DRAFT 1 On Symbolics and Symbolic Processing

What does Symbolics really do? What do we sell? What do we have to do with 4”7 How do we
continue to expand our market? All of these questions are of immediate relevance to the entire company.
In the past we have been perceived as an Al company (whatever that meanst), though I don’t think that
anyone can say exactly what AI we’ve done. Certainly we’ve contributed to most of the companies,
laboratories, and universities working with or around AI. However, we ourselves have done, for all
practical purposes, no AL It’s interesting (and quite irritating, at least to me) that we are touted as the

"only profitable AI company" and as having sold the "highest dollar volume of AI software."

To the extent that we continue to promote this point of view, we do ourselves a tremendous
disservice. We continue to give "Al seminars," we fail to correct misimpressions created by the media,
and our sales force isn’t trained in what we really do. So what is it that we really do? And why is

promoting this Al image a disservice to us?

I think that we do symbolic processing. This term is almost as hard to define as artificial
intelligence. Great. I have two working definitions of symbolic processing that I use. We need to make a
concerted effort to produce a standard definition. Here are mine:

(AD) Computing with data structures that more closely model a person’s thinking than those
used in numeric processing;

(B1) Computing with data structures that are appropriate to the problem being solved rather
than strictly numbers.

Since these two telegraphic statements come from a transparency, there’s some prose that goes with

them. Let’s discuss these definitions.

One of the major objections to either of these definitions is that the term dara structure doesn’t
mean any more than the term symbo_lic processing (and I assure you that that doesn’t make for a useful
definition!) When I use the term data structure, I mean, in a loose sense, a rcpr&entatibn of information
(data) inside a computer. I like to keep data structure in the basic definitions, since I think it makes
them more concise. Also, the term carries some mental baggage along for those in the audience who’ve
had exposure to the technical side of computers. Hére's a rewritten definition:

(A2) Computing with representations of information inside a computer that more closely
model a person’s thinking than those used in numeric processing;



DRAFT 2 On Symbolics and Symbolic Processing

(B2) Computing with representations of information inside a computer that are appropriate
to the problem being solved rather than being strictly numbers.

OK. But (A2) still discusses a person’s thinking. Isn’t this related to AI?
No.

Here’s why: the person in quesion in (A2) is not an arbitrary person, but rather the programmer, or
the person specifying the problem. And, when I say "numeric processing,” I'm really refering to a
conventional programming environment/language like Fortran, which deals strictly with numbers. So let’s
try that again:
(A3) Computing with representations of information inside a computer that are closer to the

way a programmer, or the person specifying the problem, thinks about the problem than
those representations used in Fortran-style "computing with numbers".

That's pretty close to (B2). Good! Those definitions should mean the same thing. Is Al)

understandable? Let me know.

I think this definition proves my point. If symbolic processing is really at the heart of what we do,
then it doesn’t really have much to do with AL In fact, it would be like saying that "IBM sells the
largest volume of spreadsheet programs for microcomputers.” I suspect that Lotus Development
Corporation would not deny that they use an IBM assembler to make their product work, but would
certainly deny that IBM itsélf is selling the spreadsheet program! We are in the Same Boat. Vendors may
sell more ART’s and KEE's for 3600’s than for any other .machine, but 1 suspect that Inference

Corporation and Intellicorp would violently deny that Symbolics gets the revenue!

But maybe even this analogy is to esoteric. Try another. Answer these two questions: A) how
many houses do Stanley and Sears sell? B) how many houses are built with the tools that Stanley and -
Sears sell? As far as I know, these companies don’t sell houses. But I'll bet that almost every house has

had one of these company’s tools used in its construction.
Symbolics sells a tool.

Generally, our tool is symbolic processing, which is a better way to implement computer programs.



DRAFT 3 On Symbolics and Symbolic Processing

Specifically, our tool allows someone (a programmer or end-user) to take advantage of symbolic processing

in an efficient and effective way that’s better than other ways of taking advantage of symbolic processing.

The tool of symbolic processing is generally excellent for writing programs that deal with non-
numeric aspects of the real world. Let’s discuss this. Conventional programming languages force the
programmer to express the problem in mostly numeric terms. Where problems are mostly numeric, this is
very appropriate, and symbolic processing per se doesn’t help much (but the environment does, this will
be discussed later.) Fortran works well for many scientific calculations (so does symbolic processing.) But
most problems are not numeric, and the programmer is forced to go through extra levels of conversion
between the actual problem and the realization of that problem in the computer. In other words, the
computer is working with information that’s not appropriate to the problem being solved (see the

definition.)

But wait a2 minute! Aren’t all computers just on and off switches, when you get right down to it?
And there’s a well known way of putting ones and zeroes (ons and offs) together to make numbers
(binary). So how can you get away from numbers anyway? That’s right, our machines are ruring
machines and so, in a very fundamental sense, can’t do anything more than any other computer with a
similar amount of memory. Turing proved this years ago, and this remains a very fundamental and
important result in computer science: that all machines of a certain class can be made to do the same
things. What symbolic processing does is make the computer do more of the translation work. That‘is,
the computer participates actively in converting non-numeric data structures into the ons and offs that the
computer ultimately manipulates. So, the programmer is able to communicate with the computer in a

more effective manner. Which ties us back into the definitions.

Let’s carry the tool analogy a little bit further. There’s an interesting thing that happens when you
improve your tools enough: sometimes things that were too hard to do practically (but possible in
theory, of course) become practical with the improved tools. The early Egyptians were able to build very
nice pyramids with mostly their bare hands and simple equipment, but they didn’t build all that many of
them and the idea didn’t spread too far. Today, we build skyscrapers with ease and prolificacy all over
the world. Physics didn’t change, it didn’t suddenly become possible to build skyscrapers (it always was,

in the abstract), it just became practical. And that’s why it doesn’t really matter that a symbolic



DRAFT _ 4 On Symbolics and Symbolic Processing

processor is still a turing machine, because it moves certain things from the realm of the absiractly possible

to the realm of imminently practical.

OK. Maybe you’re willing to admit that something like symbolic processing, in the abstract, might
be a good idea. After all, if it not only makes a programmer more productive, but alsc makes certain
new techniques, like modelling machine intelligence (i.e. AI), practical, then it’s a very interesting idea. I
think it’s important to discuss some of the key ideas to understand how symbolic processing gives us these

benefits.

One of the key features of symbolic processing is the availability of several basic kinds of data
structures, both numeric and non-numeric. On the numeric side, many kinds of numebers are available,
including integers and "bignums," floating points, rationals, and complexes. Bignums are integer; that can
represent any size number, beyond the range of standard integers. A rational number is an integer
divided by an integer (a fraction, essentially), and is used to represent exactly non-integer quantities. One-
third (1/3), is an example of a rational number. What numeric processing language offers these kinds of

built-in data structures?

The simplest non-numeric datum in symbolic processing is one which indicates two other data.
These are historically called conses. The other data can be anything, including numbers or other conses.
Out of conses you can build structures of arbitrary complexity. One of the most useful ones is called a
list, which is simply a structure of arbitrary size that forms a collection of data. A list is readily built out

of conses in such a way that it can be extended or shrunk, its elements changed one by one, and so on.

Arrays, either single- or multi-dimensional, are an important data type. In symbolic processing, each
element of an array can be any datum, including numbers, lists (or conses), other arrays, and so on.
Arrays are useful for modeling things of arbitrary length that need to be indexed (e.g. text strings are
implemented as arrays, as one might need the fourth (or nth) character of a text string). A chess board

is naturally implemented as a two-dimensional array, with non-numeric elements (i.e. chess pieces).

Other non-numeric types include generically typed objects, which are arbitrarily sized objects that can
be given explicit types by the programmer. Since the kind of object can be identified by a program, it is

possible to make that program behave differently for different types of objects: One possible use of this



DRAFT 5 On Symbolics and Symbolic Processing

feature is for display purposes: an object of a certain type can be displayed in a manner appropriate for

that type (e.g. when an object has a name, that name can be displayed.)

Another important non-numeric data type is a Flavor instance, which is an object that contains not
only data, but also procedures (methods) to operate on that data (see object-oriented programming, below).
This is commonly called objecr-oriented programming. Even though object-oriented techniques can be
built out of more basic symbolic processing concepts, they are so useful that they must be considered as

part of any reasonable symbolic processing system.

Imélied by the presence of these more "interesting” data structures are control structures that
operate on them. If we consider data to be the nouns of our language, then the control structures are the
verbs. For example, there’s a way to do looping that says: do something for every element of a list. And
there’s a similar construct for every element of an array. Control structures (verbs) can be added to the

language by a programmer, too. I'll discuss this in more depth later.

A major feature of symbolic processing that makes non-numeric data types exceptionally useful is
dynamic storage management. This technique allows a programmer to create data structures as needed,
without worrying about pre-allocation. In a typical numeric language, you must say "I am going to use an
array 100 words long now," and then when you’re done, you must say "I am now done with this array."
It turns out that in many major Fortran programs, a significant amount of programming deals with
handling the fixed amount of memory available. In symbolic processing, many data are of variable size.
Symbolic processing takes care of allocating memory as needed, and freeing it when it is no longer in use
(this process is called garbage collection). So, no arbitrary restrictions are imposed on any program. If a
program is making a list) of things, the list is not restricted to only sixteen (for example) elements,

because the program can request storage to hold more elements of the list as required.

David Loeffler of Honeywell related a programming example to me that he likes to use to contrast
numeric processing (Fortran, let’s say) and symbolic processing. Let’s start with a fairly simple program:
given a dictionary and a word, find if the word’s in the dictionary. In a typical numeric language, like
Fortran, this involves writing some amount of code (at a least a loop doing string comparisons). In a

symbolic processing language like Lisp, there is a primitive that checks each element of a list against



DRAFT 6 On Symbolics and Symbolic Processing

another thing and tells you if that thing is in the list. Essentially, keeping around collections of things

(like words) is simple.

But this example is still somewhat trite. Let’s make the problem more difficult. Instead of having a
fixed dictionary, if a word isn’t found, add it to the dictionary. Do this for an arbitrary number of
words. Now I’'ve given you a problem that is fairly difficult for a numeric language. In’ symbolic
processing, however, this is a natural problem to solve. You just use a list (for example), and add to it if
the word isn’t found. This kind of task comes up all the time in real programs. After all, in the outside
world, most problems involve an arbitrary number of elements. It’s rare to find a problem where you

know in advance how many things you’re dealing with.

I like to illustrate the symbolic processing "way of thihking“ by discussing the idea of identity. It's
an interesting concept that is completely lacking in numeric languages. In conventional languages, there
is always some sort of equality comparison operator (usually =). Tl call this equal. When you ask
whether two things are equal, the language looks at both of them and tells you whether or not they look

the same. Of course, symbolic processing has ways of checking this same thing.

It turns out, however, that when dealing with non-symbolic data the looks the same check isn't the
right one most of the time. For example, let’s say I describe two people to you. Person A is the local
doctor, and person B is John Doe. Now, I ask you a question: if I send a letter to person A, does person

B get the letter? You could ask me if person A and person B look the same, but that doesn’t give you
the information you need to answer the question. After all, they could be identical twins. A better
question to ask would be whether person A and person B are the same person. This is exactly the sort of
problem that arises all the time when writing symbolic programs. This is the concept of ideﬁtity, and it’s

a fundamental concept that doesn’t even come up in numeric processing.

Another key concept of symbolic processing is the notion of runtime type checking and runtime
generic operations, which are made possiﬁle by the fact that the symbolic processor knows what kind of
data it’s manipulating. The simplest example is arithmetic: mathematical operations work correctly for
any types of numbers. So, if you write a program that adds two numbers, that prdgrafn can handle any

kind of numbers — integers, complexs, and so on — you choose to give it. On special purpose symbolic



DRAFT 7 Oir Symbolics and Symbolic Processing

processors (especially the 3600 family, which has special hardware) no penalty is paid for this runtime

checking.

A more subtle (and I think more useful) example of generic arithmetic is that the system can
change how it represents numbers without affecting the way a program works. As far as a typical
program is concerned, there is no difference between a normal size integer and a bignum. So, if you add
two normal integers together and that overflows the word size, the system switches to an alternate
representation (i.e. a bignum) and gives a 100% correct result. Normal numeric processors can’t do
this, and you get either an overflow trap (in the worst of all possible worlds, the system doesn’t even tell

you this happened!)

The concept of generic operations can be extended to user-defined data structures. Since type
information is always maintained, a program can always find out what kind of datum it has, and act
accordingly.  Object-oriented programming, which I think is an integral part of symbolic processing,

enhances these concepts even further (I'll discuss this more later on.)

A collateral benefit of runtime datatype checking (and a very important one) is the ability for a
symbolic processing system to detect errors at runtime that are not normally caught. For exarﬁplc, if you
try to use a variable that hasn’t been initialized, the system tells you. In most languages, an arbitrary
value, ér sometimes a specified value (zero, perhaps) is used. Another cxaniple is array bounds checking,
which on a symbolic processor is done at runtime. So instead of having your program write all over its
memory, or read invalid data, you get an error break from which you can debug your code. The
advantage to a programmer is clear. The advantage to a user is that instead of producing random and
unpredictable results, the system essentially tells the user: "Hey, there’s a bug here, you’d better get it

fixed if you want your computation to work correctly.”

I believe that object—orien}ed programming is an integral part of a modern symbolic processing
system. There’s some confusion about what the term actually means, however, and I think it’s important
to explain. When I say object-oriented programming, I'm refering to the technique pioneered by Simula-67
(and later, Smalltalk) that allows breaking a problem into two pieces: 1) a set of programs that perform

generic operations on objecrs that meet certain specifications (often called proiocols), and 2) a set of



DRAFT 8 On Symbolics and Symbolic Processing

objects that encapsulate (i.e. combine) both data (which is sometimes called /ocal state, which simply
means data belonging to a particular object) and programs (which are sometimes called methods or

behavior).

How is this particular split used? Let’s take look at an example. We want to solve the problem of
placing furniture in a conference room. I can tell you how to do this without refering to the details of
any of the particular pieces in the room. I can tell you that I want at least five chairs around the
conference table, and that they can’t be any closer than a foot apart. I can tell you I want some of the
chairs to have arms. And so on. Then I can give you a collection of different types of chairs, and you
can place them around the table. Some chairs might have wheels, and those you can roll. Some may be
very heavy, not have wheels, and need to be carried. And so on. The derails of the chairs do not
matter. The only thing that’ matters is that each chair meets some general set of specifications. Each
chair needs to have some position and size, needs to hold a single person, etc. So, you can describe the
algorithm for placing chairs in a genedc manner, and it will work for any particular kind of chair. In
very much the same way that the real world works. I think that object-oriented programming is ideal

for modeling things in the real world.

The Symbolics 3600 environment takes great advantage of object-oriented techniques. The Flavor
system is a design’ and implementation of object-oriented programming that alléws for certain things not
available in previous systems. I’m partial to it, as I invented it in order to implerhent the window
management package (window system) for the CADR Lisp Machine at MIT. Use of objects at the lowest
levels in the system yields some important advantages for the programmer and user. Not the least of
which is increased generality of certain system functions. Ninety percent (or more of the code that I

write these days is object-oriented).

Generic operations and object-oriented programming (amongst other features) tend towards isolating
the programmer (and user) from the details of the hardware. This means that programs continue to run
even as the underlying hardware base changes significantly. For example, on the 3600 you are able to run
graphics programs on either the black and white or color screen without altering the code. This is
because the window system is built in a general manner even at its lowest levels. This is directly due to

the availability of efficient object-oriented programming. ’l‘he‘ 3600’s symbolic processing environment



DRAFT 9 On Symbolics and Symbolic Processing

(including what people call the operating system) was converted from the previous generation machine (the
LM-2) in about two man-years [check this number!). This included changing the word size of the machine
from 32 to 36 bits, and completely redesigning the instruction set of the computer. I think this is

amazing.

To end the discussion of key symbolic processing ideas, I'd like to bring up one more point. That is,
in a symbolic language programs can be data, and data can be programs. The former means that a
program, either compiled or not, is simply another kind of data structure in the environment. It can be
stored in arrays or lists, passed around between subroutines, etc. The latter means that a program can
construct another program on the fly (as data), and then execute it. Both of these features are amazingly
powerful and almost never found outside of symbolic processing. And since the compiler is just another
symbolic program sitting around in the environment, it is possible for a program to write another program,

compile it, and execute the compiled code.
[mention dynamic linking]
And more to come:
Symbolic Processing Style
Programming is a language building activity where
programs implement a “jargon® and
basic control structures and data-types are
augmented with new "verbs® and "nouns."
Modularity is facilitated.
Rapid prototyping, progressive refinement, and
testing of partial solutions are supported

by a rich and sophisticated programming
environment.

Object-Oriented Programming with Flavors
(Message Passing)
- Integrates data and program.

- Isolates generic algorithms from
specific implementation details.

- Supports the "programming style® by aiding
Jjargon building, modularity, and rapid prototyping.
Symbolic Processing Graphics Examples

Windows, Paint Brushes, Rendering,



DRAFT 10 On Symbolics and Symbolic Processing

VLSI Design, 3-Dimensional Editing
- Dynamic storage management and
a large virtual address space

eliminate arbitrary restrictions.

- Flavors permits different implementations (types)
of things (e.g. windows) to interact gracefully.

- Rich choice of data structures allows algorithms
to be expressed naturally and succinctly.

- Some measure of hardware independence is
achieved through the use of object-oriented
programming at low levels of the system.

- Effective user interfaces are readily implemented.

Specific 3600 Family Features

- Very efficient function calling and
object-oriented programming.

- Large virtual address space.

- Multi-tasking in single address space. -



