
MacIvory User’s Guide

Preface �

MacIvory provides the benefits of symbolic processing along with the features of a

Macintosh personal computer. Before using your MacIvory, read "Introduction to

MacIvory Machines" (this will familiarize you with the system). Then, read the

user documentation supplied by Apple, and the disk drive and monitor manufactur-

ers, so that you will feel confident about using the Macintosh computer, and the

MacIvory system’s components.

Once you are familiar with your MacIvory, its components, and the Macintosh user

interface, return to this manual. Begin by reading and following the steps in "Get-

ting Started with MacIvory" to position and power up your MacIvory System.

This book is divided into two main sections: a user’s manual and a programmer’s

reference. The user’s manual can help you to get started using MacIvory, and pro-

vides information on some common Macivory operations. The programmer’s refer-

ence provides information on how to use features of the Macintosh operating sys-

tem from Genera and other topics for programmers who are developing MacIvory

applications.

You may also want to refer to this additional documentation:

• For information about adapting programs written on Symbolics 3600-series ma-

chines to MacIvory, see the section "Porting Genera Applications to Ivory Ma-

chines".

• For information about the Genera 8.0 software and how it differs from Genera

7.4 Ivory, see Genera 8.0 Release Notes. For information about Symbolics ma-

chines and the Genera software development environment, refer to the books

contained within the Genera documentation set. New Symbolics users should

refer to these titles first:

° Genera Workbook

° Site Operations

° Genera User’s Guide

Overview of MacIvory

The MacIvory system makes Symbolics’ Genera software environment, which en-

ables the comprehensive development, prototyping, and delivery of applications,

available to Apple Macintosh II users.

Whenever possible, MacIvory maintains the Macintosh user interface paradigm for

video, I/O processing and communications. The MacIvory board set plugs directly

into the Macintosh II with no other system modifications required. Genera applica-

tions can be "opened" under MacOS just like any other Macintosh window.

Page 892

MacIvory software basically consists of two parts: Code that runs on the Ivory pro-

cessor and code that runs on the Macintosh. The two processors communicate with

each other through a special region of memory that they both access. MacIvory

has exclusive use of a memory region allocated to it by the Macintosh when the

Macintosh is powered on or restarted, and the Macintosh uses the rest of memory.

All input/output is handled through the Macintosh.

On the Ivory side, the code provided (written in Lisp) consists of:

• A Remote Procedure Call (RPC) interface.

• Genera modified as necessary to use the MacOS for all input/output, including

keyboard, mouse, disk, Ethernet, and console screen accesses.

• IFEP code modified similarly. (The IFEP is the part of Genera software involved

with booting and initializing a world. Historically, this code resided in read-only

memory on the Front End Processor of a Symbolics machine; therefore the name

IFEP, with I standing for Ivory.)�

On the Macintosh side, the code provided (written in C) consists of:

• Code to initialize the MacIvory and the IFEP.

• Life-Support code required to support MacIvory.

• A Macintosh application that allows users to access applications running on

Ivory.

Macintosh/Ivory Communication

Communication is based on a shared memory, readable and writable by both the

guest (Ivory) and the host (Macintosh) processors. Outside of shared memory, each

processor has its own memory space. This memory space is allocated to each pro-

cessor when the Macintosh II is booted.

There is no shared disk space: The disk is partitioned into Ivory space and Macin-

tosh space. (Ivory disk space is further partitioned into FEP file space and Lisp-

Machine File Space just as it would be on a 3600 or XL400, but this is transpar-

ent to application users.)

There are two levels of communication between the Macintosh and Ivory:

• In shared memory, a buffered channel exists between drivers on the Macintosh

and on Ivory for those operations requiring maximum performance, such as disk

I/O and network communication.

• A remote procedure call (RPC) interface for general-purpose input/output.

The host (Macintosh running MacOS) is primary in the sense that it is booted

Page 893

first and the guest (Ivory), looks like just one of the several application programs

that the user can run. A Macintosh application program runs when the user wants

to make use of Ivory. This program boots Ivory, and gives Ivory control over the

keyboard, mouse and all or part of the screen. After that, the Ivory runs continu-

ously, staying up between visits by the user, unless the user explicitly reboots the

Ivory or reboots the Macintosh.

Communication between guest and host applications is managed by the Remote

Procedure Call (RPC) protocol. The same protocol also allows Ivory to access the

MacOS, and vice versa.

Software Components of MacIvory

In addition to standard Genera, software components for MacIvory include:

• RPC, the Remote Procedure Call facility

• The remote window facility built on RPC that allows the Genera window system

to use the screen, keyboard, and mouse of the host Macintosh instead of directly

manipulating a 3600-series machine’s own local screen, keyboard, and mouse

• A user interface system that is adaptable to Genera style or Macintosh style

• Interface to the Macintosh toolbox

• Support for accessing Macintosh files

• Support for Macintosh peripherals, such as Ethernet, tape and serial lines

• Support for some Macintosh data and file formats

User’s Manual for MacIvory

Introduction to MacIvory Machines

MacIvory machines integrate the Genera software environment with the Apple

Macintosh II (including its operating system and the Toolbox) this way:

• The Genera software environment accelerates programmer productivity and pro-

vides the ability to do complex, real-world problem solving.

• The Macintosh offers a stylish and easy-to-learn user interface, along with ac-

cess to a wide variety of third-party applications.�

MacIvory provides full integration of these two systems; it is designed to combine

the advantages of each, while delivering the benefits of both.

Page 894

MacIvory relies on the Macintosh processor for I/O services such as keyboard, dis-

play, and disk access. All of Macintosh’s system and toolbox entry points can be

called from Lisp using Remote Procedure Calls (RPC). Additionally, Genera facili-

ties (Dynamic Windows, for example) use Macintosh facilities, and MacIvory makes

full use of the Macintosh for graphics. This kind of integration means that exist-

ing Genera applications  developed on the Symbolics 3600 series of machines 

can readily take advantage of Macintosh features.

MacIvory enables you to design applications that employ either the Macintosh user

interface (UI), the Genera user interface, or both. Furthermore, without changing

your program, you can allow end users to make their own UI choices. MacIvory

doesn’t mandate a user interface style for your applications; you are free to create

your own.

MacIvory Software Description

MacIvory software consists of:

Genera 8.1 The Genera environment adapted to run on the Ivory proces-

sor; both a development and a delivery version are available.

This software is contained within the Symbolics Distribution

World and is distributed on disk and QIC-100 tapes.

MacIvory Support Software

To provide MacIvory with the basic I/O services it needs to

run Genera, and to facilitate high-level communication between

the two processors by using a Remote Procedure Call (RPC)

mechanism. This software is distributed on floppy diskettes.�

Getting Started with MacIvory

Symbolics Service Personnel will configure and install your MacIvory System. After

it is installed, perform these tasks:

1. Following each manufacturer’s directions to ensure that you leave appropriate

clearance for cooling, position the Macintosh computer and the external disk

drive (if your system is equipped with one) conveniently in your workspace.

Position the 19" monitor on either side of the Macintosh II or on a stand over

the Macintosh II, as the manufacturer recommends.

Warning: Be sure to position the 19" monitor so that there is at least an inch

between the monitor and the Macintosh II to ensure adequate ventilation and

avoid overheating. Do not place the 19" monitor near heat sources such as ra-

diators or in an area subject to direct sunlight.

2. Make sure that the Symbolics keyboard template has been placed over the

keys.

Page 895

3. Power up (plug in and turn on) the external disk drive (if your system is

equipped with one) and the Macintosh computer according to each manufac-

turer’s instructions.�

Note: At power up, you will momentarily see the Apple "Happy Mac" on your Mac-

intosh screen, indicating that the Macintosh is starting up from the disk drive.

You will also see a symbol in the lower left-hand corner of your screen that indi-

cates the presence of pre-installed Ivory "life-support" software on the disk drive.

Controlling the Ivory Coprocessor on a MacIvory

When you first power on the Macintosh and start up an Ivory application (by dou-

ble-clicking on the Genera icon, for example), the Ivory coprocessor is initialized,

and Genera is cold booted. This may take a few minutes.

Once the Ivory coprocessor has been initialized and Genera has been cold booted

(by the first Ivory application that needs it), you can open and quit that applica-

tion  and other Ivory applications  as quickly and easily as you do ordinary

(non-Ivory-dependent) Macintosh applications.

When you restart the Macintosh by choosing Restart from the Special menu (avail-

able from the Finder), this initializes the Macintosh processor, but preserves the

state of the Ivory coprocessor’s virtual memory.

Because the Ivory coprocessor’s virtual memory is unaffected when you restart the

Macintosh computer, the Ivory coprocessor does not need initializing  and Gen-

era does not need cold booting  each time you restart the Macintosh computer.

When you open an Ivory application, it checks to see whether the Ivory coprocessor

can be warm booted (that is, whether the Ivory coprocessor’s virtual memory has

some state), or whether it must be cold booted. If the Ivory coprocessor can be

warm booted, you have two options:

1. Click on "Restart Lisp" when the alert box appears. This opens the application

without initializing the Ivory coprocessor or cold booting Genera. Clicking on

"Restart Lisp" preserves the contents of Ivory’s virtual memory but warm

boots Ivory, resetting its processes and closing its network connections.

2. Click on "Cold Boot Lisp" when the alert box appears. This opens the applica-

tion, initializes the Ivory coprocessor, and cold boots Genera. Clicking on

"Cold Boot Lisp" means the contents of Ivory’s virtual memory will be lost.�

If there is not enough state available to warm boot the Ivory coprocessor, then the

application itself causes the Ivory coprocessor to initialize, and Genera to cold

boot.

More information is available about cold booting and warm booting. See the sec-

tion "Cold Booting". See the section "Warm Booting".

Page 896

Using the Ivory Menu

Once you have opened an Ivory application and it is running, you can control it

and the Ivory coprocessor by using the Ivory menu in the menu bar at the top of

your Macintosh screen.

Tables 1 and 2 describe the Ivory menu items by showing you their Symbolics

3600-series machine equivalents.

Ivory Menu Item (invoked

while running Lisp) 3600-Series Machine Equivalent

Restart Lisp Halt Machine (Command Processor Command)

 Start (FEP Command)

Cold Boot Lisp Halt Machine (Command Processor Command)

 Press RESET on the machine’s front panel

 Hello (FEP Command)

 Boot (FEP Command)

Transfer to FEP Halt Machine (Command Processor Command)

Restart FEP Halt Machine (Command Processor Command)

 Reset FEP (FEP Command)

Cold Boot FEP Halt Machine (Command Processor Command)

 Press RESET on the machine’s front panel

Shut Down Halt Machine (Command Processor Command)

 Shutdown (FEP Command)

Hide/Show Cold Load No equivalent; causes the Cold Load

 Stream window to move back or forward.

Enable/Disable Network No equivalent; selects whether

 Ivory (Enable) or the Macintosh (Disable) has

 access to the Ethernet cable.

Table 1. The Meaning of Ivory Menu Items (while Lisp is Running)�

�

Using the Genera Application on a MacIvory

The Genera application is a program that provides MacIvory users with the tradi-

tional Symbolics user interface to the Genera software environment. Like other

third-party supplied Macintosh applications, the Genera application can be invoked

with the Macintosh user interface.

Page 897

Ivory Menu Item (invoked

from the FEP) 3600-Series Machine Equivalent

Transfer to Lisp Continue (FEP Command)

Restart Lisp Hello (FEP Command) if flod files need scanning

 Start (FEP Command)

Cold Boot Lisp Press RESET on the machine’s front panel

 Hello (FEP Command)

 Boot (FEP Command)

Restart FEP Reset FEP (FEP Command)

Cold Boot FEP Press RESET on the machine’s front panel

Shut Down Shutdown (FEP Command)

Hide/Show Cold Load No equivalent; causes the Cold Load

 Stream window to move back or forward.

Enable/Disable Network No equivalent; selects whether

 Ivory (Enable) or the Macintosh (Disable) has

 access to the Ethernet cable.

Table 2. The Meaning of Ivory Menu Items (while in the FEP)�

 �

Start up the Genera application by double-clicking on the Genera icon. The Genera

application lets your MacIvory emulate a Symbolics 3600-series machine’s console.

On a MacIvory, however, the Genera window system can use all  or just part 

of the available screen.

You can use the Macintosh’s user interface software (for example, MultiFinder) to

select between different Macintosh applications, including Genera. (For information

about how to use the Macintosh system software, refer to the Apple user documen-

tation supplied with your MacIvory system.)

Note: If you cannot find the mouse cursor while in Genera, press the Power On�

key (at the upper right-hand corner) on the Apple Extended Keyboard. This will

cause the cursor to reappear at the Apple symbol on the Menu bar.

Caution: The Ivory Breath of Life Application (BOL FEP) which you see in your

MacIvory Applications folder is used for initializing FEP file systems only. Experi-

menting with it while Lisp is running damages your Lisp system in such a way

that you cannot warm boot. Do not experiment with it.

Accessing the Macintosh File System

Page 898

Files on the MacIvory’s Macintosh file system can be accessed from Genera using

pathnames that follow Macintosh syntactic conventions.

To access the Macintosh file system from Genera on the local MacIvory, use this

format:

HOST:Volume:Folder:Folder:Filename�

In this format,

• The word HOST is literal; it refers to the local Macintosh file system, similar to

the way the word FEP refers to the local FEP files system on 3600-series ma-

chines.

• Volume is the Macintosh volume name (the name that’s displayed under the disk

icon on the Macintosh desktop).

• Folder names the directory (or subdirectory) in which the file Filename resides.�

To access the MacIvory’s Macintosh file system from Genera on a remote

MacIvory or Symbolics 3600-series machine, use this format (note the addition of a

vertical bar in the pathname):

MacIvory-Host-Name|HOST:Volume:Folder:Folder:Filename

�

Here,

• MacIvory-Host-Name names the MacIvory host whose Macintosh file system you

want to access.�

The Macintosh syntax uses colons to separate pathname components. To show a di-

rectory on the local Macintosh file system:

Command: Show Directory (files [default Y:>Dodds>pending>*.*.newest])

HOST:dsk:zippy:pinhead:*

�

HOST:dsk:zippy:pinhead:*

 3292 free, 64733/68025 used (blocks of 4608 8-bit bytes)

 (773 files in 154 dirs)

complex 5 640(8) 11/03/89 22:49:40

simple 5 640(8) 11/03/89 23:39:58

test-file.sab 5 1250(8) 11/03/89 22:54:59

 15 blocks in 3 files�

Macintosh Pathname Completion

Page 899

Genera’s completion facilities can access the file systems of various hosts, includ-

ing Macintosh computers. To perform Macintosh pathname completion, Genera

looks in the Macintosh’s file system and returns a new, possibly more specific

string than the one that you have entered, expanding any unambiguous abbrevia-

tions in a Macintosh host-dependent fashion.

Insert an asterisk (*) to get wildcard possibilities (including devices) within Macin-

tosh pathnames. Use the c-/ and c-? keystrokes to see multiple possibilities for

what you have already typed. For more information about using these keystrokes,

see the section "c-? and c-/". For information about quoting special characters (*,

for example), see the section "Macintosh Pathname Quoting".

Macintosh Pathname Quoting

To the Macintosh, all characters are legal in pathnames and only colons delimit

directories. This means, for example, that asterisks may appear as a component of

a Macintosh pathname. Since Genera considers asterisk to be a wildcard, you can-

not type a Macintosh pathname containing an asterisk without quoting it. There-

fore, when typing a pathname such as

HOST:volume:*Graphics:picture�

you need to quote the asterisk to indicate to Genera that it is not a wildcard. Cir-

cle-Plus (⊕, sy-sh-+) is the quote character. So you would actually type:

Host:volume:⊕*Graphics:picture�

This also means that when Genera prints a Macintosh pathname that has an aster-

isk as part of its name, it quotes the asterisk using the Circle-Plus character.

The Symbolics Keyboard for MacIvory

The Symbolics keyboard is optimized for Lisp programmers, and for running Gen-

era. For information about installing a Symbolics keyboard for a MacIvory, see the

section "Installing a Symbolics Keyboard and Three-Button Mouse on a MacIvory".

For information about using the Symbolics keyboard, see the section "Index of Spe-

cial Function Keys".

For more information, see the section "Using the Symbolics Keyboard with Native

Macintosh Applications".

Changing the Keyboard Mappings on a MacIvory

Changing the Shift Key Order (Control, Meta, Shift) on Apple Keyboards

You can change the shift key order on an Apple Keyboard following these steps:

1. Select Keyboard from the Options menu.

2. Select Common Settings.

Page 900

3. Click on the appropriate shift key order.�

Reconfiguring Keyboard Mappings�

You can reconfigure the settings on either the Apple or Symbolics keyboard follow-

ing these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control. �

The keyboard control menu appears enabling you to reconfigure your keyboard

mappings (see Figure !).

Figure 90. Keyboard Control Menu

�

�

You can reconfigure your keyboard mappings by clicking Left on Edit Mappings

and specifying All at the prompt. The keyboard mappings for your keyboard ap-

pears as in Figure !.

You can change the keyboard mapping for each key by clicking Left on the current

setting for the key and specifying a new setting. For example, you can change the

current setting of the key sequence Symbol A from Unassigned to S:

1. Click Left on Unassigned.

2. Specify S.

3. Press RETURN �

You can now obtain the letter S by pressing Symbol A. You can change this key-

board mapping again following the preceding steps. You can also use the Keyboard

Control menu for:

Page 901

Figure 91. Reconfiguring Keyboard Mappings

�

• Hardcopying the Keyboard Layout

• Displaying Raw Keyboard and Mouse Transitions

• Resetting the Keyboard Mapping to a Standard Mapping

• Saving the Differences in Keyboard Mappings

• Setting the Keyboard to a Default or Predefined Keyboard

• Showing the Differences in Keyboard Mappings

• Displaying Key Mappings

• Determining the Key Mapping that Generates a Character�

Hardcopying the Keyboard Layout�

You can hardcopy your current keyboard layout and mappings following these

steps:

1. Select Keyboard from the Options menu.

Page 902

2. Select Keyboard Control.

3. click Left on Hardcopy for hardcopying the keyboard layout using default

printer settings. You can customize the printer settings by clicking Right on

Hardcopy and specifying:

• The printer on which you are printing the keyboard mappings.

• The print orientation (Portrait or Landscape).

• Whether you include legends or mappings.

• Whether you include codes (Octal, Decimal, or Hex).�

Displaying Raw Keyboard and Mouse Transitions

You can determine whether your keyboard operates correctly by using the Key Test

option. This option displays the key sequence generated when you press a key. You

can start the Key Test option following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click Left on Key Test.�

Resetting the Keyboard Mapping to a Standard Mapping�

You can set your customized keyboard mappings to a standard keyboard mapping

following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click Left on Revert.�

Saving the Differences in Keyboard Mappings�

You can place the differences between customized keyboard mappings and standard

keyboard mappings on the kill ring following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click left on Save Differences.�

Page 903

Setting the Keyboard to a Default or Predefined Keyboard�

You can set your keyboard to either the default Symbolics keyboard or to another

predefined keyboard following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. You can set your keyboard to the default by clicking Left on Set Keyboard, or

you can specify another predefined keyboard by clicking Right on Set Key-

board.�

Showing the Differences in Keyboard Mappings�

You can show the differences in mappings between your keyboard and the standard

keyboard following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click left on Show Differences.�

Displaying Key Mappings�

You can display the mappings for keys on your keyboard following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click left on Typing Test.�

You can now press any key and see the current keyboard mapping on your screen.

Determining the Key Mapping that Generates a Character�

You can determine how a character is generated following these steps:

1. Select Keyboard from the Options menu.

2. Select Keyboard Control.

3. Click left on Where Is.

4. Specify a character.�

The system displays the key sequence necessary for generating the character you

specify.

Page 904

Using the Print Spooler with Genera

To spool an LGP2/LGP3 printer from a MacIvory machine, you need one 8-pin-

male-to-25-pin-male cable with a null modem in it. Alternatively, you can use any

combination of cables that provides you with this configuration.

1. Plug the printer into one of the serial ports on the back of the Macintosh

computer. You can run the printer from the modem port (UNIT 0) or the print-

er port (Unit 1).

2. Edit the printer’s Namespace Object as follows:

Interface: SERIAL

Interface Options: UNIT n BAUD 9600 PARITY :none NUMBER-OF-DATA-BITS 8

XON-XOFF-PROTOCOL yes

User Property: DTR-VALID nil�

More information is available about editing the printer’s namespace object.

See the section "Attributes for Objects of Class "Printer"". See the section

"Using the Namespace Editor".

3. Set the baud rate to 9600 on the LGP2/LGP3 printer.

Note: If you need more information about Macintosh serial ports, check the Unit

specification conventions in the MacIvory User’s Guide.

For additional information about setting up the print spooler and the LGP2/LGP3

printer,see the section "Installing a Printer".

See the section "Uncrating the Printer".

See the section "Specifying the Switch Settings".

See the section "Loading the Hardcopy and Printer Support Tape".

See the section "Registering a Printer".

Note: If you boot the MacIvory while the print spooler is running, you must then

restart the Macintosh computer. Otherwise, the serial stream is left open (and at-

tempts to restart the print spooler will fail with an "unable to access the serial

stream" error).

Using an Appletalk Printer From the Macintosh and Genera

• Printing via AppleTalk is supported only for Postscript printers.

• Printing via AppleTalk can not be used with our Print Spooler.�

To use an AppleTalk printer do the following:

1. Select your target printer on the Macintosh side through the Chooser.

Page 905

2. Create a printer object in the namespace that identifies your MacIvory as the

host to which the printer is connected.

3. Set the default printer for your MacIvory to the printer object you just creat-

ed. You can do this either in the namespace to make the effect permanent or

with the Set Printer CP command.�

You can now use the printer from Lisp using the normal hardcopy facilities of

Genera.

The use of separate printer objects is required even if several MacIvories are us-

ing the same AppleTalk printer. Of course, each printer object in the namespace

must have a unique name and pretty name. Therefore it is a good idea to include

the name of the MacIvory in the printer’s names.

For example,

 Showing PRINTER SOUR-CREAM-LOS-ANGELES-TIMES in namespace SCRC:

 Type: LGP2

 Site: SCRC

 Pretty Name: The Los Angeles Times for Sour Cream

 Interface: AppleTalk

 Host: SOUR-CREAM

 Printer Location: SCRC 2 Outside KMP’s office�

The Type attribute should be LGP2, LGP3, or POSTSCRIPT depending on the type

of printer. LGP2 corresponds to the old LaserWriter and LaserWriter Plus. LGP3

corresponds to the newer LaserWriter IINT and LaserWriter IINTX. LGP3 also

works for Apple’s latest printer, the Personal LaserWriter NT. Use POSTSCRIPT

for non-Apple Postscript printers (for example, HP).

In the namespace object for the MacIvory, make sure that the BITMAP-PRINTER at-

tribute is empty. Otherwise, Lisp tries to invoke the Print Spooler, which does not

work.

If your Macintosh is running MultiFinder, it’s a good idea to enable background

printing in the Chooser when you select your AppleTalk printer. Otherwise, when-

ever you print something in Lisp, Genera stops while printing takes place. (You

see the familiar Macintosh modal dialog boxes describing the print process appear

in front of the Genera screen.)

Setting the Size of Application Icons That Use Ivory

If you use MultiFinder on the Macintosh, each application program icon has a

memory size that you can control. Icons that give access to the Ivory coprocessor

make extensive use of dynamic memory. Because their memory usage depends on

your machine configuration, and because there is a tradeoff between memory con-

sumption and performance, it can be to your advantage to adjust icon memory size

to suit your particular needs. If you run Finder rather than MultiFinder on the

Macintosh, application icons always use the full size of memory and you need not

worry about this issue.

Page 906

Icons that use the Macintosh window system, such as the Mac Dex example, can

run in 256K and will run quite effectively in as little as 300K. Icons that use the

Genera window system, such as the Genera icon, can run in 256K but will perform

noticeably better with more memory. Genera uses large amounts of dynamic memo-

ry for fonts, window bit arrays, and auto-load RPC servers. The recommended

memory allocation for good performance is 250K plus four times the size of your

screen, plus one more screen size if backup screens are enabled. You can deter-

mine the size in K of your screen by evaluating this form:

(values tv:(ceiling (* (sheet-width main-screen) (sheet-height main-screen)

(screen-bits-per-pixel main-screen))

8192))�

If you have plenty of memory on your Macintosh, you can set the size larger than

this and get a small further improvement in performance, especially if you use a

lot of large windows. If your Macintosh has a limited amount of memory or you

want to save a lot of memory for running other applications at the same time as

Genera, you can set the size of the Genera icon smaller, but switching windows

will be slower.

You can set the size of an icon with the Configure MacIvory Application command

or by using the procedure described in Apple documentation for setting the size of

an application.

Configure MacIvory Application Command

Configure MacIvory Application �

Use the Configure MacIvory Application command with no arguments. It presents

a menu of fields which you must fill out and then press End.

The menu presents these fields:

From file An existing Ivory-using Macintosh application; you can use

Genera. For example, if Genera is on the desktop you can use

the file name HOST:disk:Genera, where disk is the name of

your Macintosh’s hard disk.

To file The name of a Macintosh file in which to place the output; it

should have the same name as your define-remote-program-

framework.

Application The name of your define-remote-program-framework (use the

pretty name).

Version A Macintosh-style version number for your application, for in-

stance 1.0d0.

Agent Leave this set to Emb (which means that the application ex-

pects to find an embedded Ivory processor).

Initial application command

Set this to a command line that invokes a command defined by

Page 907

your application that should be executed to start it up. Or you

can leave this set to None, if the application should simply

wait for a command (for example, from the menu bar) when

started up.

If the host has more than one monitor, you can specify the number of the monitor

(display screen) that will be used by Genera, using the :screen-number argument.

These are the same numbers displayed in the Monitors section of the Macintosh

Control Panel. Specifying "default" means the main monitor, the one with the

menu bar on it. This is the default if you do not specify this argument.

If you leave the Initial application command field set to None, rather than supply-

ing a Start Screen command, when Genera is started it will display a dialog box

allowing interactive input of the arguments to the Start Screen command. The

fields displayed in the dialog box depend on the hardware configuration, just like

the command arguments noted above.

The arguments accepted by the Start Screen command, after the first few, vary de-

pending on the available hardware. If you wish to specify these arguments you

should run the Configure MacIvory Application command on the same machine

where you will run the resulting icon, or on a machine with a similar hardware

configuration.

If the host has color display hardware, you can specify whether the Genera window

system should run in color mode or in monochrome mode, using the :multi-bit-

screen argument; see the section "Basic Color Support in MacIvory".

Controlling the Genera Screen on a MacIvory

Controlling the Size and Placement of a Genera Screen on a MacIvory

You can use Backup screens by using the Enable/Disable Backup screen option

from the Macintosh Options menu. This option enables you to place one screen on

top of another and to use each screen individually.

You can use Movable screens by using the Enable/Disable Movable screen option

from the Macintosh Options menu. This option enables you to adjust the size of

the Genera screen in the same manner that you adjust the size of a Macintosh

screen.

Using the MacIvory Control Panel

The MacIvory control panel lets you easily perform various maintenance functions

for the MacIvory system. It is integrated as part of the Apple control panel. You

can access the Macintosh control panel by clicking on Control Panel from the Ap-

ple pull-down menu and then scrolling through the left-hand column to the

MacIvory icon.

The control panel’s three window panes describe these areas:

Page 908

• Hardware information

• Status and configuration options

• Disk maintenance and manipulation�

Figure ! displays the initial MacIvory control panel.

Figure 92. The MacIvory Control Panel

�

�

Hardware status Describes the Ivory processor and the NuBus memory that it

uses, if they are present. Memory size is specified both as raw

size in megabytes (MB) and usable size in megawords (MW) of

40 bits each plus 8 error correction bits. Additional hardware

configuration details are available from Genera commands such

as Show Herald and Show Machine Configuration.

Status and configuration options

The middle pane displays these command buttons:

[Configure], which brings up a dialog that you can use to ex-

amine and change several software configuration parameters.

Most users will never need to change these parameters. The

[Help] button in the dialog explains how to use it. Figure ! dis-

plays this dialog.

[Ethernet Grabbed], which is checked if an Ethernet interface

exists and the Ivory is using it. If this box is not checked, the

Macintosh can use the Ethernet interface if one exists. Click-

ing on this box switches control of the Ethernet interface be-

tween the Ivory and the Macintosh. This change takes effect

immediately.

Page 909

[Status], which brings up a scrollable window containing the

current status of communications between the Ivory guest and

the Macintosh host. Click on the window’s close box to return

to the control panel.

[Help], which brings up a scrollable window containing help

information. Click on the window’s close box to return to the

control panel.

Figure 93. The Configure MacIvory Life Support Dialog

�

�

MacIvory disk partitions

Use this pane to examine and change the MacIvory disk parti-

tions. The MacIvory control panel Help facility provides de-

tailed information, including how to select, create, and delete a

partition.

You can access the Disk Copy/Compare utility from the [Copy]

button in this window. This utility can copy one disk to anoth-

er or compare two disks and report any differences. The utility

operates on MacIvory disk partitions or on Macintosh disks.

Initially, it is set for MacIvory disk partitions. Figure ! displays

this dialog window.

Click on the [Help] button for further information on how to

use Disk Copy/Compare.

See the section "Setting up a Disk for Use with MacIvory" for information on us-

ing the control panel to create Ivory disk partitions.

Using the Symbolics Keyboard with Native Macintosh Applications

Page 910

Figure 94. The MacIvory Disk Copy/Compare Utility Dialog

�

�

Use of the Symbolics keyboard with the MacIvory is provided primarily for compat-

ibility with Genera applications. In addition, Symbolics supports the use of the

Symbolics keyboard with native Macintosh applications.

Mapping of Apple Key Functions to the Symbolics Keyboard

• All "ordinary" characters (printing graphics, TAB, SPACE, RETURN) work normal-

ly.

• Apple’s ESC key is entered using our ESCAPE key.

• Apple’s COMMAND key is entered using either of our SUPER keys.

• Apple’s OPTION key is entered using either of our META keys.

• Apple’s CONTROL key is entered using either of our CONTROL keys.

• Apple’s ENTER key is entered using our SCROLL key.

• Apple’s CLEAR key is entered using our CLEAR INPUT key.

• Apple’s HELP key is entered using our HELP key.

• Apple’s END key is entered using our END key.

• Function keys (F1 - F15) are entered using the FUNCTION key as a shift key as

follows:

Page 911

Apple Symbolics Apple Symbolics Apple Symbolics

F1 FUNCTION-1 F6 FUNCTION-6 F11 FUNCTION--

F2 FUNCTION-2 F7 FUNCTION-7 F12 FUNCTION-=

F3 FUNCTION-3 F8 FUNCTION-8 F13 FUNCTION-‘

F4 FUNCTION-4 F9 FUNCTION-9 F14 FUNCTION-\

F5 FUNCTION-5 F10 FUNCTION-0 F15 FUNCTION-|

• The numeric keypad keys are entered using the SYMBOL key as a shift key as

follows:�

Apple Symbolics Apple Symbolics Apple Symbolics

0 SYMBOL-0 6 SYMBOL-6 * see note.

1 SYMBOL-1 7 SYMBOL-7 - SYMBOL--

2 SYMBOL-2 8 see note + see note

3 SYMBOL-3 9 SYMBOL-9 . SYMBOL-.

4 SYMBOL-4 = see note

5 SYMBOL-5 / SYMBOL-/

Note: In the table above, no mappings are provided for numeric 8, numeric =,

numeric *, and numeric +. These four characters require special treatment be-

cause * is SHIFT 8 and + is SHIFT =. Symbolics distinguishes NUMERIC SHIFT 8

from NUMERIC * by enabling you to use the SHIFT key on the same side as the

SYMBOL for producing the unshifted key with a SHIFT modifier, and using the

SHIFT and SYMBOL keys on opposite sides for producing the shifted key without a

modifier. Note that both SHIFT keys are required to produce a shifted key with a

SHIFT modifier. For example:

 LEFT SYMBOL 8 produces NUMERIC 8

 LEFT SYMBOL LEFT SHIFT 8 produces NUMERIC SHIFT 8

 LEFT SYMBOL RIGHT SHIFT 8 produces NUMERIC *

 LEFT SYMBOL LEFT SHIFT RIGHT SHIFT 8 produces NUMERIC SHIFT *

 LEFT SYMBOL = produces NUMERIC =

 LEFT SYMBOL LEFT SHIFT = produces NUMERIC SHIFT =

 LEFT SYMBOL RIGHT SHIFT = produces NUMERIC +

 LEFT SYMBOL LEFT SHIFT RIGHT SHIFT = produces NUMERIC SHIFT +�

The remaining keys on the extended keyboard are entered using the SYMBOL key as

a shift key as follows:

Apple Symbolics Apple Symbolics

‡ SYMBOL-i HOME SYMBOL-k

↓ SYMBOL-, PAGE UP SYMBOL-PAGE

» SYMBOL-j PAGE DOWN PAGE

‰ SYMBOL-l DEL FWD SYMBOL-RUBOUT

Page 912

Interoperability of the Symbolics Keyboard and Popular Macintosh Software

Certain popular Macintosh software does not interoperate fully with the Symbolics

keyboard. In some cases, a simple workaround (for example, renaming a file) exists

which enables full function. In other cases, there is no workaround but the limita-

tions are well known and are presented here for your convenience.

The Symbolics Keyboard and CloseView�

CloseView, from Apple, allows the visually handicapped to magnify portions of

their screen to make reading the screen easier. When using a Symbolics keyboard,

however, the keystrokes used to raise and lower the magnification factor, Com-

mand-Option-↑ and Command-Option-↓, respectively, can not be entered using the

techniques described in "Mapping of Apple Key Functions to the Symbolics Key-

board". Instead, you must disable magnification using Command-Option-X, open the

CloseView control panel, change the magnification factor by clicking on the arrow

buttons, close the CloseView control panel, and re-enable magnification using Com-

mand-Option-X.

The Symbolics Keyboard and Pyro!�

Pyro!, from Fifth Generation Systems, is one of the most popular screen saver fa-

cilities for the Macintosh. Once running, Pyro! waits for you to press any key or

move the mouse as an indication that you wish to restore the normal screen con-

tents. However, when using a Symbolics keyboard, Pyro! will not deactivate itself if

you press any of the righthand modifier keys (that is, SHIFT, CONTROL, META, and

SUPER). Just use the lefhand modifier keys instead and Pyro! will deactivate.

The Symbolics Keyboard and QuickKeys 2�

QuickKeys 2, from CE Software, is one of the most popular keyboard macro facili-

ties for the Macintosh. For proper operation, the Symbolics keyboard software must

load after MacIvory’s support software but before QuickKeys 2. If you have INIT-

Picker, or similar software for controlling the order in which INITs are loaded, see

the documentation on said software for details on how to arrange the proper load-

ing order. If you do not have such software, you can use the fact that the Macin-

tosh System Software loads INITs in alphabetical order to get the desired effect.

In particular, you can rename either the Symbolics Keyboard INIT or the Quick-

Keys 2 INIT to obtain the proper loading order. (We recommend that you rename

Symbolics Keyboard to MSymbolics Keyboard.)

Known Keyboard Problems in Using the Genera Application with MacIvory

This section describes some keyboard problems that occur with both the Symbolics

keyboard and the Apple extended keyboard when using the Genera application.

• The software flag that enables the posting of key up events to the application

was not designed with MultiFinder in mind.

Page 913

If the ADB bus interrupt for the button release goes off while another applica-

tion or part of the system is running, no key up event is posted to the applica-

tion that requested them. Apple has acknowledged this problem in a recent tech-

nical memorandum. Genera tries to work around this by polling the system’s in-

ternal keys state looking for lost transitions. This polling results in some small

performance degradation, but is mostly effective. Synchronization anomalies are

rare but still possible.

• The event queue is very small.

If the Macintosh is very busy processing high-priority disk interrupts, it may not

run the application often enough to read out pending keyboard events and pass

them on to the Ivory. If keyboard hardware interrupts occur while the event

queue is full, the transitions are lost. Since the Macintosh does not normally op-

erate the disk and network as hard asynchronously, and many applications do

not support typeahead consistently, this is not a major problem for native appli-

cations. In any case, typeahead is not as reliable on the MacIvory as on other

Symbolics machines.

The size of the event queue is determined by a field in the disk’s boot block.

Apple does not distribute an application for modifying this. Additionally, it has

forbidden the distribution of licensed application software that does so.

Configuring the Logitech MouseMan for Use with a MacIvory

You must be running MacIvory Support Software Version 4.2 to use the Logitech

MouseMan with MacIvory. These instructions presume that you have already in-

stalled the MouseMan and its software according to Logitech’s documentation.

1. Open the Mouse Key control panel.

2. Click on the Add button and select your copy of the Genera application.

3. Change the assignments for the middle and right mouse buttons to be Click.

Repeat steps 2 and 3 for the Unassigned application as well.

4. Close the Control Panel.

You can now use all three buttons on the MouseMan just as you would use the

buttons on a Symbolics mouse while in Genera. The MouseMan will continue to

behave according to your previous configuration instructions outside the Genera

application.

Running Two Genera Releases on a Single MacIvory

Page 914

It is possible, although tricky, to allow two different major releases to coexist on

the same MacIvory system. This section describes how to prepare for running two

Genera releases (what you need to keep, and how to organize the files), and how

to switch from one release to the other.

For the purpose of a specific example, we assume you are running the Genera 7.4

and Genera 8.1 releases.

Preparation for Running Two Genera Releases�

For each Genera release, you need to keep the Genera world, the corresponding

FEP (kernel and flod files), and all Macintosh software (the three folders:

MacIvory Applications, MacIvory System, and MacIvory Development).

For safety’s sake, you should keep the floppies or CD-ROM distributed from Sym-

bolics in a safe place, in case any of these files are deleted accidentally.

You should rename the folders so that they clearly represent the software in them:

• The Genera 7.4 versions of the folders should be named: 7.4 MacIvory Applica-

tions, 7.4 MacIvory System, and 7.4 MacIvory Development.

• The Genera 8.1 versions of the folders should be named: 8.1 MacIvory Applica-

tions, 8.1 MacIvory System, and 8.1 MacIvory Development.�

You need to have three sets of HELLO.BOOT and BOOT.BOOT files, one for Genera 7.4,

one for Genera 8.1, and one to identify which release to run:

• The 7-4-HELLO.BOOT file should load the FEP version for Genera 7.4. The 7-4-

BOOT.BOOT file should load the Genera 7.4 world.

• The 8-1-HELLO.BOOT file should load the FEP version for Genera 8.1. The 8-1-

BOOT.BOOT file should load the Genera 8.1 world.

• The HELLO.BOOT file should contain "Hello 8-1" or "Hello 7-4"; this indicates

which of the two above HELLO.BOOT files to use. The BOOT.BOOT file should con-

tain "Boot 8-1" or "Boot 7-4"; this indicates which of the two above BOOT.BOOT

files to use.

Switching From One Genera Release to the Other�

Assume you are running Genera 8.1 and want to switch to running Genera 7.4.

Follow these steps:

1. Before shutting down Genera 8.1, edit the HELLO.BOOT file to contain "Hello

7-4". Edit the BOOT.BOOT file to contain "Boot 7-4".

2. Before shutting down Genera 8.1, you need to switch FEP kernels. When you

are running Genera 8.1, you can do this by using the Edit Disk Label com-

mand. When switching from Genera 8.1 to Genera 7.4, you would indicate the

I311 FEP (which was the 7.4 FEP).

Page 915

Note, however, when you are running Genera 7.4, the Edit Disk Label com-

mand is not defined. Thus, to switch from Genera 7.4 to Genera 8.1, you need

to use si:install-fep-kernel. For example, to switch to the I325 FEP which is

the 8.1 FEP, you would evaluate the following form:

(si:install-fep-kernel "I325-kernel")�

3. Shutdown Lisp, by choosing "Shut Down" from the Ivory pulldown menu. This

quits the Genera application.

4. Copy the contents of the 7.4 MacIvory System folder to the System folder. Be

sure to hold down the Option key while dragging to copy, not move the

contents of the folder; you should always keep the contents of the 7.4

MacIvory System folder so you can copy it again later. The system asks if you

want to replace the files with the same names; you should answer Yes.

5. Restart the Macintosh.

6. When the Macintosh is running again, open the 7.4 MacIvory Applications

folder and run the Genera application. If you are asked whether you want to

cold boot, answer Yes. (If you are not asked, then the system cold booted au-

tomatically.)

To switch from Genera 7.4 to Genera 8.1, use the same process, but switch "8-1"

and "7-4".

Programmer’s Reference to MacIvory

Remote Procedure Call for the Macintosh

This section presents information on using the Symbolics implementation of Re-

mote Procedure Call (RPC) with MacIvory applications. It includes an overview of

Symbolics RPC and a description RPC facilities specific to the MacIvory.

Overview of Symbolics RPC

Symbolics RPC is an implementation of industry-standard RPC that underlies Sun

Microsystems’ NFS and other programs (see Request for Comments (RFC) #1057

"RPC: Remote Procedure Call Protocol specification version 2"). The distinguishing

characteristic of Symbolics RPC is that it uses Lisp technology to provide a very

clean and easy-to-use interface for defining RPC-based programs. The form of data

transmitted over the communications medium is fully compliant with the standard.

Remote Procedure Call (RPC) is a facility that allows a function executing on one

processor to call a function executing on another processor. The two functions can

be written in the same language or in different languages, such as Lisp and C.

The two processors can be of the same type or of different types; for example, a

function executing on an Ivory can call a function that executes on an MC68020.

Page 916

RPC allows a program executing on one processor to access facilities that are

available on another processor. For example, an Ivory embedded in a host can use

RPC to make use of hardware devices controlled by that host, to call facilities of

the host operating system, and to call program libraries that are available for the

host but not for the Ivory. Similarly, a program running on a host can use RPC to

call symbolic processing facilities such as Joshua that run on the Ivory.

Using RPC, you can segment a program into pieces and run each piece on a differ-

ent processor. This can improve performance through parallel processing. More

importantly, this allows each part of the program to execute on the processor and

under the operating system best adapted to support that part. Benefits include

both performance improvement and ease of programming.

For example, a program for a MacIvory system can run its user interface on the

Macintosh and its knowledge processing on the Ivory. It is not necessary to have

such a large granularity in the segmentation of a program; the same program

might be improved by running the high-level "policy" portion of its user interface

on the Ivory, with the low-level "mechanism" portion running on the Macintosh.

Dynamic Windows on MacIvory work precisely this way.

Another reason to use RPC is when you want to run a program on processor A but

it needs to cooperate with an existing program that is available only on processor

B. Processor A might be an Ivory, which you are using because of its ease of pro-

gramming, while processor B might be a non-Symbolics processor, with a large li-

brary of available programs. The main part of your program runs on processor A

and it includes an appendage that runs on processor B; the appendage communi-

cates with the existing program using the interfaces defined by the existing pro-

gram. The main part of your program and the appendage communicate through

RPC. The existing program is unaware of RPC and does not have to be modified

or adapted. (The Genera interface to HyperCard on MacIvory works this way.)

RPC provides communication between two processors in a single system, as when a

Symbolics Ivory is embedded in a non-Symbolics platform such as a Macintosh or

Sun.

In this case communication is through shared memory and is quite efficient, al-

though of course calling a function remotely is never as fast as calling it locally.

RPC can also be used for communication between two processors in separate sys-

tems, which might be physically located side by side or at a great distance from

each other. RPC operates through local-area and wide-area networks and through

RS232 serial lines. Using RPC over a network is slower than using RPC in an em-

bedded system.

Symbolics RPC provides a transparent interface; calling a function remotely looks

the same as calling a local function. When you call a function, you do not have to

know whether its body executes on the local processor or on a remote processor.

This is true regardless of whether you program in Lisp or in C. The RPC system

implements this by automatically defining a stub function that acts as a local rep-

resentative of the remote function. The stub takes care of all the housekeeping re-

quired to transmit the arguments to the remote function and receive back the val-

ues. Symbolics RPC provides a transparent interface for the callee as well. You

Page 917

write the body of a remotely callable function in Lisp or C in the usual way; the

RPC system automatically adds code to receive the arguments, puts them in vari-

ables with the names you specified, and sends back the results.

Symbolics RPC and Sun RPC

Symbolics RPC is a fully compliant implementation of the RPC and XDR (eXternal

Data Representation) standards described in RFC (Request for Comments) #1057

"RPC: Remote Procedure Call Protocol specification version 2" and RFC #1014

"XDR: External Data Representation standard."

As such, it is completely compatible and can interoperate with any other compliant

RPC implementation, such as the one supplied with Sun Microsystems computers.

(See the Sun Microsystems document Network Programming for further informa-

tion.) For instance, a program written in Symbolics RPC can make RPC calls to a

program written in SunRPC language, and vice versa.

Symbolics RPC language differs from SunRPC language in many ways, most no-

tably in that Symbolics RPC can simultaneously generate code in two programming

languages, C and Lisp. Symbolics RPC language cannot generate code in Sun RPC

language. Users of the Symbolics UX can choose either for programming. Symbol-

ics RPC language is likely to make the code-maintenance task easier for programs

that will run on both Ivory-based systems and a C-based system.

Differences Between Local and Remote Function Calling

An important and necessary difference between local and remote function calling is

that functions executing on separate processors have separate memory address

spaces and cannot share any data. All arguments and values must be passed by

value, not by reference. For this reason, unlike a locally callable function, a re-

motely callable function uses special functions (rpc:rpc-values and rpc:rpc-error

in Lisp, RPCValues and RPCError in C) to return its results.

Because there is no call by reference, the data types that can be used with RPC

are limited. For example, in Lisp you cannot pass an arbitrary symbol as an argu-

ment. If you pass a flavor instance, the callee sees a copy of the instance. If the

callee modifies the instance, those modifications are not passed back to the caller.

On the other hand, a benefit of call by value is that the caller and callee can use

different data representations. For example, the caller can pass a Lisp flavor in-

stance, which the callee will see as a C struct.

You construct an RPC-based program by using a set of Lisp macros to define the

remotely callable functions. These Lisp macros are somewhat unusual in that they

expand into both Lisp code and C code. The Lisp expansion is processed in the

normal way. The C expansion is written to a file that can be compiled by the Sym-

bolics C compiler or shipped to another processor and compiled by its own C com-

piler. Once the interface has been defined and compiled, you call the stub func-

tions using ordinary Lisp or C function calls. The callee or server half of the in-

terface is loaded together with any other programs it calls.

Page 918

Basic Concepts of RPC

The basic concepts of RPC include remote modules, remote entries, remote errors,

and remote types, explained in the following table:

remote entry A remotely callable function.

remote module A collection of related remote entries that are treated as a unit

for bookkeeping purposes.

remote error An exceptional condition that can arise while executing a re-

mote entry.

remote type A type of data that can be used as an argument to a remote

entry or a remote error, and can be returned as a value by a

remote entry. A remote type defines the possible data values,

their representation in Lisp and C, their representation for in-

terprocessor transmission, and the methods for converting be-

tween these representations.�

Some of these concepts have nonstandard names. These names were chosen to

avoid any confusion with other concepts in Genera with names similar to the stan-

dard names. Other systems call remote modules "remote programs" and call remote

entries "remote procedures."

The RPC facility consists of three layers:

• The call layer is in charge of identifying remote entries to be called, transmit-

ting the arguments to them, matching up the returned values with the caller

who is awaiting the results, and reporting errors.

• The data representation layer is in charge of defining a common representation

for data and translating representations used by different machines and by dif-

ferent programming languages to and from the common representation.

• The transport layer is in charge of moving raw bits between machines and deal-

ing with bit-ordering issues. There are three different transport layers, se-

lectable at run time. One is based on the embedding substrate’s inter-processor

communication mechanism, the others are based on the byte-stream and UDP/IP

media of the generic network system.�

Types of RPC Servers for MacIvory

The :type option to rpc:define-remote-c-program defines three types of servers:

linked, auto-load, and auto-load-with-static-data. When choosing which type of serv-

er to use, your first decision is whether to use a linked server or an auto-load

server. A linked server is an integral part of an application program, built into

that program and able to call subroutines of it and access its static data. An auto-

load server is an independently created module that executes inside an application

program without any knowledge of the structure of the application.

Page 919

If you are not writing your own application program, your choice is simple, be-

cause only auto-load servers are possible; to use a linked server you must have a

program to link it into. If you are writing your own application program, whether

to use a linked server or an auto-load server depends mainly on whether you want

to maintain the server independently, or tie it closely to the application program.

If you are running the Symbolics-supplied application program, such as the Genera

icon or other icons that you created from the Symbolics-supplied Genera or Unas-

signed icon using the Configure MacIvory Application command, you must use an

auto-load server, since you cannot modify this program to link in your own servers.

The same auto-load server can also be used with your own application programs.

The Macintosh Toolbox interface is implemented entirely with auto-load servers so

that it is available in all applications, including the ones you write yourself.

On the Macintosh, an auto-load server only occupies memory if it is called, while a

linked server may or may not occupy memory even if it is not called, depending on

whether you direct the linker to put it in its own segment.

If you choose an auto-load server, your next decision is whether to use :auto-load-

with-static-data or plain :auto-load. In general, the :auto-load type is preferable

because it allows you to set the "purgeable" bit in the resource, which in turn al-

lows your server to be swapped out when it is not executing if the Macintosh gets

low on memory. However, you must use :auto-load-with-static-data if you have

static variables in your C code or use the :init option to rpc:define-remote-c-

program.

The "purgeable" bit in each RPCD resource controls memory allocation for that

code segment. You can use the Attrs item in [Project / Set Project Type...] in

THINK C to set this bit before compiling your program. If the "purgeable" bit is

off, the code segment is loaded in to memory and locked when your remote module

is first called and remains in memory at a fixed address forever (until the applica-

tion quits). This is the normal setting. If the purgeable bit is on, the code segment

can be moved to a different memory address, or unloaded from memory entirely,

any time a call to it is not actively in progress. Set the purgeable bit if you want

to minimize memory consumption, but only if your program does not use inter-

rupts, VBL tasks, call backs, or anything else that could fail if the program’s

memory address changes.

An auto-load server is always locked while it is executing. If you do not set the

purgeable bit, it is locked at all times, but if you do set the purgeable bit, it is un-

locked between calls. You should not set the resource’s "locked" bit nor its

"sysHeap" bit. The purgeable bit should not be used for :auto-load-with-static-

data RPC servers. If you use it, the values of your static variables will be reset at

unpredictable times.

The Macintosh has certain limitations on code resources. Since auto-load and auto-

load-with-static-data RPC servers are implemented as code resources, they are sub-

ject to these limitations. The maximum size of a code resource is 32K bytes. If you

exceed this limit you may be able to work around it by breaking up your

rpc:define-remote-module into several separate modules. Code resources access

their global variables through register A4 instead of the normal register A5. The

Page 920

RPC system maintains these registers for you, but problems can still occur if you

use libraries. You may need to copy and recompile any libraries that you use, as

explained on page 85 of the THINK C manual. If you access certain QuickDraw

globals such as the built-in cursor shapes and stipple patterns you will find that

they don’t work correctly.

Auto-loading Servers for RPC

This section tells you how to create an auto-loading RPC server. It provides a sam-

ple remote program and a procedure for creating an auto-loading server. The serv-

er is loaded into an RPC-bearing Macintosh application, such as "Genera", the first

time the Ivory tries to call it.

First, define your remote program. You can find the one used in this example,

called remote-program-example.lisp in the file SYS:EMBEDDING;RPC;EXAMPLES;REMOTE-

PROGRAM-EXAMPLE.LISP.

Remote Program Example�

;;; -*- Mode: LISP; Syntax: Lisp+C; Package: USER; Base: 10 -*-

;;;> EXAMPLES-MESSAGE

;;;>

;;;>**

;;;>

;;;> Symbolics hereby grants permission to customer to incorporate

;;;> the examples in this file in any work belonging to customer.

;;;>

;;;>**

�

;;; A simple example of how to use RPC on MacIvory

;;; This uses the Mac Standard File package to read a file name

�

;;; This could be done through the toolbox interface,

;;; but for purposes of this example, we are not

;;; using the interface, instead doing the work by hand.

�

;; Assign a number to the remote module and declare that it will

;; be used for Lisp-to-C calls

(RPC:DEFINE-REMOTE-MODULE EXAMPLE (:NUMBER #x7F008000) (:VERSION 1)

 (:CLIENT :LISP) (:SERVER :C))

�

;;; Define the types that we will need

�

;; Macintosh points. The Lisp representation is just (VECTOR V H).

(RPC:DEFINE-REMOTE-TYPE POINT ()

 (:ABBREVIATION-FOR ‘(RPC:STRUCTURE (V RPC:INTEGER-16) (H RPC:INTEGER-16)

(:C #{ Point }))))

Page 921

�

;; List of what file types we will accept, or wildcard that accepts all file types

(RPC:DEFINE-REMOTE-TYPE FILE-TYPES ()

 (:ABBREVIATION-FOR ‘(OR ALL (VECTOR FILE-TYPE))))

�

(RPC:DEFINE-REMOTE-TYPE ALL ()

 (:ABBREVIATION-FOR ‘(MEMBER :ALL)))

�

;; Macintosh file-type codes. The Lisp representation is a 4-character string.

;; Since in C these are treated as long integers rather than arrays, we need

;; to write some C code sending and receiving them instead of relying on

;; the default action for vectors

(RPC:DEFINE-REMOTE-TYPE FILE-TYPE ()

 (:ABBREVIATION-FOR ‘(VECTOR RPC:CHARACTER-8 4))

 (:C

 (:DECLARE (NAME) #{ OSType ↓NAME })

 (:SEND (VALUE)

 #{ send_word(↓VALUE); }

)

 (:RECEIVE (VARIABLE STORAGE-MODE)

 (PROGN (IGNORE STORAGE-MODE)

 #{ ↓VARIABLE = receive_word(); }

))))

�

;; Define the RPC interface to the Macintosh SFGetFile routine

;; We tell it where to put the dialogue box on the screen and what

;; file types we are interested in. It interacts with the user and returns

;; whether the user confirmed or cancelled, the volume (really directory)

;; identifying number, the file name, and the Macintosh file type code).

(RPC:DEFINE-REMOTE-ENTRY READ-FILE-NAME EXAMPLE (:NUMBER 1)

 (:ARGUMENTS (WHERE POINT)

 (FILE-TYPES FILE-TYPES))

 (:VALUES (CONFIRMED RPC:BOOLEAN)

 (VOLUME RPC:INTEGER-16)

 (FILE-NAME RPC:PASCAL-STRING)

 (FILE-TYPE FILE-TYPE))

 ;; Define the C glue code needed to interface to the operating system

 ;; Put the list of file types into the form required by SFGetFile

 ;; and extract the values from the SFReply structure

 (:C

 (:SERVER

 #{ SFReply reply;

 int numTypes;

Page 922

�

 if (file_types.type == all_type)

 numTypes = -1;

 else numTypes = file_types.value.vector->length;

 SFGetFile(where, "\p", NULL, numTypes, &file_types.value.vector->element[0],

 NULL, &reply);

 RPCValues(reply.good, reply.vRefNum, reply.fName, reply.fType);

 })))

�

;; Output the C code to a separate file, for compilation on the Macintosh

;; We only need server code

(RPC:DEFINE-REMOTE-C-PROGRAM EXAMPLE

 (:SERVER

 (:FILE "example.c")

 (:TYPE :AUTO-LOAD)

 (:INCLUDE "<MacTypes.h>" "<FileMgr.h>" "<StdFilePkg.h>")))

�

Notes:

1. Note that Syntax in the attribute line is set to Lisp+C. This enables the #{...}

syntax.

2.

In interprocessor communication, modules are identified by their number, not

by name. Choose module numbers following the conventions in the file

SYS:EMBEDDING;RPC;ASSIGNED-NUMBERS.TEXT . All module numbers for a particular

site must be unique.

3. You can replace the type :auto-load with :auto-load-with-static-data if you

have static variables in your C code or use the :init option to rpc:define-

remote-c-program. In general, the :auto-load type is preferable to :auto-

load-with-static-data because it allows you to set the "purgeable" bit in the

resource, which in turn allows your server to be swapped out if the Macintosh

gets low on memory.

4. The :include files are whatever include files your remote entries need. Here

we need general Macintosh types such as Point, the Macintosh File Manager,

and the Standard File package.�

Prerequisites�

Before beginning this procedure:

• You must have THINK C loaded on your Macintosh disk.

• From the Macintosh Finder, create a folder called RPC-Example on your Macin-

tosh disk. This folder should not be in any other folder.

Page 923

The procedure is divided into these steps:

1. Compiling the example program in Genera

2. Copying the C program to the Macintosh

3. Compiling and linking the C program on the Macintosh

4. Installing the code resource file

5. Calling the remote module�

Procedure�

1. Compile the example program in Genera.

a. Switch to Genera by double-clicking on the Genera application icon.

b. Compile and load the example program from the Lisp Listener with the

Compile File and Load File commands. �

This tells Genera about the remote module, and produces a C program in the

file SYS:EMBEDDING;RPC;EXAMPLES;EXAMPLE.C specified in rpc:define-remote-c-

program (line 77).

The next step is to use the example.c file to tell the Macintosh about the re-

mote module.

2. Copy the C program to the Macintosh.

Use the Copy File command to copy the C program example.c from Genera to

the RPC-Example folder on the Macintosh.

For example,

Copy File sys:embedding;rpc;examples;example.c HOST:disk:RPC-Example:example.c�

In this example, HOST is used literally to specify the local Macintosh, disk is

the name of that Macintosh’s hard disk (the name displayed under the disk

icon), and RPC-Example is the name of the folder. Note: If the disk has a

space in its name, you must enclose the entire pathname in double quotes.

3. Compile and link the C program on the Macintosh.

This step describes the work necessary to compile and link the C program on

the Macintosh. It tells you how to set up a THINK C project and how to com-

pile and link your C program with it. See THINK C documentation for fur-

ther information.

Page 924

Before compiling the C program, create a file named RPC.h and a file named

MacIvory-Suypport.h in the RPC-Example folder. The file should contain a

#include of the right file name (for example, "::MacIvory Devel-

opment:RPC:RPC.h"). Follow these steps for this example:

a. From Genera, type:

Edit File HOST:disk:RPC-Example:rpc.h

b. This places you at an editor window. Type in the following text:

#include "::MacIvory Development:RPC:RPC.h"

c. Save the buffer by typing c-X c-S.

d. Follow a similar procedure to create a file named MacIvory-Support.h.

Type the following text in the file:

#include "::MacIvory Development:Substrate:MacIvory-Support.h"

The next task is to compile your C program and link it with the libraries or

other C source files called by the C code in the :server clauses of your

rpc:define-remote-entry forms. In this example, we use the THINK C com-

piler. If you are unfamiliar with this product, read the THINK C manual for

background.

This example uses one library, one source file from the RPC system, and no

additional source files. (Note: For large C programs, which are not just calls

to the Macintosh operating system, you might put the bulk of it in a separate

file and put function calls in the rpc:define-remote-entry forms. This makes

editing easier because you can edit the C code in C mode instead of Lisp

mode.)

a. Switch from Genera to the Macintosh Finder and start up THINK C.

You are presented with a THINK C file selection box.

b. From this box, move to the RPC-Example folder on the disk. (see "Start-

ing THINK C" in the THINK C manual). To do this:

i. Click on the THINK C open folder icon and move to disk, where

disk is the name of your disk.

ii. From the directory list of the contents of your disk, double-click on

RPC-Example to open it.�

c. Create a THINK C project called example proj in the RPC-Example fold-

er

Page 925

The THINK C compiler has a number of options. This example assumes

a particular setting of these options, which is normally the default, un-

less the default has been changed at a particular installation.

In [Edit / Options...], there are 5 sub-menus selected by radio buttons, of

which we care only about two. In Code Generation, Macsbug Symbols

and <MacHeaders> are assumed to be on, and the others are assumed to

be off. In Compiler Flags, Check Pointer Types is assumed to be on, and

Require Prototypes must be off.

After setting the options, if necessary, create a project with these steps:

i. Click on New in the file selection box.

ii. At the prompt, Name New Project, type: example proj.�

d. Using [Source / Add ...] while still running THINK C, add the following

three files to example proj:

(Continue to work from the file selection box as described in the previ-

ous step.)

• Add the example.c file from the RPC-example folder on the disk.

• Add the file rpcspprt.c in the RPC folder in the MacIvory Development

folder.

• Add the MacTraps library in the Mac Libraries folder in the THINK

C folder.�

e. Click Cancel after adding those three files, to get out of the file menu.

Set the project type and related information. Select [Project / Set Project

Type] from the pull-down menu and set the radio button to Code Re-

source. Specify the type (in the box) as RPCD (you must use all caps),

the ID as 1, and the name to whatever you want (leaving it blank is

okay). Be sure to type RPCD in all capital letters. Click OK and then OK

again. This procedure tells THINK C to build a code resource file.

Note: The "purgeable" bit in each RPCD resource controls memory allo-

cation for that code segment. You can use the Attrs item in [Project /

Set Project Type...] in THINK C to set this bit before compiling your

program. If the "purgeable" bit is off, the code segment is loaded in to

memory and locked when your remote module is first called and remains

in memory at a fixed address forever (until the application quits). This is

the normal setting. If the "purgeable" bit is on, the code segment can be

moved to a different memory address, or unloaded from memory entirely,

any time a call to it is not actively in progress. Set the "purgeable" bit if

Page 926

you want to minimize memory consumption, but only if your program

does not use interrupts, VBL tasks, call backs, or anything else that

could fail if the program’s memory address changes.

f. Use [Project / Build Code Resource] to compile, link, and produce the

output, with whatever name you want.

g. The same name as in rpc:define-remote-module is customary, so for

this example you put the output in a Macintosh file named example in

the RPC-Example folder. Note: You will be in Mac Libraries and need to

switch to RPC-example folder. Now you can use [File / Quit] to leave

THINK C.�

4. Install the code resource file.

The next step is to make the RPC system aware of the code resource file you

just built. You need to do two Macintosh-oriented things:

• Set the file’s type and creator attributes to RPCS and IVRY instead of the

default.

• Create a resource of type RPCS with ID 1 (same ID as your RPCD re-

source).�

This resource should be 8 bytes long, where the first 4 bytes are the

:number option from rpc:define-remote-module and the second 4 bytes are

the :version option. Remember about decimal versus hexadecimal.

If you know how to use ResEdit, you can do these operations graphically in

ResEdit. Alternatively, you can do them textually in RMaker as described in

the following procedure.

a. Use the Genera command Copy File to copy the file

SYS:EMBEDDING;RPC;EXAMPLES;EXAMPLE.R into the RPC-Example folder. Type:

Copy File sys:embedding;rpc;examples;example.r Host:Disk:RPC-Example:example.r�

(Caution: RMaker requires that the text in this file appear exactly as

given, including spaces and blank lines. This includes the blank line that

ends the file.)

b. Run RMaker and select the example.r file from the file menu. (You can

use the Find File desk accessory, if you need help in finding RMaker.)

When it finishes, click on the Quit button. You now have an Example

Server file.

c. Move this file into a folder where the RPC system can find it, which can

be the folder where "Genera" is launched from, or the folder Disk:System

Page 927

Folder: Ivory:RPC: (the latter is preferable, since it keeps RPC servers

separate from everything else).�

Now calling the remote module from Genera should work.

5. Call the remote module.

To call the example module, switch back into Genera and evaluate the form:

 (read-file-name #(150 100) :all)�

A standard Macintosh file menu appears near the middle of the screen. First

try clicking the Cancel button. You get back values of NIL and three garbage

values. Try it again and select a file, and you will get T, a negative number

that encodes what folder the file is in, the name of the file as a string, and

the Macintosh type of the file as another string.

Incorporating RPC Into Macintosh Applications

Symbolics provides a THINK C version 4.0 library named RPC.lib that implements

the Remote Procedure Call protocol between the host Macintosh and its embedded

Ivory. The Genera application provided by Symbolics uses this library.

You can link the RPC library into your own Macintosh applications. This allows

you to use RPC to request services from the Ivory in your application by linking in

stub files written by the :client option of rpc:define-remote-c-program.

In addition, the RPC library makes your application an RPC server for requests

from the Ivory. The RPC library transparently provides all the support for auto-

load RPC servers (see the section "Auto-loading Servers for RPC" for further in-

formation). You can also link RPC server files written by the :server option of

rpc:define-remote-c-program into your application. Programs running on Ivory

can then call those servers.

In order to use the RPC.lib library, you must also link in the MacIvory library pro-

vided by Symbolics.

The MacIvory library provides facilities for booting the Ivory, displaying the cold

load stream, and related tasks. For an example of the use of these facilities, see

the example program in the file SYS:EMBEDDING;RPC;EXAMPLES;APPLICATION-EXAMPLE.C.

The RPC library is available on the Macintosh in the file disk:MacIvory

Development:Libraries:RPC.lib, where disk is the name of your Macintosh’s hard

disk. The MacIvory library is available on the Macintosh in the file disk:MacIvory

Development:Libraries:MacIvory.lib, where disk is the name of your Macintosh’s

hard disk.

In addition to these libraries, Symbolics also supplies the libraries RPC A4.lib and

MacIvory A4.lib. These are identical to the MacIvory and RPC libraries except that

they have been compiled to use register A4 instead of A5. Use these libraries

when you are building code resources rather than applications. (See the section

"Using libraries in code resources" in the THINK C User’s Manual for further

information.)

Page 928

Your Macintosh application must be written in THINK C in order to use the RPC

library.

Initializing the RPC and MacIvory Libraries

Your Macintosh application must initialize the RPC and MacIvory libraries before

using them. Follow these steps to initialize the libraries:

1. Initialize the Macintosh operating system and any other facilities you use.

2. Call the functions InitMacIvorySupport and InitMacIvory.

3. Call the function InitializeRPC with no arguments. It does not return any-

thing.

4. Call initialize_remote_module_name_server with no arguments, for every

RPC server file that you have linked into your application. You must always

call initialize_predefined_remote_entries_server, since that RPC server is

included in the RPC library. These functions return a standard Macintosh er-

ror code of type OSErr; however, it is generally safe to assume that no error

occurred.

5. Call the function emb_agent_open with no arguments. It returns a standard

Macintosh error code and establishes a bidirectional channel between the host

Macintosh and the embedded guest Ivory. If the value is not noErr, you

should terminate the application. It is important to check this error code. If

emb_agent_open fails, call the ReportRPCOpenFailure routine to issue a standard

Macintosh alert box.

Terminating the RPC and MacIvory Libraries

Your Macintosh application must terminate the RPC and MacIvory libraries before

it exits. Follow these steps:

1. Optionally, call OKtoStopMacIvory. (Use this to issue the standard "Lisp is

running. Quit?" alert box). This function returns a value of TRUE or FALSE.

2. Call the function CloseRPC with no arguments. This function does not return

anything. If you exit without calling CloseRPC, the interprocessor communica-

tion channel allocated by emb_agent_open remains permanently busy.

3. Call TermMacIvorySupport.

4. Call the function ExitToShell. �

Note: You must provide a function, ExitMacIvoryApplication, which is called by

the MacIvory library if it decides it is impossible to continue. This function must

perform the last three actions above. Therefore, it is possible to replace steps 2

through 4 with a call to your ExitMacIvoryApplication function.

Page 929

Interfacing the RPC and MacIvory Libraries to an Event Loop

The RPC library interfaces with your application’s event processing loop in two

directions: you call it, and it calls you. You must call the RPC library periodically,

so that incoming requests from the Ivory can be serviced. Normally, this is done

from your event processing loop. Even if you do not plan to make any RPC calls

from Ivory to Macintosh, you still must call the RPC library to support internal

housekeeping.

The RPC library calls back to your event processing loop whenever it has to wait

for some event to occur, normally a response from the Ivory. This happens when

you make an RPC call from Macintosh to Ivory, for example. While the Macintosh

waits for the Ivory to complete the call and return the values, the RPC library re-

peatedly calls your event loop.

Your event processing loop should call the function PollRPC with no arguments. It

does not return any result. Call PollRPC before calling WaitNextEvent or GetNex-

tEvent or in the same circumstances in which you call SystemTask.

MacIvoryTasks must be called periodically, typically from your application’s main

event loop. It handles reset requests from Ivory and maintains the cold-load-stream

window. Like PollRPC, MacIvoryTasks should be called before a call to WaitNex-

tEvent or GetNextEvent, or in the same circumstances in which you call SystemTask.

Your application’s event processing loop should call MacIvoryEvent on every event,

before processing it. MacIvoryEvent takes care of the Ivory menu and the cold-load-

stream window.

Your application must define the function BusyWait, to be called by the RPC library

when it needs to wait. BusyWait takes one argument, an int named allow_rpc, and

returns no values. allow_rpc is true if the RPC system expects you to call it back,

or false if it does not. BusyWait should call MacIvoryTasks. You should call PollRPC

if and only if allow_rpc is true.

BusyWait gives you an opportunity to implement whatever multiprocessing strategy

you prefer. When using MultiFinder, BusyWait must call GetNextEvent or WaitNex-

tEvent so that other Macintosh applications can run. In general it’s a good idea for

BusyWait to support the mouse at least to the extent of allowing the Apple menu to

be used, but it is not a good idea for BusyWait to run portions of your application

that can make RPC calls to the Ivory.

You must define a routine named RestartMacIvoryApplication, which is called with

no arguments from MacIvoryTasks when the Ivory system is booted or restarted.

RestartMacIvoryApplication should reset whatever is appropriate to reset in your

application. You must call CloseRPC in this function and then open a new channel.

You must define ExitMacIvoryApplication. This routine, which takes no arguments,

cleans up after your application, calling CloseRPC, TermMacIvorySupport and Exit-

ToShell.

You must define a function NoteMacIvoryStateChange. It is called by the library

whenever Ivory’s state changes (that is, starts up, shuts down and so on).

NoteMacIvoryStateChange is called with one agrument of the type enum MacIvoryS-

tateTransisition, which indicates what just happened to the Ivory.

Page 930

Using RPC in a MacIvory Application

Once the RPC library has been initialized, you can make RPC calls to Ivory simply

by calling the function. The :client option of rpc:define-remote-c-program creates

a file with the necessary "stub" code that does the interprocessor communication.

Link this file into your application and RPC calls look like ordinary C function

calls. All RPC calls return a standard Macintosh error code, which should be

checked by the caller. If the RPC call has values, you pass extra arguments which

are the addresses of the variables to receive the values.

Because your application includes the RPC library, your application automatically

supports dynamic loading of RPC servers defined with the (:type :auto-load) sub-

option of the :server option to rpc:define-remote-c-program. You can also link

RPC servers directly into your program, which is useful when the servers share

data or subroutines with the rest of your application. Use the (:type :linked) sub-

option of the :server option to rpc:define-remote-c-program, and remember to call

initialize_remote_module_name_server.

If you issue several asynchronous RPC calls in rapid succession, you can’t rely on

the Ivory executing these calls in the order in which they were issued. In general

the Ivory will execute all of the calls in parallel, each in a separate process. (Note:

an asynchronous call is a call to an entry whose rpc:define-remote-entry form us-

es the :asynchronous option.)

If you depend on asynchronous RPC calls to be executed one at a time in order,

you should use the (:process nil) option of rpc:define-remote-module. This causes

all calls to entries in that module to be executed in the RPC Dispatch process,

rather than in separate processes, which means that each call will be fully pro-

cessed before handling of the next call commences. This feature should be used

with caution, because if your server doesn’t return, the RPC Dispatch process will

be out of operation and the Ivory will appear to be dead and non-responsive.

Note that if some entries of a particular remote module should be executed in the

RPC Dispatch process while other entries should be executed in separate processes,

you should either put the latter entries into a separate remote module or call

process-run-function explicitly in your server code.

Selecting the Right RPC Agent for MacIvory Applications

When multiple Macintosh applications are using the Ivory simultaneously, software

that runs on the Ivory needs to know which Macintosh application it is talking to

in order to perform RPC calls and have them served in the right context. If you

only make Macintosh-to-Ivory calls, and not the reverse, you don’t need to worry

about this.

When a Lisp program makes an RPC call, it is actually calling a "stub" function

that does the interprocessor communication. This stub uses the special variable

rpc:*default-transport-agent* to tell it what server to communicate with. The

global value of rpc:*default-transport-agent* refers to a Macintosh application

such as Genera, or one created with the Configure MacIvory Application command,

that provides the full range of services. When your application makes a Macintosh-

Page 931

to-Ivory call, rpc:*default-transport-agent* is bound in the Ivory process that exe-

cutes the server to the agent that connects to your application. Thus if in the pro-

cess of serving a call from the Macintosh the Ivory calls back to the Macintosh, it

will reach the right application.

If the Ivory side of your application uses multiple processes, you will need to pay

special attention to rpc:*default-transport-agent*. Otherwise, it is likely to have

the desired value automatically.

Example of a Simple Macintosh Application

This procedure goes through the steps of building a simple example application

that runs on the Macintosh and uses RPC to obtain services from the Ivory copro-

cessor. The example service we use is to retrieve the property list of a symbol and

display it in a Macintosh window. The Plist command in the File menu does this.

The usual Macintosh window manipulation commands are also provided. The

source code for this example is contained in the following files:

 SYS:EMBEDDING;RPC;EXAMPLES;PLIST-SERVER.LISP

 SYS:EMBEDDING;RPC;EXAMPLES;APPLICATION-EXAMPLE.C�

Prerequisites�

Before beginning this procedure:

• You must have THINK C loaded on your Macintosh disk.

• From the Macintosh Finder, create a folder called RPC-Example on your Macin-

tosh disk. This folder should not be in any other folder.�

The procedure is divided into these steps:

• Compiling the server side of the program

• Copying the client side of the example program to the Macintosh

• Compiling the client side of the program

• Compiling and linking the C program on the Macintosh

• Running the program�

Procedure�

1. Compile the server side of the example program.

a. Switch to Genera by double-clicking on the Genera application icon.

Page 932

b. Compile and load the example server program from the Lisp Listener

with the Compile File and Load File commands, operating on the file

SYS:EMBEDDING;RPC;EXAMPLES;PLIST-SERVER.LISP.�

This tells Genera about the remote module, and produces a C program in the

file SYS:EMBEDDING;RPC;EXAMPLES;PLIST-SERVER.C specified in rpc:define-remote-c-

program.

2. Copy the client side of the example program to the Macintosh

Copy the C source code to the Macintosh. Use the Copy File command to copy

the stubs for the example server program to the RPC-Example folder on the

Macintosh, and to copy the source code for the Macintosh application to the

same folder.

For example,

Copy File sys:embedding;rpc;examples;plist-server.c HOST:disk:RPC-Example:

Copy File sys:embedding;rpc;examples;application-example.c HOST:disk:RPC-Example:�

In this example, HOST is used literally to specify the local Macintosh, disk is

the name of that Macintosh’s hard disk (the name displayed under the disk

icon), and RPC-Example is the name of the folder.

3. Compile and link the C program on the Macintosh.

Before compiling the C program, create files named RPC.h and MacIvory-

Support.h in the RPC-Example folder. These files should contain a #include of

the appropriate file names.

Follow these steps for this example:

a. From Genera, type:

Edit File HOST:disk:RPC-Example:rpc.h �

b. This places you in an editor window. Type in the following text:

#include "::MacIvory Development:RPC:RPC.h"�

c. Save the buffer by typing c-X c-S.

d. Type c-X c-F. When asked for a file name, type:

HOST:disk:RPC-Example:MacIvory-Support.h�

e. Type in the following text:

Page 933

#include "::MacIvory Development:Substrate:MacIvory-Support.h" �

f. Save the buffer by typing c-X c-S.�

The next task is to compile your C program and link it with the necessary li-

braries. In this example, we use the THINK C compiler. If you are unfamiliar

with this product, read over the THINK C manual for background.

This example uses the two source files we just copied onto the Macintosh and

four libraries.

a. Switch from Genera to the Macintosh Finder and open the disk if it’s

not already open.

b. Double-click on the THINK C Folder to open it.

c. Double-click on the THINK C icon in the THINK C folder to start up

THINK C. You are presented with a THINK C file selection box.

d. From this box, move to the RPC-Example folder on the disk. (See "Start-

ing THINK C" in the THINK C manual). To do this:

i. Click on the THINK C open folder icon and move to DSK (your

disk).

ii. In the directory list of the contents of DSK (your disk), double-click

on RPC-Example so that it is opened.�

e. Create a THINK C project called Application-example proj in the RPC-

Example folder.

The THINK C compiler has a number of options. This example assumes

a particular setting of these options, which is normally the default, un-

less the default has been changed at a particular installation.

In [Edit / Options...], there are five sub-menus selected by radio buttons,

of which we only care about two. In Code Generation, Macsbug Symbols

and <MacHeaders> are assumed to be on, the others are assumed to be

off. In Compiler Flags, Check Pointer Types is assumed to be on, Re-

quire Prototypes must be off.

In [Project / Set Project Type...], File Type is APPL, Creator is ????, Sep-

arate STRs is checked, and MF Attrs is 0000.

After setting the options, if necessary, create a project with these steps:

i. Click on New in the file selection box.

Page 934

ii. At the prompt, Name New Project, type: Application-example proj.�

f. Using [Source / Add ...] while still running THINK C, add the following

files to Application-example proj (continue to work from the file selection

box as described in the previous step):

• Add the application-example.c file from the RPC-example folder on the

disk.

• Add the plist-server.c file from the RPC-example folder on the disk.

• Add the RPC.lib library in the Libraries folder in the MacIvory Devel-

opment folder. This library supports the Remote Procedure Call facili-

ty.

• Add the MacIvory.lib library in the Libraries folder in the MacIvory

Development folder. This library supports the Ivory coprocessor.

• Add the MacTraps library in the Mac Libraries folder in the THINK

C folder. This library provides the interface to the Macintosh operat-

ing system.

• Click below the dotted line in the project window to select a new code

segment. (Otherwise, the application will fail to link because it is too

large.)

• Add the ANSI library in the C Libraries folder in the THINK C fold-

er. This library provides the interface to the Macintosh operating sys-

tem.�

g. Click Cancel after adding those files, to get out of the file menu. Op-

tionally, select [Project / Set Project Type] from the pull-down menu and

check the Separate STRs box. Click on OK. (Otherwise you will get a

"can’t load STRS in this project" error.)

h. Use [Project / Build Application] to compile, link, and produce the out-

put, naming it Application-example. Note: you will be in Mac Libraries

and will need to switch to RPC-example folder. Now you can use [File /

Quit] to leave THINK C.�

4. Run the program.

Follow these steps to run the program you just created.

a. Double click on the Application-example icon you just created.

b. Type a symbol into the dialog box that appears and press Return. The

symbol’s property list will be displayed in a window.

Page 935

c. Drag down the File menu and mouse Plist to examine another symbol or

mouse Quit to quit the program.

Routines in RPC.lib

Routines for Initialization

InitializeRPC Routine

void InitializeRPC()

Initializes the RPC library. You must call InitializeRPC before calling anything

else in the RPC library.

initialize_remote_module_name_server Routine

OSErr initialize_remote_module_name_server()�

Every linked remote module server defines a C routine named

initialize_remote_module_name_server, where remote_module_name is the name of

the remote module, converted from Lisp syntax to C syntax (lower case letters, hy-

phens replaced by underscores). You must call each of these routines after calling

InitializeRPC, to allow incoming RPC calls from the Ivory to find these servers.

initialize_predefined_remote_entries_server Routine

This server is in the RPC library, so it is always present. You must call it after

calling InitializeRPC. See the section "initialize_remote_module_name_server Rou-

tine".

emb_agent_open Routine

OSErr emb_agent_open() �

Establishes a bidirectional RPC channel between the host Macintosh and the em-

bedded guest Ivory. emb_agent_open returns a standard Macintosh error code. If the

value is not noErr, you should terminate the application.

Note: It is important to check this error code. Use the ReportRPCOpenFailure rou-

tine to report problems.

Routines for Termination

Page 936

CloseRPC Routine

void CloseRPC()�

Releases the bidirectional RPC channel between the host and the embedded guest

Ivory.

MacIvory User Note: Before your application exits, it must call CloseRPC or the

RPC channel allocated by emb_agent_open will remain permanently busy. Your

RestartApplications routine must call CloseRPC and then call emb_agent_open again.

Routines for the Event Processing Loop

PollRPC Routine

void PollRPC()�

Handles incoming requests and responses from Ivory. PollRPC must be called peri-

odically, typically from your application’s main event loop. PollRPC can call back to

BusyWait and to RPC servers.

BusyWait Routine

void BusyWait(Boolean allow_rpc)

Your application must define the function BusyWait, to be called by the RPC library

when it needs to wait. BusyWait should perform whatever polling you require once

and then return; it should not loop.

The RPC library calls BusyWait repeatedly until the condition for which it is wait-

ing is satisfied. allow_rpc is TRUE if the RPC system expects you to call it back,

and FALSE if it does not. Call PollRPC if and only if allow_rpc is TRUE.

Symbolics UX User Note: Be careful that BusyWait is not run in a tight loop. See

the section "Interfacing the Symbolics RPC Library to an Event Loop".

MacIvory User Note: BusyWait gives you an opportunity to implement whatever

multiprocessing strategy you prefer. When using MultiFinder, BusyWait must call

GetNextEvent or WaitNextEvent so that other Macintosh applications can run. In

general, it is a good idea for BusyWait to support the mouse at least to the extent

of allowing the Apple menu to be used, but it is not a good idea for BusyWait to

run portions of your application that can make RPC calls to the Ivory.

MacIvory Example:

This example assumes:

1. The program has a global Boolean variable, WNEIsImplemented, whose value

is set by the following code fragment:

Page 937

�

#define WNETrapNum 0x60

#define UnImplTrapNum 0x9F

�

Boolean WNEIsImplemented;

�

WNEIsImplemented = (NGetTrapAddress (WNETrapNum, ToolTrap) != NGetTrapAddress

 (UnImplTrapNum, ToolTrap));�

This variable tells the program whether to call GetNextEvent or WaitNextEvent.�

2. The program has a function called ProcessEvent to process events.�

Here’s BusyWait:

�

 void BusyWait (allow_rpc)

 int allow_rpc;

 {

 EventRecord event;

 short mask;

�

 mask = (ColdLoadIsVisible ()) ?

 (everyEvent - keyUpMask - activMask)

 : (everyEvent - keyDownMask - keyUpMask - autoKeyMask

 - activMask - updateMask);

�

 if (!WNEIsImplemented)

 SystemTask ();

�

 if (allow_rpc)

 PollRPC ();

�

 MacIvoryTasks ();

�

 if ((WNEIsImplemented) ? WaitNextEvent (mask, &event, 2L, 0L)

 : GetNextEvent (mask, &event))

 ProcessEvent (&event);

�

UX Example:

/*** Include Files ***/

�

#include <sys/types.h>

#include <errno.h>

#include "RPC.h"

Page 938

�

/*** Required by the RPC library ***/

�

void BusyWait(allow_rpc)

 int allow_rpc;

{

 int cc = 0, rpc_fd;

 fd_set read;

�

 /* Set up */

 rpc_fd = RPCAgentFileDescriptor();

�

 for (; cc == 0;) {

�

 /* Wait for something interesting to happen

 * We select for input ready on the RPC file descriptor. In a more

 * complex program, there may be other interesting file descriptors

 * or a timeout here.

 *

 * We ignore EINTR, which means we were interrupted by a signal handler

 * being called, and EWOULDBLOCK, which SunOS has been seen to return

 * inappropriately in this situation.

 */

 FD_ZERO(&read);

 FD_SET(rpc_fd, &read);

 if ((cc = select(rpc_fd+1, &read, NULL, NULL, NULL)) < 0 &&

errno != EINTR && errno != EWOULDBLOCK) {

 perror("BusyWait select");

 exit(-1);

 }

�

 /* If there is input pending on the RPC fd, and we’re allowed

 * to make recursive calls to the RPC substrate, do so.

 */

 if (cc > 0 && FD_ISSET(rpc_fd, &read) && allow_rpc)

 PollRPC();

 }

}

�

Routines for RPC Error Handling in RPC.lib

RPCRemoteError Routine

Page 939

RPCRemoteError (long *error-number)

Returns the remote error number of the last RPC call that failed. This routine is

useful with the individual functions that access remote-error values to allow error

handling.

ReportRPCOpenFailure Routine

Boolean ReportRPCOpenFailure (OSErr error, Boolean embeddedP, char* host)�

Reports a failure when opening an agent (that is, when calling emb_agent_open).

The argument error is the return code from the call. For now, embeddedP should

be TRUE and host should be 0L. Returns TRUE if unable to recover from the error;

returns FALSE if able to recover from the error and if the agent is open.

ReportRPCCallFailure Routine

Boolean ReportRPCCallFailure (Boolean fatalP, OSErr error,

 Boolean embeddedP, char *host)

Reports a failure from an RPC call. The argument error is the return code from

the call. The argument fatalP should be TRUE or FALSE based on whether the error

can be recovered from. For now, embeddedP should be TRUE and host should be 0L.

If fatalP is FALSE, this routine returns TRUE if the user decides to give up and re-

turns FALSE if he wants to try again. If fatalP is TRUE, the routine always returns

TRUE.

Routines in MacIvory.lib

Note: Prototypes and type definitions are in MacIvory-Support.h.

Routines for Initialization

InitMacIvorySupport Routine

void InitMacIvorySupport(Boolean forMacIvory, int* YourResFile,

 WindowPtr* ColdLoadWindow, MenuHandle*

 IvoryControlMenu, Boolean* initedMacIvorySupport)�

Initializes the MacIvory library and opens its associated resource file, disk:System

Folder:Ivory:MacIvory-support.rsrc. The value of forMacIvory is TRUE, if you ex-

pect an Ivory coprocessor to be present in the system. It is FALSE if the library is

present in your application, but you are not using the Ivory. In MacIvory pro-

grams, forMacIvory should always be TRUE.

The remaining arguments are addresses of variables that receive return values:

Page 940

YourResFile is set to the reference number of the application resource file. Cold-

LoadWindow is set to point to the Macintosh window that contains the cold-load

stream. IvoryControlMenu is set to a handle to the Ivory menu, which you should

add to the menu bar. The latter two variables are not set if forMacIvory is FALSE.

initedMacIvorySupport is set to TRUE if the library was initialized and will have

to be shutdown by TermMacIvorySupport later.

InitMacIvory Routine

void InitMacIvory(Boolean NeedsLispRunning)

Checks on the status of the Ivory coprocessor, initializes the coprocessor if it is

uninitialized, and boots it, if needed. NeedsLispRunning is TRUE if Lisp must be

running. It is FALSE if it is okay for just the IFEP to be running.

Routines for Termination

TermMacIvorySupport Routine

void TermMacIvorySupport(Boolean forMacIvory)

Shuts down the MacIvory library. If the Ivory is not running, relinquishes control

of the network interface so other Macintosh applications can use it. Call this

whenever an Ivory-using application exits. Supply the same value for forMacIvory

as in your call to InitMacIvorySupport.

ExitMacIvoryApplication Routine

void ExitMacIvoryApplication()

You must define this routine in your application. This routine is called by the li-

brary if the application must be terminated unexpectedly. It should call Ter-

mMacIvorySupport if the library is initialized. It should call CloseRPC if an agent

was opened. In all cases it should also cleanup after the appplciation and Exit-

toShell.

OKtoStopMacIvory Routine

Boolean OKtoStopMacIvory()�

Returns TRUE if it is okay to quit the application now; either the Ivory is not

running or the user has confirmed that it is okay via an alert box. This routine is

usually called in your handler for the "Quit" menu item.

Page 941

RestartMacIvoryApplication Routine

void RestartMacIvoryApplication()�

You must define a routine named RestartMacIvoryApplication, which is called

with no arguments from MacIvoryTasks when the Ivory system is booted or restart-

ed. RestartMacIvoryApplication should reset whatever is appropriate to reset in

your application. You must call CloseRPC in this function and then open a new

channel.

RestartMacIvoryApplication can either return to its caller or perform a longjmp to

the start of your application.

Routines for the Event Processing Loop

MacIvoryTasks Routine

void MacIvoryTasks()�

MacIvoryTasks must be called periodically, typically from your application’s main

event loop. It handles reset requests from Ivory and maintains the cold-load-stream

window. MacIvoryTasks can call back to ExitMacivoryApplication or NoteMacIvoryS-

tateChange.

MacIvoryEvent Routine

Boolean MacIvoryEvent(EventRecord* Event, long* MenuAndItem)�

Your application’s event processing loop should call MacIvoryEvent on every event,

before processing it.

MacIvoryEvent takes care of the Ivory menu and the cold-load-stream window. If

MacIvoryEvent returns TRUE, it has fully handled the event and the application

can ignore it. Otherwise, the application should handle the event normally. Howev-

er, if the event is mouse-down in the menu bar, MacIvoryEvent has already called

MenuSelect and set the variable addressed by MenuAndItem to the result, so the ap-

plication should not call MenuSelect again.

NoteMacIvoryStateChange Routine

void NoteMacIvoryStateChange (enum MacIvoryStateTransition state)

NoteMacIvoryStateChange is called by the library whenever Ivory’s state changes,

for instance, when it shuts down or starts Lisp. You must define this routine in

your application. Posssible state transitions are:

Value of State Meaning

Page 942

MacIvoryHasBroken Library has detected a fatal situation. Ivory may be unus-

able.

FEPHasStopped IFEP has shutdown. Ivory is no longer running.

FEPIsRunning IFEP is booted.

LispIsRunning Lisp has been cold or warm booted.

LispHasStopped Lisp has halted or otherwise encountered a fatal condition. �

Control Routines in MacIvory.lib

ColdLoadVisible Routine

Boolean ColdLoadIsVisible ();�

Reports whether the cold load window is displayed. Returns a value of TRUE if

the cold load window is currently on display (the frontmost window). Returns a

value of FALSE if the cold load window is currently hidden.

IsColdLoadWindow Routine

Boolean IsColdLoadWindow (WindowPtr Candidate);�

True if Candidate is the cold load window.

IsNetworkEnabled Routine

Boolean IsNetworkEnabled ();�

True if Ivory has attached the Ethernet interface.

MacIvoryIsRunning Routine

 Boolean MacIvoryIsRunning ();�

True if the Ivory coprocessor is running either Genera or IFEP.

MacIvoryIsRunningLisp Routine

Boolean MacIvoryIsRunningLisp ();�

True if the Ivory coprocessor is running Genera.

Page 943

RunningInBackground Variable

Boolean RunningInBackground�

A value of true indicates the application is running in the background under Mul-

tiFinder.

A value of false means the application is the selected application under MultiFind-

er or is the only application under the Finder.

myProgramID Variable

long myProgramID�

A unique ID assigned by the MacIvory support library to the application.

Routines for the Ivory Menu in MacIvory.lib

Calling one of these entry points does exactly what the equivalent Ivory menu item

does. If the menu item puts up an alert box asking for confirmation to complete

an action, the equivalent entrypoint does the same. If the menu item puts up an

alert box when and operation does not finish in time or fails, so does the equiva-

lent entrypoint.

ColdBootFEP Routine

ColdBootFEP ();�

Cold boots the IFEP. This is equivalent to the "Cold Boot FEP" item in the Ivory

menu.

ColdBootLisp Routine

ColdBootLisp ();�

Cold boots Lisp. This is equivalent to the "Cold Boot Lisp" item in the Ivory menu.

ContinueLisp Routine

ContinueLisp ();�

Switches control from the IFEP to Lisp. This is equivalent to the "Transfer to

Lisp" item in the Ivory menu.

DisableNetwork Routine

Page 944

void DisableNetwork ();�

Disables the Ivory’s use of the Ethernet interface.

EnableNetwork Routine

 void EnableNetwork ();�

Re-enables the Ivory’s use of the Ethernet interface.

HideColdLoad Routine

void HideColdLoad ();�

Hides the cold load window.

RestartFEP Routine

RestartFEP ();�

Warm boots the IFEP. This is equivalent to the "Restart FEP" item in the Ivory

menu.

RestartLisp Routine

RestartLisp ();�

Warm boots Lisp. This is equivalent to the "Restart Lisp" item in the Ivory menu.

ShowColdLoad Routine

void ShowColdLoad ();�

Call this to show the cold load window on the display.

ShutDownIvory Routine

ShutDownIvory ();�

Halts the Ivory. This is equivalent to the "Shut Down" item in the Ivory menu.

StopLisp Routine

StopLisp ();�

Page 945

Switches control from Lisp to the IFEP. This is equivalent to the "Transfer to

FEP" item in the Ivory menu.

Developing User Interfaces with MacIvory

How the MacIvory User Interface Works

The MacIvory system user interface substrate is designed with flexibility in mind,

so that applications can make maximally effective use of both of the co-processor

systems. As much as possible, we have tried not to constrain decisions about user

interface design by imposing fundamental limitations in the system. Choices can be

made on an application-by-application basis by the application programmer. In

some cases, it may even be possible to defer decisions to the final end-users by of-

fering a variety of styles from which they choose.

There are two main guiding forces in the way that MacIvory works. These are:

1. Compatibility with other Symbolics products, especially the previous stand-

alone proprietary platforms.

2. Good, smooth integration with the Macintosh operating system and its user

interface guidelines and conventions.�

These forces often work at cross-purposes. It sometimes is not possible to fulfill

both sets of constraints simultaneously within a given interface. For this reason,

we allow the the application programmer to decide how to balance these con-

straints, and have made every effort to make this process as easy as possible.

For instance, the generic file system model is used to provide access to both the

native Macintosh file system and a local LMFS file partition on the Ivory partition

of the disk. It is up to the user to decide where to store his or her files.

Most important, perhaps, is how these principles apply to the user interface.

The user interface is controlled by an application which runs on the Macintosh on

behalf of the Ivory. The Ivory communicates to the Macintosh using a standard

Remote Procedure Call facility (RPC) through a shared memory channel. The

workhorse of this communication is a remote console protocol, by which the Ivory

requests that the Macintosh draw lines, rectangles, characters, and the like. These

requests are handled asynchronously; that is, the Ivory does not wait for the Mac-

intosh to finish drawing. Higher-levels requests, such as reading user responses

via a dialog window, obviously must wait.

All drawing is handled by the Macintosh. Among other things, this means that any

display monitor which works with QuickDraw will work with MacIvory. It also

means that there is no array in Lisp virtual memory, which is mapped to an ex-

posed window’s portion of the display’s frame buffer.

The compatibility of the MacIvory system is not limited by the exact capabilities

that the Macintosh provides in its high-level toolbox.

Page 946

• The Apple user interface guidelines recommend very strongly against warping

the mouse (cursor). However, a number of existing Genera applications rely on

this capability for correct functioning. Therefore, the MacIvory provides the ca-

pability and it is up to the application programmer to only use it wisely.

• When copying from a small image to a larger one, the QuickDraw CopyBits pro-

cedure will scale the image up linearly. The Genera bitblt primitives are de-

fined to replicate the source image in these cases. MacIvory provides a fully

compatible interface for copying from a raster array to the screen, with replica-

tion. If necessary, more than one CopyBits call is performed to produce the de-

sired result.

• The QuickDraw line drawing interface does not provide a way of suppressing

drawing of the final endpoint. The polygon drawing interface is not completely

compatible with Genera’s draw-triangle, which was specifically designed to allow

triangles with common edges to abut seamlessly. Therefore interfaces to Genera-

compatible line and triangle drawing are provided which work in terms of lower-

level QuickDraw primitives, rather than LineTo or PaintPoly.

• QuickDraw has a relatively fast character drawing entry. However, the normal

Macintosh screen fonts are not compatible with Genera fonts. Therefore,

MacIvory provides copies of all the standard Genera fonts in a format which the

Macintosh can use for fast drawing.

• QuickDraw patterns can only be 8x8 bits, no more, no less. The Genera graphics

substrate provides more general pattern and stipple patterns. Therefore, the

QuickDraw patterns are not normally used for stippling when strict compatibili-

ty is enabled.�

Of course, all this compatibility comes with a performance penalty. Many applica-

tions are prepared to trade strict compatibility for improved performance. For this

reason, we provide access to drawing capabilities which more nearly match those

provided natively by the host, while still maintaining the Genera user interface

style.

• If an application is using the Genera graphics:draw-xxx primitives, a single

form is provided which enables use of QuickDraw’s high level entries to accom-

plish drawing. This device independence was one of the major criteria in the de-

sign of Genera’s unique graphics substrate.

• Applications using the lower-level :draw-line and :draw-triangle messages can

still enable a mode where these use QuickDraw lines and polygons.

• A Genera-style interface application can be configured to use the Macintosh’s

native fonts instead of the default Genera fonts copied to the Mac, or to use

smaller fonts to account for the smaller screens with a lower pixel density that

are common on Macintoshes. If the application is using character styles, this

change is mostly invisible. This independence was one of the major criteria in

the design of Genera’s unique characters substrate.

Page 947

• Bit arrays which need to be copied to and from the screen can be stored on the

Macintosh side and drawn into remotely there. The Macintosh application which

runs on behalf of Ivory will also swap these back and forth from the disk as

need be, so there is no practical limitation on their size or number, even though

the Macintosh does not have virtual memory.�

Moving further away from compatibility, it is possible for a Genera application to

make use of the Macintosh user interface toolbox, which comes with a well estab-

lished reputation for ease-of-use.

This access can be made directly by using the Lisp interface to the toolbox func-

tions. However, we imagine that most Genera programmers are unaccustomed to

having to deal at this low a level, and would prefer to use higher level-interfaces.

Compatibility is also provided in user interface peripherals.

• A number of large displays for the Macintosh approximate the size and pixel

density of the standalone Genera workstation screens.

• The Apple extended keyboard can be used to input all the characters that can

be typed on the Symbolics keyboard. Of course, some of these combinations are

awkward. For this reason, there is an option for a Symbolics keyboard which in-

terfaces to the Apple Desktop Bus and is therefore fully usable with the Macin-

tosh as well. Alternatively, a user can customize the mapping for the Apple ex-

tended keyboard into the Symbolics keystrokes using an interactive program. For

instance, we have found a wide difference in opinions as to how the three meta

shift keys should be mapped into the three primary Symbolics shifts.

• A three-button mouse option which connects to the ADB is provided for those

applications which make heavy use of the middle and right buttons, which re-

quire keyboard assistance without it.

Basic Color Support in MacIvory

If the host has color display hardware, you can draw in color by using the :color

or :gray-level arguments to the graphics:draw-xxx functions. The value of :color

is a symbol that names a color (one of :black, :red, :green, :blue, :cyan, :yellow,

:magenta, :white), a list (red green blue) where each element is a number between

0 and 1, inclusive, or a color object created by color:make-color. The value of

:gray-level is a number between 0 and 1, inclusive.

See the section "Pattern Options".

See the option :color.

See the option :gray-level.�

In addition, when the host has color display hardware, the Genera window system

can run in color mode or in monochrome mode. You must have the Ivory-Color-

Support system loaded to use color mode. Both modes can draw in color. The dif-

ference involves saving and restoring displayed images when switching windows. In

monochrome mode, only one bit per pixel is saved, so when you switch windows

Page 948

any colored drawings lose their color. In color mode, the complete image is saved

including the color information. Color mode comes at a cost: a much larger

amount of information must be transmitted to and from the screen. For example,

in 8-bits-per-pixel mode switching windows requires eight times as much informa-

tion transmission, and off-screen bit arrays require eight times as much host

memory. Depending on the hardware configuration, storing and transmitting the

extra information can slow down response to an unacceptable level. For this rea-

son, the default mode is monochrome mode even when color display hardware is

present. See the section "Configure MacIvory Application Command" for informa-

tion on how to enable color mode.

The above considerations also apply when the host has display hardware that can

display shades of gray; that is, more than just black and white, but less than full

color. In monochrome mode, the gray level is converted to black or white when

switching windows; in color mode, the gray level is preserved at a cost in perfor-

mance determined by the number of bits per pixel.

color:make-color (&key :red :blue :green :intensity :hue :saturation &allow-other-

keys) Function

Creates a color object. Color objects can be used with the :color argument to the

graphics:draw-xxx family of functions.

The arguments are numbers between 0 and 1 inclusive, defaulting to 0. To specify

a color in the RGB color model, specify one or more of :red, :green, and :blue. To

specify a color in the IHS color model, specify one or more of :intensity, :hue, and

:saturation.

Higher-level Interfaces to the Macintosh Toolbox

If you are not concerned with compatibility among platforms, you may wish to con-

vert your program to have a Macintosh-style user interface. A specialized version

of dw:define-program-framework is provided with capabilities that implement the

Macintosh-style user interface. These capabilities include:

• Use of hierarchical pull-down menus from the menu bar to implement program

command levels of menus and subcommands.

• Stream output to Macintosh windows, either in realtime, or via a picture record

structure which gives a window that can be scrolled entirely on the Macintosh

side.

• Use of dialog boxes for dw:accepting-values.�

The major pieces of this facility are:

• dw:define-remote-program-framework, which controls layout of the menu bar

among command menu items.

Page 949

• dw:with-remote-accepting-values, which gives access to dialog boxes for accept-

ing-values. This is also invoked automatically if you give :menu-accelerator for

a command.

• dw:with-output-to-viewer, which allows stream output to a Macintosh window.�

If you plan to use these facilities, you may wish to consult your MacIvory customer

support contact. Limited resources and the requirement of compatibility among all

system products did not permit the actual conversion of any Genera applications to

have Macintosh-style user interfaces.

For examples of the use of these facilities, see the section "Example of Converting

an Application for MacIvory".

Functions for Creating Macintosh-style Interfaces

dw:define-remote-program-framework name &body options &key (:command-

definer t) :menu-level-order :top-level :command-table :inherit-from :state-variables

Special Form

A subset of dw:define-program-framework, which implements a program that can

be run using the Macintosh-style user interface. Each menu level specifies a col-

umn in the pull-down menu. Releasing the mouse on a given item is equivalent to

clicking on that item in the Genera style interface. Normally, menu items are

filled in by means of the :menu-accelerator option to a program command defini-

tion.

The :name, :command-definer, :top-level, :command-table , :inherit-from, :state-

variables, and :pretty-name options are just as for dw:define-program-

framework.

The :selectable option is slightly different, in that it can also be a list of remote

system types. For instance, :selectable (:mac) would mean that the program could

be started up as a MacIvory application, but would not appear in the Select Activi-

ty menu. :selectable t means that a remote host can start up the application using

its interface style, and Select Activity will start up the same application using the

Genera style (even on a MacIvory, when it is running the Genera application).

The :menu-level-order option represents a list of lists (evaluated) of item names

(or nil for empty slots) specifying how the items in specific columns are laid out.

If you do not give this explicitly, the order of columns is unpredictable, and the or-

der within columns tends to be alphabetical.

Example:

�

:menu-level-order ‘(,macintosh-internals::*standard-remote-viewer-file-menu*

 ,macintosh-internals::*standard-edit-menu*

 "Lookup")�

Page 950

dw:remote-program Flavor

The basic flavor included in programs running with the host user interface style.

dw:remote-program-quit &optional (program dw:*program*) Function

Exits the host application corresponding to this program. On the Macintosh, this

closes all its windows back to the icon.

Normally, this is accessed with the Quit command in the remote-quit-commands

command table (which you can inherit). But sometimes a program wishes to do it

for other reasons.

dw:remote-program-p local-program Function

Returns t if the program is using the host user interface. Useful for large-scale

conditionalization of behavior in a program which also works with the Genera-style

interface.

dw:with-remote-accepting-values &optional (stream *query-io*) &key (:program

dw:*program*) :prompt Function

Like dw:accepting-values, but uses the host dialog style if the program uses the

host interface style. On the Macintosh, the host dialog is constructed by classifying

each query in the body (that is, each call to accept) as one of the following:

• A boolean choice

• An enumeration from an explicit set

• An arbitrary string�

These are laid out (automatically) in a dialog menu as check boxes, radio buttons,

and text fields, respectively.

Most often, this capability is accessed for the command arguments to a program

command given with :menu-accelerator, when the user releases the mouse on the

corresponding item.

dw:define-remote-program-command Function

Like dw:define-program-command. Almost always accessed via the define-xxx-

command macro generated by the :command-definer option to dw:define-remote-

program-framework.

If :menu-accelerator is given, a menu item is added to the host command menus

for this command. If the command takes arguments, selecting this item gives a di-

alog box for those items. Otherwise, it runs the command immediately.

The format of :menu-level is extended slightly. The elements of the list are names

of levels in the Genera style interface (often keywords), or lists of a remote system

type and level within the interface for that system. The next example puts the

Page 951

item in the main menu, if Genera-style, and in the Commands pull-down menu, if

Macintosh style.

(define-my-command (com-show-doc :menu-accelerator "Show"

 :menu-level (:top-level (:mac :commands))

 :keyboard-accelerator #\s-S)

 ...)�

dw:with-output-to-viewer (&optional stream &rest args) &body body Special Form

Adds output from body to the program’s display. If the program is using the Gen-

era-style interface, the primary pane has its contents replaced with those obtained

by the body. The window’s label is set to the title, if any. The other options are

ignored.

If the program is running using the Macintosh-style interface, a new window is

created. The options work as follows:

:progress-note If given, the watch mouse icon is shown while the output is

being computed.

:picture-p If nil, the window does not have any contents initially and

nothing is regenerated automatically when the screen area is

disturbed on the Macintosh side.

If non-nil, the output is buffered into picture records that are

remembered on the Macintosh side. The window can then be

scrolled and refreshed entirely by the host.

:title Gives the string for the title bar.

:width, :height, :left, :top, :right, :bottom

These specify the location and size. The default is positioned

slightly offset from other windows and as large as picture con-

tents, if any, or the entire screen if not.

:color-p Makes a color Macintosh window rather than an old-style one.

This allows use of the :color keyword within the output body

to work properly with graphics:draw-xxx.

:buffer-screens Exposes the window as soon as the first screenful of output

has been collected. If the window is then scrolled remotely past

the end of the output known to the Macintosh, the next screen-

ful is requested of the guest.

:buffer-ahead-screens

Used with :picture-p t, this option specifies the number of

screenfuls to keep buffered past the visible end. This makes

scrolling one screen at a time not pause as often, assuming the

user stops to read each screenful.

Page 952

If present or dw:with-output-as-presentation is used within the output body, the

corresponding output can be sensitive when using the host user interface. For the

Macintosh, a rectangle is inserted containing sensitive items while the mouse is

held down, and the corresponding action taken when the mouse is released. These

actions are defined in the normal way with define-presentation-translator. At

present, only translation to program commands works (that is, there is only one

valid input context).

Program: Macintosh-internals:remote-quit-commands

Defines the Quit command, with the s-Q command accelerator. You can inherit

this program and its command table to get the command.

Program: Macintosh-internals:remote-viewer-commands

Defines commands useful for dealing with stacks of windows generated by

dw:with-output-to-viewer:

Close (s-W) closes the front window.

Close All closes all windows for this application.�

This program also depends on the remote-quit-commands program, which means

you get the Quit command also when you include it.

For example,

(dw:define-remote-program-framework my-program

 :selectable (:mac)

 :menu-level-order ‘(,macintosh-internals::*standard-remote-viewer-file-menu*

 ,macintosh-internals::*standard-edit-menu*

 "My commands")

 :inherit-from (macintosh-internals::remote-viewer-commands)

 :command-table (:kbd-accelerator-p t :inherit-from ’("remote-viewer-commands"))

)�

Macintosh Notes for dw:define-subcommand-menu-handler

If you use the function dw:define-subcommand-menu-handler in a Macintosh-

style program, you get a hierarchical pull-down menu. For example,

(dw:define-subcommand-menu-handler "More Tests" test ((:mac :test))

(:mac :more-tests))�

Creating a Macintosh Application That Runs an Ivory-based Program

Page 953

This section describes how to create a Macintosh application that provides the user

interface for your Ivory program. Before doing so, you must have created the Ivory

portion of your application with dw:define-remote-program-framework. You must

also load your program framework into Genera.

The Configure MacIvory Application command creates a Macintosh program using

the values you provide. This program provides the user interface. See the section

"Configure MacIvory Application Command". A double click on the resulting Macin-

tosh application icon will communicate with the Ivory through RPC and run your

application.

Creating a Macintosh Application That Uses the Genera Window System

To create a Macintosh application that runs an Ivory-based program under the

Genera window system, rather than the Macintosh’s own window system, use the

following procedure. Configure a copy of the Symbolics-supplied "Genera" Macin-

tosh application that uses the "Start Screen" initial application command to start

up your application. After filling out the first four lines of the form, click on "a

GENERA command", type Start Screen followed by a space, and type in the argu-

ments to the command. If you press m-COMPLETE after Start Screen, you will see a

menu of the command arguments. For most purposes you can press RETURN After

the first two arguments.

This works for any application that can be started by the Select Activity command.

For example, to create a Macintosh application that runs the Zmacs editor:

�

:Configure Macivory Application

From file: HOST:DSK:Genera

To file: HOST:DSK:Editor

Application: None Genera

Version: 1.0d0

Agent: Tcp Serial Reliable-Serial Emb

Initial application command: None Start Screen Genera fonts installed

on Mac "Zmacs"�

Creating and Using Macintosh Dialogs

Sometimes it may be necessary to exert more control over the appearance of Mac-

intosh dialogs than dw:with-remote-accepting-values allows. By dealing with

things at a somewhat lower level, you can do it.

You create a dialog maker, which is an instance of flavor mtb:dialog-item-maker,

and use various generic functions with it. You may add dialog items, specifying

their individual type, location, and so on, along with a symbolic query id. You may

specify the edges and window type of the dialog window itself. And, finally, your

dialog maker can interact with the user with a modal dialog; the user’s choices,

selections and entries are returned in plist form with the query ids.

Page 954

Make a dialog maker with mtb:make-dialog-item-maker. Add dialog items to it

procedurally with mtb:add-dialog-button, mtb:add-dialog-text, mtb:add-dialog-

edit, mtb:add-dialog-check, mtb:add-dialog-radio, mtb:add-dialog-pict, and

mtb:add-dialog-line. If you have the appropriate data structure in hand, add dia-

log items declaratively with mtb:add-several-dialog-items. Control dialog item

clustering with mtb:in-dialog-cluster. Specify aspects of the dialog window itself

(as opposed its the dialog items) with mtb:set-dialog-face.

Having specified the dialog items and window, use mtb:do-modal-dialog to show

the window and handle the modal dialog interaction.

Dialog Item Clusters

Dialog items within a dialog can be grouped by cluster. Presently, clusters are use-

ful only for mutually exclusive radio buttons: in such a cluster, when you click on

one radio button to turn it on, the others in the same cluster are turned off.

The Lisp model for every dialog item contains a cluster id. Dialog items are con-

sidered to be in the same cluster if they have the same cluster id. Cluster ids are

compared with eql.

mtb:add-dialog-button dialog-item-maker rect title &key :cluster :active :check

:query-id Function

Adds a Button dialog item to dialog-item-maker.

See the section "add-dialog-item Arguments".

mtb:add-dialog-check dialog-item-maker rect title &key :active :report :cluster :over-

see-cluster :state :query-id Function

Adds a checkbox dialog item to dialog-item-maker.

See the section "add-dialog-item Arguments".

mtb:add-dialog-edit dialog-item-maker rect &key :text :query-id :required :oversee-

cluster Function

Adds an editable text item to dialog-item-maker. Initial contents may be specified

with :text.

See the section "add-dialog-item Arguments".

mtb:add-dialog-line dialog-item-maker rect Function

Draws a line on the dialog window, perhaps to separate groups of dialog items.

The line is drawn with a 50%-density stipple, with a pen two pixels wide, from the

top left of rect to its bottom right.

Page 955

mtb:add-dialog-pict dialog-item-maker rect resource-id &key :active :check :cluster

:query-id Function

Adds a PICT dialog item to dialog-item-maker. resource-id is the PICT resource id

of the picture. Your application will have to arrange for the appropriate resource

file to be open when the PICT is to be drawn.

See the section "add-dialog-item Arguments".

mtb:add-dialog-radio dialog-item-maker rect title &key :active :report :cluster :over-

see-cluster :state :query-id Function

Adds a radio button dialog item to dialog-item-maker.

See the section "add-dialog-item Arguments".

Radio buttons in the same cluster are mutually exclusive: when you click on one to

turn it on, the others in the same cluster are turned off. See the section "Dialog

Item Clusters".

mtb:add-dialog-text dialog-item-maker rect text Function

Adds static text to dialog-item-maker.

See the section "add-dialog-item Arguments".

mtb:add-several-dialog-items dialog-item-maker spec-list Function

Adds several dialog items to dialog-item-maker under control of spec-list.

spec-list is essentially an abbreviation for separate calls to add-dialog-xxx. The

first element of each spec in spec-list is a keyword, as in the table below. The rest

of each element becomes the rest of the args to the corresponding function.

Keyword Function

:button mtb:add-dialog-button

:check mtb:add-dialog-check

:edit mtb:add-dialog-edit

:line mtb:add-dialog-line

:pict mtb:add-dialog-pict

:radio mtb:add-dialog-radio

:text mtb:add-dialog-text

In addition, you can use the keyword :cluster as in (:cluster cluster-name &rest�

spec-list) to abbreviate calls to mtb:in-dialog-cluster.

For example, see the file SYS:EMBEDDING;MACIVORY;TOOLBOX;EXAMPLES;XXX.

mtb:do-modal-dialog program dialog-items Function

Page 956

In the context of the remote program program, does the modal dialog specified by

the dialog item maker dialog-items. Exposes the dialog window, and repeatedly

calls ModalDialog with a Lisp event filter callback. Handles clicks on check boxes

and clustered radio buttons. Handles interaction with TextEdit. Returns when the

user clicks on either of the first two dialog items (assumed to be buttons named

"OK" and "Cancel"), or presses RETURN, ENTER or END.

Also terminates when the user preses COMPLETE (the key labelled "HOME") or HELP

in an editable text field.

The value returned by mtb:do-modal-dialog is a plist of alternating query-ids and

values. Each query-id comes from the :query-id argument to the add-dialog-xxx

which created the dialog item. The corresponding values are strings (for editable

text items), or t (for check boxes and radio buttons, when checked). Although a

cluster of mutually exclusive radio buttons would be better modelled as a choice

from an enumeration, there is no automatic support for returning this as a value

for a specific query.

mtb:in-dialog-cluster (dialog-item-maker cluster-id) &body body Macro

Within body, provides implicit :cluster cluster-id arguments for calls to mtb:add-

dialog-button, and so on. See the section "Dialog Item Clusters".

mtb:make-dialog-item-maker Function

Makes a dialog item maker.

See the section "Creating and Using Macintosh Dialogs".

mtb:set-dialog-face dialog-item-maker &key :bounds :title :proc-id :go-away

Function

Specifies the appearance for a dialog window (as opposed to that of its dialog

items).

dialog-item-maker

keywords :bounds, :title, :proc-id, and :go-away.�

:bounds A list (left top right bottom) or a Rect octet structure. Speci-

fies the edges of the window, defaulting to (40 40 440 340).

:title A string, Appears in the window’s title bar, if any.

:proc-id A small integer. Controls the shape of the dialog window. See

Inside Macintosh, page I-273. For example, to get a plain rect-

angular box, use (mtb:cconstant plainDBox); for a "rounded-

corner" window with black title bar you would use

(mtb:cconstant rDocProc).

Page 957

:go-away A boolean. Specifies whether there should be a go-away box in

the top left of the corner of the window.�

add-dialog-item Arguments

mtb:add-dialog-button, mtb:add-dialog-text, mtb:add-dialog-edit, mtb:add-

dialog-check, mtb:add-dialog-radio, mtb:add-dialog-pict, and mtb:add-dialog-line

all take the current dialog-item-maker as first argument. Several of them share

other arguments:

rect Specifies the edges of the dialog item, as a list (left top right

bottom) or a Rect octet structure.

title A string. Specifies the text, if any, displayed with the dialog

item.

query-id May be any Lisp object. Identifies the query in the plist re-

turned by mtb:do-modal-dialog.

cluster Any Lisp object. Groups dialog items together. See the section

"Dialog Item Clusters".

Low-level Interfaces to the Macintosh Toolbox

Overview of the Low-level Interfaces

Lisp programs on the MacIvory have complete access to the Macintosh User Inter-

face Toolbox by means of the Remote Procedure Call (RPC) mechanism. MacIvory

provides predefined remote entries that you can use to access Macintosh toolbox

routines. There is no need to write your own remote entries. These routines can

be found in the mtb (mac-toolbox) package.

This means, for example, that if you are running an application on MacIvory and

you want to make use of the Macintosh StandardFile package to prompt the user

for the name of a file in the Macintosh file system, you can call the Lisp function

mtb:_sfgetfile (the underscore is a naming convention that distinguishes the Lisp

versions of Macintosh toolbox routines).

The code on the Macintosh side that enables this is stored in a resource file recog-

nized by the RPC mechanism. When a program using RPC on the Macintosh en-

counters a call to one of the toolbox routines it will load the necessary resource

and run the routine.

To allow the greatest possible functionality, we have implemented all the routines

described in volumes I through V of Inside Macintosh with the exception of Ap-

pletalk Manager routines. For a complete list, see the section "Lisp Functions That

Access the Macintosh Toolbox".

Page 958

Note that this list includes routines that may make no sense to call while running

the Genera application on the Macintosh. For example, calling the Lisp function

mtb:_exittoshell would cause the Genera application to exit, probably without do-

ing necessary cleanup.

Predefined Types�

Mac type Lisp type

struct name octet-structure  available by saying (mtb:make-name ...) as

in (make-point :x 10 :y 20) or (make-sfreply). These provide

accessors and init options for each of the slots.

array A Lisp vector

pointer fixnum (the Macintosh address)

integer fixnum

floating points float

boolean nil or non-nil�

Conventions Used by the MacIvory Toolbox Interface

Routine Names

Lisp function names are identical to the Pascal names mentioned in Inside Macin-

tosh. The only differences are that Lisp functions are identified by a preceding un-

derscore and are not case sensitive.

For example, the Macintosh function GetResource is called with the Lisp function

mtb:_getresource.

Arguments and Values

Another difference between the Lisp versions of these routines and the Inside Mac-

intosh Pascal versions is the handling of VAR parameters. The rule of thumb is

that any VAR parameters that are structures (vectors in Lisp) of a size greater

than one longword are overwritten with the value returned from the remote call.

If there are other values to return, as in the case when a toolbox routine is a

function, they are returned as multiple values with the function value first and the

VAR parameters following in order of passing.

When in doubt, remember that the command Show Function Arguments (c-sh-A)

will show you the arguments and the values returned for the toolbox functions.

The argument names are the same as those used in Inside Macintosh except in

cases where "in" and "out" have been appended to the argument name to indicate

that the argument will be overwritten.

Page 959

Error Signaling

Those Toolbox routines that are liable to generate an error, that is, those that re-

turn a value of type OSErr, use the RPCError facility to signal errors in the Lisp

function that calls them. This means that if you are expecting an error result

from a function, and would like to take some action on encountering an error, you

can use the Lisp condition handling mechanism to react to the error. The excep-

tions to this are those functions such as _memerror and _reserror whose sole job

is to check for error conditions and functions such as _sysenvirons that can re-

turn error code and real data.

MemError, ResError, and PrError�

To avoid having to do two RPC calls for every memory manager, resource manag-

er, or printing manager routine  one for the routine and one to check for errors 

the interface to these managers makes the appropriate call for you and signals an

error when needed.

You still need to do error handling in your RPC calls, but the appropriate error

function is checked for each call to the memory manager, resource manager and

printing manager routines.

Predefined Macintosh Types

In order to make writing RPC remote entries and using the toolbox interface easi-

er, MacIvory software defines a number of the Macintosh types using the RPC da-

ta type extension mechanism (see the section "The RPC Data Type Extension Lan-

guage"). These types include most of the types described in Inside Macintosh, Vol-

umes I through V. Understanding the correspondence between the types on the

Macintosh and the associated Lisp types is important when using the toolbox in-

terface.

There are two categories of types: simple types and compound types. Simple types

mostly correspond directly to Macintosh types in name and fun ctionality. Com-

pound types are represented in Lisp as structures that correspond to Macintosh

Record types. When a Toolbox routine is expecting a simple type like an integer,

pointer, or floating-point, you can use the corresponding Lisp type. When the argu-

ment is a Macintosh Record, you should create the structure in Lisp, as described

below, and use that as the argument.

Simple Types�

For most types the correspondence between the Lisp and the Macintosh types is

simple. For example, if a Toolbox routine requires a specific numeric type such as

Fixed for one of its arguments, you can just pass the routine a Lisp floating-point

number, as in this example:

(mtb:_spaceextra 1.3)�

Page 960

RPC translates the Lisp floating-point into the appropriate representation for the

Macintosh type, in this case the Fixed type.

Routines expecting integer types such as long and word can be called by just pass-

ing in a Lisp integer of the appropriate size, as in this example:

(mtb:_textsize 12)�

Macintosh pointer and handle types are 32-bit integers and can be manipulated as

Lisp integers. For these types RPC takes care of all the data transport issues: con-

verting from Lisp types to Macintosh types, doing the byte-swapping when needed,

and converting the answer back from the Macintosh representation associated Lisp

type.

Compound Types �

There are a significant number of compound types defined in Inside Macintosh,

Volumes I through V, that the Macintosh Toolbox routines need to be able to ac-

cept as arguments. In order to allow you to manipulate objects of types, and to use

them as arguments to Lisp Toolbox routines, there is a corresponding set of Lisp

structure types. These types are implemented as octet-structures, and provide asso-

ciated constructor and accessor macros.

Using Octet Structures

Octet-structures are art-8B (unsigned-byte 8) arrays with their own set of func-

tions for accessing and manipulating slots. Using octet-structures allows you to

create and manipulate a structure in Lisp that can then be sent across RPC with

virtually no further translation. That is, it provides a uniform representation of

the data across both machines. This is a convenient way to manipulate data in

Lisp in the same byte format that is used on the Macintosh.

Here’s a simple example of using one of these octet-structures, mtb:datetimerec,

to set and read the time on the Macintosh. Notice that the constructor and acces-

sor naming convention is the same as for Lisp structures.

The Macintosh record DateTimeRec has slots for year, month, day, hour, minute,

second, and day of week. This data structure might be defined in C as follows:

typedef struct

{

int year;

int month;

int day;

int hour;

int minute;

int second;

int dayOfWeek;

} DateTimeRec ;�

Page 961

Because there is a corresponding octet-structure definition in Lisp, you can set the

time on the Macintosh with:

�

(let ((date (macintosh-internals:make-datetimerec

 :year 1988

 :month 10

 :day 28

 :hour 13

 :minute 15

 :second 0

 :dayofweek 6)))

 (mtb:_setdatetime (mtb:_date2secs date)))�

Notice how you can construct a DateTimeRec in Lisp by using the constructor de-

fined by the octet-structure. You can use accessors like mtb:datetimerec-hour to

look at or alter the slots of the structure.

Another common use of these structures is to get values back from calls to the

Macintosh toolbox. For example, to read the date:

�

(let ((date (macintosh-internals:make-datetimerec)))

 (mtb:_secs2date (mtb:_getdatetime) date)

 (rpc:describe-octet-structure ’macintosh-internals:datetimerec date 0))

�

YEAR[0]: 1990

MONTH[2]: 10

DAY[4]: 28

HOUR[6]: 13

MINUTE[8]: 25

SECOND[10]: 51

DAYOFWEEK[12]: 6

NIL�

In this case you first create the structure to hold the value returned by the RPC

call. It is then overwritten by RPC when the Macintosh call returns, just as the

Pascal VAR argument would be.

As you can see above, the Lisp function rpc:describe-octet-structure is often use-

ful for examining these structures.

Defining Octet Structures

Most of the octet-structure types that you will need when writing code that inter-

faces to the Macintosh from Lisp are already defined for you. However, if you need

to access internal data-structures in MacOS, or write interfaces to already existing

programs running on the Macintosh, you may run into the need to define your own

octet-structure types. The following section describes the mechanisms provided for

defining octet-structures.

Page 962

Forms to Define Octet Structures

rpc:define-octet-structure name-and-options &body fields Macro

Defines an octet structure.

name-and-options The name of the octet structure or the list containing the

name of the structure and some number of keyword value

pairs. �

This macro takes the keyword arguments :conc-name, :constructor, :default-

pointer, and :include, which behave in a way similar to the corresponding key-

words for defstruct. See the section "Options for defstruct" for further informa-

tion. In addition, rpc:define-octet-structure takes the following keyword argu-

ments:

:access-type Specifies how references are made by default as one of :octet,

:unsigned-8, or :byte-swapped-8. To define octet structures to

represent Macintosh structures, for use by the Toolbox remote

entries, always use :byte-swapped-8. The default is :octet.

:alignment Controls the automatic insertion of padding. This is useful

when defining structures that you want to correspond directly

to structures defined in another language or on a different ar-

chitecture or both. :alignment takes an integer value as an

argument. Specifying an alignment of n means that all struc-

ture fields of size greater than or equal to n should be aligned

with the next offset evenly divisible by n. Where the field is a

vector it will be aligned based on the element size of the vec-

tor.

For example, when defining octet-structures in Lisp to repre-

sent C structs as defined by THINK C on the Macintosh, you

will want to specify an alignment of 2. This will align all

structure fields of 2 or more bytes to an even byte boundary,

and make sure that the Lisp accessors defined by rpc:define-

octet-structure correspond precisely to where the data is

stored by C. In any situation where you are using octet-

structures to represent data that is created by one

machine/language and manipulated by another, it is essential

that you take into account the storage conventions of the other

implementation.

:define-accessors Inhibits definition of macros.

:export As for defstruct, takes a list of keywords from the set (:struc-

ture-name :accessors :constructor).

:default-type An integer type. :integer-8 is the default.

Page 963

:default-index Makes the second argument to each accessor optional, default-

ing it to the value you supply with this argument. �

Elements of fields can be a symbol for single unsigned byte fields, or a list of field

name and type. * used for a name allocates space, but doesn’t define accessors. *

used as a type defines subfields that overlap, such as bit fields. + used as a name

defines unions.

Examples

These examples show the C types and corresponding octet-structure definitions for

Point, Pattern, and Penstate.

Point

�

typedef struct

{

int v,h;

} Point ;

�

(define-octet-structure point :access-type :byte-swapped-8

:default-type :integer-16

 vertical

 horizontal)

�

Pattern

�

typedef unsigned char Pattern[8];

�

(define-octet-structure pattern :access-type :byte-swapped-8

:default-type :integer-16

 (data (vector unsigned-8 8)))

�

Penstate

�

typedef struct

{

Point pnLoc;

Point pnSize;

int pnMode;

Pattern pnPat;

} PenState;

�

(define-octet-structure pen-state :access-type :byte-swapped-8

:default-type :integer-16

 (pen-loc point)

 (pen-size point)

 (pen-mode integer-16)

 (pen-pattern pattern))�

Page 964

An octet structure that includes elements of a C structure:

(define-octet-structure total

 (one one-type)

 (two two-type)

 (three three-type))�

An octet structure that includes elements of a C union:

(define-octet-structure general

 (+ ((one one-type))

 ((two two-type))

 ((three three-type))))�

The slight differences being that we do not name the subsets, just the fields, and

that we always have a level of parens, instead of requiring a recursive struct when

the union element has more than one field. The differences between defining octet

structures that include C members and those that include C unions is that for

member, fields are named, but subsets are unnamed and

Complex Example�

A more complex example, which cannot be written in C or Pascal, has several vari-

able length fields. Notice that the size of one field can depend on the contents of a

different, preceding field:

�

(define-octet-structure font-header :access-type :byte-swapped-8

:default-type :integer-16

 (font-type cardinal-16)

 (first-char integer-16)

 (last-char integer-16)

 (width-max integer-16)

 (kern-max integer-16)

 (ndescent integer-16)

 (rect-width integer-16)

 (rect-height integer-16)

 (owt-loc integer-16)

 (ascent integer-16)

 (descent integer-16)

 (leading integer-16)

 (row-words integer-16)

 (bit-image (vector integer-16 (* rect-height row-words)))

 (location-table (vector integer-16 (+ (- last-char first-char) 3)))

 (offset-width-table (vector integer-16 (+ (- last-char first-char) 3)))

)

Page 965

�

(define-octet-structure font-family-header :access-type :byte-swapped-8

 :default-type :integer-16

 (flags (* integer-16

 (image-height-p (boolean-bit 0))

 (character-width-p (boolean-bit 1))

 (fract-enable-ignore (boolean-bit 12))

 (use-extra-width (boolean-bit 13))

 (use-fract-width-table (boolean-bit 14))

 (fixed-width-p (boolean-bit 15))))

 (family-id cardinal-16)

 (first-char integer-16)

 (last-char integer-16)

 (ascent fixed-point-4+12)

 (descent fixed-point-4+12)

 (leading fixed-point-4+12)

 (width-max fixed-point-4+12)

 (width-table-offset integer-32)

 (kern-table-offset integer-32)

 (style-table-offset integer-32)

 (style-properties (vector fixed-point-4+12 9))

 (intl (vector integer-16 2))

 (version-number integer-16)

 (association-table font-family-association-table))�

rpc:define-octet-structure-field-type name type-arglist reference-arglist &body claus-

es Macro

Defines a new octet-structure field type. Clauses are :size, :data, or :expander.

Here’s a simple example from the system. OSTYPE is the Macintosh type for a

string of four bytes. By providing a mechanism for retrieving four bytes from the

structure at the appropriate index, and a way to alter the slot, any subsequently

defined octet-structure can have a field with this type and automatically generate

the appropriate setfable accessor.

�

(define-octet-structure-field-type ostype nil (array index)

 :size

 4

 :data

 ‘(ostype-from-subarray ,array ,index))

�

(defun ostype-from-subarray (array index)

 (let ((result (make-string 4)))

 (dotimes (j 4)

 (setf (aref result j) (code-char (aref array (+ j index)))))

 result))

Page 966

�

(defun set-ostype-from-subarray (array index value)

 (setq value (string value))

 (check-type value (vector string-char 4))

 (dotimes (j 4) (setf (aref array (+ j index)) (char-code (aref value j))))

 value)

�

(defsetf ostype-from-subarray set-ostype-from-subarray)�

Also see the section "Predefined Octet Structure Field Data Types".

rpc:define-octet-structure-field-type-macro name arglist expansion Macro

Defines an abbreviation for a field type. For example:

(define-octet-structure-field-type-macro OSERR () ’integer-16)�

This defines the field-type OSERR to be an abbreviation for the system-defined

field-type integer-16.

rpc:define-octet-structure-conversion-field-type name expansion &key (:conversion

’identity) (:result-type ’t) Macro

Defines a field type that is built on another with just a final data conversion, such

as a sign extension or bit reversal.

Here’s an example from the system:

�

(define-octet-structure-conversion-field-type fixed-point-16 integer-16

 :conversion fixed-point-16)

�

(defun fixed-point-16 (word)

 (* (ldb (byte 16 0) word) (scale-float 1.0 -16)))

�

(defun un-fixed-point (float)

 (round (ash float 16)))

�

(define-setf-method fixed-point-16 (ref)

 (let ((store (gensym)))

 (values nil nil (list store) ‘(setf ,ref (un-fixed-point ,store)) ref)))�

The fixed-point-16 field is used to store a fractional number between 0 and 1. To

make this convenient to manipulate in Lisp, we would want to be able to pass Lisp

floating-point numbers as arguments, and have the accessor convert the float to a

16-bit integer to store in the slot. The previous example accomplishes this.

Predefined Octet Structure Field Data Types

Page 967

Atomic field types�

When defining octet-structures it is often useful to define a new field type in

terms of some conversion routine, or some expansion, of a previously defined type.

Although most of the MacOS types are already defined as octet-structure field

types, the following is a short list of the basic field types: those which are most

useful when defining your own octet structures and octet-structure field types.

unsigned-byte (&optional (size 8))

signed-byte (size &)

integer-32 Equivalent to (signed-byte 32).

cardinal-32 Equivalent to (unsigned-byte 32).

integer-16 Equivalent to (signed-byte 16).

cardinal-16 Equivalent to (unsigned-byte 16).

integer-8 Equivalent to (signed-byte 8).

cardinal-8 Equivalent to (unsigned-byte 8).

padding (base-type &optional (repeat 1))

Just occupies space; the field cannot be accessed. base-type can

be any field type.

vector (type length) length

Can be a form that references earlier structure elements (such

as repeat byte count). Referencing returns a vector of the ele-

ments, or you can use the octet-structure-field-elements loop

iteration path.

load-byte (base-type position size)

Accesses a subfield of base-type access. Useful with *.

bit (base-type bit-number)

Equivalent to (load-byte base-type bit-number 1).

boolean (base-type) Equivalent to base-type with not-temp test.

boolean-bit (base-type bit-number)

Equivalent to (boolean (bit base-type bit-number)).

member (base-type set)

set is a form to evaluate to a sequence indexed by field.

subset (base-type keywords)

One bit for each position to indicate the presence of corre-

sponding element.

character-8 () Equivalent to unsigned-8 with code-char input and char-code

output.

Page 968

ascii-character-8 ()Equivalent to unsigned-8 with ASCII-char input and char-ASCII

output.

Octet Structure Accessor Forms

rpc:octet-structure-field-ref (structure-name field-name array index)

References a field.

rpc:octet-structure-field-index (reference)

Returns index in array of start of this field. reference is of the

form (conc’ed-name array index).

rpc:octet-structure-field-size (reference)

Returns size of this field in bytes.

rpc:octet-structure-total-size (reference)

Returns size of whole structure in bytes; that is, the index af-

ter the last field. reference is of the form (structure-accessor

array index).

rpc:octet-structure-field-entry (reference)

References a field pointed to directly by the index, rather than

to the head of the whole structure.

rpc:with-octet-structure-access-type (type &body body)

Overrides the default referencing mode, for using the same

definition for more than one data representation (such as Sym-

bolics C and foreign system binary files).

rpc:with-octet-structure-fields ((structure-name &rest reference-args) fields &body

body)

Binds lexical variables to structure slots. Elements of fields ei-

ther a symbol or a list of local variable and field name.

loop iteration over octet-structure-field-elements�

loop for index being the rpc:octet-structure-field-elements of reference Map index

over the the successive elements of a vector field. Presumably the field type is an-

other structure type, whose accessors you then use to process each element.

Octet Structure Field Operations

rpc:copy-octet-structure (to-reference from-reference)

Replaces the contents of the octet-structure referred to by to-

reference with the contents of from-reference.

rpc:octet-structure-equal (reference-1 reference-2)

Does a byte by byte comparison of the octet-structures referred

to by reference-1 and reference-2.�

Page 969

Octet Structure Flavor and Structure Synchronization

rpc:define-octet-structure-and-flavor (structure-name inherit-from &body fields)

Defines a flavor and structure that parallel one another. The

flavor has instance variables with same names as field ele-

ments.

rpc:copy-fields-from-octet-structure (instance array index)

Copies from the array into the instance, and returns the index

past the end of the structure. Uses appropriate method combi-

nation to get inherit-from’s fields too.

Octet Structure Debugging

rpc:describe-octet-structure (structure-name array index)

Describes the contents of each field in the octet-structure ref-

erenced by structure-name array and index.

MacIvory Extensions to the Macintosh Toolbox

Window Structures�

� mtb:_windowstructure window-pointer window Function

Returns the contents of the window structure pointed to by the Macintosh pointer

window-pointer in the Lisp structure cwindow. It is particularly useful when trying

to examine the state a Macintosh window from Lisp. The window argument is

overwritten to contain the new information and returned.

mtb:_cwindowstructure cwindow-pointer cwindow Function

Returns the contents of the color window structure pointed to by cwindow-pointer

in the Lisp structure cwindow. Like mtb:_windowstructure, it is useful for exam-

ining the state of Macintosh windows, and overwrites and returns the argument

cwindow.

Access to Macintosh Memory �

� mtb:_write-opaque-bytes-into-pointer ptr nbytes buffer Function

Writes the first nbytes of buffer into the Macintosh memory at the location speci-

fied by ptr. Ptr should be a Macintosh pointer (as returned by _newptr), buffer

should be an 8-bit array. Memory on the Macintosh should be allocated prior to

calling this function.

Page 970

mtb:_read-opaque-bytes-from-pointer ptr nbytes buffer Function

Reads nbytes from the Macintosh memory pointed to by ptr into the Lisp array des-

ignated by buffer. The argument buffer is overwritten and returned.

mtb:_write-opaque-bytes-into-handle h nbytes buffer Function

Writes the first nbytes of buffer into the Macintosh memory at the location speci-

fied by h. The memory on the Macintosh should be allocated prior to calling this

function.

mtb:_read-opaque-bytes-from-handle h nbytes buffer Function

Reads nbytes from the Macintosh memory pointed to by h into the Lisp array des-

ignated by buffer. The argument buffer is overwritten and returned.

Miscellaneous �

mtb:_copybits srcbits dstbits srcrect dstrect mode maskrgn &key :transport-agent

Function

mtb:_drawpixmap srcbits srcrect dstrect mode maskrgn Function

Draws the pixMap srcbits on the current GrafPort’s portBits. Other arguments are

as for mtb:_copybits.

mtb:_fsread-remote refnum into len Function

On the Macintosh side, reads len bytes from the file open on Macintosh refnum

refnum, into the Macintosh storage at the Ptr into.

mtb:_fswrite-remote refnum from len Function

On the Macintosh side, writes len bytes from the Ptr from into the file open on

Macintosh refnum refnum.

mtb:_ptrfromhandle h Function

Given a handle h, returns the pointer to the contents of the handle. As with all

handle dereferencing on the Macintosh, you should lock the handle before retriev-

ing the pointer to its contents and be sure to unlock the handle as soon as possi-

ble to keep memory from becoming fragmented.

mtb:_setcursorfromhandle crsrhandle Function

Page 971

Performs a Setcursor on the result. This function is provided as a convenience be-

cause cursors are usually stored as resources that are accessed by handles.

mtb:_unpackbitsbyrows srcptrin dstptrin rowbytes nrows Function

Calls UnpackBits starting with srcptrin, dstptrin, and rowbytes, for nrows times.

Returns two values, the final values taken on by the src and dst Ptrs.

MacIvory Toolbox Macros

mtb:cconstant-case test-object &body clauses Macro

Provides a case statement with keys that are determined by looking up the value

of the Macintosh constant. Like case, mtb:cconstant-case allows an otherwise

clause. Here is a simple example:

(defun my-stdrect (graphic-operation rect)

 (cconstant-case graphic-operation

 (frame (my-frame-rect rect))

 (paint (my-paint-rect rect))

 (erase (my-erase-rect rect))

 (invert (my-invert-rect rect))

 (fill (my-fill-rect rect))))�

Note that frame, paint, erase, invert, and fill are defined as constants on the

Macintosh (see Inside Macintosh, volume I), and are exported from the mtb pack-

age in Genera.

mtb:cconstant-ecase test-object &body clauses Macro

Like mtb:cconstant-case, but signals an appropriate error if none of the constants

match test-object. See the macro mtb:cconstant-case for further information.

mtb:with-qd-port (new-port) &body body Macro

Saves the current Quickdraw port, as found by calling mtb:_getport, executes the

body with the current port set to new-port, and restores the original port when

completed. This is convenient for doing output to Macintosh windows.

mtb:with-handle-locked (handle &optional (lock ’t)) &body body Macro

Executes body with handle locked. You can also pass in a computed boolean, which

if false means don’t bother to lock. Macintosh handles must be locked before they

can be dereferenced. This prevents the Macintosh memory-manager from relocating

the memory referred to by the handle.

See Inside Macintosh, volume II, for more information on memory management.

Page 972

mtb:with-resource-handle (var restype resid-or-name &key :lock :file :sole-file (:di-

rection :io)) &body body Macro

Causes the Macintosh to read a specified resource by calling _getresource or a

similar function on restype and resid-or-name. It binds a Lisp var to the handle to

that resource. resid-or-name is an integer resource-id or string, and is used to find

the resource.

If :lock is non-nil the resource is locked around the body. If :file is provided, it is

opened and used as a resource file around the body. If :sole-file is provided,

mtb:with-resource-handle looks only within that file for the resource. The :sole-

file keyword takes a file reference number (use this instead of a pathname if the

file is already open).

Values for :direction are :input, :output, or :io; :io is the default and is synony-

mous with :output. :input means open the file in read-only mode.

mtb:with-resource (var restype resid-or-name &key :lock :file :sole-file (:direction�

:io)) &body body Macro

Similar in function to mtb:with-resource-handle, but copies the resource contents

to Lisp and binds the Lisp variable to the structure. This is useful for writing

Lisp programs that read or modify Macintosh resources.

See the macro mtb:with-resource-handle for further information.

mtb:with-mac-struct (lisp-var octet-structure-type &rest options &key :handle :ptr)

&body body Macro

Copies a structure from the Macintosh system and binds a Lisp variable to it.

Octet-structure-type (not evaluated) determines the structure type. You provide the

location of the structure on the Macintosh by specifying either :ptr or :handle.

When the structure type is specified as nil, raw bytes, are copied, with size deter-

mined from the size of the object on the Macintosh side. This macro is useful for

writing Lisp programs that manipulate Macintosh data structures.

mtb:with-mac-temp (lisp-var &rest options &key :handle :ptr :size :initial-contents)

&body body Macro

Allocates a data structure on the Macintosh for the duration of body, binding a

Lisp variable to its Ptr or Handle. Its size is 0, or size, or length of :initial-

contents, which is downloaded into the handle or ptr. The memory is allocated on

the Macintosh and deallocated on exiting the body. Unlike mtb:with-mac-struct,

mtb:with-mac-temp does not copy the contents of the Macintosh memory to the

Lisp side.

mtb:with-resload (new) &body body Macro

Page 973

Binds the state of ResLoad to new, restoring the old state on exiting the body.

mtb:using-resfile (refnum) &body body Macro

Uses mtb:_useresfile of refnum around the body, restoring the previous value of

currentresfile on exit.

mtb:with-resfiles ((var name &optional direction) ...) Macro

Opens one or more resource files for body, binding Lisp variables to their refnums.

Direction is :input (the default), or one of the synonyms :output or :io. The re-

source files are closed on exit.

mtb:do-restypes (type-var refnum-or-all) &body body Macro

Iterates over all resource types in one resource file, specified by refnum-or-all,

binding type-var to each type. When refnum-or-all is :all, mtb:do-restypes iterates

over all types in all open resource files.

mtb:do-rsrcs (handle-var id-var name-var) (restype refnum-or-all &key :load) &body

body Macro

Iterates over resources of a given type, receiving a resource handle, id, and name.

refnum-or-all is as in mtb:do-restypes. When :load is t, mtb:do-rsrcs loads each

resource.

mtb:map-over-mac-queue-elements (element-var octet-structure-type queue-hdr-

pointer) &body body Macro

Executes body once for every element in a Macintosh system queue. On each itera-

tion element-var is bound to a Lisp octet-structure of type octet-structure-type con-

taining a copy of the Macintosh queue-element.

queue-hdr-pointer is the pointer to the queue-hdr structure in Macintosh memory

(as returned by mtb:_getvcbqhdr, for example). This macro is useful for mapping

over the Macintosh operating system queues, such as the vcb queue, the drive

queue, or the vertical retrace queue.

mtb:with-open-refnum (var pathn &key :vrefnum :dirid :permission :resource-fork)

&body body Macro

Opens the host file named by the Lisp pathname pathn for the duration of body,

binding var to the resulting refnum. Used when a MacOS refnum is needed in-

stead of a Lisp stream (in contrast to with-open-file). The :permission, :dirid, and

:vrefnum arguments are passed to the Macintosh File Manager (mtb:_phbopen) to

open the file. If :resource-fork (default nil) is true, a stream to the file’s resource

fork is opened instead of the data fork. (PBHOpenRF vs. PBHOpen). If a Macin-

Page 974

tosh operating system error occurs while attempting to open the file, an appropri-

ate Lisp condition is signaled.

mtb:with-pict-from-file (handle-var rect &key pathname refnum (temporary T)

&body body Macro

Allocates a Macintosh handle to receive the contents of a PICT file, reads the file

into the handle, and binds handle-var to the pict handle and rect to its picframe,

for the duration of body. Specify the file with the Lisp pathname pathname, or pro-

vide an already open MacOS refnum in refnum. If you specify :temporary nil, the

Macintosh handle is not deallocated at the end of body.

mtb:show-resfiles Function

Shows the linked list of open MacOS resource files, offering the refnum and file

name. It attempts to mark the current resource file with "*→".

mtb:ez-sfgetfile &key x-and-y types Function

Interface to mtb:_sfgetfile. x-and-y is a list (x y) or a Point, defaulting to 100,100.

types determines what types of files are offered by SFGetFile. Returns three val-

ues: vrefnum, fname (string), and ftype (string). If no :types argument is supplied,

then any file type is allowed.

mtb:octet-ref-remote-ptr (octet-structure-field-accessor ptr &optional offset) Macro

Remotely performs the specified octet structure field access by reading just the

necessary bytes from the Macintosh location specified by ptr and offset. setf can be

used with mtb:octet-ref-remote-ptr expressions.

Examples:

• The common operation of finding the QuickDraw port rectangle of a Macintosh

window can be done with:

(octet-ref-remote-ptr (grafport-portrect (_frontwindow))�

This is equivalent to, but faster than, transferring the entire window structure

into Lisp:

(with-mac-struct (window windowrecord :ptr (_frontwindow))

 (grafport-portrect window 0))�

• You could increment the refcon of a Macintosh window with:

(incf (octet-ref-remote-ptr (windowrecord-refcon mac-window)))�

• To move the bounds rectangle for a dialog template whose Macintosh ptr is in

the Lisp variable the-template, you can use:

Page 975

(setf (octet-ref-remote-ptr

 (dialogtemplate-boundsrect the-template))

 (_offsetrect (octet-ref-remote-ptr

 (dialogtemplate-boundsrect the-template)) 10 0))

�

mtb:octet-ref-remote-handle (octet-structure-field-accessor handle &optional offset)

Macro

Like mtb:octet-ref-remote-ptr, except this is applied to a handle. The handle is

locked around the access. offset applies to the dereferenced handle. setf can be

used with mtb:octet-ref-remote-handle forms.

For example, given a ptr to a Macintosh window, you could collect a list of all of

its controls with their refcons:

 (loop for control = (octet-ref-remote-ptr

 (windowrecord-controllist mac-window))

 then (octet-ref-remote-handle

 (controlrecord-nextcontrol control))

 until (zerop control)

 collect (let ((refcon (octet-ref-remote-handle

 (controlrecord-contrlrfcon control))))

 (list control refcon)))�

mtb:write-remote-number &key byte word long ptr handle offset Function

Writes the specified byte, word, or long into the specified Macintosh ptr or handle,

at a location offset by offset if supplied. Useful for callbacks altering Pascal var

parameters.

mtb:with-rect (var &optional left top right bottom) &body body Macro

Binds var to a data-stack Rect for the duration of body. Unspecified edges default

to zero. Useful when dealing with Macintosh toolbox routines.

For example, one could draw a wide rectangle on the current GrafPort with

(with-rect (r 10 10 100 30) (_framerect r))�

As another example, one could move a dialog item with this:

(with-rect (r)

 (multiple-value-bind (item-type item-handle)

(_getditem the-dialog item-number r)

 (_offsetrect r 20 0)

 (_setditem the-dialog item-number item-type item-handle r)))

�

Page 976

mtb:with-point (var x y) &body body Macro

Binds var to a data-stack Point for the duration of body. Useful when dealing with

Macintosh toolbox routines.

mtb:describe-eventrecord event-record Function

Describes an octet-structure containing an EventRecord, decoding the event kind,

mouse button state. Prints to *standard-output*. Probably useful only for debug-

ging.

mtb:with-temps (&rest var-creator-destructor-triples) &body body Macro

Binds one or more Lisp variables to freshly created entities, for the duration of

body, destroying them (if non-null) when body terminates. The advantage of this

over unwind-protect is that it places the creator and destroyer syntactically adja-

cent. Each creator is a function applied to no arguments (that is, mtb:with-temps

wraps a set of parentheses around it); each destructor is a function applied to the

corresponding var.

(with-temps ((update-region _newrgn _disposergn)

 (ptr (lambda () (_newptr size)) _disposptr))

 ---)

�

mtb:mac-pathname-from-parts vrefnum dirid name Function

Given pieces of a Macintosh pathname, constructs a Lisp pathname. Recursively

looks up names of parent folders until reaching the file system root.

Example:

(defun std-file-accept-pathname ()

 (multiple-value-bind (vrefnum name type)

 (mtb:ez-sfgetfile :types ’("TEXT" "PICT"))

 (values (mtb::mac-pathname-from-parts vrefnum 0 name) type)))�

mtb:with-mac-file-struct (var octet-structure-type filepos refnum) &body body Macro

Binds var to an octet structure of the named type read at filepos from the Macin-

tosh file open on refnum.

Example:

Page 977

(defun size-of-pict-in-pict-file (pathname)

 (declare (values width height))

 (mtb:with-open-refnum (in pathname :permission (mtb:cconstant fsRdPerm))

 (mtb::with-mac-file-struct (pict mtb::picture 512 in)

 (let ((rect (mtb:picture-picframe pict 0)))

(values (- (mtb:rect-right rect 0) (mtb:rect-left rect 0))

(- (mtb:rect-bottom rect 0) (mtb:rect-top rect 0)))))))�

mtb:with-mac-file-bytes (var len filepos refnum) &body body Macro

Binds var to an octet vector of length len, read at filepos from the Macintosh file

open on refnum.

mtb:do-mac-volumes (volume-name volume-refnum &optional volumeparam) &body

body Macro

Iterates over all mounted MacFS volume structures. Body receives the volume-

name string (without trailing colon), that volume’s refnum, and, if needed, a Vol-

umeParam structure. The string containing the volume name, and the Vol-

umeParam structure, are allocated on the data stack, so they must be copied if

they are to be used later.

Example:

�

(mtb::do-mac-volumes (name refnum) (print (list name refnum))) ==>

 ("Mac-4" -1)

 ("DSK" -2)

 ("SneakerNet Packet Floppy" -3)�

mtb:with-one-mac-rsrc (var pathname rsrc-type &key :rsrc-id :rsrc-name (:vrefnum�

0) (:dirid 0)) &body body Macro

Finds a resource of type rsrc-type, id :rsrc-id, or name :rsrc-name in the Macin-

tosh file pathname (adjusted by vrefnum and dirid), moves it to the Lisp side, and

binds var to it. mtb:with-one-mac-rsrc also decodes the resource file. For resource

files with large resource maps, this offers increased performance over using

mtb:with-resfiles or mtb:with-resource :sole-file with Macintosh’s Resource Man-

ager.

For related information, see "The Resource Manager is not a database." -- Macin-

tosh Technical Note #203: Don’t Abuse the Managers, August 1, 1988.

mtb:_debugger &key :transport-agent Function

Enters the Macintosh debugger (Macsbug, for example), after halting the Macin-

tosh at an instruction in the RPC remote entry.

Page 978

mtb:_debugstr string &key :transport-agent Function

Enters the Macintosh debugger (Macsbug, for example), after halting the Macin-

tosh at an instruction in the RPC remote entry, passing it string to print as part

of its greeting.

mtb:using-scratch-resfile () &body body Macro

Runs body using a scratch resource file as the current resource file. The scratch

file is deleted when you quit the Genera icon.

mtb:download-resource res-type res-name res-id res-attr data Function

Creates a Macintosh resource in a scratch resource file. The first four arguments

define the resource. data is the contents of the resource. mtb:download-resource

returns two values: a handle and res-id. When you specify nil as res-id’s value,

mtb:download-resource generates a unique id for the resource.

Callbacks

A callback is a piece of user code whose address is given to MacOS to be called by

MacOS at some later time to perform some specific function defined by MacOS.

Examples of callbacks are: custom QuickDraw QDProcs, an actionProc passed to

TrackControl, or a filterProc passed to ModalDialog. The interfaces described here

can construct temporary Macintosh routines (essentially closures on the Macintosh

side) to serve as "trampolines" to pass callback args to Lisp, and to receive Lisp’s

values to pass back to MacOS. A more complete technical description of the imple-

mentation appears in "Callback Mechanism" . Because each kind of callback takes

different arguments and returns different values (or no values), we use callback

types, which are symbolically named.

In general, callbacks are useful only in the context of a remote-program. Each call-

back call is processed in a new process spawned by the RPC machinery.

Callbacks receive args from MacOS, and can return values if MacOS specifies

them as functions. Pascal var parameters, passed to callbacks as Ptrs, can be al-

tered with mtb:write-remote-number.

The callback constructor functions in the mtb package return a Macintosh ProcP-

tr, represented in Lisp as a fixnum. Such an address is ready to be installed into

Macintosh data structures, passed back to some Macintosh Toolbox routine, or

whatever else is required by the application.

Each callback establishes a unique association with the specified Lisp code. This

admits many co-extant callbacks of the same type without conflict or confusion.

mtb:with-mac-callback (var callback-type &key program) ((handler-args) &body

handler-body) &body body Macro

Page 979

For the duration of body, binds var to the Macintosh address for a callback of type

callback-type. When the callback is called, bind handler-args to its args, and run

handler-body in its own process. The callback’s return value (if needed) is the val-

ue of handler-body. program is a remote program, defaulting to dw:*program*. Al-

though handler-body is run in another process, it does, of course, share the lexical

environment in which it appears.

mtb:with-mac-callback-function (var callback-type function &key program) Macro

For the duration of body, binds var to the Macintosh address for a callback of type

callback-type. When the callback is called, apply function the callback’s args. The

callback’s return value (if needed) is the value returned by function. program is a

remote-program, defaulting to dw:*program*.

mtb:make-mac-callback callback-type function program Function

Constructs a callback "closure" on the Macintosh side, of callback-type

callback-type, which when called will call the Lisp function in the context of the re-

mote program program. Returns the Macintosh address of the callback This is un-

done by mtb:remove-mac-callback.

mtb:remove-mac-callback mac-callback Function

Deallocates the callback addressed by mac-callback and removes the Lisp data

structures establishing the correspondence with the Lisp function.

Callback Types

This section describes the arguments and values for each callback type, along with

associated C types. Call-by-reference parameters (Pascal var parameters) are noted

with C syntax.

mtb:control-definition Callback

Arguments:

 varcode short

 thecontrol ControlHandle

 message short

 param long

 Values:

 result long�

Custom control defintion. See Inside Macintosh, page I-329. Because of the Mac-

intosh’s Control Manager design, you will have to adjust CDEF resources before

you can actually get one of these called.

Page 980

mtb:control-indicator-action Callback

Arguments: none

Values: none�

A control’s action procedure for when the mouse was pressed in an indicator. See

Inside Macintosh, page I-324. Suitable for passing to _TrackControl or _SetCtlAc-

tion.

mtb:control-nonindicator-action Callback

Arguments:

 thecontrol ControlHandle

 partcode short

Values: none�

A control’s action procedure for when the mouse was pressed in some control oth-

er than an indicator. See Inside Macintosh, page I-324. Suitable for passing to

mtb:_trackcontrol or mtb:_setctlaction.

mtb:dialog-sound-proc Callback

Arguments:

 soundno short

Values: none�

Emits alert sounds. See Inside Macintosh, page I-409.

mtb:dialog-user-item-definition Callback

Arguments:

 thewindow WindowPtr

 itemno short

Values: none�

Draws userItems in dialogs. See Inside Macintosh, page I-421-2 and I-431.

mtb:menu-definition Callback

Arguments:

 message short

 themenu MenuHandle

 menurect Rect*

 hitpt Point*

 whichitem short*

Values: none�

Page 981

Implements custom menus. See Inside Macintosh, page I-362. Because of the Mac-

intosh’s Menu Manager design, you must use MDEF resources to get one of these

to be called.

mtb:modal-dialog-filter Callback

Arguments:

 thedialog DialogPtr

 theevent EventRecord*

 itemhit short*

Values:

 result Boolean�

Preprocesses events for ModalDialog. See Inside Macintosh, page I-415.

mtb:quickdraw-arcproc Callback

Arguments:

 verb GrafVerb

 r Rect*

 startangle short

 arcangle short

Values: none�

Customizes QuickDraw arc/wedge drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-bitsproc Callback

Arguments:

 srcbits BitMap*

 srcrect Rect*

 dstrect Rect*

 mode short

 maskrgn RgnHandle

Values: none�

Customizes QuickDraw bit transfer. See Inside Macintosh, page I-197ff.

mtb:quickdraw-commentproc Callback

Arguments:

 kind short

 datasize short

 datahandle Handle

Values: none�

Page 982

Customizes QuickDraw picture comment processing. See Inside Macintosh, page

I-197ff.

mtb:quickdraw-getpicproc Callback

Arguments:

 dataptr Ptr

 bytecount short

Values: none�

Customizes QuickDraw picture retrieval. See Inside Macintosh, page I-197ff.

mtb:quickdraw-lineproc Callback

Arguments:

 newpt Point*

Values: none�

Customizes QuickDraw line drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-ovalproc Callback

Arguments:

 verb GrafVerb

 r Rect*

Values: none�

Customizes QuickDraw oval drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-polyproc Callback

Arguments:

 verb GrafVerb

 poly PolyHandle

Values: none�

Customizes QuickDraw polygon drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-putpicproc Callback

Arguments:

 dataptr Ptr

 bytecount short

Values: none�

Page 983

Customizes QuickDraw picture saving. See Inside Macintosh, page I-197ff.

mtb:quickdraw-rectproc Callback

Arguments:

 verb GrafVerb

 r Rect*

Values: none�

Customizes QuickDraw rectangle drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-rgnproc Callback

Arguments:

 verb GrafVerb

 rgn RgnHandle

Values: none�

Customizes QuickDraw region drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-rrectproc Callback

Arguments:

 verb GrafVerb

 r Rect*

 ovalwidth short

 ovalheight short

Values: none�

Customizes QuickDraw roundRect drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-textproc Callback

Arguments:

 bytecount short

 textbuf Ptr

 numer Point*

 denom Point*

Values: none�

Customizes QuickDraw text drawing. See Inside Macintosh, page I-197ff.

mtb:quickdraw-txmeasproc Callback

Page 984

Arguments:

 bytecount short

 textaddr Ptr

 numer Point*

 denom Point*

 info FontInfo*

Values:

 width short�

Customizes QuickDraw text width measurement. See Inside Macintosh, page

I-197ff.

mtb:standard-file-dialog-hook Callback

Arguments:

 item short

 thedialog DialogPtr

Values:

 result short�

Customizes StandardFile dialogs. See Inside Macintosh, page 522.

mtb:standard-file-file-filter Callback

Arguments:

 paramblock ParmBlkPtr

Values:

 result Boolean�

Filters out file types for StandardFile dialogs. See Inside Macintosh, page I-524.

mtb:text-edit-click-proc Callback

Arguments: none

Values:

 result Boolean�

Customizes TextEdit clikLoop. See Inside Macintosh, page I-390.

mtb:text-edit-word-break-proc Callback

Arguments:

 text Ptr

 charpos short

Values:

 result Boolean�

Page 985

Customizes TextEdit word break computation. See Inside Macintosh, page I-390.

mtb:window-definition Callback

Arguments:

 varcode short

 thewindow WindowPtr

 message short

 param long

Values:

 result long�

Implements custom windows. See Inside Macintosh, page I-299.

mtb:get-canned-callback canned-callback-type Function

Returns the Macintosh address of a simple, parameterless callback. Some callbacks

are so simple that they can be written in C, to run entirely on the Macintosh side,

instead of communicating back to the Lisp side. At present, there is only one

canned callback type, mtb:draw-dialog-line.

Callback Mechanism

This section briefly describes how the callback mechanism is implemented.

The call chain when MacOS calls a callback is this:

mac-closure

 → C-client remote entry

 → Lisp-server remote entry

 → Lisp callback function�

Here mac-closure is a sequence of M68000 machine instructions constructed by

Lisp and sent over to the Macintosh, containing as immediate data five variable

fields: a closure id, application id, value to load register A4 with, the address of

the C-client remote entry, and the number of bytes of arguments to clear off the

stack. Here is the assembly code. The variable fields to be filled in by Lisp are

marked in bold.

link a6,#-4

move.l a4,-(sp)

movea.l #a4value,a4

;; push C args, right to left

pea -4(a6) ;location for return value, if needed

pea 8(a6) ;addr of last (Pascal) arg

pea appl_id ;application unique-id

pea closure_id ;closure code (not address..)

Page 986

jsr @#xxxx ;call the RPC remote entry

lea 16(a7),a7 ;C caller must remove args

;; Fail to check D0 for RPC errors -- what could we do anyway?

move.l -4(a6),d0 ;return value

move.l (sp)+,a4 ;restore old A4

unlk a6

movea.l (a7)+,a0 ;return addr

lea argsize(a7),a7 ;Pascal callee must remove args

move.l d0,(a7) ;return value

jmp (a0) ;return�

Each callback type has a C-client remote entry. Its arguments are closure-id, appli-

cation-id, and an anonymous struct* argument representing its caller’s arglist.

That remote entry passes closure-id, application-id, and each arg of the caller’s ar-

glist, across the RPC mechanism to the Lisp-server side.

There is also a C-server remote entry that receives a callback-type index from

Lisp-client; it returns to Lisp two longs, the Macintosh address of the specified

C-client remote entry of the previous paragraph, and the current value of register

A4.

All C-side remote entries of the previous two paragraphs are linked into a single

code resource of RPC module type autoload-with-static-data, locked in Macintosh

memory when loaded. Because this is an autoload code resource, it needs a correct

value in register A4 to refer to its globals. Actually, the only global is DefaultXDRA-

gent, needed by the C-client remote entries. DefaultXDRAgent is filled in by the

callback-address-returning C-server remote entry.

All the Lisp-server sides of the callback remote entries have similar bodies. Each

body will use the application-id to locate the appropriate remote program, and the

closure-id to locate the appropriate Lisp function to call back. Then it applies the

Lisp function to the reverse of the vector of RPC arguments received from the

Macintosh side. It has to reverse the vector because the Pascal calling sequence

(used by the caller of the callback in the first place) pushes the arguments left-to-

right on a stack which grows toward lower addresses. Thus, the last Pascal argu-

ment appears first in memory.

Examples of Developing MacIvory User Interfaces

You can find several examples of code that creates MacIvory user interfaces in the

directory SYS:EMBEDDING;MACIVORY;TOOLBOX;EXAMPLES;. These examples are printed in

the appendix "MacIvory User Interface Examples". They include etest.lisp, pic-

show.lisp, menubar.lisp, and show-icons.lisp.

Etest and Pic-show are remote programs. To run them, use the unassigned Genera

application icon in the Macintosh Applications folder. Copy the icon and then name

it with the name of the remote program. Opening the icon runs the program. (You

can also use the Configure MacIvory Application command as an alternative to this

procedure).

Page 987

The following list describes each program:

• etest.lisp, which defines remote program "ETest" with three menu commands:

° Test-1 (clover-S), which draws a solid black circle. You can use the scroll bars,

and reshape the window.

° Splash (clover-F), which draws the Bear•Cal splash window. It reads Macin-

tosh PICT contents from the sys host, ships it over to the Mac, writes it into

a new pict, and draws that pict when the window’s displayer wants it.

° Dialog (clover-D), which creates a modal dialog for an airline reservation sys-

tem (Bear•Cal). It shows how to use the dialog functionality. �

credit-card-picts.rsrc and splash.pict are binary data files used by the ETest

commands. splash.pict is taken from the sys host, so you can try it out without

further work. To use the credit-card-picts.rsrc demo, you must copy it onto your

Macintosh before running the Dialog demo, and then edit a defvar in etest to

say where the file has been copied.

• pic-show.lisp, which contains an application that browses for Macintosh files

containing pictures, and lets you see them. You can use scrolling and zooming

with these windows.

• menubar.lisp, which demos advanced octet-structure definitions and usage, us-

ing the Macintosh menu bar as an example.

• show-icons.lisp, which uses toolbox macros and generic graphics substrate to

show you all the icons and mouse cursors in the system file.�

Launching Macintosh Applications

The following functions are provided for launching Macintosh applications from

Genera:

mtb:_launch name fdflags launchflags &key :transport-agent Function

Launches the application in the file named by name, using fdflags and launchFlags.

Because of limitations of Macintosh’s _launch, most MacIvory users will want to

use mtb:launch-mac-application, which is more comprehensive, instead of the

mtb:_launch function. See the Apple Macintosh documentation on launching appli-

cations for further information.

mtb:launch-mac-application application-pathname &rest document-pathnames

Function

Page 988

Launches the Macintosh application in application-pathname, telling it to open the

documents in document-pathnames. If application-pathname is nil, locates the re-

sponsible application by looking up the file types of document-pathnames in the

Finder’s desktop file.

The returned value is a Macintosh process-id, used, for example, to inform a shell

that a child has died. See Macintosh Technical Note #205 for further information

on this topic.

Example:

�

(mtb::launch-mac-application

 () #p"HOST:DSK:MacIvory Applications:HyperIvory Stack")�

Notes: If the launch does not succeed for some reason (file not found, not enough

memory), the error code returned by _launch itself (and signalled by mtb:launch-

mac-application) does not always appear to be meaningful.

In Macintosh System 7.0, Apple plans to reimplement the Macintosh software used

to launch applications. This function may be made obsolete by those changes.

Hardware-dependent Data Formats

In using Ivory embedded in standard systems (such as Macintosh) or standard

busses (such as VMEbus) you sometimes have to deal with hardware that uses da-

ta formats that differ from Ivory formats; for instance, bits may be numbered in

the other direction. Symbolics provides hardware that speeds up any bit shuffling

this may require.

The bit-shuffling hardware is necessarily different in each system. Also, some sys-

tems do not need bit shuffling at all (for instance, the IBM PC uses the same data

formats as Ivory for numbers and strings). The macro sys:with-hardware-bit-

shuffling provides a general mechanism to cover up all this system-dependent

complexity. It expands into code that works on all Ivory-based systems, by means

of dispatches on sys:*system-type. Note that this macro is strictly for accessing

host hardware. You cannot use it for general purpose bit or byte reversal, such as

when decoding a file created by a foreign system, because the bit-shuffling hard-

ware does not work that way.

sys:with-hardware-bit-shuffling (variable mode) body Macro

The variable contains a pointer to a block of storage that is to be accessed with bit

shuffling in effect during the execution of the body. Bit shuffling is per-process

(actually per-stack-group). The block of storage must be in a portion of address

space that is capable of using the bit shuffling hardware. In most systems this re-

quires dtp-physical-address and is not the portion of physical address space that is

used for storing virtual pages. Thus when doing a bit shuffling block transfer be-

tween an I/O device and main memory, variable points at the I/O device. If variable

doesn’t meet these requirements, an error is signaled. In some systems, such as

MacIvory, bit shuffling is (partially) encoded in the address bits; for this reason, a

Page 989

new variable named variable is bound to a potentially modified version of the ad-

dress in variable; its scope includes body.

The mode identifies the units of storage to remain intact through the bit shuffling.

It must evaluate to one of the following keyword symbols:

:bit Single bits, dtp-fixnum tag

:nibble 4 bits at a time, dtp-fixnum tag

:byte 8 bits at a time, dtp-fixnum tag

:fixnum 32 bits at a time, dtp-fixnum tag

:single-float IEEE 32-bit float, dtp-single-float tag�

If the host hardware uses the same data format as the Ivory for these units, no

shuffling occurs. Otherwise, data words are rearranged as they are read or written

to translate the formats. For example, :bit mode in MacIvory reverses the order of

bits in a word, to match Ivory’s least-significant-bit-first order to the Macintosh’s

most-significant-bit-first order.

Enhancing MacIvory Performance

Using Off-Screen Bitmaps

Off-Screen Bitmaps

The Genera window system stores images in bitmaps: two-dimensional arrays of

bits. Sometimes these are called pixmaps (two-dimensional arrays of pixels), espe-

cially when there is more than one bit per pixel, as on color screens. Each bitmap

has a width, a height, and a depth; the depth is the number of bits per pixel.

A bitmap can be on the screen or off the screen. An on-screen bitmap is stored in

special memory associated with the display hardware, thus its contents is visible

on the screen. The image of an exposed window resides in an on-screen bitmap so

you can see it.

All other bitmaps are off-screen. The Genera window system often uses an off-

screen bitmap to save the image of a deexposed window, so that the image can be

quickly restored when the window is exposed, by copying the off-screen bitmap into

an on-screen bitmap. This feature is under the control of the individual window,

through the :save-bits option, however most standard windows enable it. The Gen-

era window system also uses an off-screen bitmap to save the image underneath a

temporary window, such as a pop-up menu. User programs can also use off-screen

bitmaps for their own purposes, using the facilities described below.

In embedded systems, such as MacIvory, bitmaps have one more degree of free-

dom: a bitmap can be in Ivory’s normal virtual memory, or it can be in host mem-

ory. On-screen bitmaps are always in host memory, because the host owns the dis-

Page 990

play hardware. This is why the screen-array bitmap of an exposed window general-

ly cannot be directly accessed by an Ivory program in an embedded system. Similar

considerations apply to X Windows, substituting X Window Server memory for host

memory.

Off-screen bitmaps can be in either Ivory memory or host memory. There are per-

formance tradeoffs associated with the decision of where to store an off-screen

bitmap. The principal constraints are the limited speed for copying images between

Ivory memory and host memory, and the limited size of host memory.

On the one hand, placing an off-screen bitmap in host memory yields the maxi-

mum speed when copying images to or from the screen. Making the host Macin-

tosh solely responsible for the copying is significantly faster than having to coordi-

nate two processors and copy through the co-processor communications memory.

You will not see the screen being slowly repainted top to bottom.

On the other hand, placing an off-screen bitmap in Ivory memory avoids consum-

ing the limited amount of available host memory. In a minimum-configuration

Macintosh II, there is only 1 megabyte of host memory, of which about 350 to 400

kilobytes is available for off-screen bitmaps. In a larger Macintosh II, up to a few

megabytes might be available, but even that may hold only a few large bitmaps.

The size of a bitmap depends on the application and on the size and depth of the

display monitor.

To avoid severely limiting the number of off-screen bitmaps, MacIvory swaps less

recently used bitmaps onto the disk to make room in host memory. Of course,

since swapping to and from the disk takes time, you will benefit from having as

many bitmaps as possible in memory at once. This is controlled by the amount of

host memory available to the Genera application. Since the Macintosh does not

have a flexible multiple-application memory allocation scheme, this is controlled by

the size set for the Genera application with the Get Info command in the Finder’s

File menu, and limited by the amount of actual memory you have and the number

of other Macintosh applications you wish to run at the same time. See the section

"Setting the Size of Application Icons That Use Ivory".

An additional concern when drawing text or graphics into a bitmap is who does

the drawing. When the bitmap is in host memory, the Macintosh host processor

does the drawing, using QuickDraw. When the bitmap is in Ivory memory, the

Ivory processor does the drawing. Which way is faster depends on the type of

graphic operation being performed and the hardware configuration. In sketch mode

(which is the default), the appearance of some graphic shapes varies depending on

which processor does the drawing. For accurate drawing, you can disable sketch

mode, but drawing into bitmaps in host memory (whether on-screen or off-screen)

may then be slower. See the special form graphics:with-scan-conversion-mode.

These considerations mean the decision of whether to place an off-screen bitmap in

Ivory memory or in host memory depends on the application and on the hardware

configuration. The Genera window system decides as follows: Off-screen bitmaps

for temporary use always go in host memory, unless not enough host memory is

available even after swapping out other bitmaps. In this case they go in Ivory

memory. Off-screen bitmaps for deexposed windows go in host memory or Ivory

memory depending on how much host memory is available.

Page 991

See the variable mtb:*pixmap-correspondence-memory-threshold*. See the vari-

able mtb:*automatically-generate-pixmap-correspondences*.

Using Off-Screen Bitmaps in Your Application

Several interfaces are provided through which your application can use off-screen

bitmaps. In embedded systems, all of these interfaces can store the off-screen

bitmaps in host memory.

If you are presently doing things such as drawing to bit arrays and then bitblting

to the screen, you should seriously consider using off-screen bitmaps in host mem-

ory, due to the substantial performance advantage in embedded systems such as

MacIvory or the UX.

The available interfaces are:

tv:with-off-screen-drawing

tv:with-output-to-bitmap-stream

tv:with-output-to-bitmap

tv:allocate-bitmap-stream

tv:with-temporary-sheet-bit-raster�

Using Off-Screen Bitmaps for Instantaneous Updates

This simple interface gives the appearance of an instantaneous update, rather than

of each item appearing to be drawn separately. tv:with-off-screen-drawing works

by copying the contents of a window to an off-screen bitmap, drawing into the

bitmap, and copying back. In embedded systems, the off-screen bitmap always re-

sides in host memory, provided sufficient host memory is available.

For instance,

(defun off-screen-strings ()

 (tv:with-off-screen-drawing (*terminal-io*)

 (dotimes (i 15)

 (write-string "12345678901234567890")

 (terpri))))

�

(defun off-screen-graphics ()

 (tv:with-off-screen-drawing (*terminal-io*)

 (graphics:with-room-for-graphics ()

 (graphics:draw-circle 100 100 50)

 (graphics:draw-triangle 20 0 120 0 70 75 :alu :flip))))�

This involves some overhead in that you need to allocate and deallocate an off-

screen bitmap, and copy from the window to the bitmap and back, each time the

screen is visibly updated. In some cases the copy from the window to the bitmap is

unnecessary, because the entire contents of the window will be redrawn. The

:complete-redisplay option allows for optimization of this case. For example,

Page 992

(defun off-screen-graphics-2 ()

 (tv:with-off-screen-drawing (*terminal-io*

 :complete-redisplay t)

 (graphics:with-room-for-graphics ()

 (graphics:draw-circle 100 100 50)

 (graphics:draw-triangle 20 0 120 0 70 75 :alu :flip))

 (send *terminal-io* :refresh-margins)))�

This is faster, but the previous content of the window is erased, where the previ-

ous example just scrolled it upwards.

Using Off-Screen Bitmap Streams

tv:with-output-to-bitmap-stream is a powerful interface that gives you an off-

screen bitmap that supports all of the stream output and graphical operations of

windows. The :host-allowed keyword controls whether the off-screen bitmap is

stored in host memory or Ivory memory. There is no automatic copying from a

window to the bitmap and back; you use the :bitblt and :bitblt-to-sheet messages

to do this if and when you need it. Note that :host-allowed t is ineffective unless

you also use :for-stream to specify a stream that leads to a screen; otherwise

tv:with-output-to-bitmap-stream doesn’t know which of potentially many hosts to

use.

For example,

(defun off-screen-lines-1 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t)

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

 (send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

The previous example used a bitmap the full size of the window. We can improve

it by creating a bitmap only as large as we need:

(defun off-screen-lines-2 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t

Page 993

 :width 100 :height 101)�

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

(send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

If you specify values for :width and :height that are too small, the bitmap auto-

matically expands so it is at least large enough to hold all the bits drawn. Of

course the expansion takes time, so it is preferable to specify accurate values for

:width and :height.

We can further improve the speed by using :draw-multiple-lines in place of

:draw-line, to cut down on overhead. It speeds up this particular example by only

7 percent since the line-drawing speed of the Macintosh is the limiting factor in

either case.

(defun off-screen-lines-2-m (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t

 :width 100 :height 101)

 �

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (send bitmap-stream :draw-multiple-lines

 (loop for y downfrom (- 100 x) by 2 repeat 5

 nconc

 (loop for x from x by 2 repeat 5

 collect x collect 0

 collect 0 collect y)))

 (send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

tv:with-output-to-bitmap is similar to tv:with-output-to-bitmap-stream with the

additional feature that it copies the off-screen bitmap into a Lisp array and re-

turns it. Use this when you wish to capture the result of some output operations

in an array of bits, rather than (or in addition to) displaying the result on the

screen.

If you need an off-screen bitmap stream with a more permanent lifetime, you can

use explicit allocation and deallocation. See the function

tv:allocate-bitmap-stream. See the function tv:deallocate-bitmap-stream. For ex-

ample,

Page 994

(defun off-screen-lines-3 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (let ((bitmap-stream (tv:allocate-bitmap-stream

 :for-stream stream

 :host-allowed t

 :width 100 :height 101)))�

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

(send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150)))

 (tv:deallocate-bitmap-stream bitmap-stream))))�

In a more realistic example, the calls to tv:allocate-bitmap-stream and

tv:deallocate-bitmap-stream would be in two different functions; otherwise

tv:with-output-to-bitmap-stream would work just as well.

The bitmap stream can become invalid if the window system is shut down and

started again. It is best not to retain an off-screen bitmap stream permanently, but

only for the duration of one operation. To minimize the overhead of allocating and

deallocating a bitmap stream, you can allocate it when your application window is

exposed and deallocate it when your application window is deexposed.

Using Off-Screen Bitmaps with Low-level Drawing Primitives

If you only need a bitmap, without the stream output and graphical operations of

windows, either because you are using the low-level drawing primitives, or because

you only do bitblt’s, you can use the lower-level allocation primitives. Note that if

you are using sys:%draw-xxx, you need to switch to tv:sheet-draw-xxx, since the

system must be given a sheet in order to find the screen that connects to the host.

There is no significant overhead in this switch.

(defun off-screen-lines-4 (&aux (sheet *terminal-io*))

 (tv:with-temporary-sheet-bit-raster (bitmap sheet 100 100)

 (loop for x below 100 by 10 do

 (tv:sheet-force-access (sheet) ;Make sure has a screen array

(letf (((tv:sheet-screen-array sheet) bitmap)) ;Use this one temporarily

 (tv:sheet-draw-rectangle 100 100 0 0 boole-andc1 sheet)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (tv:sheet-draw-line x 0 0 y boole-ior nil sheet))))

(tv:sheet-bitblt boole-xor 100 100 bitmap 0 0 nil 200 200 sheet)))))

 �

If you need an off-screen bitmap with a more permanent lifetime, you can use ex-

plicit allocation and deallocation. Instead of using tv:with-temporary-sheet-bit-

Page 995

raster, you can call tv:%screen-allocate-sheet-temporary-bit-array and

tv:%screen-deallocate-sheet-temporary-bit-array. Note that all these programs

work on the XL and the 3600 series as well.

For further information:

See the macro tv:with-off-screen-drawing.

See the function tv:%screen-allocate-sheet-temporary-bit-array.

See the function tv:%screen-deallocate-sheet-temporary-bit-array.

See the macro tv:with-temporary-sheet-bit-raster.�

tv:allocate-bitmap-stream &key :for-stream :host-allowed :width :height :bits-per-

pixel :graphics-transform Function

Allocates an off-screen bitmap stream. You can perform textual and graphic output

operations on the stream returned. The results will not be visible, since the

bitmap is off-screen. You can use the :bitblt-to-sheet message to make the result

visible by copying from the off-screen bitmap to a window.

The bitmap stream can become invalid if the window system is shut down and

started again. It is best not to retain an off-screen bitmap stream permanently, but

only for the duration of one operation. To minimize the overhead of allocating and

deallocating a bitmap stream, you can allocate it when your application window is

exposed and deallocate it when your application window is deexposed.

:for-stream A stream that outputs to a related window. This provides de-

faults for the width, height, depth, and coordinate transforma-

tion; if :host-allowed t is specified, the host owning the win-

dow’s screen will be used.

:host-allowed True if the off-screen bitmap should be stored in host memory

if possible. The default is false, which always uses Ivory mem-

ory. :host-allowed t only works if :for-stream is specified.

:width The initial width of the bitmap. It expands if necessary.

:height The initial height of the bitmap. It expands if necessary.

:bits-per-pixel The depth of the bitmap.

:graphics-transform

A coordinate transformation. The default is the stream’s trans-

form if :for-stream is specified. Otherwise, the identity trans-

form is the default.�

See the message :bitblt-to-sheet.

See the function tv:with-output-to-bitmap-stream.

tv:deallocate-bitmap-stream bitmap Function

Page 996

Deallocates an off-screen bitmap stream when you are no longer using it. See the

function tv:allocate-bitmap-stream.

tv:bitmap-stream-copy-bitmap stream Function

Makes a copy of the bitmap or raster associated with a stream and returns five

values:

• The bitmap

• Left top

• Right top

• Left bottom

• Right bottom�

:bitblt-to-sheet alu width height x y sheet sheet-x sheet-y Message

Sends this message to an off-screen bitmap to copy its contents onto a window

where it will be visible. This performs a bitblt from the width by height rectangle

of the bitmap whose top-left corner is at (x,y) to the width by height rectangle of

the window sheet whose top-left corner is at (sheet-x,sheet-y).

See the function bitblt.

See the function tv:allocate-bitmap-stream.

See the function tv:with-output-to-bitmap-stream.

mtb:*automatically-generate-pixmap-correspondences* Variable

If true (the default), off-screen bitmaps that save the images of deexposed windows

are placed in host memory if there is enough host memory. See the variable

mtb:*pixmap-correspondence-memory-threshold*.

If false, off-screen bitmaps that save the images of deexposed windows are always

placed in Ivory memory.

You must set this variable before the window system starts up. Typically, you

would set it before saving a world.

mtb:*pixmap-correspondence-memory-threshold* Variable

Determines how much host memory is considered enough to enable off-screen

bitmaps that save the images of deexposed windows to be placed in host memory.

The amount of available host memory at the time the window system starts up

Page 997

must be at least mtb:*pixmap-correspondence-memory-threshold* times the size

of the screen.

tv:with-output-to-bitmap (&optional stream &key :for-stream :graphics-transform)

&body body Function

stream The stream to which to return the bitmap.

:for-stream

The stream for which the bitmap is intended.

:graphics-transform

An optional transform to be applied.�

Returns a raster array and positions containing the image output by body.

(defun bitmap-example (&optional (stream *standard-output*))

 (graphics:with-room-for-graphics ()

 (graphics:draw-triangle 0 0 200 0 50 50

 :tile (tv:with-output-to-bitmap (bstream

 :for-stream stream)

 (graphics:draw-circle 0 0 10

 :gray-level .25 :stream bstream)

 (graphics:draw-regular-polygon 8 0 16 0 6

 :gray-level .75

 :stream bstream)))))

tv:with-output-to-bitmap-stream (bitmap-stream &rest args &key (for-stream nil)

&allow-other-keys) &body body Function

bitmap-stream

A stream that is a raster array intended to hold the image generat-

ed by body.

args :for-stream, the stream for which the bitmap is intended, and, op-

tionally, :graphics-transform, an optional transform to be applied.�

Binds bitmap-stream to a specially allocated stream that accepts the graphic output

during execution of body. At any time, the :bitmap-and-edges message to this

stream returns the current image.

Batching Graphics Requests for MacIvory

If you are drawing a number of graphics to a MacIvory screen (or remote off-

screen bitmap), you may benefit from batching them together into single larger re-

quests to the Macintosh. This does not cut down the actual drawing time, but re-

duces the fixed communication overhead. This batching is only supported for lines

and rectangles.

Page 998

There are two new messages defined on windows (including those not attached to

a MacIvory), :draw-multiple-lines and :draw-multiple-rectangles. Note that

:draw-multiple-lines is different from :draw-lines, in that each line is specified by

points, rather than joining to the previous line segment.

If you are using the higher level graphics:draw-line and

graphics:draw-rectangle, you can still benefit from this batching by telling the

system to buffer successive draw-line or draw-rectangle requests together. You will

sacrifice a little bit of latency for better overall performance. To do this, (setf

(rpc::rpc-screen-buffered-graphics-enabled <screen>) t).

Direct Calls: a Linking Feature for Ivory-based Machines

The Ivory architecture provides Direct Calls, a fast mechanism for function calls

that is mostly usable for benchmarking and application delivery.

In a normal Lisp call (an "indirect" call), the caller function has a pointer to the

function cell containing the function to be called. When the call instruction is exe-

cuted, it fetches the callee function from the function cell, and starts execution at

the entry instruction of that function. The entry instruction sequence checks that

the proper number of arguments was passed, initializes optional and keyword ar-

guments, and then proceeds to execute the body of the called function.

The normal call is called "indirect" because it fetches the contents of a function

cell (indirects through it) rather than addressing the callee function directly. Lisp

implementations typically implement calls as indirect calls in order to efficiently

support redefinition at runtime: When a function is redefined, all the Lisp system

has to do is change the contents of the function cell, and all callers will immedi-

ately address the new definition.

In a direct call, the caller addresses the callee function directly, without going

through a function cell. For Lisp systems that implement function calls using the

direct method, redefinition must change every caller of a function to address the

new definition. This is typically very slow.

Another optimization is possible when calls are implemented directly. Since rela-

tively simple static analysis can determine how many arguments are being passed

to a function, a direct call can often skip the preamble instructions that check for

the proper number of arguments and initialize optional arguments.

Genera 8.0 provides a linker for Ivory-based machines that performs both of the

above optimizations. Depending on the application, its use can result in substantial

performance improvements. The linker is not fully integrated with Genera. If there

are direct calls to a function, and there is an attempt to redefine it, an error is

signaled. Proceed options allow you to unlink definitions to a function before re-

defining, or to proceed without unlinking.

To globally link all functions, use (cli::link-to-functions t). To globally unlink

them, use (cli::unlink-to-functions t). If you need finer control of which exist-

ing functions should be linked or unlinked, refer to cli::link-to-functions and

cli::unlink-to-functions for further information.

Page 999

Regardless of whether any functions are linked or not, newly compiled or loaded

functions are always unlinked.

Note: Because of architectural limitations, linking does not work on 3600-family

machines, In order to get the additional performance benefit of linking, you must

use an Ivory-based processor.

cli::link-to-functions functions &optional link-noter verbose Function

Links all calls to the functions specified by functions. functions is either a list of

functions and/or function specs, or the symbol t, meaning all functions. This pro-

cess takes up to twenty minutes, depending on your system configuration and the

amount of software loaded.

cli::unlink-to-functions functions &optional unlink-noter verbose Function

Unlinks all calls to the functions specified by functions. functions is either a list of

functions and/or function specs, or the symbol t, meaning all functions. This pro-

cess takes about five minutes, depending on your system configuration and the

amount of software loaded.

Converting User Interfaces for MacIvory

As a matter of principle, we recommend that you convert your programs in stages.

If you wish, you can also convert your code by making all the source changes at

once and then getting your program to run. However, this is generally a less effi-

cient and more tedious process.

You should be generally familiar with the user-level operation of the MacIvory and

the high-level user-oriented description of how the MacIvory user interface works.

• First, make sure that your program runs under Genera 7.2 on the 3600-series.

Genera 7.2 is almost completely compatible with earlier releases. If you discover

a large number of incompatibilities in converting to Genera 7.2, you are proba-

bly using many undocumented internal interfaces. If nothing else, this should

alert you to parts of your program that may run into problems on the MacIvory.

• Make the changes necessary to get your program to run on the Ivory architec-

ture. The Ivory is almost entirely source level compatible, so this should not be

a major undertaking.

• Genera 8.0 Ivory includes a number of changes to the scheduler and window

system locking originally made in Genera 7.9 Ivory of which you should be

aware. For further information, see the section "Converting to the New Sched-

uler". Get your program to run on the MacIvory with minimal changes. There is

only one major thing that is completely different on the MacIvory. There is no

virtual memory array on the Lisp side that maps to the screen array of an ex-

posed window. All drawing is done on the Macintosh side. If you are using

Page 1000

tv:sheet-screen-array or the tv:screen-array instance variable of a sheet, you

need to change to go through the screen. This conversion is straightforward. In-

stead of the very low level sys:%draw-xxx functions, you should use the

tv:sheet-draw-xxx functions. For instance, these forms:

(bitblt tv:alu-seta 100 100 raster 0 0 (tv:sheet-screen-array sheet) 100 100)

(bitblt tv:alu-seta 100 100 (tv:sheet-screen-array sheet) 0 0 raster 100 100)

become

(tv:sheet-bitblt tv:alu-seta 100 100 raster 0 0 nil 100 100 sheet)

(tv:sheet-bitblt tv:alu-seta 100 100 nil 0 0 raster 100 100 sheet)�

and this form:

(tv:%draw-char-internal #o101 fonts:43vxms 10 10 tv:alu-xor tv:screen-array)�

becomes

 (tv:sheet-draw-glyph #o101 fonts:43vxms 10 10 tv:alu-xor)�

• The other incompatibility you may experience from the very start is the change

in the screen size. If you think this will be a major problem, one good way to

get started is to use a larger Macintosh monitor for the initial conversion.

There are a variety available that approximate the size and pixel density of the

3600-series screens.�

MacIvory differs from previous systems in that screen drawing is not done by the

same processor that executes Lisp programs. Ivory executes Lisp, but the Macin-

tosh does the screen drawing. When you execute a graphics or text output function

or message, on 3600-series systems it does not return until the screen drawing is

complete, but on MacIvory it queues a request for the Macintosh to do the screen

drawing and returns immediately. If you have a program that needs to synchronize

itself with the screen drawing, use the finish-output function (also available as

the :finish message).

On 3600-series machines, finish-output on a window takes no appreciable time,

but on MacIvory it waits until previously queued screen output has been complet-

ed. An example of when you would need to do this is a program that draws contin-

uously while a mouse or keyboard button is held down, and is supposed to stop as

soon as the button is released. Without finish-output, the Ivory may stop as soon

as the button is released, but the already-queued output will continue to be drawn

for a noticeable amount of time.

Bitblt operations where the source and destination are the same bitmap in host

memory (which could be a window’s image or an off-screen bitmap), and the

source and destination subrectangles overlap, are not compatible with the 3600 and

XL400 native window system. The embedded window system always chooses the di-

rection of transfer so as to shift the contents of the bitmap. The native window

system requires the caller to use the sign of the width and height arguments to

Page 1001

specify the direction of transfer, either shifting the contents of the bitmap or

smearing it. In effect, you cannot use :bitblt-within-sheet for smearing effects on

the embedded window system.

Once your program has been ported to MacIvory, you should decide how to best

make use of the system.

• If your output uses the graphics:draw-xxx drawing functions it will use the

QuickDraw drawing primitives directly. This can give a performance improve-

ment of as much as 100 times. There are some incompatibilities, of course:

° Stipples will always be 8x8. If yours do not have that phase, they may not

align properly.

° Unfilled shapes are stroked down and to the right of the mathematical shape

with a rectangular pen, rather than half on either side.

To make output exactly compatible, use the graphics:with-scan-conversion-

mode special form. (See the special form graphics:with-scan-conversion-mode

for further information.)

• Keep in mind that coordinate system transformation is still performed on the

Lisp side and that some shapes, such as tilted ellipses and dashed lines, are not

supported by QuickDraw and therefore are still handled the slower, compatible

way. As a general rule, however, if your graphics output already works compati-

bly to the LGP2/LGP3, you will probably do fine using QuickDraw also.

• If your output is using :draw-line or :draw-triangle and requires the ability to

draw endpoints or abut objects seamlessly. Then you must use tv:screen-genera-

graphics-compatibility of the screen to which you are drawing to locally enable

compatibility for these operations.

• If you are drawing to bit arrays and then copying them onto the screen to keep

down the flicker time, you may wish to allocate these arrays on the Macintosh

side and have the drawing done remotely. Then, the copying can also be done

entirely on the Macintosh.

If you are not concerned with compatibility among platforms, you may wish to con-

vert your program to have a Macintosh-style user interface. A version of

dw:define-program-framework is provided which provides high-level access to the

major capabilities. For further information, see the special form dw:define-remote-

program-framework. If you have special peripherals as part of your interface,

such as a tablet, or wish to have special output, such as sound, you may need to

make use of the MacIvory RPC facilities which access the Macintosh toolkit. These

are relatively easy to use, given a basic knowledge of the Macintosh. Lisp-level

support is given to remove most of the tedious host programming that would be

necessary to communicate between the processors.

Page 1002

You may also wish to add some specific high-level request communications to tailor

the performance of your application to the co-processor environment. Many well-

defined operations can be moved onto the host. For instance, if you require very

responsive rubber-band line style mouse tracking, you can define a procedure in

the Macintosh mouse handler to do this and pass the results back the Ivory. You

may wish to consult your Symbolics contact for help in meeting your specific

needs.

Example of Converting an Application for MacIvory

This section describes how an existing application program  Document Examiner

 was converted to work in Genera Ivory on the MacIvory platform. The goal was

to present essentially the same Document Examiner on both the MacIvory and

Symbolics 3600-series computers.

In presenting this example we hope to illustrate some common problems in prepar-

ing the user interface for Symbolics applications on MacIvory and their solutions.

Some general steps are:

• Recompiling the system for Genera Ivory.

• Identifying any problems in existing interface design.

• Redesigning the user interface, if necessary. Depending on the purpose of your

application, you may need to rework elements to fit a smaller screen size, or to

resemble a Macintosh style interface (described in the Macintosh User Interface

Guidelines).

• Implementing parallel user interfaces.

• Refining the new implementation.�

Recompiling�

The first step is to recompile the system in a Genera Ivory world running on a

MacIvory. (You can use the Compile System command or the compile-system

form.) The recompilation occurred without any problems, producing a set of IBIN

files. This application was not affected by any of the Genera Ivory changes.

Finding Problems with the Scaled-down Interface�

At this point, Document Examiner works on the MacIvory. When we try it on both

a large display and a small display the scaling of the user interface from the usual

Symbolics display to the large display on the Macintosh is acceptable. However,

there are several problems with the scaled-down user interface on the small dis-

play.

The first problem occurs when SELECT D on a small screen results in an error.

The cause of this error is that the size of the Viewer pane has been specified with

Page 1003

a fixed number of pixels, which exceeds the width of the small screen. When we

change the constraints from a fixed number of pixels to proportional constraints,

the immediate problem is solved.

Document Examiner makes full use of a large screen. Each pane is important and

necessary. When scaled, the two biggest problems are:

• The formatted text in the Viewer pane depends on larger margins.

• The appearance of the screen is excessively crowded.�

The Viewer shows the online documentation. The text was formatted expressly for

a large screen, and when it is scaled down for the small screen, the text disap-

pears beyond the right edge of the pane. This means that to read any given line,

you would have to scroll the window toward the right, and then scroll back to the

left to read the beginning of the next line.

One solution might be to change the formatter code to format differently, accord-

ing to the size of the display. Another possible solution is to redesign the user in-

terface of Document Examiner for the small screen. Since it was a goal to have

Document Examiner work for both the large and small screens, either solution

would require two parallel versions of some code, each version targeted for a par-

ticular size of display. (Either the formatter would work differently, based on the

display, or the user interface would work differently.)

We decided that redesigning the screen was preferable to changing the formatter.

Using this approach we could solve both problems. Since the primary purpose of

Document Examiner is to present documentation in a readable way, we wanted to

grant more of the screen to the text being displayed. Along the way, we would

have to reduce the amount of screen granted to other panes.

To pursue this solution, we do the following:

• Design a user interface targeted for the small screen

• Find a way to choose the user interface at run-time, based on the size of the

screen�

Designing the User Interface for the Small Screen�

Figure ! shows how Document Examiner appears on the large screen.

Page 1004

�

Figure 95. Large-screen Appearance of Document Examiner

�

We decided to use the entire width of the small screen for the Default Viewer. We

placed the Current Candidates and Bookmarks panes below the Default Viewer,

and the Command interaction pane below them. We reduced the size of these three

panes in order to compensate for increasing the size of the Default Viewer pane.

The Command Menu pane was the only remaining pane. Instead of dedicating

space on the screen for it, we decided to make Document Examiner commands

available via Macintosh-style pull-down menus. We created two new pull-down

menus, called DocEx and Show, and we placed Document Examiner commands in

these menus.

Figure ! shows how Document Examiner appears on the small screen. Note that

the two figures have the same scale factor, so you can get an idea of the differ-

ence in the sizes of the two screens.

Page 1005

Figure 96. Small-screen Appearance of Document Examiner�

�

The result is two different displays and modes of interaction, one for the large

screen (which was unchanged from its existing state), and one for the small

screen. Even though the mechanics of giving Document Examiner commands are

slightly different, the general look-and-feel of the two interfaces are so similar that

we believe users could easily switch between them.

Implementing the Parallel User Interfaces�

We needed to provide two dw:define-program-framework forms, one for each

screen. The form for the large screen already existed.

In both forms, it was important to make the :selectable option be nil, the :system-

menu option nil, and not to provide the :select-key option. As shown later, we will

use a different mechanism for choosing the appropriate user interface at run-time.

The primary difference in the two forms is in the :configuration option, highlight-

ed here:

Page 1006

(dw:define-program-framework doc-ex

 :pretty-name "Standard Document Examiner"

 :system-menu nil

 :selectable nil

 other-options...

 :configurations

 ’((dw::main

 (:layout (dw::main :column top-part bottom-part)

 (top-part :row title&viewer-pane candidates&bookmarks)

 (bottom-part :row command-pane menu-pane)

 (title&viewer-pane :column title-pane viewer-pane)

 (candidates&bookmarks :column candidate-pane bookmark-pane))

 (:sizes

 (dw::main (bottom-part 4 :lines command-pane)

 :then (top-part :even))

 (bottom-part (command-pane 660.)

 :then (menu-pane :even))

 (top-part (title&viewer-pane 660.)

 :then (candidates&bookmarks :even))

 (title&viewer-pane (title-pane 1 :lines)

 :then (viewer-pane :even))

 (candidates&bookmarks (candidate-pane 0.5)

 :then (bookmark-pane :even))))

))

�

(dw:define-program-framework small-doc-ex

 :pretty-name "Small Document Examiner"

 :system-menu nil

 :selectable nil

 other-options...

 :configurations

 ’((dw::main

 (:layout (dw::main :column title&menu viewer-pane

 candidates&bookmarks command-pane)

 (title&menu :row title-pane #+Ignore menu-pane)

 (candidates&bookmarks :row candidate-pane bookmark-pane))

 (:sizes

 (dw::main (command-pane 2 :lines) (title&menu 1 :lines title-pane)

 (candidates&bookmarks 4 :lines candidate-pane)

 :then (viewer-pane :even))

 (title&menu (title-pane :even))

 (candidates&bookmarks (candidate-pane 0.5)

 :then (bookmark-pane :even)))

)))�

Page 1007

Causing the Correct User Interface to be Selected at Run-time�

In the example below, we define the function choose-doc-ex-for-screen to perform

a run-time query to determine the size of the screen. The result of this query se-

lects the appropriate Document Examiner.

The choose-doc-ex-for-screen function is "hooked into" the activity selection mech-

anism by using tv:add-dispatching-select-key, a function documented for general

use. The two function calls that follow do some additional cleanup work. These

functions are not documented other than in this example.

However, for now, if you need to choose the application based on run-time condi-

tions, you can follow this example.

(defun choose-doc-ex-for-screen (screen)

 (let ((screen-type

 (if (> (send (or screen tv:main-screen) :inside-width)

 950.)

 :big-screen

 :small-screen)))

 (ecase screen-type

 (:big-screen ’doc-ex)

 (:small-screen ’small-doc-ex))))

�

(tv:add-dispatching-select-key

 #\D ’choose-doc-ex "Document Examiner" ’choose-doc-ex-for-screen t)

�

;;; The following is necessary to put the "Document Examiner" entry

;;; in the system menu, as D-P-F would do.

(tv:add-activity-to-system-menu-programs-column "Document Examiner")

(tv:add-to-system-menu-create-menu

 "Document Examiner"

 ’(program-frame :program choose-doc-ex)

 "A Document Examiner program frame.")

�

Conditionalizing the Prompt�

This final piece of code fine-tunes the application. The problem it addresses is that

the usual Document Examiner prompt was too large for the small screen. This is

because the prompt uses a device font, and device fonts are always the same size.

They do not use the normal character-style mechanism, and are not automatically

scaled down for the smaller screen. This code remedies the problem and selects

the Document Examiner prompt based on the program running in the window.

(defun type-of-docex-frame (window)

 (dw::program-name (send (send window :alias-for-selected-windows)

 :program)))

Page 1008

�

(defun default-dex-prompt (stream keyword)

 (ignore keyword)

 (with-character-style (’(:fix :roman :normal) stream)

 (ecase (type-of-docex-frame stream)

 (small-doc-ex

(send stream :tyo #\space)

(send stream :tyo #\arrow:right-open-arrow))

 (doc-ex

(send stream :tyo #\space)

(send stream :tyo #\arrow:right-triangle)))))�

MacIvory User Interface Examples

Etest Example

etest.lisp

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

;;;> EXAMPLES-MESSAGE

;;;>

;;;>**

;;;>

;;;> Symbolics hereby grants permission to customers to incorporate

;;;> the examples in this file in any work belonging to customers.

;;;>

;;;>**

�

(dw:define-remote-program-framework etest

 :selectable (:mac)

 :menu-level-order ‘(,macintosh-internals::*standard-remote-viewer-file-menu*

 ,macintosh-internals::*standard-edit-menu*

 "ETest")

 :inherit-from (;; Enable Lisp event handling

 mtb::lisp-handles-event-uims

 macintosh-internals::remote-viewer-commands)

 :command-table (:kbd-accelerator-p t :inherit-from ’("remote-viewer-commands"

 ;; Handle some events

 "Mac Window Control Commands"))

 :state-variables ((splash-window))

)�

Page 1009

�

;; This scrawls a big black circle, showing that scroll bar tracking

;; with Lisp callbacks works.

(define-etest-command (com-test-1

:menu-accelerator "Test-1"

:menu-level (:top-level (:mac "ETest"))

:keyboard-accelerator #\s-S)

 ()

 (let ((w (dw::remote-program-open-viewer self :picture-p nil

 :left 40 :top 40 :width 600 :height 600

 :title "This is a test"

 :displayer ’display-etest-startup-window)))

 (send w :expose) ;only this creates the Macintosh side

 (multiple-value-bind (scroll-bar-h scroll-bar-v)

(macintosh-internals::mac-rpc-window-scroll-bars w)

 (mtb:_setctlmax scroll-bar-h 600)

 (mtb:_setctlmax scroll-bar-v 600))

 (mtb::force-update-window w) ;---this shouldn’t be needed

))�

�

(defun display-etest-startup-window (w mac-window)

 (ignore mac-window)

 (graphics:draw-circle 200 200 100 :stream w))

�

(define-etest-command (com-splash :menu-accelerator "Splash"

 :menu-level (:top-level (:mac "ETest"))

 :keyboard-accelerator #\s-F)

 ()

 (let ((w (if (member splash-window

(macintosh-internals::mac-rpc-program-windows self))

splash-window

(setq splash-window

 (dw::remote-program-open-viewer self :picture-p nil

 :left 5 :top 30 :width 470 :height 370

 ;; This title isn’t really called

 ;; for by the graphic design...

 :title "Bear¥Cal Splash"

 :displayer (etest-splash-displayer))))))

 (send w :expose) ;only this creates the Macintosh side

 (mtb::force-update-window w) ;---this shouldn’t be needed

))�

Page 1010

�

(defun etest-splash-displayer ()

 (let* ((inner-pict-handle ())

 (inner-pict-rect ())

 (displayer

 (sys:named-lambda splash-displayer (ignore ignore)

 (when (null inner-pict-handle)

 ;; The closure state needs some initialization

 (setq inner-pict-rect

 (mtb:make-rect :left 5 :top 30 :right 475 :bottom 400))

 ;; Pre-scribble into a pict so we won’t need file I/O at redisplay time.

 (setq inner-pict-handle (mtb:_openpicture inner-pict-rect))

 (with-open-file (in "sys:embedding;macivory;toolkit;examples;Splash.pict"

 :element-type ’(unsigned-byte 8))

 ;; Open code mtb::with-pict-from-file because it’s on the sys host

 ;; instead of on the local Mac.

 (let ((len (- (send in :length) 512)))

 ;; The first 512 bytes of a pict file are useless. The rest is the pict.

 (send in :set-pointer 512)

 (stack-let ((pic (make-array len :element-type ’(unsigned-byte 8))))

 ;; Read it from sys host into Lisp

 (send in :string-in "reading pict data" pic)

 ;; Ship it over to the Mac.

 (mtb:with-mac-temp (pict :handle T :initial-contents pic)

 (let ((pict-rect (mtb:octet-ref-remote-handle

 (mtb:picture-picframe pict))))

 (mtb:_offsetrect pict-rect -20 -20)

 (mtb:_drawpicture pict pict-rect))))))

 (mtb:_textsize 18)

 (mtb:_textface (mtb:cconstant bold))

 (mtb:_moveto 100 20)

 ;; The octal 245 here is the Macintosh center-bullet char

 (mtb:_drawstring "Welcome to Bear¥Cal Airlines")

 (mtb:_moveto 115 330)

 ;; The 322 and 323 are Macintosh sex-differentiated quotes

 (mtb:_drawstring "ÒYou’ll have reservations...Ó")

 (mtb:_closepicture))

 ;; This is what really does the display

 (mtb:_drawpicture inner-pict-handle inner-pict-rect))))

 displayer))�

Page 1011

�

(defvar *splash-resource-file-pathname* #p"host:dsk:rlb:credit-card-picts.rsrc")

;;; Since PICT dialog items are identified by PICT resource numbers,

;;; they must live in a resource file. We distribute a little rsrc file with the

;;; picts for this example, but it’s unlikely your Macintosh can read them from the sys host.

;;; So, to run this example, you should do:

;;; (mtb:copy-mac-image "sys:embedding;macivory;toolkit;examples;credit-card-picts.rsrc"

;;; "host:dsk:your-folder:credit-card-picts.rsrc")

;;; to move the picts to your Macintosh’s file system, and edit the defvar above,

;;; changing "rlb" to reflect its new home.

�

(define-etest-command (com-dialog

:menu-accelerator "Dialog"

:menu-level (:top-level (:mac "ETest"))

:keyboard-accelerator #\s-D)

 ()

 (mtb:with-resfiles ((ignore *splash-resource-file-pathname*))

 (let ((values (mtb:do-modal-dialog self (etest-dialog-items))))

 ;;---of course this is all bogus

 (let ((results (with-output-to-string (s)

(loop for (k v) on values by #’cddr do

 (when (and v (not (equal v "")))

 (format s " ~a: ~a~%" k v))))))

 (unless (zerop (length results))

 ;; This is just a way to pop up something in lieu of updating

 ;; some Statice database

 (macintosh-internals::display-dialog-help

 self

 (format nil "Confirm:~%~a" results)

 (mtb::coerce-to-rect ’(30 50 30 50))

 500 400))))))�

�

(defun etest-dialog-items ()

 (let ((m (mtb::make-dialog-item-maker)))

 (mtb::set-dialog-face m

 :bounds ’(30 50 482 335)

 :title "Bear¥Cal Reservation System"

 :proc-id (mtb:cconstant rDocProc))�

�

 (mtb::add-several-dialog-items

 m

 ’((:button (380 10 440 30) "OK"

 :check T :cluster okay-cluster :query-id okay-button)

(:button (380 40 440 60) "Cancel" :query-id cancel-button)

Page 1012

�

(:text (10 10 110 26) "Passenger:")

(:edit (115 10 360 26) :query-id passenger :required T

 :oversee-cluster okay-cluster)

�

(:text (10 35 110 51) "Destination:")

(:edit (115 35 360 51) :query-id destination :required T

 ;; :format1 "A" :format2 "["

)

�

(:text (10 60 110 76) "Depart:")

(:edit (115 60 185 76) :query-id depart :required T)

�

(:text (205 60 285 76) "Return:")

(:edit (290 60 360 76) :query-id return)

�

(:line (12 85 440 85))))�

�

 (mtb::add-several-dialog-items

 m

 ’((:text (10 95 110 111) "Address:")

(:edit (115 95 440 111) :query-id address)

�

(:text (10 120 110 136) "City:")

(:edit (115 120 330 136) :query-id city)

�

(:text (345 120 400 136) "State:")

(:edit (405 120 440 136) :query-id state)

�

(:text (10 145 110 161) "Zip:")

(:edit (115 145 220 161) :query-id zip)

�

(:text (235 145 295 161) "Phone:")

(:edit (300 145 440 161) :query-id phone)

�

(:line (12 170 440 170))

(:text (370 180 440 196) "Payment:")

(:cluster payment-cluster

 (:pict (375 200 434 234) 100

:query-id supercard)

 (:pict (375 240 434 274) 101

:query-id creditcard))

�

(:line (360 175 360 275))))�

Page 1013

�

 (mtb::add-several-dialog-items

 m

 ’((:text (10 180 110 196) "Incidentals:")

(:cluster incidentals-cluster

 (:check (15 200 110 216) "Smoking" :report T

 :query-id incidental-smoking)

 (:check (15 220 110 236) "Dinner"

 :query-id incidentals-dinner)

 (:check (15 240 110 256) "Movie"

 :query-id incidentals-movie)

 (:check (15 260 110 276) "Rental Car" :report T

 :query-id incidental-rental-car))))�

�

 (mtb::add-several-dialog-items

 m

 ’((:text (130 180 230 196) "Class")

(:cluster class-cluster

 (:radio (135 200 230 216) "First"

 :query-id first-class)

 (:radio (135 220 230 236) "Coach"

 :query-id coach-class)

 (:radio (135 240 230 256) "Nook"

 :query-id nook-class))))

�

 (mtb::add-several-dialog-items

 m

 ’((:text (250 180 350 196) "Seating")

(:cluster seating-cluster

 (:radio (255 200 350 216) "Window"

 :query-id seating-window)

 (:radio (255 220 350 236) "Center"

 :query-id seating-center)

 (:radio (255 240 350 256) "Aisle"

 :query-id seating-aisle))))

 m))

�

�

Note: credit-card-picts.rsrc and splash.pict are binary data files used by the ETest

commands. splash.pict is taken from the sys host, so you can try it out without

further work. To use the credit-card-picts.rsrc demo, you must copy it onto your

Macintosh before running the Dialog demo, and then edit a defvar in etest to say

where the file has been copied.

Pic-show Example

Page 1014

pic-show.lisp

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: (PIC-SHOW (MTB MACINTOSH-INTERNALS RPC SCL)); Base: 1

0 -*-

;;;> EXAMPLES-MESSAGE

;;;>

;;;>**

;;;>

;;;> Symbolics hereby grants permission to customers to incorporate

;;;> the examples in this file in any work belonging to customers.

;;;>

;;;>**

�

(dw:define-remote-program-framework pic-show

 :selectable (:mac)

 :menu-level-order ‘(,macintosh-internals::*standard-remote-viewer-file-menu*

 ,macintosh-internals::*standard-edit-menu*

 "PicShow")

 :inherit-from (;; Enable Lisp handling of events

 mtb::lisp-handles-event-uims

 macintosh-internals::remote-viewer-commands)

 :command-table (:kbd-accelerator-p t :inherit-from ’("remote-viewer-commands"

 ;; Handle some events

 "Mac Window Control Commands"))

 :state-variables ((window-pictures))

)�

�

;;;==

;;; Register file types and ways to read pictures from them

;;;==

�

(defvar *picture-readers* ())

�

(defun file-types-readable-as-pictures ()

 (mapcar #’first *picture-readers*))

�

(defun note-picture-reader (file-type function)

 (pushnew (list file-type function) *picture-readers*

 :key #’first :test #’string=))

�

(defun find-picture-reader (file-type)

 (second (assoc file-type *picture-readers* :test #’string=)))

Page 1015

�

(defmacro define-picture-reader (function-name file-type arglist &body body)

 ‘(progn

 (defun ,function-name ,arglist

 (declare (sys:function-parent ,function-name define-picture-reader))

 ,@body)

 (note-picture-reader ’,file-type ’,function-name)))

�

;;;==

;;; Temporarily bind clipping region

;;;==

�

(defmacro with-clip-rect ((rect) &body body)

 ‘(with-clip-rect-1 ,rect (sys:named-lambda with-clip-rect () ,@body)))

�

(defun with-clip-rect-1 (rect continuation)

 (declare (sys:downward-funarg continuation))

 (multiple-value-bind (left top right bottom)

 (dw:box-edges (mtb::coerce-to-box rect))

 (with-temps ((old-clip _newrgn _disposergn)

 (new-clip _newrgn _disposergn))

 (_getclip old-clip)

 (_setrectrgn new-clip left top right bottom)

 (mtb::unwind-protect-try

(progn

 (_setclip new-clip)

 (funcall continuation))

(_setclip old-clip)))))

 �

�

;;;==

;;; Here’s the main command

;;;==

Page 1016

�

(define-pic-show-command (com-show-file :menu-accelerator "Open"

:menu-level (:top-level (:mac :file))

:keyboard-accelerator #\s-O)

 ()

 ;; It would be nice to change the mouse cursor to a wristwatch while preparing to show.

 (multiple-value-bind (name pict)

 ;; Those types we know how to read and show. When there are more than

 ;; four types this will have to use a file type filter instead of type list.

 ;; See Inside Macintosh p. I-524.

 (let ((types (file-types-readable-as-pictures)))

 (multiple-value-bind (vrefnum name type)

 (ez-sfgetfile :x-and-y ’(100 100) :types types)

 (when vrefnum ;NIL if Cancel

 (with-open-refnum (refnum (fs:parse-pathname name "host")

 :vrefnum vrefnum)

 (values name (funcall (find-picture-reader type) refnum))))))

 (when name ;NIL if Cancel

 (multiple-value-bind (rpc-window mac-window)

 ;; Get a place to display this picture

 (get-the-right-window self pict name)

 (display-picture-window rpc-window mac-window)))))�

�

;;;==

;;; Getting the pictures displayed

;;;==

�

;; A collection of things replicated for each file/picture/window/etc

(defflavor window-picture (rpc-window mac-window scroll-bars pict zoom pict-rect display-rect)

 ()

 :initable-instance-variables

 :readable-instance-variables)�

Page 1017

�

(defmethod (get-the-right-window pic-show) (pict name)

 (let ((pict-rect (octet-ref-remote-handle (picture-picframe pict))))

 (multiple-value-bind (pleft ptop pright pbottom)

(values (rect-left pict-rect 0)

(rect-top pict-rect 0)

(rect-right pict-rect 0)

(rect-bottom pict-rect 0))

 (let ((width (- pright pleft))

 (height (- pbottom ptop)))

(multiple-value-bind (max-right max-bottom)

 ;;---this should be based on something like screenBits, but that isn’t

 ;;readily accessible here. So pick something wrong, at least for large screens,

 ;;but which should at least leave the size box on the screen.

 (values 600 400)

 (let* ((dy 20)

 (dx 4)

 (number-of-windows (length window-pictures))

 ;; Offset the windows a little each time.

 ;; This doesn’t really work when some windows have been closed.

 (left (+ 15 (* dx number-of-windows)))

 (top (+ 40 (* dy number-of-windows)))

 (right (min max-right (+ left width)))

 (bottom (min max-bottom (+ top height))))

 (let ((rpc-window

 ;; This is what with-output-to-viewer does

 (dw::remote-program-open-viewer

 self :picture-p nil

 :left left :top top :right right :bottom bottom

 :title name

 :displayer ’display-picture-window)))

 (send rpc-window :expose) ;force creation on Macintosh side

 (let ((mac-window (macintosh-internals::mac-rpc-window-mac-window rpc-window)))

(multiple-value-bind (scroll-bar-h scroll-bar-v)

 (macintosh-internals::mac-rpc-window-scroll-bars rpc-window)

 ;; The scroll bars need to know how big a range they’re scrolling

 ;; This scroll bar stuff certainly deserves to have been done automatically

 ;; by dw::remote-program-open-viewer

 (mtb:_setctlmax scroll-bar-h width)

 (mtb:_setctlmax scroll-bar-v height)

 ;; Stash away our data structures.

 ;; --- This little application has no code to

 ;; realize when a window is closed.

 (push (make-instance

 ’window-picture

 :rpc-window rpc-window

 :mac-window mac-window

 :scroll-bars (list scroll-bar-h scroll-bar-v)

Page 1018

 :pict pict

 :zoom 1

 :pict-rect pict-rect

 :display-rect (make-rect :left 0 :top 0

 :right width :bottom height))

window-pictures)

 (values rpc-window mac-window))))))))))

�

;; This is the redisplayer.

(defun display-picture-window (rpc-window mac-window)

 (ignore mac-window)

 ;; forward this request to the controlling remote program.

 (display-picture-window-1 (macintosh-internals::mac-rpc-window-program rpc-window)

 rpc-window))�

�

(defmethod (display-picture-window-1 pic-show) (rpc-window)

 (let ((window-picture (find rpc-window window-pictures :key #’window-picture-rpc-window)))

 (when window-picture

 ;; forward it to the application data structure.

 (display-picture-window-2 window-picture))))

�

(defmethod (display-picture-window-2 window-picture) ()

 (with-qd-port (mac-window)

 ;; Draw the pict. Conceivably this could be accelerated in some cases by

 ;; knowing something of the port’s cliprgn.

 (_drawpicture pict display-rect)))�

�

;;;==

;;; Ways to read files.

;;;==

�

;; Pict files written by MacDraw and many others

(define-picture-reader get-the-pict "PICT" (refnum)

 (with-pict-from-file (pict pict-rect :refnum refnum :temporary nil)

 (ignore pict-rect)

 pict))

Page 1019

�

;; MacPaint files are written by many paint programs.

;; The first 512 bytes are skipped. Then there are 720 rows

;; each 72 bytes wide (where each row needs UnpackBits).

;; Fixed size, fixed resolution.

(define-picture-reader get-the-pntg "PNTG" (refnum)

 (let ((len (- (_geteof refnum) 512)))

 ;; We need a place to keep the file data to UnpackBits from

 (mtb:with-mac-temp (pntg :handle t :size len)

 (_setfpos refnum (cconstant fsFromStart) 512)

 (let ((err (with-handle-locked (pntg)

 ;; Read the file contents, but only on the Macintosh side.

 (_fsread-remote refnum (_ptrfromhandle pntg) len))))

(unless (zerop err)

 ;; fsread-remote doesn’t itself signal errors.

 (signal-mac-os-error err)))

 ;; and a place to keep the unpacked bits.

 (mtb:with-mac-temp (the-bits :handle T :size (* 720 72))

(with-handle-locked (the-bits)

 (with-handle-locked (pntg)

 (_unpackbitsbyrows (_ptrfromhandle pntg)

 (_ptrfromhandle the-bits)

 72 720))

 (with-rect (r 0 0 (* 72 8) 720)

 (stack-let ((bitmap (make-bitmap

 ;; the-bits must be locked while this is used as Ptr

 :baseaddr (_ptrfromhandle the-bits)

 :rowbytes 72

 :bounds r)))

 (let* ((the-port (_getport))

 (portrect (octet-ref-remote-ptr (grafport-portrect the-port)))

 (portbits (octet-ref-remote-ptr (grafport-portbits the-port))))

;; Turn the bitMap into a Pict by drawing it.

(let ((pict (_openpicture r)))

�

 (with-clip-rect (r)

 (_copybits bitmap portbits portrect portrect

 (cconstant srcCopy) 0))

 (_closepicture)

 pict)))))))))�

Page 1020

�

;; IDMP is a very simple file format for grayscale images.

;; 2 bytes, bits-per-pixel

;; 2 bytes, width

;; 2 bytes, height

;; rest of file, the data.

(define-picture-reader get-the-idmp "IDMP" (refnum)

 (let (bits-per-pixel width height)

 (mtb:with-mac-temp (data :handle T :size 0)

 (stack-let ((front (make-array 6 :element-type ’(unsigned-byte 8)

 :fill-pointer 0)))

(_fsread refnum 6 front)

(setq bits-per-pixel (byte-swapped-8-aref-16 front 0)

 width (byte-swapped-8-aref-16 front 2)

 height (byte-swapped-8-aref-16 front 4)))

 (let ((len (/ (* width height bits-per-pixel) 8)))

(_sethandlesize data len)

(let ((err (with-handle-locked (data)

 (_fsread-remote refnum (_ptrfromhandle data) len))))

 (unless (zerop err)

 (signal-mac-os-error err))))

 ;; Compute the color map for n-bit grayscale

 (let* ((n-colors (ash 1 bits-per-pixel))

 (shift (- 16 bits-per-pixel))

 (rgb (make-rgbcolor))

 (r (make-rect :left 0 :top 0 :right width :bottom height))

 (the-port (_getport)))

(with-temps ((palette (lambda ()

(_newpalette n-colors

 0 (cconstant pmTolerant) 0))

 _disposepalette))

 (loop for i from 0 below n-colors do

 (let ((k (lognot (ash i shift))))

 (setf (rgbcolor-red rgb 0) (ldb (byte 16 0) k))

 (setf (rgbcolor-green rgb 0) (round (* .9 (ldb (byte 16 0) k))))

 (setf (rgbcolor-blue rgb 0) (round (* .9 (ldb (byte 16 0) k))))

 (_setentrycolor palette i rgb)))

 (with-temps ((pmh _newpixmap _dispospixmap))

 (with-handle-locked (data)

 (with-handle-locked (pmh)

;; This could have used a bunch of (setf (octet-ref-remote-handle ...)),

;; but since several fields are being altered, it seemed better to

;; drag the whole thing over to Lisp, fiddle with it, and send it back.

;; A pixMap is only 50 bytes anyway.

(with-mac-struct (pixmap pixmap :handle pmh)

 (setf (pixmap-baseaddr pixmap 0) (_ptrfromhandle data))

 (setf (pixmap-rowbytes pixmap 0)

(logior #x8000

Page 1021

;; See Inside Macintosh p. V-53.

(/ (* width bits-per-pixel) 8)))

 (setf (pixmap-bounds pixmap 0) r)

 (setf (pixmap-pixelsize pixmap 0) bits-per-pixel)

 (setf (pixmap-cmpsize pixmap 0) bits-per-pixel)

 (_write-opaque-bytes-into-handle

 pmh (length pixmap) pixmap))

;; Now don’t ask me why we bring it back again. Maybe it’s because

;; drawpixmap insists on having a Lisp pixMap to transport back to

;; the Macintosh side.

(with-mac-struct (pixmap pixmap :handle pmh)

 (_palette2ctab palette (pixmap-pmtable pixmap 0))

 (let ((portrect (octet-ref-remote-ptr (grafport-portrect the-port)))

(portbits (octet-ref-remote-ptr (grafport-portbits the-port))))

 (let ((pict (_openpicture r)))

 (unless (typep portbits ’(vector (unsigned-byte 8)))

(error "Bad portbits"))

 (with-clip-rect (r)

(_drawpixmap pixmap portrect portrect

 (cconstant srcCopy) 0))

 (_closepicture)

 pict)))))))))))�

�

;;;==

;;; An attempt at making this toy a little more interesting

;;;==

�

;;---The menu item for this should be disabled when there are no pictures.

(define-pic-show-command (com-set-zoom :menu-accelerator "Set Zoom"

 ;; I think the -c- gets lost somehow, which

 ;; puts this on the same key as [Edit / Undo],

 ;; which fails to adhere to the Macintosh UI guidelines.

 :keyboard-accelerator #\s-c-Z

 :menu-level (:top-level (:mac "PicShow")))

 ((zoom ’number :default 1 :prompt "Zoom"))

 (let ((wp (front-window-picture self)))

 (if wp

 (set-window-picture-zoom wp zoom)

 (beep))))�

�

(defmethod (front-window-picture pic-show) ()

 (let ((mac-window (_frontwindow)))

 ;; Look up the front Macintosh window in our application data structures.

 (let ((window-picture (find mac-window window-pictures :key #’window-picture-mac-window)))

 window-picture)))�

Page 1022

�

(defmethod (set-window-picture-zoom window-picture) (new-zoom)

 (let ((old-zoom zoom))

 (setq zoom new-zoom)

 (with-qd-port (mac-window)

 ;; By invalidating the old and new sizes, we hope to cause correct redisplay

 (_invalrect display-rect)

 ;; Compute new edges

 (let ((left (round (* zoom (rect-left pict-rect 0))))

 (top (round (* zoom (rect-top pict-rect 0))))

 (right (round (* zoom (rect-right pict-rect 0))))

 (bottom (round (* zoom (rect-bottom pict-rect 0)))))

;; Update scroll bars

(flet ((foo (s v)

 (let ((old (_getctlvalue s)))

 ;; Set the max before the value -- if we did the value first,

 ;; it might get clipped to the max.

 (_setctlmax s v)

 (_setctlvalue s (round old (/ zoom old-zoom))))))

 (foo (first scroll-bars) (- right left))

 (foo (second scroll-bars) (- bottom top)))

;; Update the stored version

(setf (rect-left display-rect 0) (round left))

(setf (rect-top display-rect 0) (round top))

(setf (rect-right display-rect 0) (round right))

(setf (rect-bottom display-rect 0) (round bottom))

(_invalrect display-rect)))))�

�

;;;==

;;; Ideas for enhancements

;;;==

#|

There should be a Windows command which offers a menu of open picture windows,

and when you pick one, selects the corresponding Macintosh window.

�

There could be a Crop command which lets you pick a rectangle and reduce

the image to only that size.

�

There could be keyboard accelerators to zoom and unzoom (and scroll, too) without

messing around with the dialog.

�

The _openpicture/_closepicture stuff should be macroized into making-picture

�

|#

�

(compile-flavor-methods pic-show window-picture)

�

Page 1023

Menubar Example

menubar.lisp

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: MAC-TOOLBOX; Base: 10 -*-

;;;> EXAMPLES-MESSAGE

;;;>

;;;>**

;;;>

;;;> Symbolics hereby grants permission to customers to incorporate

;;;> the examples in this file in any work belonging to customers.

;;;>

;;;>**

�

;;;

;;; You want to run show-menu-bar-menus.

;;; Also look at menu-item-feature and its setf method.

;;;

�

;;;==

;;; Structure definitions from Inside Macintosh V-229

;;;==

�

(define-octet-structure (MenuRec :access-type :byte-swapped-8)

 (menuOH menuhandle)

 (menuLeft integer-16))

�

(define-octet-structure (HMenuRec :access-type :byte-swapped-8)

 (menuHOH menuhandle)

 (* integer-16))

�

;; field types too

(define-octet-structure-field-type MenuRec () (array index)

 :result-type T

 :size (octet-structure-total-size (MenuRec .x. 0))

 :data ‘(macintosh-internals::make-included-octet-structure MenuRec ,array ,index))

�

(define-octet-structure-field-type HMenuRec () (array index)

 :result-type T

 :size (octet-structure-total-size (HMenuRec .x. 0))

 :data ‘(macintosh-internals::make-included-octet-structure HMenuRec ,array ,index))�

Page 1024

�

(define-octet-structure (DynamicMenuList :access-type :byte-swapped-8)

 (lastMenu cardinal-16)

 (lastRight cardinal-16)

 (mbResID cardinal-16)

 (menu (vector MenuRec (/ lastMenu 6)))

 (lastHMenu cardinal-16)

 (menuTitleSave pixmaphandle)

 (hMenu (vector HMenuRec (/ lastHMenu 6)))

)

�

;; This is the anonymous internal structure in IM V-230

(define-octet-structure (menu-item :access-type :byte-swapped-8)

 (itemStringLength cardinal-8)

 (itemString (vector character-8 itemStringLength))

 (itemIcon cardinal-8)

 (itemCmd cardinal-8) ;it’s not always character-8

 (itemMark cardinal-8) ;it’s not always character-8

 (itemStyle Style)

)

�

(defmacro string-from-str255-reference (reference)

 (declare (values string next-index))

 ‘(string-from-str255

 ,(second reference)

 (octet-structure-field-index ,reference)))

�

(defun string-from-str255 (octet-array index &key area)

 (declare (values string next-index))

 (let ((len (aref octet-array index)))

 (let ((result (if (eql area :stack)

 (sys:make-stack-array len :element-type ’string-char)

 (make-string len :area area)))

 (octet-array octet-array))

 (declare (sys:array-register result octet-array))

 (dotimes (i len)

(setf (aref result i) (code-char (aref octet-array (+ index i 1)))))

 (values result (+ index len 1)))))�

�

(defmacro string=-str255-reference (string reference)

 ‘(string=-str255-reference-1 ,string ,(second reference)

 (octet-structure-field-index ,reference)))

Page 1025

�

(defun string=-str255-reference-1 (string octet-array index)

 (let ((len (length string)))

 (and (= len (aref octet-array index))

 (let ((string string) (octet-array octet-array))

 (declare (sys:array-register string octet-array))

 (dotimes (i len T)

 (unless (char= (aref string i) (code-char (aref octet-array (+ index i 1))))

 (return nil)))))))�

�

;;;==

;;; The application code

;;;==

�

;; This is the thing to run

(defun show-menu-bar-menus ()

 (with-temps ((menu-bar-handle _getmenubar _disposhandle))

 (with-mac-struct (menu-bar () :handle menu-bar-handle)

 (format T "~&There are ~d items, right edge ~d"

 (/ (dynamicmenulist-lastmenu menu-bar 0) 6)

 (dynamicmenulist-lastright menu-bar 0))

 (let ((mbdf (dynamicmenulist-mbResID menu-bar 0)))

(when (≠ mbdf 0)

 (format T "~&Drawn by MBDF resid ~d, variant ~d"

 (ldb (byte 13 3) mbdf)

 (ldb (byte 3 0) mbdf))))

 (domap () ((item (dynamicmenulist-menu menu-bar 0)))

(with-mac-struct (menuinfo () :handle (menurec-menuoh item 0))

 (show-menuinfo menuinfo

 (menurec-menuleft item 0))))

 (format T "~&There are ~d hierarchical/popup menu items"

 (/ (dynamicmenulist-lastHmenu menu-bar 0) 6))

 (domap () ((item (dynamicmenulist-hmenu menu-bar 0)))

(with-mac-struct (hmenuinfo () :handle (hmenurec-menuhoh item 0))

 (show-menuinfo hmenuinfo ()))))))

Page 1026

�

(defun show-menuinfo (menuinfo left)

 (format T "~& Menu ID ~d, size ~dw*~dh"

 (menuinfo-menuid menuinfo 0)

 (menuinfo-menuwidth menuinfo 0)

 (menuinfo-menuheight menuinfo 0)

)

 (when left (format T ", left ~d" left))

 (let ((def (menuinfo-menuProc menuinfo 0)))

 (when (≠ def 0)

 (format T ", defProc handle 0x~x" def)))

 (let ((enables (ldb (byte 32 0) (menuinfo-enableFlags menuinfo 0))))

 (multiple-value-bind (title next-index)

(string-from-str255-reference (menuinfo-menudata menuinfo 0))

 (format T "~& Title ~s" title)

 (unless (ldb-test (byte 1 0) enables) (format T " [menu disabled]"))

 (let ((index next-index))

(loop for i from 1 do

 (multiple-value-bind (item-text icon-number kbd-equivalent

checkmark-char char-style next-index)

 (menu-item-stuff menuinfo index)

 (when (null item-text) (return))

 (format T "~& Item ~s" item-text)

 (when (≠ icon-number 0)

 (format T ", icon ~d" (+ 256 icon-number)))

 (unless (eql kbd-equivalent 0)

 (cond ((eql kbd-equivalent #x1B)

 ;; hierarchical menu, see IM V-236

 (format T ", submenu ~d" checkmark-char))

 (T

 (if (≤ #x1B kbd-equivalent #x1F)

 (format T ", kbd 0x~x" kbd-equivalent)

 (format T ", kbd ~c" kbd-equivalent))

 (unless (eql checkmark-char 0)

 (format T ", checkmark ~c" checkmark-char)))))

 (when (≠ char-style 0)

 ;; --- decode bits of the enum Style

 (format T ", style ~d" char-style))

 (unless (ldb-test (byte 1 i) enables)

 (format T " [disabled]"))

 (setq index next-index)))

(unless (= index (length menuinfo))

 (format T "~& Extra ~d bytes" (- (length menuinfo) index)))))))�

Page 1027

�

(defun menu-item-stuff (octet-array index)

 (declare (values item-text icon-number kbd-equivalent checkmark-char char-style next-index))

 (when (> (menu-item-itemStringLength octet-array index) 0)

 (values (menu-item-itemString octet-array index)

 (menu-item-itemIcon octet-array index)

 (menu-item-itemCmd octet-array index)

 (menu-item-itemMark octet-array index)

 (menu-item-itemStyle octet-array index)

 (octet-structure-total-size

 (menu-item octet-array index)))))�

�

;;;==

;;; Here’s a little more

;;;==

�

;;; Pass nil or the-item-text to refer the the menu itself

(defun menu-item-feature (menu-text item-text feature)

 (check-type feature (member :text :enabled :checked :mark :icon :style :key))

 (multiple-value-bind (handle item-number)

 (menu-handle-and-item-number menu-text item-text)

 (ecase feature

 (:text

(with-str255 (string)

 (_GetItem handle item-number string)

 (copy-seq string)))

 (:enabled

(if (< item-number 32)

 (with-mac-struct (menuinfo () :handle handle)

 (ldb-test (byte 1 item-number) (menuinfo-enableFlags menuinfo 0)))

 T))

 (:checked

(not (zerop (_getitemmark handle item-number))))

 (:mark

(let ((number (_getitemmark handle item-number)))

 (if (zerop number) nil (code-char number))))

 (:icon

(let ((n (_getitemicon handle item-number)))

 (if (zerop n) nil (+ n 256))))

 (:style

;; could decode the bits here

(_getitemstyle handle item-number))

 (:key

(_getitemcmd handle item-number))

)))

Page 1028

�

;; Internal, for use by setf below

(defun set-menu-item-feature (menu-text item-text feature value)

 (check-type feature (member :text :enabled :checked :mark :icon :style :key))

 (multiple-value-bind (handle item-number)

 (menu-handle-and-item-number menu-text item-text)

 (ecase feature

 (:text

(_SetItem handle item-number value))

 (:enabled

(if (< item-number 32)

 (if value

(_enableitem handle item-number)

(_disableitem handle item-number))

 (check-type value (not null))))

 (:checked

(_checkitem handle item-number value))

 (:mark

(_setitemmark handle item-number (if value (char-code value) 0)))

 (:icon

(check-type value (or null (integer 256 (512))))

(_setitemicon handle item-number (if value (- value 256) 0)))

 (:style

;; could encode the bits here

(check-type value (integer 0 (256)))

(_setitemstyle handle item-number value))

 (:key

(_setitemcmd handle item-number (if value (char-code value) 0)))

)))�

�

(defsetf menu-item-feature set-menu-item-feature)

Page 1029

�

;; The thing that finds the handle and item number

(defun menu-handle-and-item-number (the-menu-text the-item-text &key (if-not-found :error))

 (block found

 (flet ((check-menuinfo (handle)

 (with-mac-struct (menuinfo () :handle handle)

 (when (string=-str255-reference the-menu-text (menuinfo-menudata menuinfo 0))

 (when (null the-item-text)

 (return-from found (values handle 0)))

 (let ((next-index (let ((i (octet-structure-field-index

 (menuinfo-menudata menuinfo 0))))

 (+ i 1 (aref menuinfo i)))))

 (let ((index next-index))

 (loop for i from 1 do ;it -IS- 1-origin, right?

 (multiple-value-bind (item-text icon-number kbd-equivalent

 checkmark-char char-style next-index)

 (menu-item-stuff menuinfo index)

 (ignore icon-number kbd-equivalent checkmark-char char-style)

 (when (null item-text) (return))

 (when (string= item-text the-item-text)

 (return-from found

 (values handle i)))

 (setq index next-index)))))))))

 (with-temps ((menu-bar-handle _getmenubar _disposhandle))

(with-mac-struct (menu-bar () :handle menu-bar-handle)

 (domap () ((item (dynamicmenulist-menu menu-bar 0)))

 (check-menuinfo (menurec-menuoh item 0)))

 (domap () ((item (dynamicmenulist-hmenu menu-bar 0)))

 (check-menuinfo (hmenurec-menuhoh item 0))))))

 (ecase if-not-found

 (:error (error "Failed to find Macintosh menu ~s item ~s" the-menu-text the-item-text))

 ((nil)))

))�

�

#||

;;Here are some trivial things you can do with the Genera menu bar

�

;; A Keyboard accelerator to get at the Keyboard Kontrol

(setf (menu-item-feature "Keyboard" "Keyboard Control" :key) #\K)

�

;; Call the finder with a single keystroke! (clover-F)

(setf (menu-item-feature "∀" "Finder" :key) #\F)

;; MacOS seems to use the keystroke internally -- restore with this

(setf (menu-item-feature "∀" "Finder" :key) (code-char 29))

�

(setf (menu-item-feature "Options" "Keyboard" :style)

 (+ (cconstant bold) (cconstant shadow)))

Page 1030

�

||#

�

Show-icons Example

show-icons.lisp

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: MAC-TOOLBOX; Base: 10 -*-

;;;> EXAMPLES-MESSAGE

;;;>

;;;>**

;;;>

;;;> Symbolics hereby grants permission to customers to incorporate

;;;> the examples in this file in any work belonging to customers.

;;;>

;;;>**

�

(defun show-all-mac-cursors ()

 (do-rsrcs (curs ignore ignore) ("CURS" :all :load T)

 (draw-mac-cursor-at-cursorpos :handle curs))

 (send *standard-output* :increment-cursorpos 0 16))�

�

(defun show-all-mac-icons ()

 (do-rsrcs (h id name) ("ICON" :all :load T)

 (format T "~%ICON ~d ~s~%" id name)

 (draw-mac-icon-at-cursorpos :handle h)

 (send *standard-output* :increment-cursorpos 0 32))

 (do-rsrcs (h id name) ("ICN#" :all :load T)

 (format T "~%ICN# ~d ~s~%" id name)

 (with-mac-struct (icns () :handle h)

 (let ((icon-length (/ (* 32 32) 8)))

(loop for i from 0 below (length icns) by icon-length do

 (stack-let ((icon (make-array icon-length :element-type ’(unsigned-byte 8)

:displaced-to icns

:displaced-index-offset i)))

 (draw-mac-icon-at-cursorpos :struct icon)))))

 (send *standard-output* :increment-cursorpos 0 32)))�

Page 1031

�

(defun draw-mac-icon-at-cursorpos (&key resnum handle struct)

 (cond (struct

 (stack-let* ((struct struct)

 (image (make-array ’(32 32) :element-type ’bit))

 (image8 (make-array (/ (* 32 32) 8)

 :element-type ’(unsigned-byte 8)

 :displaced-to image)))

 (declare (sys:array-register struct image8))

 (dotimes (j 128)

 (setf (aref image8 j) (sys:bit-reverse-8 (aref struct j))))

 (multiple-value-bind (x y) (send *standard-output* :read-cursorpos)

 (graphics:draw-image image x y)

 (send *standard-output* :increment-cursorpos 36 0))))

(resnum

 (with-resource (icon "ICON" resnum)

 (draw-mac-icon-at-cursorpos :struct icon)))

(handle

 (with-mac-struct (icon () :handle handle)

 (draw-mac-icon-at-cursorpos :struct icon)))

(T)))�

�

(defun draw-mac-cursor-at-cursorpos (&key resnum handle struct)

 (cond (struct

 (check-type struct (vector (unsigned-byte 8) 68))

 (stack-let* ((image (make-array ’(32 32) :element-type ’bit))

 (image8 (make-array 64 :element-type ’(unsigned-byte 8)

 :displaced-to image)))

 (let ((i 0) (j 0))

 (dotimes (row 16)

 (dotimes (col 2)

 (setf (aref image8 j) (sys:bit-reverse-8 (aref struct i)))

 (incf i)

 (incf j))

 (incf j 2)))

 (multiple-value-bind (x y) (send *standard-output* :read-cursorpos)

 (graphics:draw-image image x y)

 (send *standard-output* :increment-cursorpos 20 0))))

(resnum

 (with-resource (struct "CURS" resnum)

 (draw-mac-cursor-at-cursorpos :struct struct)))

(handle

 (with-mac-struct (struct () :handle handle)

 (draw-mac-cursor-at-cursorpos :struct struct)))

(T)))

�

Page 1032

MacIvory Interface to HyperCard

The HyperIvory Demo

What is HyperIvory?�

HyperIvory is a collection of demos that illustrates the close communication and

integration possible between Ivory and a host HyperCard application. A similar ap-

proach could be used with any host application that allows extension, not just Hy-

perCard. This kind of integration and communication can also be built into new

applications, as described in the "MacIvory Programmer’s Reference".

HyperIvory offers examples of how to do the extension. The HyperIvory stack illus-

trates some of what Ivory could bring to HyperCard, including:

• Simple Lisp, as used in the EVAL Service and Command Service

• Programs, such as the Stack Dumper and Iconizer

• Hypertext capabilities, shown in a static form in the Doc Ex demo, which pro-

vides an interface to the same doc that Document Examiner gets you; and

shown in a computed form in the Flavor Demo, which uses Genera Flavor com-

ponents and dependents.

• Statice, as used in the database for Mug Shots.

• Joshua/ES, as used in Map Routes.�

The Lisp code for these demos is in the directory

SYS:EMBEDDING;MACIVORY;HYPERCARD;.

To use these demos:

1. Load the system HyperCard/MacIvory into Genera before using the Hyper-

Ivory demos.

2. Double-click on the HyperIvory icon, located in the MacIvory Applications

folder, to activate the stack. �

You do not need to run the Genera icon when you run the HyperIvory stack. The

HyperIvory stack will boot your Ivory if it is not booted. Or, you can run Genera

to boot and set up the software, then use [File / Quit] to get out of Genera and

then start up HyperCard. Sometimes it’s useful to run Genera and HyperCard at

the same time (using MultiFinder), so you can use Genera to debug your XFCN

servers.

The demo stack consists of these cards:

HyperIvory Apologia

This card explains the general purpose of HyperIvory and

presents some overall information about the cards.

Page 1033

HyperIvory menu This card is a menu of the available demos.

IvoryCom This card provides low-level interface directly to the CallIvory

XFCN.

Stack Dumper The Stack Dumper card dumps much of a HyperCard stack in-

to a text file, using a Lisp-readable syntax. You should proba-

bly read the code if you anticipate using this seriously.

EVAL Service EVAL Service evaluates Lisp forms you type in.

Ivory At Your Command

You can issue and activate Genera Command Processor com-

mands with from this card.

The Obligatory Flavor Demo

This card returns the dependents and components of a flavor

you specify. This demo goes beyond ordinary hypertext in that

it computes dynamically variable results rather than linking to

prewritten text.

Spellbound A spelling checker. See the section "Example of Creating a Cal-

lIvory Server".

The Hypertext Delivery Story

This card provides an interface to the Genera Document Ex-

aminer.

Iconizer Uses Lisp code to scan the Finder Desktop to extract icons and

paste them onto cards.

Map This demo computes and displays routes among various towns.

Mug Shots This demo illustrates the integration of HyperCard with Stat-

ice. It displays "mug shots" from a Statice database. �

What’s in it?�

HyperIvory consists of a HyperCard stack and some Lisp files. In the stack itself

are:

• An XFCN so HyperTalk scripts can talk to Ivory.

• Some HyperTalk scripting so HyperTalk scripts can understand Ivory’s reply.

• Several cards with their own buttons, scripts, and so on.�

In Genera itself:

• General code for fielding HyperCard requests and for calling back into Hyper-

Card.

Page 1034

• Application-specific code to handle requests from the scripts of specific cards

and their buttons.

• HyperCard-specific "glue" code.�

How does it work?�

The XFCN is the heart. It provides a HyperTalk function CallIvory(routineName,

argsString) -> resultString. This uses the RPC mechanism to pass the request to

Ivory. The RPC server looks up the Lisp XFCN server corresponding to routine-

Name, and calls it, passing it the argsString. The values returned by the server

routine, whatever it types to *standard-output*, and any errors, are returned in

resultString.

While the XFCN is awaiting the server’s response, it provides RPC service to

Ivory  including, notably, a path for calling back into HyperCard. This enables

Lisp code to do virtually anything within HyperCard that a HyperTalk script could

do.

You may wish to consult the Macintosh HyperCard User’s Guide or Macintosh Hy-

perCard Script Language Guide: the HyperTalk Language for detailed documenta-

tion on these topics.

HyperTalk Routines

The XFCN "CallIvory" is attached to the HyperIvory stack as for any XFCN. The

result extractors are in the script of the HyperIvory stack. See the section "Adding

a CallIvory Server" for an example of using these routines.

MacIvory includes these new HyperTalk routines for calling Ivory and for extract-

ing from the results returned by calling Ivory:

CallIvory HyperTalk Routine

HyperTalk Syntax: put CallIvory(routineName, routineArgs) into results�

Description: Calls Ivory’s XFCN server named routineName, passing it the

string routineArgs. Whatever that server routine returns is put

into the HyperCard container results.

results receives in a single string the description of the Lisp

error that occurred, if any; everything the server typed to its

standard-output; and each value returned by the server. Use

the HyperTalk functions ResultError, ResultTypeout, Result-

Values, ResultNValues, ResultValue to extract portions of the

returned value. If a Lisp value returned is a string, that string

is returned to HyperCard; otherwise its write-to-string is re-

turned.

Page 1035

ResultError HyperTalk Routine

HyperTalk Syntax: put ResultError(results) into xxx�

Description: Extracts the text of a Lisp error, if one occurred while the

server ran. Otherwise, leaves this empty.�

ResultTypeout HyperTalk Routine

HyperTalk Syntax: put ResultTypeout(results) into xxx�

Description: Extracts server typeout to *standard-output*, if any.�

ResultValues HyperTalk Routine

HyperTalk Syntax: put ResultValues(results) into xxx�

Description: Extracts all Lisp values returned by the server, separated by

return characters.�

ResultNValues HyperTalk Routine

HyperTalk Syntax: put ResultNValues(results) into xxx�

Description: Extracts the number of Lisp values returned by the server.�

ResultValue HyperTalk Routine

HyperTalk Syntax: put ResultValue(result, valueNumber) into xxx�

Description: Extracts a specific Lisp value returned by the server. The first

value is valueNumber 1.�

Lisp Routines

In addition to the Lisp functions and macros described here, you can also use all

the Macintosh toolbox routines listed in "Lisp Functions That Access the Macin-

tosh Toolbox".

mtb:define-xfcn-server name arglist &body body Macro

Page 1036

Defines a XFCN server name callable by HyperCard. Its arglist should be of length

one, receiving the string passed by the invoking call to the HyperTalk XFCN Cal-

lIvory.

The server is run within a condition-bind for error; princ-to-string of the error is

returned to HyperCard. In some circumstances it may be desirable to debug prob-

lems using the Debugger. Set *debug-hc-server-flag* to T to disable the condition-

bind.

See the section "Hints for Writing CallIvory Servers" for related information".

Functions Useful to Call from XFCN Servers�

mtb:hc-chunk-character string from &optional to Function

Returns a substring of string from character from to to, or the one character at

from. Similar to HyperTalk’s character chunk expression, except mtb:hc-chunk-

character is zero-based. This function is useful for destructuring the string argu-

ment passed to XFCN server routines.

mtb:hc-chunk-item string from &optional to Function

Returns a substring of string containing items from to to, or the one item from.

Similar to HyperTalk’s item chunk expression, except mtb:hc-chunk-item is zero-

based. Items are separated by commas. This function is useful for destructuring

the string argument passed to XFCN server routines.

Storage Allocation�

mtb:with-hc-zstring (var string) &body body Macro

Allocates a Macintosh handle to hold a zstring copy of the Lisp string string, and

binds the Lisp variable var to that handle, deallocating it when body exits. A Hy-

perCard zstring is terminated by a zero byte, so don’t send down Lisp bullet char-

acters. The resulting handle can be passed to the several HyperCard callbacks that

want zstring handles, such as mtb:hc-set-global.

mtb:with-hc-eval-expr (result string) &body body Macro

Binds result to the HyperCard evaluation of the HyperCard expression string, for

the duration of body. This sends string to HyperCard, sends result back to Lisp,

and deallocates the HyperCard handle when done.

mtb:making-qd-picture (rect) &body body Macro

Returns a Macintosh handle to a QuickDraw picture created by Lisp calls to�

QuickDraw within body. (See the section "Lisp Functions That Interface the Mac-

intosh QuickDraw Manager" for a complete list of these functions.) Uses the

Page 1037

QuickDraw operations OpenPicture and ClosePicture around body. The picture’s

rect is rect.

For example:

�

(defun make-pict-file-from-icon (icon-handle pathname)

 (with-open-refnum (out pathname :permission (cconstant fsWrPerm))

 (_SetEOF out 512)

 (let ((pict (with-rect (r 0 0 32 32)

 (making-qd-picture (r) (_ploticon r handle)))))

 (let ((err (with-handle-locked (pict)

 (_fswrite-remote out (_ptrfromhandle pict) (_gethandlesize pict)))))

 (unless (zerop err)

 (mtb::signal-mac-os-error err))))))�

Callbacks to HyperCard: MacIvory Glue Functions

This section describes the MacIvory glue routines, which are used in making your

external commands communicate with HyperCard. These "glue" routines, or call-

backs, form an interface through which you can access HyperCard’s internal rou-

tines. The argument list for each routine describes Lisp and HyperCard parame-

ters. HyperCard parameters are set in their own typeface. For example, in the ar-

gument list msg(string), msg is a Lisp value and string is a Macintosh value.

Note that not all callbacks defined by HyperCard are implemented with remote

entries. The simplest of string operations, coercions, and format conversions are

amply handled by Symbolics Common Lisp; there is no need to call back to Hyper-

Card. These are the unimplemented routines:

BoolToStr

ExtToStr

LongToStr

NumToHex

NumToStr

PasToZero

ReturnToPas

ScanToReturn

ScanToZero

StringEqual

StringLength

StringMatch

StrToBool

StrToExt

StrToLong

StrToNum

ZeroToPas�

Page 1038

mtb:hc-send-card-message msg(string) Function

Sends a HyperCard message to the current card. Compare with mtb:hc-send-hc-

message. HyperCard also contrasts expression evaluation with message sending.

mtb:hc-send-hc-message msg(string) Function

Sends a HyperCard message, bypassing the normal inheritance path. Compare with

mtb:hc-send-card-message. HyperCard also contrasts expression evaluation with

message sending.

mtb:hc-eval-expr expr(string) Function

HyperCard evaluates the expression and allocates a handle to hold its result. You

probably really want to use mtb:with-hc-eval-expr, which checks the errcode and

deallocates the handle for you. HyperCard contrasts expression evaluation with

message sending.

Returns result(handle), errcode(integer-16).

mtb:hc-zero-bytes address(Ptr), length(integer-32) Function

Zeros length bytes of Macintosh memory starting at address.

mtb:hc-get-global global-name(string) Function

Gets the value of HyperCard global variable. Note that you must deallocate the

handle.

Returns result(handle).

mtb:hc-set-global global-name(string), value(Handle) Function

Sets the value of HyperCard global variable. Note that this callback does not place

the value into the handle for you.

mtb:hc-get-field-by-name cardp(Boolean), field-name(string) Function

Gets the contents of the named text field (card or background, depending on

cardp). Note that you must deallocate the handle.

Returns result(handle).

mtb:hc-get-field-by-num cardp(Boolean), number(integer-16) Function

Gets the contents of the indexed text field (card or background, depending on the

value of cardp). Note that you must deallocate the handle.

Returns result(handle).

Page 1039

mtb:hc-get-field-by-id cardp(Boolean), id(integer-16) Function

Gets the contents of the identified text field (card or background, depending on

cardp). Note that you must deallocate the handle.

Returns result(handle).

mtb:hc-set-field-by-name cardp(Boolean), name(string), value(Handle) Function

Sets the contents of the named text field (card or background, depending on the

value of cardp). Note that this callback does not place the value into the handle

for you.

mtb:hc-set-field-by-num cardp(Boolean), number(integer-16), value(Handle) Function

Sets the contents of the indexed text field (card or background, depending on the

value of cardp). Note that this callback does not place the value into the handle

for you.

mtb:hc-set-field-by-id cardp(Boolean), id(integer-16), value(Handle) Function

Sets the contents of the identified text field (card or background, depending on

cardp). Note that this callback does not place the value into the handle for you.

Existing CallIvory Servers

mtb:list-routines ignore Function

Prints a comma-separated list of the names of all CallIvory servers.

mtb:echo-arg string Function

Returns string.

mtb:beep-some count Function

Beeps count times.

mtb:eval-some forms Function

Reads forms from the string forms, and evals them. The first value from each

form becomes a value of mtb:eval-some.

mtb:command-some command-and-args Function

Page 1040

Runs the Command Processor command line command-and-args. The following Cal-

lIvory servers implement or support the behavior of the corresponding cards:

flavor-parts

cards-for-all-desktop-icons

cards-for-sage-topic

map-hack-click

list-mugshots-starting-with

get-mugshot-for

get-mugshot-for-1�

Hints for Writing CallIvory Servers

• Note that if HyperCard is stuck, there is no UI service for Genera. If the XFCN

server is in the Debugger, HyperCard is stuck. If there is no UI service for

Genera, you cannot type out the Debugger. Contact the Symbolics Consulting

Group if you need assistance with this.

• Other RPC agents, besides EMB, work, if built into the XFCN.

• Remember to deallocate the handles HyperCard allocates for you. If you gradual-

ly run out of HyperCard heap space, the HyperTalk function HeapSpace might

help. In some cases HyperCard itself uses heavy dynamic memory

allocation/deallocation. �

Example of Creating a CallIvory Server

This simple example shows the process of adding a new CallIvory server for Lisp

to respond to requests initiated by HyperCard. The code for the Lisp server form,

along with four HyperTalk scripts, is distributed in the file

SYS:EMBEDDING;MACIVORY;HYPERCARD;SPELL.LISP.

This discussion assumes that you are familiar with using and programming both

Genera and HyperCard.

The distributed HyperIvory stack and the associated HyperCard/MacIvory system

already contain the code discussed here, so you may have to ignore various redefi-

nition warnings. See Figure 97 with the "Spellbound" card in the HyperIvory stack.

You must inform HyperCard that you are authorized to write the HyperTalk

scripts in this example. To do this:

1. While running HyperCard, go to the Home card (choose the "Home" menu

command).

2. Go to the User Preferences card (choose the "Prev" menu command).

Page 1041

Figure 97. The "Spellbound" card

�

3. Click on the "Scripting" radio button.�

Now:

1. Compile the define-xfcn-server form.

In Genera, switch to Zmacs and compile this code. It is distributed in

SYS:EMBEDDING;MACIVORY;HYPERCARD;SPELL.LISP.

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

�

(mtb::define-xfcn-server spell-word (word)

 (setq word (string-trim ’(#\space #\return #\tab) word))

 (if (zwei:word-in-dictionaries-p word (string-length word))

 (write-line "is spelled correctly.")

 (let ((corrections (zwei:get-all-corrections word)))

(cond ((null corrections)

 (write-line "is unknown and possibly misspelled."))

 (T

 (write-line "may be spelled:")

 (mapc #’write-line corrections))))))�

This form returns its results to HyperCard by printing to *standard-output*.

The HyperTalk script receiving the value simply puts it into a text field.

2. Find an appropriate HyperCard stack.

You have several choices:

• Simply use the distributed HyperIvory stack, duplicate that stack using the

Finder, and modify the copy.

Page 1042

• Open the HyperIvory stack, use HyperCard’s "Save a Copy ..." menu item,

and modify the copy.

• Use HyperCard to make a new stack, and manually move the stack script

(using HyperCard) and the XFCN resource (using ResEdit or equivalent).�

3. Create a card.

In HyperCard, use the "New Card" menu command. The new card will share

its background with the background of the card you’re looking at.

4. Create fields "Word", "Respellings", "Errors".

Use the "New Field" menu command. Drag the fields around to place and size

them the way you want. Use the "Field Info" menu command to set the field

names, which are referred to by the HyperTalk scripts.

While you have the "Word" field open, type in its script.

--This is just so you don’t have to move your hand from kbd to mouse

on returnInField

 send closeField to me

 spellTheWord

end returnInField�

5. Create button "Spell".

Use the "New Button" menu command and the "Button Info" menu command.

While you have the "Spell" button open, type in its script.

on mouseUp

 spellTheWord

end mouseUp�

6. Add script for card.

Use the "Card Info" menu command to get to the card’s script window, and

type it in. If you are tired of typing, and you are running MultiFinder, you

could take advantage of the communication between Genera kill-ring and

Macintosh clipboard:

a. Switch from HyperCard to Genera.

b. Select Zmacs and get the example code in a buffer.

c. Mark the code and use the "Copy" command from the menu bar.

d. Switch back to HyperCard.

Page 1043

e. Get to the card’s script window.

f. Choose the "Paste" menu command.�

�

on openCard

 --start off with no errors showing

 hide card field "Errors"

 --be able to start typing without selecting/killing first

 select text of card field "word"

 pass openCard

end openCard

�

on spellTheWord

 put empty into card field "Respellings"

 hide card field "Errors"

 --Hilight the Spell button to provide feedback to user while doing the work

 set the hilite of card button "Spell" to true

 --do the real work

 put CallIvory("spell-word", card field "word") into results

 --check for errors, and report them

 put ResultError(results) into card field "Errors"

 if card field "Errors" is not empty then

 put "Lisp Error:" & return before card field "Errors"

 show card field "Errors"

 else

 --unscroll from last time, perhaps

 set the scroll of card field "Respellings" to 0

 --show respellings if any

 put ResultTypeout(results) into card field "Respellings"

 end if

 --Done with work, unhilight

 set the hilite of card button "Spell" to false

end spellTheWord�

7. Draw some glitzy titles and so on.

Scribble all over the card if it suits your purposes.

8. Link to the new card with some buttons somewhere.

This is optional, of course.

Lisp Functions That Access the Macintosh Toolbox

Page 1044

The following tables list the Lisp functions that let you access the corresponding

routines in the Macintosh Toolbox. The routines are grouped by Apple managers

and listed alphabetically. The tables show you the name of a Lisp function, its ar-

guments, and any returned values. All Lisp functions are preceded by the package

prefix mtb:. These functions provide automatic (Macintosh) type translation.

Note that names are given in Macintosh case style for readability, but that, in

fact, these functions are case insensitive.

Adb Manager�

Lisp Function Arguments Values Returned

_ADBOp (data compout buffer

 commandnum)

_ADBReInit ()

_CountADBs () (devicecount)

_GetADBInfo (infoin address) (infoout)

_GetIndADB (infoin devtableindex) (address infoout)

_SetADBInfo (info address)

�

Appletalk-Manager�

No Entries defined for Appletalk-Manager.

� Color-Manager�

Lisp Function Arguments Values Returned

_AddComp (compproc)

_AddSearch (searchproc)

_Color2Index (rgb) (index)

_DelComp (compproc)

_DelSearch (searchproc)

_GetCTSeed () (seed)

_GetSubTable (mycolor ITABRES targettbl)

_Index2Color (index rgbin) (rgbout)

_InvertColor (rgbin) (rgbout)

_MakeITable (colortab INVERSETAB res)

_ProtectEntry (index protect)

_QdError () (qderr)

_RealColor (color) (realp)

_ReserveEntry (index reserve)

_RestoreEntries (srctable dsttable selection) (selectionout)

Page 1045

_SaveEntries (srctable resulttable (selectionout)

 selection)

_SetClientID (id)

_SetEntries (start count atable)�

� Color-Picker�

Lisp Function Arguments Values Returned

_CMY2RGB (ccolor rcolor) (rcolorout)

_Fix2SmallFract (f) (s)

_GetColor (where prompt incolor (normalexitp

 outcolor) colorout)

_HSL2RGB (hcolor rcolor) (rcolorout)

_HSV2RGB (hcolor rcolor) (rcolorout)

_RGB2CMY (rcolor ccolor) (ccolorout)

_RGB2HSL (rcolor hcolor) (hcolorout)

_RGB2HSV (rcolor hcolor) (hcolorout)

_SmallFract2Fix (s) (f)

�

� Color-Quickdraw�

Lisp Function Arguments Values Returned

_AllocCursor ()

_BackPixPat (ppat)

_CalcCMask (srcbits dstbits srcrect

 dstrect seedrgb matchproc

 matchdata)

_CharExtra (extra)

_CloseCPort (port)

_CopyPixMap (srcpm dstpm)

_CopyPixPat (srcpp dstpp)

_DisposCCursor (crsrhndle)

_DisposCIcon (theicon)

_DisposCTable (ctable)

_DisposPixMap (pm)

_DisposPixPat (ppat)

_FillCArc (r startangle arcangle ppat)

_FillCOval (r ppat)

_FillCPoly (poly ppat)

_FillCRect (r ppat)

_FillCRgn (rgn ppat)

_FillCRoundRect (r ovwd ovht ppat)

Page 1046

_GetBackColor (color) (colorout)

_GetCCursor (crsrid) (crsrhndle)

_GetCIcon (id) (theicon)

_GetCPixel (h v cpix) (cpixout)

_GetCTable (ctid) (ctable)

_GetForeColor (color) (colorout)

_GetPixPat (patid) (ppathandle)

_HiliteColor (color)

_InitCport (port)

_MakeRGBPat (ppat mycolor)

_NewPixMap () (pixmaphandle)

_NewPixPat () (ppat)

_OpColor (color)

_OpenCport (port)

_PenPixPat (ppat)

_PlotIcon (therect theicon)

_RGBBackColor (color)

_RGBForeColor (color)

_SeedCFill (srcbits dstbits srcrect

 dstrect seedh seedv matchproc

 matchdata)

_SetCCursor (crsrhndle)

_SetCPixel (h v cpix)

_SetStdCProcs (cprocs) (newcprocs)

�

� Color-Toolbox�

Lisp Function Arguments Values Returned

_CWindowStructure (cwindow-pointer cwindow) (out-window)

_DelMCEntries (menuid menuitem)

_DispMCInfo (menucolortable)

_GetAuxCtl (thecontrol) (owncolortabp

achndl)

_GetAuxWin (thewindow) (existsp colortable)

_GetCVariant (thecontrol) (variantnumber)

_GetGrayRgn () (rgn)

_GetItemCmd (themene item) (cmdchar)

_GetMCEntry (menuid menuitem) (mcentryptr)

_GetMCInfo () (mctable)

_GetNewCWindow (windowid wstorage behind) (cwindow)

_GetWVariant (whichwindow) (number)

_InitProcMenu (mbresid)

_MenuChoice () (choice)

_NewCDialog (dstorage boundsrect title (dialogptr)

Page 1047

 visible procid behind

 goawayflag refcon items)

_NewCWindow (wstorage boundsrect title (cwindow)

 visible procid behind

 goawayflag refcon)

_PopUpMenuSelect (themenu top left popupitem) (choice)

_SetCtlColor (thecontrol newcolortable)

_SetDeskCPat (deskpixpat)

_SetItemCmd (themene item cmdchar)

_SetMCEntries (numentries menucentries)

_SetMCInfo (menucolortable)

_SetWinColor (thewindow newcolortable)

�

� Control-Manager�

Lisp Function Arguments Values Returned

_DisposeControl (thecontrol)

_DragControl (thecontrol startpt limitrect

 sloprect axis)

_Draw1Control (thecontrol)

_DrawControls (thewindow)

_FindControl (thepoint thewindow) (whichcontrol)

_GetCRefCon (thecontrol) (value)

_GetCTitle (thecontrol string) (out-title)

_GetCtlAction (thecontrol) (actionproc)

_GetCtlMax (thecontrol) (value)

_GetCtlMin (thecontrol) (value)

_GetCtlValue (thecontrol) (value)

_GetNewControl (controlid thewindow) (thecontrol)

_HideControl (thecontrol)

_HiliteControl (thecontrol highlight-state)

_KillControls (thewindow)

_MoveControl (thecontrol h v)

_NewControl (thewindow boundsrect title (thecontrol)

 visible value min max procid

 refcon)

_SetCRefCon (thecontrol value)

_SetCTitle (thecontrol title)

_SetCtlAction (thecontrol actionproc)

_SetCtlMax (thecontrol thevalue)

_SetCtlMin (thecontrol thevalue)

_SetCtlValue (thecontrol thevalue)

_ShowControl (thecontrol)

_SizeControl (thecontrol w h)

_TestControl (thecontrol thepoint) (part-code)

Page 1048

_TrackControl (thecontrol startpt (part-code)

 actionproc)

_UpdtControl (thewindow updatergn)�

� Desk Manager�

Lisp Function Arguments Values Returned

_CloseDeskAcc (refnum)

_OpenDeskAcc (theacc) (driver-ref)

_SystemClick (theevent thewindow)

_SystemEdit (editcmd) (deskaccp)

_SystemEvent (theevent) (deskaccp)

_SystemMenu (menuresult)

_SystemTask ()

�

� Device-Manager�

Lisp Function Arguments Values Returned

_CloseDriver (refnum)

_Control (refnum cscode csparamptr)

_GetDCtlEntry (refnum) (controlhandle)

_KillIO (refnum)

_OpenDriver (name) (refnum)

_PBControl (completion vrefnum refnum

 code param)

_PBKillIO (completion refnum) (param)

_PBStatus (completion vrefnum refnum (param)

 code)

_Status (refnum cscode csparamptr)�

� Dialog-Manager�

Lisp Function Arguments Values Returned

_Alert (alertid filterproc) (itemhit)

_CautionAlert (alertid filterproc) (itemhit)

_CloseDialog (thedialog)

_CouldAlert (alertid)

_CouldDialog (dialogid)

_DialogSelect (theevent) (deventp thedialog

itemhit)

Page 1049

_DisposDialog (thedialog)

_DlgCopy (thedialog)

_DlgCut (thedialog)

_DlgDelete (thedialog)

_DlgPaste (thedialog)

_DrawDialog (thedialog)

_ErrorSound (soundproc)

_FindDItem (thedialog thept) (itemno)

_FreeAlert (alertid)

_FreeDialog (dialogid)

_GetAlrtStage () (stage)

_GetDItem (thedialog itemno box) (itemtype

itemhandle outbox)

_GetIText (item) (text)

_GetNewDialog (dialogid dstorage behind) (dialogptr)

_HideDItem (thedialog itemno)

_InitDialogs (resumeproc)

_IsDialogEvent (theevent) (deventp)

_ModalDialog (filterproc) (itemhit)

_NewDialog (dstorage boundsrect title (dialogptr)

 visible procid behind

 goawayflag refcon items)

_NoteAlert (alertid filterproc) (itemhit)

_ParamText (param0 param1 param2 param3)

_ResetAlrtStage ()

_SelItext (thedialog itemno startsel

 endsel)

_SetDAFont (fontnum)

_SetDItem (thedialog itemno itemtype

 itemhandle box)

_SetIText (item text)

_ShowDItem (thedialog itemno)

_StopAlert (alertid filterproc) (itemhit)

_UpdtDialog (thedialog updateregion)�

� Disk-Driver�

Lisp Function Arguments Values Returned

_DiskEject (drvnum)

_DriveStatus (drvnum statusin) (statusout)

_SetTagBuffer (buffptr)�

Page 1050

� Disk-Initialization�

Lisp Function Arguments Values Returned

_DIBadMount (where evtmessage) (result)

_DIFormat (drvnum)

_DILoad ()

_DIUnload ()

_DIVerify (drvnum)

_DIZero (drvnum volname)�

� File-Manager�

Lisp Function Arguments Values Returned

_Allocate (refnum allocation) (actual-allocation)

_Create (filename vrefnum creator

 filetype)

_Eject (volname vrefnum)

_FInitQueue ()

_FlushVol (volname vrefnum)

_FSClose (refnum)

_FSDelete (filename vrefnum)

_FSOpen (filename vrefnum) (refnum)

_FSRead (refnum count buffer) (result-count

buffer-out)

_FSWrite (refnum count buffer) (result-count)

_GetDrvQHdr () (qheader)

_GetEOF (refnum) (logeof)

_GetFInfo (filename vrefnum (outcoming-fndr-info)

 fndr-info)

_GetFPos (refnum) (filepos)

_GetFSQHdr () (qheader)

_GetVCBQHdr () (qheader)

_GetVInfo (drvnum) (volname vrefnum

freebytes)

_GetVol () (volname vrefnum)

_GetVRefNum (pathrefnum) (vrefnum)

_OpenRF (filename vrefnum) (refnum)

_PBAllocate (refnum count) (actual-count)

_PBAllocContig (refnum count) (actual-count)

_PBCatMove (name vrefnum newname

 newdirid dirid)

_PBClose (refnum)

_PBCloseWD (vrefnum)

Page 1051

_PBCreate (name vrefnum version-number)

_PBDelete (name vrefnum version-number)

_PBDirCreate (name vrefnum version-number (new-name new-dirid)

 dirid)

_PBEject (name vrefnum)

_PBFlushFile (refnum)

_PBFlushVol (name vrefnum)

_PBGetCatInfo (hfileinfo name vrefnum (result-hfileinfo

 fdirindex dirid) out-name)

_PBGetEOF (refnum) (eof)

_PBGetFCBInfo (fcbpbrec name vrefnum (result-fcbpbrec

 refnum fcb-index) out-name)

_PBGetFInfo (fileparam name vrefnum (result-fileparam

 version-number fdirindex) out-name)

_PBGetFPos (refnum) (mark)

_PBGetVInfo (volumeparam name vrefnum (result-volumeparam

 volindex) out-name)

_PBGetVol (name) (out-name vrefnum)

_PBGetWDInfo (name vrefnum wdindex (out-name out-vrefnum

 wdprocid wdvrefnum) out-wdprocid

 out-wdvrefnum out-wddirid)

_PBHCreate (name vrefnum dirid)

_PBHDelete (name vrefnum dirid)

_PBHGetFInfo (hfileparam name vrefnum (result-hfileparam

 fdirindex dirid) out-name)

_PBHGetVInfo (hvolumeparam name vrefnum (result-hvolumeparam

 volindex) out-name)

_PBHGetVol (wdpbrecname) (result-wdpbrec out-name)

_PBHOpen (name vrefnum permission dirid) (refnum)

_PBHOpenRF (name vrefnum permission dirid) (refnum)

_PBHRstFLock (name vrefnum dirid)

_PBHSetFInfo (name vrefnum

 finder-info dirid

 creation-date

 modification-date)

_PBHSetFLock (name vrefnum dirid)

_PBHSetVol (name vrefnum wddirid)

_PBLockRange (refnum reqcount posmode

 posoffset)

_PBMountVol (vrefnum) (result-vrefnum)

_PBOffline (name vrefnum)

_PBOpen (name vrefnum versnum (refnum)

 permission)

_PBOpenRF (name vrefnum versnum (refnum)

 permission)

_PBOpenWD (name vrefnum wdprocid (new-wdrefnum)

 wddirid)

_PBRead (vrefnum refnum buffer count (actual-count

Page 1052

 posmode posoffset) out-buffer final-mark)

_PBRename (name vrefnum version-number

 new-name)

_PBRstFLock (name vrefnum version-number)

_PBSetCatInfo (in-pb name) (out-name)

_PBSetEOF (refnum eof)

_PBSetFInfo (name vrefnum version-number

 finder-info creation-date

 modification-date)

_PBSetFLock (name vrefnum version-number)

_PBSetFPos (refnum posmode posoffset) (new-mark)

_PBSetFVers (name vrefnum version-number

 new-version-number)

_PBSetVInfo (name vrefnum creation-date

 modification-date

 volume-attributes clump-size

 backup-date sequence-number

 finder-info)

_PBSetVol (name vrefnum)

_PBUnlockRange (refnum reqcount posmode

 posoffset)

_PBUnmountVol (name vrefnum)

_PBWrite (vrefnum refnum buffer count (actual-count

 posmode posoffset) new-mark)

_Rename (oldname vrefnum newname)

_RstFLock (filename vrefnum)

_SetEOF (refnum logeof)

_SetFInfo (filename vrefnum fndr-info)

_SetFLock (filename vrefnum)

_SetFPos (refnum posmode posoff)

_SetVol (volname vrefnum)

_UnmountVol (volname vrefnum)

�

Font-Manager�

Lisp Function Arguments Values Returned

_FMSwapFont (inrec) (outrecptr)

_FontMetrics (themetrics) (thenewmetrics)

_GetFNum (fontname) (thenum)

_GetFontName (fontnum) (name)

_InitFonts ()

_RealFont (fontnum size) (realp)

_SetFontLock (lockp)

_SetFractEnable (fractp)

_SetFScaleDisable (disablep)

Page 1053

�

� Graphics-Devices�

Lisp Function Arguments Values Returned

_DisposGDevice (gdhandle)

_GetDeviceList () (gdhandle)

_GetGDevice () (gdhandle)

_GetMainDevice () (gdhandle)

_GetMaxDevice (globalrect) (gdhandle)

_GetNextDevice (gdh) (gdhandle)

_InitGDevice (gdrefnum mode gdh)

_NewGDevice (refnum mode) (gdhandle)

_SetDeviceAttribute (gdh attribute value)

_SetGDevice (gdh)

_TestDeviceAttribute (curdevice attribute) (value)

�

� International-Utilities�

Lisp Function Arguments Values Returned

_IUCompString (astr bstr) (result)

_IUDatePString (datetime form intlparam) (result)

_IUDateString (datetime form) (result)

_IUEqualString (astr bstr) (result)

_IUGetIntl (theid) (irhandle)

_IUMagIDString (aptr bptr alen blen) (result)

_IUMagString (aptr bptr alen blen) (result)

_IUMetric () (metricp)

_IUSetIntl (refnum theid intlparam)

_IUTimePString (datetime wantseconds (result)

 intlparam)

_IUTimeString (datetime wantseconds) (result)

�

� List Manager�

Lisp Function Arguments Values Returned

_LActivate (act lhandle)

_LAddColumn (count column lhandle) (firstcolumnno)

_LAddRow (count rownum lhandle) (firstrownum)

Page 1054

_LAddToCell (dataptr datalen thecell

 lhandle)

_LAutoScroll (lhandle)

_LCellSize (csize lhandle)

_LClick (pt modifiers lhandle) (doubleclickp)

_LClrCell (thecell lhandle)

_LDelColumn (count column lhandle)

_LDelRow (count rownum lhandle)

_LDispose (lhandle)

_LDoDraw (drawit lhandle)

_LDraw (thecell lhandle)

_LFind (thecell lhandle) (offset len)

_LGetCell (dataptr datalen thecell

 lhandle)

_LGetSelect (next thecellin lhandle) (selectedp thecellout)

_LLastClick (lhandle) (lastcell)

_LNew (rview databounds csize (listhandle)

 theproc thewindow drawit

 hasgrow scrollhoriz

 scrollvert)

_LNextCell (hnext vnext thecellin (cellsleftp thecellout)

 lhandle)

_LRect (cellrectin thecell lhandle) (cellrectout)

_LScroll (dcols drows lhandle)

_LSearch (dataptr datalen searchproc (foundp thecellout)

 thecellin lhandle)

_LSetCell (dataptr datalen thecell

 lhandle)

_LSetSelect (setit thecell lhandle)

_LSize (listwidth listheight lhandle)

_LUpdate (thergn lhandle)

�

Macintalk Manager�

Lisp Function Arguments Values Returned

_MacinTalk (thespeech phonemes)

_Reader thespeech english

 phoneticoutput

 macintalk_refnum)

_SpeechOff (thespeech)

_SpeechOn (exceptions-file) (thespeech file-refnum)

_SpeechPitch (thespeech thepitch themode)

_SpeechRate (thespeech therate)�

Page 1055

Memory Manager�

Lisp Function Arguments Values Returned

_ApplicZone () (appliczoneptr)

_BlockMove (sourceptr destptr bytecount)

_CompactMem (cbneeded) (cbytesavail)

_DisposHandle (h)

_DisposPtr (p)

_EmptyHandle (h)

_FreeMem () (freespace)

_GetApplLimit () (myptr)

_GetHandleSize (h) (handlesize)

_GetPtrSize (p) (ptrsize)

_GetZone () (currentzonethz)

_GZSaveHnd () (protectedhandle)

_HandleZone (h) (zoneptr)

_HClrRBit (h)

_HGetState (h) (state)

_HLock (h)

_HNoPurge (h)

_HPurge (h)

_HSetRBit (h)

_HSetState (h state)

_HUnlock (h)

_InitApplZone ()

_InitZone (pgrowzone cmoremasters

 limitptr startptr)

_MaxApplZone ()

_MaxBlock () (maxcb)

_MaxMem () (bytesavail

 zonegrowth)

_MemError () (err)

_MoreMasters ()

_MoveHHi (H)

_NewEmptyHandle () (newhandle)

_NewHandle (logicalsize) (newhandle)

_NewPtr (logicalsize) (newptr)

_PtrFromHandle (h) (pntr)

_PtrZone (p) (zoneptr)

_PurgeMem (cbneeded)

_PurgeSpace () (total contig)

_Read-Opaque-

 Bytes-From-Handle (h nbytes buffer) (buffer-out)

_Read-Opaque-

 Bytes-From-Pointer (ptr nbytes buffer) (buffer-out)

_ReallocHandle (h logicalsize)

Page 1056

_RecoverHandle (p) (handle)

_ResrvMem (cbneeded)

_SetApplBase (startptr)

_SetApplLimit (zonelimit)

_SetGrowZone (growzone)

_SetHandleSize (h newsize)

_SetPtrSize (p newsize)

_SetZone (hz)

_StackSpace () (space)

_SystemZone () (systemzoneptr)

_TopMem () (topmem)

_Write-Opaque-

 Bytes-Into-Handle- (h nbytes buffer)

_Write-Opaque-

 Bytes-Into-Pointer (ptr nbytes buffer) �

� Menu Manager�

Lisp Function Arguments Values Returned

_AddResMenu (themenu thetype)

_AppendMenu (themenu data)

_CalcMenuSize (themenu)

_CheckItem (themenu item checked)

_ClearMenuBar ()

_CountMItems (themenu) (result)

_DeleteMenu (menuid)

_DelMenuItem (themenu item)

_DisableItem (themenu item)

_DisposeMenu (themenu)

_DrawMenuBar ()

_EnableItem (themenu item)

_FlashMenuBar (menuid)

_GetItem (themenu item itemstring) (result-itemstring)

_GetItemIcon (themenu item) (result)

_GetItemMark (themenu item) (result)

_GetItemStyle (themenu item) (result)

_GetMenu (resourceid) (menu)

_GetMenuBar () (mbar)

_GetMHandle (menuid) (result)

_GetNewMBar (menubarid) (mbar)

_HiliteMenu (menuid)

_InitMenus ()

_insertmenu (themenu beforeid)

_insertresmenu (themenu thetype afteritem)

_InsMenuItem (themenu itemstring afteritem)

_MenuKey (ch) (menu&item)

Page 1057

_MenuSelect (startpt) (menu&item)

_NewMenu (menuid menutitle) (menu)

_SetItem (themenu item itemstring)

_SetItemIcon (themenu item icon)

_SetItemMark (themenu item markchar)

_SetItemStyle (themenu item chstyle)

_SetMenuBar (menulist)

_SetMenuFlash (count)

�

OS-Notification Manager�

Lisp function Arguments Value Returned

_NMInstall (nmReqPtr QElemPtr) OSErr

_NMRemove (nmReqPtr QelemPtr) OsErr�

OS-Event Manager�

Lisp Function Arguments Values Returned

_FlushEvents (eventmask stopmask)

_GetEvQHdr () (queue-header-ptr)

_GetOSEvent (eventmask theeventin) (eventp theeventout)

_OSEventAvail (eventmask theeventin) (eventp theeventout)

_PostEvent (eventcode eventmsg)

_PPostEvent (eventcode eventmsg) (qelptr)

_SetEventMask (eventmask)

�

OS-Utilities Manager�

Lisp Function Arguments Values Returned

_Date2Secs (date) (secs)

_Delay (numticks) (finalticks)

_Dequeue (qentry thequeue)

_Enqueue (qentry thequeue)

_Environs () (rom machine)

_EqualString (astr bstr casesens diacsens) (equalp)

_GetDateTime () (secs)

_GetMMUMode () (mode)

_GetSysPPtr () (syspptr)

_GetTime (datein) (dateout)

_GetTrapAddress (trapnum) (trapaddr)

_HandAndHand (ahndl bhndl)

_HandToHand (handlein) (handleout)

_InitUtil ()

Page 1058

_NgetTrapAddress (trapnum traptype) (trapaddr)

_NSetTrapAddress (trapaddr trapnum traptype)

_PtrAndHand (pntr hndl size)

_PtrToHand (srcptr size) (newhandle)

_PtrToXHand (srcptr dsthndl size)

_ReadDateTime () (secs)

_RelString (astr bstr casesens diacsens) (answer)

_Restart ()

_Restorea5 ()

_Secs2Date (secs datein) (dateout)

_SetDateTime (secs)

_SetTime (date)

_SetTrapAddress (trapaddr trapnum)

_SetUpA5 ()

_StripAddress (theaddress) (strippedaddr)

_SwapMMUMode (newmode) (oldmode)

_SysBeep (duration)

_UprString (stringin diacsens) (stringout)

_WriteParam ()

�

Palette Manager�

Lisp Function Arguments Values Returned

_ActivatePalette (srcwindow)

_AnimateEntry (dstwindow dstentry srcrgb)

_AnimatePalette (dstwindow srcctab srcindex

 dstentry dstlength)

_CTab2Palette (srcctab dstpalette srcusage

 srctolerance)

_DisposePalette (srcpalette)

_GetEntryColor (srcpalette srcentry dstrgbin) (rgbout)

_GetEntryUsage (srcpalette srcentry) (dstusage

 dsttolerance)

_GetNewPalette (paletteid) (palettehndl)

_GetPalette (srcwindow) (palettehndl)

_InitPalettes ()

_NewPalette (entries srccolors srcusage (palettehndl)

 srctolerance)

_Palette2CTab (srcpalette destctab)

_PmBackColor (dstentry)

_PmForeColor (dstentry)

_SetEntryColor (dstpalette dstentry srcrgbin)

_SetEntryUsage (dstpalette dstentry srcusage

 srctolerance)

_SetPalette (dstwindow srcpalette

Page 1059

 cupdates)

�

Printing Manager�

Lisp Function Arguments Values Returned

_PrClose ()

_PrCloseDoc (pprport)

_PrClosePage (pprport)

_PrCtlCall (iwhichctl lparam1 lparam2

 lparam3)

_PrDrvrClose ()

_PrDrvrDce ()

_PrDrvrOpen ()

_PrDrvrVers () (version)

_PrError () (error)

_PrGeneral (pdata)

_PrintDefault (hprint)

_PrJobDialog (hprint) (comfirmedp)

_PrJobMerge (hprintsrc hprintdst)

_PrOpen ()

_PrOpenDoc (hprint pprport piobuf) (theport)

_PrOpenPage (pprport ppageframe)

_PrPicFile (hprint pprport piobuf (newprstatus)

 pdevbuf prstatus)

_PrSetError (err)

_PrStlDialog (hprint) (comfirmedp)

_PrValidate (hprint) (notvalidp)

�

QuickDraw Manager�

Lisp Function Arguments Values Returned

_AddPt (srcpt1 srcpt2) (outpt)

_BackColor (color)

_BackPat (pat)

_CalcMask (srcptr dstptr srcrow dstrow

 height words)

_CharWidth (ch) (width)

_ClipRect (r)

_ClosePicture ()

_ClosePoly ()

_ClosePort (port)

_CloseRgn (dstrgn)

Page 1060

_ColorBit (whichbit)

_CopyBits (srcbits dstbits srcrect

 dstrect mode maskrgn)

_CopyMask (srcbits maskbits dstbits

 srcrect maskrect dstrect)

_CopyRgn (srcrgn dstrgn)

_DiffRgn (srcrgna srcrgnb dstrgn)

_DisposeRgn (rgn)

_DrawChar (ch)

_DrawPicture (mypicture dstrect)

_DrawString (s)

_DrawText (textbuf firstbyte bytecount)

_EmptyRect (r) (emptyp)

_EmptyRgn (rgn) (emptyp)

_EqualPt (pt1 pt2) (equalp)

_EqualRect (rect1 rect2) (equalp)

_EqualRgn (rgna rgnb) (equalp)

_EraseArc (r startangle arcangle)

_EraseOval (r)

_ErasePoly (poly)

_EraseRect (r)

_EraseRgn (rgn)

_EraseRoundRect (r ovalwidth ovalheight)

_FillArc (r startangle arcangle pat)

_FillOval (r pat)

_FillPoly (poly pat)

_FillRect (r pat)

_FillRgn (rgn pat)

_FillRoundRect (r ovalwidth ovalheight pat)

_ForeColor (color)

_FrameArc (r startangle arcangle)

_FrameOval (r)

_FramePoly (poly)

_FrameRect (r)

_FrameRgn (rgn)

_FrameRoundRect (r ovalwidth ovalheight)

_GetClip (rgn)

_GetFontInfo (info) (out-info)

_GetPen () (outpt)

_GetPenState (pnstate) (outpnstate)

_GetPixel (h v) (onp)

_GetPort () (outport)

_GlobalToLocal (pt) (localpt)

_GrafDevice (device)

_HideCursor ()

_HidePen ()

_InitCursor ()

_InitGraf ()

Page 1061

_InitPort (port)

_InsetRect (r dh dv) (outrect)

_InsetRgn (rgn dh dv)

_InvertArc (r startangle arcangle)

_InvertOval (r)

_InvertPoly (poly)

_InvertRect (r)

_InvertRgn (rgn)

_InvertRoundRect (r ovalwidth ovalheight)

_KillPicture (mypicture)

_KillPoly (poly)

_Line (dh dv)

_LineTo (h v)

_LocalToGlobal (pt) (globalpt)

_MapPoly (poly srcrect dstrect)

_MapPt (pt srcrect dstrect) (outpt)

_MapRect (r srcrect dstrect) (newrect)

_MapRgn (rgn srcrect dstrect)

_MeasureText (count textaddr charlocs)

_Move (dh dv)

_MovePortTo (leftglobal topglobal)

_MoveTo (h v)

_NewRgn () (rgn)

_ObscureCursor ()

_OffsetPoly (poly dh dv)

_OffsetRect (r dh dv) (outrect)

_OffsetRgn (rgn dh dv)

_OpenPicture (picframe) (pichandle)

_OpenPoly () (handle)

_OpenPort (port)

_OpenRgn ()

_PaintArc (r startangle arcangle)

_PaintOval (r)

_PaintPoly (poly)

_PaintRect (r)

_PaintRgn (rgn)

_PaintRoundRect (r ovalwidth ovalheight)

_PenMode (mode)

_PenNormal ()

_PenPat (pat)

_PenSize (width height)

_PicComment (kind datasize datahandle)

_PortSize (width height)

_Pt2Rect (pt1 pt2 dstrect) (outrect)

_PtInRect (pt r) (in_rect_p)

_PtInRgn (pt rgn) (inrgnp)

_PtToAngle (r PT) (angle)

_Random () (random)

Page 1062

_RectInRgn (r rgn) (inrgnp)

_RectRgn (rgn R)

_ScalePt (pt srcrect dstrect) (outpt)

_ScrollRect (r dh dv updatergn)

_SectRect (src1 src2 dstrect) (intersect-p outrect)

_SectRgn (srcrgna srcrgnb dstrgn)

_SeedFill (srcptr dstptr srcrow dstrow

 height words seedh seedv)

_SetClip (rgn)

_SetCursor (crsrptr)

_SetCursorFromHandle (crsrhandle)

_SetEmptyRgn (rgn)

_SetOrigin (h v)

_SetPenState (pnstate)

_SetPort (port)

_SetPortBits (bm)

_SetPt (h v) (outpt)

_SetRect (r left top right bottom) (outrect)

_SetRectRgn (rgn left top right bottom)

_SetStdProcs (procs) (outprocs)

_ShowCursor ()

_ShowPen ()

_SpaceExtra (extra)

_StdArc (verb r startangle arcangle)

_StdBits (srcbits srcrect dstrect mode (newsrcbits

 maskrgn) newsrcrect

 newdstrect)

_StdComment (kind datasize datahandle)

_StdGetPic (dataptr bytecount)

_StdLine (newpt)

_StdOval (verb r)

_StdPoly (verb poly)

_StdPutPic (dataptr bytecount)

_StdRect (verb r)

_StdRgn (verb rgn)

_StdRRect (verb r ovalwidth ovalheight)

_StdText (bytecount textbuf numer

 denom)

_StdTxMeas (bytecount textaddr numer (width newnumer

 denom info) newdenom newfontinfo)

_StringWidth (s) (width)

_StuffHex (thingptr s)

_SubPt (srcpt1 srcpt2) (outpt)

_TextFace (face)

_TextFont (font)

_TextMode (mode)

_TextSize (size)

_TextWidth (textbuf firstbyte (width)

Page 1063

bytecount)

_UnionRect (src1 src2 dstrect) (outrect)

_UnionRgn (srcrgna srcrgnb dstrgn)

_XorRgn (srcrgna srcrgnb dstrgn)

 �

Resource Manager�

Lisp Function Arguments Values Returned

_AddResource (thedata thetype theid name)

_ChangedResource (theresource)

_CloseResFile (refnum)

_Count1Resources (thetype) (result)

_Count1Types () (result)

_CountResources (thetype) (result)

_CountTypes () (result)

_CreateResFile (name)

_CurrentResLoad () (current)

_CurResFile () (result)

_DetachResource (theresource)

_Get1IndResource (thetype index) (result)

_Get1IndType (index) (result)

_Get1NamedResource (thetype name) (result)

_Get1Resource (thetype theid) (result)

_GetIndResource (thetype index) (result)

_GetIndType (index) (result)

_GetNamedResource (thetype name) (result)

_GetResAttrs (theresource) (result)

_GetResFileAttrs (refnum) (result)

_GetResInfo (theresource name) (theid thetype out-name)

_GetResource (thetype theid) (result)

_HomeResFile (theresource) (result)

_InitResources () (result)

_LoadResource (theresource)

_MaxSizeRsrc (theresource) (result)

_OpenResFile (name) (result)

_OpenRFPerm (filename vrefnum (result)

permission)

_ReleaseResource (theresource)

_ResError () (result)

_RGetResource (thetype theid) (rhandle)

_RmveResource (theresource)

_RsrcMapEntry (theresource) (result)

_RsrcZoneInit ()

_SetResAttrs (theresource attrs)

_SetResFileAttrs (refnum attrs)

Page 1064

_SetResInfo (theresource theid name)

_SetResLoad (load)

_SetResPurge (install)

_SizeResource (theresource) (result)

_Unique1ID (thetype) (result)

_UniqueID (thetype) (result)

_UpdateResFile (refnum)

_UseResFile (refnum)

_WriteResource (theresource)�

Scrap-Resource Manager�

Lisp Function Arguments Values Returned

_GetScrap (hdest thetype) (offset)

_GetScrapStuff (scrapstuff) (newstuff)

_InfoScrap () (scrapstuffptr)

_LoadScrap ()

_PutScrap (length thetype source)

_UnloadScrap ()

_ZeroScrap ()�

Script Manager�

Lisp Function Arguments Values Returned

_Char2Pixel (textbuf textlen slop (pixelwidth)

 offset direction)

_CharByte (textbuf textoffset) (chartype)

_CharType (textbuf textoffset) (chartype)

_DrawJust (textptr textlength slop)

_FindWord (textptr textlength offset (offsetsout)

 leftside breaks offsetsin)

_Font2Script (fontnumber) (scriptcode)

_FontScript () (scriptcode)

_GetAppFont () (fontnum)

_GetDefFontSize () (size)

_GetEnvirons (verb) (param)

_GetMBarHeight () (height)

_GetScript (script verb) (param)

_GetSysFont () (fontnume)

_GetSysJust () (just)

_HiliteText (textptr textlength (offsetsout)

 firstoffset secondoffset

 offsetsin)

_IntlScript () (scriptcode)

_KeyScript (scriptcode)

_MeasureJust (textptr textlength slop

Page 1065

 charlocs)

_Pixel2Char (textbuf textlen slop (offset leftside-p)

 pixelwidth)

_SetEnvirons (verb param)

_SetScript (script verb param)

_SetSysJust (newjust)

_Transliterate (srchandle dsthandle target (result)

 srcmask)�

SCSI Manager�

Lisp Function Arguments Values Returned

_SCSICmd (buffer count)

_SCSIComplete (wait) (stat message)

_SCSIGet ()

_SCSImsgin () (message)

_SCSIMsgOut (message)

_SCSIRBlind (tibptr)

_SCSIRead (tibptr)

_SCSIReset ()

_SCSIselatn (targetid)

_SCSISelect (targetid)

_SCSIStat () (bits)

_SCSIWBlind (tibptr)

_SCSIWrite (tibptr)�

Segment-Loader Manager�

Lisp Function Arguments Values Returned

_ClrAppFiles (index)

_CountAppFiles () (message count)

_ExitToShell ()

_GetAppFiles (index thefile) (thefileout)

_GetAppParms () (name aprefnum

 apparam)

_UnloadSeg (routineaddr)

�

Serial-Driver Manager�

Lisp Function Arguments Values Returned

_RAMSDClose (whichport)

_RAMSDOpen (whichport)

Page 1066

_SerClrBrk (refnum)

_SerGetBuf (refnum) (count)

_SerHShake (refnum flags)

_SerReset (refnum serconfig)

_SerSetBrk (refnum)

_SerSetBuf (refnum serbptr serblen)

_SerStatus (refnum serstatin) (serstatout)

�

� Slot Manager�

Lisp Function Arguments Values Returned

_InitPRAMRecs ()

_InitSDeclMgr ()

_InitsRsrcTable ()

_sCalcsPointer (spspointer spoffsetdata

 spbytelanes)

_sCalcStep (spspointer spbytelanes (spresult)

 spflags)

_sCardChanged (spslot) (spresult)

_sCkCardStatus (spslot) (spresult)

_sdeleteSRTRec (spslot spid spextdev)

_sExec (spspointer spid spsexecpblk) (spresult)

_sFindDevBase (spslot spid) (spresult)

_sFindsInfoRecPtr (spslot) (spresult)

_sFindsRsrcPtr (spslot spid) (spspointer)

_sFindStruct (spid spspointer) (new-spspointer spbytelanes)

_sGetBlock (spspointer spid) (spresult spoffsetdata

 spbytelanes spsize spflags)

_sGetcString (spspointer spid) (spresult spoffsetdata

spbytelanes spsize spflags)

_sGetDriver (spslot spid spextdev (spresult spflags spsize)

 spsexecpblk)

_SNextsRsrc (spslot spid spextdev) (new-spslot new-spid

 new-spextdev spspointer

 sprefnum spioreserved

 spcategory spctype spdrvrsw

 spdrvrhw sphwdev)

_sNextTypesRsrc (spslot spid spextdev sptbmask (new-spslot new-spid

 spcategory spctype spdrvrsw new-spextdev spspointer

 spdrvrhw sphwdev) sprefnum spioreserved

 new-spcategory new-spctype

 new-spdrvrsw new-spdrvrhw

 new-sphwdev)

Page 1067

_sOffsetData (spspointer spid) (spoffsetdata spbytelanes

 spresult spflags)

_sPrimaryInit (spflags)

_sPtrToSlot (spspointer) (spslot)

_sPutPRAMRec (spslot spspointer)

_sReadByte (spspointer spid) (spresult spoffsetdata

 spbytelanes)

_sReadDrvrName (spslot spid spresult) (spsize spspointer)

_sReadFHeader (spslot spresult) (spspointer spbytelanes spsize

 spoffsetdata)

_sReadInfo (spslot spresult) (spsize)

_sReadLong (spspointer spid) (spresult spoffsetdata

 spbytelanes spsize)

_sReadPBSize (spspointer spid spflags) (spsize spbytelanes spresult)

_sReadPRAMRec (spslot spresult) (spsize)

_sReadStruct (spspointer spsize spresult) (spbytelanes)

_sReadWord (spspointer spid) (spresult spoffsetdata

 spbytelanes)

_sRsrcInfo (spslot spid spextdev) (spspointer spioreserved

 sprefnum spcategory spctype

 spdrvrsw spdrvrhw sphwdev)

_sSearchSRT (spslot spid spextdev spflags

 spspointer)

_sUpdateSRT (spslot spid spextdev sprefnum (spspointer spflags spsize

 spioreserved) spresult)

�

Sound Manager�

Lisp Function Arguments Values Returned

_GetSoundVol () (level)

_SetSoundVol (level)

_SndAddModifier (chan modifier id init)

_SndControl (id cmd) (cmdout)

_SndDisposeChannel (chan quitnow)

_SndDoCommand (chan cmd nowait)

_SndDoImmediate (chan cmd)

_SndNewChannel (chan synth init userroutine) (newchan)

_SndPlay (channel sndhdl async)

_SoundDone () (donep)

_StartSound (synthrec numbytes

 completionrtn)

_StopSound ()

�

Page 1068

Standard-File-Package Manager�

Lisp Function Arguments Values Returned

_SFGetFile (where prompt filefilter (replyout)

 numtypes typelist

 dialoghook reply)

_SFPGetFile (where prompt filefilter (replyout)

 numtypes typelist

 dialoghook reply dlgid

 filterproc)

_SFPPutFile (where prompt origname (replyout)

 dlghook reply dlgid

 filterproc)

_SFPutFile (where prompt origname (replyout)

 dlghook reply)

�

System-Misc Manager�

Lisp Function Arguments Values Returned

_DTInstall (dttaskptr)

_InitAllPacks ()

_InitPack (packid)

_InsTime (tmtaskptr)

_NumToString (thenum) (thestring)

_PrimeTime (tmtaskptr count)

_RmvTime (tmtaskptr)

_ShutDwnInstall (shutdwnproc flags)

_ShutDwnPower ()

_ShutDwnRemove (shutdwnproc)

_ShutDwnStart ()

_StringToNum (thestring) (thenum)

_SysEnvirons (versionRequested) (theWorld)

_SysError (errorcode)

�

TextEdit Manager�

Lisp Function Arguments Values Returned

_GetStylHandle (hte) (stylehandle)

_GetStylScrap (hte)

_SetClikLoop (clikproc hte)

_SetStylHandle (thehandle hte)

Page 1069

_SetWordBreak (wbrkproc hte)

_TEActivate (hte)

_TEAutoView (autoview hte)

_TECalText (hte)

_TEClick (pt extend hte)

_TECopy (hte)

_TECut (hte)

_TEDeactivate (hte)

_TEDelete (hte)

_TEDispose (hte)

_TEFromScrap ()

_TEGetHeight (endline startline hte) (height)

_TEGetOffset (pt hte) (offset)

_TEGetPoint (offset hte) (pt)

_TEGetScrapLen () (length)

_TEGetStyle (offset thestyle hte) (style lineheight fontascent)

_TEGetText (hte) (charshandle)

_TEIdle (hte)

_TEInit ()

_TEInsert (text length hte)

_TEKey (key hte)

_TENew (destrect viewrect) (handle)

_TEPaste (hte)

_TEPinScroll (dh dv hte)

_TEReplaceStyle (mode oldstyle newstyle

 redraw hte)

_TEScrapHandle () (scraphandle)

_TEScroll (dh dv hte)

_TESelView (hte)

_TESetJust (just hte)

_TESetScrapLen (length)

_TESetSelect (selstart selend hte)

_TESetStyle (mode newstyle redraw hte)

_TESetText (text length hte)

_TEStylInsert (text length hst hte)

_TEStylNew (destrect viewrect) (handle)

_TEStylPaste (hte)

_TEToScrap ()

_TEUpdate (rupdate hte)

_TextBox (text length box just)

�

Toolbox-Event Manager�

Lisp Function Arguments Values Returned

_Button () (downp)

_EventAvail (eventmask theevent) (handle-event-p nextevent)

Page 1070

_GetCaretTime () (carettime)

_GetDblTime () (dbltime)

_GetKeys (keymapin) (keymapout)

_GetMouse () (mouseloc)

_GetNextEvent (eventmask theevent) (handle-event-p nextevent)

_KeyTrans (transdata keycode) (result state)

_StillDown () (stilldownp)

_TickCount () (tickcount)

_WaitMouseUp () (stilldownp)

�

Toolbox-Utilities Manager�

Lisp Function Arguments Values Returned

_AngleFromSlope (slope) (angle)

_BitAnd (value1 value2) (result)

_BitClr (byteptr bitnum)

_BitNot (value) (result)

_BitOr (value1 value2) (result)

_BitSet (byteptr bitnum)

_BitShift (value count) (result)

_BitTst (byteptr bitnum) (resultp)

_BitXor (value1 value2) (result)

_DeltaPoint (pta ptb) (longresult)

_FixMul (a b) (answer)

_FixRatio (numer denom) (fixed)

_FixRound (x) (int)

_GetCursor (cursorid) (chandle)

_GetIcon (iconid) (iconhandle)

_GetIndPattern (thepattern patlistid index) (thepatternout)

_GetIndString (stringin strlistid index) (stringout)

_GetPattern (patid) (phandle)

_GetPicture (picid) (phandle)

_GetString (stringid) (strhandle)

_HiWord (x) (hiword)

_LongMul (a b) (answer)

_LoWord (x) (loword)

_Munger (h offset ptr1 len1 ptr2 len2) (answer)

_NewString (thestring) (strhandle)

_PackBits (srcptrin dstptrin srcbytes) (srcptrout dstptrout)

_PlotIcon (therect theicon)

_ScreenRes () (scrnhres screenvres)

_SetString (h thestring)

_ShieldCursor (shieldrect offsetpt)

_SlopeFromAngle (angle) (slope)

_UnpackBits (srcptrin dstptrin srcbytes) (srcptrout dstptrout)�

Page 1071

Vertical-Retrace Manager�

Lisp Function Arguments Values Returned

_AttachVBL (theslot)

_DoVBLTask (theslot)

_GetVBLQHdr () (qhdrptr)

_SlotVInstall (vbltaskptr theslot)

_SlotVRemove (vbltaskptr theslot)

_VInstall (vbltaskptr)

_VRemove (vbltaskptr)�

Window Manager�

Lisp Function Arguments Values Returned

_BeginUpdate (thewindow)

_BringToFront (window)

_CalcVis (window)

_CalcVisBehind (startwindow clobberedrgn)

_CheckUpdate (theevent) (new-event found-p)

_ClipAbove (window)

_CloseWindow (thewindow)

_DisposeWindow (thewindow)

_DragGrayRgn (thergn startpt limitrect (point_difference)

 sloprect axis actionproc)

_DragWindow (thewindow startpt

boundsrect)

_DrawGrowIcon (thewindow)

_DrawNew (window update)

_EndUpdate (thewindow)

_FindWindow (thepoint) (whichwindow kind)

_FrontWindow () (window)

_GetNewWindow (windowid behind) (newwindow)

_GetWindowPic (thewindow) (pic)

_GetWMgrPort () (wport)

_GetWRefCon (thewindow) (data)

_GetWTitle (thewindow in-title) (out-title)

_GrowWindow (thewindow startpt sizerect) (portsize)

_HideWindow (thewindow)

_HiliteWindow (thewindow fhilite)

_InitWindows ()

_InvalRect (badrect)

_InvalRgn (badrgn)

_MoveWindow (thewindow hglobal vglobal

 front)

_NewWindow (boundsrect title visible (newwindow)

 procid behind goawayflag

Page 1072

 refcon)

_PaintBehind (startwindow clobberedrgn)

_PaintOne (window clobberedrgn)

_PinRect (therect thept) (nearest-point)

_SaveOld (window)

_SelectWindow (thewindow)

_SendBehind (thewindow behindwindow)

_SetWindowPic (thewindow pic)

_SetWRefCon (thewindow data)

_SetWTitle (thewindow new-title)

_ShowHide (thewindow showflag)

_ShowWindow (thewindow)

_SizeWindow (thewindow width height

 fupdate)

_TrackBox (thewindow thepoint partcode) (result)

_TrackGoAway (thewindow thepoint) (result)

_ValidRect (goodrect)

_ValidRgn (goodrgn)

_WindowStructure (window-pointer window) (out-window)

_ZoomWindow (thewindow partcode front)�

MacIvory Error Conditions

This appendix describes MacIvory error conditions. The Macintosh error name, the

corresponding Lisp error condition and the error message are given for each error

condition. Remote error flavors for the toolbox routines are in the macintosh-

internals package.

The errors are listed in alphabetical order by Macintosh error name.

abortErr mac-os-error-aborterr

I/O request aborted by KillIO

addResFailed mac-os-error-addresfailed

AddResource failed

badBtSlpErr mac-os-error-badbtslperr

Bad address mark (btslp)

badChannel mac-os-error-badchannel

Invalid channel queue length

badCksmErr mac-os-error-badcksmerr�

Bad address mark (cksum)

badDBtSlp mac-os-error-baddbtslp

Bad data mark (btslp)

Page 1073

badDCksum mac-os-error-baddcksum

Bad data mark (cksum)

badFormat mac-os-error-badformat

Handle to snd resource was invalid

badMDBErr mac-os-error-badmdberr �

Bad master directory block; must reinitialize volume

badMovErr mac-os-error-badmoverr

Attempted to move into offspring

badUnitErr mac-os-error-baduniterror

Driver reference number doesn’t match unit table

bdNamErr mac-os-error-bdnamerr

Bad file name or volume name (perhaps zero-length)

cantStepErr mac-os-error-cantsteperr

Drive error (step)

clkRdErr mac-os-error-clkrderr

Unable to read clock

clkWrErr mac-os-error-clkwerr

Time written did not verify

controlErr mac-os-error-controlerr

Driver can’t respond to this Control call

corErr mac-os-error-corerr

Trap ("core routine") number out of range

dataVerErr mac-os-error-datavererr

Read-verify failed

dInstErr mac-os-error-dinsterr

Couldn’t find driver in resource file

dirFulErr mac-os-error-dirfulerr

File directory full

dirNFErr mac-os-error-dirnferr

Directory not found

dRemovErr mac-os-error-dremoverr

Attempt to remove an open driver

dskFulErr mac-os-error-dskfulerr

All allocation blocks on the volume are full

Page 1074

dupFNErr mac-os-error-dupfnerr

File with specified name and version number already exists

envNotPresent mac-os-error-envnotpresent

Sysenvirons trap not present, system file earlier than version 4.1.

eofErr mac-os-error-eoferr

Logical end-of-file reached during read operation

evtNotEnb mac-os-error-evtnotenb

Event type not designated in system event mask

extFSErr mac-os-error-extfserr

External file system; file-system identifier is nonzero, or path reference

number is >1024

fBsyErr mac-os-error-fbsyerr

File is busy, one or more files are open

fLckdErr mac-os-error-flckderr

File is locked

fnfErr mac-os-error-fnferr

File not found

fnOpnErr mac-os-error-fnopnerr

File not open

fsDSIntErr mac-os-error-fsdsinterr

Internal file system error

fsRnErr mac-os-error-fsrnerr

Problem during rename

gfpErr mac-os-error-gfperr

Error during GetFPos

iIOAbort mac-os-error-iioabort

I/O Error

iMemFullErr mac-os-error-imemfullerr

Not enough room in heap zone

initIWMErr mac-os-error-initiwmerr

Can’t initialize disk controller chip

ioErr mac-os-error-ioerr

I/O error

iPrAbort mac-os-error-iprabort

Application or user requested abort

Page 1075

iPrSavPFil mac-os-error-iprsavpfil

Saving spool file

memAZErr mac-os-error-memazerr

Undocumented Memory Manager error -113

memFullErr mac-os-error-memfullerr

Not enough room in heap zone

memLockedErr mac-os-error-memlockederr

Block is locked

memPurErr mac-os-error-mempurerr

Attempt to purge a locked block

memROZErr mac-os-error-memrozerr

operation on read-only zone

memWZErr mac-os-error-memwzerr

Attempt to operate on a free block

nilHandleErr mac-os-error-nilhandleerr

NIL master pointer

noAdrMkErr mac-os-error-noadrmkerr

Can’t find an address mark

NoDriveErr mac-os-error-nodriveerr

Drive isn’t connected

noDtaMkErr mac-os-error-nodtamkerr

Can’t find a data mark

noHardware mac-os-error-nohardware

No Hardware support for the specified synthesizer

noMacDskErr mac-os-error-nomacdskerr

Not a Macintosh disk; volume lacks Macintosh-format directory

noNybErr mac-os-error-nonyberr

Disk is probably blank

noScrapErr mac-os-error-noscraperr

Desk scrap isn’t initialized

notEnoughHardware mac-os-error-notenoughhardware

No more channels for the specified synthesizer

notOpenErr mac-os-error-notopenerr

Driver isn’t open

Page 1076

noTypeErr mac-os-error-notypeerr

No data of the requested type

nsDrvErr mac-os-error-nsdrverr

No such drive; specified drive number doesn’t match any number in the

drive queue

nsvErr mac-os-error-nsverr

Specified volume doesn’t exist

offLinErr mac-os-error-offlinerr

No disk in drive

openErr mac-os-error-openerr

Requested read/write permission doesn’t match driver’s open permission

opWrErr mac-os-error-opwrerr

The read/write permission of only one access path to a file can allow writing

paramErr mac-os-error-paramerr

Error in parameter list

permErr mac-os-error-permerr

Attempt to open locked file for writing

posErr mac-os-error-poserr

Attempt to position before start of file

prInitErr mac-os-error-priniterr

Validity status is not $A8

prWrErr mac-os-error-prwrerr

Parameter RAM written did not verify

qErr mac-os-error-qerr

Entry not in queue

queueFull mac-os-error-queuefull

No room in queue

readErr mac-os-error-readerr

Driver can’t respond to Read calls

resFNotFound mac-os-error-resfnotfound

Resource file not found

resNotFound mac-os-error-resnotfound

Resource not found

Page 1077

resProblem mac-os-error-resproblem

Problem loading resource

rfNumErr mac-os-error-rfnumerr

Path reference number specifies nonexistent access path

rmvResFailed mac-os-error-rmvresfailed

RmveResource failed

sectNFErr mac-os-error-sectnferr

Can’t find sector

seekErr mac-os-error-seekerr

Drive error (seek)

slotNumErr mac-os-error-slotnumerr

Invalid slot number

spdAdjErr mac-os-error-spdadjerr

Can’t correctly adjust disk speed

statusErr mac-os-error-statuserr

Driver can’t respond to this Status call

tk0BadErr mac-os-error-tk0baderr

Can’t find track 0

tmfoErr mac-os-error-tmfoerr

Too many files open

tmwdoErr mac-os-error-tmwdoerr

Too many working directories open

twosideErr mac-os-error-twosideerr

Tried to read side 2 of a disk in a single read

unimpErr mac-os-error-unimperr

Unimplemented trap

unitEmptyErr mac-os-error-unitemptyerr

Driver reference number specifies NIL handle in unit table

vLckdErr mac-os-error-vlckderr

Volume is locked

volOffLinErr mac-os-error-volofflinerr

Volume not on-line

volOnLinErr mac-os-error-volonlinerr

Specified volume is already mounted and on-line

Page 1078

vTypErr mac-os-error-vtyperr

QType field of entry in vertical retrace queue isn’t vType

wPrErr mac-os-error-wprerr

Volume is locked by a hardware setting

wrgVolTypErr mac-os-error-wrgvoltyperr

Attempt to do hierarchical operation on nonhierarchical volume

writErr mac-os-error-writerr

Driver can’t respond to Write calls

wrPermErr mac-os-error-wrpermerr

Read/write permission doesn’t allow writing

wrUnderrun mac-os-error-wrunderrun

Write underrun occurred

