Operating the Lisp Machine

David A. Moon
Allan C. Wechsler

This document is a draft copy of a portion of the Lisp Machine window system manual. It is
being published in this form now to make it available, since the complete window systemn manual
is unlikely to be finished in the near future. The information in this document is accurate as of
system 67, but is not guaranteed to remain 100% accurate.

This document explains how to use the Lisp Machine from a non-programmer’s point of view. It
explains the gencral characteristics of the user interface, particularly the window system and the
program-control commands. This document is intended to tell you everything vou need to know
to sit down at a Lisp machinc and run programs. but docs not deal with the writing of prograins.
Many arcane commands and user-interface features are also documented herein, although the
beginning user can safely ignore them.

Printed by Symbolics, Inc. under license from the Massachusetts Institute of Technology.

Operating the Lisp Machine i Table of Contents

Table of Contents

1. The CONSOle . . v v o e 1
11 TheSereen. . . v v v v v oot e e e e e e 1
12 TheKeyboard o v v o v e e e e e e e e e e e 1

121 Modifier Kevs. .« . o o o o v e e e e e e e e e 2
1.2.2 FunctionKeys. e e e e e e e e e e e e e 3
13 THEMOUSC. + v v o v e L. 3
14 BootingtheMachine e e e e e e e e e e e e e 4

2, The WIndow SYSICITL . . . v v v v e 5

2.1 The GeographyoftheDisplay e e e e e e e e e 5
210 WINAOWS . o o o o e s 5
212 The Who-lineand Run-lightso o 0 o v v ittt i 5
2.1.3 Blinkers and CUSOIS. . v v v v v v e 6
22 Usingthe MOUSE . . . o v v v e e e e e e e e e e e e e e e 7
2.2.1 Pointing at Something withtheMouse. oo oo oo 7
222 Clickingthe Mouse o o o v e e e e e 7
2.3 Manipulating Windows. L. e e 8
231 MONUS. & v v v o e 8
232 TheSystemMeEnu. v 0 0 e e e e e e e e e 9
233 NOGACAEOM + + « « v v v e e e e e e e e e e e e e e 11
2.3.4 Selecting @ WINAOW .« o v v v v e e e e e e e e e e 11
2.3.5 More Advanced Window Selection.o i oo o e e e e e e 12
236 Creating New Windows o o v v v i v v i e e e e 13
237 Selecting @aSyStem. o . e e e e e e e e e e e e e 14
23.8 SPHNG the SCIEeN v v v v v vt e e e e e e e 15
239 Destroyinga Window o o oo e e e e e e e 16
2300 Frames. « v v o o v e 16
2311 Tavoking the InSpector . . .« v v v v v v o e e 17
2.3.02 TheScreen Bditor . . & v o o i i s e e e e e e e e e e e e e e e 17

3. TheLispListener. e e e e e e e e e e e 20
31 The Bditing Lisp Listener. o o o v v v i i o e e e e e e 20
4. The BAItOr . . & . o o e o e 22
4.1 Usingthe Mouscinthe Editor oo oo 22

411 TheMouscand the CUTSOL. . . v v v v v v v et e e et e e e e e e e e e e e 22
412 TheMouscand the Region o v v v i i v e e 23
413 The EAItor Menu . . . o o v v o e e e e e e e e e e e e e e e e 23
414 ScrolliNg . . . v v e e e e e e e e e e e e e e e e 25
42 710pMOAC . . . o o e e e e e e e e e e 26
421 Thel-Beamn o e 26
422 LeavinZZI0P « v v v v v e e e e e e e e e e e e e e e e e e e 27

5. The INSPECTOF. . o o v v e o e e e e e e e e e e e e e e e 28

Table of Contents : ii Operating the Lisp Machine

6. The Debugger. e e e e e e e e e e e 31
6.1 The Error-Handler L o e e e e 31
6.2 The Window Error-Handler. e 31

ToPeek o 33

€. Network Programs L e e 35

9. Index of FunctionKeys e e e e e e e e 36
10. Quick Summary of Mouse Functions. 41

10.1 Scrolling. o L e e e 41

Operating the Lisp Machine 1 The Console

1. The Console

This chapter describes the basic logical characteristics of the devices that are uscd to talk to
the Lisp Machine. These include one or imore bit-raster displays. a specially extended keyboard,
and a graphical input device called a mouse. Collectively these form a complete and extremely
flexible uscr intertace, called the console.

1.1 The Screen

The Lisp Machine generally displays its output on onc or more bit-raster displays. The
window system controls how display space is allocated to various programs, systcms, menus, and
messages, allowing the user to shift his attention between these easily. This is discussed more
fully later, in the chapter called "The Window System". '

1.2 The Keyboard

We arc in the process of changing over from the old Knight keyboard to a new type. Most
of the current sofiware can deal with both kinds of keyboards. In particular, the new keyboards
can generate all the characters that the old keyboards can. However, transition problems may be
cncountered over the next few months. New software may have been written with specific
features of the new keyboards in mind, and thus may be dilficult to use from the old keyboards.
Most system software can still be used fairly casily from the old keyboards, but exceptions exist
and will probably become more frequent,

These problems will be resolved with time as programs and people become adapted to the
new keyboards.

This document will assume that a new keyboard is being used. Where applicable, the
scquence that would have to be typed on the old keyboards to get the same result will also be
given.

There arc 100 physical keys on the new keyboards. The keybuard has unlimited rollover,
meaning that a keystroke is sensed when the key is depressed, no matter what other keys are
depressed at the time.

Actually, the hardware can tell exactly what physical keys are being pressed at any given
moment: it knows when any key is depressed and when it is released. This means that the Lisp
Machine couid be programmed to interpret the keyboard in any manner whatsocver: in this scnse
the kevboard is completely "soft”. But the Lisp Machine has alrcady been programmed to
interpret the keyboard input in a useful way, and such reprogramming would be necessary only
for the most special necds.

The keys are divided into three groups: function keys, characier keys. ad muaodifier keys.
Character keys are generally small and gray, while function keys arc generally large and blue.

Function Keys ABORT, BREAK, CALL, CLEAR-INPUT, CLFAR-SCREEN, DELETE, END,
HELD, HOLD OUTPUT, LINE, MACRO, NFTWORK, OVER-GTRIVE, QUOTE,

The Keyboard ‘ 2 Operating the Lisp Machine

RESUME, RETURN, RUBOUT, STATUS, STOP-OUTPUT, SYSTEM, TAB,
TERMINAL

In addition to these, there arc some gray function keys: four on the right with
fingers pointing in various directions, called HAND-UP, HAND-DOWN, HAND-
RIGHT, and HAND-LEFT; and four on the left with the roman numerals I, Il
L, and IV..

CharacterKeys abcdefghijkimnopqrstuvwxyz0123456789: - =
YO "Ny, o/
In addition, ALT-MODE and the space bar are character keys, despite being blue.
Modifier Keys MODE-LOCK, CAPS-LOCK, REPEAT, ALT-LOCK, left TOP, left GREEK,
left SHIFT, left HYPER, left SUPER, left META, left CTRL. right TOP, right
GREEK, right SHIFT, right HYPER, right SUPER, right META, right CTRL

1.2.1 Modifier Keys
Modifier keys are intended to be held down while typing another key.

None of the software distinguishes between the left and right versions of TOP, GREEK,
SHIFT, HYPER, SUPER, META, and CTRL. When one of these is specified, cither physical
key (or both) will work. The incantations used for warm-booting and cold-booting
(CTRL/META/CTRL/META/RETURN and CTRL/META/CTRL/META/RUBOUT, respectively)
are the only exceptions; these require that both control keys and both meta keys be held down.

The MODE-LOCK, CAPS-LOCK, and ALT-LOCK keys hold themselves down once
depressed, and must be explicitly released by striking them again.

In this document, the action of hblding down some modifier keys while striking some other
key will be represented with a slash notation. For example, if you are told to type
HYPER/META/J, vou will accomplish this by holding down the HYPER and META keys while
you sirike ")".

The SHIFT, TOP, and GREEK keys are intended to modify character keys to produce printed
characters. Some printed characters can be produced in more than one way. The software never
distinguishes between the possible ways of producing a particular printed character. For example,
typing the "9" key while holding down SHIFT produces an open parenthesis, and so does striking
the "(" with no modifiers. There is no difference between these two parentheses.

GREEK is also called FRONT since it causes a character key to genecrate the character written
on the front of the key. These characters are greek letters on the alphabetic keys and special
punctuation symbols on the other keys.

The HYPER, SUPER, META. and CTRL keys are used by programs like the FEditor whose
commands arc mostly single characters. They are intended to modify other keys to produce
commands for these programs.

Opcrating the Lisp Machine 3 The Mouse

The CAPS-LOCK key, when depressed, causes all typed letters (A through Z) to be
interpreted as if the shift key were down. CAPS-LOCK does not affect the interpretation of non-
alphabetic character keys.

The functions of the ALT-LOCK and MODE-LOCK keys have not been assigned as of this
writing.

1.2.2 Function Keys

The function keys allow the user to do certain useful operations in very few keystrokes. Some
of these operations may be performed anytime, no matter what the Lisp Machine is doing at the
moment. Other operations arc only defined in certain contexts, and the keys that perform these
operations may do different things at different times, or may be ignored if the associated
operation is not relevant to what the Lisp Machine is doing.

The four finger keys are function keys, but functions have not yet been assigned to them.
HAND-UP and HAND-DOWN may eventually be used for answering yes-or-no questions.
FRONT-shifting a finger key gives a printing character: circle-plus, circle-minus, circle-cross, and
circle-slash are typed this way.

The roman-numecral keys arc not used by the system. One uscful thing you can do with them
is to put your own editor commands or keyboard macros on them.

The operations performed by the various function keys are summarized in the Index of
Function Keys (sce chapter 9, page 35).

1.3 The Mouse

The mouse is a pointing device that can be moved around on a flat surface. These motions
are senscd by the Lisp Machine, which usually responds by moving a cursor around on the screen
in a corresponding manner. The shape of the cursor varies, depending on context. See chapter
10, page 40. ’

There are three buttons on the mouse, called Left, Middle, and Right. They are used to
specify operations to be performed. Typically the user points at something with the mouse and
specifies an operation by clicking the mouse buttons. Rapid double clicks are conventionally
distinguished from single clicks. Thus. in any specific context, there are up to six operations that
can be performed with the mouse, invoked by Left, Left Double, Middle, Middle Double,
Right, and Right Double clicks. Some of these operations are local to particular programs such as
the editor, and some are defined more widely acruss the system.

Typically the operations available by clicking the mouse buttons arc listed at the bottom of
the screen. This display changes as you move the mouse around or run different programs,

Sometimes holding a mouse button down continuously for a period of time may also be
defined 10 perform some operation, for examiple drawing a cunve on the screen. This will be
indicated by the word "Hold™. For example. "Middle Pold™ mcens o olick the middle monse
button down and hold it down, releasing it only when the operation is complete, " elt Double

Booting the Machine 4 Opecrating the Lisp Machine

Hold" means to click the left mouse button twice, holding it down the sccond time until the
operation is complete.

Occasionally a long click is distinguished from a short onc, as a Morse Code dash is
distinguished from a dot. In these cases it doesn’t matter exactly how long the button is held
down, as long as it is perceptibly longer than the usual rapid strike. Such a click will be
described by the word "Long™, as in "Right Long".

The mouse is completely "soft”, like the keyboard: The Lisp Machine can be programmed to
interpret the mouse in any desired fashion. The protocol that has been chosen, however, is
extremely gencral and should suffice for almost all needs.

1.4 Booting the Machine

The Lisp machine can be "booted” by typing special combinations of keys on the keyboard.
There are two kinds of booting: cold-booting completely reinitializes the machine, while warm-
booting crashes it and then restarts it. Cold-booting is what you do when you have just switched
on power to the machine. It is also a good idea to cold-boot when done with the machine so as
to Icave it in a compleicly clean state for the next person.

Warm-booting is a kludgey escape mechanism which allows you to restart the machine after it
has crashed or when it is in some run-away state that for some rcason you can’t get out of by
using the normal function keys. Waurm-booting is not guaranteed to work, since it may have to
restart the machine from any arbitrary, inconsistent state. However, warm-booting makes a
reasonable attempt to get the system to come up so that you can continue, or save your work and
then cold-boot.

Both kinds of boeoting start by resctting the machine hardware and rcloading the microcode
from the disk. Cold-booting then reloads the entire contents of virtual memory from a fresh copy
on the disk, while warm-booting rccovers the virtual memory you were working in. The Lisp
systern then comes up and runs for a few scconds, performing various initialization tasks, puts a
greeting message at the top of the screen, and leaves you in a Lisp listener waiting for you to
type in Lisp forms to be evaluated. See chapter 3, page 19.

The incantations used for warm-booting and cold-booting involve holding down all four
control and meta keys simultancously (the two to the left of the space bar and the two to the
right of the space bar), and striking RUBOUT for a cold-boot or RETURN for a warm-boot. This
combination of keys is extremely difficult to type accidentally.

On terminals where the mouse is plugged into the keyboard rather than the base of the
display monitor, after a boot the mouse will not work until you first type a key. This is to avoid
disturbing the machine while it is booting, which could make it forget whether it was to do a
cold or warm boot. Normally you will not notice this, as the first thing you ought to do after
cold-booting is to leg in, which involves typing on the keyboard.

Opecrating the Lisp Machine ‘ 5 The Window System

2. The Window System

The window system is responsible for the appearance of the display. [t allocates display space
and allows the user to shift his attention between many programs quickly and easily. Usually, all
input and output arc mediated by the window system.

2.1 The Geography of the Display

2.1.1 Windows

The display shows one or more windows, which are independent sub-displays. Most windows
have borders (black outlines) around them. Somec have a lubel which is usually in the lower left-
hand corner. If the display is completely taken up by onc window, the borders and label are
often omitted.

Often a window will function as a stream, that is, a place that a program can read from and
write to. In this way, a window provides a communications channel whereby the user can talk to
a program,

Usually one of the windows on the screen is selected. This means that that window is the
focus of your attention, and keyboard input is directed to it, so that a program rcading from that
window will read what you type. Most often the sclected window will have a blinking cursor and
the other windows on the display (if any) will not. Usually, what you type will be printed in the
selected window at the place marked by the blinking cursor.

Windows can be exposed, meaning that they are fully visible on the screen, or else
deexpesed. A deexposed window may either be partially visible and partially covered by other
windows, or entirely invisible. Deexposed windows can be brought back to the display in many
ways, described later. The selected window is always exposed.

2.1.2 The Who-line and Run-lights

At the bottom of the display is the who-line. Here arc displayed several pieces of status
information. From left to right the who-line shows the datc and time, your login name, the
current package, the state of the process that is connected to the keyboard, and the state of an
open file or the console idle time, the time since the keyboard was last typed upon or the mouse
last clicked upon.

Many things can appear in the process state field; here arc svme of the most common and
least self-explanatory. Don’t expect to understand everything in this table (nor process states you
sce that are not in this table) completely. The process state in the who-line is there to give you a
hint as o what is going on, but often has to do with internal. dewils of the particular program
being run, or with the more csoteric features of the Lisp machine process system.

RUN The process is running (as opposed to waiting for something).

The Geography of the Display .6 Operating the Lisp Machine

TYI The process is waiting for you to type on the keyboard.

OutputHold The process is trying to display on a window which cannot display right now. For
instance, the window may not be exposed. [This needs to be explained
somewhere in this document.] o ' '

LOCK The process is waiting for some other process to unlock a lock. This is typical of
a sct of process states whose interpretation depends on knowledge of the particular
program running.

NIL The who-line is not looking at any process. Typically this is becausc no window
is selected. The who-line normally looks at the process associated with the
selected window.

ARREST The process is arrested, which means it is not allowed to run. See the
TERMINAL A command (page 36).
STOP The process is not running because it does not have a "run reason”.

OPEN, NETI, NETO, Net Wait, File Finish, etc.
The process is waiting for service from another machine, over the Chaosnet.
Typically the other machine is a file server such as the Al Lab timesharing system.

Underneath the who-line are threc run-lights, small horizontal bars which flicker on and off.
" The one on the right, approximately under the process state, is there when the processor is
running. The one in the middle is there when the disk is runping. The one to the left lights up
when the garbage-collector is running.

Above the who-line there is a line of mouse-documentation, which is displayed in inverse
video to make it easy to move your cyes to it from someplace else on the screen. This line tclls
you what the buttons on the mouse would do if you clicked them with the mouse where it
currently is. If the line is blank, it means the default mouse buttons are in effect; clicking Left
will sclect the window pointed-to, and clicking Right will get you the system menu (these are
explained later).

2.1.3 Blinkers and Cursors

Scattered around the display are markers of various shapes and dynamic characteristics. They
are all called blinkers for historical reasons, although only some of them blink.

Onec blinker is associated with the mouse: when you slide the mouse along a surface, that
blinker moves in a corresponding dircction. When the mouse is moved very’ rapidly, the mouse
blinker gets big like Godzilla in order to maintain visibility. Small children should be taken out
of the room before demonstrating this frightening feature.

Each window on the display normally keeps track of a position called the cursor, which is the
place at which text will next be displayed in the window, The cursor is alimost always marked by
a rectangular blinker. In the sclected window, this blinker flashes with a period of about half a
second. This is how you tell at a glance which window is sclected.

Operating the Lisp Machine ‘ 7 - Using the Mouse

Sometimes when the Lisp Machine is very busy. the blinkers will falter because the program
responsible for maintaining them is not getting run regularly. This does not indicate a
malfunction but is part of the normal behavior of the Lisp Machine.

2.2 Using the Mouse

One blinker is always associated with the mouse, and whenever the mouse is moved, this
blinker moves in a corresponding fashion. The blinker controlled by the mouse is often called the
mouse Cursor.

At any given moment, some program is listening to the mouse and is responsible for the
appcarance of the mouse cursor, the way in which it moves around, and what happens when the
mouse buttons are pressed. You can tell who is listening to the mouse by looking at the shape of
the mouse cursor. The cursor may change shape as you move it around the display, indicating
that jurisdiction over the mousc is passing from one program to another. Also, individual
programs may vary the shape of the mouse cursor to show exactly what functions are available in
a particular context. Sce chapter 10, page 40. ’

2.2.1 Pointing at Something with the Mouse

The mousc is almost always used as a pointing device. One uses the mouse to indicate
somcthing on the display, and then one clicks the mouse buttons to specify an operation to be
performed on or with the thing indicated.

Graphics-oriented programs may simply use the mousc as a device for indicating positions on
the screen. One could imagine using the mouse to specify two points to be connected by a line,
for example. -

More often, however, the mouse is used to point to distinctly displayed objects on the screen.
In many cascs, an object thus indicated responds by changing its appearance in some way. Such
objects are mouse-sensitive. The system convention is that when the mouse is pointing at or near
a mouse-sensitive object, an outline is drawn around that object.

2.2.2 Clicking the Mouse

When you click a mouse button while the mouse is pointing at a mouse-sensitive object, the
response to the mouse buttons depends on that object. Otherwise the response depends on the
window that the mouse is pointing at. Often the shape of the mouse cursor is used as a clue to
what the mousc buttons will do. Generally the mouse-documentation line at the bottom of the
screen will also give a brief reminder of what the mouse buttons will do.

Sometimes, clicking the mouse buttons doces not do something to the object indicated by the
mouse, but rather calls up a menu of available operations. In this case options offered by the
menu may pertain to the object that the mouse was pointing at, or they may be more general
operations. Menus are discussed in detail below.,

Manipulating Windows -8 Opcrating the Lisp Machine

Although the usage of the mouse buttons varies depending on what the mouse is pointing at,
there are system-wide conventions that most programs adhere to. Generally the Left button on
the mouse will do something simple, while the Right button will do something more complicated,
offering options and choices that the beginning uscr probably does not need to worry about. The
usc of the Middle button is less standardized.

[f there arc several things you might mean by pointing to a mousc-sensitive object and -
clicking, typicalty the Right button will give you a menu of operations from which you can
choose, and the Left button will do the most "obvious" thing. If there is no "obvious" choice, it
will generally do the last thing you chose in the same circumstances with the Right button. If
there is only one thing you could mean by clicking, no distinction will be made among the three
buttons.

The system convention is that if there isn’t anything better for the mouse buttons to do,
clicking 1.cft sclects the window the mouse is pointing at (see scction 2.3.4, page 11) and clicking
Right invokes the System Menu (see scction 232, page 9). In this case, the ousec-
documentation line at the bottom of the screen will be blank.

The following sections discuss the things you can do by clicking the mouse in more detail.

2.3 Manipulating Windows

When you step up to a free Lisp Machine, a window of the Lisp Listener type will £l the
whole display. You can tell from the rectangular blinker ncar the upper left corner that this
window is selected. The Lisp Listener window is used to talk to the Lisp interpreter. Its use is
described in the chapter "The Lisp Listener” (chapter 3, page 19). If you want to start using
Lisp as soon as possible, you can read that chapter now, as it does not depend on any of the
others.

As you use the Lisp Machine, you may create new windows, reselect old ones, and move
windows around the screen or reshape them to suit your taste. This section describes how these
operations may be performed.

2.3.1 Menus

A particularly common and uscful kind of window is the .menu. Menus arc windows that
contain the names of several options. These options are mouse-sensitive, and you select one by
pointing at it with the mouse and clicking.

Many nienus are invisible unless it is time to select an optien from them. Then they pop up,
or appear suddenly on top of some previous display, obscuring what was there before. After you
select an option with the mouse, the menu disappears and the operation that yeu specified is
performed. If you don’t want to sclect any of the options, you can simply move the mouse far
out of the menu and it will disappear. When this is not the case, the menu will contain the
word ABORT; clicking on that will make it disappear.

Operating the Lisp Machine 9 Manipulating Windows

2.3.2 The System Menu

One important and useful menu is the system menu. It has a repertoire of operations that
mostly have to do with windows. You can almost always conjurc up a system menu by pointing
at some place on the screen and clicking Double Right. The system incnu will appear at the spot
you pointed to. The mouse cursor appears on the system menu as a little cross.

If the mouse cursor is an arrow pointing North by Northwest you can get the system menu
by clicking cither Right Single or Right Double.

To select an operation from the system menu, point at it with the mouse and click Left or
Right. If you call up the system menu by mistake, as with most menus you can dismiss it
without selecting anything by simply moving the mouse far off the menu. This also works for
most other kinds of pop-up menus.

This subsection describes what the various options on the system menu do. Since this is
designed as a quick reference, unfamiliar vocabulary may appear. If you don’t understand
something, it is probably explained elsewhere in this document.

Create This allows you to create a new window. The system will ask you what kind of
window you want and where to put it on the screen. See section 2.3.6, page 13
for the details.

Select The system menu is replaced by a menu whose options are all the windows
C currently sclectable. When you pick one with the mouse, that window becomes
selected. .
Inspect The Inspector is invoked. Sec chapter 5, page 27.
Trace The function-tracing system is invoked (sce trace in the Lisp machine manual).

First a small window appears in which you are asked for the name of the function
to be traced. Then a menu of options to the trace system appears. After selecting
which trace features you want, click on Do It to do it. If you decide you don't
want to do it after all, click on Abort.

Split Screen This is a convenient way to divide the screen arca among several windows. See
section 2.3.8, page 14 for the details.

Layouts The system menu is replaced by a menu containing at least the options Just Lisp
and Save This. If you choose Just Lisp, an idle Lisp Listener will be picked,
expanded to cover the whole screen, and selected. If you choose Save This, the
current configuration of exposed windows will be remembered. You w11] be
prompted for a name to remember the configuration under.

All of the previously remembered layouts will-appear in future Layouts menus, If
you pick that option from the Layouts menu, that layout will be restored to the
screen,

Edit Screen Invokes the screen cditor, which allows you to move windows around in various
ways. Sce section 2.3.12, page 16.

Other The system menu is replaced by another meau with more options on it. 'This
menu i an extension of the system menu, and its options are documented fully in

Manipulating Windows 10 Operating the Lisp Machine

Arrest

tn-Arrest

Reset

Kill

Emergency Braak

Refresh

the remaining part of this table.

Often a window has a process associated with it in some way. Pointing the mouse

at a window, calling up a systera menu, and clicking on "Arrest” halts the
© process associated with that window.,

Pointing at a window, calling a system menu, and clicking on "Un-Arrest” starts
the process associated with that window from where it left off, if it was stopped
by mousing "Arrest” from the system menu. ‘There are other reasons for a
process to be stopped, however, and this will not undo all of them. See "Arrest"”
above, and also sce the "Index to Function Keys" under "TERMINAL A" (page
36).

Pointing at a window, calling a system menu, and clicking on "Reset" starts the
process assoclated with that window from scratch, re-evaluating that process’ initial
form. Whatever program the process had been running is thrown out of. Before
the reset actually happens, a window will pop up asking you to confirm the
operation; answer yes by clicking the mouse or no by moving it away from the
confirmation window.

Destroys the window that the mouse was pointing to when the system menu was
summoned. Before the kill actually happens, a window will pop up asking you to
confirm the operation; answer yes by clicking the mouse or no by moving it away
from the confirmation window.

Clicking on "Emergency Break" is the same as typing "TERMINAL CALL". It
gets you to the cold-load stream where there is a Lisp interpreter running that
docs not depend on the window system. Sce the "Index to Function Keys" under
"TERMINAL CALL" (page 37). 'This function is accessible from both the keyboard
and the mouse so that if you break the software for one of them you still have a
chance of getting to the cold-load strcam and fixing it.

Refreshes the display on the window that the mouse was pointing to when the
system menu was summoned. Useful when something dark and sinister has
munged your screen.

Set Mouse Screen

The window system’s jurisdiction extends not only to the main black-and-white
monitor, but_to any other bit-raster monitors that are connccted to the Lisp
Machine, such as a color monitor. However, in order to manipulate windows on
another screen, the mouse must somchow be moved to that screen. If you pick
the Set Mouse Screen option from the system menu, and there is more than one
screen connected to the Lisp Machine, the mouse will be moved onto another
screen. If you click Left on Set Mouse Screen, the system will pick another
screen (this is uscful when there are only two). If you click Right, the system
menu will be replaced by a menu whose options arc the names of the various
screens. . When you pick one of these screens, the mouse will move to that screen.

Operating the Lisp Machine 11 Manipulating Windows

2.3.3 Notification

When certain asynchronous events occur, unrelated to what you are currently doing with the
sclected window, the system notifics you by beeping and displaying an explanatory message. Such
an event might be an error in a process whose window is not exposed, an error or other attempt
o type out by a "background” process which has no associated window, or an attempt to type
out on a deexposed window of a kind which notifies rather than just waiting for you to expose it.
The system notifies you in one of wwo ways, depending on what windows are currently on your
screen.

One way that you can be notified is by the appearance of a message enclosed in square
brackets. This method is used when the selected window is a Lisp listener, or any other type of
window that accepts notifications. For instance, in the editor notifications arc printed this way in
the "ccho area” below the mode line. If the notification informs you of a window waiting to type
out or 1o tell you about an error incurred by some program, then you can select that window at
any time by typing TERMINAL 0 S, or ESC 0 S on the old Keyboards. You can return from
there to your original window by typing TERMINAL S, or ESC S on the old keyboards. Sece the
scction on “"Sclecting a Window" (section 2.3.5, page 12) for further details.

The other way you can be notified is by the popping-up of a small window with the message
displayed in it. This happens when there is no good place on the screen to print the message. In
this case you point the mouse at the notification window and click the [eft button, at which
point the notification will disappear and the associated window which is waiting to type out (if
any) will appear. Typing any normal key (typically space) will get rid of the notification and
rcturn you to the window you were in when the notification popped up. Alternatively,
TERMINAL O S will select the interesting window, then TERMINAL S will reselect the window
that you were typing at when the notification occurred. Sclecting that window with the mouse by
clicking Left at it also works.

If a notification pops up while you are typing, the system saves your typing in the window
you were typing at before the notification popped up. After beeping, it gives you a second or
two to notice and stop typing before it listens to the keyboard; at this point if you hit a key this
means that you have rcad the notification and 'want it to go away now.

Notifications are saved. If you want to see old notifications again, call the function tv:print-
notifications, which will print each notification with the time that it occurred. This can be useful
wiien a notification is accidentally crased before you have had time to read it.

2.3.4 Selecting a Window

There are several ways to cause a particular window to become selected. If any part of the
desired window is visible on the screen, you can select it by pointing at it with the mouse and
clicking Left. If the desired window is completely invisible, you can call up a system menu and
pick the "Select" option. ‘The system menu will be replaced by a menu of all the currently
selectable windows. Pick the one you want by clicking Left on it.

Manipulating Windows 12 Opcrating the Lisp Machine

When a window is selected, it will become exposed if it was not exposed already. If the
sclected window has a standard rectangular blinker, the blinker will wake up and start to flash.
The window is now fully awake and anything you type will be directed to it.

2.3.5 More Advanced YWindow Selection

All the currently selectable windows are arranged in a kind of stack with the selected window
on top. This has no relation to the arrangement of windows on the display, but rather refers to
the way the window system keeps track of sclectable windows. When you sclect a window with
the mouse, it is dredged up and put on top of the stack. The windows are thus arranged with
the most recently sclected ones near the top of the stack. If you type TERMINAL 1 S, the
currently selected window will be moved to the bottom, and the next most recently sclected
window will come to the top and be selccted. Repeatedly typing TERMINAL 1 S will select each
of the selectable windows in turn.

Typing TERMINAL - S (or TERMINAL -1 S: the two arc cquivalent) will drag the window
on the bottom of the stack to the top. Repeatedly typing TERMINAL - S will select each of the
selectable windows in reverse order. Note that TERMINAL 1 S and TERMINAL - S do not alter
the cyclic order of the selectable windows.

You can select any sclectable window with some variant of the TERMINAL S command. To
sclect the nth window in the stack, where the currently selected window is considered the first,
type TERMINAL » S. 'This is just like sclecting that window with the "Sclect” option to the
system menu. The window in question is extracted from the stack and pushed on top.

Typing TERMINAL 2 S repeatedly flips back and forth between the two top windows on the
stack. When you type TERMINAL S with no argument, the argument defaults to 2, and this is
the behavior you get. Typing TERMINAL 3 S repeatedly cycles through the top three windows
on the stack, and so on. If there are £ sclectable windows, giving TERMINAL S an argument
larger than k is the same as giving an argument of k, which is the same as giving an argument
of -1; it brings up the "oldest” window.

Giving TERMINAL S a negative argument (other than -1, which was discussed above) of -k
takes the currently sclected window and stashes it in the kth slot down, bringing the k-1 windows
bencath it up. The window that was in sccond position becomes Top Dog and is selected.
Repeated & times, this cycles through the top & windows on the stack in reverse order. This is
exactly the inverse of a positive argument. TERMINAL » S and TERMINAL -n S undo each
other.

There is also a way to select a window that is trying to talk to you. When a deexposed
window has a process doing something interesting in it, such as waiting to type out or waiting to
tell you about an error it encountered, you can select it by typing TERMINAL 0 S. When a
window gocs into such a condition, it sends you a notification (see section 2.3.3, page 11). When
there is no window in such a condition, TERMINAL 0 S docs nothing. When there is moré than
one such window, the first one found in the stack will be selected. Repeatedly typing TERMINAL
0 S will get all of them.

Operating the Lisp Machine 13 Manipulating Windows

2.3.6 Creating New Windows

~ Starting up new Editors, Lisp Listeners, Supdups. and so on, is done by crcating new
windows of the appropriate type. This section explains one way to create new windows of various
types.

Call up a system menu and pick the "Create” option. The system menu will be replaced by
a menu of window types to create. At present there are six kinds of windows on this menu:
Supdup, Telnet, Lisp, Lisp (Edit), Edit. and Peck. There is also Any, which allows you to type
in the flavor of window you want from the keyboard. Uscr-defined windows may be added to
this menu through the variable tv:default-window-types -item-list, so you may scc more choices
in the menu than those listed here. The various window types are explained in other scctions of
this document.

Click on the type of window you wish to create. The menu will vanish and the mouse
blinker will change into an upper left corner bracket. With this corner bracket, point to the spot
on the screen where you want the upper left corner of the new window to be and click Left.
The bracket will freeze on that spot in order to mark it, and the mouse blinker will change into
a lower right corner bracket. Use this bracket in the same way to define the lower right corner of
the new window. The new window will take shape between the corners thus delimited.

To make the new window occupy the whole screen, simply place the lower right corner above
or to the left of the upper left corner.

When you are giving the system a rectangle with the mouse in this way, clicking Left will
place the bracket where it is now, while clicking Right will place it at the nearest "suitable”
place. The exact definition of "suitable™ is complicated, but it trics to put it at a ncarby window
edge or corner, if onc is close enough. Note that the bracket will only move in the direction it
points, thus you point at a corner of a rectangle from inside the rectangle.

Usually clicking Middle will abort the whole operation. Click Middle if you decide you don’t
want to create a window after all.

Whenever you create a new window, it is immediately selected, and pushed onto the stack of
sclectable windows. Usually the new window will stay around on that stack as a sclectable
window until it is explicitly destroyed.

Another way that windows get created is explained in the next section.

Manipulating Windows ' 14 Operating the Lisp Machine

2.3.7 Selecting a System

The SYSTEM function key can be used to find a window of a particular type, and if one
~docs not exist, to create one.
The SYSTEM key should be followed by one of these code letters:
E Editor,
| Inspector.
Lisp Listener.
Mail-reading system.
Peek.
Supdup.

- W v T r

Telnet.

When you type SYSTEM followed by one of these letters, the stack of selectable windows is
scanned, from the top down, for a window of the specified type. As soon as one is found, it is
sclected and moved 1o the top of the stack. If there are no windows of the specified type, one is
created.

If you hold down CTRL while typing the code letter, a new window of that type will he
created even if one already exists.

In the event that the currently selected window is itself of the specified type, it is moved to
the bottom of the stack before the scan begins. Typing SYSTEM L repcatedly, for example,
cycles through all selectable Lisp Listener windows. If there is onlv onc window of the specified
type, and it is current, it remains current and the system beeps to tell you that you probably
goofed.

Invoking the function ed from a Lisp Listener is almost exactly the same as typing SYSTEM
E. The samc Editor window gets selected in both cases. One minor difference is that the next
time that particular Lisp Listener window is selected, the first thing that will happen is that the
ed function will return t. (Actually, the ed function returns t right away, but the value can’t be
typed out until the Lisp listener window is exposed again.)

Typing CTRL/Z to an Editor is not the same as typing SYSTEM L. SYSTEM L gcts you to
the most-recently selected Lisp Listener, while CTRL/Z gets you to the last place you ran the ed
function.

Additional code letters for the SYSTEM key can be added through the Split Screen
command in the system menu, or via the variable tv:*system-keys*. ‘Iyping SYSTEM HELP
will always tell you all the available choices.

Opcrating the Lisp Machine 15 Manipulating Windows

2.3.8 Splitting the Screen

The Split Screen option of the system menu is a convenient way to divide the screen area
among scveral windows. If you sclect Split Screen, the system menu is replaced by a menu
whose options are detailed below. By selecting items from this menu, the user specifies a set of
windows that are to share the screen. Typically these are newly-created windows, but there are
also options t¢ incorporate existing windows into a split screen arrangement. As the specification
proceeds, a small diagram of the proposed display appears next to the Split Screen menu and is
updated as you make selections.

Supdup Incorporate a new Supdup window into the split-screen layout. Sec chapter 8§,
page 34.

Telnet Incorporate a new Telnet window into the split-screen layout. See chapter 8, page
34.

lisp Incorporate a new Lisp Listener window into the split-screen layout. See chapter
3, page 19.

Lisp (Edit) Incorporate a new Editing Lisp Listencr window into the split-screen layout. See
chapter 3, page 19.

Edit Incorporate a new Editor window into the split-screcn layout. See chapter 4, page
21,

Peek Incorporate a new Pcek window into the split-screen layout. See chapter 7, page
32.

Any Will ask what flavor of new window you want.

Existing Window

A menu will pop up containing the names of all the sclectable windows. Pick one
with the mouse, and it will be incorporated into the split-screen layout.

Existing Lisp An idle Lisp Listener will be chosen and incorporated into the split-screen layout.
Since it doesn’t matter which one is incorporated, the user is not asked to pick
one. '

Plain Window Incorporate a new window with no interesting features at all.

Trace & Error Incorporate a new window which will be used for output from the trace package
and interaction with the error-handler. This allows you to use those debugging
facilitics without interfering with the window in which you are running your
program, which might contain a graphic display, for example.

Trace Incorporate a new window which receives just trace output.
Error Incorporate a new window which is used just for error-handler interaction.
Frame The default is to split the screen simply by creating windows with the appropriate

sizes. shapes, and positions. If you seclect the Frame option, however, the
windows in the split-screen layout will be bound together as inferiors of a frame
(sce section 2.3.10, page 16). The main effect of this is that they will be exposed
and de-exposed together: selecting one of the windows. for instance with the
Select operation in the system menn, will expose the whole set.

Manipulating Windows 16 Operating the Lisp Machine

Sclecting Frame pops up an additional window which lets you specify parameters
for the frame: whether it should exist (so you can turn it off if you decide you
don’t want it), its name, and a key which can be typed afier the SYSTEM key to
select it. You can -change-one of these parameters: by pointing the mouse at-it, so
that a box appears around it, and clicking.

Mouse Corners
Allows you to usc the mouse to point to the upper-left and lower-right corners of
the screen area to be divided among the windows you select, just as in the Create
operation (see page 13). 1f you don’t use Mouse Corners, the entire screen will

be split.
Undo Remove the last window you added to the layout you are building up.
Do it Create all the windows that need to be created, and assemble them with the other

specified windows into the split-screen Jayout. Expose the entire layout, and select
the first selectable window that was specified.

Abort Flush the proposed layout and go back to the previously sclected window. Use
this if you decide you didn’t really want to split the screen after all.

2.3.9 Destroying a Window

To destroy a window, point at it with the mouse and click Double Right. This calls up a
system nicnu. Pick the "Other” option. The system menu will be replaced with another menu
containing additional options. This "Other” menu is in some sense the second page of the system
menu. To kill the window vou indicated, choose the "Kill" option from this auxiliary menu.
You will be asked to confirm that you really wanted to kill that window by the popping-up of a
small confirmation window. To answer yes, click the mouse on the confirmation window. To
answer no, move the mouse away from the window so that it disappears.

2.3.10 Frames

Sometimes windows are grouped into frames. A frame is a window which acts like a screen;
it can have several windows displayed on it. The purpose of frames is to group rclated windows
together so that they can be manipulated as a unit, while still keeping them separate so that each
window can do a different thing.

Programs that have a display made up of several windows always group them into a frame.
The editor, the inspector, and the window error-handler are examples.

Operating the Lisp Machine 17 Manipulating Windows

2.3.11 Invoking the Inspector

There are three ways to enter the Inspector system. You may type SYSTEM |, the function
inspect may be invoked from a Lisp Listener, or the "Inspect” option may be chosen from the
system menu. For full documentation of the inspector, sec chapter 5, page 27.

2.3.12 The Screen Editor

‘The screen editor is a mousc-controlled program for manipulating the layout of your screen.
It can be used to move windows around, to change the size and shape of windows, and to
change which windows are displayed.

The screen editor is gotten from the system menu by clicking on Edit Screen. Ordinarily it
will enter the screen cditor immediately, editing the whole screen. However, if you select Edit
Screen by clicking Right (indicating you want the hairier version of the commuand), and the
window that the mousc is in is a frame, you have the option of editing ‘that frame or the whole
screen; another pop-up menu will appear asking you to choose.

The screen editor works by displaying a menu of commands. You select a command by
clicking on it with the mouse and the menu disappears. If you need to point to any windows,
edges. or corners needed as argumients to the command, the screen-editor will prompt you with a
message in the mousc-documentation line above the who-line and will change the shape of the
meuse cursor. . When you are to point to a window, the mouse cursor changes to a small reticule,
which should be positioned over the desired window.

When the screen editor is asking you to point to something, clicking Left will select what the
mousc is pointing at. Clicking either of the other two buttons will abort the current command
and bring back the screen editor’s command menu.

After exccuting the command, the screen editor’s menu will appear again. To exit the screen
editor, choose "Exit",

This is a summary of the options in the Edit Screen menu.

Bury Bury the specified window, deexposing it and allowing whatever display it was
obscuring to be seen.

Expose Completely expose the specified window. This is used for displaying windows that
have been partially obscured by others.

Expose (menu) ,
Like Exposc but pops up a menu of all active deexposed windows. This is good
for exposing a window which you can’t point 1o bccause you can’t sce any part of
it.

Create Create a new window inferior to the frame or screen you are cditing. 'This is just
like the Create operation in the system menu (sce scction 2.3.6, page 13), cxcept
that if you are cditing a frame the choice of window types to create may be
different. or there may be no choice at all. FFor instance, when screen-editing an
cditor fiame, you ate only allowed to create cditor windows.

Manipulating Windows ' 18 Opcerating the Lisp Machine

Create (expand)

Kili

Exit
Undo

Move Window

Reshape

Move Multiple

Mave Single

This is the same as Create, except that instead of prompting you for an upper-left
corner and a lower-right corner, it only prompts you for a single point. The
window is created in such a way that it occupies any unused area surrounding that
point. An unused area is any part of the screen that doesn’t contain an exposed
window; it may contain nothing (blank) or it may contain a visible portion of a
decxposed window.

Destroy the specified window. Before the kill actually happens, a window will
pop up asking you to confirm the operation; answer yes by clicking the mouse or
no by moving it away from the confirmation window.

Exit the Screen Editor.

Attempt to reverse the last Edit Screen operation. Kill cannot be undone.
Undoing Create simply burics the window rather than killing it. Undo can itself
be undone,

Kecping its size and shape constant, move the specified window to another place
on the display. After you pick a window, a rectangle the size and shape of the
window will follow the mouse around. Click Left to move the window to where
the rectangle is; click Middle or Right to abort and leave the window where it is.
If the window cannot be moved to where you tell it, you will get a beep.

The user is asked to pick a window. and then is prompted to reposition the upper
left and lower right corners of that window (see page 13).

The mouse blinker becomes a Move blinker which is used for pointing at exposed
corners and edges of windows. (See Move Single.) Clicking Left at a feature adds
that feature to a list of things to be moved. Features that are on the list are
highlighted. If a feature is already a member of the list, it is removed when you
click at it.

When you have selected the features you wish to move, click Right (meaning "Do
1t"). All of the features are moved together, and nailed down in a new location
at the next Left or Right click.

Clicking Left Long at a feature is the same as clicking Left, but it also
comunences the move.

If you want to abort the operation, cither while sclecting features or while moving
them. click Middle. This returns to the screen editor’s command menu and leaves
all the features where they were originally.

When one of a set of coincident edges or corners is picked to be added to the
list, the rest are also added. This facilitates the rearrangement of groups of
adjacent windows. If the aser does not desire to do this, the extra features can
be deleted from the list of things to be moved by clicking Left at them in the
usual way.

The mouse blinker becomes a Move blinker which is used for pointing at exposed
cotners and odees of windows, The Move blinker i@ Yarge artov abich points at
the feature inquestion Tt always points at features from inside the window with

Operating the Lisp Machine ' 19 Maripulating Windows

which that feature is associated. It has two states: pointing at an edge and
pointing at a corner. When pointing at an edge, it points stcadily in a direction
perpendicular to that edge. When pointing at a corner, the arrow rotates
smoothly as it is moved, so that it continues to point directly at the corner.

Using the Move blinker, select a feature by clicking Left at it. The feature will
be highlighted in boldface, and the Move blinker wili vanish. The feature will
now follow the mouse to a new position. Another click Left fixes it in the new
position. Clicking Middle- aborts the move and leaves the feature where it was
originally,

Expand Window

Expand All

Reshape the specified window so that it occupies any unused area surrounding it.
An unused area is any part of the screen that doesn’t contain an exposed window;
it may contain nothing (blank) or it may contain a visible portion of a deexposed
window.

Reshape all the currently exposed windows so that together they occupy as much
of the screen as possible, subject to the restriction that no window gives up any
of its former territory (all its cdges move outward if at all). There are several
possible algorithms: the one implemented scems to do the right thing most of the
time, and is stable with respect to itself, so that if Expand All is called twice in
succession, the sccond invocation does nothing.

‘The Lisp Listener D 2 Operating the Lisp Machine

3. The Lisp Listenér :

A Lisp Listener window allows you to talk to the Lisp Machine Lisp interpreter. When you
cold-boot a- Lisp Machine, a newly-created Lisp Listener window is the first thing you see, filling
the whole display except for the who-line at the bottom. When you type to a new Lisp Listener,
you arc typing to a read-eval-print loop of the usual kind. Most simple user programs are run
from a Lisp Listener. v

The mouse always points North by Northwest when it is pointing at a Lisp Listener window.
This means that the system meny can be summoned by a single click Right and there are no
unusual functions on the mouse buttons.

All of the interesting things that can be done from a Lisp Listener are donc by typing Lisp
forms. Consult the Lisp Maching Manual for further details.

3.1 The Editing Lisp Listener

The Editing Lisp Listener is a Lisp listener which allows you to edit your input with all the
commands of the editor, rather than just Rubout. (The editor is discussed in the ncxt chapter.)
The Lisp (Edit) option of the Create system-menu command is used to create an cditing Lisp
listener (sce section 2.3.6, page 13), If you type Lisp forms at this window, the forms will be
evaluated and the value will be printed; exactly like the way a regular Lisp Listener works.

If you mistype a character, you can rub it out exactly as you would in an ordinary Lisp
Listener. However, you may also use all the correcting features of the Fditor: if you mistype a
form, you can edit it with the editor functions, inscrting characters, deleting words and forms,
exchanging characters, words, and forms, and so on. You can go back and retrieve earlier
elements (input or output) of your conversation with the interpreter and insert them into the form
you are¢ currently typing.

Fach time a complete form is read, it is put into the editor’s kill ring. This means that the
CTRL/Y command will retrieve -the last form. You may edit it and then cvaluate the resulting
modified form. As usual, previous forms may be retrieved by giving CTRL/Y a numeric
argument or by typing META/Y. ’

You can also use the specific features of Lisp Mode, such as automatic indentation, printing
of functions’ argument names (CTRL/SHIFT/A), and parenthesis matching.

Input is complete and evaluation takes place whenever you finish typing a complete Lisp form,
or a complete cxpression of whatever syntax is accepted by the program you are typing at, To
“finish typing" is to type a printing character when the cursor is at the end of the buffer (not in
the middle of editing something) and- that character completes the expression (it might be a close
parcnthesis). ' '

When you cdit your input you may. complete an expression by a means other than finishing
typing it. For instance, vyou may delete an unmatched open parenthesis, causing a close
parenthesis at the end of the buffer to complete an expression when it did not before. In this

Operating the Lisp Machine 21 The Editing Lisp Listener

case input does not automatically complete, since you might not be finished editing. You might
create a syntactically-complete S-expression temporarily while editing a larger expression, and you
would not want the Lisp listener to go off half-cocked and read it. For instance, you might yank
in a complete cxpression with CTRL/Y, intending to edit it before sending it off to the reader.

Once you are done editing, vou tell the editor that you are done with the END key (or
CTRL/RETURN). The exact dctails depend on whether there is a region. [f there is not, the
cursor simply jumps to the end of the buffer and the characters that have not yet been read are
relcased to the Lisp listener for reading.

If there is a region, it is copied to the end of the buffer, and the editing Lisp listener
pretends that you had just typed it in. If you had been in the middle of typing a form at the
end of the buffer, that old form is flushed and replaced by the region you specified. If the
region does not contain a complete form, it is left for you to finish it after it has been copied to
the end of the buffer. If the region contains exactly one complete form, it will be copied to the
end of the buffer and evaluated. If the region contains several forms, they will be moved to the
end of the buffer and evaluated onc at a time, so that the results of the evaluations will be
inserted between the forms.

All of the Lisp Mode commands for getting lines, forms, and DEFUNs into the current
region are useful in conjunction with the END key.

If you use an editor command that requires the echo area, for example CTRL/S (Search), an
echo arca will temporarily pop up over the bottom several lines of the window.

You may save a transcript of part or all of your session in a file by marking the desired
portion as a region and then issuing the META/X Write Region command.

All editors share the same kill ring,'so text can be moved from one editing Lisp listener to
another, or between an editing Lisp listener and the ZMacs editor, by putting it in the kill ring,
selecting another window, and yanking it back.

The Editor 22 Operating the Lisp Machine

4. The Editor

When an Editor window is selected, you are talking to ZMacs, the Lisp Machine’s display-
oricnted-editor. - ZMacs is an cxtremely sophisticated - program. with - hundreds. of uscful features.
The beginning user can pretend that Z,Maas 15 Emacs (the pdp-10 display editor) and be right
most of the time.

The Lisp function ed sclects an Editor window. One (at least) has alrcady been created by
default when you cold-boot the machine. Other ways to sclect an Editor window include typing
SYSTEM E and calling up a system menu and explicitly sclecting an Editor.

The Editor is an extremely large and rich system, and should get a document all its own.
However, we discuss here some aspects of using the mouse in the Editor, so as to have most of
the mouse functions under onc roof.

4.1 Using the Mouse in the Editor

4.1.1 The Mouse and the Cursor

When the mouse is pointing to the central portion of an cxposed Editor window, the mouse
blinker takes the form of an arrow pointing North by Northeast. When the mouse cursor has this
shape, there is always a character nearby that is flashing. A blank space or newline is flashed by
blinking an underline underneath it. This is the character the mouse is pointing to.

You can bring the editor cursor to the mouse by clicking Left; alternatively you can bring the
mouse to the cursor by clicking Left Double.

If you click Left Hold, not only will the cursor come to the moused character, but a mark
will be set there as soon as the mouse is moved off the original character. As long as the left
mouse button is held down, the cursor will continue to follow the mouse, but the mark will
remain where it was placed. This enables the user to delimit an arbitrary region, so that the
region-manipulation commands can be used. The current region is marked by underlining, so that
you can sec its exact scope. .

If you click Ieft Double Hold (like a Morse Code "A": dit-dah), the mouse will move to
the cursor and grab it, so that when the mouse moves, the cursor will move with it. This does
not set any mark, but merely allows you to slide the cursor around the buffer. When you release
the mouse button, the mouse will let go of the blinker.

Operating the Lisp Machine 23 Using the Mouse in the Editor

4.1.2 The Mouse and the Region

Very often vou will want to sclect some particular word, line, sentence, or Lisp form by
setting the region around it. The middle mouse button is very uscful for manipulating the region.
Clicking Middle seis the region in various ways depending on what the mouse is pointing at.

To select a word, point to one of the letters of the word and click Middle. The Editor will
always try to include a space in the region with the specified word. If it has a choice, the space
to the right of the word will be included, but sometimes it will be forced to choose the space to
the left, because the word appears just before some punctuation mark. if for some reason you
especially want the space on the left included, rather than the space on the right, point to that
space when you click Middle, rather than to a letter of the word.

To select a line, point at the end of the line and click Middle. To sclect a sentence, point to
the period at the end of the sentence and click Middle. Clicking Middle on either of a pair of
balanced parentheses will select all the text between (and including) them.

The only difference between clicking Middle Hold and clicking Middle is that the region
moves with the mouse as long as the middle button is held down. The region chases the mouse,
by tumns encoinpassing words, sentences, lincs, or parenthesized text, depending on where the
mouse i pointing at any particular moment. When the region has been properly placed, release
the middle button.

Clicking Middle Double performs some of the operations normally associated with CTRL/W,
META/W. CTRL/Y, and META/Y. Its exact behavior is fairly involved, and depends on
whether or not there is a region and on what the last command was.

If there is no region, the first Middle Double acts like a CTRL/Y and successive ones act like
META/Y, trying to insert at the current cursor position all the pieces of text which have recently
been deleted or saved, starting with the most recent and progressing backwards with each Middle
Double click.

If there is a region, the first Middle Double acts like META/W. This has the effect of
pushing the region onto the kill ring. At this point, the underline showing where the region is
disappears, showing that there is now no region. The next Middle Double click deletes the text
that had been underlined, like CTRL/W. From then on, Middie Double behaves as described in
the preceding paragraph.

4.1.3 The Editor Menu

Clicking Right Double in an Editor window calls up the system menu, as it does almost
everywhere.

Clicking Right (Single), however, calls up a menu of useful Editor operations. If you call up
this menu by mistake, vou can get rid of it simply by moving the mouse far off the menu.
Below are listed the options offered by the Editor menu, and what they do when you click Left
or Right on them,

Using the Mouse in the Editor 24 Operating the Lisp Machine

Arglist

Edit Definition

List Callers

List Functions

All the function names in the Editor window become mouse sensitive, and the
mouse cursor becomes an arrow pointing North. Clicking Left on the name of a
function causes the argument list from that function’s original definition to be
displayed below the mode line. You can also type the name of the function
whose argument list you want to see.

Prompts you to point to or type a function namne, just like the Arglist option, but
actually rcads the source file into an editor buffer, finds the definition of the
function, and allows you to edit the code.

Prompts you to point to or type a function name, just like the Arglist option, and
scans the current package for functions that call the specified function. The names
of these functions are listed, and CTRL/. can be used to cdit their definitions.

Prompts you for the name of an Editor buffer, and lists thc names of all the
functions defined in that buffer. The function names arc mouse-sensitive; clicking
Left jumps the editor cursor to that function definition. Clicking Right gives a
menu of possible operations.

List Buffers Lists all your Editor buffers. The buffer names are mouse-sensitive; clicking Left
selects that buffer, clicking Right gives a menu of things to do to that buffer.
Kill Or Save Buffers

Split Screen

Compile Defun

Indent Region

Displays a window with on¢ line for each editor buffer. To the right of each
buffer name are three choice-boxes, labelled Save, Kill, and UnMod. Clicking
the mouse on a choice-box selects that choice and puts an "X" in the box, or
gets rid of the "X" if there is one alrcady there. An "X" next to Save writes out
the file, next to Kill kills the buffer, and next to UnMod marks the buffer as not
neceding saving, like the META/~ command. Note that all the buffers that nced
to be saved have an "X" in their Save box initially. At the bottom are two
choice-boxes marked De It and Abort. Clicking on Do [t will go ahead and do
the file-saving, buffer-killing, and buffer-unmoding specified by the choice-boxes
you have marked. Clicking on Abort will forget the whole thing.

This is just like the Split Screen option of the system menu (see section 2.3.8,
page 15), but the options in this case are the names of all the Editor buffers,
"New Buffer”, "Find File", "Do It", and "Abort". "New Buffer" prompts for a
buffer name and "Find File” prompts for a file name.

Compiles the function the cursor is in. This is the same as CTRL/SHIFT/C.

Does the same thing as the TAB key on each line of the region. In Lisp mode
this corrects the indentation of all the lines.

Change Default Font

Changes the font of typed-in text. This is the same as CTRL/META/J. When
prompted "Font ID:" you may type HELP for help.

Change Font Region

Changes the font of the text in the region. This is the same as CTRL/X CTRL/J.
When prompted "Font 11" you may type HELP for help.

Operating the Lisp Machine 25 Using the Mouse in the Editor

Uppercase Region
Makes the alphabetic characters in the region all upper case.

Lowercase Region
Makes the alphabetic characters in the region all lower case.

Mouse Indent Rigidly '
Clicking this and holding down the button will allow you to change the
indentation of all the lines in the region. Moving the mouse to left or right while
holding the button down decreases or increases the amount of indentation.

Mouse Indent Under
Indents the current line to a specified place. You may point with the mouse to
the column where you want it indented and click Teft. Or you may type a string
on the keyboard; the line will be indented to line up with the beginning of the
most recent occurrence of that string previously in the buffer.

4.1.4 Scrolling

The Editor window really functions as a "window™ through which you can sec a part of a
larger object, the Editor buffer. Conceptually, the buffer continues invisibly above and below the
actual window.

The Editor window, and some other windows which display only a part of their conceptual
contents, have a feature called scrolling which allows the user to move the window’s view so as to
display any part of these contents,

The scrolling feature is really two distinct features, onc for scanning slowly through the buffer
and one for jumping around rapidly.

Toward the right side of the upper and lower cdge of the Fditor window is the scrolling zone.
If you try to move the mouse out of the window across this part of the window’s boundary, the
mouse will not leave the window, but its cursor will change into a very fat arrow pointing at the
edge you wicd to go over. For cxample, if you tricd to move the mouse out of the Editor
window through the rightmost part of the upper edge, the mouse cursor would not leave the
window, but would change into a fat arrow pointing up. If vou now continued to move the
mouse gently upwards, the mouse cursor would not move, but the text in the window would
slide down. New "text would appear at the top, and the text moving off the bottom edge of the
window would be lost to view. When you pull the mouse away from this edge, the mouse cursor
changes back to its normal Editor shape. :

The rightmost part of the bottom edge of the window behaves the same way, but of course
the fat arrow points down, and the text moves up as you scan downward.

The other scrolling feature is the scrofl bar. The left edge of the Editor window resists
violation in the same way as the scrolling zones de, but in this case the mouse cursor changes to
a double-hcaded arrow pointing up and down. In addition, a thin line appears somewhere along
the Ieft edge. just inside the border and parallel to it The length of this line and its position
with respect to the entire left edge are in proportion to the length and position of the Editos
window with respect to the entire Editor buifer,

Ztop mode 26 Operating the Lisp Machine

Sce section 10.1. page 40 for more information on scrolling.

4.2 Ztop mode

A Ztop buffer is a hybrid between a Lisp listener and the ZMacs editor. It is an interactive
alternative to more traditional progranuning cnvironments. ‘Traditionally. the Lisp programmer
shifts his attention back and forth between an Editor and a Lisp Listener. With Ztop, the
programmer has the power to manipulate his own conversation with the Lisp interpreter with all
the flexibility that the editor provides. By using multiple buffers, the program source file can be
in onc butfer and the interaction can be in another buffer.

Ztop mode is very similar to the editing Lisp listener described above. The difference is that
a Ztop buffer is an editor buffer, rather than a separate window, and. thercfore interacts more
closcly with the cditor. It is largely a matter of personal preference which you use.

To center Ztop mode, call up an Editor and get a new, cmpty buffer. Thert invoke the
extended command "Zitop Mode”. The mode line will change to reflect the fact that this buffer is
now in Ztop mode. If you type Lisp forms at Ztop, the forms will be evaluated and the value
will be printed, cxactly like the way a rcgular Lisp Listener works.

If you mistype a character, you can rub it out cxactly as you would in a Lisp lListener. But
Ztop has all the correcting features of the Editor: if you mistype a form, you can edit it with
the editor functions, inserting characters, deleting words and forms, exchanging characters, words
and forms, and so on. You can go back and retricve carlier elements of your conversation with
the interpreter and insert them into the form you are currently typing. Whenever you finish
typing a form, Ziop will evaluate it and print the value.

You can also use the specific features of Lisp Mode, such as automatic indentation, printing
of functions’ argument names, and parcnthesis matching.

4.2.1 The I-Beam

Sometimes Ztop will display a large slowly-blinking I-beam between two characters of the text. .
This is to show you how much of the typein has been read so far. Editing vou do before the I-
beam will not affect what the Lisp listener reads, while editing after the I-beam will. The I-Beam
appcars whenever you are actually cditing rather than simply typing in, except that the I-Beam is
suppressed if it would come out on top of the cursor.

Input is complete and cvaluation takes placc whenever you finish typing a complete S-
expression (assuming you are talking to the normal read-eval-print loop.) However, when there is
an I-Beam you may complete an S-expression by a means other than finishing typing it. For
instance, vou may delete an unmatched open parenthesis, causing a close parenthesis at the end
of the buffer to complete an S-expression when it did not before. In this case input does not
automatically complete, since you might not be done editing. You might create a syntactically-
complete S-expression temporarily while editing a larger S-expression, and you would not want
the Fisp listener o go oft halfcocked and read it. For instance. you might yank in a complete
Seexpression with GTRLZY. intending to edit it before sending it ofl o the reader.

Opcrating the Lisp Machine 27 Ztop mode

Once you are done editing, you tell the editor that you are done with the END key (or
CTRL./RETURN); the I-Beam is a reminder that you need to do this. The END key is used the
same way as in the editing Lisp listencr (sce page 21).

4.2.2 Leaving Ztop

You can leave Ztop by going to another Lditor buffer, or by leaving the Editor. In these
cases, the Ztop buffer will be left just as it was and you can re-cnter it and continue your session
at any time. The extended command "Select Last Ztop Buffer” can be used to do just that from
another cditor buffer.

Alternatively, you could leave Ztop by changing your mode to Lisp or Text. This would end
the Ztop scssion, and you could then edit your buffer normally. Of course, you can use the file-
writing commands to write out your buffer at any time, whether you are in Ztop mode or not.

The Inspector 28 Operating the Lisp Machine

5. The Inspector

The Inspector is a window-oriented program for poking around in data structures. When you
ask to inspect a particular object, its components arc displayed. What the "components” are
depends on the type of object; for example, the components of a list arc its clements, and those
of a symbol arc its value binding, function definition, and property list. The objects displayed on
the screen by the Inspector are mousc-sensitive; when you point the miouse at an object a box
appcars around it. Clicking a mouse button will do somcthing to that object, such as inspecting
it, modifying it, or giving it as the argument to a function.

The following documentation is on the current version. As this is still’ an evolving program, it
may change without notice.

The Inspector can be part of another program, such as the Window Error-Handler, or it can
be used “stand-alone”. ‘The stand-alone Inspector can be entered via the Inspect command in the
system meny, or by the inspect function which inspects its argument, if any.

The stand-alone Inspector is a frame consisting of a small interaction window on the top, a
history window and menu immediately below that, followed by some number of inspection
windows (three by default). Each inspection window can inspect a different object. When you
inspect an object it appears in the large window at the bottom, and the previously inspected
objects shift upward.

Other programs, such as the Window Error-Flandler, may utilize inspection and history
windows, and though the display will look the same, the handling of mousc buttons may depend
upon the particular program being run. The discussion below focuses primarily on the stand-alone
Inspcctor.

The history window maintains a list of all objects that have been inspected. It is usually kept
in LRU order—the least recently displayed object is at the top, and the most recently displayed
object is at the bottom. Any mouse sensitive object in the history window can be inspected by
clicking on it. There is a "linc region” at the left hand side of the history window, which allows
other operations. In the line region the mouse cursor changes to a rightward-pointing arrow.
Clicking Left in the line region inspects the object. This is sometimes uscful when the object is a
list and it is inconvenient to position the mouse at the open parcn. Clicking Middle deletes the
object from the history. The history window has a scroll bar at the far left, as well as scrolling
zones in the middle of its top and bottom cdges. The last three lines of the history are always
the objects being inspected in the three inspection windows.

The history window also maintaing a cache allowing quick redisplay of previously displayed
objects. This means that merely reinspecting an object will not reflect any changes in its state.
Clicking Middle in the linc region deletes the object from the cache as well as deleting it from
the history window. The DeCache command in the menu may be used to clcar everything from
the cache.

At the top of an inspection window is a label, which is the printed representation of the
object being inspected in that window, or else the words "a list" meaning that a list is. being
incpected. The main body of an inspection window is a display of the components of the abject.

Opcrating the Lisp Machine ‘ 29 The Inspector

labelled with their names if any. This display may be scrolled using the scroll bar on the left or
the <"more above" and "more below" scrolling zones at the top and bottom.

Clicking on any mousc sensitive cbject in an inspection window inspects that object. The
three mouse buttons have different meanings, though. Clicking Left inspects the object in the
bottom window. pushing the previous objects up. Clicking Middle inspects the object, but leaves
the source (namely, the object being inspected in the window in which the mouse was clicked) in
the second window from the bottom. Clicking Right trics to find and inspect the function
associated with the selected object (e.g. the function binding if a symbol was selected).

The inspection display that is chosen depends upon the type of the object:

Symbol The name, value. function, property list, and package of the symbol are
displayed. All but the name and package are modifiable.

List The list is displayed ground by the system grinder. Any piece of substructure is
selectable, and any “car" or atom in the list can be modified.

Instance The flavor of the instance, the method table, and the names and values of the
instance-variable slots are displayed. The instance-variables are maodifiable.

Closure, Entity
The function, and the names and values of the closed variables are displayed.
For an entity the type or class is displayed as well. The values of the closed
variables are modifiable.

Named structure ,
The names and values of the slots are displayed. The values are modifiable.

Array The leader of the array is displaved if present. For one dimensional arrays, the
clements of the array are also displayed. The clements are modifiable.
FEF The disassembled code is displayed.

Select Method The keyword/function pairs are shown, in alphabetical order by keyword. The
function associated with a keyword is scttable via the keyword.

Stack Frame This is a special internal type that is used by the window crror handler. It is
displayed as cither interpreted code (a list), or as a FEF with an arrow pointing
to the next instruction to be executed.

The interaction window is used to prompt the user and to receive input. If the user is not
being asked a question, then a read-eval-inspect loop is active. Forms typed will be cchoed in
the interaction window and evaluated. The result is not printed, but inspected instead. When the
user is prompted for input, usually due to having invoked a menu operation, any input being
typed at the read-eval-inspect loop is saved away and crased from the intcraction window.
When the interaction with the user is over, the input is re-cchoed and the user may continue to
type the form.

Some special keyboard characters are recognized when not in the middle of typing in a form.
Control-Z Exits and dcactivates the Inspector.

Break Runs a break Toop in the typeout window of the lower inspection pane.

“The Inspector 30 Operating the Lisp Machine

Quote Reads a form, evaluates it, and prints the result instead of inspecting it.

The menu is for infrequently used but useful commands:

Exit Equivalent to Control-Z. Exits the Inspector and deactivates the frame,
Return Similar to Exit, but allows selection of an object to be returned as the value of

the call to inspect.

Madity Allows simple editing of objects. Selecting Modify changes the mouse sensitivity
 of items on the screen to only include fields that are modifiable. In the typical
case of named slots, thc names arc the sensitive parts. When the ficld to modify
has been selected, a new value may be specified cither by typing a form to be
evaluated or by selecting any normally mouse selectable object with the mouse.
The object being modified is redisplayed. Clicking Right at any time aborts the
modification.

DeCache Flushes all knowledge about the insides of previously displayed objects and
redisplays the currently displayed objects.

Clear Clears out the history, the cache, and all the inspection windows.

Operating the Lisp Machine 31 The Debugger

6. The Debugger

6.1 The Error-Handler

Refer to section 26.2 of the Lisp Machine Manual, for now.

6.2 The Window Error-Handler

- This section describes the window oriented crror handler, which can be gotten from the
standard keyboard crror handler by typing Control-Meta-W to the - prompt.

The error handler window is divided into seven pancs. At the bottom is a lisp window,
which ordinarily provides a read-ceval-print loop, similar to the regular keyboard error handler.
More commands are available by using the mouse in the other windows as described below.

At the top is a display of the disassembled or ground code for the currently sclected stack
frame, depending on whether or not it is compiled. This is an inspection window. The window
immediately below this is- a history window as in the Inspector (sec below). Clicking on any
mousc sensitive item with the right button in either of these windows inspects it, and clicking
with the middle button stuffs it into the lisp window, echoing it and making it the value of *.

Next are the args and locals windows, side by side, displaving the names and values of the
arguments 1o the current stack frarne and its local variables and special-variable bindings. These
windows are grayed out if the frame has no variables of the corresponding type. They also have
a scroll bar. Clicking the mouse ¢n the name of a variable will print the name and the value in
the lisp window. Clicking on just the value will print it in the lisp window. The mouse will
highlight any relevant quantity that you are pointing to.

When something is printed in the Lisp window by pointing at it with the mouse, the variable
* is set to the value printed, and the variable + is set to a locative to the stack slot containing
the value, or (in the case of a special-variable binding) is sct to the symbol. You can use * to
feed the value to any Lisp function, and + to alter the value.

Next is the stack window, which displays in a pseudo-list format the functions and arguments
on the stack. Clicking on a function or argument or a sublist of one will cause it to be printed
in the lisp window as in the argument or local windows. Also, clicking the mouse to the left of a
line containing a particular stack frame (when the cursor is a right-pointing arrcew) will make the
error handler select that frame, changing what the code, arguments, and locals windows show.

Below this, and above the lisp window, is the command menu for the error handler. The
available commands and what they do are:
What error Reprints the error message for the current error, in the lisp window.

Exit Window EH
Returns to the regular error handler.

The Window Error-Handler 32 Operating the Lisp Machine

Abort Program

Arglist

Inspect

Edit

Retry

Return a value

Continue

Set arg

Search

Throw

T
NIL

Like ABORT or CTRL/Z' in the keyboard error handler. Throws back to
command-level of the erring program,

Asks for the name of a function, which can be typed on the keyboard, or
moused if it 5 on the screen. Picking an actor or a closure will ask for the
message name to that actor and print the arguments to its method for that
message. Picking a line of a stack frame from the stack window will try to align
the printout of the arguments with what value was supplied in that position in
that frame.

Asks for an object which can be pointed-to with the mouse or typed in, and
inspects it in the upper window. Sce chapter 5, page 28 for information on the
Inspector. :

Reads the name of a function in the same fashion as the Arglist command and
invokes the cditer on that function. The cditor will find the source code of the
function, reading in the file if necessary, and let you cdit it. :

Attempts to restart the current frame, like the Control-Meta-R command.

Asks for a value (which can be selected with the mouse) and rcturns it from the
current frame, like Control-R.

Like Control-C, except that the mouse can be used to sclect the object it asks you
for in order to continue.

Select an argument or local with the mouse and type or mouse a new value to be
substituted in,

Like the Control-S command, except that the mouse can be used.

Like Control-T, it asks for a tag and a value and throws there; the mouse of
course can be used.

Clicking one of these supplies that symbol as an argument or value for other
commands. These can also be used to answer yes-or-no questions.

Opcrating the Lisp Machine 33 Peek

7. Peek

The Peek program gives a dynamic display of various kinds of system status. When you start
up a Peek, this table is displayed:

P Active processes
Mecemory usage by area
Chaosnet connections
Arcas

Hostat

Statistics counters

File system display
Window hicrarchy
Quit

Set slcep time between updates

O =M R T >» 0L

>
N

-~

Prints this message
Under this table is a message reading "Type any character to flush:"”

The left column shows a rcpertoire of commands o Peek. The commands A, C, F, M, P,
W, and % each place you in a different Peck subsystem, to examine the status of different aspects
of the Lisp Machine system. The various subsystems are described in the sections that follow.

The commands H and 7 do not place you in full subsystems, but merely display some
information at the top of the Peck window, followed by the "Type any character to flush:"
message. Typing a space restores you to the subsystem that you were in before you typed H or 2
Typing a subsystem command places you in that subsystem, as usual. The ? command displays
the table described above. The HELP key does the same.

The Q command cxits Peek and returns you to the window from whick Peck was invoked.

Most of the subsystems arc dynamic: they update some part of the displayed status
periodically. ‘The time interval between updates can be set using the Z command. Typing nz,
where n is some number, sets the inter-update time interval to n sixticths of a second. Using the
7 command does not otherwise affect the subsystem that is running.

Some of the items displayed in the subsysiems are mouse-sensitive. These items, and the
operations that can be perfermed by clicking the mouse at them, vary from subsystem to
subsystem and are described in the sections that follow, Often clicking the mouse on an item will
give you a menu of things to do to that object.

The Peck window has scrolling capabilities, for use when the status display overruns the
available display arca. For details on these capabilitics, sce section 10.1, page 40.

Peek ; 34 Opcrating the Lisp Machine

As long as the Peck window is exposed, it will continue to update its display. Thus.a Peck
window can be used to examine things being done in other windows in real time.

This document does not attempt to describe the individual Peek subsystems. They are
generally more or less self-explanatory.

Opcrating the Lisp Machine 35 Network Programs

8. Network Programs

The supdup and telnet programs allow you to use the Lisp machine as a terminal to another
host. Supdup acts like a display terminal, while T'elnet acts like a printing terminal for systems
that don’t know about displays. Therc are window types called supdup and telnet, as well as
SYSTEM keys and Lisp functions.

When vou go into a Supdup or a Telnet, it will ask you what host to connect to. Once you
arc connccted to a host. all the keys on the keyboard are sent through to that host, instcad of
having their normal functions, except for the three escape keys, TERMINAL, SYSTEM, and
NETWORK. TERMINAL and SYSTEM rctain their normal functions, while NETWORK is used to
give commands to the Supdup or Telnet itself. These commands are:

CALL . Switch back to the previous window, .lcaving the connection open.
B Call break, getting into a rcad-eval-print loop.
C Change the ecscape character. This is normaily BREAK. Typing

the cscape character is the same as typing NETWORK, for the
benefit of old keyboards.

D Disconnect from the host and ask for another host to connect to.
- Turn Imlac simulation on or oft. This applics to Telnet only, and

is only uscd when tatking to TOPS-20.

L Log out of the foreign host, disconnect, and switch back to the
previous window. This is the normal way of exiting the program.

M Turn **MORE** processing on or off. This applies to Telnet
only.

P ‘ Switch back to the previous window, leaving the connection open.

Q Disconnect from the foreign host and switch back to the previous
window.

?or HELP Prints documentation on these commands.

Index of Function Keys 36 Opecrating the Lisp Machine

0. Index of Function Keys

ABORT

CTRL/ABORT

META/ABORT

By convention when this is read by a program it aborts what it is doing and
returns to its "command loop"”. Lisp listeners, for example, respond to ABORT
by throwing back to the recad-cval-print loop (top-level or break) and typing a
star. Note that ABORT takes effect when it is rcad, not when it is typed; it will
not Stop a running program.

Aborts the opcration currently being performed by the process you are typing at,
immediately (not when it is read). For instance, this will force a Lisp listener to
abandon the present computation and return to its recad-eval-print loop. On the
old keyboards, ABORT does not exist as a scparate key, but it can be typed as
TOP/CALL, and so CTRL/ABORT can be typed as CTRL/ TOP/CALL.

By convention when this is read by a program it aborts what it is doing and
returns through all levels of commands to its "top level”. Lisp listeners, for
example, throw completely out of their computation, including any break levels,
then start a new read-eval-print loop.

CTRL/META/ABORT

'BREAK

CTRL/BREAK
META/BREAK

A combination of CTRL/ABORT and META/ABORT, this immecdiately throws

out of all levels of computation and restarts the process you type at it.

Usually forces the process you are typing at into a break read-cval-print loop, so
that you can sce what it's doing, or stop it temporarily. The effect occurs when
the character is read, not immediately. Type RESUME to continue the interrupted
computation (this applies to the threc modificd forms of the BREAK key as well).

This is like BREAK but takes effect immediately rather than when it is read.

By convention forces the process you type it at intc the crror handler, when it is
read. It should type out ">>BREAK" and the crror-handler prompt “»". You can
poke around in the process, then type RESUME or CTRL/C to continue.

CTRL/META/BREAK

CALL

Forces the process you type it at into the error handler, whether or not it is
running.

Immediately stops the process you are typing at, and sclects an idle lisp-listener
(creating one if there aren’t any). This is the key to usec to get to "command
level" without destroying the computation in progress. When the window called
out-of is sclected again, its process will be allowed to run once more.

CLEAR-INPUT Usually flushes the input expression you are typing. This command can be given

CLEAR-SCREEN

on the old kevboards by typing CLEAR.

Usually erases and refreshes the sclected window. On the old keyboards, which
have no CLEAR-SCREEN key, the FORM key can be used for this. In the
editor (in scarches and after CTRL/Q) this key inserts a page scparator character,
which displays as "page”™ in a box.

Operating the Lisp Machine 37 Index of Function Keys

DELETE

END

HELP

HOLD-OUTPUT

LINE

MACRO

NETWORK

OVER-STRIKE

QUOTE
RESUME

RETURN
RUBOUT
STATUS
STOP-QUTPUT
SYSTEM

TAB

TERMINAL

TERMINAL A

This key is for some as yet unspecified form of deletion. In Supdup it substitutes
for the VT key of the old keyboards.

Marks the end of input to many programs. Input of a single-line nature may be
ended with RETURN. but EMD will terminate multiple-line input where RETURN
is useful for separating lines. The END key does not apply when typing in Lisp
expressions, which are sclf-delimiting. 'The old keybouards have no END key;
TOP/RETURN mayv be used as a substitute.

Usualiy gets you some on-line documentation or programmed assistance. On the
old keyboards, HELP docs not cxist as a separatc key, but it can be typed as
TOP/H. Sce SYSTEM HELP, TERMINAL HELP.

Not used currently,

The function of this key varies considerably. It is used as a command by the
cditor, and sends a "line feed" character in Supdup and Telnet.

Introduces a keyboard-macro command in programs, such as the editor, that have
keyboard macros. ‘The MACRO key is only defined while running such programs.
The BACK NEXT key may be used for this function on the old keyboards.

This key is used to get the attention of a running Supdup or Telnet. As such it
functions as a command prefix. This replaces BREAK on the old keyboards. See
chapter 8, page 35.

Moves the cursor back so that you can superpose two characters. should you
really want to. The key called BS will do the same thing on the old keyboards.

Not currently used.

Continues from the break function and the crror handier. In Supdup this sends a
backspace character, which is used for a resume-like command by ITS DDT.

"Carriage return” or end of line. Fxact significance may vary.

Usually crases the last character typed. It is not the same as DELETE.
Not currently used.

Not currently used.

This key is a prefix for a family of commands, generally used to sclect a window
of a specified type, such as l.isp Listener or Editor. These commands can be
given from the old keyboards by typing TOP/ESC instcad of SYSTEM. For a
detailed description see scction 2.3.7, page 14. '

This key is only sometimes defined. Its exact function depends cn context, but in
general it is used to move the cursor right to an appropriate point.

This key is a prefix for a family of commands relating to the display, which you
may typc at any time, no matter what program you arc running. ‘These are
documented below. Most of these commands can be given from the old
keybouards by using the ESC key.

Stiking TERMINAL A (or ESC A on the old keyhoards) arrests the process whose
state is currently being displayed in the who-line. TERMINAL - A un-arrests that

Index of Function Keys 38 Opecrating the Lisp Machine

process, whether it was originally arrested by typing TERMINAL A, or CALL, or
whether it was arrested for some other reason.

TERMINAL ABORT

TERMINAL BREAK
These are the same as ABORT and BREAK except that they always work. The
plain ABORT and BREAK kcys are turncd off by certain programs such as
Supdup. The META modifier may be used, and the CTRL modifier is assumed
whether or not you type it.

TERMINAL C Complements the inverse-videco mode of the screen. With a numeric argument,
complements the inverse-video mode of the mouse-documentation line just above
the who-line.

TERMINAL CALL ,
Puts you into a break rcad-cval-print loop, using the "cold-load-stream”. This is
a way of geting to a Lisp read-eval-print loop that completely bypasses the
window system, which can be very uscful in debugging, since it docs not interact
with very much of the rest of the system. On the old keyboards, this command
may be given as ESC CALL.

TERMINAL CLEAR-INPUT
Discards any typcd-ahead keyboard input which has not yet been read by a
program. On the old keyboards, this command may be given as ESC CLEAR.

TERMINAL CLEAR-SCREEN
Clears the screen and refreshes all the windows, including the who-line. Use this
when something has been clobbered, e.g. by usc of the "cold-load-stream”. On
the old keyboards, this command may be given as ESC FORM.

TERMINAL (n) F
Displays a list of the users logged in to a machine. With no numeric argument,
shows the users logged in to AL With a numeric argument of 1, shows the users
on Lisp machines and which Lisp machines are free. With an argument of 2,
shiows the vsers on MC. With an argument of 3, shows the users on Al and MC
both. With an argument of 0, asks for a command line, similar to the jcl of the
:FINGER command on ITS. This command goes over the network to gets its
information. and consequently may take a while if the target machine is slow.

TERMINAL H Displays the status of all the hosts on the Chaosnet.

TERMINAL HELP
Displays documentation on all of the function keys, including the terminal cscape
commands. Type a space to rcturn to your previous window. On the old
keyboards, this command may be given as ESC 2.

TERMINAL O Sclects the window which is exposed on some screen and was sclected least
recenily. Thus repeating this command cycles through all the "selectable” exposed
windows. ‘This is a lot like "CTRL/X O" in the editor.

TERHINAL (n) S
Switches you to another "selectable” window. The "(n)" represents an optional
numerical argament. For full details, see section 2.3.5. page 12.

Operating the Lisp Machine 39 _ Index of Function Keys

TERMINAL (n) T

TERMINAL W

Controls the selected window’s input and output notification characteristics. If an
attempt is made to output to a window when it is not exposed, one of three
things can happen; the program can simply wait until the window is exposed, it
can send a notification that it wants to type out and then wait, or it can quietly
type out "in the background”; when the window is next exposed the output will
become visible. Similarly, if an attempt is made to read input from a window
which is not selected (and has no typed-ahead input in it), the program can ecither
wait for the window to become selected, or send a notification that it wants input
and then wait.

The TERMINAL T command controls these characteristics based on its numeric
argument, as follows:

TERMINAL T If output notification is off, turns input and output
notification on. Otherwise twrns input and output
notification off. This essentially toggles the current state.

TERMINAL 0 T
' Turns input and output notification off.

TERMINAL 1 T
Turns input and output notification on.

TERMINAL 2 T
‘Turns output notification on, and input notification off.

TERMINAL 3 T
Turns output notification off, and input notification on.

TERMINAL 4 T.
Allows output to proceed in the background, and turns
-input notification on.

TERMINAL 6 T
Allows output to procecd in the background, and turns
input notification off.

You aren’t really expected to remember all of these magic numbers. As élways,
typing TERMINAL HELP will print a brief reminder of the commands.

Controls the who-line. What happens depends on the number typed before the
"W". With no numeric argument, the who-line is redisplayed. The numeric
arguments control what process the who-line watches. The options are:

0 Gives a menu of all processes, and freczes the who-line
on the process you sclect. When the who-line is frozen on
a process, the name of that process appears where your -
user 1D normaily would (next to the date and time). and
the who-line does not change to another process when you
sclect a new window.,

i The who-line watches whatever process is talking to the
keyboard, and changes processes when you select a new

Index of Function Keys 40 Operating the Lisp Machine

window. This is the default initial state.

2 Freezes the who-line on the process it is currently
watching. If you select a new window the process will not
change.

3 Freezes the who-line on the next process in a certain

~ order.

4 Freezes the who-line on the next process in the other
dircction.)

These numbers are the same as on Al TV terminals, except that there is no
"system who-line" on the Lisp machine.

TERMINAL HOLD-OUTPUT
If it says "Output Hold" in the who-line, indicating that the "current” process is
trying to display on a window which is not exposcd, typing this command will
expose that window. Otherwise typing this will beep. Use TERMINAL S to
return to the previously-selected window. This function is unfortunately not
available on old keyboards.

TERMINAL CTRL/T
De-exposes all temporary windows. This is uscful if the system scems to be hung
because there is a temporary window on top of the window which is trying to
type out and tell you what's going on.

TERMINAL CTRL/CLEAR-INPUT
Clears the locks on all the windows in the system, thus giving the window system
a swift kick in the pants. This often works to unwedge a catatonic window
system. This is a last resort, but not as drastic as warm booting. It should be
used when none of the windows will talk to you, when you can’t get a system
menu, etc.

Operating the Lisp Machine 41 Quick Summary of Mouse Functions

10. Quick Summary of Mouse Functions

These are some of the more comnion mouse Cursors;

A thin arrow peinting North by Northwest (up and to the left). This is the default mouse
cursor. It indicates that there no special commands on the mouse buttons. Clicking Left will
select the window pointed-to. Clicking Right will get you the systemn menu.

A thin arrow pointing North by Northeast (up and to the right). This means the mouse is in
an cditor window. You bave several cditor commands on the mouse buttons. Sce section 4.1,
page 22.

A thin arrow pointing North (straight up). The editor uses this to show that it is asking you
for the name of a function or for a symbol. If you point the mousc at a function name, and
stop moving it, the name will light up and you can click to select it.

A small X. 'This is used when the mouse cursor wants to be unobtrusive, for instance in
menus.

10.1 Scrolling

Some windows display a "contents” which may be too big to fit entirely in the window. The
editor and the inspector are examples. When this is the case, you see only a portion of the
contents, and you can scroll it up and down using the mouse.

The following mousc cursors indicate that the mouse is being used to controi scrolling:

A fat arrow, pointing up or down. This indicates you are in a scrolling zone. Moving the
mouse slowly in the direction of the arrow will scroll the window, revealing more of the text in
the direction the arrow points, while moving the mouse quickly will let you out of the window.

Scrolling zones often say more above or more below in small italic letters. Clicking on one of
these legends will scroll the window up and down by its height, thus you will sce the next or
previous windowfull. When the window is at the top or bottom of its contents, so that it is not
possible to scroll any farther in one direction, the legend in the scrolling zone will change to
indicate this fact.

A fat double-headed arrow. There will be a thin black bar nearby, the "scroll bar”. The size
of this bar relative to the edge of the window to which it is attached shows what portion of the
window’s contents is visible. The vertical position of the bar within the edge shows the position
of the visible portion of the window’s contents relative to the whole. The mouse commands in
this case are

Left Move the linc next to the mouse to the top of the window.
Left Double Move the line next to the mouse to the bottom of the window.

Right Move the top line to where the mouse is.

Scrolling 42 Opcrating the Lisp Machine

Right Double Move the bottom line to where the mouse is. Because of this command
definition, you cennot get to the system menu while the mouse is displaying a
double-headed fat arrow.

Middle Jump to a place in the window contents as far, proportionally, from its beginning
as the mouse is from the top of the window.

