
Open Genera User’s Guide

Introduction to Open Genera

Open Genera makes Symbolics’ Genera software environment available to DEC Al-

pha workstation users. The host workstation runs its standard operating system

software Digital Unix (originally called OSF/1 [which was the Open Software

Foundation’s POSIX-compliant UNIX implementation]) augmented with software to

provide Genera. Open Genera negotiates with the host operating system to provide

Genera’s I/O services using the host’s peripherals, and to present Genera’s user in-

terface using the host’s console.

As an integrated system, Open Genera offers the user more than just a choice be-

tween the UNIX and Genera environments; it integrates Genera with the host op-

erating system, particularly in the areas of user interface and networking. Genera

applications appear within the host window system just as native Digital Unix ap-

plications do, and a wide variety of network services are provided for communica-

tion between the two systems. Open Genera adds a new dimension to the UNIX

environment, and expands Genera’s potential by providing ready access, for both

users and applications, to existing UNIX software facilities.

Open Genera is available with the complete Genera system for software develop-

ment. The development system provides compatibility with Genera applications de-

veloped on Symbolics 3600-family, XL-family, NXP1000 and MacIvory-family work-

stations.

Beginning with release 2.0 of Open Genera, multiple copies of Genera can be run-

ning simultaneously on the same DEC Alpha workstation. Each copy simulates an

independent workstation environment. This permits developing and testing multi-

host distributed Genera applications on a single piece of hardware.

Notes About This Document�

This manual is intended for use in conjunction with the Genera documentation set.

Please consult the online Genera documentation for more detailed information on

Genera.

Throughout this document, the term "UNIX" is interchangeable with the term

"Digital Unix" (which is a flavor of UNIX). However, a reference to "Digital Unix"

does not necessarily apply to other variants of UNIX.

The older term for Digital Unix, namely "OSF/1" might still appear in some of the

documentation, if so it has the same meaning as "Digital Unix".

Open Genera Architecture

Open Genera relies on the host workstation and its peripherals to provide the ba-

sic I/O services needed to support Genera. These services include bootstrapping

support, disk access for storing Genera world and paging files, and a connection to

the host network interface. This layer of software is called Genera Life Support.

Page 2

Open Genera consists of three main parts: the interpreter, life support, and the

Genera Software Engineering Environment (SEE).

Open Genera shares the network interface of its host, and appears on the host’s

network just like any other system. Although the host workstation and the "virtual

coprocessor" share a single Ethernet hardware address, they use separate protocol,

or software addresses, and therefore appear as separate hosts on the network. Oth-

er hosts request network services from either Digital Unix or Genera independent-

ly, using the appropriate protocol addresses.

If you run more than one copy of Open Genera on the same Alpha workstation,

each copy has its own protocol and network addresses. This permits developing and

testing distributed applications on a single machine.

The Open Genera SEE offers extensive networking facilities and adapts easily to

heterogeneous, multivendor environments. It includes protocols and services to sup-

port many different operating systems, and automatically chooses the best proto-

cols, hosts, and routes to obtain a requested service. Open Genera software distri-

bution includes a number of protocols specifically to enhance communication with

UNIX, including:

IP/TCP The ARPA Internet protocol family

NFS A standard UNIX file transfer protocol

RPC A compatible version of Sun’s Remote Procedure Call protocol

X11 The X Window System display protocol�

Like all Digital Unix application programs, Open Genera uses Digital Unix swap-

ping partitions for Genera paging space. The Genera world-load file is stored as a

Unix file and can reside on any NFS-accessible file server. If the world-load file is

not on the local machine, performance during boot and access of world pages will

depend on network load.

Open Genera User Interface Architecture

Open Genera is an X client that communicates with an X server running on the

host workstation for its user interface. In fact, Open Genera can be used from any

host on its network that supports an X server. The default is the local host ma-

chine. Open Genera may be used without a user interface, to provide its usual net-

work services or to function as a "back end" to a UNIX application using remote

procedure call (RPC) technology. In normal operation, however, Genera presents its

user interface on the host’s console, using the X Window System developed at the

Massachusetts Institute of Technology.

The Genera user interface may be presented in the form of the standard Genera

console framework, which includes a tiled window manager with an extensive sta-

tus display, and provides mechanisms for selecting between the available Genera

activities.

In all cases, the Open Genera user interface is programmed and managed by the

same Genera user interface facilities used in other Symbolics workstations. The X

Page 3

Window System is used as an implementation mechanism only; its programming

interfaces and toolkits are not supported on Open Genera, although the host oper-

ating system may provide them for use with the same X server.

RPC client

RPC server X server

AXP implementationMacIvory implementation XL implementation

Application
Genera

Application
Genera

Native
hardware

CLIMDynamic
Windows or

Genera
Life-Support

Figure 1. Open Genera User Interface Architecture�

Figure 1 illustrates the architecture of the Genera user interface implementation.

The two programmer interfaces CLIM and Dynamic Windows interface are sup-

ported. These facilities are implemented using three different technologies:

• In Symbolics 3600-series and XL workstations, the implementation directly ma-

nipulates the Symbolics console.

• In Symbolics MacIvory systems, the implementation uses an RPC protocol be-

tween the coprocessor and the host Macintosh, which manipulates the console

hardware using its QuickDraw software library.

• In Open Genera and UX-family systems, the implementation uses the X protocol;

an X server on the host system manipulates the console hardware and shares

access among multiple X clients.

Page 4

Open Genera uses facilities of the X protocol to define a mapping between the

keys available on the host keyboard and the keys used by the Genera SEE. On a

DEC Alpha workstation , only the DEC LK401 AA model keyboard has the neces-

sary keys to implement this mapping. See the section "Open Genera Keyboard Sup-

port".

Getting Started with Open Genera

Before you can use Open Genera, it must be properly installed and configured. In-

stallation consists of the following steps:

• Installing Open Genera software

• Configuring the Digital Unix kernel and swap space

• Installing the Genera software and world loads

• Configuring the Digital Unix and Genera networks for the new machines

• Installing the Genera source code and documentation�

See the section "Installing Open Genera" for a detailed description of the Open

Genera installation process.

When you are ready to proceed, boot the DEC Alpha workstation. Procedures for

this will vary, but if the workstation is turned off, turning it on will usually suf-

fice to boot it. Note that Digital Unix caches modified copies of critical data struc-

tures in volatile memory. You should not shut down the system by turning off the

power. Talk to your site administrator if you have any questions about operating

your workstation.

At this point, the Digital Unix system should be waiting for you to login. If it was

configured by DEC, the system will start a window system immediately after boot-

ing. A window will be displayed, prompting for a user name and a password.

Log in to the DEC Alpha workstation.

Run the genera Digital Unix application after logging in to get Genera to boot.

Genera will boot and bring up both an iconified Cold Load stream and Genera’s

user interface, a large X window with an initial display showing the contents of

the world and some other information. (The Cold Load stream window is not re-

quired during normal Genera operation, but don’t destroy it. It is normally iconi-

fied, and will de-iconify automatically if necessary. You may reposition or bury it,

but don’t destroy it as it is used a as last resort for communicating with Lisp in

the face of serious X-server, network, or internal errors.)

You may now log in to Genera and use the system much as you would a Symbolics

workstation, albeit with a different keyboard. If you are unfamiliar with Genera,

see the document Genera Workbook for an introduction. Note that the Genera con-

sole image is just one X window among many in the DEC Alpha workstation’s user

Page 5

interface; it may be moved, buried, or iconified at will as you switch between Gen-

era and Digital Unix applications.

The proper way to close the Genera window is to abort the genera Digital Unix

program following these steps:

1. Specify Halt Genera from a Lisp listener.

2. Answer YES to the prompt that appears.�

See the section "Halt Genera Command".

You may now log out of Digital Unix to complete your session.

Controlling Open Genera

In the Digital Unix environment, a program is loaded from the file system on de-

mand into a separate address space, which is discarded when the program exits. A

Genera environment consists of a single large virtual memory space, within which

all the code and data objects of all loaded Genera applications exist.

Objects in Genera’s virtual memory are stored as follows:

The original Genera world load (disk)

A Genera world load is a complete image of a Genera environment,

frozen in time at the moment the world was saved. It may be composed

of several files using the incremental disk save feature (IDS). A world

load is never modified after it is saved.

As Genera runs, it acquires additional memory resources for new and modified

code and data structures by negotiating with Digital Unix for swap

space, just as any other application program does. Information stored in

swap space is not preserved across sessions.

The main memory of the DEC Alpha

All objects in a Genera environment are stored on disk in either the

world or Digital Unix swap space. However, recently used objects are

copied from the slow disk to the fast main memory, to improve perfor-

mance.

The Digital Unix genera program is used to boot Genera and to invoke Genera ap-

plications.

The genera Digital Unix Application

The Digital Unix command interface for operating Open Genera is an application

named genera. Parameters controlling the operation of genera, including which

world load it boots, are given in any of several configuration files and/or in com-

mand options. The command options are described in the following section. A de-

scription of the equivalent syntax for the .VLM configuration files is also provided.

Page 6

genera options�

options �

-spy no -spy yes Specifies whether or not the Spy is enabled. Default is -spy no.

If you use -spy yes and you specified an IP address for your

Open Genera, this address will be used as the diagnostic host’s

address. Otherwise, you must specify a diagnostic host.

-diagnostic HOSTNAME

Specifies the host which will be used for remote debugging.

This argument must be specified if the Spy is enabled. An ap-

propriate choice is the name of your Alpha. �

-world PATH Specifies the pathname of the Lisp world to be loaded into

Open Genera’s memory and booted. The default is

/usr/lib/symbolics/Genera-8-5.vlod�

-debugger PATH Specifies the pathname of the VLM Debugger to be loaded into

the VLM’s memory and invoked should Lisp crash. The default

is

/usr/lib/symbolics/VLM_debugger�

-network SPECIFICATION -network UNIT,SPECIFICATION

Specifies a network interface, that is, the way Open Genera

will be accessed from the network. The first form defines the

main network interface (unit 0). The second form is used to

define additional interfaces; UNIT must be a number between 0

and 7. (You can specify the main interface using either syn-

tax.) At least one interface must be defined. SPECIFICATION can

be either the name of the Open Genera host or any string ac-

ceptable to the IFEP’s :Set Network Address command (for ex-

ample, ETA-FISH, INTERNET|128.81.41.48, CHAOS|24460, etc.). �

-vm NNN Specifies how much of your Alpha’s swap space should be used

by Lisp where NNN is the number of megabytes to be used by

Lisp. This specification includes the space occupied by the

world. The default memory limit is 200 megabytes (MB) or 40

megawords (MW). If Lisp exceeds your specification, it will

drop into the VLM Debugger with an appropriate message. If

you :Continue, genera increases your limit by 25%.�

-ids yes -ids no Specifies whether the ability to save IDS (incremental disk

save) worlds is enabled or not. The default is that this ability

is disabled (no). (Note that it is always possible to boot an IDS

world regardless of this option.)�

-searchpath PATH When asked to boot an IDS, the genera command must search

for the IDS’ ancestor worlds. The genera program searches the

Page 7

directory containing the IDS and then the directories specified

in the world file search path. The general form of PATH is a

colon-separated list of directory names, for example:

/usr/a/smbx:/usr/b/smbx�

The default world file search path is

/var/lib/symbolics:/user/lib/symbolics�

Also, you can override the default search path by setting the

WORLDPATH shell environment variable. The syntax of the search

path is a colon-separated list, as shown above. The directories

in the path are searched from left to right.

The following arguments control the main X console for Genera.

Options which have abbrevations are mentioned in parentheses after the full op-

tion name.

-display DISPLAY The default for -display is the display specified by the DISPLAY

environment variable. If that variable isn’t set, the local host

is used.

-geometry GEOMETRY

-iconic yes -iconic no

The default for -iconic is no (that is, the window starts fully

visible.)

-foreground (-fg) COLOR

-background (-bg) COLOR

-bordercolor (-bd) COLOR

-borderwidth (-bw) WIDTH

The following standard X arguments control the cold load window. Again, abbrevia-

tions are in parentheses.

-coldloaddisplay (-cld) DISPLAY

The default for -coldloaddisplay is the same as for -display.

-coldloadgeometry (-clg) GEOMETRY

-coldloadiconic (-cli) yes -coldloadiconic (-cli) no

The default for -coldloadiconic is yes (that is, the window

starts as an icon).

-coldloadforeground (-clfg) COLOR

-coldloadbackground (-clbg) COLOR

-coldloadbordercolor (-clbd) COLOR

-coldloadborderwidth (clbw) WIDTH�

Page 8

In addition to command line arguments, you can specify the options to control gen-

era in a configuration file. The syntax of a configuration file is the standard X re-

source file format. Each line of the file contains an option name and value separat-

ed by colons. The "!" character may be used to start a comment, which extends to

the end of the line.

The genera command uses a succession of sources to establish and modify its op-

tion settings, arriving at the set finally used in booting and running Open Genera.

The procedure is as follows, that is genera:

1. establishes its built-in default settings.

2. reads the configuration file /var/lib/symbolics/.VLM, if it exists, and uses any

setings in it to supersede the corresponding values already established.

3. reads the .VLM file, if any, in your home directory and uses any settings from

it to supersede corresponding values.

4. reads the .VLM file, if any, in the working directory and uses any settings

from it to supersede corresponding values.

5. processes any options in the command line and uses them to supersede corre-

sponding values.�

A Sample .VLM File�

A sample .VLM file is illustrated in the following example:

�

!

! Sample Configuration File

!

*network: HOST-NAME

�

genera.enableIDS: yes

genera.virtualMemory: 350

genera.world: /var/lib/symbolics/scrc-8-4.vlod�

An option that is prefixed with "genera." applies only to the genera command. An

option that is prefixed with "*" applies to the genera command and any other com-

mands which implement the VLM. The values for an option that appear in the file

are the same as those that appear on the command line.

The option names used in the file and the corresponding command options are

Name in File Name on Command Line

spy -spy

diagnosticHost -diagnostic

world -world

debugger -debugger

Page 9

network -network SPECIFICATION

virtualMemory -vm

enableIDS -ids

worldSearchPath -searchpath

main.display -display

main.geometry -geometry

main.iconic -iconic

main.foregroundColor -foreground

main.backgroundColor -background

main.borderColor -bordercolor

main.borderWidth -borderwidth

coldLoad.display -coldloaddisplay

coldLoad.geometry -coldloadgeometry

coldLoad.iconic -coldloadiconic

coldLoad.foregroundColor -coldloadforeground

coldLoad.backgroundColor -coldloadbackground

coldLoad.borderColor -coldloadbordercolor

coldLoad.borderWidth -coldloadborderwidth�

Exiting the genera Application

Use the Halt Genera command to pause or exit the genera application. Note that

exiting the genera application is equivalent to powering off a "real" Lisp Machine:

all your state is irretrievably destroyed. You must save any important state before

exiting.

Halt Genera Command

Halt Genera keywords �

keywords :Logout :Shutdown :Query :Delay :Reason :Simulate�

:Logout {Yes or No} Default is Yes. Logging out before halting is rec-

ommended. If you have not already logged out, :Logout Yes will

perform a Logout before halting. Specify :Logout No if you do

not want to log out first.�

:Shutdown {Yes or No} Whether to exit the genera application after halt-

ing. Default is Yes. Usually, if you are through with Genera,

you will want to exit the genera application to release the re-

sources it is using and make them available to other Digital

Unix applications. Note that exiting the genera application is

equivalent to powering off a "real" Lisp Machine: all your state

is irretrievably destroyed. You must save any important state

before exiting.

Page 10

:Query {Yes, No or Confirm-Only} Whether to ask about each decision,

just confirm, or don’t ask at all. Default is Yes; mentioned de-

fault is Confirm-Only.

:Delay {None or a Time Interval} How long to delay before halting.

Default is 5 minutes if there are active servers, otherwise

None. If Genera is serving other client processes, you can spec-

ify a delay before halting to allow those clients enough time to

complete their processes.

:Reason {A string} Default for "halting." Used to warn active clients

about pending halt.�

:Simulate {Yes or No} Whether to just show the effectof this command

without actually doing it. Default is No.

If you plan to come back to Open Genera shortly, or you do not want to lose your

state, specifying :Shutdown No will pause the genera application, but retain Gen-

era’s state and you will be able to resume your Genera session by typing :Start to

the VLM Debugger prompt in the VLM Debugger window. While the genera appli-

cation is paused, it will not consume any CPU resources, although it will retain its

swapping resources (where Genera’s state it stored). To reclaim those resources

(and exit the genera application altogether) you can type :Shutdown to the VLM

Debugger prompt.

Using the Open Genera Debugger

Genera Life Support performs the initialization steps formerly associated with the

Front-End Processor (FEP) of Symbolics machines. In order to cold boot Genera,

restart the Digital Unix genera program (essentially throwing away it’s memory

image and restarting from the world load).

The Virtual Lisp Machine (VLM) Debugger is a debugger of last resort, used when

Genera (Lisp) halts or is in an inconsistent state and unable to proceed. The VLM

Debugger shares the Cold Load console with Genera.

Genera uses the Cold Load console as an alternative console when the main X

Console is unusable for some reason. Usually, when Genera uses the Cold Load

console, you are in the Genera debugger. A number of proceed options to work

around the current problem are offered.

If Genera is unable to handle an error itself (because of internal inconsistencies,

recursive errors, or insufficient resources) it will halt and the VLM Debugger will

use the Cold Load console to display an error message.

Sometimes, you will be able to recover from the error. For example, if Genera

would exceed the virtual image size you requested, it will halt and display a mes-

sage advising you to use the VLM Debugger :Continue command if you want to

proceed. The VLM Debugger is used because, unlike the Genera debugger, it does

not "cons" (use additional memory resources) when such resources are already ex-

hausted. These are called proceedable errors.

Page 11

If an unexpected error occurs, or an error occurs that does not indicate any possi-

bility of proceeding via :Continue, you can use the VLM Debugger debugging com-

mands to examine the state of Lisp, perhaps determining the cause of the bug or

at least gather enough information to submit a bug report.

Sometimes you will be able to recover from an unexpected error, or an error which

does not have an option to continue, by using the VLM Debugger :Start command,

which will cause Genera to "warm boot" (essentially, reinitialize itself, but in a

way that preserves most, if not all, user state, such as modified files, buffers, mail,

etc.) It is often worth retrying the :Start approach at least twice. The VLM De-

bugger :Start command will first try to recover all Genera processes, including

the process with the error that caused Lisp to halt. If that is unsuccessful (you

immediately halt again), a second :Start command will forcibly abort and reset the

erring process (but no other processes).

On the VLM, there is another option for debugging system errors. If you enable

the VLM remote debugger in your .VLM configuration file, and your Digital Unix

host is accessible to the Internet, Symbolics Customer Support can attempt to re-

motely diagnose the system error. You must supply the network address of both

the Digital Unix host and VLM for this service and you must have enabled the -

spy option when you started the genera application. See the section "The Genera

Digital Unix Application".

The VLM Debugger is nearly identical in function to the IFEP Debugger. It can

be used by experienced users to diagnose bugs that halt normal operation of Lisp

and its debugger. The VLM Debugger can also be used as a last resort to gather

information for a bug report. If you are a former Ivory Lisp Machine user, you

will find that the VLM Debugger is much the same as the IFEP Debugger, but is

not a separate subcommand (there is no IFEP). Some few IFEP commands (Con-

tinue, Show Version, Shutdown, Start, Show Status, and Clear Screen) are avail-

able, in addition to all the IFEP Debugger commands and accelerators. For more

information,see the section "Debugging on Ivory-based Machines". Note that the

prompt for the VLM Debugger is VLM Debugger: (instead of the arrow prompt used

by the IFEP Debugger.

Open Genera User Interface

Genera presents its user interface on the host’s console, using the X Window Sys-

tem developed at the Massachusetts Institute of Technology. Open Genera is an X

client that communicates with an X server running on the host workstation for its

user interface. In fact, Open Genera may be used from any host on its network

that supports an X server.See the section "Connecting to Genera".

The Genera user interface may be presented in the form of the standard Genera

console framework, which includes a tiled window manager with an extensive sta-

tus display, and provides mechanisms for selecting among the available Genera ac-

tivities.

In all cases, the Open Genera user interface is programmed and managed by the

same Genera user interface facilities used in other Symbolics workstations. The X

Page 12

Window System is used as an implementation mechanism only; its programming

interfaces and toolkits are not supported on Open Genera, although the host oper-

ating system may provide them for use with the same X server.

The X Window System provides a comprehensive set of graphic operations with

well-defined scan conversion semantics that are compatible with those of the Gen-

era graphics substrate. See the section "Scan Conversion". Most of Genera’s graph-

ic operations, from simple character and line drawing to more complicated shapes

and rendering options, are simply translated into X requests and forwarded to the

X server. Consequently, the performance of graphic operations is very dependent

on the performance of the X server. Some X servers have been optimized for only

the most common operations, and as a client Genera inherits that characteristic.

Significant performance problems in the Genera X Client are usually caused by ex-

cess traffic between the client and server, particularly sending bitmaps back and

forth. Genera provides a number of mechanisms for minimizing such traffic, and

uses them itself to improve performance.

Open Genera may be used without a user interface to provide its usual network

services or to function as a "back end" to a Digital Unix application using remote

procedure call (RPC) technology.

Connecting to Genera

The X Window System is a network protocol, and requires a rendezvous between a

client and server before communications can take place. In the X Window System,

the client is the application seeking to present a user interface, and the server is

a virtual console capable of doing so. In the case of Open Genera, Genera is the X

client, and the host workstation (or any other workstation on the network) is the X

server. The Genera X client must be specifically requested to connect to a given X

server.

When using the Genera X client from a non-UNIX workstation such as an X ter-

minal or a Symbolics workstation, you must independently connect to the Genera

Command Processor and use the Start X Screen command. You can also use TEL-

NET from a non-UNIX workstation. When using the Genera X client from a UNIX

workstation, use the genera UNIX program to establish and supervise the X con-

nection.

The Genera X client supports multiple user interfaces simultaneously, possibly dis-

played on different consoles. This does not, however, make Genera a multiuser op-

erating system. The Open Genera Software Engineering Environment provides a

single address space, or environment, for all applications running within it. There

are no mechanisms to isolate multiple applications (or multiple copies of a single

application) from each other, so applications intended for use by multiple users

must carefully define which objects are shared among users and which are strictly

per-user. dw:define-program-framework encourages writing programs that can be

used by several users independently, by providing a per-invocation repository for

application objects.

Page 13

Start X Screen Command

Start X Screen host keywords�

Connects to an X server to present the Genera user interface. Start X Screen

takes a number of optional arguments, principally one to specify the activity which

is to run in the new screen. If no activity is specified, a generic Genera console

and user interface is presented, and various activities may be selected within it us-

ing the usual mechanisms.

The following arguments specify where the user interface is to be displayed:

host The name of the host on which to display the user interface. It

must be running an X server and provide X-WINDOW-

SYSTEM service.

:Display The number of the display (X terminology).

:Screen The number of the screen (X terminology).

The following keyword arguments specify the Genera application in the new

screen:

:Activity The name of the Genera activity to use.

:Program The name of the remote program to use.

:Protocol The network protocol to use for the connection.�

There are a number of arguments that specify visual characteristics of the new

screen. The default is to create a screen that covers most of the X server’s con-

sole, with a who line (also called a status line).

:Geometry An X geometry specification (for example, 785x800+100+100)

:Who Line A Boolean value indicating whether to append a status line to

the screen.

:Foreground The foreground color.

:Background The background color.

:Border Width The width of the screen border, in pixels.

:Border Color The color of the border.

:Compatible Color Whether or not the screen supports compatible color.

:Initial State :normal or :iconic, indicating whether the new window should

be initially iconified or not.

Start X Screen normally attempts to use the resources (screens, bitmaps, dynamic

window histories) of previously created screens that have been disconnected, by

Halt X Screen, warm booting Genera, or by a failure of the network connection.

This behavior may be disabled using the :reuse argument.

Page 14

:Reuse A Boolean value indicating whether to reuse an old screen or

force a new one to be created.

The following example presents the user interface of a Genera main screen on the

primary console of host ENIAC, assuming that ENIAC is running an X server. The

window will appear with an image of a Dynamic Lisp Listener inside it; other Gen-

era activities may be selected and will appear within the window, as though it

were the console of a Symbolics workstation.

Start X Screen (host) ENIAC�

The following example presents the user interface of the Genera Zmacs editor on

the primary console of host ENIAC. The window will appear with Zmacs’ default

width of 785 pixels, and without a Genera status line.

Start X Screen (host) ENIAC :Activity Zmacs �

Halt X Screen Command

Halt X Screen screen�

Disconnects an established X connection, destroying the corresponding X window.

The screen argument defaults to the console from which the Halt X Screen com-

mand was executed, if that is an X screen. Otherwise, the screen argument is hard

to type: type help and use the mouse to indicate which of the possibilities you in-

tended.

Open Genera Keyboard Support

Genera was designed for use with a keyboard that includes a rich selection of

modifier keys (CONTROL, META, SUPER, and so on) and a number of special-function

keys (HELP, COMPLETE, ABORT, SUSPEND, RESUME, and so on). This keyboard is ex-

emplified by the one shipped with Symbolics workstations. With the advent of re-

mote console support, such as the X Window System, Genera is increasingly used

from consoles with other, widely varying, types of keyboards.

Open Genera accommodates the keyboard on your DEC Alpha by translating

keystrokes from the physical keyboard into its own abstract set of keystrokes. Only

the DEC LK401 AA model keyboard has the necessary keys to implement this

mapping. (Using other DEC keyboards, including the DEC LK421 AA keyboard,

will make use of Open Genera difficult, if not impossible.) The DEC LK401 AA

keyboard is shown in Figure!. The general-purpose function keys are mapped to

Open Genera as shown in Figure !, Figure !, Figure !, and Figure !.

Page 15

Q W E R T Y U I O P
}

[]

A S D F G H J K L
:
;

\

’

|

\

>

<
Z X C V B N M < >

, .
?
/

ShiftShift

Ctrl

Compose

Character

Compose

Character

Alt

Function Function

Alt

Caps Lock

1 2 3 4 5 6 7 8 9 0 - =’
~ ! @ # $ % ^ & * ()

_
+

Tab Return

Delete

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

{

Help Do

Find

Insert

Here

Remove

Select Previous Next

F17 F18 F19 F20

PF1 PF2 PF3 PF4

1 2 3

4 5 6

7 8 9

0

Enter

-

.

,

Figure 2. DEC LK401 AA Keyboard

�

�

q w e r t y u i o p []

a s d f g h j k l ; ’ \

< z x c v b n m , . /
ShiftShift

Control

Super HyperMeta Symbol

Caps Lock

1 2 3 4 5 6 7 8 9 0 - =‘

Tab Return

Rubout

Function Escape Square Circle TriangleNetwork Help End

Complete Line

Up

Space

Select Scroll Scroll

Suspend Resume Abort

Refresh Page
Mode

1 2 3

4 5 6

7 8 9

0

End

-

.

,

Clear

Input

Lock

Down RightLeft

Back

Back

Figure 3. Open Genera Interpretation of the DEC LK401 AA Keyboard

�

Page 16

Q W E R T Y U I O P { }

A S D F G H J K L :

< Z V N M < > ?

|’’

X C B ShiftShift

Control

HyperMeta Symbol

Caps Lock

! @ # $ % ^ & * () _ +
~

Tab Return

Rubout

Function Escape Network Square Circle Triangle

Super

~

Select

Refresh

1 2 3

4 5 6

7 8 9

0

-

.

,

Suspend Resume Abort

End

Clear

Input

LineComplete

Back

Space

Mode
Page

Lock

Back

Scroll

Right

Up

DownLeft

Scroll

Help End

Figure 4. Open Genera Interpretation of the DEC LK401 AA Keyboard Using the

Shift Key

�

∧ ∨ ∩ ∪ ⊂ ⊃ ∀ ∞ ∃ ∂

↑ ↓ ← → ↔ •

≥ ∫ ShiftShift

Control

Super HyperMeta Symbol

Caps Lock

¬ ≠

Tab Return

Rubout

Function ◊ Square Circle TriangleNetwork

≤

≡

Select

Refresh

⊗ ¬

≥

≤

Suspend Resume Abort

End

Clear

Input

LineComplete

Back

Space

Mode
Page

Lock

Back

Scroll

Right

Up

DownLeft

Scroll

Help

End

Symbol
◊

Figure 5. Open Genera Interpretation of the DEC LK401 AA Keyboard Using the

Symbol Key

�

Page 17

ε

γ λ ±

∫ ShiftShift

Control

Super HyperMeta Symbol

Caps Lock δ

Tab Return

Rubout

Function ◊ Square Circle TriangleNetwork◊

α

β

⊗ ⊕

π Select

Suspend Resume Abort
Clear

Input

LineComplete

Back

Space

Back

Scroll

Right

Up

DownLeft

Scroll

Help
End

Symbol

Refresh

⊗ ¬

≥

≤

End

Mode
Page

Lock

Figure 6. Open Genera Interpretation of the DEC LK401 AA Keyboard Using the

Symbol and Shift Keys

�

Page 18

Use the Show Keyboard Layout command for a graphic display of the key map-

pings (the default for the keyboard-layout argument is DEC LK401 AA). See the

section "Show Keyboard Layout Command".

Font Support in the Genera X Client

The Genera user interface can use either Genera fonts or the standard 75dpi X

fonts. If the Genera fonts are available on the X server, it uses them. If they are

not, but the standard 75dpi X fonts are available, it uses them. If neither the Gen-

era fonts nor the standard 75dpi X fonts are available, Genera fonts are used in

pixmap mode.

Using Genera Fonts in the Genera X Client

The Genera user interface can use the same character fonts whether it is dis-

played on the local console of a Symbolics workstation or on the console of another

host using the X Window System. In the X Window System, these fonts may be

displayed on the screen using two different mechanisms:

• The X server can be requested to draw a string using a native representation of

the Symbolics font.

• The glyph image of each character in the Symbolics font can be sent over to the

server as an X pixmap; the X server can be asked to copy that pixmap to the

screen.�

Both of these mechanisms provide the same results, but converting the fonts to

the native representation used by the X server host is generally much faster.

The Genera X client supports both of these techniques. If the X server has access

to a font of the same name as the corresponding Genera font, characters in that

font are drawn using native operations. Otherwise, a pixmap is constructed. The

Open Genera installation process installs native versions of Genera’s fonts in the

proper directory for access by the OSF X Server. The Symbolics software distribu-

tion includes BDF representations of all the Genera fonts, which may be compiled

into the server’s native format.

Using Standard 75dpi Fonts in the Genera X Client

The Genera user interface can use the standard 75dpi X fonts on X consoles. It

chooses the following X font families from the character styles:

Character style family X font families

FIX Courier

SWISS Helvetica

DUTCH Times

JESS Helvetica�

Page 19

The Genera X Client automatically maps between the Genera character set and

the ISO8859 character set used by the stardard 75dpi X fonts, automatically choos-

ing alternate glyphs from either the Symbol X font family or the corresponding

Genera font drawn with pixmaps.

Color Support in the Genera X Client

If the X server host has color display hardware, you can draw in color by using

the :color or :gray-level arguments to the graphics:draw-xxx functions. The value

of :color is a symbol that names a color (one of :black, :red, :green, :blue, :cyan,

:yellow, :magenta, :white), a list (red green blue) where each element is a number

between 0 and 1, inclusive, or a color object created by color:make-color. The val-

ue of :gray-level is a number between 0 and 1, inclusive. See the section "Pattern

Options". See the option :color. See the option :gray-level.

See the function color:make-color.

Alternatively, you can access the workstation (or X servers) color capabilities by

using CLIM. See the section "Drawing in Color in CLIM".

File System Access on Open Genera

Genera provides access to many file systems using Symbolics’ generic network sys-

tem. For most DEC Alpha users, the Digital Unix file system is the main file sys-

tem used. Open Genera includes an implementation of NFS that you can use to ac-

cess UNIX files from the Genera environment. We strongly recommend you use

NFS and the UNIX file system in working with the Open Genera. If you are unfa-

miliar with using file systems with Genera, see the section "Naming of Files".This

section provides general information on the use of file systems with Genera.

Open Genera File System Access Through Symbolics NFS

Symbolics NFS is a user-transparent remote file access protocol. This system is a

fully symmetrical implementation of the Sun Network File System protocol, built

on top of the Sun Remote Procedure Call (RPC) protocol, which in turn is built on

the Sun eXternal Data Representation (XDR) standard, all as specified in the Sun

Network File System Protocol Specification, Revision B of 17 February 1986. The

transport medium used is UDP/IP.

Symbolics NFS provides file transfer, direct file access, directory lookup, and file

attribute modification. It allows the Open Genera environment to act as an NFS

client. In addition, Symbolics NFS allows you to access files using the standard

Genera activity interfaces (for example, you can use c-X c-F in Zmacs, or the

Show Directory command from the Command Processor). Because the NFS protocol

is UNIX oriented, there are some behavioral differences from the other remote file

protocols available on Genera, primarily in status-line states and pathname syntax.

You can modify UNIX required characteristics with customization parameters 
variables or user properties that can be assigned to namespace objects. See the

section "User Properties for Configuring a UNIX File System".

Page 20

Accessing an OSF/1 File System on Open Genera

Files on a UNIX file system can be accessed from Genera using pathnames that

follow UNIX syntax conventions. All Genera file and directory commands will oper-

ate on the UNIX file system.

Typically, you access UNIX files using the format:

host:/directory/filename...�

The word host represents the name of a UNIX host. Directory specifies the directo-

ry (or subdirectory) in which the file file-name resides. The slash character (/) sep-

arates pathname components. This format can be used for local or remote hosts.

UNIX Pathname Completion

Genera’s completion facilities can access the file systems of various hosts, includ-

ing Sun computers. To perform pathname completion, Genera looks in the host’s

file system and returns a new, possibly more specific string than the one that you

have entered, expanding any unambiguous abbreviations in a host-dependent fash-

ion.

Wildcard syntax is supported for UNIX pathnames. An asterisk (*) is used to spec-

ify a canonical type and is equivalent to the keyword argument :wild. One common

use of the double asterisk (**) is to specify all directories and subdirectories; it is

equivalent to the keyword argument :wild-inferiors. The double asterisk wildcard

is supported only for UNIX files accessed by means of NFS.

Use the c-/ and c-? keystrokes to see multiple possibilities for what you have al-

ready typed. For more information about using these keystrokes, see the section

"c-? and c-/".

UNIX Pathname Merging

Merging of UNIX pathnames is identical in most respects to pathname merging of

LMFS pathnames. Like files in LMFS, UNIX pathnames are merged against the

default. You need to specify only those fields (name, type, or version) that differ

from the context-dependent default to create a new pathname. However, unlike

LMFS pathnames, UNIX pathnames are case-sensitive. A complete discussion of

Genera-style pathname merging appears in the section "Pathname Defaults and

Merging".

The next examples show pathname merging when a new host or directory is speci-

fied:

Default Input Merged

ENIAC:/u0/mwra/foo.lisp MARK-I: MARK-I:/u0/mwra/foo.lisp

Page 21

Default Input Merged

ENIAC:/u0/mwra/foo.lisp /etc/ ENIAC:/etc/foo.lisp

ENIAC:/u0/mwra/foo.lisp patches/ ENIAC:/u0/mwra/patches/foo.lisp

ENIAC:/u0/mwra/foo.lisp ../mbta/ ENIAC:/u0/mbta/foo.lisp

Since UNIX does not recognize that pathnames have a name or type, it is possible

for UNIX filenames to have any number of dots in them. Because of this, names

and types are not automatically defaulted during the merging process:

Default Input Merged

ENIAC:/u0/mwra/foo.lisp bar ENIAC:/u0/mwra/bar

ENIAC:/u0/mwra/foo.lisp .bin ENIAC:/u0/mwra/.bin

ENIAC:/u0/mwra/foo.lisp ...dots... ENIAC:/u0/mwra/...dots...

However, names can be merged if you explicitly specify this in the input to be

merged. You can indicate whether you want the name or type specified by using

the double-arrow character "↔", entered with the SYMBOL-l key combination:

Default Input Merged

ENIAC:/u0/mwra/foo.lisp bar.« ENIAC:/u0/mwra/bar.lisp

ENIAC:/u0/mwra/foo.lisp «.bin ENIAC:/u0/mwra/foo.bin

The double-arrow character (↔) indicates only whether an entire name or type

component should be defaulted. If there are more characters in a name or type

pathname component, it means nothing special:

Default Input Merged

ENIAC:/u0/mwra/foo.lisp bar.b« ENIAC:/u0/mwra/bar.b«

ENIAC:/u0/mwra/foo.lisp x«.bin ENIAC:/u0/mwra/x«.bin

If a filename has more than one dot in it, Genera interprets the last dot as the

separator between the name and type component, and the rest of the dots as part

of the name component. Therefore, using ↔ at the end of a filename will result in

the type being defaulted, but using ↔ anywhere else in the filename has no effect:

Default Input Merged

ENIAC:/u0/mwra/foo.lisp ...dots...« ENIAC:/u0/mwra/...dots...lisp

ENIAC:/u0/mwra/foo.lisp «...dots... ENIAC:/u0/mwra/«...dots...

UNIX Backup Files

Through Symbolics NFS, Genera maintains backup file versions for UNIX using a

numbering scheme that is compatible with those UNIX programs that do not rec-

ognize version numbers.

Page 22

If you create a new file, foo.c, its creation is recorded as:

foo.c 1:00pm�

When a new version of the file is written, the previous version is assigned a back-

up version number:

foo.c 1:14pm

foo.c.~1~ 1:00pm�

This process continues as you write other new versions of a file:

foo.c 2:03pm

foo.c.~2~ 1:14pm

foo.c.~1~ 1:00pm�

You can set the number of backup versions that are retained by Genera with the

"NFS-GENERATION-RETENTION-COUNT User Property" for host namespace ob-

jects.

Files with backup version numbers are not normally represented internally to Gen-

era with pathname version numbers. Consequently, no Genera utility treats backup

file copies as files with versions. For example, Dired and the Clean File command

do not behave as if file backup copies are older versions of the same file.

Using SCT with a UNIX File System

The System Construction Tool (SCT) presents a special case in using UNIX backup

files. SCT requires a version number for the files it uses. For directories main-

tained by SCT, files are maintained so that the newest versions of the files have

an explicit version number. (See the section "System Construction Tool" for back-

ground information on SCT).

Use the name of a UNIX directory to specify that files contained in it are to be

maintained by SCT and should all end with explicit version numbers. If the name

of a UNIX directory ends with the .sct file extension, Symbolics NFS creates all

new files under that directory with explicit version numbers.

Here’s an example. Suppose a sys.translations file looked like this:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 ’(("**;" "ACME-UNIX:/usr/share/symbolics/rel-8-0/sys.sct/**/")))�

In this case, all new files created with Symbolics NFS under

/usr/share/symbolics/rel-8-0/sys.sct/ are created with explicit version numbers

in the newest versions of files, meeting SCT requirements. This is true for all sub-

directories of a directory whose name ends in .sct.

The double-asterisk (**) wildcard can be used only in UNIX pathnames that are

accessed by means of NFS. Other UNIX file protocols, such as FTP, do not recog-

nize this wildcard. For further information on the use of the double-asterisk wild-

card, see the section "LMFS Pathnames".

Page 23

Genera considers UNIX pathnames with any directory components ending in the

string ".sct" to be for SCT-maintained files, and hence to contain version numbers.

The syntax that Genera uses for backup file version numbers in UNIX pathnames

is a number surrounded by tildes separated by a dot from the file type.

This pathname is considered to have a version number:

ENIAC:/u0/mwra/visi-brain.sct/foo.lisp.~23~�

So merging with it as a default behaves like this:

Default Input Merged

ENIAC:/u0/dpw.sct/code/foo.lisp.~23~ bar.« ENIAC:/u0/dpw.sct/code/bar.lisp

ENIAC:/u0/dpw.sct/code/foo.lisp.~23~ «.bin ENIAC:/u0/dpw.sct/code/foo.bin

Note that backup file version numbers are are not defaulted as part of the merg-

ing operation.

You can set the number of backup versions that are retained by Genera with the

"NFS-GENERATION-RETENTION-COUNT User Property"for host namespace ob-

jects.

If you specify a pathname using the literal string "HOST" as the name of the

UNIX host, Open GEnera will interpret the pathname as the name of a file on the

DEC Alpha workstation running Open Genera.

User Properties for Configuring a UNIX File System

NFS-REMOTE-FILESYSTEM User Property

Syntax: NFS-REMOTE-FILESYSTEM filename qualified-filename�

A user property for host namespace objects. The filename argument represents a

pathname that specifies a directory on the host. The qualified-filename argument

specifies a device. A device is defined as a directory on another host that is

mounted on filename, a directory on the local host.

If the mount points for a UNIX host are unknown when Symbolics NFS accesses a

file, it assumes that the file is local to that UNIX host. If the file is on some oth-

er host, in a file system that was NFS mounted by the UNIX host, Symbolics NFS

can determine where the file really is only in cases where Symbolics NFS knows

that the file system has been mounted by the UNIX host.

NFS-TRANSFER-SIZE User Property

Syntax: NFS-TRANSFER-SIZE integer�

A user property for host namespace objects. It specifies the number of bytes of da-

ta requested or sent by each network RPC call when transferring whole files to

Page 24

and from this host. When this property is present on the host namespace object,

the value overrides the relevant default.

NFS-AUTOMOUNT User Property

Syntax: NFS-AUTOMOUNT user-property�

A user property for host namespace objects. It informs the Symbolics client that an

NFS server is running the automount program so Symbolics NFS can duplicate the

file system layout of the NFS server. The value of the user-property argument

should be the arguments given to the automount program running on the NFS

server. See the UNIX man page for the automount program for more information

about the automount program.

If the value of this user property is a single token that does not begin with the

character N, Symbolics NFS assumes the host is running the automount program

with no arguments. Symbolics NFS then consults the auto.master NIS map for au-

tomount configuration information.

If the value of the user property is more than one token, the value is interpreted

as the arguments to the automount program running on the server.

NFS-GENERATION-RETENTION-COUNT User Property

Syntax: NFS-GENERATION-RETENTION-COUNT integer�

A user property for host namespace objects. Sets the number of file versions re-

tained by NFS when superseding an existing file. The default is 5.

Open Genera Network Services

Open Genera shares the network interface of its host, and appears on the host’s

network just like any other remote system. Although the host workstation and

Open Genera share Ethernet hardware addresses, they use separate protocol, or

software addresses, and therefore appear as separate hosts on the network. Other

hosts request network services from either operating system independently, using

the appropriate protocol addresses.

The Open Genera SEE offers extensive networking facilities and adapts easily to

heterogeneous, multivendor environments. It includes protocols and services to sup-

port many different operating systems, and automatically chooses the best proto-

cols, hosts, and routes to obtain a requested service. For a summary of the princi-

pal network services supported by Open Genera,see the section "Summary of Open

Genera Network Services".

The Open Genera software distribution includes the Symbolics IP/TCP network

product, to support communication with the host workstation. Unlike other Symbol-

ics systems, which generally rely only on the Chaosnet protocol, Open Genera uses

both Chaosnet and IP/TCP protocols, and uses IP/TCP protocols exclusively to com-

municate with its host.

Page 25

In a network site containing a number of UNIX workstations and Symbolics work-

stations, the network is described by several different databases:

The Domain Name system

The Domain Name system provides a consistent naming scheme for the

network objects (typically just computers and organizations) on the In-

ternet.

The Symbolics Namespace system

The Symbolics Namespace system describes each networked entity; enti-

ties include users and shared peripherals in addition to computers. In

particular, it describes the network services and protocols supported by

each host.

UNIX NIS

The Digital Unix NIS network database provides information needed to

communicate with UNIX systems, such as user ids, group ids, and pass-

words.�

The Open Genera distribution includes support for the Internet Domain system

and UNIX NIS.See the section "UNIX UID and GID Mapping".

Summary of Open Genera Network Services

Genera supports a wide variety of network services, using a variety of network

protocols. This section describes the principal network services supported by Open

Genera. For related information: see the section "Generic Network Services".

FILE Service�

FILE service gives Genera access to files stored on another computer. Open Gen-

era supports file access using the Symbolics NFILE or QFILE protocols, the Sun

NFS protocol, or the Internet FTP protocol. Note that Open Genera does not itself

offer file service as it has no filesystems of its own.

LOGIN Service�

LOGIN service allows remote hosts to log in to Genera and interact with its com-

mand processor, and vice versa. Open Genera software supports remote login using

the Symbolics 3600-LOGIN protocol, or the Internet TELNET and SUPDUP proto-

cols. See the section "Using the Terminal Program".

RPC Service�

RPC service allows Genera to invoke procedures on a remote host using the Sun

RPC protocol, and vice versa.

Page 26

UNIX-REXEC Service�

UNIX-REXEC service allows Genera to execute commands on remote UNIX hosts

using the UNIX REXEC protocol, and vice versa. See the section "Remote Com-

mand Execution".

X-WINDOW-SYSTEM Service�

X-WINDOW-SYSTEM service allows Genera to present its user interface on the

console of a remote host. Open Genera supports X-WINDOW-SYSTEM service as a

client only; it does not include an X server. Open Genera supports version 11 of

the X protocol.

SHOW-USERS Service�

SHOW-USERS service allows Genera to determine what users are logged in to a

remote host, and vice versa. Open Genera supports SHOW-USERS service using

the Symbolics NAME protocol, or the Internet ASCII-NAME protocol. See the sec-

tion "Show Users Command".

STORE-AND-FORWARD-MAIL Service -- not supported�

STORE-AND-FORWARD-MAIL service allows Genera to deliver mail messages to a

user on a remote host. Open Genera supports STORE-AND-FORWARD-MAIL ser-

vice using the Internet SMTP protocol. Open Genera itself does not include facili-

ties to receive mail messages from a remote host.

SEND Service�

SEND service allows Genera to deliver interactive messages to a user on a remote

host. Open Genera supports SEND service using the Internet SMTP protocol and

the UNIX TALK protocol.

HARDCOPY Service�

HARDCOPY service allows Genera to print text and/or graphics on a printer at-

tached to a remote host. Open Genera supports HARDCOPY service using the

Symbolics LGP and PRINTER-QUEUE protocols, or the UNIX LPD protocol. See

the section "How to Get Output to a Printer".

Remote Command Execution

The UNIX-REXEC network service allows a host to invoke the command inter-

preter of another host. The Execute Command command provides the Genera user

with a convenient interface to this facility. The tcp::make-rexec-stream function

allows Genera programs to invoke this service and interact with a remote program

directly.

Execute Command Command

Page 27

Execute Command host command &key source�

Passes the specified command to the specified host, to be executed by its command

interpreter.

host The name of a host running UNIX or Genera.

command A string to be interpreted by that host’s command processor.

This must usually be enclosed in double quotes.

:Source An optional source of input to the command, which may be a

file, editor buffer, the name of a Genera stream, or the output

of a Genera command.�

For example, to see all the UNIX processes on host ENIAC that are executing

some part of X11, type:

Command: Execute Command (on host) ENIAC (command) "ps -aux | grep X11"

Password for logging in to ENIAC as tsw (or Escape to change user id):

root 159 0.0 0.0 120 0 ? IW Aug 18 0:00 /usr/bin/X11/xdm

root 162 0.0 8.6 2656 624 ? S Aug 18530:08 /usr/bin/X11/X :0 -fp /u

root 161 0.0 0.0 120 0 ? IW Aug 18 0:00 /usr/bin/X11/xdm

root 163 0.0 0.0 168 0 ? IW Aug 18 0:00 /usr/bin/X11/xdm

tsw 815 0.0 2.6 40 192 ? S 12:01 0:00 grep X11�

tcp::make-rexec-stream host command &key user-name password Function

Uses UNIX-REXEC to execute the specified command on the specified remote host,

providing a stream connected to that command’s standard input and output

streams.

To simply execute a command and see the resulting output, use the Execute Com-

mand command.

This example uses tcp::make-rexec-stream and a UNIX C shell interpreter to kill

all the processes running the /etc/rmt server.

(cp:define-command (com-kill-rmt-processes :name "Kill RMT Processes"

 :command-table "User")

 ((host ’net:host))

 (with-open-stream (stream (tcp::make-rexec-stream host "csh"))

 (write-string "ps -ax | grep rmt | grep -v grep; echo end" stream)

 (terpri stream)

 (force-output stream)

 (loop as string = (read-line stream nil)

 while (not (null string))

 as id = (parse-integer string :junk-allowed t)

 while (integerp id)

 do (format stream "kill -1 ~D~%" id))))�

Page 28

This example uses tcp::make-rexec-stream to connect a UNIX C shell to Genera’s

ambient *terminal-io*. It uses a background process to continuously copy UNIX

output to *standard-output*, a useful technique. To terminate this example, either

abort using c-ABORT, log out of the UNIX shell, which will close the connection, or

enter an EOF using the FUNCTION END key combination.

(cp:define-command (com-toy-unix-shell :name "Toy UNIX Shell"

 :command-table "User")

 ((host ’net:host))

 (with-open-stream (stream (tcp::make-rexec-stream host "csh"))

 (let ((process nil))

 (unwind-protect

 (progn

 (setq process (process-run-function "Rexec source"

 #’(lambda (input output)

 (stream-copy-until-eof input output)

 (setq process nil))

 stream (cli::follow-synonym-stream *standard-output*)))

 (loop as string = (read-line *standard-input* nil)

 while (not (null string))

 do

 (format stream "~A~%" string)

 (force-output stream)))

 (when process

 (process:kill process))))))�

System Conditionalization on Open Genera

It is occasionally necessary for Genera programs to distinguish between the differ-

ent platforms Genera is supported on. Programs might need to be conditionalized

between the 3600 and Ivory architectures, since Ivory supports some software

packages and architectural features not available on the 3600 series of machines.

In general, Ivory and Open Genera world-loads and compiled files are not binary

compatible. Such conditionalization should be done at read time (that is, compile

time), using the #+3600, #+IMach, and #+VLM reader macros. Use #+IMach to

conditionalize for both Ivory-based machines and VLM, use #+VLM to conditional-

ize for VLM only, and use #+(and IMach (not VLM)) to conditionalize for Ivory-

based machines only.

Programs compiled for either the 3600 or Ivory architectures, and world loads con-

taining those programs, should work on any product using their target architec-

ture. Therefore, conditionalization between product family members cannot be done

at read time (that is, at compile time); that’s why #+MacIvory is not supported,

for example.

The proper way to distinguish between product family members is to use the

sys:system-case macro. Open Genera is designated by the VLM:system-case key-

word, which means precisely that Genera is running on a DEC Alpha. The

sys:system-case macro should be used only as a last resort; often more precise

Page 29

conditionalization techniques, such as direct queries about the size of the screen or

the availability of an I/O service, are available.

