
The Symbolics Ivory
Design and Verification Strategy

Neil Weste. Chris Terman. Howard Shrobe.
David Sarrazin. David Tan. Kalman Reti, Eric Nestler.

Henry Minsky, Alan Corry, Jim Cherry, Clark Ba."er

VLSI Systems Group
Symbolics Cambridge Research Center

Cambridge, MA 02142

Abstract

Thi~ paper describes the design and verification strategies
~i:'i2 ~ r.create a. third generation symbolic processor op-

~ . or the Llsp language. The approach is unique in
that It dS probably the first large scale application of object
on\~te programming techniques to a production Ie design
pro e~ .. These techmques have yielded not onl hi h
prod~ctl~ty In the construction of the design tools ;ut a~o
~~~~ y emonstr~te. the deSIgner productivity available 

d 
. gh the applicatlOn of a well integrated set of VLSI 

eSlgn tools. 

1. Introduction 

Design and verification of complex architectures must occur 
at several widel>: sel'arated levels of abstraction including 
the "."'tual machine .. Instruction . set, architectural, gate and 
crrcwt ~ev~ls. Durmg .the deSign, ~ongruent descriptions 
must eXlst 1I1 the behaVIOral, schematic and layout domains. 
Many proposals have been made for dealing with the diverse 
levels of detail evident in these various design domains. Our 
c?mmon denominator is the Lisp language and the uniform 
yutual address space provided by the Lisp machine operat· 
mg. system combined with an object·oriented electronic 
deSign system called NS. The result is no HDL but Lisp 
no data files but Lisp data objects and no raw test vector~ 
but Lisp code. We believe this approach is clean, easy to 
customlZe and extend, and requires little maintenance as 
Lisp is a commercially supported language with exc ellent 
compilers. editors, debuggers and advanced run· time en­
vironments. 

NS [1] is a design system written in New Flavors, an object­
oriented extension of Common· Lisp. Diagram objects and 
electrical network objects are the two basic object types 
upon which a wide variety of tools are based. A diagram ob­
ject, for instance, might be a schematic which is comprised 
of lines, named terminals and hierarchical instances. Ex· 
traction is performed by traversing the diagram object. The 
result of extraction is an electrical network which consists 
of nodes, transistors and other primitive circuit elements. A 
switch·level simulator works by travers ing the network ob­
ject. Message passing between diagrams and networks yie lds 
an extensible design system with an effective user in terface. 

The implementation of the Ivory single-chip Lisp 
microprocessor provided some interesting VLSI design trade· 
offs. It was undertaken by a small team of people, had to 
be completed in a short time and had to proceed in parallel 
with the refinement of the architecture. This paper sum· 
marizes the set of tools and design approaches used in the 
development of the chip. Where possible we will show how 
Lisp was used as a spec ification or verification language. 

CH2473-7/87/000010506$OI.OO © 1987 IEEE 
506 

2. Architectural Design 

2.1 Architectural Simulation 

The most abstract design level models the I-machine (the 
virtual machine formed by the Ivory chip) by reflecting the 
state of the architecturally-defmed s tacks and registers. 
This level of design is used to verify the. virtual machine 
architecture and gather architectural statistics. 

Two virtual machine simulators were written to model this 
level of the machine. The first was written by the VLSI 
group while the second was \\Titten later in the design 
cycle 'by the software develop~ent group. Both use. a fairly 
straightforward implementatIon of an InstructlOn set 
emulator. This consists of a set of data struchrres modeling 
the relevant machine state (in this case, the system's stacks 
and stack pointers) and a Lisp routine corresponding to 
each instruction which modifies the core data structures to 
reflect the effect of the instruction. The fust simulator is 
2500 lines of Lisp and runs at 2000 instructions per second. 

The following represents the specification of the ADD in· 
struction at this level of design. 

(defemulator add operand 
(multiple-value-bind 

(first-operand second-operand) 
(fetch-two-op erands operand) 

(stack-push (+ fir s t-operand second-operand»» 

2.2 Behavioral Simulation 

The behavioral simulator was built us ing the object·oriented 
p~ogramming faciliti es pr?vided by the Lisp Machine en· 
Vlronment. The system . IS ~ecomposed into approximately 
20 modules, each of whIch IS modeled as an instance of 
some class of objects. Each instance maintains private 
state. Attached to each class was a set of methods for im· 
plementing generic behavior in a manner suitable for ob. 
Jects of tha.t class. Each module defines a set of 1/0 signals 
that . constitute a module's communication ports. These 
spe~lfy the .ports to be used in the circuit design. The fol­
lowmg speCIfies an adder with inputs OP I and Opl and out­
puts EXTERNAL· BUS. 

(defmodule (adder ivory) 
: local-state () 
:10cal-phase-1-registers () 
:local -phase-2-reg;s t e r s () 
:phase-1-registers () 
:phase-2-registers () 
:phase-1-inputs ( ) 
:phase-1-outputs () 
:phase-2-inputs (op1 op2) 
:phase-2-outputs (external-bus) 
} 



f 

1l1 cr« - OC2 ») ) 

( 

FlIJUn t tho the windo .... 
the he "",nil , !!lui to inte ract with tD r . 

-=== ---.-: -_ ... --_ . . - ..... - ...... 

Figure 1_ Functional Simulator Window Interface 

An assembler sup~rts the development of the microcode 
~odthUle'ADThDe folloWUl~ represents the microcode specification 
,or e lnStruCtlon: 

(definstruction add 
(parall el 

(check-arith~etic-operands operand-l operand-2) 
(pop2push (+ operand-l operand-2» 
(enable-overflow-exception) 
(next-instruction») 

The simulator and Lisp description of Ivory total 9000 lines 
of code including comments. The simulator runs at about 30 
instructions per second. 

What is novel about this simulator is its implementation 
technology and its relationship to its surrounding environ­
ment. Since the simulator is part of a Lisp environment, it 
can write and execute other Lisp programs which execute 
within the same environment. Furthermore, these 
procedures can be individually modified and dynamically 
linked into the environment without interrupting normal ex­
ecution. Therefore. there is no need to create a new HDL 
and implement the standard variety of control structures re­
quired within it. Ir;tstead, the simulation ~outineB nre norn:ol 
Lisp procedures Wlth access to the full rlchness of the LISp 
programming environment. 

507 

3. Structural DeSign 

Tbt- NS i.n~ra't-ti\'e edi t..o r pro'\;,o.e-~ fDr L1:l e capture of 
aatht-mnin and Kll€'matit · ir-nn s... A mtnu-driven generator 

'}.i, L0061 rommnn ieoru autotrultieally_ Figu.."'e 2 shows '8 
" ~"'( of t J1t', IIOt'ht"matie e-d iw J' ",; tb t "\lo'O ,~ie \\~ of a schematic. 

-~ .. 
-::l':: 
±: 

-,vr 
2::cH:r 
~ 

-4J'~.r-

:::c;:;o . C<--­
-:-~ .. 
-~ . , ,-;--

~ J;: • -e--<r-J _ 

I *' - §tJ";"""",..9.--Q-

= ~ ~ n :g;o-
- g: ."... ... -<>--

-

, .. " . , 

Fi&rure 2. Schematic Editor Interface 

A designer may enter schematics by the normal approach of 
graph.ical editing or may use a Lisp HDL to allow rapid and 
accurate entry of control logic. In the latter case, code can 
be for the most part taken directly from the behavioral 
simulator. The follo .... ring description is representative: 

(def-std-cell-schematlc (·si mple-example­
:inputs(p q a b) 
:outputs(z w» 

(setq z ( if (and p q) 
a 
b) ) 

(setq " (not (and a b) (or p q)))) 
When compiled. the logic is simplified and a rule-based 
technology ~elector optimizes the circuit used by choosing 
gate.s. mergmg gates and eliminating unnecessary inverters. 
A Simple pattern matching language is used to apply the 
rul~s. The rules are augmented as different situations arise 
durmg the cour.s~ of the design. The following represent 
ruJes for recognlzmg AOI's. 

(define-eqn-transformer AOt (NOR (AND bed) a) 
(AN03-NOR2 abc d)) 

(define-eqn-transformer AOt 

(OR2-0R2-AN02 abc 

(define-eqn-transformer AOt 

(OR2-0R2-AN02 abc 

(NOR (NOR a b) 
(NOR cd)) 
d)) 

(AND 
(NOT 
d)) 

(NOT (NOR a b)) 
(NOR cd))) 

These generally have a higher likelihood of being accepted 
because .they make .the most ~fficient use of area. Different 
but eqUIvalent loglc express~ons can map onto the sam~ 
Ah0I. In all cases, the canOnical expression represented by 
t • nested ANDs, ORs and NOTs is converted to 'fi 
!;ate (i.e. an OR2-0R2-AND2) which is in th ta ad sPdecl IC 
library. e s n ar cell 

Some rules implement demorganizing that' 'fi 
ciul gates. (i.e . . XORs). While others recogni~:~~~~.:l't to spe­
up rules (I.e. It IS advantageous to reduce th tu speed­
a latch). e 50 P tune to 



(define-eqn-transforner [t11JERSE (xOR a P'OT b)) 
(XIIOR a b) ) • 

Finally, less desirable rules are attempted h' h t 
reduce th 1 W Ie ry to 
chain to e ~ acement problem by assigning gate-inverter 
. s a single standard-cell, thus reducing channel rout 
mg Occupancy. . 

(define-eqn-transformer 
(MID a b)) 

IHPLODE (IIOT (NAIID a b)) 

Thhe designer can specify named gates (ie. NAND5 NOR2) 
t ereby forcmg a specific implementation. ' 

Although the desil!ner does not have to be aware of the un. 
derlytng obJect-onented. data-base to complete desi ns a 
:owledge of these details can aid productivity Most gof ~ur 

eSlgners car:t wn~e simple data-base query p~ograrns such 
~ the I follo~lng LIsp program which calculates the total in­

rna capacltance of a network. 

(defmethod (internal-capacitance rSirn-network-mixin) () 
(loop for node in nodes 

unless (or (eq node gnd) 
(eq node vdd) 

sum (node-capacitance node») 

A. ele~trical rule~ checker is used to check port names, port 
dIrections, bus Wldths and other structural rules. 

4. Physical Design 

All of the chiP. cell designs (including pads) are specified in 
the Vlrtual ~nd symbohc layout style either with the NS 
graph1cs ed1to! .(color or monochrome) or via Lisp 
pro.cedures. T~lS 1S a process independent layout style in 
whi.ch the desIgner does not have to deal with geometric 
desIgn m.les: Rather. transistors and wires are placed on a 
coarse gnd In a relative manner to each other. Cell designs 
are c.o~pacted or sp~ced according to a target technology 
descnpbon. The design style can deal with large pitch­
matched cells of the order of 50K transistors. Our ap­
proaches to this are summarized in [2]. 

A ~tandard cell layout system automatically generates sym­
h.ohc layout from control schematic diagrams with the op­
tion of using port locations specified by the mask-outline. 
Both min-cut and thermal-annealing [3] approaches have 
been used. Min-cut is much faster but thermal annealing 
has a slight density edge. We expect the min-cut density 
will improve and will become the automatic layout style of 
choice. The aspect ratio of the module may be specified to 
allow area tuning. Figure 3 shows a typical virtual grid 
standard cell layout with the contents of some cells dis­
played. 

Data paths are constructed manually. Basic cells such as 
registers, muxes and adders are provided in a data-path 
standard cell library. To improve productivity, liberal use is 
made of generators [4]. The following generator horizontally 
abuts three cells and raises the instance ports to this level 
of the hierarchy. 

(defaspect-generator (data-path :virtual-grid) (flag) 
(HORIZONTALLY-ABUT 'module-a 

(if flag 
'modu l e-b 
'module-d) 

'module-c) 
(import-ports-on-edges) 

508 

• 
10 i 1<"·" " 
'. . I . 

I "' • , -, , . 
• • 

'" " . 

Figure 3. A Symbolic Standard Cell Layout 

· , 
• • 

When all modules have been designed symbolically and com­
pacted, the NS interactive editor is used to specify a slicing 
style floorplan [5][6]. Using the connectivity of the cor­
responding schematic, this floorplan is used as the basis to 
automatically place and route the entire chip. A global 
router first assigns nets to the routing channels. \Vhen this 
is complete, modules are composed according to the floor· 
plan composition ordering. As they are connected, power, 
ground and clocks are also routed. This chip composition 
takes 2 hours to run for the complete Ivory chip. At early 
stages of design, partial floorplans can be constructed using 
estimates of block sizes. The following specifies the 
"example" module which has an estimated size of 25Du by 
3DDu and has the inputs entering on the top and the out­
puts exiting on the bottom. 

(def-mask-outline example (250 300) 
(:top ~s<3:e>~ 

memory-write-pending 
bus-master-pin) 

(:bottom mew mer mcrw») 

Figure 4 sho\\'s the floor-plan of Ivory. 

A network comparison program is able to compare any two 
extracte? networks (i.e. from virtual-grid layouts, 
sch.emallcs, mas~ layouts and vendor net-list files)[7]. Inter­
actIve feedback IS provided to identify suspicious nodes. No 
node names are necessary. 

A fast interactive DRC is provided for final mask artwork 
checks. 

I 
I 
• I 

000 OElDElDEID 

1 BonOIol·QA,T ... ·P ... TH·()P I 
-• , 
t -, , 

Figure 4. A Floorplan View of Ivorv 

I 

.... 



5. Simulation 

5.1 Circuit Simulation 

~ .~witc~level simulator with timing (RSIM)[8] was used to 
n. ge th the gate and switch level circuit simulation re-

qUlreme~ts. ApJ.rt from being optimized for fast simulation, 
~:de~:rslo~ o~ RS

II 
1M has the ability to specify functional 

m e 10 . OYlmg manner (a RAM): 

(de~(unctional-mOdel cache-memory 
: lnputs (Maddr<6:e>~ 

-row-enable 
\.Irite 
·write-data<39:B>") 

:outputs (C"data<39:B>" :pd-size S/, :pu-slze 16/1» 
:local-state «cache-array 

: initform 
(make-array 128 :initial-element 'x») 

:d~l~ys «row-enable~ -? data :delay 25» 
:tlmlng-constraints 

«addr -? -row-enabl e 1 : setup 16) 
(write-data ~ writer :setup 15» 

: mode 1 (cond 
«eql addr 'x) 
(setq data 'x)) 

((eql write 1) 
(setf (aref cache-array addr) 

wri te-data) 
(setq data write-data» 

«(eql write 8) 
(setq data 
(aref cache-array addr»») 

Access to the RSIM: simulator is available in parallel either 
via Lisp code that can set, read and compare values on a 
circuit node, or via mouse clicks on a schematic displayed in 
the graphics editor window. A hierarchical schematic can be 
traversed using PUSHIPOP commands. The right window 
in Figure 2 displays the result of clicking near nodes. Test 
programs written in Lisp use a protocol consisting of three 
generic functions: 

• VALUE, which returns the value of a node, 

• SET-VALliE, which sets the value of a node, and 

• SIM-STEP, which propagates all changes through the net­
work until no further changes occur. Optional ar­
guments to SIM-SfEP can specify the length of the 
simulation period. 

The normal Lisp-machine operat~g. system featu~es such as 
breakpointing incremental compllatIon and funchon .restart, 
along with th~ scope-probe capabilities of the NS deSIgn s~s­
tern, create an extremely powerful v~n0catIOn . capa.blh~y 
with a fast edit/compile/debug loop. 1.'hlS mteractlv.e CIrCUIt 
debugging capability is available on elther schematICS, sym­
bolic layouts, or mask layouts. 
At the detailed cireuit level. SPICE [9] was used to verify 

·t· a1 rts of the design such as adder speed and en Ie pa . ' . . rf· ·d d to 
turun· . g An mteractIve lOte ace IS proVl e 

memory· h L· h· SPICE which can be run locally on t e ISP ~ac me or 
remotely over the network. Figure 5 shows a typIcal SPICE 
interaction session. 
To give some idea of the extensibility of NS, an exp~rimen. 
tal timing simulator mode based on backward Euler mtegra­
tion [10][11] was added to NS in a matter of a morning b~ a 
designer We intend to incorporate parallel fault sImulatIOn 
into RSIM in the future, but it will probably take more than 

• a mormng. 

509 

, 

• , - , 

, 
I 
• 
i 

Figure 5. A SPICE window view of a module 

5.2 Hardware Simulation Acceleration 

Although RSIM is relatively fast (of the same order of speed 
as current software logic simulators), the s.lle. of so:ne 
modules (and certainly the whole chip) results m sImulatIon 
times beyond realistic limits. A r:umbe.r of meth.ods are 
available to solve this problem, mcludmg operatmg one 
module at a time at the switch level while the others 
operate at the functional lev~l. T~e solution we ad~pted 
was to invest in a hardware sImulatIOn accelerator. \Vlth a 
moderate software effort, we were able to create an inter­
active environment for the engine that is identical to the in­
teractive RSI11 environment. The accelerator is currently 
the only method of simulating the entire chip at a suf­
ficiently low level to give the chip designers confidence in 
the transistor-level design. The simulation speed is roughly 
10 instructions a minute. 

Apart from a UNIX ™ server and a Lisp-machine server re­
quired to operate a network command protocol, the most 
significant piece of software is a .. gate-recognizer." To 
maximize modeling element use in the accelerator, all 
groups of transistors are converted to logic gates, unidirec­
tional switches, or (if unavoidable) bidirectional switches. 

6. Design Verification 

6.1 Functional Comparison 

The consistency of the architectural and behavioral 
simulators is veri!ied by applying a large set of test 
prog:ams to e~ch slml.!lator and c~ecking for consistency ac­
cor~mg to an lnst~ctIon:set archItecture specification. Corn­
panng the behaVIOral sImulator and the circuit data-base 
can. be pe:formed o:n a signal by signal basis as the be­
haVIOral . slr~ulator IS used to specify the modularity and 
commUnICatIOn between modules of the chip. 

As both t~e behavio~al si,:,ulator and RSIM were imple­
mente? usmg ~he obJect-onented programming facilities of 
t~e LISP machm~, one can pass common messages to both 
slmulators to achIeve the required behavior. 

During ver~fication! SET·VALUE messages are passed to both 
the behaVIOral sImulator and RSIM Each t· I . Ito ak h . . par lCU ar 
Slmu a r. t es t e approprIate action to set internal d 
to a particular value. This is achieved using a "&- ndo. es 

t k" h· h tak I· ,orwar mg ne wor w lC es a 1st of two networks, one the RSIM 



'" -
'-'- 1M f ) ( , .... ) 
( .. P ,,", I a..e .• ~ I ) 
' ''( -$_ l nct!. 'i toe») 

(aef •• tftQd ( 41~I.lA-pn ~- 1 r$l.pne~O~·.'Aln)() 
I •• ' - I • •• If '.,.., 1) 
(1'.- tUP a..tt ) 
(s.t -\I lye 5.1' 'P'" I) 
( SI.-$UP Mlr)) 

Thla... p I. .pp~ to both networu to advance 
thrnu,h • pluuel clock cycle. Th. following forwarding net­
wo rk funcllD n calli bolh ph,u.1 execution functions: 

(de r.e t hOd (phase l rorwardlng network) () 
(si au late -phase -' rSl . -network) 
(".ul.te-phase-' behavl0ral-.odol) 

The VDJFY command operates by asking the two simulators 
f~r values and then comparing UlC results. If the results 
d, u jj!ite. & debugging session with the user is initiated. 

The following represents a simple lest program. 

(declare-bus 'op1 32) 
(declare-bus 'op2 32) 
(declare-bus 'external-bus 32) 

(de (un ca-pare-adder-ops (op' op2) 
( phasel ) 
(setv 'opl opl ) 
(setv 'op2 op2 ) 
(phase2) 
(verify 'external-bus» -Such programs are written by designers to test the 

functionality of individual modules. 

To provide higher level tests, a spy strategy was developed. 
With this facility, the complete behavioral simulator could 
be exercised by Lisp test programs. Arbitrary collections of 
modules can be grouped together (to model physical layout 
groupings) and their collective inputs and outputs monitored 
to provide a u ace history of the boundary signals. The 
storage of the history allows both interactive and batch 
simulation. RSTht simulation code consisting of SETV and 
VERIFY statements, is generated from the history. This code 
was then applied directly to the extracted network ,vith any 
discrepancies detected by VERIFY erroTS. 

The SPY code was extended to allow interfacing to nn en­
gineering tester. This allows interactive debugging . of tests 
in an engineering environment that was closely hnkcd to 
the program development environment of the Lisp machine. 

6.2 Timing Analysis 

A timing analyzer based on finding critical paths through 
transistor networks was implemented based on Crystal(12). 
It was subsequently rewritten to inco~po.rate ideas f~om 
Leadout (13). The timing analyzer heUristIcally deto~mtnes 
directions on bidirectional devices that cause loops In the 
circuit (14). Support for functional models (using RSIM 
functional models) is also provided. 

510 

7. Version Control 

With any complex design involving a team of people. 

s t be I'ncorporated into a sysum to prevent the 
me., urea mu . d A f 
inadvertent inclus ion of erroneous dedSlgn r~ta. . part "!~ 
NS support for the update of stale ata I ran_s. we • so 
implemented a change control system called the Manage· 

ment System. . . 
During the design, specific verificatIOn steps have to. be run 
on each module. For instance. a standard cell lo~c block 
has to be electrical rule checked, port checked. SImulated, 
auta.placed, compacted,. net-comp~ed and the mask de.scnp. 
tion ""ved. For each different kind of module a partlc"!"r 
"step" was written to describe the necessary constructlon 
and verification tasks. When the step was run. all mes and 
their version numbers used in the e~cutlon of the 5~p 
were recorded. A data· base was kept whIch could be quened 
for the steps that had been run and the steps that had to 
be run if any sub-module (and hence archive me) was 
changed. The management system provides an up-~ate 
view of the design progress 8.!1d can ,remotelY exec~te J~bs 
on vacant Lisp machines. UslOg a hIStory .of pn!VlOUS .Job 
times, it can predict the tIme to completIon of a gIven 
tapeout run. 
To create and check the entire Ivory physical data-base 
takes 30 Lisp CPU days. By using machines in_ parallel over 
the network, this can be done 10 3-4 days. Wlme this nught 
seem a long time, this is the time to create a totally new 
physical data-base. The incremental time to produce a new 
chip after a typical ECO is on the order of hours_ 

• 

8. Summary 

Currently. the NS design system is also being used in Sym­
bolics for the board level design of products based on Ivorv 
gate array design and other internal product designs. - • 

The tools developed to design Ivory comprised approximately 
one third of the total design effort. Without such tools it is 
unlikely Ulat the design of a chip of the complexity of ' Ivory 
would have been su~cessful at. first silicon. Lisp is the 
deSIgn language and Implementation language for the entire 
project. By de~igning in Lisp, no intermediate languages 
have to be deSIgned and no extraneous parsers written. The 
fuU r~chness of the LISp software development available to 
the . LISp system programmer is also available to the VLSI 
deSIgner. 

All of the too~s mentioned in this paper were written in 
New Fla~ors LISp from sc~atch under the Symbolics Genera 
7 operatlOg system by vanous of the authors of this paper. 
The. NS system totals ro~ghly 50K lines of code. The 
breVIty of . the cod~ IS derived from the object-oriented ap­
p!oa~h whIch prOVIdes for modularity, reusability and exten­
s,b,hty. 

On the basis .of the. wide range of design activities sup. 
ported, . the lOtI mate mtegration of the tools, the small pro­
grammlOg team sIze and the complexity of chip designed, 



~ ~ 1.- p' , '- ' ,- .... ~ . • __ .... . . _ • • • .. '-" .• '" ~_~,.. 
- -.... . . ~ _ 1 __ _ _ o:"~! : ." . ~. ;;. i ! _::;.t: . '..:: _ F , . _- :c .. . r - ~ - - ---".'-_ _ _ 4 ' ,- . .: _____ ._ 

- ' •. ' I • -. -. ' . ' ~!f - C --.--- - -z <0 -- , . - ' . .. - -.-. -_ . - . ,-' . __ . -.-. ' -" - ~ . ---- . -,., . __ ._ - - _ . - , - . - - . . , . - c' r , · L . . . , . . ,.. ,.. .. --, - -: ' '-__ ':" .~ t , .- ; . ~ r - <:-- • • - ;. -- £: .... ., -- ....... r " r '....":"=.L . J • -_ _ .. _ F _ _ . - • • _ . . ..... .. ___ , _ _ . _. - .,-

- ._' .,. .. ,r ' " '. \ -: ,. --1 , .-<'''' ' ..... . ~<:':J. _:: :1 C·_ .--'::'._: ·..(' ~.·~ C'".-. -:: ',,:.:,:- :!.:. : :::.::..:. ;-:-..::. .: _':" '- - -

9_ Acknowledgments 

10. References 

[II J. C r~e :TY, ·CAD Programming in an Object Odented 
Pro&:t.nmming Environment. - in VLSI CAD Too Ls and Ap­
pL.C.,iUQ:1s. (;d. \V. Fichtner a."1d ~,t ~1o rf, Kluv.'er AC.2demic 
Publis her::, 1987. 

(2.J D. Tan and N. \Veste, ~Vi.rtual Grid Symbolic Layout 
1987,· 5{;(: this proceedings. -

(3.1 C. Sf:chen and A. Sangiovanni-Vinceltelli, ~The 
Timber-Wolf Placement and Routing Package.' ?roc_ 
CICCo May 1984. pp_ 522-527_ 

[4] J_ Batali. N. 1Iayle. li Shrobe. G_ SU<SIIUlll ar.d 
D. \Veise, ~The DPL'Daedalus Design En"ironmcnt. ~ 
\TLSI81. Edinburgh, 1981. pp_ 183-192_ 

[5] U_ Lauther. "Channel Routing in a General Cen 
EnvirOnment .... \'LSI 'SS, E. Hoerbst, ed., Elsevier Science 
Publishers R V_. North-Holland. Amsteroam. 1956. pp_ 
389-399_ 

[6] C_ Wardle, C. R Watson, C_ A Willon. J_ C. Mudge and 
B. Nelson. "A Declarative Approach for Combining Mac­
rocells by Directed Placement and Constructive 
Routing," Proc. 21st Design Automation Conferozce, June 
1984. pp_ 594-601-

[7] C. Ebeling and 0_ Zajicek, "Validating VLSI Circuit 
Layout by 'Virelist Comparision.," Proc. IEEE inter­
national Conference on CAD, Sept. 1983, pp. 172-173. 

[8]: C_ J_ Terman. "Timing Simulation for Large Digital 
MOS Circuits", AdL'ances in Computer-,-\,ided Engineering 
Design, Vol 1. JAI Press. 1985, pp_ 1-92_ 

[9]: L. Nagel, "SPICE2: A computer program to simu­
late semiconductor circuits," ERL Jlemo No. ER~Jf520, 
University of California. B€rkeley, 1975. 

[10] RR Chawla, liK. Gummel and P_ Kozak, "~IOTIS 
_ An 1\<108 Timing Simulator," IEEE Transactions on Cir­
cuits and Systems, VoL 22, No. 12, Dec. 1975, pp. 901-910. 

[ll] B. Ackland and N. \Veste, aFunctional Verification in an 
Interactive Symbolic Ie Design Environment, - Proc. of 2nd 
Cal tech Conference on VLSI. Jan_ 1981, pp_ 280-298_ 

[12]: John K.Ousterhout, "A S\\;tch Level Timing . Verifier 
for Digital MOS VLSI, " IEEE TransactIOns of 
Computer-Aided Design, voL CAD-4, No_ 3, July 1985_ 

[13] T_ G_ Syzma..ski, "LEADOUT: A Static Timing 
Analyzer for MOS Circuits" Proc_ ICCAD. 1986_ 

[14] N_ Jouppi, "TV: An n.l\lOS Timing Analyzer," Proc_ 
3rd Caltech VLSI Conference. 1983_ 

51 I 


