%generic-dispatch instruction (there is no entry vector).

The user::%generic-dispatch instruction sees the following on the stack:

FP|0,1 the usual function-call save area
FP|2 the generic function

FP|3 the instance

FPi4,5,... additional arguments, if any

user::%generic-dispatch operates as follows:

¢ Make sure that the number of "spread arguments" is at least 2. This ensures
that FP|2 and FP|3 are valid. If necessary, perform a pull-lexpr-args operation.
If that fails to produce two arguments, signal a "too few arguments” error.

* Get the address of the interesting part of the flavor, which specifies the size
and address of the handler hash table. This is done by checking whether the
data type of FP|3 is one of the instance data types. If it is, fetch its header
following forwarding pointers (header-read). If it is not, use the data type to
index a 64-element table in the trap vector that points to the hash-mask fields
of the flavor descriptions.

¢ Fetch two words from the flavor, the hash mask and hash-table address, and
perform the handler hash table search described above. If the parameter is not
nil, store it into FP |2, otherwise leave the generic function in FP|2 (the default
handler needs it). If the method is user::dtp-even user::pc or user:dtp-odd-pc,
jump to its entry instruction. If the method is user::dtp-fixnum, check the
number of arguments, set or get an instance variable, and return from the
function call. If the method is anything else, trap (this is an error).

*
st sfe e she s s e fe ol ok s s s je she s s o s fe e s s e e sl s se e sfe s s fe e s s e e sfesf s e sfe e s se sl sl s s s s s e sfe e s s e e ofe s s s s ofe e e s s o ok sk e s s s ok

A reasonable optimization would be to avoid the memory references to fetch the
trap-vector element and to fetch the user::%generic-dispatch instruction, since
calling of generic functions is so common. (It would save 2 memory references out
of 5, and avoid perturbing the I cache.) The user::%generic-dispatch instruction
could be fed magically into the instruction pipeline, and the PC could be set to a
constant value that is architecturally required to be the address of a memory
location containing a user::%generic-dispatch instruction; this location will be
referenced if the user::%generic-dispatch traps (for example, for a page fault) and
has to be retried.

Future hardware might contain a special-purpose cache used th the
generic-dispatch instruction to speed repeated lookups with the same generic
function and instance.

e 3 sje o ofe s o ofe e e s sfe fe oo e ofe s sfe sfe ke sfe e ol sfe e ofe e s ofe sfe s ofe sfe sfe ofe e sfe e ofe s sfe sfe st s ofe sfe e sfe s e s sfe e sfe s sfe sfe e sfe s sk sfe s sfe sfe e sfe sfesfe sfe o sl sfe e sfe sfe sl sie sk

Function Calling, Message Passing, Stack-Group Switching Page 28

Sending a Message

Sending a message occurs when user::dtp-call-indirect,
user::dtp-call-indirect-prefetch or a user::start-call instruction finds an instance
data type as the function. It pushes the instance as the extra-argument to the call
and sets the continuation to the trap-vector element for calling that data type.
When the call is finished, control transfers to the continuation, which is a function
that dispatches to the appropriate method.

At this point, the stack contains the following:

FP|{0,1 the usual function-call save area
FP|2 the instance

FP|3 the message

FP|4,5,... additional arguments, if any

This is almost like the generic function case except that FP|2 and FP|3 have
been exchanged. The distinction between a message and a generic function is
unimportant at this level; they are both used only as keys for searching the
handler hash table.

The way to perform the dispatch that puts the least burden on the hardware, but
makes message passing slower than generic function calling, is for the dispatch
function (found in the trap vector) to consist of the following sequence of
instructions:

ENTRY
PUSH FP|2

PUSH FP|3

POP FP|2

POP FP|3
$GENERIC-DISPATCH

The user::%message-dispatch instruction, whose description is similar to that of
user::%generic-dispatch except that the arguments are interchanged, performs the
above sequence.

Accessing Instance Variables
Instructions exist to read, write, and locate instance variables.

¢ Read: fetch the value of the variable, trapping if it is user::dtp-null, and push
the value on the stack.

e Write: pop a value off the stack and store it into the instance variable,
preserving the cdr code of the location and checking for invisible pointers and
user::dtp-monitor-forward (the same as when writing a special variable).

¢ Locate: compute the address of the instance variable’s value cell and push it on
the stack with user::dtp-locative. If the value cell contains an invisible pointer,
user::dtp-null, or user::dtp-monitor-forward, that has no effect on the result of
this instruction.

These instructions are parameterized by the instance in question and the offset
within that instance of the instance-variable slot. There are three groups of
instructions:

Function Calling, Message Passing, Stack-Group Switching Page 29

If

Access an arbitrary instance, typified by user::%instance-ref: The instruction
receives the instance and the offset as ordinary arguments.

Access self unmapped, typified by user::push-instance-variable-ordered: The
instruction finds the instance in FP |3 (the first argument in the current stack
frame, daft:er the extra-argument) and receives the offset as an immediate
operand.

Access self mapped, typified by user::push-instance-variable: The instruction
finds the instance in FP|3 (the first argument in the current stack frame, after
the extra-argument), receives an instance variable number as an immediate
operand, and finds a mapping table in FP|2 (the extra-argument or
"environment"). The mapping table is always a simple, short-prefix ART-Q array.
The instance variable number is used as a subscript into the mapping table to
get the offset. [Note to those who understand the format of mapping tables used
in Release 6 on the 3600: some slots in mapping tables are used for instance
variable offsets as described here; other slots are used for other purposes such
as subsidiary mapping tables for combined methods. The slots are allocated
dynamically by the flavor system as they are required and in general the two
types of slots will be interspersed. This eliminates the complexity and slowness
of using array-leaders and art-16b arrays.]

an instance has been structure-forwarded to another instance, the value of self

(FP|3) in a method is the original instance. This means that the instructions to
access instance variables must check the header of the instance for a
user::dtp-header-forward, just as the array referencing instructions do, before
adding the offset to the address of the header to get the address of the instance
variable.

Stack-Group Switching

The major steps of a stack-group switch are:

1

© ® N o gk ®N

11.

Inhibit preemption

Check the state of the new stack group for resumability

Set argument, resumer of new stack group

Save internal processor and coprocessor registers

Swap out special-variable bindings of the current stack group
Make sure the new stack group is prepared for execution
Dump the stack cache

Switch to the new stack and load the stack cache

Restore internal processor and coprocessor registers

Swap in special-variable bindings of the new stack group

Enable preemption and return

Function Calling, Message Passing, Stack-Group Switching Page 30

Saving internal processor and coprocessor registers is done by using
user::%read-internal-register instructions to read the registers into local variables
in the stack. When the switch to the new stack group is done, the new current
stack frame will be one whose local variables contain the register values for the
new stack group.

To restore internal processor and coprocessor registers, use
user::%write-internal-register instructions to pop the local variables off the stack
and put them back in the registers.

Swapping special-variable bindings in and out is the same except that swapping in
traverses the binding stack in ascending address order and swapping out traverses
it in descending address order. All memory reads are done with block-read
instructions, since those contain magic bits to select special memory operand
reference types.

The basic procedure to swap one binding, assuming that P points to a pair of
words in the binding stack, is:

loc « data read(P) ;Get address of bound cell
old < bind read no_monitor(P+1) ;Get old contents of

;that cell
new < bind read no monitor(loc) ;Get new contents of

;that cell

;If an invisible pointer is
;followed, update loc

mem(loc) < merge cdr(old,new) ;Store back old contents
;preserve cdr
mem(P+1) <« new ;Store new contents into

;binding stack

P and loc are block-address registers (BARs), old and new are locations in the
stack, data_read and bind_read_no_monitor are memory read operations described
in section "Operand References".

In assembly language, the procedure is as follows. Assume P is BAR-1, loc is
BAR-2, and these BARs can be used for both reading and writing (if only one BAR
can write, the procedure includes instructions to copy addresses from one BAR to
another). (The order of these instructions might be rearranged to cut down on
memory interference and to put the two block-1-reads adjacent, but that is a
secondary consideration.)

block-1-read ;data_read(P)

write-internal-register bar-2 ;loc «

block-1-read last word, ;old < bind read no monitor(P+l)
bind read no monitor,no_increment

block-Z-read last_word, inew <« bind read no_monitor(loc)
bind read no_monitor, preserve cdr,no_increment

merge-cdr-nopop sp|-1 ;cdr (old) « cdr (new)

block-1-write sp-pop ;mem (P+1) < new

block-2-write sp-pop ;mem(loc) « old

To make sure the new stack group is prepared for execution, it is necessary to call
a subroutine in the paging system to wire down appropriate pages of the stack,
and to run the GC scavenger over those pages if necessary. This also determines
the appropriate values for the stack limit registers. The paging system maintains
enough state so that this operation is very fast if the stack group has been run

Function Calling, Message Passing, Stack-Group Switching Page 31

recently. Doing this before actually switching to that stack ensures that no traps
(page faults or transport traps) can occur during the actual act of switching, when
things are inconsistent, and ensures that the new stack group has enough space
for the extra-stack.

To dump the stack cache, use a loop that does block-read and block-write at
identical addresses. This is based on the assumption that writes to memory
locations in the stack cache write through to main memory.

To switch to the new stack and load the stack cache, initialize the registers that
control the stack cache to suitable values and then do block-reads to fill it. In
detail:

1. Save the SP into the current stack group.

2. Get the SP value of the new stack group. The FP value is at a known offset
from this. These bracket a stack frame which is in the same format as the
current stack frame, but contains the register values of the other stack group.

3. Go into extra-stack mode so no traps/interrupts can occur.
4. Store the FP value into the hardware FP and into a BAR.

5. Set the stack cache lower bound register to the SP value +1, so that the
follofviring block-reads will neither read from the stack cache nor cause it to
overflow.

6. Store the FP value minus 1 into the hardware SP. Do this last, since it
renders the old stack frame inaccessible.

7. Execute a sequence of block reads that fetch the new stack frame into the
stack cache and increment the SP to its appropriate value.

8. Set the stack cache lower bound register to FP. The stack cache is now
consistent.

9. Set the stack limit registers to the values for the new stack group.

Restoring the internal processor registers will turn off extra-stack mode by
restoring the control register. The order of restoring of these registers needs to be
chosen with some care so that a sequence break immediately after extra-stack
mode is turned off will work correctly.

£

Existing instructions have the following capabilities: - ability to do appropriate
special memory references, using block-read/write - ability to do necessary cdr-code
hacking - ability to dump the entire stack cache into memory - ability to load a
new stack into an empty stack cache - ability to read and write all internal
processor and coprocessor registers that are part of the stack group context -
ability to inhibit all traps and interrupts while the stack cache control registers
are in an inconsistent state - ability to inhibit process preemption during the
whole operation this is done by setting a software flag respected by the preempt

Other instruction assumptions: bind_read no_monitor bit in block-read instruction
no_increment bit in block-read instruction prevents incrementing BAR preserve_cdr

Function Calling, Message Passing, Stack-Group Switching Page 32

bit in block-read instruction inhibits setting cdr of result to 0 (this is already in
the rev -2 spec) when block-read follows an invisible pointer, it updates the BAR
merge-cdr-nopop instruction: cdr(operand) « cdr(top-of-stack), no change to SP this
could be done with user::%p-tag-ldb and user::%p-tag-dpb but it would be much
slower.

Note that it is possible for the cdr code of the bound location to change while it is
bound, which is why the merge-cdr-nopop instruction is required instead of simply
rewriting all 40 bits with the value saved in the binding stack.

Alternatively, to the assumption that memory locations in the stack write through
to main memory, a specific instruction could be provided to dump the entire stack
cache, since the processor already knows how to dump parts of the stack cache
when it fills up.

e s e e s fe e s e s sl sfesfesfe sl e s sfesfe s fe s e e s s o sfeofe s sl s e 2 sl o e s e o e s s fe s sl o s e s se s s s e s e e s s sfe o s e s s e s e e e s e

