L4
United States Patent [19] (111 Patent Number: 4,922,414
Holloway et al. [45] Date of Patent: May 1, 1990
[54] SYMBOLIC LANGUAGE DATA ’ 4,730,249 3/1988 O’Quin II, et al. 364/200
PROCESSING SYSTEM Primary Examiner—Gareth D. Shaw
[75] Inventors: John T.Holloway, Belmont; David A. Assistant Examiner—John G. Mills
Moon, Cambridge; Howard 1. Attorney, Agent, or Firm—Sprung Horn Kramer &
Cannon, Lexington; Thomas F. Woods
Knight; Bruce E. Edwards, both of
Belmont; Daniel L. Weinreb, 571 ABSTRACT .
Somerville, all of Mass. A symbolic language data processing system comprises
. . . . a sequencer unit, a data path unit, a memory control
[73] Assignee: Symbolies Inc., Cambridge, Mass. unit, a front-end processor, an I/0 and a main memory
[21] Appl. No.: 78,724 connected on a common Lbus to which other peripher-
g als and data units can be connected for intercommunica-
[22] Filed: Sep. 8, 1987 tion. The system architecture includes a novel bus net-
Related U.S. Application Data work, a synergistic combination of the Lbus, microtask-
- APP ing, centralized error correction circuitry and a syn-
[62] Division of Ser. No. 450,600, Dec. 17, 1982 chronous pipelined memory including processor medi-
[51] Int. Cl3 GO6F 9700 ated direct memory access, stack cache windows with
[52] US.CL coooveeceerrvrirverrnnnns 364/200; 364/255.1; two segment addressing, a page hash table and page
364/255.2; 364/255.3; 364/255.4; 364/255.5; hash table cache, garbage collection and pointer con-
364/255.7; 364/255.8 trol, a close connection of the macrocode and micro-
[58] Field of Search ... 364/200 MS File, 900 MS File code which enables one to take interrupts in and out of
56] Ref Cited the macrocode instruction sequences, parallel data type
C elerences Lite checking with tagged architecture, procedure call and

. U.S. PATENT DOCUMENTS
4,587,610 3/1986 Rodman

microcode support, a generic bus and a unique instruc-
tion set to support symbolic language processing.

4,680,700 7/1987 Hester ét al. 364/200
4,682,281 7/1987 Woffinden et al. 364/200 6 Claims, 22 Drawing Sheets
REGISTER FILES a-8101/ GARBAGE COLLECTOR TAGS TYPE FARITY
LB AP AP ¥ C&TYPE CHECK -7YPE T72A 84urFER
MC ABUS A a a z 3.'?) TRAP FOINTER 08US
22 TYPE conp L8us
GC AMAP ARITY
G MapP2 B-8uUFFER
A Mf""’”z AMEM fous | GCMAPT
o8us 7 4336 1p! ABUS 27:73) l/gm;o g GC Mary 0BUS LBYs
Ir3
28us
Ere A o W <3:0) 3REG
G s ass o
LBUS ADOR(It:0) (REG) — |AMEMA
AJOR CALC
AMEMWA X8u3 Z£Ra S/ ARITHMETIC
GMUX UNIT
FRMP CHERELOW R
STHP BASE MUX
XBAS
ADDR
) MUK 2005 (i M/SE;E? | oo
Y AMR: aFseT (HiaH 16) MASK_|ALS 3x3
U AMWA MERGE
THHEOATE — Jcammytn
30X
U D n RS
arim A AMEM KA Y8us (& caworrions) conp
M I e o5 240K
g8us <27.0) 3mux @ ¢arres)
2REG £ (ELDS]
DISFATT.
OBUS<27:0) [Mszee "
s 08US (4:) 2mux
aBUS 59> XBAS i oaus<7w—{D— CONTROL
2FE6
oBUS (A, 2/6
oBUS Bewory| TwnEonar [N, 4
285136 4p .| BMEM 2,
B 2REG 7 o UCAVOSEL i DUNST T
ABYS B3 CHECK Y
X8Us 2mux A 2mMUX "_;’,’((oM U COND SEL @@ oo
UBM?RAG GMEM 4 2
vauwa QATA FPATH

2MUX

4922414

Sheet 1 of 22

'O14

May 1, 1990

U.S. Patent

_ (57 .
CELY E v SOSETIOM S (o) (/) (&)
VeI A XSO oLr JOLNOI 3
N 7L | eves vava| | yzon77035

“ |
]

1

\sz7

4,922,414

Sheet 2 of 22

May 1, 1990

U.S. Patent

MOV UM IFSS

— (D SN .
I HSHL IQ SHGL S @ Ol 3
AN
_| ‘ EI7.5
o I 2354 &/ INS HLIM) 0N LYW
] wxyst v
dSD MSvL m e (B2 HEDSNET -
. 1l§§ 2408 AL140185” 4 ISI LXIN
ML :.QQIM — \/SV.L GYVH ALIYOIY
Mot LXInxav| [.
_/ S 4n2 @€ :56) SN97-
wsv | || sovut 1w g HoLmS b porsd AL Ny
v - Uyises AV AITS " anavm [SSINSIO
NITWoSS SOLD 5 m— OVAS 7€ DML
v st X [eow ALIG OIS —| AL 1590/5|
soo-{] nar | owoer _J X Sz 259 [—dSO IS |73 5L
§ 5o | N HSYL D -~ 7.L15M+ QY7 AdS
708.INTD ;
ong g [~ Q. SIHFAV ASS
I ID R KO:LY AdS
ST LXIN OINSHL SNOLLIGMDD
L
a1 Lig 1 . (SLNVUSNOD)
SUIHM IO QY VYL +&IN) .
IKyg e o) anNgd ot - ANN...NMJVM,\VQQ
8a [—ista _ VYL |- <ZE :EEDSNGY
&N v 118 —(4vS) SN 17
b vHIHD R e B
W3IHI LYTSNI —5010 SO7T~/
“ —NNYIN WOON
u&lg ¥In _
P _\rl o HOUVSIO | SON'SIN
i l_.n.___ _L — 0.0
DV LXTN +/ IS HLIM,
_/ 547 ozl 4198 [(S5 w5 4

4,922,414

Sheet 3 of 22

May 1, 1990

U.S. Patent

xwe

. ﬁ _H YMNEN
m mv —_ HIVE VIO VAING c&%b
EXE
XIS XWE g X
A~ (it 736 N HoNXS xowZ e NIy
—EL LS D 735 OO d |0 i gprsgs | 9342
B By - 75
S— —s6)mmvn ANOW3, Sng0
||de|_@ _T (Pt 35180 @&I FLvioTmME we.
972 F L—{219bH) 9342
704.1N0D qu«\.xv%nQ X sz e Svgx— <P 6> nF0
A ngﬂlﬁvm\m\m o .
xnwe 57X B]
3y IMBQ%V&%“\W\\ O:%) sngo TS PL2>SNFTO
. 2 |||
HAUVHSI0 I_M_L&E\u&\m z8 | |Homm) y e o :L2> Sneo
_ Xwe _ A 077/~ dWE L 9348 XWE
i v WIwt
s ¥ § D7v0 dagV
o7y FIVIOTWNHT
YMAY 1
ZXE (9 HIH) VYWY 17
sngo —| FH T2 (51 moz) .
\ A5 _._|.=| Svax
3 AMLS
YW TN S
M "L
NOjs o3z 5 [
ILIWHLIYY SnEx | ﬁl I ¥y
VWIAY| [(9R)DIYaaY snaT
G- 5760 G sone | oo
e e @: %mv. A\Sn.,..\ew _\ 7 oWE
OYIW N8 drgeryy I —SNE0
g7 SOG0 PN 28 OB | (priz2> Q_/ DIt GEXNE
A_ _ : Jov 29— T VI~ srev 5950 . WINY' | somaw v
YT AG -8 2w 39 P 2] :
AL15WL oW 99 g 2
87 ONDD 4L ——(D.S) 175 o bW FAL N >< g 9
T e as ¥ N (VMW EhETam e
YT G- AL~ . :
10960 AL SOML HOUITTAID S Pl0I8-8 SFTV A J7LS/ 97

4,922,414

Sheet 4 of 22

May 1, 1990

U.S. Patent

LMD OV L FAL VUMD

299
GNT - [g—OVD
ZE 9y 2775 [z PE SNV
N‘ﬁ. —~ 7££5788 - 1775 g SE snav

S604

I l—ovo
b (E-ano
9 15— oo
W= nz W.Q\,@
3 .NJlQ\—\Q

Yy7 o & oNoD 2L
S ZML G| aa0 5 L y5in0d Tl
g g L FoAL-
V [gALVe FdAL

\E.w tmwm
18-
P92SH

D WIN FVYL T L
LN VYL Tl L

78 Y025 o-

g6gNMY

74 ¥TD 5 /-

72 a2 z- ,

e tmu.w - 7 oW L wéw
EEI5TH

= W FIAL UM

¥ old

F0- G TIMIW FAAL

g2 snssg
5 t sngg
- 2 sngg
5 £ snNgg

HAYA SNG
S-£_AToH
PL2S7L

F00970
AV &
6oy
N3 -\ 7779VLS snev
2Lm - \mq MWMQQQ FAAL 8601
= 7,244
.WI 62 576V
ERA I Y
T /ESTBY 43 NIOo AL~
(AL Y m&timl“
seavaay 7 SO8Y L St
5 775 VW T L))
o7/ 795 YW Sl /)
772 775 VW 32l 11
o7 £ 775 VW FALN)
BT YW FL 0
| 6 795 oW FIAL 1)
ONOD 011 2
mi gL
T | ey o MOFHD FdAL
ALY T h L — G/
g 3%
azt/SKI

001 AVMO 12H/ISWI

cANY ONOIFS
> oM

4,922,414

Sheet 5 of 22

May 1, 1990

U.S. Patent

SOld == LMD HQLIFTTOD FIVEYD ki
IObLS HFHUO0 L5, 960 ENT |G- HTLNOS L
v [FYIUMOSL 3L 7 2 AT ONOO7S ST~ |5 T 29 7118 -
7 P S 99 7M S 99— T M ENT - = OND
| 2o 39 R U E /73S [0dvw 39
,wd§\\h AN L85/ m w.wm - FdbW D9
v W.I%.%k>\$ FHML 5y Yt MW 99 —= 26367 (PP 70V VNN 29 acmemin: on — /- 7 EA 29
I P 5 Zd 2 _ 8- o— T W 9 UM~ 27915077 IN -2 g-
700 1075 © 1 — THIHLS S74ul0 59 L)
v W L9901 THIbLS SIHL uuuﬁ Z-
| [FD 7 978WLS m%wl@ﬁwv\ 7 Telbis LyodSHoL 29— € -
¥ o FIVH - TdW3IL OINWION0D D925
) : aNIZ7E 7M1 295,
FA g 7omson: vy
0v/ ,
gETSHL
pI7%L LMD DN/ VL mmmuw%
&OLITI702 F90EH VI
173744 gear 8609 8603 8692
79- 79- 7- By
7 b-avo 17 7 2 FI- I3 7V1S Sngy
9 5o g cap— 108 2 e 0 ¢ / sngg “ g 7 59
W — 7—av9 2/ 27 X va L0 |5 7199
| NNT m\ A m\\“w mw\ 7 w_w 7 mw 7 \w w\.w\m&%
A &l 7 IV tzr 6/ SN
5599 aav 9, i PN e i 2 i i wl\%\m\\mw
5 9 G LW 29 4L AR £V g £ (o LISngY
v M.um\@%\ oy |Z ww 77 w\ 77 gV |6/ 505V
e s 1 o
pazsvs P gy ¢ oY |7 av =2z gy
Y 15 V5 o g o |5tz snew
y/14 [7] Y34 5 Hy 73 \\Qmﬁwh’\wm‘
b4 v 2 |7 oIV |- 92 sngy
£V = gt 14 av= 12 sngy
ALIYV SYW 9 5100 S 79 —7100 1y 295190 2 29199 o
W Y9/ oy 49/ WYY Y9/
aov/ SWI PIvISWT 2ot sWI %&q& %m“,

4,922,414

Sheet 6 of 22

May 1, 1990

U.S. Patent

99l4d o, 2D TOMINOD VL
J0-t¢7 ONGD
775 waw %&R 7 MOTS SO 7 o’ MO8
/g x@w\m\\\%\ms%\nﬁ 7 B LYOSVSL DD
P L ST F| 00 g w. 26 §mm§ orr
/o s WO SO UL . 7 MO2ASINO
— 9 S/, P40\ G
F W e o L ST —FLN0 & |2 ¢r snaw AL ISIW ST —5 05— 7 /b
FHVS S ST L0 7 26 SngY VL FAAL QQ@@@I 7 AU UL
P A2
_— wo 2 M2 aNOI N AN 2 It ono2 17
NI-C Qv
L52SHL
wivy .) :
N9 V425~ Y1000 LPDN
.mv Mww LNEIOT A7 WA -NISHUNT ! =
FIUI LGNNI LON SI00 SJON*
ONY v W_I oNOD -
NOWNWOD [g~ 7 eI MOTS =1 IV ONOD 1
] By o 1IN VO 17
Wl w02
- .
.ukum\. “Q " 77 7 MOS0 v Wl\b\«\%‘.\g,\mbb-
F120- 21l—7 ol 2500sW VL A g /W VD (7
.Q\vs..q. 0 pa 9 7 Nn\VF\KINQ
F7I4D ANUXT Y7 2 GRS I | v [Z N0 FAL el
w0 HT 7 ONOD 3ol
.\.WW\W\ « [BWOnX/= LON S8 I oV
Wryremy 5 WINXIS ZepL snemg -
0V
rOL L

4,922,414

Sheet 7 of 22

May 1, 1990

| U.S. Patent

s =

LOl4

D-GE VLD $757

JAN

I L5
0% B
U BULBE - 7761 OV
£LEY v,
(o) 74 T oV
PSESLNO 797 II& '€ NL 5187 7| Yo
BV \— 370 L295500 297
7 U2 b -
O ED k&m&%& 27 = h s
4 Y74
HONYI F75700— ST :
3| gz , 20— 7 240 vLvO
Q@&Gl% BB g5 | . AW | ST AVE RN
. 29> 297 A1
— @ B> 297 I_ & G 709 HuM Sng7
L0 97— | —(e:2) YMAS vMS| ggzs €285
SYOYYT # ATO f_ : S
7925 , q
DATEWVT IAMHD AT ALS IAD TNLIY AIYM

sng7

89I14 62 Qm&?h@l&dﬁlw\& G2 10 207
AMIA.EAI\I BZ4E BE L0 D97

12274 9/-£2° G 40 7037

4,922,414

Q
SN

3 6
o ONIOYVESI K0 05~ D 230 ‘B 7 99X L0277
~ MI072: N30 g Ll 12
X
-8 EAUpG &1 | ownar > sy
oo : A o000 7 o
. L AoM? ar
M YN —~ -1 SUNG &7 37
. g7 ar
-1 32U 91 A1 ZUAG L3741 T
- &9 31— HOVNVYE Y7 L. UAG-2dT _
A28 /4
Ats76t 9oty st — a1t -— o a7 VoY —<o W A
ot avFk syl 29 2
% ALratet 0 47— f11eve/ H oo || wr | Yoy s sV o9-0
=& —Ho oo % voawil| || oexovizis
= awo={mm] [ﬁ _ szt N =z
[l A Yo 13/¢ -
LD L)~ . - - N SoE NSt I — N
W (5043 24 5T N1 2/ _/ " L1892 |_— 2% ns¥ a4
iz nf_ T3 M7
s0L) N1 W\ mWM% Idr
£

IH-Idl|———Ng7

£ P57 2000
£ 7ot 2505 %

LIEL} FOOW LT
(2 W IWM_IVN,\m sngv’

gy I oL ~a———— I/
cE

U,S. Patent

4,922,414

Sheet 9 of 22

May 1, 1990

U.S. Patent

6914

FIbe TWIISAHS s €E2-8

g 2 77S o
ot oo Ll T
/ -
CZE:GED m\ﬁ\lAl Q0D e/ oo -
B2
,.IWM|IM\Q~\ BCLZ>519t ||A||N.WIJVN 22> vmA
——}—nsv
—<}—<8:£2 spawv
— J#
Ay 7 Josxapr v — B2y me sne
LIHE JyW — & G
e B —wc20m _IAI«& :2)sngY ATV SAHS WA
M
IH IV —g-g 2&av (8:L2Z> MWA
- >~ HSUH |v~llh«ﬁ..m 2SSV
‘ Wy 182 _
[ile it Rz 6> | Z
—0:£2 >t
SIaY 519 7 -, Bkl ——<—nsv
| 9 GESH0 Siad
V7 _ —<—<gec> g
aa0 e AW —G L1t | A
) ;
— 47y % 9exxt
2 T E vaim— - 7T V| e
G122 HOVH 1Hedl ASOW -0 LiHeA T FLIEM SR —% GERIT L M iy
YN T0S’ SZ00 £ I "

SNEY 0L NsY oV Ll or'ees€ @iz snév 900 qwmm\xg\u e lmw%l £25 STV
ga0 Hved W-1 G . (&> Sne
.QWWWD\\ Uy TE AZY m\ ~—<PDZLE> VA

(L2~ D2 [t &b ASY VI / i

Mvel Mt g

2-@ i L-2

dUW GALIIFIFTER SNV Of oW

4,922,414

Sheet 10 of 22

May 1, 1990

U.S. Patent

Om.w_n_

/ \
WY M9

e 126 |128| [125] [128] [128] [125) [128] [r28) [oos| [es) [02s] [2s) [02e] [0od] [025] s o e

E 25| |e=] |25| |29) |55] | /5] |#5] |os| |4s] |=5] |9s] |2s] |5 ss| |ss fm.m Wh_\ :\W

07 22:—) 8| (8] [we) (g s 8] [e| [s| s (o) [ors| [ord] o8] o) (s [.\I\MM e

[~—2z 7] mmmmwmwmm\hvmmmmmmlmmmw\mmmm.m Www mL\NW

pomora—~] e [ee e8| [e5] o5 s [es) [[28) o) [2e) s [e8] o) [os) s Y e
v AR =

[z] 25| les| los| |z¢] les] |4] l25] los] leg) les) os] lzs] g Lus) les) leos S T

[poro792/—] e5)| [e5] [e5] [62] [e5] [¢2] [65] [e5] [e=] [92] [o2] o5 [e5] [25] [e5] [e=

F=mroa] el les] log] les] Les] |oi les] los] les] les] lod] lzg) |o] o] les] les

[r07820—] o5 [e5] [e8] [e5] [5] [e2] [¢25] (75| 72 [75] =] (25 77| (75 [75] [72]

[z oz 25| |es| |os] |zs| los| |7s] |25 los| 2s]| |es]| |2s] |29 |=5] I/s] |2s] |os]

[Fmo7 zr—] 78| [78] [15] (78] [78] [78] [75] [75] [22] [08] [0s] [02] [05] [os| [os] [os

[—2aer#] 25| |es| log| |2s] s Is] 2] los| kes] les] |os] lzs| lss] Lus| I22) los

g - L/ g/ s ¢ £ 2 / 0 6 & L 9 ¢ ¢ &£ 2 |/

—_——

6-SCE Y~ FFS
SY21/8/T SSFTT

4922414

Sheet 11 of 22

May 1, 1990

U.S. Patent

6-62Z SOLS
NO AAIOHS SL 7= L 20

OPES78L FHUL QL TIUITAVNOT
T OV 2 NTT WO

117914

NAIOHS S G L 2N/
LE SLL. WAL Ol T FLITNNOD
SN oV P LR2OT ANV

S8 FTTE AOT

sagyom X952

OF-————-—- 4
sz pt |

os 0 20LITFS
/'S /S OLITS
Z2s 2 20L2FS
co Sa&OM

£ IOLOTS Mz

. OL AZHULTIAL OZLIINNOD QU XATHAL FOOL. TF2LIATNNOD 45 P SIOLISS
(et - 270=2) St 27 0=7) o Csoso9e
287 LA EICSENE S L S LIAT P8 LA DAISENIS FAL LI
SV & Ffrl O M NT SWYer 8 AL SO Ner LI72O0T . o 9 XMOLIZFS
SS.FIXTOTY O/~ — s L YOLIFS 1
£-082 SOy FTS
7TMT7 TS0 7T TSy _
A
52 58 59 5z 55 5/ gt F0 VL VE V9 VZ VS b kb VO XAIS TENS
komoz vz —] 19| 78] [125] [128] [125] [125] [129] [125] loee| o] [p2s) [oes| [025) (o] [0e5] (e
w
P—— 25| |es| (93] |2s| |ss| 75| |2s| os| |4s| |es| V95| |25]| |o5] | /5] |#s| |os
o7 720—] e8| 28] [ces] 28] (i8] [ees] |25 [ies| (o8] [oes| [oes| [oes) [pes) [pee) [oew] [oes .
[z 727] 5| |es5] 95| |2s| 58] | /5] |25] |os| |45] |es) |9s) |25] |ss] |1g] |#s] |os
ps107 s721—~] leca| lees| [ees| leeo| lees| lees| |ees| lees| [ees| [oss| o] [es| [2es| [2ed] [oed] e v
- [=mmrsz]] ¢s| |es] |9s) |zs] |ss| 1] tzsl los| |2s] |g5] |99] |25] |os]| |/s] |2s] |os
[pro7.c21—] [625] [e25] fe25] [ez2 TNM bzs| 25| 22| [es] [pzs| [pzs| [pzs) [pos| [eos| [e2s] e
L
[—2zer.24]] 5| |es| |99 |2s| |s5| |75 |2s] los| |2s] |es| |9s] |zs| |es] |7s] 25| |os
N7 MLl —> 28] [wzs| [e| [26] [er) 28] [c20] [r2d] [ees] T&n w28 lbea| || |ea| [res] feo
H
|37t 11£1] ¢8| \es] 195 |2s| |98] |7s] |23 |os| [£s] |es| |95 |2s| |ss| | 79| V75| |os

US. Patent May 1,199 Sheet 12of22 4,922,414

19 202/ 22 23 24 25 26 27 2829 30 3/ 32 33 34

[sol [s4] [s7] [s5] [52] [sel [s3] [s7] [sol [s4] [s7] [s5] [s2] [se] s3] [s7
a2| 82| |82] |a2]| la2]| 82| |82] |a2| |83| |83| |83] |83] |a3| |e3] |e3] le3].

p——

so| [s4| [S7] |s5] |52] |56] |S3] [Ss7] [so| {s4| {S/] |S5) |152] |sé] |S3] |S7
26| |B6| 186]| |86] |186] |86} |86] (861 |87] 1871 187 (87] 187] |87 (87] |87

SO| |54] |S7] [s5] |s2] |s6] |S3] Is7] |sof |1s4| |st] |s5] |s=2] |s6] |s3] |S7

8/ |80) |8y |Bro) 80| (81 |80y (80) \811) (81t \einy \Buy {81y |81y B |81/

So| 154| |s7] |S5] |sz2) (s&] IS3] |Ss7] lso] |54] is7] |s5] |s2] 1561 |S3] |S7

G| (84| |18k |84 8] |8 |aH e |86Y .5y lessl |8/5] (85 185 B8 B

so| |34} IS/ |s5] 1s2].|56| 153] |s7] |S0] [s<4] |s/]| |s5] |s2] [s&é] |s3] |s7
s/8| |68 |o/8Y (88 B8] |s18| |Gr8l |68y |8 169 g9\ 16K} |89) |89) |8 &/9

so| (4] [S7] |s5] [52] |sél [s3] [s7] |so| [s4] [s/] Is5] |s2] [se] s3] |s7

s22| \622) B22] \622| |822] \B22| \B22| \azq) |823 |83l |24 |82 lez3| |623) 1673 |&z3)

FIG.12

SO |S4£] [S7]| |s5] |52] 1s6] |S3] |S7] |Sso] {54 |s/] |55 |s2] |s6} |S3] |s7

82| |82%| \828]| Bzs| |eB| 826\ |B28) 1624 |827] 1827| 1B27) 1627) |B27Y 1B27] 1827) (827

sol [s4l |sr] |s5] [s2] |se] {s3] |s7] [sol [s4] |s/] 1ss5] |s2] i1se] [s3] |s7

B30\ 8| 80| B2\ |620| B B0 |8 (8] |&3| |83/ |83l B3] (831] 1831 B3/

so| |s4] |s7] 155] |s2] |s6] |s3] |57] so] 1s4| [s/] |s5] {s2] |se] I53] |87

83| B2 6’345345346343_34]534]535535535’335 B25) |B82) 18] 1635

sol 1s4| |s/] s5] |s2] sl 53] Is7] |so] |s4)| |s/] 1s5] Is2] |s&] |s3] |57
Bast |ax) |85 1626| |88\ 538 o8B} 8351 (639 |az9) lem| |83 lgad |a3d |83 1639

wz%wzg;wama i B W
Rt N o N N R

oc 4q9c /C SsC 2C 6C 3C 7C 00 G0 /D S50 20 62 30 70

SOl |154] |5/ |s5] |s2] |s&6] |S3}] |7
@42 |892] |B42) |842) |A#2

sa| [sr] [s5] [s2] [se] [s3] [s7

| l6A |54

FIG.I3

U.S. Patent May 1, 19%

MEM CLOCK B L

FIG.14

Sheet 13 of 22
72F 3%
wur.a—%— 422 DB.0
oot | = y- o8./
oour2=% 2 08.2
oour3- € pe. 3
ooura—4 L 08.4
oour5 = 2 pg. 5
7247328} |poure-E EYY
Ne 2 6. loou7. 742 2 5a.7
Nl 2 L5 1/
~icE 2 L C‘? *
Nfc -’-_:;,?- 2 E 2
3| 2 35A
] zg‘z-g RAM SELECT L
ooUT.10-4 oawo [
DouT. 11 7 o8.71 FF374
Uit WUTZIZ% 2 0. /2
Il-oe oour.i3 08./3
L ooutid-Z - 0. 14
T 358 oour. 512 6 8. /5
muns-/% %05'/5
DoyT.i7- —8 LQ- 08.17
QT 18~ == 08. /8
ooure-42 2 5849
74F 37 4 cLxt
bour 202 2020 [
ocour2r’S 221 = 35D
pourz2-L 2 0g.22
pour.234Z 68,23
oour: L. DB, 22
oour.2s 4 KEos.25
oou725-8. L9 pg. 26
oourz73 2 pB.27 |79F% 2
1z DOUT, 26— L=-08.28
— %KY | courm 8] {2 05.29
T oour.30-L 5. 08,30
T 3J35F 0007.3/-’1 5 08. 3/
oaur. 327‘7’- -%DB- 32
DOUT 35— =08.33
; oouras-2 2.08.34
DouT. 363 = 08.35
7F 374 Deirs
oour 362 2 pase [LT9F
oour37Le] 0837 = 357
oour 8- 5 pe.38 -
pour. 9% /6 pB.39
pour. 05 160840
ooura1d 5 pg. 4/
oouT.92-E] 2 08,42
oour- 4322, 12 pg.43
e t
_L’- -0&
= 35

4,922 414

U.S. Patent May 1, 1990

T4LS 244 T4 EZE
B o 0 252 oo wa%
27
BuUsoarA 1 T“—[:%ozw 0812152
292
BUS 0474 2 Té-[$’iawz oezﬁ%
292 =
Busaa3 SN2 o peg-LLPL2
297 2
Buso074 4'-,—1[:;9—01”4 054—3%
Gc) 29P 0P
BUS HTALS T"i[:#loms AN
29rP P
s <2 >2—omwe 036i($£l
d 0P

i

753 pw7 037-2-%%
297 7|

ST 7
ENABLE OUTCO) L~
18 OINE 088 17 3

BUSLATAE -2

%‘:

¥

Bus AR 9 2N pryvo peatEPNE.

277 2
Bus oA 10 41N piy g oe/m’i%
ACT 277 28P

| |

’

Sheet 140f22 4,922,414

7L S244 it F2ag
Bus para 22 < ; o 22 aszz%
%
Bus auzp 23 Zapy X NZ23 D82 3—-[2 #ﬁ,/
L 27
5usaaz'424_r_|2 j%ﬁ.af s 024252
232
s anzs 2N o BINLS
23£ 2
8Us aan 26 S Soovzs pe26L2 S
23P i
ovs oara 27 SIS o 27 0,9'27—”{:%%‘"|

3
8

R
B

N N

3 Ny
By Bl |9

9 prvze 0828%

6N /4

4 29 D829

i

BUS DATAZD T’ééiofﬂxma N6
232
Bus oaA 3/ T@iﬁm@l 083-E55
298
ausoa7a32 2N pry 3o pear I3
2P 22P
]

FIG.15

US. Patent May1, 199

BusoaTa it L8N 2o 11 panlLS2
2z =

8us m7a 2 ! 9 OIN 12 “9/2%
(4acr3) 27P 28F
BUS OATA /3]_/2&10,” 3 61 3%
(Ac /4d) 27P 26P
8us DATA 14 /5[$ 5 owig pera-2 16
(Bac) 27P 28P
BUS A LS LI 53 pyys pprs—2 518
AC /6 27P 2P
a/smialre 2 8 VIG 03/5_/7.§3—\
(Ac7) 2P 26rP
BUs 7817 LINLE oy 17 0ar 7L E
AC /8 25P Hr
8us a7 18 SN pivig o,s«/.se"-i[$L.|
AC 79 25P %P
BuUs pamR 19 8 2 OIN/G M/@l—/&i-'
AC20 Z5P Z26F
8Ys 0ara 20 E//_&,g V20 082, /2
(aczr) 2P &r
Bus BarA 2/ f—%la/w/ PRy e
AcC22 25, Z5°

@

Uy

ENABLE oUT{Z3:8)¢C

1,19

 Sheet 15 ot 22 4,922,414

BUS0aTA 33 sEIN6 oy 33 paas NS
205 22p

T_{$_a~’4 3¢ 0833 42 $—]7

Busoaazy _6

(Bc3) 2/P 22P
s oA 35 _EPNI2 o 01935'—”-§9j
(8Cc6) Z/IP 22P
BUsaA3e N Q9 YN 76 9535—8;&_/2_"
(8c7) Z/P 22P
Busmm37 _13 7 N.37 0837 6 /9

<5¢3) Z/P 2P
BusoaTA 38 215 iy ss pess-tINLE

@Ec9) z/P 220
SR 39 17153 py 39 ppss—L] 18

(6cro) /P 22P

s a3 oo veao-!

/5P 20

BUE KA 4/ 6&6;0/”4/ 0B84 5 S
(Bcr/z)

i

/GP 20FP
OUS KTA 42 TB—§Z-DM'42 mﬁ.&lj
(9P 20P
s 47443 1IN 9 o as paast. 2‘9
BC /2 /9F (7 ad
G L % : |
BYS WITH ECC) AN
o | 20r
1,19

FIG.16

4,922,414

Sheet 16 of 22

May 1, 1990

U.S. Patent

JARNIE

A4

———
A7 L1 wwumik_q\ = Nwmk_wm ovgltel SV <tz

m
<
3
Q:

ra El QTN\ 8

——————
MHOT L17 mtl&m\ bt <=l £V z :\INM ber

o}
<
s
\%:
N

i w71 VEcde

-———
/7417 w.\%m relal vl mv\..wkww\; vz Je m.v@&om‘

™
<

b

——-
NMOQT L1 m,\@ﬁqml L=<l MQMNTW :\WN_M\. sv—; vww\&oml

0

At
~
O

-
Y %?I.Nm\ TN_Nv\INm _qu oqle\ _vlv m«f&% _Tb

™M

A
%
\:
m
N

————— R X
NMNHOQ L1D mv..m.\ﬁ,w a7 mw\m\ﬂnﬁ 2\%35

QC*\ u 9 gV L &/ VV\N\ um
B S v
Fzz vtz 2 Q_\@N_ﬂ, sV e\l% va\NTw. EIN_T Va7 e

: <&
—— ’
NMOT 215 mfﬂﬁv\ z1 ‘Yol EVa<lrl / -\lﬁoh %] i N_um\ V5l

Q
<
:
\B:

m
T

-~ wwlN_vl Zv |M_ol
an g TV g \Pz 7 BArn 2 m_\INT.h 71 :\INTLN =1 V=<7

~

Q

<
w\r: v:
© Q

———p 1
wioa It gzt Lre<lyl erglla Yol vt 2o 2 s

-
| N In VYQ\N_QN <zl Yos 7l Vs G/ \B :\uw/_m\ Vg g

m
X

3
©

&IMNO 7

A A?

4,922,414

Sheet 17 of 22

May 1, 1990

U.S. Patent

81 Old

o N &7 /7

wmog i 9z g LV e<lr £vgrbp /v z<l5] O 5P| S5 Pz bg| B 5,

Sl &\%\NT ezl Yy u.S\iNT eV <Fal 'V Z m\.mTNIN_"\ 2l <V e T
m_v\lknm 7 m_\m.\.-N_. 5 V<5 Q\vlko\ 51 °Y 75| 2V 57Fa] 27 B\l
Nwlkum T A REAT R Meal| m*\NnNT\ 2] £V eI 5,

c
c
Z
AAIOT L3/ Qv\m\ = U7 (- a s =7 vdw_q@.bw Z/ %WM.\.NTM B\ m.mV\
c
c

ANMOT L) 7 G

[2/4 /

L7 T .V fo%;

AILIY BV 2V &= o S\ Lt a Kl & =gl 4B \\m\D@

~NZ/ o/ 74
M0 L)L OF

&7 v ez w\qu&mmv\w\-mhv\&lwv@-mNTNN_YmmV\
=7 2/ <Pz N_\INT _\ml\kww cre<bg MWWMNTM _\INT or5< b5 m_\I\MT s

-7 NE\WNT A e e A i S ki GT P

MUOT L]~ QTU\INTM RV.N.&Y. .mlvs|&o| _\ %7 OV\) MV\N. a7, §V\N\ (7 vim. a

US. Patent May 1, 1990 Sheet 180f22 4,922,414

. 74£258|
AATE) BUS. ADDRESS I7: ; P
o
BUS ADDRESS (6 =iy 4
2 0 7774 —
: 505;199/?4—‘55 5 19 / o) —
/] 0
BUS ADDRESS /4 31 /2
4l oUTPp
0
~AOW. //— SEL
TLoe
T zir
[racasd]
AT BUS. ADDRESS [F 27 la
. 2 WT I
0
BUS. ADORESS 12 gy -
51 oot
0
BUS. ADORESS 1/ 21 /2
4, w7p=——
AAll) sus. ApoRESS /0 197 3
// 00(/7 p—
ROW 7 SEL
I - OE
AAID) sus Apomesss —2 2 =
(AA) sus acoresse —2f | |8
(BAB) suss avomess 7 -4 |2
s ADDRESS 6 —2] 2
s aopress s L2 2
sus. Appress 4 L 1
s ApoRESS 3 —2 2
sus. Anpmess 2 42 A =z
wiEn, cLock sLLrHoLo g ve12-087
ZW3 Y7 e—086
L 29R h2 YelZ—085
- vl G v e
a0 valE—ps3
o7 OATA Br7S y3l2_ 5 B2
FRONT 744 20N 257
ARE JNVERTED OV Y213
THE SUSS Y/ —080
FI G l 9 FPROM. SELECT z./—‘i -0 | 30R(GOCAETED)

4,922,414

Sheet 19 of 22

May 1, 1990

U.S. Patent

OTADIE

T U NI0T7D MWV
e K PEVT IHIO07D V.FV

T
7 V2070 HWFw T AAO T 70 — FLIE .
AZ27 MIOT7I W _ . Y7007 WA
— ZLIM
r 7 o070 W7V -
NZEIGT N2 S NolGY NIlGY { <6
. 77 Im
7 Y HSTT s Ve % - %h. 850
. 7755 Of 2g2 SE Ve
oL ot sz VL | o/ke v S [
YA L2 T WL 7) e v, -3 77
—— L St &/ LI =14 .
W A 4 % [
6 &6 6 & o o =7 77 N“ AE/ o - Q.N\ 77 m:\\
197 7 YO/
oz ot sz ve ¥ A APT] Jge o8 g€ ve iy oa %
-1t 1z Ml wa[FrlE wilp wale) |10-17;
. d g 4 a
Wn.ql| EZ ¥2/ /65t i e Sl ﬂ o A2/
', o/ = 57 £ 02 5&£ vg) Z
wvzglz ez ez 7alz | &6 007562 woglgrnzzler welgr WAEr | <6 o007l C
7-=5m , s F 7"am «{__[F
& Yo Yo ¥or 7 57t 4 82 Y2 Y2 jpi's
a9 929 g9 V9 | vorsr Z 92 82 VZ | /L7
weelrmalzr miler /8lzr 9 |0 e O T R R] S
Y 2/ =619 ot | 2/
A [z Yzr {2 Yaor 1029 =12
2 00762 gz oz g2 vz z 0072

4,922,414

Sheet 20 of 22

May 1, 1990

U.S. Patent

Y8
& ws A ML
: NOENII vzl w2l NEli7 p-3v72 g <|..Q1
Y, ﬁ L AL g
6 {6 Y6 Y6 #° « 94 vz
9 99 59 v 52 LQW i
NOE[EWEE valle 7elF | &% %Q.\vhm
7Im ={__IF
9/ 993/ Q9 99/ j;vbz
76 25 58 V6 [yorg
voslEmeT VAT weleT gl ¥
pLAY, p¥74
Yo Bzt
. ag 95 8¢ v yIlE oaIve ART]
NOETiwzZ\ET WalLT nolLT 7 alv -
7evy Apal]
£ Q8 ¢F YE£g] a V2 ” g
ogs J¢ s¢ £ . SO/ Woﬂ.—..w\ 1552
Oastz €
[
wez g7 veler veter witer mclwﬁu.m
— LLAL 3,
7 5D <
z Maﬂ wm ? o g 1| 28
- Z
ar or 56 V¥ L bE 007 oL ALE]
S
7 g AT) 7 M Sakeked m<rlo.m.
pun..wvm\% % % —lwmkvm Az
O _, G= 2
& Y Y& S ol & 2
b 9% 5+ vb Fllw@l B

5962 aWv

az oz sz vz

a o & v/

NLZ[i7 wellir Neli7 wili7 P-4
— o7
7= a 77
6 16 6 E /I
1S B E7
n 2

wrog

7°78v9

(24 &/
asr o/ 8/ p/

Az [g weilg Nela wilg O~
e Y _| L AtL
2 S2r Sz Yz el o

/

or &1 v/

MLEZWLTNBILT N6ILT NIlZ7T)
7 Im _MA,
£ £ Y& & yrtels

0 90 &0 bvO

[FP) EACTD FAGT: FAR 1 el IT:
bL AL
(V]
es 18 g

—
~

VZAA T 27 20 [T R
7769
g9/ 9/ g/ 9/
0 20 S0 vO
m2[Z melz nelz vz |
7Sy
o ler ler lgr &
0 20 S0 vO
5962 GV

o _d

4,922,414

Sheet 21 of 22

May 1, 1990

U.S. Patent

[AAD =

.42/4)
NIt =
: &z 7 m\.\..ulwulxﬁ_-
LSINYIS —5 ENT -1
(
ots L PE 1 735|5
= Z725515
||||_||||I|I_ 7 E 755 I3
h -
£2:
51e-
75 S35 N\ “ G-
7 795 £/ ¢-
o208 10"
- GE11 12,
CSE/ gL T
F7Lt0 e
AR 7490 a0y —A——f — - o
—fv —& ZH— =~ |
0 Afor oo/ z W
c 18/ F-124 Ts JG/ %
1SS MOY 1o a w%.mm\m&iw&vqﬁ (7177 =
Eral
114 (M 4
= \wN m.?m wIZTSr o tsans| Aew |5 52
oot 78 X207 ‘WIW ez =
GNS - A
= IAdra
2 T Nvm,
VETD ovlZ
7596 Mg 7 A — %wm 7
s, o vip7
¢ L5INdbI¥ o X Z svlz

@z99)

Wistry A7

RN 1) (77] h.b%a

! B3IV 516 g

F———8/SSIE ANV), '
&/vy

CE OV
(/eov)

0L0%5 59

1.L075 57757 (CEVY

eLO07S Srd

£L075 579 (IEVY

4,922,414

Sheet 22 of 22

May 1, 1990

U.S. Patent

AXADIE

e/

dE/ _
'Om, 44
Nia | Jor 0070 ot tL075 S725
4 . 1SSHL (4 4/2% €
3| .Tlfvl v 795 gty =
A > jesmwayor 1915
67553500V SN
s 70L>L00 38NT— N7 0 p 10007 oF mlm.w ssa0Y 51 (T2 T8
i VIE_2n0 erb0 - I Sl ——— 1z ssa00v N8 E 2T
e oxg 7795 a - SBlfr—2Z ss3maty N8 (ESTH
gL Y6/ POz E2 55I¥A0V N8 (BS o)
[oE]
Y9/ 73S dentd Y 7 e E,
7<8EL> 1O mmsﬁﬂowwa Vivo OXvog r0s .Emtm.\ s NM.\ — 713535 508 @28
cosrs
pOS 7.
7 19557 r & &6/
2
de &S/ DI SN INAN 7 2118 0652 95)
b7 S0 - ¥ &6/
Ak > 78 yoorgmaw K:thmkdoA 6
1470 Z
v — 30206 1 5 ot posbL mAWgﬁm&&ng
gial YT o £05735 OIAE) POSTVL .
16 =%, |E (o WhszHIR 2 | e
IgsrL 2 o az |79 msuvnkmma%w& LSO ar IQAVW.EQ@&S“B Sevy
05493735 %__%nml; o T+ hwlltw 758 dYvog S vy :
7 39m-E)o-
suem s O b5y S a e
7 +
Gelty rel
¥ =g rom L3t spE@EIG)
5 SV LESHS — i §
7 S TvH LSH17 c L [} Hag 1 Lot 662 ve)
oosrs & 312070 Wanw—=_ L ~I57 #2070 6ng
K R
bz &L/ a 77
| <lbﬂ |_ V30070 Waw =< by -t~ ~#2070 sng €€ 98)
]
A W ” A7VF Ho072 R\N‘.\—\ &Ly s Hz +M2070 S s
v 78 49019 WIN

S 7t qQ\
TH

TV 42079 WV —

7 77 7117737

<2/,
&Ll (ON)GEA= | M
€ Gt=6 NSt
oSty S22 N/

ONY =9 Nt

4,922,414

1

SYMBOLIC LANGUAGE DATA PROCESSING
SYSTEM

This is a division of application Ser. No. 450,600, filed
Dec. 17, 1982, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to a data processing
system which is programmable in a symbolic processing
language, in particular LISP.

LISP is a computer programming language which
originated as a tool to facilitate Artificial Intelligence
research. Artificial Intelligence is a branch of computer
science that seeks to understand and model intelligent
behavior with the aid of computers. Intelligent behavior
involves thinking about objects in the environment,
how objects relates to each other, and the properties
and uses of such objects. LISP is designed to facilitate
the representation of arbitrary objects and relationships
among them. This design is to be contrasted with that of
other languages, such as FORTRAN, which are de-
signed to facilitate computations of the values of alge-
braic formulae, or COBOL, which is designed to facili-
tate processing the books and records of businesses.

The acronym “LISP” stands for “List Processing
Language”, as it was dubbed when Professor John Mc-
Carthy of MIT {now of Standford University) invented
LISP in the 1950’s. At that time, the notion of represent-
ing data objects and complex relations between them by
“lists” of storage locations was novel. LISP’s motion of
“object” has been incorporated into many subsequent
languages (e.g., SIMULA 67), but management believes
that LISP and the languages derived from it are the first
choice of Artificial Intelligence researchers all over the
world.

LISP also facilitates the modeling of procedural
knowledge (i.e., “how to do something” as opposed to
“what something is”). All procedural knowledge is
expressed as “functions”, computational entities which
“know how” to perform some specific action or compu-
tation upon supplied objects.

Although the text of LISP functions can be from one
line to several thousand lines long, the language imposes
no penalty for dividing a program into dozens of hun-
dreds of functions, each one the “expert” in some spe-
cific task. Thus, LISP facilitates “modularity”, the
clean division of a program into unique areas of respon-
sibility, with well-defined interaction. The last twenty
years of experience in the computer science community
has established the importance of modularity for cor-
rect program operation, maintenance and intelligibility.

LISP also features “extensible syntax or notation”.
This means that language constructs are not limited to
those supplied, but can include new constructs, defined
by the programmer, which are relevant to the problem
at hand. Defining new language constructs does not
involve modification of the supplied software, or exper-
tise in its internal detals, but is a standard feature of the
language available to the applications (and systems)
programmer, within the grasp of every beginner.
Through this feature, LISP can incorporate new devel-
opments in computer science. .

LISP frees programmers from the responsibility for
the detailed management of memory in the computer.
The common FORTRAN and PL/I decisions of how
big to make a given array or block of memory have no
place in LISP. Although it is possible to construct fixed-

—_

0

—

5

20

25

40

45

60

65

2

size arrays, LISP excels in providing facilities to repre-
sent arbitrary-size objects, sets of unlimited numbers of
elements, objects concerning which the number of de-
tails or parameters is totally unknown, and so forth.
Antiquated complaints of computers about fixed-size
data stores (“ERROR, 100 INPUT ITEMS EX-
CEEDED?”) are eliminated in systems written in LISP.

LISP provides an “interactive environment”, in
which all data (knowledge about what things are and
how they are) and functions (knowledge about how to
do things) co-exist. Data and functions may be in-
spected or modified by a person developing a program.
When an error is discovered in some function or data
object, this error may be corrected, and the correction
tested, without the need for a new “run”. Correction of
the error and trial of the repair may sometimes be ac-
complished in three keystrokes and two seconds of real
time. It is LISP’s notion of an interactive environment
which allows both novices and experts to develop mas-
sive systems a layer at a time. It has been observed that
LISP experts enter programs directly without need for
“coding sheets” or “job decks”; the program is written,
entered, and debugged as one operation. Functions can
be tested as they are written and problems functions can
be tested as they are written and problems found. The
computer becomes an active participant in program
development, not an adversary. Programs developed in
this way build themselves from the ground up with
solid foundations. Because of these features, LISP pro-
gram development is very rapid.

LISP offers a unique blend of expressive power and
development power. Current applications of LISP span
a broad range from computer-aided design systems to
medical diagnosis and geophysical analysis for oil ex-
ploration. Common to these applications is a require-
ment for rapidly constructing large temporary data
structures and applying procedures to such structures (a
data structure is complex configuration of computer
memory representing or modeling an object of interest).
The power of LISP is vital for such applications.

Researchers at the M.I.T. Artificial Intelligence Lab-
oratory initiated a LISP Machine project in 1974 which
was aimed at developing a state-of-the-art personal
computer design to support programmers developing
complex software systems and in which all of the sys-
tem software would be written in LISP.

The first stage of the project, was a simulator for a
LISP machine written on a timeshared computer sys-
tem. The first generation LISP machine, the. CONS,
was running in 1976 and a second generation LISP

‘Machine called the CADR incorporated some hard-

ware improvements and was introduced in 1978, replac-
ing the CONS. Software development for LISP ma-
chines has been ongoing since 1975. A third generation
LISP machine, the LM-2 was introduced in 1980 by
Symbolics, Inc.

The main disadvantages of the aforementioned prior
art LISP machines and of symbolic language data pro-
cessing systems in general, is that the computer hard-
ware architecture used in these systems was originally
designed for the more traditional software languages
such as FORTRAN, COBAL, etc. As a result, while
these systems were programmable in symbolic lan-
guages such as LISP, the efficiency and speed thereof
were considerably reduced due to the inherent aspects
of symbolic processing language as explained hereinbe-
fore.

4,922,414

3

SUMMARY OF THE INVENTION

The main object of the present invention is to elimi-
nate the disadvantages of the prior art data processing
systems which are programmable in symbolic languages
and to provide a data processing system whose hard-
ware is particularly designed to be programmable in
symbolic languages so as to be able to carry out data
processing with an efficiency and speed heretofore un-
attainable.

This and other objects are achieved by the system
according to the present invention which is preferably
programmable in symbolic languages and most advanta-
geously in Zetalisp which is a high performance LISP
dialect and which is also programmable in the other
traditional languages such as FORTRAN, COBAL etc.

The system has many features that make it ideally
suited to executing large programs which need high-
speed object-oriented symbolic computation. Because
the system hardware and firmware were -designed in
parallel, the basic (macro)instruction set of the system in
very close to pure Lisp. Many Zetalisp instructions
execute in one microcycle. This means that programs
written in Zetalisp on the system execute at near the
clock rate of the processor.

The present invention is not simply a speeded-up
version of the older Lisp machines. The system features
an entirely new design which results in a processor
which is extremely fast, but also reboust and reliable.
This is accomplished through a myriad of automatic
checks for which there is no user overhead.

The system processor architecture is radically differ-
ent from that of conventional systems and the features
of the processor architecture include the following:

Microprogrammed processor designed for Zetalisp

32-bit data paths

Automatic type-checking in hardware

Full-paging 256 Mword (1 GByte) virtual memory

Stack-oriented architecture

Large, high-speed stack buffer with hardware stack

pointers

Fast instruction fetch unit

Efficient hardware-assisted garbage-collection

Microtasking

5 Mwords/sec data transfer rate

The system according to the present invention com-
prises a sequencer unit, a data path unit, a memory
control unit, a front-end processor, an 1/0 and a main
memory connected to a common Lbus to which other
peripherals and data units can be connected for inter-
communication. The circuitry present in these afore-
mentioned elements and the firmware contained therein
achieved the objects of the present invention. In partic-
ular, the novel areas of the system include the Lbus, the
synergistic combination of the L-bus, microtasking,
centralized error correction circuitry and a synchro-
nous pipelined memory including processor mediated
direct memory access, stack cache windows with two
segment addressing, a page hash table and page hash
table cache, garbage collection and pointer control, a
close connection of the macrocode and microcode
which enables one to take interrupts in and out of the
macrocode instruction sequences, parallel data type
checking with tagged architecture, procedure call and
microcode support, a generic bus and a unique instruc-
tion set to support symbolic language processing.

The stack caching feature of the present invention is
carried out in the memory controller which comprises

10

15

20

25

30

35

40

45

50

55

60

65

4

means for effecting storage of data of at least one set of
contiguous main memory addresses in a buffer memory
which stores data of at least one set of contiguous main
memory addresses and is accessible at a higher speed
than the main memory. The memory controller also
comprises means for identifying those contiguous ad-
dresses in main memory for which data is stored in the
buffer memory and means receptive of the memory
addresses for directly going to the buffer memory and
not through the main memory when the identifying
means identifies the address as being in the set of contig-
uous addresses or for going directly to the main mem-
ory and not through the buffer memory when the iden-
tifying means idenifies the address as not being in the set
of contiguous memory addresses.

The central processor of the system which operates
on data and produces memory addresses, has means for
producing a given memory address corresponding to a
base pointer and a selected offset from the base pointer
and means for arithmetically combining the given ad-
dress and offset. prior to applying same to the address
means. Further, the central processing means produces
the base pointer and offset in one timing cycle and arith-
metically combines the base pointer and offset in the
same timing cycle in a preferred manner by providing a
arithmetic logic unit which is dedicated solely to this
function.

Moreover, the addressing means advantageously
comprises means for converting the addresses from the
cpu to physical locations in main memory by using the
same circuitry as the identifying means.

Further, in order to more efficiently carry out these
functions, the cpu has means for liming the offset from
the base pointer to within a preselected range and for
insuring that the arithmetic combination of the base
pointer and offset fall within at least one set of memory
addresses. This is advantageously carried out in the
compiler which compiles the symbolic processing lan-
guage into sequences of macrocode instructions.

The parallel data type checking and tagged architec-
ture is achieved by providing the main memory with the
ability to store data objects, each having an identifying
type field. Means are provided for separating the type
field from the remainder of each data object prior to the
operation on the data object by the cpu. In parallel with
the operation on the data object, means are provided for
checking the separated type field with respect to the
operation on the remainder of the associated data object
and for generating a new type field in accordance with
that operation. Means thereafter combine the new type
field with the results of the operation. This system par-
ticularly advantageously executes each operation on the
data object in a predetermined timing cycle and the
separating means, checking means and combining
means act to separate, check and combine the new type
field within the same timing cycle as that of the opera-
tion. The system also is provided with means for inter-
rupting the operation of the data processor in response
to the predetermined type field that is generated to go
into a trap if the type field that is generated is in error or
needs to be altered, and for resuming the operation of
the data processor upon alteration of the type field.

The page hash table feature is carried out in the sys-
tem wherein the main memory has each location de-
fined by a multi-bit actual address comprising a page
number and an offset number. The cpu operates on data
and stores data in the main memory with an associated
virtual address comprising a virtual page number and an

4,922,414

5

offset number. The page hash table feature is used to
convert the virtual address to the actual address and
comprises means for performing a first hash function on
the virtual page number to reduce the number of bits
thereof to form a map address corresponding to the
hashed virtual page number, at least one addressable
map converter for storing the actual page number and
the virtual page number corresponding thereto in the
map address corresponding to the hashed virtual page
number and means for comparing the virtual page num-
ber with the virtual page number accessed by the map
address whereby a favorable comparison indicates that
the stored actual page number is in the map converter.
Means are also provided for performing a second hash
function on the virtual page number in parallel with that
of first hash function and conversion and means for
applying the accessed actual page number and the origi-
nal offset number to the main memory when there is a
favorable comparison and for applying the second
hashed virtual page number to the main memory when
the comparison is unfavorable.

In a particularly advantageous embodiment, the con-
verting means comprises at least two addressable map
converters each receptive of the map address corre-
sponding to the first hashed virtual page number and
means responsive to an unfavorable comparison from
all converters for writing the virtual page number and
actual page number at the map address in the least re-
cently used of the at least two map converters.

In the event that the first and second hashed ad-
dresses do not locate the address, the main memory has
means defining a page hashed table therein addressable
by the second hashed virtual page number and a second-
ary table for addresses. The cpu is responsive to mac-
rocode instructions for executing at least one microcode
instruction, each within one timing cycle and wherein
the converting means comprises means responsive to
the failure to locate the physical address in the page
hash table for producing a microcode controlled look-
up of the address in the secondary table.

A further back-up comprises a secondary storage
device, for example a disk and wherein the main mem-
ory includes a third table of addresses and the second-
ary storage device includes a fourth table of addresses.
The converting means has means responsive to the
failure to locate the address in the secondary table for
producing a macrocode controlled look-up of the ad-
dress in the third table of main memory and then the
fourth table if not in the third table, or indicating an
error if it is not in the secondary storage device. An-
other feature provides means for entering the address in
all of the tables where the address was not located.

The hardware support for the key feature of the close
interrelationship between the microcode and mac-
rocode comprises an improvement in the cpu wherein
means are provided for defining a predetermined set of
exceptional data processor conditions and for detecting
the occurrence of these conditions during the execution
of sequences of macrocode instructions. Means are re-
sponsive to the detection of one of the conditions for
retaining a selected portion of the state of the data pro-
cessor at the detection to permit the data processor to
be restarted to complete the pending sequence of mac-
rocode instructions upon the removal of the detected
condition. Means are also provided for initiating a pre-
determined sequence of macrocode instructions for the
detected condition to remove the detected condition
and restore the data processor to the pending sequence

o

0

20

40

45

55

65

6

of macrocode instructions. In a particularly advanta-
geous embodiment, the means for initiating comprises
means for manipulating the retained state of the data
processor to remove the detected condition and means
for regenerating the nonretained portion of the state of
the data processor.

The cpu has means for executing each macrocode
instruction by at least one microcode instruction and the
means defining the set of conditions and for detecting
same comprises means controlled by microcode instruc-
tions. Moreover, the means for retaining the state of the
data processor comprises means controlled by micro-
code instructions and the means for initiating the prede-
termined sequence of macrocode instructions comprises
means controlled by microcode instructions.

Another important feature of the present invention is
the unique and synergistic combination of the Lbus, the
microtasking, the synchronized pipelined memory and
the centralized error correction circuitry. This combi-
nation is carried out in the system according to the
present invention with a cpu which executes operations
on data in predetermined timing cycles which is syn-
chronous with the operation of the memory and at least
one peripheral device connected on the Lbus. The main
memory has means for initiating a new memory access
in each timing cycle to pipeline data therein and there-
out and the cpu further comprises means for storing
microcode instruction task sequences and for executing
a microcode instruction in each timing cycle and means
for interrupting a task sequence with another task se-
quence in response to a predetermined system condition
and for resuming the interrupted task sequence when
the condition is removed. The Lbus is a multiconductor
bidirectional bus which interconnects the memory, cpu
and peripherals in parallel and a single centralized error
correction circuit is shared by the memory, cpu and
peripherals. Means are provided for controlling data
transfers on the bus in synchronism with the system
timing cycles to define a first timing mode for communi-
cation between the memory and cpu through the cen-
trallized error correction circuit and a second timing
mode for communication between the peripheral device
and the cpu and thereafter the main memory through
the centrallized error correction circuit. In accordance
with this combination of features, data is stored in main
memory from a peripheral and data is removed from
main memory for the peripheral at a predetermined
location which is based upon the identification of the
peripheral device. Moreover, the cpu has means for

‘altering the state of the peripheral device from which

data is received, depending upon the state of the system.

The feature of the generic bus is provided to enable
the system according to the present invention, having
the cpu in main memory connected by a common sys-
tem bus to which input and output devices are connect-
able, to communicate with other peripherals and com-
puter systems on a second bus which is configured to be
generic by providing first interfacing means for con-
verting data and control signals between the system bus
and the generic bus formats to effect transmission be-
tween the system bus and the generic bus and second
interfacing means connected to the generic bus for con-
verting data and control signals between the generic bus
and a selected external bus format to permit data and
control signal transmissions between the system bus and
the peripherals of the selected external bus type. A key
feature of this generic bus is that the first interfacing
means converts data and control signals independently

4,922,414

7
of the external bus that is selected. Thus the first inter-
facing means includes means for converting the control
signals and address of an external bus peripheral from
the system bus format to the generic bus format inde-
pendently of the control signal and address format of
the external bus.

The pointer control and garbage collection feature
associated therewith is carried by means for dividing
the main memory into predetermined regions, means for
locating data objects in the regions and means for pro-
ducing a table of action codes, each corresponding to
one region. A generated address is then applied to the
table in parallel with the operation on that address to
obtain the action code associated therewith and means
are provided which are responsive to the action code
for determining, in parallel with the operation on the
address, if an action is to be taken. In a particular advan-
tageous embodiment, the action code is obtained and
the response thereto is determined within the same

timing cycle as that of the operation on the address.

This is done by controlling the determining means by
microcode instructions.

The cpu includes means for executing a sequence of
macrocode and microcode instruction sequences to
effect garbage collection in the system by determining
areas of memory to be garbage collected and wherein
the means for producing the action code table produces
one action code which initiates the garbage collection
sequences. In accordance with the invention, the gar-
bage collection is effected by means for examining the
data object at a generated address to see if it was moved
to a new address, means for moving the data object to a
new address in a new region if it was not moved, means
for updating the data object at the generated address to
indicate that it was moved, and means for changing the
generated address to a new address if and when the data
object is moved and for effecting continuation of the
operation on the data object of the generated address.

The system according to the present invention pro-
vides hardware support for garbage collection which
enables it to carry out this garbage collection sequence
in a particularly efficient manner by dividing the main
memory into pages and providing storage means having
at least one bit associated with each page of memory.
The given address is thereafter located in a region of
memory and means are provided for entering a code in
the at least one bit for a given page in parallel with the
locating of the address in a region of memory to indi-
cate whether an address therein is in a selected set of
regions in memory.

This means for entering the code comprises means for
producing a table of action codes each corresponding to
one region of memory. An address is applied to the
table and parallel with the locating thereof and means
are provided for determining if the address is in one of
the selected set of regions in response to its associated
action code. The garbage collection is effected in the set
of memory regions by reviewing each page and means
sense the at least one bit for each memory page to en-
able the reviewing means to skip that page when the
code is not entered therein.

The bus system in accordance with the present inven-
tion is another feature of the present invention which, in
the context of the system according to the present in-
vention includes the data processor alone, the data pro-
cessor in combination with peripherals and peripheral
units which have the means for communicating with the
data processor on the Lbus. The data processor includes

5

25

30

40

45

50

55

65

8

bus control means for effecting all transactions on the
bus in synchronism with the data processor system
clock and with a timing scheme including a request
cycle comprising one clock period wherein the central
processor produces a bus request signal to effect the
transaction and within the same clock period puts the
address data out on the bus. The request cycle is fol-
lowed by an active cycle comprising at least one next
clock period wherein the peripheral unit is accessed.
The active cycle is followed by a data cycle comprising
the next clock period and wherein data is placed on the
bus by the peripheral unit. The bus control means also
has means defining a block bus transaction mode for
receiving a series of data request signals from the cen-
tral processor in consecutive clock periods and for
overlapping the cycles of consecutive transactions on
the bus.

The Lbus control according to the present invention
also has means for executing microdirect memory ac-
cess transfer to achieve communication between a pe-
ripheral device and the cpu and thereafter the main
memory. In a particularly advantageous embodiment of
the present invention, a single centralized error correc-
tion circuit is shared by the memory, central processor
and peripheral device and all data transfers over the bus
are communicated through the single centralized error
correction circuit.

Thus, a data unit for use with a data processing sys-
tem according to the present invention has means
therein which is responsive to a transaction request
signal on the bus for receiving address data in a request
cycle comprising one system clock period, means for
accessing address data in an active cycle comprising at
least one system clock period and for producing a
weight signal when more than one system clock period
is necessary and means for applying data to the bus in a
data cycle comprising the next system clock period.
The data unit also may comprise means for receiving
request signals in consecutive clock periods and for
overlapping the request, active and data cycles for con-
secutive transactions. ,

A data unit in accordance with the present invention,
is also able to effect data transfers on the bus in synchro-
nism with the system timing cycle under microcode
control to effect a micro DMA data transfer.

These and other objects, features and advantages of
the present invention are achieved in accordance with
the method and apparatus of the present invention as
disclosed in more detail hereinafter with regard to the
attached appendix including a microcode listing, a lis-
ting of the microcode bits, the microcode compiler, the
front end processor program, a summary of the list
implementation language and listings of the program
array logic devices referred to in the attached system
drawings, wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of the system according to
the present invention;

FIG. 2 is a block diagram of the sequencer of FIG. 1;

FIG. 3 is a block diagram of the data path of FIG. 1;

FIG. 4 is a schematic of the data path data type tag
circuitry;

FIG. 5 is a schematic of the data path garbage collec-
tion circuitry;

FIG. 6 is a schematic of the data path trap control
circuitry;

4,922,414

9

FIG. 7 is a block diagram of the memory control of
FIG. 1;

FIG. 8 is a data path diagram of the memory control
instruction fetch unit;

FIG. 9 is a block diagram of the memory control map
circuitry;

FIGS. 10-23 are a schematic of a 512 K memory card
according to FIG. 1.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1is a block diagram of the system according to
the present invention. As shown therein, the basic sys-
tem of the present invention includes a sequencer SQ, a
data path unit DP, a memory controller MC, a front end
processor FEP an 1/0 unit and the main memory all
connected in parallel on a common bus called the Lbus.
As is also shown therein, other devices such as periph-
erals and the like can be connected in parallel along the
Lbus.

The basic system includes a processor cabinet having
reserved, color-coded slots are provided on the L bus
backplane for the DP-ALU, SQ, FEP, 10 and IFU-
MEM boards. The rest of the backplane is undedicated,
with 14 free 36 bit slots on the basic system. Plugging a
memory board into an undedicated slot sets the address
of that board. There are no switches on the boards for
this purpose. For diagnostic purposes, the FEP can
always tell which board is plugged into what slot it can
even tell the serial number of the board.

No internal cables are used in the system. All board-
level interconnections are accomplished through the
backplane. An external cable is provided for connecting
a console to the processor cabinet.

While the system according to the present invention
is physically configured by components in the manner
set forth in FIG. 1, many of the novel features of the
system have elements thereof on one or more of the
system components. Thus the system components will
be described with respect to the function of the detailed
circuitry contained therein followed by the operation of
the system features in terms of these circuit functions.

SEQUENCER

The sequencer is shown in block diagram form in
FIG. 2.

The sequencer controls the operation of the machine,
that is, it implements the microtasking. In carrying this
out, it utilizes an 8K X112 microcode control memory.

Each 112-bit microcode instruction specifies two
32-bit data sources from a variety of internal scratchpad
registers. There is normally no need for one to write
microprograms, since many Zetalisp instructions are
executed in one microcycle.

The system micromachine is time-division multi-
plexed. This means that the processor performs house-
keeping operations such as driving the disk in addition
to executing macroinstructions. This has the advantage
of providing a disk controller and other microtasks with
the full processing capability and temporary storage of
the system micromachine. The close coupling between
the micromachine and the disk controller has been
proven to be a powerful feature.

Up to eight different hardware tasks can be activated.
Control of the micromachine typically switches from
one task to another every few microseconds. The fol-
lowing other tasks run in the system:

Zetalisp emulator task—executes instructions

10

15

20

25

30

35

40

45

50

55

60

65

10

Disk transfer task—fetches data from main memory
and loads the disk shift-register; handles timing and
control for the disk sequencing.

Ethernet handshaking and protocol encoding and
decoding, where Ethernet is a local-area-network
for communication between computer system and
peripherals, and their users. The physical structure
of the Ethernet is that of a coaxial cable connecting
all the nodes on the network.

The FEP and microdevices (i.e., those devices ser-
viced by microcode, such as the disk controller and the
Ethernet controller) can initiate task switches on their
own behalf. The task priority circuitry on the sequencer
board determines the priority of the microtasks. Multi-
ple microcontexts are supported, eliminating the need
to save a microtask’s context before switching to an-
other.

More specifically, the sequencer includes tasks state
capture circuitry, task state memory for storing the
tasks state, a task state parity, a task memory output
register and a task priority circuit shown in FIG. 4
which determines the priority of 16 tasks which are
allocated as follows:

Tasks 8-15: DMA or 1/0 tasks. Assigned to devices
during boot time wakeup requests come from
open-collector bus lines.

Task 7: Not used. The task state memory for this task
is available for the FEP to clobber for debugging
purposes. The only way this can become the cur-
rent task is by the FEP forcing it.

Tasks 1, 2.5, 8: Software. Wakeup requests are in a
register; bit n can be set by doing a special function.
One of these tasks is the background service task for
all DMA tasks (set up next address and word count);
the others remain unassigned.

Task 4: Low-speed devices; wakeup request from
open-collector bus line.

Task 3: FEP service (wakeup settable by FEP)

Task 0: Emulator, Wakeup request is always true.

DMA tasks normally only run for 2 cycles per
wakeup. The first cycle emits the physical address from
A memory, increments it, does DISMISS, and skims on
a condition from the device (e.g. error or end of
packet). The second cycle decrements the word count
and skips on the result (into either the normal first cycle
or a “last” first cycle). The data transfer between device
and memory takes place over the Lbus under control of
the memory control. The “last” first cycle is the same as
normal, but its successor sets a “done” flag and wakes
up the background service task. It also turns off wake-
up-enable in the device so more transfers don’t try to
happen until the next DMA operation is set up. For
some devices there is double buffering of DMA ad-
dresses and word counts, and there are two copies of
the DMA micocode; each jumps to the other when its
word count is exhausted. Processing by the background
service task is interruptible by DMA requests for other
devices.

Tasks 1, 2, 5, 6, the software requested tasks, are only
useful as lowered-priority continuations of higher-pri-
ority tasks. They would not normally be awakened by
the Emulator (although START-1/0 would do that).

Wakeup requests for the hardware tasks (8-15) are
open-collector lines on the bus. These are totally unsyn-
chronized. Each device has a register which contains a
3-bit task number and 1-bit tasking-enable; task numbers
are assigned to devices according to the desired prior-
ity. A wakeup in the absence of enable is held until

4,922,414

11

enable is turned on. Once a device has asserted its
wakeup request, it should remain asserted (barring
changing of enable or the assigned task number) until
the request is dismissed. The request must then drop an
adequate time before the end of that microinstruction
cycle, so that 2 cycles later it will be gone from the
synchronizer register and the task will not wake up
again.

Delay from wakeup request to clock that finishes the
first microinstruction of service is 4 to 5 cycles (or about
a microsecond) if this is the highest priority task and no
tasking-inhibit occurs. Really high speed devices may
set their wakeup request 600 ns early. The processor
synchronizes and priority-encodes the wakeup requests.

Dismissing is different for hardware and software
tasks. When a hardware task is dismissed it executes one
additional microinstruction when a sofatware task is
dismissed it executes two additional microinstructions.
The hardware task timing is necessary so that a DMA
task can wake up and run for only two cycles.

If a dismiss is done when a task switch has already
been committed such that the microinstruction after the
dismiss is going to come from a different task, then the
machine goes ahead and dismisses. This means that the
succeeding microinstruction, which would normally be
executed immediately, will not be executed until the
next time the task wakes up. This does not apply to a
task which dismisses as soon as it wakes up, such as a
typical DMA task; since a task will not be preempted by
a higher-priority task immediately after a task switch,
when a task wakes up it is always guaranteed to run for
at least 2 cycles.

Task-switch timing/sequencing is as follows:

First cycle, first half:

Prioritize synchronized task requests. Hardware task
requests are masked out of the priority encoder if they
are being dismissed this cycle.

First cycle, second half:

Selected task to NEXT NEXT TASK lines. If this
differs from current task, NEXT TASK SWITCH as-
serted. Fetch state of selected task into TASK CPC,
TASK NPC, TASK CSP registers. Just before clock,
decide whether to really switch tasks or to stay in the
same task, in which case the TASK CPC, etc. registers
don’t matter, and NEXT TASK SWITCH is turned off.

Second cycle, both halves:

TASK SWITCH asserted. TASK CPC selected onto
CMEM A: fetch first microinstruction and new task.
TASK NPC selected into NPC register. CPS gets
CMEM A which is TASK CPC. TSKC register gets
NEXT CPC, NEXT NPC, NEXT CSP, and CUR
TASK lines. NEXT TASK lines have new task num-
ber.

Second cycle, second half:

Control-stack addressed by NEXT TASK and
TASK CSP: CTOS gets top of new stack (unless
switching to emulator and stack empty, gets IFU in that
case). CSP gets TASK CSP.

Third cycle, both halves:

Execute first microinstruction of task. Fetch second
microinstruction of task. If only waking up for 2 cycles
(dismiss is asserted), choose next task this cycle (line
first cycle above).

Third cycle, first half:

Task memory written from TSKC (save state of old
task). Address is TSKM WA which got loaded from
CUR TASK during second cycle.

Fourth cycle:

10

20

25

30

35

40

45

50.

35

60

65

12

" Execute second microinstruction of task. If only

woke up for 2 cycles, TASK SWITCH is asserted and
we do not choose another new task this cycle.

Another feature of the sequencer circuitry is trap
addressing. The sources of traps are mostly on the data
path board, with the memory control providing the
MAP MISS TRAP. Slow jumps all come from the data
path board. The sequencer executes normally if no trap
or slow jump condition is present. With regard to the
trap address interpretation:

Bit 12 is the skip bit; Bits 8~11 are the dispatch bits.
Bits 0-7 are capable of incrementing. Thus each macro-
instruction gets 4 consecutive control-memory loca-
tions; although there is a next-address field in the micro-
instruction. It is used for many things and so consecu-
tive addressing is often important. It is also possible for
most macroinstructions to skip into their consecutive
addresses (except for the small opcodes where this con-
flicts with a wired-in trap address).

In order to do a dispatch, it is nexessary to find a
block of 16 locations (in bits 8~11) which are not in use:
this is done either by finding a block of opcodes that
don’t use all 4 of their consecutive locations, or by
turning on bit 12 (there are a few dispatches that skip at
the same time).

Each task gets 16 locations of control-stack since
adders and multiplexors come in 4-bit increments. The
CADR doesn’t use the top half of its 32-location stack
much. Really only 15 locations of control-stack may be
used, because the memory is written on every cycle
whether or not you PUSHJ.

The CSP register always points at the highest valid
location in the stack. Thus it contains 17 when the stack
is empty. We do write-before-read rather than read-
before-write on this machine, however there is pipelin-
ing through the CTOS register. In fact a 1-instruction
subroutine will work.

When the emulator stack is empty (CSP—17 and the
emulator task is in control), there is an “extra” stack
location which contains the next-instrution address
from the IFU. POPJing to this location generates the
NEXT INST signal and refrains from decrementing the
stack pointer (leaves it 17 rather than making it 16).
NEXT INST tells the IFU to advance and does one or
two other random things (it clears the stack-adjustment
counter in the data path).

In the first half of each cycle, NPC is written into the
next free location (for the current task) in the control-
stack. This is 1+ the location CSP points at. NPC usu-
ally contains 14 the control-memory address from
which the currently-executing microinstruction came.

In the second half of each cycle, the top of the con-
trol-stack is read into the CTOS register. In the next
cycle, CTOS and CSP will agree with each other.
When switching tasks, we read from the new task’s
stack.

Note that what happens when we POPJ, results from
the pipelining. In the cycle before the PIPJ, the subrou-
tine return address (or IFU next-instruction address)
was read into the CTOS register; this came from the
stack location pointed to by CSP if the previous cycle
did not PUSHJ or POPJ. Now when we POPJ we
decrement CSP and read the next lower subroutine
return address into CTOS, in case the next cycle also
POPJs. When POPJ goes to the next macroinstruction,
CSP is not decremented and CTOS is loaded with the
address for the macroinstruction after that.

4,922,414

13

Trapping forces a “PUSHJ” so that NPC gets saved.
Slow-jump does the same, whether or not you wanted
it. If we trap out of a POPJ, we change our mind and
increment CSP rather than decrementing it. CTOS gets
loaded with the NPC that we saved.

The control stack may be popped without jumping to
it by specifying POPJ but not specifying for the control-
memory address to come from CTOS.

To sum up what happens on the NEXT CSP lines,

14

next task and the low bits may get swapped with

the next task’s CSP.
When pclsring out of a trapped instruction, it is neces-
sary to set the CSP back to — 1. This is done by using
5 the —CTOS CAME FROM IFU skip condition, which
is true when CSP—1 and this is the emulator task. One
can POPJ (without using the CTOS as the microin-
struction address source) until this condition becomes

true.

TABLE 1

Microcode Control of Sequencer
U SEQ <1:0>

@ no function

1 pushi (i.e. increment CSP)
2 dismiss current task

3 popj (i.e. decrement CSP)

This field is effectively forced to O when the sequencer is stopped, and
forced to 1 when a trap or slow jump is taken.
U CPC SEL <1:¢>
Selects address from which next microinstruction will be taken,
except for bit 12 which may be selected from -COND (skip). '

@ NAF (next-address-field of current instruction)

I CTOS (control-stack or IFU, normally used together with POPJ)
2 NPC (take-dispatch, restore from trap)

3 (spare) .

A trap or slow jump supplies an address and ignores this field.
U NPC SEL

Selects source for loading NPC register.

Normally:

® NAF modified by dispatch in bits 11:8
1 NEXT CPC+1 (only the low 8 bits increment)

With SPEC NPC SEL 1 and MAGIC=3 (or @ on rev-3 board).

@ CTOS (restore from trap)
1 CPC (forced when taking trap or slow jump)

UNAF <13:0>
Next-address field

These fields also used by data-path:
U COND FUNC < 1:¢>

U SPEC

$ nothing

1 SKIP (CMEM A 12 gets -COND)

2 (TRAP IF COND)

3 (TRAP IF -COND)
<4:0>
30 ARITHMETIC TRAP WITH DISPATCH
(If trap to address in NAF. bits 11-8
get replaced by high type bits of Abus and Bbus.)
HALT
Stops the machine after executing this microinstruction.
NPC MAGIC
Modifies U NPC SEL above, also allows connection between the
data path and the sequencer (see MICROINSTRUCTION.BITS).
AWAKEN TASK
Set wakeup for software task selected by U MAGIC < 1:¢>
WRITE TASK
Write task memory from address and data on Obus.
TASK DISABLE
Forces the current task to be the same in the cycle after
next as in the next cycle. Because of this pipelining. you
need to do this function twice in a row before it really
takes effect.

3

32

33

34

35

which are both the input to the CSP register and the
address for control-memory, we first ignore tasking to
keep things simple:

In The first half of each cycle, NEXT CSP contains
CSP+1.

In the second half of each cycle, NEXT CSP contains
CSP normally, but contains CSP—1 in the event of
a POPJ or CSP+1 in the event of a PUSHJ.

A POPJ that causes NEXT INST generates CSP
rather than CSP— 1. A trap or slow jump generates
CSP+1, like PUSHJ.

The first half is a write and the second half is a read.

In the first half of each cycle, the high bits are the
current task; in the second half the high bits are the

The data path board always gets an ungated clock.
Decoding of the microinstruction is modulated by NDP
where necessary.

NDP is the DR of nop due to taking a trap, nop due
to the machine waiting (see below), and nop due to the
machine being stopped, either by the FEP or by a parity
error or by a halt microinstruction.

Waiting is a kind of temporary stop. When the ma-
chine is waiting it continuously executes the same mi-
croinstrution without side-effects, until either the wait
condition goes away or it switches tasks (other tasks
might not need to wait). Upon return from the task
switch the same microinstruction is executed again.
Waiting is used to synchronize with the memory and
IFU; a wait occurs if the data path asks for data from

55

60

65

4,922,414

15

memory that hasn’t arrived yet not in the temporary
memory control, if an attempt is made to start a memory
cycle when the memory is busy. If an attempt is made to
do a microdevice operation when the bus is busy, or if
the address from the IFU is being branched to (this is
the last microinstruction of a macroinstruction) of a
macroinstruction) and the IFU says that the address is
provided (in the previous cycle) was bad.

The wait decision has to be made during the first half
of the cycle, because it is used to gate the clock in some
places.

A wait causes a NDP, inhibiting side-effects of the
microinstruction, but only partially inhibits task switch-
ing in the sequencer. If a task switch was scheduled in
the previous cycle, i.e. TASK SWITCH is asserted,
then the sequencer state (CPC, NPC, UIR, CSP) is
clocked from the new task’s state, but the old task’s state
is not saved; thus the current microinstruction will be
executed again when control returns to this task. If no
task switch was scheduled, the sequencer state remains
unchanged and the microinstruction is immediately
retried. During a wait new task wakeups are still ac-
cepted and so the wait can be interrupted by a higher-
priority task; when that task dismisses the waiting mi-
croinstruction will be retried.

A trap causes a NDP, inhibiting the side-effects of the
microinstruction, but when a trap occurs, the sequencer
still runs. The cycle is stretched to double-lengths so
that the control-memory address may be changed to the
trap address. Trapping interacts correctly with tasking.
The cycle is still stgetched to double length when
though the actual control-memory address is not chang-
ing. The revised contents of the NEXT CPC lines (the
trap address) gets written into the task-state memory.

5

—

0

25

Note that NDP is not valid before the leading edge of 35

the clock, and cannot be used to gate the clock.

In order for the memory control, which needs to
decide whether to start a memory cycle well in advance
of the clock, to work, things cannot be be this simple.
NDP actually consists of an early component and a late
component. The early reasons for NDP are stable by
less than 50 ns after the clock and can inhibit the starting
of a memory cycle. These include the machine being
halted, LBUS WAIT, and wait due to interference for

40

the Lbus. The latter signal is actually a little slower, but 45

16
the memory control sees it earlier than NDP itself does
and hence stabilizes sooner.

The late reasons for NDP are always false while the
clock is de-asserted. After the leading edge of the clock,
NDP can come on to prevent side-effects of the current
microinstruction. If a memory cycle has been started, it
cannot be stopped, however a write will be changed
into a read. Except when there is a map miss NDP will
stop it before the trailing edge of the clock. The late
reasons for NDP are traps, parity errors, and the half
microinstruction. All hardware errors are late because
control-memory parity takes too long to check, but it is
desirable to stop before executing the bad microinstruc-
tion rather than after, so that wrong parity in control
memory may be used as a microcode breakpoint mecha-
nism.

Control-memory parity is computed quickly enough
to manage to stop the sequencer clocks (but not quickly
enough to turn on NDP and distribute it throughout the
processor—and all the signals that derive from NDP-
before the leading edge of the clock).

All this is implemented by having a variety of clocks
on the memory-control and sequencer board, gated by
various conditions.

CLK—the main clock, which never stops.

SQ CLK~—clock for the main sequencer state (CPC,
NPC, CSP, CUR TASK). This is stopped by
WAIT unless switching tasks.

UIR CLK—like SQ CLK but also clocked by single-
step even if sequencer stepping is not enabled.

TSK CLK—like SQ CLK but not stopped by WAIT.

TSK CLK A —IDENTICAL TO TSK CLK; an
electrically separate copy.

TSKC CLK—clock for the task-state-capture regis-
ter.

Like SQ CLK but always stopped by WAIT.

The CTOS register is clocked by TSK CLK. It can’t
be clocked by SQ CLXK because when the machine is
waiting for the IFU the new address from the IFU must
be clocked in. It shouldn’t be clocked by CLK because
when a parity error occurs in the control stack, it is
desirable to be able to read this register before it
changes.

Table 2 shows clocking conditions (assuming the
machine is not stopped by the FEP and not stopped by
an error).

TABLE 2
DWTS State CTOS CUR TASK NEXT TASK Capture OPC NOP Error
- ctk clk clk clk >= clk ck no clk
D- clk clk clk clk < clk ck no clk
-W- hold clk hold clk> = no clk yes clk
DW- hold clk hold clk>= no cilk yes clk
-T- clk clk clk ck>= clk clk yes clk
D-T- «ck clk clk hold clk ck yes clk
~-WT- hold clk hold clk>= no clk yes clk
DWT- hold clk hold hold no clk yes clk
-S clk clk clk hold clk clk no clk
D-S° «clk clk clk clk= clk clk no clk
-W-S clk clk clk hold no clk yes clk
DW-S cik clk clk hold no clk yes clk
-TS ctk clk clk hold clk clk yes clk
D-TS «clk clk clk hold clk ctk yes clk
-WTS «clk clk clk hold no ctk yes clk

4,922,414

17
TABLE 2-continued

18

DWTS State CTOS CUR TASK NEXT TASK Capture

OPC NOP Error

DWTS clk clk clk hold no

clk

yes clk

D = DISMISS (task voluntarily going away, after | (or 2) more microinstructions)
W = MC WAIT (NOP this microinstruction and try it again, on demand of memory control)
T = Trap (Double-length cycle, NOP this microinstruction, take different successor)

S = TASK SWITCH (next microinstruction from different task)
State = UIR, NPC, CPC, CSP

Capture = task-state capture registers

Error = hardware error registers

When the machine is stopped, it is possible to single-
step the sequencer and the data path either separately or
together, and to read and write the microinstruction
register without disturbing any state. This makes it
posible to save and restore the complete state (save the
UIR, step just the sequencer to bring all of its state to
the spy bus, then execute microinstructions to read the
data-path state). It is possible to run the machine at full
speed with control-memory disabled, so that the UIR
doesn’t change, to make one-microinstruction scope
loops. It is also possible to run the data path at full speed
with the sequencer stopped, which may or may not be
useful.

The FEP controls this via the control register on
SQCLKC, which is cleared when the machine is reset:

Set to 1 to let the machine run freely
Set to O then to 1 to clock the machine
once

If 0. STEP doesn't affect the data path
If 1, STEP and RUN don't affect the
sequencer except UIR

If 1, UIR from CMEM, else from
CMEM WD register

If 1, write control-memory

If 1, trap conditions set nop and change
cmem address

If 1. parity error will inhibit RUN

If 1. enables task scheduling, if O the
task number is forced from these bits
here

Enable write-pulse to task and control-
stack memories spare

spare

0 RUN
1 STEP

2 ENABLE DP
3 ENABLE SQ

4 ENABLE CHEM

5 CMEM WRITE
6 ENABLE TRAP

7 ENABLE ERRHALT
8 ENABLE TASK
9-12 TASK

13 ENABLE WP
14
15

When writing control-memory, CMEM ENB must
be 0 to inhibit the RAM outputs and trapping must be
disabled so that the control-memory address is stable.
Normally UIR would be set up to source the appropri-
ate address.

Trapping (i.e. branching to a special address and
nop’ification) does not occur if TRAP ENB is zero.
Note that when trapping is enabled reading the NEXT
CPC line isn’t too useful since they alternate between
the normal address and the trap address in every cycle.

When the sequencer is stopped, the following do not
change:

CSP, CPC, NPC, CTOS, CUR TASK
The following do not change when the sequencer is
stopped, except that single-stepping changes them re-
gardless of ENABLE SQ:

UIR

If you don’t want the UIR to change, you disable
control memory and store the appropriate value in the

15

20

25

30

35

40

45

50

55

60

65

CMEM WD register, which will then be loaded into
UIR.

The task registers are clocked on every clock, regard-
less of whether the sequencer is running. These are the
registers after the task memory. The registers before the
task memory clock only if the state of the sequencer is
to be saved, i.e. if the sequencer is running or being
single-stepped is to be saved, i.e. if the sequencer is
running or being single-stepped and MC WAIT is not
true. All of the main sequencer state registers, including
the current task, clock only when the sequencer is run-
ning. The FEP can control whether the task chosen
when the sequencer is running or single-stepping comes
from the task scheduler or a task number supplied by
the FEP. ’

The diagnostic interface to the system includes the
Spy bus. This is an 8-bit wide bus which can be used to
read from and write to various portions of the 3600
processor. The readable locations in the processor
allow the FEP to “spy” on the operation of the cpu,
hence the name “Spy bus”. Using the Spy bus, the FEP
can force the processor to execute microinstructions,
for diagnostic purposes.

When diagnostics are not running, the FEP uses the
Spy bus as a special channel to certain DMA devices.
Normally, The FEP uses the Spy bus to receive a copy
of all incoming Ethernet packets. It can also set up and
transfer to the Ethernet and read from the disk via the
Spy bus.

Table 3 shows the spy functions on the sequencer
board:

TABLE 3

SPY WRITE CMEMO,1,. . .13 WO
Write an 8-bit slice of the CMEM WO register. This register
is a source of write data for control-memory and also a source
of microinstructions into UIR when cmem is disabled.

SPY READ CMEMO,,. . .13
Read an 8-bit slice of UIR (which typically contains data from
CHEM).

SPY WRITE CTL1.2
Write sequencer control & clock register described above.
This has two spy functions since it is a 16-bit register: the
CTL1 is the least-significant byte.

SPY READ NEXT CPC (2 addresses)
Read NEXT CPC lines. which are the control-memory address in
the
absence of tasking. Allows reading NPC, CTOS. trap address. U
NAF.

To read the CPC you must first
single-step it into the NPC. To control the NEXT CPC selection
you force a microinstruction into the UIR.

SPY READ SQ STATUS (2 addresses)
Read error halt conditions as a 16-bit word:
7 AU STOP 15 -ERRHALT
6 MC STOP 14 TSK-STOP
5 BMEM PAR ERR 13 CTOS CAME FROM IFU
4 AMEM PAR ERR 12 CMEM (UIR) PAR ERR
3 PAGE TAG PAR ERR {1 TASK MEM PAR ERR
2 TYPE MAP PAR ERR 10 CTOS (L.LEFT) PAR ERR
1| GC MAP PAR ERR 9 CTOS (RIGHT) PAR ERR
0 (spare) 8 MICROCODE HALT
SPY READ TASK
<3:0> are CUR TASK

4,922,414

19

TABLE 3-continued

SPY READ SQ STATUS2

More status:
1-0 are the CTOS parity bits

SPY READ SQ BOARD ID
Read the board-ID prom (gives serial number, ECO level, etc.)
Address comes from the U AMRA <4:0> field of UIR

SPY READ DP BOARD ID
Read the board-ID prom on the datapath board (the spy address
is decoded by the sequencer).

SPY READ OPCI1,2
Reads PC history memory. .
This is a 16 entry RAM where each entry contains a PC in bits
< 13:0>, bit <14> = -NOP for that microinstruction, and bit
< 15> = 1if the next microinstruction came from a different task.
The OPC memory reads out backwards (i.e. with the sequencer
stopped, the first read gets you the last instruction executed, the
next read gets you the instruction before that, etc.) After 16 reads
it is back in its original state.
Because you can only read this one byte a time (reading either
byte the address counter) you have to first read
all 16 even bytes and then read all 16 odd bytes).

DATA PATH

The data path unit is shown in block diagram form in
FIG. 3 with the various circuit elements shown in the
block diagram shown in more detail in FIGS. 4-6.

The data path unit includes the stack buffer, the arith-
metic logic unit (ALU), the data typing circuitry, the
garbage collection circuitry and other related circuit
elements.

The A and B memories include the two stack and
buffers described hereinabove. The A memory is a
4K x40 bit memory and the B memory which is a
256X 40 bit memory.

Garbage collection circuitry is shown in FIG. 5 and
trap control, condition dispatch and microinstruction
decode circuitry is shown in FIGS. 3-6.

The ALU is used to carry out the arithmetic combi-
nation of a given address and offset and is dedicated
solely thereto. As can be seen from the data flow path in
the block diagram of FIG. 3, the circuitry on the data
path unit separates the type field from the data object
and thereafter checks the type field with respect to the
operation and generates a new type field in accordance
with the operation. The new type field and the results of
the operation are combined thereafter.

The central processing unit (cpu or processor) exem-
plifies a tagged architecture computer wherein type-
checking is used to catch invalid operations before they
occur. This ensures program reliability and data integ-
rity. While type-checking has been integrated into
many software compilers, the present system performs
automatic type-checking in hardware, specifically the
above-mentioned circuitry in the sequencer. This hard-
ware allows extremely fast type-checks to be carried
out at run-time, and not just at compile-time. Run-time
type-checking is important in a dynamic Lisp environ-
ment, since pointers may reference many different types
of Lisp objects. Garbage-collection algorithms (ex-
plained hereinafter) also need fast type-checking.

Automatic type-checking is supported by appending
a tag field to every word processed by the cpu. The tag
field indicates the type of the object being processed.
For example, by examining the tag field, the processor
can determine whether a word is data or an instruction.

With the tagged architecture, all (macro)instructions
are generic. That is, they work on all data types appro-
priate to them. There is, for example, only one ADD
operation, good for fixed and floating-point numbers,

20

35

40

45

65

20

double-precision numbers, and so on. The behavior of a
specific ADD instruction is determined by the types of
the operands, which the hardware reads in the oper-
ands’ tag fields. There is no performance penalty associ-
ated with the type-checking, since it is performed in
parallel with the instruction. By using generic instruc-
tions and tag fields, one (macro)instruction can do the
work of several instructions on more conventional ma-
chines. This permits very compact storage of compiled
programs.

In the present system a word contains one of many
different types of objects. Two basic formats of 36-bit
words are provided. .

One format, called the tagged pointer format, consists
of an 8-bit tag and 28 bits of address. The other immedi-
ate number format consists of a 4-bit tag and 32 bits of
immediate numerical data. (In main memory, each word
is supplemented with 8 more bits, including 7 bits of
ECC).

Two bits of every word are reversed for list compac-
tion or cdr-coding. The cdr-code bits are part of a tech-
nique for compressing the storage of list structures. The
four possible values of the cdr-code are: normal, error,
next, and nil. Normal indicates a standard car-cdr list
element pair, next and nil represent the list as a vector in
memory. This takes up only half as much storage as the
normal case, since only the cars are stored. Zetalisp
primitives that create lists make these compressed cdr-
coded lists. Error is used to indicate a memory cell
whose address should not be part of a list.

34 data types are directly supported by the processor.
The type-encoding scheme is as follows. A Zetalisp
pointer is represented in 34 bits of the 36-bit word. The
other two bits are reserved for cdr-coding. The first
two bits of the 34-bit tagged pointer are the primary
data typing field. Two values of this field indicate that
the 32-bits hold an immediate fixed-point of floating-
point number, respectively. (The floating-point repre-
sentation is compatible with the IEEE standard). The
other two values of the 2-bit field indicate that the next
four bits are further data type bits. The remaining 28 bits
are used as an address to that object. The object. The
object types include:

symbols (stored in four parts: print-name, value, func-

tion, and properly-list)

lists (cons cells)

strings

arrays

flavor instances

bignums (arbitrary-precision integers)

extended floating-point numbers

complex numbers

extended complex numbers

rational numbers

intervals

coroutines

compiled code

closures

lexical closures

nil

The present-system is stack-oriented, with multiple
stacks and multiple stack buffers in hardware. Stacks
provide fast temporary storage for data and code refer-
ences associated with programs, such as values being
computed, arguments, local variables, and control-flow
information.

A main use of a stack is to pass arguments to instruc-
tions, including functions and flavor methods. Fast

4,922,414

21
function calling is critical to the performance of cpu-
bound programs. The use and layout of the stack for
function calling in the system is novel.

In the system, a given computation is always associ-
ated with a particular stack group. Hence, the stacks are
organized into stack groups. A stack group has three
components:

A control stack—contains the lambda bindings, local

environment, and caller list.

A binding-stack—contains special variables and

counter-flow information.

A data-stack—contains Lisp objects of dynamic ex-

tent (temporary arrays and lists).

In the system, a stack is managed by the processor
hardware in the sequencer as set forth above. Many of
the system instructions are stack-oriented. This means
they require no operand specification, since their oper-
ands are assumed to be on the top of the stack. This
reduces considerably the size of instructions. The use of
the stack, in combination with the tagged architecture
features, also reduces the size of the instruction set.

The control stack is formatted into frames. The
frames usually correspond to function entities. A frame
consists of a fixed header, followed by a number of
argument and local variable slots, followed by a tempo-
rary stack area. Pointers in the control stack refer to
entries in the binding stack. The data stack is provided
to allow you to place Zetalisp objects in it for especially
fast data manipulations.

Active stacks are always maintained in the stack buff-
ers by the hardware. The stack buffers are special high-
speed memories inside the cpu which place a process’s
stack into a quick access environment. Stack buffer
manipulations (e.g., push, pop) are carried out by the
processor and occur in one machine cycle.

At the macroinstruction level, the system has no
general-purpose registers in the conventional sense, as it
is a stack-oriented machine. This means that many in-
structions fetch their operands directly from the stack.

The two 1K word stack buffers are provided in order
to speed the execution of Zetalisp programs. The stack
buffers function as special high-speed caches used to
contain the top portion of the Zetalisp stack. Since most
memory references in Zetalisp programs go through the
stack, the stack buffers provide very fast access to the
referenced objects.

The stack buffers store several pages surrounding the
“current” stack pointer, since there is a high probability
they will contain the next-referenced data objects.
When a stack overflows or underflows the stack buffer,
a fresh page of the stack buffer is automatically allo-
cated (possibly deallocating another page).

Another feature of the stack buffers which supports
high-speed access is the use of hardware-controlled
pushdown pointers, eliminating the need to execute
software instructions to manipulate the stack. All stack
manipulations work in one cycle. A hardware top-of-
stack register is provided for quick access to that loca-
tion at all times.

The stack buffer has some area thereof which is allo-
cated as a window to the stack, which means that some-
where in the main memory is a large linear array which
is the stack that is being currently used and this window
points into some part of it so that it shadows the words
that are in actual memory. The window is addressed by
a two segment addressing scheme utilizing a stack
pointer and an offset. The ALU associated with the

20

25

40

60

65

22
stack buffer, combines the pointer and offset in one
cycle to address the window in the stack buffer.

In a Lisp environment, storage for Lisp objects is
allocated out of a storage area called the heap in virtual
memory. Storage must be deallocated and returned
automatically to the heap when objects are no longer
referenced. In order to manage the dynamic storage
allocation and deallocation, storage manager and gar-
bage collection routines must be implmented. Garbage
collection is the process of finding “unreferenced” ob-
jects and reclaiming their space for the heap. This space
is then free to be reallocated.

The goal of a good garbage collection algorithm is to
reclaim storage quickly and with a minimum of over-
head. Conventional garbage collection schemes are
computationally costly and time-consuming, since they
involve reading through the entire address space. This
is done in order to prove that nowhere in the address
space are there any references to the storage being con-
sidered for reclamation. The design of the present sys-
tem includes unique features for hardware assistance to
the garbage collection algorithms which greatly sim-
plify and speed up the process. These hardware features
are used to “mark” parts of memory to be included in
the garbage collection process, leaving the rest of mem-
ory untouched. These hardware features include:

Type fields which indicate pointers

Page Tag which indicate pages containing pointers to

temporary space

Multi-word read instructions which speed up the

memory scanning.

The 2-bit type field inserted into all data words by the
hardware simplifies garbage collection. This field indi-
cates whether or not the word contains a pointer, i.e., a
reference to a word in virtual memory.

For each physical page of memory there is a bit called
a page tag. This is set by the hardware when a pointer
to a temporary space is written into any location in that
page. When a disk page is read into a main memory
page and after a garbage-collection cycle, the micro-
code sets the bit to the appropriate value. When the
garbage-collector algorithm wants to reclaim some
temporary space, it scans the page-tag bits in all the
pages. Since the page tag memory is small relative to
the size of virtual memory, it can be scanned rapidly,
about 1 ms per Mword of main memory that it de-
scribes. For all pages with the page-tag bit set, the gar-
bage collector scans all words in that page, looking for
pointers to “condemned” temporary space. For each
such pointer it copies out the object pointed to and
adjusts the pointer.

Multi-word read operations speed up the garbage
collection by fetching several words at a time to the
processor.

The virtual memory software assists garbage collec-
tion with another mechanism. If a page with its page-tag
bit set is written to disk, the paging software will scan
through the contents of the page to see what it point at.
The software creates a table recording the swapped-out
pages which contain pointers to temporary spaces in
memory. Since the garbage collector checks this table,
it can tell which pages contain such pointers. This
knowledge is used to improve the efficiency of the
garbage-collection process, since only the pages with
temporary-space pointers are read into memory during
garbage collection.

4,922,414

23

PAGE TAG IMPLEMENTATION

The page tag bits are made out of 16K static RAM.

The following inputs exist:

LBUS ADDR 23:19—the physical page to be ac-

cessed next.

NORMAL ACTIVE L—true if this is an active

cycle and the page tags are supposed to see it.
LBUS STATE CLK L—the clock gated by LBUS
WAIT.

DP SET CG TAG L—true during an active cycle if
the datapath output during the previous cycle was
a pointer and its address was in a temporary space.
If this active cycle is for a virtual write, the GC tag
bit needs to be set.

WRITE ACTIVE L—true during an active write

cycle (registered version of LBUS WRITE L).

WRITE PAGE TAG L—true if lbus-dev-write of

the page tag being done.

READ PAGE TAG L—true if reading page tag (via

Ibus-dev-write).
LBUS DEV 4:3—modifiers for the above.
Note: the spec and magic fields could be used in-
stead of the microdevice 1/0.
The following outputs exist:
LBUS DEV COND L—Asserted when READ
PAGE TAG and the selected tag bit is set.

PAGE TAG PAR ERR L—asserted when bad par-

ity is read from the page tags.

Microcode control: ‘

One selects a physical page by doing a read of any
location in the page. Normally the address would be
supplied as a physical address on the Abus although the
VMA could also be used. Actually starting a read isn’t
necessary; it’s only necessary to convince the memory
control to put the physical address on the Lbus. In the
next cycle one uses a microdevice operation to read or
write the page tage for the addressed page.

Since the address is supplied in the previous cycle
before the read and write, it is necessary to prevent a
task switch from intervening. This is done by specifying
SPEC TASK-INHIBIT in the microinstruction-before-
the one that emits the address on the Abus. It is also
possible for a FEP memory access to intervene between
the two microinstructions, i.e. the microdevice opera-
tion may have to wiat for the Lbus to become free. The
page tag’s address register is not clocked when MC
WIAT is asserted, which takes care of this problem.

WRITE PAGE TAG L is asserted during second
half when writing to microdevice slot 36, subdevice 1
(on the FEP board).

LBUS DEV 3 is written into the selected bit. The
other remains unchanged.

LBUS DEYV 4 selects which bit:

the gc tag bit
1 the referenced bit

READ PAGE TAG L is asserted when writing to
microdevice slot 36 subdevice 3.
LBUS DEYV 4:3 select the bit to read, as follows:

00
ol
10

the gc tag bit
the referenced bit
the parity bit

5

10

24

-continued

11 (not used)

The preselected bit comes back on the LBUS DEV
COND L line and may be used as a skit condition.

Scanning GC page tag takes place at the rate of 2
cycles per bit. This amounts to 1 millisecond per 750K
of main memory. The microcode alternates between
cycles which emit a physical address on the Abus, start
a read, and do a compare to check for being done, and
cycles which increment the physical address and also
skit on the tag bit, into either the first cycle again or the

~ start of the word scanning loop.

15

20

25

30

35

40

50

55

60

65

There is no special function for writing a pointer into
main memory to enable the check and setting of gc page
tag. Instead, any write into main memory at a virtual
address, where the data type map says the type is a
pointer, and the gc map says it points at temporary
space, will set the addressed gc page tag bit in the fol-
lowing cycle if necessary.

The SKTP, FRMP, and XBAS registers can be used
to address A-memory. The low 10 bits of one of these
registers is added to a sign-extended 8-bit offset which
comes from the microinstruction or the macroinstruc-
tion. This is then concatenated with a 2-bit stack bas
register to provide a 12-bit A-memory address. The
microcode can also select a 4th pseudo base register,
which is either FRMP or STKP depending on the sign
of the macroinstruction offset. Doing this also adds 1 to
the offset if it is negative. Thus you always use a posi-
tive or zero offset with FRMP and a negative or zero
offset with STKP in this mode.

STKP points at the top of the stack. FRMP points at
the current frame.

STKP may be incremented or decremented indepen-
dently of almost everything else in the machine, and
there is a 4-bit counter which clears at the beginning of
a macroinstruction and increments or decrements simul-
taneously with STKP: this allows changes by pulse or
minus 7 to STKP to be undone when a macroinstruc-
tion is aborted (polsred).

STKP and FRMP are 28-bit registers, holding virtual
addresses, and may be read onto the data path. XBAS is
only a 10-bit register and may not be read back. (The
FEP can read it back by using it as a base register and
seeing what address develops.) The XVAS register is
not used by most of the normal microcode, but it is
there as a provision for extra flexibility. The microcode
which BLTs blocks of words up and down in the stack
(used by function -return, for example)., needs two
pointers to the stack. It currently uses FRMP and
STKP, but might be changed to use XBAS and STKP.
The funcall (function call with variable function) micro-
code uses XBAS to hold a computed address which is
then used to access the stack.

INTERFACE WITH MEMORY CONTROL
BOARD

The data path and the memory control need to com-
municate with each other for the following operations:

Reading the VMA and PC registers into the data
path.

Writing the VMA and PC registers from the data .
path.

Accessing the address map (at least writing it).

Reading main memory or memory-mapped 1/0 de-

vice.

4,922,414

25

Writing main memory or memory-shaped 1/0 de-
vice.

Emitting a physical address (especially in a “DMA”
task).

Using the bus to access devices such as floating-point
unit and doing “microdevice” (non-memory-mapped)
1/0.

Setting the GC page tag bit when a pointer is written
into memory.

The MC does its own microinstruction decoding.
There is a 4-bit field just for it, and it also looks at the
Spec, Magic, A Read Address, and A Write Address
fields. The A address fields have 9 bits each available
for the MC when the source (or destination) is not A-
memory, which is normally the case when reading (or
writing) the MC. Also the A-memory write address can
be taken from the read address field, freeing the write
address field for use by the MC. This occurs during the
address cycle of a DMA operation, which increments
an A-memory location but also hacks the MC. The MC
and the sequencer also have a good deal of communica-
tion, mostly for synchronization and for the IFU.

The following signals connect between the DP and
MC boards:

BK ABUS 35:0—bidirectional extension of the data
path’s Abus. This is used to read VMA, PC, mpa,
and memory (or bus) data into the data path, and to
emit physical addresses from the data path. Bits
31-0 are bidirectional, but bits 35-32 are unidirec-
tional, they always go from the memory control to
the data path; this allows the cdr code of a memory
location to be merged into the data to be stored into
it, which needs to be on the Abus so it can get to
the type and gc maps. The parity bits on the inter-
nal Abus do not connect to the MC.

LBUS 35:0—the main data bus. The data path can
drive this either directly or through a register. This
is used when writing main memory, when writing
the bus, and when writing registers on the MC
board. The error-correction bits do not connect to
the DP.

LBUS ADDR 11:0—physical memory address into
the data path. This is used when a supposed main
memory access actually refers to internal A mem-
ory. See below.

MC OBUS TO LBUS L—DP result from this cycle
drives LBus.

MC OBUS REG TO LBUS L—DEP result from last

cycle drives LBUS.

GC TEMP L—to GC page tag bits. If this is asserted
at the end of a cycle which writes into main mem-
ory, then during the following cycle, which is
when the write actually hapens, the GC page tag
bit for the page being written into its turned on.

MC ADDR IN AMEM L—Asserted if the last mem-
ory address selected by this task (need only work
for emulator) points at A-memory. The data path
uses this to enable A-memory instead of BK ABUS
for memory reads, and to enable A-memory writ-
ing for memory writers. See below.

ABUS OFFBOARD L—Asserted if the BK ABUS
is an input to the data path. The DP drives the BK
ABUS whenever it isn’t receiving it.

SEQUENCE BREAK—Tells the IFU to generate a
bogus instruction to take the sequence break (mac-
rocode interrupt).

25

30

40

45

50

35

60

65

26

The data path assumes that when a memory reference
is redirected to A-memory, the memory control will
provide the right address on the Lbus address lines.

For writing, things are simple. In the first cycle, the
data path computes to write data; in the second cycle
the write data is driven onto the Lbus, where it gets
error-correction bits added. The memory card swal-
lows the address at the end of the first cycle and the
data during the second. The A-memory wants to the
same timing; in the first cycle the address coms from the
Lbus and the data come from the Obus inside the data
path; in the second half of the second cycle the actual
write is performed from the A-memory pipelining regis-
ters.

The trap control circuitry of FIG. 46 effects the fea-
ture of trapping out of macrocode instruction execu-
tion. For example a page table miss trap to microcode
looks in the page hash table in main memory. If the page
is found, the hardware map is reloaded and the trap
microinstruction is simply restarted. A PCLSR of the
current instruction happens only if this turns into a fault
because the page is not in main memory or a page write-
protected fault.

Another trap is where there is an invisible pointer.
This trap to microcode follows the invisible pointer,
changing the VMA and retries the trap to microinstruc-
tion.

Memory write traps include one which is a trap for
storing a pointer to the stack, which traps to microcode
that maintains the stack GC tables. This trap aborts the
following micro instruction, thus the trapped write
completes before the trap goes off. The trap handler
looks at-the VMA and the data that was written into
memory at that address, makes entries in tables and then
restarts the aborted microinstruction. If it is necessary
to trap out to microcode, there are two cases. If the
write was at the end of a macroinstruction, then that
instruction has completed and the following instruction
has not started since its first microinstruction was
aborted by the trap. However, the program counter has
been incremented and the normal PCLSR mechanism
will leave things in exactly the right state. The other
cases where the write was not at the end of a macroin-
struction, in this case the instruction must be PCLSR,
with the state in the stack and the first part done flag.

Another trap is a bad data type of trap and an arith-
metic trap wherein one or both of the operands of the
numbers on which the arithmetic operations is taking
place is a kind of number that the microcode does not
handle. The system first coerces the operands to a uni-
form type and puts them in a uniform place on the stack.
Thereafter a quick external macrocode routing for
doing this type of operation on that type is called. If the
result is not to be returned to the stack, an extra return
address must be set up so that when the operation rou-
tine returns, it returns to another quick external routine
which moves the result to the right place.

Stack buffers traps occur when there is a stack buffer
overflow. The trap routine does the necessary copying
between the stack buffer and the main memory. It is
handled as a trap to macrocode rather than being en-
tirely in microcode, because of the possibility of recur-
sive traps, when refilling the stack buffer it is possible to
envoke the transporter and take page faults. When emp-
tying the stack buffer, it is possible to get unsafe pointer
traps. :

4,922,414

27

MEMORY CONTROL

The memory control is shown in block diagram form
in FIGS. 7-9 which show the data and error correction
circuitry in FIG. 7, the data path flow of the instruction
fetch unit in FIG. 8 and the page hash table mapping in
FIG. 9.

Physical memory is addressed in 44-bit word units.
This includes 36 bits for data, 7 bits for error correction
code (ECC) plus one bit spare. Double-bit errors are
automatically detected, while single-bit errors are both
detected and corrected automatically. The memory is
implemented using 200-ns 64Kbit dynamic RAM (ran-
dom access memory) chips with a minimum memory
configuration of 256Kwords (1MByte) (See FIGS.
10-23). The write cycle is about 600 ns (three bus cy-
cles). In some cases the system can get or set one word
per cycle (200 ns), and access a word in 400 ns.

The system 28-bit virtual address space consists of 16
million (16,777,216) 44-bit wide words (36-bits of data
and 8 bits of ECC and spares). This address space is
divided into pages, each containing 256 words. The
upper 20 bits of a virtual address are called the Virtual
Page Number (VPN), and the remaining 8 bits are the
word offset within the page. Transfers between main
and secondary memory are always done in pages. The
next section summarizes the operation of the virtual
paging apparatus.

The virtual memory scheme is implemented via a
combination of Zetalisp code and microcode. The labor
is divided into policies and mechanisms. Policies are
realized in Zetalisp; these are decisions as to what to
page, when to page it, and where to page it to. Mecha-
nisms are realized in microcode; these constitute deci-
sions as to how to implement the policies.

Zetalisp pointers contain a virtual address. Before the
hardware can reference a Zetalisp object, the virtual
address must be translated into a physical address. A
physical address says where in main memory the object
is currently residing. If it is not already in main memory,
it must either be created or else copied into main mem-
ory from secondary memory such as a disk. Main mem-
ory acts as a large cache, referencing the disk only if the
object is not already in main memory, and then attempt-
ing to keep it resident for as long a it will be used.

In order to quickly and efficiently translate a virtual
address into a 24-bit physical address, the system uses a
hierarchy of translation tables. The upper levels in the
hierarchy are the fastest, but since speed is expensive
they also can accommodate the fewest translations. The
levels used are:

Dual Map Caches which reside in and are referenced
by the hardware and can each accommodate 4K
entries.

A Page Hash Table Cache (PHTC) which resides in
wired main memory and is referenced by the mi-
crocode with hardware assist. The size of the
PHTC is proportional to the number of main mem-
ory pages, and can vary from 4 to 64Kwords, re-
quiring one word per entry. However, the table is
only 50% dense to permit a reasonable hashing
performance.

A Page Hash Table (PHT) and Main Memory Page
Table (MMPT) which reside in wired main mem-

10

15

20

25

35

40

45

50

55

60

ory and are referenced by Zetalisp. The size of 65

both of these tables are proportional to the number
of main memory pages, with the PHT being 75%
dense and the MMPT 100% dense. Both tables

28
require one word per entry. The PHT and MMPT
completely describe all pages in main memory.

The Secondary Memory Page Table (SMPT) de-
scribes all pages of disk swapping space, and dy-
namically grows as more swapping space is used.

A virtual address is translated into a physical address

by the hardware checking the Map Caches for the vir-
tual page number (VPN). If found, the cache yields the
physical page number the hardware needs. If the VPN
isn’t in the Map Cache, the hardware hashes the VPN
into a PHTC index, and the microcode checks to see if
a valid entry of the VPN exists. If it does, the PHTC
yields the physical page number. Otherwise a page fault
to Zetalisp code is generated. :

The page fault handler checks the PHT and MMPT

to determine if the page is in main memory. If so, the
handler does whatever action is required to make the
page accessible, loads the PHTC and the least recently
used of the two Map Cache, and returns. If the page is
not in main memory, the handler must copy the page
from disk into a main memory page. When a page fault
gets to this point it is called a hard fault. A hard fault
must do the following:

1. Find the virtual page on the disk by looking up the
VPN in the SMPT.

2. Find an available page frame in main memory. An
approximate FIFO (first-in, first-out) pool of avail-
able pages is always maintained with some pages
on it. When the pool reaches some minimum size a
background process fills it by making the least
recently used main memory pages available for
reuse. If the page selected for reuse was modified
(that is, its contents in main memory were changed
so the copy on disk is different) it must be first
copied back to disk prior to its being available for
reuse. The background process minimizes this oc-
currence at fault time by copying modified pages
back to disk periodically, especially those eligible
for reuse.

3. Copy the disk page into the main memory page
frame.

4. If the area of the virtual page has a “swap-in quan-
tum” specified, the next specified number of pages
are copies into available main memory page frames
as. well. If these prefetched pages are not refer-
enced within some interval and some page frames
are needed for reuse, their frames will be reused.
This minimizes the impact of prefetching unneces-
sary pages.

5. Update the PHT, MMPT, PHTC, and least re-
cently used of the two Map Cache to contain the
page just made resident, and forget previous page
whose frame was used.

6. Return from the fault and resume program execu-
tion.

The central Memory Control unit manages the state

of the bus and arbitrates requests from the processor,
the instruction fetch unit, and the front-end processor.

L BUS

For general communication with devices, the L bus
acts as an extension of the system processor. Main mem-
ory and high speed peripherals such as the disk, net-
work, and TV controllers and the FEP are interfaced to
the L bus. The address paths of the L bus are 24 bits
wide, and the data paths are 44 bits wide, including 36
bits for data and 8 bits for ECC. The L bus is capable of

4,922,414

29 :
transferring one word per cycle at peak performance,
approximately 20MByte/sec.

All L bus operations are synchronous with the system
clock. The clock cycle is roughly 5 MHz, but the exact

30

In a normal write operation, two phases are carried
out:
1. Request—The cpu or the FEP selects the memory
card to which to write.

-period of cycle may be tuned by the microcode. A field 5 . Active—The cpu or the FEP drives the data onto
in the microcode allows different speed instructions for the bus. :
different purposes. For fast instructions, there is no need B N L .
to wait the long clock cycle needed by slower instruc- ,A modified memory cycle_ on the L bus 1s_used for
tions. Main memory and cpu operations are synchro- direct memory access operation by L bus dev1ces..In a
nous with the L bus clock. When the cpu takes a trap, 10 l?lMéA‘ OItftPUt operation, as t“cli ?utgleggrg lopgra;;ons,
the clock cycle is stretched to allow a trap handler D€ data from memory is routed to the ,-08ic. How-
microinstruction to be fetched. ever, instead of passing on to the processor’s instruction

As an example of L bus operation, a normal memory prefetch unit, the data is shipped to the DMA device
read cycle includes three phases: ’ (e.g., FEP, disk controller, network controller) that
1. Request—The cpu or the FEP selects the memory 15 Tequested it. . : o

card from which to read (address request). For block mode operation, the L bus uses pipelining
2. Active—The memory card access the data; the techniques to overlap several bus requests. On block
data is strobed to an output latch at the end of the mode memory writes, an address may be requested
cycle.) while a separate data transfer takes place. On block
3. Data—The memory card drives the data onto the 20 mode memory r'eads, three address requests may be
bus; a new Request cycle can be started. overlapped within one L bus cycle.
TABLE 4

MEMORY AND CLOCK SIGNALS.

(From <LMIFUSMC.)

The bus is used in three ways; accessing memory, accessing [/0 device
registers which look l|ike memory, and accessing "MicroDevices®.
MicroDevices are distinguithed because they are addressed by a
separate 18-bit_field which comes directly from the microcode, and do

not foliou the 3 cycte Reguest/Active/Data protocol of memories.
example of such a device is @ DMA device such as the disk;
task microcode commands the disk to

off, uhile doing a memory cuycle.

ut data onto the bus or take
We' 11 catl

One
the OMA
it
the three classes

of responders "flemory, MemoryDevices, and MicroDevices."

All transactions on the L-bus are synchronous uith the system clock.
For example, memory responds to requests with a 2 or 3 cycle

viz:

sequence,

On the first cycle (Reguest), the rcrocesscr puts an address on LBUS

ADOR,
REGUEST. At
address with their siot number.
row address onto the
LBUS CLOCK starts RAS.
onto the RAN address lines,
enabled.

uts the type of cycle on LBUS WRITE, and asserts LBUS
the memory cards compare the high bits of ths LBUS

The selected memor¥ card drives the
e

RAM sddress lines, and at the
After a dela?
and finatl

ading edge of
it muxes the column address
y at the clock boundary CAS is

The second (Active) cyclie is used to access the RAM: on a read the
RAM output is strobed into a latch at the end of the cucle; on a

urite,

the bus has the urite data and ECC bits and the RAM HE is

driven by a gated Lbus Clock (late urite operation}. RAS and CAS
are reset at the end of this cycle. .

During the third (Data) cycle, the latched read data is driven on

the bus (during

First Halt), the RAM chips precharge during their

RAS recovery time, and possibly a neu Request cycle occurs,

The bus clock is designed so that the memory card can start RAS with the
leading edge_and start CAS with the trailing edge and be guaranteed of

meeting the RAM timing specs.
edge of clock.

No other use is intended for the leading
It is suggestec that MemoryDevices initiate response

to requests at the trailing edge of clock.

The clock seen by devices on the bus (LBUS CLOCK) is a version of the

clock that drives the processor,

the exact period of each cycle may vary between 188-26
the microcode.

on the cycle length specified by

Its frequency is roughly S Mhz but

ns depending
Although the

processor controls the cycle length, LBUS CLOCK is unaffected by any

clock inhibit conditions in the processor -- operations on the bus
ﬁroceed independently of the microcode, once they have been initiated.
emory data error-correction will also extend the clock for scme

period of time.

4,922,414

3 32
An exception to this is wuhen the processor takes a trap. In that case
LBUS CLOCK is stretched ~- the extra time occurs in the second f{or

high) phase. While the main clock is held high, the ciock and
sequencer censpire to perform a secend cycle internally that fetches
the trap handler microinstruction. Because of this, tuo first-half
clocks will happen for cnly one LBUS CLOCK. If the extendad cycie is
a Data ¢ ?18' the processor will latch the data seen during the first
first-half.

Note: The leading edge of FIRST HALF is >>not<< the same as the
trailing edge of LBUS CLOCK. First-half ig primarily intended as a
timing signal that controls enabling data from memories onto the bus.
The cnly other nefarious use ugu are ailowed is to clock something
uith the mid-cycle edge of FIRST HALF, and then you should be pregared
to see two of them on some cycles.

A central Memory Control manages the state of the bus and arbitrates
betueen requests from the processor, [FU, and FEP. Both Memory and
MemoryDevices are expected to conform to the same timing protocol.
{document FEP/MC arbitration).

Any MemoryDevices (fike the TY) that are unable to respond in 3 cycles
must assert LBUS UAIT durin? the Active cycle unti! they can respond.
The memory control state wil! proceed on the first Active cycle where
LBUS LAIT is not asserted. LBUS WAIT should not be present on any
other cucle, and must be developed early enough to propogate thes
fength of the bus, ?o through a xcvr, and gate the ciock. DMA devicas
also watch LBUS WAIT, so they know which cycle is the one that they
should read or urite the data.
Block mode operations. In some cases the processor issues 2 series of
requests on back-to-back cycies. This is called "block mode". A neu
request can be started each cycle. UWhen a block-mode operation in
underuay, the bus is segmented into a 3-stage pipeline, ane stage for
?ddreSSIn , one stage for ram access, and one stage for data transfer
on reads).

The addresses of block mode requests are always in increasing
sequential order, althcugh any pattern that avoids referencing
addresses [n, n+#d] in adjacent cycies would be OK. The existing
memory card interleaves on bits 18,1,8, sc an individual ram always
cee at least 4 cycles betueen requests for sequential locations.

MemoryDevices also have to handlie block mode requests, because the
microcede will not in germeral want to distinguish references to NOS
memory from flemoryDevices. This means that the device must be
prepared to accept a2 request during its “active" cycle. Request
cycles are unconditional, there is no way for a device to reject or
delay a request. The cycle follouin? a reguest is the active cycie,
which can be repeated (via LBUS WAIT) until the device is ready to
accept data {(on writes) or enter the data cycle (on reads).

LBUS «43:8> - Bi-directiona!l data bus, active high tri-state.
LBUS <43:38> are the ECC bits. Oriven by processor or FEP
cn urite Active cycies. Oriven by memories on read Data
cyclies. Also used to transfer data betueen processor and
Devices. Also is used to carry the Obus signals from the data
path card (E}) to the other cards in the processor (I and C).

LBUS ADDR <23:8> - Phusical address. Tri-state driven fronm
processor or FEP. A ph¥sical address of 24 bits is
semi-consistent with allowing a maximum of 31 physical siots,
each of which could hold 512K words of memory.

LBUS CLOCK +/- -- Differential ECL sustem clock.

LBUS FIRST HALF +/- -- differential ECL timing signal from memecry control.
Used during Data cycles to enable memory data onto the bus.
The memory card drives data onto the bus during the first hatf
of the cycle, the memory control reads the bus data and does
error correction. QOuring the second half cycle, the corrected
data is driven on the bus from the memory control.
Memories must insure that data is driven out on the bus as
soon 3s possible after the leading edge of FIRST HALF, becausze
the memory control needs most of %he irst half to decode the
ECC sundrcme.

4,922,414
33 34

LBUS REQUEST L - Request for Memory or MemoryDevices addressed by

Bus.Address. Stable by leading edge of Bus.Clock with enough”

time for address compare and 2 levels of logic. '

LBUS REQUEST L and LBUS WRITE L, along with the address, ars
asserted towards the end of the first cycle of a transaction.

The data are transferred during the second or third cycle.

The request, write, and address lines ars not valid during

those cyclies (indeed they may be used to start another transaction).

LBUS WRITE L - from the processor or FEP. The urite data uill be
driven onto the bus during the next cycle. Qtheruise, the
requested cgcle is a read, and the memory will drive the bus
during the 2nd succeeding cycle.

LBUS WITH ECC - From Memories that don't have ECC bitse. Driven during
Data cuycle.

LBUS HAIT L - From flemorylevices. Asserted for as man* cycles as
necessary to hold memory control in Active cuycle state. HMust
be valid early in the cycle.

LBUS REFRESH L - All dynamic RAM memories perform a refresh.
All rous of memory refresh at once. The memorH array bypass
capacitors hold enough charge to supply the RAfs for the
refrash cucle, so the transient shouldn’t be seen by the power
supply. The refresh timer and address counter is in the
Memory Control, it has nothing to do with micro-tasking so
that the memories will continue to get refreshed when the
processor is being single stepped.

LEUS ID REQUEST L = Requests that the selected board supply information
acout itself. The board selection is by matching
LBUS ADDR <23:19> against the slot number (see belowl.
LBUS <7:8> are driven_uith one of 32 bytes of data selected
by LBUS ADDOR <6:2>. The format of these data bytes is not
yet specified, but generally inciudes the board type, board
serial numter, board revision level, and a checksum sensitive
to failures of the data and zaddress |ines.

Note that memory refreshing may take place, using LBUS ADOR
<17:12>, while 3 _board [0 1s being read using the other
address lines. The PROM data should be driven onto the bus

B for as long as ID REQUEST is asserted. (The memory card is
slightiy strange in that it "buffers" LBUS ADDR <B8:2> through
the same latch that it uses to hold the column address during
normal memory cycles. This latch is open during LBUS CLOCK,
so the memory board doesn’t produce correct data until the
second cycle after ID REQUEST and LBUS ADDR are present. The
FEP compensates for this, and other boards shcuidn’t
necessarily emulate the memory card.

SLOT NUMEBERING A

LBUS SLOT <4:8> - a slot number built into the backplans. These pins
are grounded in a different pattern at each slot; if the board plugged
into that siot provides Eullups it uill see a unique siot number.

This is matched against LBUS ADDR <23:139> for HMemory, HemoryDevice,

and IDReguest operations, and against LBUS DEV <9:5> for MicroDevice
operations, to select the desired board. LBUS SLOT <4> is actually
bussad across each card cage, and is grounded in the main card cage

and left floating in the extension cage. HMore discussion of this belou.

RESET SIGNALS

LBUS RESET L - general reset line. This is brought lou when power is turned
on, and uwhenever the FEP fesls like asserting it. '

LBUS PQUER RESET L - brought low uhen power is not valid. This line is used
to protect disks and to perform initializations onl? needed when first
pouering on. UWhen the machine ie powered up, this Tine is grounded and
remaing grounded until the FEP validates the power and cooling and turns it
off. This line is also grounded before turning off the pouer.

MICRCODEVICE SICNALS

LBUS DEV <3:8> - a device address for microdevice operations. Bita <9:5>
select a_board, by matching againat the slot number. The special slot
numbers 36 and 37 are used to select the FEP and MNC boards, respectively.
Bits <4:8> select a register or operation uithin the board.

LBUS BEY READ L - commands the device to put data onto the Lbus data lines.

LBUS DEY WRITE L - commands the device to take data from the Lbus data lines,

4,922,414
35 36

at the LBUS CLOCK. Note that when LBUS DEY WRITE is used to inform the device
of a OMA memory cycle being started, the Lbus data lines contain unrelated

data perhaps associated ui%h an unrelated memory read. LBUS DEY WRITE L should
only be depended upon at the cliock edge; it should not be used tc gate the clock.
[f the microinstruction doing the microdevice wurite is NCPed by a trap or by

a control-memory parity error {e.g. a microcode breakpoint), LBUS DEY WRITE L
Hill be asserted for a period of time, past the leading edge of the clock, and
Wwill then be deasserted some time before the trailing tactive) edge of the clock.

LBUS DEY COND L - the selected device may ground this tine (with an
open-coliector nand gate) to feed a skip condition to the microcode.

HMicrodevice 1/0 is used for general communication with devices, for internal
communication within the processor complex (including the FEP)}, and for
control of DMA operations.

For genera! communication with devices, the Lbus simply acts as an extension
of the processor’'s internal bus. Data are transmitted within a single cycle
and clocked at the traiiing edge of the clock.

Microdavice read and write to slot number 368 is used for communication with
the FEP, the page tags, and the microseccnd clock. Micredevice read and
write to slot number 37 is used for communication wi*h the MC and SQ
boards. (It is used when reading and writing the NPC register in the SQ
board in order to reserve the Lbus and connect it to the datapath; the
control signals to the SQ board are transmitted separately.)

DHA works as follous. The device reguests a task uakeup when it wants to
transfer a word to or from memory. ne microcode task wakes up for 2
cyclies. The first cycle puts the address on the Lbus address |ines, makes
a read or urite request to memory, and also increments the address. The
eecond cycle decrements the uord ccunt, to decide when the transfer is
cdone. The microcode asserts DISMISS during the first cycle (the task
switch cccurs after the second cucle.) The device is informed of the DMA
operaticn by the microcode through the use of 3 microdevice urite during
the first cycle. This microdevice urite does not transfer any data to the
device, but simply tells it that a DMA operation is being performed, and
clears its wakeup request flag. (The wakeup request is removed from the
bus immediately, and the flag is cleared at the clock edge.} For a read
from device into memory, the device puts the data on the bus during the
active cycle {one cycle after the microdevice write) and it is written into
memory. For a write, the device takes data from the bus two cycles after
the microdevice write. .

Some devices look |ike memory, rather than using microdevice 1/0. The
criterion fcr which to use ic generally whether the dsvice is operated

by special! microcode, and the convenience and need for speed of that microcode.
Oevices that look |ike memory can be 3ccessed directly by Lisp coda.

SPY SIGNALS

SPY <7:8> - an 8-bit, bidirectional, rather slow bus used for diagnostic
purposes. Allows the FEP to read and write various cpu state while the
machine” is running.

SPY ADDR <5:8> - addresses the diagnostic register to be read or writtsn
SPY READ L - gates data from the selected register onto the spy bus.

SPY WRITE L ~ ciocks data from the spy bus into the selected register, on
the trailing edge.

SPY OMA SIGNALS

HWhen the spy bus isn’t being used for diagnostics, the FEP uses it as a
special side-dosr path to certain OMA devices. Normally the FEP usas it
to receive a copy of all incoming netuwork packets; it can also set it up
to transmit to the netwerk and to read from the disk (?ossiblg also to
urite the disk; this is unclear and not yet determined). Datails are

in <LMHARD>OMA.DESIGN: that part of that file is said to be up to date.

SPY <7:8> -~ 8 bits of data to or from DMA device. These lines are
continuously driven during OMA operations; the FEP's CMA buffer does
not latch them. ‘

SPY OMA ENB L - gsserted if DA operaticns are permitted to take place;
deasserted if the spy bus is bsing used for diagnostic purposes.

SPY DMA SYNCt - a clock, asserted by the device. On the rising edge of
this a byte ie transferred and the address ig incremented. The device
must take the data (for write)l or supply the neu data {(for read) on or
before the leading edge of this. This is the same uire as SPY ADDR 8.

SPY OMA BUSY L - asserted if the DMA opsration has not yet completed.
This can be asserted by the device or the FEP or both, depending on who
determines the length of the transfer. For example, for netuork input
this comes from the device, uhile for netuwork output and disk input

it comes from the FEP (the disk doesn't know it's oun block size).

This is the same wire as SPY ADDR 1.

4,922,414
37 38

Timing Requirements

LBUS RESET and LBUS POWER RESET are asynchronous. All other sida-effects
should take place at the trailing edge of the clock. LEUS REQUEST and

the address lines are stable before the leading edge of the clock. LBUS WRITE
however is only valid at the trailing edge of the clock; it can change as

the result of 3 trap. Consequentiy it is illegal for memory reads to have
side-effects, as memory reads not requested by the program can occur.

In a microdevice urite, the address lines (LBUS DEV 8-9) are stable throughout
the cycle, houwever the data (LBUS 8-35) and LBUS WRITE itself are onty valid
at the trailing edge of the clock. The data lines are onily driven during
SECOND HALF.

In a microdevice read, the address lines (LBUS DEY 8-3) are stable
throughout the cycle, however LBUS READ itself is only valid at the
trailing edge of the clock; side~effects are permitted but may only happen
at the clock. The data (LBUS 8-35 ar in some devices LBUS 8—31) should ba
driven thrcoughout the cycle.

TASK 8-15 REQ and TASK 4 REQ are asynchronous and may be driven at any time.
Once a task is requested, it should atay requested until explicitiy dismissed
or until LBUS RESET. When a task is dismissed, the task request must be
deasserted during the cycle that is dismissing, so that a new task of
presumably lower priority can be scheduled. The task request flip flcp
however must not be cleared until the trailing edge of the clock, ths

time when al!l side-effects occur. Ouring the cycle after a dismigs the

task reguest will not be looked at by the processor, however the device
shculd deassert its request as quickly as it can (3 glitch is expected

at the beginning of the cyclel.

Data driven onto the Lbus data lines (LBUS 8-43) must be synchronized to
the processcr clock; failure to observe this rule can cause every sort of
internal parity error in the processor as well as memory ECC errors. When
reading from memory, the data must be stable on the bus as eariy as
ossible, to allow time for the ECC-error decision before the end of FIRST
ALF. HMemory read data are driven ontc the bus during FIRST HALF, and then
latched by the processor during SECOND HALF. This jatch is followed by a
second cne, that is cpened during the middle of FIRST HALF to pick up the
rau data, and again during the middle of SECOND HALF to pick up the
ECC-corrected data (if any). _("Middle” is-controllied by PROC WHP). Even
devices that deassert LBUS WITH ECC must provide the data early enocugh to
avoid synchronizer failure in either of these latches.

When reading from a microdevice, there is more timing leeway since the
microcode knows the specific device it is reading from and can use

a slou-first-half cycle. Also there is no ECC computation. The micreodevice
drives the data lines during the first half and the processor

effectively clocks them at the trailin? edge of FIRST HALF (actually there
is one latch open cduring FIRST HALF followed by a second latch open

during SECOND HALF; this is done for hardware minimization reasons).

The device data must be stable early enough to avoid synchraonizer

failure in these fatches. The microcode will use a slou-second-half
cycle if necessary, since it does not see the data until SECOND HALF.
Lbus data lines not driven by a microdevice Wwill be brought to 1 b

the terminator, but not quickiy enough to avoid prebiems. Thus al
microdevice reads must drive at least LBUS 8-33.

Note that when doing a memcrE read, the data are driven tuo clocks

after the reguest (skipping [BUS WNAIT cycles); the bus-driver enable
should ccme from 3 clocked register. Hhen doing a microdevice read,

“the data are driven by LBUS DEV READ gated by matching of LBUS DEY ADCR
S-5. LBUS DEV READ takes some time after the beginning of the cycle

to become stable, and the device should introduce as little additional
delay as it can. The device should only drive the bus during FIRST HALF,
so that it turns off in plenty of time before the next cycle.

Hhen uriting into memory from a DMA device, the data, including the ECC
code added by the memory control, must be stable at the memory chips
before éhe ;eadinq edge of the clock (which is when WRITE is asserted
to the RAMs).

When a cycle is extended because of a trap, so that FIRST HALF happens tuice,
the latch through which the processor receives Lbus data is only opened
during the first FIRST HALF. UWhen a cycle is repeated becauss of EBUS HAIT,
memcry-read data _are only received from the bus during the first instance

of the cycle. (This oniy happens when a3 block read is done from a device
that uses LBUS HAIT, since only in a block read can an active cycle and

a data cycle coincide, and LBUS WAIT is associated with active cycles.)
Hicrodevice-urite and memor%-urita data are driven during throughcut an
extended or repeated cycle (microdevice-wurite data are cnly driven during
SECOND HALF).

The leading edge of FIRST HALF does not precede the trailing edge of
the clock. It is not a gcod idea to depend on this. The trailing
edge of FIRST HALF preceeds the leading edge of the clccok.

39

4,922,414

40

LBUS WITH ECC is driven with the same timing reguirements as the data

lines.

LBUS OEV COMO must be stable

pefore the trailing edge of the clock.

-8 table whenever SPY READ or SPY WRITE is asserted. __
?EZ égeﬁdgta ??ge: stould be clocked by the trailing edge of SPY WRITE,

and shouid be driven whenever SFY READ is asserted.

[f a bidirectional

transceiver is used to bring the SPY bus onto a board, its direction

should be controlled bH'SPY READ

so that it will not glitch at the

iling-edae of SPY WRITE; the FEP latches the SPY lines before it
ézg;;;:%seSPY READ. The FEP allows a long time [??7 ns] for a spy
read or Wwrite, so sicw logic may be employed on this bus.

LBUS ADDR 8-11 AAl-12 DP SQ- MCx AU- FEPx BUS
LBUS ADDR 12-23 - - AAl3-24 MCx AU- FEPx BUS

U TYPE MAP SEL 8-5 AA13-18 DP SOx

SPY REAO DP ID L AAl1S 0P SOx

U XYBUS SEL AAZE 0P SOx

U STKP CDUNT AAZ1 OP SOx

U 08BUS CDR 8-2 AA22-24 0P SGx

U OBUS HTYPE 8-2 AAZ5-27 0P SOx

LBUS ID REQUEST L AAZS HC- AU- FEP=x BUS

LBUS BLOCK REQUEST L AAZE HCx AU- FEP- BUS-

LBUS DEY READ L AAZ7 MCx AU—iFEP BUS

U 0BUS LTYPE SEL AAZ8 OP SQax

LBUS DEY WRITE L AAZ8 MCx AU- FEP BUS

LBUS DEV COND L AAZS OP- 5Q HMC- AU- FEP- BUSx
FEP CONTINUITY AA38 0P SQ MC AU FEPx

Asserted by the FEP and read back on the other continuity lines
to detect the presence of processor boards (and in the correct slots).

NMC CONTINUITY.

AA3L
Jumpered to FEP CONTINUITY on th

SQ CONTINUITY

AA3Z
Jumpered to FEP CONTINUITY on th

LBUS 8-283 AC1-38
OP CONTINUITY

OP- SQ- MCx AU- FEP
e MC card.

DP- SOx MC- AU- FEP
e SQ card.

OPx SQ MCx AU FEPx BUSx

DPx _SQ- MC- AU- FEP

AC31
Jumpered to FEP CONTINUITY con the DP card.

AU CONTINUITY

OP- SO- MC- AUx FEP

AC32
Jumpered to FEP CONTINUITY on the AU card.

SPY 8-7 BAL-8
SPY AQOR 8-5

BAS-14
SPY ADCOR 8-1 also used for FEP-O

DP- SOx MCx AUx FEPx BUSx

OP- SQ MC AU FEPx BUS
A

SPY READ L BALS OP- SQ MC AU FEPx BUS

SPY WRITE L BAlS CP- SQ MC AU FEPx BUS

SPY OMA ENB L BA17 FEPx BUS

{spare} BA17 DP- SQ- MC- AU-

TASK 4 REQ L BA1S DP- SQ MC- AU- FEP- BUSx
Low-priority task wakeup

LBUS DEV B-9 BA19-28 OP SOx MC AU- FEP BUS

U AMMHA 8-3

Note that these iines have two names, since they serve as both the
Lbus microdevice adcress and scme datapath control signals. Tha =ame
wires are bussed all the way through both the processor and the Lbus.

LBUS FIRST HALF +,- BA23,8C22 FEPx BUS
Terminate with 68 ohms to -2Y at end of SUS.
(spare) BA23,BC23 DP- SQ- MC- AU-

TASK 8-9 REQ L BA33,BC38 DP- SO MC- AU- BUSx
{See beiow; listed here since they fail here in pin orcer)

4,922,414

41 42
(spare) BA3L DP- SQ-
-COND BC31 OP= SQ=x
e my moae

Traces between SQ and MC should be _cut. These uill have
to be jumpered around the AU and FE siots.

LBUS CLOCK +,- BA38,BC38 FEPx
BA32,BC32 BUS
Terminate with 68 chms to -2Y at end of BUS,
Note that these signals change pin number at the FEP.

PROC CLOCK +,~ BA32,BC32 0P SQ MC AU
BA31,BC31 . FEPx
Separately-driven duplicate of LBUS CLOCK,
Terminate with 83 ohms to -2 V at OP end.
Note that these signals change pin number at the FEP,

LBUS 38-35 BC1-6 DPx SQ MCx AU FEPx BUSx
LBUS 36-43 BC7-14 .. NCx AU FEPx BUSx
DP TRANSFORT TRAP L BC7 OPx SQ

Ascerted if @ trap is required for garbage-collector processing
af the data being read from memory {3 function of the data type
ang the high-orger address fieid}.

OP TYPE TRAP BC3 OPx SQ
Asserted if the t?pe map calls for a trap (bad data type or
invigible pointerl).

DP TRAP PARAM B8-3 BC3S-12 DPx SQ
Trap parameter {(dispatch code for arithmetic trap, trap number
for type trapl.

OP 'SLOW JumP L BC13 DPx SQ
. Asserted if a non-NOPing trap ig required (used by the stack
garbage collector that doesn’t exist ystl.

DP MISC TRAP BCl4 DOPx SQ
ICR of trap conditions other than the above.

LBUS UITH ECC BC1S MC AU- FEP BUSx

AMEM PAR ERR L BC1S DP=x SQ
Parity error in A-memory; stops machine

(spare) BC16 OP- SQ- MC- AU- FEP- BUS-
Spare Lbus iine

LBUS POMER RESET L B8C17 PP SQ MC AU FEPx BUS

Terminate scmehow. {lay need to be brcg?ht out to pouwer supply?
{(May go to front panel also, but FEP will provide that connection.}

TASK 8-15 REQ L BAZ28,8C38,8C18-23 DP- SQ NMC- AU- FEP- BUSx
TASK 8-9 REQ L ara not connected to the FEP.

LBUS REQUEST L BC24 MCx AU- FEP=x BUS
TYPE FAR ERR L BC24 DOPx <S4

Parity error in type map
LBUS WRITE L BC2S MCx AU- FEPx BUS
GC MAP PAR ERR L BC25 DPx <0

Parity error in garbage-collector address-space-quantum map
LBUS REFRESH L BC28 MC- AU- FEPx BUS
BMEM PAR ERR L BCZ5 DPx €Q

Parity error in B-memorys; stops machine
LBUS WAIT L BCZ7 DP SQ- HMC AU- FEP BUSx
LBUS RESET L BC28 DP SQ MC AU FEPx BUS
PROC WP +,- CAl,CCl DP SQ MC AU FEPx

Urite-pulse for internal static RAMs; occurs twice per cycle.
Termingta with 68 ohms to -2 V at OF end. :

RST HALF +,- CA2.CC2 OP SQ MC_AU FEP*
PROC PR elumdriven duplicate of LBUS FIRST HALF.

Terminate with 68 ohms to -2 V at DP end.

4,922,414
43 44

CLK EXTEND CYCLE . CA3 DPx SO~ MCx AU~ FEP
A wired-OR ECL signal, asserted when extra time is needed for a3 trap.
Terminate with 188 ohms to -2 V at OP end and on FEP.

CLK CS PRESET L CAG DB. SQ- MC- AU- FEPx
orces chip~select for A,B memories on at the beginning of the cycle,
until there has been enough time for the pass-around decision.
(Saves a few nanoseconds).

SQ NEXT INST L CAS DP SOx MC AU- FEP-
Asserted if this is the last microinstruction for this
macroingtruction.

U AMRA 8-5 CAB-11 OP SOx
FEP LBUS RO L CAB MC AU- FEP=x

Asserted if FEP wants the bus or is using it (active cyclel.
REFRESH RQ L CA7 MC AU- FEPx

Asserted if time for a memory refresh, or refresh active cycle.
f1C ECC DELAY CA8 MCx AU- FEP

Extends the clock during the second half in order to provids
time for slngle—bit error correction.
This is an ECL signal.

DOUBLE ECC ERROR L CAS MCx AU- FEP
Trus if there is an uncorrectable error in the data for this
memory read.

(unknoun) CAle-11___ nC AU- FEP

U AMRA 6-11 CA12-17 DP SQx MC AU(~7}

U AMRA SEL e-1 CA18-13 DP SQx MC AU(-7?)

U AMKA 18-11 CA28-21 0P SCx MC AU(-?)

U AMHA SEL 8-1 CAZ22-23 DP SQx NC AU(-7?)

U MAGIC 8-3 CA24-27 OP SQ=x MC AU

U SPEC 8-4 CA28-32 DP SQx MC AU

CLK UD ENB L cc3 0P SQ- MC- AU- FEPx

Another timing signal for A,B memory.
DP SET GC TAG L CC4 OPx SQ- MC- AU- FEP

Registered ocutput frem the GC map indicating that the
Abus datum is a pointer to a temporary space. This sets
a GC page tag bit if main memory is being written.

NP L CCs DP SUx MC AU FEP-
Asserted if the current microinstruction should not do
anything, because the processor is stopped, stalled, or
trapping (valid late, should not be used to gate the clock).

U SPEED 2-1 CCG6-7 OP- SOx MC- AU- FEP
CLK EXTRA INNINGS S o - B OP- SO MC- AU- FEPx
Asserted during the second cycle of a trap.

TASK 3 REQ cC3 bDP- SG MC- AU- FEPx

Task wakeup from the FEP
MC PROC NORMAL GRANT L CL18 0P SQ- MCx AU- FEP

Asserted if the LBUS ADOR lines contain an address darived

by mapping the YMA to a physical address. This signal enables
the DP card to capture the mapped address for possible later
use in addressing A-memory. Alsc used by the page tag memory.

PAGE TAG PAR ERR L CC1t ' DP- SQ MC- AU- FEPx
Parity error in page tag memory:; stops machine.
SPARE ERRCR L CC12 DP- SQ MC- AU-

Grounding this halts the machine after completing the current

microinstruction:

(spare) CC13-15 bOP-_SQ- MC- AU-
Bus these acros=s processor (except FEP) and maybe we'l|
find 3 need for them. :

INST 8-7 CC16-23 0P MCx
lLow 8 bits of the current macroinstruction.
Note: these lines are wired around the SQ siot.

U AU OP B-7 CC16-23 SOx AU
Microcode control for the AU.)
{This assumes 8 more bits of control memory are wedged in.]
Note: these lines are wired around the MC slot.

4,922,414
45 46

AU STOP L CC24 SQ AUx
Any error on the AU that needs to stop the mchine.
Note: this line is wired around the MC slot.

{spare) CC25-28 SQ- AU-
Connect these betuween the SO and AU for possible futures use
Note: these lines are wired around the MC slot.

SEAUENCE BREAK CC24 - DP= MC
Hacrocode interrupt request.
Hote: this line is wired around the SQ siot.

HC COND CC2s DP MCx
A microcode skip condition.
Note: this line is wired a2round the SO siot.

HnC CBUS TO LEBUS L CC26 DP HCx
Enables the datapath output to drive the Lbus
Note: this tine is wired around the SQ slot.

HMC C8US REG TO LBUS L CC27 ‘0P MCx
Enables the datapath result from the previous microinstruction
to drive the Lbus (used when writing main memory)
Note: this line is wired around the SQ slot.

MC ADCR IN AMEM L cczas OP MCx
Indicates that the YMA maps to an A-memory acdress
Naote: this line is wired around the SO siot.

MC ABUS 22-35 CC23-32 OFx S0~ MCx AUx
Oata bus between OP, NC, and AU.
HC ABUS 8-31 DC1-32 DPx

0A1-32 MCx AUx
Bidirectional data bus between 0P, MC, and AU.
Note: this is wired around the SQ siot.
Note: this is on the "C* column at the OP, but the "A" column
elseuhere.

U BMRA B-7 ' DAL-8 DP SQx
U BMHA 8-3 0AS-12 OP SOx
U BMER FROM X8US DA13 DP SQ=x
U CONC FUNC B-1 DA14-15 0P SOx
U COND SeL 8-4 DA16-28 oP SO*
U BYTE F 8-1 DA21-22 CP SOx
U ALL 8-3 0A23-28 DP SOx
DISPATCH 8-3 DA27-38 DPx SQ
Contents of field being dispatched on
(spare) DA31-32 oP> sQ-
(epare) DC1-4 SQ- MC-
CUR TASK 8-3° DCs-8 SQx MC
Task in which the current microinstruction is executing
TASK SHITCH L 0cs SQx MC
Asserted if the next microinstruction will ba from a different task
WANT NEXT INST DCig SCx MC

Asserted if the address supplied by the IFU in the previous cycie
is actually being used 23 the next microinsiruction address.
Stails the processor if the address was not valid after all.

MC WALT pbC1il SQ MCx
Asserted if the procegsor must stal!l and wait for the Lbus
MC MAP MISS L pC12 S0 MCx
Asserted if a map-mias trap should be taken
HC TRAP PARAM 8-1 0C13,14 53 MCx
Modifiers for trap address
HC TASK®INHIBIT L pC1s S0 MCx
Inhibits a task switch after the next instruction.
nC STOP L ocis SQ MCx

Any parity errcr on MC board; steps processor.

4,922,414

47 .48
IFU DISP 2-13 oc1e-28 SQ MCx
Control-memory address of the first microinstruction to execute
the next macroinstruction
(spare) DC239-38 Sd- HC-- .
U MEn 2-8 - pC17,0C31-32 SQx MC

Memory-contraol contral field

Bit 2 is not next to tha other bits for historical reasons

Pins DC1-32 on the AU slot are left unconnected for possible cabling

to a second board or other expansion.

Pins CA11-32, CC12-32, DA1-32, DCl 32 on the FEP slct are left unconnected

for padadt ebcard use,

A main goal of the system architecture is to execute
one simple macroinstruction per clock tick. The instruc-
tion fetch unit (IFU) supports this goal by attempting to
prefetch macroinstructions and perform microinstruc-
tion dispatching in parallel with the execution of previ-
ous instructions.

The prefetch (PF) part of the IFU fills 2 1IKword
instruction cache, which holds the 36-bit instruction
words. Approximately 2000 17-bit instructions can be
held in the instruction cache. The instructions have a
data type (integer). The IFU feeds the cache takes the
instructions, decodes them, and produces a microcode
address. There is a table which translates a macroin-
struction onto an address of the first microinstriction.

At the end of the clock tick the processor decides
whether it needs a new instruction or it should continue
executing microcode.

The system instruction set corresponds very closely
to Zetalisp. Although one never programs directly in
the instruction set one will encounter the instruction set
when using the Inspector or the Window Error Han-
dler. The instructions are 17 bits long. Seven instruction
formats are used:

1. Unsigned-immediate operand—This format is used
for program-counter-relative branches, immediate
fixnum arithmetic, and specialized instructions
such as adjusting the height of the stack.

2. Signed-immediate operand—The operand is an
8-bit two’s complement quantity. It is used in a
similar manner as the unsigned-immediate format.

3. PC-relative operand—This is similar to signed-
immediate, with the offset relative to the program
counter.

4. No-operand—If there are any operands, they are
not specified, since it is assumed they are on the top
of the stack. Also used by many basic Zetalisp
instructions.

5. Link operand—This specifies a reference to a link-
age area in a function header.

6. @Link operand—This specifies an indirect refer-

ence to a stack frame area associated with a func-
tion.

7. Local operand—The operands are on the stack or
within a function frame. This format is used for
many basis Zetalisp instructions.

Many instructions address a source of data on which
they operate. If they need more than one argument, the
other arguments come from the stack. Examples include
PUSH (push source onto the stack), ADD (add source
and the top of stack), and CAR (take the car of the
source and push it onto the stack). These instructions
exist in several formats.

There is no separate destination field in the system

instructions. All instructions have a version which

20 pushes onto the stack. Additional opcodes are used to
|specify other destinations.

The following categories of instructions are defined

:for the system:

i Data motion instructions—The instructions move
data without changing it. Examples include PUSH,
POP, MOVEM, and RETURN.

Housekeeping instructions—These are used in mes-
sage-passing, function called, and stack manipula-
tion. Examples include POP-N, FIX-TOS, BIND,
UNBIND, SAVE-BINDING-STACK-LEVEL,
CATCH-OPEN, and CATCH-CLOSE.

Function calling instructions—These use a non-
inverted calling sequence; the arguments are al-
ready on the stack. Examples incilude CALL,
FUNCALL, FUNCALL-VAR, LEXPR-FUN-
CALL, and SEND.

Function entry instructions—These are used within
functions that take more than four arguments or

40 have a rest argument, and hence do not have their
arguments set up by microcode. Examples include
TAKE-N-ARGS, TAKE-N-ARGS-REST,
TAKE-N-OPTIONAL-ARGS, TAKE-N-
OPTIONAL-ARGS-REST.

45 Function return instructions—These return values
from a function. The main opcode 9 is RETURN

. with some variations. ;

Multiple value receiving instructions—These take
some number of values off the stack. Example:

50 . - TAKE-VALUES.

Quick function call and return instructions—These
are fast function calls. Example: POPJ.

Branch instructions—Branches change the flow of
program control. Branches may be relative to the

55 program counter or to the stack.

Predicates—These include standard tests such as EQ,
EQL, NOT, PLUSP, MINUSP, LESSP, GREA-
TERP, ATOM, FIXP, FLOATP, NUMBERP,

~ and SYMBOLP.

60 Arithmetic instructions—These perform the standard
arithmetic, logical, and bit-manipulation opera-
tions. Examples include ADD, SUBTRACT,
MULTIPLY, TRUNC?2 (this does both division
and remainer), LOGAND, LOGIOR, LOGXOR,

65 LDB, DPB, LSH, ROT, and ASH.

List instructions—Many Zetalisp list-manipulation
instructions are microcode directly into the system.
Examples are CAR, CDR, RPLACA, and.
RPLACD.

25 |

30

35

4,922,414

49

Symbol instructions—These instructions manipulate
symbols and their property lists. Examples include
SET, SYMEVAL, FSET, FSYMEVAL,
FBOUNDP, BOUNDP, GET-PNAME, VAL-
UE-CELL-LOCATION, FUNCTION-CELL-
LOCATION, PROPERTY-CELL-LOCATION,
PACKAGE-CELL-LOCATION.

Array instructions—This category defines and
quickly manipulates arrays. Examples include
AR-1, AS-1, SETUP-1D-ARRAY, FAST-AREF,
ARRAY-LEADER, STORE-ARRAY-
LEADER are used to access structure fields.

Miscellaneous instructions—These include pseudo
data movement instructions, type-checking instruc-
tions, and error recovery instructions not used in
normal compiled code.

The system instruction execution engine works using

a combination of hardware and microcode. The engine
includes hardware for the following functions:

Address computation

Type-checking

Rotation, masking, and merging of bit fiels

Arithmetic and logical functions

Multiplication and division

Result-type insertion

To give an example of the instruction execution en-

gine, a 32-bit add instruction goes through the following
sequence of events.

Fetch the operands (usually from the stack); error
correction logic (ECC) checks the integrity of the
data; ECC does not add to the execution time if the
data is valid.

Check the data type fields.

Assume the operands are integers and perform the
32-bit add in parallel with the data type checking
(If the operands were not integers, trap to the mi-
crocode to fetch the operands and perform a differ-
ent type of add).

Check for overflow (if present, trap to microcode).

Tag the result with the proper data type.

Push the result onto the stack.

There is no overhead associated with data type

checking since it goes on in parallel with the instruction,
within the same cycle.

- Rather than having the ECC distributed on all of the,

boards of the system as shown in FIG. 1, a single cen-
tralized ECC is located on the memory control board.
All data transfers into and out of the memory and on the
Lbus pass through the single centralized ECC. The
transfers between peripherals and the FEP during a
micro DMA also pass through the centralized ECC on
the way to the main memory.

FRONT END PROCESSOR

During normal operation, the FEP controls the low
and medium-speed input/output (I/0) devices, logs
errors, and initiates recovery procedures if necessary.
The use of the FEP drastically reduces the real-time
response requirements imposed directly on the system
processor. Devices such as a mouse and keyboard can
be connected to the system via the FEP.

The front end process also feeds a generic bus net-
work which is interfaced through the FEP to the Lbus
and which, by means of other interfaces are able to
convert Lbus data and control signals to the particular
signals of an external bus to which peripherals of that
external bus type may be connected. An example of an
external bus of this type is the multibus. The Lbus data
and control signals are converted to a generic bus for-
mat independent of the particular external bus to be

15

20

25

30

35

40

45

60

65

50

connected to and thereafter convert the generic bus
format of data and control signals to that of the external
bus.

Four serial lines are connected to the FEP. Two are
high-speed and two are low-speed. Each one may be
used either synchronously or asynchronously. One
high-speed line is always dedicated to a system console.
One low speed line must be dedicated to a modem. The
baud rate of the low-speed lines is programmable, up to
19.2Kbaud. The available high-speed line is capable of
speeds up to IMbaud. All four lines are terminated
using standard 25-pin D connectors.

Real-time interrupts from the MULTIBUS are pro-
cessed by the FEP. After receiving an interrupt, the
FEP traps to the appropriate interrupt handler. This
handler writes into a system communication area of the

'FEP’s main memory, and then sends an interrupt to the
‘system CPU. The system CPU reads the message left

for it in the system communication area and takes ap-
propriate action.

Interrupt processing is sped up by the use of multiple
microcontexts stored in the system processor. This
makes interrupt servicing faster, since there is no need
to save a full microcontext before branching to the
interrupt handler.

The FEP also has the ability to achieve processor
mediated DMA transfers.

DMA operations from the system to the FEP may be
carried out at a rate of 2MByte per second.

1/0 device DMA interface (to FEP buffer and to
Microcode Tasks)

FEP to device:

FEP fiils buffer with data, arranged so that carry out
of buffer address counter happens at right time for stop
signal to device. FEP resets address counter to point to
first word of data. FEP sets buffer mode to enable
buffer data to drive the bus (SPY 7:0), sets device to tell
it what operation, the face that it is talking to the FEP,
and to enable it to drive the bus control signal SPY

DMA SYNC.
Device takes a word of data off of the bus and gener-

.ates a pulse on SPY DMA SYNC. The trailing edge of

this pulse increments the address counter as well as
clocking the bus into the device’s shift register. A carry
comes out of the address counter during this pulse if this
is the last word (or near the last, depending on device);
this carry clears SPY DMA BUSY which tells the de-

vice to stop. .
When SPY DMA BUSY clears the FEP is inter-

rupted.

Device to FEP: i
For disk, which needs a stop signal, FEP arranges

address counter so carry out will generate a stop signal.
Network generates its own stop signal based on end-of-
packet incoming. FEP resets address counter to point
one word before where first word of data should be
stored. FEP sets buffer mode to not drive the bus and to
do writes into buffer memory, sets device to tell it what
operation, the fact that it is talking to the FEP, to enable
it to drive the bus from a register, and to enable it to
drive the bus control signals SPY DMA SYNC and
SPY DMA BUSY (if it is the net).

When device has a word of data, it generates a pulse
on SPY DMA SYNC. Trailing edge of this pulse clocks
the data into a register in the device, which is driving
SPY 7.0, and increments the address counter, which
reflects back SPY DMA BUSY (if device is the disk).
The buffer control logic waits for address and data
setup time then generates an appropriate write pulse to
the memory.

4,922,414

51

When SPY DMA BUSY clears the FEP is inter-
rupted.

To summarize device FET interface lines:

SPY 7:0

Bidirectional data bus. This is the same bus used for

diagnostics.
SPY DMA ENB L

Asserted if the spy bus may be ﬁsed for DMA. The

FEP deasserts this when doing diagnostic reads and
writes, to make sure that no DMA device drives the spy
bus.

SPY DMA SYNC

Driven by selected device, trailing (rising) edge in-
crements address counter and starts write timing chain.
This is open-collector.

SPY DMA BUS L

An open-collector signal which is asserted until the

transfer is over. This is driven by the device or the FEP
depending on who decides the length of the transfer.

(Probably the FEP drives it from a flip flop optionally’

set by the program, and cleared by the counter over-
flow.) The FEP can enable itself to be interrupted when
SPY DMA BUSY is non-asserted.

An 1/0 or generic bus is used to set up the device’s
control registers to perform the transfer and to drive or
receive the above signals. Note that all of the tristate
enables are set up before the transfer begins and remain
constant during the entire transfer.

Device to microtask:

The devices control resistors are first set up using the
1/0 bus and the state of the microtask is initialized (both
its PC and its variables, typically address and word
count). A task number is stored into a control register in
the device.

When the device has a word of data, it transfers it to
a buffer register and sets WAKEUP. This is the same
timing as FEO DMA NEXT: WAKEUP may be set on
either edge since the processor will not service the
request instantaneously. If WAKEUP is already set, it
sets OVERRUN, which will be tested after the transfer
is over.

The processor decides to run the task (see below).
During the first cycle, the task microcode specifies
DISMISS: the device sees this, gated by the current
task equals its assigned task number, and clears
WAKEUP at the end of the cycle. DISMISS also
causes the processor to choose a new task internally.
The microcode also generates a physical address. The
device also sees the microcode function DMA-WRITE,
gates by current task equals device’s task, and drives the
buffer register onto the bus. The processor drives the
ECC-syndrome part of the bus and sends a write com-
mand to the memory.

During the second cycle, the processor counts down

the word count, and does a conditional skip which
affects at what PC the task wakes up next time, depend-
ing on whether the buffer has run out.

During the cycle two cycles before the first task
cycle, the device drives its status onto 3 or 4 special bus
lines, which the microtask may have enables to dispatch
on. This is used for such things as stopping on disk
errors and stopping at the end of a network packet.

Microtask to device:

The device’s control registers are first set up using the

1/0 bus, and the state of the microtask is initialized'

(both its PC and its variables, typically address and
word count). A task number is stored into a control
register in the device. WAKEUP is forced on so that
the first word of data will be fetched.

15

30

35

40

45

50

35

60

65

52

When the device wants a word of data, it takes it
from a buffer register and sets WAKEUP so that the
microtask will refill the buffer register. At the same time
it sets BUFFER EMPTY, and if it is already set, sets
OVERRUN. v

During the first cycle of the task, the microcode
spcifies DISMISS, which clears wakeup. It also gener-
ates an address and specifies DMA-READ. In the sec-
ond cycle the task decrements the word count. In the
third cycle (task not running), the ECC-corrected data
is on the bus; at the end of this cycle it is clocked into
the buffer register and BUFFER EMPTY is cleared.
DMA-READ anded with current task—device task is
delayed through two flip-flops then used to enable this
clocking of the holding register.

Task selection hardware (in device and processor):

Device has a task-number register and a WAKEUP
flip/flop, which is set by the device and cleared by the
DISMISS signal from the processor when the current
task equals the device’s task. This can be an R/S flip
flop or a J/K with either the set or the clear edge-trig-
gered depending on what the device wants; the proces-
sor doesn’t care. In the device to microtask case above,
WAKEUP was being used for the overrun computa-
tion, and therefore the clearmg should be edge-trig-
gered.

WAKEUP enables an open-collector 3-8 decoder
which decodes the assigned task number and drives the
selected TASK REQUEST n line to the processor.

The processor sends the following signals to the de-
vice in addition to the normal 1/O bus and clock:

(the task which the executing
microinstruction belongs to)

(2 clocks ahead of CURRENT
TASK)

(current task says to clear
wakeup)

(communication from micro
code to device)
(DMA-READ, DMA-WRITE
decodes

of this)

(communication from device to microcode, driven if

NEXT NEXT TASK matches assigned task)

CURRENT TASK

NEXT NEXT TASK
DISMISS

TASK-SPECIFIC FUNCTION

TASK STARTUP DISPATCH

The processor synchronizes the incoming TASK
REQUEST lines into a register, clocked by the normal
microcode clock. The register is ANDed with a de-
coder which generates FALSE for the current task if
DISMISS is asserted. The results go into a priority
encoder. The output of the priority encoder is com-
pared with current task. If they differ, and the micro-
code is asserted TASK SWITCH ENABLE, and the
machine did not switch tasks in the previous cycle, then
it switches tasks in this cycle. During the second half of
the cycle, NEXT NEXT TASK is selected from thepri-
ority encoder output rather than CURRENT TASK,
and the state of that task is fetched. There doesn’t ap-
pear to be a useful place to use a PAL here.

When DISMISS is done, WAKEUP does not clear
until the end of the cycle, which means it is still set in
the synchronizer register. However, the output of the
priority encoder will never be looked at during the
cycle after a DISMISS, since we necessarily switched
tasks in the previous cycle.

Minimum delay from WAKEUP setting to starting

.execution of the first microinstruction of the task is two

cycles, one to fetch the task state and one to fetch the
microinstruction. This can be increased by up to one
cycle due to synchronization, by one cycle due to just
having switched tasks, and by more if there are higher-

4,922,414

53

priority task requests or the current task is disabling
tasking (e.g. tasking is disabled for one cycle during a
memory access). Max delay for the highest priority task
is then 5 cycles or 1 microsecond, assuming tasking is
not disabled for more than one cycle at a time.

When the microcode task is performing a more com-:

plicated service than simple DMA, the WAKEUP
flip/flop in the device must remain set until the last
microinstruction to keep the task alive.

The FEP boots the machine from a cold start by
reading a small bootstrap program from the disk, load-
ing it into the system microcode memory, and executing
it. Before loading the bootstrap program, the FEP per-
forms diagnostics on the data paths and internal memo-
ries of the processor.

Error handling works by having the FEP report
error signals from the system processor. If the errors
come from hardware failures detected by consistency
checks (e.g., parity errors in the internal memories) then
the processor must be stopped. At this point the FEP
directly tests the hardware and either continues the
processor or notifies the user. If the error signals are
generated by software (microcode or Zetalisp) then the
FEP records the error typically, disk or memory er-
rOrs).

Periodically, the system requests information from
the FEP and records it on disk, to be used by mainte-
nance personnel. Since the FEP always has the most
recent error information, it is possible to retrieve it
when the rest of the machine crashes. This is especially
useful when a recent hardware malfunction causes a
crash. Since the error information is preserved, it can be
recovered when the processor is revived.

Functions are divided into three categories according
to their real-time constraints:

Unit selection, seeking, and miscellaneous things like
recalibration and error-handling are done by Lisp code.
There are 1/0 device addresses (pseudo-memory) whic
allow sending commands to thedisk drive and reading
back its status (and its protocol, e.g. SMD, Priam).
When formatting the disk, the index and sector pulses
are directly read from the disk through this path and the
timing relative to them is controlled by Lisp code or
special formatting microcode.

Head selection is the same except that it is done by’

microcode rather than Lisp code so that an I/0 opera-
tion may be continued from one track to the next in a
cylinder without missing a revolution because of the
delay in scheduling a real-time process to run some Lisp
code.

Read/write operations are done by disk control hard-
ware in cooperation with microcode. There is a state
machine which generates the “control tag” signals to
the drive (i.e. read gate and write gate), controls the
requests to the microcode task to transfer data words
into or out of main memory, and controls the ECC
hardware.

When the FEP is using the disk, the first two func-
tions above are performed by LIL code in the FEP; the
third function is performed by the disk state machine in
cooperation with the FEP’s high-speed 1/0 buffer.

The disk state machine can select its clock from one
of two unsynchronized clocks, both of which come
from the disk. One is the servo clock and the other is the
read clock, derived from the recorded data. Servo clock
is always valid while there is a selected drive, it is spin-

10

20

25

30

35

40

45

50

55

60

65

54

ning, and it is ready. Delays are always generated from
the servo clock, not from the machine clock or one-
shots,

The state machine is started by an order from the
microcode, Lisp code, or the FEP and usually runs until
told to stop. When an SMD is being used, most of the
lines on the disk bus, including control tag, come from
a register which must be set up beforehand, but the
Read Gate and Write Gate lins are OR’ed in by the state
macnine. '

The state machine stops and sets an error flag if any
of the following conditions occurs:

No disk selected (SMD)

Multiple disks selected (SMD)

Disk not ready (Priam)

Overrun (slow response from microcode)

An unexpected index or sector pulse

Writing the command register while the state ma-

chine is running

These error checks prevent clobbering an entire track
if the microcode dies for some reason and never sends
the stop signal.

Other errors from the disk, such as Of Cylinder, are
not checked for. Most drives all cause a fault if any
error occurs while writing. The disk error status (in-
cluding fault) is checked by microcode and by mac-
rocode after the sector transfer is completed.

The state machine can hang if the clocks from the
disk turn off for some reason. The macrocode should

.provide 4 timeout.

The following orders to the state machine exist, i.e. it
has the following program in its memory:

Read: The state machine delays, turns on read gate,
delays some more, changes from the internal clock to
the disk bit clock, waits for async pattern, then reads
data words and gives them to the microcode until told
to stop. The stop signal is issued simultaneous with the
acceptance of the third-to-last data word by the micro-
code task. After reading the last data word, the ECC is
read, and the microcode task is awakened one last time
as the state machine goes idle. The microcode reads the
ECC-0 flag over the bus; the flag is 1 if no error oc-
curred.

Read Header: The state machine waits for a sector
pulse, delays, turns on read gate, delays some more,
changes from the internal clock to the disk bit clock,
waits for async pattern, reads one data word (a sector
header), turns off read gate, and falls into the Read
program. The header word is given to the microcode as
data (32 bits of header and 4 bits of garbage); it is up to
the microcode to do header-comparison to make sure
that the proper section is being accessed. There is no
ECC on the header, instead there are some redundant
bits which the microcode checks in parallel with the
real bits. In other words, the header consists of 6 bits of
sector number, 6 bits of head number, 12 bits of cylinder
number, and 4 bits of some hash function of the other
bits, fitting into the 28-bit header stored in a DCW list.

“Memory-mapped” 1/0 is used for all functions exc-
pet those relating to the DMA task. This allows the
FEP to read from the disk simply by doing Lbus opera-
tions, with no need to execute microinstructions (the
CPU however must be stopped or at least known not to
be touching the disk itself). No provision is made for the
FEP to use the disk when the Lbus is non-functional.

Command Register: This register directly controls
the bus, tag and unit-select lines to the disk(s), provides
a DMA task assignment, and selects a state-machine

4,922,414

55

program to be executed. If the state machine is running
when the command register is written, it is stopped with
an error. Otherwise it may optionally be started (if bit
24 is 1). Writing the command register resets various
error conditions. All bits in the command register may
be read back. All bits in the command register except
the low 8 are zeroed by Lbus Reset.

10:0 Disk. bus.

1t Obus in

15:12 SMD: tage 3:0

19:16 Unit number

23:20 Command opcode (selects state machine
programy)

24 Start. Starts state machine if 1. Reads
back as -DISK IDLE (I if state machine
running).

28:25 Task. 8-15 selects that task, otherwise no
task.

29 FEP using disk. Enables SPY bus DMA.

30 32-bit mode (forces fixnum data type in high
bits)

31 (spare)

A task wakeup occurs if the state machine orders one,
and whenever the state machine is not running. No task
should be assigned by the command register when the
state machine is not being used. A wakeup will always
occur immediately when a task assignment is given.

Diagnostic Register

This register allows a program to disable the paddle
board and simulate a disk, testing most of the logic with
the machine fully assembled. This register iscleared
when the machine is powered on.

0 Read clock
1 Servo clock
2 Read data

3 Index

4 Sector
7:5 (spare)

Paddle Enable Register

This register is cleared when the machine is powered
on. It allows the paddle board to be turned off. It is set’
to 10 for normal operation. The bits are:

0 Paddle ID enable (paddleboard IO prom to disk bus)

1 Paddle disk enable (disconnect disk part of
paddle board)
2 Paddle net enable (disconnect network part of

paddle board)
3 Paddle power OK (enable disk to spin up)
Status Register

Reading this register reads the status of the selected
drive, of the disk interface, and some internal diagnostic
signals.

Overrun and Error are cleared by writing the com-
mand register (however writing the command register
while the state machine is running will set Error and
stop the state machine).

ROTATIONAL POSITION SENSING

This is a 16-bit register with 4 bits for each deive,
containing the current sector number.

ERROR CORRECTION
If bit 15 of the status register is O after a read opera-
tion, an ECC error was detected. The error-correct
state machine operation may be used to compute the
error syndrome. The microcode task wakes up every 32

4

10

20

25

30

40

W

50

55

60

56

bits, simply to count the bits. After the state machine
stops, the error correction register may be read:

10:0
15:11

Error pattern
Bit number within the word

DMA TRANSFERS

A microdevice write opeation is done during the
address cycle. At the same time the sequencer is old to
dismiss the task and the memory control is told to start
the appropriate (read or write) DMA cycle. Bits in the
Lbus device address are:

9:5 card slot number

4:3 subdevice (0 - disk)

2:0 operation

Operations:

0 write disk buffer directly (rev 2 and later)

1 dma cycle (start dma cycle without dismission)
2 dismiss, task acknowledge (just clear wakeup)
3 dismiss & dma cycle

4 dismiss (only)

5 kill disk task

6 dismiss, task acknowledge, set end flag

7 dma cycle & set end flag & dismiss

Operation 3 is what is normally used. Operation 1
could allow transferring multiple words per task
wakeup if there was more than 1 word of buffering: it is
also probably needed by the microcode in order to start
a DMA transfer for the disk while continuing to run the
task.

Operation 2 is used for non-data-transfer task wake-
ups, such as the wakeup on sector pulse and the wake-
ups used to count words when doing ECC correction.
It simply dismisses the task (clears wakeup), and also
has different timing with respect to the Overrun error.

Operation 5 clears the disk task assignment, prevent-
ing further wakeups, clears control tag so that the next
disk command can be given cleanly and also “acciden-
tally” clears fep-using-disk and disk-36-bit-mode.

When reading from disk into memory, after the dma
cycle with the end flap there will be two additional data
words; the state machine will then read and check the
[ECC code and then stop.

When writing from memory to disk, the data word
supplied with the end flag is the second-to-last data
word in the sector; the state machine will accept one
more data word, then write the ECC code after it, write
a guard byte, and then stop. The same timing applies for
read-compare.

For microdevice read, the bits in the Lbus device
address are:

9:5 card slot number
4:3 subdevice (0-disk)
2:0 operation (0 for disk - read data buffer).

FIGS. 10-23 are schematics of a memory board hav-
ing 512K by 44 bits of memory storage and constituting
the main memory of the system according to the present
invention.

The memory comprises a board of 64K ram chips as
shown in FIG. 10 and which are laid out on the memory
board in the manner set forth in FIGS. 10-23, that is in
Cols. 1-16 and 19-34 and rows A-M. The address driv-
ers are centrally located in the columns marked 17 and
18 and alternatively drive the left and right or lower
and upper memory devices. The read and write signals

4,922,414

57

for the memory checks have been set forth with respect
to the description of the Lbus timing modes earlier and
will not be repeated herein.

The memory is laid out so as to be interleaved with 19

58

given virtul address is not in the first cache memory;
means responsive to an indication that a given virtual
addresses is not in the first cache memory for hashing
the given virtual page number and applying same to the

bits of address. 8 bits of address are used to selectarow, 5 at least one addressable map converter; means for com-

8 bits of address are used to select a column and the
three remaining bits of address data are used to select
sectors 0 through 7 as shown in the lower left hand
corner of FIGS. 11.

paring the given virtual page number with the virtual
page number from the at least one addressable map
converter whereby a favorable comparison indicates
that the stored actual page number is in the at least one

As a result of this interleaving configurationof the 10 addressable map converter; and means for applying the

memory, with a judicious storage scheme under micro-
code control, it is possible to pipeline requests for data
from the memory and write data into the memory in the
block mode discussed hereinbefore.

accessed actual page number and the original offset
number to the main memory when there is a favorable
comparison to thereby access the location correspond-
ing to said access actual page number and on final offset

FIG. 4 shows the data output buffers of the memory, 15 number.

and FIGS. 15 and 16 illustrate the tristate data drivers.
FIGS. 17-18 illustrate the address drivers, FIGS. 19 is
the address buffer registers and decoders and FIGS.
20-23 illustrate the memory control signal circuitry.

The combination of the synchronous pipeline mem-
ory, microtasking, micro DMA and centrallized ECC is
believed to be particularly advantageous in that it elimi-
nates a DMA for each microdevice that wants to issue
a request to the memory and it also eliminates the use of
ECC circuitry on each board of the system.

The synchronous pipeline memory, microtask and
micro DNA features combine to enable micro sequenc-
ing between an external peripheral and the memory of

the system via the FEP with the error correction taking 30

place within the active cycle of the bus timing whereby
the microdevice which is requesting data from the
memory is not impacted. This combination of features
allows an external 1/0 device to issue a task request and

for the microtasking feature of the system to effect the 5

data transfer in a block mode.

It will be appreciated that the instant specification
and claims are set forth by way of illustration and not
limitation, and that various modifications and changes

may be made without departing from the spirit and 44

scope of the present invention.
What is claimed is: ‘
1. In a data processor programmable in a symbolic
processing language and having a main memory

-wherein each location has a muiti-bit actual address; 45

comprising a page nummber and an offset number, cen-!
tral processing means for operating on data and for
storing data in the main memory with an associated
virtual address comprising a virtual page number and an

20

2. The processor according to claim 1, wherein the
converter means further comprises at least two address-
able map converters each receptive of the map address
corresponding to the first hashed virtual page number.

3. The process according to claim 1 or 2, wherein the
main memory has means defining a secondary table for
addresses, and wherein the converting means further
comprising means responsive to the failure to locate the
physical address in the at least one addressable map

25 converter for producing a microcode controlled look-

up of the address in the secondary table.

4. In a data processor programmable in a symbolic
programming language and having a main memory for
storing data objects each having an identifying type
field and central processing means for operating on at
least one data object from the main memory, wherein
the improvement comprises: means for effecting paral-
lel data type checking wherein the data object type field
is a tag field indicating a data type and is always the
same bits and comprising means for separating the tag
field bits from remaining bits of each data object prior
to the operation thereon by the central processing
means; means for checking the separated tag field bits
with respect to and in parallel with the operation on the
remaining bits of the associated data object and for
generating new tag field bits in accordance with the
operation in parallel with the operation on the remain-
ing data object bits, whereby data type checks by the
-checking means are carried out during the operation of
'the central processing means; and means for combining
the new tag field bits with the results of the operation to
obtain a new data object.

5. The processor according to claim'4, further com-

offset number and means for converting the virtual sq Prising means for interrupting the operation of the cen-

address to the actual address, the improvement wherein
the converting means comprises: a first cache memory
having a table of actual addresses for a plurality of
virtual addresses, means for performing a first hash

function on a given virtual page number to reduce the s5

number of bits thereof to form a map address corre-
sponding to the hashed virtual page number; at least one
addressable map converter for storing the actual page
number and the given virtual page number correspond-

tral processing means in response to the generation of a
predetermined tag field bits, means for altering the pre-
determined tag field to another data type, and means for
resuming operation upon the alteration thereof.

6. The processor according to claim 4, wherein the
central processing means includes means defining a
predetermined timing cycle, and wherein the central
processing means, separating means, checking means
and combining means obtain a new data object within

ing thereto in the map address corresponding to the 60 the same predetermined timing cycle.

hashed virtual page number; means for indicating that a

65

* * % * *

