
SUNSTONE ARCHITECTURE

11/03/87

SUNSTONEARCHITECTURE

Symbolics Company Confidential

Draft formatted on 30 Oct 87 at 23:24

We appreciate any conunents on the organization, technical completeness, and technical accuracy of this

draft. (Conunents about the product design should go to the appropriate mailing list instead.) Thanks.

Name: ______ , Date: __ _

This document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc.

Printed in the United States of America.

Copyright © 1987, 1986, 1985, 1984, 1983, 1982, 1981, 1980
Symbolics. Inc.

All Rights Reserved

SUNSTONE ARCHITECTURE
October 1987

The software, data, and information contained herein are proprietary to, and comprise valuable trade
secrets of, Symbolics, Inc. They are given in confidence by Symbolics pursuant to a written license
agreement, and may be used, copied, transmitted, and stored only in accordance with the tenns of such
license. This document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc.

Copyright © 1987,1986, 1985, 1984, 1983, 1982, 1981,1980 Symbolics, Inc. All Rights Reserved.

ReStricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set forth in subdivision
(c)(l)(ii) of the Rights in Trademark Data and Computer Software Clause at FAR 52.227-7013.

Symbolics, Inc.
11 Cambridge Center
Cambridge, MA 02142

Text masters produced on Symbolics 36()()l'N-family computers and printed on Symbolics LGP2 Laser
Graphics Printers.

Printed in the United States of America.

Printing year and number: 88 87 9 8 7 6 5 4 3 2 1

Symbolics Company Confidential iii
October 1987 SUNS TONE ARCHITECTURE

Table of Contents

1. INSTRUCTION SET ARCIDTECTURE
1.1 DATA TYPES

1.1.1 Data Types Whose Defmition Is Different Than I-Machines.
1.1.2 Array Descriptors
1.1.3 Compiled Functions

1.2 VIRTUAL AND PHYSICAL ADDRESS SPACE
1.2.1 Memory Caches

1.3 REGISTERS
1.3.1 Window Registers
1.3.2 Internal Registers

1.4 INSTRUCTION FORMATS
1.4.1 Register To Register (RR) Format
1.4.2 Register Immediate Short (RIS) Format
1.4.3 Register Immediate Long (RIL) Format
1.4.4 Direct Branch Format
1.4.5 Instruction Sequencing
1.4.6 Instruction Field Descriptions
1.4.7 Data Type Checking
1.4.8 Data Type Setting
1.4.9 Memory Operations

1.5 INSTRUCTIONS
1.5.1 Arithmetic Operations
1.5.2 Logical Operations
1.5.3 Bit and Byte Operations
1.5.4 Call Operations
1.5.5 Return Operations
1.5.6 Move Operations
1.5.7 Direct Branch Operation
1.5.8 Conditional Operations
1.5.9 Type Operations
1.5.10 Load Operations
1.5.11 Store Operations
1.5.12 Coprocessor Operations
1.5.13 MC Register Operations

1.6 STACK GROUPS
1.6.1 Window Stack
1.6.2 Data Stack
1.6.3 Binding Stack
1.6.4 Stack Group Switching

1.7 FUNCTION CALLING
1.7.1 Calling
1.7.2 Entry
1. 7.3 Generic Functions
1. 7.4 Message Passing
1.7.5 Lexical Closures

Page

1
1
1
1
1
2
2
3
3
4

15
15
17
17
19
19
20
26
27
27
30
33
39
43
49
52
56
59
61
66
70
89

103
108
112
112
113
115
116
116
116
118
118
119
119

iv
SUNS TONE ARCHITECTURE

1.7.6 Return
1.8 EXCEPTIONS

1.8.1 Interrupts
1.8.2 Traps

1.9 GARBAGE COLLECTION (GC)
1.10 ARRAYREFERENCES.

1.10.1 Array Hardware Support
1.10.2 Array Header Register
1.10.3 Array Length Register
1.10.4 Array Descriptors
1.10.5 Trap Conditions

1.11 STORE CONDITIONAL
1.12 INSTRUCTION RESTRICTIONS

1.12.1 Load Instruction Restrictions
1.12.2 Special Register Restrictions
1.12.3 MC Register Restrictions
1.12.4 Instruction Sequence Restriction Table

APPENDIX A. TABLE OF INSTRUCTION SIDE EFFECTS

Index

Symbolics Company Confidential
October 1987

120
120
121
121
134
134
135
136
137
137
138
139
140
140
140
141
142

143

145

Symbolics Company Confidential
October 1987

List of Figures

Figure 1. Window Registers Before Call
Figure 2. Window Registers After Call
Figure 3. RR Formats
Figure 4. RIS Formats
Figure 5. Rll... Formats
Figure 6. Direct Branch Format
Figure 7. Arithmetic Operation Formats
Figure 8. Logical Operation Formats
Figure 9. Bit and Byte Operation Formats
Figure 10. Call Instruction Formats
Figure 11. Return Operation Formats
Figure 12. Move Operation Formats
Figure 13. Direct Branch Format
Figure 14. Conditional Operation Formats
Figure 15. Type Operation Formats
Figure 16. Load Operation Formats
Figure 17. Store Operation Formats
Figure 18. Coprocessor Operation Formats
Figure 19. MC Reg Operation Formats
Figure 20. Window Stack
Figure 21. Data Stack
Figure 22. Windows After a Trap
Figure 23. Trap Vector Format

v
SUNS TONE ARCHITECTURE

3
4

16
17
18
19
33
39
43
49
52
56
59
62
66
71
89

103
109
113
114
122
127

vi Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Symbolics Company Confidential
October 1987

List of Tables

Table 1. Special Registers
Table 2. Status Control Register Fields
Table 3. Global Registers
Table 4. Memory Control Registers
Table 5. Instruction Field Descriptions
Table 6. Opcodes
Table 7. Condition Field Defmitions
Table 8. Memory Operations'
Table 9. Instruction Classes
Table 10. Instructions
Table 11. Stack Group Registers
Table 12. Mise Opcode Specific Traps
Table 13. Trap Vector Addresses
Table 14. Exception Priorities
Table 15. Valid Array Types
Table 16. Instruction Sequence Restrictions
Table 17. Instructions/Conditions Side Effecting Special Registers

vii
SUNS TONE ARCHITECTURE

5
7
8

10
20
21
24
28
30
31

112
124
128
133
136
142
143

Symbolics Company Confidential 1
October 1987 SUNSTONE ARCHITECTURE

1. INSTRUCTION SET'ARCHITECTURE

This document describes the software architecture of the sunstone processor. It assumes a knowledge of I
the I-machine architecture as described in the I-Machine Architecture Specification, Revision 2
document

1.1 DATA TYPES

Sunstone uses essentially the same data types as the I-Machine. See "Chapter 1, Lisp-Machine Data
Types" as presented in the Symbolics Document I-Machine Architecture Specification, Revision 2 for a

description of the I-Machine's data types. There are some differences however, which are listed below.

All data types exist in the Sunstone machine, though their definitions may differ from the I-Machine
data types. .

1.1.1 Data Types Whose Definition Is Different Than I-Machines.

Data types with octal values 46 to 77 have different meaning in Sunstone than in the I-Machine.

dtp-even-pc octal 46, will be dtp-pc on Sunstone. dtp-odd-pc octal 47, will be a breakpoint trap on

Sunstone dtp-breakpoint.

dtp-packed-instruction, dtp-call-compiled-even, dtp-call-compiled-odd, dtp-call-indirect,

dtp-call-generic, dtp-call-compiled-eve.n-prefetch, dtp-call-compiled-odd-prefetch,

dtp-caU-indirect-prefetch, dtp-call-generic-prefetch, and dtp-packed-instruction octal values 50 to 77

will all be dtp-instruction. For a more in-depth description of these see section 1.4 on page 15.

1.1.2 Array Descriptors

Suns tone has a different implementation of array registers than does the I-Machine. See section 1.10.4
on page 137 for a complete description of Sunstone's array support

1.1.3 Compiled Functions

Compiled function structure is the same as I-Machine's with a 2 word prefix, body, and suffix. The

instructions are completely different as described in subsequent sections. Sunstone has no half word

instructions, only full word, and double word instructions. The data type of pc values is always dtp-pc.

Where I-Machine uses the cdr-code bits as sequencing information, Sunstone uses the cdr-code bits for
disabling interrupts and preempt See section 1.4.6 on page 20.

2 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

1.2 VIRTUAL AND PHYSICAL ADDRESS SPACE

Sunstone provides support for a virtual memory system that is essentially identical to the I-Machine's,
see "Chapter 2, Memory Layout and Addressing" as presented in the Symbolics Document I-Machine

Architecture Specification, Revision 2. However Sunstone does not have microcode, thus the details of

the implementation are somewhat different. The principal difference is that it is possible to get a
Map-Cache miss on any virtual address reference, even if the addressed word resides in physical
memory. However, it is always possible to access words that are addressed with VMA=PMA addresses.

Therefore certain structures, like the PHT, the trap vectors, most trap routines and all the data that th~y
access must be inVMA=PMA space.

The searching of the PHT and reloading of the Map-Cache, which is done in microcode in the 1-
Machine, is done in macrocode on Suns tone. The hash-box register in the memory control section makes
this a quick operation.

1.2.1 Memory Caches

Sunstone's memory cache scheme has certain characteristics that must be understood in order to insure

correct program behavior in all cases. There are two caches of interest: the small, on-chip, instruction
cache and the large off-chip data/instruction cache.

Both of the caches are addressed by virtual, rather than physical, addresses. That means that care must

be taken to not address the same physical location with more than one virtual address. If two different
virtual addresses refer to the same physical address it will be possible that if the data at one of the virtual
addresses is modified that change will not be visible to the other virtual addresses. This problem can

occur if, for example, a word is addressed both by a normal mapped virtual address and also by a

VMA=PMA address.

Since the instruction cache and the large cache are independent, updates to the large cache will not

necessarily be reflected in the instruction cache. This will not ordinarily be a problem for normal

compiled code since code modification is expected to be a very rare occurance. However, since certain

"data" structures, most notably the function definition cell, are executed as instructions, care must be

taken when those structures are modified. Whenever an instruction word is stored to a location that was
previously used to store a different instruction word, it is possible that the old instruction word has been

retained in the instruction cache. The instruction cache can be cleared by executing a word which will
occupy the same cache line as the word stored. This can be done by maintaining a block of 64 return
instructions and executing a call to the appropriate instruction:

store
and
add
cal.l.

[rO] ~rl
rO ~#77, rO
rO ~#returns,rO
pc ~rO

istore an instruction word
imask the l.ow bits

. iindex into the routine

Symbolics Company Confidential 3
October 1987 SUNS TONE ARCHITECTURE

returns: <block of 64 return instructions>

1.3 REGISTERS

Sunstone has access to 32 general purpose window registers which implement an overlapping window
scheme. Sunstone also has access to many other internal registers that are described below. The
window scheme implemented resembles that of the RISC chips developed at Berkeley. None of the
registers store the cdr-code bits.

1.3.1 Window Registers

Window Registers provide the means to pass arguments and return values between one function and
another during a CallIReturn sequence without having to write them out to slower memory. The
window used by a function is referred to as the current window~ and the window used for passing
arguments and receiving values is called the build window. Sunstone permits access to 32 of the
window registers at any given point in time, 16 in the current window and 16 in the build window. See
figure 1 on page 3, and figure 2 on page 4.

The current window registers labeled RO - R15 have register values 0 - 15 (0 - 17 octal); the build
window registers labeled AO - A15 have register values 16 - 31 (20 - 37 octal.)

Figure 1. Window Registers Before Call

A1S
A14
A13

A2
Al
AO

RlS
Rl4
Rl3

R2
Rl
RO

Window Stack (WS)

<- Window Stack Pointer (WSP)

<- Build Window

<- Current Window

<- Window Stack Base (WSB)

4 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Figure 2. Window Registers Mter Call

AI5
AI4
AI3

A2
Al
AO

R1S
R14
R13

R2
R1
RO

Window Stack (WS)

1.3.2 Internal Registers

<- Window Stack Pointer (WSP)

<- Build Window

<- Current Window (previous build window)

<- previous current window

<- Window Stack Base (WSB)

The internal registers are split up into three categories: Special, Global, and Memory Control (MC).
I There are 12 special registers which use 10 register addresses; they are hardwired and typically have
I special hardware attached directly. There are 22 global registers which are completely software

definable. There are also provisions for many MC registers (up to 256); presently 40 of them have been
assigned The global and special registers are accessible in all instructions as are the window registers.
The MC registers are loaded and stored via a read-me-reg and write-me-reg instruction.

1.3.2.1 Special Registers

I There are 12 defmed special registers which use 10 register addresses. All special registers can be used
as a source or a destination in the instructions. See table 1 on page 5.

Symbolics Company Confidential 5
October 1987 SUNS TONE ARCHITECTURE

Table 1. Special Registers

Special Registers

Name RegNo Abbr Rd-Wr Type Size Side-Effected
by

Array Header 76 AHR R-W - 38

Array Length 60 ALR R-W fixnum 32 load instruction

Byte Rotate 61 BRR R-W fixnum 10 load-array,
store-array

Memory Address 64 MAR R-W - 38 load-cdr,
load-ear-cdr ,
load-header,
load-structure

NIL 65 NIL R nil 32

Number of Args 62 N-ARGS R-W fixnum 5 call,
jcall, return,
return-subvert

Program Counter 67 PC W pc 32 every instruction

Status Control 63 SCR R-W fixnum 32 many,
load instruction

Status Control 24 66 SCR-24 W fixnum 24 many

T 66 T R symbol 32

Trap Result 77 TRR R-W - 38

Zero 67 ZERO R fixnum 32

1. Array Header Register - This is typically loaded by a load-header instruction when
preparing to perform array references (see section 1.10.2 on page 136. The hardware uses
the bits in this register to help perform the load-array and store-array instructions (see
section 1.5.10 on page 78 for a description of the load-array instruction and section 1.5.11
on page 93 for a description of the store-array instructions). This 38-bit register can be
both read and written.

2. Array Length Register - The hardware uses the value of this register to check for out of
bounds array references, using the load-array and store-array instructions. This register is
side-effected any time Array Header Register is used as a destination on a load instruction.
For a more complete description of this see 1.10.4 on page 137. This 32-bit register can be
both read and written. When read it will have a data type of dtp-fixnum.

3. Byte Rotate Register - This 10 bit register can be read and written. When read it has a data
type of dtp-fixnum and the most significant 22 bits are O. It is used by the dpb instruction
in the Register to Register format, and it is used in the trap handlers for the load-array and

I

I

I
I

6 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

store-array instructions, when a packed array is being accessed. A load-array or
store-array instruction wi11load the Byte Rotate Register with a byte specifier determined
from the Array Header Register, which helps to support the trap handling of packed arrays.
This side effect occurs even if the instruction traps. For more details on this see 1.10 on
page 134.

4. Memory Address Register - A 38 bit register that can be both read and written. The
memory address register is loaded by hardware with the address and type of calculated
memory address in the load-cdr, load-ear-cdr, load-structure and load-header
instructions. This side effect occurs even if the instruction traps.

5. NIL - This is a 32-bit constant, and cannot be written, it can only be read, it is the Lisp
symbol NIL with data type of dip-nil.

6. Number of Args - This 5-bit register can be read and written. When read it has a data type
of dtp-j'unum and bits 31:5 are O. The call and return instructions can cause the N-Args
Register to be loaded with bits in the instruction (see section 1.5.4 on page 49 for a
description of the call instruction and section 1.5.5 on page 52 for a description of the
return instruction).

7. Program Counter - A 32-bit write only register, this register contains the address of the
current instruction. The execution of every instruction affects the contents of the PC. This
shares its address with the Zero register,i.e., an attempt to write the Zero, will instead write
the Program Counter.

8. Status Control Register - A 32-bit register that is read or written, when read it has a data
type of dtp-Funum. There are many things that side effect this register. See table 2 on
page 7 for a description of the Status Control Register Fields.

9. Status Control 24 - A separate write only address that allows an instruction to write only
the most significant 24 bits of the Status Control Register leaving the cdr and type register
portion of this register intact This register shares its address with the T Register, i.e., an
attempt to read this register yields the output of the T Register.

10. Trap Result Register - This 38-bit register is used by the hardware after a return-subvert
instruction is executed. (See the Return-Subvert Instruction section 1.5.5 on page 54.)

11. T - This 32-bit constant is the lisp representation for T. It has a data type of dtp-symbol.
As a constant it cannot be written, it can only be read. This shares its address with the
status control 24 register,i.e., an attempt to write the T Register, will instead write SCR-24.

12. Zero - This 32-bit constant is O. When read it has a data type of dtp-j'unum, it cannot be
written. (This register shares its address with the Program Counter, i.e., an attempt to write
this register, results in a write to the Program Counter.) Among other uses, the Zero
Register will be used for unary minus.

Symbolics Company Confidential 7
October 1987 SUNSTONE ARCHITECTURE

Table 2. Status Control Register Fields

Status Control Register

Field Bits Action Taken on Trap or Interrupt

Type Register 5:0 -
CDR Register 7:6 -
Subvert 8 clear

Trap On Call 9 clear

Trap On Return 10 clear

Trap On Instruction Completion 11 clear

Take Instruction Completion Trap 12 clear

Interrupt Level 15:13 set on interrupt only

Inhibit PreemptS 16 copied from inhibit preempt condition

Inhibit Interrupts 17 copied from inhibit interrupt condition

The following describes the fields of the status control register.

1. Type reg - These 6 bits hold the data type of the word read by the most recent load
instruction. Some store instructions use this register as a source for the data type bits to be
written. All load instructions load these bits.

2. Cdr reg - These 2 bits hold the cdr-code bits of the word read by the most recent load
instruction. Some of the store instructions use this register as a source for the cdr-code bits
to write. All load instructions load these bits.

3. Subvert Instruction - Set automatically by the hardware when a return-subvert instruction
occurs (typically in an "emulating" trap routine). this bit tells the next instruction -- the
re-executing instruction -- to move the Trap Result Register contents into its destination.
The re-executing instruction then clears this bit. If an interrupt occurs in-between the
return-subvert and the re-executing instructions. the saved control status register will have
this bit set In that case. the interrupt routine must return with a return-subvert instruction
rather than a return instruction. Setting this bit with other than the return-subvert
instruction is undefmed.

4. Trap on Instruction Completion, Trap on Call, Trap on Return, Take Instruction
Completion Trap - Whenever an instruction completes. the processor copies the Trap on
Instruction Completion Bit to the Take Instruction Completion Trap. At the same time. it
clears the Trap on Instruction Completion Bit The Take Instruction Completion Trap will
trap an instruction. The handler for this trap decides whether or not to set the Trap On
Instruction Completion Bit again when it returns.

Trap On Call and Trap On Return are special versions of Trap On Instruction Completion.
After code sets the Trap On Call bit. the processor will set the Take-Instruction

8 Symbo/ics Company Confidential

SUNS TONE ARCHITECTURE October 1987

Completion Trap only when a Call instruction completes. At this time it will also clear the
Trap On Call. The Trap on Return bit performs the analogous function.

5. Interrupt Level- This field contains the currently executing interrupt level. The currently
executing level only allows higher level interrupts. The real time user may use the highest
levels to implement wired routines that may typically operate on tight time constraints.

6. Inhibit Interrupt and Inhibit Preempt - When a trap or an interrupt occurs, the processor
sets these bits from the inhibit interrupt or inhibit preempt condition. A trapping or
interrupting instruction will not reset the bits; only an instruction that writes or restores the
Status/Control register can clear them. The hardware signals an inhibit interrupt or inhibit
preempt condition from either these bits or the inhibit bits maintained from instruction to
instruction. Each.instruction writes inhibit bits from its cdr-code bits. So each instruction
controls the inhibit condition of the following instruction. Inhibit interrupt inhibits all
interrupt levels; inhibit preempt only inhibits Interrupt Levell interrupts. See also the
description of Inhibit Interrupts and Inhibit Preempts in section 5 on page 20.

1.3.2.2 Global Registers

I These 22 registers are completely software definable. The names listed in table 3 on page 8 are a
I suggested assignment of 17 of these registers. They are all 38-bit registers and fully readable and

writable. These registers are selected as source or destination registers in any of the instructions.

Table 3. Global Registers

Global Registers

Name RegNo Abbr Name RegNo Abbr

Binding StackUmit 40 BSL List Block Length 50 LBL

Binding Stack Pointer 41 BSP List Block Pointer 51 LBP

Catch Block Pointer 42 CBP Structure Block Base 52 SBB

Data Stack Block 43 DSB Structure Block Length 53 SBL

Data Stack Base 44 DSA Structure Block Pointer 54 SBP

Data Stack Limit 45 DSL Window Stack Base 55 WSB

Data Stack Pointer 46 DSP Window Stack Limit 56 WSL

List Block Base 47 LBB Window Stack Pointer 57 WSP

Flag Register 70 FR

Symbo/ics Company Confidential 9
October 1987 SUNS TONE ARCHITECTURE

1.3.2.3 Memory Control Registers

These registers are only accessible via read-me-reg and write-me-reg instructions. (For more
information on the read-me-reg and write-me-reg instructions, see section 1.5.12 pages 110 and 111
respectively.) The Memory Control Registers are located in a space of 256 registers. An MC-Register
is chosen by the least-significant 8 bits of the computed virtual address of a read-me-reg or
write-me-reg. The remaining 24 bits of the address are ignored except when reading/writing the Map
Cache (see Map-Cache and Map-Cache-Validbit below). Registers that are smaller than 32 bits are read
and written in the least significant bits, and the most significant bits are undefmed. All MC registers are
read with a type of dtp-fixnum. The MC-Register space is divided such that MC-Register codes 000-017
(octal) are internal to the processor and codes 020-377 are external to the processor. For a list ofMC
registers see table 4 on page 10.

10 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Table 4. Memory Control Registers

Memory Control Registers

Name Abbr Rd-Wr MC-Reg Size
Code in
Octal

Ephemeral Oldspace EOR R-W 000 32
ZOne OldsEace ZOR R/W 001 32
PHTHash ox PHTH R-W 002 24
FPU Configuration FPC R-W 003 3
Microsecond Clock MSC R-W 004 32
Timer CLKA R-W 005 32
Trap Base Register TBR R-W 006 13
Return Address RAR R-W 007 32
Window Buffer Control WBC R-W 010 21
Memory-Error-Status MERR R-W 011 7
~are 012 - 017

etering Counter A MCA R-W 020 32
Metering Counter B MCB R-W 021 32
Metering Mode A MMA R-W 022 4
Meterind Mode B MMB· R-W 023 4
Cache ontrol CCR R-W 024 16
reserved 025
spare 026-027
reserved 030
Interruptl INTI R-W 031 8
Interrupa INT2 R-W 032 8
Interrupt3 INTI R-W 033 8
Interrupt4 INT4 R-W 034 8
InterruptS INT5 R-W 035 8
Interrupt6 INT6 R-W 036 8
Interrupt7 INTI R-W 037 8
Map-Cache-MSH * MCM R-W 040 16
Map-Cache-LSH * MCL R-W 041 16
Map-Cache-V alidbit * MCV R-W 042 1
reserved * 043
Diagnostic-MSH * DIAM R-W 044 32
Diagnostic-LSH * DIAL R-W 045 32
mUS-Error-Status-MSH * IERRM R-W 046 2
mUS-Error-Status-LSH * IERRL R-W 047 2
IBUS-Error-Addr-MSH * lEAM R-W 050 16
mUS-Error-Addr-LSH * lEAL R-W 051 16
ECC Log Counter-MSH * ECCM R-W 052 32
ECC Log Counter-LSH * ECCL R-W 053 32
Slot Number * SLOT R 054 6
reserved * 055
IBUSLock * mL R-W 056 1
reserved * 057
Spare 060 - 377

* Items specific to the mus implementation of Sunstone.

10 Symbolics Company Confidential
SUNSTONE ARCHITECTURE February 1988

Table 4. Memory Control Registers

Memory Control Registers

Name Abbr Rd-Wr MC-Reg Size
Code in
Octal

Ephemeral Oldspace EOR R-W 000 32
ZOne O1ds~ace ZOR R/W 001 32
FPU Con luration FPC R-W 002 3
Trap Base egister TBR R-W 003 13
Return Address RAR R-W 004 32
Window Buffer Control WBC R-W 005 21
Memory-Error-Status MERR R-W 006 7
~are 007 - 017

etering Counter A MCA R-W 020 32
Metering Counter B MCB R-W 021 32
Metering Mode A MMA R-W 022 4
MeterinJ Mode B MMB R-W 023 4
Cache ontrol CCR R-W 024 16
reserved 025
Microsecond Clock MSC R-W 026 32
Timer CLKA R-W 027 32
spare 026 -027
reserved 030
Interrupti INTI R-W 031 8
Interrupt2 INT2 R-W 032 8
Interrupt3 INTI R-W 033 8
Interrupt4 INT4 R-W 034 8
InterruptS INT5 R-W 035 8
Interrupt6 INT6 R-W 036 8
Interrupt7 INT7 R-W 037 8
I-Map-Cache * IMC R-W 040-043 32
D-Map-Cache * DMC R-W 044-047 32
Diagnostic-MSH • DIAM R-W 050 32
Diagnostic-LSH * DIAL R-W 051 32
IBUS-Error-Status-MSH * IERRM R-W 052 2
IBUS-Error-Status-LSH * IERRL R-W 053 2
IBUS-Error-Addr-MSH * IEAM R-W 054 16
IBUS-Error-Addr-LSH * IEAL R-W 055 16
ECC Log Counter-MSH * ECCM R-W 056 32
ECC Log Counter-LSH * ECCL R-W 057 32
Slot Number * SLOT R 060 6
reserved * 061
IBUSLock * IBL R-W 062 1
reserved * 063
Spare 064 - 377

* Items specific to the IBUS implementation of Sunstone.

Symbolics Company Confidential 11
October 1987 SUNS TONE ARCHITECTURE

1. Ephemeral Oldspace - The ephemeral oldspace register contains a bit map that specifies,
for each of the 32 ephemeral levels, which half of the level is newspace and which half is
oldspace. A set bit indicates the upper half is oldspace, a reset bit indicates the lower half
is oldspace. This register is identical to the I-Machine's Ephemeral Oldspace Register.

2. Zone Oldspace Register - This register is identical to the Zone Oldspace Register in the
I-Machine. The Zone Oldspace Register contains a bit map that specifies whether each
zone of dynamic space (there are 29 zones) is newspace or oldspace. Bits 31 and 0 of the
Zone Oldspace Register are typically O. Bit 31 represents physical memory zones, and bit
o represents the ephemeral zone. Since new/old space is a characteristic of virtual
memory, bit 31 is set to 0 (the physical memory space). Since bit 0 refers to ephemeral
space it is never used.

3. PlIT Hashbox - This register is used to perform a hashing function used in the PHT lookup
algorithm. It implements the hashing function described in the I-Machine architecture
document When written, the PHT hashbox hashes the written data. The next read of the
PHT hashbox will return the hashed version of the written data.

4. FPU Configuration - A 3-bit register that identifies the existence of a Floating-Point Unit
and which floating-point/integer operations are implemented by it. The word is positive
true logic and the bits are assigned as follows:

bit <2>

bit <1>

bit <0>

Fixed Point Multiply Hardware available

Single Floating Point Add, Subtract and Multiply
Hardware available

Single Floating Point Compare Hardware available

5. Microsecond Clock - A 32-bit free-running clock which counts microseconds.

6. Timer - An independent 32-bit count down timer is used for event scheduling. The timer,
when written with a 32-bit count, begins counting micro-seconds until the count is zero. At
zero, the timer sets an interrupt and stops. The interrupt service routine must reload the
count down timer to start it again. Writing a timer with 0 causes the longest interval; about
1hr. 15 min. .

7. Trap Base Register - This 13-bit register is the base of a trap vector that is located in
VMA=PMA space, so that the most significant 5 bits are 1, bits 26 - 14 are the trap-base
register, and the least significant bits are based on the trap that occurs. See table 13 on
page 128.

8. Return Address Register - A 32-bit register that is read or written, when read it has a data
type of dtp-pc. This register is the top of the return address stack. This is side effected by
calls, returns, traps, and possibly if the destination of an instruction is the window buffer
control register.

9. Window Buffer Control Register - This 21-bit register encodes the Window Buffer Pointer,
Window Buffer Overflow Limit, and Window Buffer Underflow Limit. Bits 20:16 are the
Window Buffer Underflow Limit, bits 12:8 are the Window Buffer Overflow Limit, and
bits 4:0 are the Window Buffer Pointer.

10. Memory-Error-Status - This register contains the error status of the memory system. The
setting of any bit in this register is accompanied by a Hardware-Error Trap. The read/write
formats are:

bits<31:7> is unknown on reads, ignored on writes

12 Symbo/ics Company Confidential

SUNSTONE ARCHITECTURE October 1987

bit<6> is S-Cache tags parity error

bits<S:4> is S-Cache data parity errors

bit<3> is Map-Cache tags parity error

bits<2:1> is Map-Cache data parity errors

bit<O> is External to processor error

When bit<O> is set, a memory system error outside of the Caches has occured. Software
may read externally defined MC-Register(s) to determine error information. The IBUS
implementation of Sunstone has the mUS-Error-Status and IBUS-Error-Address registers
defmed for this pwpose.

11. Metering Counters and Metering Modes - There are two independent counters for
metering. Each metering counter is 32 bits wide and meters 8 different events. A
write-me-reg to the Metering Mode sets the mode according to the 4 LSBs of the written
word. The four bits are interpreted as :

bits<2:0>
o

1

2

3

4

5

6

7

bit<3>
1

o

Event Metered
number of clocks

number of clocks servicing S-cache
Instruction misses

number of clocks servicing S-Cache
Data misses

number of clocks servicing writes

number of Instruction S-Cache misses

number of Data S-Cache misses

number of Map-Cache misses that cause traps

number of writes

start the counter

stop the counter

A read-me-reg of a Metering Counter reads the present value of the co~nt and does not
affect the counter nor event metered. A read-me-reg of the Metering Mode returns a 4-bit
code where bits<2:0> identify the event being metered; bit<3>, when set indicates the
counter is running.

12. Caehe Control - Cache Control Register is the mechanics by which the processor writes
cache mode and reads cache status. Read only bits are unchanged by writes. The Cache
Control Register is written/read with the following fields:

Symbolics Company Confidential 13
February 1988 SUNSTONE ARCHITECTURE

• Write Buffer Empty (bit 0, read-only): a set bit indicates that the write buffer is
empty.

• S-Cache Inhibit (bit 1, read/write): a set bit forces all reads of the S-Cache to miss.
Writes to the S-Cache, either by a store instruction or by cache refIll, are not
inhibited. This allows validation of the S-Cache on power-up.

• I-Cache Inhibit (bit 2, read/write): a set bit indicates that instructions are to be
inhibited from the I-Cache. Instructions in pages marked with Cache-inhibit in the
PHT are inhibited from the I-Cache regardless of the state of this bit

• Other status and test points (bits 15:3, read-only): used to monitor any points of
interest in the machine.

13. Interrupt 1 thru 7 - These seven registers correspond to seven interrupt levels. Each I
contains eight bits that requesters on the !BUS may set. An interrupt bit is cleared when it
is written with a 1.

14. Map-Cache - D-Map and I-Map-Cache - These are used for reading and writing Map­
Cache entries. The Map Cache is read/written using the read-me-reg and write-me-reg
instructions where the computed virtual address is defined to be:

virtual-address<3l:8> Virtual Page Number to be read/written.

virtual-address<7:0> D-Map-Cache code when reading/writing the D-Map Cache;
I-Map-Cache code when reading/writing the I-Map Cache.

The read/written map-cache data is identical for both the I-Map and D-Map Caches and
has format below:

data<37:32> Data Type. The data type of a valid map-cache entry is
dtp-fixnum (#010). An invalid map-cache entry has data
type dtp-single-float (#012). All other data types may
produce undefined results, potentially including hardware
error (map cache parity) traps on subsequent memory
references.

data<31:8> Physical Page Number. The VPN to PPN mapping for this
map-cache entry. It is ignored during unmapped references;
Unmapped references do not have Map-Cache entries.

data<7> Modified. If this bit is clear in the map-cache entry
used by a store instruction, the instruction takes a
page-modified trap. Unmapped references (those in which
address<31:27> = 37, or the address type is DTP-Physical)
behave as if this bit were set.

data<6> Write-Protect. If this bit is set in the map-cache
entry used by a store instruction, the instruction takes
a write-protect trap. Unmapped references behave as if
this bit were clear.

data<S> Cache-Inhibit. If this bit is set in the Map-Cache
entry used by a load or store instruction fetches the
addressed data from main memory and leaves the contents

14 Symbolics Company Confidential
SUNSTONE ARCHITECTURE February 1988

data<4>

data<3:0>

of the S-Cache unchanged. References with address type
DTP-Physical behave as if this bit were set; otherwise, if
address<31:27> = #037, as if this bit were clear.

Transport-Trap. If this bit is clear in the map-cache
entry used by a load instruction, the processor will
not take a transport trap on the instruction, even
when it encounters a pointer to an oldspace zone.
Unmapped references behave as if this bit were clear.

Ephemeral Reference. When the data written by a store
instruction is a pointer to ephemeral space, bits 25:24 of
the pointer are used to select one of these four bits from
the map-cache entry selected by the store address. If
the selected bit is clear, the store instruction takes an
ephemeral-reference-update trap. Stores to unmapped
addresses behave as if the selected bit were set.

Map data bits 31: 0 are assigned to match the PRT1 word of a PRT entry.

15. Diagnostic - Registers used to aid in machine checkout and debugging. Possible uses are:
set/scan interface, monitoring test points, generating sync or trigger signals, etc. Since the
mus implementation of memory control hardware is bit-sliced, there are two Diagnostic
registers, each associated with one-half of the SBUS. The exact function of each is to be
further defined by the hardware.

16. IBUS-E"or-Status - These registers contain the error status of the mus. Since the
implementation of the mus interface is bit-sliced, there are two registers, each responsible
for one half of the mus. The register bits are assigned as:

MBR word: bits<31:2> is unknown on reads, ignored on writes

bit<1>

bit<O>

is IBUS acknowledge error

is IBUS uncorrectable ECC Error in MBR
word of IBUS

LSR word: bits<31:2> is unknown on reads, ignored on writes

bit<1>

bit<O>

is IBUS acknowledge error

is IBUS uncorrectable ECC Error in LSR
word of IBUS"

17. IBUS-Error-Address - These registers are generally set by hardware. Upon an
uncorrectable ECC Error or an mus Acknowledge Error, the registers are loaded with the
address of the erroneous word. Since the mus interface is bit-sliced, the 32-bit address is
available as two 16-bit values. The format for reading/writing the mUS-Error-Address is:

MBR word: bits<31: 16> is unknown on reads, ignored on writes
bits<15:0> is error address<31:16>

LSR word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<15:0>"

Symbolics Company Confidential 13
October 1987 SUNSTONE ARCHITECTURE

• Write Buffer Empty (bit 0, read-only): a set bit indicates that the write buffer is
empty.

• S-Cache Inhibit (bit 1, read/write): a set bit indicates that instructions and data are to
be inhibited from the S-Cache. Instructions and data in pages marked with Cache­
inhibit in the PHT are inhibited from the S-Cache regardless of the state of this bit.

• I-Cache Inhibit (bit 2, read/write): a set bit indicates that instructions are to be
inhibited from the I-Cache. Instructions in pages marked with Cache-inhibit in the
PHT are inhibited from the I-Cache regardless of the state of this bit.

• Other status and test points (bits 15:3, read-only): used to monitor any points of
interest in the machine.

13. Interrupt 1 thru 7 - These seven registers correspond to seven interrupt levels. Each I
contains eight bits that requesters on the mus may set. An interrupt bit is cleared when it
is written with a 1.

14. Map-Cache - This is used for reading and writing the Map-Cache entries. The Map Cache
is read/written using the read-me-reg and write-me-reg instructions where computed
virtual address is defined to be:

virtual-address<31:8> is the Virtual Page Number
to be read/written

virtual-address<7:0> is the Map-Cache Me-Register
code (MSH or LSH)

Since the mus implementation of the Map-Cache control logic is bit-sliced, reading and
writing the 32 bits of the Map Cache requires two read/writes, each 16 bits wide. The
read/write formats for the two words are:

MSH word:

LSH word:

data<31:16> is ignored on writes, unknown
on reads

data<15:4> is PPN<23:12>

data<3> is Modified

data<2> is Write-Protect

data<l> is Cache Inhibit

data<O> is Transport-Trap

data<31:16> is ignored on writes, unknown
on reads

data<15:4> is PPN<ll:O>

data<3:0> is Ephemeral Reference bits<3:0>

Writing to either the MSH or LSH of the Map Cache automatically validates the selected
entry. When read, the valid bit for the selected entry is unchanged. The state of the valid
bit can be read using the Map-Cache-V alidbit MC-Register below.

14 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

15. Map-Cache-Va/idbit - This is used to access the valid bit of Map Cache entries.
Addressing of the Map Cache valid bit is the same as addressing the Map Cache itself
except that the virtual-address<7 :0> is Map-Cache-V alidbit code. When the Map-Cache­
Validbit MC-Register is written, the selected Map Cache entry is invalidated. When the
Map-Cache-V alidbit is read, the LSB of the returned data is the state of the valid bit of the
selected Map Cache entry. All other returned bits are unknown.

16. Diagnostic - Registers used to aid in machine checkout and debugging. Possible uses are:
set/scan interface, monitoring test points, generating sync or trigger signals, etc. Since the
IBUS implementation of memory control hardware is bit-sliced, there are two Diagnostic
registers, each associated with one-half of the SBUS. The exact function of each is to be .
further defined by the hardware.

17. IBUS-Error-Status - These registers contain the error status of the mus. Since the
implementation of the mus interface is bit-sliced, there are two registers, each responsible
for one half of the IBUS. The register bits are assigned as:

MSH word: bits<31:2> is unknown on reads, ignored on writes

bit<l>

bit<O>

is IBUS acknowledge error

is IBUS uncorrectable ECC Error in MSH
word of IBUS

LSH word: bits<31:2> is unknown on reads, ignored on writes

bit<l>

bit<O>

is IBUS acknowledge error

is IBUS uncorrectable ECC Error in LSH
word of IBUS"

18. IBUS-Erl'Or-Address - These registers are generally set by hardware. Upon an
uncorr;::ctable ECC Error or an mus Acknowledge Error, the registers are loaded with the
address of the erroneous word. Since the mus interface is bit-sliced, the 32-bit address is
available as two 16-bit values. The format for reading/writing the mUS-Error-Address is:

MSH word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<31:16>

LSH word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<15:0>"

19. ECC Log Counter - The ECC Log Register counts the number of single bit errors
occurring on the IBUS. When the ECC Log Counter overflows, it sets an interrupt bit in
its associated interrupt register. Since the IBUS interface is bit-sliced, single bit errors are
counted seperately for each half of the mus. Reading the ECC-Log-Counter-MSH returns
the number of single bit errors for the MSH of the mus. Reading the ECe-Log-Counter­
LSH returns the number of single bit errors for the LSH of the mus.

20. Slot Number - A read-only register that returns the slot number that the Sunstone processor
is plugged into.

21. IBUS Lock - This single bit indicates when a Locked IBUS transaction is to be done.
When set, the next load or store instruction will become a locked mus read or write cycle.
The IBUS Lock remains set until the IBUS-Lock MC-Register is reset.

Symbolics Company Confidential 15
February 1988 SUNS TONE ARCHITECTURE

18. ECC Log Counter - The ECC Log Register counts the number of single bit errors
occurring on the mus. When the ECC Log Counter overflows, it sets an interrupt bit in
its associated interrupt register. Since the mus interface is bit-sliced, single bit errors are
counted seperately for each half of the mus. Reading the ECC-Log-Counter-MSH returns
the number of single bit errors for the MSH of the mus. Reading the ECC-Log-Counter­
LSH returns the number of single bit errors for the LSH of the mus.

19. Slot Number - A read-only register that returns the slot number that the Sunstone processor
is plugged into.

20. IBUS Lock - This single bit indicates when a Locked IBUS transaction is to be done.
When set, the next load or store instruction will become a locked mus read or write cycle.
The mus Lock remains set until the IBUS-Lock MC-Register is reset

1.4 INSTRUCTION FORMATS

Four different formats of Sunstone instructions specify the operation, type, and operands to use. The

Register-to-Register (RR), Register Immediate Short (RIS), and Direct Branch formats all use a single

word, 40 bit instruction. Register Immediate Long (RIL) instruction is a double word, 80 bit instruction.

Each format, except the direct branch, uses a data type of dIp-instruction, these are data type codes 50 to

77. Sunstone interprets a data type of dlp-compiled{unction as a direct branch instruction; all other data

types trap if encountered as instructions.

Each instruction format breaks down into fields that further define the general operation of the

instruction. The sOUI"Cel, source2, and destination fields refer to one of 64 registers. 32 of the registers

they refer to are special purpose registers such as Number-of-Arguments, Program-Counter, etc. The I

other 32 registers refer to the Register Window sets, 16 registers for the Current Window and 16

registers for the Build Window.

1.4.1 Register To Register (RR) Format

All opcodes except read-coproc are available in the RR format All RR instructions are one word in

length, or 40-bits. The decoding varies slightly among opcodes (see figure 3 on page 16.) For a

complete description of each field see section 1.4.6 on page

21

Symbolics Company Confidential 15
October 1987 SUNS TONE ARCHITECTURE

1.4 INSTRUCTION FORMATS

Four different formats of Sunstone instructions specify the operation, type, and operands to use. The
Register-to-Register (RR), Register Immediate Short (RIS), and Direct Branch formats all use a single

word, 40 bit instruction. Register Immediate Long (Rll..) instruction is a double word, 80 bit instruction.
Each format, except the direct branch, uses a data type of dtp-instruction, these are data type codes 50 to
77. Sunstone interprets a data type of dtp-compiled-junction as a direct branch instruction; all other data
types trap if encountered as instructions.

Each instruction format breaks down into fields that further define the general operation of the
instruction. The sourcel, source2, and destination fields refer to one of 64 registers. 32 of the registers
they refer to are special purpose registers such as Number-of-Arguments, Program-Counter, etc. The I
other 32 registers refer to the Register Window sets, 16 registers for the Current Window and 16
registers for the Build Window.

1.4.1 Register To Register (RR) Format

All opcodes are available in the RR fonnat. All RR instructions are one word in length, or 40-bits. The
decoding varies slightly among opcodes (see figure 3 on page 16.) For a complete description of each
field see section 1.4.6 on page 20

16 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

Figure 3. RR Formats

add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, rot, ash, Ish, ldb, dpb, move, move-type, load, read-me-reg:

1 1 1 1 1 1 1 1 1 1
IIIPl1101 OPCODE 1 S00RCE1 1 SOURCE2 1 TYPE 1 UNUSED 1 DESTINATION 1
1_1_1_1 1 1 1 1 1 1
39 37 34 28 22 16 11 5 0

store, write-me-reg:

1 1 1 1 1 1 1 1 1
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 1 TYPE 1 UNUSED 1
1_1_1_1 1 1 1 1 I
39 37 34 28 22 16 11 0

call,jcall, return, return-subvert:

I I 1 1 1 1 1 1 1 I
1 I 1 P 1110 1 OPCODE 1 SOURCE1 1 UNUSED 1 TYPE 1 N-ARGS 1 DESTINATION I·
�_�_�_�-=-=-____ �-=-=-____ �-=-=-____ �~--I~----I 1
39 37 34 28 22 16 11 5 0

read-coproc:

1 1 1 1 1 1 1 1 1
IIIPl1101 OPCODE 1 UNUSED ICOPROC REG. 1 COPROC OPCODE 1 DESTINATION 1
1_1_1_1 1 1 1 1 I
39 37 3-:'4-----2~8-------22 1"":6--------5 O·

write-coprec, load-coproc, store-coproc:

1 1 1 1 1 1 1 1 I
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 1 COPROC OPCODE ICOPROC REG. I

I_I_I_I~----I~----I~----.I_:_-------I I
39 37 34 28 22 16 5 0

branch-next, branch-take, trap:

1 1 1 1 1 1 1 1 1
1 I 1 P 1110 1 OPCODE 1 SOURCE1 1 SOURCE2 1 COND 1 PAGE OFFSET 1
1_1_1_1 1 1 1 1 1
39 37 ~3~4---- ~2~8---- ~2~2---- 16 ~1~1---------~0

branch-next-type, branch-take-type, trap-type:

1 1 1 1 1 1 1 1 1 1 I
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 ICIHIUNI PAGE OFFSET I
I_I_I_I-=-=-____ I-=-=-____ I-=-=-____ .I_I_I_I ________ ~I
39 37 34 28 22 16 15 11 0

Symbolics Company Confidential 17
February 1988 SUNSTONE ARCHITECTURE

1.4.2 Register Immediate Short (RIS) Format

RIS format instructions are one word long, or 40-bits. There are eleven opcodes that are not available in
the RIS format: write-coproc.load-coproc. store-coproc. branch-next-type, branch-take-type. trap-type,

call,jcall. return. and return-subvert. The hardware does not check for these opcodes, and their

operation is undefmed. The decoding varies slightly among opcodes (see figure 4 on page 17). For a

complete description of each field see section 1.4.6 on page 21.

Figure 4. RIS Formats

add, add-no-trap, sub. sub-no-trap, multiply. and, or,
xor, rot, ash,lsh,ldb. move, move-type, load, read-me-reg:

I I I I I I I I
IIIPl1111 OPCODE I SOURCE1 I DESTINATION I TYPE 12-BIT-SIGNED-IMMED I
1_1_1_1-=-:-____ 1-::-::-____ 1 1___ I
39 37 34 28 22 16 11 0

dpb:

I I I I I I SOURCE 2 I
IIIPl1111 OPCODE I SOURCE1 'DESTINATION I TYPE 12-BIT-SIGNED-IMMED I
1_'_1_1-=-:-____ 1-=-=-____ 1 I~__ I
39 37 34 28 22 16 11 0

read-coproc:

I I I I I I I I
IIIPl1111 OPCODE I UNUSED I DESTINATION I COPROC OPCODE ICOPROC REG
1_1_1_1 _____ 1 _____ 1 1 ________ 1 ____ _
39 37 34 28 22 16 5 0

store, write-me-reg:

I I I I I I I I
IIIPl1111 OPCODE 1 SOURCE1 1 SOURCE2 1 TYPE 1 12-BIT-SIGNED-IMMED
1_1_1_1 1 1 1 1
39 37 -3-4---- -2-8---- -2-2---- -1'""6-- -1-1----------

branch-next, branch-take. trap:

1 I I I I I I I I
IIIPl1111 OPCODE 1 SOURCE1 16-BIT-IMMEDI COND I PAGE OFFSET I
1_1_1_1 _____ 1 _____ 1 1 1 ________ ---:-1
39 37 34 28 22 16 11 0

Symbolics Company Confidential 17
October 1987 SUNS TONE ARCHITECTURE

1.4.2 . Register Immediate Short (RIS) Format

RIS format instructions are one word long, or 40-bits. There are eleven opcodes that are not available in
the RIS format: read-coproc. write-coproc. load-coproc, store-coproc, branch-next-type, branch-take­

type, trap-type, call,jcall, return, and return-subvert. The hardware does not check for these opcodes,

and their operation is undefined. The decoding varies slightly among opcodes (see figure 4 on page 17).

For a complete description of each field see section 1.4.6 on page 20.

Figure 4. RIS Formats

add, add-no-trap, sub, sub-no-trap, multiply, and. or,
xor, rot, ash, Ish, Idb, move, move-type, load, read-me-reg:

1 1 1 1 1 1 1 1 1
IIIPl1111 OPCODE 1 SOURCE1 1 DESTINATION 1 TYPE 1 12-BIT-SIGNED-IMMED 1
1_1_1_1 _____ 1 __ ----1 1 ___ 1 1
39 37 34 28 22 16 11 0

dpb:

1 1 1 1 1 1 SOURCE2 1 1 1
IIIPl1111 OPCODE 1 SOURCE1 1 DESTINATION 1 TYPE' 12-BIT-SIGNED-IMMED ,
'_'_1_1 _____ 1-::-=--___ 1 1-::-=-__ ' ,
39 37 34 28 22 16 11 0

store, write-me-reg:

, '" 1 , 1 1
IIIPl1111 OPCODE 1 SOURCE 1 1 SOURCE2 1 TYPE 1 12-BIT-SIGNED-IMMED
1_1_1_1 _____ 1 _____ ' _____ 1 ___ 1-:-:--____ ----
39 37 34 28 22 16 11

branch-next, branch-take, trap:

1 1 1 1 1 1 1 1
IIIPl1111 OPCODE 1 SOURCE1 16-BIT-IMMED, COND PAGE OFFSET 1
1_1_1_1 1 1 1 __ ----------,-1
39 37 ~3-4----- ~2~8----- 22 -1~6-- 11 0

1.4.3 Register Immediate Long (RIL) Format

RIL format instructions are two words long, or 80-bits. There are seven opcodes that are undefined in I

the RIL format: rot, ash, Ish, Idb, dpb, read-coproc and move-type. The hardware does not check for I

these opcodes, and their operation is undefmed The second word of each RIL instruction is a 40-bit

immediate value. The decoding of the first word or"the instruction varies slightly among opcodes (see

figure 5 on page 18). For a complete description of each field see section 1.4.6 on page 20.

18
SUNS TONE ARCHITECTURE

Figure 5. RIL Formats

add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, move, load, read-me-reg:

Symbolics Company Confidential
October 1987

I I I I I I I I I I
I :I I P 11011 OPCODE I SOURCEl I UNUSED I TYPE I UNUSED 1 DEST:INAT:j:ON I
1_1_1_1 I I I I I I
39 37 ~3~4---- ~2~8---- ~2~2---- ~1-=-6-- ~l~l---- 5 0

call,jcall, return, return-subvert:

I I I I I I I I I 1
1:IIP110ll OPCODE I SOURCEl I UNUSED I TYPE I N-ARGS IOEST:INAT:IONI
1_1_1_1 I I I I I 1
39 37 ~3~4---- ~2~8---- ~2~2---- ~1-=-6 -- ~l~l---- 5 0

store, write-me-reg:

I 1 I I I I I I 1
I I I P 11011 OPCODE I SOURCEl I SOURCE2 I TYPE I UNUSEO 1
1_1_1_1 I I I I 1
39 37 ":"34~--- ~2-=-8---- ":"22=----- 16 ~l~l----------=-O

write-coproc, load-coproc, store-coproc:

I I I I I I I I 1
1:IIP110ll OPCOOE I SOURCEl I UNUSED I COPROC OPCOOE ICOPROC REG. 1
1_1_1_1 I I I I 1
39 37 3-4-----2~8-----2~2-----1~6--------5 0

branch-next, branch-take, trap:

I 1 I I I I I I 1
1:IIPI10ll OPCOOE 1 SOURCEl I UNUSED I COND I PAGE OFFSET 1
1_1_1_1 1 1 I I 1
39 37 ~3~4---- ~2~8---- ~2~2---- 16 ~l~l---------"""'O

branch-next-type, branch-take-type, trap-type

1 I I I I I I I I I 1
IIIPI10li OPCOOE I SOURCEl I UNUSED ICISIONI PAGE OFFSET I
I_I_I_I~ ____ I~ ____ I~ ____ I_I I_I~ ________ ..."..I
39 37 34 28 22 16 15 11 0

The second wordfor all RIL instructions:

I I I
I UNUSED I 38 BIT IMMEDIATE I 1 I~ _________________________ --=-I

39 37 0

Symbolics Company Confidential 19
October 1987 SUNS TONE ARCHITECTURE

1.4.4 Direct Branch Format

The direct branch format is a single word, 40-bit instruction with a 6-bit data type of
dtp-compiled-junction, and the 32 least significant bits are interpreted as a 32-bit virtual address to use
as the new PC. See figure 6 on page 19.

Figure 6. Direct Branch Format

I I I I I
I I I P I 34 I ADDRESS I
I I � _________ �~----------------__ --------------------------~I
39 37 31 0

1.4.5 Instruction Sequencing

Instructions that do not explicitly affect the PC behave as follows:

• RR and RIS instructions increment the PC by 1

• Rll.. instructions on even bouridries increment the PC by 2

• Rll.. instructions on odd boundries increment the PC by 1

Note that normal Rll.. instructions will be aligned on an even word boundary. Rll.. instructions on an

odd boundary is a special case that is used to align normal Rll.. instructions with an instruction that can

be executed in zero cycles. Since these odd word Rll.. instructions might be executed in some cases of
interrupts or traps, the instruction must not have any harmful side-effects.

Note also that only the low order 12 bits of the PC are incremented, i.e. there is no carry from bit 11 to

bit 12 of the PC. Consequently, the PC wraps around 4K boundaries.

20 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

I

1.4.6 Instruction Field Descriptions

Table 5 on page 20 lists the various instruction fields and describes how they are used.

Table 5. Instruction Field Descriptions

Instruction Field Descriptions

Bits Length Use

39 1 Inhibit interrupts

38 -1 Inhibit preemption

37:35 3 Format

37:32 6 Data type

34:29 6 Opcode

31:0 32 PC address

28:23 6 Source 1

22:17 6 Source2, destination, 6-bit-signed-immediate,
coproc-reg

16:12 5 Type Check, Cond

16:6 11 coproc-opcode

16 1 HighlLow

15 1 condition

11:6 6 N-Args

11:0 12 Page Offset, 12-bit-signed-immediate

5:0 6 Destination, coproc-reg

1. Inhibit Interrupts - Bit 39, when set causes an Inhibit Interrupt condition on instruction
completion. This inhibits interrupts for the next instruction. When clear, it allows
interrupts on instruction completion, unless the Status Control Inhibit Interrupt is set. If a
trap occurs, the inhibit interrupts condition will be saved by the hardware into the Status
Control Inhibit Interrupts Bit (see table 2 on page 7).

2. Inhibit Preemption - Bit 38, when set causes an Inhibit Preempts condition on instruction
completion. This means that preempts cannot occur between the instruction with the
preempts inhibited bit set and the completion of the following instruction. When clear, it
allows preempts on instruction completion, unless the Status Control Inhibit Preempt is
set. If a trap occurs, the inhibit preempts condition will be saved by the hardware into the
Status Control Inhibit Preempts bit (see table 2 on page 7).

3. Format - The three bit field 37:35 specifies what the instruction format is: 6 - RR, 7, - RIS,
and 5 - Rll.... For the direct-branch format this field will be 3 and bits 33:32 will be a 4.

Symbolics Company Confidential 21
February 1988 SUNS TONE ARCHITECTURE

1.4.6 Instruction Field Descriptions

Table 5 on page 21 lists the various instruction fields and describes how they are used.

Table 5. Instruction Field Descriptions

Instruction Field Descriptions

Bits Length Use

39 1 Inhibit interrupts

38 1 Inhibit preemption

37:35 3 Format

37:32 6 Data type

34:29 6 Opcode

31:0 32 PC address

28:23 6 Source!

22:17 6 Source2, destination, 6-bit-signed-immediate,

16:12 5 Type Check, Cond

16:6 11 coproc-opcode

16 1 High/Low

15 1 condition

11:6 6 N-Args

11:0 12 Page Offset, 12-bit-signed-immediate

5:0 6 Destination, coproc-reg

1. Inhibit Interrupts - Bit 39, when set causes an Inhibit Interrupt condition on instruction
completion. This inhibits interrupts for the next instruction. When clear, it allows
interrupts on instruction completion, unless the Status Control Inhibit Interrupt is set. If a
trap occurs, the inhibit interrupts condition will be saved by the hardware into the Status
Control Inhibit Interrupts Bit (see table 2 on page 7).

2. Inhibit Preemption - Bit 38, when set causes an Inhibit Preempts condition on instruction
completion. This means that preempts cannot occur between the instruction with the
preempts inhibited bit set and the completion of the following instruction. When clear, it
allows preempts on instruction completion, unless the Status Control Inhibit Preempt is
set. If a trap occurs, the inhibit preempts condition will be saved by the hardware into the
Status Control Inhibit Preempts bit (see table 2 on page 7).

3. Format - The three bit field 37:35 specifies what the instruction format is: 6 - RR, 7 - RIS,
and 5 - RIL. For the direct-branch format this field will be 3 and bits 33:32 will be a 4. '

I

Symbolics Company Confidential 21
October 1987 SUNS TONE ARCHITECTURE

4. Data Types - All instructiQns have a data type of dtp-instruction, or dtp-compiled{unction.
There are 24 different values for dtp-instruction, octal values 50 - 77, and
dtp-compiled-junction has a value of 34 octal. All other data type values cause a trap to
occur, though it may not be an error. It is the software's responsibility when setting the PC
to test for an illegal data type.

5. Opcode - This six bit field bits 34 - 29 specifies which of 58 instructions to execute. See
table 6 on page 21.

Table 6. Opcodes

Table of Opcodes

Instruction Opcode Instruction Opcode

load-e~hemeralp 00 or 40
load-o dspacep 01 xor 41
load-raw 02 and 42
undefmed 03 move 43
load-cdr 04 ash 44
load-structure 05 Ish 45
load-gc-copy 06 rot 46
load-scavenge 07 write-me-reg 47
load-bind 10 ldb 50
load-header 11 d~ 51
load-data 12 a -no-trap 52
load-data-iv 13 sub-no-trap 53
load-car-cdr 14 add 54
load-cdr-finish 15 sub 55
load-array 16 mult 56
load-c~roc 17 write-coproc 57
store- -next 20 jcall 60
store-cdr-nil 21 call 61
store-cdr-normal 22 return 62
store-cdr-3 23 return-subvert 63
store-cdr-reg 24 branch-take-type 64
store-~-reg 25 branch-take 65
store- -bits 26 move-type 66
undefmed 27 read-me-reg 67
store-bind 30 trap-type 70
undefined 31 trap 71
store-data 32 undefmed 72
store-data-iv 33 undefmed 73
undefmed 34 branch-next-type 74
store-rplacd 35 branch-next 75
store-array 36 undefmed 76
store-coproc 37 read-coproc 77

6. PC Address - This field is used in the direct branch formal It is loaded into the PC as the
address of the next instruction to execute.

7. SOUTCe] - A six bit field,it is comprised of bits 28 - 23 of the instruction. The bits are
interpreted the same as the the source2 and destination fields. This field specifies one of
64 registers to be read: 16 in the current window, 16 in the build window, 10 special I
registers, or 22 global registers (see section 1.3.2 on page 4).

I

I

I

I

22 Symbolics Company Confidential

SUNS TONE ARCHITECTURE October 1987

8. Source2 - A six bit field, it is comprised of bits 22 - 17 of the insfplction. This field is not
present for every instruction in every format When it is present the bits are interpreted the
same as the sourcel and destination fields. The six bit field specifies one of 64 registers to
be read: 16 in the current window, 16 in the build window, 10 special registers, and 22
global registers (see section 1.3.2 on page 4).

9. Destination - This 6 bit value specifies one of 64 registers to store the results of the
operation in. The registers are defmed as in the source1 and source2 fields. The field
specifies one of 64 registers to store the result of the operation in: 16 in the current
window, 16 in the build window, 10 special registers, and 22 global registers. The
destination is present in all instructions but: store, branch-next, branch-take, trap, branch­
next-type, branch-take-type, trap-typeload-coproc, write-me-reg, write-coproc. The data
type stored in the destination is that of sourCe1 except for the RIS and RIL formats for
instructions: move, return, and return-subvert also RR and RIS formats for move-type. In
the case of move, return, and return-subvert the data type of the result will be that of the
immediate, which in the case of the RIS format will always be dtp-jixnum. Move-type is a
special case, see section 1.4.8 on page 27. For read-me-reg, read-coproc, and load
instructions, the data type loaded into the destination register is the data type of the word
read.

10. 6-bit-signed-immediate - Used only in the RIS format by the branch instructions:
branch-next, branch-take, trap. This 6 bit field is bits 22: 17 and is a sign extended value
with a data type of dtp-jixnum.

11. Type Check - This 5 bit field uses bits 16 to 12 to represent what data types to trap on.
This field is not present in the read-coproc, write-coproc, load-coproc, store-coproc,
branch-next, branch-next-type, branch-take, branch-take-type, trap, and trap-type
instructions. Some of the instructions that have no type field still have data type checking.
The branch-next, branch-take, and trap instructions (all which use the COND field instead
of the TYPE field) will test the type according to the condition. See the COND field
description below. Some of these traps will always be error traps, and some will be errors
only for certain data types. See table 7 on page 24. The names for type checks in this field
typically are the names of the data types that are legal. There is one notable exception,
:;t:hardware-arith. The :;t:hardware-arith type check will always check both sources, even
in the immediate formats. It checks that the data types are the same or it traps. It also
traps if the data types are not dtp-jixnum if there is no floating point coprocessor present,
or it traps if the data types are not both dtp-fixnum or both dtp-flonum if there is a floating
point coprocessor present. The data type traps are listed according to the value of the type
field, are as follows:

• None - Type Check Field = 0 ; No data types will trap.

• :;t:fu:num - Type Check Field = 1; Trap if data type is not dtp-fu:num. This is always
an error trap.

• :;t:flonum - Type Check Field = 2; Trap if data type is not dtp-single-float. This is an
error trap if the data type is not one of the numeric data types 10 - 17: dtp-jixnum,
dtp-small-ratio, dtp-double-float, dtp-bignum. dtp-big-ratio, dtp-complex, or
dtp-spare-number.

• :;t:instance - Type Check Field = 3; Trap if the data type is not one of: dtp-instance,
dtp-list-instance dtp-array-instance, or dtp-string-instance. This is always an error
trap. .

• :;t:array - Type Check Field = 4; Trap if the data type is not dtp-array. This is
always an error trap.

symbolics Company Confidential 23
October 1987 SUNS TONE ARCHITECTURE

• ¢locative - Type Check Field = 5; Trap if the data type is not dtp-Iocative. This is
always an error trap.

• ¢ cornpiled{unction - Type Check Field = 6; Trap if the data type is not
dtp-compiled-jimction. This is an error trap if the data type is not one of:
dtp-generic{unction, dtp-instance, dtp-symbol, dtp-Iexical-closure, or
dtp-dynamic-closure.

• ¢character - Type Check Field = 7; Trap if the data type is not dtp-character. This
is always an error trap.

• ¢list - Type Check Field = #010; Trap if the data type is not dtp-list. This is always
an error trap.

• ¢ list-locative - Type Check Field = #011; Trap if the data type is not dtp-list or
dtp-Iocative. This is always an error trap.

• ¢ list-nil - Type Check Field = #012; Trap if the data type is not dtp-list or dtp-nil.
This is an error trap if the data type is anything but dtp-list-instance.

• ¢ list-Ioc-nil - Type Check Field = #013; Trap if the data type is not dtp-list,
dtp-Iocative, or dtp-nil. This is an error trap for all data types but dIp-list-instance.

• ¢array-string - Type Check Field = #014; Trap if the data type is not dtp-a"ay or
dIp-string. This is an error trap if the data type is not dtp-array-instance or
dtp-string-instance.

• ¢hardware-arith - Type Check Field = #015; This trap depends on the floating
point and fixnum multiply support offered by a hardware coprocessor, as indicated
by the FPU Configuration Register (see page 11). Without hardware support, trap if
both sources are not dtp-FlXnUI1l for add, sub, branch-take, branch-next, and trap
instructions, and always for multinstruction. However, when the FPU Configuration
register indicates support for flXnum multiply, then a mult instruction will not trap if
both sources are dtp-FlXnUI1l. Additionally, when it indicates support for floating
point add, subtract and multiply, the add, sub, and mult instructions will not trap if
both sources are dtp-single-Jloat. The same is true for branch-take, branch-next, and
trap, when it indicates support for floating point compares. Regardless of the FPU
Configuration, this is an error trap if both sources' data types are not one of the
numeric data types #010-#017: dtp-small-ratio, dtp-double-Jloat, dlp-bignum, dlp­
big-ratio, dIp-complex, or dtp-spare-number.

• ¢pointer - Type Check Field = #016; Trap if the data type is not a legal pointer.
The legal pointer types are: dtp-monitor{orward, dlp-header-p dtp-external-value­
cell-pointer, dtp-one-q{orward, dtp-header{orward, dtp-element{orward, dtp­
double-Jloat, dtp-bignum, dtp-big-ratio, dtp-complex, dtp-spare-number, dtp­
instance. dtp-list-instance, dtp-array-instance, dtp-string-instance, dtp-nil, dtp-list,
dtp-~ay, dtp-string, dtp-symbol, dtp-Iocative, dtp-Iexical-closure, dtp-dynamic­
closure, dtp-compiled-function, dtp-generic-[unction, dtp-spare-pointer-1, dtp­
spare-pointer-2, dtp-hound-Iocation, dtp-Iogic-variable, dtp-gc{orward, dtp-pc, and
dpt-null.

• ¢ list-locative - Type Check Field = #031; Trap if the data type is not dtp-list or
dtp-Iocative. This is an error trap for all data types except dtp-list-instance.

12. Cond - This 5 bit field in bits 16:12 for instructions: branch-next,branch-take, and trap.
See table 7 on page 24. I

24 symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Table 7. Condition Field Definitions

Table of Cond Field Defmition

Value Definition Data Type Test

0 < '¢ hardware-arith
1 > ,¢hardware-arith
2 ::2: '¢ hardware-arith
3 ~ '¢ hardware-arith
4 = '¢ hardware-arith
5 '¢ '¢hardware-arith
6 32 bit = none
7 ~bit <

none
10 none
11 32 bit> none
12 unsigned < '¢fixnum
13 unsigned > ,¢fixnum
14 logtest '¢fixnum
15 endp '¢ list-nil-list-instance
16 char = '¢char
17 eql non-immediate-number
20 not < '¢ hardware-arith
21 not> '¢ hardware-arith
22 not ::2: '¢ hardware-arith
23 not ~ '¢ hardware-arith
24 not = ,¢hardware-arith
25 not '¢ '¢ hardware-arith
26 not 32 bit = none
27 not eq none
30 32 bit ~ none
31 32 bit ::2: none
32 unsigned ::2: ,¢ftxnum
33 unsigned ~ '¢fixnum
34 notlogtest ,¢ftxnum
35 notendp '¢ list-nil-list-instance
36 not char = '¢char
37 noteql non-immediate-number

The four least significant bits of the cond field defme the test condition and type check.
The msb, if set, indicates the negation of the test condition. All of the test conditions,
except endp, test as sourcel<cond>source2. Endp tests sourcel.

Of the 16 test conditions, six of them, namely <, >, ::2:, ~ ,=, '¢ are signed numeric
comparisons, using the '¢hardware-arith type check. Two unsigned numeric comparisons,
unsigned- < and unsigned- >, use the ,¢fixnum type check. Four of the test conditions do
not have type checks; they are: eq, 32-bit-=, 32-bit- < , and 32-bit- > . Note that the eq is a
38 bit equality check. The eql condition is the same as eqexcept for a type check that traps
for non immediate numbers of identical data types. The char= condition is a 32-bit-= with
a '¢char type check. The logtest condition indicates a true condition if a bitwise logical
and (ie, logand) of the two sources leaves any bit set, and type checks for '¢ ftxnum. The
endp condtion checks to see if the data type of source 1 is dtp-nil. Endp has a type check
that traps if the source1 data type is not one of dtp-nil, dtp-list, or dtp-list-instance.

Symbolics Company Confidential 25
October 1987 SUNS TONE ARCHITECTURE

13. Coproc-Opcode - This 11 bit field, bits 16:6, is available for support of coprocessor
hardware. The definition of this field is dependent upon the coprocessor.

14. High/Low - This bit 15 is used only in the type instructions: branch-next-type,
branch-take-type, and trap-type. This bit determines if the 32-bit mask is applied to the
upper half or the lower half of the 64-bit value (see section 1.5.9 on page 66). When this
bit is a 1 the mask is applied to the upper half, when this bit is P the mask is applied to the
lower half.

15. Condition - This bit 16 is used only in the type instructions: branch-next-type,
branch-take-type, and trap-type. This bit indicates branching on a true or false result of
the type test being done. If the bit is 1, the branch is taken if the result of the type test is
non-zero, if the bit is 0, the branch is taIien if the result of the type test is zero (see section
1.5.8 on page 61).

16. N-Args - This 6 bit field, bits 11:6, is used by the call and return instructions. If the most
significant bit is a 1, the N-Args register is loaded with the value in the least significant 5
bits of this field, if the most significant bit is a 0, the N -Args register is unchanged.

17. Page Offset - This 12 bit field, when present, is in bits 11 to O. This field is used by the
branch and trap instructions. For the branch instructions, this field represents the least
significant 12 bits of the address to branch to if the condition being tested is true. The
most significant 20 bits are the most significant 20 bits of the address of the instruction
being executed. It can be thought of as an offset within the current page. For the trap
instructions, this field is the least significant 12 bits of the trap address. The most
significant 5 bits of the trap address are Is. Bits 13 and 12 of the trap address are Os. Bits
26 to 14 come from the trap base register. See section 1.8.2.8 on page 126).

18. 12-Bit Signed-Immediate - Bits 11 to 0 in the RIS format for non branch and trap
instructions. This field is sign extended and has a data type of dtp-fixnum.

26 SymboJics Company Confidential·
SUNS TONE ARCHITECTURE October 1987

1.4.7 Data Type"Checking

The data types of either, neither or both source registers of an instruction are checked. The instruction
format and the opcode detennine what data gets type checked and the Type Check Field in the
instruction determines what data type check to perfonn. In the case of a load or store instruction, the
data at the referenced address is also type checked as specified by the opcode. A trap occurs if the result
of the data type check is not what was specified by the instruction.

Not all traps on data types are errors, so the trap handler sometimes has to test the data types of the
sources and determine what the proper method of handling the trap is. Therefore the trap vector
addresses for data type traps include infonnation on the data type being checked, the opcode, and
possibly the data type of the sources. See section 1.8 on page 120 for a more detailed description of
trapping.

Sunstone provides two methods of data type checking. The first method uses a combination of the
I opcode, instruction fonnat and the type check field to determine what condition to trap on. The second

method utilizes a special instruction, trap-type, to specify what conditions to trap on.

I In the first method, the Type Check Field, a 5 bit field in the instruction, specifies what data types to trap
on .. The instruction format determines which Source registers are tested. If the instruction format is RIL
or RIS, the data type checking mechanism checks only the Source1 Register. If the instruction format is
RR, the data type checking mechanism checks to see if both the Source1 and the Source2 Registers are
the same type, and that they are the type specified by the Type Field. An exception to the above occurs
when the opcode indicates either a load or store instruction. Load and store instructions use the type
field only to check the Source1 register. In the RR format,the load instruction traps if" the Source2
register is not a fixnum. The opcode for the load and store instructions specifies what data types of
referenced data to trap on and how to handle the trap, see section 1.4.9 on page 27 on memory

loperations. Also, if the 5 bit type check field in the instruction specifies *" hardware-arith and the format
is RIS or RIL, both sources are checked.

The second method, using the trap-type instruction, allows you to explicitly specify what to trap on.
The trap-type instruction, applies a mask to a 64 bit decoded representation of the data type of Source1.
One bit in the instruction selects which half of the 64 bit word the mask is applied to, and another bit

I selects whether to trap on true or false results. In the RR instruction fonnat, the Source2 register
contains the mask data. In the RIL instruction format, the immediate data word contains the 32 bit
mask.

Of the two methods, the fll'St method is considerably more efficient Although the trap-type instruction
allows more flexibility, it is at the cost of one or two cycles. This is because the second method uses a
separate instruction just to test the data types, whereas the fll'St method tests the data types" as part of
normal instruction execution.

The fll'St method also provides a means to efficiently handle the case where instructions are identical,
but the data type trap handler needs to do something different according to the application. An example

Symbolics Company Confidential 27
November 1987 SUNS TONE ARCHITECTURE

of this situation is a store-data instruction with the data type check specified as 'f:: list-locative. This

instruction is used when emulating the I-Machine instructions rplaca and pop-Iexical-var-n. When

emulating pop-Iexical-var-n, the trap handler is always an error trap routine. When emulating rplaca, if

the data type of the source is dtp-list-instance it is not an error. Although the instruction traps in both

cases on a source with data type dtp-list-instance, the trap handler needs two separate entry points to

handle both cases. The most significant bit of the Type Check Field solves this problem. Four bits of

the type field specify what data types to trap on, and one bit of the five bit field is used as part of the trap

vector, providing 2 unique trap vector addresses for each of the data type traps.

There are a few instructions that have no data type checking on themselves, they are: read-coproc,

write-coproc,load-coproc,store-coproc, branch-next-type, branch-take-type and trap-type. The

instructions: branch-next, branch-take, and trap, all test the source according to the type check defined

by the eond field. See section 1.4 on page 15 for further explanation.

1.4.8 Data Type Setting

The data type is set when it is moved to its destination, either the destination register or a memory

location. Typically the data type is set to that of Source 1. There are, however, a few exceptions. The I

read-me-reg, read-coproc, and load instructions, move the full 38 bits read into the destination register. I

Also, with the exception of the store-type instruction, store instructions store into memory all 38 bits of

Source2. The return and return-subvert instructions when in the RR format, get the data type stored in

the destination register from Source 1. When in the RIL format they get the data type stored in the

destination register from the immediate field. When in the RR format, the MOVE instruction sets the

data type of the destination register from the Source 1 register. When in the RIS or RIL formats, the

move instruction sets the data 'type of the result stored in the destination register from the immediate

value. For the move-type instruction, the data type of the result stored in the destination register comes

from the least significant six bits of the Source2 register (Source2<5:0». When the move-type

instruction is in the RIS format, the data type of the result stored in the destination register comes from

the least significant six bits of the immediate field (Immediate<5:0».

1.4.9 Memory Operations

Load and Store are the only instructions which access memory. The table 1.4.9 on page 29 lists the

many variations of both instructions. Referencing the table reveals the difference between the load

instructions is mostly a matter of what data types are trapped on, and what the trap handler does for each

of these cases. Note that many of the memory operations are functionally identical to the I-Machine

versions, and the hardware traps to allow software to handle all of cases shown. For example the

hardware traps to allow the software to load or store indirectly through forwarding pointers. For a more

complete description of each instruction, see section 1.5.10 on page 70, and section 1.5.11 on page 89.

28 Symbolics Company Confidential
SUNS TONE ARCHITECTURE November 1987

Table 8. Memory Operations

Memory Operations

Operation I-Data P-Data I-Head P-Head Null Bound

load-data - TRNSPT ERR ERR ERR BTRP
load-data-iv - TRNSPT ERR ERR ERR BTRP
load-cdr - - ERR ERR - -
load-ear-cdr - TRNSPT ERR ERR ERR BTRP
load-cdr-fmish - TRNSPT ERR ERR ERR BTRP
load-structure - - - - - -
load-header ERR ERR - TRNSPT ERR ERR
load-array - TRNSPT ERR ERR ERR BTRP
load-coproc - TRNSPT ERR ERR ERR BTRP
load-bind - TRNSPT ERR ERR TRNSPT TRNSPT
load-scavenge - TRNSPT - TRNSPT TRNSPT TRNSPT
load-gc-copy - - - - - -
load-raw - - - - - -
load-erchemeralp - - - - - -
load-o dspacep - - - - - -
store-data - - ERR ERR - BTRP
store-data-iv - - ERR ERR - BTRP
store-rplacd - - ERR ERR - BTRP
store-array - - ERR ERR - BTRP
store-coproc - - ERR ERR - BTRP
store-bind - - ERR ERR - -
store-cdr-nil - - - - - -
store-cdr-next - - - - - -
store-cdr-normal - - - - - -
store-cdr-3 - - - - - -
store-cdr-reg - - - - - -
store-~e-reg - - - - - -
store- -bits - ~ - - - -

Legend:
Normal action

ERR This is an error trap.
TRNSPT IT the data type of the word read contains an address in oldspace, and if

transport traps are enabled for the page containing the word read, a transport .
trap will occur to evacuate the object

MTRP Take a monitor forward trap. However, if the word meets the transport
trap condition as described above, take a transport trap instead.

IND Take an indirect trap to follow the forwarding pointer chain.
However, if the word meets the transport trap condition as described above,
take a transport trap instead.

BTRP Take a bound location trap to a routine to search the deep binding cache.
However, if the word meets the transport trap condition as described above,
take a transport trap instead.

LOGIC Take a logic variable trap to a routine that replaces the data type of the
value read with D1P-EVCP. However, if the word meets the transport trap
condition as described above, take a transport trap instead.

Logic

LOGIC
LOGIC
-
LOGIC
LOGIC
-
ERR
LOGIC
LOGIC
TRNSPT
TRNSPT
-
-
-
-
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
--
-
--
-
-
-

Symbolics Company Confidential 29
November 1987 SUNSTONE ARCHITECTURE

Memory Operations Cont.

Operation Hfwd Efwd lfwd Evcp Monitor

load-data IND IND IND IND MTRP
load-data-iv IND IND IND IND MTRP
load-cdr IND IND - - -
load-car-cdr IND IND IND IND MTRP
load-cdr-fmish IND IND IND IND MTRP
load-structure IND - - - -
load-header IND ERR ERR ERR ERR
load-array IND IND IND IND MTRP
load-coproc IND IND IND IND MTRP
load-bind IND IND IND TRNSPT MTRP
load-scavenge TRNSPT TRNSPT TRNSPT TRNSPT TRNSPT
load-gc-copy - - - - -
load-raw - - - - -
load-~hemeralp - - - - -
load-o dspacep - - - - -
store-data IND IND IND IND MTRP
store-data-iv IND IND IND IND MTRP
store-rplacd IND IND IND IND MTRP
store-array IND IND IND IND MTRP
store-coproc IND IND IND IND MTRP
store-bind IND IND IND - MTRP
store-cdr-nil - - - - -
store-cdr-next - - - - -
store-cdr -normal - - - - -
store-cdr -3 - - - - -
store-cdr-reg - - - - -
store-~-reg - - - - -
store- -bits - - - - -

Data type classifications:
I-Data dtp-jixnum, dtp-small-ratio, dtp-singlelloat, dtp-character,

P-Data
dtp-physical-address, dtp-spare-immediate-l, dtp-instruction
dtp-double-float, dtp-bignum , dtp-big-ratio, dtp-complex,
dtp-spare-number, dtp-instance, dtp-list-instance, dtp-array-instance,

I-Head
P-Head
Null
Bound
Logic
Hfwd
Efwd
lfwd
Evcp
Monitor
GC

dtp-string-instance, dtp-nil, dtp-list, dtp-array, dtp-string, dtp-symbol,
dtp-locative, dtp-lexical-closure, dtp-dynamic-closure,
dtp-compiled-function, dtp-generic-function, dtp-spare-pointer-l,
dtp-spare-pointer-2, dtp-bound-location, dtp-lo gic-variable, dtp-pc,
dtp-breakpoint
dpt-header-i
dtp-header-p
dtp-null
dtp-bound-location
dtp-logic-variable
dtp-header-forward
dtp-element-forward
dtp-one-q-forward
dtp-external-value-cell-pointer
dtp-monitor-forward
dpt-gc-forward-

GC

ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR

ERR
ERR
ERR
ERR
ERR
ERR

30 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

In calculating the memory address, Sourcel and source2 are added together in the RR format for loads
and sourcel and the MAR are added together for stores. Sourcel and the l2-bit-signed-immediate field
are added for the RIS format, and sourcel and the 38-bit-immediate are added for the Rll... format. The
data type of the calculated memory address is the data type of sourcel for the RR and RIS format
instructions, and is the data type of the 38-bit immediate for the Rll... format instruction.

1.5 INSTRUCTIONS

There are 58 dermed instructions for Sunstone, see table 10 on page 31. The instructions are listed in
this document by class, see table 9 on page 30 for a listing of classes.

Table 9. Instruction Classes

Table of Instruction Classes

Class Instructions

arithmetic add, add-no-overjlow, sub, sub-no-overflow, mult

logical and,or,xor •

bit & byte ash, Ish, rot, ldb, dpb

call call

return return, return-subvert

move move, move-type

direct branch branch

conditional branch-next, branch-take, trap

type branch-next-type. branch-lake-type. trap-type

load load-array, load-bind. load-car-cdr. load-edr{inish, load-cdr.
load-data, load-data-iv.load-ephemeralp. load-ge-eopy. load-header.
load-oldspaeep, load-raw. load-scavenge. load-structure

store store-38-bits. store-array, store-bind. store-edr-3.
store-cdr-next. store-cdr-nil. store-cdr-normal. store-cdr-reg, store-data.
store-data-iv. store-rplaed. store-type-reg

coprocessor read-eoproe. write-eoproe. load-eoproe, store-eoproe

mcreg read-me-reg, write-me-reg

Symbolics Company Confidential 31
February 1988 SUNSTONE ARCHITECTURE

In calculating the memory address, Source! and Source2 are added together in the RR format for loads;
sourcel and the MAR are added together for stores. Sourcel and the 12-bit-signed-immediate field are
added for the RIS format, and sourcel and the 38-bit-immediate are added for the RIL format. The data

type of the calculated memory address is the data type of sourcel for the RR and RIS format load

instructions and for RIS format store instructions; it is the data type of the 38-bit immediate for RIL
format instructions; and it is the data type of the MAR for RR format store instructions.

Format
RR
lUS
lUL

Load-Address
Srcl+Src2
Srcl+lmm.-12
Srcl+J::mm-38

1.5 INSTRUCTIONS

Tn>e
Srcl
Srcl
J:mm-38

Store-Address
Srcl+MAR
Srcl+J:mm.-12
Srcl+J:mm.-38

Type
MAR
Srcl
J:mm.-38

There are 58 defmed instructions for Sunstone, see table 10 on page 33. The instructions are listed in
this document by class, see table 9 on page 32 for a listing of classes.

Symbolics Company Confidential 33
February 1988 SUNS TONE ARCHITECTURE

Table 10. Instructions

Table of Instructions

Instructions Class Opcode Formats

add arithmetic 54 RR,RIS,RIL
add-no-overl1ow arithmetic 52 RR,RIS,RIL
and logical 42 RR, RIS, RIL
ash bit and byte 44 RR, RIS
branch direct branch *** DIRECT BRANCH
branch-next conditional 75 RR,RIS, RIL
branch-next-type typedi' al 74 RR, RIL
branch-take con bon 65 RR,RIS,RIL
branch-take-type ~Y£1 64 RR, RIL
call 61 RR, RIL
jcan call 60 RR, RIL
dJlb bit and byte 51 RR,RIS
I b bit and byte 50 RR,RIS
load-arr~ load 16 RR,RIS,RIL
load-bin load 10 RR,RIS,RIL
load-car-cdr load 14 RR,RIS, RIL
load-cdr-finish load 15 RR,RIS,RIL
load-cdr load 04 RR,RIS, RIL
load-coproc coprocessor 17 RR, RIL
load-data load 12 RR, RIS, RIL
load-data-iv load 13 RR, RIS,RIL
load-ephemeralp load 00 RR, RIS, RIL
load-Gc-copy load 06 RR, RIS, RIL
load- eader load 11 RR,RIS, RIL
load-oldspacep load 01 RR,RIS, RIL
load-raw load 02 RR,RIS, RIL
load-scavenge load 07 RR,RIS,RIL
load-structure load 05 RR,RIS,RIL
Ish bit and byte 45 RR,RIS
move move 43 RR, RIS, RIL
move-type move 66 RR, RIS
mult arithmetic 56 RR, RIS, RIL
or logical 40 RR,RIS,RIL
read-coproc coprocessor 77 RR, RIL
read-mc-reg mcreg 67 RR,RIS, RIL
return return 62 RR, RIL
return-subvert return 63 RR, RIL
rot bit and byte 46 RR,RIS
store-38-bits store 26 RR,RIS,RIL
store-arr~ store 36 RR,RIS, RIL
store-bin store 30 RR, RIS, RIL
store-cdr-3 store 23 RR, RIS, RIL
store-cdr-next store 20 RR,RIS, RIL
store-cdr -nil store 21 RR,RIS, RIL
store-cdr-normal store 22 RR, RIS,RIL
store-cdr -reg store 24 RR, RIS, RIL
store-coproc coprocessor 37 RR, RIL
store-data store 32 RR, RIS, RIL
store-data-iv store 33 RR,RIS, RIL
store-rplacd store 35 RR,RIS, RIL
store-type-reg store 25 RR, RIS, RIL

***direct-branch has a data type of dlp-compiled-function and has no opcode.

34 Symbolics Company Confidential

SUNSTONE ARCHITECTURE February 1988

Table of Instructions (cont)

Instructions Class Opcode Formats

sub arithmetic 55 RR,RIS,RIL
sub-no-overflow arithmetic 53 RR,RIS,RIL
trap conditional 71 RR,RIS,RIL
trap-type type 70 RR, RIL
wnte-coproc coprocessor 57 RR, RIL
write-me-reg

~i~
47 RR,RIS,RIL

xor 41 RR,RIS,RIL

Symbolics Company Confidential 31
October 1987 SUNSTONE ARCHITECTURE

Table 10. Instructions

Table of Instructions

Instructions Class Opcode Formats

add arithmetic 54 RR,RIS,RIL
add-no-overflow arithmetic 52 RR,RIS,RIL
and logical 42 RR,RIS,RIL
ash bit and byte 44 RR,RIS
branch direct branch *** DIRECT BRANCH
branch-next conditional 75 RR,RIS,RIL
branch-next-type

typedi' al
74 RR, RIL

branch-take con tion 65 RR,RIS,RIL
branch-take-type g&e 64 RR, RIL
call 61 RR, RIL
jcall call 60 RR, RIL
dK1b bit and byte 51 RR,RIS
1 b bit and byte 50 RR,RIS
10ad-arr~ load 16 RR,RIS,RIL
load-bin load 07 RR,RIS,RIL
load-car-cdr load 14 RR,RIS,RIL
load-cdr-finish load 15 RR,RIS,RIL
load-cdr load 10 RR,RIS,RIL
load-coproc coprocessor 17 RR, RIL
load-data load 12 RR,RIS,RIL
load-data-iv load 13 RR,RIS,RIL
load-ephemeralp load 00 RR,RIS,RIL
10ad-Gc-cOPY load 04 RR,RIS,RIL
load- eader load 06 RR,RIS,RIL
load-oldspacep load 01 RR,RIS,RIL
load-raw load 02 RR,RIS,RIL
load-scavenge load 05 RR,RIS,RIL
load-structure load 11 RR,RIS,RIL
Ish bit and byte 45 RR,RIS
move move 43 RR,RIS,RIL
move-type move 66 RR,RIS
mult arithmetic 56 RR,RIS,RIL
or logical 40 RR,RIS,RIL
read-coproc coprocessor 77 RR, RIL
read-me-reg me reg 67 RR,RIS,RIL
return return 62 RR, RIL
return-subvert return 63 RR, RIL
rot bit and byte 46 RR,RIS
store-38-bits store 26 RR,RIS,RIL
store-arr':{ store 36 RR,RIS,RIL
store-bin store 27 RR,RIS,RIL
store-cdr-3 store 23 RR,RIS,RIL
store-cdr-next store 20 RR,RIS,RIL
store-cdr-nil store 21 RR,RIS,RIL
store-cdr-normal store 22 RR,RIS,RIL
store-cdr-reg store 24 RR,RIS,RIL
store-coproc coprocessor 37 RR, RIL
store-data store 32 RR,RIS,RIL
store-data-iv store 33 RR,RIS,RIL
store-rplacd store 35 RR,RIS,RIL
store-type-reg store 25 RR,RIS,RIL

*** direct-branch has a data type of dtp-compiled1unction and has no opcode.

32 Symbolics Company Confidential

SUNS TONE ARCHITECTURE October 1987

Table of Instructions (cont)

Instructions Class Opcode Fonnats

sub arithmetic 54 RR,RIS,RIL
sub-no-overflow arithmetic 55 RR,RIS,RIL
trap conditional 66 RR,RIS,RIL
trap-type type 65 RR, RIL
wnte-coproc coprocessor 57 RR, RIL
write-me-reg mcre~ 67 RR,RIS,RIL
xor logic 56 RR, RIS, RIL,

.

Symbolics Company Confidential 33
October 1987 SUNSTONE ARCHITECTURE

1.5.1 Arithmetic Operations

The arithmetic operations are as follows: add, add-no-overflow, sub, sub-no-overflow, mult. All of these
operations are available in all three formats: RR, RIS, and RIL. The general description of these

operations is:

Destination t- value op Source1

where OP is one of the arithmetic operations, and value is either Source2 in the RR format or the

immediate field in the RIS and Rll.. formats. The data type, of both Sourcel (and source2 in the RR

format) is checked according the the value of the instructions type field. The type field of the instruction

for add, sub and mult will usually be '¢ hardware-arith. The type field of the instruction for
add-no-overflow and sub-no-overflow will typically be '¢ ftxnum. If '¢ hardware-arith is specified as the

type check, both sources will be checked regardless of the instruction format For all other type

checking only source1 is type checked, except in the RR format when both sourcel and source2 are type
checked. See the description of the type field on page 22. The data type of the result stored in the

register specified by the destination field in the instruction word is the data type of source 1. See figure 7
on page 33.

Figure 7. Arithmetic Operation FormatS

RR:

I I I I I I I I I

I

I
IIIPl1101 OPCODE I SOURCE1 I SOURCE2 I TYPE I UNUSED I DESTINATION I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0

RIS:

I I I I I I I I I
IIIPl1111 OPCODE I SOURCE1 I DESTINATION I TYPE I 12-BIT-SIGNED-IMMED I
1_1_1_1 I I I I I
39 37 34 28 22 16 11 0

RIL:

I I I I I I I I I I
IIIPl1011 OPCODE I SOURCE1 I UNUSED I TYPE I UNUSED I DESTINATION I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0

I I
I CCI 38 BIT IMMEDIATE I
I_I I
39 37 0

34 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

ADD

Opcode: 54

Formats:
RR
RIS
RIL

destination t- source1 + source2
destination t- source1 + 12-bit-signed-immediate
destination t- source1 + 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source! (and
source2 in the RR format) to trap on. This field will typically test for :;t:hardware-arith which will test
the data type of both sources even in the RIS and RIL fonnats. See the examples below and section
1.8.2 on page 121.

Traps: Overl1ow trap if the addition results in an overflow condition. If a floating point coprocessor is
present then coprocessor traps may occur.

Description: Implements the Lisp + operation. and adds the contents of the register specified by
source1 and the immediate field (for RIS and RIL formats) or the contents of the register specified by

source2 (for RR fonnat) and stores the result in the register specified by destination. The immediate I fields are not type checked. except when the type check is :;t: hardware-arith With type check
:;t: hardware-arith. fixnum operations are performed by the nonna! data path. Floating point operations
will trap unless a coprocessor is present to handle that operation.

Examples:

(setq baz (+ £00 bar» add baz t- £00, bar ::t:.hardware-arith
(setq £00 (1+ £00» add £00 t- £00,#1 :;t:hardware-arith
(setq £00 (1- £00» add £00 t- £00,#-1 ::t:.hardware-arith
(setq baz (+ £00 2047» add baz t- £00,#2047 :;t:hardware-arith
(setq £00 (- £00 1234» add £00 t- £00,#-1234 ::t:.hardware-arith
(setq baz (+ £00 4096» add baz t- £00,#4096 ::t:.hardware-arith

;RR
;RIS
;RIS
;RIS
;RIS
;RIL

Symbolics Company Confidential 35
October 1987 SUNSTONE ARCHITECTURE

ADD-NO-OVERFLOW

Opcode: 52

Formats:
RR destination ~ sourcel + source2
RZS destination ~ sourcel + 12-bit-signed-immediate
RZL destination ~ sourcel + 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and

source2 in the RR format) to trap on. This field will typically test for ;tflXnum. See the examples

below arid section 1.8.2 on page 121.

Traps: None.

Description: Performs twos complement addition on the contents of the register specified by source 1
and the immediate field (for RIS and RIL formats) or the contents of the register specified by source2

(for RR format) and stores the result in the register specified by destination. The immediate fields are

not type checked.

Examples:

(setq baz (sys:%32-bit-p~us foo bar»
add-no-overf~ow baz ~ foo,bar

(setq baz (sys:%32-bit-p~us foo 2047»

;tfiznum ;RR

add-no-overf~ow baz ~ foo,#2047 ;tfiznum ;RIS

(setq baz (sys:%32-bit-p~us foo 4096»
add-no-overf~ow baz ~ foo, #4096 ;tfiznum ;RZL

36 Symbo/ics Company Confidential
SUNS TONE ARCHITECTURE October 1987

SUB

Opcode: 55

Formats:
RR
RIS
RIL

destination ~ source2 - source1
destination ~ 12-bit-signed-immediate - source1
destination ~ 32-bit-signed-immediate - source1

Source Data Type Traps: The type field of the instruction specifies what data types of source! (and
source2 in the RR format) to trap on. This field will typically test for :;t=hardware-arith which will test
the data type of both sources even in the RIS and Rll.. fonnats. See the examples below and section 1.8.2
on page 121.

Traps: Overflow trap if the subtraction results in an overflow condition. If a floating point coprocessor
is present then coprocessor traps may occur.

Description: Implements the Lisp - operation and subtracts the contents of the register specified by
source1 from the immediate field (for RIS and Rll.. formats) or the contents of the register specified by
source2 (for RR fonnat) and stores the result in the register specified by destination. The immediate
fields are not type checked, except when the type check is :;t= hardware-arith. N01E: None of the above
formats support subtracting an immediate value from the contents of a register. To do so you must use
the add instruction. Adding a negative immediate value is equivalent to subtracting a like value with a I positive sign. See example below. With type check :;t= hardware-arith, flXnum operations are performed
by the normal data path. Floating point operations will trap unless a coprocessor is present to handle
that operation.

Examples:

I (setq baz (- bar foo» sub baz ~ foo,bar :;t=hardware-arith ;RR
(setq baz (- 2047 foo» sub baz ~ foo,#2047 :;t=hardware-arith ;RIS
(setq baz (- 4096 fool) sub baz ~ foo,#4096 :;t=hardware-arith ;RIL

Subtracting an immediate value from the contents of a register:

(setq foo (- foo 1234» add foo ~ foo, #-1234 :;t=hardware-arith ;RIS

Symbolics Company Confidential 37
October 1987 SUNSTONE ARCHITECTURE

SUB-NO-OVERFLOW

Opcode: 53

Formats:
destination +- source2 - sourcel RR.

RJ:S
RJ:L

destination +- l2-bit-signed-~diate - sourcel
destination +- 32-bit-signed-immediate - sourcel

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. This field will typically test for :¢:flXnurn. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Performs twos complement subtraction on the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked. NOTE: None of the above formats support subtracting an immediate value
from the contents of a register. To do so you must use the add-no-overflow instruction. Adding a
negative immediate value is equivalent to subtracting a like value with a positive sign. See example
below.

Examples:

(setq baz (sys:%32-bit-difference bar foo»
sub-no-overflow baz +- foo,bar :¢:fixnum ;RR

I

(setq baz (sys:%32-bit-difference 2047 foo» I
sub-no-overflow baz +- foo,#2047 :¢:fixnum ;RIS

(setq baz (sys:%32-bit-difference 4096 foo» I
sub-no-overflow baz +- foo,#4096 :¢:fixnum ;RIL

Subtracting an immediate value from the contents of a register:

(setq baz (sys:%32-bit-plus foo 2047»
add-no-overflow baz +- foo,#2047 :¢:fixnum ;RIS

38 Symbolics Company Confidential

SUNS TONE ARCHITECTURE October 1987

MULT

Opcode: 56

Formats:
RR
RIS
RIL

destination +- sourcel * source2
destination +- sourcel * 12-bit-signed-immediate
destination +- sourcel * 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap on. This field will typically test for "# hardware-arith which will test

the data type of both sources even in the RIS and RIL formats. See the examples below and section

1.8.2 on page 121.

Traps: Overflow trap if the multiplication results in an overflow condition. If a floating point

coprocessor is present then coprocessor traps may occur.

Description: Implements the Lisp * function on the contents of the register specified by sourcel and

the immediate field (for RIS and RIL formats) or the contents of the register specified by source2 (for

RR format) and stores the result in the register specified by destination. The immediate fields are not I type checked, except when the type check is "# hardware-arith. No multiply operations are performed
by the normal data path. All mult instructions will trap unless a coprocessor is present that can handle
the operation. The coprocessor might handle ftxnum andfor single-float multiplications.

Examples:

(setq baz (* foo bar» mult
(setq baz (* foo 2047» mult
(setq baz (* foo 4096» mult

baz +- foo, bar
baz +- foo, #2047
baz +- foo, #4096

"#hardware-arith
"#hardware-arith
"#hardware-arith

;RR
;RIS
;RIL

Symbolics Company Confidential 39
October 1987 SUNS TONE ARCHITECTURE

1.5.2 Logical Operations

The logical operations are: and. or. xor. All of these operations are available in all three formats: RR,
RIS, and RIL. The general description of these operations is: Destination +- Source1 op value where
OP is one of the Logical Operations, and value is either Source2 in the RR format or the immediate field
in the RIS and RIL formats. The data type of Sourcel (and source2 in the RR format) is checked
according the the value of the instructions type field. The type field of the instruction will usually be

*" fixnum. which will cause a trap if the data type of sourcel (and source2 in the RR format) are not the
same, or if the data type is not dtp-ftxnum. The data type of the result stored in the destination is the
same as that of source 1. See figure 8 on page 39.

Figure 8. Logical Operation Formats

RR:

1 1 1 1 1 1 I 1 1 1
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 1 TYPE 1 UNUSED 1 DESTINATION 1
I_I_I_I~ ____ I~ ____ I~ ____ I~ __ I _____ I 1
39 37 34 28 22 16 11 5 0

RIS:

1 1 1 1 1 1 1 1 1
IIIPl1111 OPCODE 1 SOURCE1 1 DESTINATION 1 TYPE 1 12-BIT-SIGNED-IMMED 1
1_1_1_1..,...-____ 1..,.-____ 1 1 ___ 1 1
39 37 34 28 22 16 11 0

RIL:

1 1 1 1 1 1 1 1 1 1
IIIPl1011 OPCODE I SOURCE1 1 UNUSED I TYPE I UNUSED 1 DESTINATION 1
1_1_1_1 _____ 1--____ 1--____ 1 ___ 1 _____ 1 1
39 37 34 28 22 16 11 5 0

1 1 1
1 eel 38 BIT IMMEDIATE 1
I I 1 39 ~3~7--~O

40 Symbolics Company Cl!mfidential

SUNSTONE ARCHITECTURE October 1987

AND

Opcode: 42

Formats:
RR
RIS
RIL

destination ~ sourcel and source2
destination ~ sourcel and 12-bit-signed-immediate
destination ~ sourcel and 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. This field will typically test for :;t:flXnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise logical AND between the contents of the register specified by
source1 and the immediate field (for RIS and Rll.. formats) or the contents of the register specified by
source2 (for RR fonnat) and stores the result in the register specified by destination. The immediate
fields are not type checked.

Examples:

(setq baz (logand foo bar» and
(setq baz (logand foo 2047» and
(setq baz (logand foo 4096» and

baz ~ foo,bar :;t:fixnum
baz ~ foo,#2047 :;t:fixnum
baz ~ foo, #4096 :;t:fixnum

;RR
;RIS
;RIL

Symbo/ics Company Confidential 41
October 1987 SUNS TONE ARCHITECTURE

OR

Opcode: 40

Formats:
destination ~ sourcel or source2 RR

RIS
RIL

destination ~ sourcel or 12-bit-signed-immediate
destination ~ sourcel or 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap on. This field will typically test for :;t:flXnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise logical OR between the contents of the register specified by

sourcel and the immediate field (for RIS and Rll.. formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate

fields are not type checked.

Examples:

(setq baz (~ogior foo bar»
(setq baz (~ogior foo 2047»
(setq baz (~ogior foo 4096»

or baz~ foo,bar
or baz ~ foo,#2047
or baz ~ foo, #4096

:;t:fixnum ;RR
:;t:fixnum ;RIS
:;t:fixnum ;RIL

•

42 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

XOR

Opcode:41

Formats:
Ra
IUS
IUL

destinatioD +- sourcel zor source2
destinatioD +- sourcel zor 12-bit-signed-immediate
destinatioD +- sourcel zor.32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. This field will typically test for *flXnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise exclusive-or between the contents of the register specified by
source1 and the immediate field (for RIS and Rll.. formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked.

Examples:

(setq baz (J.ogzor foo bar» zor
(setq baz (J.ogzor foo 2047» zor
(setq baz (J.ogzor foo 4096» zor

baz +- foo,bar *fixnum ;Ra
baz +- foo, #2047 *fiznum ;RIS
baz +- foo, #4096 *fiznum ;RIL

Symbo/ics Company Confidential 43
October 1987 SUNSTONE ARCHITECTURE

1.5.3 Bit and Byte Operations

The bit and byte operations are: ash, Ish, rot, Idb, dpb. All of these operations are available in only RR
and RIS formats, and are not available in the Rll.. format. The data type of Source! (and source2 for RR
format) is checked according the the value of the instructions type field The type field of the instruction

will usually be ¢flXJlum, which will cause a trap if the data type of source! (or Source2 in the RR
format) are not both fixnum. The data type of the result is the data type of source1. See figure 9 on
page 43.

Figure 9. Bit and Byte Operation Formats

RR.:

1 1 1 1 1 1 1 1 1 I
IIIPlll01 OPCODE 1 SOUR.CEl 1 SOUR.CE2 1 TYPE 1 UNUSED 1 DESTINATION 1
1_1_1_1 1 1 1 1 1 1
39 37 34 28 22 16 11 5 0

RIS:

1 1 I 1 1 1 SOUR.CE2 1 1 I
1J:IP11011 OPCODE 1 SOUR.CEl 1 DESTINATION 1 TYPE 1 12-BIT-SIGNED-IMMED 1
1_1_1_1 I 1 1 1 I
39 37 34 28 22 16 11 0

44
SUNSTONE ARCHITECTURE

ASH

Opcode: 44

Formats:

Symbolics Company Confidential
October 1987

RR.
RI:S

destination +- Shift source1 by source2
destination +- Shift source1 by 12-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source1 (and
source2 in the RR format) to trap on. This field will typically test for *flXnum. See the examples
below and section 1.8.2 on page 121.

I Traps: Traps on overflow. An overflow trap will occur if the shift amount is greater than 31, or if any
significant bits are lost in the course of a left shift

Description: Shifts the contents of the source1 register arithmetically according to the contents of the
I source2 register (or the immediate field if RIS format) and places the result in the destination register.

Shift right if the sign of the source2 register (or immediate field) is negative, shift left if the sign is
positive. A right shift will shift in the sign bit; a left shift will shift in zeros. The immediate fields are
not type checked.

Examples:

(setq baz (ash foo bar»
(setq baz (ash foo 10»

ash baz +- foo, bar
ash baz +- foo, #10

*fixnum
*fi:xnum

;RR.
;RI:S

Symbolics Company Confidential

October 1987

LSH

Opcode: 4S

Formats:

45
SUNS TONE ARCHITECTURE

RR
RIS

destination ~ Shift sourcel by source2
destination ~ Shift sourcel by 12-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of soW'Cel (and
sow-ce2 in the RR fonnat) to trap 00. This field will typically test for. ¢flXnurn. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Shifts the contents of the soW'Cel register logically according to the contents of the
sow-ce2 register (or the immediate field if RIS fonnat) and places the result in the destination register.
Shift right if the sign of the sow-ce2 register (or immediate field) is negative, shift left if the sign is
positive. Zeros are shifted in. A Ishift amountl > 31 results in O. The immediate fields are not type
checked.

Examples:

(setq baz (lsh foo bar»
(setq baz (lsh foo 10»

lsh baz ~ foo,bar
lsh baz ~ foo,#10

¢fi:xnum
¢fi:xnum

iRR
iRIS

46
SUNS TONE ARCHITECTURE

ROT

Opcode: 46

Formats:

Symbolics Company Confidential
October 1987

RR.
IUS

destination +- Rotate source1 by source2
destination +- Rotate source1 by 12-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of source1 (and
source2 in the RR format) to trap on. This field will typically test for ¢flxnurn. See the examples
below and section 1.8.2 on page 121.

Traps: None.

I Description: Rotates the contents of the source1 register left according to the contents of the source2
register (or the immediate field ifRIS format) and places the result in the destination register. Only the
least significant 5 bits are considered for the rotate amount. in part this means that the sign bit is ignored.
The immediate fields are not type checked.

Examples:

(setq baz (rot foo bar» rot
(setq baz (rot foo 10» rot

baz +- foo, bar
baz +- foo, #10

¢fixnum
¢fixnum

;RR.
;IUS

Symbolics Company Confidential 47
November 1987 SUNS TONE ARCHITECTURE

LOB

Opcode: 50

Formats:
RR
RIS

destination ~ (ldb source2 source1)
destination ~ (ldb 12-bit-signed-immediate source1)

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. This field will typically test for :;i:flXnum. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Helps to implement the lisp LDB function. Extracts the field specified by the contents of
the source2 register (or the immediate field for RIS format) from the contents of the register specified by
sourcel and places it in the register specified by the destination field. Only the least significant 10 bits

of the contents specified by the source2 field (or the immediate field) are used to specify the byte to be I
extracted.Bits 0 through 4 of the byte specifier indicate the location of the bottom bit of the field, and
bits 5 through 9 specify the (field-siie - 1). The byte specifier is not type checked.

Examples:

(setq baz (ldb (byte 10 0) foo» ldb baz ~ foo, #440 :;i:fixnum;RIS I

48 Symbolics Company Confidential
SUNS TONE ARCHITECTURE

OPB

Opcode: 51

Formats:

November 1987

RR.
RIS

destination +- (dpb source1 byte-rotate-reqister source2)
source2 +- (dpb source1 12-bit-siqned-immediate source2)

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap on. This field will typically test for *fixnum. See the examples

below and section 1.8.2 on page 121.

Traps: None.

Description: Helps to implement the lisp DPB function. Deposits the contents of the source1 register

into a field of the contents of the register specified by the source2 field, and places the result in the

register specified by the destination field. The field where the value is being deposited is specified by

the byte-rotate-register for the RR fo~t, or the immediate field for the RIS format. In either case only

I the least significant 10 bits are considered. Bits 0 through 4 of the byte specifier indicate the location of

the bottom bit of the field, and bits 5 through 9 specify the (field-size - 1). The byte specifier is not type
checked.

Examples:

(setq foo (dpb bar (byte 10 0) foo»
I dpb foo +- bar,#440,foo :t:fixnum iRIS

(setq baz (dpb bar (byte 10 0) foo»
move baz +- foo

I dpb baz +- bar,#440,baz :t:fixnum ;RIS

Symbolics Company Confidential 49
October 1987 SUNS TONE ARCHITECTURE

1.5.4 Call Operations

The call andjcall instruction are available in formats: RR and RIL. Data Type check of source 1
according to the type field, this will typically test for none in the RIL format and for a legal PC type in
the RR formal See figure 10 on page 49.

Figure 10. Call Instruction Formats

RR.: ~

I I I
I

I
,

I I I I I I
IIIPl1101 OPCODE I SOURCE1 I UNUSED I TYPE I N-AlU;S I DESTINATION I
1_1_1_1
39 37 34

RIL:

I I I I
IIIPl1011
I I I I ----39 37

I
I CCI

34

I
28

I
OPCODE I

I
28

I I I I I
22 16 11 .. 5 0

I I I I I
SOURCE1 I UNUSED I TYPE I N-AlU;S I DESTINATION I

I I I I I
22 16 11 5 0

38 BIT IMMEDIATE

I_I~--~
39 37 0

50 Symbolics Company Confidential
SUNS TONE ARCHITECTURE

Call

Opcode: 61

Formats:
RR

RJ:L

Destination ~ Sourcel,
N-Args ~ n-args<4:0> if n-args<S> = 1

PC ~ 38-bit-immediate,
Destination ~ Sourcel
.N-args ~ n-args<4: 0> if n-args<S> = 1

October 1987

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR fonnat) to trap on. This field will typically test for none. See the examples below
and in section 1.8.2 on page 121.

Traps: If the window buffer overflows. Window Buffer Overflow occurs if the Window Buffer Pointer
= Window Buffer Overflow Limit, before the instruction increments the Window Buffer Pointer.

Description: The PC is set according to the fonnat (see above). The return address is pushed onto the
return stack, the return address is PC+ 1 for the RR fonnat, and is PC+2 for the RIL fonnat. The window
pointer is incremented by 1. The N-args register is loaded with the least significant five bits of the
n-args field if the most significant bit of the field is a 1. The contents of the register addressed by

I sourcel is moved into the register specified by the destination field in the instruction. In the case of the
RR instruction the destination is typically the PC. Note that indirect calls are implemented by having
the call point to the word containing the address of the thing to be called, like the function cell of a
symbol, ~,ince this cell will have a dtp-compiled-[unction, it will branch to the desired destination (see
secticTll1.5.7 on page 59 for a description of direct branches). The immediate fields are not type
checked. In the RR fonnat the destination is typically PC.

Examples:

(aseoc item a-list)
move aO ~ item
call @assoc,n-args ~ #l,al ~ a-list RJ:L

(funcall function item a-list)
move aO ~ item
move
call

al ~ a-list
function,n-args ~ #2 * Compiled-function RR

Symbolics Company Confidential 51
October 1987

Jeall

Opcode: 60

Formats:
RR.

Rl:L

SUNSTONE ARCHITECTURE

Destination ~ Sourcel,
N-Args ~ n-args<4:0> if n-args<S> = 1

Destination ~ Sourcel,
N-args ~ n-args<4:0> if n-arqs<S> = 1

PC ~ 38-bit-immediate, ,

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. This field will typically test for none.

Traps: None.

Description: ,The PC is set according to the format (see above), The N-args register is loaded with the
least significant five bits of the n-args field if the most significant bit of the field is a 1. And in the Rll...
format, the contents of the register specified by sourcel are moved into the register specified by the
destination field in the instruction. The immediate fields are not type checked. In the RR format the
destination is typically PC. This instruction is intended to support Tail Recursion Elimination ('mE).
The Jcall instruction differs from the call instruction in that it does not increment the Window Buffer
Pointer.

52 Symbolics Company Confidential

SUNS TONE ARCHITECTURE October 1987

1.5.5 Return Operations

The return operations are return and return-subvert instructions. The return instructions are available in
two fonnats: RR and RIT... Data Type check of source! according to the type field, this will typically
test for none. The data type of the result depends on the fonnat, in the RR fonnat it will be the data type

of source1, and in the Rrr.. fonnat it will be the data type of the 38-bit immediate. See figure lIon page
52.

Figure 11. Return Operation Fonnats

RR:

I I I I I I I I I 1
IIIPl1101 OPCODE I SOURCE1 I SOURCE2 1 TYPE I N-ARGS 1 DESTINATION 1
1_1_'_1 1 I 1 1 I 1
39 37 34 28 22 16 11 5 0

RIL:

I I I I I I I I I 1
IIIPl1011 OPCODE I UNUSED I UNUSED 1 TYPE 1 N-ARGS I DESTINATION 1
1_1_1_1 I I 1 I I I
39 37 34 28 22 16 11 5 0

I
I CCI 38 BIT IMMEDIATE
I_I
39 37 0

Symbolics Company Confidential 55
February 1988 SUNSTONE ARCHITECTURE

Return

Opcode: 62

Formats:
:Em

RIL

PC ~

destination ~
N-args ~

PC ~

destination ~
N-args ~

Top of Return Stack,
sourcel<37:32>lsource2<31:0>
n-args<4:0> if n-args<S> = 1

Top of Return Stack,
38-bit-immediate
n-args<4:0> if n-args<S> = 1

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap on. This field will typically test for none. See the examples below

and the section section 1.7.2 on page 118.

Traps: Take a Window Buffer Underflow Trap if the Window Buffer underflows. See section 1.7.2.7,

General Traps, on page 122 for a description of the trap.

Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer I
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least

significant five bits of the n-args field if the most significant bit of the field is a 1. And the register

specified by the destination field of the instruction is loaded with, depending on format, merging of

sourcel data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate

field is not type checked.

Examples:

(defun foo (a) a) return rlS ~ rO n-args ~ 1 ;a I

Symbolics Company Confidential
October 1987

Return

Opcode: 62

Formats:
RR.

lUL

PC
destination
N-arqs

PC
destination
N-arqs

53
SUNSTONE ARCHITECTURE

+- Top of Return Stack,
+- sourcel<37:32>lsource2<31:0>
+- n-arqs<4:0> if n-arqs<S> = 1

+- Top of Return Stack,
+- 38-bit-immediate
+- n-arqs<4:0> if n-arqs<S> = 1

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap 00. This field will typically test for none. See the examples below

and the section section 1.8.2 on page 121.

Traps: If the window buffer underflows. Window Buffer Underflow occurs if the Window Buffer
Pointer = Window Buffer Underflow Limit, before the instruction decrements the Window Buffer

Pointer.

Description: The PC is set to the value on the top of the return stack.. The Window Buffer Pointer I
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least

significant five bits of the n-args field if the most significant bit of the field is a 1. And the register

specified by the destination field of the instruction is loaded with, depending on format, merging of

. source1 data type and source2 data (RR format), or the 38-bit-irnmediate (R1L format). The immediate

field is not type checked.

Examples:

(defun foo (a) a) return rlS +- rO n-arqs +- 1 ia I

54
SUNSTONE ARCHITECTURE

Return-subvert

Opcode: 63

Formats:
RR

RJ:L

PC
destination
N-args

PC
destination
N-args

Symbolics Company Confidential
October 1987

~ TOp of Return Stack,
~ sourcel<37:32>1 source2<31: 0>
~ n-args<4:0> if n-args<S> = 1

~ TOp of Return Stack,
~ 38-bit-immediate
~ n-args<4:0> if n-args<S> = 1

Source Data Type Traps: The type field of the instruction specifies what data types of sOUrcel (and

source2 in the RR format) to trap on. This field will typically test for none. See the examples below

and section 1.8.2 on page 121.

Traps: If the window buffer underflows. Window Buffer Underflow occurs if the Window Buffer
Pointer = Window Buffer Underflow Limit. before the instruction decrements the Window Buffer

Pointer.

I Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least

significant five bits of the n-args field if the most significant bit of the field is a 1. And the register

specified by the destination field of the instruction is loaded with, depending on format. merging of

source1 data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate
field is not type checked.

The subvert bit is set in the status control register. In essence, this causes the next instruction to operate

like a move instruction, that is, it subverts (or perverts) the execution of the instruction being returned to.
An example of where this might be used is upon returning from a data type trap of an add operation

where the operands were both bignums. The trap routine performs the add of the bignums in software

and does a return-subvert. The instruction returned to is the trapped instruction, the add, which has
already been performed, and whose operation needs to be subverted .. The immediate fields are not type
checked The usual use of this instruction is in the RR format with the destination being the Status

Control Register, and the source being the saved version of the Status Control Register.

All arithmetic, logical, bit & byte, read-coproc, and load instructions that are subverted will move the
contents of the trap-result register into the destination register specified by the subverted instruction. All

side-effects of the MAR, byte rotate register, and status control register are inhibited. Data type
checking of the operands is inhibited

Subverted call and return instructions operate normally except that the contents of the Trap Result
register is moved into the specified destination register. For the calls, the data type checking of the Trap
Result Register is done as specified by the type field of the instruction being subverted. For the returns,

data type checking of the operands is inhibited

56
SUNS TONE ARCHITECTURE

Return-subvert

Opcode: 63

Formats:
RR

RIL

PC
destination
N-args

PC
destination
N-args

symbolics Company Confidential
February 1988

+- Top of Return Stack,
+- sourcel<37:32>1 source2<31: 0>
+- n-args<4:0> if n-args<S> = 1

+- Top of Return Stack,
+- 38-bit-immediate
+- n-args<4:0> if n-args<S> = 1

Source Data Type Traps: The type field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap on. This field will typically test for none. See the examples below

and section 1.7.2 on page 118.

Traps: Take a Window Buffer Underflow Trap if the Window Buffer underflows. See section 1.7.2.7,

General Traps, on page 122 for a description of the trap.

I Description: The PC is set to the value on the top of the return stack, The Window Buffer Pointer
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least

significant five bits of the n-args field if the most significant bit of the field is a 1. And the register

specified by the destination field of the instruction is loaded with, depending on format, merging of

source 1 data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate

field is not type checked.

The subvert bit is set in the status control register. In essence, this causes the next instruction to operate

like a move instruction, that is, it subverts (or perverts) the execution of the instruction being returned to.

An example of where this might be used is upon returning from a data type trap of an add operation
where the operands were both bignums. The trap routine performs the add of the bignums in software

and does a return-subvert. The instruction returned to is the trapped instruction, the add, which has

already been performed, and whose operation needs to be subverted. The immediate fields are not type

checked. The usual use of this instruction is in the RR format with the destination being the Status

Control Register, and the source being the saved version of the Status Control Register.

All arithmetic, logical, bit & byte, read-coproc, and load instructions that are subverted will move the
contents of the trap-result register into the destination register specified by the subverted instruction. All
side-effects of the MAR, byte rotate register, and status control register are inhibited. Data type

checking of the operands is inhibited

Subverted call and return instructions operate normally except that the contents of the Trap Result

register is moved into the specified destination register. For the calls, the data type checking of the Trap

Result Register is done as specified by the type field of the instruction being subverted. For the returns,

data type checking of the operands is inhibited.

Symbolics Company Confidential 55
October 1987 SUNSTONE ARCHITECTURE

Conditional instructions that are subverted use the least signiftcant bit of the trap-result register and the
most signiftcant bit of the cond fteld in the instruction, bit 16, to determine if the branch is to be taken.
If the two bits are different the branch is taken, if the bits are the same then the branch is not taken. Data
type checking of the operands is inhibited.

Store instructions that are subverted are just treated as nops. Data type checking of the operands is
inhibited

The effect of subverting write-coproc, load.-coproc, store-coproc, direct branches and type instructions is
undefmed.

56 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.5.6 Move Operations

The move operations are: move, and move-type. The move instruction is available in all three formats,

and the move-type instruction is only available in the RR and RIS formats. Data Type check of Source!
(and Source2 in the RR format) according to the type field, this will typically test for none. The data

type of the result depends on the format and the instruction. For the move instruction, in the RR format

it will be the data type of source 1 , in the rus format it will be fixnum, and in the RIL format it will be

the data type of the 38-bit immediate. For the move-type instruction,the data type of the result will be

the 6 bits of the immediate field (RIS format) or the least significant 6 bits of the source2 register .See

figure 12 on page 56.

Figure 12. Move Operation Formats

RR: move, move-type

I , , , , , , , I I
IIIPlllO, OPCODE , SOURCE 1 I SOURCE2 , TYPE I UNUSED I DESTINATION I
1_1_1_'
39 37 34

R.I S: move, move-type

I I I I
IIIPI111! 1_'_'_'
39 37 34

RIL: move

, , I ,
IIIPl1011
I _1_1_1
39 37

I I
I CCI

34

OPCODE

OPCODE

,
28

I
!
I
28

I
I
I
28

I I I I I
22 16 11 5 0

I I I
SOURCE1 'DESTINATION! TYPE I 12-BIT-SIGNED-IMMED , , ,

22 16 11 0

, , I , I
SvURCE1 , UNUSED I TYPE I UNUSED I DESTINATION I , I I I I

22 16 11 5 0

38 BIT IMMEDIATE

'_I 39 ~3~7------------------------------~------------------------------~O~

Symbolics Company Confidential 57
October 1987 SUNSTONE ARCHITECTURE

Move

Opcode: 43

Formats:
RR destination +- sourcel<37:32>lsource2<31:0>
~s destination +- 12-bit-immediate
~L destination +- 38-bit-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of Source1 (and
Source2 in the RR Format) to trap on. ~is field will typically test for none.

Traps: None

Description: If the Format is immediate, moves the immediate value into the destination register. If the
Format is RR, merges the type of sourcel with the data of source2 and stores the result in the register
specified by the destination field of the instruction.

58 Symbofics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Move-type

Opcode: 66

Formats:
RR
lUS

destination ~ source2<S:O> Isourcel<31:0>
destination ~ immediate<S:O>lsourcel<31:0>

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for none.

Traps: None

Description: Source1 data is moved into the register specified by the destination field of the instruction
with the data type of the result being the least significant 6 bits of the immediate field (RIS format) or
the source2 register.

Symbolics Company Confidential 59
October 1987 SUNS TONE ARCHITECTURE

1.5.7 Direct Branch Operation

Instructions with data type of dtp-compiled{unction are interpreted by the hardware to be direct branch

operations. See figure 13 on page 59.

Figure 13. Direct Branch Fonnat

I I I I I
IllPI 34 I ADDRESS I
I_I_I~------_I~--~I
39 37 31 0

60 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Branch

Opcode: None, it has a data type of dtp-compiled1unction

Formats: Direct branch PC f- address

Traps: None

Description: The address field is used as the address of the next instruction.

Symbolics Company Confidential 61
October 1987 SUNS TONE ARCHITECTURE

1.5.8 Conditional Operations

The conditional operations are: branch-next. branch-take, and trap. Available in all three Formats.
Data Type check of Source1 (and Source2 in the RR Format) according to the Cond Field. The Cond
Field specifies the conditions and type trap enables listed.

If the cond of the operands is not true, the branch is not taken. If the branch is to be taken, the 12 bit
page offset is inserted into the low 12 bits of the current PC as the branch address. The -take is an
indication that the branch is expected to be taken, that is, the result will be true. The -next is an
indication that the branch is expected not to be taken, that is, the cond result will not be true. See figure
14 on page 62.

In the RIS format, the 6 bit field is a sign extended field.

In the case of the trap instruction, a trap occurs if the condition is true. If the trap occurs, the page offset
field is used as the low 12 bits of the trap address; the high bits are taken from the trap base register, and
bits 13: 12 of the address are zeros.

All fixnurn compares are handled by the normal data path. The compares that specify *" hardware-arith
type checks will trap for floating point operations unless a coprocessor is present that can handle the
operation.

62 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

Figure 14. Conditional Operation Formats

RR:

1 1 1 1 1 1 I I
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 1 COND 1 PAGE OFFSET
'_1_1_1 1 1 I I
39 37 34 28 22 16 11 0

RJ:S:

I 1 I 1 1 I 1 1
IIIPl1111 OPCODE I SOURCE 1 16-BIT-IMMEDI COND 1 PAGE OFFSET
1 _1_1_1 I 1 I I
39 37 34 28 22 16 11 0

RIL:

1 I 1 I I I 1 I
IIIPl1011 OPCODE 1 SOURCE1 1 UNUSED I COND I PAGE OFFSET
I 1 1 ---1 1 1 I I
39 37 34 28 22 16 11 0

1 1
1 CCI 38 BIT IMMEDIATE
1 _I
39 37 0

Symbolics Company Confidential 65
February 1988 SUNSTONE ARCHITECTURE

Branch-next

Opcode: 75

Formats:
RR if sourcel cond source2

PC ~ PC<3l:l2>lpage-offset<ll:O>
else

PC ~ PC+l

RIS if sourcel cond 6-bit-immediate
PC ~ PC<3l:l2>lpage-offset<ll:O>

else
PC ~ PC+l

RIL if sourcel cond 38 bit immediate
PC ~ PC<3l:l2>lpage-offset<ll:O>

else
PC ~ PC+2

Source Data Type Traps: The cond field of the instruction specifies what data types of source 1 (and

source2 in the RR format) to trap OR

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the

result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current

PC. If the result of the COND is not T, the next instruction is executed. This instruction is used when

the result of the cond is anticipated to be False.

Symbolics Company Confidential 63
October 1987

Branch-next

Opcode: 71

Formats:
RR

SUNSTONE ARCHITECTURE

if sourcel cond source2
PC +- PC<31:12>lpage-offset<11:O>

else
PC +- PC+l

RIS if sourcel cond 6-bit-immediate
PC +- PC<31:12>lpage-offset<11:O>

else
PC +- PC+l

RIL if sourcel cond 38 bit immediate
PC +- PC<31:12>lpage-offset<11:O>

else
PC +- PC+2

Source Data Type Traps: The cond field of the instruction specifies what data types of source 1 (and
source2 in the RR format) to trap on. .

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the
result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current
PC. If the result of the COND is not T, the next instruction is executed. This instruction is used when
the result of the cond is anticipated to be False.

64 Symbo/ics Company Confidential
SUNSTONE ARCHITECTURE

Branch-take

Opcode: 65

Formats:
RR if sourcel cond source2

PC ~ PC<3l:l2>lpage-offset<11:O>
else

PC ~ PC+l

RZS if sourcel cond 6-bit-immediate
PC ~ PC<3l:l2>lpage-offset<11:O>

else
PC ~ PC+l

RZL if sourcel cond 38 bit immediate
PC ~ PC<3l:l2>lpage-offset<11:O>

else
PC ~ PC+2

October 1987

Source Data Type Traps: The cond field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on.

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the

result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current

PC. If the result of the COND is not T, the riext instruction is executed. This instruction is used when
the result of the cond is anticipated to be True.

Symbolics Company Confidential 65
October 1987

Trap

Opcode: 71

Formats:
RR

SUNSTONE ARCHITECTURE

if source1 cond source2
PC t- <lllll>ltrap-base-registerl<OO>lpage-offset, TRAP

else
PC t- PC+1

~s if source1 cond 6-bit-immediate
PC t- <11111>1 trap-base-register I<OO>lpage-offset, TRAP

else
PC t- PC+1

~L if source1 cond 38 bit immediate
PC t- <11111>1 trap-base-register I<OO>lpage-offset, TRAP

else
PC t- PC+2

Source Data Type Traps: Specified by the COND fie1d,these traps check both operands to be of the

same data type and traps if they are not. Checks both operands to be of the type specified by the cond

field, and traps if they are not.

Traps: If the condition results in true, trap.

Description: The two operands are compared as specified by the cond field in the instruction. If the

result of the cond is T, the incremented PC is pushed onto the return stack, the page offset is inserted

into the low 12 bits of the new PC, the most significant five bits of the new pc are ones, bits 26: 14 of the

new PC is the trap base register, and bits 13 and 12 are zero and the WBP is incremented. If the result

of the COND is not T, the next instruction is executed. It is anticipated that the trap will not occur.

66 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.5.9 Type Operations

The type operations are: branch-next-type, branch-take-type,and type-trap. The type operations are
available in the RR and Rll... formats. These operations test the data type of Source 1 according to a mask
obtained from the second operand,. which is the Source2 register contents in RR format or the low 32
bits of the immediate in Rll.. format. The data type of the first operand is decoded to set a single bit in a
64 bit field,. e.g. if the data type of source1 is D1P-CHARACTER (#043), then bit #043 will be set in the
64 bit field. This 64 bit field is then LOGANDed with the 32 bit mask; depending on the H bit in the
i~truction, the mask is either LOGANDed with the high half (representing data types #040 to #077), if
H is one, or the low half (representing data types #00 to #037) ifH is zero. If the result'of the LOGAND
is non-zero, then the instruction's result is true. The C bit in the instruction is used,. as in the cond field
of other branch and trap instructions, to determine if the instruction is testing for true or false. If the C
bit is set, the branch or trap will occur only if the instruction's result is true; if the C bit is clear the
branch or trap will occur only if the result is false.

Figure 15. Type Operation Formats

RR:

1 1 1 1 1 1 1 1 1 1
IIIPl1101 OPCODE 1 SOURCE1 1 SOURCE2 ICIHIONI PAGE OFFSET
1_1_1_1 I I 1_1_1_1
39 37 34 28 22 16 15 11

RIL:

I I I I I I I I I I
IIIPl1011 OPCODE I SOURCE1 I UNUSED ICIHIUNI PAGE ()FFSET
1_1_1_1 I I 1_1_1_1
39 37 34 28 22 16 15 11

I
I CCI 38 BIT IMMEDIATE
I_I
39 37

o

o

o

Symbolics Company Confidential 67
October 1987 SUNS TONE ARCHITECTURE

Branch-next-type

Opcode: 74

Formats:
RR. if sourcel type source2

PC +- PC<31:12>lpaqe-offset<11:O>
else

PC +- PC+l

RZL if sourcel type 38 bit immediate
PC +- PC<31:12>lpaqe-offset<11:O>

else
PC +- PC+2

Source Data Type Traps: None.

Traps: None.

Description: Branches to the specified location if the type condition (as described on page 66) indicates
that the branch should be taken. This instruction is used if it is predicted that the branch will not be
taken.

Example: Branch to true-address if the data type of the word in r6 is dtp-header-p or
dtp-one-q-forward:

branch-nezt-type &true-address,r6,#o44,H=O,C=1

68 Symbo/ics Company Confidential
SUNS TONE ARCHITECTURE

Branch-take-type

Opcode: 64

Formats:
RR if sourcel type source2

PC ~ PC<31:12>lpage-offset<11:O>
eJ.se

PC ~ PC+l

RIL if sourcel type 38 bit immediate
PC ~ PC<31:12>lpage-offset<11:O>

eJ.se
PC ~ PC+2

Source Data Type Traps: None.

Traps: None.

October 1987

Description: Description: Branches to the specified location if the type condition (as described on page
66) indicates that the branch should be taken. This instruction is used if it is predicted that the branch
will be taken.

Example: Branch to true-address if the data type of the word in r6 is not one of the instruction types.

branch-take-type @true-address,r6,#o37777777400,H=1,C=O

Symbolics Company Confidential 69
October 1987 . SUNSTONE ARCHITECTURE

Trap-type

Opcode: 70

Formats:
RR. if sourcel type source2

PC +- <11111>1 trap-base-registerl <00>1 page-offset, TRAP
else

PC +- PC+l

RZL if sourcel type 38 bit immediate
PC +- <lllll>ltrap-base-registerl<OO>lpage-offset, TRAP

else
PC +- PC+2

Source Data Type Traps: None.

Traps: Traps if the type results in True.

Description: Traps if the type condition (as described on page 66) indicates that the trap should be
taken. If the trap is taken, the incremented PC is pushed onto the return stack and the WBP is
incrmented The new PC value has the most significant five bits equal to ones (VMA=PMA space), bits
26:14 are taken from the trap base register, bits 13:12 are zeros, and the low twelve bits are taken from
the instruction page offset field. If the trap is not taken, execute the next instruction normally.

Example: Trap to not-number-trap if the data type of the word in r6 is not one of the number types.

Note that not-number-trap must be in VMA=PMA space and have bits 26:14 equal to the value in the
trap base register and bits 13:12 equal to zero.

trap-type @not-number-trap,r6,#o177400,H=0,C=0

70 Symbolics Company Confidential
SUNS TONE ARCHITECTURE October 1987

1.5.10 Load Operations

The load operations are as follows: load-data. load-cdr. load-ear-cdr. load-cdr-finish. load-array. load­

structure. load-bind. load-header. load-scavenge.load-gc-copy. load-raw. load-data-iv. load­

ephemeralp, load-oldspacep. Available in all three formats, RR, RIS and Rll.., load operations load data

from memory into the register specified by the destination field in the instruction. The address of
memory is calculated by adding the contents of the source1 register with the second operand, either the

contents ofsource2 (RR format) or the immediate field (RIS and Rll.. formats). See figure 16 on page

171. The type check field specifies what data types to trap on for source1. In RR format only, source2 is

always checked for dtp-Fu:nwn. Typically in the Rll.. format the type field will select *flXnum or none,
and in the RR and RIS format it will vary widely with each load instruction. A1l10ad operations load the
cdr-reg and the type-reg. Typically the cdr-reg is loaded with bits 39:38 and the type-reg is loaded with
bits 37:32, of the data being loaded. The exception to this is for instructions load-cdr. load-ear-cdr.

load-header. and load-structure. These four instructions will load the type-reg and cdr-reg as above

except when the sourcel data type is dtp-nil. In this case the cdr-reg is loaded with cdr-nil (a value of

1), and the type-reg is loaded with dtp-nil (a value of #024). As a side effect of these four instructions,

the MAR is loaded with the calculated data type and address, except when the data type of source 1 is
dtp-nil in which case MAR is loaded with NIL. If the destination of any load instruction is the Array

I Header Register, the Array Length Register is loaded as a side effect The Array Length register is
loaded with the second word read if it is a long preflX array, otherwise the array length register is loaded
with the length field of the array header that was read. (See Table 8 on page 28.)

See coprocessor operations for the load-coproc instruction which has a special format

Symbolics Company Confidential 71
November 1987 SUNSTONE ARCHITECTURE

Figure 16. Load Operation Fonnats

RR:

I I I I I I I 1 I I
IIIPI1101 OPCODE I SOURCE1 I SOURCE2 I TYPE I UNUSED I DESTINATION I
I I I ---1 I 1 I I I I
39 37 34 28 22 16 11 5 0

Rl:S:

I I I I 1 1 1 I
IIIPI1111 OPCODE 1 SOURCE1 1 DESTINATION 1 TYPE 1 12-BIT-SIGNED-IMMED
1 1 1 ---I 1 1 1 1
39 37 34 28 22 16 11 0

RIL:

I 1 1 1 1 1 I I I
IIIPI1011 OPCODE 1 SOURCE1 1 UNUSED 1 TYPE UNUSED I DESTINATION 1
1_1_1_1 1 I I 1 1
39 37 34 28 22 16 11 5 0

I
CCI 38 BIT IMMEDIATE

1 1
39 37 0

72 Symbolics Company Confidential
SUNS TONE ARCHITECTURE November 1987

load-data

Opcode: 12

Formats:
RR
lUS
lUL

destination ~ [sourcel + source2]
destination ~ [sourcel + l2-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-jzxnum).

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i

or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object

Monitor trap: If the data type of the word read is dtp-monitorforward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-headerforward or dtp-elementforwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding" pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is the typical load instruction. This reads a word from memory located at the
specified address and stores the data read in the register specified by the destination field. If the data
type of the word read is one of: null. header-po header-i. gc-forward monitor-forward. external-value­

cell-pointer. one-q-forward. headerforward. elementforward. external-value-cell-pointer. one-q­

forward. header-forward. elementforward. or a pointer to oldspace, a trap occurs as described above.
This is similar to an I-Machine read with the data-read cycle type.

Symbolics Company Confidential 73
November 1987 SUNSTONE ARCHITECTURE

load-data-iv

Opcode: 13

Formats:
RR
RIS
RIL

destination +- [sourcel + source2]
destination +- [sourcel + l2-bit-signed-~diate]
destination +- [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified
(and in the RR format tests source2 to be dtp-junum).

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i

or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word. read, a transport trap will occur to evacuate the object

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This reads a word from memory located at the specified address and stores the data read
in the register specified by the destination field This is identical to load-data, but is used to present a
separate trap entry address (particularly for arg2 not being a [txnum, a speedup hack for currently
unimplemented feature dealing with common lisp object oriented standard with-slots construct). If the
data type of the word read is one of: null, header-p, header-i, gc-forward, monitor-forward, external­

value-cell-pointer. one-q-forward. header-forward. element-forward. external-value-cell-pointer. one-q­

forward. header-forward, element-forward, or pointer to oldspace, a trap occurs as described above . ..

74 Symbolics Company Confidential
SUNS TONE ARCHITECTURE November 1987

load-ear-cdr

Opcode: 14

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-lunum).

Memory Error Trap: If the data type of the word read is one of: dIp-null, dtp-header-p, dtp-header-i
or dtp-gc{orward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor{orward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­
forward, dtp-header{orward or dtp-element{orwarding, take an indirect trap, unless the conditions for

a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will

follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is used for implementing the lisp car function. This is also used when a lisp cdr

function follows a lisp car function (see the example below). The cdr-reg gets loaded as if it were a

load-cdr operation,and the destination register gets loaded as if it were a load-data operation. With the

I exception that, if the data type of the sourcel is dtp-nil, then nil is loaded in the MAR and the

destination register. See the load-cdr{inish on page 76. As a side effect of this instruction executing,

the MAR gets loaded with the calculated address.

Symbolics Company Confidential 75
November 1987 SUNSTONE ARCHITECTURE

Example:

(dolist (£00 bar) ...)
move teq> r bar

Loop:
load-ear-cdr £00 r [teq>] =jf:list-loc-nil
load-cdr-£inish teq> r [mar, #1] =jf:list-loc-nil

branch-take-eq not-endp,teq>,nil,@loop

76 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

load-cdr-finish

Opcode: 15

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-jzxnwrt).

Traps: Trap if cdr-reg is illegal value.

Memory Error Trap: If the data type of the word read is one of: dtp-null. dtp-header-p, dtp-header-i

or dtp-gc-/orward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace. and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor{orward, take a monitor trap, unless the
conditions for a transport trap are present. in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer. dtp-one-q­

forward. dtp-header-/orward or dtp-element{orwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap.
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is used as the second part of implementing a Lisp cdr operation. This is similar to the
load-data operation except the value in the cdr-reg controls what the result of the load operation is. If

the cdr-reg value is cdr-nil. nil is loaded into the destination. if the cdr-reg value is cdr-next, the
calculated memory address that is referencing memory is loaded into the destination register, if the
cdr-reg value is cdr-normal, the value read from memory is loaded into the destination register. If the
cdr-reg value is illegal, then a trap occurs. If the cdr-reg has any value other than cdr-normal. none of
the memory-traps (error, monitor, indirect, transport) will actually be accepted. If the data-type of
source 1 in RR and RIS, or the immediate in RIL is dtp-Iocative, it is used as the address of the memory

I operation and the cdr-reg is ignored~ If the data type of the source is dtp-nil, the destination is set to NIL
and no memory reference is performed.

Symbolics Company Confidential 77
November 1987 SUNS TONE ARCHITECTURE

Example:

{setq bar (cdr £00»
load-cdr bar ~ [foo] ~list-loc-nil iRIS with

iimmed of 0

load-cdr-finish bar ~ [mar, 11] ~list-loc-nil iRIS with
iimmed of 1

78 Symbolics Company Confidential
SUNS TONE ARCHITECTURE November 1987

load-array

Opcode: 16

Formats:
RR
RIS
RIL

destination ~ [source1 + source2 + 1]
destination ~ [source1 + 12-bit-signed-immediate + 1]
destination ~ [38-bit-immediate + source1 + 1]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-ILXnum).

Traps: This instruction may take three array traps. In order of priority they are: a long prefix trap, an
out of range trap, or a packed array trap. These take precedence over the Memory Error, Monitor,

Indirect and Transport traps, as they effect the address calculated for the memory reference. However,

the source data type traps takes precedence over these array traps.

Long Prefix -- Trap if the array-header register has bit 23 set and bit 12 clear. Bit 23 indicates that the
array has a long prefix. Bit 12, the long prefix trap inhibit, tells the hardware to ignore the long prefix

trap. This bit indicates that the array-header came from an array descriptor. The software that sets up

array descriptors will set this bit to inhibit the long prefix trap.

Out of Range -- Trap if the offset(source2 in RR format, 12-bit-immediate in RIS format and 38-bit­

immediate in the RIL format) is out of range, by comparing with unsigned ~ to the array length register.
This is an error trap.

Packed -- Trap if the array is a byte packed array (i.e., bits 29:27 :t:O).

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i

or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-momtor-forward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will

follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

80 SymboJics Company Confidential
SUNS TONE ARCHITECTURE February 1988

load-array

Opcode: 16

Formats:
RR
IUS
IUL

destination ~ [source1 + source2 + 1]
destination ~ [source1 + 12-bit-signed-~diate + 1]
destination ~ [38-bit-immediate + source1 + 1]

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified
(and in the RR format tests source2 to be dtp-funum).

Traps: This instruction may take three array traps. In order of priority they are: a long prefix trap, an
out of range trap, or a packed array trap. These take precedence over the Memory Error, Monitor,
Indirect and Transport traps, as they effect the address calculated for the memory reference. However,
the source data type traps takes precedence over these array traps.

Long Prefix - Trap if the array-header register has bit 23 set and bit 12 clear. Bit 23 indicates that the
array has a long prefix. Bit 12, the long prefix trap inhibit, tells the hardware to ignore the long prefix
trap. This bit indicates that the array-header came from an array descriptor. The software that sets up
array descriptors will set this bit to inhibit the long prefix trap.

Out of Range -- Trap if the offset(source2 in RR fonnat, 12-bit-imrnediate in RIS format and 38-bit­
immediate in the RIL format) is out of range, by comparing with unsigned~ to the array length register.
This is an error trap.

Packed -- Trap if the array is a byte-packed array (ARR 29:27 :# 0) or the array type is character (ARR
31:30 = 1) or boolean (ARR 31:30 = 2).

Memory Error Trap: If the data type of the word read is one of: dIp-null, dlp-header-p, dlp-header-i

or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Symbolics Company Confidential 81
February 1988 SUNSTONE ARCHITECTURE

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is similar to the load-data instruction with the following exceptions. The instruction
enables the three traps mentioned above. It adds one to the address calculated by adding source 1 and
source2. If the array is element type character, the resulting data type is forced. to dtp-character. If the
array is element type boolean, the resulting data is forced to either T or NIL based on the bit of the trap
result register selected by the byte-rotate register. (Note that since all boolean arrays are byte packed as
32 bits to a word it must first take a packed array trap.) As a side effect, this instruction loads the
byte-rotate register with a value based on the byte packing encoding in the array header register. See
section 1.9 on 131 for more details on array references.

Example:

(setq resu1t (are£ £00 bar»
10ad-header array-header ~ [£00]
10ad-array resu1t ~ [mar, bar]

'If:array-string
'If:array-string

Symbolics Company Confidential 79
November 1987 SUNSTONE ARCHITECTURE

Description: This is similar to the load-data instruction with the following exceptions. The instruction

enables the three traps mentioned above. It adds one to the address calculated by adding source! and

source2. If the array is element type character, the resulting data type is forced to dtp-character. If the

array is element type boolean, the resulting data is forced to either T or NIL based on the bottom bit of

the trap result register. (Note that since all boolean arrays are byte packed as 32 bits to a word it must

fll'St take a packed array trap.) As a side effect, this instruction loads the byte-rotate register with a value

based on the byte packing encoding in the array header register. See section 1.10 on 134 for more details
on array references.

Example:

(setq resu1t (are£ £00 bar»
10ad-header array-header f- [£00]
10ad-array resu1t f- [mar, bar]

:l=array-string
:1= array-string

80 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

load-cdr

Opcode: 10

Formats:
RR
RIS
RIL

destination +- [sourcel + source2]
destination +- [sourcel + l2-bit-signed-immediate]
destination +- [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-fixnum).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p. dtp-header-i or
dtp-gc{orward - trap to the error trap handler.

Indirect trap: If the data type of the word read is one of: dtp-header{orward or
dtp-element{orwarding, take an indirect trap, unless the conditions for a transport trap are present, in
which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer
chain.

Description: This is used as the first part of implementing a lisp cdr operation. Reads a word from
memory located at the specified address and stores the data read in the register specified by the
destination field, unless the data type of source1 is dtp-nil; in this case the destination register is loaded
with NIT... If the data type of the word read is one of: header-p, header-i, gc-forward, header-forward, or
element-forward, a trap occurs as deScribed above. This typically is used to just get the cdr-code bits,

I which are loaded into the cdr-reg .. This will typically be followed by load-cdr-finish. This is similar to
the I-Machine's cdr-read cycle type. see also the load-cdr-finish operation on page 76. As a side effect

I of this instruction executing, the MAR gets loaded with the calculated address. If the data type of the
source is dtp-nil, then the MAR gets loaded with NIT...

Example:

(setq bar (cdr £00»
load-cdr bar +- [£00]

load-cdr-£inish bar +- [mar/#l]

~list-loc-nil iRIS with
iimmed o£ 0

~list-loc-nil ;RIS with
;immed o£ 1

82 Symbolics Company Confidential
SUNSTONE ARCHITECTURE February 1988

load-cdr

Opcode: 04

Formats:
RR
lUS
lUL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified
(and in the RR format tests source2 to be dtp-Frxnum).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or
dtp-gc{orward - trap to the error trap handler.

Indirect trap: If the data type of the word read is one of: dtp-header{orward or
dtp-element{orwarding, take an indirect trap, unless the conditions for a transport trap are present, in
which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer
chain.

Description: This is used as the first part of implementing a lisp cdr operation. Reads a word from
memory located at the specified address and stores the data read in the register specified by the
destination field, unless the data type of source1 is dtp-nil; in this case the destination register is loaded
with NIL. If the data type of the word read is one of: header-p, header-i, gc-forward, header-forward, or
element-forward, a trap occurs as described above. This typically is used to just get the cdr-code bits,

I which are loaded into the cdr-reg. This will typically be followed by load-cdr.pnish. This is similar to
the I-Machine's cdr-read cycle type. see also the load-cdr.pnish operation on page 78. As a side effect

I of this instruction executing, the MAR gets loaded with the calculated address. If the data type of the
source is dtp-nil, then the MAR gets loaded with NIL.

Example:

(setq bar (cdr fool)
load-cdr bar ~ [£00]

load-cdr-finish bar ~ [mar, 11]

*list-loc-nil ;RIS with
;immed of 0

*list-loc-nil ;lUS with
;immed of 1

Symbolics Company Confidential 83
February 1988

load-structure

Opcode: 05

Formats:
RR
RJ:S
RJ:L

SUNSTONE ARCHITECTURE

destination +- [sourcel + source2]
destination +- [sourcel + 12-bit-signed-~diate]
destination +- [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-Jixnum).

Memory Error Trap: If the data type of the word read is one of dtp-gc-forward - trap to the error trap

handler.

Indirect trap: If the data type of the word read is one of dtp-header-forward, take an indirect trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority. The

indirect trap routine will follow the forwarding pointer chain.

Description: Similar to the I-Machine's struc-offset macro instruction. Loads a structure header. This

type of reference follows header-forwarding pointers, by taking indirect traps, as necessary and traps out
if a dtp-gc-forward is encountered. As a side effect of this instruction executing, the MAR gets loaded

with the calculated address. If the data type of the source is dtp-nil, then the MAR and the destination

register get loaded with NIL. I

Symbolics Company Confidential 81
November 1987

load-structure

Opcode: 11

Formats:
RR
R.I:S
R.I:L

SUNS TONE ARCHITECTURE

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-~diate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified
(and in the RR format tests source2 to be dtp-[zxnum).

Memory Error Trap: If the data type of the word read is one of dtp-gc{orward - trap to the error trap
handler.

Indirect trap: If the data type of the word read is one of dtp-header{orward, take an indirect trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority. The
indirect trap routine will follow the forwarding pointer chain.

Description: Similar to the I-Machine's struc-offset macro instruction. Loads a structure header. This
type of reference follows header-forwarding pointers, by taking indirect traps, as necessary and traps out
if a dtp-gc{orward is encountered. As a side effect of this instruction executing, the MAR gets loaded
with the calculated address. If the data type of the source is dtp-nil, then the MAR and the destination
register get loaded with NIL. I

82 Symbolics Company Confidential
SUNSTONE ARCHITECTURE Novem~r 1987

load-header

Opcode: 06

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-funum).

Memory Error Trap: All data types except dtp-header-p, dtp-header-Jorward. and dtp-header-i, trap
to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object

Indirect trap: If the data type of the word read is one of: dtp-header-forward, take an indirect trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority. The
indirect trap routine will follow the forwarding pointer chain.

Description: This reads the word at the requested address. If the word read is of dtp-header-p or
dtp-header-i it is stored in the destination register. If the word read is of data type dtp-header-Jorward,

the invisible pointer is followed in the trap routine. If any other data type is encountered an error trap
occurs. If the data type that is finally read (without a trap) contains an address in oldspace, a transport
trap will occur. This is similar to die I-Machine's header-read cycle type. As a side effect of this

I instruction executing, the MAR gets loaded with the calculated address. If the data type of the source is
dtp-nil, then the MAR and the destination register get loaded with NIL.

84 Symbo/ics Company Confidential

SUNSTONE ARCHITECTURE February 1988

load-header

Opcode: 11

Formats:
RR
lUS
lUL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [3a-bit-immediate + 8ourcel]

Source Data Type Traps: Specified by the type field. checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-frmum).

Memory Error Trap: All data types except dtp-header-p, dtp-header-forward, and dtp-header-i, trap
to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Indirect trap: If the data type of the word read is one of: dtp-header-forward, take an indirect trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority. The

indirect trap routine will follow the forwarding pointer chain.

Description: This reads the word at the requested address. If the word read is of dtp-header-p or
dtp-header-i it is stored in the destination register. If the word read is of data type dtp-header-forward,

the invisible pointer is followed in the trap routine. If any other data type is encountered an error trap
occurs. If the data type that is finally read (without a trap) contains an address in oldspace, a transport
trap will occur. This is similar to the I-Machine's header-read cycle type. As a side effect of this

I instruction executing, the MAR gets loaded with the calculated address. If the data type of the source is
dtp-nil, then the MAR and the destination register get loaded with NIL.

Symbolics Company Confidential 85
February 1988 SUNS TONE ARCHITECTURE

load-bind

Opcode: 10

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified

(and in the RR format tests source2 to be dtp-.funum).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-one-q-forward, dtp-header-forward or

dtp-element-forwarding, take an indirect trap, unless the conditions for a transport trap are present, in

which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer

chain.

Description: This reads the word at the requested address. This is similar to the I-Machine's bind-read

cycle type. This is also similar to the load-data instruction except in the handling of dtp-null and

dtp-external-value-cell-pointer.

Symbolics Company Confidential 83
November 1987 SUNS TONE ARCHITECTURE

load-bind

Opcode: 07

Formats:
RR
RiS
RiL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-jzxnum).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p. dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-one-q-forward. dtp-header-forward or

dtp-element-forwarding, take an indirect trap, unless the conditions for a transport trap are present, in

which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer

chain.

Description: This reads the.word at the requested address. This is similar to the I-Machine's bind-read

cycle type. This is also similar to the load-data instruction except in the handling of dtp-null and

dtp-external-value-cell-pointer.

84 Symbolics Company Confidential

SUNS TONE ARCHITECTURE November 1987

toad-scavenge

Opcode: 05

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified

(and in the RR format tests source2 to be dtp-{zxnum).

Memory Error Trap: If the data type of the word read is one of: dtp-gc-forward - trap to the error trap

handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object.

Description: Used by the garbage collector. If the data read is of data type dtp-gc-forward, an error

trap occurs. If the data read is a pointer and points to oldspace, the transport trap occurs. This is similar

to the I-Machine's scavenge-read cycle type.

86 Symbolics Company Confidential

SUNSTONE ARCHITECTURE February 1988

load-scavenge

Opcode: 07

Formats:
RR
R.J:S
R.J:L

destination ~ [source! + source2]
destination ~ [source! + !2-bit-signed-±mmediate]
destination ~ [38-bit-immadiate + source!]

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified

(and in the RR format tests source2 to be dtp-fixnum).

Memory Error Trap: If the data type of the word read is one of: dtp-gc-/orward - trap to the error trap

handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page

containing the word read, a transport trap will occur to evacuate the object

Description: Used by the garbage collector. If the data read is of data type dtp-gc-/orward, an error

trap occurs. If the data read is a pointer and points to oldspace, the transport trap occurs. This is similar
to the I-Machine's scavenge-read cycle type.

Symbolics Company Confidential 87
February 1988

load-gc-copy

Opcode: 06

Formats:
RR
RIS
RIL

SUNSTONE ARCHITECTURE

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-fzxnum).

Memory Error Trap: If the data type of the word read is one of: dtp-gc-forward - trap to the error trap
handler.

Description: Used by the garbage collector. If the data read is of data type dtp-gc-forward, an error

trap occurs. This is similar to load-scavenge. This is similar to the I-Machine's gc-copy-read cycle type.

Symbolics Company Confidential 85
November 1987

load-gc-copy

Opcode: 04

Formats:
RR
RIS
RIL

SUNS TONE ARCHITECTURE

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified

(and in the RR format tests source2 to be dtp-funum).

Memory Error Trap: If the data type of the word read is one of: dtp-gc-forward - trap to the error trap

handler.

Description: Used by the garbage collector. If the data read is of data type dtp-gc-forward, an error
trap occurs. This is similar to load-scavenge. This is similar to the I-Machine's gc-copy-read cycle type.

86 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

load-raw

Opcode: 02

Formats:
RR
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + 12-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field. checks source! to be of the data type specified
(and in the RR format tests source2 to be dtp-!"unum).

Traps: none

Description: Similar to the I-Machine's raw-read cycle type. Does no indirection, transport traps, or
error traps.

Symbolics Company Confidential 87
October 1987

load-oldspacep

Opcode: 01

Formats:
RR
RJ:S
RJ:L

SUNS TONE ARCHITECTURE

destination +- [sourcel + source2]
destination +- [sourcel + 12-bit-signed-immediate]
destination +- [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source1 to b~ of the data type specified
(and in the RR format tests source2 to be dtp-jvcnum).

Traps: none

Description: Similar to a load-raw. No indirection or transport or error traps. If the data referenced is
a pointer and points to oldspace load into the destination register the data read, otherwise load NIL.

88 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

load-ephemeralp

Opcode: 00

Formats:
1m
RIS
RIL

destination +- [sourcel + source2]
destination +- [sourcel + 12-bit-signed-immediate]
destination +- [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified
(and in the RR format tests source2 to be dtp-fixnum).

Traps: none

Description: Similar to a load-raw. No indirection or transport or error traps. If the data referenced is
a pointer and points to ephemeral space, load into the destination register the data read, otherwise load
NIL.

Symbo/ics Company Confidential 89
November 1987 SUNS TONE ARCHITECTURE

1.5.11 Store Operations

The Store Operations are: store-data, store-data-iv, store-array, store-bind, store-edr-nil, store-edr-next,

store-edr-normal, store-edr-reg, store-type-reg, store-rplaed, or store-38-bits. Stores data in memory at

the address calculated by adding source1 with the MAR for RR format or the immediate field for RIS

and RIL formats. See figure 17 on page 89. The RR format will typically only be used by the

store-array instruction. Source2 is the data to be stored at the calculated address. The data type of

source1 is tested according to the type field. When using the RR format to store, the contents of source1

are always added to the MAR to be used as the address of memory in which to store the contents of

Source2. Store-data, store-data-iv, store-array, store-rplacd, store-bind, and store-38-bits all preserve

the cdr-code of the location into which they write.

See coprocessor operations for the store-eoproe instruction which has a special format.

Figure 17. Store Operation Formats

RR:

I I I I I I I I
IIIPlllOI OPCODE I SOURCE 1 I SOURCE2 I TYPE I UNUSED
I _I_I- I I I I I
39 37 34 28 22 16 11

RIS:

I I I I . I I I I
IIIPI1l11 OPCODE I SOURCE 1 I SOURCE2 I TYPE I 12-BIT-SIGNED-IMMED
I _I_I- I I I I I
39 37 34 28 22 16 11

RIL:

I I I I I I I
IIIPl1011 OPCODE I SOURCE1 I SOURCE2 I TYPE UNUSED
I _I_I- I I I I
39 37 34 28 22 16 11

I I
I CCI 38 BIT IMMEDIATE
I I
39 37

I
I
I

0

I
I
I

0

I
I
I

0

I
I
I

0

90 Symbolics Company Confidential
SUNS TONE ARCHITECTURE November 1987

store-data

Opcode: 32

Formats:
RR
R.I:S

I R.I:L

[sourcel + mar] ~ source2
[sourcel + 12-bit-signed-immediate] ~ source2
[38-bit-immediate + sourcel] ~ source2

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified.

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or
dtp-gc-forward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-jorward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­
forward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: Reads the contents of the memory location specified by the sum of the contents of source 1
and the MAR in RR format,or the 12-bit-signed-immediate in the RIS format, or the 32-bit-immediate in
the RIL format. Traps on the data type of the word read as specified above. If no error trap, stores into
memory at the specified address. Similar to the I-Machine's data-write.

Symbo/ics Company Confidential 91
November 1987 SUNS TONE ARCHITECTURE

sto re-data-iv

Opcode: 33

Formats:
RR
RIS
RIL

[Sourcel + mar] ~ source2
[Sourcel + 12-bit-signed-immediate] ~ source2
[38-b'it-immediate + Sourcel] ~ source2

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified.

Memory Error Trap: If the data type of the word read is one of: dtp-header-p. dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor{orward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer. dtp-one-q­

forward, dtp-header{orward or dtp-element{orwarding, take an indirect trap, unless the conditions for

a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will

follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: Reads the contents of the memory location specified by the sum of the contents of sourcel

and the MAR in RR format,or the 12-bit-signed-immediate in the RIS format, or the 32-bit-immediate in

the RIL format. Traps on the data type of the word read as specified above. If no error trap, stores into

memory at the specified address. Similar to store-data and is used in flavor accessing for a unique trap

address should the type of Sourcel not be fixnum.

92
SUNSTONE ARCHITECTURE

store-rplacd

Opcode: 35

Formats:
[sourcel + mar] ~ source2

Symbo/ics Company Confidential

November 1987

RR
RIS

I RIL
[source1 + 12-bit-signed-immediate] ~ source2
[38-bit-immediate + source1] ~ source2

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified.

Traps: Traps if the cdr-reg is not cdr-normal.

Memory Error Trap: If the data type of the word read is one of: dtp-header-p. dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the'word read is one of: dtp-external-value-cell-pointer. dtp-one-q­

forward. dtp-header-forward or dtp-eiement-forwarding, take an indirect trap, unless the conditions for

a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will

follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: Reads the contents of the memory location specified by the sum of the contents of source1

and the MAR in RR format,or the 12-bit-signed-immediate in the RIS format, or the 32-bit-immediate in

the RIL format. Traps on the data type of the word read as specified above. If no error trap, stores into

memory at the specified address. Used to support efficient implementation of rplacd. If the data-type of

source 1 in RR and RIS, or the immediate in RIL is dtp-locative, it is used as the address of the memory

operation.

Example:

(rplacd £00 value)
load-cdr
store-rplacd

bar ~ [£00]
[mar, #1] ~ value

:;t:list-loc
:;t:list-loc

94
SUNS TONE ARCHITECTURE

slore-rplacd

Opcode: 35

Formats:

Symbolics Company Confidential
February 1988

RIS
I RIL

[sourcel + 12-bit-signed-immediate] ~ source2
[38-bit-immediate + sourcel] ~ source2

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: Traps if the cdr-reg is not cdr-nonnaI.

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or
dtp-gc-/orward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-/orward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­
forward, dtp-header-/orward or dtp-element-/orwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: Reads the contents of the memory location specified by the sum of the contents of sourcel
and the 12-bit-signed-immediate in the RIS format, or the 32-bit-immediate in the RIL format. Traps on
the data type of the word read as specified above. If no error trap, stores into memory at the specified
address. Used to support efficient implementation of rplacd. If the data-type of source1 in RIS is
dtp-Iocative, it is used as the address of the memory operation.

Example:

(rplacd foo value)
load-cdr
store-rplacd

bar ~ [fool
[mar, #1] ~ value

,/r-" •. - ...• ~·:-·:.t
I ~',

:¢:list-loc
:¢:list-loc

Symbolics Company Confidential 95
February 1988 SUNSTONE ARCHITECTURE

store-array

Opcode: 36

Formats:
RR
RIS
RIL

[source1 + mar + 1] ~ source2
[source1 + 12-bit-signed-immediate + 1] ~ source2
[38-bit-immediate + source1 + 1] ~ source2

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: This instruction may take four array traps. In order of priority they are: array element trap, a
long prefIX trap, an out of range trap, or a packed array trap. These take precedence over the Memory
Error, Monitor, Indirect and Transport traps, as they effect the address calculated for the memory
reference. However, the source data type traps takes precedence over these array traps.

Array-Element -- Traps in three array element type cases:

1. when the array element type is boolean,

2. when the array element type is character and source2 isn't character or has bits set above
the array element size (Le., bit 20 is set for a 16-bit-string array), and

3. when the array element type is fIXnum and source2 isn't fixnum.

Long Prefix - Trap if the array-header register has bit 23 set and bit 12 clear. Bit 23 indicates that the
array has a long prefix. Bit 12, the long prefix trap inhibit, tells the hardware to ignore the long prefix
trap. This bit indicates that the array-header came from an array descriptor. The software that sets up
array descriptors will set this bit to inhibit the long prefix trap.

Out of Range -- Trap if the offset (source2 in RR format, 12-bit-immediate in RIS format and 38-bit­
immediate in the Rn... format) is out of range, by comparing with unsigned ~ to the array length register.
This is an error trap.

Packed -- Trap if the array is a byte-packed array (AHR 29:27 ::/:. 0) or the array type is character (AHR
31:30 = 1).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

I

Symbolics Company Confidential 93
November 1987 SUNS TONE ARCHITECTURE

store-array

Opcode: 36

Formats:
RR
RIS
RIL

[source1 + mar + 1] ~ source2
[source1 + 12-bit-signed-immediate + 1] ~ source2
[38-bit-immediate + source1 + 1] ~ source2

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: This instruction may take four array traps. In order of priority they are: array element trap, a

long prefix trap, an out of range trap, or a packed array trap. These take precedence over the Memory
Error, Monitor, Indirect and Transport traps, as they effect the address calculated for the memory
reference. However, the source data type traps takes precedence over these array traps.

Array-Element -- Traps in three array element type cases:

1. when the array element type is boolean,

2. when the array element type is character and source2 isn't character or has bits set above
the array element size (i.e., bit 20 is set for a 16-bit-string array), and

3. when the array element type is fixnum and source2 isn't fixnum.

Long Prefix -- Trap if the array-header register has bit 23 set and bit 12 clear. Bit 23 indicates that the
array has a long prefix. Bit 12, the long prefix trap inhibit, tells the hardware to ignore the long prefix

trap. This bit indicates that the array-header came from an array descriptor. The software that sets up

array descriptors will set this ,bit to inhibit the long prefix trap.

Out of Range -- Trap if the offset (source2 in RR format, 12-bit-immediate in RIS format and 38-bit­
immediate in the RIL format) is out of range, by comparing with unsigned;;:: to the array length register.

This is an error trap.

Packed -- Trap if the array is a byte packed array (i.e., bits 29:27 :;to).

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or

dtp-gc-Jorward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-jorward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­

forward, dtp-header-Jorward or dtp-element-Jorwarding, take an indirect trap, unless the conditions for

a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will

follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap, I

unless the conditions for a transport trap are present, in which case the transport trap takes priority.

94 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

I Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: Reads the contents of the memory location specified by adding one to the sum of source 1
and either the MAR in RR format, the 12-bit-imrnediate in RIS format or the 38-bit-immediate in RIL
format. The instruction enables the four array traps mentioned above, in addition to the source1 data
type trap which has priority over the. array traps and the data type traps based on the word read from the
specified location before the store which have lowest priority. If no error trap, stores into the memory at
the specified address. As a side effect, this instruction loads the byte-rotate register with a value based
on the byte packing encoding in the array header register. See section 1.10 on page 134 for more details
on array references.

Example:

(aset element array subscript)
load-header array-header ~ [array]
store-array [mar, subscript] ~ element

:;t:array-string
:;t:array-string

Symbolics Company Confidential 97
February 1988 SUNS TONE ARCHITECTURE

store-bind

Opcode: 30

Formats:
RR [source1 + mar] ~ source2
RIS [source1 + 12-bit-signed-immediate] ~ source2
RIL [38-bit-immediate + source1] ~ source2 I

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Memory Error Trap: If the data type of the word read is one of: dlp-header-p, dtp-header-i or
dtp-gc-jorward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-momtor-forward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-one-q-forward, dlp-header-jorward or
dtp-element-jorwarding, take an indirect trap, unless the conditions for a transport trap are present, in

which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer
chain.

Description: Reads the contents of the memory location specified by the sum of the contents of sourcel

and the MAR in RR format,or the 12-bit-signed-immediate in the RIS format, or the 32-bit-immediate in
the RIL format. Traps on the data type of the word read as specified above. If no error trap, stores into

memory at the specified address. Similar to the I-Machine's bind-write cycle type.

Symbolics Company Confidential 95
November 1987 SUNSTONE ARCHITECTURE

store-bind

Opcode: 27

Formats:
RR [sourcel + mar] ~ source2
RIS [sourcel + l2-bit-signed-immediate] ~ source2
RIL [38-bit-immediate + sourcel] ~ source2

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Memory Error Trap: If the data type of the word read is one of: dtp-header-p. dtp-header-i or

dtp-gc-forward - trap to the error trap handler.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the

conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-one-q-forward. dtp-header-forward or '

dtp-element-f0rwarding, take an indirect trap, unless the conditions for a transport trap are present, in

which case the transport trap takes priority. The indirect trap routine will follow the forwarding pointer

chain.

Description: Reads the contents of the memory location specified by the sum of the contents of sourcel

and the MAR in RR format,or the l2-bit-signed-immediate in the RIS format, or the 32-bit-immediate in
the RIL format. Traps on the data type of the word read as specified above. If no error trap, stores into

memory at the specified address. Similar to the I-Machine's bind-write cycle type.

I

96
SUNS TONE ARCHITECTURE

store-cdr-nil

Opcode: 21

Formats:
RR [source! + mar] ~ souree2
RIS [source! + 12-bit-signed-immediate] ~ source2

I Rll.. [38-bit-immediate + souree1]·~ source2

Symbolics Company Confidential
November 1987

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified.

Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top two bits of the 40-bit word (the cdr-code) set to cdr-nil.

Symbolics Company Confidential 97
October 1987 SUNSTONE ARCHITECTURE

store-cdr-next

Opcode: 20

Formats:
RR [soureel + mar] +- source2
RIS [sourcel + l2-bit-signed-immediate] +- source2
RIL [38-bit-immediate + sourcel] +- source2

Source Data Type Traps: Specified by the type field, checks souree1 to be of the data type specified .

. Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top two bits of the 40-bit word (the cdr-code) set to cdr-next

I

98
SUNS TONE ARCHITECTURE

store-cdr-normal

Opcode: 22

Formats:
RR [source! + mar] f- source2
RIS [sourcel + 12-bit-signed-immediate] f- source2

I RIL [38-bit-immediate + sourcel] f- source2

Symbolics Company Confidential
October 1987

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified.

Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top two bits of the 40-bit word (the cdr-code) set to cdr-normal.

Symbolics Company Confidential 99
October 1987 SUNS TONE ARCHITECTURE

store-cdr-3

Opcode: 23

Formats:
RR [source1 + mar] +-: source2
RIS [source1 + 12-bit-signed-irnrnediate] +- source2
RIL [38-bit-irnrnediate + source1] +- source2

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top two bits of the 40-bit word (the cdr-code) set to 3.

I

100

SUNS TONE ARCHITECTURE

store-Cdr-reg

Opcode: 24

Formats:
RR [source! + mar] ~ source2
RIS [source1 + 12-bit-signed-irnmediate] ~ source2

I RIL [38-bit-irnmediate + sourcel] ~ source2

Symbolics Company Confidential

October 1987

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top two bits of the 40-bit word (the cdr-code) set to the value stored in
the cdr-reg.

Symbolics Company Confidential
October 1987

store-type-reg

Opcode: 25

Formats:
RR [source! + mar] f- source2
RIS [sourcel + l2-bit-signed-immediate] f- source2
RIL [38-bit-immediate + source1] f- source2

101
SUNS TONE ARCHITECTURE

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified.

Traps: None.

Description: This is similar to the I-Machine's raw-write cycle type. Stores source2 into memory at
the calculated address with the top eight bits, the cdr-code and the type field, coming from the contents

of the Cdr reg and the Type reg respectively.

I

102
SUNSTONE ARCHITECTURE

store-38-bits

Opcode: 26

Formats:
RR [sourcel + mar] f- source2
RIS [sourcel + l2-bit-signed-immediate] f- source2

I RIL [38-bit-immediate + sourcel] ~ source2

Symbolics Company Confidential

October 1987

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified .

. Traps: None.

I Description: This is similar to the I-Machine's %p-store-contents macro instruction. Stores source2
into memory at the address calculated. This performs no type checking on the memory data at the
location being written, and does not change the cdr-code.

Symbolics Company Confidential 105
February 1988 SUNS TONE ARCHITECTURE

1.5.12 Coprocessor Operations

The coprocessor operations are: read-coproc. write-coproc. load-coproc. and store-coproc Three of the
coprocessor instructions are available in all RR and RIL formats; they are: write-coproc. load-coproc.

and store-coproc. No Data type check is performed. The load-coproc and store-coproc instructions use
Source1 and Source2 or Immediate to calculate memory address like other memory instructions. They
also follow the same trap rules as load-data and store-data instructions. The II-bit Coproc Opcode
Field specifies what operation the coprocessor (eg, floating point) hardware is to perform. The 6-bit
Coproc Reg Field specifies a source or destination register in the coprocessor.

The read-coproc instruction is only available in the RIS format Source1 and Source2 are not used. No
data type check is performed. See figure 18 on page 105.

Figure 18. Coprocessor Operation Formats

write-coproc. load-coproc. store-coproc:

RR:

I I I I I I I I I
1J:IP11101 OPCODE I SOURCE1 I SOURCE2 I COPROC OPCODE I COPROC REG. I
1_1_1_1 I I I I I
39 37 34 28 22 16 5 0

RJ:L:

I I I I I I I I I
1J:IP11011 OPCODE I SOURCE1 I UNUSED I COPROC OPCODE I COPROC REG. I
1_1_1_1 I I I I I
39 37 34 28 22 16 5 0

I I
I CCI 38 BJ:T J:MMEDJ:ATE
I _I
39 37 0

read-coproc:

RJ:S:

I I I J I I I I
IJ:JPJ111J OPCODE I UNUSED 1 DESTJ:NATION I COPROC OPCODE ICOPROC REG
1_1_1_1 I 1 I I
39 37 34 28 22 16 5 0

Symbolics Company Confidential 103
October 1987 SUNSTONE ARCHITECTURE

1.5.12 Coprocessor Operations

The coprocessor operations are: read-coproc, write-coproc, load-coproc, and store-coproc Three of the
coprocessor instructions are available in all RR and RIL formats; they are: write-coproc, load-coproc,
and store-coproc. No Data type check is performed. The load-coproc and store-coproc instructions use
Source1 and Source2 or Immediate to calculate memory address like other memory instructions. They
also follow the same trap rules as load-data and store-data instructions. The II-bit Coproc Opcode
Field specifies what operation the coprocessor (eg, floating point) hardware is to perform. The 6-bit
Coproc Reg Field specifies a source or destination register in the coprocessor. .

The read-coproc instruction is only available in the RR format. Source1 and Source2 are not used. No
data type check is performed. See figure 18 on page 103.

Figure 18. Coprocessor Operation Formats

write-coproc. load-coproc. store-coproc:

RR.:

I I I I I I I I I
IIIPl1101 OPCODE I SOtJRCE1 I SOURCE2 I COPROC OPCODE I COPROC REG. I
1_1_1_1 I I I I I
39 37 34 28 22 16 5 0

Rl:L:

I I I I I I I I I
IIIPl1011 OPCODE I SOURCE1 I UNUSED I COP ROC OPCODE I COP ROC REG. I
1_1_1._1 I I I I I
39 37 34 28 22 16 5 0

I
CCI 38 BIT ~IATE

I_I
39 37 0

read-Coproc:

RR.:

I I I I I I I I I
IIIPl1101 OPCODE I UNUSED I COPROC REG. I COPROC OPCODE I DESTINATION I
1_1_1_1 I I I I I

'39 37 34 28 22 16 5 0

I

104 Symbolics Company Confidential
SUNS TONE ARCHITECTURE

Wrile-Coproc

Opcode: 57

Formats:
RR
lUL

coprocessor +- source2I sourcel
coprocessor +- immediatelsourcel

Source Data Type Traps: None.

Coprocessor Trap: As determined by the coprocessor hardware.

October 1987

. Description: This instruction stores the data from the two sources into the coprocessor register
specified by the Coproc Opcode and/or the Coproc Reg Field. The Coproc Opcode specifies what
coprocessor operation to start or perform, and whether to use the coproc-reg as a source or destination.
In a typical use, the sources load into the Coproc Reg. Another typical use starts a double word floating
point operation using the Coproc Reg to point to one operand and the two processor registers (Source! I and Source2) as another operand which might be a double precision floating point number. Source2 or
the immediate operand corresponds to tJ.te even word (MSW) of a double float sent to the coprocessor;
Source1 is the odd word (LSW).

Symbolics Company Confidential 105
November 1987 SUNS TONE ARCHITECTURE

Load-Coproc

Opcode: 17

Formats:
RR
RIL

coprocessor ~ [sourcel + source2]
coprocessor ~ [sourcel + immediate]

Source Data Type Traps:

Coprocessor trap: As detennined by the coprocessor hardware.

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i

or dtp-gc-jorward trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object

Monitor Trap: If the data type of the word read is dtp-monitor-forward, take a transport trap as
described above, otherwise take a monitor trap.

Indirect Trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­
forward, dtp-header-forward, or dtp-element-forwarding - Take a transport trap as described above,
otherwise take and indirect trap to follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This special load instruction reads two words from memory located at the specified
address and stores the data read into the coprocessor register specified by the coproc-opcode and/or the
coproc-reg field. The Coproc Opcode specifies what coprocessor operation to start or perform, and
whether to use the Coproc Reg as a source or destination. The coprocessor may operate on 64 bit
sources. In a typical use, the sources load into the Coproc Reg. Another typical use starts an operation I
using the Coproc Reg to defme one coproc source and the just-loaded memory data as another source.
Traps on data type of word read as specified above. Although this instruction transfers a double word to I
the coprocessor, only the addressed word is checked for traps. Except for this trap checking, the low
order address bit is ignored.

106 Symbolics Company Confidential
SUNSTONE ARCHITECTURE

Store-Coproc

Opcode: 37

Formats:
RR
RIL

[sourcel + source2] ~ coprocessor
[sourcel + immediate] ~ coprocessor

Source Data Type Traps:

Coprocessor trap: As detennined by the coprocessor hardware.

November 1987

Memory Error Trap: If the data type of the word read is one of: dtp-header-p, dtp-header-i or

dtp-gc-forward, trap to the error trap handler.

Monitor Trap: If the data type of the word read is dtp-monitor-forward, take a transport trap as
described above, otherwise take a monitor trap.

Indirect Trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q­
forward, dtp-header-forward, or dtp-element-forwarding - Take a transport trap as described above,
otherwise take and indirect trap to follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-Iocation, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-Iogic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This special store instruction reads the contents of the memory location at the specified
address and traps on the data type of the word read as specified above. If no error trap, it stores from the I coprocessor into memory at the specified address.This instruction always stores a double word from the
coprocessor into memory. Except for detennining which word to use for error trap checking, this
instruction ignores the low order address bit. The Coproc Opcode specifies what coprocessor operation
to start or perform, what to write into memory, and whether to use the Coproc Reg as a source or another
destination. Typically, this instruction writes the result of a previously started coprocessor operation into
memory.

108 Symbolics Company Confidential

SUNSTONE ARCHITECTURE

Store-Coproc

Opcode: 37

Formats:
RR
lUL

[sourcel + source2] ~ coprocessor
[sourcel + immediate] ~ coprocessor

Source Data Type Traps:

Coprocessor trap: As determined by the coprocessor hardware.

February 1988

Description: This special store instruction stores a double word result from the coprocessor into
memory. This instruction ignores the low order address bit. The Coproc Opcode specifies what
coprocessor operation to start or petform, what to write into memory, and whether to use the Coproc
Reg as a source or another destination. Typically, this instruction writes the result of a previously started
coprocessor operation into memory. Store-coproc stores cdr-next as the cdr code of the even word and
cdr-nil as the cdr-code of the odd word that is stored into memory.

Symbolics Company Confidential

February 1988

Read-Coproc

Opcode: 77

Formats:
RIS destination ~ coprocessor

Source Data Type Traps: None.

Coprocessor Trap: As determined by the coprocessor hardware.

109

SUNS TONE ARCHITECTURE

Description: The Coproc Opcode specifies what coprocessor operation to start or perform. what to write

into the destination, and whether to use the Coproc Reg as a source or another destination. Typically,

this instruction reads the result of a previously started coprocessor operation.

Symbolics Company Confidential
October 1987

Read-Coproc

Opcode: 77

Formats:
RR destination ~ coprocessor

Source Data Type Traps: None.

Coprocessor Trap: As determined by the coprocessor hardware.

107
SUNSTONE ARCHITECTURE

Description: The Coproc Opcode specifies what coprocessor operation to start or perform, what to write
into the destination, and whether to use the Coproc Reg as a source or another destination. Typically,
this instruction reads the result of a previously started coprocessor operation.

108 Symbolics Company Confidential

SUNS TONE ARCHITECTURE October 1987

1.5.13 Me Register Operations

The MC Register operations are: read-me-reg and write-me-reg. These instructions communicate to the
memory control logic section and internal MC registers such as the WBC. They use the sources similar
to load and store instructions in that they calculate an address to put out on the address lines. However,
instead of addressing the S-Cache, this address specifies control information to the memory control
logic. For a decoding of that control information see the MC register descriptions on page 9. The data
passes from or to the processor over the SBUS as it does in load or store instructions. The formats for
read and write follow those for load and store instructions, respectively. See figure 19 on page 109.

Symbolics Company Confidential 109
October 1987 SUNSTONE ARCHITECTURE

Figure 19. Me Reg Operation Formats

read-me-reg:
RR.:

I I I I I I I I I I
IIIPl1101 OPCODE I SOURCE1 1 SOURCE2 I TYPE I ONU'SED I DESTINATION I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0
RIS:

I I I I I I I I I
IIIPl1111 OPCODE I SOURCE1 I DESTINATION I TYPE I 12-BIT-SIGNED-IMMED I
1_1_1_1 I I I I I
39 37 34 28 22 16 11 0
RIL:

I I I I I I I I I I
IIIPl1011 OPCODE I SOURCE1 I ONU'SED I TYPE I ONU'SED I DESTINATION I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0

I I
I CCI 38 BIT IMMEDIATE
I_I
39 37 0

write-me-reg:
RR.:

I I I I I I I I I I
IIIPl1101 OPCODE I SOURCE1 I SOURCE2 I TYPE I ONU'SED I ONU'SED I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0
RIS:

I I I I I I I I I
IIIPl1111 OPCODE I SOURCE1 I SOU'RCE2 I TYPE I 12-BIT-SIGNED-IMMED I
1_1_1_1 I I I I I
39 37 34 28 22 16 11 0
RIL:

I I I I I I I I I I
IIIPl1011 OPCODE I SOU'RCE1 I SOU'RCE2 I TYPE I ONU'SED I ONU'SED I
1_1_1_1 I I I I I I
39 37 34 28 22 16 11 5 0

I I I
I Cel 38 B:IT :IMMEDIATE I
I_I I
39 37 0

110 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

read-me-reg

Opcode: 67

Formats:
RR.
RIS
RIL

destination ~ [sourcel + source2]
destination ~ [sourcel + l2-bit-signed-immediate]
destination ~ [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks source! to be of the data type specified
(and in the RR format tests source2 to be dtp-Funum).

Traps: none

Description: Reads the contents of the memory control register specified by the computed address.

Symbolics Company Confidential
October 1987

write-me-reg

Opcode: 47

Formats:
RR [source1 + mar] ~ souree2
RIS [sQurcel + 12-bit-signed-immediate] ~.souree2
Rll.. [38-bit-immediate + souree1] ~ source2

111
SUNS TONE ARCHITECTURE

Source Data Type Traps: Specified by the type field, checks source1 to be of the data type specified.

Traps: None.

Description: Stores into a memory control register.

I

112 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.6 STACK GROUPS

A stack group provides a means for describing each process. See table 11 on page 112 for a list of the
contents of a stack group.

Table 11. Stack Group Registers

Stack Group State

Structure Abbr.

Window Stack

m~ Window Stack Pointer
Window Stack Base SB~ Window Stack Limit SL
Data Stack S)
Data Stack Pointer

~~~ Data Stack Base 
Data Stack Limit SL) 
Binding Stack (BS~. 
Binding Stack Pointer m~~ Binding Stack Base 
Binding Stack Limit (BSL) 
Program Counter rc~P) Catch Block Pointer 
List Block Pointer &BP) 
List Block Base rrl List Block Length 
Structure BlOCK Pointer SBP) 
Structure Block Base SBB) 
Structure Block Length SBL) 
Byte-Rotate R~ister BR) 
Array Header Register 

It Array: Lenrath Register 
Trap Resu t Register 

;.:kGS) Number of ~s Register 
Status/Contro Re~ster CR) 
Memory Address egister ) 
Coprocesor state 

1.6.1 Window Stack 

The combination of the Window Stack and the Data Stack provides the functional equivalent of the 
I-Machine or L-Machine Control Stack. In L-Machine language, what is referred to as a frame (or 
Control Stack Frame) equates to a Sunstone Window and possibly includes a block on the Data Stack. 
The window stack (see figure 20 on page 113) has 17 locations for each window (frame); 16 register 
values, and the return address of the calling function. Most functions will require only a window, and 
will not have need of a block on the data stack. Each frame has a window associated with it, and some 
frames will have a block on the data stack. The Window Stack Pointer (WSP) points to the address of 

I the last used location. The Window Stack Base (WSB) points to the first invalid location of the WS. 
The Window Stack Limit (WSL) points to the maximum address that has been allocated for the stack. 



Symbolics Company Confidential 113 
October 1987 SUNSTONE ARCHITECTURE 

.Figure 20. Window Stack 

~ ________________ ~ <- Window Stack Pointer (WSP) 

Return Address 
R15 
R14 
R13 

R2 
R1 
RO 

Return Address 
R15 
R14 
R13 

R2 
R1 
RO 

Return Address 
R15 
R14 
R13 

R2 
R1 

, RO 

1.6.2 Data Stack 

<- Window Stack Base (WSB) 

The Data Stack provides an allocation area for temporary data whose lifetime is associated with a 
function's lifetime. This allows less expensive allocation and deallocation than the general mechanism. 
Software implements this in the same manner as the L-Machine and I-Machine. In addition, when there 
is not enough room in the window extra needed space can be used on the data stack. The cases where a 
block of space will be needed on the data stack are: 

• too many args and locals (16 is the maximum in a window) I 



I 

114 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

• any local that requires a locative to it 

• catch or unwind-protect blocks 

• any function that has an &rest argument 

The Data Block Pointer (DBP) pointS to the current block on the data stack. The Data Stack Pointer 

(DSP) points the the ftrst free location on the DS. See ftgure 21 on page 114. 

I A block on the data stack will use a one word header, the Old Data block Pointer. The compiler knows 

which functions will need to use the data stack and will generate entry and exit code to set up and tear 

down the data stack block for the function. Throw code is responsible for knowing when to pop the data 

stack. Through dynamic analysis, we expect about 10% of the functions will require use of the Data 

Stack. The DBP is saved on the data stack so that it can be restored on return. 

Figure 21. Data Stack 

DS data ... 

1<-- --I Old DBP 
1 
1 
1 
1 DS data ... 
1 
1 
I 
I 
1--> Old DBP 

<- Data Stack Pointer (DSP) 

<- Data Block Pointer (~BP) 

<- Data Stack Base (DSB) 

How do each of the cases listed above use the data stack? 

I • too many args - An apply type call will be used whenever a function is called with more 
than 14 arguments. See page 117 



Symbolics Company Confidential 115 
October 1987 SUNS TONE ARCHITECTURE 

• any local that requires a locative to it - for an example of this see the Lisp remq function. I 
In this case, the compiler creates a location on the Data Stack for the argument 

• catch and unwind protect blocks - Similar to the I-Machine. A catch-throw catch block on I 
the DS is 4 words, and the unwind protect catch block is 3 words. All of the catch blocks in I 
the stack are linked together. The Catch Block Pointer (CBP) points to the most recent 
catch block. 

CATCH-BLOClC: 
catch-block-tag 
catch-block-pc 
catch-block-binding-stack-pointer 

catch-block-previous 

tJNWJ:ND-PROTECT: 

catch-block-pc 
catch-block-binding-stack-pointer 

catch-block-previous 

any object reference 
catch exit address 
has cdr-code of 0, 

means catch-block 
previous catch block 

cleanup handler 
has cdr-code of 1, 

means unwind-protect 
previous catch block 

• &rest in lambdo. list - See section 1.7 on page 116. The suggested implementation preserves I 
the current Symbolics incompatibility with Common Lisp. It might be reasonable to 
consider consing the &REST list instead of maintaining it on the stack. On this machine the 
only extra cost for that should be in garbage collection and consing. 

1.6.3 Binding Stack 

The binding stack looks like the I-Machine and L-Machine Binding Stack. There are two words per 
entry. The frrst word contains a locative to the memory cell that has been bound, and the second word is 
the contents of the bound cell. The cdr-code of the saved memory cell locative links the entries on the 
Binding Stack together. For each window with entries on the Binding Stack, the compiler will initially 
set the cdr-code of the memory cell locative to O. All subsequent binds will set the cdr-code to I. The 
block of code that performs the bind and the unbind should have the inhibit preempts bit in the 
instructions set 

Binding first petforms a load-bind to get the contents pointed at by the locative. Then it does a 
store-cdr-next of the locative onto the Binding Stack, followed by a store-cdr-next of the value. Finally 
it increments the BSP by 2. 

(bind pointer value) ; assuming pointer is a locative 
* load-bind old-value+- [pointer] disable preempt 
*store-cdr-nezt [bsp,#2] +- old-value disable preempt 
*store-cdr-next [bsp,#l] +- pointer disable preempt 
*add bsp +- bsp, #2 disable preempt 
store-bind [pointer] +- value 



116 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

Unbinding follows a similar process. It ftrst performs a load-bind of the bound value in order to read the 

old value. Next it performs a load-bind locative to get a pointer to the value cell. After getting the 

pointer, it performs a store-bind to store the old value at the location pointed to; then decrements the 

BSPby2. 

(unbind) 
* load-bind 
* load-bind 
* store-bind 

sub 

old-value t- [bsp] 
pOinter t- [bsp,#-l] 
[pointer] t- old-value 
bsp t- bsp, #2 

1.6.4 Stack Group Switching 

disable preempt 
.disable preempt 
disable preempt 

The exact list of actions taken on a stack group switch, and their order, is very hardware dependent. 

Here are some of the actions, in order of execution: 

• save registers 

• swap binding stack - in descending order 

• restore binding stack - in ascending order 

• restore registers 

1.7 FUNCTION CALLING 

This section describes the Sunstone Function Calling Process and includes: Calling, Returning, Entry, 

Generic Functions, Message Passing, Lexical Closures. 

1.7.1 Calling 

There are basically four cases: 

1. Calling a constant function with the expected number of arguments. A given function can 
have more than one expected number of arguments if there are &optional arguments. 

2. APPLYing a constant function with the expected number of spread arguments. 

3. FUNCALL other than (1). 

4. APPLY other than (2). 

IOn Sunstone all four are done with the call instruction, with help from trap handlers in some cases. The 
N-Args register is 5 bits wide, and the high bit(called Applybit) is 0 for normal calls and 1 for APPLY. 

The low bits are the number of spread arguments. If there is an apply argument it is always passed in 

Al5, not in the next register after the spread arguments. Note that coding the N-Args this way for 

APPLY causes just the right effects in number-of-arguments checking, provided that the wrong number 

of arguments handler looks at the situation and does a pull-apply-args or push-apply-args when 

necessary. Tail recursion removal is done with a direct-branch instruction. 



Symbo/ics Company Confidential 117 
October 1987 SUNS TONE ARCHITECTURE 

If the number of arguments passed for a compiled function is less than 15, the arguments are simply 
placed in the callee's registers in sequence, by storing them in AO through A13 in the build window. If 
there are more than 14 arguments, the compiler pushes the extra arguments onto the data stack. The call 

instruction loads the number of arguments register and branches to the called function. In the general 
case the branch will be to the function's entry code, which will verify that the correct number of 
arguments is passed; in the case where it is known that the caller and callee agree as to the number and 
form of the arguments to be passed the call instruction will branch directly to the body of the function. 
We expect that functions that do not require a block on the data stack will be dynamically the most 
frequent 

Callers with more than 14 arguments will turn them into an APPLY. The caller makes a stack list of the 
arguments after the fll'St 14, puts that stack list in A15, and calls with N-Args = applybit + 14. Upon 
return the caller has to pop the stack list off of the data stack. A callee with more than 14 spread 
arguments is altered by the compiler to have 14 spread arguments plus an apply argument, and includes 
explicit car'ing and cdr'ing of the apply argument to retrieve the other arguments. The reason only 14 
spread arguments are allowed is because A15 is used for the apply argument, and A14 is used for 
generic functions and lexical closures, see section 1.7.3 on page 118. I 

If the function requires a data stack block the function's entry code builds the block immediately after 
checking for the correct number of arguments. Subroutines will probably handle the more complex I 
cases of entry and return. Because these subroutine's access the routines registers, they will store a 
return address in a register (perhaps in the build window) and branch rather than use the Call instruction. 
The routine that is branched to will have to know that it was called in this manner and upon return will 
get the return address from the register and move the contents of the register into the PC. 

In order to reduce the overhead of building up and taking down data stack blocks, the virtual me'~llory 
system will be used to enforce the stack limits. The pages immediately above and below the legal range 
of the Data Stack will be non-existent, or have the fault-request bit set, in the PHT. The virtu.al memory 
system will be responsible for issuing stack underflow or overflow errors. This same mechanism will be 
applied to the Binding Stack. 

While every compiled function will contain entry code to confIrm that the caller and callee agree about 
the number of passed arguments, there will also be entry points that will allow a "pre-matched" caller to 
directly enter with the assurance that the correct number of arguments have been supplied in the 
expected places. In some cases, such as &optional arguments, there will be multiple entry points 
depending on the number of arguments supplied by the caller. When a function is recompiled all the old 
callers must be patched to point to the new compiled code. 

For direct linked calls, the call instruction will load the N-Args register even though the callee never 
looks at it For non direct linked calls, control passes to an entry sequence at the beginning of the 
function which does some testing, trapping, and dispatching based on the N-Args Register. 



118 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

1.7.2 Entry 

A compiled function starts with a sequence of instructions that are involved with ensuring that the caller 
and the callee agree on the number and location of arguments being passed. The following is a list of 
conditions that are needed by the entry code to perform its function: 

• too few spread arguments N-Args < min-args 

• too many spread arguments N-Args > max-args 

• Maximum spread arguments N-Args = max-args 

• apply argument supplied N-Args ~ 16 

• rest arguments wanted I where N-Args is the N-Args register setup by the caller, min-args is the minimum number of spread 
arguments the callee needs, and max-args is the maximum number of spread arguments the callee needs. 
Typically min-args = max-args, they are different when the callee uses &optional. 

The most common and simplest case, is when no rest argument is wanted by the callee. In this case if 
min-args S N-Args S max-args we have the right number of arguments and only need to dispatch into a 
table to setup optional arguments not supplied If N-Args < min-args or N-Args > max-args, take a 

I wrong number of arguments trap. This trap will do a pull-apply-args if the apply bit is set in the N-Args 
register and the number of args passed is < max-args. 

The pull-apply-args operation is used when there are fewer than the maximum number of spread 
arguments and the apply bit is set. It pulls some additional spread arguments out of the apply argument 
This may result in a correct match up of arguments, or it may result in a wrong number of arguments 
error. 

The push-apply-args operation is used when there are too many spread arguments, and a rest argument is 
wanted. It pushes some of the spread arguments back into the apply argument After the arguments <rre 
pushed onto the apply list, the function has the right number of arguments, right where it expects them 
and execution of the function is started. 

Push-apply-args and pull-apply-args are difficult routines to write code for due to a number of reasons. 
They can not be "called" because they need to deal with the current window, and a call would create a 
new current window and there would be no access to the old current window. The only way to reference 
registers in windows is explicitly in the instructions, it is not possible to use the contents of some 
register as the source of the register value. 

1.7.3 Generic Functions 

A generic function is a function whose implementation dispatches on the flavor of its frrst argument and 
selects a method that gets called as the body of the generic function. When the compiler compiles a call 

I to a function, it generates code to set up the build window in a normal fashion, and to call the function in 
a normal fashion. If the generic function form looked like (generic-function object arg), the build 
window would look: like this: 



Symbolics Company Confidential 
October 1987 

Al arg 
AD object 

and the compiled code would look like this: 

move AD ~ object 

119 
SUNS TONE ARCHITECTURE 

call generic-function,N-Args ~ 2,Al ~ arg 

When the generic-function is dermed its function cell will point to code that will move the generic I 
function into some known location and then do a generic dispatch. We choose A14 as the location into 
which the generic function is moved as AlS is already dermed for the apply argument and we don't 
want to have to shuffle arguments around to nulke room for the generic function, which is an argument 
of sorts. So the generic dispatch code will see windows that look like this: I 

Rl4 gene~ic function 

Rl arg 
aD object 

The generic dispatch code will check for at least one argument, and pull apply args if necessary to get it; 
without at least one argument an error occurs. The argument is checked to insure that its data type is 
one of the instance data types. If its data is one of the instance data types, load its header, otherwise use 
the data type to index a 64-element table in the trap vector that points to the hash-mask fields of the 
flavor descriptions. Next, lo~ the hash mask and the hash-table address of the flavor and perform the 
handler hash table search. If a key is found that matches the function, store its parameter mapping table 
in R14 (where the generic function is)(if the parameter mapping table is Nll.., the generic function is 
supplied instead.) and terminate the search. If a key is found that is nil, terminate the search. If the 
method found has a data type of dip-pc or dtp-compiled-function jump to the address, otherwise trap as 
an error. 

1.7.4 Message Passing 

When using flavors and methods, the form of (send object messag~ arg) or (funcall object message arg) 
a RR format call will be used with the type check field :¢:. compiled-function. This will trap on data 
types of dtp-instance, and the trap routine will set up the arguments properly, with the message in AI4, 
the pointer to the called object in AO and the arguments in Al thru A13. Then it will do a generic 
dispatch (see section 1.7.3 on page 118). 

1.7.5 Lexical Closures 

Lexical closures are called in the same way as a normal funcall is done, but the call instruction will trap 
due to the value being moved into the PC being something other than a dtp-compiled-function (this trap 
is caused by the type check in the call being :¢:.dtp-compiled-function). The trap routine dispatches on 
the type of the thing being loaded into the PC (this same trap is used for generic function funcall) and in 
the case of a lexical closure it will get the environment into the caller's a14 and the code into the trap 

I 



120 Symbolics Company Confidential 

SUNSTONE ARCHITECTURE October 1987 

result register; it will then return-subvert which will cause the call instruction to try to load the contents 
of the trap result register into the PC; if the closure's code is just normal compiled code this will result in 
a normal call; if the code is not compiled then another trap will occur which may have to emulate the 
call instruction. Here is a sketch of the code: 

call pc~rn ¢dtp-compiled-fuction ;rn has dtp-lexical-closure in it 

trap: branch-type-next al,service-lexical,#dtp-lexical-closure 
; generic-function, etc 

service-lexical: load-car-cdr r14 ~[al] 
load-cdr-finish trap-result ~[al] 
return-subvert scr ~ aO 

1.7.6 Return 

;the environment 
;the code 
;restore scr 

A function that returns a single value simply stores that value in its R15 register. The caller retrieves the 
value by reading its A15 register. All functions must set the number ofreturned values in the N-Args 

I register. If multiple values are returned, all returned values are put into the window, starting with R15, 
R14, R13 .... If more than 16 values are returned they should be consed, and the last value returned 
should be a pointer to this consed list If 0 values are returned 0 is put into the N-Args register and NIL 

I is stored in R15 so only receivers of multiple values need to check the N-Args Register. The n-args 
register contains the number of values being returned. The maximum number of returned values is 32. 

If the caller is doing a call-for-return it needs to copy all arguments in the window that are being 
returned. If tail recursion removal is used this will not occur. 

1.8 EXCEPTIONS 

Exceptions, either interrupts or traps, temporarily redirect the instruction fetching mechanism off to 
exception handling code. Because the hardware behaves similarly to a call instruction, this code can act 
much like a typical function. However, since the exception may occur while instructions are setting up a 
build window, the handler code must restrict its use of window registers. The code can only use its own 
build window registers. Some handlers must also reside in wired physical memory. 

Traps automatically receive three arguments as part of hardware support and interrupts receive one. 
Because the exception may change some internal processor state, the hardware provides a way to save 
the status conditions before the handler starts executing. Then, hardware can resume the processor state 
when the trap routine finishes. For this purpose, the exception handlers expect to receive the Status 
Control Register as an argument. The trap handlers expect Status Control Register as one of the three 
arguments passed; the interrupt handlers expect it as the only argument passed. 

Since exception handlers may only use build window registers, the hardware must place exception 



Symbolics Company Confidential 121 
October 1987 SUNSTONE ARCHITECTURE 

arguments in the build window of the handler routine, not the build window of the trapped routine as 
would a normal function call. Note that if a sufficiently complex handler needs to call a function, it can 
use the arguments it received in the build window as arguments to a new function call. Likewise, if the 
handler needs more than 16 registers, it could perform a function call before writing into any of the 
Build Window Registers. 

1.8.1 Interrupts 

Interrupts come from the memory control logic that attaches to the mus. The Sunstone processor reads 
one of the memory control interrupt registers with a read-me-reg instruction. The interrupt routine 
software must clear the bit by writing a 1 as reading does not clear the bit As in the I-Machine, 
software must service all asserted bits at a given interrupt level before returning from an interrupt 
routine. 

An interrupt has one argument automatically saved in the build window for it, the Status Control 
Register. So when Sunstone enters an interrupt routine, enough machine state has already been saved to 
avoid the need to lock out all interrupts or traps. The software restores the Status Control Register 
during the return instruction at the end of the interrupt routine. Interrupt Level 1 is used to signal 
preemption. Preemption is the operation that stops one process and allows the scheduler to select 
another process to run. Because certain operations must be executed atomically across several 
instructions, preempt interrupts can be inhibited by a special bit in the instruction and/or Status Control 
Register while other interrupts continue to be allowed. 

If at the time the Interrupt Level1.Preempt Routine runs, preempts are disabled for software reasons, the 
routine sets a bit the Global Flags Register. Certain routines that might have inhibited preempts will 
check that bit using a trap-Iogtest instruction. The trap routine will cause a preempt if it is allowed. 

Note that the trap routine itself will have to run with preempts disabled to prevent a race condition with 
the Levell preempt routine. Perhaps the the trap routine should simply check preemptability and then 
generate a level 1 interrupt if preempts are allowed. 

1.8.2 Traps 

Getting traps to wolk efficiently on a register window machine like Sunstone presents an interesting 
problem. Because of the way that the sources and destination are embedded in the instruction, it would 
be difficult for the trap routine to emulate the instruction without special hardware assistance. This 
hardware assistance is provided by two mechanisms in Sunstone: the trap arguments and the subvert 
instruction return. 

Whenever a trap occurs the trap routine is entered as if it had been called as a function. The Window 
Buffer Pointer is incremented and the PC of the instruction that caused the trap is pushed on top of the 
Return Address Buffer (a normal call pushes the PC of the next instruction onto the Return Address 
Buffer). Unlike a normal call, however, the Build Window of the instruction that caused the trap is not 
available to pass arguments to the trap routine, since it may have been in use to pass arguments to a 



122 Symbolics Company Confidential 
SUNSTONE ARCHITECTURE October 1987 

routine that the trapped routine was going to call. Therefore the trap routine must use its build window, 
rather than its normal register window. The hardware passes the trap arguments into the trap routine's 
Build Window, specifically into AO, Al and AZ. AO receives the control register, and Al & A2 receive 
the values of the Sourcel and (if any) S0urce2 of the ttapped instruction. See figure 22 on page 122. 
For instruction traps, the opcode is part of the trap vector address to facilitate efficient handling of the 
traps. 

Figure 22. Windows Mter a Trap 

I ... 
1A2 Source2 
IAl Sourcel 
lAO Control Register I 
1-----------------------1 
InS I 
I . . . I 
IRO I 

Build Window 

Current Window 

There are three general kinds of operations that a trap routine can perform 

1. modify the environment so that the instruction can execute 

2. emulate the instruction and produce the desired result 

3. generate an error 

An example of the first type is a map miss; in that case the trap routine is responsible for refilling the 
map cache, or maybe swapping in a page. It then simply returns to retry the instruction. 

The second case is more interesting. An example of this is an add that has bignum arguments. In this 
case, since the trap routine has the Source 1 and Source2, its easy for it to perform the operation and 
produce the result. What is hard is putting that result into the proper place. This is done by an operation 
known as subverting the instruction. The trap handler must write its result into the trap-result register. 
The trap routine returns with a return-subvert instruction, which sets the Subvert Bit in the control 
register. See the return-subvert instrUction section 1.5.5 54. 

The third case, generating an error, is the easiest. since the debugger can do lots of work to figure out 
what to do about the problem without having any effect on the performance of the machine. 

1.8.2.1 Arithmetic Type Traps 

Arithmetic type traps are only used if the opcode is one of: add, sub, or multo For add and sub the trap 
occurs when both sources have a numeric data type and the type check field is "* hardware-arith, and 
both are not dtp-jixnum. However, if the FPU configuration register indicates that a floating point 
coprocessor is present. a trap will not occur if both sources are dtp-singie-jloat. For mult the FPU 



Symbolics Company Confidential 123 
October 1987 SUNSTONE ARCHITECTURE 

configuration register indicates if there is hardware available to perform either fixed point or floating 
point multiplies or both. The trap vector address includes information about the opcode, and the data 
type of the sources. 

1.8.2.2 Branch Type Traps 

Branch type traps are only used if there is a data type error. The trap occurs when both sources have a 
numeric data type and the cond field is one whose data type test is ¢ hardware-arith, and both are not 
dtp-jixnum. However, if the FPU configuration register indicates that floating point comparison is 
available, a trap will not occur if both sources are dtp-single-float. The trap vector address includes 
information about the opcode, the condition being tested and the data types of the two sources. 

1.8.2.3 Type Traps 

All type traps that don't qualify as an arithmetic type trap or a branch type trap, see 1.8.2.2 above, are 
type traps whose vector includes information about the opcode and the type being tested and a bit for the 
format to distinguish between RR format instructions which test both sources, and RIL and RIS format, 
which only test one source. This works very efficiently for all traps except possibly for store and dpb 

. instructions. These instruCtions have three arguments, and we are only saving two on a trap. For some 
of the cases this still works fine, as for store-array (see section 1.10.4 on page 137), and for some it 
might take extra cycles to read the instruction from memory and emulate it We expect this to be a very 
rare occurrence, and typically only on error traps. 

1.8.2.4 Load Traps and Store Traps 

There are four kinds of load traps and store traps: Indirect, Error, Monitor, Transport. The trap vector 
address .includes information on the opcode that trapped and which of the traps occurred. 

1.8.2.5 Illegal Instruction Trap 

illegal instruction traps are traps on illegal opcodes, or illegal data types. The opcode and the format, or 
the data type is part of the trap vector address. Illegal instructions can either be errors or can be 
interpreted as extensions to the instruction set 

1.8.2.6 Miscellaneous Opcode Specific Traps 

There are several other traps associated with particular opcodes. These traps are listed in the table 12 on 
page 124. The trap vector address includes some bits from the opcode to identify the instruction that 
trapped, and some bits to specify the particular trap. Load-array and store-array instructions which trap 
due to packed array data will have a trap vector location with eight locations available for code to handle 
the trap, this makes handling of these traps more efficient by not having to perform another branch. 



124 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

Table 12. Mise Opcode Specific Traps 

MISC OPCODE SPECIFIC TRAPS 

OPCODE TRAP 

add coprocessor 
overflow 

sub coprocessor 
overflow 

mult coprocessor 
overflow 

ash overflow 

load-coproc coprocessor 

store-coproc coprocessor 

reod-coproc coptOOessor 

write-coproc coprocessor 

lood-cdr-finish cdr-reg = 3 

load-array array element 
prefix long 
reference out of range 
packed array 

store-array array element 
prefix long 
reference out of range 
packed array 
array element 

store-rplacd cdr-reg not cdr-normal 



122 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE February 1988 

1.7.2.7 General Traps 

General traps are traps that each have single unique trap addresses; the trap addresses do not depend on 
the opcod.e. Many of these traps can occur on any type of instruction, e.g. Instruction Map Miss can 
happen any instruction reference if the PC is not in VMA=PMA space. Many of these traps can only 
happen on WADs and/or STOREs, e.g. Data TransJX>rt, Bound Location. 

There are several general traps whose trap vector address is independent of the instruction executing. 
They are listed below: 

• Window Buffer Overflow - This trap can happen on any CAlL instruction, or it can happen 
on any instruction that traps or is interrupted. This trap happens whenever a new window is 
needed and none is available; the software must insure that the window buffer overflow 
limit is set to a level that will cause the trap to happen before a valid window is accidently 
overwritten. When an instruction that needs a window attempts to execute, if the new 
(incremented) value of the window buffer JX>inter is equal to the window buffer overflow 
limit the instruction will trap to the window buffer overflow trap; note that if the instruction 
was already trapping or being interrupted the window buffer overflow trap will take 
precedence. To state the occurrence of this trap in parallel tenus to the underflow trap, 
Window Buffer overflow occurs during the call instruction if the build window number 
before the WSP is incremented equals the overflow limit. 

• Window Buffer Underflow - Window Buffer underflow occurs during a return instruction if 
(prior to the decrement) the build window number (which is one greater than WBC bits 3:0) 
matches the underflow limit. 

• Instruction Completion - Any instruction can get an instruction completion trap; the trap is 
caused by the take instruction completion trap bit being set in the status control register; if 
that bit is set, the trap occurs immediately. Note that the take instruction completion trap bit 
is set by an instruction completing execution when the trap on instruction completion bit is 
set, or by a call or return instruction completing execution when the trap on call or trap on 
return (respectively) bit is set. 

• Instruction Fetch Hardware Error - This trap indicates that a hardware error (bus error, 
double bit ECC error, etc.) happened when attempting to fetch the instruction. Although it is 
implementation dependent, it is a goal that this trap will happen on exactly the instruction 
that got the error; it is a requirement that this trap not happen if a instruction that has been 
prefetched gets an error, if the prefetched instruction is never executed. The exception to 
this is if the word in error is the odd word and the even word is a single word instruction; 
the error will probably occur on the frrst instruction, even though it is actually in the word 
that has not yet been executed . 

• Data Fetch Hardware Error - This trap can happen on a load or store instruction that gets a 
hardware error on reading or writing data. Note that while it is implementation dependent, it 
is likely that only errors on reading data will actually cause traps; errors on writes will 
probably be ignored. Some store instructions explictly do a read before a write, and if there 
is an error on the read it will cause the store instruction to trap . 

• Data Fetch Map Miss on Load Instruction - If a load instruction references a virtual 
location that is not in the data cache and does not have a mapping in the map cache, this trap 
will start the map cache refill routine. Note that a word that is in the data cache but does not 
have a mapping in the map cache will not get a map miss trap on a load instruction, but it 
will get a map miss trap on a store. Virtual addresses in the VMA=PMA area never cause 
map miss traps. 

. ~ ,. 

~ I. 
\ '! 



Symbolics Company Confidential 125 

October 1987 SUNSTONE ARCHITECTURE 

1.8.2.7 General Traps 

General traps are traps that each have single unique trap addresses; the trap addresses do not depend on 
the opcode. Many of these traps can occur on any type of instruction, e.g. Instruction Map Miss can 
happen any instruction reference if the PC is not in VMA=PMA space. Many of these traps can only 
happen on LOADs andlor STOREs, e.g. Data Transport, Bound Location. 

There are several general traps whose trap vector address is independent of the instruction executing. 
They are listed below: 

• Window Buffer Overflow - This trap can happen on any CAlL instruction, or it can happen . 
on any instruction that traps or is interrupted. This trap happens whenever a new window is 
needed and none is available; the software must insure that the window buffer overflow 
limit is set to a level that will cause the trap to happen before a valid window is accidently 
overwritten. When an instruction that needs a window attempts to execute, if the new 
(incremented) value of the window buffer pointer is equal to the window buffer overflow 
limit the instruction will trap to the window buffer overflow trap; note that if the instruction 
was already trapping or being interrupted the window buffer overflow trap will take 
precedence. 

• Window Buffer Underflow - If a return or it return-subvert instruction would cause the 
window buffer pointer to be equal to the window buffer underflow limit, this trap is taken. 

• Instruction Completion - Any instruction can get an instruction completion trap; the trap is 
caused by the take instruction completion trap bit being set in the status control register; if 
that bit is set, the trap occurs immediately. Note that the take instruction completion trap bit 
is set by an instruction completing execution when the trap on instruction completion bit is 
set, or by a call or return instruction completing execution when the trap on call or trap on 
return (respectively) bit is set 

• Instruction Fetch Hardware Error - This trap indicates that a hardware error (bus error, 
double bit ECC error, etc.) happened when attempting to fetch the instruction. Although' it is 
implementation dependent, it is a goal that this trap will happen on exactly the instruction 
that got the error; it is a requirement that this trap not happen if a instruction that has been 
prefetched gets an error, if the prefetched instruction is never executed. The exception to 
this is if the word in error is the odd word and the even word is a single word instruction; 
the error will probably occur on the fIrst instruction, even though it is actually in the word 
that has not yet been executed. 

• Data Fetch Hardware Error - This trap can happen on a load or Store instruction that gets a 
hardware error on reading or writing data. Note that while it is implementation dependent, it 
is likely that only errors on reading data will actually cause traps; errors on writes will 
probably be ignored. Some store instructions explictly do a read before a write, and if there 
is an error on the read it will cause the store instruction to trap. 

• Data Fetch Map Miss on Load Instruction - If a load instruction references a virtual 
location that is not in the data cache and does not have a mapping in the map cache, this trap 
will start the map cache refJ.1l routine. Note that a word that is in the data cache but does not 
have a mapping in the map cache will not get a map miss trap on a load instruction, but it 
will get a map miss trap on a store. Virtual addresses in the VMA=PMA area never cause 
map miss traps. 

• Data Fetch Map Miss on Store - If a store instruction references a virtual location that does 
not have a mapping in the map cache, this trap will start the map cache refill routine. This . 



126 Symbolics Company Confidential 
SUNSTONE ARCHITECTURE October 1987 

routine is separate from the similar load trap because the trap routine's computation of the 
referenced address is different for the load and store instructions. 

• Instruction Fetch Map Miss - If an instruction fetch misses in the cache and the map cache, 
this trap will happen on the instruction that would have been fetched. 

• Instruction Fetch Transport Trap - If an instruction word (either a direct branch or the 
immediate data of an Rll... format instruction) points to oldspace this trap will happen when 
an attempt is made to execute the instruction, if transport traps are enabled on the page that 
the instruction word was fetched from. 

• Data Fetch Transport Trap - If the word read by a load instruction is a pointer type, and the 
pointer points to oldspace, and the page the word is on has transport traps enabled, and the 
instruction is one of load-data, load-data-iv, load-car-cdr, load-cdr-fmish, load-array, load­
coproc, load-bind or load-scavange, then this trap is taken. 

• Error Trap - If the word read by a load or store instruction should generate an error, 
according to the memory operation table x, this trap is taken. 

• Monitor Trap - If the word read by a load or store instruction should generate an monitor 
trap, according to the memory operation table x, this trap is taken. 

• Bound Location Trap - If the word read by a load or s~re instruction should generate an 
bound location trap, according to the memory operation table x, this trap is taken. 

• Logic Variable Trap - If the word read by a load or store instruction should generate an 
logic variable trap, according to the memory operation table x, this trap is taken. 

• Write Protect Trap - If the page that is to be written by a store instruction has its write­
protect bit set in the map cache, the write is not done and this trap is taken. 

• Page Modified Update Trap - If the page that is to be written by a store instruction has its 
page-modified bit clear in the map cache, the write is not done and this trap is taken. The 
trap routine will set the bit and return to reexecute the store. 

• Ephemeral Reference Update Trap - Ephemeral reference update traps are used to keep the 
4 ephemeral reference level bits in the PHT entry for a page updated. Each of the four bits is 
used to indicate that there may exist a pointer on the page that points a word in a particular 
ephemeral level group. (Each ephemeral level group contains eight ephemeral levels.) 

A store instruction will get an ephemeral reference update trap if it attempts to store a word 
which is a pointer to an ephemeral level group which the page being stored into did not 
previously point to, as indicated by the corresponding map cache bit being zero for that 
page. The trap routine will set the bit to a one in the map cache entry and the PHT and then 
return to reexecute the store instruction. 

More precisely, if the word being stored is a pointer type, and bits <31:27> of the pointer 
are zero, bits <25:24> are used to select one of the four bits; if the selected bit is zero, a trap 
is taken. However, as a special optimization, if the address being stored into has bits 
<31:27> equal to zero and bits <25:21> of the address equal bits <25:21> of the stored data, 
the trap is inhibited. 

1.8.2.8 Trap Vector 

I The trap vector address points into a section of memory which contains a table of direct-branch 
instructions. This table must reside in VMA=PMA address space. The words in this table point to the 
trap handler routines. In the case of packed array traps there is not a direct-branch instruction pointing 
to the routine as the code is in line starting at the vector address. 



Symbolics Company Confidential 127 
October 1987 SUNSTONE ARCHITECTURE 

The trap vector address requires a trap address base for locating this table in memory. The trap-base 
register contains this address. 

The offset for the trap vector address comes from further trap specification. Table 13 on page 128 lists 
each trap classes and the traps belonging to the class. For each trap, the table shows trap vector address 
(See figure 23 on page 127). 

Figure 23. Trap Vector Format 

I I I I 
I 11111 I TRAP BASE REGISTER I from table 13 on page 128 I 
I I I I 
~3~1-----~2~6---------------------1~3------------------------~O 



128 Symbolics Company Confidential 

SUNS TONE ARCHITECTURE October 1987 

Table 13. Trap Vector Addresses 

EXCEPTION VECTOR ADDRESS 

Exception 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
+ + + + + + + + + + + + + + + 

trap-type, trap 10101 Immediate<11:0> I 
type 10111 Type-Chk<4: 0> I * I Op-code<5: 0> I 
branch-type-ex III o I TypChk<2: 0>1 Srcl<2:0> I Src2<2:0> I 0 I 0 0 I 
arith-type-exc 11111 o IAh<1:0>1 Srcl<2:0> I Src2<2: 0> I 0 I 0 0 I 
illegal-inst 11111 1 I 0 I o IFoxmat<2:0>1 Op-code<5: 0> I 
misc-opcode 11111 1 I 0 I 1 I Misc<3:0> IOT<l: 0>1 0 I 0 0 I 
indirect 11111 1 I 1 I 0 I 0 I Op-code<4:0> I 0 I 0 I 0 I 
general 11111 1 I 1 I 0 I 1 I 0 I 0 I 0 I G-Traps<4 : 0> I 
interrupts 11111 1 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I Inter<2: 0> I 
reset 11111 1 I 1 I 1 I 1 I 1 I 1 
initialize 11111 1 I 1 I 1 I 1 I 1 I 1 

Trap-Type and Trap instructions supply the lower 12 bits of the 
interrupt vector to be their immediate values. 

I 
I 

Type trap vector uses the full opcode and the LSB of the format field to 
determine the instruction type and format. The Type-Check field is used 
as a condition field 

*Format<O> 0 RR Instruction 1 RIS or RIL 

1 I 
1 I 

Branch-type trap vector uses the Type-Check(TypCbk) field as the condition 
field itemized in Table 9 page 25. Also the data types of source-l (Src l) 
and source-2(Src2) which are numeric are used. 

Arithmetic type trap vector uses source-l and source-2 as in 
Branch-type trap and the Opcode to create the Ah field which 
indicates the type of arithmetic instruction: 

Ah<1:0> 0 ADD 1 SUB 2 MULT 

Misc-opcode trap vector uses the opcode to generate a Misc opcode field 
to indicate the instruction specific trap. The Operation Type field 
indicates the type of trap that occured for that instruction. 

Misc<3:0> 00 Ash 01 Load-cdr-finish 
02 Load-array 03 Load-coproc 
05 Store-rplacd 06 Store-array 
07 Store-coproc 10 Add 
11 Sub 12 Mult 
13 Write-coproc 17 Read-coproc 

1 
1 

OT<1:0> 
(Op-Type) 

o Array-Element, Coprocessor, Rplacd,Illegal-Cdr-3 
1 Array-Long-Pre, Overflow 
2 Array-Element 
3 Array-Packed 

I 1 I 1 I 1 I 0 I 
I 1 I 1 I 1 I 1 I 



Symbolics Company Confidential 125 
February 1988 SUNS TONE ARCHITECTURE 

Table 12. Trap Vector Addresses 

EXCEPTION VECTOR ADDRESS 

Exception 13 12 11 10 9 8 7 6 5 4 3 2 1 
+ + + + + + + + + + + + + + 

trap-type, trap o 01 Immediate<11:0> 
type o 11 Type-Chk<4: 0> 1 * 1 Op-code<5: 0> 
branch-type-ex 1 o 1 TypChk< 2: 0>1 Src1<2:0> 1 Src2<2:0> 1 0 1 0 
arith-type-exc 1 11 0 IAh<1:0>1 Src1<2:0> 1 Src2<2:0> 1 0 1 0 
illegal-inst 1 11 1 1 0 1 o IFo~t<2:0>1 Op-code<5: 0> 
misc-opcode 1 11 1 1 0 1 1 1 Misc<3:0> IOT<1:0>1 0 1 0 
indirect 1 11 1 1 1 1 0 1 0 1 Op-code<4 : 0> 1 0 1 0 
interrupts 1 11 1 1 1 1 1 1 1 1 1 1 0 1 Inter<2: 0> 1 0 1 0 1 
general 1 11 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 G-Trap<3:0> 
wb-overflow 1 11 1 1 1 1 1 1 1 1 1 1 
reset 1 11 1 1 1 1 1 1 1 1 1 1 
initialize 1 11 1 1 1 1 1 1 1 1 1 1 

Trap-Type and Trap instructions supply the lower 12 bits of the 
interrupt vector to be their immediate values. 

1 1 
1 1 
1 1 

Type trap vector uses the full opcode and the LSB of the format field to 
determine the instruction type and format. The Type-Check field is used 
as a condition field. 

*Format<O> 0 RR Instruction 1 RIS or RIL 

1 1 
1 1 
1 1 

Branch-type trap vector uses the Type-Check(TypCbk) field as the condition 
field itemized in Table 9 page 25. Also the data types of source-l(Srcl) 
and source-2(Src2) which are numeric are used. 

Arithmetic type trap vector uses source-l and source-2 as in 
Branch-type trap and the Opcode to create the Ah field which 
indicates the type of arithmetic instruction: 

Ah<1:0> 0 ADD 1 SUB 2 MULT 

Misc-opcode trap vector uses the opcode to generate a Misc opcode field 
to indicate the instruction specific trap. The Operation Type field 
indicates the type of trap that occured for that instruction. 

Misc<3:0> 00 Ash 01 Load-cdr-finish 

OT<1:0> 
(Op-Type) 

02 Load-array 03 Load-coproc 
05 Store-rplacd 06 Store-array 
07 Store-coproc 10 Add 
11 Sub 12 Mult 
13 Write-coproc 17 Read-coproc 
o Array-Element. Coprocessor, Rplacd,lliegal-Cdr-3 
1 Array-Long-Pre, Overflow 
2 Array-Range 
3 Array-Packed 

1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 
1 1 1 I 1 1 1 1 

0 
+ 

0 
0 

0 
0 
0 

0 
0 
1 



126 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE 

Table 12. Trap Vector Address Cont. 

Indirect trap vector uses the opcode to indicate which Load or Store 
Instruction trapped. 

General-traps are independent of the instruction that is executing only 
a code is given for the type of trap that occurs. They are prioritized 
by order. 

G-Trap<3:0> 
00 Inst-Completion 
01 Inst-Map-Miss 
02 Inst-Hardware-Err 
03 Inst-Transport 
04 WB-Underflow 
05 Data-Map-Miss(Load) 
06 Data-Map-Miss{Store) 
07 Data-Hardware-Err 
10 Error-Trap{Memory Cycle) 
11 Data-Transport 
12 Logic-variable 
13 Bound-variable 
14 Monitor-Trap 
15 Write-Protect 
16 Page-Moo-Update 
17 Eph-Ref-Update 

Interrupt-trap vector is generated by a three bit vector interrupt 
vector as described below. 

Interrupt-Vector<2:0> 0 no interrupts or preempts 
1 preempt 
2-7 interrupts 2-7 

Reset trap vector is issued when the reset signal is asserted. 

Initialize trap vector is issued when the init signal is asserted. 

1.7.2.9 Exception Priorities 

February 1988 

I Hardware determines the priority in which exceptions are handled. The following text and table 13 on 
page 130 list the exceptions that can occur in the priority that the hardware handles them. It also 
provides a cross reference to the trap or interrupt vector that can be used in conjunction with Table 12 to 
determine the vector address. 

I Xnitia1ize Xnitia1ize-Ezc 

I This trap must be the highest priority because it forces the machine into a cleared state unconditionally.· 

;1, 



Symbolics Company Confidential 129 
October 1987 SUNS TONE ARCHITECTURE 

Table 13. Trap Vector Address Cont. 

Indirect trap vector uses the opcode to indicate which Load or Store 
Instruction trapped. 

General-traps are independent of the instruction that is executing only 
a code is given for the type of trap that occurs. They are prioritized 
by order. 

G-Traps<4:0> 00 WB-Overflow 
20 Inst-Completion 
21 Inst-Map-Miss 
22 Inst-Hardware-Err 
23 Inst-Transport 
24 WB-Underflow 
25 Data-Map-Miss(Load) 
26 Data-Map-Miss(Store) 
27 Data-Hardware-Err 
30 Error-Trap(Memory Cycle) 
31 Data-Transport 
32 Logic-variable 
33 Bound-variable 
34 Monitor-Trap 
35 Write-Protect 
36 Page-Mod-Update 
37 Eph-Ref-Update 

Interrupt-trap vector is generated by a three bit vector interrupt 
vector a& described below. 

Interrupt-Vector<2:0> 0 no interrupts or preempts 
1 preempt 
2-7 interrupts 2-7 

Reset trap vector is issued when the reset signal is asserted. 

Initialize trap vector is issued when the init signal is asserted. 

1.8.2.9 Exception Priorities 

Hardware determines the priority in which exceptions are handled. The following text and table 14 on 

page 133 list the exceptions that can occur in the priority that the hardware handles them. It also 

provides a cross reference to the trap or interrupt vector that can be used in conjunction with Table 13 to 

determine the vector address. 
:Initialize :Initialize-Exc I 



130 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

This trap must be the highest priority because it forces the machine into- a cleared state unconditionally. 

It must be able to do that in the face of any other trap causing conditions, and also arrange to execute 

instructions without any further traps. 

. Reset Reset-Exc 

This acts as a non-maskable interrupt It can be argued that this should be lower priority than window 
buffer overflow, but that doesn't matter because it could still interrupt the window buffer overflow 

routine. In most cases it will be possible to continue from a reset trap, but not always. 

WB-Overf1ow Genera1-Trap 

This must be higher priority than any other traps because the other traps could otherwise destroy the 
stack. It inhibits all interrupts until there is room in the window buffer. 

Interrupts 
Preempts 

Interrupt-Exc 
Interrupt-Exc 

These two similar cases are high priority in order to keep latency low and allow interrupts out of trap 
loops. 

Inst-Conp1etion Genera1-'l'rap 

From here down are traps that relate to trying to fetch and then execute the next instruction; this trap is a 

result of successfully executing the previous instruction, so it is higher priority. 

The next few traps are related to fetching instructions; until we have a valid instruction and a valid set of 
registers, no traps related to trying to execute an instruction make sense. 

Inl't-Map-Miss Genera1-'l'rap 

If we don't know the physical address to fetch at, nothing else matters. 

Inst-Hardware-Error Genera1-Trap 

Once we have a good address, if the data is bogus we shouldn't try to decode it. 

Inst-'l'ransport-'l'rap Genera1-'l'rap 

It's important that this comes before illegal instruction, in case we decide that it is valid to put other 

pointer types into the instruction stream that aren't valid instructions (e.g. generic functions). We don't 
currently plan to do that, but it can't hurt to make it possible. 

I11ega1-Inst I11ega1-Instruction 

Now that we have a real word that thinks it's an instruction, is it any good? 

WB-Onderf1ow Genera1-'l'rap 

Now we have a good instruction, the next thing to check is if it's arguments are any good; but if the 

window buffer is underflowed, the registers aren't valid. It's not important for window buffer underflow 



Symbolics Company Confidential 131 
October 1987 SUNSTONE ARCHITECTURE 

to be higher priority than this because this is the flISt time that the register contents matter, and any other 
trap will make the windows valid again. Actually, since this trap only happens on return instructions the 
priority probably isn't important 

Type-Type-Trap 
Type-Arith-Trap 
Type-Branch-Trap 

Type-Trap 
Arithmetic-Trap 
Branch-Trap 

Three variants of "the registers have bad stuff in them", which we must catch before we try to use those 
values for anything. 

Array-Element Misc-Opcode 

This is similar to a type trap, again a case of bad stuff in the registers. 

Array-Long-Pre Misc-Opcode 

If the array is long prefix, we haven't really got good header information, which the next traps depend 
on. 

Array-Range Misc-Opcode 

If we are out of range we don't want to try to do the packed reference, or anything else. 

Array-Packed Misc-Opcode 

If everything else about the array reference is okay, go and do the packing/unpacking. 

~lacd Misc-Opcode 

This is similar to a type trap, since it depends on the contents of the cdr register from a previous load 
instruction. 'Ibis must be higher priority than actually doing the memory reference. 

Coproc-Trap 
Overflow 

Misc-Opcode 
Misc-Opcode 

These are based on the results of an otherwise valid operation needing special attention. 

Data-Map-Miss(Load) General-Trap 
Data-Map-Miss(Store) General-Trap 

Now that we have a valid load or store operation to perform, these traps happen if we don't have a valid 
address mapping. 

D-Bardware-Error General-Trap 

If we have a valid address to reference, but that references screws up somehow. 

Error-Trap (Hem) 
Data-Transport-Trap 
Indirect-Trap 
Logic-Variable 

General-Trap 
General-Trap 
Indirect-Trap 
General-Trap 



132 
SUNS TONE ARCHITECTURE 

Bound-Location 
Monitor-Trap 

General.-Trap 
General.-Trap 

Symbolics Company Confidential 
October 1987 

These traps are dependent on the data that was read from a valid load or store instruction. Their priority 

is defined by the architecture. 

Write-Protect 
Page-Mod-Update 
Eph-Ref-Update 

General.-Trap 
General.-Trap 
General.-Trap 

Now that we've gotten all the way to attempting a valid store, tl}e map needs to be fixed up. Write 

protect is the highest priority because the other two traps assume that a valid write will eventually 
complete, after they fix up the map entry; the order of page-mad-update and ephemeral reference update 
is arbitrary. 

Trap-:Inst-True Trap-Type 

This is actually a sort of type trap, and could be a higher priority since it is orthogonal to everything that 

came after the type traps. 



130 Symbolics Company Confidential 

SUNS TONE ARCHITECTURE February 1988 

Table 13. Exception Priorities 

EXCEPTIONS PRIORITIZED 

Priority Exception Vector AO Al A2 

1. Initialize Initialize-Exc SCR - -
2. Reset Reset-Exc SCR - -
3. WB-Overflow General-Trap SCR - -
4. Interrupts Interrupt-Exc SCR - -
5. Preempts Interru~t-Exc SCR - -
6. Inst-Co~tion Gener -Trap SCR - -
7. Inst-Map- iss General-Trap SCR - -
8. Inst-Hardware-Error General-Trap SCR - -
9. Inst -Transport-Trap General-Trap SCR - -
10. Wif-al-Inst lllegal-Instruction SCR - -
11. -Underflow General-Trap SCR - -
12. Type-T~-Trap T~-Tra'p SCR SI S2IImm 
13. Type-Arith-T~ Arithmeoc-Trap SCR SI S2IImm 
14. Type-Branch- rap Branc~ SCR SI S2IImm 
15. May-Element Misc- e SCR S2* 1-index* 
16. Array-Long-Pre Misc-e>pcode SCR S1/S2* ~-index* 
17. Array-Ran~e Misc-QPcode SCR S1IS2* ~-index* 
18. Array-Pac ed Misc-C>pcode SCR S1/S2* a a-index* 
19. ~lacd Misc-C>pcode SCR S2** A dress** 
20. oproc-Trap Misc-C>pcode SCR SI S2/Imm 
21. Overflow Misc-~ode SCR SI S2IImm 
22. Data-Map-Miss(Load) Gener -Trap SCR SI** Address** 
23. Data-Map-Miss(Store) General-Trap SCR S2** Address * * 
24. D-Hardware-Error General-Trap SCR S1IS2** Address * * 
25. Error-Trap(Mem) General-Trap SCR S1IS2** Address * * 
26. Data-Transport-Trap General-Trap SCR SI** Address * * 
27. Indirect-Tra~ Indirect-Trap SCR S1IS2** Address * * 
28. Logic-Varia Ie General-Trap SCR SI** Address * * 
29. Bound-Location General-Trap SCR S1IS2** Address** 
30. Monitor-Trap General-Trap SCR S1/S2** Address * * 
31. Write-Protect General-Trap SCR S2** Address * * 
32. pa~e-Mod~ate General-Trap SCR S2** Address** 
33. ~ -Ref-U te General-Trap SCR S2** Address** 
34. rap-Inst- rue Trap-Type SCR SI S2IImm 

* Load-Array stores SI in Al on array traps. Store-Array stores S2 (the 
value to be stored) in Al on array traps. In RR-forrnat Load-Array, the 
index is S2; in RR-format Store-Array, the index is SI; in RIS and RIL 
formats, the index is the immediate operand. All array traps store the 

adjusted index in A2, where the adjustment consists of adding the 
Array-Header byte offset field to the index, then logically shifting the 

sum right by the value of the Array-Header byte-pack field, and adding 
one to the shifted sum. The bits shifted out are saved in the position 

field of the byte-rotate register. 

** Memory reference traps always put the address in A2. Load 
instructions put SI in AI; Store instructions put S2 (the data to be 

stored) in AI. 



Symbolics Company Confidential 133 
October 1987 SUNSTONE ARCHITECTURE 

Table 14. Exception Priorities 

EX~ONS~ORIT~D 

Priority Exception Vector 

1. Initialize Initialize-Exc 
2. Reset Reset-Exc 
3. WB-Overflow General-Trap 
4. Interrupts Interrupt-Exc 
S. Pree~ts Interrupt-Exc 
6. Inst-Com~tion General-Trap 
7. Inst-Map:- ·ss General-Trap 
8. Inst-Hardware-Error General-Trap 
9. Inst-Transport-Trap General-Trap 
10. ~al-Inst megal-Instruction 
11. -Underflow General-Trap 
12. Type-T~-Trap T~-Tra'p 
13. Type-Arith-T~ Arithmetic-Trap 
14. Type-Branch- rap Branc~ 
15. Array-Element Misc-
16. Array-Long-Pre Misc-QPcode 
17. Array-R~ Misc-QPco4e 
18. Array-P Misc-QPco4e 
19. ~laCd Misc-QPcode 
20. oproc-Trap Misc-Ojxxxle 
21. Overflow Misc-= 
22. Data-MaP-MisS~ad~ Gener -Trap 
23. Data-Map-Miss Store General-Trap 
24. D-Hardware-Error General-Trap 
25. Error-Trap(Me~ General-Trap 
26. Data-Transport- rap General-Trap 
27. Indirect-Tr~ Indirect-Trap 
28. Logic-Vari Ie General-Trap 
29. Bound-Location General-Trap 
30. Monitor~ Trap General-Trap 
31. Write-Protect General-Trap 
32. p~e-Mode:te General-Trap 
33. E -Ref-U te General-Trap 
34. !ffaP-Inst- rue Trap-Type 



134 Symbolics Company Confidential 
SUNSTONE ARCHITECTURE October 1987 

1.9 GARBAGE COLLECTION (GC) 

The gc will operate much as in the I-Machine. Two registers will support this: the Zone Oldspace 

Register and the Ephemeral Oldspace Register. 

The Zone Oldspace Register (ZOR) is identical in to the I-Machine's Zone Oldspace Register. The 

Zone Oldspace Register contains a bit map that specifies whether each zone of dynamic space (there are 

29 zones) is newsPace or oldspace. Bits 31 and 0 of the Zone Oldspace Register are typically O. Bit 31 
represents physical memory zones, and bit 0 represents the Ephemeral Zone. Since new/old space is a 

characteristic of virtual memory, bit 31 is set to 0 (VMA=PMA) and since there is a special Ephemeral 

Oldspace Register, bit 0 is set to 0 (this is the ephemeral space bit). A set bit indicates its corresponding 

zone is oldspace. 

The Ephemeral Oldspace Register (EOR) is identical to the Ephemeral Oldspace Register in the 1-
Machine. The EOR contains a bit map that specifies, for each of the 32 ephemeral levels, which half of 

the level is newspace and which half is oldspace. A set bit indicates the upper half is oldspace, a reset 

bit indicates the lower half is oldspace. 

Two traps are used to support GC: Transport Trap and Ephemeral Reference Update Trap (ER Update 

Trap). A memory read of a pointer to old space signals a Transport Trap when enabled The EOR and 
ZOR are used as an efficient lookup in fmding where oldspace exists. A memory write of a pointer to an 

ephemeral object signals an ER Update Trap when the ER bits from the PHT will no longer be accurate 

after the write. The trap routine updates the PHT. 

Also in support of efficient GC th('re are four instructions: load-scavenge, load-gc-copy, 

load-ephemera/p, and load-oldsjJacep. 

1.1 0 ARRAY REFERENCES. 

Support for arrays requires special load-array and store-a"ay instructions. (For more information on 

the load-array and store-a"ay instructions see pages 78 and 93 respectively.) These instructions depend 

on two special registers: Array Header Register and Array Length Register. When these instructions 

execute, they use the array-header and array-length registers to detect various trap conditions and to 

determine whether the address calculation needs to be incremented. For loop optimization, Sunstone has 

its own version of array registers called array descriptors. 

Typically, the instructions will also use the special MAR register for the base source, immediately 

following a load-header instruction. The non array register sequence for arrays looks like this: 

*load-header array-header f- [array-pointer] 
load-array destination f- [MAR/index] 

:;t:array 
:;t:array ;+1 to sources 

I The load-header instruction will follow invisible pointers, so that the actual header location pointer is 



132 Symbolics Company Confidential 

SUNSTONE ARCHITECTURE February 1988 

stored in the MAR register. These two instructions run with preempt inhibited. to prevent the software in 
another process from changing the header location (eg, array-push-extend). When not using array 
descriptors, the load-array instruction will trap for long prefix arrays. Also, notice that the code does not 
explicitly load the Array Length Register; instead, the load-header instruction will load the Array Length 
Register as a side effect, when its destination is the Array Header Register. 

1.9.1 Array Hardware Support 

Sunstone provides hardware support for arrays in several ways. The following text lists some of the 
support provided. 

• array header register 

• array length register - automatically loaded during LOAD of Array-Header. Array-Length 
+-- Array-Header<14:0>, if short; S-Data-Bus<71:40>, if long prefix. 

I • unique load/store array instructions - load/store-array adds one to the address calculation. 

• load/store-array traps if array header has a long prefix and no long prefix inhibit 

I 

I 

I 

• store-array traps if the array element type is boolean, if the array element type is character 
and sow:ce2 isn't character or has bits set above the array element size (i.e., bit 20 is set for 
a 16-bit-string array). or if the array element type is fixnum and sow:ce2 isn't ftxnum 

• LoadIstore-array traps if array header shows packed data or element type which differs from 
the type of the words in which elements are stored (character and boolean). 

• unique trap address for packed array trap of load/store-array instructions with enough space 
in the trap vector to handle the trap (this is about 2 locations for ioad-a"ay, and 5 for 
store-array). 

• After load-array traps: 

AO +-- SCR as in normal trap operation, 
Al +-- array address (sl) as in normal trap operation, 

A2 +-- adjusted index = (1+ (ldb byte-spec (+ index byte-offset») 
where byte-spec = (byte 32. Array-Header-Register<29: 27» 
and byte-offset forced to 0 for short prefix arrays 

• After store-array traps: 

AO +-- SCR as in normal trap operation, 
A1 +-- data to store, 

A2 +-- adjusted index = (1+ (ldb byte-spec (+ index byte-offset») 
where byte-spec = (byte 32. Array-Header-Register<29:27» 
and byte-offset forced to 0 for short prefix arrays" 

• Load-array or store-a"ay instructions load the byte rotate register with the size (actually 
size - 1 for FS) set by header bits <29:27>. 

<29:27> size 
o 32 
1 16 



Symbolics Company Confidential 135 
October 1987 SUNSTONE ARCHITECTURE 

stored in the MAR register. These two instructions run with preempt inhibited to prevent the software in 
another process from changing the header location (eg, array-push-extend). When not using array 
descriptors, the load-array instruction will trap for long prefix arrays. Also, notice that the code does not 
explicitly load the Array Length Register; instead, the load-header instruction will load the Array Length 
Register as a side effect, when its destination is the Array Header Register. 

1.10.1 Array Hardware Support 

Sunstone provides hardware support for arrays in several ways. The following text lists some of the 
support provided 

• array header register 

• array length register - automatically loaded during LOAD of Array-Header. Array-Length 
+- Array-Header<14:0>, if short; S-Data-Bus<71:40>, if long prefix. 

• unique load/store array instructions - load/store-array adds one to the address calculation. I 

• load/store-array traps if array header has a long prefix and no long prefix inhibit 

• store-array traps if the array element type is boolean, if the array element type is character I 
and source2 isn't character or has bits set above the array element size (i.e., bit 20 is set for 
a 16-bit-string array), or if the array element type is fixnum and source2 isn't flXnum. 

• load/store-array traps if array header shows packed data 

• unique trap address for packed array trap of load/store-array instructions with enough space 
in the trap vector to handle the trap (this is about 2 locations for load-array, and 5 for 
store-array). 

• After load-array traps: 

AO +- SCR as in normal trap operation, 
Al +- array address (sl) as in normal trap operation, 

A2 +- adjusted index = (1+ (ldb byte-spec (+ index byte-offset») I 
where byte-spec = (byte 32. Array-Header-Register<29:27» 
and byte-offset forced to 0 for short prefix arrays 

• After store-array traps: 

AO +- SCR as in normal trap operation, 
A1 +- data to store, 

A2 +- adjusted index = (1+ (ldb byte-spec (+ index byte-offset) » I 
where byte-spec = (byte 32. Array-Header-Register<29:27» 
and byte-offset forced to 0 for short prefix arrays" 

• Load-array or store-array instructions load the byte rotate register with the size (actually 
size - 1 for FS) set by header bits <29:27> .. 

<29:27> size 
o 32 
1 16 
2 8 



136 Symbolics Company Confidential 

SUNSTONE ARCHITECTURE October 1987 

3 
4 
5 

4 
2 
1 

Position (BB) is set by the product of the size and the least significant n bits of the sum of 
the index and the byte-offset field of the array-header register, where n is the value of the 
header bits <29:27>. In order to save on state for the ensuing subversion, non byte-pack 
load/store-array traps load the byte rotate register with size 32 and 0 bottom-bit . 

• A special subvert mechanism for load-array instructions that does a ldb of the trap result 
register. It uses the value in the Byte Rotate Register, and merges in the proper data type as 
specified by the header register. It forces the result data type to character when the array 
element type is character. When the array element type is boolean, it forces the entire result 
to T or NIL depending on the lowest bit of the ldb'ed trap result register. For details on how 
array element type pertains to byte packing, refer to the table of valid array types below. 

Table 15. Valid Array Types 

Valid Array Types for Byte-Packing Values 

Array-byte Fixnum Character Boolean Object 
packing 

0 art-fixnum art-fat-string xxx art-q 

1 art-l6b 16-bit -string xxx xxx 

2 art-8b art-string xxx xxx 

3 art-4b X'l{X xxx xxx 

4 art-2b 
1 xxx 

xxx xxx 

5 art-lb xxx art-boolean xxx 

1.10.2 Array Header Register 

The Array Header Register contains the element type bits 31: 30, byte pack bits 29:27; and long prefix 

bit 23 of the array header stored in memory. In addition, it contains a long prefix trap inhibit bit and 

byte offset bits. These read as 0 for a short prefix header and reflect bits<12,11:7> of a long prefix 

header encached as an array descriptor. These spare long prefix header bits must be set to 0 in the actual 

memory header location. 

I e-type I byte-pack I xxxxi lplxxxxi lpilbyte-offsetlxxxxxxi 

31 30 29 27 23 12 11 7 

x's mean not used 



Symbolics, Inc. 

2 8 
3 4 
4 2 
5 1 

Position (BB) is set by the product of the size and the least significant n bits of the sum of 
the index and the byte-offset field of the array-header register, where n is the value of the 
header bits <29:27>. The hardware loads the byte rotate register even if the load/store-array 
instruction traps. When taking anyone of the four array traps (element, range, long-prefix. 
and packed), it loads the byte rotate register with the value as specified above. For any 
other trap, or if the instruction does no trap, it loads the byte rotate register with size 32 and 
bottom bit O. 

• A special subvert mechanism for load-array instructions that does a ldb of the trap result 
register. It uses the value in the Byte Rotate Register, and merges in the proper data type as 
specified by the header register. It forces the result data type to character when the array 
element type is character. When the array element type is boolean, it forces the entire result 
to T or NIL depending on the lowest bit of the ldb'ed trap result register. For details on how 
array element type pertains to byte packing, refer to the table of valid array types below. 

Table 14. Valid Array Types 

Valid Array Types for Byte-Packing Values 

Array-byte Fixnum Character Boolean Object 
packing 

0 art-fixnum art-fat-string xxx art-q 

1 art-16b 16-bit-string xxx xxx 

2 art-8b art-string xxx xxx 

3 art-4b xxx xxx xxx 

4 art-2b xxx xxx xxx 

5 art-lb xxx art-boolean xxx 

1.9.2 Array Header Register 

The Array Header Register contains the element type bits 31:30, byte pack bits 29:27; and long prefix 
bit 23 of the array header stored in memory. In addition, it contains a long prefix trap inhibit bit and 
byte offset bits. These read as 0 for a short prefix header and reflect bits<12,11:7> of a long prefix 
header encached as an array descriptor. These spare long prefix header bits must be set to 0 in the actual 
memory header location. 

le-typelbyte-packlzxxxllplzxxxilpilbyte-offsetlxxxxxxi 

133 

I 



Symbolics Company Confidential 137 
October 1987 SUNS TONE ARCHITECTURE 

1.10.3 Array Length Register 

The Array Length Register contains the index limit of the array. When the Array Header Register is 
loaded from memory, the Array Length Register automatically loads as well. Array length loads with 
the bottom 15 bits of the array header data read into the processor, if header indicates a short prefIx; it 
loads with the second word of, the array preflX, if header indicates a long prefix. This means that all I 
non-trapping long prefix array headers, i.e., those that are stored in array descriptors, must align on even 
data words. 

after 10nq prefiz 1oad: 

1ength from prefiz 

31 o 

after ahort prefiz 1oad: 

o 1ength from header 

31 15 14 o 

1.10.4 Array Descriptors 

To provide a mechanism for referencing long-prefix arrays in a loop without trapping, Sunstone 
provides a method for encaching array information similar, but not identical, to the I-Machine array 
registers. As in the I-Machine, the software sets up the array descriptors outside the array reference 
loop, for use by generic inner loop code. However, instead of placing the array descriptors in the I 
window buffer or on the data stack, Sunstone keeps a special array descriptor stack with a pointer kept 
in global registers; this allows for an infinite number of arrays to be optimized in this fashion. The 
generic inner loop code loads the array-header and array-length from the array-register section of 
memory using the locally stored array-register pointer. 

During setup, the software sets an inhibit bit in the encached version of a long-prefix array header, so 
that long prefix arrays do not trap repeatedly. It also stores the byte offset of displaced arrays in other 
spare bits of the encached Array Header; non-displaced arrays contain a byte-offset of O. 

The array descriptor requires the following array-registers for each encached array: 

array-header 
array-length 
array-object-reference 
array-address-reg-VMA 

A routine that adjusts an array needs to check to see if the array that its adjusting has encached array 
descriptors, or an array indirecting to it has encached array registers. Several different methods can be 
used to make this determination depending on the amount of searching this software wants to do. If 
encached, the array adjustment must redecode the array for array descriptor setup. The setup code will I 



138 Symbolics Company Confidential 
. SUNSTONE ARCHITECTURE October 1987 

I use the array-address-reg-VMA to find the array address window register, and then reload the correct 
array-address into it To avoid inconsistencies caused by array adjusting while in the middle of a 
reference, the code in the inner loop must inhibit preempts. 

This is an example of what array references will look like, using array descriptors. Array-header is at 
array-descriptor-sp, and array-length is at array-descriptor-sp, #+1. Array-descriptor-sp, contains the 

I base array-register address in a local register. The array-address local register will contain a locative to 
fIrSt element of the array minus one. . 

* load-data array-header-register +- [array-descriptor-sp,] 
[array-length also loaded and no-preempt set] 

load-array result +- [array-address-reg+index] 

1.10.5 Trap Conditions 

Up to four conditions may cause an array trap during load-array or store-array instructions. Listed in 
order of precedence: 

1. array element (see store-array section 1.5.11 on page 93). 

2. prefix long (Array-Header bit<23> when not inhibited by Array-Header bit<12» 

I 3. index out of range (when index ~ Array-Length[unsigned]) 

4. packed array (Array-Header bits<29:27> :# 0) 

I The array element trap only occurs on store-array and may fixup the data type of the value to be stored, 
or error. The prefix long trap must decode the array to find the appropriate array address. The index out 
of range is an error trap. The packed array trap involves special hardware to fixup the index and adjusts 
the byte rotate register to allow fast packed array trap roatines. 

When an array traps for packed array reasons, the A2 register trap argument expected by the trap 
routines contains an adjusted index. This index gives the real offset for the memory location index of the 
referenced array. In a4dition, the Byte Rotate Register contains the appropriate byte specifier used for 
ldb'ing during loads and dpb'ing during stores. This byte specifier refers to the n-bit byte specified by 
the low (log n 2) bits of index, where n represents the array byte-size indicated by the array-header. 
Additionally, the ldb'ing for a load occurs instead of a move during the subversion of the original 
load-array instruction. 



Symbolics Company Confidential 139 
October 1987 SUNS TONE ARCHITECTURE 

Here's an example packed trap routine for load-array: 

, , , 

, , , 
; , , 
; ; ; 
; ; ; 
; ; ; 

on entry hardware has set up the fo~~owing registers: 

AO 
Al 
A2 

- SCR in nor.ma~ trap operation 
- array address (Sl) as in nor.ma~ trap operation 
+- adjusted indez = (1+ (~db byte-spec (+ index byte-offset») 

where byte-spec = (byte 32. Array-Beader-Register<29:27» and 
byte-offset forced to 0 for short prefix arrays 

~oad-data trap-resu~t +- [Al,A2] 
return-subvert SCR-24 +- AO 
[when re-executing ~oad-array, the subvert ~db's trap-resu~t] 

For store-array: 

, , , 
, , , 
, , , 
, , , 
, , , 
, , , 

AO - SCR as in nor.ma~ operation 
Al - data to store 
A2 +- adjusted index = (1+ (~db byte-spec (+ index byte-offset») 

where byte-spec = (byte 32. Array-Beader-Register<29:27» 
byte-offset forced to 0 for short prefix arrays 

mar - array 

and 

, , , 
, , , 
, , , 

the array address is in the MAR register because store-array is a~ways 
preceded by a ~oad-header, which ~eaves the rea~ forwarded address in the 
MAR. 

load-data 
dpb 
store-data 
return-subvert 

a3 +- [mar, a2] 
a3 +- al, a3 
[mar, a2] +- a3 
SCR-24 +- aO 

; Byte-Rotate set up by trap 

1.11 STORE CONDITIONAL 

In order to allow interprocess and interprocessor locking it must be possible to atomically modify a 
memory location. This operation is performed by the store-conditional instruction on the I-machine and 
by the following sequence of instructions on Suns tone: 

* ~oad-data 
!* write-mcreg 
!* ~oad-raw 
! * branch-next 
!* store-raw 

write-mc-reg 
return 

fai~: write-mc-reg 
return 

temp +- [store-cond-address] 
IBUS-Lock +- t 
temp +- [MAR] 
neq, temp, expected-data, @fai~ 

[MAR] +- store~cond-data 

IBUS-Lock +- ni~ 

RlS +- t 
IBUS-Lock +- ni~ 

RlS +- ni'~ 

In this sequence, the ! indicates that the inhibit-interrupt bit is set in the instruction; the * indicates that 
the inhibit-preempt bit is set. 



140 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE . October 1987 

The first load-data instruction is used to force any transport traps and/or invisible pointer following; 
once any traps have·completed, the MAR contains the actual address of the data, and preempts are 
inhibited so it will not be possible for a GC flip to occur. The write-mcreg will tum on the mUS-Lock 
bit, so that the following load-raw will not only read the data word into temp but will also lock the mus 
for the referenced address. The branch-next then checks if the location had the desired value; if it did, 
the new value is stored and T is returned after the mUS-lock is turned off; otherwise, the mUS-Lock is 
turned off and NIL is returned. 

1.12 INSTRUCTION RESTRICTIONS 

The hardware implementation forces the software to follow rules regarding the actual use of instructions 
specified by the architecture. Most of the restrictions that make these rules pertain to unallowable 
instruction sequences. A table at the end summarizes the sequence restrictions. 

1.12.1 Load Instruction Restrictions 

An instruction cannot immediately follow any load instruction, when it uses the destination of the load 
instruction as one of its sources. For any load instruction except load-ephemeralp or load-oldspacep, 
software must insert at least one other instruction after the load. After a load-ephemeralp or 
load-oldspacep, it must insert at least two other instructions. As an exception to this rule, the data for a 
store instruction can come from the register used as the destination of the previous load.instruction. 

An instruction that uses the SCR register after a load instruction has restrictions as listed below under 
SCR restrictions. 

1.12.2 Special Register Restrictions 

An instruction cannot use the following special registers for source 2: array-length, byte-rotate, status­
control (SCR). 

A store RR instruction cannot use a special register for source 1. 

Software which writes non-zero values to unimplemented bit positions of special registers must not 
assume that the values returned by those registers for the next two instructions will be consistent 
Because of the passaround paths provided in the processor, the unimplemented positions may return the 
values written if accessed in the next two cycles. 

In addition, the processor restricts the use of instruction sequences using special registers as indicated 
below. 

MAR - Cannot immediately follow an instruction that explicitly writes the MAR (ie, uses the MAR as a 
destination) with a MAR side-effecting instruction, specifically a load-ear-cdr. load-cdr. load-header, 
or load-structure instruction, or a store RR instruction. The software must insert at least one other 



Symbolics Company Confidential 141 
October 1987 SUNS TONE ARCHITECTURE 

instruction before the MAR side-effecting instruction, and at least three other instructions before a store 
RR. 

N-Args - Cannot immediately follow an instruction that explicitly writes N-Args (ie, uses the N-Args as 
a destination), with an N-Args side-effecting instruction, specifically a call, return, or return-subvert 
instruction. The software must insert at least one other instruction before the N-Args side-effecting 
instruction. 

SCR - Cannot immediately follow a load instruction with an instruction that uses the SCR as a source. 
The software must insert at least three other instructions before using the SCR. 

1.12.3 Me Register Restrictions 

An instruction cannot immediately follow any read-me-reg instruction, when it uses the destination of 
the read-me-reg instruction as one of its sources. Software must insert at least one other instruction after 
the read-me-reg. 

The software c~not follow a write-me-reg instruction with a read-me-reg instruction that references the 
me register just written. Software must insert at least one other instruction before using the reOd-me-reg 
instruction. 

WBC - Cannot immediately follow an instruction that explicitly writes the WBC (ie, using the 
write-me-reg instruction) with an instruction that uses a non-global or non-special register as a source. 
Since the processor requires two cycles before the desired change in window status takes place, software 
must insert at least two other instructions before an instruction can use the current or build window 
registers. 

Return Address - Cannot immediately follow an instruction that explicitly writes the Return Address (ie, 
using the write-me-reg instruction) with an instruction that implicitly uses the Return Address, 
specifically a return or return-subvert instruction. Software must insert at least two other instructions 

. before using the return or return-subvert. 



142 Symbolics Company Confidential 
SUNS TONE ARCHITECTURE October 1987 

11.12.4 Instruction Sequence Restriction Table 

The number in the table represents the number of unrelated instructions to insert. 

Table 16. Instruction Sequence Restrictions 

AFTER THESE INSTRUCTIONS 
NEXT INSTRUCTION I gc* other** dest. dest. read- write- write write 
CONDmONS I loads loads MAR N-~gs me-reg mc-reg WBC*** RA**** 

using destination 
usingSCR 
MAR side-effect load 
storeRR 
call 
return,return-subvert 
read-me-reg(same reg) 
using window regs 

2 
3 

1 
3 

* load-oldspacep or load-ephemeralp 

1 
3 

1 
1 

*111 

*** 
**** 

any load except for load-oldspacep and load-ephemeralp 
write-me-reg WBC 
write-me-reg Return Address 

1 

2 
1 

2 



Symbolics Company Confidential 143 
October 1987 SUNSTONE ARCHITECTURE 

Appendix A 
TABLE OF INSTRUCTION SIDE EFFECTS 

Table 17. Instructions/Conditions Side Effecting Special Registers 

Instructions/Conditions Side Effecting Special Registers 

Instruction andlor Condition Register Descriptions 

call,jcall RlLformat PC loads from 38-bit-immediate 

return, return-subvert PC loads from Return Address 

any branch PC if true, load PC offset from instruction 

call,jcall SCR - Complete if bit 9 set, clear and set bit 12 . 

return, return-subvert SCR - Complete if bit 10 set, clear and set bit 12 

return-subvert SCR - Subvert sets subvert bit 8 

any load SCR - Cdr,Type load cdr and type from memory 

any trap or interrupt SCR clears bits 12:8 and ORs instruction 
bits 39:38 into 16:17 

any interrupt SCR - Interrupt sets interrupt level 

any completed instruction SCR - Complete if bit 11 set, clear and set bit 12 

call,jcall, N-Args may load from n-args insl field 
return, return-subvert 

load-array Byte-Rotate loads according to packing information 

load-cdr,load-car-cdr, MAR loads from calculated address 
load-header,load-structure 

any load wI desl Array-Header Array-Length loads from Array-Header or SBUS word 



144 Symbolics Company Confidential 
SUNSTONE ARCHITECTURE October 1987 



Symbolics Company Confidential. 
October 1987 

12-bit Signed-Immediate 25 

6-bit-signed-immediate 22 

Arithmetic Operations 33 
Arithmetic Type Traps 122 
Array descriptors 137 
Array Hardware Support 135 
Array Header Register 5, 136 
Array Length Register 5, 137 
Array References 134 . 

Binding Stack 115 
Bit and Byte Operations 43 
Branch Type Traps 123 
Build Window 3 
Byte Rotate Register 5 

Cache Control Register 12 
Call Operations 49 
Calling 116 
Catch Block Pointer 115 
CdrReg 7 
Compiled functions 1 
Cond 23 
Condition 2S 
Conditional Operations 61 
Copoc-Opcode 24 
Current Window 3 

Data Block Pointer 114 
Data Stack Pointer 114 
Data Stack 113 
Data Type Checking 26 
Data Type Setting 27 
Data types I, 21 

I-Machine differences 1 
Destination 22 
Diagnostic Register 14 
Direct Branch Fonnat 19 
Direct Branch Operation 59 

ECC Log Counter 14 
Ephemeral Oldspace Register 11 
Exceptions 120 

FPU Configuration 11 
Function Calling 116 
Function Entry 118 

Garbage Collection 134 
General Traps 125 
Generic Functions 118 
Global Registers 8 

High/Low 25 

145 
SUNS TONE ARCHITECTURE 

Index 



146 
SUNS TONE ARCHITECTURE 

mUSLock 14 
mUS-mor-Address 14 
mUS-Error-Status 14 
Illegal Instruction Trap 123 
Inhibit Interrupt 8 
Inhibit Interrupts 20 
Inhibit Preempt 8 
Inhibit Preemption 20 
Instruction Format 15,20 
Instruction Sequencing 19 
Instructions 

Add 34 
Add-no-overt1ow 35 
And 40 
Ash 44 
Branch 60 
Branch-next 63 
Branch-next-type 67 
Branch-take 64 
Branch-lake-type 68 
Call 50 
Dpb48 
Fieldsof 20 
Formats of 14 
Jcall 51 
Ldb 47 
Load-array 78 
Load-bind 83 
Load-car-cdr 74 
Load-cdr 80 
Load-cdr-finish 76 
Load-Coproc lOS 
Load-data 72 
Load-data-iv 73 
Load-ephemeralp 88 
Load-gc-copy 85 
Load-header 82 
Load-oldspacep 87 
Load-raw 86 
Load-scavenge 84 
Load-structure 81 
Lsh 45 
Move 57 
Move-type 58 
Mult 38 
Or 41 
Read-Coproc 107 
Read-me-reg 110 
Return 53 
Return-subvert 54 
Rot 46 
Store-38-bits 102 
Store-array 93 
Store-bind 95 
Store-cdr-3 99 
Store-cdr-next 97 
Store-cdr-nil 96 
Store-cdr-normal 98 
Store-cdr-reg 100 
Store-Coproc 106 
Store-data 90 
Store-data-iv 91 
Store-rplacd 92 

Symbolics Company Confidential 

October 1987 



Symbolics Company Confidential 
October 1987 

Store-type-reg 101 
Sub 36 
Sub-no-overflow 37 
Trap 65 
Trap-type 69 
Write-Coproc 104 
Write-mc-reg 111 
Xor 42 

Internal Registers 4 
Interrupt Level 8 
Interrupt Registers 13 
Interrupts 121 

Load operations 70 
Load Traps 123 
Logical Operations 39 

Map Cache Validbit 14 
Map-Cache 13 
Memory Address Register 6 
Memory Control Registers 9 
Memory Error Status Register 11 
Message Passing 119 
Metering Counter 12 
Metering Modes 12 
Microsecond Qock 11 
Move Operations 56 

N-Args 25 
NIL 6 
Number of Args Register 6 

Opcode 21 
Opcode Specific Traps 123 
Opcodes 21 
Overlapping Window Scheme 3 

Page Offset 25 
PC Address 21 
PHT Hashbox Register 11 
Physical address space 2 
Program Counter 6 

Register Immediate Long (RIL) Format 17 
Register Immediate Short (RIS) Format 17 
Register to Register (RR) Format 15 
Registers 3 
Return 120 
Return Address Register 11 
Return Operations 52 

Slot Number Register 14 
Source 1 21 
Source2 22 
Special Registers 4 
Stack Groups 112 
Status Control 24 6 
StatusControlRegister 6 
Store Operations 89 
Store Traps 123 
Subvert Instruction 7 

T 6 

147 
SUNS TONE ARCHITECTURE 



148 
SUNS TONE ARCHITECTURE 

Table of instructions 30 
Take Instruction Completion Trap 7 
Timer 11 
Trap Base Register 11 
Trap on Call 7 
Trap on Instruction Completion 7 
Trap on Return 7 
Trap Result Register 6 
Trap Vecur 126 
Traps 121 
Type Check 22 
TypeReg 7 
Type Traps 123 

Virtual memory 2 

Window Stack Limit 112 
Window Buffer Control Register 11 
Window Registers 3 
Window Stack 112 
Window Stack Base 112 
Window Stack Pointer 112 

Zero 6 
Zone Oldspace Register 11 

Symbo/ics Company Confidential 
October 1987 




