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Abstract

This paper describes the design and verification strategies
used to create a third generation symbolic processor op-
timized for the Lisp language. The approach is unique in
that it is probably the first large scale application of object
oriented programming techniques to a production IC design
problem. _These techniques have yielded not only high
productivity in the construction of the design tools but also
clearly demonstrate the designer productivity available

through the application of 1 i
ot o PP a well integrated set of VLSI

1. Introduction

Design and verification of complex architectures must occur
at several widely separated levels of abstraction including
the virtual machine, instruction set, architectural, gate and
circuit levels. During the design, congruent descriptions
must exist in the behavioral, schematic and layout domains.
Many proposals have been made for dealing with the diverse
levels of detail evident in these various design domains. Our
common denominator is the Lisp language and the uniform
virtual address space provided by the Lisp machine operat-
ing system combined with an object-oriented electronic
design system called NS. The result is no HDL but Lisp,
no data files but Lisp data objects and no raw test vectors
but Lisp code. We believe this approach is clean, easy to
customize and extend, and requires little maintenance as
Lisp i1s a commercially supported language with excellent
compilers, editors, debuggers and advanced run-time en-
vironments.

NS [1] is a design system written in New Flavors, an object-
oriented extension of Common-Lisp. Diagram objects and
electrical network objects are the two basic object types
upon which a wide variety of tools are based. A diagram ob-
ject, for instance, might be a schematic which 1s comprised
of lines, named terminals and hierarchical instances. Ex-
traction is performed by traversing the diagram object. The
result of extraction is an electrical network which consists
of nodes, transistors and other primitive circuit elements. A
switch-level simulator works by traversing the network ob-
ject. Message passing between diagrams and networks ylelds
an extensible design system with an effective user interface.

The implementation of the Ivory single-chip Lisp
microprocessor provided some interesting VLSI design trade-
offs. It was undertaken by a small team of people, had to
be completed in a short time and had to proceed in parallel
with the refinement of the architecture. This paper sum-
marizes the set of tools and design approaches used in the
development of the chip. Where possible we will show how
Lisp was used as a specification or verification language.
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2. Architectural Design

2.1 Architectural Simulation

The most abstract design level models the I-machine (the

' 1 hine formed by the Ivory chip) by reﬂecti:nfg the
:lt;tt:a n}na rie architecturall}'-deﬁned' stacks _and registers.
This level of design is used to verify the virtual machine

architecture and gather architectural statistics.

Two virtual machine simulators were written to model this
level of the machine. The first was written by the VLSI
group, while the second was written later in the design
cycle by the software development group. Both use a fairly
straightforward implementation of an instruction set
emulator. This consists of a set of data structures {nudehng
the relevant machine state (in this case, the system s stacks
and stack pointers) and a Lisp routine corresponding to
each instruction which modifies the core data structures to
reflect the effect of the instruction. The ﬁ_rst simulator is
2500 lines of Lisp and runs at 2000 instructions per second.

The following represents the specification of the ADD in-
struction at this level of design.

(defemulator add operand
(multiple-value-bind
(first-operand second-operand)
(fetch-two-operands operand)
(stack-push (+ first-operand second-operand))))

2.2 Behavioral Simulation

The behavioral simulator was built using the object-oriented
programming facilities provided by the Lisp Machine en-
vironment. The system 1s decomposed into approximately
20 modules, each of which is modeled as an instance of
some class of objects. Each instance maintains private
state. Attached to each class was a set of methods for im-
plementing generic behavior in a manner suitable for ob-
jects of that class. Each module defines a set of I/O signals
that constitute a module’s communication ports. These
specify the ports to be used in the circuit design. The fol-

lowing specifies an adder with inputs opi and or2 and out-
puts EXTERNAL-BUS.

(defmodule (adder ivory)
:local-state ()
:1ocal-phase-1-registers ()
:local-phase-2-registers ()
:phase-1-registers ()
:phase-2-registers ()
:phase-1-1inputs ()
:phase-1-outputs ()
.phase-2-inputs (op1 op2)
:phase-2-outputs (external-bus)
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(definstruction add
(parallel

(check-arithmetic-operands operand-1 operand-2)
(pop2push (+ operand-1 operand-2))
(enable-overflow-exception)
(next-instruction)))

The simulator and Lisp description of Ivory total 9000 lines
of code including comments. The simulator runs at about 30
instructions per second.

What 1s novel about this simulator is its implementation
technology and its relationship to its surrounding environ-
ment. Since the simulator is part of a Lisp environment, it
can write and execute other Lisp programs which execute
within the same environment. Furthermore, these
procedures can be individually modified and dynamically
linked into the environment without interrupting normal ex-
ecution. Therefore, there is no need to create a new HDL
and implement the standard variety of control structures re-
quired within it. Instead, the simulation routines are normal
Lisp procedures with access to the full richness of the Lisp

programming environment.
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3. Structural Design

The NS interactive editor provides f{or the capture of
sclwmatics and schematic-icons. A menu-dniven generator
builds most common icons automatically. Figure 2 shows a
view of the schemate editor with two views of a schemate.
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Figure 2. Schematic Editor Interface

A designer may enter schematics by the normal approach of
graphical editing or may use a Lisp HDL to allow rapid and
accurate entry of control logic. In the latter case, code can
be for the most part taken directly from the behavioral
simulator. The following description is representative:

(def-std-cell-schematic ("simple-example”
:inputs(p q a b)
:outputs(z w))

(setq z (A f (and p q)
a
b))
(setq w (not (and a b) (or p q))))
When compiled, the logic 1s simplified and a rule-based
technology selector optimizes the circuit used by choosing
gates, merging gates and eliminating unnecessary inverters.
A simple pattern matching language is used to apply the

rules. The rules are augmented as different situations arise

during the course of the design. The following represent
rules for recognizing AOI's.

(define-eqn-transformer AOI

(NOR (AND b ¢ d
(AND3-NOR2 a b c d)) ( &

(define-eqn-transformer AQI (NOR (NOR a b)

(NOR c d)
(OR2-0R2-AND2 a b ¢ d)) ‘

(define-eqn-transformer ADI (AND (NOT (NOR a b))

NO
(OR2-0R2-AND2 a b ¢ é))T VR G-

These generally have a higher likeliho
because they make the most efficie
but equivalent logic expressions
AOIL. In all cases, the canonical
the nested ANDs, ORs and NOTs

gate (l.e. an OR2-OR2-AND2) whi
library.

od of being accepted
nt use of area. Different,
can map onto the same
expression represented by
1S converted to a specific
ch is in the standard ce]]

Some rules implement demorganizing that ; '
; : at
cial gates (i.e. XORs), while uthersg 1s specific

up rules (i.e. it is advanta
a latch). o %o

_ _ to spe-
Tecognize circuit speed-
reduce the setup time to



Finally, less desirable rules are attempted which try to

reduce the placement problem by assigning gate-inverter

(define-eqn-transformer [HPLOOE

4 gl (NOT (NAND a b))

The designer can specify

named gates (ie.
thereby forcing a specific gates (1e. NAND5, NOR2)

implementation.

Although the designer does not have to b
. _ : e aware of the un-
fl{irljnng ﬂhjECt-ﬂI‘lEntEd' data-base to complete designs na
- owledge of these details can aid productivity. Most of our
€slgners can write simple data-base query programs such

as the following Lisp program which cal :
; culates ;
ternal capacitance of a network the total in

(defmethod (internal-capacitance rsim-network-mixin) ()
(loop for node in nodes

unless (or (eq node gng)
(eq node vdd))
sum (node-capacitance node)))

A_ eleqtrical rules: checker is used to check port names, port
directions, bus widths and other structural rules.

4. Physical Design

All of the chip cell designs (including pads) are specified in
the virtual grid symbolic layout style either with the NS
graphics editor (color or monochrome) or via Lisp
procedures. This is a process independent layout style in
which the designer does not have to deal with geometric
design rules. Rather transistors and wires are placed on a
coarse grid in a relative manner to each other. Cell designs
are compacted or spaced according to a target technology
description. The design style can deal with large pitch-
matched cells of the order of 50K transistors. Our ap-
proaches to this are summarized in [2].

A standard cell layout system automatically generates sym-
bolic layout from control schematic diagrams with the op-
tion of using port locations specified by the mask-outline.
Both min-cut and thermal-annealing [3] approaches have
been used. Min-cut is much faster but thermal annealing
has a slight density edge. We expect the min-cut density
will improve and will become the automatic layout style of
choice. The aspect ratio of the module may be specified to
allow area tuning. Figure 3 shows a typical wvirtual grid
standard cell layout with the contents of some cells dis-

played.

Data paths are constructed manually. Basic cells such as
registers, muxes and adders are provided in a data-path
standard cell library. To improve productivity, liberal use 1s
made of generators [4]. The following generator horizontally
abuts three cells and raises the instance ports to this level

of the hierarchy.

(defaspect-generator (data-path virtual-grid) (flag)

(HORIZONTALLY-ABUT ‘module-a
(if flag

'module-b

‘module-d)

'module-c)
(import-ports-on-edges))

508

[ ol el el il F e o V™ol A s Y

gy

L3
LS

A Symbolic Standard Cell Layout

Figure 3.

When all modules have been designed symbolically and com-

pacted, the NS interactive editor is used to specify a slicing
style floorplan [5][6]. Using the connectivity of the_cc}r-
responding schematic, this floorplan is used as the basis to
automatically place and route the entire chip. A global
router first assigns nets to the routing channels. When this
is complete, modules are composed according to the floor-
plan composition ordering. As they are connected, power,
ground and clocks are also routed. This chip composition
takes 2 hours to run for the complete Ivory chip. At early
stages of design, partial floorplans can be constructed using
estimates of block sizes. The following specifies the
"example" module which has an estimated size of 250u by
300u and has the inputs entering on the top and the out-
puts exiting on the bottom.

(def-mask-outline example (258 368)
(:top "s<3:8>"
memory-write-pending
bus-master-pin)
(:bottom mcw mcr merw))

Figure 4 shows the floor-plan of Ivory.

A network comparison program is able to compare any two
extracted networks (i.e. from wvirtual-grid layouts,
schematics, mask layouts and vendor net-list files)[7]). Inter-
active feedback 1s provided to identify suspicious nodes. No
node names are necessary.

A fast interactive DRC is provided for final mask artwork
checks.
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S. Simulation

5.1 Circuit Simulation

A switch-level
bridge both th

uirem ' imi
q €nts. Apart from being optimized for fast simulation,

our version of RSIM has the ability to specify functional

models in the following manner (a RAM):

(deffunctional-mode] cache-memory
-1nputs ("addr<6-:8>"
-row-enable
Write

'write—data{BB:E:')

. . -pad-s1ze 8/1 :pu-
:Tocal-state ((cache-arraﬁ R spuesize 167100

rinitform

(make-array 128 :initial-e] ’
:dglgys ((row-enablel — data :delay 25)? enent 29))
:timing-constraints

((addr — —ruu-enab]ei :setup 16)

(write-dat : .
:medel (cond d 7> writes :setup 13))

((eql addr ’'x)
(setq data ’x))
((eql write 1)
(setf (aref cache-array addr)
Wwrite-data)
(setq data write-data))
((eql write 9)
(setq data
(aref cache-array addr)))))

Access to the RSIM simulator is available in parallel either
via Lisp code that can set, read and compare values on a
clrcuit nuc_le, or via mouse clicks on a schematic displayed in
the graphics editor window. A hierarchical schematic can be
traversed using PUSH/POP commands. The right window
in Figure 2 displays the result of clicking near nodes. Test
programs written in Lisp use a protocol consisting of three
generic functions:

e VALUE, which returns the value of a node,
e SET-VALUE, which sets the value of a node, and

e sM-sTEP, which propagates all changes through the net-
work until no further changes occur. Optional ar-
guments to SIM-STEP can specify the length of the

simulation period.

The normal Lisp-machine operating system features such as
breakpointing, incremental compilation and function restart,
along with the scope-probe capabilities of the NS design sys-
tem, create an extremely powerful verification capability
with a fast edit/compile/debug loop. This interactive circuit
debugging capability 1s available on either schematics, sym-

bolic layouts, or mask layouts.

At the detailed circuit level, SPICE [9] was used to verify
critical parts of the design, such as adder speed and
memory timing. An interactive interface is provided to
SPICE which can be run laqally on the Lisp r{mchme or
remotely over the network. Figure 5 shows a typical SPICE
interaction session.

To give some idea of the extensibility of NS, an experimen-
tal timing simulator mode based on backward Euler integra-

tion [10][11] was added to NS in a matter of a morning by a
designer. We intend to incorporate parallel fault simulation

into RSIM in the future, but it will probably take more than
a morning.

simulator with timing (RSIM)[8] was used to
€ gate and switch level circuit simulation re-
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Figure 5. A SPICE window view of a module

5.2 Hardware Simulation Acceleration

Although RSIM is relatively fast (of the same order of speed
as current software logic simulators), the size of some
modules (and certainly the whole chip) results 1n simulation
times beyond realistic limits. A number of methods are
available to solve this problem, including operating one
module at a time at the switch level while the others
operate at the functional level. The solution we adopted
was to invest in a hardware simulation accelerator. With a
moderate software effort, we were able to create an inter-
active environment for the engine that is identical to the 1in-
teractive RSIM environment. The accelerator 1s currently
the only method of simulating the entire chip at a suf-
ficiently low level to give the chip designers confidence in
the transistor-level design. The simulation speed 1s roughly
10 instructions a minute.

Apart from a UNIX™ server and a Lisp-machine server re-
quired to operate a network command protocol, the most
significant piece of software 1s a "gate-recognizer.” To
maximize modeling element use in the accelerator, all
groups of transistors are converted to logic gates, unidirec-
tional switches, or (if unavoidable) bidirectional switches.

6. Design Verification

6.1 Functional Comparison

The consistency of the architectural and behavioral
simulators 1is verified by applying a large set of test
programs to each simulator and checking for consistency ac-
cording to an instruction-set architecture specification. Com-
paring the behavioral simulator and the circuit data-base
can be performed on a signal by signal basis as the be.

havioral simulator is used to s ' .
e pecify the modular
communication between modules of the chip. 1ty and

As both the behavioral simulator and RSIM '
_ ) . were .
mented using the object-oriented programming facilitli?splt?f

the Lisp machine, one can pass com
: _ mon message
simulators to achieve the required behavior. anbabc

During verification, SET-VALUE messa

the behavioral simulator and Rg?ii.arEEa?:;SEd af'ﬂt' bﬂith
simulator takes the appropriate action to set interlrjlal i:;ldar
to a paxl'ltlculglr value. This is achieved using a "forw d_es
network”™ which takes a list of two networks one theaﬁsllrﬁ



network and the other the bebavieorsl sumulstor “network’
and the node under question and successively aspples the
WY valuf procedure 9 both nodes in each simulator Thus
the 2Tv function is used W set values in both networks

(defanthod (sety forvard'ng-netecrs) (node v8lue)
(S8t -va!us rsIe-Netedry node 0 ue)
(set-value Cenevtars! -aocde]l nocde velue))

As the functional stmulator works with a two-phase clock, &
hmcuaq s written emulate the clocks for the RSIM
simulation A simple version of this would lock as follows

(defaethad (si'aulate-ghase-1 rs'e-netucrk-ai1xin)()
(set-value self ‘pht 1)
(s'm-step self)
(set-value self ‘pn1 @)
(S1m-step self))

This message is applied to both networks to advance
through a phasel clock cycle. The following forwarding net-
work function calls both phasel execution functions:

(defaethod (phasel forwarding network) ()
(stmulate-phase-1 rsies-network)
(stmul ate-phase-1 behavioral-model))

The vEmIFY command operates by asking the two simulators
for values and then comparing the results. If the results
disagree, a debugging session with the user is initiated.

The following represents a simple test program.

(declare-bus ‘opl1 32)
(declare-bus ‘op2 32)
(declare-bus ‘external-bus 32)

(defun coapare-adder-ops (opl1 op2)

(phasel)

(setv ‘opl opl )

(setv ‘op2 op2 )
(phase2)

(verify :Exturnal+bu5)}

Such programs are written by designers to test the
functionality of individual modules.

To provide higher level tests, a spy stralegy was developed.
With this facility, the complete behavioral simulator could
be exercised by Lisp test programs. Arbitrary collections of
modules can be grouped together (to model physical layout
groupings) and their collective inputs and outputs monitored
to provide a trace history of the boundary signals. The
storage of the history allows both interactive and batch
simulation. RSIM simulation code consisting of SETV and
VERIFY statements, is generated from the history. This code
was then applied directly to the extracted network with any

discrepancies detected by VERIFY errors.

The SPY code was extended to allow interfacing to an en-
gineering tester. This allows interactive debugging of tests
in an engineering environment that was closely linked to
the program development environment of the Lisp machine.

6.2 Timing Analysis

timing analyzer based on finding critical paths through
g‘anaiatogr netxzr’:rkﬂ was implementegl based on prystﬂl[m].
It was subsequently rewritten to incorporate ideas from
Leadout [13]. The timing analyzer heuristically determines
directions on bidirectional devices that cause loops In the
circuit [14]. Support for functional models (using RSIM

functional models) is also provided.
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7. Version Control

| - lex design involving a team of people,
::;:;u;?mf;{nge incorporated into a E}'stﬂtl‘lﬂn to PAW:;H} the
advertent inclusion of erroneous design l'bm' p i E
NS support for the update of stale data 111:1-31'[1;5, s
implemented a change control system cale e nage-

System. _ _

E::itngyl.he design, specific verification steps have to be run
on each module. For instance, a standard cell logic block
has to be electrical rule checked, port checked, simulated,
auto-placed, compacted, net-compared and the mask descrip-
tion saved. For each different kind of module a particular
describe the necessary construction
the step was run, a.lt} ﬁ}l}es and
their version numbers used in the execution of the step
were recorded. A data-base was kept which could be queried
for the steps that had been run and the steps that had to
be run if any sub-module (and hence ‘archwe file) was
changed. The management system provides an up-to—c}ate
view of the design progress and can _remntely execute jobs
on vacant Lisp machines. Using a history _nf previous job
times, it can predict the time to completion of a given

tapeout run.

To create and check the entire Ivory phy_mcal data-base
takes 30 Lisp CPU days. By using machines In llel over
the network, this can be done in 3-4 days. While this might
seem a long time, this is the time to create a totally new
physical data-base. The incremental time to produce a new
chip after a typical ECO is on the order of hours.

8. Summary

Currently, the NS design system is also being used in Sym-
bolics for the board level design of products based on lvory,
gate array design and other internal product designs.

The tools developed to design Ivory comprised approxamately
one third of the total design effort. Without such tools, it 1s
unlikely that the design of a chip of the complexity of Ivory
would have been successful at first silicon. Lisp is the
design language and implementation language for the entire
project. By designing in Lisp, no intermediate languages
have to be designed and no extraneous parsers written. The
full richness of the Lisp software development available to

the Lisp system programmer is also available to the VLSI
designer.

All of the tools mentioned in this paper were written in
New Flavors Lisp from scratch under the Symbolics Genera
7 operating system by various of the authors of this paper.
The NS system totals roughly 50K lines of code. The
brevity of the code is derived from the object-oriented ap-
proach which provides for modularity, reusability and exten-
sibility.

On the basis of the wide range of design activiti
ported, the intimate integratinngnf the touglls:l, the sll':neai F;::lrl*g-
gramming team size and the complexity of chip designed,
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