
Release Notes for Symbolics C 1.1

Symbolics C 1.1: Introduction

The document User’s Guide to Symbolics C describes Release 1.0 of Symbolics C,

and this document describes the software enhancements which are available in Re-

lease 1.1 of C.

Note that the online documentation provided with C 1.1 is updated to include the

software enhancements of C 1.1.

C 1.1 does not support the setting and clearing of breakpoints, which is document-

ed in section ""C Frames in the Debugger"", in User’s Guide to Symbolics C.

Exporting Technique to Reduce Size of Bin Files in C 1.1

In Release 1.0, users noticed that binary files for C programs were very large. This

was due to the compiler creating a copy of definitions that are defined in include

files; the compiler made a copy of each definition in each .c file that included a

file. For example, each .c file that included <stdio.h> would have its own copy of a

given symbol or object.

Release 1.1 offers a way to reduce the size of binary files by specifying a standard

set of include files. In effect, you are guaranteeing that the definitions in these

files will not change due to macros. You gather these into a single file and com-

pile and load it; the compiler does not then copy these definitions into other files

that include them.

Exporting Include Files for Shared Use

We recommend that you "export" include files intended for use across a set of C

source files. This prevents the C binary files from becoming very large, due to un-

necessary copying of definitions. When you are sure that the definitions in an in-

clude file remain the same when compiled with each C source file that is part of

the system, then the compiler compiles and loads one set of those definitions,

which are shared by all C files that include them.

Consider what happens if you do not export include files. The compiler makes a

copy of the definitions from an include file in each .c file that includes that file.

For example, each .c file that includes stdio.h has its own copy of a given symbol

or object. This results in very large binary files.

The procedure for exporting include files is simple. You perform the following

steps:

1. Create a file including a set of include files; this is called the export file. Be

sure that the definitions in each file included in the export file remain the

same when compiled on each C source file which is part of the system.

Page 1822

2. Set the Export attribute of the buffer to be yes using the command m-X Set

Export for Buffer.

3. Include the export file as a module of your system. The export file is a C

source file; you must compile and load it before all other C sources. Compil-

ing and loading the export file defines the objects shared across subsequent

files in the system.�

Symbolics C supplies a predefined export file including all the standard predefined

include files. Include this file as part of the system definition of any system using

standard include files, even if it only uses one or two of the standard include files.

The name of the predefined export file is:

SYS:C;EXPORT-C-LIBRARY.BIN�

Most C applications include the predefined export file and a separate export file

corresponding to application-specific data as part of their system definitions.

Here we give an example of an include file that is not a good candidate for ex-

porting. The include file named include.h contains this definition:

struct x {

 TWO_WORD_TYPE f;

};�

One file in the system contains the following:

#define TWO_WORD_TYPE double

#include "include.h"�

Another file in the system contains the following:

#define TWO_WORD_TYPE char *

#include "include.h"�

Since the two source files define TWO_WORD_TYPE differently, do not export the head-

er file that uses TWO_WORD_TYPE. The default behavior of the compiler (to textually

include the definitions from include files for each C source file) is appropriate for

this situation.

Note: Using one export file reduces the size of C binary files with symbol infor-

mation. It has no effect on the size of run-time-only binary files. See the section

"Minimizing the Size of Compiled Files for C Programs".

Search Lists for Predefined Include Files in C 1.1

In C Release 1.0, you could specify a search list for user-defined include files. In C

Release 1.1, you can also specify a search list for predefined include files. Similar-

ly, whereas Release 1.0 enabled you to define a default search list for user-defined

include files, Release 1.1 also enables you to define a default search list for prede-

fined include files.

Page 1823

A user-defined include file is one which you include with the double-quote syntax,

as follows:

#include "filename" �

A predefined include file is one which you include with the angle-bracket syntax,

as follows:

#include <filename> �

This capability enables you to specify, with a search list, where your existing C li-

braries are stored. (For example, this might be the directory /usr/include on a

UNIX host.) You need not store all predefined include files in sys:c;include; nor

edit source files to specify complete pathnames for predefined include files.

This section includes updated documentation describing how to use search lists

and default search lists.

Search Lists for Include File Directories

You can define search lists for include files. A search list tells the compiler where

to look for include files. A search list has a name and an ordered list of directo-

ries. You first define the search list, and then you use it by associating the search

list with a file or buffer. You can associate a file and its search lists via file at-

tributes. See the section "Defining Search Lists for Include Files". See the section

"Setting the Search Lists of a Source File".

Each C source file can have two different search lists: one for user-defined include

files (which we call the regular search list), and one for predefined include files

(which we call the predefined search list).

You can also define default search lists. A default regular search list is searched

when a source files has no regular search list associated with it. Similarly, you can

define a default predefined search list that is searched when a source file has no

predefined search list associated with it. See the section "Defining Default Search

Lists for Include Files".

When the compiler looks for user-defined include files (which use the double-quote

syntax with #include), it does the following:

1. Checks the directory in which the current source file exists.

2. If it is not found there, checks each directory in the regular search list asso-

ciated with the source file. If the file has no regular search list, the directo-

ries in the default regular search list are checked.

3. If it is not found there, checks the SYS:C;INCLUDE; directory.

4. If it is not found there, signals an error. �

When the compiler looks for predefined include files (which use the angle-bracket

syntax with #include), it does the following:

Page 1824

1. Checks each directory in the predefined search list associated with the source

file. If the file has no predefined search list, the compiler checks the directo-

ries in the default predefined search list.

2. If it is not found there, checks the SYS:C;INCLUDE; direcory.

3. If it is not found there, signals an error. �

Commands and Functions for Using Search Lists

You can use the following commands and functions to create and use search lists

for directories of C include files:

• C Listener commands

° Define C Include Directory Search List

° Set C Environment Search List

° Show C Include Directory Search List�

• Editor commands

° m-X Define C Search List

° m-X Set C Search List for Buffer

° m-X Show C Search List

° m-X Undefine C Search List

• Functions

° c-system::define-default-search-list

° c-system::define-search-list

See individual commands for further descriptions.

Defining Search Lists for Include Files

You can define a search list in three ways:

From the C Listener, with Define C Include Directory Search List

From the editor, with m-X Define Search List

With the function, c-system::define-search-list

Page 1825

When you specify the directories in these commands, you can use a subset of wild-

card syntax. Specifically, you can use this syntax:

>*.*.*�

Wildcard directory mapping is not supported, nor is specifying a portion of the

pathname as a wildcard.

c-sys:define-search-list name &rest directories Function

Defines a search list of C include file directories, using name as the name for the

search list and the specified directories as its components. It lists the directories in

the order in which you want them searched.

See also: "Defining Default Search Lists for Include Files"

Setting the Search Lists of a Source File

To ensure that the compiler uses a given search list for a C source file, you have

to associate that search list with the source file (use the m-X Set C Search List for

Buffer command). This command gives the file an attribute specifying the name of

the search list. Note that this does not associate the list of pathnames with the

file.

If you are using the search list for user-defined include files, use the m-X Set Us-

ing the Set C Search List for Buffer command with no argument. This sets the

Search-List file attribute as the given search list.

If the search list is used for predefined include files, use the m-X Set C Search

List for Buffer with a numeric argument. This sets the Predefined-Include-Search-

List file attribute as the given search list.

� Defining Default Search Lists for Include Files

In addition to defining explicitly named search lists, you can also define a search

list as the default search list for include files.

You can define a default regular search list searched for user-defined include files

if the source file has no regular search list associated with it.

Similarly, you can define a default predefined search list searched for predefined in-

clude files, if the source file has no predefined search list associated with it.

Default search lists do not have names. There is at most one default regular

search list and one default predefined search list in effect in any given Lisp world.

You can define or redefine them with the functions described below. Note that if

you define a default search list within login-forms, the effects are automatically

undone when you log out.

c-sys:define-default-search-list &rest directories Function

Page 1826

Defines a default search list for user-defined C include files to be the specified di-

rectories. It lists the directories in the order in which they are searched.

To undo the effects of calling this function to set up a default search list, call the

function again with no arguments.

c-sys:define-predefined-default-search-list &rest directories Function

Defines a default search list for predefined C include files as the specified directo-

ries. It lists the directories in the order in which they are searched.

To undo the effects of calling this function to set up a default search list, call the

function again with no arguments.

Incremental Development Tools in C 1.1

C Release 1.1 includes several tools that enable C programmers to use the same

powerful paradigm of incremental development in much the same way that Genera

supports incremental development for Lisp programers.

To enhance incremental development, the Symbolics C environment enables you to

evaluate C statements and/or declarations within some environment at both the top

level of a C listener and from a debugger break in a C function. This section ex-

plains how to evaluate C statements and expressions in the Symbolics environment.

The Symbolics C Development Paradigm

The normal mode of development in the Symbolics environment (under Lisp) is

quite different from a more traditional environment, such as UNIX.

In traditional environments, program development repeats four steps: editing, com-

pilation, linking, execution. The link step causes association between a global name

(function or variable) and a particular storage location applicable during the execu-

tion of the program. When the program finishes execution, the association is bro-

ken and the name is no longer associated with that storage location.

In the Symbolics environment, you do not have to execute a link step to perform

the association between a variable and the storage location containing the vari-

able’s value. The association is formed at the time you define the variable. We say

that variables have indefinite extent, and though executing some function may

change the value, the variable remains accessible after the function returns. You

can then evaluate other C statements that use this value and examine the value of

the variable for correctness, all of which aids incremental development.

These techniques are useful for the C programmer. Names with indefinite extent

allow rapid incremental development and increased ease in debugging, because you

can build and examine data structures incrementally as a sequence of actions is

applied to the data. Names bound at link time are more useful when porting from

another system or when there are two communicating programs that need consis-

tent self-contained data. The Symbolics C environment supports both models of ex-

Page 1827

ecution by enabling evaluation to take place at the top level within a particular C

environment, and by providing the Execute C Function CP command that forces

name binding at function execution time.

Using C Evaluation

C evaluation enables you to type a C expression, a C statement, or a C declaration;

the result from evaluating the statement/declaration is presented. C evaluation is

enabled in the following contexts:

• A C listener

• A suspend break from an editor buffer in C mode

• The Debugger�

To use the C evaluator:

1. Begin the C statement with a comma to distinguish between a C statement

and a CP command.

2. End the C statement by pressing the END key to get the evaluator to take ef-

fect. �

For example:

C command: ,printf("hello, world\n");[END]

hello, world

13�

To get the value of a global variable, simply invoke the evaluator on that particu-

lar variable.

C command: ,CHAR_MAX[END]

255�

If the variable has more detailed values, a mouse click expands it.

Restrictions to C Evaluation

Conceptually, each C evaluation takes place as though the statement/declaration

were contained inside a C function whose execution has not yet completed. Unfor-

tunately, this implies that there are some restrictions to C evaluation. First, you

cannot define new functions in a C evaluation. To achieve the equivalent function-

ality, define the function in an editor buffer contained in the C environment. The

function becomes visible for evaluating in the C environment. Second, statements

causing actions to happen at the end of program execution such as the C atexit

statement, have no effect. Finally, statements that cause nonlocal flow-of-control

such as setjmp and longjmp have no effect. Each C evaluation is invoked within

the context of a C environment which controls how names are associated with val-

ues. See the section "Name Resolution in C Environments".

Page 1828

Name Resolution in C Environments

This section describes how Symbolics C controls the association of a C variable,

function, typedef, macro, structure definition, or static variable with a value during

evaluation. C is inherently file oriented. Typedefs, macros, and structure definition

names have semantics only within the context of a given file.

In other operating systems, C programs usually consist of a set of files compiled

and linked together into an object module. Symbolics C follows that structure in

that you can define a C environment consisting of a set of loaded files that estab-

lish the name scope in which evaluation can take place.

Once the environment is defined, you can extend the names visible in the environ-

ment by:

• Evaluating declarations at top level

• Adding files to the environment

• Establishing a new environment that inherits names from this environment�

You can designate an environment by a set of files or a function that you are go-

ing to execute. In the latter case, the system computes all the files needed in the

environment so that this function and each of its callees are executed. Further,

each environment designates a particular file called the file context used to resolve

names to typedefs and macros when evaluating a C statement or declaration. You

can change the file context (for example, to gain access to particular typedefs)

without affecting the rest of the current environment. Typedefs and macros de-

fined at top level supersede the typedefs and macros defined in a particular file

context.

Environments for C Evaluation

You can establish a default environment by starting a C listener, or using a sus-

pend break in the editor. This environment includes the C run-time system and

whatever names you previously entered into the default environment; you can mod-

ify the environment used for the default environment.

Once you establish the default environment, you can establish any number of envi-

ronments desired for performing incremental development. You can use the tradi-

tional model of rebinding the C environment each time the function is called by

invoking by Execute C Function command. A number of CP commands enable you

to query the state of a particular environment. All values and types are presented

to the screen in such a way that you can examine their values using the mouse

when applicable.

The locale.h Library Is Supported in C 1.1

Page 1829

C Release 1.1 supports the functions and macros specified in the Draft Proposed

ANSI Standard for C in the <locale.h> header file.

The locale.h Library

The locale.h library enables you to change the way certain functions behave,

based on local conventions of language and culture. It is the hook for targeting a

program to users in one or more countries in the international community.

This library includes the setlocale function and the following macros, all of which

are used as the category argument to setlocale:

LC_ALL

LC_COLLATE

LC_CTYPE

LC_NUMERIC

LC_TIME�

The setlocale Function

Synopsis: #include <locale.h>

char *setlocale(int category, const char *locale);

Description: Selects the locale of the program, according to the category and lo-

cale arguments. The category argument indicates which portion of the

program’s current locale is changed or queried.

category value Affects

LC_ALL program’s entire current locale

LC_COLLATE strcoll

LC_TYPE character-handling functions

LC_NUMERIC the decimal-point character for I/O and string con-

version functions

LC_TIME strftime�

The locale argument specifies the desired locale. A null pointer for

locale simply queries for the current locale, without changing it. Oth-

er values for locale request to change the current locale. A value of

"C" for locale specifies the minimal environment for C translation;

this is the English C locale. A value of "" for locale specifies the im-

plementation-defined native environment. You can also make this argu-

ment implementation-defined string values.

Returns: If a pointer to a string is given for locale and the selection is hon-

ored, this function returns the string specifying the category for the

new locale. If the selection is not supported, a null pointer is re-

turned, and the program’s locale remains unchanged.

Page 1830

If a null pointer is given for locale, this function returns the string

associated with the category of the program’s current locale, and the

locale remains unchanged.�

Note: If you specify a category other than LC_ALL, the specific subcategory is de-

fined, but the overall category LC_ALL is undefined. In this case, an inquiry for the

category LC_ALL results in a null pointer being returned.

Note: Symbolics C supports two locales: the minimal locale and the C locale

(which are the same in this implementation).

Typing Commands in C Listener and Debugger in C 1.1

In Release 1.0, you could click on the C Listener commands in the menu, but you

could not type the commands. In Release 1.1, you can enter the commands by typ-

ing them in the C Listener. You can also enter commands by typing them in the C

Debugger.

Keep in mind that the menu sometimes abbreviates the name of commands. For

example, the menu item [Edit] is an abbreviation for the command Edit C Defini-

tion. If you type in a command, you must type in its full name.

The :maintain-journals Option in C Defsystems

Do not use the (:maintain-journals nil) option of defsystem when you create sys-

tems whose modules (or some subset of whose modules) are C source and C in-

clude files. The compilation dependencies on C include files are not properly com-

puted, and unnecessary recompilation of C source files occurs.

Note that the Generate C System Definition command produces system definitions

without the :maintain-journals option, so it defaults to t, which is correct for sys-

tems whose modules are C files.

Passing Arguments to a C Main Program in Argc, Argv Format

You can use the function c-system::build-expanded-argument-list for translating

Lisp strings into the argc, argv format needed by C main programs. This function

is useful when calling the C program by c-system::execute.

c-system::build-expanded-argument-list takes two arguments. The first argument

is a string naming the C program; this is the same as the :Program Name key-

word to the Execute C Function command. The second argument is a list of Lisp

strings corresponding to argv strings. c-system::build-expanded-argument-list

converts this list into the corresponding argc, argv pair, and returns two values:

argc and argv.

Size and Alignment of Symbolics C Language Data Types

Page 1831

You can use the information in this section is for porting C applications. If you

have an existing C application, you can use this information to access the data it

contains from Lisp. You can convert C data into Lisp objects.

Table 1 shows the sizes and alignments of C language data types.

All C structures are allocated in sys:art-q arrays. Each element is a 32-bit Lisp

word. The alignment column below shows how the various C data types are

aligned within the 32-bit words.

Type Size Alignment

char 8 bits 8-bit boundary

long 1 word 8-bit boundary

int 1 word 1-word boundary

short 16 bits 16-bit boundary

float 1 word 1-word boundary

double 2 words 1-word boundary

pointer 2 words 1-word boundary

Table 2. Sizes and Alignments of C Data Types�

Bit fields require bit alignment. A bit field length specifier of 0 forces alignment

to the nearest 8-bit boundary.

Pointers and integers are different sizes on the Symbolics 3600 series. Pointers are

represented as an [array-object, index] pair and are two words in length; integers

are one word long.

Here we give examples of how you can pack structures into arrays. We define one

structure as follows:

struct {

 char c1;

 char c2;

 char c3;

 short s1;

};�

The array representing that structure is:

c1 c2 c3

s1

32 bits

first array element

second array element
�

We define another structure as follows:

Page 1832

struct {

 char c1;

 short s1;

 double d1;

};�

The array representing that structure is:

c1 s1

32 bits

first array element

second array element

third array element

d1 (part 1)

d1 (part 2)

�

As mentioned earlier, an [array-object, index] pair represents a pointer and occu-

pies two words:

array object

index
�

You can access a pointer from Lisp by defining a function which takes two argu-

ments, array-object and index.

