
Getting Ready for CLOS

About This Document: Getting Ready for CLOS

The purpose of this document, "Getting Ready for CLOS", is to give Symbolics

users information about the Symbolics implementation of CLOS, which is currently

under development.

The main reason for making this information available in advance of the Symbolics

CLOS implementation is to help users more quickly develop code to be run under

CLOS, by using Flavors in place of CLOS during the initial stages of development

and then translating to CLOS when it becomes available. Note that Flavors will

continue to be supported, so there is no need to convert programs from Flavors to

CLOS; this decision is up to the individual user.

This document describes the differences between Flavors and CLOS. It states, for

each Flavors feature and operator, the name of the analogous CLOS feature or op-

erator. In some cases, CLOS has no analogous capability, so users who plan on

converting code from Flavors to CLOS can use this information to avoid developing

code that depends on such Flavors features.

The section ""Questions and Answers About Symbolics CLOS"" gives some back-

ground information about CLOS itself, and tells where users can find more infor-

mation about CLOS. This document does not give overview or tutorial information

about CLOS, nor does it give reference documentation; both will be available with

the Symbolics CLOS implementation.

Questions and Answers About Symbolics CLOS

We introduce Symbolics CLOS with a series of questions and answers.

Q: What is CLOS?

A: CLOS stands for "Common Lisp Object System." It is an object-oriented pro-

gramming language similar to Flavors. CLOS is part of the Common Lisp

standard being produced by X3J13, the ANSI Common Lisp working group.

Q: What are the similarities and differences between Flavors and CLOS?

A: Both CLOS and Flavors are object-oriented languages built on Lisp. Symbol-

ics participated in the design of CLOS, and thus many of the strengths and

features of Flavors are also present in CLOS. CLOS includes extra function-

ality as well. CLOS does not support most Flavors functionality that is avail-

able solely for compatibility with Old Flavors. The rest of this document dis-

cusses the similarities and differences between Flavors and CLOS in some

detail.

Q: How can I find out about CLOS?

A: CLOS is defined by its specification, which is:

Page 1190

"Common Lisp Object System Specification," X3J13 Document 88-002R, June

1988. Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.

Keene, Gregor Kiczales, and David A. Moon.

It is available in:

SIGPlan Notices (ISSN 0362-1340)

Volume 23

Special Issue -- September 1988

Copyright 1988 by the Association for Computing Machinery.

ISBN 0-89791-289-6

Price: Members $10.50, Nonmembers $14.00.

ACM Order Number: 548883

Additional copies may be ordered prepaid from:

ACM Order Department

P.O. Box 64145

Baltimore, MD 21264

For a tutorial book on how to use CLOS, see "Object-Oriented Programming

in COMMON LISP" by Sonya E. Keene, copublished by Symbolics Press and

Addison-Wesley, 1989.

Q: What are Symbolics’ intentions with respect to CLOS?

A: Symbolics will support CLOS for both Genera and CLOE. This will be a

high-quality implementation that offers good performance and full coverage

of the CLOS specification Chapters 1 and 2. Note that Chapters 1 and 2 de-

fine the CLOS Programmer’s Interface, which is the part of CLOS that has

been accepted by X3J13 as a standard part of Common Lisp.

Q: Will existing programs that use Flavors continue to work?

A: Yes. The introduction of CLOS will be an additive process and thus will not

entail changes to Flavors. Existing Flavors programs will continue to work.

Q: What will Symbolics do to help Flavors users make the transition to CLOS?

A: Symbolics is working on a number of ways of helping you make the transi-

tion. Symbolics will continue to support the existing Flavors system. Where-

as you may want to start writing new code in CLOS, there should be no ne-

cessity to convert existing code, because Flavors code will continue to run.

We have prepared this document, "Getting Ready for CLOS", which describes

how CLOS differs from Flavors. This document will help you plan for CLOS,

by helping you understand differences between CLOS and Flavors that will

affect the way you develop code. We expect that some users will be develop-

ing Flavors code prior to CLOS availability with the intention of translating

it to CLOS; this document will help those users plan for the conversion in

advance.

Page 1191

Symbolics will provide some tools to aid in the translation of Flavors code to

CLOS.

Q: What kind of documentation will you offer for CLOS?

A: CLOS will come with complete reference documentation and a copy of Sonya

Keene’s book, "Object-Oriented Programming in COMMON LISP."

Q: What kind of training will you offer for CLOS?

A: Symbolics Education Services is planning two courses about CLOS. The first

will be a lecture-only seminar for Symbolics users who are experienced pro-

grammers in Flavors and would like to learn CLOS very quickly. The plan is

to offer it as a day-long program in major cities throughout the country. The

second course will be a three-to-four day lecture and laboratory course for

experienced Common Lisp programmers who would like to learn object-

oriented programming in CLOS.

Q: How will CLOS be integrated into the system?

A: The integration will occur in two phases.

The first release will add CLOS support without disturbing the existing Fla-

vors support. Only very limited integration between flavors and classes will

be provided.

The second release will focus on deeper integration with existing software,

and will make upward-compatible changes to existing software to improve

the integration.

Q: Will Symbolics support the Meta-Object protocol as defined by Chapter 3 of

the specification?

A: Not in the first release, which will support only the Programmer’s Interface,

as defined by Chapters 1 and 2. Some portions of Chapters 1 and 2 that deal

with meta-objects might not be fully supported in the first release. Note that

Chapters 1 and 2 are already accepted parts of the standard, whereas Chap-

ter 3 is not; the Meta-Object Protocol is continuing to evolve.

Q: Is CLOS a product in itself? Can I order it?

A: CLOS will be a standard part of Genera and CLOE. There will be no addi-

tional charge for CLOS. Customers with maintenance contracts will automat-

ically get an update containing it.

Q: Will Symbolics CLOS be compatible with PCL?

A: Symbolics CLOS will conform to Chapters 1 and 2 of the CLOS specification.

It will not aim to be compatible with other implementations, such as PCL.

In some cases, these implementations deviate from the CLOS specification.

Code that conforms to the CLOS specification and runs on PCL should run

on Symbolics CLOS. Code developed to run on PCL without regard to the

CLOS specification could depend on aspects of PCL that do not conform to

the CLOS specification and may require some modifications in order to run

on Symbolics CLOS.

Page 1192

Q: Will Symbolics be translating Genera to CLOS?

A: No. Flavors support will remain, and the portions of Genera that use Flavors

will continue to be implemented in Flavors. Symbolics will not introduce gra-

tuitous incompatibilities into Genera by recoding existing capabilities. In-

stead, Symbolics will provide good integration between CLOS and Flavors so

that new code written in CLOS can coexist with Flavors. Symbolics expects

that this support for existing code will aid customers who have a significant

amount of existing Flavors code. In the future, Symbolics will decide on a

case-by-case basis whether new software projects use Flavors or CLOS. We

expect our users will do the same.

Q: Is Symbolics looking for Beta test sites?

A: Yes. We would like to sign up a small number of good Beta test sites to test

the CLOS product. We are looking for Beta sites that would give the system

a thorough workout, but which would not have CLOS functionality on their

critical path.

CLOS and Flavors Terminology

Here we translate between Flavors and CLOS terminology describing the basic ele-

ments of object-oriented programming:

Flavors CLOS

flavor class

component flavor superclass

dependent flavor subclass

local component flavor direct superclass

local dependent flavor direct subclass

generic function generic function

method method

combined method effective method

method option method qualifier

instance instance

instance variable slot

ordering of flavor components class precedence list

Comparison of CLOS and Flavors Features

This section discusses features that CLOS and Flavors have in common, Flavors

features that CLOS lacks, and CLOS features that Flavors lacks. In this section,

CLOS terminology is used. This is a high-level overview; more detailed information

is given throughout this document.

Page 1193

Features provided by both CLOS and Flavors�

• Users can define classes, methods, and generic functions.

• Users can create and initialize instances.

• Users can access slots with accessor generic functions.

• A set of built-in method combination types is available.

• Users can define new method combination types.

• Multiple inheritance is supported; this is the ability to define a class built on

more than one direct superclass.

• The precedence order of classes is computed based on constraints set locally in

the definition of each class.

• Generic functions are called with the same syntax as ordinary Lisp functions.

• Users can redefine classes, methods, and generic functions.

• Users can change the class of an instance. �

Features provided by Flavors but not CLOS�

• Wrappers.

• Automatic lexical access to slots by using variables within methods. (CLOS of-

fers a special mechanism for achieving the same effect, but you must explicitly

use the with-slots macro to get the desired lexical context.)

• Internal flavor functions, macros, and substs.

• Automatically generated constructors.

• Several defflavor options related to defining the intended use or protocol of a

flavor, such as :required-methods, :abstract-flavor, :mixture, and others.

• The send function for sending messages.�

Features provided by CLOS but not Flavors�

• The ability to define a method that specializes more than one of its required ar-

guments. For example, one method is applicable if its first argument is a ship,

and its second argument is a plane.

Page 1194

• The ability to define a method that specializes on an individual Lisp object,

based on an eql test. For example, one method is applicable if its third argu-

ment is the symbol danger; another method is applicable if its first argument is

the number 0.

• The ability to define a method that specializes on Common Lisp types such as

symbol, integer, list, and other useful types.

• The ability to define a method that specializes on defstruct types. In CLOS,

defstruct defines a class, and methods can specialize on those classes.

• Class slots, which are slots whose values are shared by all instances of a class;

these are used to store information that pertains to a class as a whole, or to all

instances of the class.�

These CLOS features extend the Flavors paradigm in significant ways, especially

the ability to define a method that specializes more than one of its arguments. In

Flavors, a method is linked with a single flavor, so it makes sense to say "a flavor

inherits methods from its component flavors". In CLOS, a method is linked to a set

of classes (because any of the required arguments can be specialized). One ramifi-

cation of this extension is that in CLOS, there is no concept of "self" in a method

body, because no single argument is distinguished. Also, since there is no "self",

CLOS provides no automatic access to the instance variables of an object.

The CLOS concept of applicable methods is an extension of the Flavors concept of

a flavor inheriting methods. A CLOS method has a lambda-list, which states the

applicability requirements of the method; in other words, it states the set of argu-

ments for which this method might be invoked. When a CLOS generic function is

called, the set of applicable methods is identified, and these methods are executed

according to the rules of the method-combination type. An applicable method is a

method whose lambda-list requirements are satisfied by the arguments to the

generic function.

CLOS classes are tightly integrated with the Common Lisp type system. As men-

tioned above, CLOS defines classes associated with several useful Common Lisp

types (but not every type); you can define methods that specialize on these classes.

Also, in CLOS every Lisp object is an instance of a class, so the term "instance" is

generalized in CLOS. For example, the object 3 is an instance of the class integer

and the object "hello" is an instance of the class string. Defstruct structures are

instances of classes.

CLOS Operators Analogous to Flavors Operators

The Flavors operators (functions, macros, special forms, and variables) are summa-

rized in the Flavors documentation: See the section "Summary of Flavor Functions

and Variables".

This section lists each Flavors operator, and shows the analogous CLOS operator,

if there is one. In some cases, the concept of the Flavors operator is not applicable

Page 1195

in the CLOS paradigm. In other cases, we will offer a Symbolics CLOS (S-CLOS)

extension that offers the same functionality as the Flavors operator.

Note that even where the names of operators are the same in Flavors and CLOS,

the syntax and semantics usually differ to some extent.

Basic Use of Flavors�

Flavors CLOS

defflavor defclass

make-instance make-instance

defgeneric defgeneric

defmethod defmethod

compile-flavor-methods S-CLOS extension�

There are syntactic and semantic differences between defflavor and defclass, and

between the CLOS and Flavors versions of make-instance, defmethod, and def-

generic. For more information:

See the section "Differences in Defining Classes and Flavors".

See the section "Differences in Making CLOS and Flavors Instances".

See the section "Differences in Defining CLOS and Flavors Generic Functions".

See the section "Differences in Defining CLOS and Flavors Methods".

Redefining Flavors, Instances, and Operations�

Flavors CLOS

change-instance-flavor change-class

recompile-flavor not applicable

flavor:remove-flavor none

flavor:rename-instance-variable none

flavor:transform-instance update-instance-for-different-class or

 update-instance-for-redefined-class�

In CLOS, there is no need to recompile a class, so recompile-flavor is not applica-

ble in CLOS.

In CLOS, there is no operator for removing a class, but you can break the associa-

tion between the class and its name.

The flavor:transform-instance generic function is called in two cases: when a fla-

vor is redefined, and when the class of an instance is changed. You can write a

method for flavor:transform-instance to control what happens in those cases.

CLOS divides those two cases into separate generic functions: update-instance-for-

redefined-class (called when a new defclass form is evaluated to change the defi-

nition of a class), and update-instance-for-different-class (called when change-

class is used to change the class of an instance).

Page 1196

Method Combination�

Flavors CLOS

define-simple-method-combination define-method-combination

define-method-combination define-method-combination

flavor:call-component-method call-method

flavor:call-component-methods none

flavor:multiple-value-prog2 none

flavor:method-options method-qualifiers �

The CLOS define-method-combination macro has a short form, which is similar

to Flavors define-simple-method-combination, and it has a long form, which is

similar to Flavors define-method-combination.

The syntax of defining a new method-combination type is different in CLOS and

Flavors, but you should be able to use the CLOS operators to define any method-

combination type that you defined using the Flavors tools.

There are semantic differences in the default method combination types, Flavors

:daemon, and CLOS standard. See the section "Differences in CLOS and Flavors

Default Method Combination".

There are also differences in the built-in method combination types: See the sec-

tion "Differences in CLOS and Flavors Built-in Method Combination Types".

Internal Functions of Flavors�

Flavors CLOS

defun-in-flavor none

defmacro-in-flavor none

defsubst-in-flavor none

CLOS does not support internal flavor functions, macros, or substs. �

Wrappers and Whoppers�

Flavors CLOS

defwrapper none

defwhopper around-methods

continue-whopper call-next-method

lexpr-continue-whopper apply of call-next-method

defwhopper-subst none

CLOS does not support wrappers. CLOS does support around-methods, which can

be used in much the same way as whoppers.

Page 1197

Variables�

Flavors CLOS

sys:*all-flavor-names* none

flavor:*flavor-compile-trace-list* none

self not applicable�

The first two variables are in the category of environmental tools, which CLOS

does not support. They are not variables that would be used in application pro-

grams, so they should not affect Flavors users who want to convert code to CLOS.

The variable self is not part of CLOS because of a major difference in the design

of CLOS and Flavors. In Flavors, each method is associated with a single flavor,

and self can be used to refer to an instance of that flavor within the body of the

method. In CLOS, a method can be associated with more than one class (or with

an individual Lisp object instead of a class), so the concept of "self" is not appro-

priate to CLOS. In CLOS, you can refer to the instances for which the method is

applicable by using the variable names given in the lambda-list of the method.

Vanilla Flavor and Its Operations�

Flavors CLOS

flavor:vanilla standard-object

:describe describe-object

sys:print-self print-object

:print-self print-object

:send-if-handles none

:which-operations none

:operation-handled-p none

operation-handled-p none

get-handler-for none�

Both Flavors and CLOS define a class that is included in the definition of each

user-defined class to provide default behavior. Flavors has flavor:vanilla and

CLOS has a class called standard-object. (CLOS also specifies that the class t is

included in the definition of all classes, whether user-defined or not.) The CLOS

class standard-object provides methods for describe-object and print-object.

Message-Passing�

Flavors CLOS

send none

lexpr-send none

send-if-handles none

lexpr-send-if-handles none�

Page 1198

CLOS provides no support for message-passing. CLOS generic functions are called

in the same way that ordinary functions are called.

The Flavors message-passing tools are available for compatibility with Old Flavors.

Since some portions of Genera use message-passing (streams and some of the win-

dows code, for example), it is important that send and related operations continue

to be supported by Flavors.

A Flavor’s Handler for an Operation�

Flavors CLOS

flavor:compose-handler none

flavor:compose-handler-source none

get-handler-for none

These functions are in the category of environmental tools, which the CLOS Pro-

grammer Interface does not support.

A Flavor’s default-init-plist�

Flavors CLOS

flavor:flavor-default-init-get none

flavor:flavor-default-init-putprop none

flavor:flavor-default-init-remprop none

These functions are in the category of environmental tools, which the CLOS Pro-

grammer Interface does not support. �

A Flavor’s Instance Variables�

Flavors CLOS

symbol-value-in-instance slot-value

boundp-in-instance slot-boundp�

Getting Other Information on Flavors�

Flavors CLOS

flavor:find-flavor find-class

flavor:flavor-allowed-init-keywords none

flavor:flavor-allows-init-keyword-p none

flavor:get-all-flavor-components none�

The three operations that CLOS does not support fall into the category of environ-

mental tools.

Page 1199

Other Flavors Tools�

Flavors CLOS

sys:debug-instance none

flavor:describe-instance S-CLOS extension

sys:eval-in-instance none

flavor:generic not applicable

zl:get-flavor-handler-for none

instancep (typep x ’standard-object)

zl:locate-in-instance S-CLOS extension

flavor:print-flavor-compile-trace none

sys:property-list-mixin none

zl:set-in-instance setf of slot-value

zl:symeval-in-instance slot-value

:unclaimed-message no-applicable-method

flavor:with-instance-environment with-slots�

The flavor:generic special form is used with the :function option to defgeneric;

since CLOS does not support the :function option, it does not support

flavor:generic.

In CLOS every Lisp object is an instance of some class, so an "instancep" function

is not needed. However, in CLOS the form (typep x ’standard-object) answers the

same question that Flavors instancep does, namely: is this object an instance of a

user-defined class?

CLOS does not define the sys:property-list-mixin class, but you can define such a

class yourself.

Differences in Defining Classes and Flavors

This section describes differences between Flavors defflavor and CLOS defclass.

At the end of this section, we give an example of translating a Flavors defflavor

form into a CLOS defclass form.

The syntax of defclass is:

defclass class-name superclasses slot-specifiers

 &rest class-options�

A slot-specifier is one of:

slot-name

(slot-name slot-options...)�

The CLOS defclass macro has two kinds of options: slot options, which pertain to

a single slot; and class options, which pertain to the class as a whole. In Flavors

this distinction is not as rigid, and many options (especially those that affect in-

stance variables) can be made to refer to all instance variables, or a set of them.

In CLOS, slot options must be given individually for each slot; there is no abbrevi-

ation for specifying that a slot option affects all slots. In the same vein, CLOS

Page 1200

does not have default names for functions (such as reader or writer generic func-

tions) or initialization arguments.

In Flavors, you can give a default initial value form for an instance variable by

giving a list containing the name and the initial value form. In CLOS, you use the

:initform slot option to provide a default initial value form for a slot.

Here are the options to Flavors defflavor, and the analogous options to CLOS def-

class. Note that CLOS enables implementations to extend defclass to support addi-

tional options, and Symbolics CLOS might choose to do so. The presentation of this

information is based on a section of Flavors documentation. See the section "Sum-

mary of defflavor Options".

Frequently Used Options to defflavor �

:initable-instance-variables

The defclass :initarg slot option is similar. In CLOS, there is no short-

cut way of indicating that all instance variables are initable, nor is there

a default name for the initialization argument (in Flavors, the default is

the keyword with the same name as the instance variable). In CLOS, you

specify the :initarg slot option for each slot that should be initable, and

you provide the symbol to be used as an argument to make-instance.

:readable-instance-variables

The defclass :reader slot option is similar. In CLOS, there is no short-

cut way of indicating that all instance variables are readable, nor is

there a default name for the reader generic function (in Flavors, the de-

fault is flavor-variable). In CLOS, you specify the :reader slot option for

each slot that should have a reader generic function, and you provide the

name of the reader.

:writable-instance-variables

The defclass :accessor slot option is similar, in that it defines both a

reader generic function (you provide the symbol that names the reader)

and a setf generic function that can be used to write the value of the

slot. CLOS also offers another slot option, called :writer, which defines a

writer generic function without also creating a reader. You provide the

name of the writer generic function.

:locatable-instance-variables

No analogous capability in CLOS, but an S-CLOS extension will be pro-

vided.

:conc-name

No analogous option in CLOS defclass. The name of each reader and

writer generic function must be provided explicitly.

:constructor

No analogous option in CLOS defclass. You can define a constructor by

hand, however, as an ordinary function that calls make-instance.

:init-keywords

No analogous option in CLOS defclass. In CLOS, there is no need to de-

Page 1201

clare init-keywords that are used by initialization methods. A background

note: in Flavors, you can control initialization by writing methods for

make-instance, whereas in CLOS, the analogous way to control initial-

ization is to write methods for initialize-instance, which is called by

make-instance. In CLOS, any keyword argument accepted by an initial-

ization method is automatically a valid argument to make-instance.

:default-init-plist

The defclass :default-initargs class option is similar.

:required-instance-variables

No analogous option in CLOS defclass.

:required-init-keywords

No analogous option in CLOS defclass.

:required-methods

No analogous option in CLOS defclass.

:required-flavors

No analogous option in CLOS defclass.

:method-combination

No analogous option in CLOS defclass. In CLOS (as in Flavors), there is

a :method-combination option to defgeneric.

Less-Frequently Used defflavor Options�

:functions

No analogous option in CLOS defclass. CLOS has no functions internal

to a flavor.

:mixture No analogous option in CLOS defclass. To define a family of related

classes, you must define each class with defclass, or define a macro to

do so.

:abstract-flavor

No analogous option in CLOS defclass.

:component-order

No analogous option in CLOS defclass.

:documentation

The defclass :documentation class option is similar; it enables you to

provide a documentation string associated with the class. In addition,

CLOS has a :documentation slot option, which enables you to provide a

documentation string associated with a slot.

:area-keyword

No analogous option in CLOS defclass, although there might be an

S-CLOS extension.

:no-vanilla-flavor

No analogous option in CLOS defclass.

Page 1202

:ordered-instance-variables

No analogous option in CLOS defclass.

:method-order

No analogous option in CLOS defclass.

Options Intended for System Internals�

:special-instance-variables

No analogous option in CLOS defclass.

:special-instance-variables-binding-methods

No analogous option in CLOS defclass.

Options for Old Flavors Compatibility �

:gettable-instance-variables

The defclass :reader slot option is similar. See the discussion on the

:readable-instance-variables defflavor option above.

:settable-instance-variables

The defclass :accessor slot option is similar. See the discussion on the

:writable-instance-variables defflavor option above.

:default-handler

No analogous option in CLOS defclass, but you can achieve the same ef-

fect by defining a method on the CLOS generic function named no-

applicable-method.

Examples�

This example comes from the Flavors documentation. See the section "Example of

Programming with Flavors: Life".

;;; Flavors

(defflavor cell (x y status next-status neighbors) ()

 (:documentation "Functional unit of the Life game.")

 (:readable-instance-variables status)

 (:initable-instance-variables x y status))�

;;; CLOS

(defclass cell ()

 ((x :initarg :x)

 (y :initarg :y)

 (status :initarg :status :reader cell-status)

 neighbors)

 (:documentation "Functional unit of the Life game.")) �

In defclass, the order of the list of direct superclasses and the list of slots is the

reverse of defflavor. After the name of the class comes the list of direct super-

classes, followed by the list of slots.

Page 1203

You can see how the syntax of defclass ensures that slot options (such as :initarg

and :reader) are directly associated with a slot, whereas class options (such as

:documentation) are associated with the class as a whole.

Also notice that :initarg and :reader have no defaults, so you must provide the

symbol that initializes the slot and the symbol that names the reader generic func-

tion on a per-slot basis.

Differences in Defining CLOS and Flavors Methods

At the end of this section, we give examples of translating Flavors defmethod

forms into CLOS defmethod forms.

In Flavors, a generic function dispatches (selects and combines methods) based on

the flavor of its first argument. In other words, the method specializes on the fla-

vor of the first argument to the generic function.

The CLOS generic-function dispatching mechanism is more general:

• A CLOS method can specialize any number of its required parameters. The first

argument to the generic function is not treated specially. This makes the gener-

ic dispatch mechanism somewhat more complicated, but it is a more flexible

model than that of Flavors.

• A CLOS method can specialize on an individual Lisp object, as well as on a

class. The method is applicable if the corresponding argument to the generic

function is eql to the object.

• CLOS defines classes corresponding to many Common Lisp types, such as

symbol, list, integer, and so on. The purpose is to allow CLOS methods to spe-

cialize on these classes.

• In CLOS, defstruct defines a class (unless the :type option is supplied). A

CLOS method can specialize on a class defined by defstruct.�

In general, the CLOS extended view of methods should not require effort when

converting Flavors methods to CLOS. We mention the exceptions below, along with

other differences that affect the translation of Flavors methods to CLOS.

• CLOS method bodies have no "self" or direct access to slots.

Since each Flavors method is closely allied with a flavor, there are two conve-

nient shortcuts that Flavors users are accustomed to having in the bodies of

methods. First, the instance is accessible by the variable self. Second, the in-

stance variables are accessible by name for reading and writing.

In CLOS, there is no one-to-one correspondence between a method and a class.

A method might be specialized on an individual Lisp object such as a number,

or it might be specialized on more than one argument. Thus, the concept of

Page 1204

"self" is not relevant to CLOS. Instead, you can refer to each argument of the

generic function in the usual Lisp way, by using a variable that names that pa-

rameter. Also, the slots are not automatically accessible by name. You can ac-

cess them by calling accessor functions (readers or writers). Or, you can use

with-slots; within the body of with-slots you can access slots by their names or

by other variable names that you assign them. Similarly, with-accessors enables

you to use a shortcut syntax to call the accessor functions by using variable

names that you assign.

• CLOS requires a method qualifier when the simple non-standard method combi-

nation types are used.

In CLOS, if a generic function uses a built-in method-combination type (other

than standard) or one defined by the short form of

define-method-combination, then all primary methods for that generic function

must have a method qualifier (a symbol that is the name of the method-

combination type). In Flavors, the primary methods can be unqualified, or can

be qualified with the keyword with the same name as the method combination

type.

This requirement does not necessarily hold for method-combination types defined

by the long form of the CLOS define-method-combination macro.

• CLOS defines different rules for congruence of lambda-lists for methods of a

generic function.

We discuss this topic separately: See the section "Differences in CLOS and Fla-

vors Lambda-list Congruence Rules".

Examples�

;;; Flavors

(defmethod (aliveness cell) ()

 (if (eq status ’:alive) 1 0))�

;;; CLOS

(defmethod aliveness ((c cell))

 (with-slots (status) c

 (if (eq status ’:alive) 1 0)))�

In the Flavors method, the instance variable status is accessible by name. The

CLOS method uses with-slots to make the slot accessible by the variable named

status.

The CLOS defmethod syntax is more general than that of Flavors, as shown in

the examples below. Briefly, we show some CLOS defmethod forms that specialize

on more than one argument, and that specialize on individual Lisp objects.

Page 1205

;;; Applicable when first arg is a ship, second arg is a plane

(defmethod collide ((s ship) (p plane) location)

 body)

�

;;; Applicable when first arg is a plane, second arg is a plane

(defmethod collide ((p plane) (p plane) location)

 body)

�

;;; Applicable when second arg is a plane

(defmethod collide (vehicle (p plane) location)

 body)

�

;;; Applicable when first arg is eql to the value of *Enterprise*

(defmethod collide ((ent (eql *Enterprise*)) vehicle location)

 body)�

The form *Enterprise* is evaluated once, when the method is defined; it is not

evaluated when the generic function is called.

The required parameters that appear as variable names (not as lists) do not place

any restrictions on the applicability of the method.

Differences in Defining CLOS and Flavors Generic Functions

This section describes differences between Flavors defgeneric and CLOS defgener-

ic. At the end of this section, we give an example of translating a Flavors

defgeneric form into a CLOS defgeneric form.

Here are the options to Flavors defgeneric, and the analogous options to CLOS

defgeneric. Note that CLOS enables implementations to extend defgeneric to sup-

port additional options, and Symbolics CLOS might choose to do so. The presenta-

tion of this information is based on a section of Flavors documentation: See the

section "Options for defgeneric".

:compatible-message

No analogous option in CLOS defgeneric.

declare The CLOS declare option is similar; it enables you to provide the opti-

mize declaration, and to indicate that speed or space should be opti-

mized. Note that in CLOS, the declare option must support optimize,

but is not required to support additional declarations. Symbolics CLOS

will support additional declarations such as those recognized by the Fla-

vors declare option, arglist, values, sys:downward-funarg, and

sys:function-parent.

:dispatch This Flavors option to defgeneric enables you to specify which argument

to the generic function should be the basis of method selection. CLOS

has no need for this option, because its design is based on the premise

that methods can be specialized on any one or more of the required ar-

guments to the generic function. In CLOS, the methods state which

argument(s) should be the basis of method selection.

Page 1206

:documentation

The CLOS :documentation option is similar.

:function No analogous option in CLOS defgeneric.

:inline-methods

No analogous option in CLOS defgeneric.

:method The CLOS :method option is similar.

:method-arglist

No analogous option in CLOS defgeneric.

:method-combination

The CLOS :method-combination option is similar.

:optimize No analogous option in CLOS defgeneric. Note that this Flavors option

is intended for use with the :dispatch option, which CLOS does not sup-

port.�

Example�

The syntax of defgeneric is not much different in CLOS and Flavors.

;;; Flavors

(defgeneric aliveness (cell-unit)

 "Returns 1 if the cell-unit is currently alive, 0 otherwise.")�

;;; CLOS

(defgeneric aliveness (cell-unit)

 (:documentation

"Returns 1 if the cell-unit is currently alive, 0 otherwise."))�

Differences in CLOS and Flavors Lambda-list Congruence Rules

When a generic function is called, any or all of the methods for that generic func-

tion might be called. In general, the arguments given to the generic function are

passed to each method that is called (there are ways to modify this in both CLOS

and Flavors). Thus, it is important that the methods that might be called accept

the arguments that can be given to a generic function. In addition, if there is a

defgeneric form, then its lambda-list must also be congruent with the methods.

Both Flavors and CLOS have rules that describe the congruence of lambda-lists of

a generic function and its methods; however, the rules are different.

In both Flavors and CLOS, the lambda-lists of the generic function and all its

methods must specify the same number of required parameters. CLOS has an ex-

tra requirement that the lambda-lists must accept the same number of optional

parameters. In CLOS, if one lambda-list uses &rest or &key, then all lambda-lists

must use one or the other.

Another difference in the congruence rules lies in the treatment of keyword pa-

rameters. In Flavors, the programmer is responsible for ensuring that all the

methods for a generic function accept the same set of keywords, either by naming

them all explicitly in each lambda-list with &key, or by using &allow-other-keys.

Page 1207

Note that in CLOS, the set of applicable methods controls which keywords are ac-

cepted in a given generic function call. If a CLOS generic function is called with a

keyword argument, and that keyword is not accepted by one of the applicable

methods, then an error is signaled. In CLOS, no error is signaled if at least one

applicable method accepts the keyword. In Flavors, an error is signaled unless ev-

ery applicable method that is actually called accepts the keyword.

In Flavors, if &allow-other-keys appears in any applicable method, then the key-

word argument checking is disabled for that method only. In CLOS, if &allow-

other-keys appears in any applicable method, then the keyword argument checking

is disabled for the generic function. Therefore, &allow-other-keys should be used

less frequently in CLOS than in Flavors.

In CLOS, if a defgeneric form uses &key, then each of those keywords must be

accepted by all methods for the generic function. The methods can accept those

keywords by naming them explicitly in &key, or by using &allow-other-keys, or by

using &rest but not &key. Each method may accept additional keyword arguments,

and need not accept the keyword arguments accepted by other methods. If the def-

generic form or any applicable method uses &allow-other-keys, then any keyword

argument can be supplied in the generic function call.

Examples�

In the following example, the Flavors primary method specifies two optional argu-

ments, and the after-method uses &rest instead of specifying the optional argu-

ments:

;;; Flavors

(defmethod (refresh basic-window) (arg1 &optional arg2 arg3)

 body)

�

(defmethod (refresh window-with-border :after) (arg1 &rest ignore)

 body)�

To translate the Flavors methods into CLOS, it is necessary that the after-method

specifies the two optional arguments:

;;; CLOS

(defmethod refresh ((w basic-window) arg1 &optional arg2 arg3)

 body)

�

(defmethod refresh :after ((w window-with-border) arg1 &optional arg2 arg3)

 body)�

Suppose we have a generic function f which takes an optional argument o whose

default value varies according to the class:

;;; CLOS

(defgeneric f (object &optional o))

Page 1208

�

(defmethod f ((object a) &optional (o 1))

 body)

�

(defmethod f ((object b) &optional (o 2))

 body)�

Suppose we want to count the number of times f is applied to an object. One way

of doing this is to make an encapsulation object:

;;; CLOS

(defclass encapsulation

 ()

 ((encapsulate :initarg encapsulate)

 (count :initform 0)))�

You might try to define the following CLOS method, but the parameters to the

method are not congruent to those of the generic function, so this cannot be done:

;;; Incorrect use of CLOS

(defmethod f ((object encapsulation) &rest rest)

 (with-slots (encapsulate count) object

 (incf count)

 (apply #’f encapsulate rest)))�

Instead, you can define the following method:

;;; CLOS

(defmethod f ((object encapsulation) &optional (o nil o-supplied-p))

 (with-slots (encapsulate count) object

 (incf count)

 (if o-supplied-p

 (f encapsulate o)

 (f encapsulate))))�

Differences in CLOS and Flavors setf Generic Functions

The syntax of defining setf generic functions and methods is different in CLOS

and Flavors.

;;; Flavors

(defgeneric (setf symbol) (instance args... new-value)

 options...)

�

(defmethod ((setf symbol) flavor) (args... new-value)

 body)�

;;; CLOS

(defgeneric (setf symbol) (new-value instance args...)

 options...)

Page 1209

�

(defmethod (setf symbol) (new-value (instance class) args...)

 body)�

The Flavors lambda-lists have the new-value parameter last, preceded by other ar-

guments. The CLOS lambda-lists have the new-value parameter first, followed by

other arguments.

In CLOS, any required parameter in the setf method’s lambda-list may be special-

ized, including the new-value parameter.

Differences in Making CLOS and Flavors Instances

CLOS has a powerful and flexible mechanism for creating and initializing in-

stances. It offers most of the same features that Flavors does in this area, al-

though the details of how you write code to use the features is different.

We discuss the differences between CLOS and Flavors in creating and initializing

instances below:

• Flavors offers a :constructor option to defflavor, but CLOS has no similar op-

tion in defclass. You can define a constructor in CLOS as an ordinary function

that calls make-instance.

• The CLOS make-instance generic function has a procedural definition. This

means that make-instance is defined to call a set of generic functions, and

users can customize various aspects of the procedure by specializing one or

more of these generic functions. In CLOS, aspects of make-instance are avail-

able to be controlled both at the application level and at the meta-object level.

In Flavors, users can customize the initialization of instances by specializing

make-instance. In CLOS, users can customize the initialization of instances by

specializing initialize-instance, a generic function that is called by make-

instance. (The Old Flavors way of doing this was to write methods for the :init

message; this is not supported in CLOS.)

CLOS users can also control initialization by specializing shared-initialize,

which controls initialization at object creation time, and in other contexts, such

as redefining a class.

• In Flavors, if methods for make-instance accept arguments other than argu-

ments that initialize instance variables, then the defflavor form must include

the :init-keywords option to declare those arguments as valid. In CLOS, any ar-

guments accepted by an applicable method for initialize-instance or shared-

initialize are automatically declared as valid.

Page 1210

Example�

This example shows how a Flavors method for make-instance can be translated

into a CLOS method for initialize-instance.

;;; Flavors

(defmethod (make-instance box-with-cell) (&rest ignore)

 (setq box-x-center (round (+ box-x (* .5 *side-length*))))

 (setq box-y-center (round (+ box-y (* .5 *side-length*)))))�

;;; CLOS

(defmethod initialize-instance :after ((bwc box-with-cell) &key)

 (with-slots (box-x-center box-y-center box-x box-y) bwc

 (setq box-x-center (round (+ box-x (* .5 *side-length*))))

 (setq box-y-center (round (+ box-y (* .5 *side-length*))))))�

Differences in CLOS and Flavors Default Method Combination

The default method combination type is called :daemon in Flavors and standard

in CLOS. They have the following similarities:

• Primary methods are recognized by the lack of a method qualifier.

• In addition to primary methods, before-methods and after-methods are supported.

In CLOS, as in Flavors, the qualifiers are :before and :after.

• The order of calling before-methods, the primary method, and after-methods is

the same in Flavors and CLOS.�

A Flavors generic function that uses only primary methods, before-methods, and af-

ter-methods can be translated in a straightforward syntactic way to a CLOS gener-

ic function; the behavior of the generic functions would be the same.

The CLOS standard method combination differs from Flavors :daemon in the fol-

lowing ways:

• CLOS does not support wrappers or whoppers. However, CLOS supports around-

methods, which are similar to whoppers. An around-method is identified by the

method qualifier :around. In the body of the method, call-next-method is used

to cause other methods to run. Around-methods are combined in a CLOS generic

function in much the same way that whoppers are combined in Flavors.

• In a CLOS generic function, more than one primary method can be executed.

CLOS supports the use of call-next-method within primary methods; this causes

the next most specific method to be executed. Since this is an area where CLOS

provides extra functionality, it does not require effort when converting Flavors

programs to CLOS.

Page 1211

• CLOS requires a primary method. In CLOS, if a generic function is called and

there is no applicable primary method, an error is signaled. In Flavors, in this

situation a primary method is assumed that returns nil. This difference, though

incompatible, should not affect much user code.

• Flavors has :default methods, and CLOS does not.

Differences in CLOS and Flavors Built-in Method Combination Types

CLOS offers a set of built-in method-combination types that are analogous to the

"simple" method-combination types offered by Flavors. CLOS does not provide any

of the complex Flavors method-combination types, but it does allow them to be de-

fined. We will provide most of these method-combination types as S-CLOS exten-

sions.

Flavors CLOS

:daemon standard

:and and

:append append

:case eql parameter specializers

:daemon-with-and S-CLOS extension

:daemon-with-or S-CLOS extension

:daemon-with-override S-CLOS extension

:inverse-list S-CLOS extension

:list list

:max max

:min min

:nconc nconc

:or or

:pass-on S-CLOS extension

:progn progn

:sum +

:two-pass S-CLOS extension

There are semantic differences in the default method combination types: Flavors

:daemon, and CLOS standard. See the section "Differences in CLOS and Flavors

Default Method Combination".

Like Flavors, the CLOS "simple" built-in method-combination types have an order

argument that enables you to specify :most-specific-first (the default) or :most-

specific-last order of primary methods.

By convention, CLOS uses symbols (not keyword symbols) to name method-

combination types.

The CLOS built-in method-combination types (other than standard) accept primary

methods and around-methods. The CLOS feature of supporting around-methods in

generic functions that use built-in method-combination types is similar to the Fla-

vors feature of supporting whoppers.

Page 1212

In CLOS, a primary method for a built-in method-combination type (other than

standard) must have a method qualifier that is the symbol that names the

method-combination type. (This is a difference from Flavors, in which primary

methods for built-in method-combination types can unqualified, or they can be

qualified by the symbol that names the method-combination type).

Differences in CLOS and Flavors Class Precedence Order

The CLOS algorithm for determining the class precedence list is similar to the

New Flavors algorithm for determining the ordering of flavor components. The two

algorithms, however, are not identical. The vast majority of Flavors programs will

have the same ordering using the CLOS algorithm.

The algorithms have the following characteristics in common:

• A class must precede its superclasses in the class precedence list.

• Each class definition sets local constraints on the ordering of its direct super-

classes. In CLOS (as in Flavors), the order of direct superclasses in the defclass

form sets constraints that must be followed in the class precedence list. Each

class has precedence over the classes that appear after it in the list of direct

superclasses.�

If a Flavors program depends only on those two rules, then the program will con-

tinue to work when converted to CLOS.

The following example illustrates how the two algorithms differ. In these class

definitions, the order of x and y is unconstrained: Flavors resolves it by making

two depth-first passes through the tree of Flavors, thus it selects x before y; CLOS

resolves it by choosing the class that has the rightmost direct subclass, which is y.

(defclass a (b c d e) ())

(defclass b (e x) ())

(defclass c (e y) ())

(defclass d () ())

(defclass e () ())

(defclass x () ())

(defclass y () ())�

Excluding the classes flavor:vanilla, standard-object, and t, the two class prece-

dence lists for class a are:

Flavors: (a b c d e x y)

CLOS: (a b c d e y x)�

CLOS does not support the :component-order option to defflavor, which enables

Flavors users to state explicitly the ordering constraints. This Flavors option is

used to relax constraints that come from the order of component flavors in the

defflavor form, or to specify additional constraints.

Page 1213

Developing CLOS Programs

The first release of CLOS will enable users to write some new programs that use

CLOS. The CLOS operators will be in a separate package. Programming tools for

CLOS will be available, including features analogous to the Flavor Examiner and

the Flavors-related CP and m-X editor commands.

Note that complete integration between Flavors and CLOS will not be provided un-

til the second release of CLOS. This means that some Flavors programs cannot be

converted to CLOS until the second release of CLOS. For example, a Flavors pro-

gram that makes use of flavors defined by Genera (such as window or stream fla-

vors) cannot be converted to CLOS until the integration between CLOS and Fla-

vors is completely supported.

