.
Macroinstruction Set
e sje s sk sfe oje sje sfe sje sje sfe e sfe sfe ofe s sfe sfe sfe sfe s ofe ok 2 o sk ofe sje sfe s s ofe sfe sfe s sfe sje sfe sfe ik sfe sfe s s sfe sfe ofe sfe sfe afe s e s o sfe s e ofe ok sk o s e ok ofe ok sfe ofe o ke ok sfe sfe sfesfe sk e ke s

This file is confidential. Don’t show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardcopy and leave it lying around, don’t talk
about it on airplanes, don’t use it as sales material, don’t give it as background to
TSSEs, don’t show it off as an example of our (erodable) technical lead, and don’t
let our competition, potential competition, or even friends learn all about it. Yes,
this means you. This notice is to be replaced by the real notice when someone

defines what the real notice is.
s ik sje sk e sfe s sfe s e sfe s sfe s ofe s ok ofe s ofe s ke 2 e ok s sfe sfesie sfe o sfe s ofe sfe sfe sfe e sfe s sfe s sfe o ofe s e sfe s ok s s e afe o ofe o e sfe sfe sfe sfe s she sfe e sfe o ofe sfe s sfe e s sge e e e e

Introduction

This chapter defines all the instructions executed by the I machine. The
instructions are grouped according to their function. The end matter of this
manual contains indexes to the instructions organized alphabetically, by opcode,
and by instruction format. An appendix to the manual contains a list of 3600
instructions not implemented by the I-machine and, in some cases, descriptions of
how to obtain their results with I-machine instructions.

Before presenting the individual instructions, the chapter includes introductory
sections applicable to all instructions: instruction formats, including control stack
addressing modes, instruction sequencing, internal registers, types of memory
references, and top-of-stack register effects.

Instruction Formats

In the chapter on data representation, words in Lisp-machine memory were
interpreted either as Lisp object references or as parts of the stored representation
of these objects. This chapter reinterprets all memory words as instructions. The
processor treats a memory word as an instruction whenever it is encountered in
the body of a compiled function -- or, more specifically, when the program counter
points to the memory word and the word is fetched as an instruction.

With the exception of the data types specifically designated as instructions, there
is no one-to-one correspondence between data types and instruction formats.
Instead, the data types are subdivided into classes, and each class forms the basis
of an instruction type. The packed half-word instruction data type uses two
instruction formats. See the section "Half-Word Instruction Data Types".

The following table summarizes I-machine instruction formats and lists the data
types in each class.

Class of Packed Half-Rord Instructions
Instruction Type Data Types Included Data-Type Code

Operand from stack format DTP-PACKED-INSTRUCTION 60-77
10-bit immed. operand format DTP-PACKED-INSTRUCTION 60-77

Macroinstruction Set

Class of Full-Word Instructions (all full-word format)

Instruction Type
Entry instruction

Function-calling instructions

Constants

Value Cell Contents

Illegal Instructions

Data Types Included
DTP-PACKED-INSTRUCTION

DIP-CALL-COMPILED-EVEN
DTP-CALL-COMPILED-ODD
DTP-CALL-INDIRECT
DTP-CALL-GENERIC

Page 2

Data-Type Code
60-77

50
51
52
53

DTP-CALL-COMPILED-EVEN-PREFETCH 54
DTP-CALL-COMPILED-ODD-PREFETCH 55
DTP-CALL-INDIRECT-PREFETCH 56

DTP-CALL-GENERIC-PREFETCH

DTP-FIXNUM
DTP-SMALL-RATIO
DTP-SINGLE-FLOAT
DTP-DOUBLE-FLOAT
DIP-BIGNUM
DTP-BIG-RATIO
DTP-COMPLEX
DTP-SPARE-NUMBER
DTP-INSTANCE
DTP-LIST-INSTANCE
DTP-ARRAY-INSTANCE
DTP-STRING-INSTANCE
DTP-NIL

DTP-LIST

DTP-ARRAY
DTP-STRING
DTP-SYMBOL
DTP-LOCATIVE
DTP-LEXICAL-CLOSURE
DTP-DYNAMIC-CLOSURE
DTP-COMPILED-FUNCTION
DTP-GENERIC-FUNCTION
DTP-SPARE-OBJECT-1
DTP-SPARE-OBJECT-2
DTP-SPARE-OBJECT-3
DTP-SPARE-OBJECT-4
DTP-SPARE-OBJECT-5
DTP-CHARACTER
DTP-SPARE-OBJECT-6
DTP-EVEN-PC
DTP-ODD-PC

57

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
4
46
47

DTP-EXTERNAL-VALUE-CELL-POINTER 4

DTP-NULL
DTP-MONITOR-FORWARD
DTP-HEADER-P
DTP-HEADER-I
DTP-ONE-Q-FORWARD

W RO

Macroinstruction Set Page 3

DTP-HEADER-FORWARD 6
DIP-ELEMENT-FORWARD 7
DTP-GC-FORWARD 45

The following paragraphs describe these formats.
Full-Word Instruction Formats

Function-Calling Instruction Formats

A word of data type dtp-call-xxx contains a single instruction. The instruction
contains a data-type field, which is used as the opcode, and and address field as
shown in Figure INSTRUCTION-FORMATS. This kind of instruction starts a
function call.

[Figure caption: I-machine instruction formats.]

Entry-Instruction Format

An entry instruction is a word of type dtp-packed-instruction that actually
contains one full-word instruction. Its format, shown in
Figure INSTRUCTION-FORMATS, is

Bits Meaning
<39:38> Sequencing code = "add 2 to PC"
<37:36> dtp-packed-instruction
<35:28> Opcode of second half word, may be unused
<27:26> Addressing mode of second half word, may be unused
<25:18> Number of required+optional args, biased by +2
<17:10> entry instruction opcode. 1 bit says
whether &rest is accepted.
<9:8> Immediate addressing mode
<7:0> Number of required args, biased by +2

The hardware will dispatch to one of two microcode starting addresses according
to the value of the &rest-accepted bit.

S 3 e e e e s s s s e ode s o o fe e e s s e vje e o e e sfe s s s e e o s s feafe o s e ofe ol s s e sfe s s e fe s s fe e sfe s s s e e e sfe s o e se el sfe o o e fesfe s s s e e

Notes: When a rest arg is not wanted and no rest arg has been supplied, entry
will take 2 clocks if all the optionals (which may of course be 0) are defaulted and
4 clocks if only some are defaulted. The cases for a rest arg wanted are more
involved. When a rest arg has been supplied, entering at N-args minus min-args
should take 3/5 clocks for all/some defaulted.

The additional hardware support for entry is the ability to read CR.argument-size
as a fixnum and E.instruction<25:18> as a fixnum. The too-few/many calculations

Macroinstruction Set Page 4

are done in the main data path, and the PC adjustment in the PC adder (which
also already does offset=0 detection). No bypassing of CR.apply or
CR.argument-size is required. I tried to come up with a way to use the I-stage to
shift #required+optional args into the proper place but was unsuccessful.

It may be useful to have pull-apply-args set the PC to the second half word when
faulting, in which case the second opcode would need to be defined. [There is no
sequencing code that will do what I think you want in that case, i.e., +2 for the
even halfword and +1 for the odd halfword. --Moon]

e fe i s 3 e e e g s s se e e e s s s sfe e s s s fe e sfe s seshe o o se ke ol s s sl s s sk sfesfe s s e e sfe s s e s s e ofe sk s o s fe e o s s s e fesfe e s o s e e sfe e sle sk sk

Constant Formats

The processor treats any word whose data type is that of an object reference as a
constant. The processor pushes the object reference itself onto the control stack
and sets its cdr code to ecdr-next. This is the case for any object that is pushed
onto the control stack, unless otherwise specified.

%

e s sk s e e o o o sl o s s s s s o s s s s s o o e e ofe e e ofe e sfe sl sfesfe s sfe s s sfe s s s s s s s o o e e sfesfe s sfe e sfe sl fesfe e sfe s s sk s sk sl R ke sl e s s SR sl sl s

Notes:

Note that in cases where there are many calls to the same function or references

to the same constant, the compiler can attempt to encache it in a local variable.
#********************

Value Cell Contents

A word of data type dtp-external-value-cell-pointer contains the address of a
memory cell. Using a data-read operation, the processor pushes the word contained
in the addressed cell onto the control stack, following invisible pointers if
necessary. Typically this pointer addresses a symbol’s value or function cell.

Py
****************************#**

Notes:

This is actually an optimization to save space and time (one-half word and one
cycle); the value cell address could be pushed as a constant locative and then a

car instruction could be executed.
********#**

Illegal Instruction Formats

A word of any data type other than those listed above cannot be executed as an
instruction. The processor will trap out if it encounters such a word. A later
chapter contains further information on trapping. See the section "Exception
Handling".

Packed Half-Word Instruction Formats

This is the most common instruction format. The word with data type
dtp-packed-instruction contains two 18-bit instructions, which are packed into the
word as shown: '

Macroinstruction Set Page 5

The first instruction executed is called the "even halfword" instruction, and is
found in bits 0 through 17. The "odd halfword" instruction is executed later, and is
found in bits 18 through 35. Since the data portion of the word is normally only 32
bits, 4 bits are "borrowed" from the data type field. (The ones in bit positions
<36-37> are the upper two binary digits of any dtp-packed-instruction opcode, a
number between 60 and 77 octal.)

Each of the two instructions in this format can be further decomposed. See
Figure INSTRUCTION-FORMATS. As the figure shows, there are two basic 18-bit
formats.

Format for 10-Bit Immediate Operand

The 10-bit-immediate-operand format is for those instructions that include an
immediate operand in their low-order ten bits. The immediate operand can be
interpreted as a constant or as an offset -- signed or unsigned, depending on the
instruction. There are two special subcases of this instruction format: field
extraction instructions and branch and loop instructions.

Format for Field Extraction

The field-extraction format is for instructions used to extract and deposit fields
from words of different data types. The field is specified in the instruction by the
bottom 10 bits. Bits 0 through 4 specify the location of the bottom bit of the field,
-- that is, the rotate count -- and bits 5 through 9 specify (field size - 1). For
load-byte instructions, ldb, char-ldb, and the like, the rotate-count that the
instruction should specify is (mod (- 32 bottom-bit-location) 32), and for
deposit-byte instructions, dpb and the like, the rotate-count should specify the
bottom-bit location.

The extraction instructions take a single argument. The deposit instructions take
two arguments. The first is the new value of the field to deposit into the second
argument. It is illegal, though not checked, to specify a field with bits outside the
bottom 32 bits.

Format for Branch Instructions

Branch instructions are a subclass of 10-bit-immediate-format instructions. They
use the immediate argument as a signed half-word offset.

Format for Operand From Stack

Packed half-word instructions that address the control stack use the
operand-from-stack format. They have a 10-bit field that specifies an address into
the stack. If one of these instructions takes more than one operand, the addressed
operand is the last operand of the instruction and the other operands are popped
off the top of the stack. If the instruction produces a value, then the value is
pushed on top of the stack.

Macroinstruction Set Page 6

Control Stack Addressing Modes

Operand-from-stack instructions reference operands on the control stack relative to
one of three pointers to various regions of the current stack frame. The lower
ten-bit field of one of these constitutes the operand specifier, whose bits are
interpreted as follows. Bits 8 and 9 of the instruction are used to select the
pointer, while bits 0 through 7 are used as an unsigned offset. The processor
interprets bits 8 and 9 as: :

00 Frame Pointer - The address of the operand is the Frame Pointer plus
the offset.

01 Local Pointer - The address of the operand is the Local Pointer plus the
offset.

10 Stack Pointer - The address of the operand is the Stack Pointer (prior to
popping any other operands) plus the offset minus 255, unless the offset is 0.

For example, if the offset is 255, then the operand is the top of stack. Note
that this operand will not be popped. If the offset is 1, then the operand is
the contents of the word pointed to by (Stack Pointer minus 254). This mode
is used for the management of arguments for pop instructions, as described
in the next paragraphs.

In the special case when the offset is 0, the operand is popped off the top of
stack, before any other operands have been popped off (this operand is still
the last operand to the function, though). This special case is called the
"sp-pop addressing mode." For example, the following sequence is used to add
two numbers, neither of which is to be saved on the stack for later use, and
to leave the result of the addition on the stack.

push LP[0 ;push argl on the stack

push LP|1 ipush arg2 on the stack

add sp-pop ;pops arg2 then argl off stack,
;adds, then pushes the result

11 Immediate - The last operand is not on the stack at all, but is a fixnum
whose value is the offset possibly sign-extended to 32 bits, depending on the
instruction. This case is called the "immediate addressing mode," not to be
confused with 10-bit immediate format instructions, which have no operand
specifier since they are always immediate.

In some cases, the stack location address specified is the operand used as an object
of the instruction in some way. This case is called "addess-operand addressing
mode." For instructions that employ the address-operand mode, the immediate and
sp-pop modes are illegal.

Note that it is always only the last argument of an instruction that is specified by
an operand-from-stack format: the others, if there are any, are not explicitly
specified by the instruction and are always popped off the stack in order.

Refer to the chapter on function calling for a description of the control stack and
the processor’s stack pointers. See the section "Control Stack".

*
sk e s o s s s s s o s s s o o o s sfe o sfesfe sfesfe s sfesfe s o sfe o s o o o s e e e e e e sfe e ke sfeslesfe sl sfe ok o o s s s s s sfe s s s sfe e sfesfe ek sk s ok sk sk ek

Notes:

Note in the hardware, the stack cache address is just the bottom 8 bits of SP +
offset + 1 (which uses the carry input to the adder).

Macroinstruction Set Page 7

Instruction Sequencing

Instructions are normally executed in the order in which they are stored in
memory. Since full-word instructions cannot cross word boundaries, it would
occasionally be necessary to insert a no-op instruction in places where a full-word
instruction or constant followed a half-word instruction that did not fall on an odd
halfword address. This costs address space, I Cache space, and possibly execution
time to execute the no-op.

The cdr code field of each word executed contains sequencing information to
eliminate this waste. The cdr code takes on one of four values, which specify how
much the PC is incremented after executing an instruction from this word. Note
that the PC contains a half-word address.

Cdr Code PC Increment Comment

0 +1 Normal instruction sequencing

1 illegal Fence; marks end of compiled function

2 - On some constants

3 +2 PC even Before some constants, on some constants
+3 PC odd

When a constant follows an odd half-word instruction, the half-word instruction
pair has cdr code 0 and the constant has cdr code 3. When a constant follows an
even half-word instruction, the constant follows the odd half-word paired with the
constant’s predecessor. The half-word instruction pair has cdr code 38 and the
constant has cdr code 2.

For example, straightline execution of the following sequence of instructions:

Word Address Cdr Code Instruction(s) Comment

100 0 B A Packed instructions
101 3 C Constant
102 3 F D Packed instructions
103 2 E Constant
104 0 E G Packed instructions
proceeds as follows:
Current PC Instruction Executed Cdr Code PC Increment
100 even A 0 +1
100 odd B 0 +1
101 even C 3 +2
102 even D 3 +2
103 even E 2 -1
102 odd F 3 +3
104 even G 0 +1
104 odd H 0 +1

A cdr-code value of 1 (cdr-nil) is used to mark the end of compiled functions. This
value is placed in the word after the final instruction of the function. See the
section "Representation of Compiled Functions". It is an error if the processor

Macroinstruction Set Page 8

attempts to execute this word. The chapter on traps and handlers contains more
information. See the section "Exception Handling".

The cdr code sequencing described above only indicates the default next
instruction. When an instruction specifically alters the flow of control (for
example, branch) the cdr code has no effect.

P

Notes: The second word of the prefix cdr code could also be 1 to indicate that it is

not a valid instruction.

Internal Registers
The following implementation independent registers are defined:

¢ In the scratchpad (an implementation-dependent assumption):
° array-register-event-count
° binding-stack-pointer
° binding-stack-limit
° %catch-block-list
¢ control-stack-extra-limit
¢ control-stack-limit
° %count-map-reloads
. ° list-cache-address
° list-cache-area
° list-cache-length
° pht-address (=? pht-base)
° pht-mask
¢ processor-fault-reason
¢ reset-pc
¢ structure-cache-address
° structure-cache-area
¢ structure-cache-length
° top-of-stack

Macroinstruction Set

Probably not in scratchpad memory (read-only?):

°t

° nil

Not in scratchpad memory:

o

alu-op-register

° block-address-0,1,2,3
° byte-rotate

° byte-size

° control-register
continuation
ephemeral-oldspace
frame-pointer
local-pointer
memory-error-status
stack-pointer

° rotate-latch

° zone-oldspace
Single bits:

° fep-mode

o

(<]

floating-inexact-status

° preempt-request
° sequence-break-request
¢ trap-mode (write-only)
Other control bits:

° invalidate-map-cache

stack-cache-lower-bound (smallest vitual address now in stack cache)

floating-inexact-trap-enable

Page 9

Macroinstruction Set Page 10

° invalidate-map-cache-entry
instruction-cache-enable

° invalidate-instruction-cache
° map-cache-enable

° mapping-enable

*

Notes: 1. Whether local-pointer is a separate register may be
implementation-dependent.

2. alu-op-register, byte-rotate, and byte-size could be a single register.

3. Should floating-inexact-trap-enable be in the Control register?

4. Are there any other floating-point modes or status?

5. There might be separate sequence-break flags for I/0, fast, and slow clocks.

6. The "other control bits" are from Efland’s file, v:>imach>doc>mem-layout.mss.
They may need to be discussed and verified. Or maybe they belong in the

implementation document.

Data Types Accepted

In the instruction definitions in this document, the Arguments field lists the
arguments that the instruction requires and the valid data types for these
arguments. The data types listed are those that the instruction accepts without
taking a pre-trap. The only spare data type that numeric instructions accept is
dtp-spare-number, which will cause a post-trap. Non-numeric instructions (that is,
instructions that do not require their arguments to have numeric data types)
accept any spare data type and always take a post-trap on encountering one, unless
otherwise noted.

The Post Trap field of an instruction definition lists those data types that the
instruction accepts as valid (that is, that do not cause a pre-trap) but that are not
supported in hardware.

Memory References

There is a class of instructions that address main memory (as opposed to stack
memory). The operands for these instructions are memory addresses. Different
instructions make conceptually different kinds of read and write requests to the
memory system. The different types of memory cycles for these different types of
memory requests are summarized here and described later in this section. The
classification of Lisp data types according to type of operand reference -- data,
header, header-forward, and so on -- is made in the chapter on data representation.
See the section "Operand-Reference Classification”.

The following table shows the action taken for each category of data when read
from memory in a given type of memory cycle. This table refers only to memory

Macroinstruction Set Page 11

reads and to memory cycles that consist of a read followed by a write. (An
instruction that writes memory without reading first is called a "raw write." The
table omits these.) Note that the categories overlap.

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er

0 data-read - trap trap ind ind ind ind trap mtrp trnspt
1 data-write - - trap ind ind ind ind trap mtrp -
9 cdr - - trap ind ind - - trap - -
4 bind-read - - trap ind ind ind - trap mtrp traspt
2 bind-r-mon - - trap ind ind ind - trap ind trnspt
5 bind-write - - trap ind ind ind - trap mtrp -
3 bind-w-mon - - trap ind ind ind - trap ind -
6 header-rd trap trap - ind trap trap trap trap trap trnspt
7 struc-offset- - - ind - - - trap - -
8 scavenge - - - - - - - trap - trnspt
10 gc-copy - - - - - - - trap - -
11 raw-read - - - - - - - - - -
Legend:
Normal action
ind Indirect through forwarding pointer. This also enables
transport trap if word addresses oldspace, and transport trap
takes precedence if it occurs.
trap Error trap. Takes precedence over transport.
mtrp Monitor trap (different trap vector entry than error trap). This
also enables transport trap if word addresses oldspace, and
transport trap takes precedence if it occurs.
trnspt Enable transport trap if word addresses oldspace.

Note that the operations described apply only to objects addressed as though they
were located in main memory, not those already on the control stack.

If an error occurs during a memory operation, the processor aborts the instruction
and invokes a Lisp error handler. The arguments to the error handler are the
microstate, and the virtual memory address (VMA). From the microstate, the Lisp
handler will look up the type of error in an error table.

Data-Read Operations

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
0 data-read - trap trap ind ind ind ind trap mtrp transpt

Most operands are fetched with a data-read operation. This reads the word located
at the requested memory address. If the word obtained is a forwarding, that is,
invisible, pointer (dtp-header-forward, dtp-element-forward, dtp-one-q-forward,
or dtp-external-value-cell-pointer), then the pointer’s address field is used as the
new address of the cell. The content of this new address is then read and checked
to see if it is an invisible pointer. The process is repeated until a
non-invisible-pointer data type is encountered. The word finally obtained is
returned as the result of the data-read operation. During this pointer following,

Macroinstruction Set Page 12

sequence breaks are allowed so that loops can be aborted. If at any point dtp-null,
a header (dtp-header-p, dtp-header-i), or a special marker (non-invisible pointer)
(dtp-monitor-forward, dtp-ge-forward) is encountered, the error causes the
instruction performing the data read to fault. If a data location that is read
contains an address in oldspace, a transport trap handler is invoked to scavenge
the page and then the data-read is resumed. See the section "I-machine Garbage
Collection".

Data-Write Operations

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
1 data-write - - trap ind ind ind ind trap mtrp -

When most operands are written to memory, a data-write memory read operation
is first performed. This checks the requested location to determine whether an
invisible pointer is present. If so, the address of the pointer is used as the new
address of the cell. The contents of the new address is read and checked to see if
it is an invisible pointer. If a header or special marker, dtp-gc-forward or
dtp-monitor-forward -- but not dtp-null -- is encountered in any location, the
error causes the instruction doing the data write to trap out. If the contents of a
location is a forwarding pointer, a check for oldspace is made before indirection.
When the process terminates, the contents of the final location, which are being
replaced, are not transported. The process is repeated until a non-invisible-pointer
data type is found, at which point the data is stored in the last location,
preserving the cdr code of the location into which it stores.

CDR-Read Operations

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
9 cdr - - trap ind ind - - trap - -

Memory references made only to determine the cdr-code of a location use a
cdr-read operation. This kind of reference follows pointers of the type
dtp-header-forward or dtp-element-forward, which forward the entire memory
word, including the cdr code. (Recall that a dtp-header-forward pointer is used by
the system to replace an element when it is necessary to change the cdr code of a
cell in the middle of a cdr-coded list. See the section "Forwarding (Invisible)
Pointers".) The cdr-read operation returns the contents of the cdr-code field of the
finally found word.

Forwarding pointers (dtp-one-q-forward and dtp-external-value-cell-pointer) that
forward only the contents (that is, the data-type and pointer fields) of the cell are
not followed. Instead, the cdr code of the word containing such a pointer is
returned.

Having extracted the relevant cdr code, the instruction doing the cdr read takes
action according to the value returned, as explained in the section on lists. See the
section "Representations of Lists".

If a header or dtp-gc-forward data type is encountered, the error causes the
instruction making the reference to fault.

Macroinstruction Set Page 13

Bind-Read Operations
Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-

Type itor er
4 bind-read - - trap ind ind ind - trap mtrp trnspt
2 bind-r-mon - - trap ind ind ind - trap ind trnspt

The binding instructions (unbind-n and bind-locative) change the value cell, not
the contents of the value cell, of a variable. dtp-external-value-cell-pointer is an
invisible pointer that points to the value cell in memory. Since binding should
create a new value cell, the system does not follow dtp-external-value-cell-pointer
when doing bindings. In all other respects this operation is the same as a
data-read memory operation, except that encountering dtp-null does not cause a
trap.

A subcategory of this type of operation is the bind-read-no-monitor operation. This
operation, as opposed to the normal binding read, does not trap out if a
dtp-monitor-forward pointer is encountered. Instead, it just follows the pointer.

Bind-Write Operations
Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-

Type itor er
5 bind-write - - trap ind ind ind - trap mtrp
3 bind-w-mon - - trap ind ind ind - trap ind -

- A bind-write operation is like a data-write memory operation except that it does
not follow external-value-cell pointers. See the section "Bind-Read Operations". A
subcategory of this type of operation is the bind-write-no-monitor operation. This
operation, as opposed to the normal binding write, does not trap out if a
dtp-monitor-forward pointer is encountered. Instead, it just follows the pointer.

Header-Read Operations

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
6 header-rd trap trap - ind trap trap trap trap trap trnspt

Instructions that reference objects represented in memory as structure objects use
a header-read operation to access the header. This reads the word at the requested
address. If the word is a header, the header is returned. If the word is a
header-forward pointer, the address field of this invisible pointer is used as the
new address of the header. The word at this new address is checked, and the
process repeated until a header is found. If at any point something other than a
header or header-forward pointer is found, the error causes the instruction
performing the header-read operation to fault. If the data location that is read
(without a trap) contains an address in oldspace, a transport trap handler is
invoked to scavenge the page and then the header-read is resumed. Refer to the
chapter on garbage collection. See the section "I-machine Garbage Collection".

Structure-Offset Operations

Macroinstruction Set Page 14

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
7 struc-offset- - - ind - - - trap - -

The Lisp operation p-structure-offset uses the struc-offset type of reference to
return the structure header. This type of reference follows header-forwarding
pointers as necessary and traps out if a dtp-ge-forward is encountered. A
structure-offset reference is enabled only by bits in a %memory-read or block-read
type of instruction.

Garbage-Collection Operations

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-

Type itor er
8 scavenge - - - - - - - trap - trnspt
10 gc-copy - - - - - - - trap - -

Memory references of the types scavenge and gc-copy are used internally by the
garbage collector. References of these types trap out when a dtp-ge-forward is
encountered. Scavenge references perform transports; ge-copy references do not.
Either type of reference is enabled only by bits in a %memory-read or block-read
type of instruction.

Unchecked Operands

Code Cycle Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point-
Type itor er
11 raw-read - - - - - - - - - -

A raw memory reference has all the indirection (pointer following), trapping, and
transporting possibilities disabled. During stack encaching and decaching, transfers
of data between main memory and the stack cache use raw-read and raw-write
operations. %p-ldb and %p-dpb are among the users of raw references. Note that
raw-write operations maintain the ephemeral-reference bits in the PHT just as
other write operations do.

Top-of-Stack Register Effects

The top-of-stack (TOS) register is a scratchpad location that contains a copy of the
contents of the top of the control stack. The possible effects of an instruction on
this register affect the code the compiler is allowed to generate. Sometimes the
compiler must insert extra movem SP |0 instructions to restore the correct value
to the TOS register. The TOS register is valid if its contents are known to be
identical to the contents of the location indicated by the stack pointer (SP|0);
otherwise, the TOS is invalid.

Every operation that returns a value -- this includes all true Lisp operations --
pushes that value on the stack. Thus, after an instruction has executed, the stack
no longer contains the instruction’s arguments but instead contains the result of
the operation. Instructions that do not return a value -- for example, rplacd, aset,
pop -- pop off all of their arguments. Every instruction that produces a value and
pushes it on the stack sets the cdr code of the pushed word to 0 (cdr-next). The

Macroinstruction Set Page 15

only exceptions are as follows:

The start-call instructions produce 3 (illegal in lists) in the cdr-code fields of
the frame header on the stack.

A memory read or block read instruction can copy the cdr code of the word
from memory into the word on the stack.

The push-apply-args operation can produce 1 (edr-nil) or 2 (edr-normal) in the
cdr-code field of words on the stack.

The catch-open instruction can produce any value in the cdr-code field of
certain words in the catch block.

The catch-close instruction produces 2 or 3 in the cdr code of the PC it saves
before jumping to an unwind-protect cleanup handler.

%p-tag-dpb can be used to store into the stack.

%set-tag can be used to produce any cdr code but is usually programmed to
produce cdr-next.

An instruction such as movem or increment that stores into its stack operand
preserves the cdr code.

In the following instruction descriptions, the possible effects that an instruction
can have on the TOS register are indicated by the following phrases:

Valid before The register must be valid before the instruction.

Valid after The register will be made valid by the instruction.

Invalid after The register can be made invalid by the instruction.
Unchanged Status after the instruction same as status before, except if an

sp-pop operand is used or if the instruction modifies its
operand and the operand happens to be the top word in the
stack, in which case TOS is invalid after.

The Instructions

The I-machine implements 211 instructions in 14 categories. There are:

10 list-function

24 predicate

29 numeric

10 data-movement

8 field-extraction

10 array-operation

19 branch-and-loop

20 block

12 function-calling

4 binding

2 catch

24 lexical-variable-accessing
11 instance-variable-accessing, and

Macroinstruction Set Page 16

28 subprimitive

instructions.

Macroinstruction Set Page 17

List-Function Operations

car, cdr, doc:set-to-car, doc:set-to-cdr, doc:set-to-cdr-push-car, rplaca, rplacd,
doc:rgetf, zl:member, zl:assoc

The Lisp predicate instructions eq, eql, and doc:endp are documented elsewhere.
The Lisp functions cons and ncons are implemented in macrocode. Refer also to
the following topics:

doc:%allocate-list-block
doc:%allocate-structure-block

car Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 1:

arg dtp-list, dtp-locative, dtp-list-instance, or

dtp-nil

Immediate Argument Type Signed

Description

If the type of arg is dtp-list, pushes the car of arg on

the stack.

If the type of arg is dtp-locative, pushes the contents of the
location arg references on the stack.

If the type of arg is dtp-nil, pushes nil on the stack.

Post Trap
Type of arg is dtp-list-instance.

Memory Reference Data-read

TOS Register Effects Valid after

cdr Instruction

Format Operand from stack Value(s) Returned 1
Argument(s)/Operand Address(es) 1:

arg dtp-list, dtp-locative, dtp-list-instance, or

dtp-nil

Immediate Argument Type Signed

Macroinstruction Set Page 18

Description
If the type of arg is dtp-list, pushes the cdr of arg on
the stack.

If the type of arg is dtp-locative, pushes the contents of the
location arg references on the stack.

If the type of arg is dtp-nil, pushes nil on the stack.

Post Trap
Type of arg is dtp-list-instance.

Memory reference Cdr-read, then data-read
TOS Register Effects Valid after

doc:set-to-car Instruction
No documentation available for "Set To Car" as a Instruction.

doc:set-to-cdr Instruction
No documentation available for "Set To Cdr" as a Instruction.

doc:set-to-cdr-push-car Instruction
No documentation available for "Set To Cdr Push Car" as a Instruction.

rplaca Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 2:

argl dtp-list, dtp-locative or dtp-list-instance;

arg2 any data type

Immediate Argument Type Signed

Description
Replaces the car of argl with arg2.

Post Trap
Type of argl is dtp-list-instance.

Memory Reference Data-write

TOS Register Effects Valid before, invalid after

rplacd Instruction

Macroinstruction Set

Format Operand from stack Value(s) Returned 0
Argument(s) 2:

argl dtp-list, dtp-locative or dtp-list-instance;

arg2 any data type

Immediate Argument Type Signed

Description
Replaces the cdr of argl with arg2.

Post Trap

Type of argl is dtp-list-instance or if the type of argl is
dtp-list and its cdr code is cdr-next or cdr-nil.

Memory Reference Cdr-read, then data-write

TOS Register Effects Valid before, invalid after

Interruptible Instructions

No documentation available for "Interruptible Instructions" as a Section.

Page 19

Sk afe e e o o s she e sie s she sfefe e she sfe e e se o sfesfesfe e 3 s o sfe e sfe e e s s s sfe e e e s sfe afeofe e e s sfeofeofe fe e ofe e s s sfe ofe sl s s sfesfe s s sfesfe e s sfesfe e sfe sfesfesfe e sfe s

Notes:
set-to-car may get flushed.

s she e sfe e fe o e s shesie s i sfesfe s sfe ke s sfe s sfe e o s e o sfe fe s sfe e s sfesfe s afe ik sk sfe s s sfe o sfeofe s sfe e o ofe sfeofe sfesfe s sfe e s s s sfe e sfesfe e sfe e sfe e sfe s sese s sfestesfe s

Macroinstruction Set Page 20

Predicate Instructions

eq, eql, zl-user:equal-number, zl:greaterp, zl:lessp, zl-user:endp, plusp, minusp,
zerop, zl-user:logtest, zl-user:type-member-n, and the no-pop versions of those
instructions that take more than one argument.

Refer also to the subprimitive instructions zl-user:%unsigned-lessp and
zl-user:%ephemeralp.

eq Instruction
€q-no-pop

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any data type

arg2 any data type

Immediate Argument Type Signed

Description

Pushes t on the stack if the operands reference the same Lisp

object; otherwise, pushes nil on the stack. The no-pop version of

this instruction leaves the first argument argl on the stack. (Note
that, in the presence of forwarding pointers, two references may refer
to the same object but not be eq or eql.)

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

eql Instruction
No documentation available for EQL as a Instruction.

zl-user:equal-number Instruction
No documentation available for ZL-USER:EQUAL-NUMBER as a Instruction.

zl:greaterp Instruction
No documentation available for ZL:GREATERP as a Instruction.

zl:lessp Instruction
No documentation available for ZL:LESSP as a Instruction.

Macroinstruction Set Page 21

zl-user:endp Instruction
No documentation available for ZL-USER:ENDP as a Instruction.

plusp Instruction
No documentation available for PLUSP as a Instruction.

minusp Instruction
No documentation available for MINUSP as a Instruction.

NIL

zZerop Instruction

No documentation available for ZEROP as a Instruction.

zl-user:logtest Instruction
No documentation available for ZL-USER:LOGTEST as a Instruction.

NIL

zl-user:type-member-n Instruction
No documentation available for ZL-USER:TYPE-MEMBER-N as a Instruction.

Macroinstruction Set Page 22

Numeric Operations

zl-user:add, zl-user:sub, zl-user:unary-minus, zl-user:increment,
zl-user:decrement, zl-user:multiply, zl:quotient, ceiling, floor, truncate, round,
zl:remainder, zl-user:rational-quotient, zl:logand, zl:logior, zl:logxor, ash, rot,
Ish, sys:%32-bit-plus, sys:%32-bit-difference, zl-user:%multiply-double,
zl-user:%add-bignum-step, zl-user:%sub-bignum-step,
zl-user:%divide-bignum-step, zl-user:%lshc-bignum-step,
zl-user:%multiply-bignum-step, max, min

Refer also to the following:

zl-user:equal-number
zl:greaterp

zl:lessp

plusp

minusp

zerop

If either argument to a numeric instruction is a non-number, then the instruction
will pre-trap. Otherwise, if both arguents are hardware supported for the
instruction, and no exceptions occur, then the instruction will perform the
specified operation. If the arguments are numeric, but the data types of the
arguments are not hardware supported or an exception occurs, then the instruction
will post-trap and let Lisp code decide whether the arguments, although numeric,
are illegal for this instruction.

Note that, if there is no floating-point coprocessor, all the numeric operations will
take a post trap on encountering operands of type dtp-single-float. This post trap
is in addition to any mentioned in the instruction definitions.

zl-user:add Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Unsigned

Description
Pushes the sum of the two arguments on the stack.

Post Traps

Type of argl or arg2 is other than dtp-fixnum or
dtp-single-float.

Integer overflow.

Floating-point over- or underflow.

Memory Reference None

Macroinstruction Set

TOS Register Effects Valid before, valid after

zl-user:sub

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any numeric data type

arg2 any numeric data type

Immediate Argument Type Unsigned

Description

Subtracts

arg2 from argl, and pushes the result on the stack.
Post Traps

Type of argl or arg2 is other than dtp-fixnum or
dtp-single-float.

Integer overflow.

Floating-point over- or underflow.

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:unary-minus

Format Operand from stack Value(s) Returned 1

Argument(s) 1:
arg any numeric data type

Immediate Argument Type Unsigned

Description

If the data type of arg is dtp-fixnum, subtracts arg from
zero, and pushes the result, the two’s complement of arg, on the
stack. If arg is of dtp-single-float, complements the sign bit

and pushes the result on the stack.

Post Traps

Type of arg is other than dtp-fixnum or dtp-single-float.

Integer overflow.
Memory Reference None
TOS Register Effects Valid after

Page 23

Instruction

Instruction

Macroinstruction Set Page 24

zl-user:increment Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg, the address operand, any numeric data type

Immediate Argument Type Not applicable

Description
Adds 1 to arg and stores the result back into the operand.

Post Trap

Type of arg is other than dtp-fixnum or
dtp-single-float .

Integer overflow.

Memory Reference None

TOS Register Effects Unchanged

zl-user:decrement Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg can be any numeric data type

Description

Subtracts 1 from arg and stores the result back into the
operand.

Post Trap

Type of arg is other than dtp-fixnum or dtp-single-float.
Integer overflow.

Memory Reference None

TOS Register Effects Unchanged

zl-user:multiply Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type

Macroinstruction Set Page 25

Immediate Argument Type Signed

Description
Computes argl*arg2 and pushes the result on the stack.

Post Traps

Type of argl or arg2 is other than dip-fixnum or
dtp-single-float.

Integer overflow.

Floating-point over- or underflow.

Memory Reference None

TOS Register Effects Valid before, valid after

zl:quotient Instruction

Format Operand from stack Value(s) Returned 1

Argumeni(s) 2:
argl any numeric data type
arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, and pushes the quotient on the stack. If
both operands are integers, the result is the integer obtained by
truncating the quotient toward 0; otherwise, the result is a
single-precision floating-point number.

Post Traps

Type of argl or arg2 is other than dip-fixnum or
dtp-single-float.

Integer overflow.

Memory Reference None

TOS Register Effects Valid before, valid after

Division Operations That Return Two Values

Note that, if only one of the two results is desired, the division instruction can be
followed by an instruction to discard the unwanted result: to discard the first
result (quotient), use set-sp-to-address-save-tos SP|-1; to discard the second
result (remainder), use set-sp-to-address SP|-1. Trap handlers for division
operations, on encountering these particular instructions, can avoid computing
results that are going to be discarded.

Macroinstruction Set Page 26

ceiling Instruction

Format Operand from stack Value(s) Returned 2

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, pushes the quotient on the stack, then

pushes the remainder on the stack. If the remainder is not zero, the
resulting quotient (NOS) is truncated toward positive infinity, and the
remainder (T'OS) is such that argl = arg2 * NOS + TOS.

See the section "Division Operations That Return Two Values".

Post Traps
Data type of either argument is other than dip-fixnum.

¢

Memory Reference None

TOS Register Effects Valid before, valid after

floor Instruction

Format Operand from stack Value(s) Returned 2

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, pushes the quotient on the stack, then

pushes the remainder on the stack. If the remainder is not zero, the
resulting quotient (NOS) is truncated toward negative infinity, and the
remainder (TOS) is such that argl = arg2 * NOS + TOS.

See the section "Division Operations That Return Two Values".

Post Traps
Data type of either argument is other than dtp-fixnum.

Memory Reference None
TOS Register Effects Valid before, valid after

truncate Instruction

Macroinstruction Set Page 27

Format Operand from stack Value(s) Returned 2

Argument(s) 2:

argl any numeric data type

arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, pushes the quotient on the stack, then

pushes the remainder on the stack. If the remainder is not zero, the
resulting quotient (NOS) is truncated toward zero, and the remainder
(TOS) is such that argl = arg2 * NOS + TOS.

Post Traps
Data type of either argument is other than dtp-fixnum.

Memory Reference None

TOS Register Effects Valid before, valid after

round Instruction

Format Operand from stack Value(s) Returned 2

Argument(s) 2: _
argl any numeric data type
arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, pushes the quotient on the stack, then

pushes the remainder on the stack. If the remainder is not zero, the
resulting quotient (NOS) is rounded toward the nearest integer, and the
remainder (T0OS) is such that argl = arg2 * NOS + TOS. 1If the
resulting quotient (NOS) is exactly halfway between two integers, it is
rounded to the one that is even.

Post Traps
Data type of either argument is other than dtp-fixnum.

Memory Reference None

TOS Register Effects Valid before, valid after

zl:remainder Instruction

Format Operand from stack Value(s) Returned 1

Argument(s)
argl any numeric data type

Macroinstruction Set

arg2 any numeric data type, must not be zero
Immediate Argument Type Signed

Description
Divides argl by arg2, adjusts the remainder to have the same
sign as the dividend, and pushes the remainder on the stack.

Post Traps
Data type of either argument is other than dtp-fixnum.
Integer overflow.

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:rational-quotient

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type, must not be zero

Immediate Argument Type Signed

Description

Divides argl by arg2, and pushes the quotient on the stack. If
both operands are integers and the remainder is not zero, the
instruction traps to a routine that returns the ratio
(dtp-small-ratio or dtp-big-ratio) of argl/arg2. I1f the

remainder is zero, the result is an integer if both arguments are
integers, or the result type is dtp-sing%e-ﬂoat if either or both
arguments are dtp-single-float types.

(This instruction implements the CL:/ function.)

Post Traps _

Data type of either argument is other than dtp-fixnum or
dtp-single-float.

Integer overflow.

Memory Reference None

TOS Register Effects Valid before, valid after

max

Format Operand from stack Value(s) Returned 1

Argument(s) 2:

Page 28

Instruction

Instruction

Macroinstruction Set Page 29

argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Signed

Description
Pushes the greater of the two arguments on the stack.

If the arguments are a mixture of rationals and floating-point numbers,
and the largest argument is a rational, then the implementation is free
to produce either that rational or its floating-point approximation; if
the largest argument is a floating-point number of a smaller format than
the largest format of any floating-point argument, then the
implementation is free to return the argument in its given format or
expanded to the larger format. (Note that all of these cases are
implemented by trap-handlers, since they all involve data types that
cause post-traps.)

The implementation has a choice of returning the largest argument as is
or applying the rules of floating-point contagion. If the
arguments are equal, then either one of them may be returned.

Post Trap
Type of argl or arg2 is other than dtp-fixnum or
dtp-single-float.

Memory Reference None

TOS Register Effects Valid before, valid after

min Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Signed

Description
Pushes the lesser of the two arguments on the stack.

If the arguments are a mixture of rationals and floating-point numbers,
and the smallest argument is a rational, then the implementation is free
to produce either that rational or its floating-point approximation; if
the smallest argument is a floating-point number of a smaller format
than the largest format of any floating-point argument, then the
implementation is free to return the argument in its given format or
expanded to the larger format. (Note that all of these cases are
implemented by trap-handlers, since they all involve data types that
cause post-traps.)

The implementation has a choice of returning the smallest argument as is

Macroinstruction Set

or applying the rules of floating-point contagion. If the
arguments are equal, then either one of them may be returned.

Post Trap

Type of argl or arg2 is other than dtp-fixnum or
dtp-single-float.

Memory Reference None

TOS Register Effects Valid before, valid after

zl:logand

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any numeric data type

arg2 any numeric data type

Immediate Argument Type Signed

Description

Forms the bit-by-bit logical AND of argl and arg2, and pushes
the result on the stack.

Post Trap
Type of argl or arg2 is not dtp-fixnum

Memory Reference None

TOS Register Effects Valid before, valid after

zl:logior

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any numeric data type

arg2 any numeric data type

Immediate Argument Type Signed

Description

Forms the bit-by-bit inclusive OR of argl and arg2, and pushes
the result on the stack.

Post Trap
Type of argl or arg2 is not dtp-fixnum

Memory Reference None

Page 30

Instruction

Instruction

Macroinstruction Set Page 31
TOS Register Effects Valid before, valid after

zl:logxor Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any numeric data type

arg2 any numeric data type

Immediate Argument Type Signed

Description

Forms the bit-by-bit exclusive OR of argl and arg2, and pushes
the result on the stack.

Post Trap
Type of argl or arg2 is not dtp-fixnum

Memory Reference None

TOS Register Effects Valid before, valid after

ash Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Signed

Description

Shifts argl left arg2 places when arg2 is positive, or right

larg2| places when arg2 is negative, and pushes the result on

the stack. Unused positions are filled by zeroes from the rig:n: or by
copies of the sign bit from the left. This is Common Lisp ash.

Post Trap

Type of argl or arg2 is not dtp-fixnum.
Integer overflow.

Memory Reference None

TOS Register Effects Valid before, valid after

Macroinstruction Set Page 32

rot Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl dtp-fixnum

arg2 dtp-fixnum

Immediate Argument Type Signed

Description

Rotates argl left arg2 bit positions when arg2 is positive,
or rotates argl right |arg2| bit positions when arg2 is
negative, then pushes the result on the stack.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

Ish Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl dtp-fixnum

arg2 dtp-fixnum

Immediate Argument Type Signed

Description

Shifts argl left arg2 places when arg2 is positive, or
shifts argl right |arg2| places when arg2 is negative.
Unused positions are filled by zeroces.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

8ys:%32-bit-plus Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl dtp-fixnum
arg2 dtp-fixnum

Macroinstruction Set Page 33

Immediate Argument Type Unsigned

Description
Pushes argl + arg2 on the stack.

Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

sys:%32-bit-difference Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl dtp-fixnum

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description
Pushes argl - arg2 on the stack.

Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%multiply-double Instruction

Format Operand from stack Value(s) Returned 2
Argument(s) 2:

argl dtp-fixnum

arg2 dtp-fixnum

Immediate Argument Type Signed

Description

Multiplies argl * arg2, and pushes the two-word result on the
stack, low-order word first. Note that, unlike
%multiply-bignum-step, this is a signed multiplication.
Post Trap None

Memory Reference None

Macroinstruction Set Page 34

TOS Register Effects Valid before, valid after

*
e 34 3 3 3 s o s 2 o s s ofeofe o sfe o sfesfe sfe s sfe s s o 3 3 o 3 o o s e e e e e s sk afe kol ke sfe sl sfesfeafesfesfe st s s s s s s s 3 s s s s s s s e e e e e sfe e e e ke sk

Notes:

This instruction could be eliminated, if space gets tight. DCP would like to see
this placed near the middle of the delete list.

s 3t 3 sfe s s sfe s sfe e sfe ofe e e sfe sfe sfe sfe shesfe e sfe o o s o 3 s s o o s s s s s o e e e e fe e e sfe e e ofe ol sfe s s s o 2 o o o sfe o o o s s s sfe s s ofe e e sfesfe e sfe el

zl-user:%add-bignum-step Instruction

Format Operand from stack Value(s) Returned 2
Argument(s) 3:

argl dtp-fixnum

arg2 dtp-fixnum

arg3 dtp-fixnum

Immediate Argument Type Unsigned

Description

Adds all three arguments, pushes the result on the stack, then pushes
the carry (2, 1, or 0) on the stack.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%sub-bignum-step Instruction

Format Operand from stack Value(s) Returned 2

Argument(s) 3:

argl dtp-fixnum
arg2 dtp-fixnum
arg3 dtp-fixnum

Immediate Argument Type Unsigned

Description :

Computes (argl - arg2) - arg3), pushes this value on the

stack, then pushes the value 1 on the stack if a "borrow" was necessary
or 2 if a double borrow was necessary; otherwises pushes a 0.

Post Trap None

Memory Reference None

Macroinstruction Set

TOS Register Effects Valid before, valid after

zl-user:%multiply-bignum-step

Format Operand from stack Value(s) Returned 2

Argument(s) 2:

argl dtp-fixnum

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes the 2-word result of multiplying 32-bit unsigned argl by
32-bit unsigned arg2 on the stack: first the least-significant word,
then the most-significant word.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%divide-bignum-step

Format Operand from stack Value(s) Returned 2

Argument(s) 3:

argl dtp-fixnum
arg2 dtp-fixnum
arg3 dtp-fixnum

Immediate Argument Type Unsigned
Description

Performs an unsigned divide of the 64-bit number (+ argl (ash
arg2 32.)) by arg3, pushes the quotient on the stack, then

pushes the remainder on the stack. Overflow is not checked, so only the

low 32 bits of the quotient and remainder are pushed (implying that
larg3| is expected to be greater than or equal to |arg2|).

Post Trap
To Lisp to handle division by zero.

Memory Reference None

TOS Register Effects Valid before, valid after

Page 35

Instruction

Instruction

Macroinstruction Set Page 36

zl-user:%lshc-bignum-step Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 3:

argl dtp-fixnum

arg2 dtp-fixnum

arg3 dtp-fixnum, must be between 0 and 32. inclusive

Immediate Argument Type Signed

Description

argl and arg2 are unsigned digits. Has the effect of pushing
(ldb (byte 32. 32.) (ash (+ argl (ash arg2 32.)) arg3))

on the stack as a fixnum,

Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

*

Notes: Flushed lognot. DCP wonders about the other 13 Boolean instructions.

What should be done about specifying the slots for all cases of data types? Put in

an introductory paragraph to the numeric instruction section?

Macroinstruction Set Page 37

Data-Movement Instructions

zl:push, zl:pop, zl-user:movem, zl-user:push-n-nils, zl-user:push-address,
zl-user:set-sp-to-address, zl-user:set-sp-to-address-save-tos,
zl-user:push-address-sp-relative, zl-user:stack-blt, zl-user:stack-blt-address

zl:push Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 1:
arg any data type

Immediate Argument Type Unsigned

Description
Pushes arg on stack.

Post Trap None
Memory Reference None

TOS Register Effects Valid after
zl:pop Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 2:

argl any data type

arg2 address-operand

Immediate Argument Type Not applicable

Description

Pops argl off the top of stack and stores it in the stack location
addressed by arg2. Note that all 40 bits of the top of stack are
stored into the operand.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:movem Instruction

Macroinstruction Set Page 38

Format Operand from stack, Value(s) Returned 1
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 2:

argl any data type

arg2 address operand

Immediate Argument Type Not applicable

Description

Writes the contents of argl, the top of stack, without popping, into
the stack location addressed by arg2. Note that all 40 bits of the
top of stack are stored into the operand. This instruction restores the
top of stack. The way to fix up the top of stack that is equivalent to
executing the 3600 fixup-tos instruction is to execute movem SP|0.
Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:push-n-nils 7 Instruction

Format Operand from stack, immediate Value(s) Returned 1

Argument(s) 1:
I dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes I nils on the stack, where I is the immediate
argument.

Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:push-address Instruction

Format Operand from stack, Value(s) Returned 1
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg address operand

Immediate Argument Type Not applicable

Macroinstruction Set

Description
Pushes a locative that points to arg onto the top of the stack.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

zl-user:set-sp-to-address

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg is address operand

Immediate Argument Type Not applicable

Description
Sets the stack pointer to the address of arg.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

zl-user:set-sp-to-address-save-tos

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg is address operand

Immediate Argument Type Not applicable

Description

Sets the stack pointer to the address of arg. The new top of
stack is set to the value that was previously on the top of stack.
Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:push-address-sp-relative

Page 39

Instruction

Instruction

Instruction

Macroinstruction Set Page 40

Format Operand from stack Value(s) Returned 1

Argument(s) 1:
arg dtp-fixnum

Immediate Argument Type Unsigned

Description

Computes (stack-pointer minus arg minus 1) and pushes it on the

stack with data type dtp-locative. If sp-pop addressing mode is used,
the value of the stack-pointer used in calculating the result is the
original value of the stack-pointer before the pop.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

S e e s e e s s e o e s s ke e sfesle s e s s slesfe s e s s e s e e s e s s ol s e sl s sfe s e s s sfe s s o 53 e s e s s sfe s s e s s sfe s o e sfe s sfe s slesfe e s sk sfe e sk e s

Notes:
Refer to the file V:>SMOON>IMACH>POP.TEXT for more information about this.

sestesiestook deskof sleolesk ook sfeoe oo s skt sl e st st s sfe ke sfe ke s e s s st se s sfesiesfe s sfe s s s e s ol sl sk skt sk s sk sl sl skt s sk e sk e st sk e sk o

zl-user:stack-blt Instruction

Format Operand from stack Value(s) Returned 0

Argument(s)

argl dip-locative pointing to a location in the current
stack frame

arg2 dtp-locative pointing to a location in the current
stack frame

argl less than or equal to arg2

Immediate Argument Type Signed

Description

With the value of argl being TO and the value of arg2 being

FROM, moves the contents of successive locations starting at FROM
into successive locations starting at 70 until the top of the stack
is moved, and then changes the stack-pointer to point to the last
location written. This instruction is not interruptible.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:stack-blt-address Instruction

Macroinstruction Set

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s)

argl dtp-locative, pointing to a location in the current
stack frame

arg2 is an address operand

argl less than or equal to the address of arg2

Immediate Argument Type Not applicable

Description ‘

With the value of argl being T'O and arg2 being

FROM-ADDR, moves the contents of successive locations starting at
the address in the location pointed to by FROM-ADDR into successive
locations starting at 70O until the top of the stack is moved, and
then changes the stack-pointer to point at the last location written.
Note that stack-blt-address is the same as stack-blt except that

arg2 of stack-blt-address is the address of the operand, whereas

arg2 for stack-blt is the contents of the operand.

The instruction
stack-blt-address argl arg2
is equivalent to the instruction sequence

push-address arg2
stack-blt argl sp-pop

Where arg2 is a stack-frame address such as, for example, FP|2.
Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

Page 41

Macroinstruction Set Page 42

Field-Extraction Instructions

1db, dpb, zl-user:char-ldb, zl-user:char-dpb, sys:%p-ldb, sys:%p-dpb,
zl-user:%p-tag-ldb, zl-user:%p-tag-dpb

The following instructions are used to extract and deposit fields from different
data types. The extraction instructions take a single argument. The deposit

instructions take two arguments. The first is the new value of the field to deposit
into the second argument. See the section "Format for Field Extraction".

1db BB FS Instruction
Format Field-Extraction Value(s) Returned 1

Argument(s) 2:
argl any integer
BB and FS dtp-fixnum (10-bit immediate)

Description

Extracts the field specified by BB and FS from argl, then
pushes the result on the stack.

See the section "Format for Field Extraction".

Post Trap
Type of argl is dtp-bignum.

Memory Reference None

TOS Register Effects Valid after

dpb BB FS Instruction

Format Field-Extraction Value(s) Returned 1

Argument(s) 3:

argl any integer

arg2 any integer

BB and FS dtp-fixnum (10-bit immediate)

Description

Deposits the value argl into the field in arg2 specified by
BB and FS, then pushes the result on the stack.

See the section "Format for Field Extraction".

Post Trap
Type of argl or arg2 is dtp-bignum.

Memory Reference None

TOS Register Effects Valid before, valid after

Macroinstruction Set Page 43

zl-user:char-1db BB FS Instruction

Format Field-Extraction Value(s) Returned 1
Argument(s) 2:

argl dtp-character

BB and FS dtp-fixnum (10-bit immediate)

Description

Extracts the field specified by BB and FS from arg, then
pushes the result, a dtp-fixnum object, on the stack.

See the section "Format for Field Extraction".

Post Traps None

Memory Reference None

TOS Register Effects Valid after

zl-user:char-dpb BB FS Instruction

Format Field-Extraction Value(s) Returned 1

Argument(s) 3:

argl dtp-fixnum

arg2 dtp-character

BB and FS dtp-fixnum (10-bit immediate)

Description

Deposits the value argl into field in arg2 specified by BB

and FS, then pushes the result, a dtp-character object, on the
stack. See the section "Format for Field Extraction".

Post Traps None

Memory Reference None

TOS Register Effects Valid before, valid after

S sfeojesie s s sfeofe o o sfe ofesfe s s sfe she e o o s sfesfe fe o s s sfe sfe e e e s s sfesfeofe fe s s s sfesfe e e o sfe s sfe e e sfe e s s e sfe e s o sfeofe e s ofe e e s sfe sfe e s sfesfesfe sk
Notes BEE doesn’t think that argl being an integer is legitimate.

DCP can live with argl causing an error if it’s a bignum.
sk s sfe e ofe s ofe o sfe e o s sfesfe e o s sfesfe e s s s sfesfe e s 3 o s sfesfe e s s sfe sfesfe i sk s s s sfesfe e s o s s sfe s sfe e e s o sfeofe 3¢ o sfe ofe it o s sfe sfe s s sfe e s e s

sys:%p-ldb BB FS Instruction

Format Field-Extraction Value(s) Returned 1
Argument(s) 2:

argl any data type

BB and FS dtp-fixnum (10-bit immediate)

Description

Macroinstruction Set Page 44

Extracts the field specified by BB and FS from the bottom 32

bits of the word at the address contained in arg, then pushes the
extracted field on the stack. It is illegal, though not checked, to
specify a field with bits outside the bottom 32 bits.

See the section "Format for Field Extraction".

Post Traps None
Memory Reference Raw-read

TOS Register Effects Valid after

*
e e se e s s e s ke s oe s le s e sk e s e o e s e s sfe s s o o e s e s e s s oo e s sfe s s e s sl s e e s ol s ke s ofe s s o s s sl s e s ke s e s e sl e o se e s e

Notes: 3600 %p-ldb-immed

%P-LDB: The comment about illegality of fields outside the bottom 32 bits applies
to all field-extraction instructions and should be repeated in the section at the
front "Format for Field Extraction". Actually I occasionally found it useful to
exploit the strange thing it does on the 3600 (see strange-ldb in the 3600
microcode manual), I suppose we could define the I Machine to do the same
strange thing rather than making it strictly illegal.

I plan that the operations be defined, but I could figure out how to explain what
the weird cases do. Certainly it is an easy way to get the ROT (for fixnums)

instruction for free.
**********#**

sys:%p-dpb BB FS Instruction

Format Field-Extraction Value(s) Returned 0
Argument(s) 3:

argl dtp-fixnum

arg2 any Lisp data type

BB and FS dtp-fixnum (10-bit immediate)

Description

Deposits the value argl into the field in the contents of the
location addressed by arg2 specified by BB and FS.

It is illegal, though not checked, to specify a field with bits outside
the bottom 32 bits. See the section "Format for Field Extraction".
Post Traps None

Memory Reference Raw-read followed by raw-write

TOS Register Effects Valid before, invalid after

zl-user:%p-tag-ldb BB FS Instruction

Format Field-Extraction Value(s) Returned 1

Argument(s) 2:
argl any Lisp data type

Macroinstruction Set Page 45

BB and FS dtp-fixnum (10-bit immediate)

Description

Extracts the field specified by BB and F'S from the top 8 bits of

the word at the address contained in argl and pushes it on the

stack. It is illegal, though not checked, to specify a field with bits
outside the top 8 bits.

See the section "Format for Field Extraction".

Post Traps None
Memory Reference Raw-read

TOS Register Effects Valid after

zl-user:%p-tag-dpb BB FS Instruction
Format Field-Extraction Value(s) Returned 0

Argument(s) 3:

argl dtp-fixnum

arg2 any Lisp data type

BB and FS dtp-fixnum (10-bit immediate)

Description

Deposits the value argl into the field specified by BB and

FS in the top 8 bits of the word at the address contained in
arg2. It is illegal, though not checked, to specify a field with
bits outside the top 8 bits. No data types are checked.

See the section "Format for Field Extraction".

Post Traps None
Memory Reference Raw-read followed by raw-write

TOS Register Effects Valid before invalid after

Macroinstruction Set Page 46

Array Operations

zl-user:aref-1, zl-user:aset-1, zl-user:aloc-1, zl-user:setup-1d-array,
zl-user:setup-force-1d-array, zl-user:fast-aref-1, zl-user:fast-aset-1, array-leader,
zl:store-array-leader, zl-user:aloc-leader

See the section "I-Machine Array Registers".

Instructions for Accessing One-Dimensional Arrays
Each of the next three instructions accesses a one-dimensional array.

zl-user:aref-1 Instruction

Format Operand from stack Value(s) Returned 1
Argument(s)

argl is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description
Pushes the element of argl specified by arg2 on the stack.

Checks the array argl to insure it is a one-dimensional array, and
also checks to insure that the index arg2 is a fixnum and falls
within the bounds of the array.

Post Trap Type of argl is dtp-array-instance or
dtp-string-instance or if the array-long-prefix bit is set to 1.

Memory Reference Header-read, data-read

TOS Register Effects Valid before, valid after

zl-user:aset-1 ; Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 3:

argl any Lisp data type

arg2 is either dip-array, dtp-array-instance, dtp-string, or
dtp-string-instance

arg3 dtp-fixnum

Immediate Argument Type Unsigned

Macroinstruction Set Page 47

Description
Stores argl into the element of array arg2 specified by index
arg3.

Checks the array to insure it is a one-dimensional array, and also
checks to insure that the index is a fixnum and falls within the bounds
of the array.

When the array-element-type is dtp-fixnum or dtp-character,

checks the data type of the argument. When the array element-type is
dtp-character and the array byte-packing is 8-bit bytes, the
instruction traps if bits < 31:8> of the character are nonzero. It does
not check that fixed numbers are within range.

Post Trap Type of arg2 is dtp-array-instance or
dtp-string-instance or if the array-long-prefix-bit is set to 1.

Memory Reference Beader-read, data-write

TOS Register Effects Valid before, invalid after

e sfe e e s s s sfe e e s sfe e s s sfe ofe sfe s o sfesfe e e 3¢ ok sfesfesfe s o se s s she e e e o s s ofeole s s sfesfesfesfe e se s s s sfesfe e sie s sfesfe e sfesfesfesfe st sfesfe e sie s sfeskeofe sie e ek

Notes:

BEE thinks that it will be hard/inconvenient to implement the checking of the top
bits of dtp-character 8-bit arrays.

S 3 s e s e 2 s s s s s s o sfe s s s o sfe sfe o afe s s s o s o o s s ol feofe e el ofe sl sfe ol sfe sfesfesfesfe st sfe st sie s e sfe e s s s e o s e s sfe e e s e e e e e e el ke sk

zl-user:aloc-1 Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:

argl dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance (array must contain

full-word Lisp references and be one-dimensional);
arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description
Pushes a locative to the element of argl addressed by arg2
on the stack.

Checks the array argl to insure it is a one-dimensional array
containing object references (that is, checks that the
array-element-type field of the array header is object reference), and
also checks to insure that the index arg2 is a fixnum and falls
within the bounds of the array.

Post Trap Type of argl is dtp-array-instance or
dtp-string-instance or if the array-long-prefix-bit is set to 1.

Memory Reference Header-read

Macroinstruction Set Page 48

TOS Register Effects Valid before, valid after

Instructions for Creating Array Registers

Each of the next two instructions creates an array register describing a
one-dimensional array.

zl-user:setup-1d-array Instruction

Format Operand from stack : Value(s) Returned 4

Argument(s) 1:
arg is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

Immediate Argument Type Signed

Description

Creates an array register describing array arg. The array register
will be four words pushed on top of the stack. arg must be a
one-dimensional array.

See the section "I-Machine Array Registers".

Post Trap Type of arg is dtp-array-instance or
dtp-string-instance or if the array-long-prefix-bit is set to 1.

Memory Reference Header-read

TOS Register Effects Valid after

zl-user:setup-force-1d-array Instruction

Format Operand from stack Value(s) Returned 4

Argument(s) 1:
arg is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

 Immediate Argument Type Signed

Description

Creates an array register describing a unidimensional array. arg can

be any array. The array register will be four words pushed on top of the
stack. See the section "I-Machine Array Registers".

Causes multidimensional arrays to be accessed as if they were
unidimensional arrays, with the order of elements depending on row-major
or column-major ordering.

Macroinstruction Set Page 49

Post Trap Type of arg is dtp-array-instance or
iitp-string-instance or if the array-long-prefix-bit is be set to
Memory Reference Header-read

TOS Register Effects Valid after

Instructions for Fast Access of Arrays

The next two instructions access single dimensional arrays stored in array register
variables.

zl-user:fast-aref-1 A Instruction

Format Operand from stack, Value(s) Returned 1
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 2:

argl dtp-fixnum

arg2 the address operand (address of an array register)
Immediate Argument Type Not applicable

Description
Pushes on the stack the element of arg2 specified by index argl.

Checks to insure that the index is a fixnum and falls within the bounds
of the array.

This instruction takes a pre-trap if the current event count does not
equal the array-register event count.

See the section "I-Machine Array Registers".

Post Trap None

Memory Reference Data-read

TOS Register Effects Valid before, valid after
zl-user:fast-aset-1 Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s)

argl any Lisp data type

arg2 dtp-fixnum

arg3 the address operand (address of an array register)

Immediate Argument Type Not applicable

Macroinstruction Set Page 50

Description
Stores argl into the element of arg3 indexed by arg?2.

Checks to insure that the index is a fixnum and falls within the bounds
of the array. When the array-element-type is dip-fixnum or
dtp-character, checks the data type of the argument. Does not check
that a fixnum is in range when the array-element-type is dtp-fixnum
and the array-byte-packing field is nonzero. When the array element-type
is dtp-character and the array byte-packing is 8-bit bytes, the
instruction traps if bits <31:8> of the character are nonzero.

This instruction takes a pre-trap if the current event count does not
equal the array-register event count.
See the section "I-Machine Array Registers".

Post Trap None

Memory Reference Data-write

TOS Register Effects Valid before, invalid after

Instructions for Accessing Array Leaders
Each of the next three instructions accesses the array leader of any type of array.

array-leader Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes on the stack the leader element of argl that is specified by
arg2.

Checks the array argl to insure it has a leader, and checks the

index arg2 to insure it is a fixnum and falls within the bounds of
the array leader.

Post Trap Type of argl is dtp-array-instance or
dtp-string-instance.

Memory Reference Header-read, data-read

TOS Register Effects Valid before, valid after

zl:store-array-leader Instruction

Macroinstruction Set Page 51

Format Operand from stack Value(s) Returned 0

Argument(s) 3:

argl any Lisp data type

arg2 is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

arg3 dtp-fixnum

Immediate Argument Type Unsigned
Description

Stores argl into the element specified by arg3 of the leader of
arg2. Returns no values.

Checks the array arg2 to insure it has a leader, and checks the
index arg3 to insure it is a fixnum and falls within the bounds of
the array leader.

Post Trap Type of arg2 is dtp-array-instance or
dtp-string-instance.

Memory Reference Beader-read, data-write

TOS Register Effects Valid before, invalid after
zl-user:aloc-leader ' Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:

argl is either dtp-array, dtp-array-instance, dtp-string, or
dtp-string-instance

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes on the stack a locative to the leader element of argl indexed

by arg2. Checks the array argl to insure it has a leader, and checks the
index arg2 to insure it is a fixnum and falls within the bounds of

the array leader.

Post Trap Type of arg2 is dtp-array-instance or
dtp-string-instance.

Memory Reference Header-read

TOS Register Effects Valid before, valid after

Macroinstruction Set Page 52

Branch and Loop Instructions

zl-user:branch, zl-user:branch-true{-else}{-and}{-no-pop}{-extra-pop},
Branch-false{-else}{-and}{-no-pop}{-extra-pop}, zl-user:loop-decrement-tos,
zl-user:loop-increment-tos-less-than

The branch and loop instructions contain a 10-bit signed offset. This offset is in
halfwords from the address of the branch or loop instruction. When a branch
instruction with an offset of zero is executed and the branch would be taken, the
instruction traps instead. This does not apply to loop instructions with an offset of
zero. If the branch distance is too large to be expressed as a 10-bit signed number,
then the compiler must generate the code to compute the target pc and follow this
with a %jump instruction.

zl-user:branch I Instruction

Format 10-bit immediate Value(s) Returned 0

Argument(s) 1:
I is dtp-fixnum

Immediate Argument Type Not applicable

Description

Continues execution at the location offset I halfwords from the
current program counter (PC). Traps if the offset is zero.
Post Trap None

Memory Reference None

TOS Register Effects Unchanged

zl-user:branch-true{-else}{-and}{-no-pop}{-extra-pop} I Instruction
branch-false{-else}{-and}{-no-pop}{-extra-pop} I
Format 10-bit immediate Value(s) Returned 0

Argument(s) 2:
I is dtp-fixnum

Immediate Argument Type Not applicable

Description

branch-false branches if the top of stack is nil.

branch-true branches if the top of stack is not nil. A

branch instruction always pops the argument off the top of stack whether
or not the branch is taken unless otherwise specified by one of the

Macroinstruction Set

nopop conditions.

If the branch is taken, and -and-no-pop is specified, the
stack is not popped. If -else-no-pop is specified, and
the branch is not taken, the stack is not popped.

If extra-pop is specified then the stack is popped one time in
addition to any pop performed as specified by the rest of the
instruction. For clarification, see the list below.

If the branch is taken, execution continues at the location offset I
halfwords from the current program counter (PC). The instruction traps
if the offset is zero.

The sixteen combinations of options for the conditional branch
instructions are listed here. Note that there are some combinations that
the compiler never generates.

branch-true Always pop once, whether or not branch
taken.

branch-false Always pop once, whether or not branch
taken.

branch-true-no-pop Do not pop, whether or not branch taken.

branch-false-no-pop Do not pop, whether or not branch taken.

branch-true-else-no-pop No pop if no branch, pop once if branch.
branch-false-else-no-pop No pop if no branch, pop once if branch.
branch-true-and-no-pop No pop if branch taken, pop if no branch.
branch-false-and-no-pop No pop if branch taken, pop if no branch.

branch-true- '
and-extra-pop Pop twice if branch, pop once if no branch.

branch-false-

and-extra-pop Pop twice if branch, pop once if no branch.
branch-true-

else-extra-pop Pop once if branch, pop twice if no branch.
branch-false-

else-extra-pop Pop once if branch, pop twice if no branch.

branch-true-extra-pop Always pop twice, whether or not branch taken.
branch-false-extra-pop Always pop twice, whether or not branch taken.

Not generated:
branch-true-and-no-pop-else-nopop-extra-pop Same as branch-true
branch-false-and-no-pop-else-nopop-extra-pop Same as branch-false
Post Trap None

Memory Reference None

Page 53

Macroinstruction Set Page 54

TOS Register Effects Valid before, valid after

zl-user:loop-decrement-tos I Instruction

Format 10-bit immediate Value(s) Returned 0

Argument(s) 2:
argl any numeric data type
I dtp-fixnum

Immediate Argument Type Not applicable

Description

Decrements argl, the top of stack. If the result is greater than zero, then
branches to the location offset from the current program

counter (PC) by I halfwords.

Post Trap
Type of argl other than dtp-fixnum.

Memory Reference None

TOS Register Effects Valid after

zl-user:loop-increment-tos-less-than I Instruction

Format 10-bit immediate Value(s) Returned 0

Argument(s) 3:
argl any numeric data type
arg2 any numeric data type
I dtp-fixnum

Immediate Argument Type Not applicable

Description

If arg2, the top of stack, is less than argl, the next on stack,
then branches by the number of halfwords from the current
program counter (PC) specified by I. In any case, increments the
top of stack.

Post Trap Type of argl or arg2 not either dip-fixnum or
dtp-single-float.

Memory Reference None

TOS Register Effects Valid before, valid after

E
3 s e e st o o s e e sl s s e e st s s sk sfe e s st e e sfe s s s e ofe e s e sfe s s s e sfesfe s s e e s e e sfe s s e s s s s e e sfe s s st sl e sfe e sl sfe st e s sfe e g s s sk sk

Notes:

Macroinstruction Set Page 55

loop-ihcrement-tos-less-than could be flushed.

LONG-BRANCH - This is a proposed instruction. It probably will not exist in the
IVORY processor, but might be implemented in other I series processors. This
instruction takes a 8 bit branch offset in bits 24 through 31, an 8 bit signed
immediate in bits 16 through 23, a predicate specifier in bits 10 through 15, and
regular operand specifier in bits 0 through 9. This allows branches of the form:
BR-GREATERP FP|0 8. Another motivation for this instruction is for type
branches, where the immediate is a type mask, the predicate is TYPE-MEMBER,
and the regular operand specifier is the operand. If the offset of a branch is 0 or
some other specified offset and the branch condition is true, then an error is
signalled.

Note that having this instruction on some processors implies that worlds will not
be transportable.

sesiestesiedeshesfe sk ol st s s st sieste st s s sfesie s ool skl s sfesfesiesle s sfe s e s e sesfe e s e s e s e ke s o s sl s ok sl s e s sfe s e sl e e s s e sk e e sk st e

Macroinstruction Set Page 56

Block Instructions

zl-user:%block-n-read, zl-user:%block-n-read-shift, zl-user:%block-n-read-alu,
zl-user:%block-n-read-test, zl-user:%block-n-write

A block instruction uses part of its opcode to select the desired Block Address
Register (BAR). A BAR is an internal register that must be loaded by means of a
%write-internal-register instruction before any of the block instructions are
executed. For the instructions that use the 10-bit immediate format, the argument
is the following mask of bits:

cycle-type <9:6> (4 bits) Select one of the 12 memory-cycle types See the section
"Memory References".

fixnum-only <5> (1 bit) If set, the instruction will trap if the memory data type
is not dtp-fixnum.

set-cdr-next <4> (1 bit) For %block-n-read and %block-n-read-shift: if set, the
cdr code of the result is 0; otherwise, the cdr code of the
result is the cdr code of memory.

invert-test <4> (1 bit) For %block-n-read-test: invert the sense of the test.
This is the same bit as set-cdr-next.

last-word <3> (1 bit) If set, do not prefetch words after this one.

no-increment <2> (1 bit) If set, do not increment the Block Address Register
(BAR) after executing this instruction.

test <1:0> (2 bits) Select one of four tests (%block-n-read-test only).

If an invisible pointer is fetched from memory, and the memory-cycle type specifies
that the invisible pointer should be followed, the BAR is always changed to point
to the new location. If the BAR is incremented, that happens afterwards.

The %block-n-read-shift instruction uses the byte-r, byte-s, and the rotate-latch
registers. These are also internal registers that must be loaded by means of
%write-internal-register instructions before the %block-n-read-shift instruction is
executed.

zl-user:%block-n-read I Instruction

Format 10-bit immediate Value(s) Returned 1

Argument(s) 1:
I dtp-fixnum (a 10-bit mask)

Immediate Argument Type Not applicable

Description

In accordance with the setting of the bits in the immediate control
mask, reads the word addressed by the contents of the Block Address
Register (BAR) specified by n, and pushes it on the stack. n is

a number between 0 and 3 inclusive that is part of the opcode. The
specified BAR is incremented as a side effect.

Macroinstruction Set

Post Trap None
Memory Reference Cycle-type specified
TOS Register Effects Valid after

zl-user:%block-n-read-shift I

Format 10-bit immediate Value(s) Returned 1

Argument(s) 1:
I dtp-fixnum (10-bit mask)

Immediate Argument Type Not applicable

Description

Reads the word addressed by the contents of the Block Address Register

(BAR) specified by n and rotates it left by the amount specified in

the byte-r register. The top (byte-s + 1) bits come from this rotated
word, and the bottom bits come from the rotate-latch register, and this

Page 57

Instruction

value is pushed onto the stack. The rotate-latch register is loaded from

rotated memory word. The effect of this operation is to perform a
dpb (deposit-byte) of the word from memory into the rotate-latch
register. n is a number between 0 and 3 inclusive that is part of
the opcode. The specified BAR is incremented as a side effect.
Post Trap None

Memory Reference Cycle-type specified

TOS Register Effects Valid after

zl-user:%block-n-read-alu

Format Operand from stack, Value(s) Returned 1
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg is any numeric data type

Immediate Argument Type Not applicable

Description

Performs the ALU operation specified in the alu-op-register using
arg and the word addressed by the contents of the Block Address
Register (BAR) specified by n as operands. n is a number between

0 and 3 inclusive that is part of the opcode. Writes the result of the

ALU operation back into the addressed operand, arg. The specified
BAR is incremented as a side effect.

The values used for the block instruction mask bits are

Instruction

Macroinstruction Set

CYCLE TYPE -- data read

FIXNUM-ONLY -- the usual generic-arithmetic post traps apply
SET-CDR-NEXT -- not applicable

LAST-WORD -- false

NO-INCREMENT -- false

TEST -- not applicable

INVERT TEST -- not applicable

Post Trap Traps according to the generic-arithmetic traps associated
with the specified ALU operation

Memory Reference Data-read

TOS Register Effects Unchanged

Page 58

S s e e s o s e ofe ol s s s i e she s s s sk e sfe s s e sfe s s seofe o s s e fe sk s s e e s s s e sfe s s e e e fesfe o s s e ofe e s s s s e e e sfesfe s s sk e e s e s sk sk

Note:

BEE thinks that the generic arithmetic traps will be
difficult/expensive/inconvenient to implement.

3 e e e e 2 o e e e o s s s fe e s s s s et s o e sfe s s s e ke s s s e ol s s s ofe e o s e sle 2 s o e e s e sfe o s o e ol sfe s s s e e e sfe e e sfe s e e e s sk sk

zl-user:%block-n-read-test I

Format 10-bit immediate Value(s) Returned 1
Argument(s) 1 or 2:

arg(s) can be any Lisp data type, except for when logtest, which
requires dtp-fixnum, is selected

Immediate Argument Type Not applicable

Description
Performs the test selected by the 2 test bits of the 10-bit immediate

argument with the sense determined by the invert-test bit of the same.

These tests are

ephemeralp(memory (BAR))
oldspacep(memory (BAR))
eq(memory(BAR),top-of-stack)
logtest(memory(BAR),top-of-stack)

where memory (BAR) specifies the object reference addressed by the
nth BAR. (n is a number between 0 and 3 inclusive that is part
of the opcode.)

If the test succeeds, transfers control to the program counter in SP|-1.

If the test fails, increments the BAR contents. Execution then proceeds

with the next instruction.

This instruction is typically used for searching tables and bitmaps, and

by the garbage collector. Note that the logtest option produces
meaningful results only for dtp-fixnum operands; in particular, it

Instruction

Macroinstruction Set Page 59

does not work for dtp-bignum operands. (Actually, the logtest test
ignores the data type of its operand.) Typically, the programmer would
set the fixnum-only bit in the 10-bit immediate field when using this
test. See the section "Block Instructions".

The oldspacep test is true exactly when a transport trap would occur if
the cycle type allowed it. For this to be useful, the cycle type selected
for %block-n-read-test oldspacep test must disallow transport traps.

Post Trap None
Memory Reference Cycle-type specified.
TOS Register Effects Valid for 2-operand tests, unchanged

zl-user:%block-n-write : Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 1:
arg can be any Lisp data type

Immediate Argument Type Signed

Description

Writes arg into the word addressed by the contents of the Block
Address Register (BAR) specified by n. n is a number between 0

and 3 inclusive that is part of the opcode. All 40 bits, including cdr
code, of this word are written into memory. The specified BAR is
incremented as a side effect. If arg is immediate, the tag

bits will specify dtp-fixnum and cdr-next.

Post Trap None
Memory Reference Raw-write
TOS Register Effects Unchanged

Macroinstruction Set Page 60

Function-Calling Instructions

zl-user:dtp-call-compiled-even, zl-user:dtp-call-compiled-odd,
zl-user:dtp-call-indirect, zl-user:dtp-call-generic, and the -prefetch versions of
these last four, zl-user:start-call, zl-user:finish-call-n, finish-call-apply-n,
zl-user:finish-call-tos, finish-call-apply-tos, zl-user:entry-rest-accepted,
entry-rest-not-accepted, zl-user:locate-locals, zl-user:return-single,
zl-user:return-multiple, zl-user:return-kludge, zl-user:take-values

Function-Calling Data Types

Each of the following data types when executed as an instruction starts a function
call. Only very brief descriptions of these instructions are presented in this
chapter. Complete information is contained in a separate chapter. See the section
"Function Calling, Message Passing, Stack-Group Switching”.

zl-user:dtp-call-compiled-even Instruction
dtp-call-compiled-even-prefetch

Format Full-word instruction Value(s) Returned Not applicable
Argument(s) 1:

Included in the instruction is addr, the address of the first
instruction in the target function

Immediate Argument Type Not applicable

Description R

Starts a function call that will commence execution at the even
instruction of the word addressed by addr. The prefetch version of
this instruction indicates that the hardware should initiate an
instruction-prefetch operation.

See the section "Starting a Function Call".

Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:dtp-call-compiled-odd Instruction
dtp-call-compiled-odd-prefetch
Format Full-word instruction Value(s) Returned Not applicable

Argument(s) 1:
Included in the instruction is addr, the address of the first

Macroinstruction Set Page 61

instruction in the target function

Immediate Argument Type Not applicable

Description ‘
Starts a function call that will commence execution at the odd
instruction of the word addressed by addr. The prefetch version of
this instruction indicates that the hardware should initiate an
instruction-prefetch operation.

See the section "Starting a Function Call".

Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:dtp-call-indirect Instruction
dtp-call-indirect-prefetch

Format Full-word instruction Value(s) Returned Not applicable
Argument(s) 1

Included in the instruction is addr, the address of a word, whose contents
can be of any data type. The contents of the word is the function to
call.

Immediate Argument Type Not applicable

Description

Starts a call of the function addressed by addr or by a

forwarding pointer addressed by addr. Use of the prefetch version

suggests to the hardware that an instruction-prefetch operation is
desirable. See the section "Starting a Function Call".

Post Trap None

Memory Reference Data-read

TOS Register Effects Valid after

zl-user:dtp-call-generic Instruction
dtp-call-generic-prefetch
Format Full-word instruction Value(s) Returned Not applicable

Argument(s) 1:
Included in the function is addr, the address of a generic function

Immediate Argument Type Not applicable

Description
Starts a call of the generic function addressed by addr.

Macroinstruction Set Page 62

Use of the prefetch version suggests to the hardware that an
instruction-prefetch operation is desirable. See the section "Calling a Generic Function".

Post Trap None
Memory Reference None

TOS Register Effects Valid after

Instructions for Starting and Finishing Calls

The following instructions are used to implement function calling. Only brief
descriptions of these are presented here. See the section "Function Calling,
Message Passing, Stack-Group Switching”.

zl-user:start-call Instruction

Format Operand from stack Value(s) Returned Not applicable

Argument(s) 1:
arg is any data type

Immediate Argument Type Signed

Description

Starts a function call of the function specified by arg.
See the section "Starting a Function Call".

Post Trap None

Memory Reference None

TOS Register Effects Valid after

zl-user:finish-call-n 1 Instruction
finish-call-n-apply
Format 10-bit immediate Value(s) Returned Vot applicable

Argument(s) 1:
I dtp-fixnum

Immediate Argument Type Unsigned

Description

Finishes a function-calling sequence: builds the new stack frame, checks
for control stack overflow, and enters the called function at the
appropriate starting instruction. The low-order eight bits of the
immediate arqument I specify a number that is equal to one more than

the number of arguments explicitly supplied with the call, including the
apply argument but not including the extra argument if any. For
example, if one argument is supplied with finish-call-n, then

Macroinstruction Set

I1<7:0> = 2,

The two high-order bits of I are the value-disposition, which
specifies what should be done with the result of the called function.
The possible values of value-disposition are:

e Effect

¢ Value

e Return

e Multiple

The function-calling chapter explains the meaning of this field.
See the section "Finishing the Call".

finish-call-n-apply is the same as finish-call-n, except that its
use indicates that the top word of the stack is a list of arguments.

Post Trap None
Memory Reference None

TOS Register Effects Unchanged

zl-user:finish-call-tos 7

finish-call-tos-apply

Format 10-bit immediate Value(s) Returned Not applicable
Argument(s) 2:

I dtp-fixnum

arg dtp-fixnum

Immediate Argument Type Unsigned

Description

Finishes a function-calling sequence: builds the new stack frame, checks

for control stack overflow, and enters the called function at the
appropriate starting instruction. arg, which is popped off the top of
stack, specifies a number that is equal the number of

arquments explicitly supplied with the call.

The two high-order bits of the immediate argument 7 are the
value-disposition, which specifies what should be done with the

result of the called function. The possible values of value-disposition

are:
e Effect

e Value

Page 63

Instruction

Macroinstruction Set Page 64

¢ Return

e Multiple

The function-calling chapter explains the meaning of this field.
The low-order eight bits of I are ignored by this instruction.
See the section "Finishing the Call".

finish-call-tos-apply is the same as finish-call-n, except that its
use indicates that the top word of the stack is a list of arguments.

Post Trap None
Memory Reference None

TOS Register Effects Unchanged

zl-user:entry-rest-accepted Instruction
entry-rest-not-accepted
Format Entry instruction Value(s) Returned Not applicable

Argument(s) 2:
argl 8-bit immediate
arg2 8-bit immediate

Immediate Argument Type Unsigned

Description

Performs an argument match-up process that either traps, if the wrong
number of arguments has been supplied, or adjusts the control stack and
branches to the appropriate instruction of the entry vector or to the
instruction after the entry vector.

argl is two greater than the number of arguments that the function requires, and
arg2 is two greater than the number of required arguments plus the number of optional
arguments that the function will accept.

See the section "Entry-Instruction Format".

The difference between entry-rest-accepted and

entry-rest-not-accepted is in how the argument matchup and

stack-adjustment process are controlled as explained in the chapter on

function calling. See the section "Function Entry".

Post Trap See the section "Trapping Out of Entry and Restarting".

Memory Reference See the section "Pull-apply-args".

TOS Register Effects Invalid after

zl-user:locate-locals Instruction

Macroinstruction Set Page 65

Format Operand from stack Value(s) Returned Not applicable
Argument(s) 0
Immediate Argument Type Not applicable

Description

Pushes (cr.arg_size - 2) onto the stack, as a fixnum. This is the

number of spread arguments that were supplied (this is less than the
number of spread arguments now in the stack if some &optional

arguments were defaulted); sets LP to (new-SP - 1) so that LP|0 is now the
&rest argument and LP|1 is the argument count; and sets cr.arg_size

to (LP - FP). Note that (new-SP - 1) here refers to the SP after the
incrementation caused by this instruction pushing its result. Thus the
value of LP after the instruction is equal to the value in the SP

before the instruction.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

24 sfe 3 sk 3 3 o ofe 2 3k sfe s sfe o ofe sfe 3 sfe afe e sfe s dfe sfe e sfe s ofe sfe e ofe e sfe e sfe e sfe e sfe s sfe o sfe sfesfe oo e sk sfeofe s s s ofe s e o sfesfe sfe e sk sheofe s e e sfe e sfe e ke s sk sie ke sk

Notes: The locate-locals instruction can be flushed if necessary. -- BEE
3¢ 33 o 3k 3 3 3k 3 dfe s sje s s s afe sfe sje s sfe sfe sfe ofe sie o s sfe sk afe sk sfe sfe she afe sfe sk she sfe e i ik o sfe o vk o s o o sfe sfe sfe e s s sfe o o ofe ofe ofe ofe ofe sfe sfe e ofe sfe sfesfe sfe sfe sfe e sfesfesfe e sfenge

zl-user:return-single Instruction

Format Operand from stack, immediate Value(s) Returned Not applicable

Argument(s) 1:
arg is dtp-fixnum 0, 1, or 2

Immediate Argument Type Unsigned

Description

Specifies the value to be returned on the top of stack according to the
immediate operand: 0, the current top of stack; 1, t; 2, mil.

Removes the returning function’s frames from the control, binding, and
data stacks, and unthreads catch blocks; restores the state of the
caller; and resumes execution of the caller with the returned values on
the stack in the form specified by the caller.

See the section "Function Returning".

Post Trap None

Memory Reference None

TOS Register Effects Status afterwards is determined by value
disposition and seen as status after finish-call in the caller. If
the value disposition is for-effect, then the TOS register is invalid;
otherwise, it is valid.

P

Macroinstruction Set Page 66

et s sfesfe s sfe ol e sl s e sl s e sfe s s sfe s e e s e sfe s sfe s e o s e s ofe s sk ol s e s s sfe s s e s sk o s e e s sk ol st e s sfe st s o s s e s sfe e e sk e e e s s ek

Notes: The actual values of the immediate operand to specify TOS, t, and nil have
not been assigned yet. The values mentioned here are only placeholders.

DCP says that this instruction is flushable.

e b s e e s ofe s se e o sesfe sk sk e sl s ofe s s st s e sl s e s s s sl s fe s s ofe s s sfe s e e s e s s e s s e o sl sl e ok s e s st e sfe s se e sie s e sfe s s e s s e e e

zl-user:return-multiple Instruction

Format Operand from stack, Value(s) Returned Not applicable
immediate or sp-pop addressing modes only

Argument(s) 1:
arg is dtp-fixnum, non-negative

Immediate Argument Type Unsigned

Description

Returns, in accordance with the value disposition specified by the
contents of the Control register, the number of values specified by
arg in a multiple group, which includes as the top entry the number
of values returned, on top of the stack. Removes the returning
function’s frames from the control and binding stacks, unthreads catch
blocks, restores the state of the caller, and resumes execution of the
caller with the returned values on the stack in the form specified by
the caller. See the section "Function Returning".

Post Trap None
Memory Reference None

TOS Register Effects Status afterwards is determined by value
disposition and seen as status after finish-call in caller

zl-user:return-kludge Instruction

Format Operand from stack, Value(s) Returned Not applicable
immediate or sp-pop addressing modes only

Argument(s)
dtp-fixnum, non-negative

Immediate Argument Type Unsigned

Description

Returns the number of values specified by arg on top of the stack.
Ignores the cleanup bits in the Control register. Used only for certain
internal stack-manipulating subroutines.

See the section "Function Returning".

Post Trap None

Macroinstruction Set Page 67

Memory Reference None

TOS Register Effects Valid after

zl-user:take-values Instruction

Format Operand from stack, immediate Value(s) Returned arg

Argument(s)
arg is dtp-fixnum

Immediate Argument Type Unsigned

Description

Pops a multiple group of values off the top of stack, using the first
value as the number of additional words to pop. Pushes the number of
words specified by arg back on the stack, discarding extras if

too many values are in the multiple group, or pushing enough nils to
equal the number desired if too few values are in the multiple group.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

Macroinstruction Set Page 68

Binding Instructions

zl-user:bind-locative-to-value, zl-user:bind-locative, zl-user:unbind-n,
zl-user:%restore-binding-stack

Instructions that perform binding operations check for stack overflow. Those that
perform unbinding operations check for stack underflow.

zl-user:bind-locative-to-value Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 2:
argl dtp-locative
arg2 any Lisp data type

Immediate Argument Type Signed

Description

Pushes argl onto the binding stack, along with the contents of the
cell it points to, then stores arg2 into the location pointed to by
argl. Copies the Control register binding-cleanup bit into bit 38
of argl on the binding stack and sets this Control register bit to

1. Does not follow external-value-cell pointers as invisible pointers
when reading and writing the cell. See the section "Binding Stack".

Post Trap None

Memory Reference Bind-read, followed by two raw-writes, followed
by bind-write

TOS Register Effects Valid before, invalid after
zl-user:bind-locative Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 1:
arg dtp-locative

Immediate Argument Type Not applicable

Description

Pushes arg onto the binding stack, along with the contents of the

cell it points to. Copies the Control register binding-cleanup bit into
bit 38 of arg on the binding stack and sets this Control register

bit to 1. Does not follow external-value-cell pointers as invisible
pointers when reading the cell. See the section "Binding Stack".

Macroinstruction Set Page 69

Post Trap None
Memory Reference Bind-read, followed by two raw-writes

TOS Register Effects Invalid after

zl-user:unbind-n 7 Instruction

Format Operand from stack, immediate Value(s) Returned 0

Argument(s) 1:
I dtp-fixnum

Immediate Argument Type Unsigned

Description

Unbinds the top I variables on the binding stack. It unbinds a
variable by popping the variable’s old value and the locative to that
variable off the binding stack and storing the old value back into the
location pointed to by the locative. Copies bit 38 of each locative
word on the binding stack into the Control register binding-cleanup bit
as it pops the locative. See the section "Binding Stack".

Post Trap None
Memory Reference Two bind-reads, followed by bind-write
TOS Register Effects Unchanged

zl-user:%restore-binding-stack Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 1:
arg dtp-locative

Immediate Argument Type Not applicable

Description

Unbinds special variables until the binding-stack pointer equals

arg, that is, until all variables up to the one pointed to by

arg have been unbound. It unbinds a variable by popping the

variable’s old value and the locative to that variable off the binding
stack and storing the old value back into the location pointed to by the
locative. Copies bit 38 of each locative

word on the binding stack into the Control register binding-cleanup bit
as it pops the locative. See the section "Binding Stack".

Post Trap None
Memory Reference Two bind-reads, followed by bind-write

Macroinstruction Set Page 70

TOS Register Effects To be determined

Macroinstruction Set Page 71

Catch Instructions
zl-user:catch-open, zl-user:catch-close

Catch Blocks

A catch block is a sequence of words in the control stack that describes an active
catch or unwind-protect operation. All catch blocks in any given stack are linked
together, each block containing the address of the next outer block. They are
linked in decreasing order of addresses. An internal register (scratchpad location)
named catch-block-pointer contains the address of the innermost catch block, as a
dtp-locative word, or contains nil if there are no active catch blocks. The address
of a catch block is the address of its catch-block-pc word.

The format of a catch block for the catch operation is:

Word Name Bit 39 Bit 38 Contents
catch-block-tag 0 invalid flag any object reference
catch-block-pc 0 0 catch exit address
catch-block-binding-stack-pointer 0 0 binding stack level
catch-block-previous xtra-arg clnup-catch previous catch block
catch-block-continuation value disposition continuation

The format of a catch block for the unwind-protect operation is:

Word Name Bit 39 Bit 38 Contents
catch-block-pc 0 0 cleanup handler
catch-block-binding-stack-pointer 0 1 binding stack level
catch-block-previous xtra-arg clnup-catch previous catch block

The catch-block-tag word refers to an object that identifies the particular catch
operation. The catch-block-invalid-flag bit in this word is initialized to 0, and is set
to 1 by the throw function when it is no longer valid to throw to this catch block;
this addresses a problem with aborting out of the middle of a throw and throwing
again. This word is not used by the unwind-protect operation and is only known
about by the throw function, not by hardware.

The catch-block-pc word has data type dtp-even-pc or dtp-odd-pe. For a catch
operation, it contains the address to which throw function should transfer control.
For an unwind-protect operation, it contains the address of the first instruction of
the cleanup handler. The cdr code of this word is set to zero (cdr-next) and not
used. For a catch operation with a value disposition of Return, the catch-block-pc
word contains nil.

The catch-block-binding-stack-pointer word contains the value of the
binding-stack-pointer hardware register at the time the catch or unwind-protect
operation started. An operation that undoes the catch or unwind-protect will undo
special-variable bindings until the binding-stack-pointer again has this value. The
cdr-code field of this word uses bit 38 to distinguish between catch and

Macroinstruction Set Page 72

unwind-protect; bit 39 is set to zero and not used.

The catch-block-previous word contains a dtp-locative pointer to the catch-block-pe
word of the previous catch block, or else contains nil. The cdr-code field of this
word saves two bits of the control-register that need to be restored.

The catch-block-continuation word saves the Continuation hardware register so that
a throw function can restore it. The cdr-code field of this word saves the value
disposition of a catch; this tells the throw function where to put the values
thrown. This word is not used by the unwind-protect operation.

The compilation of the catch special form is approximately as
follows:

Code to push the catch tag on the stack.

Push a constant PC, the address of the first instruction
after the catch.

A catch-open instruction.

The body of the catch.

A catch-close instruction.

Code to move the values of the body to where they are wanted;
this usually includes removing the 5 words of the catch block
from the stack.

The compilation of the unwind-protect special form is approximately as follows:

Push a constant PC, the address of the cleanup handler.

A catch-open instruction.

The body of the unwind-protect.

A catch-close instruction.

Code to move the values of the body to where they are wanted;
this usually includes removing the 3 words of the catch block
from the stack.

Somewhere later in the compiled function:

The body of the cleanup handler.
A %jump instruction.

Catch blocks are created in the stack by executing the catch-open/unwind-protect
instruction, and they are removed from the stack by executing the catch-close
instruction.

An unwind-protect cleanup handler terminates with a %jump instruction. This
instruction checks that the data type of the top word on the stack is dtp-even-pc
or dtp-odd-pe, jumps to that address, and pops the stack. In addition, if bit 39 of
the top word on the stack is 1, it stores bit 38 of that word into
control-register.cleanup-in-progress. If bit 39 is 0, it leaves the control register
alone.

Macroinstruction Set Page 73

zl-user:catch-open N Instruction

Format 10-bit immediate Value(s) Returned 0

Argument(s) 1:

N dtp-fixnum

Description

This instruction has two versions, catch and unwind-protect, which are
specified by bit 0 of the immediate arqument, n. Bit 0 is 0 for

catch, 1 for unwind-protect. Bits 6 and 7 of n contain the value
disposition. Bits 1-5 and 8-9 are not used. This instruction, when
bit 0 is 1 (unwind-protect), must be preceded by instructions that push
the catch-block-pc on the stack. When bit 0 is 0 (catch), preceding
instructions must push the catch-block-tag and the catch-block-pc as
well. The catch version operates as follows:

1. Push the binding-stack-pointer, with 0 in the ecdr code.
2. Push the catch-block-pointer, with control-register bits in the cdr code.

3. Push the Continuation register, with bits 6 and 7 of the catch-open
instruction in the cdr code.

4. Set catch-block-pointer to the value stack-pointer had at the beginning of
the instruction, and set control-register.cleanup-catch to 1.

The unwind-protect version operates as follows:

1. Push the binding-stack-pointer, with 1 in the cdr code.

2. Push the catch-block-pointer, with control-register bits in the cdr code.
3. Set catch-block-pointer to the value stack-pointer had at the beginning of

the instruction, and set control-register.cleanup-catch to 1.

See the section "Catch Blocks".
Post Trap None
Memory Reference None

TOS Register Effects Valid after

Macroinstruction Set Page 74

zl-user:catch-close Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 0

Description

The compiler emits this instruction at the end of a catch or
unwind-protect operation. It is used internally to the throw
function, and is called as a subroutine by the return instructions
when they find the control-register.cleanup-catch bit set.
Instruction operation is:

1. Set the virtual memory address to the contents of catch-block-pointer and
fetch three words: the catch-block-pc, catch-block-binding-stack-pointer, and
catch-block-previous. These words will always come from the stack cache, but
the instruction may not need to rely on that.

2. If catch-block-binding-stack-pointer does not equal binding-stack-pointer,
undo some bindings. This can be done by calling the
%restore-binding-stack-level instruction as a subroutine. The instruction
can be aborted (for example, by a page fault) and retried. :

3. Restore the catch-block-pointer register, control-register.cleanup-catch bit,
and control-register.extra-argument bit that were saved in the
catch-block-previous word.

4. Check the unwind-protect flag in bit 38 of the
catch-block-binding-stack-pointer word. If 0, the instruction is done. Note
that stack-pointer is not changed. If 1, push the next PC (or the current PC
if catch-close was called as a subroutine by return) onto the stack, with
the current value of control-register.cleanup-in-progress in bit 38 and 1 in
bit 39; then jump to the address that was saved in the catch-block-pc word.

When the next instruction after catch-close is reached, the value of

SP is the same as it was before catch-close. The catch block is still
in the stack, but is no longer linked into the catch-block pointer list.
See the section "Catch Blocks".

Post Trap None

Memory Reference None

TOS Register Effects Unchanged

NIL

Macroinstruction Set Page 75

Lexical Variable Accessors v
zl-user:push-lexical-var-n, zl-user:pop-lexical-var-n, zl-user:movem-lexical-var-n

The three instructions described in this section allow the first eight lexical
variables in a lexical environment to be accessed.

zl-user:push-lexical-var-n Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 1:

arg dtp-list (must be a cdr-coded lexical environment, but not checked)
or dtp-locative

Immediate Argument Type Unsigned

Description

Pushes on the stack the lexical variable of environment arg
indexed by n. n is a number between 0 and 7 that is stored in
the bottom three bits of the opcode.

Post Trap None

Memory Reference Data-read

TOS Register Effects Valid after
zl-user:pop-lexical-var-n Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 2:

argl any data type :

arg2 dtp-list (must be a cdr-coded lexical environment, but not checked)
or dtp-locative

Immediate Argument T'ype Unsigned

Description

Pops argl off the stack and stores the result into the lexical
variable of environment arg2 indexed by n. n is a number

between 0 and 7 that is stored in the bottom three bits of the opcode.
Note that only 38 bits are stored: the cdr-code bits of memory are
unchanged.

Post Trap None

Memory Reference Data-write

Macroinstruction Set Page 76

TOS Register Effects Invalid after

zl-user:movem-lexical-var-n Instruction

Format Operand from stack Value(s) Returned 1

Argument(s)

argl any data type

arg2 dtp-list (must be a cdr-coded lexical environment, but not checked)
or dip-locative

Immediate Argument Type Unsigned

Description

Stores argl, without popping, into the lexical variable of

environment arg2 indexed by n. n is a number between 0 and

7 that is stored in the bottom three bits of the opcode. Note that only
38 bits are stored: the cdr-code bits of memory are unchanged.

Post Trap None

Memory Reference Data-write

TOS Register Effects Valid after

Macroinstruction Set Page 77

Instance Variable Accessors

zl-user:push-instance-variable, zl-user:pop-instance-variable, ,
zl-user:movem-instance-variable, zl-user:push-address-instance-variable,
zl-user:push-instance-variable-ordered, zl-user:pop-instance-variable-ordered,
zl-user:movem-instance-variable-ordered,
zl-user:push-address-instance-variable-ordered, zl-user:%instance-ref,
zl-user:%instance-set, zl-user:%instance-loc

Mapped Accesses to Self

The next four instructions are called within methods or generic function calls.
They have parameters pertaining to the instance in question. Each of these
instructions is an access to self, mapped.

With the instance in FP|3 and the mapping table in FP |2, the instruction uses
the immediate argument, I, as the index into the mapping table to get the offset
to an instance variable. Reference to a deleted variable results in nil being found
in the mapping table, which causes an error trap; the type of the value in the
mapping table must be dtp-fixnum.

Each of these instructions checks the offset to insure that it is a fixnum, but does
not check whether it is within bounds. Note that this check is of the element of
the mapping table, not of the index into the mapping table. This type of
instruction does not check to make sure that the mapping table is a short-prefix
array, though this is required for correct operation. That is, the instruction checks
that the data type of the mapping table (FP|2) is dtp-array and then proceeds
with the assuption that the array is a non-forwarded, short-prefix array.

These instructions check that the argument I is within the bounds of the mapping
table. If it is not, a trap occurs. The bounds check is performed by fetching the
array header of the mapping table, assuming it is a short-prefix array, and
comparing I against the array-short-length field. Implementation note: it is useful
to cache the array header to avoid making a memory reference to get it every
time. For an example of how to do this using two scratchpad locations and one
cycle of overhead, see the 3600 microcode.

These instructions use the following forwarding procedures:

If the cdr code of self (FP|3) is 1, accesses the location in the instance that is
selected by the mapping table.

If the cdr code of self (FP|3) is 0, does a structure-offset memory reference to the
header of the instance to check forwarding. If there is no forwarding pointer, sets

the cdr code of FP|3 to 1 and proceeds. Otherwise, uses the forwarded address in

place of FP|3 (does not change FP|3).

zl-user:push-instance-variable I Instruction

Format Operand from stack, immediate Value(s) Returned 1

Argument(s) 1:

Macroinstruction Set Page 78

I dtp-fixnum (Note that the implicif. argument self must be an
instance data type and the mapping table must be a one-dimensional
array.)

Immediate Argument Type Unsigned

Description

Pushes the instance variable indexed by I on the stack.
See the section "Mapped Accesses to Self".

Post Trap None

Memory Reference Data-read (to mapping table), header-read (to header
of mapping table), data-read

TOS Register Effects Valid after
zl-user:pop-insténce-variable I Instruction

Format Operand from stack, immediate Value(s) Returned 0

Argument(s)

argl any Lisp data type

I dtp-fixnum

(Note that the implicit argument self must be an instance data type
and the mapping table must be a one-dimensional array.)

Immediate Argument Type Unsigned

Description

Pops argl off of the top of stack and stores it into the instance
variable. See the section "Mapped Accesses to Self".

Note that only 38 bits are stored: the cdr-code bits of memory are
unchanged.

Post Trap None

Memory Reference Data-read (to mapping table), header-read (to header
of mapping table), data-write

TOS Register Effects Invalid after
zl-user:movem-instance-variable Instruction

Format Opérand from stack, immediate Value(s) Returned 1

Argument(s) 2:

argl any Lisp data type

I dip-fixnum

(Note that the implicit argument self must be an instance data type
and the mapping table must be a one-dimensional array.)

Immediate Argument Type Unsigned

Macroinstruction Set Page 79

Description

Stores argl, the contents of the top of stack, into the instance
variable indexed by the immediate argument I. Does not pop the
stack. See the section "Mapped Accesses to Self".

Note that only 38 bits are stored: the cdr-code bits of memory are
unchanged.

Post Trap None

Memory Reference Data-read (to mapping table), header-read (to header
of mapping table), data-write

TOS Register Effects Valid after

zl-user:push-address-instance-variable I Instruction

Format Operand from stack, immediate Value(s) Returned 1

Argument(s) 1:

I dtp-fixnum

(Note that the implicit argument self must be an instance data type
and the mapping table must be a one-dimensional array or nil.)

Immediate Argument Type Unsigned

Description
Pushes the address of the instance variable indexed by I on the
stack. See the section "Mapped Accesses to Self".

Post Trap None

Memory Reference Data-read (to mapping table), header-read (to header
of mapping table)

TOS Register Effects Valid after

Unmapped Accesses to Self

The next four instructions are called within methods or generic function calls.
They have parameters pertaining to the instance in question. Each of these
instructions is an access to self, unmapped.

With the instance in FP|3, such an instruction uses the immediate argument I as
the offset to an instance variable. These instructions do not check whether the
offset is within bounds.

zl-user:push-instance-variable-ordered 7 Instruction

Format Operand from stack, immediate Value(s) Returned 1

Macroinstruction Set

Argument(s)

I dtp-fixnum Must not be 0.

(Note that the implicit argument self must be an instance data type.)
Immediate Argument Type Unsigned

Description

Pushes the variable indexed by I on the stack.

See the section "Unmapped Accesses to Self".

Post Trap None

Memory Reference Data-read

TOS Register Effects Valid after

zl-user:pop-instance-variable-ordered I

Format Operand from stack, immediate Value(s) Returned 0
Argument(s) 2:

argl any Lisp data type

I arg2 dtp-fixnum

(Note that the implicit argument self must be an instance data type.)
Immediate Argument Type Unsigned

Description

Pops argl off the top of stack and stores it into the instance
variable indexed by I. Note that only 38 bits are stored: the
cdr-code bits of memory are unchanged.

See the section "Unmapped Accesses to Self".

Post Trap None

Memory Reference Data-write

TOS Register Effects Invalid after

zl-usersmovem-instance-variable-ordered 7

Format Operand from stack, immediate Value(s) Returned 0

Argument(s)

argl any Lisp data type

arg2 dtp-fixnum Must not be 0.

(Note that the implicit argument self must be an instance data type.)

Immediate Argument Type Unsigned

Description
Stores argl, the contents of the top of stack, into the the instance

Page 80

Instruction

Instruction

Macroinstruction Set Page 81

variable indexed by I. Does not pop the stack. Note that only 38
bits are stored: the cdr-code bits of memori\g are unchanged.

See the section "Unmapped Accesses to Self".

Post Trap None

Memory Reference Data-write

TOS Register Effects Valid after

zl-user:push-address-instance-variable-ordered I Instruction
Format Operand from stack, immediate Value(s) Returned 1
Argument(s)

I dtp-fixnum Must not be 0. _
(Note that the implicit argument self must be an instance data type.)

Immediate Argument Type Unsigned

Description
Pushes the address of the instance variable indexed by I on the
stack. See the section "Unmapped Accesses to Self".

Post Trap None
Memory Reference None

TOS Register Effects Valid after

e desie e sfesie e sfesi e sl s ofe e s fe s s sfesfe s e afe s ofe s se o s afe s fe sl s e s s s s st s sfe o o s s st s s o s s s e s o e s sfesfe s s e st s e e s e sfe s e sfe s s e s

Note: This is a prime candidate for deletion. -- BEE

s e s e e s s ofe s e o s sfesfe s sfe st s e sfe s sle s o ke s seafe s ofesfe st sfe s s sfe s st s o e s s sfe o e s s o e e s e s s e s s sfe e s e s s s sfe s s ke s s s e st se e e

Accesses to Arbitrary Instances

As a side effect of the bounds checking, each of these instructions makes a
structure-offset reference to the header of the instance and, if the instance has
been forwarded, uses the forwarded address as the base to which arg2 is added.

zl-user:%instance-ref Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:

argl dtp-instance, dtp-list-instance, dtp-array-instance,
or dtp-string-instance

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Macroinstruction Set

Description

Pushes on the stack the instance variable of instance argl at the
offset specified by arg2. Takes a pre-trap if arg2 is greater
than or equal to the size field of the flavor, using unsigned
comparison. See the section "Accesses to Arbitrary Instances".

Post Trap None

Memory Reference Header-read, data-read (to flavor descriptor),
data-read (to instance-variable slot)

TOS Register Effects Valid before, valid after

zl-user:%instance-set

Format Operand from stack Value(s) Returned 0

Argument(s) 3:

argl any Lisp data type; arg2 dtp-instance, dtp-list-instance,
dtp-array-instance, or dtp-string-instance

arg3 dtp-fixnum

Immediate Argument Type Unsigned

Description

Pops argl off of the stack and stores it into the instance variable
of instance arg2 at the offset specified by arg3. Takes a
pre-trap if arg2 is greater than or equal to the size field of the
flavor, using unsigned comparison.

See the section "Accesses to Arbitrary Instances".

Post Trap None
Memory Reference Header-read, data-reads, data-write

TOS Register Effects Valid before, invalid after

zl-user:%instance-loc

Format Operand from stack Value(s) Returned 1

Argument(s) 2:

argl dip-instance, dtp-list-instance, dtp-array-instance,
or dtp-string-instance

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes on the stack the address of the instance variable of instance
argl at the offset specified by arg2. Takes a pre-trap if

arg2 is greater than or equal to the size field of the flavor, using
unsigned comparison.

Page 82

Instruction

Instruction

Macroinstruction Set Page 83

See the section "Accesses to Arbitrary Instances".
Post Trap None

Memory Reference Beader-read, data-reads

TOS Register Effects Valid before, valid after

*
e e e e s o e e oo sfeofeofe s s s sk fe sfesfe s s s sl sfe s s s sfe e s s fesfe s sl e s s s e ke s sfe s e sfesfe s e sfe s s se e e o o s e ofe e s s s o sfe e sfe s e s s sk e e s

Notes:

All of the instance-variable accessing instructions could take an sp-pop argument
as an alternative to an immediate. This issue needs to be reviewed when the
microcode is written. %instance-loc, %instance-ref, %instance-set could be
flushed. Removing them would slow the specific kinds of instance-variable accesses
that use these instructions by a factor of 2 or 3. Most instance-variable accesses

use the mapped or ordered instruction described earlier.
St 2 s s s s s s s s sk sk s o s s S s o 3 o s o s s o s s s o o ok s s e ik e e sfe e ofe e sfe sl sfesfe e s s s s 3 s o o o o s o s o o s o afe o s sfe sl sle e e s sk e s ekt

Macroinstruction Set Page 84

Subprimitive Instructions

zl-user:%ephemeralp, zl-user:%unsigned-lessp, %unsigned-lessp-no-pop,
zl-user:%allocate-list-block, zl-user:%allocate-structure-block,
zl-user:%pointer-plus, sys:%pointer-difference, zl-user:%pointer-increment,
zl-user:%read-internal-register, zl-user:%write-internal-register,
zl-user:%coprocessor-read, zl-user:%coprocessor-write, zl-user:%memory-read,
zl-user:%memory-read-address, zl-user:%memory-write, zl-user:%tag,
zl-user:%set-tag, sys:%store-conditional, sys:%p-store-contents,
zl-user:%set-cdr-code-n, zl-user:%merge-cdr-no-pop, zl-user:%generic-dispatch,
zl-user:%message-dispatch, zl-user:%locate-pht-entry, zl-user:%jump,
zl-user:%check-preempt-request, zl-user:%halt

zl-user:%ephemeralp Instruction
No documentation available for ZL-USER:%EPHEMERALP as a Instruction.

zl-user:%unsigned-lessp Instruction
No documentation available for ZL-USER:%UNSIGNED-LESSP as a Instruction.

zl-user:%allocate-list-block Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any type other than dtp-nil
arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description
Using three internal registers, named list-cache-area,
list-cache-length, and list-cache-address, this instruction:

1. Takes a pre-trap unless (eq argl list-cache-area).

2. Computes list-cache-length minus arg2. Takes a pre-trap if the result is
negative. Stores the result into list-cache-length unless a trap is taken.

3. Pops the arguments and pushes the list-cache-address. Writes the
list-cache-address into BAR-1 (Block-Address-Register-1). Sets the
control-register trap-mode field to (max 1 current-trap-mode) so that there
can be no interrupts until storage is initialized.

4. Stores (list-cache-address + arg2) into list-cache-address (arg2 must be
latched since the third step may overwrite its original location in the
stack) .

Macroinstruction Set Page 85

Example:

(defun cons (car cdr)
(%set-cdr-code-normal car)
($set-cdr-code-nil cdr)
(%make-pointer dtp-list (progl (%allocate-list-block default-cons-area 2)
{#block-1l-write car)
($block-1l-write cdr))))

Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

$

Notes:
Refer to the file V:>MOON>IMACH>CONS.TEXT.

st sfesie e e siesfesfe s fe sl o e s s e e s sfesfe s sfe s sk sfe s afe s e ol sl s s sfe s s sfe s e s s e s s s s ofe s e e s s sfe s s e e st s e s s sfe s s e s s e e sl sk

zl-user:%allocate-structure-block Instruction

Format Operand from stack Value(s) Returned 1
Immediate Argument Type Unsigned

Argument(s) 2:
argl any tt';ype other than dtp-nil
arg2 dtp-fixnum

Description
Using three internal registers, named structure-cache-area,
structure-cache-length, and structure-cache-address, this instruction:

1. Takes a pre-trap unless (eq argl structure-cache-area).

2. Computes structure-cache-length minus arg2. Takes a pre-trap if the result
is negative. Stores the result into structure-cache-length unless a trap is
taken.

3. Pops the arquments and pushes the structure-cache-address. Writes the
structure-cache-address into BAR-1 (Block-Address-Register-1). Sets the
control-register trap-mode field to (max 1 current-trap-mode) so that there
can be no interrupts until storage is initialized.

4. Stores (structure-cache-address + arg2) into structure-cache-address (arg2

must be latched since the third step may overwrite its original location in
the stack).

Post Trap None

Macroinstruction Set Page 86

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%pointer-plus Instruction

Format Operand from stack : Value(s) Returned 1
Argument(s) 2:

argl can be any data type, but dtp-locative is expected

arg2 any data type, but dtp-fixnum expected

Immediate Argument Type Signed

Description

Pushes the result of adding arg2 to the pointer field of argl.
The data type of the result is the type of argl.

Post Trap None |

Memory Reference None

TOS Register Effects Valid before, valid after
sys:%pointer-difference Instruction

Format Operand from stack Value(s) Returned 1
Argument(s) 2:

argl any data type, but a pointer type is expected

arg2 any data type, but a pointer type is expected

Immediate Argument Type Signed

Description

Pushes the result of subtracting the pointer field of arg2 from the
pointer field of argl. The data type of the result is dip-fixnum.
Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after
zl-user:%pointer-increment Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Macroinstruction Set

Argument(s) 1:
arg any data type

Immediate Argument Type Not applicable

Description
Adds 1 to arg and stores the result back into the operand.

Post Trap None
Memory Reference None

TOS Register Effects Unchanged

zl-user:%read-internal-register I

Format 10-bit immediate Value(s) Returned 1

Argument(s) 1:
I dtp-fixnum

Immediate Argument Type Unsigned

Description

Pushes the contents of the internal register specified by arg
on top of the stack. See the section "Internal Registers".
Post Trap None

Memory Reference None

TOS Register Effects Valid after
zl-user:%write-internal-register I

Format 10-bit immediate Value(s) Returned 0

Argument(s) 2:

argl any data type

I dtp-fixnum

Immediate Argument Type Unsigned

Description

Pops argl off the top of the stack and writes it into the internal

register specified by I.
See the section "Internal Registers".

Post Trap None

Page 87

Instruction

Instruction

Macroinstruction Set Page 88

Memory Reference None

TOS Register Effects Invalid after
zl-user:%coprocessor-read I Instruction

Format 10-bit immediate Value(s) Returned 1

Argument(s) 1:
I dtp-fixnum

Description

Reads the coprocessor register specified by the immediate field I
and pushes the result on the stack.

Post Trap None

Memory Reference None

TOS Register Effects Valid after
zl-user:%coprocessor-write I Instruction

Format 10-bit immediate Value(s) Returned 0

Argument(s) 2:

argl any data type

I dtp-fixnum

Description

Writes argl into the coprocessor register specified by the immediate field
1.

Post Trap None

Memory Reference None

TOS Register Effects Invalid after
zl-user:%memory-read I Instruction

Format 10-bit immediate Value(s) Returned 1
Argument(s) 2:

argl any Lisp data type

I dtp-fixnum (10-bit mask)

Immediate Argument Type Not applicable

Macroinstruction Set Page 89

Description

Reads the memory location addressed by argl and pushes its contents
on the stack in accordance with the operation specifiers in the
immediate, I:

cycle-type <9:6> (4 bits) Select one of the 12 memory-cycle types

fixnum-only <5> (1 bit) If set, the instruction will trap if the
memory data type is not dtp-fixnum.

set-cdr-next <4> (1 bit) If set, the cdr code of the result is 0;
‘ otherwise, the cdr code of the result is the
cdr code of memory.

See the section "Memory References".

Post Trap None

Memory Reference Controlled by the immediate field.
TOS Register Effects Valid after

Notes

DCP wants to know if this turns on cr.no-trap.

zl-user:%memory-read-address I Instruction

Format 10-bit immediate Value(s) Returned 1

Argument(s) 2:
argl any Lisp data type
I dtp-fixnum (10-bit mask)

Immediate Argument Type Not applicable

Description

Reads the memory location addressed by argl, according to the
specified cycle type, and

returns the updated argument (the address field is changed to be the
final address the access arrives at, while the data-type field
remains the same) in accordance with the operation specifiers in the
immediate, I:

cycle-type <9:6> (4 bits)Select one of the 12 memory-cycle types
See the section "Memory References".

fixnum-only <5> (1 bit) If set, the instruction will trap if the
memory data type is not dtp-fixnum.

set-cdr-next <4> (1 bit) If set, the cdr code of the result is 0;
otherwise, the cdr code of the result is

Macroinstruction Set Page 90

the cdr code of memory.
Post Trap None
Memory Reference Controlled by the immediate field.
TOS Register Effects Valid after

zl-user:%tag Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 1:
arg can be any Lisp data type

Immediate Argument Type Signed

Description
Returns the tag of arg as a fixnum.

Post Trap None
Memory Reference None

TOS Register Effects Valid after

zl-user:%set-tag Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2:
argl any data type
arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description

Sets the 8 tag bits of argl to be the bottom eight bits of arg2.
This is %make-pointer, with the arguments reversed so that
immediates can be used.

Post Trap None
Memory Reference None

TOS Register Effects Valid before, valid after

3 3 e e e o s 2 sfe e e s s she e sfe s s sfesfesfe fe s s sfe e fe ok s s s sfesfesfe i s s s sfe s sfe e s 3 s afe e sfe e s s s s sfeofesfe o s sfesfe e e sl sfesfesfe s s sfe sk e e siesfe sk
There may be two versions of this instruction: one that turns on cr.trap-mode and
one that doesn’t.

BEE hopes that we don’t get in trouble because this instruction sets the cdr code,
but doesn’t see how it could.

Macroinstruction Set Page 91

e e ke e s o e s ofe s s s fe e s s fe e sk s s e e e s s o e e ok s s ofe s s s fe ke s s e sfe s s e e sfe sfe s e s s e e sfe s sfe s e ofe o s s e fe e s sfe s s s sfe ke sfe s

sys:%store-conditional ' Instruction

Format Operand from stack Value(s) Returned 1
Immediate Argument Type Signed

Argument(s) 3:

argl dtp-locative

arg2 any type

arg3 any type

Description

If the contents of the location specified by argl is eq to

arg2, then stores arg3 into that location and returns t;
otherwise, leaves the location unchanged and returns nil. Other
processes (and other hardware processors, to the extent made possible by
the system architecture) are prevented from modifying the location
between the read and the write.

Post Trap None

Memory Reference Data-read, followed by data-write (using the
possibly followed pointer)

TOS Register Effects Valid before, invalid after

sys:%p-store-contents Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 2:

argl address to store into

arg2 value to store (no type checking)

Immediate Argument Type Signed

Description

Stores arg2 into memory location addressed by argl, preserving
the cdr code but not following invisible pointers.

Post Trap None

Memory Reference Raw-read followed by raw-write

TOS Register Effects Valid before, invalid after

zl-user:%memory-write ' Instruction

Macroinstruqtion Set Page 92

Format Operand-from-stack Value(s) Returned 0

Argument(s) 2:

argl address to store into

arg2 value to store (no type checking)

Immediate Argument Type Signed

Description Stores arg2 into the memory location addressed by

argl, storing all 40 bits including the cdr code, and not following
invisible pointers. This replaces the 3600's %p-store-cdr-and-contents
and %p-store-tag-and-pointer instructions. The second argument is
typically constructed with the %set-data-type instruction; in the
I-Machine it is legal to have invisible pointers and special markers in
the stack temporarily for this purpose.

Post Trap None

Memory Reference Raw-write

TOS Register Effects Valid after

zl-user:%set-cdr-code-n Instruction

Format Operand from stack, Value(s) Returned 0
address-operand mode (immediate and sp-pop addressing modes illegal)

Argument(s) 1:
arg any data type

Description

N, which is part of the opcode, is either 1 or 2. Sets the cdr code
field of arg to N.

Post Trap None

Memory Reference None

TOS Register Effects Unchanged

zl-user:%merge-cdr-no-pop , Instruction

Format Operand from stack, Value(s) Returned 1
address-operand mode (immediate and sp-pop adddressing modes illegal)

Argument(s) 2:
argl any data type ,
arg2 (address operand) any data type

Macroinstruction Set Page 93

Description

Sets the cdr-code field of arg2 to the cdr-code field of
argl. argl is not popped off the stack.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%generic-dispatch Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 0

Immediate Argument Type Not applicable

Description

This is used in calling a generic function. The details of its operation
are completely described in the function-calling chapter.

See the section "Calling a Generic Function". In brief, it performs the
following operations:

Makes sure that the number of spread arguments is at least 2. Performs a
pull-lexpr-args operation if necessary

Gets the address of the interesting part of the flavor, which

specifies the size and address of the handler hash table. Checks whether
-the data type of FP|3 is one of the instance data types and performs the
appropriate operations in any case.

Fetches two words from the flavor and performs a handler hash table
search. Traps if the method found is not dtp-even-pc,

dtp-odd-pe, or dtp-fixnum.

Post Trap None

Memory Reference Several data-reads

TOS Register Effects Invalid after
zl-user:%message-dispatch Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 0
Immediate Argument Type Not applicable

Description

Macroinstruction Set Page 94

This is used in sending a message. The details of its operation are
completely described in the function-calling chapter.

See the section "Sending a Message". In

brief, it performs the following operations:

Makes sure that the number of spread arguments is at least 2. Performs a
pull-lexpr-args operation if necessary.

Gets the address of the interesting part of the flavor, which

specifies the size and address of the handler hash table. Checks whether
the data type of FP|2 is one of the instance data types and performs the
appropriate operations in any case.

Fetches two words from the flavor and performs a handler hash table
search. Traps if the method found is not dtp-even-pe,

dtp-odd-pe, or dtp-fixnum.

Post Trap None

Memory Reference Several data-reads

TOS Register Effects Invalid after

zl-user:%locate-pht-entry Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 1:
arg can be any data type, but a pointer type is expected

Immediate Argument Type Signed

Description

Returns a locative (in the physical portion of the virtual

address space) to a PHT entry that either matches the argument address
or is the first deleted or invalid entry encountered during the search
if the argument address is not in the PHT. Any existing map cache entry
for the page is invalidated as a side effect.

Post Trap None
Memory Reference Raw-read

TOS Register Effects Valid after

e e e s sfe o e e s ofe s s s e sfe s s s sfe e sfe s e e sfe s s s fe e s s o e s s s e sfe s s s ofe e s e fe s sfesfe e s s s e e e s sfe s s e sfe ke sfe sl s s s e e sfe s

Notes DCP would like to see this return both words of the two-word entry.

e 3 2 3 s 2 s s o s o s sfe s sfe s s s o s s o o s e s e e s s s fe e fe it kol s el sfesfeshesfesfesfe sfe st s s s e e e e e e e o sk e s s s s e s e sfesfe s e sfesfe s

zl-user:%jump Instruction

Macroinstruction Set Page 95

Format Operand from stack Value(s) Returned 0

Argument(s) 1:

arg dtp-even-pc or dtp-odd-pc

Immediate Argument Type Not applicable

Description

Causes The processor to start executing macroinstructions at the
specified PC. This instruction checks that the data type of arg is
dtp-even-pc or dtp-odd-pc and jumps to the address.

In addition, if bit 39 of arg is 1, this instruction stores

bit 38 of that word into control-register.cleanup-in-progress. If bit
39 is 0, it leaves the control register alone. An unwind-protect cleanup
handler terminates with a %jump instruction.

Post Trap None

Memory Reference None

TOS Register Effects Valid before, valid after

zl-user:%check-preempt-request Instruction

Format Operand from stack Value(s) Returned 0
Argument(s) 0

Immediate Argument Type Not applicable

Description

Performs a check-preempt-request operation, that is, sets the
preempt-pending flag if the preempt-request flag is set. This causes a
trap at the end of the current instruction if the processor is in emulator
mode, or when control returns to emulator mode if the processor is in
extra-stack mode.

See the section "Preemption".

Post Trap None

Memory Reference None

TOS Register Effects Unchanged

zl-user:%halt Instruction

Format Operand from stack Value(s) Returned 0

Argument(s)
None

Immediate Argument Type Not applicable

Macroinstruction Set Page 96

Description
Stops executing Lisp and transfers control to the supervisor.

Post Trap None
Memory Reference None

TOS Register Effects Unchanged

e g s s e siesfeofe s el sl e sfesfe sl sfe s sfesfe s e e s e s e s sfesle s sesfe s sfe st s s s sfe s s st st e s e s e s s ok s s s sesfe s sfe e siesfe e s e e s sk e e e

Notes: This needs to be worked out. DCP

36 3 g e s s s kol sfe s s sesfe e s o fesfe s sfe s s e sfe s s s ofe sl sfe s sfe e s s e sfe s s e sfesfe s s se e sfe s s se s s se e s s s s e sfesfe sfe sfe s e e e sfe s s s se e e

%
33 e e e o s e ofe ok s s s ofe e st s e sfe e s s st ke sfe s s e s sl sfe s sfeale e st e ofe s s s sfesfe s st e fe sfesfe s s sfe s e se e sfe st s s sfesfesfe s s sesfe s sfesfe st s s sk sfe e sfe sl s

Notes:

Deleted: follow-cell-forwarding (=> %memory-read-address),
follow-structure-forwarding (=> %memory-read-address), location-boundp [=> (/=
(%data-type (%memory-read data-read)) dtp-null)], %p-structure-offset (=>
J%ememory-read-address followed by %pointer-plus), %p-contents-as-locative (=>
Jomemory-read-address followed by %set-data-type), %p-contents-offset (=> (cdr
(%p-structure-offset ...).

