
Genera User’s Guide

Overview of Symbolics Computers

Documentation Notation Conventions

Modifier Key Conventions

Modifier keys are designed to be held down while pressing other keys. They do not

themselves transmit characters. A combined keystroke like META-X is pronounced

"meta x" and written as m-X. This notation means that you press the META key and,

while holding it down, press the X key.

Modifier keys are abbreviated as follows:

CONTROL c-

META m-

SUPER s-

HYPER h-

SHIFT sh-

SYMBOL sy-�

Modifier keys can be used in combination, as well as singly. For example, the nota-

tion c-m-Y indicates that you should hold down both the CONTROL and the META

keys while pressing Y.

Modifier keys can also be used, both singly and in combination, to modify mouse

commands. For example, the notation sh-Left means hold down the SHIFT key

while clicking Left on the mouse and c-m-Middle means hold down CONTROL and

META while clicking Middle.

The keys with white lettering (like X or SELECT) all transmit characters. Combina-

tions of these keys should be pressed in sequence, one after the other (for exam-

ple, SELECT L). This notation means that you press the SELECT key, release it, and

then press the L key.

LOCAL is an exception to this rule. Despite its white lettering, you must hold it

down while pressing another key, or it has no effect. For example, to brighten the

image on your monitor, you would hold down LOCAL while pressing B.

Page 2736

Documentation Conventions

This documentation uses the following notation conventions:

cond, zl:hostat Printed representation of Lisp objects in running text.

RETURN, ABORT, c-F keys on the Symbolics Keyboard.

SPACE Space bar.

login Literal typein.

(make-symbol "foo") Lisp code examples.

(function-name arg1 &optional arg2)

Syntax description of the invocation of function-name.

arg1 Argument to the function function-name, usually ex-

pressed as a word that reflects the type of argument

(for example, string).

&optional Introduces optional argument(s).

Show File, Start Command Processor command names and Front-end

Processor (FEP) command names appear with the ini-

tial letter of each word capitalized.

m-X Insert File, Insert File (m-X)

Extended command names in Zmacs, Zmail, and Sym-

bolics Concordia appear with the m-X notation either

preceding the command name, or following it in

parentheses. Both versions mean press m-X and then

type the command name.

[Map Over] Menu items. Click Left to select a menu item, unless

other operations are indicated. (See the section

"Mouse Command Conventions".)

Left, Middle, Right Mouse clicks.

sh-Right, c-m-Middle Modified mouse clicks. For example, sh-Right means

hold down the SHIFT key while clicking Right on the

mouse, and c-m-Middle means hold down CONTROL and

META while clicking Middle.

Page 2737

Mouse Command Conventions

The following conventions are used to represent mouse actions:

1. Square brackets delimit a menu item.

2. Slashes (/) separate the members of a compound mouse command.

3. The standard clicking pattern is as follows:

• For a single menu item, always click Left. For example, the following two

commands are identical:

[Previous]

[Previous (L)]�

• For a compound command, always click Right on each menu item (to dis-

play a submenu) except the last, where you click Left (to cause an action

to be performed). For example, the following two compound commands are

equivalent:

[Map Over / Move / Hardcopy]

[Map Over (R) / Move (R) / Hardcopy (L)]�

4. When a command does not follow the standard clicking order, the notation for

the command shows explicitly which button to click. For example:

[Map Over / Move (M)]

[Previous (R)]�

Introduction to Genera

The software environment that runs on the Symbolics family of computers is called

Genera. See the document Genera Concepts.

The Console

The devices that are used to talk to Genera are collectively referred to as the con-

sole. These include one or more bit-raster displays, a specially extended keyboard,

and a pointing device called a mouse.
�

The Screen

Page 2738

Figure 132. The Console

The screen always contains one or more windows. Regardless of which windows

are displayed, the screen always contains some information displays, including a

mouse documentation line and a status line. These information displays tell you

what your machine is doing, what mouse actions are available, and are helpful in

determining whether Genera is operating normally or needs intervention. See the

section "Recovering From Errors and Stuck States".

Mouse Documentation Line

Date and Time
User ID

Current Package

Run Bar

Process State

Figure 133. The Status Area

�

�

Page 2739

Mouse Documentation Lines

The mouse documentation lines contain information about what different mouse

clicks mean. As you move the mouse across different mouse-sensitive areas of the

screen, the mouse documentation lines change to reflect the changing commands

available.

When no documentation appears, it does not necessarily mean that the mouse

clicks are undefined. Not all programs have provided material for the mouse docu-

mentation lines. When the mouse documentation lines are blank at "top level" in a

window, the mouse usually offers some standard commands. Clicking Left selects a

window. Clicking Right often brings up a menu specific to the application. Clicking

sh-Right brings up the System menu.

The mouse documentation lines are normally displayed in white type in a black

box (reverse video). Pressing FUNCTION m-C reverses the video state of the mouse

documentation lines; if they were white on black, they become black on white and

vice versa.�

Status Line

The status line is the line of text at the bottom of the screen. It contains the

following information:

• Date and time

• Login name

• Current package

• Process state

• Run bars

• Other current information, such as

° Console idle time

° Network service indicators�

Process State

The process state refers to the processes associated with the selected window. See

the section "Selecting and Creating Activities". The following list shows some com-

mon states:

Mouse Out Waiting for the mouse process to notice a change of windows.

Net In Waiting for data from another machine on the network.

Net Out Waiting to send data to another machine on the network.

Open Waiting to open a file on another machine on the network.

Run Process is running.

User Input Waiting for input from keyboard or mouse.

Run Bars

Page 2740

The run bars are thin horizontal lines near the process state in the status line. A

description of each one, from left to right, follows:

Two GC bars (under the package name)

The left one is visible when the scavenger is looking for refer-

ences to objects that are candidates to become garbage. The

right one is visible when the transporter is copying an object.

See the section "Theory of Operation of the GC Facilities".

Disk bar Visible when the processor is waiting for the disk, typically

because of paging. Nonpaging disk I/O usually waits via

process-wait, in which case this bar does not appear.

Run bar (under the run/wait state)

Visible when a process is running and not waiting for the disk.

Not visible when the scheduler is looking for something to do.

See the section "How the Scheduler Works".

Paging Bar Visible when paging activity is going on.

Disk-save bar (far right)

Visible only when zl:disk-save is reading from the disk;

zl:disk-save alternatively reads and writes large batches of

pages. The alternating state of this bar tells you that zl:disk-

save is working while you wait for it.

Progress Notes

Progress notes for some activities are displayed at the right end of the status line.

They consist of a string describing what is happening  the pathname of file be-

ing written or read, for example  and a bar that progresses toward the right

margin according to how far the process has gotten. Progress notes can be added

to your application programs: See the section "Progress Indicator Facilities".

The Keyboard

There are 88 keys on the Symbolics keyboard. The keyboard has unlimited rollover,

meaning that a keystroke is sensed when the key is pressed, no matter what other

keys are held down at the time.

The keys are divided into three groups: special function keys, character keys, and

modifier keys. Special function keys and character keys transmit something. They

have black labels and are typed in sequence. Modifier keys are intended to be held

down while a function or character key is typed, to alter the effect of the key.

They have red labels.

Function Keys FUNCTION, ESCAPE, REFRESH, CLEAR INPUT, SUSPEND, RE-

SUME, ABORT, NETWORK, HELP, TAB, BACKSPACE, PAGE, COM-

PLETE, SELECT, RUBOUT, RETURN, LINE, END, and SCROLL

Page 2741

Character Keys a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1

2 3 4 5 6 7 8 9 : - = ‘ \ | () ; ’ , . / and the space

bar.

Modifier Keys LOCAL, CAPS LOCK, SYMBOL, SHIFT, REPEAT, MODE LOCK,

HYPER, SUPER, META, and CONTROL�

The following keys are reserved for use by the user (for example, for custom edi-

tor commands or keyboard macros):

CIRCLE

SQUARE

TRIANGLE

HYPER�

To get information about the keyboard, press the SYMBOL and HELP keys simultane-

ously.

You can have keys repeat if they are held down. This feature is disabled by de-

fault, but you can enable it by setting si:*kbd-auto-repeat-enabled-p* to t.

(setf si:*kbd-auto-repeat-enabled-p* t)�

The speed of repetition is controlled by si:*kbd-repetition-interval*. See the vari-

able si:*kbd-repetition-interval*.

You can exempt certain keys from auto-repetition using the function si:set-auto-

repeat-p. For example, to make SQUARE one of the keys that do not auto-repeat,

you would type:

(si:set-auto-repeat-p #\Square nil)�

See the function si:set-auto-repeat-p.

You can customize key bindings; see the section "Setting Key Bindings in Init

Files".

If you have a MacIvory or a UX400S, there is a mapping from those keyboards to

the Symbolics special keys. For the MacIvory, see the section "Using the Genera

Application on a MacIvory". For the UX400S, see the section "Symbolics UX Key-

board Templates".

The Mouse

The mouse is a pointing device that can be moved around on a flat surface. These

motions are sensed by Genera, which usually responds by moving a cursor around

on the screen in a corresponding manner. The shape of the cursor varies, depend-

ing on context.

There are three buttons on the mouse, called Left, Middle, and Right. Typically

you point at something with the mouse and specify an operation by clicking the

mouse buttons. "Chorded clicks", indicated by a modifier key (c-, m-, c-m, sh-,

c-sh, m-sh, and s-) perform different actions than single clicks. In any specific

context, there are up to 96 operations that can be performed with the mouse, in-

voked by Left, Middle, Right, and chorded clicks. Some of these operations are lo-

Page 2742

cal to particular programs such as the editor, and some are defined more widely

across the system.

Typically the operations available by clicking the mouse buttons are listed in the

mouse documentation lines at the bottom of the screen. The mouse documentation

lines change as you move the mouse around or run different programs.

Sometimes holding a mouse button down continuously for a period of time is also

defined to perform some operation, for example, drawing a curve on the screen.

This is indicated by the word "Hold". For example, "Middle Hold" means to press

the middle mouse button down and hold it down, releasing it only when the opera-

tion is complete. "sh-Left Hold" means hold down the SHIFT key and press the left

button, then release the SHIFT key but hold the left button down until the opera-

tion is complete.

The Mouse and Menus

Mouse-sensitivity

Parts of the screen can be mouse-sensitive; that is, clicking one of the mouse

buttons on these areas causes some action to occur. When the mouse cursor moves

over a portion of the screen that is mouse sensitive, an outline box appears around

the item. Clicking on the boxed item in the manner specified in the mouse docu-

mentation line causes the desired action to occur.

Scrolling

Many windows in the system respond to scrolling commands. On the left side of

the pane is a scroll bar. When the mouse is moved over a scroll bar, its cursor

changes to a double-headed pointer.

The gray area in the bar indicates the percentage of the pane or buffer contents

that is currently visible on the screen.

To scroll using the scroll bar and the double-headed pointer, use one of the

following mouse buttons:

Left Moves the line indicated by the pointer to the top of the

screen.

sh-Left Moves the line indicated by the pointer to the bottom of the

screen.

Middle Displays the percentage of the pane contents that approximate-

ly corresponds to the position indicated by the pointer.

Right Moves the line currently at the top of the screen to the

position indicated by the pointer.�

Some window can be scrolled horizontally. See the section "Scrolling with the

Mouse". If you do not like having the scroll bar on the left, you can change its lo-

cation. See the section "Adjusting Console Parameters".

Page 2743

Menus

One common application of a mouse button is to call up a menu of options. Menus

are lists of mouse sensitive choices, surrounded by a border. They normally appear

in the part of the screen where the mouse cursor was positioned when you clicked

the button.

Genera has several styles of menus, including the following common ones:

• Momentary menu

Each item is a possible choice. Positioning the mouse cursor over an item and

then clicking the appropriate button makes the choice. Momentary menus disap-

pear after you make a choice or when you move the mouse off them. The

System menu (shown in Figure 61) is a momentary menu.

Figure 134. A Momentary Menu�

• Accept-variable-values menu

Each line presents one or more possible values of a particular variable. You

select the variables and values you want. An accept-variable-values remains

visible until you click on the end or exit button. The Hardcopy menu (shown in

Figure 66) is a accept-variable-values menu.

Each variable has a type that controls what values it can take on. The way in

which the possible values are presented and the way in which you choose a

value depend upon the type. Variables can have one of two types.

° A type with a small number of valid values. Each line in the menu presents

the possible valid values of a particular variable. The current value appears

in bold face. Orientation is such a variable. Its valid values are Landscape and

Portrait. Each of the values is mouse-sensitive. Clicking on a value selects it.

Page 2744

Figure 135. An Accept-variable-values Menu

�

�

° A type with a large or infinite number of legal values. Each line in the menu

presents only the current value of a particular variable. File, Printer, Title,

and Body-character-style are variables of this type. To change a value, select

the current value by clicking on it, type in a new value, and press RETURN.

Rubbing out more characters than have been typed in restores the original

value instead of changing it.

You exit menus in a variety of ways. For momentary menus, such as the System

menu, making the choice causes the menu to disappear. Moving the mouse cursor

off this kind of menu also causes the menu to disappear. Other menus have explic-

it commands, such as [Do It], [Done], [End], [Exit], or [Abort], which you must

click on to make the menu disappear. Other menus are displayed in the frame

permanently, such as the Zmail Command Menu.

System Menu

The System menu is a momentary menu that lists several choices for acting upon

windows and calling programs (for example, Lisp Listener, Zmacs, or the Inspec-

tor). (See Figure 134.) You can always call the System menu by clicking sh-Right.

Use the System menu to do many things, among them:

• Create new windows.

• Select old windows.

• Change the size and placement of windows on the screen.

• Hardcopy a file.�

Page 2745

For more information about using the System menu, see the section "Using the

System Menu".

For more information about the mouse and menus, see the section "Using the Win-

dow System" and see the section "Window System Choice Facilities".

Selecting and Creating Activities

The programs that run under Genera are called activities. An activity can have one

or more windows. All user interaction with Genera, occurs in windows. The win-

dow that you are interacting with is called the selected window. You select a

window via the mouse, a menu, or a keyboard key. If the window is not already

exposed, it appears on the screen. See Programming the User Interface for more

information about windows and how you can create them for your applications.�

Standard Activities

Genera has a standard set of activities available, some of which are available via

the System menu and all of which are available via the SELECT key. Press SELECT

HELP for a complete list of activities available in your world. The activities avail-

able via the SELECT key and the characters to use to select them are:

= Select Key Selector

C Converse

D Document Examiner

E Editor

F File System Maintenance Operations

I Inspector

L Lisp

M Zmail

N Notifications

P Peek

Q Frame-Up

T Terminal

X Flavor Examiner

Some activities are initialized in the world when it is built. Others are initialized

when they are selected for the first time. Click on [Select] in the Windows column

of the System menu (see Figure 134) for a menu of the current initialized win-

dows. If you have more than one copy of an activity, both are listed:

Dynamic Lisp Listener 1

Main Zmail Window 1

Zmacs Frame 1

Dynamic Lisp Listener 2�

Moving

Page 2746

In Genera you do not "leave" an activity with an explicit terminating command;

instead, you select a different activity. You can return to the most recently used

activity by pressing FUNCTION S.

Starting Up

This section provides information about how to start, cold boot, log in to, and log

out of the 3600-family of machines and the XL400. It assumes that the software is

installed and your site has been configured. If you are not sure that this has been

done, check with your site manager. The software must be installed and the site

configured before you attempt to use the system. For information on installation

and site configuration. See the document Genera 8.1 Software Installation Guide.

Powering Up

To power up and start using your Symbolics computer, use the following proce-

dure:

1. Plug in the machine.

2. For the 3640, 3645, 3670, and 3675: Press the POWER button on the front

panel.

For the 3650: Turn the key on the front panel to PWR.

For the 3620 and 3630: Press the ON button on the front panel.

For the XL400: Press the power switch on the front panel; this is the right-

most switch. (Also, be sure the main power switch is turned on; this is locat-

ed at the back of the machine, near the floor.)�

� If you have a 3600:

1. Plug in the 3600. The front panel lights on the processor cabinet display

"3600" when the machine is plugged in. If they are not lit, check that the

main circuit breaker at the lower rear of the cabinet is turned on.

2. Turn the key on the front panel to the vertical position, marked LOCAL.

3. After the front panel lights display "Power up?", push the spring-loaded

switch marked YES. The front panel lights then display "3600 on".

Cold Booting After Powering Up

After you have turned the machine on, the FEP has control of the console. Now

you cold boot the machine.

Page 2747

Run

Fault Reset

Power

3640, 3645, 3670 and 3675

RUN

RESET

PWR

OFF

key

ON

RUN

FAULT

RESET

3650

3620 and 3630

PowerReset

XL400

�

Figure 136. Front Panels of Symbolics Computers

Cold booting is a complete reset of Lisp. It loads in a fresh copy of Genera, called

a world load. Cold booting erases any existing contents of Genera, including the

contents of editor and mail buffers. Never cold boot a machine that is being used

by someone else.

You can cold boot the machine when all of the following conditions hold:

Page 2748

• The screen is white.

• The FEP prompt appears in the upper left-hand corner.

• A blinking cursor appears.�

Figure ! shows what the screen looks like when the machine is ready to boot.

FEP Command:

Figure 137. A Screen Ready to Boot

However, if either of the following conditions is true, you might not be able to

cold boot:

• The screen is black. This might indicate that the console is not turned on.

Check the switch on the rear of the console. If the console is turned on, press

any key. The screen dims automatically when the console has been idle for 20

minutes. Pressing any key or moving the mouse brightens it. If the screen does

not brighten when a key is pressed, press LOCAL B (hold down the LOCAL key

while you press B). If holding down LOCAL B for several seconds fails to brighten

the screen, your console may be malfunctioning. Call your Symbolics Field Ser-

vice Representative.

• The screen is white, but no characters appear. This might indicate that the

video cable is disconnected. If the video cable is connected, this condition might

indicate a malfunction of the FEP. Call your Symbolics Field Service Represen-

tative.�

When you have determined that you can cold boot the machine, use the following

procedure:

Page 2749

1. Type Hello and press RETURN.

Several lines reporting files being scanned are displayed, followed by the FEP

prompt. These overlay files initialize the microcode, identify paging files that

are loaded during the boot process, and prepare the machine for booting Lisp.

2. Type Boot and press RETURN.

As it cold boots the machine, the FEP executes the commands in the latest version

of the file named FEP0:>boot.boot. Booting takes about two minutes. When the

FEP has successfully completed the cold boot, the herald (a multiline message be-

ginning Symbolics 3650 System or Symbolics 3645 System for example) appears.

For more information about cold booting: See the section "The Front-End Proces-

sor".

Logging In

After cold booting, you are in a window named Dynamic Lisp Listener 1. You are

now ready to log in. Logging in tells Genera who you are, so that other users can

see who is logged in, you can receive messages, and your init file can be run. An

init file is a Lisp program that is loaded when you log in; you can use it to set up

a personalized environment.

If your login name is KJones, you can log in in any of the following ways. (Note

that the examples are given in uppercase and lowercase, but the machine is not

case sensitive. You can use all uppercase, all lowercase, or mixed case as you

prefer.)

• To log into the default host machine, using your init file, type

Login KJones�

• To log into your machine, without your init file, type

Login KJones :init file none�

• To log into another machine "sc3", using your init file, type

Login KJones :host sc3�

If the host machine you log in to is a timesharing computer system, you must

have a directory and account on that system.

For information about how to write init files, see the section "Customizing

Genera".

Logging Out

Page 2750

1. Press SELECT L to get to a Lisp Listener.

2. Log out by typing either the command Logout or the function (logout).

The Logout command cleans up and checks to see if you have left any

unsaved buffers or mail files. If it finds any, it offers to save them for you.

Wait until the Lisp Listener says that you have been logged out before you go

to the next step.

3. Cold boot the machine.

This step is optional. It is not necessary to cold boot if the machine has been

used only a short while and if no major changes to the machine state have

been made. If the machine has been used for several hours and many files

have been loaded or read into it, we recommend that the machine be cold

booted.

Cold booting frees up virtual memory and puts the machine in a fresh state.

In this way your customizations do not affect the next user’s environment.�

Note: You need not turn the machine off each night; however, it does not hurt the

machine to do so.

Powering Down

To power down your machine:

1. Log out by giving the command:

Logout

2. Halt the machine by giving the command:

Halt Machine

3. For the 3640, 3645, 3670, and 3675: Give the shutdown command to the FEP:

Shutdown

or press the power button on the front panel.

For the 3650: Turn the key on the front panel to OFF.

For the 3620 and 3630: Press the ON button on the front panel.

If you have a 3600, turn the key on the front panel to the OFF position.

Note: it is not necessary to turn off the circuit breaker on the back of the machine

unless you are planning to unplug the machine and move it.

Page 2751

Getting Acquainted with Genera

This section offers a tutorial tour to introduce you to some of the features of the

Genera environment. You probably want to sit down at a console and try things as

you go along.

Using the System Menu

1. Press down the SHIFT key and click the right mouse button. (This is usually

denoted in documentation as sh-Right.) You should see the System menu pop

up on the screen as in Figure !.

Figure 138. The System Menu

Notice that the mouse cursor has become an x and that there is a box around

the word refresh. The word refresh is in the column titled "This Window"

and its being in a box means that refresh is mouse sensitive. If you click a

mouse button while the box is around refresh, thereby selecting it, the cur-

rent window ("This window") would be refreshed, that is cleared and redrawn.

The mouse documentation line at the bottom of the screen says:

Refresh the window the mouse is over.

Move your mouse so that it is off this menu. The menu disappears. That is

the way momentary menus work: they disappear when the mouse is moved off

them.

Click sh-Right again. Notice that the System menu again pops up, but it has

followed your mouse. A momentary menu always pops up where your mouse

is, because it can only remain on the screen when the mouse is inside its

borders. Try moving the mouse and clicking sh-Right several more times.

sh-Right summons the System menu in all contexts in Genera. This is impor-

tant to remember.

Page 2752

2. Click sh-Right again and now take a more careful look at the information the

System menu is providing.

The operations that the System menu provides to you are divided into three

categories:

Windows

This Window

Programs

Windows refers to general window operations, as indicated by the items in

that column (See Figure 138):

• Create - Create a new window.

• Select - Select one of the windows already established by Genera or creat-

ed by you. Another pop-up menu appears, offering all the windows current-

ly available in Genera.

• Split Screen - Divide your screen so that two windows are completely visi-

ble at the same time.

• Layouts - Operate on the geography of the screen display by restoring the

previous state or saving the current state. You can do what Layouts does

with Edit Screen and the Undo option.

• Edit Screen - Modify the geography of the screen.

• Set Mouse Screen - Set the screen the mouse is on if you have more than

one screen (for example, a color console and a standard one).�

This Window refers to operations of the current window, that is, the one that

you were looking at and typing to when you clicked sh-Right.

• Move - Change the location of the current window on the screen.

• Shape - Modify the shape of the current window (square to rectangle, and

so on).

• Expand - Make the current window larger by occupying unused space on the

screen.

• Hardcopy - Send an image of the current window to a printer. This is the

same as pressing FUNCTION Q. See the section "FUNCTION Key".

• Refresh - Redisplay the current window. This is the same as pressing

FUNCTION REFRESH. See the section "FUNCTION Key".

Page 2753

• Bury - Shuffle the current window down to the bottom of the stack of win-

dows, selecting the previous (next down in the stack) window as current.

• Kill - Remove the current window.

• Reset - Initialize the current window, that is, restart it in its initial state.

This is useful if a window is in a confused state. It might cause loss of in-

formation, however. See the section "Recovering From Errors and Stuck

States".

• Arrest - Halt any processes running in the current window.

• Un-Arrest - Release any processes in the current window, allowing them to

continue.

• Attributes - Modify the attributes of the current window. This summons a

menu of the attributes of the window and allows you to selectively change

them. Move the mouse down vertically and click on Attributes. A menu

like this appears:

Notice that the menu has two choices in its bottom margin: Abort and

Done. These are for exiting from the menu. You can click on unhighlighted

entries in the central portion of the menu (the choice section). Highlighted

items are the current attributes. Clicking on an unhighlighted entry high-

lights it and selects it to go into effect, but nothing happens until you exit

from the menu. Try clicking on several choices to see how it works. This is

called an Accept Variable Values menu. Now, since you do not really want

to modify anything just now, click on Abort. The menu goes away.�

Click sh-Right again to get the System menu back and look at the third col-

umn:

Programs refers to available preloaded programs, or activities, in Genera.

You can select an activity from this menu, or you can use the Select Activity

Command Processor command. See the section "Select Activity Command".

For now, just move your mouse off the menu.

Page 2754

3. Click sh-Right once more. This time, move the mouse to the left and position

it over the Windows column.

Move it to sit on Create.

Click Left on Create. Another momentary menu appears containing a list of

window types.

Click on Lisp.

The menu disappears and an icon representing the upper left corner of a box

appears where your mouse cursor was. Using the mouse, move this icon to

some convenient location on your screen. (See Figure !).

Figure 139. Positioning the Upper Left Corner of a New Window

Press the left mouse button and notice that the left corner now sprouts two

more sides and becomes a rubber band with four corners (see Figure !).

Stretch it around by moving the mouse. Notice what happens if you pull it up

to the left of the left corner that you just positioned. If you were to click Left

at this point, you would create a new window that is the full size of the

screen.

� Now, pull it down to make a reasonably sized window, at least ten inches

across and at least 25 lines (about four inches) vertically. Click Left if your

Page 2755

Figure 140. Positioning the Lower Right Corner of a New Window

mouse and the new window are not near any other window edge. If the lower

right hand corner of your new window is near the edge of another window,

click Right. Clicking Right (as the mouse documentation line says) is smart.

This means it tries to optimize the position of the edges of windows so that

they do not overlap. Windows that overlap by very tiny amounts at the edge

can confuse you as to which window is actually selected, especially if you

choose not to use the graying option for non-selected windows. (See the sec-

tion "Set Screen Options Command".)

You have just created a second Lisp Listener, and it is selected. That means

that any typing you do at this point goes into this window. �

Trying Out the Command Processor

Typing Commands

Type Select Activity Lisp and press RETURN. You are now back in your original

Lisp Listener. Type Select Activity Lisp and press RETURN again to get back to

your newly created Lisp Listener. Select Activity activity cycles through all the

windows of a given activity. Get back to your original Lisp Listener, typing Select

Activity if necessary. Notice that there is a key labelled SELECT. Press SELECT fol-

Page 2756

lowed by L. You are now in your other Lisp Listener. SELECT L is the same as Se-

lect Activity Lisp. Press SELECT followed by HELP to see a display of the other sin-

gle-letter abbreviations for activities.

Select Activity is a command that takes one argument, an activity name. Some

commands take no arguments. Some take more than one argument. Some com-

mands also take optional arguments called keywords that control the behavior of

the command. For more detailed information about commands, see the section

"Overview of the Command Processor".

Using the HELP Key

Type Select Activity and press SPACE, then press the HELP key. You should see a

display like that in Figure !.

Figure 141. Select Activity Command�

The HELP key offers help appropriate to the situation. Press CLEAR INPUT. The

command goes away. ABORT would also cancel the command, but since you had not

finished typing the arguments to the command (that is, the activity you wanted to

select), there is nothing to abort.

Try pressing m-HELP. The information displayed is called a HackSaw. HackSaws

are helpful hints about Genera. See the section "HackSaws".

Using Keywords Arguments

Type Show Herald and press RETURN. The Herald (the initial screen display an-

nouncing the system version loaded) is printed on your screen. Show Herald is a

command that takes no arguments.

Type Show Herald again and then press SPACE. The prompt (keywords) pops into

your input line. Press HELP. You should see:

This time add :detailed before pressing RETURN. Now you should see additional in-

formation about the version of the FEP you are running with and other systems

that are loaded in your world.

This demonstrates in a very simply way how keywords can affect the behavior of a

command.

Page 2757

�

Figure 142. Show Herald and its Keywords�

Some Useful Command Processor Commands

1. Type Show Machine Configuration. With no arguments, this command displays

the information about your machine. You can give Show Machine Configura-

tion the name of another machine on your network as an argument and it

shows you the information about that machine. This is an important command

to know, because if you have to call Symbolics Software Support, you might

be asked for information about your hardware that you can get only from this

display. Of particular importance when you call Software Support is the Ma-

chine Serial Number, appearing in the third line of the display.

2. Type Show Command Processor Status. This command takes no arguments be-

cause it is displays information about the setting of the Command Processor.

Unless you have changed the Command Processor Mode or your prompt, you

should see a display like this:

This means that your Command Processor is in the default mode, and any

typing you do to it is assumed to be a Command Processor command unless it

begins with a left parenthesis or a comma. Type

,*package* SPACE

This asks for the value of the Lisp variable *package*. The value returned

should match the package shown in the status line at the bottom of the

screen.

You can change the mode of the Command Processor. See the section "Set

Command Processor Command".

3. Type Show FEP Directory and press RETURN. This displays a list of all the files

on the local disk(s) of your machine. The files that Genera is currently using

(the world load from which Genera was booted and the paging files loaded,

and, for 3600-family machines, the microcode in use) are displayed in bold-

face. That is to remind you that you should not delete them.

Page 2758

Type Show FEP Directory again and this time press SPACE. When it prompts

for keywords, press HELP. Try Show FEP Directory with the :type keyword.

After typing :type press HELP again and select a kind of file, perhaps boot.

This displays only those files that are boot files, that is, files that contain a

script of commands for booting a world. See the section "Cold Booting After

Powering Up".

Looking Back Over Your Output (Scrolling)

By now you have had to press SPACE at **More** breaks several times. Hold down

the META key and press SCROLL (this is usually denoted m-SCROLL). You can look

back over your interaction with Genera. To get back to the "end" of this output

history you can press SCROLL, press m-sh->, or just start typing a new command.

Without pressing anything, from where you are in the middle, try typing Show

Namespace Object user your user name. If your user name were KJones, you would

see the window scroll forward to the new command line and then display:

View in namespace ACME:

USER KJONES

LISPM-NAME KJones

PERSONAL-NAME "Jones, Kingsley"

HOME-HOST ACME

MAIL-ADDRESS kjones ACME

LOGIN-NAME kjones VAX01

NICKNAME King

WORK-ADDRESS "Building 3-701"

WORK-PHONE 5891

BIRTHDAY "19 June"

PROJECT Database

SUPERVISOR "Augensen"

USER-PROPERTY :USUAL-LOGIN-HOST wombat�

For more details about scrolling windows, see the section "Scrolling with the

Mouse".

Now you have tried a few Command Processor commands and it is time to show

you how can speed up your work by cutting down on your typing. Go on to the

section "Getting Acquainted with Dynamic Windows".

Getting Acquainted with Dynamic Windows

Try these things in a Lisp Listener (press SELECT L if you are in some other ac-

tivity).

Reusing Commands

1. Press c-m-Y.

Page 2759

Press m-Y.

Press m-Y again.

Notice how each successive previous Command Processor command you typed

is placed at the Command: prompt. Conveniently, you can reactivate any of

these commands by pressing RETURN when the one you want appears. For now

just press CLEAR INPUT.

2. Type Show Documentation SPACE Show Documentation Command RETURN. The docu-

mentation for the Show Documentation command is displayed on your screen.

(You can use the Show Documentation command on any topic in the documen-

tation set. See the section "Document Examiner".)

3. Press c-m-Y. Press m-RUBOUT three times to erase "Show Documentation

Command". Now type "Reusing Commands" RETURN. You can yank back a com-

mand and edit it instead of retyping it.

4. Press ESCAPE. The 20 or so most recent commands in your input history are

displayed, followed by (n more items in history), if you have typed more than

about 20 commands. c-n ESCAPE displays the n most recent commands. Select

a command and press c-n c-m-Y where n is the number of that command.

Command n is yanked back at the Command: prompt.�

Go on to the section "Using Your Output History" to learn more ways to take ad-

vantage of your output history.

Using Your Output History

1. Type Show Directory SPACE sys:examples;. This is a directory of sample pro-

grams you can look at and run.

Move your mouse slowly over the display of the directory. Notice that the in-

dividual files (or subdirectories) listed are mouse sensitive, that is, a box ap-

pears around them as the mouse passes over them.

2. Now type Show File and click the left mouse button on one of the files in the

display from Show Directory, perhaps on Teach-Zmacs-Info.text. The pathname

is inserted in your new command line. Press RETURN to activate the command,

or CLEAR INPUT if you do not want to see the contents of the file displayed.

(This file, Teach-Zmacs-Info.text, is a good one to remember when you are

ready to learn about Genera’s editor, Zmacs. It tells you how to run a tutorial

that explains the editor.)

Type Show File again, and this time position your mouse at the right hand

side of the directory listing. Click and hold the left mouse button and drag

the mouse down and to the left. All the pathnames in the rectangle you cre-

Page 2760

ate by the diagonal motion are added as a sequence to the Show File com-

mand when you release the mouse button.

Note that you can mark groups of objects using the click and hold action, but

if your mouse is over an object of the same type as the group you want to se-

lect (that is, if your mouse is over a single pathname, in this case), that sin-

gle object is selected. To select a group, your mouse must be over a part of

the screen that is not mouse sensitive.

3. Scroll back, using m-SCROLL or m-V, over your output history so far. Select a

command line you would like to reactivate. Move the mouse over it and when

it becomes mouse sensitive, click Left. The entire command line is yanked

down to the current prompt. You can press RETURN to reactivate it, or RUBOUT

or other editing commands to edit it. See the section "Editing Your Input".

4. Once again scroll back over your history and select a command to reactivate.

Click sh-Left, that is, hold down the SHIFT key while you click the left

mouse button. This time your selected command is not only yanked down to

the current prompt but also is reactivated without your having to press RE-

TURN.

5. When your history is long, scrolling back over it is tedious. Hold down the

SUPER key and press R (s-R). Now type a string of characters, Show for in-

stance. Notice that your cursor is moved back through to the history to the

most recent occurrence of the word show. Press s-R again. You are moved

back to the next most recent occurrence. If you move past the occurrence of

show that you want, press s-S to search forward. Press END to terminate the

search. You can now click Left or sh-Left.

6. Sometimes you know what command you want to yank and do not need to

search for it. Hold down the CONTROL, META, and SHIFT keys and press Y (this

is denoted c-m-sh-Y). You are prompted for a character string to use; the

most recent command that contains that string is yanked directly. If the most

recent command containing the string is not the one you want, press m-sh-Y

and the previous most recent command is yanked instead. Successive uses of

m-sh-Y go back farther and farther in your history locating commands con-

taining the string.�

Now that you know how to move back through your history it is time to learn

some more ways to make use of it. Read on to the section "Using the Mouse".

Using the Mouse

1. Move your mouse so it is just off the top of the screen. Look down at the

mouse documentation lines just above the date and time at the bottom of the

screen. Notice that they are blank. Move the mouse back down onto a blank

part of the screen. Now the mouse documentation line says "To see other

commands, press Shift, Control, Meta-Shift, or Super".

Page 2761

2. Move the mouse so that it is over a previous command. Now notice the mouse

documentation line. It now says that Mouse-L is the command, meaning that

clicking Left yanks the command. You have already discovered this, see the

section "Using Your Output History". Mouse-R says "Menu". Click Right. A

menu pops up with a list of operations that can be performed on the com-

mand line the mouse is over. Move your mouse off the menu to make it dis-

appear.

3. Now position your mouse over the command line again. Press SHIFT. Notice

that the documentation changes to indicate what operations can be performed

by pressing SHIFT (sh-) while clicking Left or Right. You have already tried

sh-Left; see the section "Using Your Output History". sh-Right pops up the

System menu, see the section "Using the System Menu".

4. Release SHIFT and press CONTROL. The operations offered by pressing CONTROL�

while clicking the mouse (c-) are for marking regions or words for yanking

or copying. c-Left marks a region. Hold down the CONTROL key and the left

mouse button while you move your mouse around. Notice that the text the

mouse moves over is underlined. Release the CONTROL key and the left mouse

button. Now click c-Right. The Marking and Yanking menu pops up, offering

you several things to do with the text you have marked. Usually you want to

push the text on the kill ring, the place where text that has been deleted

with one of the kill commands (c-K, c-W, and others) in any context (Lisp,

Zmacs, or Zmail) is stored for recall with c-Y. You can push the marked text

on the kill ring by clicking on that choice in the menu. Do that now. Because

pushing text on the kill ring is such a common operation, it can also be done

by holding down SUPER and pressing W (s-W). Now press c-Y. The text you

marked is yanked back at the current prompt. In this way you can yank arbi-

trary pieces of text for editing and turning into a new command. Since the

kill ring is common to Lisp and Zmacs, this is a way to transfer something

from your Lisp Listener to an editor buffer for editing or for saving in a file.

5. c-Middle marks and yanks the word the mouse is over. Try pressing c-Middle

several times to yank arbitrary words from your output history. Press CLEAR

INPUT.

6. Hold down both the CONTROL key and the SHIFT. c-sh-Middle allows you to

mark (without yanking) words.

7. Holding down the META and SHIFT keys and clicking right pops up the Win-

dow Operation menu. This menu offers operations to perform on the current

window, much like the "This Window" column in the System menu. See the

section "Using the System Menu".�

Using Menus

Page 2762

Using the Mouse and the Keyboard on Menus

Type Set Window Options and press RETURN. An Accept Variable Values menu is

displayed. The items in the menu are the various options that you can set to cus-

tomize your Lisp Listener. The highlighted (boldface) items are the current set-

tings. Move your mouse over the menu and notice that items become mouse sensi-

tive. You can click on an unhighlighted choice in a list to make it highlighted. You

can click Left on a displayed value to replace it with a new value. You can click

Middle on displayed value to edit the value.

Figure 143. Set Window Options Menu�

You can click on to use these values, or on to cancel the com-

mand. You can also use keyboard commands to interact with this kind of menu.

The keyboard commands available are:

SPACE Enter a value for an item.

c-E Edit the value of an item.

REFRESH Force complete redisplay.

HELP Display this list of commands.

END Use these choices.

ABORT Abort these choices.

c-N Move down to next item.

c-P Move up to previous item.

c-F Move to next choice in a list of choices.

c-B Move to previous choice in a list of choices.�

Press c-N and notice that the first option, "More processing enabled" is underlined.

Press c-F. The underlining moves over to the word Yes. Press c-F again. Now the

underlining is under the work "No". Press SPACE. The line redisplays with the No

choice in boldface. Press c-N to move to the next option, "Reverse video". Press

c-F. Suppose at this point you decide you do not want to change the video after

all. Just press c-P (or c-N) to continue. Press c-P now to return to the "More pro-

cessing enabled" and c-F followed by SPACE to set more processing back on. Now

press END to exit from the menu.

Page 2763

Occasionally typing on a menu causes some overwriting of other parts of a menu.

Pressing REFRESH or FUNCTION REFRESH redisplays it correctly.

Using m-COMPLETE

Type Show Directory sys:examples;. The Show Directory command takes several

keywords to control the format of the display. You can type them directly in the

command line, but with some commands the interactions among keywords is com-

plex. It is more convenient to see all the options and be able to alter them selec-

tively. Press m-COMPLETE. You should see a menu like Figure !.

Figure 144. Show Directory Command Menu

The items in the menu are mouse sensitive; you can select keyword values with

the mouse or by keyboard commands. Pressing END or clicking on

activates the command.

Summary of User Interface Features of Genera

1. Scrollable History  SCROLL, m-SCROLL, c-V, and m-V scroll the history for-

ward and backward.

2. s-SCROLL scrolls the window horizontally.

3. Click Left  on a directory listing, does a Show File of the file. In Other

contexts yanks the command line.

4. Click Left on multiple objects  type Delete File and click Left on several

file names from a Show Directory listing. Notice that the commas are added

automatically.

5. Click sh-Left  like Left, but also activates. Click sh-Left on a command line

to yank and activate the command.

6. c-Left  marks a region, m-W pushes marked region on the kill ring.

7. Click Middle  on a Lisp object does a Describe of the object.

8. c-Middle  yanks the word the mouse is over. Useful for using arbitrary text

to compose commands; for example, after a Show Mail, click c-Middle on a

pathname mentioned in a mail message as an argument to Show File.

Page 2764

9. Click Right  on an object, pops up a menu of possible operations on the ob-

ject.

10. m-sh-Right  gets the menu of window operations.

11. Click Right  Press ABORT in the Dynamic Lisp Listener. Then click Right

on the words Dynamic Lisp Listener 1 in the message

Back to top level in Dynamic Lisp Listener 1�

Click on Show Flavor Components in the menu that appears.

12. c-R  search back through the output history. (c-S searches forward.)

13. c-m-sh-Y  prompts for a string and searches the typein history for a line

matching that string and yanks it.

14. Non-trapping scroll bars. Clicking near the top offers scrolling by lines, near

the bottom by pages, and the middle proportionally.

15. Addresses in messages (drafts being composed and messages received and the

output of Show Expanded Mailing List) are mouse sensitive (see the section

"Send Mail Command").

16. m-COMPLETE  pops up a menu of the command arguments for a command

you are typing. You select values from the menu. END activates, ABORT aborts.

17. m-Left in Zmacs  Edit Definition. Hold down the left button and move the

mouse around to see what is mouse sensitive.

18. m-Middle in Zmacs  Evaluate form. Hold down the middle button and move

the mouse to see what is mouse sensitive.

19. SUSPEND  items on the window are still mouse sensitive (cross window

mouse sensitivity).

20. Many menus accept keyboard commands for selection and activation.

dw:menu-choose and AVV style menus can be typed at as well as clicked on

with the mouse. These are the menus with grey shadows (as opposed to black

shadows) and those that appear on your Dynamic Lisp Listener in the typeout

window, such as that resulting from the Set Screen Options command or from

using m-COMPLETE on a partially typed command. Press HELP for a list of the

commands accepted. If the display becomes confused, press FUNCTION REFRESH.�

What You Have Learned

If you have followed all the directions given in the sections starting with "Getting

Acquainted with Genera", you should now be able to do the following:

Page 2765

• Use the System menu

• Use other menus

• Use the Command Processor to do some simple information gathering tasks

• Use the mouse

• Use facilities provided by Dynamic Windows to create new commands from your

previous commands

You are now ready to learn in more detail about the command processor. See the

section "Communicating with Genera".

For detailed descriptions of all the commands available in the command processor,

see the section "Dictionary of Command Processor Commands".

To learn how to allow your application programs to take advantage of the power of

Dynamic Windows and the Command Processor, see the section "Managing the

Command Processor".

Communicating with Genera

Overview of the Command Processor

The Command Processor is a utility program that accepts a command and its ar-

guments and then runs that command for you. The command processor takes care

of various chores:

• Prompting for arguments

• Checking arguments for correctness

• Providing completion when possible

• Providing documentation on request�

The Command Processor operates in all Lisp Listeners and break loops. The

prompt "Command: " indicates that you should enter a command or a Lisp form.

By default, the Command Processor is in command-preferred mode. This means

that input to a Lisp Listener or break loop is treated as a command if it begins

with an alphabetic character or a colon. Input is treated as a Lisp form if it be-

gins with a nonalphabetic character or is preceded by a comma.

For information on entering a command, see the section "Entering a Command".

For information on changing the Command Processor’s mode, prompt, and other

characteristics: See the section "Customizing the Command Processor".

Page 2766

For descriptions of predefined commands: See the section "Dictionary of Command

Processor Commands".

For information on the Command Processor reader and the facility for defining

your own commands: See the section "Managing the Command Processor".

For information on turning the Command Processor on and off: See the section

"Turning the Command Processor On and Off".

Parts of a Command

A command has three logical parts, which you specify in this order:

1. Command name. This is a word or a series of words separated by spaces. For

example:

Delete File

2. Positional arguments. These are arguments that the Command Processor

prompts for directly after the command name. Some commands have several

positional arguments; others have none. Commands that have arguments

might use default values for the ones that you do not specify. For example,

Show Directory takes one positional argument, a pathname:

Delete File wombat:>KJones>program.lisp

3. Keyword arguments. Some commands have keyword arguments that make it

simple to modify the meaning of the commands. Most of these arguments re-

quire values. These arguments have default values that the command proces-

sor assumes if you specify the command without mentioning the argument

name. Some commands have arguments whose values differ according to

whether you omit the argument altogether or mention the argument name

and omit its value. These argument defaults are called unmentioned defaults

and mentioned defaults. For example, Delete File takes several keyword argu-

ments, :Expunge, :Output Destination, and :Query. The :Expunge keyword has

values Yes and No. The unmentioned default is No. If you type:

Delete File wombat:>KJones>program.lisp

The file wombat:>KJones>program.lisp is marked for deletion but not ex-

punged. The mentioned default for :Expunge is Yes, so you can type:

Delete File wombat:>KJones>program.lisp :expunge

which is the same as:

Delete File wombat:>KJones>program.lisp :expunge yes

In this case, the file wombat:>KJones>program.lisp is deleted and expunged.�

For information on entering command names and arguments, See the section "En-

tering a Command" and see the section "Completion in the Command Processor".

For information on help in the Command Processor: See the section "Help in the

Command Processor".

Page 2767

Entering Commands

Entering a Command

In entering a command, you enter the components in order: first the command

name, then its positional arguments, then its keyword arguments, then the com-

mand terminator (RETURN or END). (When the command processor is in :form-

preferred mode, you must precede the entire command by a colon: See the section

"Setting the Command Processor Mode".)

The parts of the command can be entered using the keyboard or the mouse. You

can click Left on previous commands on the screen to yank them for reactivation.

If you click sh-Left on a previous command it is yanked and reactivated in one

step.

When you type a command, items from your output history on the screen become

mouse sensitive if they are appropriate as arguments to a command. Clicking Left

on such an object yanks it into the current command line.

c-Middle yanks the word the mouse is over for use in composing a new command

line. For example, if you have done Show Mail and a message refers to a file that

you want to look at, you can yank the file name as an argument to a Show File

command.

The Command Processor can complete components of commands. While you are

typing a command name or keyword argument name, if you press SPACE the Com-

mand Processor attempts to complete the current word and all previous words in

that command name or keyword argument name. If you press COMPLETE, the Com-

mand Processor attempts to complete the entire command name or keyword argu-

ment name. The Command Processor can also complete argument values that are

members of a limited set of possibilities. If you press m-COMPLETE the Command

Processor displays a menu of the argument values it has collected so far. You can

then select values from the menu using the keyboard or the mouse. When you ter-

minate a command, the Command Processor completes any command component in

progress.

Some arguments have default values. If you press SPACE instead of typing an ar-

gument, the Command Processor uses the default for that argument. The Com-

mand Processor also uses the defaults for any arguments you haven’t specified at

all when you terminate the command.

All this means that you don’t have to type an entire command to enter it. Suppose,

for example, that you type the following:

de SPACE f SPACE foo.* SPACE :q SPACE y RETURN�

You see the following on the screen:

Delete File (file [default WOMBAT:>KJones>foo.lisp]) foo.*

(keywords) :Query (Yes, No, or Ask) Yes�

While entering a command, pressing HELP or c-? displays documentation appropri-

ate for the current stage of entering the command. See the section "Help in the

Command Processor".

Page 2768

Supplying a Command Name

You type the command name, or some portion of it, followed by SPACE.

• When it recognizes the command, it fills in the part of the command name that

you didn’t type and then prompts you for the first argument. For example, you

type:

de SPACE f SPACE�

The Command Processor displays:

Delete File (file [default WOMBAT:>KJones>foo.lisp])�

• When it doesn’t recognize what you have typed so far as the beginning of a

command, the Command Processor informs you that no such command is avail-

able. You have to edit your input or erase it and start over.

• When it determines that what you have typed matches the beginning of several

different commands, it fills in as much of the command as possible and waits

for more input. You can use SPACE again to see if there is a default completion

for this command, or you can use HELP or c-? to see the set of commands that

begin with what you typed.

• If there are no commands beginning with what you typed, you can use c-/ to

see if there are any commands that contain what you typed anywhere in their

names.�

Supplying Positional Arguments to a Command

When the Command Processor has prompted you for a positional argument, you

enter whatever argument is appropriate for the command. The prompt words indi-

cate what the command expects:

Delete File (file [default ACME-BLUE:>joe>foo.lisp])

Set Package (A package)

Load Patches (for systems)�

An argument can be either a single item or, sometimes, a set of items separated

by commas. An argument cannot end with a comma, so SPACE can appear after a

comma for attractiveness if you want; the command processor just ignores SPACE

after a comma.

Load Patches (for systems) System, Zmail�

You end each argument with SPACE. The Command Processor then checks whatev-

er you have entered and prompts for the next argument (if there is one) or for the

keyword arguments. If you haven’t typed anything except SPACE, it fills in the de-

fault argument when one exists. Otherwise it checks what you typed for validity

(for example, if the command wants a number, it makes sure that you didn’t enter

a string).

Page 2769

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.*

(keywords)�

Some arguments can only be members of a limited set of possibilities, displayed in

the prompt. In this case the Command Processor can attempt to complete the ar-

gument. If you begin to type the argument and press SPACE, the Command Proces-

sor attempts to complete the current word and all words before that word in the

argument. If you begin to type the argument and press COMPLETE, the Command

Processor attempts to complete the entire argument. For example, you type:

se SPACE c SPACE p SPACE f-p SPACE�

The Command Processor displays:

Set Command Processor (Form-Only, Form-Preferred, Command-Preferred,

or Command-Only) Form-Preferred (prompt string)�

What if one of the items in the argument list needs to contain one of the special

characters (SPACE, comma, leading colon, or RETURN)? Use double quotes to delimit

that item:

Show Hosts (hosts) Missouri,"Red River"�

Most arguments have a default, which is usually indicated by the argument’s

prompt. When you want to use the default for an argument, you can indicate that

simply by using SPACE. This terminates the argument, causing the Command Pro-

cessor to fill in the default.

Sometimes when you supply a value for argument, the value that the Command

Processor actually uses is a function of both the default and what you type. This is

what happens with pathname arguments; the default pathname and the value that

you type are merged to form the argument value that the Command Processor

gives to the command.

Once you have specified as many of the arguments as you need (even none), you

can use RETURN or END to enter the command. The Command Processor uses the

defaults for any arguments you haven’t specified.

Suppose you want to use the defaults for the remaining positional arguments, but

you want to supply some keyword arguments. You must use SPACE to fill in the de-

fault for each of the remaining positional arguments. When you have finished the

positional arguments, the command processor prompts for keyword arguments.

Supplying Keywords and Values for a Command

The Command Processor prompts for keyword arguments when you have entered

all of the positional arguments for the command.

Suppose you have supplied all the arguments to the Delete File command and are

now being prompted for keywords to modify the standard action of the command.

You enter keywords and their values in any order, finishing the command with RE-

TURN or END. The keyword prompt does not appear for every keyword, as that

would clutter up your command.

Page 2770

The Command Processor can attempt to complete keyword argument names and

values that are members of a limited set of possibilities. When you are typing a

word, if you press SPACE the Command Processor attempts to complete that word

and all previous words in the current keyword argument name or values. If you

press COMPLETE, the Command Processor attempts to complete the entire keyword

argument name or value in progress. For example, you type the following:

de SPACE f SPACE foo.* SPACE :e SPACE n SPACE

:q SPACE a RETURN�

The Command Processor displays:

Delete File (file [default WOMBAT:>KJones>foo.lisp]) foo.*

(keywords) :Expunge (Yes, No, or Ask [default Yes]) No

:Query (Yes, No, or Ask [default Yes]) Ask�

You can also press m-COMPLETE to see a menu of the arguments and their values.

Keywords can be specified at most once in a command line. The command proces-

sor views a command line in which the same keyword has been specified twice as

ambiguous; you have to correct the problem by removing one of the keyword argu-

ment pairs.

Editing a Command

The Command Processor allows you to edit commands as you are entering them.

You can move from field to field within a command, change arguments, delete

keywords, even change the command name. The ability to edit input is feature of

Genera called the Input Editor. A number of commands are available. See the sec-

tion "Editing Your Input".

Help in the Command Processor

You can press the HELP key in the Command Processor at any time before or dur-

ing entering a command. (Once you have started to enter a command, you can also

use c-? or c-/.) It provides documentation that is appropriate for the particular

stage you have reached in entering the command.

Before starting Explains how to enter a Command Processor command.

Command name Shows the commands that could be completions of what you

have typed so far.

Positional argument

Explains the characteristics of the argument that is required

at this position, including possible values.

Keyword argument name

If you have not yet typed a keyword argument, the Command

Processor lists all the keyword arguments and briefly describes

them. If you have started to type a keyword, the possible com-

pletions of what you have typed are displayed. If you have al-

Page 2771

ready typed one keyword and its value, only the unused key-

words are displayed.

Keyword argument value

The Command Processor presents documentation for the mean-

ing of all the possible values of the argument.�

Completion in the Command Processor

The Command Processor offers two kinds of completion: partial completion and to-

ken completion. A token is a command component, such as the command name or

a keyword argument name.

• Partial completion: When you are typing a word in a command name or keyword

argument name, if you press SPACE the Command Processor attempts to com-

plete the current word and all previous words in the current command name or

keyword argument name.

• Token completion: When you are typing a command name or keyword argument

name, if you press COMPLETE the Command Processor attempts to complete the

entire command name or keyword argument name in progress.�

Completion is also available for argument values that are members of a limited set

of possibilities, and for system and package names.

Command History

Command Processor commands are maintained in the input editor history, along

with other input to the Lisp Listener or break loop. c-m-Y yanks the last element

of the history. m-Y yanks the next previous element. Thus you can press c-m-Y fol-

lowed by m-Y m-Y ... to yank successively further back elements in your input his-

tory. c-m-0 c-m-Y lists the elements of the history. A numeric argument to c-m-Y

yanks the element of the history specified by the argument.

c-m-sh-Y prompts you for a string and yanks the most recent element containing

that string. m-sh-Y acts like m-Y, yanking successive previous elements.

Your output history is maintained on the Lisp Listener window. You can scroll

back over your history using m-SCROLL or m-V. Scrolling forward is done with

SCROLL and c-V, just as in Zmacs and Zmail.

c-R and s-R searche back through your history. END terminates the search so that

you can yank the element you have found. c-S and s-S searche forward.

You can mark sections of your output to be pushed on the kill ring. c-Right pops

up a menu of marking and yanking options, or you can mark elements directly us-

ing c-Left. Hold down the CONTROL key and the left mouse button and move the

mouse over the area you want to mark. The marked region is underlined. You can

push the marked region on the kill ring by clicking on that choice in the Marking

and Yanking menu or by pressing m-W or s-W.

Page 2772

If you have two Lisp Listeners side by side on your screen, the histories of both

remain mouse sensitive and you can yank elements from either one.

Clicking Right on an element of your history pops up a menu of possible opera-

tions on that object. For example, clicking right on a pathname offers, among oth-

er operations, a choice of Show File.

For a list of the mouse gestures that can be used on to manipulate your history on

dynamic windows: See the section "Mouse Gestures on Dynamic Windows".

You can also copy your output history into a Zmacs buffer for editing or saving in

a file. See the section "Copy Output History Command".

You can clear your output history if you want to clean up and do a garbage collec-

tion. See the section "Clear Output History Command".

Error Handling in the Command Processor

Part of the Command Processor’s contract with the programs it serves is to collect

syntactically valid arguments for the command you want to use. Thus if the com-

mand wants a numeric argument and you have entered a file spec, the Command

Processor notices the problem, complains about the argument that you typed,

moves the cursor there, and requests that you edit what you typed in order to

make it appropriate for the command.

The Command Processor checks for errors of omission as well, warning you when

you try to finish a command before specifying some argument that needs to be ex-

plicit.

In making its error warnings, the Command Processor prints out a diagnosis of

the problem and asks you to correct your input. It never removes anything from

what you have typed, since you are the best judge of how to remedy the problem.

Turning the Command Processor On and Off

The Command Processor is on by default in all Lisp Listeners and break loops.

You can turn the Command Processor on and off, but normally you should have to

do neither. If you want the command processor to treat input differently from the

default, or if you want a prompt that is different from the default, you can change

these characteristics by using the "Set Command Processor Command" or setting

special variables: See the section "Setting the Command Processor Mode". See the

section "Setting the Command Processor Prompt".

For example, suppose you want the Command Processor to act as if it were not

there. You can use the Set Command Processor command to set the dispatch mode

to :form-only and the prompt to the empty string. Alternatively, you can set

cp:*dispatch-mode* to :form-only and cp:*prompt* to nil or the empty string. If

you then want to return the Command Processor to its default behavior, you can

set cp:*dispatch-mode* to :command-preferred and cp:*prompt* to "Command: ".

If for some reason you need to turn the Command Processor off completely, you

can call cp:cp-off.

Page 2773

cp:cp-off Function

Turns off the Command Processor in all Lisp Listeners and break loops.

Once you call cp:cp-off, you must call cp:cp-on to turn the command processor

back on.

cp:cp-on &optional (dispatch-mode cp:*dispatch-mode*) (prompt-string nil prompt-

supplied) Function

Turns on the Command Processor and sets its mode and prompt in all Lisp Listen-

ers and break loops.

dispatch-mode is :form-only, :command-only, :form-preferred, or :command-

preferred. For the meaning of these keywords: See the section "Setting the Com-

mand Processor Mode". This argument becomes the value of the variable

cp:*dispatch-mode*. The default mode is the current mode (the current value of

cp:*dispatch-mode*). The initial default mode is :command-preferred.

prompt is a prompt option for displaying the Command Processor prompt in Lisp

Listeners and break loops. This argument becomes the value of the variable

cp:*prompt* and is passed to the input editor as the value of the :prompt option.

The value can be nil, a string, a function, or a symbol other than nil (but not a

list): See the section "Displaying Prompts in the Input Editor".

The default prompt depends on dispatch-mode. If dispatch-mode is :command-

preferred or :command-only, the default prompt is "Command: ". If dispatch-mode

is :form-preferred or :form-only, the default prompt is the empty string, and no

prompt is displayed. If you supply a value of nil or the empty string, no prompt is

displayed.

Using the Zmacs Editor

Overview

Zmacs, the Genera editor, is built on a large and powerful system of text-

manipulation functions and data structures, called Zwei.

Zwei is not an editor itself, but rather a system on which other text editors are

implemented. For example, in addition to Zmacs, the Zmail mail reading system

also uses Zwei functions to allow editing of a mail message as it is being com-

posed or after it has been received. The subsystems that are established upon Zwei

are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages�

Page 2774

Since these parts of the system are all based on Zwei, many of the commands

available as Zmacs commands are available in other editing contexts as well. (In

addition, many of the same editing commands are available in the Input Editor,

which you use when typing commands or forms to other programs, such as the

Lisp Listener. The Input Editor is not based on Zwei, however.)

Zmacs is used not only to create text for documents and programs, but also to

compile programs, check them for correct structure, inspect parts of programs (in-

cluding system programs), create commands, alphabetize lists, check spelling, and

perform many other functions.

There is a tutorial on editing in Zmacs. For information on running it, type the

following command:

Show File sys:examples;teach-zmacs-info.text

� Entering Zmacs with SELECT E

You can invoke the editor by pressing the SELECT key and then the letter E.

• If you have already been in the editor since booting the machine, Zmacs returns

you to the same place in the same buffer that you last used.

• If this is the first time you are entering Zmacs since booting the machine,

Zmacs puts you in an empty buffer named *Buffer-1*.�

SELECT E enters or returns you to the editor from anyplace in the system, not just

when you are talking to Lisp.

You can create multiple copies of Zmacs by pressing SELECT c-E. SELECT E returns

you to the last copy of the Zmacs process you used. Repeatedly pressing SELECT E

cycles through all the copies of Zmacs.

For information on other methods of invoking Zmacs, see the section "Entering

Zmacs".

� Introduction to Inserting Text

Zmacs is always ready to accept an insertion. To insert new text anywhere in the

buffer, position the cursor at the place you want the new text to go and type the

new text. Zmacs always inserts characters at the cursor. The text to the right of

the cursor is pushed along ahead of the text being inserted.

� Commands

Zmacs commands are implemented by Lisp functions that perform the editing

work. Every Zmacs command has a name, and many commands are bound to keys.

There are, in effect, three kinds of Zmacs commands, based roughly on how com-

monly used they are and how "serious" they are in their effects.

Page 2775

The first kind of Zmacs commands are the keyboard accelerators. Commonly used

commands, such as Forward Word and Delete Forward, are bound to keys. Forward

Word is on m-F and Delete Forward is on c-D. It would be tiresome to have to

type a command each time you wanted to move forward a word or delete the next

character. These commands also take numeric arguments. If you want to move

forward three words, press m-3 m-F and if you want to delete the next fourteen

characters, press c-14 c-D.

The second kind of Zmacs commands are the c-X commands. These commands take

two keystrokes to invoke them, such a c-X c-S to save a file buffer, or c-X I to

insert a file into the buffer, or c-X RUBOUT to kill the previous sentence. These

commands also take numeric arguments where appropriate. You can see the entire

list of c-X commands by pressing HELP C and then c-X followed by *. (There is

also an interesting set of c-Q commands. You can see that list by pressing HELP C

and then c-Q.)

Finally, there are the extended commands, commonly called the m-X (meta-x) com-

mands. These commands are invoked by pressing m-X and then typing the com-

mand name and entering it. In general, these commands are more rarely used or

have more long-lasting effects and are therefore slightly less easy to enter. Exam-

ples of these commands include Show Character Styles or Add Patch. In general,

numeric arguments to these commands cause some unusual behavior, such as

sending command output to a printer.

Command tables assign keystrokes and names to commands. Each time you press a

key, Zmacs looks up the function associated with that key. For ordinary characters,

the function com-standard, in the standard command table, inserts the character

once.

� Overview of Finding Out About Zmacs Commands

Sometimes you want to know if a Zmacs command exists that performs a certain

function. Or, you might think that you know what a certain keystroke does, but

you still want to make sure, or refresh your memory about its exact usage. This

manual is one resource you might use in these circumstances. Zmacs itself has a

number of built-in self-documentation facilities. This section describes some ways

to get at this documentation.

� Zmacs Command Completion

Some Zmacs operations require you to provide names  for example, names of

extended commands, Lisp objects, buffers, or files. Often you do not have to type

all the characters of a name; Zmacs offers completion over some names. When

completion is available, the word Completion appears in parentheses above the

right side of the minibuffer.

You can request completion when you have typed enough characters to specify a

unique word or name. For extended commands and most other names, completion

works on initial substrings of each word. For example, m-X c SPACE b is sufficient

Page 2776

to specify the extended command Compile Buffer. SPACE, COMPLETE, RETURN, and

END complete names in different ways. Press HELP or click Right on the editor win-

dow or minibuffer to display a mouse-sensitive list of possible completions for the

characters you have typed.

In addition, c-/ displays a mouse-sensitive list of every command that contains the

substring and c-? displays a mouse-sensitive list of every command that starts

with that string.

SPACE Completes words up to the current word.

HELP or c-? Displays possible completions in the typeout area.

Click Right Pops up a menu of possible completions.

c-/ Displays a mouse-sensitive list of all commands containing the

string you have typed so far.

c-? Displays a mouse-sensitive list of all commands starting with

the string you have typed so far.

COMPLETE Completes as much as possible. This could be the full name.

RETURN or END Confirms the name if possible, whether or not you have seen

the full name.

� Description of Moving the Cursor

To do more than insert characters, you have to know how to move the cursor.

For complete descriptions of the commands summarized here and other cursor-

moving commands, see the section "Moving the Cursor in Zmacs".

Summary of Cursor Motion Commands

These are the Zmacs commands that you can use to move the cursor:

c-A Beginning of Line

Moves to the beginning of the line.

c-E End of Line

Moves to the end of the line.

c-F Forward

Moves forward one character.

c-B Backward

Moves backward one character.

m-F Forward Word

Moves forward one word.

m-B Backward Word

Moves backward one word.

Page 2777

m-E Forward Sentence

Moves to the end of the sentence in text mode.

m-A Backward Sentence

Moves to the beginning of the sentence in text mode.

c-N Down Real Line

Moves down one line.

c-P Up Real Line

Moves up one line.

m-] Forward Paragraph

Moves to the start of the next paragraph.

m-[Backward Paragraph

Moves to the start of the current (or last) paragraph.

c-X] Next Page

Moves to the next page.

c-X [Previous Page

Moves to the previous page.

c-V, SCROLL Next Screen

Moves down to display the next screenful of text.

m-V, m-SCROLL Previous Screen

Moves up to display the previous screenful of text.

m-< Goto Beginning

Moves to the beginning of the buffer.

m-> Goto End

Moves to the end of the buffer.

� Getting Out of Trouble

Sometimes you type the wrong command. Mostly it is obvious what you have done

wrong, and it is a simple matter to undo it. There are, however, some kinds of

trouble you can get into that require special remedies. For example, you might

accidentally delete large chunks of text you need or you might begin to type a

command and then change your mind.

This section tells you how to recover from these situations.

� Undoing

The Zwei Undo facility remembers all the changes that you have made in an edi-

tor buffer and allows you to selectively undo any or all of the changes you have

made. The Undo facility is available from Zmacs, Converse, the Zmail draft editor,

and other editor buffers based on the Zwei substrate. (It is not available from the

Input Editor or in the minibuffer.)

Page 2778

The simplest operation of the Undo facility is to undo the most recent change to

the editor buffer. Go to a buffer, type something in, delete it, and then press

c-sh-U. The deletion is undone. Region marking shows what was undone. Now

press c-sh-R. You’re back where you started. It is always safe to undo, because

you can always redo, and vice versa.

The Undo (m-X) and Redo (m-X) commands are similar to c-sh-U and c-sh-R with

the added feature that a display in the minibuffer shows you what will be undone

or redone before any action is taken. HELP U also displays the change before undo-

ing it.

Keep pressing c-sh-U. Previous changes to the buffer are undone. You can keep

doing this until the buffer is returned to its original state. When you reach this

point, if the buffer contains a file, it’s no longer marked as needing to be saved.

And, if you undo all the changes to a section since it was compiled, it is no longer

marked as needing to be compiled.

Repeated pressing of c-sh-R will successively restore the buffer until all the undo

commands have been cancelled out.

If you read in a file with no intention of changing it and accidentally type some

characters into it, use c-sh-U rather than RUBOUT to get rid of them. That way,

the buffer is no longer considered to be modified.

Undo commands operate only on the current buffer. Each buffer has an undo his-

tory, and a separate redo history. The undo history can be displayed with c-0

c-sh-U. Likewise, the redo history can be displayed with c-0 c-sh-R. Items in the

history are mouse-sensitive. You can undo or redo all changes up through a given

change or you can undo or redo any single change in the history. By default, both

histories are discarded when you save the buffer. See the section "Discard Change

History".

Of course, subsequent changes may depend on the single change that you are un-

doing or redoing, so no guarantee can be made that undoing change number 13 in

a 29-change history will have no effect on changes 14 through 29. (On the other

hand, you can always back out of any undo or redo.)

This sounds more complicated in writing than it is when you are doing it. A few

minutes experimentation in an editor buffer will make you a competent and confi-

dent user of the most important and common undoing and redoing operations.

After an undo or redo, the text that was modified is highlighted the same as if

you had marked a region, but in this case there is no region, and the highlighting

disappears when you type the next command. The history also shows you what con-

stitutes each change. See the section "What is a Change to the Undo Facility?".

� Large Deletions

Do not delete large pieces of text by repeatedly pressing RUBOUT and c-D. Apart

from being slow, text deleted character-by-character is gone for good.

Page 2779

Instead, use delete and kill commands that save deleted regions in the kill history.

c-K, m-K, and the commands that deal with regions easily wipe out and save larger

chunks. Also, RUBOUT or c-D with a numeric argument erases that many characters

all at once and saves them in the kill history. For full descriptions of these delete

and kill commands, see the section "Deleting and Transposing Text in Zmacs".�

Getting Text Back

The system has different histories for different contexts. One of these is always

the current history. The two histories that you need to use for yanking in Zmacs

are the kill history and the command history. The kill history remembers pieces of

text that you killed or copied into it. In the context of Zmacs, the command history

remembers all the editor commands that use the minibuffer in any way.

Additions to the histories are placed at the top of the list, so that history elements

are stored in reverse chronological order  the newer elements at the top of the

history, the older elements toward the bottom. A history remembers everything

that has been typed to it since the last cold boot  it has no size limit.

Yanking commands pull in the elements of the history. Top-level commands start a

yanking sequence; for example, c-Y yanks back the last text killed from the kill

history, and c-m-Y yanks back the last command performed in the minibuffer. m-Y

performs all subsequent yanks in the same sequence; for example, pressing m-Y

while the kill history is the current history yanks the next item from that history.

A yanking sequence ends when you type new text, execute a form or command, or

start another yanking sequence.

For complete descriptions of killing and yanking, see the section "Working with

Regions in Zmacs".

� Creating a Buffer

Zmacs creates your initial buffer when you first enter the editor. To create other

buffers, use c-X c-F (Find File) to create either an empty buffer or a buffer con-

taining a file. c-X c-F prompts for the name of a file, terminated by RETURN.

When you type c-X c-F for the first time in a Zmacs session, Zmacs offers you, as

a default file name, an empty file (with the Lisp suffix native to your host com-

puter) in your home directory on your host computer. For example:

System Empty Buffer Name

Genera bork.lisp

UNIX bork.lisp

VAX/VMS bork.lsp�

For more information about c-X c-F, see the section "Editing Existing Files".

Page 2780

� Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not

begin with an attribute line containing Base and Syntax attributes, Zmacs warns

that the file "has neither a Base nor a Syntax attribute" and announces that it will

use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File At-

tributes in Zmacs".

Buffer Contents with c-X c-F

The first time you use c-X c-F, you can create an empty buffer using the Zmacs

default file name, create an empty buffer using a name that you specify, or create

a buffer containing an existing file.

• To create an empty buffer with the initial default file name as the one Zmacs

associates with your buffer, press RETURN.

• To create a new empty buffer, respond with any name. Zmacs creates an empty

buffer, gives the buffer the new name, and displays (New File) in the

minibuffer.

• To create a new buffer containing an existing file, respond to the prompt with

the name of that file. Zmacs switches to an empty buffer, reads that file in, and

names the buffer appropriately.�

� Creating a File

The first time you save or write the buffer, Zmacs creates the new file. You can

create a new file with c-X c-S.

You can also write the buffer out with c-X c-W, Write File, if you want to change

the name of the file from whatever you specified originally. Zmacs prompts in the

minibuffer for the name of the place you want to write the buffer’s contents. c-X

c-W also offers a default pathname, in this case, the name you supplied with c-X

c-F.

Sending and Receiving Messages and Mail

Using Zmail

Introduction

Zmail is a display-oriented mail system for Genera. Using Zmail, you can send and

receive electronic mail, archive your mail in disk files, and operate on groups of

messages selected according to very flexible criteria. "Using Zmail" is intended to

give you a brief introduction to the basic features of Zmail. For a complete de-

scription of all Zmail’s capabilities, see the section "Zmail".

Page 2781

Zmail messages are composed in editor buffers, so some familiarity with the Zmacs

editor is helpful. (See the section "Zmacs".)

Starting up Zmail

Before starting up Zmail, be sure that you are logged in. If you need help logging

in, see the section "Logging In".

To enter Zmail, do one of the following:

• Press SELECT M.

• Give the command Select Activity Zmail (or Select Activity Mail).�

You get a display similar to Figure !, called the top-level display. Now you can

send or read mail.

Figure 145. Top-level Display�

The top-level display consists of four windows: the Summary Window, the Com-

mand Menu, the Message Window, and the Minibuffer, which contains the Mode

Line.

The Summary Window displays a line for each message in the current sequence,

with an arrow indicating the current message (see Figure 103).

Page 2782

Figure 147. Zmail Summary Window

� The Command Menu provides a mouse-sensitive menu of the most useful top-level

commands (see Figure 104). In Zmail documentation, when we refer to "[Get in-

box]", for example, we mean the Get inbox command in this menu. Some of these

commands (for example, [Delete]) apply only to the current message.

Figure 148. Zmail Command Menu

The Message Window displays the current message (see Figure 105). The message

window is an editor buffer.

Figure 149. Zmail Message Window

The Mode Line gives status information about Zmail and about the current mes-

sage, including its properties and keywords.

The top-level display, with a mail file read in, is shown in Figure !.

� Command documentation is available online in several forms:

• Explanations displayed automatically; usually appear below the mode line.

• Mouse documentation line.

• HELP key: provides short command documentation.

• Apropos (m-X): lists commands whose name contains a given string.�

See the section "Online Help for Zmail".

Page 2783

Figure 146. Top-level Display with Mail File�

Sending Your Mail

To send a message, click on [Mail], which is displayed in the command menu.

[Mail] or M (Kbd) Starts up a window for composing a mail message.

[Mail (M)] Starts up a window for composing a bug report. You can con-

trol the behavior of clicking Middle in your profile. See the

variable zwei:*mail-middle-mode*.

[Mail (R)] Calls up a menu of mail sending operations.

Zmail displays two windows, one for the message headers, and one for the message

itself. See Figure !.

� If you are sending a bug message, information about the software configuration of

your machine is automatically added to the message window. (See Figure !.)

At this point, the headers window is selected, with the cursor following the word

To:. The program is prompting you for the contents of the To: field, which speci-

fies to whom the message is to be sent. Respond by entering a list of one or more

user names or mailing lists separated by commas.

Page 2784

Figure 150. Mail Window

If you wish to send someone a carbon copy of the message (which means they also

get the message, but are not considered a primary recipient), press RETURN, then

type Cc: followed by a list of one or more user names or mailing lists, separated

by commas. If you want to save a copy of the message for yourself, include your

own name on the Cc: list (or on the To: list).

Use c-N to get down to line containing the word Subject:. Fill in a short subject

line for the message. This subject is used in the summary display of the recipi-

ent’s mail file. (If you have no Subject: field, the text of the first meaningful line

is used.)

To enter the message itself, select the message window by pressing END. The mes-

sage window is an editor window; you can type in the message using all the com-

mands of the editor. See the section "Zmacs". The headers window is also an editor

window.

At any time during editing you can return to the headers window to add or change

entries; just click Left on the headers window. To get back to the mail window,

press END or click Left on the mail window. You can also change windows with c-X

O, which puts you in the other window.

If you change your mind while working on the message and decide that you do not

want to send anything, press ABORT, and you return to top level; nothing is sent. If

Page 2785

Figure 151. A Bug Mail Window�

you later decide that you did want to send the message after all, use [Continue].

See the section "Continuing Completed or Aborted Zmail Messages".

When you are satisfied, press END to send the message. If you are in the headers

window, press c-END. See figure ! for a message about to be sent.

� If the message is sent successfully, Zmail displays "Message sent" and returns to

top level. If there is a problem, Zmail tells you about it and remains in mail mode.

Typical problems are omitting the To: field, trying to send mail to a nonexistent

user, or mistyping a user name. Correct the error and resend the message by

pressing c-END.

Reading Your Mail

To read your mail, click Left on [Get inbox]; Zmail reads in your primary mail file

(containing old mail) and any new mail.

[Get inbox] or G from the keyboard

Gets the new mail (inbox) for the current buffer. If the cur-

rent buffer is a collection (a group of related messages, see

"Zmail Mail Collections") [Get inbox] has no effect.

Page 2786

Figure 152. A Message about to be Sent

[Get inbox (M)] Prompts you for an inbox name for the current buffer.

[Get inbox (R)] Calls up a menu of possible buffers for which to get the new

mail.�

For a complete discussion of the [Get Inbox] command, see the section "[Get In-

box] Zmail Menu Item".

Two files are involved here: your primary mail file, which contains messages you

have already seen, and your inbox, which contains new mail. If you do not have a

mail file  as might be the case the first time you run Zmail  the program of-

fers to create one for you. Press RETURN to let Zmail create the file, or ABORT if

for some reason you do not want a mail file. No similar problem with inbox files

exists; they are created when needed, and are deleted when Zmail reads your new

mail from them.

While an internal data structure used for conversation and reference commands is

created, the following message appears in the status line:

Parsing messages in filename�

The parsing required in the creation of reference hash tables is time-consuming

for large unparsed files. The appearance of this message notifies you that it is

Page 2787

building a reference hash table so that you do not think something is wrong. If

you store your mail files in KBIN format, which is already parsed, this wait is

eliminated. See the section "Binary Format for Storing Mail Files".

If you have no new mail, Zmail says so. Otherwise, the summary window starts to

scroll as lines appear for new messages, and the first new message is displayed in

the message window as the current message.

If the message does not fit entirely in the window, the bottom edge of the window

is a jagged line and the words --more below-- appear in the mode line. When text

is off-screen both above and below, both the top and the bottom edge of the win-

dow are jagged and the message reads --more above and below--; when you reach

the final screen of the message, the top edge of the window is jagged and the mes-

sage reads --more above--.

There are several ways to scroll using the keyboard:

To display the next screen of the message

SPACE

c-V

SCROLL

To go back to the previous screen

BACKSPACE

m-V

m-SCROLL

To return to the beginning of the current message

.

m-<

To use the mouse for scrolling, use the scroll bar in the left margin of the win-

dow. See the section "Scrolling".

What to Do After Reading a Message

Once you have finished reading a particular message, there are several things you

can do. You can read the next new message (if any), you can delete the message if

it is no longer of value, or you can reply to the message.

Deleting and Undeleting Messages

After you have finished reading a message, you often want to delete it and move

on to the next one. To do this, click on [Delete] or press D. This marks the mes-

sage as deleted  a D appears in its summary line  and moves to the next mes-

sage.

If you change your mind, you can undelete a message; click on [Undelete] or press

U. This starts at the current message and searches backward for a deleted mes-

sage, undeletes it, and selects it as the current message. When you delete a mes-

sage from a mail buffer, the message is not actually removed  it just acquires

Page 2788

the property Deleted. You remove the message when you expunge the buffer; this

happens automatically when you save it, or you can expunge it manually.

Moving Among Messages

When you finish reading a message that you do not want to delete, click Left on

[Next] to read the next message. To go back to the previous message, click Left on

[Previous]. To jump to the first message in the file, click [Previous (M)]; for the

last message, click [Next (M)]. (Note: These commands ignore deleted messages;

they actually give you the next undeleted message, previous nondeleted, first non-

deleted, and last undeleted.)

To read an arbitrary message, select it from the summary window by clicking left

on its summary line. If the summary does not all fit in the window, you might

first have to scroll the display using the left-margin scroll bar, c-m-V or c-m-sh-V.

Replying to Mail

To reply to the current message, click on [Reply].

[Reply] or R (Kbd) Starts up a window to reply to the current message. You can

customize the window configuration. See the variable

zwei:*reply-window-mode*.

[Reply (M)] Starts up a window to reply to the current message with the

message being replied to included. You can control the behav-

ior of click middle in your profile. See the variable

zwei:*middle-reply-mode*.

[Reply (R)] Calls up a menu of reply options.

This sets up the screen as three windows: the Message window displays the cur-

rent message, the Headers window contains the reply headers, and the Mail win-

dow is where you write the reply itself. (See Figure !)

The cursor is in the Mail window, so you can just type in the text of the message,

using editor commands to edit what you are typing. To send the message, press

END or c-END. If you change your mind and do not want to reply, press ABORT. If

you want to edit the headers, you can select the Headers window by clicking Left

on it. These commands are the same as in mail mode. See the section "Sending

Your Mail".

What is special about reply mode is that the reply headers are written automati-

cally. The headers that Zmail writes are the To: field, the cc: field, the Subject:

field, and the In-Reply-To: field. The Subject: field is simply a copy of the origi-

nal Subject:. Defaults for the To: and cc: fields are provided. Notice the mouse-

documentation line. To set up alternate To: and cc: fields, use click Right or [Re-

ply (R)] and choose from the pop-up menu the combination of To: and cc: you

want. See the section "[Reply] Zmail Menu Item".

Page 2789

Figure 153. Mail Mode Display (Two-window Mode)�

Saving the Mail File

When you have finished reading your new mail, you should save your mail file by

using [Save]. This expunges deleted messages from the file and then saves it, writ-

ing the modified mail file back out to the file system where it is kept until next

time.

If you now wish to leave Zmail, select another program using the SELECT key or

the System menu.

Getting Fancy with Zmail

Once you have mastered the basics of Zmail, there are many advanced facilities

that you can use for composing messages and for organizing your mail files. For

example, you can take advantage of Genera’s character styles to add emphasis to

your messages; see the section "Using Character Styles in Zmail". This section

touches on using keywords, one commonly used facility. For more detailed informa-

tion and further suggestions, see the section "Zmail".

Zmail allows you to classify and categorize messages by adding keywords to them.

Keywords are useful in many ways, among them:

Page 2790

Topic Indicators Indicate the major topic of the message. If your work involves

designing natural language interfaces, for example, you might

use keywords such as dictionary, parser, and syntax-checker.

The topic indicators you need depend on the sort of messages

you get.

Classifiers Indicate the type of message. For example, you might use key-

words such as bug, feature-request, documentation-bug, and is-

sue to categorize messages as bug reports, requests for fea-

tures, reports of documentation bugs, and issues under discus-

sion.

Status Flags Indicate the status or priority of the message. For example,

you might use a keyword such as to-do to flag messages that

require you to do something and a keyword such as timing-out

to flag messages on which you are awaiting action from other

people. You could use P1, P2, and P3 to indicate the priority of

a message requiring further action.

To add keywords to the current message, click on [Keywords] in the Zmail menu.

If you are using keywords for the first time, click right.

[Keywords (R)] Pops up a highlighted menu of your keywords, in addition to

the entry [New] for adding a new keyword. If you have never

specified keywords for any messages, the menu contains only

three items: [Do It], [Abort], and [New]. Click on [New] and

type a keyword. The keyword appears on the menu, highlight-

ed. Click on [Do It] and the keyword appears in braces on the

summary line of the message. Keywords are stored in the mail

files of the messages they are attached to. You can specify

keyword/mail file associations explicitly in your Profile. See the

section "Zmail Profile Options".

Figure 154. Keywords Menu�

Clicking left on [Keywords] adds the last used keyword(s) to the current message.

You can sort your mail files by keywords, to have all the messages on one topic

together. See the section "[Sort] Zmail Menu Item".

Your keywords appear in the menu offered by [Survey] so you can get a list of all

the messages with a specific keyword attached to them. See the section "[Survey]

Zmail Menu Item".

Page 2791

For more information about using keywords:

See the section "[Keywords] Zmail Menu Item".

See the section "Hints for Using Keywords, Mail Collections, and Mail Files".

Talking to Other Users

Introduction to Converse

Converse is a facility for communicating interactively with other logged-in users. A

message sent with Converse pops up on the screen of the recipient almost instan-

taneously. The recipient has the choice of replying right in the pop-up window, en-

tering Converse to reply, or doing nothing.

The Converse interactive message editor is operated by a window with its own

process. Converse keeps track of all of the messages that you have received or

sent. The Converse window shows all of the messages that have been sent or re-

ceived since the machine was cold booted.

Messages sent between you and another user are organized into a conversation.

Conversations are separated from each other by a thick black line. Within each

conversation are all messages, outgoing and incoming, arranged in chronological

order, and separated by thin black lines.

You can use Converse to look at conversations, send messages, and receive mes-

sages. Converse is built on the Zwei editor, so you can edit your message as you

type it, or pick text up and move it around between one message and another, or

among messages, files, and pieces of mail.

To enter Converse, do one of the following:

• Press SELECT C.

• Give the Command Processor command Select Activity Converse.

• Evaluate (zl:qsend).

• Click on [Select / Converse] in the System menu.

• Answer C in the Converse pop-up window when a message arrives.

Using Converse

Sending and Replying to Messages with Converse

When you enter Converse for the first time, the window is empty except for a

blank message at the top of the screen, starting with To: (see Figure 119).

You start a message by filling in a recipient after the To:, pressing RETURN and

Page 2792

Figure 155. A Fresh Converse Window�

then typing the message text. It is not necessary to know what machine the person

is using, but if you do know and give the recipient as name@host the message is

sent considerably faster, since it is not necessary to search the namespace to find

the machine (see Figure 120). To send the finished message, press END.

When the message has been sent successfully, it appears as part of a conversation.

A blank message remains at the top of the screen, and just below that, a heavy

black line delimits the message(s) of the conversation you just started. Just below

the heavy black line is another blank message, but this one has the name of the

person to whom you sent the message filled in. Below this blank message, separat-

ed by a thin black line, the message you just sent appears, with the date and time

it was sent.

When the person to whom you sent the message replies, the reply appears in the

conversation above the message you sent, and below the blank message. (See Fig-

ure 157 .) Your cursor is left in the blank message so you can reply easily.

You use regular editor commands to move around in the Converse window. Two

commands, specific to Converse, are particularly useful: c-m-] (move to next con-

versation) and c-m-[(move to previous conversation).

Page 2793

Figure 156. A Converse Message About to be Sent�

You exit from Converse by pressing ABORT or by selecting another window. You can

also press c-END when sending a message to send the message and exit from Con-

verse.

To start a conversation, enter Converse, go to the top of the Converse window and

fill in the blank message, starting with the To: line to specify the new recipient.

Finish by pressing END to send the message. To send the message and exit Con-

verse, finish by pressing c-END.

To send a message as part of an existing conversation, find that conversation in

Converse and fill in the blank message at the beginning of the conversation, fin-

ishing by pressing END to send the message, or by pressing c-END to send the mes-

sage and exit Converse.

You do not have to be in the main Converse window to receive messages. Converse

will deliver a message to you in any window. Since this might be annoying, you

can customize what happens when a message arrives by using the variable

zwei:*converse-mode*. See the section "Customizing Converse".

When you are in a window other than Converse and a new message arrives, a win-

dow pops up at the top of the screen displaying the message. You can respond R to

type in a reply, N (for "no action") to make the message window deexpose, or C to

Page 2794

Figure 157. A Converse Conversation�

enter Converse. Entering Converse has several advantages: you can look over the

previous messages in the conversation, and you can use the Zwei editor to help

you construct a reply. See Figure 122.

Converse remembers all messages that you send or receive, even if you did not use

the main Converse window to send them or reply to them.

� Converse lets you know as soon as a message comes in, by beeping or flashing the

screen, and if it is supposed to notify you, it does so without waiting for the main

Converse process to wake up. In pop-up mode, if the pop-up message window is al-

ready in use, an incoming message causes the message window to beep or flash

but not to display the message. This is necessary since only one message at a time

should pop up. When the message window is deexposed it is reexposed immediately

with the new message in it.

If the main Converse window is exposed, a new message is shown there with its

conversation; it is never shown via a notification or a pop-up message window. If

the main Converse window is exposed but its process is busy (typically, when it is

in the Debugger or in an editor command and waiting for typein), Converse beeps

or flashes but does not display the message. You can display the message by clear-

ing the Converse process. You can usually clear the Converse process by pressing

ABORT.

Page 2795

Figure 158. A Converse pop-up window

Converse Commands

Converse has several commands for managing your conversations.

HELP Displays a summary of Converse commands.

END Sends the current message. The behavior of this key can be

changed by the variable zwei:*converse-end-exits*.

c-END Sends the current message and exits from Converse. The be-

havior of this key can be changed by the variable

zwei:*converse-end-exits*.

ABORT Exits Converse.�

c-M Mails the current message instead of sending it. This is useful

if Converse reports that the person to whom you want to send

the message is not logged in anywhere.

c-m-[Moves to the previous conversation.

c-m-] Moves to the next conversation.

Delete Conversation (m-X)

Deletes the current conversation from the Converse window.

Write Buffer (m-X) Writes the entire Converse buffer (all conversations) to a file.

It prompts for a pathname.

Write Conversation (m-X)

Writes only the current conversation to a file. It prompts for a

pathname.

Page 2796

Append Buffer (m-X)

Appends the entire Converse buffer (all conversations) to the

end of a file. It prompts for a pathname.

Append Conversation (m-X)

Appends only the current conversation to the end of a file. It

prompts for a pathname.

Regenerate Buffer (m-X)

Rebuilds the structure of the Converse buffer. This might be

necessary if you damage the buffer in some way, for instance

by removing one of the black lines separating conversations.

Some error messages might ask you to give this command and

try again. The message you are currently typing might be lost,

but you can prevent this by putting the text on the kill ring by

marking it and using m-W before issuing the m-X Regenerate

Buffer command.

Lisp Listener Commands for Converse

Command Processor Commands for Converse:

Send Message Command

Send Message recipient�

Sends a Converse message to the specified recipient.

recipient user or user@host. The person to whom to send the message. If

@host is omitted, all Symbolics machines on your network are

polled to locate user. �

Send Message prompts for text to send as a Converse message. END terminates and

sends the message. See the section "Converse".

Show Messages Command

Show Messages keywords�

Displays the contents of the specified Converse conversations.

keywords :Direction, :From, :Mention Empty Sequences, :More Process-

ing, :Order, :Output Destination, :Query, :Recent, :Start, :Stop,

:Summarize, :To�

:Direction {Incoming, Outgoing, All, or Default} Whether to show incom-

ing messages, outgoing messages, or all. The Default is Incom-

ing.

Page 2797

:From {user-or-address} Show messages from this user or address.

:Mention Empty Sequences

{Yes, No} Whether to mention empty message sequences, for

example, you have sent messages to someone but the person

did not reply. The default is No, not to mention this. If it is

Yes, you see "No messages from so-and-so".

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Order {Forward, Reverse} How to order the message presentation

within each conversation. The default is Forward, that is, most

recent first.

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No} Whether to ask about each conversation. The default

is Yes, to ask.

:Recent {Yes, No} Whether to consider only the most recently ex-

changed messages in each conversation.

:Start {number} Number of first message to show in a conversation.

If there are fewer then number messages in the conversation,

that conversation is skipped.

:Stop {number} Number of last message to show in a conversation.

:Summarize {Yes, No} Whether to show the entire message or just a sum-

mary. The default is No, to show the entire message. If yes,

messages are mentioned but not shown.

:To {user-or-address} Show messages to this user or address.�

Lisp Functions to Control Converse:

zwei:qsends-off &optional (gag-message t) Function

Refuses interactive messages. If you give it a string argument, gag-message, the

variable zwei:*converse-gagged* is set to this string and the string is returned to

anyone who tries to send a message to you. Otherwise, they just get a note saying

that you are not accepting messages. zwei:qsends-on turns sends back on and

clears zwei:*converse-gagged*.

Page 2798

zwei:qsends-on Function

After using zwei:qsends-off to notify interactive message senders that you are not

accepting messages, zwei:qsends-on allows interactive messages to be received

again.

net:notify-local-lispms &optional message &key (:error-p) (:report) (:output-stream)

Function

Sends message to all Symbolics machines at your site based upon information it

gets from the namespace database about the Symbolics machines at the local site.

message should be a string; if it is not provided, the function prompts for a mes-

sage. Each recipient receives the message as a notification, rather than as an in-

teractive message.

Keyword arguments are:

:error-p

Setting this keyword to t enables the function to report all errors encountered.

Specifying nil (default) for this keyword enables the function to ignore all errors

encountered.

:report

Setting this keyword to t (default) enables the function to report whether it suc-

ceeded in delivering the message. Specifying nil enables the function to only report

failures in delivering messages.

:output-stream

Using this keyword enables you to redirect output to a specific stream.

zl:qsend &optional destination message Function

Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the recipient. If

you omit the @host part and give just a name, zl:qsend looks at all the Symbolics

machines at your site to find any that name is logged into. If the user is logged in

to one Symbolics machine, it is used as the host; if more than one, zl:qsend asks

you which one you mean. If you leave out destination altogether, doing just

(zl:qsend), Converse is selected as if you had pressed SELECT C.

message should be a string. For example:

(qsend kjones@wombat "Want to go to lunch?")�

If message is omitted, zl:qsend asks you to type in a message. You should type in

the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you get some

editing power, although not as much as with full Converse (since the latter uses

Zwei). See the section "Editing Your Input". zl:qsend predates Converse and is re-

tained for compatibility.

Page 2799

print-sends &optional (stream zl:standard-output) Function

Prints out all messages you have received (but not messages you have sent), in

forward chronological order, to stream. Converse is more useful for looking at your

messages, but this function predates Converse and is retained for compatibility.

zl:qreply &optional text Function

Sends a reply to the Converse message received most recently. You can supply a

string as the text of the message or omit it and let zl:qreply prompt for it. It re-

turns a string of the form "user@host", indicating the recipient of the message.

This function predates Converse and is retained for compatibility.

Customizing Genera

What is Customizing?

When you load a file or set a variable (for example, specifying that your hard-

copies are sent to a certain printer, changing the character style of the screen

display, or changing the appearance of the command prompt), you alter the default

system behavior in your environment for the rest of the time you remain logged

in. This type of per-session customization does not remain in effect in your ma-

chine after you log out or cold boot. If you load a file or set a variable for an in-

tentionally temporary effect, this is fine.

However, if you decide that you want these changes to be put into effect every

time you log in (permanently in your environment), you can save them in an init

file, thereby instructing the system to automatically execute this sequence of com-

mands every time you log in.

Init Files

An init file is a Lisp program that gets loaded when you log in; it can be used to

set up a personalized environment. An init file contains only Lisp forms. The name

depends on the type of file system it is stored on:

LMFS lispm-init.lisp

UNIX 4.1 lispm-init.l

UNIX 4.2, 4.3 lispm-init.lisp

VAX/VMS lispmini.lsp

TOPS-20 lispm-init.lisp

ITS name lispm�

A simple init file consists primarily of the login-forms and the zl:setf special

forms. The login-forms special form evaluates forms in your init file and arranges

for them to be undone when you log out. The zl:setf special form sets the value of

one or more variables.

Page 2800

Here is an example of a simple init file:

�

; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10; -*-

�

(login-forms

 (zl:setf cp:*prompt* ’si:arrow-prompt)

 zwei:

 (zl:setf text-mode-hook ’auto-fill-if-appropriate)

 (zl:setf si:local-finger-location

 (cond ((y-or-n-p "in your office? ")

 "340 Domingo x562")

 (t (format t "~&Where are you? ")

 (readline query-io)))))

�

(hardcopy:set-default-text-printer "Echo-Lake")

(hardcopy:set-default-bitmap-printer "Echo-Lake")

�

In this simple init file, the first zl:setf changes the value of the variable that dis-

plays the command processor prompt from the default Command: to an arrow. The

second zl:setf specifies that the system automatically fill text that you type in any

editor-based activity when appropriate. The third zl:setf sets the value of the vari-

able that reports your user ID and on what machine you are logged in to ask you

when you log in whether you are in your office, and if not, where you are so that

it can send that information to the network namespace database.

The rest of the init file contains two functions that set the default printer for the

various commands that hardcopy files and for the FUNCTION Q Screen Hardcopy

command.

How to Create an Init File

The easiest way to create an init file is by copying the sample init file and then

building on it, or by copying someone else’s init file. Often you acquire customiza-

tions that you find out about from people who have been using Genera longer than

you.

If you do not cold boot your machine after each session, you should arrange for

your customizations to be undone when you log out. You do this by using login-

forms:

login-forms &body forms Function

A special form for wrapping around a set of forms in your init file. It evaluates

the forms and arranges for them to be undone when you log out.

Page 2801

login-forms always evaluates the forms, even when it does not know how to undo

them. For forms that it cannot undo, it prints a warning message.

In the following example, login-forms arranges for the base to be reset at logout

to 10 (the default) and for bar either to become undefined or to get its old func-

tion definition. It would warn you about quux being impossible to undo.

(login-forms

 (zl:setq-standard-value base 8)

 (zl:setq-standard-value ibase 8)

 (defun bar (x y) (+ x y))

 (quux 3))�

You can create functions to undo forms that login-forms does not recognize. To

undo a given form, you put a property on the symbol that is the car of the form to

undo. For example, to create a function to undo quux:

(defun (:property quux :undo-function) (form)

 ‘(undo-quux ,(cadr form)))�

The value returned by an undo function is a form to be evaluated at logout time.

Other variables can be set inside login-forms using symbol-value-globally:

symbol-value-globally var Function

Works like symbol-value but returns the global value of a special variable regard-

less of any bindings currently in effect (in the current stack group).

symbol-value-globally does not work on local (lexical) variables.

You can use setf with symbol-value-globally to bind the global value of a special

variable. (setf (symbol-value-globally var)) ...) is the same as zl:set-globally and

supersedes zl:setq-globally.

See the section "Functions Relating to the Value of a Symbol".

zl:setq-standard-value is a special form, similar to setq, that you should use if

you reset any of the variables that control aspects of the Lisp environment (for

example, the default base) as opposed to convenience features. See the section

"Standard Variables".

To load individual files from your init file, use the load function:

(load "SYS: LISP; MY-PROJECT")

(load "Tuna:>kjones>examples>decorate")

(load "vixen://usr//kjones//tools//toolkit") �

The first sample form loads a file using its logical pathname; the second form

loads a file from a LMFS using its physical pathname. The third form loads a file

from a UNIX system in the appropriate syntax (the slashes are doubled).

If you want to put command processor commands in your init file, you can do so

using the function cp:execute-command:

Page 2802

(cp:execute-command "show file" "foo.lisp")

(cp:execute-command "show herald" :detailed t)

(cp:execute-command "load system" "mysystem"

 :compile :always :automatic-answer t)

� cp:execute-command command-name &rest command-arguments Function

Invokes a Command Processor command from within a program. See also cp:build-

command, which cp:execute-command makes use of.

command-name

Symbol or string naming the command to invoke; if a string, it

must be in the command table to which cp:*command-table* is

currently bound.

command-arguments

Positional and keyword arguments to the named command.

Examples:

(cp:execute-command "show file" "test-data.text")

�

(cp:execute-command ’si:com-load-system "unifier"

:condition :always :automatic-answer t)�

For an overview of cp:execute-command and related facilities, see the section

"Managing the Command Processor".

Useful Customizations to Put in Your Init File

The number and kinds of customizations you can put in your init file is limited on-

ly by your imagination. This section offers some suggestions that many users have

found useful, but it is by no means an exhaustive list. You might find some addi-

tional ideas for your init file among the HackSaws. See the section "HackSaws".

Adjusting Console Parameters

tv:set-screen-options &rest vars-and-vals &key (:screen tv:main-screen) &allow-

other-keys Function

Allows you to set the screen options under program control. tv:set-screen-options

controls the same screen options as the Set Screen Options command menu, but

since it is a Lisp function you can put it in your init file.

You can specify :screen to set options for a particular screen. The default for

:screen is the value of tv:main-screen.

vars-and-vals are the same options as in Set Screen Options, used as keywords.

Here are the keywords and their possible and default values, with the correspond-

ing defaults in the Set Screen Options menu in parenthesis if they are not obvious.

Page 2803

Documentation line options:

:number-of-wholine-documentation-lines - 1 or 2. The default is 2.

:wholine-documentation-reverse-video-p - t or nil. The default is t (reverse).

:wholine-documentation-character-style - a character style appropriate for

:screen. The default is (:swiss :bold-condensed-caps :normal).

See the section "Character Styles and the Lisp Listener".�

Status line options:

:wholine-default-character-style - a character style appropriate for :screen. This

keyword sets the variable tv:*wholine-default-character-style*.

The default is (:fix :roman :normal). See the section "Charac-

ter Styles and the Lisp Listener".

:wholine-clock-format - :dow-hh-mm-ss (Mon 31 Jan 11:59:59), :month-day-year

(12/31/89 23:59:59) or :dow-hh-mm-am (Mon 31 Jan 11:59pm).

The default is :dow-hh-mm-ss.

:wholine-clock-colon-blink-half-period - nil, a positive integer, interpreted as a

number of seconds, or a string interpreted as a time interval,

for example "2 minutes".

:show-current-process-in-wholine - t or nil. The default is nil (user name).

:show-machine-name-in-wholine - t or nil. The default is nil (invisible).

:wholine-file-state-character-style - a character style appropriate for :screen The

default is (:fix :extra-condensed :normal).

:note-progress-in-wholine - t, nil or :with-file (default t)�

Global screen options: (These options are not applicable to MacIvory)

:beep-mode - :beep, :flash, or t. The default is t (both).

:dim-screen-after-n-minutes-idle - nil, a number of minutes, or a time interval.

The default is 20 (20 minutes).

:screen-dimness-percent - an integer between 0 and 100. The default is 0.

Global window defaults:

:end-of-page-mode - :scroll, :truncate, or :wrap. The default is :scroll.

:scroll-factor - a number of lines or a fraction of the screen.

:context-nlines - a non-negative integer, the number of lines to overlap the screen

when scrolling. The default is 1.

:noise-string-p (Whether to prompt in the CP) - t or nil. The default is t, meaning

prompting within a command line is enabled. See the variable

si:*disable-noise-strings*.

:noise-string-style (Character style for prompts) - a character style appropriate for

:screen. The default is (nil nil nil), meaning the same as the

default screen character style. See the section "Character

Styles and the Lisp Listener".

:graphics-scan-conversion-mode (Graphics Scan Conversion) - a number or list of

keywords and values.�

Page 2804

Background interactor window settings:

:background-lisp-interactor-screen-utilization - Where to put the window when a

background process wants to interrupt. The possibilities are

:at-top or :at-right. The default is :at-right.

:background-lisp-interactor-screen-fraction - The fraction of the screen to cover.

The possible values are from 1/3 to 1 (the full screen). The de-

fault is 3/4.�

Keyboard and mouse repeat controls:

:keyboard-auto-repeat - t or nil. Is Auto-repeat enabled? The default is nil.

:enable-repeat-key - t or nil. Is the Repeat Key enabled? The default is t.

:keyboard-repeat-initial-delay - 60ths of a second before key starts repeating. The

default is 42.

:keyboard-repetition-interval - 60ths of a second between repeated characters.

The default is 2.

:scroll-bar-auto-repeat - (Scroll bar repeats when the mouse is held down) t or

nil. The default is t.

:scroll-bar-repeat-initial-delay - 60ths of a second before scroll bar starts repeat.

The default is 30.

:scroll-bar-repeat-minimum-lines-per-second - Minimum number of lines scrolled

per second. The default is 2.

:scroll-bar-repeat-maximum-lines-per-second - Maximum number of lines scrolled

per second. The default is 50.

:scroll-bar-repeat-maximum-screens-per-second - Maximum number of screens

scrolled per second. The default is 2.�

Other:

:console-who-line - whether the Status line is present on main screen. t or nil,

the default is t.

Per Screen options - Options that are applicable to the screen or screens designat-

ed by :screen:

:background-gray - a gray name, one of the symbols in tv:*gray-arrays*. The

symbols in tv:*gray-arrays* are: nil stipples:5.5%-gray

stipples:6%-gray stipples:7%-gray stipples:8%-gray

stipples:9%-gray stipples:10%-gray stipples:12%-gray

stipples:hes-gray stipples:25%-gray stipples:33%-gray

stipples:50%-gray stipples:75%-gray :black and :white. You

can also define your own gray. The default is :white.

:deexposed-gray - a gray name as for :background-gray. The default is

stipples:6%-gray. (6 percent)

:bow-mode (Screen background mode) - t or nil. The default is t (white). (This op-

tion is not applicable to MacIvory)

:menu-highlighting-style - nil or a character style appropriate for :screen. The

default is nil (Inverse video box, that is, use the same charac-

ter style with inverse video).�

Page 2805

For example, to set your screen options to have the mouse documentation line in

black on white, your machine name appear in the status line, your clock format

showing A.M. or P.M. instead of seconds, a medium gray surrounding the screen,

and your prompts in bold, you put a form like this in your init file:

(tv:set-screen-options

 :wholine-documentation-reverse-video-p nil

 :show-machine-name-in-wholine t

 :wholine-clock-format :dow-hh-mm-am

 :background-gray tv:50%-gray

 :noise-string-style ’(nil :bold nil))�

dw::set-default-scroll-bar-margin new-margin Function

Sets the position of the vertical scroll bar to new-margin.

The default position of the vertical scroll bar is on the left of the window. To set

it to the right, you evaluate:

(dw::set-default-scroll-bar-margin :right)�

� si:*kbd-repeat-key-enabled-p* Variable

Controls whether or not the REPEAT key is enabled. The default is t. It can be set

using zl:setf:

(setf si:*kbd-repeat-key-enabled-p* nil)�

Setting si:*kbd-repeat-key-enabled-p* to nil turns off repeating using the REPEAT

key.

� si:*kbd-repetition-interval* Variable

Controls the speed of repetition of characters when the REPEAT key is held down,

in sixtieths of a second. Its default is 2, which is a thirtieth of a second between

repeated characters.

� si:*kbd-auto-repeat-enabled-p* Variable

Controls whether or not keys repeat if held down (auto-repeat). The default is nil,

meaning that holding keys down does not cause repetition. It can be set using

zl:setf:

(setf si:*kbd-auto-repeat-enabled-p* t)�

Setting si:*kbd-auto-repeat-enabled-p* to t turns on auto-repeat. You can set the

length of time a key must be held down before it starts to repeat with si:*kbd-

auto-repeat-initial-delay*.

� si:set-auto-repeat-p key &optional (state t) Function

Page 2806

Allows you to specify keys that should not auto-repeat even if auto-repeat is en-

abled. By default all keys can auto-repeat except for FUNCTION, SELECT, NETWORK,

ABORT, SUSPEND, and RESUME. For example,

(si:set-auto-repeat-p #\Square nil)�

turns off auto-repetition for the SQUARE key. You can make SQUARE auto-repeat

again by setting it back to t.

si:*kbd-auto-repeat-initial-delay* Variable

Controls how long you must hold down a key before auto-repetition starts, in sixti-

eths of a second. The default is 42, which is between half and three-quarters of a

second. You can adjust it using zl:setf.

tv:screen-brightness main-screen-mixin Function

Returns the brightness of the screen as a floating-point number between 0 and 1.

(tv:screen-brightness tv:main-screen) may be set in your init file using zl:setf to

adjust the screen brightness. Console hardware varies slightly so you must experi-

ment to find the value that suits you best. One technique for doing this is to ad-

just the brightness using LOCAL-B and LOCAL-D until it is to your liking. Then use

(tv:screen-brightness tv:main-screen) to find that value. For example:

(tv:screen-brightness tv:main-screen) => 0.43307087�

Then in your init file you place the form

(setf (tv:screen-brightness tv:main-screen) 0.43307087)�

Each time you log in with your init file the screen brightness is automatically set

to that value.

tv:*dim-screen-after-n-minutes-idle* Variable

Controls the length of time a console must be idle before its screen dims. You can

set this in your init file to adjust the length of time it takes the screen dimmer to

activate. The default is 20 minutes. Setting it to nil disables the screen dimmer

entirely.

tv:*screen-dimness-percent* Variable

Controls the brightness value of the screen when it is dimmed. You can set this in

your init file to adjust the dimness of the screen. The default is 0, meaning black.

100 is bright. If you want a number that will leave the screen very dim but visi-

ble, the value will vary with your particular hardware. Experiment to find a good

setting, starting with 50.

sys:console-volume &optional (console sys:*console*) Function

Page 2807

Returns the current volume setting for the console, which is a number between 1.0

(loudest) and 0 (softest). The console volume can be changed with zl:setf, as in the

example:

(setf (sys:console-volume) 0.5)�

si:*disable-noise-strings* Variable

Controls whether the Command Processor prints prompts within command lines.

The default is nil, meaning that prompting is enabled and Command Processor

commands prompt for arguments. Setting it to t disables this prompting.

Customizing the SELECT Key

You can adjust the keys that are used with the SELECT key to select activities. SE-

LECT = starts up the SELECT Key Selector activity.

The initial frame looks like Figure !.

Figure 159. The SELECT Key Selector Window�

Clicking Middle on the command names or activity names gives some documenta-

tion.

Page 2808

To add an activity to a SELECT key:

1. Click on [Add Assignment].

2. Click on or type the name of the activity you wish to assign to a key.

3. Click on or type a key to assign to that activity.

4. Click on [Put Into System].

To remove an activity from a SELECT key:

1. Click on [Delete Assignment].

2. Click on the name of the activity or the key you want to remove.

3. Click on [Put Into System].

You can save the assignments you prefer in your init file.

Save Assignments constructs a Lisp form which represents your changes, and

pushes that form onto your kill history. You can then yank the form into your

lispm-init file. The form looks something like this:

(TV::SETUP-SELECT-KEYS

 ’((#\= (DW::FIND-PROGRAM-WINDOW-FOR-SELECT-KEY

 ’CL-USER::SELECT-KEY-SELECTOR TV:ALWAYS-MAKE-NEW)

 "Select Key Selector" T)

 (#\C ZWEI:CONVERSE-FRAME "Converse" T)

 (#\D (DW::FIND-PROGRAM-WINDOW-FOR-SELECT-KEY

 ’DDEX::DOC-EX TV:ALWAYS-MAKE-NEW)

 "Document Examiner" T)

 (#\E ZWEI:ZMACS-FRAME "Editor" T)

 ...))�

Starting up Zmail in the Background

You can start up Zmail from your init file by using the function zwei:preload-

zmail.

� zwei:preload-zmail &rest files Function

Starts up Zmail, loading in files.

(zwei:preload-zmail "wombat:>kjones>mail.text")�

This gets the mail loading operation underway while you are doing something else.

� These are the keyword options to zwei:preload-zmail:

:find-file Find the file and load it in for processing.

Page 2809

:examine-file Finds the file and reads it into Zmail but in read only mode.�

As an example, the following form can be included in your LISPM-INIT to preload

several mail files into Zmail with some of them being read only:

(zwei:preload-zmail ’(:find-file "y:>palter>mailboxes>palter.xmail")

 ’(:find-file "y:>palter>mailboxes>reminders.xmail")

 ’(:examine-file "y:>palter>mailboxes>junk.xmail")

 ’(:examine-file "y:>palter>mailboxes>digest.xmail"))�

� :hang-when-deexposed

Controls the use of the Zmail background process. Zmail reads

and parses the files in the background. If (:hang-when-

deexposed t) is included at the end of the zwei:preload-zmail

form, the Zmail background stops after reading the mail files

in question without parsing the contained messages. The back-

ground parsing will commence as soon as Zmail is selected.

The default for :hang-when-deexposed is nil, so use of

zwei:preload-zmail without specifying :hang-when-deexposed

causes mail parsing to begin in the background as soon as the

loading is finished.

As an example of the use of :edit-all-mail-files, the form

(zwei:preload-zmail ’(:examine-mail-file #p"LARRY-BIRD:>Palter>mailboxes>digests.kbin")

 :edit-all-mail-files)�

will preload Palter’s digest kbin file with saving disabled and then preload all the

other mail files listed in his profile.

Zmail’s Edit File command, which is used to ask Zmacs to edit a file usually refer-

enced by the current message, is bound to c-X c-sh-F at top level.

Customizing the Command Processor

You can change the Command Processor’s mode, prompt, and special characters,

and you can customize the display of the prompt and help messages. Usually you

customize the Command Processor by setting special variables. You might want to

do this in your init file, inside a login-forms special form.

Whenever you change the Command Processor’s mode, prompt, or other character-

istics, you set its state for all Lisp Listeners and break loops. You cannot put the

Command Processor into one mode in one Lisp Listener and another mode in an-

other.

If you change the Command Processor’s mode or prompt, or if you turn the Com-

mand Processor on or off, the change takes place immediately in that Lisp Listen-

er or break loop but not in others that are waiting for input. For example, sup-

pose you use the Set Command Processor command in a break loop to change the

prompt and dispatch mode. These changes do not take effect in a Lisp Listener

that is waiting for input until you execute a command or form or you press ABORT

there.

Page 2810

Setting the Command Processor Mode

The Command Processor mode determines how input is treated. Following are the

four modes and their meanings:

:form-only All input is treated as a Lisp form.

:command-only All input is treated as a command invocation.

:form-preferred Input is treated as a Lisp form unless you precede it by a com-

mand dispatch character, in which case it is treated as a com-

mand invocation. By default, the command dispatch character

is a colon.

:command-preferred

Input is treated as a command invocation if it begins with an

alphabetic character. Input is treated as a Lisp form if it does

not begin with an alphabetic character or if you precede it by

a form dispatch character. By default, the form dispatch char-

acter is a comma.�

You can set the Command Processor mode for Lisp Listeners and break loops in

two ways:

1. Use the Set Command Processor command. The first argument to this com-

mand is the dispatch mode. See the section "Set Command Processor Com-

mand".

2. Set the value of the special variable cp:*dispatch-mode*.�

cp:*dispatch-mode* Variable

The current Command Processor dispatch mode in Lisp Listeners and break loops.

Possible values are :form-only, :form-preferred, :command-only, and :command-

preferred. The meanings of these values is disucssed in the section "Setting the

Command Processor Mode". The default is :command-preferred.

The default dispatch mode for cp:read-command-or-form is the value of

cp::*default-dispatch-mode*.

Setting the Command Processor Prompt

You can set the Command Processor prompt for Lisp Listeners and break loops in

two ways:

1. Use the Set Command Processor command. The second argument to this com-

mand is a string to be displayed as the prompt. See the section "Set Com-

mand Processor Command".

2. Set the value of the special variable cp:*prompt*. �

Page 2811

cp:*prompt* Variable

A prompt option for displaying the current Command Processor prompt in Lisp

Listeners and break loops. The value of this variable is passed to the input editor

as the value of the :prompt option. The value can be nil, a string, a function, or a

symbol other than nil (but not a list): See the section "Displaying Prompts in the

Input Editor".

The default is "Command: ". If the value is nil or the empty string, no prompt is

displayed. If the value is si:arrow-prompt, an arrow is displayed as the prompt.

The default prompt for cp:read-command and cp:read-command-or-form is the

value of cp::*default-prompt*.

Setting Command Processor Special Characters

You can change the command and form dispatch characters by setting the special

variables cp::*command-dispatchers* and cp::*form-dispatchers*.

cp::*command-dispatchers* Variable

A list of characters that precede commands, distinguishing them from input to the

Lisp interpreter, when the Command Processor is in :form-preferred mode. The

default is (#\:).

cp::*form-dispatchers* Variable

A list of characters that precede Lisp forms, distinguishing them from commands,

when the Command Processor is in :command-preferred mode. (These characters

are needed only when the Lisp form begins with an alphabetic character.) The de-

fault is (#\,).

Customizing Command Processor Display

By setting special variables, you can control the action the command processor

takes when you type a blank line and how it displays the screen when you ask for

help.

cp:*blank-line-mode* Variable

A keyword that determines what action the Command Processor takes when you

type a blank line in Lisp Listeners and break loops:

:reprompt Redisplay the prompt, if any. This is the default.

:beep Beep.

:ignore Do nothing.�

Page 2812

The default blank line mode for cp:read-command and cp:read-command-or-form

is the value of cp::*default-blank-line-mode*.

si:*typeout-default* Variable

A keyword that determines how the Command Processor prints help messages.

Possible values are those acceptable as the first argument to the :start-typeout

message to interactive streams:

:insert The help message, like a notification, is inserted before the

current input.

:overwrite The help message is inserted before the current input, but the

next time an :insert or :overwrite operation is done, this mes-

sage is overwritten. This is the default.

:append The help message appears after the current input, which is

reprinted after the help message.

:temporary The help message appears after the current input and disap-

pears when you type the next character.

:clear-window The window is cleared and the help message appears at the

top.�

For more information: See the method (flavor:method :start-typeout

si:interactive-stream).

Zmacs Customization in Init Files

You can set Zmacs parameters in your init file also. This section gives you some

guidelines for how to set different types of parameters. For information about the

available features, see the section "Zmacs".

Setting Editor Variables

The forms described show how to set Zmacs variables (the kind that Set Variable

(m-X) sets).

To set these variables, which are symbol macros, you must use the setf macro. For

a description of symbol macros: See the section "Symbol Macros". For a description

of the setf macro: See the macro setf.�

Ordering Buffer Lists

(SETF ZWEI:*SORT-ZMACS-BUFFER-LIST* NIL)

This displays the list of buffers in the order the buffers were created rather than

in the order they were most recently visited.

Page 2813

Putting Buffers Into Current Package

(SETF ZWEI:*DEFAULT-PACKAGE* NIL)

This puts buffers created with c-X B (Select Buffer) into whatever package is

current; the default is to put them in the user package.

Setting Default Major Mode

(SETF ZWEI:*DEFAULT-MAJOR-MODE* :TEXT)

This sets the default major mode to Text Mode for buffers with no Mode attribute

and no major mode deducible from the file type; the default is Fundamental Mode.

Setting Find File Not To Create New Files

(SETF ZWEI:*FIND-FILE-NOT-FOUND-IS-AN-ERROR* T)

This beeps and prints an error message when you give c-X c-F (Find File) the

name of a nonexistent file. The default prints (New File) and creates an empty

buffer, which when saved by c-X c-S (Save File) creates the file that was nonex-

istent.

Init File Form: Setting Refind File to Not Query for Newer Version of File

(SETF ZWEI:*REVERT-UNEDITED-BUFFERS-FOR-NEW-VERSION* :ALWAYS)�

� Controls the prompting behavior of Refind File, Refind All Files, and Revert Buffer

if a newer version of the buffer file exists on disk. Its default is :query, which

means ask you if you would prefer the newer version. It may be set to :always,

meaning pick up the newer version without bothering to ask, or :never, meaning

do not pick up the newer version.

Setting Goal Column for Real Line Commands

(SETF ZWEI:*PERMANENT-REAL-LINE-GOAL-XPOS* 0)

This moves subsequent c-N and c-P (Down Real Line and Up Real Line) com-

mands to the left margin, like doing c-0 c-X c-N (Set Goal Column to zero).

Fixing White Space For Kill/Yank Commands

(SETF ZWEI:*KILL-INTERVAL-SMARTS* T)

This tells the killing and yanking commands to optimize white space surrounding

the killed or yanked text.

Key Bindings

Page 2814

To bind keys, you first define the comtab in which to put the binding. For

example, *standard-comtab* and *standard-control-x-comtab* define features of

all Zwei-based editors; *zmacs-comtab* and *zmacs-control-x-comtab* define fea-

tures that are Zmacs-specific.�

White Space In Lisp Code

ZWEI:(SET-COMTAB *STANDARD-CONTROL-X-COMTAB*

 ’(#\SP COM-CANONICALIZE-WHITESPACE))

This defines c-X SPACE as a command that makes the horizontal and vertical

white space around point (or around mark if given a numeric argument or immedi-

ately after a yank command) conform to standard style for Lisp code.

c-m-L on the SQUARE Key

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ’(#\SQUARE COM-SELECT-PREVIOUS-BUFFER))

This defines the SQUARE key to do the same thing as c-m-L. This key binding is

placed in *zmacs-comtab* rather than *standard-comtab* since buffers are a fea-

ture of Zmacs, not of all Zwei-based editors.

Edit Buffers on c-X c-B

ZWEI:(SET-COMTAB *ZMACS-CONTROL-X-COMTAB*

 ’(#\c-B COM-EDIT-BUFFERS))

This makes c-X c-B invoke Edit Buffers rather than List Buffers. This key bind-

ing is placed in *zmacs-control-x-comtab* rather than *standard-control-x-

comtab* since buffers are a feature of Zmacs, not of all Zwei-based editors.

Edit Buffers on m-X

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ()

 (MAKE-COMMAND-ALIST ’(COM-EDIT-BUFFERS)))

This makes Edit Buffers available on m-X in Zmacs (by default it is only available

on c-m-X).

m-. on m-Left

ZWEI:(SET-COMTAB *ZMACS-COMTAB*

 ’(#\m-MOUSE-L COM-EDIT-DEFINITION))

This makes clicking the left mouse button while holding down the META key do

what m-. does. Invoking this command from the mouse is convenient when you

specify the name of the definition to be edited by pointing at it rather than typing

it.

Page 2815

Setting Mode Hooks

Each major mode has a mode hook, a variable which, if bound, is a function that

is called with no arguments when that major mode is turned on.�

Electric Shift Lock in Lisp Mode

(SETF ZWEI:LISP-MODE-HOOK ’ZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor mode unless the

buffer has a Lowercase attribute. The effect is that by default Lisp code is written

in uppercase.

Auto Fill in Text Mode

(SETF ZWEI:TEXT-MODE-HOOK ’ZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode unless the buffer has

a Nofill attribute. The effect is that by default lines of text are automatically

broken by carriage returns when they get too wide.

Customizing the Input Editor

Genera maintains histories of your interactions for you. (See the section "Types of

Histories".) You can make use of these histories with the various yanking com-

mands, c-Y, c-m-Y, c-m-sh-Y, m-Y and m-sh-Y. You can control the behavior of

these yanking commands with two variables:

zwei:*history-menu-length*

zwei:*history-yank-wraparound* �

You can set these with Set Variable (m-X) in Zmacs for the duration of your cur-

rent session, or you can use login-forms and symbol-value-globally to set them in

your init file.

zwei:*history-menu-length* Variable

The maximum number of history elements displayed. Default is 20.

History Menu Length is the name to use with Set Variable (m-X).

zwei:*history-yank-wraparound* Variable

Determines what happens when using m-Y reaches the end of a history or m- -

m-Y reaches the beginning of a history.

There are two possible actions:

1. If zwei:*history-yank-wraparound* is t, m-Y wraps around to the other end

of the history. For example, after m-Y yanks the oldest element in the history,

Page 2816

it returns to the top of the history and yanks the newest element. This is the

default.

2. If zwei:*history-yank-wraparound* is nil, m-Y stops and the screen flashes

or beeps.

History Yank Wraparound is the name to use with Set Variable (m-X).

For more information on the making use of the Input Editor for your own applica-

tion programs, see the section "The Input Editor Program Interface".

Customizing Converse

The following variables allow you to customize Converse’s behavior. You can set

them in your init file.

zwei:*converse-mode* Variable

Controls what happens when an interactive message arrives. It should have one of

the following values:

:pop-up (This is the default.) A message window pops up at the top of

the screen, displaying the message. You are asked to type R

(for Reply), N (for Nothing), or C (for Converse). If you type R,

you can type a reply to the message inside the message win-

dow. When you press END, this reply is sent to whomever sent

the original message to you, and the pop-up message window

window disappears. If you type N, the message window disap-

pears immediately. If you type C, the Converse window is se-

lected. The input editor is used while you reply to a message

in the pop-up message window, so you get some editing power,

although not as much as with full Converse.

:auto The Converse window is selected. This is the window that

shows you all of your conversations, letting you see everything

that has happened, and letting you edit your replies with the

full power of the editor. With this window selected, you can re-

ply to the message that was sent, send new messages, partici-

pate in other conversations, or edit and write out messages or

conversations. You can exit with c-END or ABORT (c-END sends

a message and exits; ABORT just exits), or you can select a new

window by any of the usual means (such as the FUNCTION or

SELECT keys).

:notify A notification is printed, telling you that a message arrived

and from whom. If you want to see the message, enter Con-

verse by pressing SELECT C. There you can read the message

and reply if you want to.

Page 2817

:notify-with-message

A notification is printed, which includes the entire contents of

the message and the name of the sender. If you want to reply,

you can enter Converse.

zwei:*converse-append-p* Variable

If the value is nil (the default), a new message is prepended to its conversation. If

the value is t, a new message is appended to its conversation.

zwei:*converse-beep-count* Variable

The value is the number of times to beep or flash the screen when a message ar-

rives. The default value is two. Beeping or flashing occurs only if the Converse

window is exposed or if the value of zwei:*converse-mode* is :pop-up or :auto.

(Otherwise, notification tells you about the message and includes the usual beeping

or flashing.)

zwei:*converse-end-exits* Variable

Controls the behavior of END and c-END. If zwei:*converse-end-exits* is set to nil,

the default, END sends the message and you remain in Converse. c-END sends the

message and exits Converse. Setting zwei:*converse-end-exits* to t reverses this,

so that c-END sends the message and remains in Converse and END sends and ex-

its.

Customizing Hardcopy Facilities

You can specify the printer you want to use for hardcopying files and screen im-

ages in your init file.

There are two variables that determine which printer is used for a hardcopy re-

quest:

hardcopy:*default-text-printer* Variable

A variable whose value is the printer to be used for printing text files, that is, a

printer object. Its initial value is determined from the printer slot in the name-

space object for your machine, or if your machine does not specify a printer, from

the namespace object for your site.

hardcopy:*default-bitmap-printer* Variable

A variable whose value is the printer to be used for printing screen hardcopy, that

is, a printer object. Its initial value is determined from the bitmap printer slot in

the namespace object for your machine, or if your machine does not specify a

bitmap printer, from the namespace object for your site.

Page 2818

These variables can be set with the following two functions:

hardcopy:set-default-text-printer name Function

Specifies the printer to be used for all of the hardcopy commands except the

screen copy command. name is a string specifying the device name. This is the

real name of the printer (its name attribute, not its pretty-name). For example:

(login-forms

 (hardcopy:set-default-text-printer "caspian-sea"))�

caspian-sea is the real name of the printer whose pretty name is Caspian Sea.

(The valid set of device names are the printer objects in your namespace

database.)

hardcopy:set-default-bitmap-printer name Function

Specifies the printer to be used for screen copies (by the FUNCTION Q command).

name is a string specifying the device name. This is the real name of the printer

(its name attribute, not its pretty-name). For example:

(login-forms

 (hardcopy:set-default-bitmap-printer "caspian-sea"))�

caspian-sea is the real name of the printer whose pretty name is Caspian Sea.

(The valid set of device names are the printer objects in your namespace

database.)

You can specify your preferred character styles for each printer in your init file by

setting hardcopy:*hardcopy-default-character-styles*.

hardcopy:*hardcopy-default-character-styles* Variable

A variable whose value is an association list where each element specifies a device

and a set of keyword/value pairs designating the character style. The keywords are

:default-body-character-style and :default-heading-character-style.

For example:

(login-forms

 (setq hardcopy:*hardcopy-default-character-styles*

 ’(("Itasca" :default-body-character-style

 (:fix :roman :small))

 ("Caspian Sea" :default-body-character-style

 (:fix :roman :normal)))))�

in your init file specifies fixed-width small-sized roman as the default character

style for the printer Itasca and fixed-width normal-sized roman as the default char-

acter style for the printer Caspian Sea. The value obtained from

hardcopy:*hardcopy-default-character-styles* is merged with the default style

for the printer, so if the printer is using a fixed-width normal-sized roman and you

want it larger, you only need to specify (nil nil :larger). See the section "Charac-

ter Styles".

Page 2819

Customizing FSEdit

There are two variables that you can set to change mouse clicks in the File Sys-

tem Editor and to disable confirmation on deletion:

tv:*use-new-fsedit-command-set* Variable

Controls what commands are assigned to the Left and Middle mouse buttons in the

File System Editor (FSEdit). t, the default, makes clicking Left toggle Open/Close

the object and Middle Delete/Undelete the object. Setting tv:*use-new-fsedit-

command-set* to nil restores the pre-Genera 8.0 behavior, where clicking Left

opened an object and clicking Middle closed it.

tv:*confirm-fsedit-quick-soft-file-deletion* Variable

Controls whether or not deletion in FSEdit requires confirmation on a system that

supports soft deletion, that is, where undeletion is possible. The default, t, is to re-

quire confirmation. Setting it to nil disables the confirmation. On a file system

that does not have soft deletion, FSEdit always asks for confirmation.

Censoring Fields for lispm-finger and name Services

You might prefer to keep certain fields of namespace information private, and pre-

vent those fields from being returned by the lispm-finger and name protocol

servers.

You can censor the information returned by those servers by pushing recognized

keywords onto one or both of the following lists: neti:*finger-fields-to-suppress*

and neti:*finger-fields-to-suppress-for-untrusted-hosts*.

The recognized keywords include:

:software-info

:hardware-info

:whois

:project

:supervisor

:work-address

:work-phone

:home-address

:home-phone�

neti:*finger-fields-to-suppress* Variable

This variable is a list of keywords that should be censored for the lispm-finger

and name servers. Use push to add others to the list. The default value is nil.

For a list of recognized keywords, see the section "Censoring Fields for lispm-

finger and name Services".

Page 2820

neti:*finger-fields-to-suppress-for-untrusted-hosts* Variable

This variable is a list of keywords that should be censored for the lispm-finger

and name servers, for untrusted hosts only. Use push to add others to the list.

The default value is nil.

For a list of recognized keywords, see the section "Censoring Fields for lispm-

finger and name Services".

Logging In Without Processing Your Init File

Sometimes you want to log in and work in the standard default system environ-

ment, that is, without having your init file set up your usual customizations. Per-

haps you want to test a program of yours or try a new system feature in the stan-

dard environment. Log in this way:

Login username :init file none

to tell the Login command that you do not want your init file automatically loaded.

Customizing Zmail

The Profile command allows you to customize Zmail by setting various display and

command options to your personal taste.

You can also customize the Zmail user interface by using the (m-X) Set Key com-

mand to temporarily bind a Zmail command to a keystroke. For example, you can

use Set Key to temporarily bind the Append Conversation by References command

to s-S.

You can set an option temporarily or permanently, the latter by saving the option

in your Zmail Profile.

Classes of options you can set in your Zmail Profile include the following:

• Format used for hardcopies of messages

• Mail-file attributes

• Lists of mail files and other objects that Zmail knows about at startup

• Associations between certain objects

• Clicking Middle for many top-level commands

• Screen configurations

• Default actions taken when reading, sending, replying to, or forwarding mail

• Command Tables

Page 2821

Customizing is done in profile mode, entered by clicking on [Profile] in the com-

mand menu at top level. The profile mode display (Figure 109) shows the text of

your profile and the current settings of various options.

Setting and Saving Zmail Options

Option settings are stored in seven distinct places:

1. The Zmail environment: the way the options are actually set at the moment.

2. The defaults: the way the options are actually set before you alter them.

3. The editor buffer: the in-memory buffer of your profile.

4. The source version of your profile: on disk.

5. The compiled version of your profile: also on disk.

6. Mail buffers: options associated and stored with the individual mail buffers.

7. Mail files: options associated with a mail buffer saved as a file.�

Enter profile mode by clicking on [Profile] in the Zmail menu. The top portion of

the window looks like Figure 109. The User Options pane works like an Accept

Variable Values menu. You click on the various values to change options. The

boxed items above and below the User Options pane are menu items that bring up

additional menus for general operations on your mail files or on your profile.

Figure 160. Profile Mode Menu and Interaction Pane�

The lower half of the window is an editor buffer into which Lisp forms are insert-

ed automatically when you select options in the User Options pane. This is what is

saved as your zmail-init.lisp file. You do not have to edit this file yourself; Zmail

takes care of that for you.

The simplest way to use profile mode is:

Page 2822

1. Make the changes you want using the menu items or user options window.

For a list of the various options and what they mean: See the section "Zmail

Profile Options".

2. Click on [Exit] to leave profile mode. Check to see that you like your changes.

3. To save your changes, reenter profile mode and click Left on [Save]. Answer

yes to any questions about inserting changes or recompiling your file. At this

point Lisp code corresponding to your option settings is stored in your profile.

Options changed using [File options] or [Keywords] are stored in the individu-

al mail buffers and are saved when you save the particular mail file.

What [Save] actually does is move option settings from the environment (where

you altered them in the first step) to the editor buffer, then from the editor buffer

to the source copy of your init file, and finally from the source file to the compiled

file (by recompiling).

You can undo all the settings you have made by clicking on [Defaults], which re-

turns all the variables to their system defaults. You can reset all the variables to

the values in your init file by clicking on [Reset], which loads your init file again.

For inserting a bug-report banner into the text of bug messages, see the variable

dbg:*character-style-for-bug-mail-prologue*.

Getting Help

The Genera environment contains many help facilities. This chapter summarizes

the facilities for finding out information about the program you are writing and

about the general state of Genera.

This chapter is a collection of the support tools and facilities available for finding

the kind of information you need while programming. It is not exhaustive but sug-

gestive. It does not recommend strategies for applying these facilities but rather

lays out what is available for creating a personal style of using Genera effectively.

HELP Key

The key labelled HELP looks up context-dependent documentation. Pressing HELP al-

most always displays something useful. For example, if you have typed se to the

Command Processor, and then are not sure what command you actually want,

pressing HELP displays:

Page 2823

You can use HELP in combination with other keys to get information about those

keys or about Genera.

c-HELP Shows a list of input editor commands (when typed at a Lisp

Listener).

sy-HELP Shows a list of the special function keys and the special char-

acter keys.

SELECT HELP Shows programs and utilities that you can select using the SE-

LECT key.

FUNCTION HELP Shows a list of useful functions that you can invoke using the

FUNCTION key.

m-HELP Shows a helpful hint (HackSaw) for getting things done faster

and more easily in Genera.

See the section "HELP Key in Any Zmacs Editing Window".

c-? and c-/

When you are not sure of the exact name of a command, there are two keystrokes

that search the set of available commands and locate possibilities for you. c-?

searches for commands whose names begin with the string you have typed so far.

c-/ searches for commands whose names contain the string anywhere.

For example, in a Lisp Listener, typing start and pressing c-? yields:

These are the possible command names starting with "start":

 Start GC

 Start Printer

 Start Process

 Start X Screen�

Typing start and pressing c-/ yields:

These are the command names containing "start":

 Restart Printer Request Start GC Start Process

 Restart Process Start Printer Start X Screen�

Interaction with Completion and Typeout Windows

The Genera software has some general interaction conventions. For example, many

editor commands offer name completion. You can apply these facilities to exploring

the command space of the machine. This section describes some general facilities

and strategies for making more effective use of the machine.

HELP Key in Any Zmacs Editing Window

Page 2824

The HELP key enables you to locate help material that is relevant to the current

context. Individual programs are responsible for providing the routines that sup-

port the HELP key. The most complex general help facility is that provided by

Zmacs editing windows. The HELP key provides access to a number of distinct

kinds of help, depending on the key you press after the HELP key.

HELP ? or HELP HELP

Displays a brief summary of the Zmacs help options (similar to

the rest of this chart).

HELP A Looks up all Zmacs commands whose names contain a sub-

string you type. Zmacs displays the one-line documentation for

the command and tells you which key, if any, invokes it in the

current context. The "A" stands for "apropos". When people

say, "Use Apropos," they are referring to this command.

HELP C Looks up which command is bound to a particular key. You

type the key; Zmacs displays the name of the command and its

summary paragraph. HELP C uses Self Document.

HELP D Looks up the summary paragraph for a Zmacs command. You

enter the command name. Completion is available. HELP D uses

Describe Command.

HELP L Displays a representation of the last 60 keys that you pressed.

It is useful to find out what you did that caused unexpected

behavior. HELP L uses What Lossage.

HELP U Undoes the last operation. You can revert to a prior state by

using HELP U or c-sh-U. Zmacs queries you whether to go

ahead with undoing; the only information you have about what

is being undone is the name of the class of operation, for ex-

ample, "fill" or "sort". HELP U uses Undo.

HELP V Looks up all Zmacs user variables whose print names contain a

substring you type. Zmacs displays the variable names and

their current values. HELP V uses Variable Apropos.

HELP W Finds the key assignment for a particular command. You type

the command name; Zmacs displays the current key assign-

ment. Completion is available. HELP W uses Where Is.

HELP SPACE Repeats the last HELP command you used.�

In this chapter, all Zmacs commands appear by name rather than by key binding.

Command tables indicate whether the command has a standard key binding or

whether it must be used as an extended command. For example, Edit Zmacs Com-

mand is an extended command and requires that you invoke it with m-X. Forward

Word is bound to m-F; you invoke it by holding down the META key and pressing F.

Page 2825

Command Type of command

Edit Zmacs Command (m-X) An extended command

Forward Word (m-F) A command with a standard key binding

Find File (c-X c-F) A command with a standard key binding�

Functions and their arguments appear as in the following example:

(apropos string package inferiors superiors)

Words in italics are the arguments to the function. The words reflect the meaning

of the argument. Bold words are optional arguments; you can leave them out. The

reference description for the function explains the meanings of the arguments and

the default values for optional arguments.

Zmacs Completion

Zmacs minibuffer commands offer completion, a facility for reducing the number of

keys you need to type to specify a name. As soon as you have typed enough char-

acters for a name to be recognized as unique, you can ask for completion. Up until

then, you can ask to see which names are possible completions of what you have

typed. You can tell when completion is available; the notation "(Completion)" ap-

pears at the right end of the minibuffer label line.

Completion for Extended Commands (m-X Commands)

The following table summarizes the keys that control completion for entering ex-

tended commands.

Key Action in m-X commands�

SPACE Completes the words up to the current word, as far as they are

unique.

HELP or c-? Shows the possible completions in the typeout area. This is for com-

mands beginning with the characters you have typed.

c-/ Runs Apropos for each of the partially typed words in the name.

Mouse-R Pops up a menu of the possible completions.

COMPLETE Displays the full command name, if possible.

RETURN, END

Confirm the command when possible, whether or not you have seen its

full name. �

You can request completion by pressing either COMPLETE or RETURN. Using COM-

PLETE shows the completed name, requiring a further RETURN to confirm it; using

RETURN gets you completion and confirmation in one step.

Any time you are typing a Zmacs extended command name, completion is available.

Zmacs command name completion works on initial substrings of each word in the

command. For example, "m-X e z" is enough to specify the extended command

"Edit Zmacs Command".

Page 2826

Until Zmacs can recognize the name as unique, your request for completion just

completes as far as possible and moves the input cursor to the first ambiguous

place in the command name.

Whenever you are entering a name in a minibuffer that offers completion, you can

find out all possible completions of what you have typed so far. Two styles are

possible. Pressing HELP or c-? shows the list of completions in the typeout area;

the names are mouse sensitive. Clicking Right shows the list in a pop-up menu.

One good strategy for browsing is to look at the list of completions for initial sub-

strings that are common command verbs, like "show" or "set".

Completion for m-.

The m-. (Edit Definition) command offers completion over the set of names that is

in the files that have already been loaded into editor buffers. In this case, you re-

quest completion with COMPLETE and then confirm it with RETURN.

m-. offers initial substring name completion, with hyphens rather than spaces de-

limiting the words. For example, "e-d-i" would be sufficient for specifying

zwei:edit-definition-internal (assuming that Zmacs had previously parsed the

source file containing it into a buffer).

Completion in Other Contexts

Completion is available in many other contexts, for example, buffer names and

package names. Be on the lookout for the presence of "(Completion)" in the

minibuffer label line. The conventions for extended commands usually apply.

Typeout Windows in Zmacs

Most of the Zmacs commands for looking up information display the information in

a typeout window. A typeout window overlays the current buffer display with its

contents and disappears as soon as you type any character. Most typeout windows

contain mouse-sensitive items. In particular, Zmacs commands and Lisp function

specs are mouse sensitive and small menus of operations on the names are avail-

able (Arglist, Edit Definition, and so on). See the mouse documentation line.

FEP Command Completion

While the keyboard is connected to the FEP, the following forms of completion are

available:

• Pressing the HELP key at the FEP prompt (Fep>) or after typing part of the first

word of a command shows the commands understood by the FEP command

processor.

• Pressing the HELP key after typing the first word of a command shows a list of

commands that begin with that word. Example: set SPACE HELP gives a list of

commands that begin with the word set.

Page 2827

Getting help:

• For more information about help facilities in editing, see the section "Getting

Out of Trouble".

• For more information about help facilities in the mail program, see the section

"Using Zmail".

• For more information about the FEP and a listing of available commands, see

the section "The Front-End Processor".

Reference Description of Help Functions

This section contains a summary paragraph of documentation for each of the infor-

mation-finding commands and functions. See the section "Summary of Help Func-

tions in Zmacs and Lisp".

This reference list is in alphabetical order by name of the command or function.

Zmacs editor commands appear according to the names of the commands that im-

plement them, rather than according to the names of the keys that invoke them.

For example, Compile Buffer (m-X) appears under "C" rather than under "M";

c-sh-A appears under "Q" (because its name is Quick Arglist) rather than under

"C". For commands that are usually invoked by a single key rather than by m-X,

the key name appears with the command. (Remember that you can always use

HELP W to find the key that invokes a particular command.)

Some Zmacs commands come in pairs, such as List Callers and Edit Callers. The

commands are very similar. The List version allows you to just look at the list or

to decide to start editing the items in the list. The list items are always mouse

sensitive. For the Edit version of the command, c-. is always the command for

moving to the next item.

Apropos (m-X), HELP A

Displays all the Zmacs commands whose names contain a speci-

fied substring. You type the substring. Zmacs displays one line

of documentation for the command and which key invokes it in

the current context, if any.

(apropos string package inferiors superiors)

Displays all the symbols whose print names contain the string.

By default, it looks in the global package and its descendants,

but you can specify a package name. For symbols that have

function bindings, it displays the argument list. For symbols

that are bound, it displays the notation "Bound". zl:apropos re-

turns the symbols that it found as a list.

(apropos "forward" ’zwei)

Page 2828

(arglist function flag) (see also Quick Arglist)

Returns a representation of the arguments that the function

expects. When the original function definition contained an

arglist declaration, arglist returns that list when flag is not

specified or nil. When flag is not nil, then arglist returns the

real argument list from the function. When the original func-

tion used a values declaration, arglist returns the names for

the values returned by the function.

(arglist ’make-array)

You cannot use arglist to find the arguments for combined

methods.

Break (SUSPEND) Enters a Lisp Listener from the current window. It uses the

screen area of the frame that was selected when you used SUS-

PEND. When you use it from the editor, any Lisp forms you

type are evaluated in the current package (the one showing in

the status line). Use RESUME to return to the original context.

c-m-sh-E See Evaluate Region Verbose.

c-sh-A See Quick Arglist.

c-sh-C See Compile Region.

c-sh-D See Long Documentation.

c-sh-E See Evaluate Region.

c-sh-F See Show Flavor Initializations.

c-sh-V See Describe Variable At Point.

Compile And Exit (m-Z)

Compiles the buffer and returns from top level. It selects the

window from which the last (ed) function or the last Debugger

c-E command was executed.

Compile Buffer (m-X)

Compiles the entire buffer. With a numeric argument, it com-

piles from point to the end of the buffer. (This is useful for re-

suming compilation after a prior Compile Buffer has failed.)

Compile Changed Definitions (m-X)

Compiles any definitions that have changed in any Lisp mode

buffers. With a numeric argument, it queries individually about

whether to compile each changed definition.

Compile Changed Definitions Of Buffer (m-sh-C, m-X)

Compiles any definitions in the current buffer that have been

changed. With a numeric argument, it prompts individually

about whether to compile each changed definition.

Compile File (m-X) Compiles a file, offering to save it first. It prompts for a file

name in the minibuffer, using the file associated with the cur-

Page 2829

rent buffer as the default. It offers to save the file if the buf-

fer has been modified.

Compile Region (c-sh-C, m-X)

Compiles the region, or if no region is defined, the current

definition.

Compiler Warnings (m-X) (see also Edit Compiler Warnings)

Puts all pending compiler warnings in a buffer and selects that

buffer. It loads the compiler warnings database into a buffer

called *Compiler-Warnings-1*, creating that buffer if it does not

exist.

(describe object) (see also inspect)

Displays available information about an object, in a format that

depends on the type of the object. For example, describing a

symbol displays its value, definition, and properties. describe

returns the object.

(describe ’time:get-time)

(describe-area area-name)

Displays attributes of the specified area.

(describe-area (%area-number ’foo))

(describe-area ’working-storage-area)

(describe-defstruct instance structure-name)

Displays a description of the instance, showing the contents of

each of its slots. structure-name is not necessary for named

structures but must be provided for unnamed structures. When

you supply structure-name, you force the function to use that

structure name instead of letting the system figure it out; in

addition, it overrides the :describe option for structures that

know how to describe themselves.

(describe-package package-name)

Displays information about a package.

(describe-package ’zwei)

That example is the same as this one:

(describe (pkg-find-package ’zwei))

(describe-system system-name)

Displays information about a system, including the name of the

file containing the system declaration and when the files in the

current version of the system were compiled.

Describe Variable (m-X)

Displays the documentation and current value for a Zmacs

variable. It reads the variable name from the minibuffer, using

completion.

Page 2830

Describe Variable At Point (c-sh-V)

Displays information, in the echo area, about the current Lisp

variable. The information includes whether the variable is de-

clared special, whether it has a value, what file defines it, and

whether it has documentation put on by defvar or zl:defconst.

When nothing is available, it checks for lookalike symbols in

other packages.

(disassemble function) (see also mexp, Macro Expand Expression)

Displays the macro-instructions for the function. It does not

work for functions that are not compiled or that are imple-

mented in microcode, like cons or car.

(disassemble ’plus)

Use this function for things like finding clues about whether a

macro is being expanded correctly.

Edit Buffers (m-X) (see also List Buffers)

Displays a list of all buffers, allowing you to save or delete

buffers and to select a new buffer. A set of single character

subcommands lets you specify various operations for the

buffers. For example, you can mark buffers to be deleted,

saved, or not modified. Use HELP to see further explanation.

The buffer is read-only; you can move around in it by search-

ing and with commands like c-N or c-P.

Edit Callers (m-X) (see also List Callers, Multiple Edit Callers)

Prepares for editing all functions that call the specified one. It

reads a function name via the mouse or from the minibuffer

with completion. By default, it searches the current package.

You can control the package being searched by giving the func-

tion an argument. With c-U, it searches all packages; with c-U

c-U, it prompts for a package name. It selects the first caller;

use c-. (Next Possibility) to move to a subsequent definition.

Edit Changed Definitions (m-X) (see also List Changed Definitions)

Determines which definitions in any Lisp mode buffer have

changed and selects the first one. It makes an internal list of

all the definitions that have changed in the current session

and selects the first one on the list. Use c-. (Next Possibility)

to move to a subsequent definition. Use a numeric argument to

control the starting point for determining what has changed:

1 For each buffer, since the file was last saved (the

 default).

2 For each buffer, since it was last read.

3 For each definition in each buffer, since the definition

 was last compiled. �

Edit Changed Definitions Of Buffer (m-X) (see also List Changed Definitions Of

Buffer)

Page 2831

Determines which definitions in the buffer have changed and

selects the first one. It makes an internal list of all the defini-

tions that have changed since the buffer was read in and se-

lects the first one on the list. Use c-. (Next Possibility) to

move to subsequent definitions. Use a numeric argument to

control the starting point for determining what has changed:

1 Since the file was last saved (the default).

2 Since the buffer was last read.

3 Since the definition was last compiled, for each definition

 in the buffer.�

Edit Combined Methods (m-X) (see also List Combined Methods)

Prepares to edit the methods for a specified message to a spec-

ified flavor. It prompts first for a message name, then for a

flavor name. It selects the first combined method component.

Use c-. (Next Possibility) to move to a subsequent definition.

The definitions appear in the order that they would be called

when the message was sent. Error messages appear when the

flavor does not handle the message and when the flavor re-

quested is not a composed, instantiated flavor.

Edit Compiler Warnings (m-X) (see also Compiler Warnings)

Prepares to edit all functions whose compilation caused a

warning message. It queries, for each of the files mentioned in

the database, whether you want to edit the warnings for the

functions in that file. It splits the screen, putting the warning

message in the top window. The bottom window displays the

source code whose compilation caused the message. Use c-.

(Next Possibility) to move to a subsequent warning and source

function. After the last warning, it returns the screen to its

previous configuration.

Edit Definition (m-.)

Prepares to edit the definition of a function, variable, flavor, or

anything else defined with a "defsomething" special form. It

prompts for a definition name from the minibuffer. Name com-

pletion is available for definitions in files that have already

been loaded into buffers. You can select a name by clicking the

mouse over a definition name in the current buffer. It selects

the buffer containing the definition for that name, first reading

in the file if necessary. With a numeric argument, it selects

the next definition that satisfies the most recent name given.

It tells you in the echo area when it finds more than one defi-

nition for a name.

Edit File Warnings (m-X)

Prepares to edit any functions in a specified file for which

warnings exist. It prompts for a file name, which can be either

a source file or a compiled file. It splits the screen, putting a

Page 2832

warning message from the warnings database in the top win-

dow. The bottom window displays the source code whose compi-

lation caused the message. If the database does not contain any

warnings for this file, it prompts for the name of a file con-

taining the warnings. Use c-. (Next Possibility) to move to a

subsequent warning and source function. After the last warn-

ing, it returns the screen to its previous configuration.

Edit Methods (m-X) (see also List Methods)

Prepares to edit all the methods on any flavor for a particular

message. It prompts for a message name. It finds all the fla-

vors with handlers for the message, makes an internal list of

the method names, and selects the definition for the first one.

Use c-. (Next Possibility) to move to subsequent definitions.

Edit Zmacs Command (m-X)

Finds the source for the function installed on a key. You can

press any key combination or enter an extended command

name. Use a numeric argument to edit the function that imple-

ments a prefix command (like m-X or c-X).

Evaluate And Exit (c-m-Z)

Evaluates the buffer and returns from top level. It selects the

window from which the last ed function or the last Debugger

c-E command was executed.

Evaluate And Replace Into Buffer (m-X)

Evaluates the Lisp object following point in the buffer and re-

places it with its result.

Evaluate Buffer (m-X)

Evaluates the entire buffer. With a numeric argument, it eval-

uates from point to the end of the buffer.

Evaluate Changed Definitions (m-X)

Evaluates any definitions that have changed in any buffers.

With a numeric argument, it prompts individually about

whether to evaluate particular changed definitions.

Evaluate Changed Definitions Of Buffer (m-sh-E, m-X)

Evaluates any definitions in the current buffer that have been

changed. With a numeric argument, it prompts individually

about whether to evaluate particular changed definitions.

Evaluate Into Buffer (m-X)

Evaluates a form read from the minibuffer and inserts the re-

sult into the buffer. You enter a Lisp form in the minibuffer,

which is evaluated when you press END. The result of evaluat-

ing the form appears in the buffer before point. With a numer-

ic argument, it also inserts any typeout that occurs during the

evaluation into the buffer.

Page 2833

Evaluate Minibuffer (m-ESCAPE)

Evaluates forms from the minibuffer. You enter Lisp forms in

the minibuffer, which are evaluated when you press END. The

value of the form itself appears in the echo area. If the form

displays any output, that appears as a typeout window.

Evaluate Region (c-sh-E, m-X)

Evaluates the region. When no region has been defined, it

evaluates the current definition. It shows the results in the

echo area.

Evaluate Region Hack (m-X)

Evaluates the region, ensuring that any variables appearing in

a defvar have their values set. When no region has been de-

fined, it evaluates the current definition. It shows the results

in the echo area.

Evaluate Region Verbose (c-m-sh-E)

Evaluates the region. When no region has been defined, it

evaluates the current definition. It shows the results in a type-

out window.

(si:flavor-allowed-init-keywords flavor-name)

Returns a list containing the init keywords and initable in-

stance variables allowed for a particular flavor.

(si:flavor-allowed-init-keywords ’tv:basic-menu)

Function Apropos (m-X)

Displays all the Lisp functions whose print names contain a

particular substring. It reads the substring from the

minibuffer. By default, it searches the current package. You

can control the package being searched by giving the function

an argument. With c-U, it searches all packages; with c-U c-U,

it prompts for a package name.

(inspect object) (see also describe)

Creates or selects an Inspector window and displays available

information about an object. inspect and describe provide simi-

lar information, except that inspect is an interactive facility

for further exploring a data structure.

(inspect tv:selected-window)

(inspect (tv:window-under-mouse))

List Buffers (c-X c-B) (see also Edit Buffers)

Prints a list of all the buffers and their associated files. The

lines in the list are mouse sensitive, offering a menu of opera-

tions on the buffers. Clicking Left on a line selects the buffer.

For buffers with associated files, the version number of the file

appears. For buffers without associated files, the size of the

buffer in lines appears. For Dired buffers, the pathname used

for creating the buffer appears as the version. The list of

Page 2834

buffers appears sorted in order of last access, with the current-

ly selected one at the top. You can inhibit sorting by setting

zwei:*sort-zmacs-buffer-list* to nil.

List Callers (m-X) (see also Edit Callers, Multiple List Callers)

Lists all functions that call the specified function. It reads a

function name via the mouse or from the minibuffer with com-

pletion. By default, it searches the current package. You can

control the package being searched by giving the function an

argument. With c-U, it searches all packages; with c-U c-U, it

prompts for a package name. The names are mouse sensitive.

Use c-. (Next Possibility) to start editing the definitions in

the list.

List Changed Definitions (m-X) (see also Edit Changed Definitions)

Displays a list of any definitions that have been edited in any

buffer. Use c-. (Next Possibility) to start editing the defini-

tions in the list. Use a numeric argument to control the start-

ing point for determining what has changed:

1 For each buffer, since the file was last saved (the

 default).

2 For each buffer, since it was last read.

3 For each definition in each buffer, since the definition

 was last compiled. �

List Changed Definitions Of Buffer (m-X) (see also Edit Changed Definitions Of

Buffer)

Displays the names of definitions in the buffer that have

changed. It makes an internal list of the definitions changed

since the buffer was read in and offers to let you edit them.

Use c-. (Next Possibility) to move to subsequent definitions.

Use a numeric argument to control the starting point for de-

termining what has changed:

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled, for each definition

 in the buffer.�

List Combined Methods (m-X) (see also Edit Combined Methods)

Lists the methods for a specified message to a specified flavor.

It prompts first for a message name, then for a flavor name. It

lists the names in a typeout window. Error messages appear

when the flavor does not handle the message and when the fla-

vor requested is not a composed, instantiated flavor. Use c-.

(Next Possibility) to start editing the definitions in the list.

List Commands (m-X)

Lists names and one-line summaries for all extended commands

available in the current context. It displays the names in a

typeout window. The list is not sorted.

Page 2835

List Definitions (m-X)

Displays the definitions from a specified buffer. It reads the

buffer name from the minibuffer, using the current buffer as

the default. It displays the list as a typeout window. The indi-

vidual definition names are mouse sensitive.

List Matching Lines (m-X)

Displays all the lines following point in the current buffer that

contain a given string. It prompts for the string in the

minibuffer. With a numeric argument, it shows only the first n

occurrences of the string following point. The lines are mouse

sensitive.

List Matching Symbols (m-X)

Lists the symbols that satisfy a predicate. It prompts for a

predicate lambda expression of one argument. The predicate

gets compiled, for speed. The predicate must return something

other than nil for the symbol to be included in the list. For ex-

ample

you pressed: m-X L M S

minibuffer contains: ’(LAMBDA (SYMBOL))

revised minibuffer: ’(LAMBDA (SYMBOL) (string-search "foo"

 symbol))�

By default, it searches the current package. You can control

the package being searched by giving the function an argu-

ment. With c-U, it searches all packages; with c-U c-U, it

prompts for a package name. It selects the first one; use c-.

(Next Possibility) to move to a subsequent definition.

List Methods (m-X) (see also Edit Methods)

Lists all the function specs for all methods on any flavor that

handle a particular message. It prompts for the message name.

It finds all the flavors with methods for the message and dis-

plays the information in a typeout window. The function specs

are mouse sensitive.

List Registers (m-X)Displays names and contents of all defined registers. Use Apro-

pos to see commands for manipulating registers.

List Some Word Abbrevs (m-X)

Lists the abbreviations or expansions that contain the given

string. Use Apropos to see the other abbreviation commands.

List Tag Tables (m-X)

Lists the names of all the tag tables currently available. Use

Apropos to see other commands using tags.

List Variables (m-X)Lists all Zmacs variable names and their values. With a nu-

meric argument, it also displays the documentation line for the

variable. Zmacs variables are those that have been provided for

customizing the editor. Their names differ from their internal

Page 2836

Lisp names:

Zmacs variable name: Fill Column

Internal Lisp name: zwei:*fill-column*�

List Word Abbrevs (m-X)

Lists all current abbreviations and their expansions.

(compiler:load-compiler-warnings file flush-flag) (see also "Load Compiler Warn-

ings")

Loads a file containing compiler warning messages into the

warnings database. It expects to load a file containing the

printed representation of compiler warnings (as saved by print-

compiler-warnings). It uses flush-flag to determine whether to

replace any of the warnings already in the database. When the

flag is not nil, it deletes any warnings associated with a source

file before loading any new warnings for that file. Otherwise,

it merges warnings from the file with those already in the

warnings database. The default is t.

Load Compiler Warnings (m-X) (see also compiler:load-compiler-warnings)

Loads a file containing compiler warning messages into the

warnings database. It prompts for the name of a file that con-

tains the printed representation of compiler warnings. It al-

ways replaces any warnings already in the database.

Long Documentation (c-sh-D) (see also Show Documentation)

Displays the summary documentation for the specified Lisp

function. It prompts for a function name, which you can either

type in or select with the mouse. The default is the current

function.

m-. See Edit Definition.

m-ESCAPE See Evaluate Minibuffer.

m-sh-A See Show Documentation Function.

m-sh-C See Compile Changed Definitions Of Buffer.

m-sh-D See Show Documentation.

m-sh-E See Evaluate Changed Definitions Of Buffer.

m-sh-F See Show Documentation Flavor.

m-sh-V See Show Documentation Variable.

Macro Expand Expression (c-sh-M, m-X)

Displays the macro expansion of the next Lisp expression in

the buffer. It reads the Lisp expression following point and ex-

pands all macros within it at all levels, displaying the result

on the typeout window. With a numeric argument, it pretty-

prints the result back into the buffer, immediately following

the expression.

Page 2837

(mexp) (see also disassemble)

Displays the expansion of a macro. It prompts for a macro in-

vocation to expand and then displays its expansion without

evaluating it. It continues prompting until you enter something

that is not a cons (for example, nil stops it.)

Multiple Edit Callers (m-X) (see also Edit Callers)

Prepares for editing all functions that call the specified ones.

It reads a function name from the minibuffer, with completion.

It then keeps asking for another function name until you end

it with just RETURN. By default, it searches the current pack-

age. You can control the package being searched by giving the

function an argument. With c-U, it searches all packages; with

c-U c-U, it prompts for a package name. It selects the first

caller; use c-. (Next Possibility) to move to a subsequent defi-

nition.

Multiple List Callers (m-X) (see also List Callers)

Lists all the functions that call the specified functions. It reads

a function name from the minibuffer, with completion. It con-

tinues prompting for a function name until you end it with

just RETURN. By default, it searches the current package. You

can control the package being searched by giving the function

an argument. With c-U, it searches all packages; with c-U c-U,

it prompts for a package name. Use c-. (Next Possibility) to

start editing the definitions in the list.

Print Modifications (m-X)

Displays the lines in the current buffer that have changed

since the file was first read into a buffer. With a numeric ar-

gument, it displays the lines that have changed since the last

save. To provide context, it shows the first line of each section

that contains a change, whether or not that line has changed.

The lines are mouse sensitive, allowing you to move to the lo-

cation of a change.

Quick Arglist (c-sh-A) (see also arglist)

Displays the argument list for the current function. With a nu-

meric argument, it reads the function name via the mouse or

from the minibuffer. When the original function uses a values

declaration, Quick Arglist returns the names for the values re-

turned by the function.

Quit (c-Z) Returns from top level. It selects the window from which the

last (ed) function or the last Debugger c-E command was exe-

cuted.

Select Some Buffers as Tag Table (m-X)

Creates a tag table by selecting some buffers currently read in,

querying about each one. With a numeric argument, it asks on-

ly about buffers whose name contains a given string.

Page 2838

Select System as Tag Table (m-X)

Creates a tag table for all the files in a system. It uses the file

names as they appear in the defsystem function for that sys-

tem.

Show Documentation (m-X, m-sh-D)

Looks up a topic from the documentation database and displays

it on a typeout window. It offers the current definition as a

default, but prompts for a definition, which can be supplied by

mouse or minibuffer. It accepts only those topics for which

documentation has been installed.

Show Documentation Flavor (m-sh-F)

Displays the documentation for the current flavor. With a nu-

meric argument, it prompts for a device. The devices currently

supported are the screen and an LGP printer.

Show Documentation Function (m-sh-A)

Displays the documentation for the current function. With a

numeric argument, it prompts for a device. The devices cur-

rently supported are the screen and an LGP printer.

Show Documentation Variable (m-sh-V)

Displays the documentation for the current variable. With a

numeric argument, it prompts for a device. The devices cur-

rently supported are the screen and an LGP printer.

Show Flavor Initializations (c-sh-F)

Displays the initializations for the current flavor.

Tags Search (m-X) Searches all files in a tags table for a specified string. It reads

the string from the minibuffer and then prompts for a tags ta-

ble name.

Trace (m-X) (see also untrace)

Toggles tracing for a function. With a numeric argument, it

simply enables tracing for some function, without prompting

you for trace options. It uses the same interface for specifying

options as the Trace program in the System menu. See the sec-

tion "Tracing Function Execution".

(trace specs) (see also untrace)

Turns on tracing for a function. With no arguments, it returns

a list of all things currently being traced. With no additional

options, tracing displays the name and arguments for a func-

tion each time it is called and its name and value(s) each time

it returns. Complex options are available for entering break-

points or executing code conditionally during tracing. See the

section "Tracing Function Execution". See the section "Trace".

(trace foo bar)

(trace #’(:method command-found :push))

Page 2839

Tracing very common functions (like zl:format) or functions

used by trace itself or by the scheduler (like time:get-time)

can crash the machine.

(untrace specs) Turns off tracing for a function that is being traced. With no

argument, it turns off tracing for all functions currently being

traced.

(variable-boundp variable)

Returns nil or t indicating whether or not the variable is

bound.

(variable-boundp tv:current-window)

(what-files-call symbol package)

Displays the names of files that contain uses of symbol as a

function, variable, or constant. It searches all the function cells

of all the symbols in package. By default, it searches the

global package and its descendants. It returns a list of the

pathnames of the files containing the callers.

Where Is Symbol (m-X)

Displays the names of packages that contain symbols with the

specified name.

(where-is string package)

Displays the names of all packages that contain a symbol

whose print name is string. It ignores the case of string. By

default, it looks in the global package and its descendants.

where-is returns a list of the symbols that it finds.

(where-is "foobar")

(who-calls symbol package inferiors superiors)

Displays a line of information about uses of the symbol as a

function, variable, or constant. It searches all the function cells

of all the symbols in package. By default, it searches the

global package and its descendants. It returns a list of the

names of the callers.

(who-calls ’time:get-time ’hacks)�

Additional Zmacs Commands:�

Add Patch Changed Definitions Of Tag Table

Adds any definitions that have changed in any of the buffers.

Compile Changed Definitions Of Tag Table

Compiles any definitions that have changed in any of the

buffers.

Page 2840

Edit Callers In System

Prepares for editing all functions in the specified system that

call the specified function.

Edit System Files Reads all the files of a system into buffers.

Find Files In Tag Table

Reads all files in the current tag table into the editor.

List Callers In System

Lists all functions in the specified system that call the speci-

fied function.

Multiple Edit Callers In System

Prepares for editing all functions in the specified system that

call any of the specified functions.

Multiple Edit Callers Intersection In System

Prepares for editing all functions in the specified system that

call all of the specified functions.

Multiple List Callers In System

Lists all functions in the specified system that call any of the

specified functions.

Multiple List Callers Intersection In System

Lists all functions in the specified system that call all of the

specified functions.

Next File Moves to the next file in the tag table, skipping the remainder

of the current file.

Select All Buffers As Tag Table

Selects all buffers currently read in.

Select Some Files As Tag Table

Selects some files as a tag table. Read successive pathnames

from the minibuffer.

Select System Change Buffer

Selects the system change buffer for the current system

change.

Select System Version As Tag Table

Selects all the files in a specified major version of a system as

a tag table.

Select Tag Table Makes a tag table current for commands like Tags Search.

Show All Section Changes Of System

Displays the changes to all buffer sections for all files in a

system.

Tags Edit Compare Differences

Sets up c-. to visit all of the compare differences in the cur-

rent tag table.

Page 2841

Tags Find Pattern Moves to next occurrence of the given pattern within files.

Tags Multiple Query Replace

Replaces occurrences of any number of strings with other

strings within the tag table.

Tags Multiple Query Replace From Buffer

Replaces occurrences of any number of strings with other

strings within the tag table.

Tags Query Replace

Replaces occurrences of one string with another within the tag

table files.

Tags Spell Reads through the buffers of the tag table and collect mis-

spellings into a buffer.

Take Merge Choice Prompts for a tag, and inserts the text for that tag into the

merge results.

Visit Tag Table Reads in the specified tag table file.

Editing Your Input

When you make a mistake in typing or change your mind when typing a command

or expression to the system, you have two choices:

• Press ABORT and begin again.

• Edit your input.�

You do not need to invoke the input editor explicitly. The input editor is a feature

of all interactive streams.

For a complete list of the commands available in the input editor, press c-HELP or

see the section "Input Editor Commands".

Histories and Yanking

A history remembers commands and pieces of text, placing them in a history list.

Additions to the history are placed at the top of the list, so that history elements

are stored in reverse chronological order  the newer elements at the top of the

history, the older elements toward the bottom.

Yanking commands pull in the elements of a history. Top-level commands start a

yanking sequence. Other commands perform all subsequent yanks in the same se-

quence. A yanking sequence ends when you type new text, execute a form or com-

mand, or start another yanking sequence.

The system has different histories for different contexts. One of these is always

the current history.

Page 2842

Types of Histories

Genera uses the following histories:

Input History containing text typed at the input editor; a separate

history exists for each window.

Kill History of text deleted or saved in any window; a global histo-

ry.

Replace History of arguments to Query Replace (m-X) and related com-

mands.

Buffer History of editor buffers visited in this window.

Pathname History of file names that have been typed.

Command History of editor commands that use the minibuffer, and their

arguments. Commands that do not use the minibuffer, such as

m-RUBOUT, are not recorded in the history.

Definition History of names of definitions that have been typed.

Except for the input histories, which are per-window, only a single instance of

each of these histories exists, shared among all editors, including Zmacs, Zmail,

and Dired.

Input Editor

In the input editor c-m-Y yanks from the history of previous inputs.

Because the input editor’s kill history is the same as the Zwei kill history,

c-SPACE, c-W, m-W, c-<, c->, c-Y, and related commands can be used in the input

editor to move text back and forth between Zmacs, Zmail and the Input Editor.

(Press c-HELP for a summary of commands.) Unlike Zwei, however, the input edi-

tor does not underline a marked region.

You can use most Zwei editing commands on yanked forms. Reactivating a yanked

form is simple: just press END anywhere within or at the end of the form. ESCAPE

displays the history of previous inputs. A numeric argument controls the length of

the input history to be displayed. An argument of 0 displays the entire history.

c-ESCAPE displays the default kill history. A numeric argument controls the length

of the kill history to be displayed. An argument of 0 displays the entire history.

The Displayed Default

When a command that reads an argument in the minibuffer displays a default, it

puts the default onto the history temporarily. After reading and defaulting your

input, it puts the argument onto the history instead. Thus c-m-Y always yanks the

displayed default and c-m-2 c-m-Y yanks the last thing typed in that context. If no

default is displayed, c-m-Y yanks the last thing typed in that context.

The displayed default is usually not the same as the most recent item in the his-

tory; often it is computed according to some heuristic based on past history and

Page 2843

the exact command being given. It is pushed onto the top of the history in order

to allow you to easily yank and edit it. This is useful when the heuristic comes

close but does not provide exactly what you want.

Using Numeric Arguments for Yanking

A numeric argument of 0 to any yank command displays a list of the history and

the numeric argument required to get each element of the history.

Example: The input history invoked in a Dynamic Lisp Listener by c-m-0 c-m-Y:

Lisp Listener 1 Input history:

 1: (+ 210 32)

 2: (* 17 6)

 3: Load Patches

 4: Show System Modifications

 5: Show Herald

 6: Login KJones�

The history is displayed in reverse chronological order  the newest element first,

for example, (+ 210 32); the oldest last, for example, Login KJones.

By default, a positive argument to c-Y and c-m-Y specifies how far from the

newest element into past history is the element to be yanked. The numbers in the

history display can be used as numeric arguments. (Optionally, you can set the

variable zwei:*history-rotate-if-numeric-arg* so that arguments to the yanking

commands are measured relative to the origin. See the section "Customizing the

Input Editor".)

Example: c-m-1 c-m-Y yanks element #1, (+ 210 32), from the history.

Example: c-m-2 c-m-Y yanks element #2, (* 17 6), from the history.

A positive or negative argument to m-Y is measured relative to the last element

yanked, not the newest element.

Example: Pressing c-m-2 c-m-Y yanks (* 17 6); then pressing m-4 m-Y yanks

Login KJones, not element #4. Displaying the history at this point looks like this:

Lisp Listener 1 Input history:

 1: (+ 210 32)

 2: (* 17 6)

 3: Load Patches

 4: Show System Modifications

 5: Show Herald

-> 6: Login KJones�

Element #6, marked by a pointer, is the origin. (Note: The origin is not the most

recent element because m-Y has changed the origin.)

A top-level command given without an argument retrieves the element at the ori-

gin, which is the last element yanked in the previous yanking sequence, not neces-

sarily the newest element of the history.

Page 2844

Example: c-m-Y yanks Login KJones) from the history.

A numeric argument of c-U not followed by any digits is the same as no numeric

argument with one exception: Point is placed before the text yanked and mark is

placed after  the reverse of the ordinary placement.

To find out how to customize the input editor, see the section "Customizing the In-

put Editor".

System Conventions and Helpful Hints

Miscellaneous Conventions

All uses of the phrase "Lisp reader", unless further qualified, refer to the part of

Lisp that reads characters from I/O streams (the zl:read function), and not the

person reading this documentation.

By default, Symbolics Common Lisp displays numbers in base 10. If you wish to

change it: See the section "What the Reader Recognizes".

Several terms that are used widely in other references on Lisp are not used much

in Symbolics documentation, as they have become largely obsolete and misleading.

They are: "S-expression", which means the printed representation of a lisp object;

"Dotted pair", which means a cons; and "Atom", which means, roughly, symbols

and numbers and sometimes other things, but not conses.

Answering Questions the System Asks

The system occasionally asks you to confirm some command. There are two forms

this can take:

• Simple commands such as Load File or Save File Buffers might ask you to con-

firm with a question requiring a Y (for yes) or an N (for no).

Save Buffer program.lisp >kjones>new-project> tuna: ? (Y or N)�

You press Y or SPACE for yes, N for no.

• Destructive commands, such as Initialize Mail, require that you type the entire

word yes to confirm them.

Do you really want to do this? (Yes or No)�

You must type the entire word yes to confirm the the command. Thus you are

less likely to issue such a command accidentally.�

Lisp provides several functions for this kind of querying: See the section "Querying

the User".

Questions Users Commonly Ask

Page 2845

What is a Logical Pathname?

A logical pathname is a kind of pathname that doesn’t correspond to any particular

physical file server or host. Logical pathnames are used to make it easy to keep

software on more than one file system. An important example is the software that

constitutes the Genera system. Every site has a copy of the basic sources of the

programs that are loaded into the initial Lisp environment. Some sites might store

the sources on a UNIX file system, while others might store them on a TOPS-20.

However, the software needs to find these files no matter where they are stored.

This is accomplished by using a logical host called SYS. All pathnames for system

software files are actually logical pathnames with host SYS. At each site, SYS is

defined as a logical host, and there is a translation table that maps the SYS host

to the actual physical machine for that site.

Here is how translation is done. For each logical host, there is a mapping that

takes the name of a directory on the logical host, and produces a device and a di-

rectory for the corresponding physical host. For example, the logical host SYS has

a directory SITE;. At a site that keeps its sources on a TOPS-20 this might map

to SS:<SITE> . Then the file SYS:SITE;NAMESPACE.LISP translates to

SS:<SITE>NAMESPACE.LISP. On a UNIX system this same file might translate to

/usr/system/namespace.l. The important thing is that everyone can refer to the file

by its logical pathname, SYS:SITE;NAMESPACE.LISP, where the name before the ":" is

the logical host name, and logical directories are separated by ";"s. You can define

the translation of a logical pathname to be any physical pathname of any operating

system type, but to access a file with a logical pathname you need only to use logi-

cal pathname syntax. See the section "Logical Pathnames".

The function fs:set-logical-pathname-host is used to define a logical host and its

logical directories. Here are some sample uses:

(fs:set-logical-pathname-host "SYS" :physical-host "my-vms"

 :translations ’(("games;" "[games]")

 ("*;" "[symbolics.*]")))�

This says that SYS:GAMES; translates to my-vms:[games], and that any other logical

directory on the logical host SYS translates to a subdirectory under [symbolics] of

the same name. See the function fs:set-logical-pathname-host.

What is a World Load?

A world load can generally be thought of as a snapshot of an operating Lisp envi-

ronment. All of the functions, variables, and other Lisp objects that were present

in the Lisp environment when the snapshot was made are contained in the world

load file on the disk.

Typically, snapshots of worlds are made only when such a snapshot would save sig-

nificant time later. For example, after you have initially configured your new ma-

chine at your site, it is useful to make a snapshot of the configured environment

because it saves you time in the future (you don’t have to configure the machine

each time you boot it). If you usually load MACSYMA or FORTRAN each time you

boot, it is advantageous to make a snapshot of a world with that software loaded,

to save you the time of loading it.

Page 2846

Remember, everything in the environment is contained in the snapshot, so you

don’t want to create a world load file after you’ve been using the editor or most

system facilities (you don’t want to find old text in your editor buffer when you

cold boot.). The way to create a snapshot and save it to disk is by using the com-

mand Save World or the function (zl:disk-save).

World loads are stored in world-load files. These are FEP files with the file type

.load. There are three kinds of world-load files:

• Complete worlds that can be loaded and run as is. If you load a world, load

MACSYMA, and then save the whole world, you have a complete world as the

result.

• IDS (Incremental Disk Save) worlds that can have parents and offspring. If you

load a world without MACSYMA in it, load MACSYMA, and do an incremental

save, you have an IDS world as the result. When you load an IDS world, it calls

for its parents and loads them as well.

• Netboot cores that are used to effect netbooting. Netboot cores are very small

world-load files that can seek out worlds on remote netboot server machines and

boot those worlds from there.

What is a Netboot Core?

A netboot core is a world load consisting of the restricted set of capacties neces-

sary to netboot. A netboot core can find a world on a netboot server and boot it

from there. A netboot core file is usually about 100 blocks. Any Genera 7.2 or later

world-load file can be used as a netboot core.

For more information: See the section "Netbooting".

How to Delete and Expunge a File Left Open by an Aborted Restore Distribu-

tion

If your machine halts at an inopportune time, for instance when a file is open for

writing during a Disk Restore, you might leave LMFS’s data structures in an in-

consistent state; c-m-ABORT or, in some circumstances, c-ABORT can do this, espe-

cially on Ivory machines. If the internal structure is inconsistent LMFS is not able

to Delete and Expunge. This leaves the file marked with a W. Deleting and expung-

ing seems to have no effect. The file has length 0, and you cannot open it because

it is already open. [Close All Files] doesn’t affect the file’s status. Try a warm

boot (of the server machine, of course). After a boot, LMFS’s datastructures are

rebuilt. The file is still marked with a W because LMFS knows that it was in the

middle of being written, but you can delete and expunge it normally.

Why do you name machines and printers?

Page 2847

Naming inanimate objects such as hosts, printers, sites, and networks may seem

foolish if you have only one of each, but if you have large numbers of machines,

names are a convenient way to easily refer to a particular machine with a particu-

lar address without having to remember its network address, machine type, and

physical location. One customer named its machines after the characters in Winnie

the Pooh, while another named its machines after the wives of Henry VIII.

Why Does My Machine Sometimes Crash During a GC When Show GC Status

Says There is Enough Room?

The estimate of how much space the Garbage Collector is going to need is just

that, an estimate. If you have not done a garbage collection before in this boot

session, and if you boot a world from your local FEP, it is difficult to estimate

how many dynamic objects there are in your world due to the effects of swap mi-

gration on how much copy space is needed. For the details of swap migration, see

the section "Swap Migration and Garbage Collection".

Questions about the FEP and LMFS

Why can’t I write out files when I have free disk space?

The disk attached to a Symbolics machine is physically divided into partitions

known as FEP files. This division of the disk is called the FEP file system. How-

ever, when one speaks of the file system of a Symbolics machine, one is generally

referring to the LMFS (Lisp Machine File System) of that machine. This is the

file system you edit when you click left on [Tree Edit Root] in the FSEdit window,

and is the file system used when you specify file names of the form Symbolics Ma-

chine Name:>directory>filename.type.version. The entire Genera local file system

normally resides inside one big file of the FEP file system (typically

FEP0:>LMFS.FILE.1). Thus, LMFS is full when the amount of space allocated to it

(in other words, FEP0:>LMFS.FILE.1) is full. Thus, LMFS could be full but there

could still be 100,000 unused blocks on the disk (not even allocated as FEP files).

See the section "Adding a LMFS Partition".

How do I create a FEP file?

There aren’t too many reasons for creating FEP files. If you want to create a file

to allocate more LMFS file space, simply enter the File System Editing Operations

window, by using SELECT F, by clicking on [File System] in the System menu, or

by using the Select Activity File System Operations command. Then click on [Local

LMFS Operations]. The second-level menu pops up. Click on [LMFS Maintenance

Operations]. Click Right on [Initialize]. A menu pops up. Click on [Auxiliary Parti-

tion] and click on the name above this so that you can specify a name for the aux-

iliary partition. Typically, a good name is FEP0:>LMFS-AUX.FILE. (Of course, if

you have more than one drive, or a FEP file named LMFS-AUX.FILE already ex-

ists, you should choose another name.) Then click on [Do It]. It will ask you how

much space to allocate to this file; specify a number of blocks.

Page 2848

When working with FEP files, the File System Editor is good only for creating

FEP files to be allocated to LMFS. If you need a FEP file for another purpose (ex-

tra paging, for example) and create it with FSEdit, the LMFS data structure con-

tained on your disk might become very confused, and can potentially destroy the

file system of your machine. The Create FEP File command creates a FEP file for

purposes other than a LMFS partition. See the section "Create FEP File

Command". The following Lisp function also creates such a FEP file:

(WITH-OPEN-FILE (FILE FEPn:>Filename.type.version

 :DIRECTION :BLOCK

 :IF-EXISTS :ERROR)

 (SEND FILE :GROW 30000))�

The italicized string above represents the name of the FEP file to be created, and

the italicized 30000 represents the size you want to make the file.

For more information about LMFS and the FEP file system: See the section "FEP

File Systems".

� HackSaws

HackSaws are interesting, often little known, facts about Genera. In some cases,

they are things that have passed into folklore and, while documented, are often not

emphasized or obvious to a newcomer to the machine. The name comes from hack,

a neat trick, and saw, a familiar saying. They are useful commands, functions,

tools, and workstyle advice that expert users of Symbolics computers usually know

and use automatically but do not think of telling a new user about. Often there is

no very good way to categorize or index these HackSaws, thus making it difficult

to present them coherently to a user.

The HackSaw facility provides a file of these facts, accessed by the Show HackSaw

command, which is bound to m-HELP for ease of typing. m-HELP opens the file and

selects a HackSaw at random, displaying it on your screen.

The commands for displaying HackSaws and for adding your own site-specific or

personalized file of hints and interesting facts are:

Show HackSaw Command

Shows an interesting fact about Genera.

Add HackSaw Command

Lets you add your own interesting facts to the HackSaw files.

Find HackSaw Command

Finds a HackSaw containing some particular term.

Load HackSaw File Command

Loads all HackSaw files. This is designed to be used with

cp:execute-command in an init file.

The HackSaws are stored in the file SYS:DATA;HACKSAW.TEXT. It is a plain text file.

The individual HackSaws are separated by a down-arrow, sy-H, on a line by itself.

Page 2849

Although you can edit this file to add HackSaws, you should not do so since when

new software releases are distributed, a new version of hacksaw.text is included

and you would then have to merge your extensions with the new file. The file

sYS:DATA;HACKSAW-EXTENSIONS.TEXT is intended for your use to add your own favorite

HackSaws or site-specific facts and hints. You can add items to hacksaw-

extensions.text by editing the file directly, being careful to separate individual

items with sy-H on a line by itself, or you can use the Add HackSaw command.

You can also create your own personal file of helpful hints to be accessed by

m-HELP.

To include your own personal file in the HackSaw facility, add it to the list in

approach:*hacksaw-extension-files* by putting something like this in your init

file:

(push "Wombat:>KJones>my-hacksaws.text"

 approach:*hacksaw-extension-files*)

(See the section "How to Create an Init File".) The initial contents of

approach:*hacksaw-extension-files* is the file SYS:DATA;HACKSAW-EXTENSIONS.TEXT.

When you use Show HackSaw for the first time (or when you use Load HackSaw

File), this list is checked and all the files on it are loaded.

If you place the form (cp:execute-command "Show HackSaw") in your init file, you

can see a HackSaw automatically everytime you log in.

You can change the key that Show HackSaw is bound to by changing meta-help in

the following form to the key of your choice:

(si:add-ie-command ’key-bindable-show-hacksaw #\meta-help)

The nature of HackSaws means that they are very useful when you need them, but

are not always easy to remember if you have not yet had the need for them. If you

have seen one go by and then later find a need for that bit of information, you can

locate it using Find HackSaw. For example, if you have seen

In Zmacs or Zmail, you can click m-Left on a definition name to edit it.�

You might remember that it was something useful about editing definitions, so you

type Find HackSaw definition and Find HackSaw displays all the HackSaws that

contain the string definition. Of course, you can also use Find HackSaw to search

the HackSaw files for HackSaws on a particular topic.

Recovering From Errors and Stuck States

Sometimes it is hard to know whether or not your machine is in trouble, because

some operations, particularly those involving other machines on a network, can

take a long time. Periodically check the process state and the run bars on the sta-

tus line. The run bars flicker when the machine is working. UX-family machine

consoles do not always have run bars, so if you have a UX-family machine you

must rely on the process state changing. As long as the run bars are flickering

and the process state is changing occasionally, the machine is probably working

properly. Some process states mean trouble if they persist, say, for a minute or

more.

Page 2850

Look at the clock in the status line. If the clock is ticking, processes are being

scheduled. If the clock is not ticking, the machine is halted. As long as the FEP is

working, it prints a message on the screen when the machine has halted and then

gives its FEP Command:> prompt. When the machine resumes its previous state, it

updates the clock with the correct time.

Recovery Procedures

If the status line displays one of the following process states, recover by using the

appropriate procedure:

Wait Forever Select a different window, then reselect the one you were in.

Output Hold Press FUNCTION ESCAPE; if that puts you in the Debugger, use

ABORT.

Arrest Press FUNCTION - A (that is, a three-key sequence).

Lock Try FUNCTION 0 S to see if any windows want to type out. If

that does not help, press c-ABORT.

Selected Press FUNCTION 0 S.

(no window) Some windows take several seconds to initialize, but if (no

window) persists with no run bar activity, use the mouse or

SELECT key to select the window you want.�

If you are still stuck, you can press SUSPEND to get to a Lisp read-eval-print loop.

You can press c-m-SUSPEND to force the current process into the Debugger.

Errors that are not caught and handled by the program that triggered them invoke

the Debugger. See the section "Entering the Debugger".

The Cold Load Stream

Occasionally an error in the window system and an attempt to abort a process at

the wrong instant causes you to go into the cold load stream. The cold load stream

is the bare Lisp system that underlies Genera and the window system. When you

are in the cold load stream, you see a message including the phrase

--> ... using the cold load stream <--

You still have the full capability of Lisp, you just do not have access to the win-

dow oriented display features, including the mouse.

Exactly what you should do to get out of the cold load stream depends on what er-

ror caused you to end up there. However, there is usually something you can do. If

you are in the Debugger in the cold load stream, you can press c-M to generate a

backtrace to be sent as a bug report. After you have successfully exited from the

cold load stream and the sheduler has restarted, the bug mail window comes up

with your backtrace and you can send the report. To exit from the cold load

stream:

• Be sure to read the error message carefully. Some errors give explicit informa-

tion about what went wrong and how you can recover.

Page 2851

• Process-related errors often have a restart option to arrest the process and

restart the scheduler.�

After you are out of the cold load stream, your window system might be in a

strange state. There are several things to try:

• FUNCTION ESCAPE to get out of output hold.

• FUNCTION c-T to clear any pop-up windows.

• FUNCTION c-CLEAR INPUT to clear all window system locks.

• SELECT L to get back to a Lisp Listener.

• If the mouse process was the problem and you arrested it, use Initialize Mouse

to restart it.

You can enter the cold load stream explicitly with FUNCTION SUSPEND. RESUME re-

turns you to the window system.

If you have a UX-family machine and you have been in the cold load stream for

more than 60 seconds, when you try to return, you might find that your console

window has disappeared. That is due to TCP dropping the connection between the

Ux-family machine board and the X-windows application. You can recover by press-

ing c-C to get out of the genera program. Then run genera again.

� Warm Booting

Warm booting is a recovery procedure that may enable you to restart Lisp in order

to save buffers and mail. It destroys the state of the process running at the time

of the boot, destroys the state of the window system, and resets all network con-

nections. If you warm boot after a crash, do not expect to continue running for

very long after a warm boot, unless the cause of the crash can be rectified.

Once you’ve warm booted, save your work, try to determine the cause of the crash,

and cold boot the machine. For information about investigating problems that

cause your machine to crash, see the section "Debugging in the FEP".

Warm boot the machine by using one of the following procedures:

1. If the machine crashed, issue the Show Status FEP command at the FEP

prompt, check the information it provides, and then issue the Start FEP com-

mand. For information about checking the information that the Show Status

FEP command provides, see the section "Debugging in the FEP".

2. If the machine did not crash, but is unresponsive, issue the Command Proces-

sor (CP) Halt Machine command, or press h-c-FUNCTION if you cannot get a

Lisp Listener or if the Lisp Listener is not responding to keyboard input.

(Note: on UX-family machines h-c-FUNCTION only works from the cold load

Page 2852

stream, so you might have to first enter the cold load stream with FUNCTION

SUSPEND or by opening the cold load icon in order to enter the FEP.) Then,

issue the Start FEP command at the FEP prompt. For information about halt-

ing Lisp, see the section "Halting". Alternatively, on MacIvory machines, you

can choose Restart Lisp from the Ivory menu item to warm boot Lisp.�

Note: On MacIvory machines, choosing Shutdown from the Ivory menu, subse-

quently choosing Quit from the File menu, and then choosing Restart Lisp Ivory

menu item also causes a warm boot.

In this case, though, because you have properly shut down Lisp (instead of having

crashed), you can expect to operate normally; your machine’s state will be as it

was before quitting Lisp (rather than initialized, as it would be after a cold boot).

Halting

Halting the machine leaves all Lisp states intact. To halt the machine in order to

connect to the FEP, type Halt Machine to a Lisp Listener or press h-c-FUNCTION.

You are now connected to the FEP. To return to Lisp, type continue at the FEP

prompt (FEP Command>) and press RETURN.

The machine can halt itself under exceptional conditions. In this case, try typing

continue. If continue does not work, use start. See the section "Warm Booting".�

Resetting the FEP

Resetting the FEP clears FEP memory. You can reset the FEP either from the

keyboard or from the processor’s front panel. On 3600-family machines, you must

reset the FEP if you receive the error message No More Memory.

To reset the FEP from the keyboard:

1. Type the Halt Machine command at a Command Processor command prompt

to stop Lisp. If the Command Processor does not respond, press h-c-FUNCTION

to stop Lisp.

On UX-family machines, h-c-FUNCTION only works from the cold load stream,

so if the CP does not respond, you have enter the cold load stream by press-

ing FUNCTION SUSPEND or by opening the cold load icon and then press

h-c-FUNCTION.

On MacIvory machines, you can also click on Transfer to FEP in the Ivory

menu.

2. Type the command Reset FEP to the FEP prompt.

3. Press Y to answer the confirmation prompt.�

Page 2853

To reset a 3600 machine model from the front panel, press the RESET button and

then press the spring-loaded YES switch to answer the "Reset FEP?" query.

To reset a 3610, 3620, 3640, 3645, 3670, or 3675 from the front panel, press the

RESET button on the processor front panel.

To reset a 3650 from the front panel, turn the key switch momentarily to RESET.

To reset an XL400 from the front panel, press the RESET button on the processor

front panel.

To reset a MacIvory click on Cold Boot FEP in the Ivory menu.

The only way to reset the FEP on a UX-family machine is with the Reset FEP

command.

Type the Hello command to the FEP prompt, give the Start command, and press

RETURN to warm boot the machine and to to Lisp.

How to Get Output to a Printer

Introduction to the Hardcopy Facilities

The Hardcopy system provides a uniform interface for sending output to a printer.

It allows the user or the program to specify formatting information in a device in-

dependent way for output on a supported printer.

In order for menu items, commands, and functions that refer to printing and hard-

copy to work, your site must have a properly connected printing device.

Printing and Hardcopy Commands

Commands for Producing Hardcopy

You can produce hardcopy from the Command Processor, by using the System

menu, from the editor, from Zmail, from Dired in the editor, and from the File

System Editor. You can also get a hardcopy of your screen at any time.

You can hardcopy topics from Document Examiner. See the section "Document Ex-

aminer".

Hardcopying from the Command Processor

Hardcopy File Command

Hardcopy File pathname printer keywords�

Sends a file to a hardcopy device.

Page 2854

pathname The pathname of the file you are printing. You can specify

more than one file by separating the pathnames with commas.

printer The printer on which you are printing the file. The default is

the default hardcopy text printer (the value of

hardcopy:*default-text-printer*).

keywords :Body Character Style, :Copies, :Delete, :Ending Page,

:File Types, :Heading Character Style, :Notify, :Orientation,

:Print Cover Page, :Running Head, :Starting Page, :Title�

:Body Character Style

The character style used for printing the text of the file. You

can also use this character style for merging character styles

in the file. See the section "Understanding Character Styles".

:Copies {number} The number of copies you are printing. The default

is 1.

:Delete {Yes, No} Enables you to specify whether the file deletes after

printing. The default is No, not to delete.

:Ending Page {number} The last page you are printing. This command de-

faults to the last page of the file. Note that the page character

or form feed character identifies page breaks. The system

treats text files without page breaks as a single page, although

the file can use many sheets of paper.

Press format files contain form feeds or PAGE characters. Re-

member that these are physical pages and do not necessarily

correspond to the page numbering appearing in the heading.

For example, the first page of a press file is a title page, the

second page is numbered i, and the third page is numbered 1.

:File Types {ASCII, DMP1, LaserWriter, PostScript, Press, Text, XGP, use-

canonical-type} The internal format of the contents of the file,

to interpret for printing. The default is use-canonical-type,

meaning that the type is determined from the extension to the

file name.

:Heading Character Style

The character style used for the running head.

:Notify {Yes, No} Specifies whether to send a notification upon job

completion. The default is Yes.

:Orientation {Landscape, Portrait} Specifies the paper orientation for the

output. Portrait is left to right across the short dimension of

the paper. Landscape is left to right across the long dimension

of the paper. The default is Portrait.

:Print Cover Page {Yes, No} Specifies whether to print a cover page. The default

is Yes.

Page 2855

:Running Head {None, Numbered} Specifies the type of running head that

prints on the top of each page. The default is Numbered.

:Starting Page {number} The first page you are printing. This command de-

faults to the first page of the file. The page character or form

feed character identifies page breaks. The system treats text

files without page breaks as a single page, although the file

can use many sheets of paper.

Press format files contain form feeds or PAGE characters. Re-

member that these are physical pages and do not necessarily

correspond to the page numbering appearing in the heading.

For example, the first page of a press file is a title page, the

second page is numbered i, and the third page is numbered 1.

:Title {string} Specifies the title appearing on the cover page identi-

fying the output. The default is "File: pathname-you-specified ".

Hardcopying From the System Menu

You can produce hardcopy by clicking on [Hardcopy] in the System menu. The Ac-

cept Variable Values menu appears, enabling you to specify the pathname of the

file you are hardcopying, and to select the printer, character style, and the other

parameters offered by the Hardcopy command (see Figure 135).

Figure 161. The Hardcopy Menu

�

Hardcopying From Zmacs

You can use the following commands when hardcopying from Zmacs:

Page 2856

• Hardcopy Region Command

• Hardcopy Buffer Command

• Hardcopy File Command

• Kill or Save Buffers Command�

Hardcopy Region Command

Hardcopy Region (m-X)

Sends a region’s contents to the local hardcopy device for printing.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Hardcopy Buffer Command

Hardcopy Buffer (m-X)

Prompts for the name of a buffer and then prints the specified buffer on the local

hardcopy device.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Hardcopy File

Hardcopy File (m-X)

Enables you to specify the name of a file for printing on a local hardcopy device.

For full information on Genera hardcopying, see the section "How to Get Output

to a Printer".

Kill or Save Buffers Command

Kill Or Save Buffers (m-X)

Displays a menu listing all existing buffers. Modified buffers are initially marked

for saving. Choices are: Save, Kill, Unmodify, and Hardcopy. Specify these options

next to the buffer names in the menu. This command is bound to c-X c-m-B and

appears on the editor menu. Specifying a numerical argument to c-X c-m-B in-

hibits the initial marking of the menu.

Hardcopying From Zmail

You can use the following commands when producing hardcopy from Zmail:

Page 2857

• Hardcopy Message Command

• Hardcopy All Command

• Show Printer Status Zmail Command

• Hardcopy File Zmail Command

• Format File Zmail Command�

Hardcopy Message Command

Hardcopy Message (m-X)

Hardcopies the current message. Note that you can also click

Right on [Other] in the Zmail menu and select Hardcopy Mes-

sage. Additionally, you can click Right on the message summa-

ry line, and then click Right on [Move] and select Hardcopy.

Hardcopy All Command

Hardcopy All (m-X) Hardcopies all the messages in the current se-

quence. Note that you can also click Right on [Map

Over] and select [Hardcopy] for copying all mes-

sages in the current sequence.�

Note that whether you hardcopy a single message or hardcopy all messages in a

sequence, you can click Right on [Hardcopy] and specify the number of copies and

which printer to use. The Other option in the list of printers enables you to specify

an arbitrary printer, using either the pretty name or the namespace name. This

printer becomes the selected printer, and remains in the menu for subsequent

hardcopy commands.

Show Printer Status Zmail Command

Show Printer Status (m-X)

Prompts for the name of a printer and displays its print queue.�

Hardcopy File Zmail Command

Hardcopy File (m-X)�

Sends the file associated with the pathname you specify to the default printing de-

vice. The default is the first pathname specified in the File-References: header

field. If there is no File-References: field, the default is the current mail file.

Page 2858

Format File Zmail Command

Format File (m-X)�

Formats the file associated with the pathname you specify. c-U m-X Format File

formats the file and sends it to a printer. The default pathname is the first path-

name specified in the File-References: header field. If no File-References: field

exists, the default is the current mail file.

Hardcopying from Dired

You can hardcopy files in Dired by marking files. When you exit Dired, the marked

files are sent to the printer.

� P Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first column to show

that the file is marked.

You can specify a numeric argument n, marking the next n files for printing.

Hardcopying the Screen

You can produce a hardcopy of your screen by pressing FUNCTION Q or FUNCTION n

Q (where n is any numeric argument):

Function Q Captures a screen image for hardcopying or inserting in a file.

Function n Q (where n is any numeric argument, for example FUNCTION 0 Q)

Displays a menu of options for capturing screen images. Note

that the choices you make remain in effect for subsequent uses

of FUNCTION Q.

Figure 162. FUNCTION 0 Q

�

�

Source: options identify the area of the screen to capture:

Whole Screen A bitmap image of the entire screen

Page 2859

Note that a full-screen bitmap image includes a border around

the actual screen image. If you do not want this extra whites-

pace around the image, select the Named Image option and

edit the bitmap image using the "Refit Bounding Box Bitmap

Editor Command".

Main Screen All but the status area

Selected Window The window of the selected activity (for example, Symbolics

Concordia)

Window Under the Mouse

The window under the mouse cursor

Use this option when you cannot use the mouse to specify a

portion of the screen (for instance, to take a snapshot of a pop-

up menu).

Status Area The window at the bottom of the screen (including the mouse

information line(s))

Specify Rectangle Specify the area of the screen to be captured using the mouse

Window History The history of the specified window�

Shutter Trigger:

Mode Lock Captures the image when the MODE LOCK key is pressed. This

allows you to set up the screen a certain way, perhaps with a

menu showing, or the mouse cursor in a certain place.

Time Delay Allows you to specify a time delay before capturing the image.

The default is 5 seconds.

None Captures the image as soon as you click on [Done]. This is the

default.�

Hardcopying from the File System Editor

You can produce hardcopy using the system hardcopy menu from FSEdit by follow-

ing these steps:

1. Click Right on a file name. A menu of file operations appears.

2. Click on Hardcopy in the menu of file operations. The menu in Figure 25

appears.

3. You can modify any of the parameters displayed. Clicking on Done prints

the file. �

Page 2860

Figure 163. The Hardcopy Menu

�

�

Other Hardcopy Commands

Changing the default printer

You can change the default printer using the Set Printer Command.

Set Printer Command

Set Printer printer-name keywords�

Sets the default printer for hardcopy.

printer-name The name of a supported printer that can be reached by your

machine.

keywords :More Processing, :Output Destination, :Output Type�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, Printer, Stream, Window} Enables you

to direct the output of this command. The default is the

stream *standard-output*.

Page 2861

:Output Type {text bitmap both} Enables you to specify whether a printer

prints text (files and mail messages), bitmap (graphics and

screen hardcopy), or both text and bitmap.�

Additional Methods of Changing the Default Printer

• You can change the default printer in your init file by specifying the

printer most convenient for you. See the function hardcopy:set-default-

text-printer.

• The Hardcopy File command accepts a keyword argument of :printer en-

abling you to specify a printer. For example:

Hardcopy File q:>kjones>report.pr :printer beacon�

• Additionally, you can specify a different printer by clicking on the print-

er name.

• The System menu enables you to specify a different printer by clicking

on the printer name.�

You can view the default printer using the Show Printer Defaults command.

Show Printer Defaults Command

Show Printer Defaults keywords

Displays the current default printer(s). If you send all your hardcopy output to one

printer, the command returns:

Default Printer (for both text and bitmap output): printer-name

If you use a different printer for text and screen hardcopy, the command returns:

Default Text Printer: printer-name1

Default Bitmap Printer: printer-name2�

Managing the Print Queue

You can use the following commands for managing the print queue:

• Show Printer Status Command

• Delete Printer Request Command

• Restart Printer Request Command

• Halt Printer Command

Page 2862

• Start Printer Command

• Reset Printer Command�

Show Printer Status Command

Show Printer Status printer�

Displays the print queue for the specified printer or printers.

printer The name of a printer or printers (separated by commas)

whose print queue you are displaying. Specifying All displays

the queues for all printers at your site. The default is your

current printer. If your text printer and your bitmap printer

are different, the command uses your text printer as the de-

fault for Show Printer Status. �

The display of requests is mouse sensitive, enabling you to click on select argu-

ments when using either the Delete Printer Request or Restart Printer Request

commands.

Note that this command is also available in Zmail as m-X Show Printer Status.

Delete Printer Request Command

Delete Printer Request printer-request�

Deletes the specified print request from the print queue.

printer-request A string specifying the printer and the request you are delet-

ing. You can select the print request with the mouse from the

display of the Show Printer Status command. For more infor-

mation, see the section "Show Printer Status Command". You

can also specify the printer name to which you are sending re-

quests and use "c-? and c-/"for displaying all requests. For

more information, see the section "Completion in the Command

Processor".

keywords :Confirm �

:Confirm {Yes, No} Whether to request confirmation when you delete a

request currently printing. The default is Yes. �

Restart Printer Request Command

Page 2863

Restart Printer Request printer printer-request keywords�

Restarts a print request that you stopped before completion. For requests currently

printing, the printer resets and the request prints from the beginning. For re-

quests on hold, the printer requeues the request.

printer-request A string specifying the request. You can select the print re-

quest with the mouse from the display of the Show Printer

Status command. You can also specify the printer name to

which you sent the request and use "c-? and c-/" for display-

ing all requests. For more information, see the section "Com-

pletion in the Command Processor".

keywords :Extent, :Starting From

:Extent {Entire, Copy} The extent to which you are restarting a re-

quest. Entire refers to the whole request. Copy refers to a sin-

gle copy.

:Starting From {number} The number of the copy after which the printer

restarts. Note that you cannot use this keyword if you used the

:extent keyword specifying Entire. The default is 0. This option

is currently not used.

Halt Printer Command

Halt Printer printer keywords�

Halts the specified printer. The printer does not print any requests until you start

it using the "Start Printer Command".

printer The name of the printer you are halting.

keywords :Confirm, :Disposition, :Reason, :Urgency�

:Confirm {Yes, No} Whether to ask for confirmation. The default is Yes.

:Disposition {Delete, Hold, Restart} Enables you to specify whether the sys-

tem delete, hold, or restart the print request. The Delete op-

tion deletes the request from the queue. Hold retains the re-

quest in the queue but does not print it when the printer

restarts. Restart automatically prints the interrupted request

from the beginning when the printer restarts. The default is

Hold.

:Reason {string} Enables you to specify the reason for the shutdown.

This option appears in the display of the Show Printer Status

command and in the Print Spooler log. The default message is

"Printer printer-name being reset by user-id." �

You can use the following keyword to control precisely when the printer halts:

Page 2864

:Urgency {Asap, After-Current-Request, After-Next-Copy} Enables you to

specify when the printer halts. Asap indicates that the printer

halt and reset immediately. After-Current-Request indicates

that printer halt after the current request finishes printing.

After-Next-Copy indicates that the printer halt after the next

copy of the request prints. After-Next-Copy is the same as Af-

ter-Current-Reqest when the request is only for one copy. The

default is Asap.�

When you halt the printer, the Print Manager process enters a suspended state

until you start it again.

Note that you can halt, start, or reset a spooled printer from any machine on the

network.

Start Printer Command

Start Printer printer�

Starts the specified printer printing its print queue after you halt it.

printer The name of the printer you are starting.�

Note that you can halt, start, or reset a spooled printer from any machine on the

network. For more information, see the section "Halt Printer Command".

Reset Printer Command

Reset Printer printer printer-request keywords�

Resets a spooled printer. You can use this command if your printer stops operating

or if you have to stop the printer in the middle of a job. This command reestab-

lishes communications with the printer and, when possible, sends a software "re-

set" command to the printer.

printer The name of the printer you are resetting.

printer-request (Optional) Resetting a printer in the middle of a print request

results in the system displaying the request and asking you to

confirm the reset command. You have to specify the name of

the print request or select the print request with the mouse

from the display of the Show Printer Status command in order

to reset the printer immediately. For more information, see the

section "Show Printer Status Command".

keywords :Confirm, :Disposition, :Reason�

:Confirm {Yes, No} Whether to request confirmation that the printer is

printing a request. The default is Yes.

Page 2865

:Disposition {Delete, Hold, Restart} Enables you to specify whether the sys-

tem delete, hold, or restart the print request. The Delete op-

tion deletes the request from the queue. Hold retains the re-

quest in the queue but does not print it when the printer

restarts. Restart automatically prints the interrupted request

from the beginning when the printer restarts. The default is

hold.

:Reason {string} The reason you are resetting the printer, which is

added to the printer log. The default message is "Printer print-

er-name being reset by user-id."�

Note that you can halt, start, or reset a spooled printer from any machine on the

network.

When and How to Use the Garbage Collector

Principles of Garbage Collection

It is fundamental to the nature of Lisp that programs and systems allocate memo-

ry dynamically and in large amounts. (The allocation of memory for a basic list el-

ement, or cons, or for any other purpose, is called consing for the purpose of this

discussion and in most other writings on Lisp.) Even with the large amount of vir-

tual memory on a Symbolics computer, it is possible for a program to use it all up.

At this point the machine halts and must be rebooted. This event can always be

delayed, almost indefinitely, if the underlying system can reclaim memory that is

unused.

Objects that are no longer in use, with no references from other objects, are

termed garbage. Garbage is distinguished from good objects or good data by the

fact that it no longer serves any purpose in the current Lisp world. For example,

if the car of a cons is changed from object A to object B, and there are no other

references to A, then A is garbage. Objects in the Genera environment can be said

to have a lifetime, which means how long the object remains "good". Three lifes-

pans are distinguishable:

Static Object will probably never become garbage. Example: standard

system functions.

Dynamic Object will probably become garbage eventually. Example: lines

in editor buffers.

Ephemeral Object will probably become garbage very quickly. Example: in-

termediate structure generated by the compiler.�

You can control the garbage collection status of your own areas with the make-

area function.

Garbage collection (GC) involves these three steps:

Page 2866

• Scavenging virtual memory, that is, periodically sifting through areas of memo-

ry, separating good objects from the garbage

• Transporting good objects to a safe place

• Reclaiming the memory occupied by garbage�

Several strategies for garbage collection exist. Some allow you to continue doing

other work and some do a more complete job but require additional machine re-

sources for some period of time.

Garbage collection need not be used at all. However, it cleans up after computa-

tions and allows you to run for longer periods of time between cold boots. It

should be used either when you are running a program that allocates large

amounts of virtual memory (where the total allocated might exceed the amount of

free memory in a cold-booted system) or when the total allocations of many pro-

grams might, over a relatively long period of time, exceed the capacity. In either

case, garbage collection is a strategy aimed primarily at preserving the state of an

operating Lisp world as long as possible and avoiding a cold boot.

There are three basic modes of garbage collection, each with some variations pos-

sible:

• Incremental garbage collection works in parallel with other processes in the sys-

tem, allowing you to continue working while it is in progress. This mode is

based on incremental copying, so called because objects are copied one at a time

and there is relatively little effect on the user’s interaction with the system. Dy-

namic-object garbage collection incrementally collects garbage in all nonstatic

areas of memory. Ephemeral-object garbage collection incrementally collects

garbage, concentrating on specific parts of memory that are known to contain

short-lived objects. Both kinds of incremental operation ignore static areas of

memory that change slowly and so are unlikely to contain garbage. For an ex-

planation of static memory, see the section "Theory of Operation of the GC Fa-

cilities".

• Nonincremental, or immediate, garbage collection takes less free memory and less

total processor time to work successfully than does the incremental mode. Non-

incremental garbage collection is normally done with the Start GC :Immediately

command or with the gc-immediately function, although those directives still

ignore static areas. These directives allow no other work to be done by the pro-

cess running it, although other processes are still scheduled. In most cases,

though, immediate garbage collection places a heavy enough burden on the ma-

chine that other processes are not useful while it is operating. The immediate

garbage collection invoked by the function si:full-gc deals with static areas.

• In-Place garbage collection is similar to immediate (nonincremental) garbage col-

lection, but uses a fundamentally different algorithm for storage reclamation.

Because of this, the virtual memory (paging space) required for GC is reduced.�

However, In-Place Garbage Collection is much slower, completely non-

Page 2867

interruptable, and results in less optimal paging behavior than normal Immedi-

ate Garbage Collection. In-Place Garbage Collection is typically used only for dy-

namic objects, but it may be used to reclaim static objects as well.

Note: Areas of memory can be specified as being static with the function make-

area.

The command Show GC Status allows you to check on how much free space you

have and determine whether or not you should turn on the garbage collector.

Show GC Status

Status of the ephemeral garbage collector: On

First level of METERING:METERING-CONS-AREA: capacity 196K, 0K allocated, 0K

 used.

Second level of METERING:METERING-CONS-AREA: capacity 98K, 0K allocated, 0K

 used.

First level of DW::*EQL-DISPATCH-AREA*: capacity 98K, 256K allocated, 56K used.

Second level of DW::*EQL-DISPATCH-AREA*: capacity 49K, 0K allocated, 0K used.

First level of WORKING-STORAGE-AREA: capacity 196K, 448K allocated, 29K used.

Second level of WORKING-STORAGE-AREA: capacity 98K, 2048K allocated, 47K used.

Status of the dynamic garbage collector: On

Dynamic (new+copy) space 6,490,761. Old space 0. Static space 12,479,751.

Free space 26,574,848. Committed guess 22,488,118, leaving 3,824,586 to use

 before flipping.

There are 9,779,900 words available before Start GC :Immediately might run out

 of space.

Doing Start GC :Immediately now would take roughly 33 minutes.

There are 26,574,848 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full

Scavenging during cons: On, Scavenging when machine idle: On

The GC generation count is 328 (1 full GC, 2 dynamic GC’s, and 325 ephemeral

 GC’s).

Since cold boot 53,043,930 words have been consed, 45,867,153 words of garbage

 have

been reclaimed, and 11,658,295 words of non-garbage have been transported.

The total "scavenger work" required to accomplish this was 121,864,225 units.

Use Set GC Options to examine or modify the GC parameters.�

The command Start GC turns on the garbage collector.

Start GC keywords�

Controls the operation of the Garbage Collector. Start GC with no keywords turns

on both dynamic and ephemeral garbage collection.

Page 2868

keywords :Cleanup, :Dynamic, :Ephemeral, :Immediately, :Selective�

:Cleanup {Yes, No, Ask} Whether or not to run GC Cleanups to attempt

to free address space. The default is No. The mentioned de-

fault is Yes, which does the maximum cleanup possible. Ask

queries you about each cleanup before performing it. Start GC

:Cleanup without other keywords does not perform a GC or al-

ter the mode of the background GC. See the section "GC

Cleanups".

:Dynamic {Yes, No} Enables or disables the dynamic level of incremental

GC.

:Ephemeral {Yes, No} Enables or disables the ephemeral level of incremen-

tal GC.

:Immediately {Yes, No, In-Place, By-Area} Performs a complete garbage col-

lection right now. The mentioned default is Yes. In-Place

garbage collection does not copy objects; rather, it compacts

good objects to the bottom of each region. Since there are nev-

er two copies of an object during the garbage collection, the

virtual memory (paging space) required for GC is reduced. It is

slower and non-interruptable, and thus is recommended only

when execution speed and interaction are not important and

when there is insufficient disk space for normal garbage col-

lection.

Start GC :Immediately By-Area is the same as Start GC :Imme-

diately Yes :Selective Yes.

Start GC :Immediately also offers to run GC Cleanups.

:Selective {Yes, No} Specifies areas in which to collect garbage. When

your address space has shrunk to where there is not quite

enough free space for Start GC :Immediately to complete, :Se-

lective suggests some areas to flip that will maximize the

amount of space reclaimed without risking running out of

space completely. :Selective can be used with both Start GC

:Immediately Yes and Start GC :Immediately In-Place.�

For more information about the process of Garbage Collection, see "Theory of Op-

eration of the GC Facilities" and "Invoking the Garbage Collection Facilities".

Page 2869

Start GC :Ephemeral is recommended for general purposes. This cleans up after

you as you work, keeping virtual memory requirements for garbage collecting to a

minimum. When, in spite of scavenging, enough garbage has accumulated, you re-

ceive a notification. At that point you can use Start GC :Immediately to do a com-

plete garbage collection. See the section "Ephemeral-Object Garbage Collection".

Compressing Data

It is possible to compress and decompress data to save space on disk and to inter-

operate with files compressed on UNIX systems. There are two CP commands to

do this, Compress File and Decompress File.

Compress File Command

Compress File input-files output-files keywords�

Compresses the data in input-files and produces output-files. Wildcards are allowed.

If input-files and output-files are the same files, the input files are replaced by the

output files.

input-files {pathname(s)} One or more files to compress.

output-files {pathname(s)} One or more files to contain the compressed da-

ta.

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Preamble Type {Symbolics, UNIX} Type of preamble to use.

Page 2870

:Query {Yes, No, Ask} Whether to ask before compressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, reading each input file as a text file. Binary means

not to do ASCII character set translation, reading each input

file as a binary file. Query asks, for each file, whether to treat

the file as text or binary. Heuristicate attempts to guess

whether the file is text or binary based on its name, as fol-

lows: The filename is broken up into words, where each word

is separated by a non-alphanumeric character. A rightmost

word of "Z" is removed (if present). Then the current right-

most word is checked against compression::*likely-unix-

binary-formats* If a match is found, the file is assumed to be

binary, otherwise it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.

Decompress File Command

Decompress File input-files output-files keywords�

Decompresses the data in input-files and produces output-files. Wildcards are al-

lowed. If input-files and output-files are the same files, the input files are replaced

by the output files.

input-files {pathname(s)} One or more files to decompress.

output-files {pathname(s)} One or more files to contain the decompressed

data.

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy�

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation-date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

Page 2871

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No, Ask} Whether to ask before decompressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, writing each resulting file as a text file. Binary

means not to do ASCII character set translation, writing each

resulting file as a binary file. Query asks, for each file,

whether to treat the file as text or binary. Heuristicate at-

tempts to guess whether the file is text or binary based on its

name, as follows: The filename is broken up into words, where

each word is separated by a non-alphanumeric character. A

rightmost word of "Z" is removed (if present). Then the cur-

rent rightmost word is checked against compression::*likely-

unix-binary-formats*, and if a match is found, the file is as-

sumed to be binary, else it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.�

Programmers wishing to use data compression in their applications can use the

Compression Substrate. See the section "Compressing Data - the Compression Sub-

strate".

Understanding Character Styles

See the section "Using Character Styles in Zmacs".

What is a Character Style?

A character style is a combination of three characteristics that describe how a

character appears. These characteristics are the family, face, and size.

Family Characters of the same family have a typographic integrity, so

that all characters of the same family resemble one another.

Examples: SWISS, DUTCH, and FIX.

Page 2872

Face A modification of the family, such as BOLD or ITALIC.

Size The size of the character, such as NORMAL or VERY-SMALL.

�

The character style is the grouping of the family, face, and size fields. A character

style is often represented by the convention:

family.face.size

An example of a fully specified character style is:

SWISS.ITALIC.LARGE�

Each element of the character style can be specified or left unspecified. A family,

face, or size of NIL means to use the default value. Most characters have the fol-

lowing character style:

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style estab-

lished for the current output device.

Default Character Styles

The appearance of a character depends on two things: the character style of the

character, and the default character style. The default character style is a global

parameter of an output device. It applies for all processes. Windows, buffers, files,

and printers each have default character styles for output. The default character

style specifies the appearance of a character whose character style is NIL.NIL.NIL.

The character’s style is merged against the default character style to produce the

final appearance of the character. A default character style must be fully specified.

We recommend that you use character styles by making good use of the default

character styles. You preserve the most flexibility by keeping the character style of

the characters themselves as unspecified as possible. If you want to change the ap-

pearance of all characters in a Zmacs buffer, a Zmail message or a window, you

can change the default character style instead of changing the character style of

each character.

The default character style affects the appearance of a character on output. There

is also a typein character style for each interactive stream, which is normally

NIL.NIL.NIL. The typein character style affects the character style in which char-

acters are entered as input. If the typein character style is NIL.BOLD.NIL, any

characters you enter at the keyboard have the character style NIL.BOLD.NIL. It is

important to be sure that the application program can handle characters whose

character style is something other than NIL.NIL.NIL, if you are going to use a

typein character style other than NIL.NIL.NIL.

Page 2873

If you only want to change the way that characters echo, but not the way they are

entered as input, you can change the echo character style. See the section "Using

Character Styles in the Input Editor".

Merging Character Styles

This section gives some examples of how the character style of a character is

merged against the default character style to produce a final result.

In general, we advise that you specify as little as possible when changing a char-

acter style. That is, if you want the character’s face to be italic, specify only the

face component and let the family and size come from the default character style.

Character Style Default Result of

of a Character Character Style Merging

NIL.NIL.NIL FIX.ROMAN.NORMAL FIX.ROMAN.NORMAL

NIL.ITALIC.LARGE FIX.ROMAN.NORMAL FIX.ITALIC.LARGE

NIL.ITALIC.SMALLER FIX.ROMAN.NORMAL FIX.ITALIC.SMALL

SWISS.BOLD.LARGER FIX.ROMAN.NORMAL SWISS.BOLD.LARGE

SWISS.BOLD.SAME FIX.ROMAN.NORMAL SWISS.BOLD.NORMAL�

The family and face components are either NIL or the name of a family or face.

The size component can be NIL, an absolute size (such as LARGE or VERY-

SMALL) or a relative size (such as LARGER or SMALLER). A relative size is

merged against the default size such that when you merge LARGER against NOR-

MAL, the result is the next size larger than NORMAL.

The ordered hierarchy of sizes is:

TINY

VERY-SMALL

SMALL

NORMAL

LARGE

VERY-LARGE

HUGE�

If you try to merge SMALLER against the smallest size, TINY, the result is TINY.

Similarly, if you try to merge LARGER against the largest size, HUGE, the result

is HUGE.

Using Character Styles in the Input Editor

The default character style for the input editor is FIX.ROMAN.NORMAL.

You can use the Set Window Options CP command to change the default character

style, the typein character style, or the echo character style. The default character

style and typein character style are described elsewhere. See the section "Default

Character Styles".

Page 2874

The echo character style affects the way that characters you enter at the keyboard

are echoed. The appearance of characters that you type depends on: the character

style of the character (which is usually the same as the typein style), which is

merged against the echo character style, which is merged against the default char-

acter style.

It is important to be sure that the application program can handle characters

whose character style is something other than NIL.NIL.NIL, if you are going to

use a typein character style other than NIL.NIL.NIL. If you only want to change

the way that characters echo, but not the way they are entered as input, you can

change the echo character style. See the section "Character Styles and the Lisp

Listener".

In addition to the Set Window Options command, you can change the typein char-

acter style in the input editor by using c-m-J. You are then prompted for a char-

acter style. Enter something in the family.face.size convention, such as

DUTCH.BOLD-ITALIC.LARGER.

Character Styles and the Lisp Listener

This section and diagram describes the role of the typein character style, the echo

character style, and the default character style in the Lisp Listener.

When you type a character at the keyboard, it follows one path which eventually

causes it to be echoed on the screen. The same character follows a path to the ap-

plication program. The application program might produce some output, which is

also displayed on the screen.

 KEYBOARD User enters a character at keyboard.

 | This is called the input character.

 ↓

 INPUT EDITOR The Input Editor reads the input

 TYPEIN-STYLE character and sets its style to

 | \ TYPEIN-STYLE. The input character

 | \ proceeds to the application and

 | \ and toward the screen to be echoed.

 ↓ ↓

 ECHO-STYLE | The input character is merged against

 | | the echo style.

 | |

 | APPLICATION Meanwhile, the application program

 | | receives the input character. The

 | | program performs its function and

 | | produces output, which can be in any

 | | character style.

 ↓ ↓

 DEFAULT-CHARACTER-STYLE Both the output characters from the

 | application and the input character

Page 2875

 | are merged against the default

 | character style, which could have been

 | modified if the application program

 | used with-character-style. The

 ↓ characters are displayed on the screen.

 SCREEN

�

For example:

Typein style is: SWISS.NIL.NIL

Echo style is: NIL.BOLD.NIL

Default character style is: FIX.ROMAN.NORMAL�

The input editor reads in the input character according to the typein style, so the

input character has the character style of SWISS.NIL.NIL. The input character is

merged against the echo style, so it is then SWISS.BOLD.NIL. The input character

is then merged against the default character style, so it is finally displayed on the

screen in the character style SWISS.BOLD.NORMAL.

Meanwhile the original input character of style SWISS.NIL.NIL is sent to the ap-

plication. As it runs, the application program produces output characters of style

NIL.BOLD-ITALIC.NIL. The output characters are merged against the default

character style; they are displayed in the character style FIX.BOLD-

ITALIC.NORMAL.

Note that the application program can use with-character-style, with-character-

face and so on when producing output. If this is done, the specified style informa-

tion is merged against the default character style. Thus it affects both the way

that the input characters are echoed and the way any output characters are dis-

played.

If you want to specify how your input characters appear, you can change the echo

style. If you want your input characters to have the character style set to some-

thing other than NIL.NIL.NIL, you can change the typein style.

Using Character Styles in Zmail

Every message has its own default character style used for displaying the message.

The default is recorded in a new Default-Character-Style header. If this header is

not present, the message is displayed using FIX.ROMAN.NORMAL as the default

character style.

You can use the command Set Message Default Character Style (m-X) to change

the default character style of the current message (if you are examining a mes-

sage), or the message you are composing. When you are prompted for a character

style, you must enter a complete character style; it cannot contain NILs. This com-

mand is also available in the Editor menu, which is offered when you click Right.

When you are in Zmail, you can use the Zmacs commands for changing character

styles. For a list of available commands and a description of how to enter a new

character style, see the section "Using Character Styles in Zmacs".

Page 2876

Using Character Styles in Hardcopy

When you hardcopy a file, the outcome depends on the character style of the char-

acters in the file and the printer’s default values for the body character style and

header character style.

The printer’s defaults are stored in the printer object in the namespace database,

in the attributes:

body-character-style

The default character style to be used by this printer

headers-character-style

The default character style to be used for the headers by this

printer. �

You can override the defaults stored in the printer objects by using setq on the

variable hardcopy:*hardcopy-default-character-styles*. Note that the value of

hardcopy:*hardcopy-default-character-styles* is merged with the default style

for the printer. See the variable hardcopy:*hardcopy-default-character-styles*.

Understanding Networks and the Namespace System

Introduction to the Namespace Database

A namespace database contains objects. An object must belong to one (and only

one) of seven classes in order to be registered in the namespace database:

Host Represents any computer, usually connected to a network.

User Represents a person who uses any of the hosts, or a daemon

user.

Network Represents a computer network, to which some hosts are at-

tached.

Printer Represents a device for producing hardcopy.

Site Represents a collection of hosts, printers, and networks,

grouped together in one location.

Namespace A database containing information about the mappings from

object names to objects, and about the objects themselves.

File System Reserved for Statice.�

Objects in the namespace database have global-names (which identify them), and

attributes (which describe them).

Data Types for Attributes

The following data types can be used with attributes in the namespace database:

Page 2877

Global-Name A name that is shared by all namespaces.

Token An arbitrary character string.

Set One or more elements of the same data type.

Pair Two elements; each element can be of a different data type.

Triple Three elements; each element can be of a different data type.�

Global-name and token require you to supply one value. Set, pair and triple require

you to supply compound (one or more, two, or three) values.

For more information about attributes, see the section "Attributes for Objects in

the Namespace Database".

Use the Namespace Editor to "create" (or document) objects, their global-names,

and their attributes. For more information about the Namespace Editor, see the

section "Using the Namespace Editor".

Names and Namespaces

Every object has a name, which is a character string. Two objects of different

classes can have the same name. For example, there can be a printer named

George and a user named George. An object is identified both by its class and its

name.

This means that if you want to look up an object in the database (and you know

its name) you have to say "Find the printer named George" or "Find the user

named George". You cannot say "Find George".

A namespace is a database that contains mappings from names to objects. Names

in one namespace are unrelated to names in another namespace. Specifically, a

namespace maps from [class, name] pairs to objects, since every object is identified

both by its class and by its name.

Typical sites have one namespace, and the names of all the objects at that site are

in that namespace. An object in some namespace other than your own can be re-

ferred to by a qualified name, which consists of the name of the namespace, a ver-

tical bar, and the name of the object in that namespace.

When long-distance networks link together different sites, the possibility for name

conflicts arises. Neither site is forced to change its names just because it wants to

connect to the other site.

For example, suppose both Harvard and Yale have computer centers. Harvard has

three hosts named Yellow, Orange, and Blue. Yale has three hosts named Apple,

Orange, and Banana. Each computer center has its own namespace; Harvard’s is

named Harvard and Yale’s is named Yale.

At Harvard, the Harvard computers are referred to by their unqualified names

(Yellow, Orange, and Blue), but the Yale computers are referred to by their quali-

fied names (Yale|Apple, Yale|Orange, and Yale|Banana). At Yale, it would all

work the other way around.

Page 2878

Each namespace also has a list of namespaces for its search rules. When a name is

looked up, each of the search rules namespaces listed is consulted in turn, until an

object of the desired name is found in one of them. If you list namespaces other

than your own in your search rules, it is easier to refer to objects in those names-

paces, because you do not need to use qualified names for them (unless a name

conflict exists).

For example, in the scenario above, the search rules for the Harvard namespace

could list the Harvard namespace first and the Yale namespace second. Then,

users at Harvard could refer to Yale’s computers as Apple, Yale|Orange, and Ba-

nana. The qualified name Yale|Orange is only necessary because a name conflict

exists.

Actually, only some classes of objects have names that are in namespaces; other

classes of objects are globally named, which means that their names are universal,

and conflicts are not permitted. In particular, namespaces and sites are globally

named; networks, hosts, printers, and users are not (instead, they’re named within

namespaces).

Some namespaces do not correspond to any local site. Most large nationwide or

worldwide networks have their own host-naming convention. For example, the U.S.

Department of Defense Internet has its own set of host names, and this is consid-

ered a namespace. If a local site includes some hosts that are on the Internet, it

might want to put the Internet namespace into its search list, and install gateways

to access Internet machines. For more information, see the section "Namespace

Editor CP Commands".

Some objects can also have nicknames. In particular, networks and hosts can have

nicknames; objects of other classes cannot. A nickname serves as an alternative

name for the object. Sometimes you give an object a nickname because its full

name is too long to type conveniently. However, each object only has one primary

name.

It is possible for an object to be in several namespaces at once. For example, a

host which is on both the Internet and a local network at some site might be in

both the Internet namespace and the local namespace. In this case, both names-

paces maintain their own separate information on the object. The information from

each namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a

name and Yale’s namespace is in Harvard’s search list, Yale’s search list is not

followed.

Using the Namespace Editor

You use the Namespace Editor to register new users and new hardware in the

namespace database. To do so, you create and save namespace objects representing

the new addition to the site. Once an object has been globally saved, it becomes

part of your site’s configuration.

Page 2879

The Namespace Editor checks input, and supplies both help and completion.

Specifically, the Namespace Editor:

• Checks for errors in network addresses.

• Verifies the nicknames in use by other hosts in the local namespace.

• Checks for unknown services, mediums, and protocols.�

You can reach the Namespace Editor in these ways:

• Use the Command Processor (CP) Select Activity command (and select the

Namespace Editor Activity). See the section "Workbook: Selecting a New Activi-

ty".

• Assign the Namespace Editor to a SELECT key combination with the Select Key

Selector or the tv:add-select-key function. For more information about how to

use the SELECT key, see the section "Customizing the SELECT Key".

• Invoke individual Command Processor (CP) Namespace Editor commands in a

Lisp Listener. See the section "Namespace Editor CP Commands".�

Creating a New Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.

To create a new namespace object, click on [Create Object]. You are prompted for

the class and the name of the new object. A template for the information is dis-

played in the top window. The attributes are mouse sensitive. Clicking on an at-

tribute prompts you in the bottom window for the information to put in the at-

tribute.

Note that the required attributes appear with an asterisk (*) after them. All object

classes have a small number of required attributes, and several optional attributes.

You can also create a new object by copying an existing object. Enter Copy Object

at the Namespace Editor prompt. Alternatively, use Create Object with the :Copy

From keyword.

The window can be scrolled using the SCROLL and m-SCROLL keys or with the

mouse. See the section "Scrolling with the Mouse".

When you are satisfied with the information, you can enter it in the database by

clicking on [Save Object]. Then click on [Quit] to exit the namespace editor.

For a discussion of saving (locally or globally) new information in the namespace

database: See the section "Editing a Namespace Object".

Editing a Namespace Object

Page 2880

Select the Namespace Editor by using the Edit Namespace Object command. If you

do not supply the class and object name to Edit Namespace Object, the Namespace

Editor window comes up empty and you can click on [Edit Object] or enter the

Edit Object command. You are prompted for the name of an object to edit. The

current information for the object is retrieved from the namespace database and

displayed in the window.

Click Middle on the attribute name for information on the attribute.

The attribute fields are mouse-sensitive. Clicking on an attribute prompts you for

information. Mouse clicks have the following meaning:

Left Replace the information in the attribute.

Middle Edit information in the attribute.

Right Menu.

sh-Middle Delete the information in the attribute.

The window can be scrolled using the SCROLL and m-SCROLL keys, the scroll bar,

or the mouse.

Once you have finished editing the information, you have three ways to proceed.

You can click on [Quit] without saving the changed information. If you are just

practicing using the Namespace Editor, that would be appropriate.

The other two choices are to save the information locally or globally. If you save it

globally, the new information is stored in the site’s namespace database. If you

save it locally, the new information is stored only in your machine’s local copy of

the namespace; changes saved locally affect only your machine (until it is reboot-

ed).

The initial state of the Namespace Editor is the global mode. When you are in

global mode the middle of the screen looks like:

�

If you have clicked on [Locally], you are in local mode. The middle of the screen

looks like:

�

You can click on [Locally] to toggle the mode between global and local. When you

are ready, click on [Save Object] to save the information. Then click on [Quit] to

exit the Namespace Editor.

For a complete list of the namespace editor commands, see the section "Namespace

Editor Commands".

Page 2881

Connecting to a Remote Host over the Network

If your Symbolics computer is on a network and configured properly, you can ac-

cess other hosts on the network with the Terminal program.

To use the Terminal program, press SELECT T. The prompt is:

Connect to host:�

Type the name of the host to which you want to connect. The network system

makes a connection, and you will see the prompt of the remote host displayed on

the screen. You are now communicating directly with the remote machine.

When you are connected to a remote host, the NETWORK key provides several useful

commands. For example:

NETWORK HELP Displays the list of options for the NETWORK key.

NETWORK L Logs out of the remote host, and breaks the connection.

NETWORK D Disconnects without logging out first.�

See the section "NETWORK Key".

If you want to use the Terminal program to log in to a remote Symbolics computer

when someone is logged in to that machine, you must first enable remote login by

evaluating the form (net:remote-login-on) on that machine. See the function

net:remote-login-on.

See the section "Connection Keywords in the Terminal Program". See the section

"Dynamic Window Features of The Terminal Program".

Remote Terminal Commands

Set Remote Terminal Options

Enables you to toggle MORE processing on and off. Additionally,

you can specify whether a status line appears at the bottom of

your screen, and also how often the status line updates.

Show Remote Terminal Options

Enables you to view the current settings of your remote termi-

nal options. This command also displays the height and width

of your screen.

Halt Remote Terminal

Enables you to halt your remote terminal.

A Brief Introduction to the Lisp World

Documentation Notation Conventions for Lisp Objects

Page 2882

Functions

A typical description of a Lisp function looks like this:

function-name arg1 arg2 &optional arg3 (arg4 (foo3)) function

Adds together arg1 and arg2, and then multiplies the result by arg3. If arg3

is not provided, the multiplication is not done. function-name returns a list

whose first element is this result and whose second element is arg4. Exam-

ples:�

(function-name 3 4) => (7 4)

(function-name 1 2 2 ’bar) => (6 bar)�

The word "&optional" in the list of arguments tells you that all of the arguments

past this point are optional. The default value of an argument can be specified ex-

plicitly, as with arg4, whose default value is the result of evaluating the form (foo

3). If no default value is specified, it is the symbol nil. This syntax is used in

lambda-lists in the language. (For more information on lambda-lists, see the sec-

tion "Evaluating a Function Form".) Argument lists can also contain "&rest",

which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function de-

scription, for example, the name of the function is in boldface in the first line, and

the arguments are in italics. Within the text, printed representations of Lisp ob-

jects are in the same boldface font, such as (+ foo 56), and argument references

are italicized, such as arg1 and arg2.

Other fonts are used as follows:

"Typein" or "example" font (function-name)

Indicates something you are expected to type. This font is also

used for Lisp examples that are set off from the text and in

some cases for information, such as a prompt, that appears on

the screen.

"Key" font (RETURN, c-L)

For keystrokes mentioned in running text.�

� Macros and Special Forms

The descriptions of special forms and macros look like the descriptions of these

imaginary ones:

do-three-times form Special Form

Evaluates form three times and returns the result of the third evaluation.�

with-foo-bound-to-nil form... Macro

Evaluates the forms with the symbol foo bound to nil. It expands as follows:�

Page 2883

(with-foo-bound-to-nil

form1

form2 ...) ==>

(let ((foo nil))

form1

form2 ...)�

Since special forms and macros are the mechanism by which the syntax of Lisp is

extended, their descriptions must describe both their syntax and their semantics;

unlike functions, which follow a simple consistent set of rules, each special form is

idiosyncratic. The syntax is displayed on the first line of the description using the

following conventions.

• Italicized words are names of parts of the form that are referred to in the de-

scriptive text. They are not arguments, even though they resemble the italicized

words in the first line of a function description.

• Parentheses ("()") stand for themselves.

• Brackets ("[]") indicate that what they enclose is optional.

• Ellipses ("...") indicate that the subform (italicized word or parenthesized list)

that precedes them can be repeated any number of times (possibly no times at

all).

• Braces followed by ellipses ("{ }...") indicate that what they enclose can be re-

peated any number of times. Thus, the first line of the description of a special

form is a "template" for what an instance of that special form would look like,

with the surrounding parentheses removed.�

The syntax of some special forms is too complicated to fit comfortably into this

style; the first line of the description of such a special form contains only the

name, and the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which sub-

forms are evaluated and what the returned value is. Usually this is clarified with

one or more examples.

A convention used by many special forms is that all of their subforms after the

first few are described as "body...". This means that the remaining subforms con-

stitute the "body" of this special form; they are Lisp forms that are evaluated one

after another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:

twiddle-frob [(frob option...)] {parameter value}... Special Form

Twiddles the parameters of frob, which defaults to default-frob if not speci-

fied. Each parameter is the name of one of the adjustable parameters of a

frob; each value is what value to set that parameter to. Any number of

parameter/value pairs can be specified. If any options are specified, they are

keywords that select which safety checks to override while twiddling the pa-

Page 2884

rameters. If neither frob nor any options are specified, the list of them can

be omitted and the form can begin directly with the first parameter name.

frob and the values are evaluated; the parameters and options are syntactic

keywords and are not evaluated. The returned value is the frob whose pa-

rameters were adjusted. An error is signalled if any safety check is violated.�

� Flavors, Flavor Operations, and Init Options

Flavors themselves are documented by the name of the flavor.

Flavor operations are described in three ways: as methods, as generic functions,

and as messages. When it is important to show the exact flavor for which the

method is defined, methods are described by their function specs. Init options are

documented by the function spec of the method.

When a method is implemented for a set of flavors (such as all streams), it is doc-

umented by the name of message or generic function it implements.

The following examples are taken from the documentation.

sys:network-error Flavor

This set includes errors signalled by networks. These are generic network errors

that are used uniformly for any supported networks. This flavor is built on error.

(flavor:method :clear-window tv:sheet) Method

Erases the whole window and move the cursor position to the upper left corner of

the window.

:tyo char Message

Puts the char into the stream. For example, if s is bound to a stream, then the

following form will output a "B" to the stream:

(send s :tyo #\B)�

For binary output streams, the argument is a nonnegative number rather than

specifically a character.

dbg:special-command-p condition special-command Function

Returns t if command-type is a valid Debugger special command for this condition

object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:

:special-command-p

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions".

Page 2885

(flavor:method :bottom tv:sheet) bottom-edge Init Option

Specifies the y-coordinate of the bottom edge of the window.

� Variables

Descriptions of variables ("special" or "global" variables) look like this:

typical-variable Variable

The variable *typical-variable* has a typical value....�

The Lisp Top Level

These functions constitute the Lisp top level and its associated functions.

si:lisp-top-level Function

Initializes the Lisp environment and then starts the initial Lisp Listener process

running si:lisp-top-level1.

si:lisp-top-level1 &optional (stream zl:terminal-io) Function

This is the actual top-level loop. It reads a form from *standard-input*, evaluates

it, prints the result (with slashification) to *standard-output*, and repeats indefi-

nitely. If several values are returned by the form, all of them will be printed. The

values of *, +, -, /, ++, **, +++, and *** are maintained.

prin1 Variable

The value of this variable is normally nil. If it is non-nil, then the read-eval-print

loop uses its value instead of the definition of prin1 to print the values returned

by functions. This hook lets you control how things are printed by all read-eval-

print loops  the Lisp top level and any utility programs that include a read-eval-

print loop. It does not affect output from programs that call the prin1 function or

any of its relatives such as print and format; to do that, you need more informa-

tion on customizing the printer. See the section "Output Functions". If you set

prin1 to a new function, remember that the read-eval-print loop expects the func-

tion to print the value but not to output a Return character or any other delim-

iters.

Some Utility Functions

All of these Lisp functions are available as Command Processor commands. How-

ever, it is useful to know them should you ever find yourself in a situation where

you cannot use the Command Processor. zwei:save-all-files, for example, is useful

if you are in the cold load stream and cannot get out without booting. See the sec-

tion "The Cold Load Stream".

Page 2886

zwei:save-all-files &optional (ask t) Function

Useful in emergencies in which you have modified material in Zmacs buffers that

needs to be saved, but the editor is partially broken. This function does what the

editor command Save File Buffers (m-X) does, but it stays away from redisplay and

other advanced facilities so that it might work if other things are broken.

zwei:zmail-save-all-files is similar, but saves mail files from Zmail.

ed &optional thing Function

ed is the main Lisp function for entering Zmacs. Select Activity Zmacs is the com-

mand for entering Zmacs.

(ed) or (ed nil) enters Zmacs, leaving everything as it was when you last left the

editor. If Zmacs has not yet been used in the current session, it is initialized and

an empty buffer created.

(ed t) enters Zmacs, and creates and selects an empty buffer.

If the argument is a pathname or a string, the ed function enters Zmacs, and

finds or creates a buffer with the specified file in it. This is the same as the Edit

File command.

If the argument is a symbol that is defined as a function, Zmacs will try to find

the source definition for that function for the user to edit. This is the same as the

Edit Definition command.

Finally, if the argument is the symbol zwei:reload, Zmacs will be reinitialized. All

existing buffers will be lost, so use this only if you have to.

In CLOE runtime, allows the user to enter an editor. If arg is a pathname, the as-

sociated file is edited; if arg is a symbol, the associated function definition is edit-

ed. CLOE first checks the value of cloe::*editor-for-ed* and then checks the value

of the shell environment variable CLOED. If either of these supply a string to use

as the editor invoking command, it is used, otherwise "ed" is used.

zl:dired &optional (pathname "") Function

Puts up a window and edits the directory named by pathname, which defaults to

the last file opened. While editing a directory you may view, edit, compare, hard-

copy, and delete the files it contains. While in the directory editor, press the HELP

key for further information. This is similar to the Edit Directory command, except

that Edit Directory enters Zmacs and runs Dired (m-X).

zl:mail &optional initial-destination initial-body prompt initial-idx bug-report (make-

subject (memq zwei:*require-subjects* ’(t :init))) initial-subject Function

Sends mail by putting up a window in which you can compose the mail.

initial-destination is a symbol or string that is the recipient.

Page 2887

initial-body is a string that is the initial contents of the mail. If these are unspeci-

fied they can be typed in during composition of the mail. Press the END key to

send the mail and return from the zl:mail function.

prompt and initial-idx are used by programs, such as zl:bug, that call zl:mail.

prompt is a string printed in the minibuffer of the mail window created by zl:mail.

initial-idx positions point in the mail window.

zl:bug &optional (system (or dbg:*default-bug-report-recipient-system*

dbg:*default-default-bug-report-recipient-system*)) additional-body prompt point-

before-additional-body (make-subject (memq zwei:*require-subjects* ’(t :init :bug)))

initial-subject Function

Reports a bug. This is the same as the Report Bug command. zl:bug is like

zl:mail but includes information about the system version and your machine in the

text of the message.

system is the name of the faulty program (a symbol or a string). It defaults to

Genera (the software system itself). This information is important to the maintain-

ers of the faulty program; it aids them in reproducing the bug and in determining

whether it is one that is already being worked on or has already been fixed.

additional-body is user-supplied text appended to the information supplied by the

system.

prompt is text supplied by the system printed in the minibuffer of the mail window

concerning the bug-mail you are sending.

point-before-additional-body is a position for point supplied by the system.

You can control the character style of the system information inserted at the be-

ginning of the message by setting the value of dbg:*character-style-for-bug-mail-

prologue*. See the variable dbg:*character-style-for-bug-mail-prologue*.

zl:qsend &optional destination message Function

Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the recipient. If

you omit the @host part and give just a name, zl:qsend looks at all the Symbolics

machines at your site to find any that name is logged into. If the user is logged in

to one Symbolics machine, it is used as the host; if more than one, zl:qsend asks

you which one you mean. If you leave out destination altogether, doing just

(zl:qsend), Converse is selected as if you had pressed SELECT C.

message should be a string. For example:

(qsend kjones@wombat "Want to go to lunch?")�

If message is omitted, zl:qsend asks you to type in a message. You should type in

the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you get some

editing power, although not as much as with full Converse (since the latter uses

Page 2888

Zwei). See the section "Editing Your Input". zl:qsend predates Converse and is re-

tained for compatibility.

Checking on What the Machine is Doing

Poking Around in the Lisp World

This section describes a number of functions, most of which are not normally used

in programs, but are "commands", that is, things that you type directly at Lisp.

Many of these commands have Command Processor equivalents, but the Lisp ver-

sions of them are often useful in situations where you cannot use the Command

Processor, for instance when you are in the Cold Load Stream. They are useful for

finding information about your current state or about the Lisp world in general.

Functions for Examining Objects in the Lisp World

who-calls symbol &optional how

Tries to find all the functions in the Lisp world that call sym-

bol. See the "Show Callers Command".

si:who-calls-unbound-functions

Searches the compiled code for any calls through a symbol that

is not currently defined as a function.

what-files-call symbol-or-symbols &optional how

Returns a list of the pathnames of all the files that contain

functions that who-calls would have printed out.

apropos string &optional package (do-inherited-symbols t) do-packages-used-by

Searches for all symbols whose print-names contain string as a

substring. See the "Find Symbol Command".

where-is pname Finds all symbols named pname and prints a description of

each symbol.

describe anything &optional si:*describe-no-complaints*

Provides all the interesting information about any object (ex-

cept array contents).

inspect &optional object (frame tv:*default-inspector-frame*)

A window-oriented version of describe. See the "Inspect Com-

mand".

disassemble function &optional from-pc to-pc

Prints out a human-readable version of the macroinstructions

in function. See the "Show Source Code Command".

Variables for Examining the Lisp World

Page 2889

These variables are particularly useful for typing Lisp interactively, especially for

examining your state in the Debugger.

- Holds the form being evaluated.

+ Holds the previously evaluated form.

++ Holds the form evaluated two interactions ago.

+++ Holds the form evaluated three interactions ago.

* Holds the result of the previous evaluation.

** Holds the result of the form evaluated two interactions ago.

*** Holds the result of the form evaluated three interactions ago.

/ Holds a list of the results of the previous evaluation.

// Holds a list of results from two interactions ago.

/// Holds a list of the results from three interactions ago.

Debugging Functions and Variables

grindef &rest fcns Prints the definitions of one or more functions, with indenta-

tion to make the code readable.

break &optional format-string &rest format-args

Enters the Debugger. Equivalent to c-m-SUSPEND.

sys:*break-bindings*

Holds a list of variables and values to which to bind the vari-

ables when a breakpoint is encountered.

dbg:*debugger-bindings*

Holds a list of variables and values to which to bind the vari-

ables when the Debugger is encountered.

Utility Functions

The variable *features* holds the list of features included in Genera.

features Variable

Returns a list of symbols indicating features of the Lisp environment. The default

list for Genera is:

(:DEFSTORAGE :DEBUG-SCHEDULER-QUEUES :NEW-SCHEDULER :LOOP

:DEFSTRUCT :LISPM :SYMBOLICS :GENERA :ROW-MAJOR machine-type

:CHAOS :IEEE-FLOATING-POINT :SORT :FASLOAD :STRING :NEWIO

:ROMAN :TRACE :GRINDEF :GRIND)

�

Page 2890

The value of this list is kept up to date as features are added or removed from the

Genera system. Most important is the symbol machine-type; this is either 3600 or

:imach and indicates on which type of Symbolics machine the program is running.

The order of this list should not be depended on, and might not be the same as

shown above.

Features SYMBOLICS and CLOE are present in both the CLOE Developer and the

CLOE Application Generator. Feature CLOE-DEVELOPER is present only in the CLOE

Developer, and feature CLOE-RUNTIME is present only in the Application Generator.

features =>

(:CLOE-RUNTIME :LOOP :INTEL-386 :UNIX-V3 :CLOE :IEEE-FLOATING-POINT

:SYMBOLICS) �

The following functions return specifics about your machine and your environment.

lisp-implementation-type Function

Returns a string that is the name of the Lisp system running on your machine.

(lisp-implementation-type) => "Symbolics Common Lisp"�

or

(lisp-implementation-type) => "Symbolics CLOE"�

lisp-implementation-version Function

Returns a string that identifies the current version of the system running on your

machine, including the patch level and microcode.

(lisp-implementation-version)

 => "System 424.207 3640-MIC microcode 428"�

For the CLOE Developer,

(lisp-implementation-version)

=>"1.1, Cloe Developer 318.0"�

and for the CLOE Application Generator,

=>(lisp-implementation-version)

"CLOE Application Generator 1.1"�

machine-type Function

Returns a string that identifies the kind of hardware you are using.

(machine-type) => "Symbolics 3620"�

For the CLOE Developer,

(machine-type)

=>"Symbolics"�

and for the CLOE Application Generator,

Page 2891

(machine-type)

=>"Intel"�

machine-version Function

Under Genera, returns the board-level hardware information about your machine.

This is the same as the information displayed by the Show Machine Configuration

command for your machine.

Under CLOE, returns a string indicating the current version of the machine for

current implementation. For example, for the CLOE Developer you might get

something like the following:

(machine-version)

=>"3640"�

and for the CLOE Application Generator

(machine-version)

=>"386"�

machine-instance Function

Returns a string that is the name of your machine.

(machine-instance) => "WOMBAT"�

This is the contents of the Host field in your machine’s namespace object. See the

section "Why do you name machines and printers?".

software-type Function

Returns a string that is the name of the operating system Lisp is running in.

(software-type) => "Lisp Machine"�

For the CLOE Developer

(software-type) =>"Genera"�

and for the CLOE Application Generator

(software-type) =>"UNIX" or "MS-DOS"�

software-version Function

Returns a string that represents the versions of all the systems running in your

world. This includes any local systems you have loaded. This is similar to the in-

formation displayed by the Show Herald command.

For the CLOE Developer

(software-version) =>"8.0"�

and for the CLOE Application Generator

Page 2892

(software-version) =>"V.3" or "3.1"�

short-site-name Function

Returns a string that is the name of your site. This is the contents of the Site

field in your site’s namespace object.

The CLOE Runtime environment does not provide a uniform way to obtain a "site"

designation. If the value of the variable cloe::*short-site-name* is nil, you are

prompted to enter the correct values for your site. Initially, cloe::*short-site-

name* is set to "CLOE-USER-SITE."

long-site-name Function

Returns a string that is the full name of your site. This is the contents of the

Pretty-name field in your site’s namespace object.

The CLOE Runtime environment does not provide a uniform way to obtain a "site"

designation. If the value of the variable cloe::*long-site-name* is nil, you are

prompted to enter the correct values for your site. Initially, cloe::*long-site-name*

is set to "CLOE-USER-SITE".

print-sends &optional (stream zl:standard-output) Function

Prints out all messages you have received (but not messages you have sent), in

forward chronological order, to stream. Converse is more useful for looking at your

messages, but this function predates Converse and is retained for compatibility.

zl:print-notifications &optional (from 0) (to (1- (zl:length tv:notification-history)))�

Function

Reprints any notifications that have been received. The difference between notifica-

tions and sends is that sends come from other users, while notifications are asyn-

chronous messages from Genera itself. If from or to is specified, prints only part of

the notifications list.

Example: (zl:print-notifications 0 4) prints the five most recent notifications.

This is the same as the "Show Notifications Command".

si:show-login-history &optional (whole-history si:login-history) Function

Prints one line for each time the login command has been used since the world

was last cold booted. See the section "Show Login History Command".

zl:hostat &rest hosts Function

Page 2893

Asks each of the hosts for its status, and prints the results. If no hosts are speci-

fied, asks all hosts on the Chaosnet. Hosts can be specified by either name or octal

number.

For each host, a line is displayed that either says that the host is not responding

or gives metering information for the host’s network attachments. If a host is not

responding, probably it is down or there is no such host at that address. A Symbol-

ics host can fail to respond if it is looping inside without-interrupts or paging ex-

tremely heavily, such that it is simply unable to respond within a reasonable

amount of time.

See the section "Show Hosts Command".

To abort the host status report produced by zl:hostat or FUNCTION H, press

c-ABORT.

net:uptime &rest hosts Function

Queries the specified hosts, asking them for their "uptime"; each host responds by

saying how long it has been up and running. net:uptime prints out the results. If

net:uptime reports that a host is "not responding", either the host is not respond-

ing to the network, or it does not support the UPTIME protocol. Note that if you

do not specify a host, this command returns the status of every host on the net-

work.

The net:uptime function is a variant of zl:hostat.

� Dribble Files

There are a number of ways to capture output. You can use the Command Proces-

sor command Copy Output History, or you can use the :Output Destination key-

word with some operation. Alternatively, you can do it programmatically, using

dribble files. Dribble files allow you to save the output from or interaction with a

program in a file or a buffer. Formerly such files were called wallpaper files be-

cause the resulting long strips of paper output resembled wallpaper and were

sometimes posted on the wall to demonstrate the operation of a program. Now that

display consoles are in wide use, the files are referred to as dribble files because

the output "dribbles" out of the running program.

dribble &optional pathname editor-p

Opens pathname as a "dribble file".

(dribble) Closes the file.

zl:dribble-start pathname &optional editor-p (concatenate-p t) debugger-p

Opens pathname as a "dribble file".

zl:dribble-end Closes the file opened by zl:dribble-start and resets the I/O

streams.

Page 2894

Using Peek

Overview of Peek

The Peek program gives a dynamic display of various kinds of system status.

When you start up Peek, a menu is displayed at the top, with one item for each

system-status mode. The item for the currently selected mode is highlighted in re-

verse video. If you click on one of the items with the mouse, Peek switches to that

mode. Pressing one of the keyboard keys as listed in the Help message also switch-

es Peek to the mode associated with that key. The Help message is a Peek mode;

Peek starts out in this mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was

invoked.

Most of the modes are dynamic: they update some part of the displayed status pe-

riodically. The interval between updates is 20 seconds, but if you want more or

less frequent updates, you can set it using the Z command. Pressing nZ, where n

is some number, sets the time interval between updates to n seconds. Using the Z

command does not otherwise affect the mode that is running.

Some of the items displayed in the modes are mouse sensitive. These items, and

the operations that can be performed by clicking the mouse on them, vary from

mode to mode. Often clicking the mouse on an item gives you a menu of things to

do to that object.

The Peek window has scrolling capabilities, for use when the status display is

longer than the available display area. SCROLL or c-V scrolls the window forward

(towards the bottom), m-SCROLL or m-V scrolls it backward (towards the top).

As long as the Peek window is exposed, it continues to update its display. Thus a

Peek window can be used to examine things being done in other windows in real

time.

Peek Modes

Processes (P)

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu

item, you see all the processes running in your environment, one line for each.

The process names are mouse sensitive; clicking on one of them pops up a menu

of operations that can be performed:

Arrest (or Un-Arrest)

Arrest causes the process to stop immediately. Unarrest causes

it to pick up where it left off and continue.

Page 2895

Flush Causes the process to go into the state Wait Forever. This is

one way to stop a runaway process that is monopolizing your

machine and not responding to any other commands. A process

that has been flushed can be looked at with the Debugger or

Inspector and can be reset.

Reset Causes the process to start over in its initialized state. This is

one way to get out of stuck states when other commands do

not work.

Kill Causes the process to go away completely.

Debugger Enters the Debugger to look at the process.

Describe Displays information about the process.

Inspect Enters the Inspector to look at the process.�

See the section "Introduction to Processes".

Areas (A)

Areas mode, invoked by pressing A or by clicking on [Areas], shows you informa-

tion about your machine’s memory. The first line is hardware information: the

amount of physical memory on the machine, the amount of swapping space remain-

ing in virtual memory, and how many wired pages of memory the machine has.

The following lines show all the areas in virtual memory, one line for each. For

each area you are shown how many regions it contains, what percentage of it is

free, and the number of words (of the total) in use. Clicking on an area inserts de-

tailed information about each region: its number, its starting address, its length,

how many words are used, its type, and its GC status. See the section "Areas".

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of

all the metering variables for storage, the garbage collector, Zwei sectionization,

netboot and the disk. There are two types of meters:

Timers Timers have names that start with *ms-time- and keep a total

of the milleseconds spent in some activity.

Counts Counts have names that start with *count- and keep a running

total of the number of times some event has occurred.�

The garbage collector meters fall into two groups according to which part of the

garbage collector they pertain to: the scavenger or the transporter. See the section

"Theory of Operation of the GC Facilities".

File System (F)

Page 2896

File System mode, invoked by pressing F or by clicking on [File System], provides

information about your network connections for file operations. For each host the

access path, protocol, user-id, host or server unit number, and connection state are

listed. For active connections information about the actual packet flow is also

given. The various items are mouse sensitive. For hosts, you can get hostat infor-

mation, do a file reset, log in remotely, find out who is on the remote machine,

and send a message to the machine. You can reset, describe, or inspect data chan-

nels, and close streams.

Resetting an access path makes the server on a foreign host go away, which might

be useful to free resources on that host or if you suspect that the server is not

working correctly.

Windows (W)

Windows mode, invoked by pressing W or clicking on [Windows], shows you all the

active windows in your environment with the panes they contain. This allows you

to see the hierarchical structure of your environment. The items are mouse sensi-

tive. Clicking on a window name pops up a menu of operations that you can per-

form on the window.

Servers (S)

Clicking on [Servers] or pressing S puts Peek in Servers mode. If your machine is

a server (for example, a file server), Servers mode shows the status of each active

server.

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows informa-

tion about the networks connected to your machine. For each network there are

three headings for information:

Active connections The data channels that your machine has opened to another

machine or machines on the network.

Meters Information about the data flow (packets) between your ma-

chine and other machines on the network.

Routing table A list of all the subnets and for each the route to take to send

packets to a host on that subnet.�

To view the information under one of these headings, you click on the heading.

The hosts and data channels in the list of active connections are mouse sensitive.

For hosts, you can get hostat information, do a file reset, login remotely, find out

who is on the remote machine, and send a message to the machine. You can reset,

describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as me-

tering variables for the networks.

Page 2897

Hostat (H)

Clicking on [Hostat] or pressing H starts polling all the machines connected to the

local network. For each host on the network a line of information is displayed.

Those machines that do not respond to the poll are marked as "Host not respond-

ing". You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item or pressing HELP displays the help information

that is displayed when Peek is selected the first time.

Clicking on [Quit] or pressing Q buries the Peek window and returns you to the

window from which you invoked Peek.

Tools for Lisp Debugging

Here is an introduction to various tools for debugging, understanding, or improv-

ing Lisp programs. In addition to the Debugger, this section introduces the Flavor

Examiner and the Inspector.

Overview of the Debugger

Genera, the Symbolics software environment, offers you a host of powerful debug-

ging tools. The most comprehensive of these tools is the Symbolics interactive De-

bugger and its window-oriented counterpart, the Display Debugger.

Other debugging tools are:

• The Trace facility, which performs certain debugging actions when a function is

called or when a function returns. See the section "Tracing Function Execution".

• The Advise facility, which modifies the behavior of a function. See the section

"Advising a Function".

• The Step facility, which allows you to execute interpreted forms in your pro-

gram, one at a time, so that you can examine what is happening when execution

suspends at every "step." See the section "Stepping Through an Evaluation". The

Debugger’s :Single Step command also performs stepping through compiled

functions. See the section "Single Step Command".

• The evalhook facility, which allows you to get a particular Lisp form whenever

the evaluator is called. The Step facility also uses evalhook. See the section "A

Hook Into the Evaluator".

• The Inspector is a window-oriented program that lets you inspect data objects

and their components. See the section "The Inspector".

Page 2898

• Peek is a program that gives a dynamic display of various kinds of system sta-

tus. See the section "Using Peek".

• The Metering Interface allows you to meter the performance of a form, function,

or process. See the section "Metering Interface".

For information on the Display Debugger, see the section "Using the Display De-

bugger".

In the Genera software environment, unlike more traditional programming envi-

ronments, you do not have to include the Debugger explicitly when you compile

your programs. Generally, you can debug your code as you write it without having

to perform a series of complicated compiling, loading, and executing procedures be-

tween source code development and debugging.

Because Symbolics user-interface features allow you to perform many Symbolics ac-

tivities simultaneously  Zmacs, Zmail, the file system, a Dynamic Lisp Listener,

and so on  debugging becomes an easy task, regardless of how many system ac-

tivities you are using. You can move in and out of the Debugger as easily as you

can move in and out of any other activity in Genera.

For example, the Debugger command c-E (:Edit Function) brings up a specified

function for you to edit in a Zmacs editor window. This is useful when you have

found the function that caused the error and want to edit that function immedi-

ately. Another command, c-M (:Mail Bug Report), creates a bug report message in

a mail window and puts a backtrace into it. While composing the bug report, you

can switch back and forth between the Debugger and the mail window.

The Debugger is there whenever you need it. It is invoked whenever an error oc-

curs in your program’s execution or the execution of a system function. That is,

your machine brings you into the Debugger whenever it encounters an error that

is not handled by a condition handler, for example, when you reference an un-

bound variable. See the section "Entering and Exiting the Debugger". Once in the

Debugger, you are given a choice of actions that can correct the error. These ac-

tions are called proceed and restart options. See the section "Proceeding and

Restarting in the Debugger".

You can also enter the Debugger explicitly, at any time, by pressing m-SUSPEND or

c-m-SUSPEND. Or you can make your program enter the Debugger by inserting the

break or zl:dbg function into your program code. See the section "Entering and

Exiting the Debugger".

Upon Debugger entry, besides selecting one of the proceed and restart options, you

can enter any of the Debugger’s commands. These commands are full-form English

commands, built on the normal Command Processor (CP) substrate. In fact, several

Debugger commands are in the global command table. For more information on

Debugger commands, see the section "Entering a Debugger Command" and see the

section "Debugger Command Descriptions".

In the Debugger you can also evaluate a form in the lexical (user-program) context

of the current frame. This context is referred to as the Debugger’s evaluation envi-

ronment. You can think of the Debugger’s evaluation environment as a special

Page 2899

read-eval-print loop that not only evaluates forms but also evaluates them in the

context of the suspended function, where the lexically apparent values of all the lo-

cal variables are accessible. For more information on the evaluation environment,

see the section "Evaluating a Form in the Debugger".

Like other output in the Genera software environment, Debugger output is mouse

sensitive, so you can perform many useful Debugger operations using the mouse.

For more information on mouse capabilities, see the section "Using the Mouse in

the Debugger".

The Debugger also provides some online help facilities. For more information on

help facilities, see the section "Getting Help for Debugger Commands".

For complete information on the uses of these features and other Debugger fea-

tures, see the section "Using the Debugger". For descriptions of all Debugger

commands, see the section "Debugger Command Descriptions".

In general, you use the Debugger when:

• Your program triggers the Debugger because garbage  an unbound variable or

too many arguments perhaps  was passed to a function, and you want to find

out where the garbage came from. See the section "Analyze Frame Command".

• You want to see what’s happening in the sequence of function calls just execut-

ed, including a history of these function calls, the argument values passed, the

local-variable values, the source code, and the compiled code. See the section

"Show Backtrace Command". See the section "Debugger Commands for Viewing

a Stack Frame".

• You want to find out who or what is referencing a special variable or any other

location in memory. See the section "Monitor Variable Command".

• You want to perform debugging operations using the mouse. See the section

"Using the Mouse in the Debugger".

• You want to continue program execution, proceed from an error, restart a func-

tion, return from a function, or throw through a function. See the section "De-

bugger Commands to Continue Execution".

• Your condition handler does not work properly, and you want to debug this han-

dler when it is encountered. See the section "Enable Condition Tracing Com-

mand".

• You want to edit your function’s source code in Zmacs immediately after you

have found the error. See the section "Edit Function Command".

• You want to put a Debugger backtrace into a mail message and send this mes-

sage as a bug report. See the section "Mail Bug Report Command".

Page 2900

• You want to use Debugger breakpoint commands, instead of using the Trace fa-

cility or inserting a function in your code, to set Debugger breakpoints. See the

section "Debugger Commands for Breakpoints and Single Stepping".

Overview of Debugger Commands

The Debugger offers more than 50 full-form English commands, which are imple-

mented as CP commands. Debugger commands are entered inside the Debugger at

the Debugger’s command prompt, a right arrow (→). Commands fall into eight

general categories:

• Commands for viewing a stack frame

• Commands for stack motion

• Commands for general information display

• Commands to continue execution

• Trap commands

• Commands for breakpoints and single stepping

• Commands for system transfer

• Miscellaneous commands�

Most Debugger commands have corresponding key-binding accelerators, which

means you can press a combination of one or more keys in place of the command.

For example, you can press the accelerator c-E instead of entering the command

:Edit Function.

Most Debugger commands also have keywords you can use to modify the com-

mand’s behavior.

Many Debugger commands share the global command table. Therefore, you can en-

ter these commands while you are in a CP command loop. You do not have to be

in the Debugger. Note, however, that when you enter these commands while in the

Debugger, you must type a preceding colon with every command; for example, you

must type :Set Breakpoint in the Debugger.

These commands are:

• :Clear All Breakpoints

• :Clear Breakpoint

• :Disable Condition Tracing

• :Edit Function

• :Enable Condition Tracing

• :Monitor Variable

• :Set Breakpoint

• :Set Stack Size

• :Show Breakpoints

• :Show Compiled Code

• :Show Function Arguments

• :Show Monitored Locations

Page 2901

• :Show Source Code

• :Show Standard Value Warnings

• :Unmonitor Variable�

For general information on using the Debugger, see the section "Using the Debug-

ger". For documentation of each Debugger command, see the section "Debugger

Command Descriptions".

Overview of Debugger Evaluation Environment

In the Debugger, you can evaluate a form as easily as you can in a Dynamic Lisp

Listener read-eval-print loop. Evaluating a form in the Debugger, however, is par-

ticularly useful because you are evaluating the form in the context of a user pro-

gram and the current stack frame. This means you can see the value of Lisp ob-

jects at the point in program execution where an error occurred or at the precise

place in your program where you explicitly suspend execution and invoke the De-

bugger. You can even reference lexical (local) variables at the point where execu-

tion suspends.

Evaluating a form in the Debugger is a simple task. If you type a character other

than the first character in a Debugger command  a colon or accelerator key 

the Debugger immediately brings you into its evaluation environment. In other

words, just type the form. Evaluation in the proper environment happens automat-

ically.

For complete information on how to evaluate a form in the Debugger: See the sec-

tion "Evaluating a Form in the Debugger".

Overview of Debugger Mouse Capabilities

When the output generated by Debugger commands is displayed in a Dynamic

Window, it is mouse sensitive. You can perform several useful debugging opera-

tions simply by using the mouse to click on something. Some of these operations

include: setting a breakpoint, monitoring a variable or another location in memory,

evaluating a form, editing a function, setting the current frame, and choosing a

proceed or restart option. The mouse documentation line at the bottom of the

screen tells you what actions are available for the currently highlighted output

item.

Besides performing certain mouse operations by clicking directly on displayed De-

bugger output, you can use menus to perform the usual large variety of other

types of operations on Debugger output, just as you can with other kinds of output

generated in the Genera software environment.

For more information on using the mouse in the Debugger: See the section "Using

the Mouse in the Debugger".

Overview of Debugger Help Facilities

Page 2902

The Debugger provides online help for Debugger commands and their components,

such as keywords. You can get help for all Debugger commands by typing c-HELP,

which displays brief command descriptions and available key-binding accelerators.

For more information about Debugger help: See the section "Getting Help for De-

bugger Commands".

Flavor Examiner

The Flavor Examiner enables you to examine flavors, methods, generic functions,

and internal flavor functions defined in the Lisp environment. You can select the

Flavor Examiner with SELECT X, or with the Select Activity Flavor Examiner com-

mand.

The Flavor Examiner lets you use all of the Show Flavor commands, saving the

output in three history windows. Because much of the output is mouse-sensitive, it

is convenient to use the mouse to select a flavor, method, or generic function from

an output window to use as input to another Show Flavor command.

For a brief overview of the commands, see the section "Summary of Show Flavor

Commands".

For a comprehensive description of each Show Flavor command, see the section

"Show Flavor Commands".

Figure ! shows the initial window.

The Flavor Examiner window is divided into five panes.

Menu of Commands  the top-left pane

The top-left pane offers a menu of flavor-related commands, such as Flavor Compo-

nents; this is the same as the Show Flavor Components command. You can choose

one of these commands by clicking Left or Right. Clicking Left makes the com-

mand appear in the Command Input Pane. Clicking Right makes the command ap-

pear and also displays the command’s arguments, in a form that you can edit.

The Help command displays documentation on the flavor-related commands. The

HELP key provides information on all the CP commands you can enter.

The Flavor Examiner offers two commands for clearing and refreshing the display.

The CLEAR DISPLAY command clears the display from the three output panes; it

first asks for confirmation. The REFRESH DISPLAY command displays the information

on the screen again.

When you click Left or Right on a command name, the command appears in the

Command Input Pane.

Command Input Pane  the bottom-left pane

The bottom-left pane is a command processor window. If you click on commands in

the Menu of Commands, the commands appear in this window. You can enter argu-

ments (or commands) by typing them at the keyboard. This pane saves the history

of all commands entered. You can click on the scroll bar to show different parts of

the history.

Page 2903

Figure 164. Flavor Examiner Window�

�

You are not restricted to the commands in the Menu of Commands. You can give

any command processor command.

The output of all commands appears in the Main Command Output Pane.

Main Command Output Pane  the bottom-right pane

Each command’s output appears here. This pane saves the history of the output of

all flavor-related commands. You can use the scroll bar to show different parts of

the history.

Parts of the output of flavor-related commands are mouse-sensitive, so you can

click on a flavor name or method name to enter it as an argument to another

command.

If you give commands that are not flavor-related (such as the Show Host com-

mand), the output appears in a typeout window in the Main Command Output

Pane. This kind of output is not saved in the history of this pane. The typeout

window is itself a dynamic window with its own history.

When the output of the current command appears in the Main Command Output

Pane, the output of the previous command is copied to the Previous Command

Output Pane.

Page 2904

Previous Command Output Pane  the middle-right pane

This pane displays the output of the previous command. This pane does not save a

history, but the second-to-last command is copied to the Second-to-Last Command

Output Pane.

Second-to-last Command Output Pane  the top-right pane

This pane displays the output of the second-to-last command. This pane does not

save a history. When another command is given, the contents of the Previous Com-

mand Output Pane are copied to this pane. Similarly, the contents of the Main

Command Output Pane are copied to the Previous Command Output Pane.

How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When

you ask to inspect a particular object, its components are displayed. The particular

components depend on the type of object; for example, the components of a list are

its elements, and those of a symbol are its value binding, function definition, and

property list.

The component objects displayed on the screen by the Inspector are mouse-

sensitive, allowing you to do something to that object, such as inspect it, modify it,

or give it as the argument to a function. Choose these operations from the menu

pane at the top-right part of the screen.

When you click on a component object itself, that component object gets inspected.

It expands to fill the window and its components are shown. In this way, you can

explore a complex data structure, looking into the relationships between objects

and the values of their components.

The Inspector can be part of another program or it can be used standalone. Note,

however, that although the display looks the same as that of the standalone In-

spector, the handling of the mouse buttons depends upon the particular program

being run.

Figure 7 shows the standalone Inspector window. The display consists of the fol-

lowing panes, from top to bottom:

• A small interaction pane

• A history pane and menu pane

• Some number of inspection panes (three by default)�

Entering and Leaving the Inspector

You can enter the standalone Inspector via:

• Select Activity Inspector

• SELECT I

Page 2905

Figure 165. The Inspector�

• [Inspect] in the System menu

• The Inspect command, which inspects its argument, if any

• The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the In-

spector is not a separate activity from the Lisp Listener in which you invoke it. In

this case you cannot use SELECT L to return to the Lisp Listener; you should al-

ways exit via the [Exit] or [Return] option in the Inspector menu. If you forget

and exit the Inspector by selecting another activity, you might need to use

c-m-ABORT to return the Lisp Listener to its normal state.

See the section "The Inspector".

� Document Examiner

Introduction to Document Examiner

Page 2906

Document Examiner is a utility for finding and reading documentation. The entire

Symbolics document set can be read using Document Examiner.

You can look up documentation in Document Examiner’s own window, in a Lisp

Listener, or from the editor. No matter where you request to view documentation,

Document Examiner manages all online lookup queries.

Using Document Examiner is similar to using the printed documentation. For ex-

ample, just as books in the document set are available on a shelf or on your desk,

Document Examiner, when first selected, displays the names of all the books in

the document set. See Figure !.

You can open to a book’s table of contents and find a topic to peruse. You can also

open a book to the topic and read through to the end of that topic. Similarly, Doc-

ument Examiner lets you scan a document’s table of contents online and select the

desired topic, or, if you know what you are looking for, you can "open" the docu-

mentation set directly to any topic and read to the end of that topic.

Just as you can browse through the index of a book to find the primary topic (and

secondary topics) you want to read about, you can ask Document Examiner to show

you all the topics that are indexed under a particular entry.

The big difference between the Document Examiner and a book or set of books is

that Document Examiner provides powerful tools for moving from one kind of in-

formation to another.

Document Examiner allows quick, direct access to all levels of information:

• General, conceptual discussions of a topic

• Reference material on a topic

• Specific programming language information (for example, a Lisp function)�

� How Documentation Is Stored

The online documentation is kept in a documentation database, which consists of

documentation binary files. When you boot your machine, the world load contains

location information about the documentation topics, not the actual files them-

selves; thus, world size is increased by only a few hundred pages by having the

document set available. The documentation database is stored on a file server;

when you request to see a documentation topic, the appropriate part of the appro-

priate file is read in from the server.

Each documentation topic is stored as a record in the documentation database.

Each record contains information on a particular topic and is uniquely identified

by a record name. For example, the section you are currently reading is a record

whose name is "How Documentation is Stored".

Records fall into two categories:

• Object records documenting Lisp code objects, such as zl:setf or tv:menu.

Page 2907

• Concept records documenting abstract ideas that are not tied directly to code,

such as "Introduction to Document Examiner" or "Show Documentation Com-

mand".

Records have types. Examples of object record types are Lisp function, flavor, and

variable. Concept records are called sections. The documentation lookup commands

use the type indicator to distinguish between like-named records. For example, if

you request to see the documentation for error, Document Examiner lets you know

that documentation exists for error as both a flavor and as a function.

Records have topics. The Show Documentation command looks up records by their

topics. The topic uniquely identifies a record.

Records also have keywords with them. A keyword is comparable to a word in an

index entry. This record contains the keywords "documentation record". The Show

Candidates command compares your lookup request to all the keywords and docu-

mentation topic titles in the database. So, for example, if you want to find out

what information is available on the general topic "record", Document Examiner

includes the record you are now reading in its list of possible choices because

"record" is one of its keywords. You can see the keywords for any record in the

overview of the record.

Help in Document Examiner

Press the HELP key in the Document Examiner window to display a summary of

commands. Clicking Left on [Help] in the command pane produces the same abbre-

viated display.

Complete documentation of all features is available by command is equivalent to

clicking Middle on [Help] in the command pane or by typing Document Examiner

Documentation at the prompt.

Document Examiner Window

You can select Document Examiner in one of two ways:

• Keyboard: Press SELECT D or type Select Activity Document Examiner at the

Command Processor.

• Menu: Click on [Document Examiner] in the System menu.�

The Document Examiner window contains the following panes, as displayed in Fig-

ure 166:

• Viewer  where the documentation is displayed

• Current candidates  list of current choices, usually resulting from a Show Can-

didates or Show Table of Contents command

Page 2908

Figure 166. Upon selection, the Document Examiner displays all the books in the

document set.�

• Bookmarks  list of topics you’ve looked at or indicated that you wanted to look

at

• Command  where you enter commands, either by mouse or by typing a com-

mand�

Each of these panes is discussed in detail in this section.

Viewer Pane

The large area on the left of the window is called the Viewer pane. All the docu-

mentation you select to read is displayed in the viewer.

When you select a topic for viewing in Document Examiner, the topic is displayed

at the end of the viewer and the topic’s name is added to the list of bookmarks.

Topics displayed in a viewer are separated by a light horizontal line.

Certain items displayed in the viewer are mouse sensitive; for example, clicking

Left on cross-references or the names of documented Lisp objects displays their

documentation in the viewer, clicking Middle displays an overview of the topic (a

Page 2909

summary of where it is and what it is), and clicking Right presents a menu of op-

erations. Check the mouse documentation line for details.

The viewer is a dynamic window, which gives you the ability to copy a region of

text from the viewer into another window, such as Zmacs or Zmail. You can mark

a region with the mouse by pressing the CONTROL key and push the marked text on

the kill ring using s-W. For example, you can extract an interesting Lisp code ex-

ample from a documentation topic and run it in an editor buffer or Lisp listener.

Or you can include selections from the documentation in mail or text files. You

can also search for a particular string using s-R to to search backward and s-S to

search forward. For an introduction to using dynamic windows, see the section

"Using Your Output History".

When you first select Document Examiner, you see the default viewer. It is labeled

as such in the lower left-hand corner of the pane. You can create or select another

viewer, just as you can create or select another editor buffer. To create a new

viewer click Left on [Select Viewer] or enter the Select Viewer command and

name a nonexistent viewer. You can see a mouse-sensitive list of existing viewers

by pressing c-?. To go between two viewers, press c-m-L. To select another view-

er, use Select Viewer.

When you look up documentation in a Lisp Listener (using the Show Documenta-

tion command) or in the editor (using m-Sh-D or m-X Show Documentation), book-

marks for those topics are inserted in a special viewer called the Background view-

er.

Examples of Lisp code whose lines are wider than the viewer display with those

lines wrapped around. When you need to see such examples in a more readable

layout, use the Show Documentation command in a wider window, such as a Lisp

Listener.

Current Candidates Pane

The upper right-hand pane of Document Examiner’s window displays the names of

those topics that are the current candidates, that is, a menu of choices from which

you can select a topic for viewing. These candidate lists are produced by the Show

Candidates and Show Table of Contents commands.

When you first enter Document Examiner, the current candidates pane displays

the list of documents registered in the documentation database, as displayed in

Figure 166. Each time you use Show Candidates or Show Table of Contents, a new

list of current candidates is generated and displayed. Note that lines that are

wider than the current candidates pane are truncated.

You can redisplay a list of candidates not currently showing by clicking on [Rese-

lect Candidates] or using the Reselect Candidates command. You’ll see a menu of

all the documentation searches conducted during the current session. This list is

helpful when, for instance, you need to cycle through several sets of candidates.

Instead of having to remember exactly what you asked for each time you want to

look at it, use the Reselect Candidates command and click on the candidates pane

that you want to see.

Page 2910

Bookmarks Pane

The lower right-hand pane of the Document Examiner window contains a list of

bookmarks. Bookmarks are the names of topics that you have displayed in the

viewer or the names of topics that you want to display later on. Thus, a Document

Examiner bookmark is similar to a bookmark you might place in a printed book 

as a reminder of something you have just read and might want to reread or as a

pointer to something you should read in the future.

Document Examiner automatically inserts a bookmark for a topic when that topic

is first displayed in the viewer. The list represents a history of your selections for

a particular viewer. You can also explicitly add a bookmark to the list of book-

marks without having the topic displayed in the viewer. See the section "Putting

Topics Aside for Future Reading".

The list of bookmarks distinguishes between bookmarks whose topics have been

displayed and those that have not. Topics that are displayed in the viewer are list-

ed on a white background in the order in which you looked them up. Topics not

displayed in the viewer follow and are listed on a gray background in the order in

which you created the bookmarks. See Figure !.

Figure 167. The bookmarks pane shows which topics have been displayed in the

viewer.

Names that are wider than the bookmarks pane are truncated.

You also use a set of bookmarks in creating a private document. See the section

"Creating a Private Document".

� Command Pane

The bottom portion of the Document Examiner window is called the command

pane. It accepts hand-typed commands at the triangular Command Processor

Page 2911

prompt to the left and displays a menu of Document Examiner command menu

items to the right.

The Command Processor offers completion on command names as well as topic

names. The HELP key (after you type at least one character) displays a mouse-

sensitive list of possible completions. Pressing HELP before you start to type a com-

mand name displays the available commands. After you type at least one character,

c-? displays a mouse-sensitive list of commands starting with the character or

characters you have typed and c-/ displays a mouse-sensitive list of commands in-

cluding the character or characters you have typed.

The mouse documentation line, situated below the command pane, tells you how to

use the mouse to activate a particular command from the menu.

The following list describes the commands. All these commands are also available

as menu items.

• Help  offers a brief command summary. Or click Right on [Help].

• Document Examiner Documentation  displays the full Document Examiner

documentation. Or click Middle on [Help].

• Show Candidates  searches the entire database for documentation topics with

titles or keywords that resemble or match what you’re looking for and displays a

list for you to choose from.

• Show Documentation  displays the documentation for a specific topic and is

useful when you know exactly what you’re looking for.

• Show Overview  displays basic information about a topic, including a tree

graph that shows how the topic fits in with other topics and what keywords are

specified for it.

• Show Table of Contents  displays the table of contents of a topic, that is,

what other topics that topic includes. It is most useful for getting information

about an entire chapter, section, or book.

• Reselect Candidates  displays a menu of all the candidates lists created for a

particular viewer during the current work session. Candidates lists are created

whenever you invoke the Show Candidates or Show Table of Contents com-

mands. The display is a mouse-sensitive menu from which you can redisplay the

results of a previously executed command.

• Select Viewer  changes from one viewer to another or creates a new one. You

can create a new viewer by naming a nonexistent viewer in the Select Viewer

command. You can move between two viewers by pressing c-m-L.

• Remove Viewer  removes a viewer from the list of viewers. Also available

from the menu presented when you click Right on [Select Viewer].

Page 2912

• Hardcopy Viewer  hardcopies the contents of a viewer. Also available from the

menu presented when you click Right on [Select Viewer].

• Save Private Document  saves the list of bookmarks in the current viewer as

a private document. This means you can create your own private document by

creating bookmarks for one or more documentation records and then issuing this

command to write the collection of bookmarks to a file. Also available from the

menu presented when you click Right on [Read Private Document]. You can

read or load a private document when you need it. It is not part of the docu-

mentation database. See the section "Creating a Private Document". Read Pri-

vate Document  allows you to view private document collections created from

the documentation database. This command loads all the text associated with

the private document into a viewer.

• Load Private Document  loads the bookmarks associated with a private docu-

ment, but does not load the text. Also available from the menu presented when

you click Right on [Read Private Document].

• Hardcopy Private Document  sends all the text in a private document to a

printer. Also available from the menu presented when you click Right on [Read

Private Document].

Looking Up Documentation

When you look through a printed book for information, you probably scan the table

of contents to see how the book is organized and maybe skim a few chapters to see

their major sections, perhaps inserting a bookmark or two when things look inter-

esting. You might then look over the index to see the number and kinds of main

and related entries on a particular subject. Sometimes you know exactly what you

are looking for and can go directly to the section you want to read.

Document Examiner provides a variety of commands and tools for online lookup

that are analogous to the methods you use to examine a printed book, but are

much more flexible. They are not limited to a single book, however, and they allow

you to browse in the entire documentation database with just a few keystrokes and

to take advantage of some "smart" aids to readers, such as the Show Candidates

command.

Requests for online lookup are always made with respect to a documentation topic

name, which can be anything from the name of a document, chapter, or other book

subdivision, to the name of a Lisp code object, like a function or flavor. Every Lisp

object is documented in its own documentation record; the documentation topic

name of the record is the name of the Lisp object. (You may need a package pre-

fix. See the documentation for languages other than Lisp in case there are special

procedures.)

Page 2913

Show Documentation

Displays the documentation for a specific topic name in the

viewer and inserts a bookmark for the topic. You can do the

same thing by clicking Left on the name of any documentation

topic. You could look up the section you are reading now by us-

ing Show Documentation and specifying "Looking Up Docu-

mentation".

Show Candidates Displays, after searching the database, all topic names that sat-

isfy your lookup request. This is often the best way to search

the documentation database. By default, Show Candidates uses

a heuristic, or "smart", searching strategy that allows you to

see all the candidates that are close to what you asked for. For

instance, if you specify "local" to Show Candidates, the candi-

dates list includes "locals" "locative", "location", and "localize",

as well as "local". Show Candidates lets you specify several

search strategies. For information on these alternative search

strategies, see the section "Show Candidates Command".

Show Overview Displays the local context of a topic name, showing which topic

includes it in the document hierarchy, which topics are on the

same level, and which topics are included by it in the hierar-

chy. This is good for examining the organization of topics and

tracing topics to more general and more specific levels of ab-

straction. The display also provides related information, such

as, which documents a topic appears in and what keywords are

associated with it.

Show Table of Contents

Displays the table of contents for a given topic name, showing

the supplied topic name and all of its subordinate topics. This

command is good for examining the organization of topics with-

in a document.

Genera’s online documentation facility is flexible. You can look up information

from several contexts  in a Lisp Listener, in an editor buffer, or directly in Doc-

ument Examiner. Where you look up documentation probably depends on the kind

of work you are doing and your own particular workstyle.

• If you are programming in an editor buffer, you can use m-X Show Documenta-

tion or its keyboard accelerator, m-sh-D.

• In a Lisp Listener, you can issue Show Documentation at the Command Proces-

sor, m-sh-A to see documentation for a Lisp function, m-sh-F to see documenta-

tion for a flavor, or m-sh-V to see documentation for a Lisp variable.

• If you plan to poke around or to read a great deal of documentation, you can

take advantage of the extra features offered by Document Examiner, such as

bookmarks and the Show Candidates command. Shifting to Document Examiner

Page 2914

in such cases is easy. Bookmarks for all the topics you’ve looked at outside Doc-

ument Examiner are inserted in the Background viewer.

In addition, Document Examiner allows you to:

• Insert a bookmark in a documentation topic, see the section "Putting Topics

Aside for Future Reading".

• Display the documentation for topics that are explicitly cross-referenced, see the

section "Looking Up a Specific Topic".

• Display the documentation for implicit cross-references, such as the following

mouse-sensitive reference to zl:string-capitalize-words.

Any topic name appearing in any pane of the Document Examiner window is

mouse-sensitive. That is, when you move the mouse over a topic name, the mouse

highlights the name in an outline box; clicking one of the mouse buttons on a

highlighed topic name causes some action to occur. Clicking Left displays the doc-

umentation and clicking Middle displays the overview.

Clicking Right brings up a menu of operations that can be performed on that topic

name:

View the documentation

Hardcopy documentation

Display a table of contents

Insert a bookmark

Display an overview

Discard a topic�

The lookup commands distinguish among like-named topics. For example, if you

use Show Documentation for evalhook, Document Examiner asks you to select

evalhook as a function or as a variable. See Figure !. Similarly, the lookup com-

mands distinguish between Zetalisp objects and those that are Common Lisp or

Symbolics Common Lisp objects; Zetalisp objects are displayed with the zl: package

prefix.

� Looking Up a Specific Topic

Document Examiner provides several ways to look up documentation for a specific

topic, once you know the right topic name:

• Use the Show Documentation command.

• Use the mouse to display the documentation for cross-references and the names

of Lisp objects. All topic names are mouse-sensitive; clicking Left on a topic

name displays the associated documentation. The names of Lisp objects men-

tioned in the documentation appear in a boldface character style.

Page 2915

Figure 168. Document Examiner lets you choose among like-named topics.

Example: the topic *load-set-default-pathname*, displayed in the viewer, men-

tions the variable *load-pathname-defaults*, as shown in Figure !. Clicking

Left on the variable name displays the documentation for the topic "*load-

pathname-defaults*". See Figure !.

• Use the mouse to display the documentation associated with current candidates,

bookmarks, or topic names displayed in an overview or a table of contents. �

Figure 169. The names of Lisp objects displayed in the viewer are mouse-

sensitive.�

In addition, you can look at documentation topics in the editor and in a Lisp Lis-

tener.

Show Documentation Document Examiner Command

Show Documentation is useful when you know exactly what you are looking for.

Show Documentation looks up a topic, displays it in the viewer, and, if it is a new

Page 2916

topic, inserts a bookmark for the topic in the bookmarks pane. To invoke the com-

mand you can either click on [Show Documentation] in the command menu or type

Show Documentation in the command pane. The command prompts for a topic

name.

Clicking Left on a topic is the equivalent of Show Documentation.

If you aren’t quite sure what you’re looking for, see the section "Show Candidates

Command".

Topic names for methods are of the form (flavor:method :generic-function-name fla-

vor-name). Thus, to use Show Documentation for a method, give the topic name of

the method in this form, for example:

Show Documentation (flavor:method :set-edges tv:menu)

Show Documentation is also an editor command and a Command Processor com-

mand. In an editor, m-X Show Documentation (or its keyboard equivalent m-sh-D)

prompts you for a topic name, with completion.

When you are typing in a Lisp Listener or a Lisp mode buffer in Zmacs, the fol-

lowing commands give you documentation for the current Lisp object (the one

nearest the cursor):

m-sh-A Looks up the documentation for the current function.

m-sh-V Looks up the documentation for the current variable.

m-sh-F Looks up the documentation for the current flavor.�

You can use c-/ and c-? to find topic names containing or starting with the the

sequence of characters you have typed so far. For example,

Show Documentation search c-/

displays a mouse-sensitive list of all documentation topics containing "search" in

their names. And,

Show Documentation search c-?

displays a mouse-sensitive list of all documentation topics whose names start with

"search".

See the section "c-? and c-/".

Searching Through Documentation

In addition to looking up specific topics online, you can search through the entire

documentation database. Document Examiner includes many tools to make this

searching easy.

The Show Candidates command, for instance, can search for a broad range of pos-

sible documentation topics using heuristic, or "smart", techniques. This means that

the command locates a word and variations on it instead of searching for a strict

Page 2917

match. The command defines the different variations for the word by checking for

common suffixes using a technique called stemming. Thus, if you specify "local" to

Show Candidates, the result includes "locals", "locative", "location", and "localize",

as well as "local".

Show Candidates isn’t limited to documentation titles in doing the search. It

searches through an index that contains all the words in topic titles and a list of

keywords (somewhat like an index entry) for each documentation topic.

If, in the course of your searching, you see topics that look interesting, you can ei-

ther read them as you go or add bookmarks so you can look at them later.

Document Examiner also helps you search by enabling you to jump from topic to

topic.

• You can click on implicit cross-references to language objects, such as setq,

cdaddr and zl:string-pluralize.

• You can click on explicit cross-references, such as, see the section "String Con-

version".

� Searching with the Show Candidates Command

The Show Candidates command is your first choice for browsing through the docu-

mentation database. While Show Candidates is fundamentally an index-search com-

mand, it has several capacities beyond what is normally found in index-searching.

• In the first place, Show Candidates searches through all the topic names in the

database, and also searches through all the keywords (which are similar to index

entries) as well.

• Secondly, by default, Show Candidates performs "smart" (heuristic) searching.

This means that you no longer have to think about the form of the word to sup-

ply as a lookup request; the heuristic approach finds singulars and plurals,

gerunds, negations, and so on. This is because the search is based on the stem

of your lookup request.

For example: The stem of "move" is "mov". Show Candidates move will match�

any topic names and keywords containing "move", "moves", "moved", "moving",

move-mumble, ":move", and so on. (This is a hypothetical example. In fact

move-mumble is not documented.)

If you supply two or more words to Show Candidates, it searches for candidates

that match all stems in any order. Thus, if you supply both "pathname" and "com-

pletion" to Show Candidates, your candidates list includes both fs:complete-

pathname and "Pathname Completion is Supported". This is the default behavior.

You can specify adjacent search and also string searching by exact match, initial

string, and substring by typing in your search term or terms and then pressing

m-COMPLETE to display a menu from which you can choose those options. Press END�

to accept the choices displayed in boldface or ABORT to abort.

Page 2918

If you select adjacent search and supply "pathname" and "completion" in that or-

der, your candidates list will include only "Pathname Completion is Supported".

Use the same menu to limit your search to exact matching, initial substring

matching, and substring matching.

Putting Topics Aside for Future Reading

Occasionally in browsing through the database you notice topic names that look in-

teresting but that you cannot or do not want to read immediately. Suppose, for ex-

ample, that you are scrolling through several hundred current candidates generat-

ed by the Show Candidates command. Rather than read the documentation for each

interesting topic as you come across it, you prefer to scan all the candidates first,

mark all those topics that look like they might be helpful, and read them all at

once later. Remembering their topic names would be extremely tedious.

Document Examiner lets you put documentation aside for future reading by allow-

ing you to explicitly insert a bookmark, or pointer, for a documentation topic. The

topic name is added to the bookmarks pane. To insert a bookmark click sh-Middle

on a mouse-sensitive topic name.

Bookmarks are automatically inserted in two cases: whenever you read the docu-

mentation for a topic into a viewer and when you look up documentation in a Lisp

Listener or in the editor. In the latter case, the bookmarked is inserted in a spe-

cial viewer called the Background viewer, but the topic is not displayed there.

Bookmarks are used to create your own document for online viewing, see the sec-

tion "Creating a Private Document".

Particular bookmarks are associated with a particular viewer, so that when you se-

lect another viewer, the list of bookmarks associated with it is also selected.

Getting Information About a Documentation Topic

Two commands  Show Overview and Show Table of Contents  are useful for

examining the organization of topics within a document and for learning the posi-

tion of a particular topic in the book or books in which it appears.

Show Overview

Sometimes you notice an intriguing-looking topic name among a list of current

candidates but are not quite sure that the topic is the one you need. Before you

commit yourself to reading it into the viewer, you might want to see how the topic

fits into the structure of the book or books in which it appears or which other

topics, related to it, are covered in the same book. Other times you might read a

topic into the viewer and find that it is not quite at the right level of abstraction:

it provides too much reference information, whereas you need more general cover-

age.

Page 2919

Document Examiner provides a command  Show Overview  that displays the

position of a topic within the document or documents in which it appears. Given a

topic, the command displays a two-part overview of the topic in a dynamic typeout

window:

The top part includes:

• The type (is it a section of text or does it document a Lisp object, like a func-

tion, for instance) and the name of the topic

• Possibly a short summary of the topic

• The names of any other topics in the documentation that include this one

• The names of any printed books that contain the topic

• The topic’s keywords (similar to index entries)

• The names of related topics (cross-references)�

The names of topics and books in this display are mouse-sensitive.

The bottom part is a graph of the document hierarchy around the topic you

choose. (If the topic appears in more than than one document  multiple graphs

are displayed.) This graph includes:

• The topic that includes the original topic

• Other topics included by the topic that includes the original topic

• The topics the original topic includes�

Figure !shows the display produced by doing Show Overview of the topic "Disk Er-

ror Handling".

� All the items in the overview graph are mouse-sensitive.

For example, when you get an overview of "Disk Error Handling", you can see that

the topic is included in the topic "Disk System User Interface" and that it includes

four other topics. If this overview does not give you enough information, try an

overview on the parent topic (in this case, "Disk System User Interface").

While the Show Candidates command searches through the entire documentation

database, Show Overview helps you find out where you are in a document and how

to navigate your way through it.

Show Overview differs significantly from "Show Table Of Contents" . Compare the

display of the two commands. See Figure !.

� You can also find the printed book in which the topic appears by using the m-X�

What Document command in the editor. It displays the name of the printed book

that contains the given documentation topic. If the topic is included in more than

one book, the titles of all the books containing the given topic are listed.

Page 2920

Figure 170. Document Examiner display of Show Overview of topic "Disk Error

Handling".

Figure 171. The candidates pane shows the table of contents for a topic; the type-

out window shows the overview of the same topic.

� Show Table Of Contents

Much as with printed documentation, you might want to become familiar with the

overall structure of an online document before reading about any one topic. When

you examine documentation online, the more general the topic you look up, the

Page 2921

larger the amount of documentation you see for it. The most general topic names,

obviously, are the names of the books in the printed documentation set. For exam-

ple, if you asked to see the documentation for the topic name "Genera User’s

Guide", Document Examiner would display the contents of the entire book. This

might not be what you want!

The Show Table of Contents command is useful on those occasions:

• When you are unsure what level in the documentation you need (chapter level

or section level, for example)

• When you would like to become familiar with the organization of a document�

Given a documentation topic name, the command displays the topic name and all

the topic names subordinate to it in the candidates pane. For example, Figure !

shows the first pane of the table of contents of the document "Genera User’s

Guide".

Figure 172. The candidates pane displays the table of contents for an entire docu-

ment.�

The indentation of the candidates indicates the hierarchy of topics.

You can ask to see a table of contents for any topic, not just a book. Of course, if

a topic doesn’t contain any other topics, then it has no table of contents.

This command is also available in the editor as m-X Show Table of Contents. c-U

m-X Show Table of Contents prints the table of contents on a printer.

Page 2922

For more general searching, see the section "Searching with the Show Candidates

Command".

Hardcopying Documentation

Whenever you are looking up documentation using Document Examiner, you have

the option of hardcopying that documentation.

There is a Hardcopy Documentation command available from the Document Exam-

iner command pane. The same command is also available from the menu displayed

when you click Right on a topic name.

At a Command Processor, Show Documentation prompts you for a topic name, with

completion. When you include the keyword argument :Output Destination, the

command offers to route the documentation to the default text printer.

In the editor, you can hardcopy a topic by issuing Show Documentation with a nu-

meric argument, for example:

c-U m-X Show Documentation catch-error-restart

Organizing Topics in Document Examiner

You do not need to put all the documentation you ever looked at or wanted to look

at in a single Document Examiner viewer. You can create multiple viewers to help

you organize your use of Document Examiner. You can also create private docu-

ments that you can load into a viewer at any time, even if you have rebooted since

you last looked at Document Examiner.

Using Multiple Viewers

When you select a topic for viewing, the topic is displayed at the end of the cur-

rent viewer, separated from the previous topic by a horizontal line. After a day or

two of browsing and reading documentation, the viewer becomes cluttered with

dozens of topics. The list of bookmarks gets long enough that you have to to scroll

through it to locate a topic name.

As an alternative to this hodgepodge of numerous, unrelated topics in one viewer,

you might find it more convenient to organize the results of browsing into differ-

ent viewers. For example, make random lookup requests in the default viewer (the

one that appears when first selecting Document Examiner), but read all documen-

tation on a particular subject, like "Arrays", into its own viewer, called Array Doc-

umentation.

You can create as many viewers as you want with the Select Viewer command, al-

so available by clicking Left on [Select Viewer] in the commands pane. Whenever

you create a new viewer, the default list of current candidates is all the books reg-

istered in the documentation database. Note that each viewer has its own list of

bookmarks; bookmarks in another viewer do not transfer to the new viewer. The

Reselect Candidates command also applies to the current viewer only.

Page 2923

Use Select Viewer also to return to an existing viewer. If you cannot recall its

name, use c-? to display a menu of viewer names. Use c-m-L to move between

two viewers.

This system of organizing lookup requests makes it easy, for instance, to hardcopy

all the documentation on a particular subject: just invoke the Hardcopy Viewer

command or click Right on [Select Viewer] and then click on [Hardcopy Viewer]

from the menu. Otherwise you would have to individually locate every topic and

hardcopy it, a rather tedious process. In this scheme discarding collected topics

you no longer need is just as easy: use Remove Viewer or click Right on [Select

Viewer] and then click on [Remove Viewer] on the menu to delete the entire con-

tents of a viewer.

Creating a Private Document

You might decide that you want to save the documentation in a viewer beyond the

current work session (the span of time between cold-booting), so that the next time

you invoke Document Examiner you will not have to painstakingly repeat the

lookup process.

Document Examiner provides a mechanism for saving a viewer’s documentation

topics in a file called a private document. A private document is not part of the

central documentation database. A private document is accessible on demand for

online viewing simply by reading the file into Document Examiner.

Strictly speaking, a private document is a collection of bookmarks, rather than a

collection of the actual documentation topics. Thus, to create a private document

you must first create a list of bookmarks and then save it in a file. For example,

to create a private document on login procedures and functions, use the following

procedure:

1. Create a list of bookmarks on the appropriate topics, like

login-forms

login-setq

System Initialization Lists

zl:login�

by looking up some topics or by clicking appropriately on the list of candi-

dates or on mouse-sensitive items in the viewer.

2. Discard extraneous topic names, if any, from the current viewer, since Save

Private Document writes all the bookmarks in the pane to the file. Click

Sh-Middle on a bookmark to remove the topic. Alternatively, you can insert

the bookmarks for your document in a new viewer.

3. Save the bookmarks in a file by invoking Save Private Document or clicking

Right on [Read Private Document] and selecting [Save Private Document]

from that menu. When prompted, supply the pathname of a file to contain the

private document’s bookmarks. The following is the prompt for Save Private

Page 2924

Document:

(The pathname of a file [default

PURPLE:>prince>private.psb.newest]):�

The default location for a private document is always your home directory.

Thus, with a home directory of PURPLE:>prince>, if you give Save Private

Document the filename "login-book", the command writes the list of book-

marks to PURPLE:>prince>login-book.psb.�

You can read, load, or hardcopy a private document at any time. Reading a private

document into Document Examiner means that the documentation is loaded into

your computer and displayed in the viewer of your choice. Use Read Private Docu-

ment or click Left on [Read Private Document]. You can also load the bookmarks

for the private document into the Document Examiner without having the docu-

mentation displayed. Then all you have to do is click as usual to display it. To do

this, use Load Private Document or click Right on [Read Private Document] and

select [Load Private Document] from the menu.

You can also print a copy of a private document by clicking Right on [Read Pri-

vate Document] and selecting [Hardcopy Private Document] from the menu.

