Symbolics Software

This document gives an overview of the software provided with
the Symbolics LM-2 and 3600 Symbol Processing Systems.

Symbolics, Inc.
9600 De Soto Avenue
Chatsworth, California 91311
(213) 998-3600

() Copyright Symbolics, Inc. 1981. Printed in US.A.

Symbolics Software 1

~ This document gives an overview of what software is provided by Symbolics, Inc. for use with
its LM-2 and 3600 Symbol Processors. Hardware is not discussed herein; all Symbolics computers
run this software. This software forms an integrated and extremely powerful program development
environment. The systems programming language for the Symbolics machines is the Zetalisp dialect
of Lisp. In this writeup, we first discuss the user interface to the Symbolics system: what you see
as a user. This includes the window system, the file system, the text editor, the mail reader, and
other interactive systems and tools. Then, we discuss the Zetalisp programming environment: the
language itself and various tools and features that make programming easier.

All of the software described below has been designed, written, tested, and installed for a user
community (except as noted). What you are about to read is not what we plan to do in the
future; it is what has already been completed. Almost all of this software has been installed at the
Massachusetts Institute of Technology and is running on over twenty Lisp Machines owned by the
Artificial Intelligence Laboratory, the Laboratory for Computer Science, and the Department of
Electrical Engineering and Computer Science. It has been field-tested by a large community of
M.LT. student, staff, and faculty, over a period of more than five years. These users have been
enthusiastic but demanding, and their trouble reports and suggested improvements have been
continually integrated into the software system. As a result, this software is well-tested and
mature. Most of the writers and maintainers of this software are now employees of Symbolics,
Inc, and they continue to maintain and improve the software system. All software is sold with
complete sources, and maintainance for one year.

Printed on the Symbolics LGP-1 Laser Graphics Printer

The User Interface 2 Symbolics Software

The User Interface

Text Editor: Zmacs

The text editor of Symbolics’s system is called Zmacs. It is a real-time display-oriented text
editor; this means that the text you are editing is always visible in front of you, and your
commands are executed as you issue them, so that the effects of your commands are immediately
visible. Zmacs can be used for editing text or programs. It has specialized features for editing
programs in the Zetalisp language and for communicating with the Zetalisp environment. It takes
advantage of the graphical input and output capabilities of the terminal to provide greater ease of
use. It is easy for a beginner to learn, and offers many sophisticated commands for the advanced
user. You can customize its behavior and add extensions.

Over the last four years, the Emacs text editor for the PDP-10 has become extremely popular
throughout universities and the A.I. community. Editors featuring the basic Emacs command set
are now available on many timesharing systems. Zmacs uses this command set; in fact, most
Emacs commands are implemented compatibly in Zmacs. In a computation facility that includes
time-sharing systems that run Emacs-like editors, users will be able to move back and forth
betwcen the Symbolics system and time-sharing systems without having to learn two different
editors.

Basic commands in Zmacs, like Emacs, are modeless. To insert text at the current cursor
position, you just type the text; there is no "insert mode". To move the cursor around, you can
use simple single character commands to move it forward or backward, or to the next or previous
line. Zmacs is easy to learn; with about fifteen basic commands, you can edit text effectively. As
you gain proficiency with Zmacs, you can start learning about more powerful commands. For
example, there are commands to move around in the text in units of lines, words, sentences, and
paragraphs. You can mark a section of text and move it or copy it somewhere else in the file.
You can supervise the replacement of all occurrences of a text string with a second text string; for
every occurrence of the first string, Zmacs shows you the occurrence in its context, and you can
decide whether or not it should be replaced by the second string. You can indent whole regions of
text by arbitrary amounts. You can perform text filling or justification on paragraphs or arbitrary
regions. You can deal with many files at the same time, switching between them. You can also
have any number of windows on the screen at a time, each showing different files being edited, or
different parts of the same file. Commands that are frequently used can be issued with only one or
two keystrokes, for speed; commands that are less frequently used have longer, mnemonic names;
you type these names with the assistance of sophisticated command completion. Commands have
built-in documentation; you can immediately get help for any command in Zmacs.

Zmacs also has extensive features for editing of Zetalisp programs. There are commands to
move back and forth over Zetalisp expressions; Zmacs knows how to match up parentheses with
each other, and it completely understands the syntax of Zetalisp so that it knows, for example, to
ignore parentheses that are inside character strings or otherwise "quoted”. While it is difficult to
create unbalanced expressions with this sort of sophisticated assistance, should one occur you can
use a command called "Find Unbalanced Parentheses” that looks over an entire file and positions
you at sites of suspected parenthesis errors. Zmacs also knows stylistic rules for indentation of
Zetalisp programs, and has a command that inserts the right amount of indentation on a line of
text. When you type in a Zetalisp program to Zmacs, as you get to the end of a line of text, you
can type the Return key to simply insert a carriage return, but alternatively you can type the Line
key to insert a carriage return and the appropriate amount of indentation for the new line of the

Symbolics Software 3 Text Editor: Zmacs

program. If you have made a syntax error in previous lines that leaves parentheses incorrectly
matched, you can immediately tell because the automatic indentation doesn’t go where you
expected. You can also run this automatic indentation over an entire Lisp function or the whole
file, and it will reindent each line correctly. Whenever the cursor is just to the right of a close
parenthesis (for example, just after you insert a close parenthesis), the matching open parenthesis
blinks on and off, providing instant confirmation of correct parenthesis balancing.

Zmacs also interacts with the Lisp environment. If you type in a new Lisp function or modify
an existing one, you can evaluate the function definition, or compile the function, with a single
keystroke. You can do some editing on various parts of a Lisp program, and Zmacs will
automatically find all of the functions you have modified, and evaluate or compile all of them.
There are also commands to evaluate or compile an entire file.

Zmacs also knows about functions and variables in the Lisp environment. If you are in the
middle of typing in a Lisp function call form, you can give a single-keystroke command to tell
Zmacs to print out the argument list of the function. This is useful if you forget what arguments
the function takes or in what order the arguments are expected. Another single-keystroke
command prints out the on-line documentation associated with that function. If you have just
typed in the name of a variable, another single-keystroke command asks Zmacs to tell you about
that variable, giving its declaration and the documentation associated with it. These features
provide instant confirmation of the correct spelling of names, as well as providing immediate access
to documentation.

There is also a command that tells Zmacs to edit the definition of any Lisp function, variable,
flavor, data structure, or other named entity. You can type the name of the thing to be edited on
the keyboard, or you can point with the mouse at any name visible in the editor window. Zmacs
will find the source text that defines that function, variable, or whatever, automatically reading in
the file containing the text (if it isn’t read in already), and position you at that definition so that
you can examine and edit it.

The mouse can be used for many editing operations. You can point with the mouse to position
the cursor somewhere in the text. You can mark out whole regions to be operated upon by
sweeping over them with the mouse; with only mouse commands you can copy or move regions of
text from one place to another. You can also use the mouse for scrolling; that is, to control
which portion of the file is visible on the screen. You can control the speed of scrolling, and you
can move to an arbitrary place in the file by graphically specifying how far into the file you want
to see. You can also pop up a menu of some editor commands that are convenient to use the
mouse for. Since Zmacs provides for positioning of the current cursor position with either keyboard
commands or mouse commands, you can use whichever commands you personally prefer. For
example, some people like to use the mouse for long-distance motion but prefer keyboard
commands for short-range things like moving the cursor forward one or two characters or words.

Zmacs takes advantage of the bit-mapped display to provide faster and more convenient
interaction with the user than is possible on a conventional terminal. The blinking of matching
parentheses and the use of the mouse have already been mentioned. In the Emacs command set,
many commands operate on a previously-selected region. In Zmacs, this region is underlined on the
display, eliminating the danger of operating on the wrong region. Zmacs can edit text written in
multiple fonts, with either fixed or proportional spacing.

Zmacs has a wide range of commands to offer the experienced user - over four hundred
commands exist. While you only need a few commands to edit effectively, you can learn more and
more commands, at your own learning rate, to let you do more powerful things. Here are a few
examples of the more advanced commands:

Text Editor: Zmacs 4 Symbolics Software

o The Word Abbreviation facility lets you define short abbreviations for commonly-
typed words or phrases; when you type in one of these abbreviations, it
automatically and immediately expands into its full definition.

o In Auto-Fill Mode, Zmacs automatically inserts carriage return characters as you
type at the ends of text lines, so that you can just type in one word after another
and have them broken up into lines automatically.

o The List Functions command types out the names of all of the functions defined in
the current file; you can then click on one of these with the mouse, and Zmacs
will position you to the definition of that function.

o The List Combined Methods command understands the Flavors construct of
Zetalisp; you give this command the name of a flavor, and the name of a message.
It types out a list of all of the component methods that are combined to form the
handler for the specified message to instances of the specified flavor. You may then
click with the mouse on any of these names, and Zmacs will find the definition of
that component method, read it in if it is not read in already, and position the
cursor there so that you can edit it.

o The Electric Shift Lock Mode facilitates typing in programs that are in upper-case
(if you like using upper-case in your programs). In Electric Shift Lock Mode,
whenever you type a character that is part of a Lisp symbol, such as the name of
a function, variable, or special form, it is inserted in upper case, but when you
type a character that is part of a character string or a comment, it is inserted
normally.

o The Zmacs sorting commands allow the text in the buffer or in a region to be
sorted into alphabetical order, either line-by-line or with user-specified division into
records.

You can customize your editing environment. Some commands have options and modes that
specify details of their behavior, in cases where many users turn out to disagree about how they
prefer the command to work; you can set each of these as you like it. You can also control the
assignment of commands to keys, adding new commands and replacing other commands as you see
fit, putting the commands you personally use most often on single keystrokes. You can also write
your own editor commands. Since Zmacs is written completely in Lisp, you can use the same
language that you use for your own programs to write editor enhancements, features, and
commands. Zmacs is built on a large and powerful system of text manipulation functions and data
structures, called Zwei. By writing your own Lisp programs that call Zwei functions to perform
primitive text manipulation operations, you can write your own editor commands the same way
that built-in commands are written. You can build your own library of commands, each with its
own attached documentation, and then other users can load in this library, and assign your new
commands to any keys they want to.

Any interactive program can provide the user with text editing capability simply by calling
functions in the Zwei system to provide the full power of Zmacs. For example, the ZMail mail
reading system uses Zwei functions to allow you to edit mail as you are sending it, or to edit mail
that you have received. This sharing of large subsystems is unique to computer systems that
provide a large, dynamically linked environment, as the Zetalisp environment does. Any application
program can provide powerful editing to the user easily; the programmer doesn’t have to write a
new editor for each application. You only have to deal with one editor, instead of several, and
any customizations that you make will take effect in all of the applications programs as well as in
Zmacs itself.

Symbolics Software 5 File Systems

There are several reasons that a character-oriented display editor like Zmacs is preferable to a
list-structure editor such as is used in the Interlisp environment. The main reason is that a
character-oriented editor gives you complete control over the fexrual appearance of your program.
Sometimes the best indentation or textual layout of a piece of a program is dictated by something
that the editor can’t easily "understand"; for example, a Lisp list of elements might be representing
something in a pairwise fashion, and so you might want it to appear textually as two columns of
items. With Zmacs, you can indent a program any way you want, by simply not using the
automatic indentation facilities when you don’t want them. You can put in textual comments
anywhere in the program, since they need not be part of the list structure of the program itself;
this makes commenting easier and more convenient, and so high-quality commenting is encouraged.
Your program appears exactly as you like it. Another advantage of the Zmacs approach is that
you can use the same editor for editing text as you use for editing programs.

File Systems

The Symbolics system uses disk files as its basic long-term storage mechanism. Disk files need
to be provided by a file system. There are two ways for the system to get at files. One way is to
have a file system on the disk of your own machine. The other way is to access a computer with
its own file system, called a file server, over the network; the file server can either be another
Symbolics system, or an existing time-sharing system. Both kinds of file systems may be used alone
or in conjunction with other file systems.

The machine’s own file system can be used either as a local file system (a file system on your
own machine), or in a remote file system (a machine that is connected to other machines over the
network and provides a file system for them), or both. Directories are arranged in hierarchy up to
sixteen levels deep. Names of files and directories may be as long as you like. Files have version
numbers, and the generation retention count feature lets you tell the file system to automatically
delete old versions as new ones are created. Undeletion is supported; files don’t go away until a
directory is "expunged". Directories may also contains "links", named entries which are pointers to
other files elsewhere in the file system hierarchy. In addition to recording the usual attributes of
files such as creation time, modification time, author, and length, the file system also keeps a
property list with each file so that you can store your own attribute information with any file.
You can add up to eight disks to a machine to create a very large file system.

The file system is very robust. All information in directories is fully redundant; if all of the
directories in the file system were somehow destroyed, they could be completely re-created from the
information stored in the "file headers" of the files. Every block of the file system is marked with
a unique identifier so that the file system can check to make sure that when it has read a block, it
has gotten the right data. All file system information is redundantly stored so that loss of a single
block of the disk cannot damage more than one file. The file system is written using a transaction
discipline so that you can continue using it after a crash without running a salvager. A salvager is
provided for long-term recovery of "lost" blocks, rebuilding damaged directories, and otherwise
automatically fixing file system problems. You don’t need to have a file system expert around to fix
things up after a crash. A magnetic tape backup system is also provided, supporting both
incremental and complete dumps.

From a Symbolics system, you can access many other file systems over the network. These file
systems can be provided by other machines used as remote file servers, or any of various other file
systems provided by other computer systems. File systems currently supported are TOPS-20, Tenex,
ITS, and VAX/VMS; any of these systems can be connected to a Symbolics system with the
network. (Support for Unix on the PDP-11 and the VAX is currently being implemented.) Any
command that prompts for a file name, or any function that takes a file name as an argument,

Inspector, Display Debugger, and File System Editor6é Symbolics Software

can accept a file name for any file system, in that system’s own syntax. For example, you can
read files into editor buffers, or read them from any program, giving the file name in whatever
syntax the file server uses. The file system hierarchy editor (described below) works on any file
system, local or remote. Wildcard matching and automatic file-name completion are provided for
all file systems, remote as well as local, even if these features are not present natively in the file
system’s time-sharing system.

Inspector, Display Debugger, and File System Editor

The Inspector is a tool for inspecting data structures. It displays a Lisp object showing all of
its components. For example, if you inspect an array, the inspector displays the elements of the
array; if you inspect a structure, it shows you all of the component slots of the structures, along
with the names of the slots; if you inspect a symbol, it shows you the name of the symbol, the
value, the property list, the associated function, and the symbol’s package. If you inspect a list, it
pretty-prints the list. The component objects are all mouse-sensitive. If you click on one of these
components with the mouse, that component object gets inspected: it expands to fill the window
and its components are shown. In this way, you can dive into a complex data structure, exploring
the relationships between objects and the values of their components. The Inspector also keeps a
history window recording the objects you have examined, so that you can back up and continue
down znother path. Objects being inspected can also be modified.

The Display Debugger provides a clear picture of the state of a Lisp process at the time of an
error. It divides its area of the screen into several panes (sub-regions): a display of the stack
history with a pointer to the selected stack frame; the names and values of the arguments to the
selected stack frame; the names and values of the local variables of the selected stack frame; a
command menu; a Lisp interaction window; an Inspector window and an Inspector history list.
You can select a different stack frame by clicking on it with the mouse, and examine its
arguments and local variables. The command menu includes commands to return an arbitrary value
from any stack frame, to restart any function call in the stack, and to recover from the error and
proceed if possible. The Display Debugger is interfaced to the Inspector so that you can inspect
the various values you find in stack frames as well as the bodies of executing functions.

In the Symbolics system, the user manipulates the file system with a display-oriented tool called
the file system editor. This editor displays a line with the name of every item in a directory. If
one of these items is a subdirectory, you can "open" it by clicking on it with the mouse; the list
of items will dynamically open up and the contents of the subdirectory will be displayed. You can
then open its subdirectories, and so on. By opening and closing directories, you can poke around
in the file system and see what is there. Once you have found a file, directory, or link on which
you want to operate, you click on it and get a menu of useful operations for that kind of item.
For a directory, you can delete or undelete it, expunge its contents, create new directories and
links within it, rename it, invoke the dumper to save its contents on tape, and so on. For a file,
you can delete or undelete it, look at its contents, rename it, dump it, and so on. When you
open a directory you can optionally ask to see only those files that match a given wildcard
specification, rather than all the files in the directory.

Symbolics Software 7 Electronic Mail: ZMail

Electronic Mail: ZMail

In a modern computer science research environment, electronic mail is a sine qua non. The
Symbolics system provides the most powerful electronic mail facility in existence: ZMail. ZMail is
an interactive system for reading and sending mail. Its command interface is easy to learn and fast
to use. You can start by learning a basic set of commands that give you all the power of
conventional mail readers, with the streamlined user interface made possible by the use of the
mouse and menus. ZMail provides many more advanced and powerful commands to help you keep
track of and deal with large amounts of mail.

When you start reading your mail with ZMail, the top of the ZMail window contains a
summary of the messages in your mail file, showing one line of descriptive text for each message.
One message is the currently selected message, and its summary line is marked with an arrow. In
the bottom of the ZMail window, you see the message itself. If either the summary or the
message is too large to fit completely into its window, you can scroll the window by using the
mouse. In between the summary and the message is a menu of commands, including commands to
move to the next or previous message, delete or undelete a message, reply to a message, and send
new mail. You can move through your messages with the Next and Previous commands, or by
pointing at a line in the summary window and clicking the mouse. When you reply to mail, you
can see the message to which you're replying in the top half of the window, and type in your
reply in the bottom half. While you are typing in your mail, you are using the same text editor
as you use to type in programs and text files, and so you have full editing capability.

You can read several mail files at a time, and move messages from one mail file to another;
this lets you save mail about different topics into different mail files. You can select sets of
messages on which some operation should be done; for example, you can select a set and then
delete all the messages in the set, or move them all into some mail file. The set can be specified
either by your explicitly saying which messages you want in the set (by pointing at their lines in
the summary window), or on the basis of some criterion based on attributes of the message. The
latter is accomplished using a "filter": a criterion for whether a message should or should not be
accepted into a set. You can filter messages based on the sender, the recipients, the time of
sending, the contents, whether you have replied to the message, or any of several other criteria.
You can also combine these criteria using ANDs, ORs, and NOTs, to specify complex filters that
can discriminate finely between messages.

ZMail is heavily customizable. Users can control the layout of the display, which recipients of
a message receive copies of a reply to that message, the format of paper copies of mail files, and
so forth. Users can define their own special purpose filters to access sets of messages according to
their personal criteria. The contents of ZMail’s menus and the defaults for commands with options
may be customized. ZMail makes it easy to customize these things without having to understand
anything about how they are implemented, by providing a display-based user-profile editor.

The Window System, as seen by the user 8 Symbolics Software

The Window System, as seen by the user

The bit-mapped display screen is managed by the window system. Windows are rectangular
regions of the screen that may be fully visible, partially visible and partially covered, or wholly
covered by other windows, like pieces of paper on a desk. You can use windows to control many
tasks at once. Each task is represented by a different window, and you can switch between tasks
by simply clicking on the task’s window with the mouse. When a window is partially covered by
another, you can click on the part of the window that is peeking out, and that window will come
to the top and be fully visible. You can control the configuration of windows by using the Screen
Editor, an interactive system that lets you create, destroy, move, and reshape windows.

Switching between tasks is very easy. Instead of having to give an "exit" command, return to
a command processor, and give another command to switch tasks, you can just point and click.
No information is lost when you switch between tasks, so you are free to switch from one thing to
another whenever you want to without worrying about destroying valuable state.

This is particularly important when you are developing programs. For example, you can split
the screen between an editor window in the top half of the screen and a Lisp interaction window
in the bottom half. Then when you find a problem with your program, you just click on the
editor window and start editing the correction. When you are finished editing, one simple editor
commaad incrementally compiles those parts of the program that you have changed. Then you can
clicx oa the Lisp window and try the program again.

The window system is hierarchical: in the same way that the screen can be divided up into
windows, a window itself can be further sub-divided into smaller windows. A window that is
divided in this way is called a "frame", and the sub-windows are called "panes”. When you move
around or change the size of a frame, by using the Screen Editor for example, the panes
correspondingly change their size and position as well. You can also use the Screen Editor to
manipulate the panes within the frame.

You can put more than one bit-mapped display on the machine: the window system works
equally well on all of them. All of the facilities provided by the window system, including menus
and frames and the Screen Editor, work on any display, including color displays. The mouse can
track on any screen.

You can always see documentation of what you can do with the mouse. Near the bottom of
the main screen is a window with a line of text that tells you the present meaning of each of the
mouse buttons. For example, when you move the mouse over an item of a menu, the mouse
documentation line tells you what would happen if you were to click on it. As you move the
mouse from one window to another, or as windows pop up or change configuration under the
mouse, the mouse documentation line is changed to tell you the new meaning of the mouse buttons
in the new context.

Other useful information is displayed at the bottom of the screen. Below the mouse
documentation line is the who-line, which tells you the date and time, the user name of the user
logged into the machine, the state of the current process (whether it is running, stopped, waiting
for keyboard input, or waiting for any of various other things to happen), and the current package
(in which Lisp expressions typed in from the keyboard will be read). The who line also tells you
when the system is doing file transfers. You can see what file is being read or written, and how
far the transfer has proceeded. If the console has been idle for more than five minutes, the who-
line displays the idle time, so that if you come upon a machine with no user, you can see if it has
been used recently or if it is sitting idle.

Symbolics Software 9 The Window System, as seen by the programmer

The Window System, as seen by the programmer

The window system has a clear and natural appearance to the programmer. Each window is a
Lisp object, an instance of some flavor (see the description of the flavor system, below). To
manipulate a window, you send it messages. Windows understand a wide variety of messages that
do many different things. There are messages for examining and altering the shape and positions of
windows. These come in simple varieties, in which you express the size in terms of either pixels or
characters, as well as in more advanced varieties in which you can tell a window to move near
some point or near the mouse, or next to some other window. There are messages to control the
appearance of the borders and the labels of windows. Another set of messages controls the typing
of text onto the window; you can control the cursor position, erase areas, type text in various
fonts, insert and delete lines and characters, control the interline spacing, and so on. Windows
also understand a large set of messages to perform primitive graphics operations such as drawing
points, lines, filled-in rectangles, filled-in triangles, regular polygons, circles, curves described by a
sequence of line segments, and cubic splines. Another important graphics primitive provided is
BITBLT (sometimes known as RasterOp), which moves arbitrary rectangular sections of a picture
between arrays and windows or within windows, combining bits using a logical operator. BITBLT,
as well as line, rectangle, and triangle drawing, are implemented in microcode for high speed.
Windows also support messages for input from the keyboard and the mouse, controlling the
configuration of frames, which windows are visible and which are on top of which, and various
other attributes.

In addition to these low-level functions for manipulating windows, the window system provides
a set of high-level facilities that make it easy for a programmer to create an advanced, streamlined
user interface to a program. By calling simple functions, you can create windows that let the user
specify information in the manner that it easiest for the particular application. To let the user
choose between one of several alternatives, you can create a menu. A menu can pop up and
disappear as needed, or stay on the screen until the user disposes of it, or be one of the panes of
a frame; several flavors of menus are provided for each of these needs. Another kind of menu
provides for mode-setting, in the style of car-radio buttons; the menu stays around on the screen
and the selected mode is highlighted with inverse-video. Another kind of menu lets you make
many choices ("one from column A and one from column B").

There are other interfaces to let the user make choices. The Multiple Choice facility provides
a window containing a bunch of items, one per text line. For each item, there can be several
yes/no choices for the user to make. The window is arranged in columns, with headings at the
top. The leftmost column contains the text naming each item. The remaining columns contain
small boxes (called choice boxes). A "no" box has a blank center, while a "yes" box contains an
"X". Pointing the mouse at a choice box and clicking the left button complements its yes/no state.
The Choose Variable Values facility presents you with a set of Lisp variables and their values. You
can change the values by pointing at them with the mouse. For a variable whose value is always
one of a small set of things, Choose Variable Values displays all the possible choices with the
currently-selected one in bold-face type; you can click on any choice to select it. For ordinary
variables, you can type in the new value.

Other high-level facilities are provided. Many windows in the system respond to scrolling
commands, given by the mouse, all working in a uniform and consistent fashion. This interface
for scrolling is available to any program that wants it as a facility of the window system. This
makes it easy for you to make your own windows handle scrolling, and encourages everyone to
make all windows provide scrolling with the same uniform user interface. There are also facilities
to let you easily specify regions of the window that should be mouse-sensitive; a little rectangular
box lights up around such a region when the mouse moves into it, and when the mouse is clicked,
the program is informed that said region has been clicked on.

Operating System 10 Symbolics Software

Many interactive programs in the system construct their user interface by using the flavor
system to combine (or "mix in") their own flavors with flavors chosen from the window system’s
extensive library of user interfaces. The private component flavors control or modify the behavior
of the library flavors to meet the needs of the specific program. They may also take control over
the way the window redisplays, how it responds to reshaping, and so on. A program may add its
own messages and send them as well as the pre-defined window system messages.

Operating System

The Symbolics system does not have an "operating system” in the conventional sense, but all of
the functionality that would normally be provided by an operating system is provided by some part
of the software system. This is because the system is designed to be a single integrated Lisp
environment for a single user, rather than a timesharing system that has to divide the computer
between several users and protect each from the others. So the system provides operating system
functionality with a structure designed to benefit the Lisp environment, rather than building a
conventional operating system and then creating Lisp on top of that. The traditional boundary line
between the operating system and the user program is deliberately blurred in the Symbolics system,
making all predefined system facilities available to the user, making it easy for the user to modify
or customize the system, and avoiding the need for one programming language and set of
debugging tools for the system and another for the user.

Several processes can run concurrently, sharing the computational resources of the machine by
using a scheduler. The scheduler is written in Lisp and implements processes using the stack group
coroutining mechanism of the Zetalisp language. A process can wait for any arbitrary event to
come true. To wait for an event, a process calls the scheduler’s waiting function, passing it a Lisp
function. The scheduler will periodically call this function, and as soon as it returns a true value,
the process will be allowed to proceed. This is the fundamental waiting primitive; some higher-level
facilities, such as sleeping for a given amount of real time and binary semaphores (locks), are
provided as well. You can easily construct your own more powerful and complex multiprocessing
control structures, by using Lisp macros. It is easy for processes to communicate data to one
another, since they all exist in the same Lisp world; you can build any kind of mailbox or
queueing or other facility that you need. (Some simple ones come pre-defined by the system.) The
system itself uses processes heavily; one process reads keystrokes from the keyboard, processing
interrupt characters and directing input to appropriate windows; two processes control the reception
and transmission of packets on the network; the network remote login programs (Telnet and
Supdup) work by splitting into two processes, one to transmit to the foreign host and one to
receive from the foreign host. Users use processes as well; when you create a new window to run
an interactive system, such as a Lisp Listener or a ZMacs (editor) window or a ZMail (mail
reading) window, a new process is created to run that program. Lisp programs deal with processes
by calling a function to create a process and then sending it messages to start, stop, and examine
and alter the state of the process. There is also a simple Lisp function that calls a function on
some arguments in its own process. Any time your program wants to do something that requires
multiprocessing, it is easy for it to spawn any number of new processes to run concurrent
programs. The scheduler is genuinely pre-emptive; it is co-called every second by a hardware-
generated interrupt (the time-slice period is user-controllable).

The Symbolics system’s virtual memory system is handled by the microcode; it is at a lower
level than the Zetalisp language itself. A large, linear virtual memory is provided, managed by a
paging algorithm that simulates the Least-Recently-Used page replacement principle using the
standard clock algorithm. The virtual memory is split up into areas by the area feature of Zetalisp,
and further divided into Lisp objects by the basic storage discipline on which Zetalisp is built.

Symbolics Software 11 Miscellaneous Features

The Chaosnet network control program provides Zetalisp programs with full access to the
facilities of the network. Lisp functions are provided to open network connections as a user or to
handle incoming network connections as a server. You can accept, reject, and close connections,
and transmit or receive packets. You can also deal with a network connection as an I/O stream,
and perform standard input and output operations on one. You can invent your own higher-level
network protocols or use existing ones. The network control program provides error-checking, flow-
control, and retransmission, and maintains the multiplexing and demultiplexing of the network into
many separate connections. The Chaosnet also has provisions for simple transactions (a single
exchange of packets, with acknowledgement, without forming a connection), uncontrolled packets
(without flow control and acknowledgement), broadcasting, automatic redistribution of routing
information for gateways, and error reporting. Higher-level protocols exist for remote login, file
access, mail transmission, interactive messages, inquiring what users are using a machine, finding
out the current time, accesing remote printers, gating to remote networks, and network
maintenance and testing. The Chaosnet can also be used for the transmission of packets in foreign
protocols (such as DOD Internet). Network control programs also exist for the Tenex, TOPS-20,
ITS, VAX/VMS, and Unix (TM Bell) (both PDP-11 and VAX) operating systems. Support for
the Ethernet II (TM Xerox) will be provided.

Miscellaneous Features

Other languages

In addition to the native ZetaLisp language, Symbolics will offer support for Fortran-77 and
Pascal, allowing users to use packages written in these languages. A compatibility package for
InterLisp users to import their programs will be supplied. More complete support for InterLisp and
compilers for other popular languages (C, Ada, etc.) are being considered for future development.

Remote login

You can log into other computers over the network. The Symbolics system supports the
standard Telnet remote-login protocol as well as the Supdup display-terminal oriented remote-login
protocol. If you are an Arpanet user, the system can connect to hosts over the Arpanet, using a
gateway.

Interactive messages

You can send interactive messages to other users, over the network. When the system receives
a message, it pops up a window, displays the message in the window, and prompts you with
"Reply?". If you type "N", the window just disappears; if you type "Y", you can then type a
message and it will be sent off to the original sender.

Miscellaneous Features 12 Symbolics Software

Examining the system

The Peek utility program provides a window-oriented interface that lets you see what is going
on inside the system. You can look at a listing of all the processes, seeing what state each one is
in; you can see the window system hierarchy; you can see how memory is being utilized in the
different areas; you can see all the open network connections; you can get the status of other sites
on the network; and you can look at general system meters. All of these displays update
themselves continually, so you can watch as processes change state, windows get created, destroyed,
and reorganized, and so on. You can also click on these displays to perform simple operations on
the objects; for example, you can start and stop the processes, and you can rearrange and destroy
the windows.

Metering

The system includes performance-analysis tools which can be used to optimize the performance
of user programs, in terms of both processor utilization and virtual memory paging.

Symbolics Software 13 The Zetalisp Language

The Zetalisp Language

Zetalisp is a modern, powerful dialect of Lisp. It is based on the M.LT. Maclisp dialect, and
has been substantially extended and improved. Over the course of many years, Zetalisp has
integrated features of Interlisp, other artificial intelligence languages, and a variety of modern,
conventional systems programming languages, as well as facilities developed by its users. The
resulting language is the most powerful base available today for both artificial intelligence research
and systems programming in general. The following sections outline some of the important features
of Zetalisp.

A Rich Environment

The most important advantage of Zetalisp is that it provides an interactive, incremental,
dynamically linked programming environment. When you set out to write a program in Zetalisp,
you don’t start in a vacuum, with only a fixed set of simple language primitives to build on.
Instead, your program is an addition to a rich environment full of useful facilities that you can
invoke with a simple Lisp function call. If you want to sort a list or an array, you just call the
"sort” function, which provides a carefully-optimized quicksort; if you want a hash table for
something, you just call the "make-hash-table” function, and then use simple Lisp functions to
insert elements and look them up. You can get pseudo-random numbers by calling "random”. You
can convert dates and times between various formats, and print them out or read them in, by
calling a set of already-existing functions. You can can solve systems of linear equations and do
matrix arithmetic by calling the functions provided. All these things are at your fingertips
whenever you write a program; you don’t have to write your own sorting, hashing, or random
number generators every time.

Data Types

Zetalisp supports a wide variety of data types, and provides for user-defined data types as well.
Basic type checking is done in microcode for all operations, so that taking car of a number or
trying to add a symbol will never go undetected, even in compiled code; type mismatches always
signal an error.

Arrays are a fully-supported data type. Arrays can be created, stored in data structure, and
passed around as arugments. Simple Lisp functions make arrays and examine and alter their
elements. Special types of arrays exist to store fixed-point numbers in a packed format. Arrays can
have up to seven dimensions.

Character strings are also supported as a first-class data type. A character string is a kind of
array, so the regular array accessing functions can be used to manipulate the characters of a string
directly. In addition, an extensive set of string manipulation functions is supported. Functions are
provided to search a string for a character, a substring, or a set of characters, forward or
backward; to concatenate, take substrings, reverse strings, trim specified characters off the ends,
and so on. You can use Zetalisp’s stream-directed input/output to print to strings or read from
strings.

Fixed-point, floating-point, and arbitrary-precision fixed-point ("bignum") numbers are supported.
All standard arithmetic functions are generic, working correctly with any numeric data type and
performing type coercions at runtime when necessary.

Control Structures 14 Symbolics Software

Two forms of user-defined data type are provided. The first kind is simply a structure (record)
with named components, each of which may be any Lisp object. The programmer can specify the
type identifier for such structures, and control their printed representation so that they can print
out in a descriptive way. The second kind is more powerful; it is the "flavor" system, described in
detail below.

Control Structures

Zetalisp has all of the control structures employed by conventional languages. It has simple
conditionals, multi-armed conditionals, and several kinds of dispatching ("case™) constructs. There
are several iteration constructs: "dolist" and "dotimes" for simple iteration over a list or a sequence
of numbers, the Maclisp "do" for more general iteration allowing stepping of many variables in
parallel and arbitrary end-test, and the extremely general and powerful keyword oriented "loop"
construct. The "prog" feature with gotos is also supported, although it is rarely needed.

There are also more advanced control structures. One of these is the "catch/throw" mechanism
for structured non-local exits. The body of a catch form is evaluated and returned, except that if,
during that evaluation, a throw with a tag matching that of the catch gets evaluated, then the
catch immediately returns the value given to the throw function. One of the primary uses of this
mechanism is to quit out of a program when an error is detected. It can also be used, for
example, to get out of levels of looping and recursion upon finding an item for which you are
searching. Zetalisp also provides the "unwind-protect” special form, which evaluates Lisp forms in
such a context that if a non-local exit is done from those forms, a "clean-up handler" will be
evaluated. By setting up unwind-protect forms around appropriate places, you can arrange for
temporary effects to be undone whenever an evaluation finishes, whether it finishes normally or by
means of a non-local exit. This means that you can arrange for things to be cleaned up if
someone aborts a process or the process gets an error that is dismissed.

Zetalisp also provides two kinds of coroutining control structures. Simple coroutines can be
created using "closures”. A closure is a Lisp function along with some saved variable-binding state
information. A function can be written as a generator that saves its state in some variables, and
then by creating a closure of that function over those variables, you can have a new instance of
the generator. More powerful and general coroutines can be created using "stack groups". A stack
group holds the entire state of an executing Lisp program including the control stack history and
the state of the bound variables. At any time, one stack group is the currently executing stack
group. It can co-call another stack group, which transmits a value to that stack group and starts
its computation running. Multitasking, implemented using stack groups and a scheduler, is also
provided, and was discussed above.

Function Calling

Zetalisp provides more powerful argument passing facilities for functions than ordinary Lisp
dialects. A function may have any number of required parameters, followed by any number of
optional parameters, followed optionally by a "rest" parameter. Whenever a function call is done,
the number of arguments is always checked for validity, and if the caller passes too few or too
many arguments for the callee, an error is signalled. Optional arguments may be optionally
supplied by the caller; the callee can specify an initialization form that provides the value of the
optional parameter if it is not passed. If the caller passes more arguments than all of the required
and optional parameters, and the callee specifies a "rest" parameter, then the "rest" parameter’s
value will be a list of all of the rest of the arguments. This lets you write functions that take an
arbitrary number of parameters.

Symbolics Software 15 Input/Output

Zetalisp lets you return more than one value from a function. This is useful when a function
computes more than one interesting value. In ordinary Lisp dialects, you would have to create a
data structure, such as a list, containing the values, and return it; the caller would then have to
take this apart again. In Zetalisp, any function can return more than one value, and the caller
can call the function requesting many values and specifying variables that should be bound or set
to the values.

Input/Output

Input and output in Zetalisp are done through streams. A stream is a Lisp object that can act
as a source and/or sink of sequential characters. An input stream object is sent messages such as
"read the next character”, "read a line”, "are characters available?”, "clear buffered input", and so
on; an output stream object is sent messages such as "write this character”, "write this string",
“clear buffered output”, "wait for buffered output to finish going to device", and so on. Streams
are provided for communication with the keyboard, windows on the screen, files in any accessible
file system, network connections, editor buffers, and character strings. All input functions work on
any input stream, and all output functions work on any output stream (streams may be
unidirectional or bidirectional), and you can hook any of them together in arbitrary patterns. You
can easily write your own streams that deal with characters stored anywhere you want.

Zetalisp provides a function called "format" for doing formatted output conveniently; it is
similar to the "printf” function in Unix. Format takes a string of text to be printed. The string
can contain escape sequences, that generally say "take the next Lisp object that was an argument
to format, and print it this way". You can print numbers in any base, with specified field widths
and padding characters; you can also print English cardinal and ordinal numbers, and Roman
numerals. Format also has provisions for pluralizing words, spacing to particular columns,
outputting control sequences, conditionalizing text, iterating over lists, arbitrarily justifying fields,
and so on. The output produced by format can be sent to a character string or to any output
stream.

Managing Large Systems

In recent years, it has been recognized that the major problem in software is that programs are
very complex, and that the job of a program development system is to help the programmer reduce
and manage that complexity. Zetalisp provides a battery of language features and interactive tools
to make programs easier to work with. This section describes somg of them.

Large Lisp programs are usually divided up into several different files, to provide managable-
sized pieces for text editing and compiling to files. Such a set of files can be presented to Zetalisp
as a "system" and managed as a unit. A system declaration lists all of the files in a system and
specifies their interdependencies on one another. In Lisp programs, for example, one file might
provide macros that must be loaded into the Lisp environment in order for a second file to be
compiled correctly. You can ask for a system to be recompiled, and the system will automatically
find all of the files that have been modified since the last time they were compiled, and offer to
compile them, first performing any actions that are required by the dependencies, such as loading
files of macros. Recompilation can be done selectively, with the user queried for each file to be
compiled. You are asked whether the file should be compiled, and presented with a directory
listing showing the existing versions of the file with their creation times and authors, and you are
offered a source-to-source incremental comparison between the installed version and the latest
version, or between any versions you want, so that you can examine what changes have been made
to the software and audit these changes before approving the recompilation.

Flavors: Message-passing. 16 Symbolics Software

Often bugs are found in large systems, and it is desirable to be able to fix the problem and
distribute the correction to any users of the system. If the system is a small program that is
loaded into the Lisp environment by each user every time it is used, there’s no problem; you just
recompile the files and users will get the lastest version when they load them. However, if the
system is large and versions of it are stored away in saved Lisp environments, it is time-consuming
to completely reload the system. Zetalisp provides a facility whereby the maintainers of the system
can create "patch” files containing Lisp forms that fix the problem, and make these patches publicly
available. Then a user can give a command that automatically loads up all of the lastest patches
to the system into his environment. The patch system automatically keeps track of numbering
patches, and producing two-part version numbers of the system based on the original version of the
program that was loaded and the level of patches that have been installed. Simple commands in
Zmacs ("Add Patch” and "Finish Patch") make it easy to install new patches to a system.

The Zetalisp environment is based on a single, large "workspace” containing all of the functions
and global variables of all of the programs in the system. In order to prevent naming conflicts
between different programs that happen to both choose the same name for some function or
variable, the system provides for independent namespaces for different programs. A namespace is
an association between character strings and Lisp symbols; two namespaces can associate the same
character string with two different symbols. Any program can have its own namespace so that it
can choose the names it wants to use without geiting in the way of any other program.

There are several interactive facilities to help the programmer examine and debug programs.
You can trace all function calls to a particular function or set of functions, optionally causing
breakpoints. You can find out all of the callers of a particular function, in case you want to
change the way that function behaves and you need to change all the callers. You can find all of
the symbols whose name contains a given substring; this is useful if you only remember part of a
name. You can set up a region of memory so that if there is any attempt to write it, the error
handler will be called; this is useful if something somewhere is incorrectly writing something and
you want to find the culprit. You can single-step a program, watching each evaluation as it
happens and examining the environment between steps. You can find out the argument list of any
function loaded into the environment, and find the attached on-line documentation for the function
if the author wrote any.

Flavors: Message-passing.

Object-oriented programming is available in Zetalisp. In this style, a program is built out of a
number of objects. Operations are done on objects by sending them messages. Each object
understands a certain set of messages, and responds to those messages in a certain way. Message
passing is powerful because different objects can respond to the same set of messages in different
ways. For example, input/output streams in Zetalisp use message passing. Each stream is
represented by a Lisp object that accepts the stream messages, such as "input the next character"
and "output this character string". A program that performs input/output is given a stream, and it
sends these messages to the stream. Different streams handle the messages in different ways; for
example, one stream might handle "output this character string" by displaying it on a window on
the screen, another might send the string out to the network, and a third might insert the string
into an editor buffer. The program that did the output need not know what the stream will do; it
just sends the messages.

Sending a message from a Zetalisp program is easy; you just invoke the receiving object as a
function. The first argument to the function is the name of the message, and the rest of the
arguments are arguments to the message. Any Lisp object that accepts these arguments can be a
receiver of messages. Zetalisp provides a facility called Flavors that makes it easy to create Lisp

Symbolics Software 17 Macros: Extending the Language

objects that receive messages. A flavor is a kind of user-defined data type. When you define a
flavor, you have defined a new data type; you can create new objects of that type, which are
called instances. For each flavor, there is a set of instance variables; each instance has its own set
of values for these variables. Instance variables hold the internal state of each instance. Each
flavor also has a set of Lisp functions called methods, of which there is one for each message that
instances of this flavor understand. When a messages is sent to an instance, the Lisp system finds
out what flavor the instance is an instance of, and finds the method of that flavor for the message
being passed. This method is then invoked, and it is passed the arguments of the original message.
The method can be any Lisp function, and it computes and returns a result to the sender of the
message.

The great power of flavors is that you can combine several flavors to form a new flavor. You
can take a basic flavor that implements some new data type, and build a new flavor, adding new
functionality and modifying old behavior, by mixing the basic flavor with other flavors. For
example, windows in the window system are represented as instances of flavors. There are many
different flavors of windows. One flavor might be a basic window with other flavors "mixed in" to
provide for such features as borders, labels of various sorts, ability to do graphics output, and so
on. Flavors can be mixed in any fashion you want. When two flavors provide methods for the
same messages and a new flavor is built on them, the two methods are combined, in any of several
ways; one may override the other, they may both be performed in some order, one may be
executed only if the other says that it should be, and so on, under complete control of the
programmer.

Macros: Extending the Language

In most languages, there is a fixed set of syntactic constructs that are part of the language;
you get them with the language and those are all you get. In Zetalisp, you can add your own
constructs to suit your particular needs or tastes, or to tune the language to a particular
application. You do this by creating a Lisp macro. Macros in Zetalisp are different from macros
in the traditional sense; rather than manipulating text, they manipulate the structure of the
program. A Lisp program is made of Lisp data structure, with lists, symbols, numbers, and so on;
a Lisp macro is a Lisp function that manipulates the structure of a Lisp program, translating the
syntax that you invent for your extension into existing Lisp constructs. When you build a large
software system in Zetalisp, you usually create several language extensions that are specific features
useful for your system, and then you write your system in this extended language. Specialized
languages have been built on Lisp for such diverse purposes as computer graphics, text formatting,
expert problem solving, and VLSI integrated circuit design. Zetalisp includes several tools and
constructs to make it easy and convenient to write macros.

The Zetalisp Dialect

Zetalisp is a new Lisp dialect, based on the best features of Maclisp and Interlisp, and
modified by years of experience in writing and maintaining large programs in Lisp. Zetalisp is
largely upward-compatible with Maclisp; most Maclisp programs can easily be made to run in
Zetalisp as well as Maclisp. Zetalisp will be a superset of the Common Lisp standard Lisp subset,
which will allow programs to be portable to several other modern Lisp systems.

Zetalisp includes many features that are familiar to Interlisp programmers but which have not
traditionally been provided in Maclisp. For example, functions in Zetalisp can be customized and
modified by the addition of user-specified code called "advice". Structures (records) with named
slots can be defined and used. A powerful iteration construct using keywords to express various

Other Language Features 18 Symbolics Software

kinds of looping and actions to be taken is provided. Many other little things like hash tables have
also been added to Zetalisp.

Zetalisp was designed from the beginning with Maclisp compatibility as a goal, to allow
researchers with existing Maclisp software to run their programs in the Zetalisp environment.
Several large systems currently run in both Maclisp and Zetalisp, with only a small amount of
conditionalized code.

A common subset of Lisp, called Common Lisp, is being defined by the designers of several
new Lisp dialects, to provide portability between the different dialects. The SPICE Lisp dialect,
being developed as part of the Carnegie-Mellon University SPICE project, and the implementations
of NIL (New Implementation of Lisp) for both the Lawrence Livermore National Laboratories S-1
and the DEC VAX, will also include the Common Lisp subset. Any program written wholly in
this subset will run correctly in any of these dialects.

Common Lisp will be well-supported by all of the above-mentioned dialects; the participants are
all committed to providing and maintaining support for the entire subset. Common Lisp will also
be very stable; additions to the definition will only be made if there is general agreement among
all participants that such an addition should be made, and incompatible changes will be avoided.
New Lisp language features that are still considered to be under development will not be added to
Common Lisp; only stable and well-tested features will be added.

Other Language Features

Zetalisp gives you access to the lowest levels of the software system and the processor, if you
need them. A special set of functions called subprimitives can be used to manipulate internal data
structures and deal with levels lower than the Zetalisp language itself. Many of the fundamental
functions and facilities of Zetalisp are written as Lisp programs that call these subprimitives. While
it is rare that user programs need to use these facilities, they are present if you ever need them.

Errors detected either in microcode or by Lisp programs are reported to the user with clear,
English error messages. Whenever an error is signalled and not handled by the program, an
interactive error handler gives you the error message and provides you with commands to examine
and manipulate the state of the program. This error handler has a command to invoke the Display
Debugger.

Programs can set up handlers for exceptional conditions. Conditions are signalled by Lisp
errors, or by any program that wants to signal one. Errors can be dealt with and program
execution resumed, or the program can quit what it is doing and take other actions based on the
error. A handler can be set up to catch a specific error, any of a class of errors, or any error at
all. Any program can create its own errors and classes of errors, and they will be handled
uniformly by the system. (The condition handler system is not yet fully implemented.)

More adove al t Return
<STANDALONE-EDITOR-WINDOW STANDALONE- | Modify DeCache

#<ART-0-4 176084514> Clear Set N\
ZWET : COM-EVALUATE-AND-EXIT
More delow
Top of 0d]
#CART-Q-4 17604514)
Eit @ ((1532 . zWe1:con-guaLf| 9gTen fastorial G
Elt 1: NIL)
Elt 2: #<DTP-LOCATIVE 1142406 -
More delon (2 x (factorial (- x 1)))))
Top of odje
ZWEL:COM -EVALUATE ~-AND -EXIT

Value is unbound

Function |s #°ZWEI:COM-EVRALURTE-

Property list: (SOURCE-FILE-NAME
Moze delow

Top of odj¢]

ja Est

(SOURCE-FILE-NAME [Factorial Example
#<LOGICAL-PATHNAME "SYS: ZWEI;
ZHEI : COMMRND-NAME

*Evaluate And Exit® The Zmacs editor can edit text written using
DOCUMENTATION more than one font. Beld face type can be used,
"Evaluate the buffer and return ard 30 can italics.
1
Bottom of od}
(factorial 5) Fonts Example
120.

(factorial 58)
384140932081 713378084361260681 6686

4768844377641 56896051 2606000000 ZMACS (LISP) Factorial Example Font: R (CPTFONT) =
Eea. Ifactorlal compi |l ed.

LISP-LISTENER-3

The Zmacs framé has tuo uindous. In one, a factorial
function has just been uritten and compiled; the other
demonstrates the use of fonts. There is also a Lisp
Listener windou in uhich the factorial function is tried
out, and an Inspector franme.

(c) Copyright Symbotics, inc, 1981; Printed in USA

Pick a slot, with the mouse, to modify
New value (type a form to be evaled or select something with mouse): nil

Mozre adove

Exit
(#<HOLLOW-RECTANGULAR-BLINKER 6841867> #<CHRRACTER-BLINKER 6846712> #<RECTANGULAR-BL| Return
#<RECTANGULRR-BLINKER 6046676> Modify
#<STANDALONE-EDITOR-WINDOW STANDALONE-EDITOR-WINDOW-1 5772527 exposed> DeCache
((ZHEI :LISP-MODE ((PROGN (ZWEI:REMOVE-EXTENDED-COMMANDS ’NIL °%<RRT-0-4 17604514>) (] Clear
Bottom of History Set \

Top of odject
CRECTANGULAR-BLINKER 6048676>
An object of flavor TV:RECTANGULAR-BLINKER. Function is #<DTP-SELECT-METHOD 3683233>

TV:R-POS: 3
TV:Y-POS: 2

Mozre delow

More adove
f&Sg&gg)&L?E-EﬂT OR -WINDOW 8TAM;ALG£-EINTCB-WIIX)W-1 6772527 exposed)
TV:MORE-UPOS ¢ NIL
TV:TOP-MARGIN-SIZE: 2
TV:BOTTOM-MARGIN-SIZE: 2

More delow

Top of odject

ja st
((ZWEI:LISP-MODE ((PROGN [{ZWNET :REMOVE-EXTENDED-COMMANDS ®NIL ’ R<ART-0-4 17604514>

WEI:SET-COMTAB "#<ART-G-4 17604514> 1532 NIL 1132 NIL 6€@7

(SETQ ZHEI :sCOMMENT-STARTs °NIL)
(SETQ ZHWEI :*PARAGRAPH-DELIMITER-LIST: ’(56 48 211))
(SETQ ZMEI :*SPRCE-INDENT-FLAGs ’NIL)))

Bottom of odject

ZNET : COM-TAB-HACKING-RUBOUT
207 ZHEI:COM-RUBOUT 211
ZNETI :COM-INSERT-TRAB)))

This is an Inspector frame. At the top is the
interaction pane; belou is a history pane and a
command menu. Below them are three Inspect
panes, each inspecting one Lisp object. The
first object is a blinker, the second is a
windou, and the third is a list.

(c¢) Copyright Symboiics, Inc, 1981; Printed in USA

More adove

COMPILE-STRERM

716 EQ LOCAL|1? ;s ECF
717 BR-NIL 721
728 BR 732
721 MOVE D-IGNORE RARG|2 ; FRSD-FLAG
722 BR-NIL 727
723 CALLG D-PDL FEF|110@ ; #° COMPILER:FASD-TABLE-LENGTH
724 < FEF|25S ; COMPILER:QC-FILE~-WHACK-THRESHOLD
725 BR-NOT-NIL 727
726 CALLB D-IGNORE FEF|111 ; #° COMPILER: FASD-END-HHACK
727 CALL D-IGNORE ARG|3 ; PROCESS-FN

Mozre delow

#<Stack-Frame CAR microcoded>

#1<Stack-Frame COMPILE-STREAM PC=731>
Args: Locals:
Arg 8 (INPUT-STREAM): #<DTP-CLOSURE 21874612> JlLocal 8 (LAST-ERROR-FUNCTION): NIL
Arg 1 (GENERIC-PATHNAME): #<DUMMY-PATHNAME °®BUF|Local 1 (COMPILING-WHOLE-FILE-P): NIL
Arg 2 (FASD-FLAG): NIL Local 2 (PACKRGE): NIL
Arg 3 (PROCESS-FN): #<DTP-FEF-POINTER 10411142 JLocal 3 (DEFAULT-CONS-AREA): NIL
Arg 4 (QC-FILE-LOAD-FLAG): T Local 4 (QC-FILE-OLD-DEFRULT-CONS-AREA): 36
fArg 5 (QC-FILE-IN-CORE-FLAG): NIL Local S (FDEFINE-FILE-PATHNAME): NIL
Arg 6 (PACKAGE-SPEC): NIL Local 6 (GENSYM): T
Arg ? (FILE-LOCAL-DECLARATIONS): NIL Local 7 (VALS): (#<Package USER 4051143>)
Arg 8 (READ-THEN-PROCESS-FLAG): NIL Local 8 (PROGV-VARS): NIL

Local 9 {PROGV-VALS): NIL
Mozre adove

+(COMPILER:COMPILE-STREAM #<DTP-CLOSURE 21074612> #<DUMMY-PATHNAME "BUFFER-1"> NIL #° (INTERNA
({INTERNAL _ZWEL; COMPILE-INTERVALMB) (CAR 5))
(COMPILER:COMPILE-DRIVER (CAR 5) ‘W’ ZHEI :COMPILE-BUFFER-FORM NIL)
(ZWEI :COMPILE-BUFFER-FORM (CAR S) RANDOM)
(SI:*EVAL (CAR S))

(CAR 2084)
Top of stack
What Error Hrolist Retry Set arg T
Exit Window EH Inspect Return a value Search NIL
Abort program Edit Continue Throw

>>TRAP: The argument to CAR, 5, was of the wrong type.
The function expected a cons.

This is the Display Debugger. It shous a stack
history, including the argumsents, local variables,
and code for the currently selected stack franme.
There is also a command menu and an interaction pane.

(c) Copyright Symbolics, Inc, 1981; Printed in USA

>%,.%,%
>bsg
>Donovan
>Giangregorio
>Ingrahanm
>LMFS
>Marsden
>0ttinger
SRiley
>Silverstein>s % ¢
>Silverstein>chess
>Silverstein>graphics
>Silverstein>math>t,x.%
|inear-algebra.lisp.8
| inear-algebra.lisp.9
| inear-algebra.gfasl.!
topology.lisp.l
>Silverstein>papers
>Silversteind>vision
>Smith
>Torngren
>Hatson

File System Editor

? 23558(8)

7 26345(8) | @8/17/81 22:19:47 (08/17/81) dlw
8 27526(8) | ©8/,17/81 22:208:15 (88/17/81) dlw
4 63108(16) | 98/17/81 22:23:58 (08/17/81) dlw

NQ 21 D203 AN, N1 . AQ (00 2122011\ ol

1 35 r in> > |
Delete
View

Rernd
Edit Properties

Dump

This is the file system editor.

The user is examining

the files matching the name >Silverstein>math>x x x
and can nou perform any of the listed operations on
the file that the mouse was indicating uhen the menu
Has called for.

(c) Copyright Symbolics, Inc, 1981; Printed in USA

ate From+To

MARS-RETRIE+Header-Peop
Feinler®SRI-KL»

Rick Gumper-+PBARANGUSC-
Kah| er@SUMEX-AIM-+
Feinler®SRI+*header-peop
RMSEMIT-ARI-watkinseNBS-
MRCOSU-AI+Feinler®SRI-K
HRCeSU-RI +MsgGroup@USC-
KLHEMIT~-MC+mrceSU-RI
Kah!|er@SUME+Header-Peop
JZSOCCA+Kah| er@SUMEX-AI
DerockereRa+Header-Peop

ul ct or Text

Please ignore previous message

Online address for delivery of FIPS standard comments
net replies

FIPS Proposed Standard Sample Session

FIPS standard

I am not certain that I will be able to find the ment
FTIP in reality and myth

FTP continued

Read RFC 691. It should be available from SRI-KL as
May I be put on the mailing |ist?

Re: May I be put on the mailing |ist?

RFC 733 Mail! standard: Group Names

Kahler@SUME+Roach®NIT
KahlereSUME+Watkins®NB
Philip.Karl+Dcrocker@R
BR198eCMU-108-+HatkinseNB
BRlBOCﬂU-lG*HatklnseNB!
Frankston®M+HatkinseNB!
HENDERSONeB-+HatkinseNB

|_No, Lines
15: 8 23-Feb
16: 25 24-Feb
17: 25 24-Feb
18: 51 3-Mar
19: 27 3-Mar
208: 216 4-Mar
21: 53 4-Mar
22: 4] 6-Mar
23: 17 6-Mar
24: 12 7-Mar
25: 33 9-Mar
26: 32 18-Mar
27: 14 18-Mar
28: 354 10-Mar
29: 12 11-Mar
38: 71 12-Mar
® 31: 71 12-Mar
32: 9@ 13-Mar
33: 51 13-Mar
Protile
Configure
Survey
Sort

Buit
Save files
Get new mail
Map over

To:
CC:

Re:

Message

Date: Sunday,

Associate Director for ADP Standards
Institute for Computer Sciences and Tech
National Bureau of Standards

Hashington, DC 20234

Sir or Madam:

12 Mar 1978 1928-EST

From: Brian K. Reid <BR18 at CMU-10R>
Subject: Proposed FIPS standard for User
Hatkins at NBS-10, Pyke at NBS-1@
MsgGroup at 1ISI, Header-People at
Saltzer at MIT-MULTICS, Tavares at

Universe:

SCRC: DLW YHEADER -PEOPLE -MINUTES -5.RMAL |

e

Filters:

Recent New filtea

Keywords:
any]

il

,,
g
-
°

Proposed FIPS entitled "User-Terminal Protocols -- Entry and
Exit Procedures between Terminal Users and Computer Services®

ZMai| SCRC:<DLW>HEADER-PEOPLE-MINUTES-5.RMRIL

Msg #317364 {)} --More below--

(c) Copyright Symbolics, Inc, 1981;

This is the ZMail mail reading systen.
choosing a filter which uill select a subset of the
messages in the mail file, based on a specific

criterion.

Printed in USA

The user is

[on] [owm] [eioe] [Keyworsa] [Fordoopy |

‘ﬁzgr options:
Top
Delete message when moved into file: Yes No
Show headers and ask before expunging deleted messages: Yes No
Forwarded messages are supplied with a subject: Yes No
Move to first message even when no new mail: Yes No
Just show headers and text after yanking in message: Yes No
Do not automatically save after get new mail: Yes No
Direction to move after delete: Backward Forward Remove No
Direction to move for click middie on delete: Backward Forward Remove No
Default startup window setup: Summary only Both Massage only Experimental
Middle button on Mail command: Bug Mall Forward Redistribute Local
Mozre delow

;DLH’s ZMAIL init file -3-Mode:LISP; Package:ZWEI~-%~

(LOGIN-SETQ *DELEVE-AFTER-MOVE-TO-FILEs® NIL)

(LOGIN-SETQ $SUMMARY-MOUSE-MIDDLE-MODEs * :DELETE-OR-UNDELETE)
(LOGIN-SETQ sMAIL-SENDING-MODE* ’CHROS-SEND-IT)

(LOGIN-SETQ $DEFAULT-HEADER-FORCE* * :RFC?733)

(LOGIM-SETQ sMIDDLE-REPLY-WINDOW-MODEs ° :YANK)

(LOGIN-SETQ sMIDDLE-REPLY-MODE* *:fj ns f
(LOGIN-SETQ sDONT-REPLY-TO% ’("infdFormat: Tanex Babul Text
(LOGI"'SETO *DEFAULT-MOVE-MRIL-FIL ﬂppend nessages moved into file: No
(LOGI""SETQ sDEFRULT~DRAFT-FILE-NA Reverse New Mail: Y.’ @
(LOGIN-SETQ 3*GMSGS-OTHER-SHITCHESS |lyersion: 5

(LOGIN-SETQ sNEW-MRIL-FILE-APPEND-AMai | :

(LOGIN-SETQ %SUMMRRY-SCROLL-FRACTI{guner:

Sort predicate: None Date To From Subject Keywords Text
Delete expired messages: Yes No Ask

Summary Window Format: T

Do 1t OO Abort [

[Profile

ZMail Profile SCRC:<DLH>ZMAIL.INIT

This is ZNMail’s Profile mode. It lets you examine and alter
the state of various options and modes in 2Mail, so that you
can customize ZMail’s behavior to best suit you. You can
save away this customized state in a file, called your
"profile” file, so that uhen you use ZMail in subsequent
sessions, your customizations will still be there.

(c) Copyright Symbolics, inc, 1981; Printed in USA

N
* 1:
2:
3:
LH
S:
6:
7:
8:
9:
18:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

ine

83 30-Sep
13 38-Sep
17 38-Sep
46 2-0Oct
38 2-0ct
42 2-0ct
22 3-0ct
24 3-0ct
13 3-0ct
32 4-0ct
1S 4-0ct
48 4-0Oct
16 4-0Oct
66 4-0Oct
16 4-Cct
8 4-Oct
11 5-0Oct
16 S-0ct
15 S5-0ct
19 5-0ct

te From=T

RMSeMIT-AI+Derocker@USC

ject or Text

VITTALEeBBN-+header-peop The header standard (what else?)
[151] <DCROCKER>STANDRRD.DRAFT
Geof fFOSRI-KA-RMSEMIT-AI Re: [ISI)<DCROCKER>STANDARD.DRAFT
TVR@SU-AI+RMFEMIT-MC, He Encryption and
TUReSU-AI+Header-People Awhi le ago,
Philip Karl+Header-Peop
EAKEMIT-MC+TURESU-RI
Geof f@SRI-K+Header-Peop
GreepCRand-+GEOFFeSri -K
Dcrocker@Ra+Header-Peop

Msg-IDs

1 sent out a suggestion for a small ch
<DCrocker>Standard.Draft
FROM and SENDER
Carrying things Just a tittle to far (or In-reply-to
Re: Carrying things just a little to far (or In-reply
This last round with the Standard
Rick Gumper-+Dcrocker®Ra Re: This last round with the Standard
Rick Gumper-+Header-Peop |latest RFC 724
Rick Gumper-+Header-Peop RFC 724
KLHEMIT-AI+Header-Peopl
MRCeSU-ARI+Header-People
MRCOSU-AI+GumpertzeCMU-
KLHOMIT-MC+nmrc@SU-AI, dc Sexism or lack
KLHEMIT-MC+PograneMIT-N
Philip Kar!+Header-Peop
Rick Gumpertz+MRCOSU-RI 12:80 PM

I will first list the miner things I came across.
Last round with 724
Rick, you’re wrong. 12:88 PM is 12 Noon.

of it

' Ke could have wished for more agreement on the phi!
Recent suggestions and questions

[Not | [and] [oOr] [Close]

test-filter

(DEFINE-FILTER TEST-FILTER (MSG)

[sample | [Done| [Abort | (AND (NOT (GET STATUS ’DELETED))
(OR (MSG-HEADER-SEARCH * :SUBJECT #"724")
(MSG-HERDER-RECIPIENT~SERRCH * :FROM #°KLH"))
Deleted To [)
Unseen To/Cc
Recent From On
Answered|
Fiod Subject After
Other
8earch
Keywords:
Any Filters: rBefore date:
frog = three days ago
dog
This is 2Mail’s filter definition mode. This filter

finds all messages that have not been deleted, and
that either contain "724" in their subject lines or
are from "KLH", and were sent more than three days ago.

(c) Copyright Symbolics, inc, 1981;

Printed in USA

esysTAT
212
Job TTY

ost
4 Det

UDISK-81.IMAGE; 1

VOLS.LSP; 32, 31
.FASL; 19
.LISP; 42, 41, 40
.OFASL; 43, 42, 39,

Load 1.63 0.65 @

User

Diw

6 Sis Tk
9 S0zx H

TELNET -- scrc

18 52 Diw EXEC 24.0 Lnfs 1

@ Det Systen SYSJOB 6:15:48.6 Bury

1 Det Systen CERBER 18:55.8 Expose

4 Det Systenm BATCON 16:47.6 Batch Expose (menu)

5 Det Systenm CHARFC 46.6 Create

Create (expand)

® Kill
.FASL; 49 Exit

UTILS.LISP;1 Undo

UDISK.MID; 1 Move window
.FASL; 1 Reshape

Move multiple | _

Move single
Expand window

Expand all

LISP-LISTENER-3

Here are three mindous: a Telnet connection, a
Lisp Listener showing a graphics display, and
a Screen Editor command menu.

(¢c) Copyright Symbolics, inc, 1981;

Printed in USA

Type & number or a specia

X
value in switches: NETWORK through \ keys
responding switches. - and = shift in bits.
ift in three bits. CLEAR-INPUT zeroes.
nd down increment and decrement, hands
left shift. N gets next higher number with
r of one bits., END exits.

T stops the action, RESUME resumes it.

Cubic Splines

These are some examples of the use of graphics displays.

(c) Copyright Symbolics, Inc, 1981; Printed in USA

: o, _:’” .,m \ SS
User \\\\\\\ \\\\\\\\\\\\\\\ \ \ \

LISP-LISTENER-3

created

This Choose Variable Values window nas
by the Attributes command of the Screen Editor.
ine and alter vari

It lets the user exan ious
attributes of the window called LISP-LISTENER-4.

(c) Copyright Symbolics, Inc, 1981; Printed in USA

