
Symbolics Common Lisp Programming Constructs

Structure Macros

This section contains reference information on the use of defstruct, future-

common-lisp:defstruct, and zl:defstruct. For an overview of structure macros: See

the section "Overview of Structure Macros".

Basic Use of defstruct

Genera provides three defstruct symbols:

defstruct The Symbolics Common Lisp symbol, which offers many exten-

sions to the defstruct as specified by Common Lisp.

future-common-lisp:defstruct

This macro adheres to the draft ANSI Common Lisp specifica-

tion. You can define CLOS methods that specialize on instances

of structure classes defined by future-common-lisp:defstruct.

zl:defstruct From Zetalisp, and provided for compatibility reasons.�

defstruct options &body items Macro

Defines a record-structure data type. A call to defstruct looks like:

(defstruct (name option-1 option-2 ...)

 slot-description-1

 slot-description-2

 ...)�

name must be a symbol; it is the name of the structure. It is given a si:defstruct-

description property that describes the attributes and elements of the structure;

this is intended to be used by programs that examine other Lisp programs and

that want to display the contents of structures in a helpful way. name is used for

other things; for more information, see the section "Named Structures".

Because evaluation of a defstruct form causes many functions and macros to be

defined, you must take care not to define the same name with two different

defstruct forms. A name can only have one function definition at a time. If a

name is redefined, the later definition is the one that takes effect, destroying the

earlier definition. (This is the same as the requirement that each defun that is in-

tended to define a distinct function must have a distinct name.)

Each option can be either a symbol, which should be one of the recognized option

names, or a list containing an option name followed by the arguments to the op-

tion. Some options have arguments that default; others require that arguments be

given explicitly. For more information about options, see the section "Options for

defstruct".

Each slot-description can be in any of three forms:

Page 449

1: slot-name

2: (slot-name default-init)

3: ((slot-name-1 byte-spec-1 default-init-1)

 (slot-name-2 byte-spec-2 default-init-2)

...)�

Each slot-description allocates one element of the physical structure, even though

several slots may be in one form, as in form 3 above.

Each slot-name must always be a symbol; an accessor function is defined for each

slot.

In the example above, form 1 simply defines a slot with the given name slot-name.

An accessor function is defined with the name slot-name. The :conc-name option

allows you to specify a prefix and have it concatenated onto the front of all the

slot names to make the names of the accessor functions. Form 2 is similar, but al-

lows a default initialization for the slot. Form 3 lets you pack several slots into a

single element of the physical underlying structure, using the byte field feature of

defstruct.

For a table of related items: See the section "Functions Related to defstruct Struc-

tures".

future-common-lisp:defstruct name-and-options &body slot-descriptions Macro

Defines a record-structure data type, and a corresponding class of the same name.

You can define methods that specialize on structure classes.

The syntax and semantics of future-common-lisp:defstruct adhere to the draft

ANSI Common Lisp specification.

zl:defstruct Macro

Defines a record-structure data type. Use the Common lisp macro defstruct.

defstruct accepts all standard Common Lisp options, and accepts several additional

options. zl:defstruct is supported only for compatibility with pre-Genera 7.0 re-

leases. See the section "Differences Between defstruct and zl:defstruct".

The basic syntax of zl:defstruct is the same as defstruct: See the macro

defstruct.

For information on the options that can be given to zl:defstruct as well as

defstruct: See the section "Options for defstruct".

The :export option is accepted by zl:defstruct but not by defstruct. Stylistically, it

is preferable to export any external interfaces in the package declarations instead

of scattering :export options throughout a program’s source files.

:export

Exports the specified symbols from the package in which the

Page 450

structure is defined. This option accepts as arguments slot

names and the following options: :alterant, :accessors,

:constructor, :copier, :predicate, :size-macro, and :size-

symbol.

The following example shows the use of :export.

(zl:defstruct (2d-moving-object

 (:type :array)

 :conc-name

 ;; export all accessors and the

 ;; make-2d-moving-object constructor

 (:export :accessors :constructor))

 mass

 x-pos

 y-pos

 x-velocity

 y-velocity)�

See the section "Importing and Exporting Symbols".

Options for defstruct

This section describes the options that can be given to defstruct and zl:defstruct.

The description of each option states any differences in behavior of the option,

when given to defstruct and zl:defstruct.

Note: The :export option can be given to zl:defstruct but not defstruct. It is de-

scribed elsewhere: See the macro zl:defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives

several options.

(cl:defstruct (foo (:type vector)

 :conc-name

 (:size-symbol foo))

 a

 b)�

:type

Specifies the kind of Lisp object to be used to implement the

structure. The option requires one argument, which must be

one of the symbols enumerated below, or a user-defined type. If

the option itself is not provided, the type defaults to :array.

You can define your own types by using defstruct-define-type.

The :type option can be given to both defstruct and

zl:defstruct, but they accept different arguments.

These arguments are accepted by the defstruct :type option,

but not by the zl:defstruct :type option:

Page 451

vector

Use a vector, storing components as vector elements.

If the structure is :named, element 0 of the vector holds

the named structure symbol and is therefore not used to

hold a component of the structure.

You can use the :make-array option with (:type vector)

to specify the area in which the structures should be

made. For example:

(defstruct

 (foo (:type vector)

 (:make-array (:area *foo-area*)))

 x y z)�

(vector element-type)

Use a vector, storing components as vector elements.

Each component must be of a type that can be stored in

a vector of element-type. The structure may be :named

only if the type symbol is a subtype of the specified ele-

ment-type.

If the structure is :named, element 0 of the vector holds

the named structure symbol and is therefore not used to

hold a component of the structure.

These arguments are accepted by the defstruct :type option

and the zl:defstruct :type option:

list

Use a list, storing components as list elements.

If the structure is :named, the car of the list holds the

named structure symbol and is therefore not used to

hold a component of the structure.

You can use the :make-list option with (:type list) to

specify further options about the list that implements

the structure.

:list

Same as the list option for defstruct.

:named-list

Like :list, but the first element of the list holds the sym-

bol that is the name of the structure, and so is not used

as a component.

Page 452

:array

Use an array, storing components in the body of the ar-

ray.

:named-array

Like :array, but make the array a named structure us-

ing the name of the structure as the named structure

symbol. See the section "Named Structures". Element 0

of the array holds the named structure symbol and is

therefore not used to hold a component of the structure.

:array-leader

Use an array, storing components in the leader of the

array. See the section "Options for defstruct".

:named-array-leader

Like :array-leader, but make the array a named struc-

ture using the name of the structure as the named

structure symbol. See the section "Named Structures".

Element 1 of the leader holds the named structure sym-

bol and so is not used to hold a component of the struc-

ture.

:tree

Implements structure out of a binary tree of conses, with

the leaves serving as the slots.

:grouped-array

See the section "Grouped Arrays". This option is de-

scribed there.

:alterant

Allows you to customize the name of the alterant function. If

(:alterant name) is supplied, the name of the alterant function

is name. name should be a symbol; its print name is the name

of the alterant function.

If :alterant is specified without an argument, the name of the

alterant is alter-structure. This is also the default behavior of

zl:defstruct, when the :alterant option is not given.

If (:alterant nil) is specified, no alterant is defined. This is al-

so the default behavior of zl:defstruct, when the :alterant op-

tion is not given.

Page 453

The following example defines the alterant to be change-door-

slot.

(cl:defstruct (door (:alterant change-door-slot))

 knob-color width)

�

(setq d (make-door :knob-color ’red :width 5.0))

�

(change-door-slot d

 knob-color ’blue

 width 5.5) �

For more information on the use of the alterant macro: See

the section "Alterant Macros for defstruct Structures".

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior

when :alterant is not supplied:

defstruct Does not define an alterant.

zl:defstruct Defines an alterant named alter-structure.

:but-first

The argument to :but-first is an accessor from some other

structure, and it is expected that this structure will never be

found outside that slot of that other structure. Actually, you

can use any one-argument function, or a macro that acts like a

one-argument function. It is an error for :but-first to be used

without an argument.

This example should clarify the use of :but-first.

(cl:defstruct (head (:type list)

 (:default-pointer person)

 (:but-first person-head))

 nose

 mouth

 eyes)�

The nose accessor expands like this:

(nose x) => (car (person-head x))

(nose) => (car (person-head person))�

:callable-accessors

This option controls whether accessors are really functions,

and therefore "callable", or whether they are macros.

The accessors are functions if this option is not provided, pro-

vided with no argument, or provided with an argument of t.

Specifically, they are substs, so that they have all the efficien-

cy of macros in compiled programs, while still being function

objects that can be manipulated (passed to mapcar, and so on).

Page 454

If this option is provided with an argument of nil, then the ac-

cessors will be macros, not substs.

Note that if you use the :default-pointer option, the accessors

cannot be made callable.

:conc-name

Allows you to customize the names of the accessor functions. If

(:conc-name prefix) is supplied, the name of each accessor

function is prefix-slot. prefix should be a symbol; its print name

is concatenated onto the front of all the slot names to make

the names of the accessor functions.

If :conc-name is specified without an argument, the name of

each accessor is structure-slot; that is, the name of the struc-

ture followed by a hyphen, followed by the slot name. This is

also the default behavior of defstruct, when the :conc-name

option is not given.

:conc-name changes the name of the accessor functions, but

has no effect on slot names that are given to the constructor

and alterant macros. Thus when you use :conc-name, the slot

names and accessor names are different.

In the following example, the :conc-name option specifies the

prefix "get-door-", which causes the accessor functions to be

named get-door-knob-color and get-door-width.

(cl:defstruct (door (:conc-name get-door-))

 knob-color

 width)

�

(setq d (make-door :knob-color ’red :width 5.0))

�

(get-door-knob-color d) => red�

If (:conc-name nil) is specified, the name of each accessor is

slot, the name of the slot. This is also the default behavior of

zl:defstruct, when the :conc-name option is not given. When

the name of the accessor is just slot, you should name the slots

according to a suitable convention. You should always prefix

the names of all accessor functions with some text unique to

the structure.

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior

when :conc-name is not supplied:

defstruct Names each accessor structure-slot.

zl:defstruct Names each accessor slot, the name of the

slot.�

Page 455

:constructor

Takes one argument, which specifies the name of the con-

structor. If the argument is not provided or if the option itself

is not provided, the name of the constructor is made by con-

catenating the string "make-" to the name of the structure. If

the argument is provided and is nil, no constructor is defined.

A more general form of this option is also available: See the

section "By-position Constructors for defstruct Structures".

For more information about the use of the constructor: See the

section "Constructors for defstruct Structures".

defstruct and zl:defstruct Difference

defstruct Defines a constructor function.

zl:defstruct Defines a constructor macro. �

:constructor-make-array-keywords

If the structure being defined is implemented as an array,

this option can be used to take certain zl:make-array key-

words as arguments, and determine them on an instance by in-

stance basis. This is in contrast to the keyword option :make-

array, which supplies zl:make-array keywords that apply to all

instances of the structure.

For example, you can use this option to define a structure that

is implemented as an array leader, and specify the length of

the array after the leader elements.

The arguments to the :constructor-make-array-keywords op-

tion are zl:make-array keywords. The :constructor-make-

array-keywords option lets you control the initialization of ar-

rays created by defstruct as instances of structures. zl:make-

array initializes the array before the constructor code does.

Therefore, any initial value supplied via the new :initial-value

keyword for zl:make-array is overwritten in any slots where

you gave defstruct an explicit initialization.

Here is an example of a defstruct using :constructor-make-

array-keywords to create an array whose defstruct slots are

in the array-leader. Using this option, you can indicate how

long the part of the array after the leader should be each time

you make a new array-leader.

;; the name of the defstruct is make-logic-variable-environment

(make-logic-variable-environment :length 10)

�

To define this defstruct:

Page 456

�

(defstruct (logic-variable-environment

 (:type :array-leader)

 :named

 (:constructor-make-array-keywords length))

 ;; place to stash wayward variables and some bits for later use.

 home-for-wayward-variables

 (bits (make-logic-variable-environment-bits)))�

:copier

The :copier option allows you to customize the name of the

copier function. If (:copier name) is supplied, the name of the

copier function is name. name should be a symbol; its print

name is the name of the copier function.

The automatically defined copier function simply makes a new

structure and transfers all components verbatim from the argu-

ment into the newly created structure. No attempt is made to

make copies of the components. Corresponding components of

the old and new structures are therefore eql.

If :copier is specified without an argument, the name of the

copier function is copy-structure. This is also the default be-

havior of defstruct when the :copier option is not given.

If (:copier nil) is specified, no copier is defined. This is also

the default behavior of zl:defstruct when the :copier option is

not given.

For example:

(cl:defstruct (foo (:type list) :copier)

 foo-a

 foo-b)�

This example would generate a function named copy-foo, with

a definition approximately like this:

(defun copy-foo (x)

 (list (car x) (cadr x)))�

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior

when :copier is not supplied:

defstruct Defines a copier name copy-structure.

zl:defstruct Does not define a copier.�

:default-pointer

Normally, the accessors defined by defstruct expect to be

given exactly one argument. However, if the :default-pointer

argument is used, the argument to each accessor is optional.

Page 457

You can continue to use the accessor function in the usual

way. You can also invoke an accessor without its argument; it

behaves as if you had invoked it on the result of evaluating

the form that is the argument to the :default-pointer argu-

ment. For example:

(cl:defstruct (room (:default-pointer *room-13*)

 :conc-name)

 name

 contents)

(setq play-room

 (make-room :name ’den :contents ’tv))

(setq *room-13*

 (make-room :name ’kitchen :contents ’fridge))

�

(room-name play-room) => DEN

(room-name) => KITCHEN�

If the argument to the :default-pointer argument is not given,

it defaults to the name of the structure.

:eval-when

Normally, the functions and macros defined by defstruct are

defined at eval time, compile time, and load time. This option

allows you to control this behavior. The argument to the :eval-

when option is just like the list that is the first subform of an

eval-when special form. For example, (:eval-when (eval

compile)) causes the functions and macros to be defined only

when the code is running interpreted or inside the compiler.

Note that the default for defstruct is (load eval) .

:include

Allows you to build a new structure definition as an exten-

sion of an old structure definition. Suppose you have a struc-

ture called person that looks like this:

(defstruct (person)

 name

 age

 sex)�

Now suppose you want to make a new structure to represent

an astronaut. Since astronauts are people too, you would like

them to also have the attributes of name, age, and sex, and

you would like Lisp functions that operate on person struc-

tures to operate just as well on astronaut structures. You can

do this by defining astronaut with the :include option, as fol-

lows:

Page 458

(defstruct (astronaut (:include person))

 helmet-size

 (favorite-beverage ’tang))�

The :include option inserts the slots of the included structure

at the front of the list of slots for this structure. That is, an

astronaut will have five slots; first, the three defined in

person, then the two defined in astronaut itself. The accessor

functions defined by the person structure can be applied to in-

stances of the astronaut structure. The following illustrates

how you can use astronaut structures:

(setq x (make-astronaut :name ’buzz

:age 45

:sex t

:helmet-size 17.5))

�

(person-name x) => buzz

(astronaut-favorite-beverage x) => tang�

Note that the :conc-name option was not inherited from the

included structure; it applies only to the accessor functions of

person and not to those of astronaut. Similarly, the :default-

pointer and :but-first options, as well as the :conc-name op-

tion, apply only to the accessor functions for the structure in

which they are enclosed; they are not inherited if you include a

structure that uses them.

The argument to the :include option is required, and must be

the name of some previously defined structure of the same

type as this structure. :include does not work with structures

of type :tree or of type :grouped-array.

The following is an advanced feature. Sometimes, when one

structure includes another, the default values for the slots that

came from the included structure are not what you want. The

new structure can specify different default values for the in-

cluded slots than the included structure specifies, by giving the

:include option as:

(:include name new-init-1 ... new-init-n)�

Each new-init is either the name of an included slot or a list

of the form (name-of-included-slot init-form). If it is just a slot

name, the slot has no initial value in the new structure. Oth-

erwise, its initial value form is replaced by the init-form. The

old (included) structure is unmodified.

For example, to define astronaut so that the default age for

an astronaut is 45, the following can be used:

Page 459

(defstruct (astronaut (:include person (age 45)))

 helmet-size

 (favorite-beverage ’tang))�

:initial-offset

Allows you to tell defstruct to skip over a certain number of

slots before it starts allocating the slots described in the body.

This option requires an argument (which must be a fixnum)

that is the number of slots you want defstruct to skip. To use

this option, you must understand how defstruct is implement-

ing your structure; otherwise, you will be unable to make use

of the slots that defstruct has left unused.

:inline

Causes functions to be compiled inline. Values can be

:accessors, :constructor, :copier, :predicate, or the name of a

slot. Defaults to compiling accessors, constructors, and predi-

cates inline. Note that the default is for most functions to be

compiled inline. For example:

(:inline :constructor x-pos y-pos)

This example causes the constructor functions, x-pos and

y-pos, to be compiled inline. For information on inline func-

tions: See the section "Inline Functions".

:make-list

You can use the :make-list option with (:type list) or (:type

:list) to specify further options about the list that implements

the structure. For example, you can specify the area in which

the structures should be made.

(defstruct

 (foo (:type list)

 (:make-list (:area *foo-area*)))

 x y z)�

:make-array

If the structure being defined is implemented as an array, this

option can be used to control those aspects of the array that

are not otherwise constrained by defstruct. For example, you

might want to control the area in which the array is allocated.

Also, if you are creating a structure of type :array-leader, you

almost certainly want to specify the dimensions of the array to

be created, and you might want to specify the type of the ar-

ray. Of course, this option is only meaningful if the structure

is, in fact, being implemented by an array.

The argument to the :make-array option should be a list of al-

ternating keyword symbols to the zl:make-array function (note

that this is the Zetalisp version), and forms whose values are

the arguments to those keywords. For example, (:make-array

Page 460

(:area *foo-area*)) requests that structures of this type be

consed in *foo-area*. Note that the keyword symbol is not

evaluated.

When necessary, defstruct overrides any of the :make-array

options. For example, if your structure is of type :array, then

defstruct supplies the size of that array, regardless of what

you say in the :make-array option.

Constructor macros for structures implemented as arrays all

allow the keyword :make-array. Attributes supplied therein

override any :make-array option attributes supplied in the

original defstruct form. If some attribute appears in neither

the invocation of the constructor nor in the :make-array op-

tion to defstruct, the constructor chooses appropriate defaults.

The :make-array option lets you control the initialization of

arrays created by defstruct as instances of structures.

zl:make-array initializes the array before the constructor code

does. Therefore, any initial value supplied via the new :initial-

value keyword for zl:make-array is overwritten in any slots

where you gave defstruct an explicit initialization.

If a structure is of type :array-leader, you probably want to

specify the dimensions of the array. The dimensions of an ar-

ray are given to :make-array as a position argument rather

than a keyword argument, so there is no way to specify them

in the above syntax. To solve this problem, you can use the

keyword :dimensions or the keyword :length (they mean the

same thing) with any value that zl:make-array accepts as a

first argument.

:named

Allows you to use one of the "named" types. If you specify a

type of :array, :array-leader, or :list, and give the :named

option, then the :named-array, :named-array-leader, or

:named-list type is used instead. Asking for type :array and

giving the :named option as well is the same as asking for the

type :named-array; the only difference is stylistic.

:predicate

Allows you to customize the name of the predicate function.

The predicate function recognizes objects of this structure. If

(:predicate name) is supplied, the name of the predicate func-

tion is name. name should be a symbol; its print name is the

name of the predicate function. The :predicate option works

only for named types.

If :predicate is specified without an argument, the name of

the predicate is structure-p. This is also the default behavior of

defstruct, when the :predicate option is not given.

Page 461

If (:predicate nil) is specified, no predicate is defined. This is

also the default behavior of zl:defstruct, when the :predicate

option is not given.

The following example defines a single-argument predicate

function, foo-p, that returns t only for objects of structure foo.

(cl:defstruct (foo :named :predicate)

 foo-a

 foo-b)�

The following example defines a predicate function called is-it-

a-foo?.

(cl:defstruct (foo :named (:predicate is-it-a-foo?))

 foo-a

 foo-b)�

defstruct and zl:defstruct Difference

The difference is in the default behavior, when :predicate is

not supplied.

defstruct If :type option is not given, or if both

:type and :named are given, default is

same as :predicate without an argument.

If :type option is given and :named is not

given, default is same as (:predicate nil).

zl:defstruct Default is same as (:predicate nil) regard-

less of whether the :type option is given. �

:print

Has the same effect as the Common Lisp :print-function op-

tion. Gives you implementation-independent control over the

printed representation of a structure. Using this option defeats

the sys:printing-random-object mechanism. See the macro

sys:printing-random-object.

The :print option takes a format string and its arguments. The

arguments are evaluated in an environment in which the name

symbol for the structure is bound to the structure instance be-

ing printed.

The :print option makes it unnecessary to use a named-

structure-invoke handler to define :print handlers.

:print-function

Allows you to specify a function to be used to print this type of

structure. The printer uses the print function for structures of

unspecified type and when the type is specified as a named

vector. The printer never uses a print function for a structure

implemented as a named list, but the describe-defstruct func-

tion does.

Page 462

The print function should accept three arguments: the struc-

ture to be printed, the stream, and an integer indicating the

current depth. The function must be acceptable to the

function special form.

The function must respect the following print control variables:

print-escape, *print-pretty*, and *print-structure-contents*.

You can use the function sys:print-cl-structure or the macro

sys:print-cl-structure in a printer function. See the function

sys:print-cl-structure. See the macro sys:cl-structure-printer.

(defun file-branch-print-function (b stream depth)

 (if *print-escape*

 (if *print-structure-contents*

 (sys:cl-structure-printer file-branch b stream depth)

 (sys:printing-random-object (b stream :typep)

 (format stream "~A" (file-branch-name b))))

 (format stream "~A" (file-branch-name b))))�

Common Lisp specifies that :print-function may be used only

if :type is not used; however, Genera does not enforce this re-

striction.

Note: The :print-function option is accepted by defstruct but

not by zl:defstruct.

:property

For each structure defined by defstruct, a property list is

maintained to record of arbitrary properties about that struc-

ture. (That is, there is one property list per structure defini-

tion, not one for each instantiation of the structure.)

The :property option can be used to give a defstruct an arbi-

trary property. (:property property-name value) gives the

defstruct a property-name property of value. Neither argument

is evaluated. To access the property list, you should look inside

the si:defstruct-description structure. See the section

"defstruct Internal Structures".

:size-symbol

Allows you to specify a global variable whose value is the

"size" of the structure; this variable is declared with

zl:defconst. The exact meaning of the size varies, but in gen-

eral, this number is the one you would need to know if you

were going to allocate one of these structures yourself. The

symbol has this value both at compile time and at run time. If

this option is present without an argument, then the name of

the structure is concatenated with "-size" to produce the sym-

bol.

Page 463

:size-macro

Similar to the :size-symbol option. A macro of no arguments is

defined that expands into the size of the structure. The name

of this macro defaults as with :size-symbol.

:times

Used for structures of type :grouped-array, to control the

number of repetitions of the structure that are allocated by the

constructor macro. The constructor macro also allows :times to

be used as a keyword that overrides the value given in the

original defstruct form. If :times appears in neither the invo-

cation of the constructor nor in the :make-array option to

defstruct, then the constructor allocates only one instance of

the structure.

type In addition to the documented options to defstruct and

zl:defstruct, any currently defined type (any valid argument to

the :type option) can be used as an option. This is mostly for

compatibility with older versions of zl:defstruct. It allows you

to say just type instead of (:type type). It is an error to give an

argument to one of these options.

other Finally, if an option is not found among the other options,

defstruct or zl:defstruct checks the property list of the name

of the option to see if it has a non-nil :defstruct-option prop-

erty. If it does have such a property, then if the option was of

the form (option-name value), it is treated just like (:property

option-name value). That is, the structure is given an option-

name property of value. It is an error to use such an option

without a value.

This provides a primitive way for you to define your own op-

tions to defstruct or zl:defstruct, particularly in connection

with user-defined types. See the section "Extensions to

defstruct". Several options to defstruct and zl:defstruct are

implemented using this mechanism. �

defstruct Structures and type-of

Under certain circumstances, defstruct and zl:defstruct define the name of the

structure as a type name in both the Common Lisp and Zetalisp type systems. In

these circumstances it is illegal for the name of the structure to be the same as

the name of an existing type (including a flavor or a built-in type).

The name of the structure is defined as a type name when the structure is defined

in one of these ways:

• With defstruct, when the :type option is not given.

Page 464

• With defstruct, when the (:type :vector) and :named options are given.

• With defstruct, when the (:type (:vector element)) and :named options are

given.

• With zl:defstruct, when the (:type :named-array) option is given.

• With zl:defstruct, when the (:type :array) and :named options are given.

• With zl:defstruct, when the (:type :named-array-leader) option is given.

• With zl:defstruct, when the (:type :array-leader) and :named options are

given.�

When a structure is defined as a type name, (type-of object) returns the symbol

that is the name of the object’s structure.

(typep object ’structure-name) and (zl:typep object ’structure-name) return t if the

flavor of object is named structure-name, nil otherwise.

Using the Constructor and Alterant Macros for defstruct Structures

The documentation in this section regarding defstruct also applies to zl:defstruct.

This section describes how to create instances of structures and alter the values of

their slots. After you have defined a new structure with defstruct, you can create

instances of this structure using the constructor, and you can alter the values of

its slots using the alterant macro.

By default, defstruct defines a constructor function, forming its name by concate-

nating "make-" onto the name of the structure. If you use the :alterant option

with no argument, an alterant macro is defined, its name formed by concatenating

"alter-" onto the name of the structure.

You can specify the names of the constructor or alterant macros by passing the

name you want to use as the argument to the :constructor or :alterant options.

You can also specify that you do not want the macro created at all by passing nil

as the argument.

Constructors for defstruct Structures

Note that defstruct implements the constructor as a function, but zl:defstruct im-

plements it as a macro.

A call to a constructor has the form:

(name-of-constructor

 symbol-1 form-1

 symbol-2 form-2

 ...)�

Page 465

Each symbol indicates a slot of the structure (this is not necessarily the same as

the name of the accessor). symbol can also be one of the specially recognized key-

words described further on. If symbol indicates a slot, that element of the created

structure is initialized to the value of the corresponding form. All the forms are

evaluated.

When using the constructor for a defstruct-defined structure, the symbol that indi-

cates a slot must be the name of that slot in the keyword package.

(cl:defstruct door1

 knob-color

 width)

(make-door1 :knob-color ’red ;slot name in keyword package

 :width 5.5)�

When using the constructor for a zl:defstruct-defined structure, the symbol that

indicates a slot should just be the name of the slot.

(zl:defstruct door2

 knob-color

 width)

(make-door2 knob-color ’red ;slot name

 width 5.5)�

If no symbol is present for a given slot, the slot is initialized to the result of eval-

uating the default initialization form specified in the call to defstruct. In other

words, the initialization form specified to the constructor overrides the initializa-

tion form specified to defstruct. If the defstruct itself also did not specify any

initialization, the element’s initial value is undefined.

Two symbols are specially recognized by the constructor:

:make-array Should be used only for :array and :array-leader type struc-

tures, or the named versions of those types.

:times Should be used only for :grouped-array type structures. �

If one of these symbols appears instead of a slot name, it is interpreted just as the

:make-array option or the :times option, and it overrides what was requested in

that option.

For example:

(make-ship ship-x-position 10.0

 ship-y-position 12.0

 :make-array (:leader-length 5 :area disaster-area))�

The order of evaluation of the initialization forms is not necessarily the same as

the order in which they appear in the constructor call, nor the order in which they

appear in the defstruct. You should make sure your code does not depend on the

order of evaluation.

Page 466

The forms are reevaluated every time a constructor is called. For example, if the

form (gensym) is used as an initialization form (either in a call to a constructor

or as a default initialization in the defstruct) then every call to the constructor

creates a new symbol.

By-position Constructors for defstruct Structures

Note that defstruct defines a constructor function, but zl:defstruct defines a con-

structor macro.

If the :constructor option is given as (:constructor name arglist), then instead of

making a keyword-driven constructor, defstruct or zl:defstruct defines a construc-

tor that takes arguments interpreted by their position rather than by a keyword.

The arglist is used to describe what the arguments to the constructor will be. In

the simplest case, something like (:constructor make-foo (a b c)) defines make-

foo to be a three-argument constructor whose arguments are used to initialize the

slots named a, b, and c.

In addition, you can use the keywords &optional, &rest, and &aux in the argu-

ment list. They work as you might expect, but note the following:

(:constructor make-foo

(a &optional b (c ’sea) &rest d &aux e (f ’eff)))�

This defines make-foo to be a constructor of one or more arguments. The first ar-

gument is used to initialize the a slot. The second argument is used to initialize

the b slot. If there is no second argument, the default value (if any) given in the

body of the defstruct or zl:defstruct is used instead. The third argument is used

to initialize the c slot. If there is no third argument, the symbol sea is used in-

stead. Any arguments following the third argument are collected into a list and

used to initialize the d slot. If there are three or fewer arguments, nil is placed in

the d slot. The e slot is not initialized; its initial value is undefined. Finally, the f

slot is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow you to speci-

fy all possible behaviors. Note that the &aux "variables" can be used to completely

override the default initializations given in the body.

Note that you are allowed to give the :constructor option more than once, so that

you can define several different constructors, each with a different syntax.

The following restrictions should also be noted:

• For zl:defstruct, these "function-style" constructors do not guarantee that their

arguments will be evaluated in the order which you wrote them.

• You cannot specify the :make-array or :times information in this form of con-

structor.�

Alterant Macros for defstruct Structures

A call to the alterant macro has the form:

Page 467

(name-of-alterant-macro object

 slot-name-1 form-1

 slot-name-2 form-2

 ...)�

Object is evaluated, and should return an object of the structure. Each form is

evaluated, and the corresponding slot is changed to have the result as its new val-

ue. The slots are altered after all the forms are evaluated, so you can exchange

the values of two slots, as follows:

(alter-ship enterprise

 ship-x-position (ship-y-position enterprise)

 ship-y-position (ship-x-position enterprise))�

As with the constructor macro, the order of evaluation of the forms is undefined.

Using the alterant macro can produce more efficient code than using consecutive

setfs when you are altering two byte fields of the same object, or when you are

using the :but-first option.

You can use alterant macros on structures whose accessors require additional ar-

guments. Put the additional arguments before the list of slots and values, in the

same order as required by the accessors.

Differences Between defstruct and zl:defstruct

defstruct and zl:defstruct provide a similar functionality. defstruct adheres to the

Common Lisp standard, with several extensions that were derived from useful fea-

tures of zl:defstruct. zl:defstruct is supported for compatibility with previous re-

leases.

Most of the documentation on defstruct pertains equally well to zl:defstruct. (See

the section "Structure Macros".) This section describes the differences between

defstruct and zl:defstruct.

• Constructor Difference

defstruct defines constructor functions, whereas zl:defstruct defines constructor

macros.

When using the constructor function for a defstruct-defined structure, you give

keyword arguments with the same name as the slots, to initialize the slots.

(cl:defstruct door2 knob-color)

(make-door2 :knob-color ’red) ;slot name in keyword package

When using the constructor macro for a zl:defstruct-defined structure, you give

the names of the slots as the arguments to initialize the slots.

(zl:defstruct door1 knob-color)

(make-door1 knob-color ’blue) ;slot name alone�

• Option Differences

Page 468

Most of the options accepted by defstruct are also accepted by zl:defstruct.

Some of the options that are accepted by both have a slightly different behavior

when given to defstruct than when given to zl:defstruct. The option with the

most notable differences is :type. These differences are explicitly stated in the

documentation: See the section "Options for defstruct".

The defstruct-only options are: :print-function and :constructor-make-array-

keywords. The zl:defstruct-only option is :export.

• Default Behavior Differences

defstruct and zl:defstruct behave differently when no options are given. The

differences in default behavior are noted below.

defstruct Default Behavior:

° The structure is implemented as a named vector. This means that by default,

the :named option is implied. However, if you supply the :type option, the

:named option is no longer implied; you should specify :named if you want a

named structure.

° The name of the structure becomes a valid type specifier for typep.

° Accessor functions are defined for each slot, named by the convention:

structure-slot

° No alterant is defined, but you can use setf with an accessor function to

change a slot value, such as:

(setf (accessor object) new-value)�

° A copier function is defined, named by the convention:

copy-structure�

° If the :type option is not given, or the :type and :named options are both

given, a predicate function is defined, named by the convention:

structure-p

However, if :type is given and :named is not given, no predicate function is

defined.

zl:defstruct Default Behavior:

° The structure is implemented as an unnamed array.

° The name of the structure does not become a valid type specifier for typep.

Page 469

° Accessor functions are defined for each slot, named by the convention:

slot�

° An alterant function is defined, named by the convention:

alter-structure�

° You can use setf with an accessor function to change a slot value.

(setf (accessor object) new-value)�

° No copier function is defined.

° No predicate function is defined. �

Advanced Use of defstruct

Functions Related to defstruct Structures

This summary briefly describes the functions related to defstruct structures.

defstruct options &body items

Defines a new aggregate data structure with named compo-

nents.

zl:defstruct Defines a new aggregate data structure with named compo-

nents.

describe-defstruct x &optional defstruct-type

Prints out a description of a given instance of a structure, in-

cluding the contents of each of its slots.

defstruct-define-type type &body options

Teaches defstruct and zl:defstruct about new types that it can

use to implement structures.

sys:print-cl-structure object stream depth

Function intended for use in a defstruct :print-function op-

tion; enables you to respect *print-escape*.

sys:cl-structure-printer structure-name object stream depth

Macro intended for use in a defstruct :print-function option;

enables you to respect *print-escape*.

Using defstruct Byte Fields

The byte field feature of defstruct or zl:defstruct allows you to specify that sever-

al slots of your structure are bytes in an integer stored in one element of the

structure. For example, consider the following structure:

Page 470

(defstruct (phone-book-entry (:type :list))

 name

 address

 (area-code 617)

 exchange

 line-number)�

Although this works correctly, it wastes space. Area codes and exchange numbers

are always less than 1000, and so both can fit into 10 bit fields when expressed as

binary numbers. To tell defstruct or zl:defstruct to do so, you can change the

structure definition to one of the following forms.

Using defstruct, the syntax is:

(defstruct (phone-book-entry (:type :list))

 name

 address

 ((line-number)

 (area-code 617 :byte (byte 10 10))

 (exchange 0 :byte (byte 10 0))))�

Using zl:defstruct, the syntax is:

(zl:defstruct (phone-book-entry (:type :list))

 name

 address

 ((area-code (byte 10 10) 617)

 (exchange (byte 10 0))

 (line-number)))�

The lists (byte 10 10) and (byte 10 0) are byte specifiers to be used with the func-

tions ldb and dpb. The accessors, constructor, and alterant macros now operate as

follows:

�

(setq pbe (make-phone-book-entry

 :name "Fred Derf"

 :address "259 Orchard St."

 :exchange 232

 :line-number 7788))

�

=> (list "Fred Derf" "259 Orchard St." (dpb 232 12 2322000) 17154)

�

(phone-book-entry-area-code pbe) => (LDB (BYTE 10 10) (NTH 2 FOO))�

(alter-phone-book-entry pbe

 area-code ac

 exchange ex)

Page 471

�

=> ((lambda (g0530)

 (setf (nth 2 g0530)

 (dpb ac 1212 (dpb ex 12 (nth 2 g0530)))))

 pbe)�

Note that the alterant macro is optimized to read and write the second element of

the list only once, even though you are altering two different byte fields within it.

This is more efficient than using two setfs. Additional optimization by the alterant

macro occurs if the byte specifiers in the defstruct slot descriptions are constants.

If the byte specifier is nil, the accessor is defined to be the usual kind that access-

es the entire Lisp object, thus returning all the byte field components as a integer.

These slots can have default initialization forms.

The byte specifier need not be a constant; you can use a variable (or any Lisp

form). It is evaluated each time the slot is accessed. Of course, you do not ordinar-

ily want the byte specifier to change between accesses.

Constructor macros initialize words divided into byte fields as if they were deposit-

ed in the following order:

1. Initializations for the entire word given in the defstruct or zl:defstruct form.

2. Initializations for the byte fields given in the defstruct or zl:defstruct form.

3. Initializations for the entire word given in the constructor macro form.

4. Initializations for the byte fields given in the constructor macro form. �

Alterant macros work similarly: The modification for the entire Lisp object is done

first, followed by modifications to specific byte fields. If any byte fields being ini-

tialized or altered overlap each other, the actions of the constructor and alterant

macros are unpredictable.

Grouped Arrays

The grouped array feature allows you to store several instances of a structure

side-by-side within an array. This feature is somewhat limited; it does not support

the :include and :named options.

The accessor functions are defined to take an extra argument, which should be an

integer that acts as the index into the array of where this instance of the struc-

ture starts. This index should normally be a multiple of the size of the structure.

Note that the index is the first argument to the accessor function and the struc-

ture is the second argument, the opposite of what you might expect. This is be-

cause the structure is &optional if the :default-pointer option is used.

Note also that the "size" of the structure (for purposes of the :size-symbol and

:size-macro options) is the number of elements in one instance of the structure;

Page 472

the actual length of the array is the product of the size of the structure and the

number of instances. The number of instances to be created by the constructor

macro is given as the argument to the :times option to defstruct or zl:defstruct,

or the :times keyword of the constructor macro.

Named Structures

Introduction to Named Structures

The named structure feature provides a very simple form of user-defined data type.

Any array can be made a named structure using zl:make-array-into-named-

structure. See the function zl:make-array-into-named-structure. Usually however,

the :named option of defstruct is used to create named structures. See the section

"defstruct Structures and type-of".

The principal advantages of a named structure are that it has a more informative

printed representation than a normal array and that the describe function knows

how to give a detailed description of it. (You do not have to use

describe-defstruct, because describe can figure out the names of the structure’s

slots by looking at the named structure’s name.) We recommend, therefore, that

"system" data structures be implemented with named structures.

Note: Flavors offers another kind of user-defined data type, more advanced but

less efficient when used only as a record structure: See the section "Flavors".

A named structure has an associated symbol called its "named structure symbol",

that it represents the user-defined type of which the structure is an instance. The

type-of function, applied to the named structure, returns this symbol. If the array

has a leader, the symbol is found in element 1 of the leader; otherwise it is found

in element 0 of the array.

Note: If a numeric-type array is to be a named structure, it must have a leader,

since a symbol cannot be stored in any element of a numeric array.

If you call typep with two arguments, the first an instance of a named structure

and the second its named structure symbol, it returns t. It also returns t if the

second argument is the named structure symbol of a :named defstruct included

(using the :include option), directly or indirectly, by the defstruct for this struc-

ture. For example, if the structure astronaut includes the structure person, and

person is a named structure, then giving typep an instance of an astronaut as

the first argument, and the symbol person as the second argument, returns t.

This reflects the fact that an astronaut is, in fact, a person, as well as an astro-

naut.

Handler Functions for Named Structures

You can associate with a named structure a function that handles various opera-

tions that can be done on it. You can control both how the named structure is

printed and what describe will do with it.

Page 473

To provide such a handler function, make the function the named-structure-

invoke property of the named structure symbol. The functions that know about

named structures apply this handler function to several arguments. The first is a

"keyword" symbol to identify the calling function, and the second is the named

structure itself. The rest of the arguments passed depend on the caller; any named

structure function should have a "&rest" parameter to absorb any extra arguments

that might be passed. What the function is expected to do depends on the keyword

it is passed as its first argument. The following keywords are defined:

:which-operations

Returns a list of the names of the operations handled by the

function.

:print-self

The arguments are :print-self, the named structure, the

stream to which to output, the current depth in list-structure,

and t if slashification is enabled (prin1 versus princ). The

printed representation of the named structure should be output

to the stream. If the named structure symbol is not defined as

a function, or :print-self is not in its :which-operations list,

the printer defaults to a reasonable printed representation. For

example:

#<named-structure-symbol octal-address>�

:describe

The arguments are :describe and the named structure. It

should output a description of itself to *standard-output*. If

the named structure symbol is not defined as a function, or

:describe is not in its :which-operations list, the describe sys-

tem checks whether the named structure was created by using

the :named option of defstruct; if so, the names and values of

the structure’s fields are enumerated.

Here is an example of a simple named-structure handler function. For this exam-

ple to have any effect, the person defstruct used in this example must be modified

to include the :named attribute.

(defselect ((:property person named-structure-invoke))

 (:print-self (person stream ignore slashify-p)

 (format stream

 (if slashify-p "#<person ~a>" "~a")

 (person-name person))))�

This example causes a person structure to include its name in its printed repre-

sentation; it also causes princ of a person to print just the name, with no "#<"

syntax.

In this example, the :which-operations handler is automatically generated, as well

as the handlers for :operation-handled-p and :send-if-handles.

Page 474

Another way to write this handler is as follows:

(defselect ((:property person named-structure-invoke))

 (:print-self (person stream ignore slashify-p)

 (if slashify-p

 (si:printing-random-object (person stream :typep)

 (princ (person-name person) stream))

 (princ (person-name person) stream))))�

This example uses the sys:printing-random-object special form, which is a more

advanced way of printing #< ... >. It interacts with the si:print-readably variable

and special form.

Functions That Operate on Named Structures

named-structure-p structure

Returns nil if the given object is not a named structure.

named-structure-symbol named-structure

Returns the named structure symbol of the given named struc-

ture.

named-structure-invoke operation structure &rest args

Calls the handler function of the named structure symbol.�

Also refer to the :named-structure-symbol keyword to make-array.

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, where possible, use the Common Lisp equivalent of this func-

tion.

zl:make-array-into-named-structure

Turns the given array into a named structure.

Extensions to defstruct

This section describes the use of defstruct-define-type.

An Example of defstruct-define-type

defstruct-define-type works by examining a call to the macro. This is how the

:list type of structure might have been defined:

(defstruct-define-type :list

(:cons (initialization-list description keyword-options)

 :list

 ‘(list . ,initialization-list))

(:ref (slot-number description argument)

 ‘(nth ,slot-number ,argument)))�

Page 475

This is the simplest possible form of defstruct-define-type. It provides defstruct

with two Lisp forms: one for creating forms to construct instances of the struc-

ture, and one for creating forms to become the bodies of accessors for slots of the

structure.

The keyword :cons is followed by a list of three variables that are bound while the

constructor-creating form is evaluated. The first, initialization-list, is bound to a

list of the initialization forms for the slots of the structure. The second,

description, is bound to the si:defstruct-description structure for the structure.

See the section "defstruct Internal Structures". For a description of the third

variable, keyword-options, and the :list keyword: See the section "Options to

defstruct-define-type".

The keyword :ref is followed by a list of three variables that are bound while the

accessor-creating form is evaluated. The first, slot-number, is bound to the num-

ber of the slot that the new accessor should reference. The second, description, is

bound to the si:defstruct-description structure for the structure. The third,

argument, is bound to the form that was provided as the argument to the acces-

sor.

defstruct-define-type type &body options Macro

Teaches defstruct and zl:defstruct about new types that it can use to implement

structures.

The body of this function is shown in the following example:

(defstruct-define-type type

option-1

option-2

...)�

where each option is either the symbolic name of an option or a list of the form

(option-name . rest). See the section "Options to defstruct-define-type".

Different options interpret rest in different ways. The symbol type is given an

si:defstruct-type-description property of a structure that describes the type com-

pletely.

For a table of related items: See the section "Functions Related to defstruct Struc-

tures".

Options to defstruct-define-type

The documentation in this section regarding defstruct also applies to zl:defstruct.

:cons

Supplies defstruct with the code necessary to cons up a form

that constructs an instance of a structure of this type.

The :cons option has the syntax:

Page 476

(:cons (inits description keywords) kind

 body)�

body is some code that should construct and return a piece of

code that constructs, initializes, and returns an instance of a

structure of this type.

The symbol inits is bound to the information that the construc-

tor conser should use to initialize the slots of the structure.

The exact form of this argument is determined by the symbol

kind. There are currently two kinds of initialization:

• :list  inits is bound to a list of initializations, in the cor-

rect order, with nils in uninitialized slots.

• :alist  inits is bound to an alist with pairs of the form

(slot-number . init-code).�

The symbol description is bound to the instance of the

si:defstruct-description structure that defstruct maintains for

this particular structure. See the section "defstruct Internal

Structures". This is so that the constructor conser can find out

such things as the total size of the structure it is supposed to

create.

The symbol keywords is bound to an alist with pairs of the

form (keyword . value), where each keyword was a keyword

supplied to the constructor macro that was not the name of a

slot, and value was the Lisp object that followed the keyword.

This is how you can make your own special keywords, such as

the existing :make-array and :times keywords. See the section

"Constructors for defstruct Structures". You specify the list of

acceptable keywords with the :keywords option.

It is an error not to supply the :cons option to defstruct-

define-type.

:ref

Supplies defstruct with the code it needs to cons up a form

that will reference an instance of a structure of this type.

The :ref option has the syntax:

(:ref (number description arg-1 ... arg-n)

 body)�

body is some code that should construct and return a piece of

code that will reference an instance of a structure of this type.

The symbol number is bound to the location of the slot that is

to be referenced. This is the same number that is found in the

number slot of the si:defstruct-slot-description structure. See

the section "defstruct Internal Structures".

The symbol description is bound to the instance of the

si:defstruct-description structure that defstruct maintains for

this particular structure.

Page 477

The symbols arg-i are bound to the forms supplied to the ac-

cessor as arguments. Normally, there should be only one of

these. The last argument is the one that is defaulted by the

:default-pointer option. See the section "Options for

defstruct". defstruct checks that the user has supplied exactly

n arguments to the accessor function before calling the refer-

ence consing code.

It is an error not to supply the :ref option to defstruct-define-

type.

:overhead

Declares to defstruct that the implementation of this particu-

lar type of structure "uses up" some number of locations in the

object actually constructed. This option is used by various

"named" types of structures that store the name of the struc-

ture in one location.

The syntax of :overhead is (:overhead n), where n is a fixnum

that says how many locations of overhead this type needs.

This number is used only by the :size-macro and :size-symbol

options to defstruct. See the section "Options for defstruct".

:named

Controls the use of the :named option to defstruct. With no

argument, the :named option means that this type is an ac-

ceptable "named structure". With an argument, as in (:named

type-name), the symbol type-name should be the name of some

other structure type that defstruct should use if someone asks

for the named version of this type. (For example, in the defini-

tion of the :list type the :named option is used like this:

(:named :named-list).)

:keywords

Allows you to define additional constructor keywords for this

type of structure. (The :make-array constructor keyword for

structures of type :array is an example.) The syntax is:

(:keywords keyword-1 ... keyword-n), where each keyword is a

symbol that the constructor conser expects to find in the key-

words alist. See the section "Options to defstruct-define-type".

:defstruct

Allows you to to run some code and return some forms as part

of the expansion of the defstruct macro.

The :defstruct option has the syntax:

(:defstruct (description)

 body)�

body is a piece of code that runs whenever defstruct is ex-

panding a defstruct form that defines a structure of this type.

Page 478

The symbol description is bound to the instance of the

si:defstruct-description structure that defstruct maintains for

this particular structure.

The value returned by body should be a list of forms to be in-

cluded with those that the defstruct expands into. Thus, if you

only want to run some code at defstruct-expand time, and you

do not actually want to output any additional code, then you

should be careful to return nil from the code in this option.

:predicate

Specifies how to construct a :predicate option for defstruct.

The syntax for the option is:

(:predicate (description name)

 body)�

The variable description is bound to the si:defstruct-

description structure maintained for the structure for which a

predicate is generated. The variable name is bound to the sym-

bol that is to be defined as a predicate. body is a piece of code

that is evaluated to return the defining form for the predicate.

(:predicate (description name)

 ‘(defun ,name (x)

 (and (frobbozp x)

 (eq (frobbozref x 0)

 ’,(defstruct-description-name)))))�

:copier

The :copier option specifies how to copy a particular type of

structure for situations when it is necessary to provide a copy-

ing function other than the one that defstruct would generate.

(:copier (description name)

 ‘(fset-carefully ’,name ’copy-frobboz))�

The syntax for the option is:

(:copier (description name)

 body)�

description is bound to an instance of the si:defstruct-

description structure, name is bound to the symbol to be de-

fined, and body is some code to evaluate to get the defining

form.

defstruct Internal Structures

The documentation in this section regarding defstruct also applies to zl:defstruct.

If you want to write a program that examines structures and displays them the

way describe and the Inspector do, your program will work by examining the in-

Page 479

ternal structures used by defstruct. In addition to discussing these internal struc-

tures, this section also provides the information necessary to define your own

structure types.

Whenever you use defstruct to define a new structure, it creates an instance of

the si:defstruct-description structure. This structure can be found as the

si:defstruct-description property of the name of the structure; it contains such

useful information as the name of the structure, the number of slots in the struc-

ture, and so on.

The following example shows a simplified version of how si:defstruct-description

structure is actually defined. si:defstruct-description is defined in the system-

internals (or si) package and includes additional slots that are not shown in this

example:

;;;simplified version of si:defstruct-description structure

(cl:defstruct (defstruct-description

 (:default-pointer description)

 (:conc-name defstruct-description-))

 name

 size

 property-alist

 slot-alist) �

The name slot contains the symbol supplied by the user to be the name of the

structure, such as spaceship or phone-book-entry.

The size slot contains the total number of locations in an instance of this kind of

structure. This is not the same number as that obtained from the :size-symbol or

:size-macro options to defstruct. A named structure, for example, usually uses up

an extra location to store the name of the structure, so the :size-macro option

gets a number one larger than that stored in the defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name .

property) containing properties placed there by the :property option to defstruct

or by property names used as options to defstruct. See the section "Options for

defstruct".

The slot-alist slot contains an alist of pairs of the form (slot-name .

slot-description). A slot-description is an instance of the si:defstruct-slot-

description structure. The si:defstruct-slot-description structure is defined some-

thing like this, also in the si package:

;;;simplified version of the actual implementation

(cl:defstruct (defstruct-slot-description

(:default-pointer slot-description)

(:conc-name defstruct-slot-description-))

 number

 ppss

 init-code

 ref-macro-name)�

Page 480

Note that this is a simplified version of the real definition and does not fully rep-

resent the complete implementation. The number slot contains the number of the

location of this slot in an instance of the structure. Locations are numbered start-

ing with 0, and continuing up to one less than the size of the structure. The actu-

al location of the slot is determined by the reference-consing function associated

with the type of the structure. See the section "Options to defstruct-define-type".

The ppss slot contains the byte specifier code for this slot if this slot is a byte

field of its location. If this slot is the entire location, the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user

in the defstruct form. If there is no initialization code for this slot, the init-code

slot contains the symbol si:%%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro or a sub-

st that expands into a reference to this slot (that is, the name of the accessor

function).

Symbolics CLOS

Overview of the CLOS Documentation

Symbolics CLOS comes with the following documentation:

Object-Oriented Programming in COMMON LISP

This book, by Sonya E. Keene, presents CLOS and techniques

of object-oriented programming in a tutorial style. It is useful

for Lisp programmers who are new to CLOS, or who are new

to object-oriented techniques. This book contains many exam-

ples of programming with CLOS. This book is not available on-

line via Document Examiner.

"Overview of CLOS"

This section introduces the concepts of CLOS and shows a sim-

ple example of using CLOS. See the section "Overview of

CLOS".

"Symbolics CLOS" This is the reference documentation for the Symbolics imple-

mentation of CLOS. It documents the important mechanisms of

CLOS, and every CLOS operator (function, macro, and so on)

in a reference style. It does not provide a tutorial approach or

many examples, because that approach is taken by the book

Object-Oriented Programming in COMMON LISP. For Genera

users, the reference documentation is available online via Doc-

ument Examiner.

This documentation is based on information covered in the

"Common Lisp Object System Specification", which is the com-

plete definition of the behavior of CLOS and which should be

considered the primary source of information on CLOS until

Page 481

the ANSI specification of Common Lisp itself is completed and

available. The authors of the "Common Lisp Object System

Specification" (Daniel G. Bobrow, Linda G. DeMichiel, Richard

P. Gabriel, Sonya E. Keene, Gregor Kiczales, and David A.

Moon) have given Symbolics their permission to include and/or

adapt information from the specification into this reference

documentation.

The CLOS specification is not provided with Symbolics CLOS. If you are interested

in the CLOS specification, its reference is:

"Common Lisp Object System Specification," X3J13 Document 88-002R,

June 1988. Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel,

Sonya E. Keene, Gregor Kiczales, and David A. Moon.�

The CLOS specification is available in:

SIGPlan Notices (ISSN 0362-1340)

Volume 23

Special Issue -- September 1988

Copyright 1988 by the Association for Computing Machinery.

ISBN 0-89791-289-6

Price: Members $10.50, Nonmembers $14.00.

ACM Order Number: 548883

Additional copies may be ordered prepaid from:

ACM Order Department

P.O. Box 64145

Baltimore, MD 21264

CLOS Classes and Instances

This section gives more detail on CLOS classes and instances than the section

""Introduction to CLOS"". This section covers the following information:

• How to access slots for reading and writing.

• How CLOS classes are named.

• Integration of CLOS classes and the Common Lisp type system, including the

set of predefined classes corresponding to Common Lisp types.

• The default classes clos:standard-object and t.�

Other sections of the documentation present information related to classes:

See the section "CLOS Inheritance".

See the section "Creating and Initializing CLOS Instances".

Page 482

See the section "Redefining CLOS Classes and Instances".

Accessing Slots of CLOS Instances

There are several ways to access slots. This section discusses accessors, clos:slot-

value, clos:with-slots, and clos:with-accessors.

Note that local slots and shared slots are accessed in the same ways, and when

they are accessed, there is no way of knowing whether the slot is local or shared.

Calling CLOS Accessors �

Probably the most common way to access a slot’s value is to call a reader to read

the value of a slot, and to call a writer to write the value of a slot. Readers and

writers are called accessors. The clos:defclass macro has slot options that automat-

ically create methods for readers and writers.

To get the value of a slot using a reader generic function:

(reader instance)�

The convention is that writers are setf generic functions that work with a reader.

The name of such a writer is a list such as (future-common-lisp:setf symbol), and

the writer is called with the setf syntax. (The difference between setf and future-

common-lisp:setf is discussed below.) However, writers can also be named by sym-

bols and be called with ordinary function-calling syntax.

To write the value of a slot using a writer generic function:

;;; if the CLOS writer’s name is (future-common-list:setf symbol)

(setf (symbol instance) new-value)

�

;;; if the CLOS writer’s name is writer

(writer new-value instance)�

Accessors are normal generic functions. The clos:defclass slot options automatical-

ly create primary methods for accessors. You can specialize an accessor by defining

another method on it, such as a before-method or after-method, to perform addi-

tional work.

Difference Between future-common-lisp:setf and setf�

These two macros expand the same, and calling future-common-lisp:setf has the

same effect as calling setf.

Because the argument order in defining setf methods and generic functions is dif-

ferent in CLOS and Flavors, the two symbols setf and future-common-lisp:setf

are used in function specs for setf generic functions, to indicate which argument

order is being used. The Flavors lambda-lists have the new-value parameter last,

preceded by other arguments. The CLOS lambda-lists have the new-value parame-

ter first, followed by other arguments.

Page 483

The :accessor option to clos:defclass creates a method for a generic function

whose function specs is of the form: (future-common-lisp:setf symbol).

The :writable-instance-variables option to defflavor creates a method for a gener-

ic function whose function spec is of the form: (setf symbol).

For more information on the differences between future-common-lisp:setf and

setf: See the macro future-common-lisp:setf.

Using clos:slot-value�

Accessors are implemented by clos:slot-value, a function that reads the value of

any slot. You can use setf with clos:slot-value to set the value of a slot.

(slot-value instance slot-name)

(setf (slot-value instance slot-name) new-value)�

The following example shows how you can define accessor methods yourself, using

clos:slot-value.

;;; a method for a reader named x-position

(defmethod x-position ((p point))

 (slot-value p ’x-position))�

;;; a method for the writer (future-common-lisp:setf x-position)

(defmethod (future-common-list:setf x-position) (new-value (p point))

 (setf (slot-value p ’x-position) new-value))�

Contrasting Accessors and clos:slot-value�

Accessors are a more abstract interface to a slot’s value. They are named func-

tions that take an object as the argument, and return or set some information

about the object. The caller need not know that the function is implemented by

reading or writing the value of a slot. Also, the developer can specialize an acces-

sor with methods that perform additional work whenever a slot is accessed; these

methods are called when the accessor generic function is used.

The function clos:slot-value is a more primitive interface, which requires that the

caller knows that the desired information is stored in a slot of a given name.

When clos:slot-value is called, the slot is accessed directly, and no accessor meth-

ods are invoked.

Short-cut Syntaxes: clos:with-slots and clos:with-accessors�

Sometimes the syntax of accessors and clos:slot-value becomes cumbersome, and

you might prefer a briefer syntax for calling an accessor or calling clos:slot-value.

The clos:with-slots macro provides a short-cut syntax for clos:slot-value. It en-

ables you to specify a variable that stands for a call to clos:slot-value. You can

use that variable to read the slot, and use setf or setq to write the slot.

Similarly, the clos:with-accessors macro provides a short-cut syntax for calling an

accessor. It enables you to specify a variable that stands for a call to the accessor.

Page 484

The clos:with-slots and clos:with-accessors macros are available for syntactic con-

venience only; they have no additional semantics.

Primitive Underlying Short-cut Syntaxes: clos:symbol-macrolet�

The underlying mechanism of both clos:with-accessors and clos:with-slots is the

clos:symbol-macrolet macro, which enables you to substitute forms for variable

names within a lexical scope. Users can call clos:symbol-macrolet to provide

short-cut syntaxes for other forms.

CLOS Operators for Accessing Slots�

clos:slot-value object slot-name

Returns the value of a given slot. You can use setf with clos:slot-value

to change the value of a slot.

clos:symbol-macrolet bindings &body body

Provides the underlying mechanism for substituting forms for variable

names within a lexical scope; both clos:with-accessors and clos:with-

slots are implemented via clos:symbol-macrolet.

clos:with-accessors slot-entries instance-form &body body

Creates a lexical environment in which accessors can be called as if they

were variables.

clos:with-slots slot-entries instance-form &body body

Creates a lexical environment in which slots can be accessed by using

variables that cause clos:slot-value to be called.

Class Objects and Their Names

A class is represented by a class object. Any class defined by clos:defclass also has

a name.

There are two associations between a class and its name. A class is said to have a

proper name if both associations reflect the same name for a class. The associa-

tions are:

• A class object knows its name. To find the name of a class object, you can use

clos:class-name, and you can use setf with it to set the name of a class object.

• A symbol knows the class associated with it. To find the class object associated

with a symbol, you can use clos:find-class, and you can use setf with it to set

the class object associated with the symbol.

When you define a class with clos:defclass, these associations are set up automat-

ically, and the class has a proper name.

Since setf can be used with both clos:class-name and clos:find-class, it is possible

for these associations to reflect different names for a class. In these cases, the

Page 485

class does not have a proper name. Note that you can break the association be-

tween a symbol and a class by using (setf (clos:find-class name) nil).

You can use clos:class-of to get the class of a given object.

In summary, the operators that handle class names and class objects are:

clos:class-name class

Returns the name of the class object. You can use setf with

clos:class-name to set the name of the class object.

clos:class-of object Returns the class of the given object. The returned value is a

class object.

clos:find-class class-name &optional (errorp t) environment

Returns the class object named by class-name in the given en-

vironment. You can use setf with clos:find-class to change the

class associated with the symbol class-name.

CLOS Classes and Types

CLOS classes are smoothly integrated into the Common Lisp type system. Every

class name and class object is a type specifier. The typep and subtypep functions

can be given a class name or class object as their type argument.

(typep object class-name)

(typep object class-object)�

The forms above return true if the object is an instance of the class, or an in-

stance of a subclass of the given class.

(subtypep class-name-1 class-name-2)

(subtypep class-object-1 class-object-2)�

The forms above return true if the first class is a subclass of the second class, or

if the classes are the same class.

Some Common Lisp types have corresponding classes, to enable users to define

methods that specialize on those classes. The following table shows the classes

that correspond to Common Lisp types of the same name.

Page 486

Class Class Precedence List

bignum (bignum integer rational number t)

clos:array (clos:array t)

bit-vector (bit-vector vector clos:array sequence t)

character (character t)

complex (complex number t)

cons (cons list sequence t)

double-float (double-float float number t)

fixnum (fixnum integer rational number t)

float (float number t)

hashtable (hashtable t)

integer (integer rational number t)

list (list sequence t)

null (null symbol list sequence t)

number (number t)

package (package t)

readtable (readtable t)

random-state (random-state t)

ratio (ratio rational number t)

rational (rational number t)

sequence (sequence t)

single-float (single-float float number t)

string (string vector clos:array sequence t)

symbol (symbol t)

t (t)

vector (vector clos:array sequence t)

The classes named bignum, double-float, fixnum, and single-float are Symbolics

CLOS extensions; these classes are not defined in the CLOS specification.

Note that the names of these classes are in the cl package except for the class

representing arrays, which is in the future-common-lisp package. The reason for

this is that defstruct-defined structures are of type cl:array, but not of type

array.

This table includes all Common Lisp types that have corresponding classes. If a

Common Lisp type does not appear in the table, then there is no corresponding

class for it, and you may not define methods that specialize on that type.

Note that Symbolics CLOS currently does not support all the classes defined in the

CLOS specification. The excluded classes are: function, pathname, and stream.

Note that the classes corresponding to Common Lisp types are defined solely for

the purpose of enabling you to define methods that specialize on them. In other

ways, these classes do not behave like user-defined classes: you cannot use

clos:make-instance to create instances of them; you cannot redefine these classes,

and so on.

In CLOS, defstruct defines a new class (as long as the :type option is not pro-

vided), and you may define methods that specialize on such a class. Like the class-

Page 487

es corresponding to Common Lisp types, you cannot use clos:make-instance to

create instances of them; you cannot redefine these classes, and so on. Lastly, you

cannot use clos:slot-value on defstruct-defined classes.

CLOS Default Classes: clos:standard-object and t

The predefined class clos:standard-object is automatically included as a super-

class of each user-defined class (a class defined by clos:defclass); it supports the

default behavior of user-defined classes.

The predefined class t is automatically a superclass of every class except for the

class t itself. The class t is a superclass of user-defined classes, predefined classes,

classes defined by defstruct and any other classes; it appears as the last class in

every class precedence list.

CLOS Inheritance

CLOS Class Precedence List

CLOS computes a class precedence list for each class. The purpose of the class

precedence list is to ensure an orderly and predictable inheritance behavior, espe-

cially in cases of potential conflict, where more than one class specifies a certain

characteristic.

The class precedence list is used to control inheritance of slots and slot options,

and the precedence of methods during the generic dispatch procedure.

The class precedence list is a list of the class itself and all its superclasses, in a

precedence order from most specific to least specific. Each class has precedence

over the classes that follow it in the class precedence list. In other words, each

class is more specific than the classes that follow it in the class precedence list.

No class appears more than once in a class precedence list.

CLOS computes the class precedence list based on the set of class definitions of

the class and all its superclasses. The algorithm that CLOS uses ensures that the

following rules are always obeyed:

Rule 1 Each class has precedence over its superclasses.

Rule 2 The precedence order of direct superclasses is controlled by the order in

which they appear in the clos:defclass form. Each direct superclass has

precedence over the classes that follow it in the list of direct superclass-

es in the clos:defclass form.�

Thus, you as developer of a CLOS program set the constraints of the class prece-

dence locally, in the clos:defclass forms.

Sometimes the class definitions set conflicting constraints, and there is no possible

class precedence list that can be constructed according to the two rules. In this

case, CLOS signals an error.

Page 488

Sometimes when CLOS applies the two rules to the set of class definitions, the re-

sult is exactly one valid class precedence list. Often, however, some subsets of the

classes have no constraints with respect to one another, and there could be several

possible class precedence lists that obey the two rules. The algorithm used by

CLOS chooses one of these to be the class precedence list. The algorithm is deter-

ministic; it always produces the same class precedence list, based on a set of class

definitions.

The general guideline for programmers is that the class definitions should reflect

any precedence order dependencies of the program. If it is important that one su-

perclass has precedence over another, then you can include them both as direct su-

perclasses in the clos:defclass form in the correct order.

For a complete description of the algorithm CLOS uses, see the CLOS Specifica-

tion.

Example 1�

Given the following class definitions, we will compute the class precedence list for

class a:

(defclass a (b c) ())

(defclass b (d e) ())

(defclass c (f g) ())

(defclass d () ())

(defclass e () ())

(defclass f () ())

(defclass g () ())�

• The class definition of a states that a must precede b and c (Rule 1), and b

must precede c (Rule 2).

• The class definition of b states that b must precede d and e (Rule 1), and d

must precede e (Rule 2).

• The class definition of c states that c must precede f and g (Rule 1), and f must

precede g (Rule 2). �

The class precedence list for class a is:

(a b d e c f g clos:standard-object t)�

Notice that clos:standard-object and t appear at the end of the class precedence

list; this is true of all user-defined classes.

Notice that in this class precedence list that the class b and its superclasses ap-

pear together in the class precedence list followed by the class c and all its super-

classes. This is one desired result of the algorithm CLOS uses; it attempts to keep

a class and its superclasses together in the class precedence list, if this would not

violate Rule 1 or 2.

Page 489

Example 2�

Given the following class definitions:

(defclass a (b c d) ())

(defclass b () ())

(defclass c () ())

(defclass d (c) ())�

CLOS signals an error when trying to determine the class precedence list for class

a, because there are conflicting constraints on the precedence of classes d and c:

• The class definition of a states that c must precede d (Rule 2).

• The class definition of d states that d must precede c (Rule 1).�

Inheritance of Slots and clos:defclass Options

A class inherits slots, some slot options, and one class option from its superclasses.

Slots�

In the simplest case, of all the classes in the class precedence list, no two classes

define a slot with the same name. In this case, a class inherits all slots defined by

its superclasses. The class inherits all local slots defined by its superclasses, in the

sense that each instance stores its own value for the local slots. The class inherits

all shared slots, in the sense that instances of the class can access the value of

the shared slots.

In other cases, more than one class in the class precedence list specifies a slot

with the same name. The slot is inherited, and its characteristics are determined

by the slot options given by each class that specifies that slot according to the in-

heritance behavior of each slot option.

clos:defclass Slot Options�

The inheritance behavior of each slot option is independent of the other slot op-

tions.

• The :reader, :writer, :accessor, and :locator slot options are not inherited.

These slot options create methods, which are inherited in the sense that the

methods are applicable for subclasses of the given class.

• The :allocation slot option is inherited. This slot option controls whether the

slot is local or shared.

If more than one class in the class precedence list defines a slot with the same

name, then the allocation of the slot is controlled by the most specific class that

Page 490

defines the slot of that name, whether or not the :allocation slot option was ex-

plicitly provided. Note that if a class defines a slot and the :allocation slot op-

tion is not provided, it is the same as if :allocation :instance were specified.

If the most specific class that defines the slot omits the :allocation slot option,

or specifies :allocation :instance, then the class inherits a local slot. Each in-

stance of the new class stores its own value for the slot.

If the most specific class that defines the slot specifies :allocation :class, then

the class inherits the shared slot. Instances of the new class can access the val-

ue of the shared slot.

• The :initform slot option is inherited. The initform of a slot is provided by the

most specific class in the class precedence list that supplies the :initform slot

option.

• The :initarg slot option is inherited by union. A slot can have more than one

initialization argument. All initialization arguments declared for a slot by any

class in the class precedence list are valid initialization arguments for the slot.

• The :type slot option is inherited by intersection; that is, by anding together all

the type constraints provided by classes in the class precedence list that for a

given slot. Thus, the type of a slot is declared to be of the type (and type-1

type-2 type-3) if three classes in the class precedence list specified the types

type-1, type-2, and type-3 for the slot.

• The :documentation slot option is inherited. The documentation of a slot is pro-

vided by the most specific class in the class precedence list that supplies the

:documentation slot option.

clos:defclass Class Options�

The only class option that is inherited is :default-initargs. The set of default ini-

tialization arguments for a class is the union of the default initialization argu-

ments provided by each class in the class precedence list. If more than one class

provides a default value for a given initialization argument, then the default value

is the one provided by the most specific class that provides a default value for that

initialization argument.

CLOS Methods and Generic Functions

This section gives more detail on CLOS methods and generic functions than the

section "Introduction to CLOS". This section covers the following information:

• Generic function objects and their names

• Method objects and a method’s identity

• The CLOS generic dispatch procedure

Page 491

• Lambda-list congruence rules for a generic function and its methods

• Keyword arguments in generic functions and methods�

For additional information related to methods and generic functions:

See the section "CLOS Method Combination".

CLOS Generic Function Objects and Their Names

A CLOS generic function object has the following components:

• Set of methods

• Lambda-list

• Method-combination type

• Other information�

A generic function object is a function, so it can be used as the first argument to

funcall and apply.

Note that the name of a generic function can be a symbol or a list such as

(future-common-lisp:setf symbol). If the name of the generic function is a symbol,

the generic function is called in ordinary Lisp function-calling syntax. A generic

function whose name is a list is a setf generic function, and it must be called with

setf syntax as follows:

(setf (symbol object) new-value)�

In CLOS, there are several ways to define a generic function. The most common

way is to call clos:defgeneric or clos:defmethod to define a generic function with

a global name. (Note that clos:defmethod defines a generic function with the

given name, if it is not already defined.) The global naming of a generic function

is analogous to the global naming of an ordinary function defined by defun;

specifically, the function cell of a symbol stores the generic function object.

You can use fdefinition to get a generic function object whose name is either a

symbol or a list. (Note that you can use symbol-function to get the generic func-

tion object named by a certain symbol, but it does not work on lists.)

(fdefinition symbol) => generic function object

�

(fdefinition ’(future-common-lisp:setf symbol))

 => generic function object �

Another way to define a generic function is to use one of the method-defining slot

options to clos:defclass, such as :reader, :writer, and :accessor. These slot op-

tions define methods, and if the generic function is not defined, they define the

generic function with the given global name.

Symbolics CLOS does not support the operators that define generic functions with

local names. These operators are: clos:generic-labels (analogous to labels),

clos:generic-flet (analogous to flet), and clos:with-added-methods.

Page 492

Symbolics CLOS does not support the clos:generic-function macro, which defines

an anonymous generic function.

CLOS Method Objects and Their Identities

Methods can be defined by clos:defmethod, the :method option to clos:defgeneric,

and the method-defining slot options to clos:defclass (including :reader, :writer,

and :accessor).

A CLOS method object contains the following information representing a method:

Method function Lisp code that is executed when the generic dispatch causes

this method to be part of the implementation of a generic

function call; the method function corresponds to the body of a

clos:defmethod.

Specialized lambda-list

An extension of an ordinary lambda-list in which any of the re-

quired parameters may be specialized. Each specialized parame-

ter is an applicability test; a method is applicable if all the

specialized parameters are satisfied by the arguments to the

generic function. A specialized parameter is a list in one of the

following formats:

(variable-name class-name)

(variable-name (eql form))�

One step in the generic dispatch procedure is to select the ap-

plicable methods. For information on this step: See the section

"CLOS Generic Dispatch".

Parameter specializers

A list of the parameter specializers; the order of these is sig-

nificant. Each required parameter has a parameter specializer.

The parameter specializer for any unspecialized parameter is

the class named t.

Note that CLOS distinguishes between a parameter specializer

name (these appear in the clos:defmethod lambda-list) and the

corresponding parameter specializer object. When the parameter

specializer name is a class name, the corresponding object is

the class object of that name. When the parameter specializer

name is a list such as (eql form), the corresponding object is

the list (eql object), where object is the result of evaluating

form.

Method qualifiers A list of the non-nil atoms that are used by the method-

combination type; note that the order of these atoms is signifi-

cant.�

Method objects are not named. It is more appropriate to consider the identity of a

method. Consider that clos:defmethod defines a new method if that method does

Page 493

not already exist, or redefines a method, if it does exist. Understanding a method’s

identity enables you to know whether a method exists with the same identity as

the one being defined.

A method’s identity is defined by the following:

• The generic function it implements

• Its parameter specializers (the parameter specializer objects and their order)

• Its method qualifiers (the atoms and their order)�

You can use clos:find-method to get the method object of a method for a given

generic function, with the given set of parameter specializers and method quali-

fiers.

See the section "Function Specs for CLOS Methods".

Symbolics CLOS currently does not support the operators that define methods for

generic functions with local names or anonymous generic functions. These opera-

tors are: clos:generic-labels, clos:generic-flet, clos:with-added-methods, and

clos:generic-function.

CLOS Generic Dispatch

This section describes a key mechanism of CLOS: the procedure by which CLOS

chooses the correct implementation of a generic function based on the arguments

to the generic function. The implementation consists of code that comes from one

or more methods; this combined body of code is called the effective method.

We present the generic dispatch procedure in a conceptual way; note that Symbol-

ics CLOS optimizes portions of the generic dispatch. The semantic effect is the

same as what is documented here.

When a generic function is called, the CLOS generic dispatch procedure performs

the following steps:

1. Finds the set of applicable methods.

2. Arranges the applicable methods in precedence order.

3. Uses the method-combination type of the generic function to determine how

the applicable methods should be combined into the effective method.

4. Executes the effective method and returns its values.�

Step 1: How CLOS finds the set of applicable methods �

A method is applicable if each of its required parameters is satisfied by the corre-

sponding argument to the generic function. A required parameter can appear in

the lambda-list as one of the following:

Page 494

(variable-name (eql form))

(variable-name class-name)

variable-name�

When a parameter is specialized with (eql form), the form is evaluated once, at

the time that the method is defined. If the value of form is object, then the argu-

ment satisfies the specialized parameter if the following form returns true:

(eql argument ’object)�

When a parameter is specialized with a class name, the argument satisfies the

specialized parameter if the argument is a member of the class; that is, if the fol-

lowing form returns true:

(typep argument ’class-name)

�

When a parameter is unspecialized (the variable-name appears as a lone symbol

which is not enclosed within a list), any argument satisfies the parameter.

Step 2: How CLOS arranges the applicable methods in precedence order�

The precedence order of methods is calculated based on the parameter specializers

of the methods, the class precedence lists of the required arguments to the generic

function, and the argument precedence order of the generic function. The result of

this step is a list of applicable methods sorted from most specific to least specific.

CLOS starts with the set of the applicable methods determined in Step 1. Each

method object has a list of parameter specializers derived from the lambda-list.

(For a definition of parameter specializers, see the section "CLOS Method Objects

and Their Identities".) An unspecialized parameter has the class named t as its pa-

rameter specializer.

CLOS compares the precedence of two methods by comparing pairs of parameter

specializers. The argument precedence order of the generic function controls the

order in which the parameter specializers are compared. The default argument

precedence order is left-to-right. It can be changed by using the :argument-

precedence-order option to clos:defgeneric.

• CLOS compares two methods by considering the first parameter specializer of

each method. (Note that "first" is determined by the argument precedence order

of the generic function; by default, it is the leftmost parameter specializer.)

• If the parameter specializers are not equivalent, then the methods are ordered

on the basis of this pair of parameter specializers according to these rules:

° A parameter specializer of (eql object) is more specific than a class.

° If both parameter specializers are classes, then both classes appear in the

class precedence list of the corresponding argument to the generic function.

One class is more specific than the other in the class precedence list of the

argument. Thus, the method whose parameter specializer is the more specific

class has precedence over the other method.�

Page 495

• If the parameter specializers are equivalent, then the methods cannot be ordered

on the basis of this pair of parameter specializers, so CLOS proceeds to consider

the next parameter specializer of each method. The two methods are sorted ac-

cording to the first pair of parameter specializers that are not equivalent.

• If all parameter specializers of two methods are equivalent, then the methods

have different qualifiers. In this case, either of the two methods can be chosen

to precede the other.

Step 3: How CLOS uses the method-combination type to construct the effective

method�

A method-combination type determines how applicable methods should be combined

into an effective method. The method-combination type uses the sorted list of ap-

plicable methods as its input. It decides which methods should be executed, the or-

der in which the methods should be executed, and the way that the values of the

generic function are computed.

For information on how the default method-combination type constructs an effec-

tive method, see the section "The clos:standard Method Combination Type".

Step 4: How CLOS executes the effective method and returns its values�

This step is straightforward, once Step 3 has constructed the effective method.

CLOS invokes that body of code and returns its values as the values of the generic

function.

CLOS Lambda-list Congruence Rules

In CLOS, the lambda-lists of a generic function and all its methods must be con-

gruent. The generic function lambda-list sets a pattern, and all the methods must

adhere to that pattern. If a method is defined that does not adhere to the pattern,

then an error is signaled.

These rules define the congruence of the lambda-lists of a generic function and its

methods:

• Each lambda-list must have the same number of required parameters.

• Each lambda-list must have the same number of optional parameters. Each

method can supply its own default for an optional parameter, but the generic

function may not supply defaults for optional parameters.

• If any lambda-list mentions &rest or &key, each lambda-list must mention one

or both of them.

• If the generic function lambda-list mentions &key, each method must accept all

of the keyword names mentioned after &key, either by accepting them explicit-

ly, by specifying &allow-other-keys, or by specifying &rest but not &key. Each

Page 496

method can accept additional keyword arguments of its own. The checking of

the validity of keyword names is done in the generic function, not in each

method. A method is invoked as if the keyword argument pair whose keyword is

:allow-other-keys and whose value is t were supplied, though no such argument

pair will be passed.

• The use of &allow-other-keys need not be consistent across lambda-lists. If &al-

low-other-keys is mentioned in the lambda-list of any applicable method or of

the generic function, any keyword arguments may be mentioned in the call to

the generic function.

• The use of &aux need not be consistent across methods.�

If a method is defined before the generic function is defined, the generic function

is automatically defined, and its lambda-list is derived from that of the method. If

the lambda-list for the method mentions keyword arguments, the lambda-list of the

generic function will mention &key, but will not name any keyword arguments.

Keyword Arguments in CLOS Generic Functions and Methods

When a generic function or any of its methods mentions &key in a lambda-list,

the specific set of keyword arguments accepted by the generic function varies ac-

cording to the applicable methods.

For a given generic function call, the set of keywords accepted includes:

• The keyword arguments accepted by all applicable methods

• Any keyword arguments mentioned after &key in the generic function definition�

If the lambda-list of any applicable method or of the generic function definition

contains &allow-other-keys, all keyword arguments are accepted by the generic

function.

A method that has &rest but not &key does not affect the set of acceptable key-

word arguments.

The lambda-list congruence rules require that each method accept all of the key-

word arguments mentioned after &key in the generic function definition, by ac-

cepting them explicitly, by specifying &allow-other-keys, or by specifying &rest

but not &key. Each method can accept additional keyword arguments of its own,

in addition to the keyword arguments mentioned in the generic function definition.

If a generic function is passed a keyword argument that no applicable method ac-

cepts, an error is signaled.

For example, suppose there are two methods defined for width as follows:

(defmethod width ((c character-class) &key font) body)

�

(defmethod width ((p picture-class) &key pixel-size) body)�

Page 497

Assume that there are no other methods and no generic function definition for

width. The evaluation of the following form will signal an error because the key-

word argument :pixel-size is not accepted by the applicable method:

(width (make-instance ‘character-class :char \#Q)

 :font ’baskerville :pixel-size 10)�

The evaluation of the following form will signal an error, because the keyword ar-

gument :glyph is not accepted by the applicable method:

(width (make-instance ‘picture-class :glyph (glyph \#Q))

 :font ’baskerville :pixel-size 10)�

The evaluation of the following form will not signal an error if the class named

character-picture-class is a subclass of both picture-class and character-class:

(width (make-instance ‘character-picture-class :char \#Q)

 :font ’baskerville :pixel-size 10)�

Redefining CLOS Generic Functions and Methods

CLOS enables you to redefine generic functions and methods dynamically.

Redefining a Generic Function�

If you evaluate a clos:defgeneric form and the generic function already exists, the

generic function is redefined. clos:defgeneric returns the modified generic func-

tion, which is eq to the original generic function. All methods on the generic func-

tion are preserved, except for those defined by the :method option to

clos:defgeneric; a method defined by that option in the former clos:defgeneric but

not the current clos:defgeneric form is removed from the generic function.

Redefining a Method�

If you evaluate a clos:defmethod form and the method already exists, the method

is redefined. The old method is replaced with the redefined method. Future calls to

the generic function will use the redefined method.

For more information on determining whether the method already exists, see the

section "CLOS Method Objects and Their Identities".

The lambda-list of the method must be congruent with the lambda-list of the

generic function, or an error is signaled. See the section "CLOS Lambda-list Con-

gruence Rules".

Removing a Method�

You can remove a record from a generic function by calling clos:remove-method.

Once the method is removed, it will not be used in any future calls to the generic

function.

Page 498

CLOS Method Combination

Each generic function has a method-combination type, which controls:

• Which method qualifiers are supported

• Which kinds of methods can use clos:call-next-method in their bodies

• The order in which the applicable methods are called

• How the values of the generic function are computed�

CLOS enables you to define new method-combination types. For information and

examples, see the macro clos:define-method-combination.

This section describes the default method-combination type (whose name is

clos:standard) and the other built-in method-combination types. It also gives a ta-

ble of operators related to defining new method-combination types.

The clos:standard Method Combination Type

The default method-combination type is clos:standard. Unless a generic function

specifies a different method-combination type by using the :method-combination

option to clos:defgeneric, then the generic function uses clos:standard.

The clos:standard method-combination type supports the following method quali-

fiers:

none An unqualified method is called a primary method. Its role is

to perform the bulk of the work of a generic function. A pri-

mary method can call clos:call-next-method to call the next

most specific primary method. A primary method returns its

values to its caller.

:before A method whose sole qualifier is :before is called a before-

method. Its role is to run before the primary method(s), to do

preparatory or initialization work. A before-method cannot call

clos:call-next-method. Any values returned by a before-method

are ignored.

:after A method whose sole qualifier is :after is called an after-

method. Its role is to run after the primary method(s), to do

clean-up work. An after-method cannot call clos:call-next-

method. Any values returned by an after-method are ignored.

:around A method whose sole qualifier is :around is called an around-

method. Its role is to be "wrapped around" the execution of the

other methods (primary, before, and after). An around-method

can call clos:call-next-method. The "next method" is the next

most specific around-method, if there is one, otherwise the

"next method" is the set of before-methods, the most specific

Page 499

primary method, and the set of after-methods. An around-

method returns its values to its caller.�

The clos:standard method-combination type constructs an effective method in the

following way:

• If there are any around-methods, the most specific around-method is called. It

supplies the value or values of the generic function.

• Inside the body of an around-method, clos:call-next-method can be used to call

the next method. When the next method returns, the around-method can execute

more code, perhaps based on the returned value or values.

• If an around-method invokes clos:call-next-method, the next most specific

around-method is called, if one is applicable. If there are no around-methods or

if clos:call-next-method is called by the least specific around-method, the other

methods are called as follows:

° All the before-methods are called, in most-specific-first order. Their values are

ignored.

° The most specific primary method is called. Inside the body of a primary

method, clos:call-next-method may be used to call the next most specific pri-

mary method. When that method returns, the previous primary method can

execute more code, perhaps based on the returned value or values. If

clos:call-next-method is not used, only the most specific primary method is

called.

° All the after-methods are called in most-specific-last order. Their values are

ignored.

If no around-methods are applicable, the most specific primary method supplies the

value or values returned by the generic function. If any around-methods are appli-

cable, the most specific around-method supplies the value or values returned by

the generic function.

An error is signaled if clos:call-next-method is used in a before-method or after-

method.

The generic function clos:no-next-method is invoked if clos:call-next-method is

used and there is no applicable method to call. The default method for clos:no-

next-method signals an error.

Any method that can use clos:call-next-method can use the function clos:next-

method-p to test whether a next method exists.

An error is signaled if there is an applicable method, but there is no applicable

primary method.

Page 500

CLOS Built-in Method-Combination Types

In addition to clos:standard, CLOS offers a set of built-in method combination

types.

The built-in method-combination types (other than clos:standard) have the same

semantics as method-combination types defined by the short form of clos:define-

method-combination. We use the term "simple" method-combination type to refer

to these types.

The simple built-in method combination types are:

+ and append

list max min

nconc or progn �

A simple method-combination type constructs an effective method by combining all

applicable primary methods inside a call to a Lisp operator. For example, if there

are no applicable around-methods, the + method-combination type constructs an ef-

fective method that looks like this:

(+ (primary-method-A generic-function-arguments)

 (primary-method-B generic-function-arguments)

 (primary-method-C generic-function-arguments))�

Thus, the value of the generic function is the sum of the values of the applicable

primary methods.

To specify that a generic function should use a method-combination type other

than clos:standard, use the :method-combination option to clos:defgeneric. For

example:

(defgeneric total-supply lambda-list

 (:method-combination +)�

To define a primary method for use with a simple method-combination type, you

must supply a symbol as the method qualifier; the symbol is the name of the

method-combination type. For example, to define a primary method for use with

the + method-combination type:

(defmethod total-supply + lambda-list body)�

Each simple method-combination type supports two method roles:

Qualifier Role

name of m-c type Primary method, which is combined with other primary

methods in a call to the operator.

:around An around-method, which is wrapped around the call to the

operator. If more than one around-method is applicalbe, the

effective method calls the most specific around-method first.

If that method calls clos:call-next-method, then the next

most specific around-method is called. If there are no more

around-methods, then the operator is called (and its argu-

ments are the values of the applicable primary methods).

Page 501

No other method qualifiers are accepted, so before-methods and after-methods (for

example) cannot be used with simple method-combination types.

You can control the order in which the primary methods are combined in the call

to the operator. The simple method-combination types take an order argument,

which is either :most-specific-first or :most-specific-last. The default is :most-

specific-first. The order argument is specified in the :method-combination option

to clos:defgeneric, after the name of the method-combination type, as shown here:

(defgeneric boot-all-components lambda-list

 (:method-combination progn :most-specific-last)�

CLOS Operators for Defining Method-Combination Types

The primary tool for defining new method-combination types is the clos:define-

method-combination macro. Many of the related operators are used inside the call

to clos:define-method-combination. For information and examples, see the macro

clos:define-method-combination.

clos:call-method

Used within effective method forms (forms returned by the body of

clos:define-method-combination) to call a method.

clos:define-method-combination name &body body

Defines a new method-combination type.

clos:invalid-method-error method format-string &rest args

Used within method combination to signal an error when the method

qualifiers of an applicable method are not valid for the method-

combination type; it should be called only within the dynamic extent of a

method-combination function.

clos:make-method

A list such as (#:make-method form) can be used instead of a method

object as the first subform of clos:call-method or as an element of the

second subform of clos:call-method.

clos:method-combination-error format-string &rest arguments

Used to signal an error within method combination; it should be called

only within the dynamic extent of a method-combination function.

clos:method-qualifiers method

Returns a list of the qualifiers of the method.

CLOS Procedural Definitions

In many situations, CLOS offers both a default behavior (which is expected to be

appropriate for most programs) and a hook for overriding the default behavior. We

use the term procedural definition to mean a situation in which CLOS guarantees

that a certain procedure will be followed, including the calling of one or more

generic functions which the user can specialize.

Page 502

Controlling the Printed Representation and Description of Objects �

For example, whenever the print system needs to produce a printed representation

of an object, CLOS guarantees that the clos:print-object generic function is called.

CLOS provides a default primary method for clos:print-object, but users can over-

ride that method by providing a more specific method. This enables you to control

the printed representation of objects of a given class.

Similarly, whenever describe is called, CLOS guarantees that the clos:describe-

object generic function is called. Users can override the default method with a

more specific method.

The main reason for controlling the printed representation or description of objects

is to shield clients of your program from seeing how the objects are implemented.

Often the default method for clos:describe-object gives the names and values of

all the slots; you might prefer to hide some of that information, or to present it

differently. The way to do so is to provide a primary method which will override

the system’s default primary method.

clos:describe-object object stream

Provides a mechanism for users to control what happens when describe

is called for instances of a class. The default method lists the slot names

and values.

clos:print-object object stream

Provides a mechanism for users to control the printed representation of

instances of a class. The default method uses the #<...> syntax.

Controlling Common Error Situations�

CLOS provides a procedural definition for certain common error situations. When

these situations happen, the default behavior is to signal an error, but you can

override that behavior by providing a more specific primary method for the appro-

priate generic function.

The generic functions that can be specialized to control error situations are:

clos:no-applicable-method generic-function &rest function-arguments

Provides a mechanism for users to control what happens when a generic

function is called, and no method is applicable. The default method for

clos:no-applicable-method signals an error.

clos:no-next-method generic-function method &rest args

Provides a mechanism for users to control what happens when clos:call-

next-method is called, and no next method exists. The default method

for clos:call-next-method signals an error.

clos:slot-missing class object slot-name operation &optional new-value

Provides a mechanism for users to control what happens when a slot’s

value is desired for access (when clos:slot-value is called, among other

operations), and there is no slot of the given name accessible to the in-

stance. The default method signals an error.

Page 503

clos:slot-unbound class instance slot-name

Provides a mechanism for users to control what happens when a slot’s

value is desired for access and the slot is unbound. The default method

signals an error.

Controlling Initialization�

CLOS has four related initialization protocols (used in object creation, reinitializa-

tion of an instance, updating an instance because its class was changed, and up-

dating an instance because its class was redefined), which have procedural defini-

tions. In these procedural definitions, CLOS guarantees to call more than one

generic function, and you can choose which one to specialize for your purpose. For

more information:

See the section "Creating and Initializing CLOS Instances".

See the section "Redefining CLOS Classes and Instances".�

Creating and Initializing CLOS Instances

Overview of Creating and Initializing CLOS Instances

You can create and initialize a new instance of a class by calling clos:make-

instance.

clos:make-instance class &allow-other-keys

Creates, initializes, and returns a new instance of the given

class.

The syntax of clos:make-instance is simple. The first argument is the class (ei-

ther a class object or the name of a class), and the remaining arguments are ini-

tialization arguments.

The initialization arguments are alternating initialization argument names and val-

ues; they are used to initialize the new instance. Some initialization arguments fill

slots with values, and others are used by initialization methods (user-defined meth-

ods that control some aspect of initialization).

The initialization protocol consists of the following mechanisms that enable you to

control various aspects of the initialization:

• Declaring a symbol to be an initialization argument name for a slot. This is

done by using the :initarg slot option to clos:defclass. When a slot has an asso-

ciated initialization argument name, you can specify the initial value of the slot

by providing the initialization argument name with a value in the call to

clos:make-instance.

• Supplying a default value form for an initialization argument. This is done by

using the :default-initargs class option to clos:defclass. The default value form

Page 504

for an initialization argument is used if the initialization argument is not pro-

vided in the call to clos:make-instance. You can provide a default value form

for any initialization argument, whether it is intended to fill a slot or to be used

by an initialization method.

• Supplying a default value form for a slot; this is called an initform. This is done

by using the :initform slot option to clos:defclass. A slot’s initform is used if

the slot is not initialized by an initialization argument. Thus, if no initialization

argument for the slot is given in the call to clos:make-instance and if no ini-

tialization argument for the slot has a default value form, then the slot is ini-

tialized with its initform. (Note that a slot’s initform is used in three contexts:

when creating a new instance, when updating an instance because its class was

redefined, and when updating an instance because its class was changed.) Defin-

ing initialization methods, which are methods for clos:initialize-instance or

clos:shared-initialize. The clos:initialize-instance generic function is called on-

ly during instance creation, to initialize slots of a new instance. If you specialize

clos:initialize-instance with after-methods, then the normal slot-filling behavior

takes place, and then your method is executed. This is the most common way to

control initialization with a method.

The clos:shared-initialize generic function is called in four different contexts:

when creating a new instance, when reinitializing an existing instance, when

updating an instance because its class was redefined, and when updating an in-

stance because its class was changed. You can specialize clos:shared-initialize

to control what happens in all of those contexts.

It is also possible to specialize clos:make-instance, because it is defined as a

generic function; however, this is not often done in application programs.

The initialization protocol is powerful, and it offers you a wide range of function-

ality. Since several CLOS mechanisms require initialization, the clos:make-

instance protocol overlaps with those related protocols. The four related initializa-

tion protocols are:

• Creation of a new instance

• Reinitialization of an existing instance

• Updating an instance because its class was redefined

• Updating an instance because its class was changed�

The overlapping of these protocols enables you to develop code that affects only

one of the protocols, or all of them. Sometimes it is useful to write a method that

is called in all four cases, and CLOS enables you to do that with a method for

clos:shared-initialize, instead of requiring you to define methods for four separate

generic functions.

Note that the order of evaluation of default value forms for initialization argu-

ments and the order of evaluation of :initform forms are undefined. If the order of

evaluation is important, you should define an initialization method that performs

the work, rather than using :initform and :default-initargs.

Page 505

Initialization of a New CLOS Instance

This section describes the different steps that occur when a CLOS instance is cre-

ated and initialized.

1. The user calls clos:make-instance. The first argument indicates the class.

The remaining arguments are the initialization arguments.

2. clos:make-instance checks the validity of the initialization arguments. In

brief, the valid initialization arguments include any initialization arguments

declared by the :initarg slot option, any keyword arguments accepted by any

applicable methods for clos:initialize-instance and clos:shared-initialize, and

the keyword :allow-other-keys. For more information, see the section "Declar-

ing Initargs for a Class".

3. clos:make-instance creates a new instance. By default, it is created in

sys:default-cons-area, but the initialization argument clos-internals:storage-

area can be used to specify another area.

4. clos:make-instance initializes the slots of the instance and runs user-defined

initialization methods. It does this by calling the clos:initialize-instance

generic function with the instance and the initialization arguments provided

to clos:make-instance followed by the default initialization argument of the

class.

• The default primary method for clos:initialize-instance initializes the slots

by calling the clos:shared-initialize generic function with the instance, t,

and the initialization arguments provided to clos:initialize-instance. The

effect is to initialize the slots as follows:

° For any initialization argument that is declared to fill a slot, if the ini-

tialization argument is given in the call to clos:make-instance, then the

slot is initialized with that value.

° For any slots not initialized so far, the slot is initialized by the value of

its default initialization argument, if there is one.

° For any slots not initialized so far, the slot is initialized by the value of

its initform, if there is one. �

User-defined methods for clos:initialize-instance are executed in the nor-

mal way. The usual way for users to customize the initialization behavior is

to specialize clos:initialize-instance by writing after-methods, which run

after the slots are filled as described above.

• When called by the default primary method for clos:initialize-instance, the

default primary method for clos:shared-initialize initializes the slots as de-

scribed above. User-defined methods for clos:shared-initialize are executed

Page 506

in the normal way. The usual way for users to customize the initialization

behavior is to specialize clos:shared-initialize by writing after-methods,

which run after the slots are filled as described above.

5. clos:make-instance returns the initialized instance.

Any slot that is not initialized by these steps (including by a user-defined initial-

ization method) is unbound. If you try to access an unbound slot, the clos:slot-

unbound generic function is called; its default method signals an error.

For more information on initialization methods, see the section "Defining Initializa-

tion Methods for Object Creation".

Defining Initialization Methods for Object Creation

clos:make-instance is defined in a procedural way. It is defined to call

clos:initialize-instance with a given set of arguments. The clos:initialize-instance

generic function is defined to call clos:shared-initialize with a given set of argu-

ments.

There are two ways to control the initialization of new instances with methods:

• Specialize clos:initialize-instance. This generic function is called only when a

new instance is created, so user-defined methods are called only in this context.

• Specialize clos:shared-initialize. This generic function is called in four contexts,

so user-defined methods are called in all four contexts:

° Creation of a new instance

° Reinitialization of an existing instance

° Updating an instance because its class was redefined

° Updating an instance because its class was changed�

When specializing either of those generic functions, the usual way is to define af-

ter-methods. Note that a user-defined primary method would override the default

method, and thus could prevent the usual slot-initialization behavior from happen-

ing.

Note that any keyword arguments accepted by an applicable method for

clos:initialize-instance or clos:shared-initialize is automatically declared as a

valid keyword argument for a call to clos:make-instance.

When defining a method for one of these generic functions, if the method doesn’t

use any keyword arguments, generally it should specify &key with no named key-

words. This makes the method’s lambda-list to be congruent with the generic

function. For more information, see the section "CLOS Lambda-list Congruence

Rules".

CLOS offers some operators for dealing with slots that are useful within initializa-

tion methods. See the section "CLOS Operators for Use in Initialization Methods".

Page 507

Declaring Initargs for a Class

Four CLOS mechanisms use initialization arguments for initialization purposes,

and they each check the validity of the initialization arguments. If an invalid ini-

tialization argument is detected, an error is signaled.

The validity of initialization arguments is checked in the following contexts:

• Creating a new instance

• Reinitializing an existing instance

• Updating an instance because its class was redefined

• Updating an instance because its class was changed�

There are two ways to declare initialization arguments as valid:

• Using the :initarg slot option to clos:defclass to declare a symbol as an initial-

ization argument name that is used to initialize the value of a slot. (A single

initialization argument can initialize more than one slot, if the same symbol is

used in the :initarg option given for more than one slot.) Note that this slot op-

tion is inherited by union, so any symbol declared as an initialization argument

by the class itself or any of its superclasses is valid for the class. Initialization

arguments declared in this way are valid in each of the four contexts.

• Defining an initialization method that uses keyword parameters; all keywords de-

fined by applicable initialization methods are automatically declared as valid ini-

tialization arguments. Each of the initialization protocols calls different methods,

so each protocol has its own set of methods that declare initialization arguments

as valid for that context.

Creating a new instance

Keyword arguments accepted by any applicable methods for clos:initialize-

instance and clos:shared-initialize are valid in this context.

Reinitializing an existing instance

Keyword arguments accepted by any applicable methods for

clos:reinitialize-instance and clos:shared-initialize are valid in this con-

text.

Updating an instance because its class was redefined

Keyword arguments accepted by any applicable methods for clos:update-

instance-for-redefined-class and clos:shared-initialize are valid in this

context.

Updating an instance because its class was changed

Keyword arguments accepted by any applicable methods for clos:update-

instance-for-changed-class and clos:shared-initialize are valid in this

context.

Page 508

Finally, the keyword :allow-other-keys is a valid initialization argument in all four

contexts. The default value for :allow-other-keys is nil. If you provide t as its

value, then all keyword arguments are valid.

Defining Constructors in CLOS

A constructor is a function that makes an instance of a given class. The name of

the function and the arguments are tailored for that class. For example, you might

define a constructor named make-ship to create instances of the class ship. Con-

structors give users a more abstract interface than using clos:make-instance.

CLOS does not have any feature that automatically defines constructor functions.

Thus, if you want your program to use constructors, you must define them your-

self. For example:

(clos:defclass ship () ((name :initarg :name)

(captain :initarg :captain)))

�

(defun make-ship (ship-name ship-captain)

 (clos:make-instance ’ship :name ship-name

 :captain ship-captain))�

CLOS Operators for Creating and Initializing Instances

clos:make-instance class &allow-other-keys

Creates, initializes, and returns a new instance of the given class.

clos:initialize-instance instance &allow-other-keys

Calls clos:shared-initialize to initialize the instance, and returns the ini-

tialized instance.

clos:shared-initialize instance slot-names &allow-other-keys

Initializes the instance according to the initargs, then initializes any un-

bound slots in slot-names according to their initforms, and returns the

initialized instance.

CLOS Operators for Use in Initialization Methods

It can be useful to call these functions in initialization methods, including methods

for clos:initialize-instance, clos:shared-initialize, clos:update-instance-for-

different-class clos:update-instance-for-redefined-class, and clos:reinitialize-

instance.

clos:slot-boundp object slot-name

Returns true if the given slot has a value, otherwise returns false.

clos:slot-exists-p object slot-name

Returns true if the object has a slot named slot-name, otherwise returns

false.

Page 509

clos:slot-makunbound object slot-name

Makes the given slot unbound.

Redefining CLOS Classes and Instances

You can redefine classes dynamically, even when instances of the class already ex-

ist. CLOS updates the instances to the new class definition. CLOS also enables you

to change the class of an existing instance to a new class. Again, CLOS updates

the affected instance automatically. However, you can control the updating of in-

stances by specializing generic functions intended for this purpose. This section

describes:

• How to redefine a class

• How to change the class of an instance

• How to reinitialize an instance

• How to control the updating of instances in these contexts�

Redefining a CLOS Class

When you evaluate a clos:defclass form for a class that already exists, the effect

is to redefine the class. The modified class object is eq to the original class object.

How CLOS Adds and Removes Accessor Methods�

The redefinition of a class can result in the addition or removal of methods for ac-

cessor generic functions. A method is removed if it was specified in the old class

definition by the :accessor, :reader, or :writer options, but it is not specified in

the new class definition. (Here, "removed" means the method is removed from the

generic function, as if clos:remove-method were called.) Similarly, a method is

added if it is specified in the new class definition by the :accessor, :reader, or

:writer options, but it was not specified in the old class definition. (Here, "added"

means the method is defined for the generic function.)

How CLOS Updates Instances�

If instances of the class (or of subclasses) exist at the time the class is redefined,

CLOS updates the instances to adhere to the modified class definition. An instance

is updated at some point in time before a slot of the instance is next accessed, so

you are protected against accessing an instance that has not yet been updated.

Redefining a class can change the slots of the instances. If a slot is defined in the

old class definition but not in the new, the slot is removed from instances. If a

slot is defined in the new class definition but not in the old, the slot is added to

instances. Slots can also be changed from local to shared, or shared to local.

Page 510

How CLOS Handles Slots’ Values�

Once CLOS modifies the structure of an instance to contain the slots correspond-

ing to the new class definition, it calls clos:update-instance-for-redefined-class to

take care of retaining slots’ values where appropriate, and initializing added slots

with values.

The following table shows how the default method for clos:update-instance-for-

redefined-class handles a slot’s values in the different cases:

Old Definition New Definition Slot’s Value

local local retained

shared shared retained

local shared initialized by initform

shared local retained

undefined local initialized by initform

undefined* shared initialized by initform

local undefined discarded

shared undefined discarded

*Note that in the case of a slot undefined in the old definition that is shared in

the new defintion, it is clos:defclass that initializes the slot from its initform, not

the default method for clos:update-instance-for-redefined-class.

When a slot’s value is "retained", this means that the value is the same after class

redefinition as it was before. If such a slot was unbound before class redefinition,

it is unbound afterwards as well.

The default method for clos:update-instance-for-redefined-class does its initializa-

tion work by calling the clos:shared-initialize generic function with the instance,

a list of the newly added local slots, and the initialization arguments provided to

clos:update-instance-for-redefined-class. The second argument indicates that only

the newly added local slots are to be initialized from their initforms.

The default method for clos:update-instance-for-redefined-class also checks the

validity of the initialization arguments, and signals an error if an invalid initializa-

tion argument name is detected. See the section "Declaring Initargs for a Class".

Controlling the Initialization of Instances at Class Redefinition�

There are two ways to control the initialization of instances when a class is rede-

fined:

• Specialize clos:update-instance-for-redefined-class. This generic function is

called only when instances are updated because a class was redefined, so user-

defined methods are called only in this context.

Page 511

When clos:update-instance-for-redefined-class is called, it receives several ar-

guments that are useful for methods. It receives a list of the added local slots, a

list of the discarded local slots, and a property list containing the names and

values of the discarded local slots, and of any slots that are changing from local

to shared. The property list enables your methods to access the slots’ values just

before they are permanently discarded.

• Specialize clos:shared-initialize. This generic function is called in four contexts,

so user-defined methods are called in all four contexts:

° Creation of a new instance

° Reinitialization of an existing instance

° Updating an instance because its class was redefined

° Updating an instance because its class was changed�

When specializing either of these generic functions, the usual way is to define af-

ter-methods. Note that a user-defined primary method would override the default

method, and thus could prevent the usual slot-initialization behavior from happen-

ing.

It is essential that you specialize these generic functions before redefining the

class. Otherwise, some or all of the instances might be updated in the default way

(without running your methods).

Note that any keyword argument accepted by an applicable method for

clos:update-instance-for-redefined-class or clos:shared-initialize is automatically

declared as a valid keyword argument.

CLOS offers some operators for dealing with slots that are useful within initializa-

tion methods. See the section "CLOS Operators for Use in Initialization Methods".

The clos:make-instances-obsolete generic function is called automatically when a

class is redefined to trigger the updating of instances; it can also be called by

users to trigger the updating process and to invoke clos:update-instance-for-

redefined-class.

Changing the Class of a CLOS Instance

You can change the class of an existing instance by calling clos:change-class. The

modified instance is eq to the original instance. In this section, "previous class"

means the original class of the instance and "current class" means the new class

of the instance.

How CLOS Updates Instances�

CLOS updates the instance to adhere to the definition of the current class. This

can change the slots of the instance. If a local slot is defined in the previous class

but not in the current class, the slot is removed from the instance. If a local slot

is defined in the current class but not in the previous, the slot is added to the in-

stance.

Page 512

How CLOS Handles Slots’ Values�

Once CLOS modifies the structure of an instance to contain the slots correspond-

ing to the current class, it takes care of retaining slots’ values where appropriate,

and initializing added slots with values. The following table shows what happens to

the slots in the different cases:

Previous Class Current Class Slot’s Value

local local retained (1)

shared shared replaced (2)

local shared replaced (2)

shared local retained (1)

undefined local initialized by initform (3)

undefined shared replaced (2)

local undefined discarded

shared undefined inaccessible

(1) "Retained" means that the slot’s value is the same before and after the class is

changed. If such a slot was unbound before the class is changed, it is unbound af-

terwards as well.

(2) Any slot defined by the previous class that is a shared slot in the current class

has its value "replaced". This means that the instance no longer accesses the slot

defined by the previous class, but it now accesses the shared slot defined by the

current class. Thus, the value of the shared slot in the current class stays the

same, and is now accessible to the instance.

(3) clos:change-class initializes the newly added local slots from initforms by call-

ing clos:update-instance-for-different-class. The default method for clos:update-

instance-for-different-class does its initialization work by calling the clos:shared-

initialize generic function with the instance, a list of the newly added local slots,

and the initialization arguments provided to clos:update-instance-for-different-

class. The second argument indicates that only the newly added local slots are to

be initialized from their initforms.

The default method for clos:update-instance-for-different-class also checks the

validity of the initialization arguments, and signals an error if an invalid initializa-

tion argument name is detected. See the section "Declaring Initargs for a Class".

Controlling the Initialization of an Instance Whose Class Was Changed�

There are two ways to control the initialization of instances when the class of an

instance is changed:

• Specialize clos:update-instance-for-different-class. This generic function is

called only when an instance is updated because its class was changed, so user-

defined methods are called only in this context.

Page 513

This generic function receives an argument called previous, which is a copy of

the instance before its class was changed. The purpose of this argument is to

enable methods to access the old slot values. It also receives an argument called

current, which is the instance whose class has been changed. With these two ar-

guments, your methods can initialize slots based on the values of slots in the

previous version of the instance.

• Specialize clos:shared-initialize. This generic function is called in four contexts,

so user-defined methods are called in all four contexts:

° Creation of a new instance

° Reinitialization of an existing instance

° Updating an instance because its class was redefined

° Updating an instance because its class was changed�

When specializing either of these generic functions, the usual way is to define af-

ter-methods. Note that a user-defined primary method would override the default

method, and thus could prevent the usual slot-initialization behavior from happen-

ing.

It is essential that you specialize these generic functions before changing the class

of the instance. Otherwise, the instance will be updated in the default way (with-

out running your methods).

Note that any keyword argument accepted by an applicable method for

clos:update-instance-for-different-class or clos:shared-initialize is automatically

declared as a valid keyword argument.

CLOS offers some operators for dealing with slots that are useful within initializa-

tion methods. See the section "CLOS Operators for Use in Initialization Methods".

Reinitializing a CLOS Instance

You can reinitialize an existing instance by calling clos:reinitialize-instance.

The reinitialization process is used to change the values of an instance’s slots ac-

cording to initialization arguments. There is no modification of an instance’s struc-

ture to add or delete slots. The initform of a slot is not used in this process.

The default method for clos:reinitialize-instance does its initialization work by

calling the clos:shared-initialize generic function with the instance, an empty list,

and the initialization arguments provided to clos:reinitialize-instance. The second

argument indicates that no slots are to be initialized from their initforms.

The default method for clos:reinitialize-instance also checks the validity of the

initialization arguments, and signals an error if an invalid initialization argument

name is detected. See the section "Declaring Initargs for a Class".

Page 514

Controlling the Reinitialization of an Instance�

There are two ways to control the initialization of instances when an instance is

reinitialized:

• Specialize clos:reinitialize-instance. This generic function is called only when

an instance is reinitialized, so user-defined methods are called only in this con-

text. This generic function receives the instance as a required argument, and

initialization arguments as an &rest argument.

• Specialize clos:shared-initialize. This generic function is called in four contexts,

so user-defined methods are called in all four contexts:

° Creating a new instance

° Reinitializing an existing instance

° Updating an instance because its class was redefined

° Updating an instance because its class was changed�

When specializing either of these generic functions, the usual way is to define af-

ter-methods. Note that a user-defined primary method would override the default

method.

Note that any keyword argument accepted by an applicable method for

clos:reinitialize-instance or clos:shared-initialize is automatically declared as a

valid keyword argument.

CLOS offers some operators for dealing with slots that are useful within initializa-

tion methods. See the section "CLOS Operators for Use in Initialization Methods".

CLOS Operators for Redefining CLOS Classes and Instances

clos:change-class instance new-class

Changes the class of the existing instance to new-class, and returns the

modified instance. The modified instance is eq to the original instance.

clos:defclass class-name superclass-names slot-specifiers &rest class-options

Defines a class named class-name, and returns the class object.

clos:make-instances-obsolete class

Called automatically when a class is redefined to trigger the updating of

instances; it can also be called by users to trigger the updating process

and to invoke clos:update-instance-for-redefined-class.

clos:reinitialize-instance instance &allow-other-keys

Reinitializes an existing instance according to initargs and returns the

initialized instance.

clos:shared-initialize instance slot-names &allow-other-keys

Initializes the instance according to the initargs, then initializes any un-

bound slots in slot-names according to their initforms, and returns the

initialized instance.

Page 515

clos:update-instance-for-redefined-class instance added-slots discarded-slots proper-

ty-list &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating in-

stances when a class is redefined.

clos:update-instance-for-different-class previous current &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating an

instance when its class is changed by clos:change-class.

Implementation Notes on Symbolics CLOS

Integration Between CLOS and Flavors

Mixed use of Flavors and CLOS is not supported at present. That is, a class can-

not inherit from a flavor; a flavor cannot inherit from a class; CLOS generic func-

tions cannot be used with Flavors methods and instances; and Flavors generic

functions cannot be used with CLOS methods and instances.

Therefore if you convert a program to CLOS, you must convert all uses of a given

flavor to use a class instead, and all Flavors methods for a given generic function

to be CLOS methods instead.

Genera offers an automatic tool for converting Flavors programs to CLOS. CLOE

does not have such a tool. Genera users only: see the section "Flavors to CLOS

Conversion".

CLOS Packages

The clos package contains CLOS symbols. There are two categories of symbols in

the clos package:

• Symbols which are included as a standard part of the CLOS specification (this

includes Chapters 1 and 2 of the specification, which is the programmer inter-

face to CLOS). These symbols are exported from the clos package, documented,

and fully supported by Symbolics.

• Symbols which implement the stable and portable portions of the meta-object

protocol. We believe that these symbols will be present in any future meta-object

protocol standard. These symbols are exported from the clos package and can be

used by users, although they are neither documented nor fully supported. These

symbols are not defined in the CLOS specification, but many of them are

present in compatible form in other implementations of CLOS. All are compati-

ble in Symbolics Cloe. These symbols might change in a future release to reflect

ongoing standardization efforts.�

We recommend that users do not use the internal and external symbols of the

clos-internals package, which implement the portions of the meta-object protocol

Page 516

which we believe are not defined well enough to be standardized. A future meta-

object protocol might provide similar functionality in a different way. These sym-

bols are not exported from clos, not documented, and not supported.

The future-common-lisp and future-common-lisp-user packages contain an in-

complete, unsupported implementation of the future ANSI Common Lisp standard.

The future-common-lisp package contains symbols in the evolving ANSI Common

Lisp standard. It is the ANSI Common Lisp equivalent of the cl package, although

many of the functions have not yet been modified for ANSI Common Lisp, and

many are not yet defined. Since ANSI Common Lisp includes CLOS, future-

common-lisp contains the symbols in the CLOS package that are part of the stan-

dard. The future-common-lisp-user package is the ANSI Common Lisp equivalent

of the user package, except that future-common-lisp-user uses only the future-

common-lisp package; it does not include any Symbolics extensions to the lan-

guage.

If a symbol in the future-common-lisp package is documented, then it is support-

ed. We do not encourage users to depend on any undocumented symbols in the

future-common-lisp package.

We chose the home package of a symbol according to whether the symbol was part

of CLOS (clos is the home package) or something used in connection with CLOS

(future-common-lisp is the home package).

Differences Between ANSI CLOS and Symbolics CLOS

This section describes how the current Symbolics CLOS implementation varies

from the CLOS specification, which is part of the draft ANSI specification for

Common Lisp. The differences fall into two categories: Symbolics extensions to

CLOS, and CLOS features or functions that Symbolics does not support.

Symbolics Extensions to CLOS�

• The :locator slot option to clos:defclass is a Genera extension, but CLOE does

not support it.

• The function locf can be used with clos:slot-value to get a locative to a slot.

This is a Genera extension, but CLOE does not support it.

• Many of the "Metaobject Protocol" generic functions are implemented to some

extent. Although undocumented and subject to change, some of these, particular-

ly the ones exported from the clos package, may be of interest.

Incompatibilities with the CLOS Specification�

• Classes for the types function, pathname, and stream are not supported.

• The following operators are not implemented: clos:generic-labels, clos:generic-

flet, clos:generic-function, and clos:with-added-methods.

Page 517

• Methods that require a lexical environment are not yet supported.

• clos:describe-object returns the object being described. This is a deliberate in-

compatibility.

• When using clos:ensure-generic-function, if the :lambda-list is not provided,

the lambda list of the generic function will not be changed. This reflects a

change that will be made to the CLOS specification.

• clos:symbol-macrolet does not allow declarations.

• Note that the definition of clos:symbol-macrolet has been changed by X3J13

since the CLOS specification was published; the macro expansions are in the en-

vironment of the clos:symbol-macrolet.�

Function Specs for CLOS Methods

The function spec of a CLOS method is:

(clos:method generic-function specializers . qualifiers)�

generic-function is a symbol naming the generic function.

specializers is a list which has one element corresponding to each required parame-

ter of the method. The element corresponding to a parameter specialized on a

class is the name of that class. The element corresponding to an unspecialized pa-

rameter is t. The element corresponding to a parameter such as (eql form) is the

list that appeared in the clos:defmethod form. Thus, one example of specializers

is:

(integer symbol (eql *foo*))�

qualifiers is a list containing the method’s qualifiers such as:

:after�

If you are editing a method, you can use the function spec as described above, or

(as in Flavors), you can use the following:

(generic-function specializers . qualifiers)�

You can use these function specs to edit the definition of a method and to get the

arglist. You cannot use them with trace or breakon. You cannot use them to de-

fine a method, but you can use them to undefine a method (although m-X Kill Defi-

nition would probably be the more convenient way to kill the definition of a

method, and this works on CLOS methods).

Show CLOS Commands

Page 518

Show Class Generic Functions Command

Show Class Generic Functions class keywords�

Shows all generic functions applicable to instances of the given class.

keywords :Detailed, :Match, :More Processing, :Output Destination.

:Detailed {Yes, No} Shows arguments, indicating (with "<!>") those

which can be specialized for this class. The default is No

(mentioned default is Yes).

:Match {string} Shows only generic functions whose names contain this

substring. The default is to show all generic functions.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Class Initargs Command

Show Class Initargs class keywords�

Shows the initialization arguments accepted by clos:make-instance of this class,

and any default initial values. Also shows slots affected by initargs.

keywords :Detailed, :Direct, :Match, :More Processing, :Output Destina-

tion, :Sort�

:Detailed {Yes, No} Shows affected slots and defaults. When :Detailed is

No, you see the initializations from an external perspective

(useful for making an instance). When :Detailed is Yes, you see

the initializations from an internal perspective and get more

information about how the class is constructed internally. (The

mentioned default is Yes.)

:Direct {Yes, No} Shows only initializations defined in this class. With

:Direct Yes, inherited initializations are not shown. The default

Page 519

is No, which requests all initializations defined for this class

or inherited by this class. (The mentioned default is Yes.)

:Match {string} Shows initargs whose names contain this substring.

The default is to show all initargs.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Sort (Alphabetical, Class} Sorts the display alphabetically by initarg,

or by location in the class precedence list. The default is Al-

phabetical. Class displays initargs in a format similar to the

"Show Class Superclasses Command". �

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Class Methods Command

Show Class Methods class keywords�

Shows methods applicable to this class.

keywords :Direct, :Match, :More Processing, :Output Destination, :Stop

At

:Direct {Yes, No} Shows only methods applicable to instances of the

given class; does not show methods inherited from superclass-

es. The default is No (the mentioned default is Yes).

:Match {string} Shows only methods for generic functions whose

names contain this substring. The default is to show methods

for all generic functions.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

Page 520

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Stop At (superclass-name} Only look as far upward as this superclass,

which is a superclass of the argument class (press HELP for a

list of classes in their precedence order). The default is the di-

rect subclass of t from which class inherits (the second-to-last

element of class’s precedence list).

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Class Slots Command

Show Class Slots class keywords�

Shows the slots of the given class.

keywords :Detailed, :Direct, :Match, :More Processing, :Output Destina-

tion, :Sort

:Detailed {Yes, No} Shows more detail, such as the accessors and ini-

targs for the slots, as well as their names. The default is No

(the mentioned default is Yes).

:Direct {Yes, No} Shows only direct slots (that is, those defined for

this class). Slots inherited from superclasses are not shown.

The default is No (the mentioned default is Yes).

:Match {string} Shows slots whose names contain this substring.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Page 521

:Sort {Alphabetical, Class} Sorts the display alphabetically by slot

name, or by location in the class precedence list. If Class, each

slot is displayed along with the class that provides it. The de-

fault is Alphabetical.�

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Class Subclasses Command

Show Class Subclasses class keywords�

Shows the subclasses of this class.

keywords :Brief, :Detailed, :Duplicates, :Initargs, :Levels, :Match, :Meth-

ods, :More Processing, :Output Destination, :Slots

:Brief {Yes, No} :Brief Yes just shows the names of the subclasses of

the class. :Brief No also shows the structure. The default is No

(the mentioned default is Yes).

:Detailed {Yes, No} Shows more detail, such as the accessors and ini-

targs for the slots, as well as their names. (This option is only

useful with :Slots.) The default is No (the mentioned default is

Yes).

:Duplicates {Yes, No} Shows classes everywhere they occur in the hierar-

chy, not just in the place from which they derive their prece-

dence. The default is No (the mentioned default is Yes).

:Initargs {string} Shows initargs whose names contain this substring.

This is useful, because the initarg is shown next to the class

from which it is inherited. If string is omitted, requests all of

them. If the keyword itself is not supplied, no initargs are re-

quested.

:Levels {integer} Specifies the number of levels of subclasses to show.

Ellipses (...) indicate subclasses of a class that are not shown

because of a :Level cutoff. The default is to show all subclass

levels.

:Match {string} Shows only the subclasses which contain this sub-

string.

:Methods {string} Shows methods for generic functions whose names

match this substring. This is useful, because the method is

shown next to the class from which it is inherited. If string is

omitted, requests all of them. If the keyword itself is not sup-

plied, no methods are requested.

Page 522

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Slots {string} Shows slots whose names contain this substring. This

is useful, because the slot is shown next to the class from

which it is inherited. If string is omitted, shows all of them. If

the keyword itself is not supplied, no slots are requested.

A subclass is a class that inherits from this class (directly or indirectly). This in-

formation is useful in program development or debugging, to answer the question

"Which classes will be affected if I change the definition of this class?"

The output is indented to clarify the precedence order of the classes. The struc-

ture of the output is the inverse of the output of Show Class Superclasses.

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Class Superclasses Command

Show Class Superclasses class keywords�

Shows the superclasses of this class in precedence order, from most specific to

least specific. You can use this command to identify from which superclass a class

derives part of its behavior.

keywords :Brief, :Detailed, :Duplicates, :Initargs, :Match, :Methods, :More

Processing :Output Destination, :Slots�

:Brief {Yes, No} :Brief Yes just lists the names of the superclasses of

the class. :Brief No shows superclasses in outline form. The

default is No (the mentioned default is Yes).

:Detailed {Yes, No} Shows more detail, such as the accessors and ini-

targs for the slots, as well as their names. (This option is only

useful with :Slots.) The default is No (the mentioned default is

Yes).

Page 523

:Duplicates {Yes, No} Shows classes everywhere they occur in the hierar-

chy, not just in the place from which they derive their prece-

dence. The default is No (the mentioned default is Yes).

:Initargs {string} Shows initargs whose names contain this substring.

This is useful, because the initarg is shown next to the class

from which it is inherited. If string is omitted, requests all of

them. If the keyword itself is not supplied, no initargs are re-

quested.

:Match {string} Shows only the superclasses which contain this sub-

string.

:Methods {string} Shows methods for generic functions whose names

match this substring. This is useful, because the method is

shown next to the class from which it is inherited. If string is

omitted, requests all of them. If the keyword itself is not sup-

plied, no methods are requested.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Slots {string} Shows slots whose names contain this substring. This

is useful, because the slot is shown next to the class from

which it is inherited. If string is omitted, shows all of them. If

the keyword itself is not supplied, no slots are requested.

With :Brief No (the default), the classes are ordered from top to bottom, where the

top class is the most specific class. The indentation graphically represents which

classes are direct superclasses of which other classes.

With :Duplicates Yes, bracketed classes are duplicates that are included as direct

superclasses, but are not ordered in this position, because of some ordering con-

straint. They appear in another place in the display without brackets, in their ac-

tual order. All bracketed classes have an arrow beside them. A down-arrow indi-

cates that this class’s position in the ordering is later in the display. An up-arrow

indicates that this class’s position in the ordering is earlier in the display (these

occurrences are infrequent).

You can review the class precedence list by reading all unbracketed superclasses

from top to bottom, ignoring punctuation. If :Duplicates is No, this is all that is

displayed.

Page 524

For information on how the order is determined, see the section "CLOS Class

Precedence List".

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show CLOS Generic Function Command

Show CLOS Generic Function generic-function-name keywords �

Shows information about the given generic function.

keywords :Classes, :Methods, :More Processing, :Output Destination,

:Sort, :Specialized

:Classes {Yes, No, By Class} Lists classes that have methods defined for

this generic function. The default is No (the mentioned default

is Yes). By Class is like Yes, except that it presents the class

objects themselves, rather than the names of the classes.

:Methods {Yes, No, Detailed} Lists methods of this generic function. The

default is No (mentioned default is Yes). Detailed shows more

information.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Sort {Alphabetical, Heuristic} Sorts the methods by specializer

names either alphabetically or heuristically. (Used with :Meth-

ods Yes.)

:Sort Heuristic sorts the methods in a way which takes into ac-

count the argument precedence order, the class precedence or-

der of the specializers, the alphabetical order of the class

names, and the lengths of the method qualifier lists.

:Specialized Only shows methods applicable to particular specializers (other-

wise all methods are shown). For each required argument of

the generic function which can be specialized, you are prompt-

ed for an object to use for that argument, or a class to use as

Page 525

a specializer for that argument, or a wildcard to indicate that

you want to see all methods, regardless of their specializers.

(Used with :Methods Yes.)

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Show Effective Method Command

Show Effective Method generic-function specializers keywords�

Lists the applicable methods of generic-function with the arguments described by

specializers. For each required argument of the generic function which can be spe-

cialized, you are prompted for an object to use for that argument, or a class to use

as a specializer for that argument.

keywords :Code, :More Processing, :Output Destination

:Code {Yes, No} Shows code resulting from method combination. The

default is No (the mentioned default is Yes).

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Note that classes and methods are presented in the output in a way that enables

you to click on them to perform operations on them. For example, you can click m-

Left to edit a definition.

Summary of Symbolics CLOS Operators

This section summarizes all functions, macros, generic functions, and classes pro-

vided with Symbolics CLOS.

Basic Use of CLOS�

When developing an object-oriented program, the most common things you will

need to do include defining classes, defining generic functions, defining methods,

and creating new instances.

Page 526

clos:defclass class-name superclass-names slot-specifiers &rest class-options

Defines a class named class-name, and returns the class object.

clos:defgeneric function-name lambda-list &body options-and-methods

Defines a generic function and returns the generic function object.

clos:defmethod function-name {method-qualifier}* specialized-lambda-list &body

body

Defines a method for a generic function and returns the method object.

clos:make-instance class &allow-other-keys

Creates, initializes, and returns a new instance of the given class.

Handling CLOS Objects, and Their Names and Types�

clos:class-name class

Returns the name of the class object. You can use setf with clos:class-

name to set the name of the class object.

clos:class-of object

Returns the class of the given object. The returned value is a class ob-

ject.

clos:find-class class-name &optional (errorp t) environment

Returns the class object named by class-name in the given environment.

You can use setf with clos:find-class to change the class associated with

the symbol class-name.

clos:find-method generic-function method-qualifiers specializers &optional errorp

Returns the method object that is identified by generic-function, method-

qualifiers, and specializers.

clos:remove-method generic-function method

Removes a method from a generic function and returns the modified

generic function.

Accessing Slots�

clos:slot-value object slot-name

Returns the value of a given slot. You can use setf with clos:slot-value

to change the value of a slot.

clos:symbol-macrolet bindings &body body

Provides the underlying mechanism for substituting forms for variable

names within a lexical scope; both clos:with-accessors and clos:with-

slots are implemented via clos:symbol-macrolet.

clos:with-accessors slot-entries instance-form &body body

Creates a lexical environment in which accessors can be called as if they

were variables.

clos:with-slots slot-entries instance-form &body body

Creates a lexical environment in which slots can be accessed by using

variables that cause clos:slot-value to be called.

Page 527

Calling and Testing for the Next Method�

The method-combination type in use determines which kinds of methods support

clos:call-next-method and clos:next-method-p. The clos:standard method-

combination type supports these functions in around-methods and primary methods.

clos:call-next-method

Used within a method body to call the "next method".

clos:next-method-p

Called within the body of a method to determine whether a next method

exists; returns true if a next method exists, otherwise returns false.

Creating and Initializing Instances�

clos:make-instance class &allow-other-keys

Creates, initializes, and returns a new instance of the given class.

clos:initialize-instance instance &allow-other-keys

Calls clos:shared-initialize to initialize the instance, and returns the ini-

tialized instance.

clos:shared-initialize instance slot-names &allow-other-keys

Initializes the instance according to the initargs, then initializes any un-

bound slots in slot-names according to their initforms, and returns the

initialized instance.

Redefining Classes and Instances�

clos:change-class instance new-class

Changes the class of the existing instance to new-class, and returns the

modified instance. The modified instance is eq to the original instance.

clos:defclass class-name superclass-names slot-specifiers &rest class-options

Defines a class named class-name, and returns the class object.

clos:make-instances-obsolete class

Called automatically when a class is redefined to trigger the updating of

instances; it can also be called by users to trigger the updating process

and to invoke clos:update-instance-for-redefined-class.

clos:reinitialize-instance instance &allow-other-keys

Reinitializes an existing instance according to initargs and returns the

initialized instance.

clos:shared-initialize instance slot-names &allow-other-keys

Initializes the instance according to the initargs, then initializes any un-

bound slots in slot-names according to their initforms, and returns the

initialized instance.

clos:update-instance-for-redefined-class instance added-slots discarded-slots proper-

ty-list &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating in-

stances when a class is redefined.

Page 528

clos:update-instance-for-different-class previous current &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating an

instance when its class is changed by clos:change-class.

Dealing with Slots in Initialization Methods�

It can be useful to call these functions in initialization methods, including methods

for clos:initialize-instance, clos:shared-initialize, clos:update-instance-for-

different-class clos:update-instance-for-redefined-class, and clos:reinitialize-

instance.

clos:slot-boundp object slot-name

Returns true if the given slot has a value, otherwise returns false.

clos:slot-exists-p object slot-name

Returns true if the object has a slot named slot-name, otherwise returns

false.

clos:slot-makunbound object slot-name

Makes the given slot unbound.

Defining New Method-Combination Types�

The primary tool for defining new method-combination types is the clos:define-

method-combination macro. Many of the related operators are used inside the call

to clos:define-method-combination. For information and examples, see the macro

clos:define-method-combination.

clos:call-method

Used within effective method forms (forms returned by the body of

clos:define-method-combination) to call a method.

clos:define-method-combination name &body body

Defines a new method-combination type.

clos:invalid-method-error method format-string &rest args

Used within method combination to signal an error when the method

qualifiers of an applicable method are not valid for the method-

combination type; it should be called only within the dynamic extent of a

method-combination function.

clos:make-method

A list such as (#:make-method form) can be used instead of a method

object as the first subform of clos:call-method or as an element of the

second subform of clos:call-method.

clos:method-combination-error format-string &rest arguments

Used to signal an error within method combination; it should be called

only within the dynamic extent of a method-combination function.

clos:method-qualifiers method

Returns a list of the qualifiers of the method.

Page 529

Generic Functions Intended to Be Specialized�

clos:describe-object object stream

Provides a mechanism for users to control what happens when describe

is called for instances of a class. The default method lists the slot names

and values.

clos:initialize-instance instance &allow-other-keys

Calls clos:shared-initialize to initialize the instance, and returns the ini-

tialized instance.

clos:no-applicable-method generic-function &rest function-arguments

Provides a mechanism for users to control what happens when a generic

function is called, and no method is applicable. The default method for

clos:no-applicable-method signals an error.

clos:no-next-method generic-function method &rest args

Provides a mechanism for users to control what happens when clos:call-

next-method is called, and no next method exists. The default method

for clos:call-next-method signals an error.

clos:print-object object stream

Provides a mechanism for users to control the printed representation of

instances of a class. The default method uses the #<...> syntax.

clos:reinitialize-instance instance &allow-other-keys

Reinitializes an existing instance according to initargs and returns the

initialized instance.

clos:shared-initialize instance slot-names &allow-other-keys

Initializes the instance according to the initargs, then initializes any un-

bound slots in slot-names according to their initforms, and returns the

initialized instance.

clos:slot-missing class object slot-name operation &optional new-value

Provides a mechanism for users to control what happens when a slot’s

value is desired for access (when clos:slot-value is called, among other

operations), and there is no slot of the given name accessible to the in-

stance. The default method signals an error.

clos:slot-unbound class instance slot-name

Provides a mechanism for users to control what happens when a slot’s

value is desired for access and the slot is unbound. The default method

signals an error.

clos:update-instance-for-different-class previous current &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating an

instance when its class is changed by clos:change-class.

clos:update-instance-for-redefined-class instance added-slots discarded-slots proper-

ty-list &allow-other-keys

Provides a mechanism for users to specialize the behavior of updating in-

stances when a class is redefined.

Page 530

Miscellaneous CLOS Operators�

future-common-lisp:setf reference value &rest more-pairs

Expands the same as does setf. Calling future-common-lisp:setf has the

same effect as calling setf. Because the syntax for defining setf methods

is different in CLOS and Flavors, these two symbols are used in function

specs for setf generic functions, to indicate which syntax is being used.

future-common-lisp:defstruct name-and-options &body slot-descriptions

Defines a record-structure data type, and a corresponding class of the

same name. You can define methods that specialize on structure classes.

The syntax and semantics of future-common-lisp:defstruct adhere to the

draft ANSI Common Lisp specification.

clos:make-load-form object

Provides a way to use an instance of a user-defined CLOS class (more

precisely, an object whose metaclass is clos:standard-class) as a con-

stant in a program compiled with compile-file. Users can define a

method for clos:make-load-form that describes how an equivalent object

can be reconstructed when the compiled-code file is loaded.

clos:make-load-form-saving-slots object &optional save-slots

This function can be useful in the bodies of methods for clos:make-load-

form; it returns forms that construct an equivalent object, saving the

values of some or all of its slots.

Functions Underlying the Commonly-Used Macros�

These lower-level functions implement the commonly-used macros such as

clos:defmethod and clos:defgeneric. They are not often needed in applications

programs.

clos:add-method generic-function method

Adds method to generic-function and returns the modified generic-function;

clos:add-method is the underlying mechanism of the clos:defmethod

macro.

clos:compute-applicable-methods generic-function arguments

Returns the set of methods that are applicable for function-arguments;

the methods are sorted according to precedence order.

clos:ensure-generic-function function-name &rest keys &key :environment &allow-

other-keys

Defines a new generic function, or modifies an existing one. This func-

tion is part of the underlying implementation of clos:defgeneric and

clos:defmethod.

clos:function-keywords method

Returns a list of the keyword parameter specifiers for method as its first

value, and a boolean indicating whether &allow-other-keys was specified

as its second value.

Page 531

CLOS Classes and Meta-objects�

These classes and meta-objects are predefined by CLOS. The predefined classes

corresponding to Common Lisp types are listed elsewhere: See the section "CLOS

Classes and Types".

clos:built-in-class

The class of many of the predefined classes corresponding to Common

Lisp types, such as list and t.

clos:standard-class

The default class of classes defined by clos:defclass.

clos:standard-generic-function

The default class of generic function objects.

clos:standard-method

The default class of method objects.

clos:standard-object

This class is included implicitly as a superclass of every user-defined

class; it provides default behavior for operations such as clos:describe-

object and clos:print-object.

clos:structure-class

The class of classes defined by defstruct.

CLOS Operators Not Supported by Symbolics CLOS�

clos:generic-flet functions &body body

Symbolics CLOS does not support clos:generic-flet.

clos:generic-function

Symbolics CLOS does not support clos:generic-function.

clos:generic-labels functions &body body

Symbolics CLOS does not support clos:generic-labels.

clos:with-added-methods

Symbolics CLOS does not support clos:with-added-methods.

Flavors

The documentation on Flavors is organized in four areas:

Overview:

"Overview of Flavors"

Basic Concepts:

"Basic Flavor Functions"

"Mixing Flavors"

"Example of Programming with Flavors: Life"

Page 532

"Flavors Tools"

"Summary of Flavor Functions and Variables"

Advanced Concepts:

"Method Combination"

"Defining Functions Internal to Flavors"

"Wrappers and Whoppers"

"Complete Options for defflavor"

"Advanced Concepts for defmethod"

"Function Specs for Flavor Functions"

"Property List Methods"

"Generic Functions and Messages Supported by flavor:vanilla"

"Copying Instances"

"The Order of Defining Flavors and Flavor Operations"

"Implementation of Flavors"

Compatibility Features:

"Using Message-Passing Instead of Generic Functions"�

We recommend that all users of Flavors read the sections noted as Overview and

Basic Concepts above. Many Flavors-based programs do not require using any of

the specialized programming practices described in Advanced Concepts.

If you do find that your program requires something extra, you can browse

through the sections in Advanced Concepts to find the feature you are looking for.

The section in Compatibility Features describes message-passing, which is support-

ed for compatibility with previous versions of Flavors. When writing new pro-

grams, it is good practice not to use message-passing. Because many system inter-

faces use message-passing, it is necessary to understand message-passing.

Basic Flavor Functions

This section describes several commonly used features, programming practices, and

functions of Flavors.

Defining Flavors

The defflavor special form enables you to define flavors:

defflavor name instance-variables component-flavors &rest options Special Form

name is a symbol that is the name of this flavor.

defflavor defines the name of the flavor as a type name in both the Common Lisp

and Zetalisp type systems; for further information, see the section "Flavor In-

stances and Types". defflavor also defines the name of the flavor as a presentation

type name; for further information, see the section "User-defined Data Types as

Presentation Types".

Page 533

instance-variables is a list of the names of the instance variables containing the lo-

cal state of this flavor. Each element of this list can be written in two ways: ei-

ther the name of the instance variable by itself, or a list containing the name of

the instance variable and a default initial value for it. Any default initial values

given here are forms that are evaluated by make-instance if they are not overrid-

den by explicit arguments to make-instance.

If you do not supply an initial value for an instance variable as an argument to

make-instance, and there is no default initial value provided in the defflavor

form, the value of an instance variable remains unbound. (Another way to provide

a default is by using the :default-init-plist option to defflavor.)

component-flavors is a list of names of the component flavors from which this fla-

vor is built.

Each option can be either a keyword symbol or a list of a keyword symbol and its

arguments. The syntax of the defflavor options is given below, and the semantics

of the options are described in detail elsewhere: See the section "Summary of

defflavor Options". See the section "Complete Options for defflavor".

Several options affect instance variables, including:

:initable-instance-variables

:gettable-instance-variables

:locatable-instance-variables (not available in CLOE)

:readable-instance-variables

:settable-instance-variables

:special-instance-variables (not available in CLOE)

:writable-instance-variables

The options listed above can be given in two ways:

keyword The keyword appearing by itself indicates that the option ap-

plies to all instance variables listed at the top of this defflavor

form.

(keyword var1 var2 ...)

A list containing the keyword and one or more instance vari-

ables indicates that this option refers only to the instance vari-

ables listed here. �

Briefly, the syntax of the other options is as follows:

:abstract-flavor

(:area-keyword symbol) (not available in CLOE)

(:component-order args...)

(:conc-name symbol)

(:constructor args...)

(:default-handler function-name)

(:default-init-plist plist)

(:documentation string)

Page 534

(:functions internal-function-names)

(:init-keywords symbols...)

(:method-combination symbol)

(:method-order generic-function-names)

(:mixture specs...)

:no-vanilla-flavor (not available in CLOE)

(:ordered-instance-variables symbols)

(:required-flavors flavor-names)

(:required-init-keywords init-keywords)

(:required-instance-variables symbols)

(:required-methods generic-function-names)

(:special-instance-variables-binding-methods generic-function-names)

 (not available in CLOE)

The following form defines a flavor wink to represent tiddly-winks. The instance

variables x and y store the location of the wink. The default initial value of both x

and y is 0. The instance variable color has no default initial value. The options

specify that all instance variables are :initable-instance-variables; x and y are

:writable-instance-variables; and color is a :readable-instance-variable.

(defflavor wink ((x 0) (y 0) color) ;x and y represent location

 () ;no component flavors

 :initable-instance-variables

 (:writable-instance-variables x y) ;this implies readable

 (:readable-instance-variables color))�

You can specify that an option should alter the behavior of instance variables in-

herited from a component flavor. To do so, include those instance variables explic-

itly in the list of instance variables at the top of the defflavor form. In the follow-

ing example, the variables x and y are explicitly included in this defflavor form,

even though they are inherited from the component flavor, wink. These variables

are made initable in the defflavor form for big-wink; they are made writable in

the defflavor form for wink.

(defflavor big-wink (x y size)

 (wink) ;wink is a component

 (:initable-instance-variables x y))�

If you specify a defflavor option for an instance variable that is not included in

this defflavor form, an error is signalled. Flavors assumes you misspelled the

name of the instance variable.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

Summary of defflavor Options

This section provides a brief summary of the options to defflavor. For a full de-

scription of each option, see the section "Complete Options for defflavor".

The following options are used frequently:

Page 535

(:initable-instance-variables vars...)

Makes the specified instance variables initable, so you can initialize them

when making an instance.

To specify all instance variables, give the symbol :initable-instance-

variables alone, instead of using the syntax above.

(:readable-instance-variables vars...)

Makes the specified instance variables readable, by automatically creating

an accessor function to read the value of each readable instance variable. If

flavor f has a readable instance variable v, you can query an object for the

value of v as follows:

(f-v object)

The accessor function is created in the current package.

To specify all instance variables, give the symbol :readable-instance-

variables alone, instead of using the syntax above.

(:writable-instance-variables vars...)

Makes the specified instance variables writable. You can set the value of a

writable instance variable by using setf and the accessor function (usually

f-v):

(setf (f-v object) value)

All writable instance variables are also made readable.

To specify all instance variables, give the symbol :writable-instance-

variables alone, instead of using the syntax above.

(:locatable-instance-variables vars...)

Enables you to get a locative pointer to the cell inside an instance that con-

tains the value of an instance variable, using locf and the accessor function

(usually f-v):

(locf (f-v object))

All locatable instance variables are also made readable.

To specify all instance variables, give the symbol :locatable-instance-

variables alone, instead of using the syntax above.

This option is not supported by CLOE.

(:conc-name symbol)

Specifies a prefix for the accessor function created by the :readable-

instance-variables option, which overrides the default (the name of the fla-

vor followed by a hyphen).

(:constructor args...)

Generates a constructor function that creates new instances. These con-

structor functions are much faster than using make-instance. Constructor

functions can accept positional arguments (instead of keyword arguments,

like make-instance) or a mix of positional and keyword arguments. The

constructor function is created in the current package.

Page 536

(:init-keywords symbols...)

Declares its arguments as keywords that are accepted by make-instance of

this flavor. Init keywords can be keyword arguments to be processed by

methods defined for make-instance for this flavor, or keywords defined by

the :mixture option to defflavor. See the section "Writing Methods for

make-instance".

(:default-init-plist plist)

Provides a list of alternating initialization keywords and default value forms

that are allowed for make-instance of this flavor. The keywords can be

initable instance variables, init keywords, required init keywords, :area, or

:allow-other-keys. You can specify any of these keywords as arguments to

make-instance to override the default initial values given in the :default-

init-plist.

(:required-instance-variables symbols)

Declares that any flavor incorporating this one that is instantiated into an

object must contain the specified instance variables.

(:required-init-keywords init-keywords)

Specifies keywords that must be supplied (as an init-option to make-

instance or in the :default-init-plist option to defflavor) when making an

instance of this flavor.

(:required-methods generic-function-names)

Specifies generic functions that must be supported with methods by a flavor

incorporating this one, if that flavor is intended to be instantiated.

(:required-flavors flavor-names)

Specifies flavors that must be included as components (directly or indirect-

ly) by any flavor incorporating this one, if that flavor is intended to be in-

stantiated.

(:method-combination symbol)

Declares the way that methods from different flavors are to be combined.

See the section "Method Combination".�

The following options are used less frequently:

(:functions internal-function-names)

Declares names of functions internal to the flavor. See the section "Defin-

ing Functions Internal to Flavors".

(:mixture specs...)

Defines a family of related flavors. When make-instance is called, it uses

its keyword arguments (or defaults to values in the :default-init-plist of the

defflavor form) to choose which flavor of the family to instantiate.

:abstract-flavor

Declares that this flavor is not intended to be instantiated; it is often used

for the base flavor of a flavor family.

Page 537

(:component-order args...)

Explicitly states the ordering constraints on the flavor components whose

order is important.

(:documentation string)

Enables you to provide information on this flavor.

(:area-keyword symbol)

Changes the keyword that specifies the area in which the instance is made;

this symbol can then be given to make-instance. This is useful if the fla-

vor is using the :area keyword for some other purpose, such as an init key-

word for an object’s geometric or geographic area. Note that you cannot

use this option with CLOE.

:no-vanilla-flavor

Specifies that flavor:vanilla should not be included in this flavor. This op-

tion is not supported by CLOE.

(:ordered-instance-variables symbols)

Specifies instance variables with fixed positions in the instance, for which

speed is especially important. This increases efficiency at the cost of dy-

namic modification.

(:method-order generic-function-names)

Specifies names of generic functions for which speed is important. Flavors

optimizes the speed for these functions. �

The following options are available primarily for use by the system internals. When

writing new programs, it is good practice not to use these options:

(:special-instance-variables vars...)

Specifies instance variables that should be bound as special variables when

a particular method is called. This option is used in conjunction with

:special-instance-variable-binding-methods. To specify all instance vari-

ables, give the symbol :special-instance-variables alone, instead of using

the syntax above. This option is not supported by CLOE.

(:special-instance-variables-binding-methods generic-function-names)

Specifies certain methods that require the special instance variables to be

bound as special variables. This option is used in conjunction with :special-

instance-variables. This option is not supported by CLOE.�

The following options are available for compatability with the previous flavor system.

When writing new programs, it is good practice not to use these options:

(:gettable-instance-variables vars...)

Enables automatic generation of methods for getting the values of instance

variables, via messages. To specify all instance variables, give the symbol

:gettable-instance-variables alone, instead of using the syntax above. We

suggest using the :readable-instance-variables options instead.

Page 538

(:settable-instance-variables vars...)

Enables automatic generation of methods for setting the values of instance

variables, via messages. To specify all instance variables, give the symbol

:settable-instance-variables alone, instead of using the syntax above. We

suggest using :writable-instance-variables and :initable-instance-variables

instead.

(:default-handler function-name)

Specifies a function to be called when a generic function is called for which

no method is available. This is the same as specifying a method for

:unclaimed-message.�

Flavor Instances and Types

defflavor defines the name of the flavor as a type name in both the Common Lisp

and Zetalisp type systems. It is illegal for the name of a flavor to be the same as

the name of an existing type (including a defstruct structure or a built-in type).

(type-of instance) and (:typep instance) return the symbol that is the name of the

instance’s flavor.

(typep instance ’flavor-name) and (typep instance ’flavor-name) return t if the fla-

vor of instance is named flavor-name or contains that flavor as a direct or indirect

component, nil otherwise.

Defining Methods

defmethod Special Form

A method is the code that performs a generic function on an instance of a particu-

lar flavor. It is defined by a form such as:

(defmethod (generic-function flavor options...) (arg1 arg2...)

 body...)�

The method defined by such a form performs the generic function named by gener-

ic-function, when that generic function is applied to an instance of the given

flavor. (The name of the generic function should not be a keyword, unless you

want to define a message to be used with the old send syntax.) You can include a

documentation string and declare forms after the argument list and before the

body.

A generic function is called as follows:

(generic-function g-f-arg1 g-f-arg2...)�

Usually the flavor of g-f-arg1 determines which method is called to perform the

function. When the appropriate method is called, self is bound to the object itself

(which was the first argument to the generic function). The arguments of the

method are bound to any additional arguments given to the generic function. A

method’s argument list has the same syntax as in defun.

Page 539

The body of a defmethod form behaves like the body of a defun, except that the

lexical environment enables you to access instance variables by their names, and

the instance by self.

For example, we can define a method for the generic function list-position that

works on the flavor wink. list-position prints the representation of the object and

returns a list of its x and y position.

(defmethod (list-position wink) () ; no args other than object

 "Returns a list of x and y position."

 (print self) ; self is bound to the instance

 (list x y)) ; instance vars are accessible �

The generic function list-position is now defined, with a method that implements

it on instances of wink. We can use it as follows:

(list-position my-wink)

--> #<WINK 61311676>

=> (4 0)�

If no options are supplied, you are defining a primary method. Any options given

are interpreted by the type of method combination declared with the :method-

combination argument to either defgeneric or defflavor. See the section "Defin-

ing Special-Purpose Methods". For example, :before or :after can be supplied to

indicate that this is a before-daemon or an after-daemon. For more information:

See the section "Defining Before- and After-Daemons".

If the generic function has not already been defined by defgeneric, defmethod

sets up a generic function with no special options. If you call defgeneric for the

name generic-function later, the generic function is updated to include any new op-

tions specified in the defgeneric form.

Several other sections of the documentation contain information related to

defmethod: See the section "defmethod Declarations". See the section "Writing

Methods for make-instance". See the section "Function Specs for Flavor

Functions". See the section "Setter and Locator Function Specs". See the section

"Implicit Blocks for Methods". See the section "Variant Syntax of defmethod". See

the section "Defining Methods to Be Called by Message-Passing".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

Defining Before- and After-Daemons

This section describes how to use the default type of method combination, which is

:daemon :most-specific-first. This section introduces concepts of method combina-

tion and ordering of flavor components that are covered in detail elsewhere:

See the section "Inheritance of Methods".

See the section "Ordering Flavor Components".�

Daemon is the most commonly-used method combination in the system, and it is

the easiest to use. Daemon method combination type lets you use before-daemons

Page 540

and after-daemons, which are two special types of methods. A before-daemon is a

body of code that is to be executed before the primary method; an after-daemon is

code to be executed after the primary method.

Typically, when you use defmethod to define a method to perform a generic func-

tion, you are defining a primary method. The primary method usually performs the

main part of the generic function.

To write before-daemons and after-daemons, you write methods with the keywords

:before or :after as the options argument in the defmethod form. You need not

specify the :method-combination option to defflavor or defgeneric, because

:daemon is the default method combination type.

For example, a program with a rocket flavor might have a generic function called

launch. The primary method for launch simply launches the rocket. You might de-

fine a before-daemon that puts in the fuel, and an after-daemon that activates the

radar tracking, as follows:

(defflavor rocket ((tank :empty) (position :ground))

 ()

 :initable-instance-variables)

�

(defmethod (launch rocket) () ;primary method

 (setq position :space))

�

(defmethod (launch rocket :before) () ;before-daemon

 ;;; add fuel before launching

 (setq tank :full))

(defmethod (launch rocket :after) () ;after-daemon

 ;;; activate radar tracking after launch

 (setq *radar-tracking* t))�

When you use the launch generic function on an instance of rocket flavor, the

flavor system uses a combined method to perform the operation. The combined

method resembles:

(flavor:multiple-value-prog2 (before-daemon)

 (primary-method)

 (after-daemon))�

flavor:multiple-value-prog2 ensures that the generic function returns any values

returned by its primary method.

In this example, one flavor supplied a before-daemon, a primary method, and an af-

ter-daemon. rocket has no component flavors, so there were no other methods to

consider.

When flavors are built from components, often one flavor provides a primary

method, and others provide before or after-daemons to be combined with that pri-

mary method. In :daemon method combination, all available before-daemons are

run, a single primary method is run, and all available after-daemons are run.

Page 541

Suppose flav1 is built on two component flavors:

(defflavor flav1 () (flav2 flav3))

(defflavor flav2 () ()) ;flav2 has no components

(defflavor flav3 () ()) ;flav3 has no components�

If all three flavors provide a before-daemon, a primary method, and an after-

daemon for the same generic function, the combined method for performing that

generic function on flav1 resembles:

(flavor:multiple-value-prog2

 (progn (before-daemon-flav1)

 (before-daemon-flav2)

 (before-daemon-flav3))

 (primary-method-flav1)

 (progn (after-daemon-flav3)

 (after-daemon-flav2)

 (after-daemon-flav1)))�

The order in which the methods are executed in the combined method depends on

the ordering of flavor components. Flavors computes the ordering of flavor compo-

nents for flav1 as:

(flav1 flav2 flav3)�

flav1 is said to be the most-specific flavor in the ordering, on the principle that

specific flavors are usually built by including more general flavors as components.

The :daemon method combination type states that before-daemons are executed in

:most-specific-first method order, and after-daemons are executed in :most-

specific-last method order. A single primary method is chosen from the set of

available primary methods; it comes from the first flavor in the ordering that pro-

vides a primary method. For details on the ordering of flavor components, see the

section "Ordering Flavor Components".

There can be only one before-daemon, one after-daemon, and one primary method

written to implement a given generic function on any given flavor. If a second def-

inition is given for an existing method, the previous method is overwritten and the

new definition takes its place.

Flavors offers two advanced features that extend the flexibility of defining meth-

ods:

• Method Combination

If the default way of method combination described here is not appropriate for

your program, you can specify another type of method combination. See the sec-

tion "Method Combination".

• Wrappers and Whoppers

When before and after-daemons are not powerful enough, you can use wrappers

and whoppers, which let you put some code around the execution of the method:

See the section "Wrappers and Whoppers".�

Page 542

Compiling Flavor Methods

When you are developing flavors-based programs, compile-flavor-methods is a use-

ful tool. It causes the combined methods of a program to be compiled at compile-

time, and the data structures to be built at load-time, rather than both happening

at run-time. compile-flavor-methods is thus a very good thing to use, since the

need to invoke the compiler at run-time slows down a program using flavors the

first time it is run. You use compile-flavor-methods by including it in a file to be

compiled.

See the macro compile-flavor-methods.

Making Instances of Flavors

make-instance flavor-name &rest init-options Function

Creates and returns a new instance of the flavor named flavor-name, initialized ac-

cording to init-options, which are alternating keywords and arguments. All init-

options are passed to any methods defined for make-instance.

If compile-flavor-methods has not been done in advance, make-instance causes

the combined methods of a program to be compiled, and the data structures to be

generated. This is sometimes called composing the flavor. make-instance also

checks that the requirements of the flavor are met. Requirements of the flavor are

set up with these defflavor options: :required-flavors, :required-methods,

:required-init-keywords, and :required-instance-variables.

init-options can include:

:initable-instance-variable value

You can supply keyword arguments to make-instance that

have the same name as any instance variables specified as

:initable-instance-variables in the defflavor form. Each key-

word must be followed by its initial value. This overrides any

defaults given in defflavor forms.

:init-keyword valueYou can supply keyword arguments to make-instance that

have the same name as any keywords specified as :init-

keywords in the defflavor form. Each keyword must be fol-

lowed by a value. This overrides any defaults given in

defflavor forms.

:allow-other-keys t Specifies that unrecognized keyword arguments are to be ig-

nored.

:allow-other-keys :return

Specifies that a list of unrecognized keyword arguments are to

be the second return value of make-instance. Otherwise only

one value is returned, the new instance.

Page 543

:area number Specifies the area number in which the new instance is to be

created. Note that you can use the :area-keyword option to

defflavor to change the :area keyword to make-instance to a

keyword of your choice, such as :area-for-instances.

Any ancillary values constructed by make-instance (other than

the instance itself) are constructed in whatever area you speci-

fy for them; this is not affected by using the :area keyword.

For example, if you supply a variable initialization that causes

consing, that allocation is done in whatever area you specify

for it, not in this area. For example:

(defflavor foo ((foo-1 (make-array 100)))

 ())�

In this example the array is consed in sys:default-cons-area.

:area nil Specifies that the new instance is to be created in the

sys:default-cons-area. This is the default, unless the :default-

init-plist option is used to specify a different default for :area.

�

If not supplied in the init-options argument to make-instance, the :default-init-

plist option to the defflavor form is consulted for any default values for initable

instance variables, init keywords, and the :area and :allow-other-keys options.

An alternative way to make instances is to use constructors. One advantage in us-

ing constructor functions is that they are much faster than using make-instance.

You can define constructors by using the :constructor option; for more informa-

tion, see the section "Complete Options for defflavor".

If you want to know what the allowed keyword arguments to make-instance are,

use the Show Flavor Initializations command. See the section "Show Flavor Com-

mands". c-sh-A works too, if the flavor name is constant.

You can define a method to run every time an instance of a certain flavor is cre-

ated. For information, see the section "Writing Methods for make-instance".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

Page 544

Creates and returns a new instance of the flavor named flavor-name, initialized

according to init-options, which are alternating keywords and arguments. All init-

options are passed to any methods defined for make-instance.

If compile-flavor-methods has not been done in advance, make-instance causes

the combined methods of a program to be compiled, and the data structures to be

generated. This is sometimes called composing the flavor. make-instance also

checks that the requirements of the flavor are met. Requirements of the flavor

are set up with these defflavor options: :required-flavors, :required-methods,

:required-init-keywords, and :required-instance-variables.

init-options can include:

:initable-instance-variable value

You can supply keyword arguments to make-instance that

have the same name as any instance variables specified as

:initable-instance-variables in the defflavor form. Each key-

word must be followed by its initial value. This overrides any

defaults given in defflavor forms.

:init-keyword value You can supply keyword arguments to make-instance that

have the same name as any keywords specified as :init-

keywords in the defflavor form. Each keyword must be fol-

lowed by a value. This overrides any defaults given in

defflavor forms.

:allow-other-keys t Specifies that unrecognized keyword arguments are to be ig-

nored.

:allow-other-keys :return

Specifies that a list of unrecognized keyword arguments are

to be the second return value of make-instance. Otherwise

only one value is returned, the new instance.

If not supplied in the init-options argument to make-instance, the :default-init-

plist option to the defflavor form is consulted for any default values for initable

instance variables, init keywords, and the :allow-other-keys options.

If you want to know what the allowed keyword arguments to make-instance are,

use the Show Flavor Initializations command.

You can define a method to run every time an instance of a certain flavor is

created:

Writing Methods for make-instance

You can define a method to run every time an instance of a certain flavor is cre-

ated, by defining a method for the generic function make-instance. This is a use-

ful technique for performing additional initialization that depends on the instance

variables being set to their initial values. If you write a method for

make-instance, it is run after the instance is created and initialized according to

init-options. Any values returned by make-instance methods are ignored.

Page 545

Here is an example of a method defined for the make-instance function for the

freight-ship flavor:

;;; Every time an instance of freight-ship is made,

;;; load extra fuel to move the ship faster, if:

;;; cargo is perishable, and

;;; we’re in the hot season, and

;;; the auxiliary fuel tank is empty.

(defmethod (make-instance freight-ship)

 (&key date-of-embarkation &allow-other-keys)

 (if (and (equal cargo-type :perishable)

 (hot-season-p date-of-embarkation)

 (equal auxiliary-fuel-tank :empty))

 (load-extra-fuel self)))�

If a make-instance method allows an argument other than those that initialize in-

stance variables, it is necessary to make that argument valid for make-instance of

this flavor. To do so, use the :init-keywords option to defflavor. If the make-

instance method requires any arguments, you should also use the :required-init-

keywords option for defflavor to ensure that these arguments are always sup-

plied. For example:

(defflavor freight-ship (cargo-type

 primary-fuel-tank

 auxiliary-fuel-tank)

 ()

 :initable-instance-variables

 (:init-keywords :date-of-embarkation)

 (:required-init-keywords :date-of-embarkation

 :cargo-type

 :auxiliary-fuel-tank))�

make-instance methods receive all arguments that are given to make-instance.

They also receive options not given to make-instance but present in the :default-

init-plist option of the defflavor form (excluding options that initialize instance

variables). Therefore, methods that use some of the arguments given to make-

instance specify an argument list resembling:

(&key arg1 arg2... &allow-other-keys)

If you use &key, you must also use &allow-other-keys.

make-instance methods that do not use any of the arguments should specify

(&rest ignore) as the argument list.

If a flavor has an :init-keyword named foo and an instance variable also named

foo, you should use the more complex &key syntax:

(defmethod (make-instance f)

 (&key ((:foo foo-arg)) &allow-other-keys)

 body)�

Page 546

The generic function make-instance is implemented with the :two-pass method

combination type. :two-pass means that the combined method executes all the pri-

mary methods and :after methods. :after methods are permitted because of unusu-

al cases where a flavor’s initializations must be performed after the initializations

of its component flavors. :before methods are not allowed.

For any particular flavor, only one primary method and one :after method for

make-instance are allowed. However, component flavors can supply primary meth-

ods and :after methods for make-instance; they are all run. When making an in-

stance of a flavor that has component flavors, several of which have ordinary

methods for make-instance and :after methods, the methods are executed as fol-

lows:

1. The instance is created and initialized according to init-options.

2. All primary methods for make-instance of this flavor and its component fla-

vors are executed in most-specific-first order.

3. All :after methods for make-instance of this flavor and its component flavors

are executed in most-specific-last order.�

See the section "Built-in Types of Method Combination".

See the section ":most-specific-first and :most-specific-last Method Order".

Flavor System Compatibility

For compatibility with previous versions of the flavor system, an :init message is

also sent if there are any methods for it. Normally, this practice should be avoided

in new programs; the exception to that guideline is for window flavors.

make-instance methods are executed before :init methods. If you use :after :init

methods for window flavors, we recommend that you continue to use them instead

of replacing them with make-instance methods. The window system is not yet ca-

pable of handling make-instance methods well because it still uses :init methods

internally. If you use make-instance methods it would be possible that your meth-

ods would be executed before the system’s :init methods, which could lead to prob-

lems.

Generic Functions

There are two kinds of functions in Symbolics Lisp: ordinary functions and generic

functions.

Ordinary Functions Generic Functions

Have a single definition. Have a distributed definition.

Page 547

Interface is specified by Interface can be specified by

defun. defgeneric or defmethod.

Implementation is specified Implementation is specified by

by defun. one or more defmethod forms.

Do not treat flavor First argument is usually

instances specially. an instance of a flavor.

Implementation is the same Implementation varies from call

whenever the function is to call, depending on the flavor

called. of the first argument to the function.

�

Ordinary functions and generic functions are called with identical syntax:

(function-name arguments...)�

The first argument to a generic function is an object. The flavor of the object de-

termines which method is invoked to perform the generic function.

Generic functions are not only syntactically compatible with ordinary functions;

they are semantically compatible as well:

• The name of a generic function is in a certain package and can be exported if it

is part of an external interface. This allows programmers to keep unrelated pro-

grams separate.

• They are true functions that can be passed as arguments and used as the first

argument to funcall and mapcar. For example:

(mapc #’reset counters)�

• Program development tools such as trace can be used on generic functions. �

Usually, the generic function chooses the appropriate method by looking at the fla-

vor of its first argument. You can specify alternate means of dispatching by

defgeneric and define-method-combination.

Generic functions replace message passing used in the old flavor system. However,

message passing is still supported for compatibility with old programs. See the sec-

tion "Using Message-Passing Instead of Generic Functions".

Do not remove the property flavor:generic from a generic function; this causes in-

ternal problems in the Flavors system.

Use of defgeneric

It is not necessary to use defgeneric to write a generic function. If you define a

method for an operation that has not been declared with defgeneric, defmethod

automatically sets up a generic function with no special options.

Page 548

defgeneric is used to:

• Formally define an interface.

• Specify options that pertain to the generic function as a whole.

• Gain the advantage of compile-time checking that the methods take the correct

number of arguments, and that callers of the generic supply the correct number

of arguments.

• Provide descriptive arguments to be displayed when you give the Arglist (m-X)

command, or press c-sh-A for this generic function. (These default from the

methods in a heuristic way if defgeneric is not used.)

• Document the contract of the generic function.�

Here is an example of using defgeneric to document the contract of the generic

function:

(defgeneric capacity (vehicle fare) ;;; takes two args

 "Compute the number of passengers that can be

 accommodated at a given fare, and the number of

 crew required."

 (declare (values number-of-passengers

 number-of-crew)))�

You would use capacity as follows:

(capacity my-ship 17.50)�

In the unusual case when you want to define a generic function whose name is a

keyword, you must use defgeneric. If you try to give a keyword as a generic func-

tion name using defmethod, it is interpreted as a message name, which must then

be called with send. Note that defining a function (generic or ordinary) whose

name is a keyword is not a recommended practice.

defgeneric name arglist &body options Special Form

Defines a generic function named name that accepts arguments defined by arglist,

a lambda-list. arglist is required unless the :function option is used to indicate

otherwise. arglist represents the object that is supplied as the first argument to

the generic function. The flavor of the first element of arglist determines which

method is appropriate to perform this generic function on the object.

The semantics of the options for defgeneric are described elsewhere: See the sec-

tion "Options for defgeneric". The syntax of the options is summarized here:

(:compatible-message symbol)

(declare declaration)

(:dispatch flavor-name)

Page 549

(:documentation string)

(:function body...)

:inline-methods

(:inline-methods :recursive)

(:method (flavor options...) body...)

(:method-arglist args...)

(:method-combination name args...)

(:optimize speed)

For example, to define a generic function total-fuel-supply that works on in-

stances of army and navy, and takes one argument (fuel-type) in addition to the

object itself, we might supply military-group as arg1:

(defgeneric total-fuel-supply (military-group fuel-type)

 "Returns today’s total supply

 of the given type of fuel

 available to the given military group."

 (:method-combination :sum)) �

The generic function is called as follows:

(total-fuel-supply blue-army ’:gas)

The argument blue-army is known to be of flavor army. Therefore, Flavors choos-

es the method that implements the total-fuel-supply generic function on instances

of the army flavor. That method takes only one argument, fuel-type:

(defmethod (total-fuel-supply army) (fuel-type)

 body of method)�

The arguments to defgeneric are displayed when you give the Arglist (m-X) com-

mand or press c-sh-A while this generic function is current.

It is not necessary to use defgeneric to set up a generic function. For further dis-

cussion: See the section "Use of defgeneric".

The function spec of a generic function is described elsewhere: See the section

"Function Specs for Flavor Functions".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

Options for defgeneric

Each option is either a keyword symbol, a list whose car is a keyword symbol and

whose cdr is arguments to the option, a declare form, or a documentation string.

The following options are accepted:

"documentation" A string specifying self-documentation, for the same purpose as

a defun documentation string. This is the same as giving the

:documentation option. �

Page 550

(:compatible-message symbol)

Enables you to invoke the methods by either calling the gener-

ic-function-name or sending the symbol message. symbol is the

name of the message; it is usually a keyword, but need not be.

This option is for compatibility with old Flavors and will even-

tually be made obsolete. One example of the use of

:compatible-message is in conjunction with a programming

construct that recognizes messages only as selectors, such as

defselect. For more information and an example of using this

option: See the section "Defining a Compatible Message for a

Generic Function".�

(declare declaration)

Declarations that apply to the whole function (as opposed to

declarations of variables) are permitted. These include arglist,

values, sys:downward-funarg, sys:function-parent, and

optimize, among others. You can repeat this option any num-

ber of times. �

(:dispatch name) Specifies the name of an argument whose flavor controls selec-

tion of methods. The arguments seen by the methods are the

arguments to the generic function with name removed. Inside a

method, self is bound to the object named by name. name is

not mentioned explicitly in the defmethod arglist.

If :dispatch is not specified, the methods are selected on the

basis of the flavor of the first argument to the generic func-

tion.

Dispatching off an argument other than the first argument is

slightly slower because it involves an extra function call.

You can increase the efficiency by specifying (:optimize

speed). This gains performance at the cost of flexibility in pro-

gram development. If you do this, you can no longer change

anything about the generic function without having to recom-

pile callers. See the section on the :optimize option for

defgeneric.

(:documentation "documentation")

A string specifying self-documentation. This is the same as giv-

ing a documentation string.

(:function body...) Defines a function that runs instead of the generic dispatch.

This is completely transparent to anyone calling the generic

function. Such a prologue function can be used to rearrange

the arguments, to standardize the arguments before the meth-

ods see them, to default optional arguments, to do the shared

non-generic portion of an operation, or for any other purpose.

To trigger the generic dispatch, apply the value of

Page 551

(flavor:generic generic-function-name) to the arguments. See

the special form flavor:generic. However, if the generic func-

tion uses the :compatible-message option, the way to trigger

the generic dispatch is by sending the message, not by calling

the generic function.

Here is an example of its use:

(defgeneric size-of-value (type value)

 (:function

 (if (eq value *null-value*) 0

 (funcall (flavor:generic size-of-value)

 type value))))�

An important use of this option is to extend a generic function

so it can also be used for objects that are not flavor instances.

:inline-methods Indicates that performance of methods for this generic function

is crucial. This prevents the method combination from generat-

ing function calls from combined methods to the methods they

combined. Instead, the methods are coded inline. The imple-

mentation of these methods trades space for time.

(:inline-methods :recursive)

Causes even more inline coding to occur. That is, if a method

that is being coded inline contains a form (f self args...), and f

is a generic function with the (:inline-methods :recursive) op-

tion, then the entire f operation is also coded inline. It is not

necessary that f be the same generic function as the one for

which this method is being defined.

We do not recommend that :inline-methods be used automati-

cally for all generic functions. One example of an appropriate

use of :inline-methods is in the Table Management facility.

The methods for each type of table are assembled from a large

number of pieces contributed by different mixin flavors. The

use of :inline-methods enhances the performance of this pro-

gram.

Note that inline coding happens only for combined methods

where Flavors knows exactly what the flavor of self is. In the

following example, test could not be compiled inline in this

method, since there is no way of knowing that the method

(flavor:method baz foo) will not be inherited by a flavor that

also inherits a different method for test than (flavor:method

test foo).

(defgeneric test (object)

 (:inline-methods :recursive))

Page 552

�

(defflavor foo () ())

�

(defmethod (test foo) () body)

�

(defmethod (baz foo) ()

 (test self))�

(:method (flavor options...) body...)

This option lets you define a method for this generic function

in the defgeneric form, instead of in a separate defmethod

form. It is simply a convenient abbreviation for (defmethod

(generic-function flavor options...) arglist body...) The argument

list for the method is computed from the argument list given

at the top of the defgeneric form. This option can be repeated

any number of times.

As a matter of style, :method is often used to define a default

method; this is done by defining a method for the most basic

member of a flavor family. You can include a documentation

string or declare forms before body. �

(:method-arglist args...)

You can use this option to specify that the methods accept dif-

ferent arguments than does the generic function itself. By de-

fault, the methods receive the same arguments that are speci-

fied at the top of the defgeneric form, except for the dispatch-

ing argument. The :method-arglist option is only meaningful

in connection with the :function option.

In the following example, :method-arglist is used to declare

that the x argument is optional for the generic function but re-

quired for the methods. The generic function gf1 does not re-

quire the object itself to be passed as an argument.

(defvar *obj*)

(defflavor fl1 () ())

(setq *obj* (make-instance ’fl1))

�

(defgeneric gf1 (&optional obj x)

 (:function

 (unless obj (setq obj *obj*))

 (funcall (flavor:generic gf1) obj x))

 (:method-arglist x))

�

(defmethod (gf1 fl1) (x)

 (format t "GF1 FL1 called on ~S ~S" self x))�

For a slightly more complex example, we can reverse the order

of the arguments:

Page 553

(defgeneric gf1 (&optional x obj)

 (:function

 (unless obj (setq obj *obj*))

 (funcall (flavor:generic gf1) obj x))

 (:method-arglist x))�

Doing (gf1) does the same thing as before, but now you can al-

so do (gf1 23).

(:method-combination name args...)

Specifies the type of method combination to be used in han-

dling this generic function. If this option is used, all flavors

must use the same method combination for this generic func-

tion. If the :method-combination option is also supplied to

defflavor, that option must agree with the :method-

combination option given to defgeneric. The default is

(:method-combination :daemon :most-specific-first). Note

that this option is not available in CLOE.

For more information on usage and an example: See the sec-

tion "Using the :method-combination Option".

(:optimize speed) Increases the speed of the generic function when dispatching

off an argument other than the first argument. This has an ef-

fect only if :dispatch is also specified. The package of the sym-

bol speed is unimportant; this syntax is consistent with the

Common Lisp syntax for the optimize declaration.

If you use (:optimize speed) in conjunction with :dispatch,

callers of the generic function are responsible for including the

code to rearrange the arguments. The compiler puts in this

code. Note that you must recompile all callers if you change

anything about the generic function.

Redefining Flavors, Methods, and Generic Functions

You can redefine flavors, methods, and generic functions at any time. To do so,

simply evaluate another defflavor, defmethod, or defgeneric form. The new defi-

nition replaces the old. This flexibility is useful in program development.

If you redefine a flavor, method, or generic function, the existing one is modified.

The result is eq to the original one.

Redefining a Flavor

You can redefine a flavor by editing its defflavor form and then compiling the

new definition, either by using the Zmacs command c-sh-C, or the recompile-

flavor function.

Page 554

Sometimes redefining a flavor causes old instances to be outdated; for example,

adding or removing instance variables, or changing the order of instance variables.

In these cases, Flavors gives you a warning that the flavor was changed in such a

way that the stored representation is different. However, this does not cause a

problem. When old instances are next accessed, they are updated to the new for-

mat. New instance variables will be initialized if the defflavor form indicates a

default value, or left unbound otherwise. When a flavor is changed, the Flavors

system propagates the changes to any flavors of which it is a direct or indirect

component.

You can use flavor:rename-instance-variable to give an instance variable a new

name, and to ensure that its value is preserved, for existing instances.

You can remove the definition of a flavor by using the Zmacs command Kill Defi-

nition (m-X), or the flavor:remove-flavor function.

Changing an Instance

You can explicitly change an existing instance in these ways: evaluate a new

defflavor form; rename one or more of its instance variables using flavor:rename-

instance-variable; or change the flavor of the instance using change-instance-

flavor. If you redefine a flavor that has already been instantiated, this implicitly

causes existing instances to be updated; this is described above. When you change

instances, you should consider possible side effects; for example, any methods writ-

ten for make-instance do not run when you change an instance. If you need to

perform further initialization when an instance is changed, use flavor:transform-

instance. See the generic function flavor:transform-instance.

Changing an instance in either of the ways described above modifies the original

instance. The result is a modified instance which is eq to the original instance.

Redefining Generic Functions

Usually, you can redefine a generic function to be an ordinary function, or an ordi-

nary function to be a generic function, without having to recompile any callers.

However, if you use defgeneric and specify the :dispatch and (:optimize speed)

options, you must recompile callers if you redefine the generic function.

Do not use fundefine to remove the definition of a generic function. If you do so,

and then compile a defmethod form, the generic function remains undefined until

you do an explicit defgeneric. While the generic function is undefined, any callers

to it will malfunction. Also, do not remove the property flavor:generic from a

generic function; this causes internal problems to Flavors.

Redefining Wrappers and Whoppers

Whoppers are functions, not macros, so they can be redefined at any time; the new

definition replaces the old.

Redefining a wrapper automatically performs the necessary recompilation of the

combined method of the flavor. If the wrapper is given a new definition, the com-

bined method is recompiled so that it gets the new definition. If a wrapper is rede-

Page 555

fined with the same old definition, the existing combined methods continue to be

used, since they are still correct. The old and new definitions are compared using

the function equal.

Because defwhopper-subst defines a wrapper, issues with redefining them are the

same as for wrappers.

Related Functions:�

change-instance-flavor instance new-flavor

Changes the flavor of an instance to another flavor.

recompile-flavor flavor-name &key :generic :env :ignore-existing-methods (:do-

dependents t)

Updates the internal data of the flavor and any flavors that depend on

it.

flavor:remove-flavor flavor-name

Removes the definition of a flavor.

flavor:rename-instance-variable flavor-name old new

Changes the name of an instance variable, carrying the value of the old

instance variable to the new for any existing instances.

flavor:transform-instance instance new-fl

Executes code when an instance is changed to a new flavor; thus enables

you to perform initialization of the instance. Use this generic function by

defining methods for it. It is not intended to be called.

Related Editor Tools: �

See the section "Zmacs Commands for Flavors, Generic Functions, and Methods",

for information on Zmacs tools to manipulate these constructs.

Mixing Flavors

It is advantageous to mix flavors when the characteristics of two or more different

kinds of objects overlap. You identify the common characteristics and define a fla-

vor that can be incorporated (or mixed) into both kinds of objects. This is called a

component flavor.

For example, we might write a program involving space-ships and meteors. The

characteristics of space-ships and meteors partially overlap; they both have x, y,

and z-velocity. We can define a flavor called 3-d-moving-object that represents

their common characteristics:

(defflavor 3-d-moving-object (x-velocity y-velocity z-velocity)

 ()

 :initable-instance-variables)�

Once 3-d-moving-object is defined, we can include it in the definition of the fla-

vors space-ship and meteor as follows:

Page 556

(defflavor space-ship (crew-list name destination)

 (3-d-moving-object) ;component flavor

 :initable-instance-variables)

�

(defflavor meteor (percent-iron estimated-mass)

 (3-d-moving-object) ;component flavor

 :initable-instance-variables)�

Objects of the space-ship and meteor flavors inherit the instance variables of

their component flavor 3-d-moving-object. When making an instance of meteor we

can initialize its inherited variables:

(make-instance ’meteor :estimated-mass 27

 :x-velocity 12

 :y-velocity 44

 :z-velocity 87)�

When you use existing flavors to create a new flavor, the new flavor inherits char-

acteristics of each of its component flavors (and of its components’ components,

and so on). This includes instance variables, methods, and other characteristics

that are attached to a defflavor form, such as :default-init-plist.

Typically, a program has a family of related flavors. The most basic flavor has in-

stance variables and methods defined that relate to the whole family of flavors.

Flavors built on the basic flavor inherit those instance variables and methods, and

include additional (more specialized) instance variables and methods. See the sec-

tion "Flavor Families".

Inheritance of Methods

When a generic function is applied to an object of a particular flavor, methods for

that generic function attached to that flavor or to its components are available.

From this set of available methods, one or more are selected to be called. If more

than one is selected, they must be called in some particular order and the values

they return must be combined somehow.

Flavors constructs a single handler for each generic function supported by the new

flavor. The handler is the code that actually performs the generic function on an

instance of the flavor. In the simplest case, the handler is simply one of the meth-

ods.

Example of a Combined Method

In other cases the handler is a combined method. One example of a combined

method is the handler constructed when the default method combination type

(:daemon) is used, and a single :before method and :after method is present. The

body of the combined method resembles:

(flavor:multiple-value-prog2 (before-method)

 (primary-method)

 (after-method))�

Page 557

Definition of Method Combination

The way that Flavors constructs a handler is called method combination. Often

many methods are defined for performing a generic function on objects of a given

flavor (some of the methods are defined for component flavors), and these methods

must somehow be combined. The way that methods are combined depends on two

factors:

• The designated type of method combination.

Each generic function is associated with a type of method combination. By de-

fault this is :daemon. You can use the :method-combination option to

defflavor or defgeneric to specify a different mechanism.

• The designated method order.

By default this is :most-specific-first. In most types of method combination you

can specify :most-specific-last to the :method-combination option. �

The type of method combination and the method order are sufficient to choose

which methods from the set of available methods should be run, and in what order

they are to be run.

For example, the :and method combination type chooses all available primary

methods and combines them inside an :and special form. Any :before or :after

methods cause an error.

The order in which the methods are executed is important. This is determined by

the ordering of flavor components and the method order used. When flavors are

built from components, the flavor system computes a total ordering of components.

For example, three flavors are defined as follows:

(defflavor flav-1 () (flav-2 flav-3))

(defflavor flav-2 () ())

(defflavor flav-3 () ())�

The ordering of flavor components for the flavor flav-1 is:

(flav-1 flav-2 flav-3)�

flav-1 is said to be the most specific flavor in the ordering. Thus if :most-specific-

first method order is used with the :and method combination type, and all three

flavors define a method for the same generic function, the combined method re-

sembles:

(and (method-for-flav-1)

 (method-for-flav-2)

 (method-for-flav-3))�

If :most-specific-last method order is used with the :and method combination

type, the combined method resembles:

Page 558

(and (method-for-flav-3)

 (method-for-flav-2)

 (method-for-flav-1))�

For information on how the flavor ordering is computed: See the section "Ordering

Flavor Components".

For information on other built-in types of method combination, and how to define

new types of method combination: See the section "Method Combination".

Inheritance of Instance Variables

When you define a flavor that is built on other flavors, the new flavor inherits in-

stance variables from each of its component flavors. When two or more of the

components have an instance variable with the same name, the new flavor inherits

exactly one instance variable with that name. All components of the new flavor

share this variable. The default initial value for an instance variable comes from

the first flavor in the ordering of flavor components that specifies a value. For ex-

ample:

;;; the basic flavor in the family of printers

;;; all printers must have a name and baud-rate

(defflavor basic-printer (name baud-rate)

 ()

 :initable-instance-variables

 (:required-init-keywords name baud-rate))

�

;;; line-printers in this shop run at 1200 baud

(defflavor line-printer ()

 (basic-printer) ;built on basic-printer

 (:default-init-plist :baud-rate 1200))

�

;;; smart printers know their own status and length of queue

;;; in this shop they run at 2400 baud

(defflavor smart-printer (current-status queue)

 (basic-printer) ;built on basic-printer

 :initable-instance-variables

 (:default-init-plist :baud-rate 2400

 :queue 0))�

In this flavor family, all types of printers have instance variables for name and

baud-rate. The flavors smart-printer and line-printer inherit the instance vari-

ables name and baud-rate from their component flavor basic-printer.

The flavor basic-printer specifies that the name and baud-rate instance variables

are required to be initialized, when making an instance of basic-printer or either

of the two flavors that are built on it.

The flavor line-printer has only one difference from basic-printer; it specifies a

default initial value for the baud-rate instance variable.

Page 559

The flavor smart-printer supplies two additional instance variables, current-status

and queue. It also specifies a default initial value for queue and for baud-rate.

Inheritance of defflavor Options

A flavor built from components inherits characteristics from those components, in-

cluding many of the defflavor options. This section describes which defflavor op-

tions are inherited, and which are not.

:abstract-flavor Not inherited.

:area-keyword Inherited. If more than one component specifies this option,

the :area-keyword chosen comes from the most specific flavor

in the ordering.

:component-order Inherited. Any ordering restrictions noted in a flavor’s

:component-order option are considered as ordering restric-

tions by all flavors that are built on it.

:conc-name Not inherited.

:constructor Not inherited.

:default-handler Inherited.

:default-init-plist Inherited. A flavor’s :default-init-plist is the union of its own,

and those of its components. If any elements of the :default-

init-plist are in conflict, the conflict is resolved by choosing

the element from the most specific flavor that provides it.

:documentation Not inherited.

:functions Inherited.

:gettable-instance-variables

Inherited. Any instance variables specified as gettable by a fla-

vor component are also gettable by the flavor that is built on

that component.

:init-keywords Inherited. A flavor’s list of :init-keywords is the union of the

:init-keywords of all of its components.

:initable-instance-variables

Inherited. Any instance variables specified as initable by a fla-

vor component are also initable by the flavor that is built on

that component.

:locatable-instance-variables

Inherited. Any instance variables specified as locatable by a

flavor component are also locatable by the flavor that is built

on that component.

:method-combination

Inherited. If :method-combination is specified more than once

for the same generic function by flavor components, they must

agree on the type of method combination and the parameters.

Page 560

:method-order Inherited. A flavor’s method order is the resulting of append-

ing the method-orders of all its components, in the order of

flavor components.

:mixture Not inherited.

:no-vanilla-flavor Inherited.

:ordered-instance-variables

Inherited. If this is specified by more than one component, the

order of the instance variables must agree. For example, if one

flavor specifies (:ordered-instance-variables a b c), another

component flavor could legally specify (:ordered-instance-

variables a b c d e). However it would be illegal for a compo-

nent flavor to specify (:ordered-instance-variables d e).

:readable-instance-variables

Inherited. Any instance variables specified as readable by a fla-

vor component are also readable by the flavor that is built on

that component.

:required-flavors Inherited. A flavor’s list of :required-flavors is the union of

the :required-flavors of all of its components.

:required-init-keywords

Inherited. A flavor’s list of :required-init-keywords is the

union of the :required-init-keywords of all of its components.

:required-instance-variables

Inherited. A flavor’s list of :required-instance-variables is the

union of the :required-instance-variables of all of its compo-

nents.

:required-methods Inherited. A flavor’s list of :required-methods is the union of

the :required-methods of all of its components.

:settable-instance-variables

Inherited. Any instance variables specified as settable by a fla-

vor component are also settable by the flavor that is built on

that component.

:special-instance-variables

Inherited. A flavor’s list of :special-instance-variables is the

union of the :special-instance-variables of all of its compo-

nents.

:special-instance-variable-binding-methods

Inherited. A flavor’s list of :special-instance-variable-binding-

methods is the union of the :special-instance-variable-

binding-methods of all of its components.

:writable-instance-variables

Inherited. Any instance variables specified as writable by a fla-

vor component are also writable by the flavor that is built on

that component. �

Page 561

The Vanilla Flavor

By default, every flavor includes the flavor called flavor:vanilla. flavor:vanilla has

no instance variables, but it provides several basic useful methods, some of which

are used by the Flavor tools. See the section "Generic Functions and Messages

Supported by flavor:vanilla".

You can specify not to include flavor:vanilla by providing the :no-vanilla-flavor

option to defflavor. This would be unusual.

Ordering Flavor Components

This section describes how Flavors determines the ordering of flavor components,

when a new flavor is built on component flavors. You can view the order using

Show Flavor Components: See the section "Show Flavor Commands".

flavor:get-all-flavor-components returns the list of ordered components: See the

function flavor:get-all-flavor-components.

The defflavor forms of a flavor and its components set local constraints on the or-

dering of flavor components. When a flavor is built from components, all of the lo-

cal constraints of the flavor and its components are taken into account, and an or-

dering is computed that satisfies all of these constraints. In other words, the

defflavor forms specify partial orderings, which must be merged into one total or-

dering.

Three rules govern the ordering of flavor components:

1. A flavor always precedes its own components.

2. The local ordering of flavor components is preserved; a component precedes

all components that appear to its right in the list of flavor components.

3. Duplicate flavors are eliminated from the ordering; if a flavor appears more

than once, it is placed as close to the beginning of the ordering as possible,

while still obeying the other rules. �

In many cases, these three rules are enough to define a unique ordering of flavor

components. In other cases, the rules result in several possible orderings, and Fla-

vors applies another guideline:

A tree of flavors is constructed from the list of flavor components. The ordering is

determined by walking through the tree of flavors in depth-first order, and adding

each node (flavor) to the ordering if it fits the constraints of the three rules.

The first node (the root of the tree) is the first flavor in the ordering, provided

that it does not transgress any of the rules. The Flavor system continues to the

next node, traversing the tree in depth-first order. If the node can be placed next

in the ordering without transgressing one of the three rules, it is added it to the

ordering. If adding it would transgress a rule, that node is skipped. If the end of

the tree is reached and some flavors have not yet been placed in the ordered list,

the Flavor system walks through the tree again, applies the three rules to the re-

Page 562

maining nodes and adds them to the ordering. In complicated programs, it is con-

ceivable that we could walk through the tree several times.

The following examples illustrate how we could predict how new Flavors would

choose an ordering of components of pie, which is defined as follows:

Simple Example of Ordering Flavor Components

In this example, the three rules define exactly one ordering for new-flavor:

(defflavor new-flavor () (apple tomato))

(defflavor apple () (fruit))

(defflavor tomato () (fruit vegetable))

(defflavor fruit () ())

(defflavor vegetable () ())�

To illustrate how the rules apply to this example:

1. A flavor always precedes its own components.

• new-flavor precedes apple and tomato.

• apple precedes fruit.

• tomato precedes fruit and vegetable.�

2. The local ordering of flavor components is preserved.

• apple precedes tomato.

• fruit precedes vegetable.�

The flavor:vanilla flavor is included in all flavors unless it is explicitly excluded

(by the :no-vanilla-flavor option to defflavor). The first rule constrains

flavor:vanilla to appear last in every ordering of flavors, if it is present.

The resulting ordering of flavors is:

(new-flavor apple tomato fruit vegetable flavor:vanilla)

Using The Tree to Order Components

In this example, the three rules do not define a single ordering for pie. The fla-

vors are defined as follows:

(defflavor pie () (apple cinnamon))

(defflavor apple () (fruit))

(defflavor cinnamon () (spice))

(defflavor fruit () ())

(defflavor spice () ())�

Three orderings are possible, under the rules:

(pie apple fruit cinnamon spice flavor:vanilla)

(pie apple cinnamon fruit spice flavor:vanilla)

(pie apple cinnamon spice fruit flavor:vanilla)�

Page 563

A well-conceived program should not depend on any one of those orderings, but

should work equally well under any of them. For example, if your program depends

on spice preceding fruit in the ordering for pie, you should make that constraint

explicit, by including those two flavors in the list of components in the defflavor

form for pie.

The following text describes how to predict the ordering that the Flavors system

would choose, when several orderings are possible. We construct a tree of flavor

components:

 pie

 / \

 apple cinnamon

 / \

 fruit spice�

We order the components by walking through the tree in a depth-first order,

adding the components to the order, always checking that no rules are trans-

gressed. The resulting ordering is:

(pie apple fruit cinnamon spice flavor:vanilla)

Example of an Inconsistent Set of Flavor Definitions

It is possible to write a set of flavor definitions that cannot be ordered using the

rules. For example:

(defflavor new-flavor () (fruit apple))

(defflavor apple () (fruit))�

To illustrate how the rules apply to this example:

1. A flavor always precedes its own components.

• new-flavor precedes fruit and apple.

• apple precedes fruit.�

2. The local ordering of flavor components is preserved.

• fruit precedes apple�

Two of the rules contradict each other: apple precedes fruit, and fruit precedes

apple. When this situation occurs, Flavors signals an error when it tries to com-

pute the ordering (usually the first time you call compile-flavor-methods or

make-instance). The error message includes a detailed description of the minimal

set of conflicting constraints that cause the inconsistency. At that point you can

redefine one or more of the flavors to resolve the problem, either by changing the

order of flavor components so there is no conflict, or by using the :component-

order option to defflavor to relax the ordering constraints.

Page 564

Skipping a Flavor When Traversing the Tree

This example illustrates the case when a flavor cannot be added to the ordering

the first time it appears in the tree:

(defflavor pie () (apple cinnamon))

(defflavor apple () (fruit))

(defflavor cinnamon () (spice))

(defflavor fruit () (food))

(defflavor spice () (food))

(defflavor food () ())�

We construct a tree of flavors:

 pie

 / \

 apple cinnamon

 / \

 fruit spice

 / \

 food food �

The list begins with pie. We continue, adding apple and fruit. So far, the (incom-

plete) ordered list is:

(pie apple fruit

The next node is food, but we cannot place it next in the ordering because doing

so would transgress the rule that a flavor always precedes its own components. If

placed next, food would precede spice, and we know that spice must precede food.

Thus we skip food and continue through the tree. Because food appears later in

the tree, we pick it up then. The ordering is now complete:

(pie apple fruit cinnamon spice food flavor:vanilla)

In more complex cases, we might finish walking through the tree without picking

up all the flavors. In that case, we would walk through the tree again, picking up

the remaining flavors as long as doing so would not transgress the rules. It is con-

ceivable that we might need to walk through the tree several times, if many relat-

ed flavors are mixed.

Final Note

Note the following example:

(defflavor pie () (apple cinnamon))

(defflavor pastry () (cinnamon apple))�

The ordering for pie is:

(pie apple cinnamon flavor:vanilla)

The ordering for pastry is:

(pie cinnamon apple flavor:vanilla)

Page 565

There is no problem with the fact that apple precedes cinnamon in the ordering

of the components of pie, but not in the ordering for pastry. However, you cannot

build a new flavor that has both pie and pastry as components.

Flavor Families

The following organization conventions are recommended for programs that use

flavors:

A base flavor is a flavor that defines a whole family of related flavors, all of which

have that base flavor as one of their components. Typically the base flavor in-

cludes things relevant to the whole family, such as instance variables, :required-

methods and :required-instance-variables declarations, default methods for cer-

tain generic functions, :method-combination declarations, and documentation on

the general protocols and conventions of the family. Some base flavors are com-

plete and can be instantiated, but most cannot be instantiated and merely serve as

a foundation on which to build other flavors. The base flavor for the foo family is

often named basic-foo.

A mixin flavor is a flavor that defines one particular feature of an object. A mixin

cannot be instantiated, because it is not a complete description. Each module or

feature of a program is defined as a separate mixin. You construct usable flavors

by choosing the mixins for the desired characteristics and combining them with

the base flavor. A mixin flavor that provides the mumble feature is often named

mumble-mixin.

An instantiatable flavor combines several mixins with a base flavor to produce de-

sired behavior. It is a complete description that can be used with make-instance.

By organizing your flavors this way, you keep separate features in separate flavors,

and you can pick and choose among them. Sometimes the order of combining mix-

ins does not matter, but often it does, because the order of flavor components con-

trols the order in which methods are combined. Order dependencies should be doc-

umented as part of the conventions of the appropriate family of flavors.

You can follow these conventions by naming the basic flavors and mixin flavors as

suggested, and using defflavor to define usable flavors composed of a handful of

mixins and the basic flavor. defflavor also offers several options that can help or-

ganize flavor families:

• :abstract-flavor specifies that a flavor cannot be instantiated.

• :component-order states explicitly the order restrictions you want imposed on

component flavors. When many mixins are combined together, the normal order-

ing constraints can cause conflicts that make it impossible to compute a total

ordering of flavor components. If you know that several of the components

should have ordering constraints but that others need not, you can relax the or-

dering restrictions by using :component-order.

• :documentation lets you document the organization of the flavor family.

Page 566

• :mixture lets you write a framework with rules that define a flavor family. This

is a more structured way to organize a flavor family.

• :required-methods, :required-instance-variables, and :required-flavors let you

explicitly state the requirements of flavors that are to be instantiated.

Example of Programming with Flavors: Life

This section contains an annotated program that illustrates several principles of

using Flavors. (This code is in sys:examples;flavor-life.lisp.) Because Flavors is

intended to help organize large, complex programs, it is difficult to exercise all (or

even most) of the features of Flavors in a small demonstration program. However,

this program does illustrate the following aspects of Flavors:

• Using defflavor, defgeneric, defmethod, and make-instance

• Writing a method for make-instance

• Constructing a flavor from component flavors

• Using :and type of method combination

• Integrating flavors with other Lisp data structures (arrays)

• Using message-passing (send) when necessary to use old interfaces�

We will develop a program that plays the game of "Life." Life simulates a commu-

nity of beings called cells. The rules of Life indicate whether a given cell will live

or die in the next generation, depending on its environment. If the cell is too

crowded by its neighbors, or too isolated from other cells, it dies. Otherwise the

environment is deemed acceptable, and the cell lives. Specifically:

• If an empty cell has exactly 3 live neighbors, a cell is born there.

• If an empty cell has any other number of live neighbors, no cell is born.

• If a live cell has 2 or 3 live neighbors, it stays alive.

• If a live cell has any other number of live neighbors, it dies.�

Some implementations of Life have a finite but unbounded domain, by treating a

cell that lives on the edge of the domain as a neighbor of the corresponding cell

on the other edge of the domain. For the purpose of this example we have a sim-

pler version of Life, characterized by the following statements:

• Cells live in a two-dimensional array.

• A cell typically has eight neighbors, those adjacent to it.

• Cells on the border of the array have less than eight neighbors.

Note that this example program is intended to illustrate Flavors, and is not at-

tempting to run Life in the fastest possible way.

Page 567

Organizing the Program

Three flavors are used to represent the Life cells: cell, box, and box-with-cell.

The cell flavor is flexible enough that you could use it in another program that

uses a different type of display. The box flavor is used to display the Life game-

board on the screen. box-with-cell combines those two flavors.

The following illustration shows the Life gameboard implemented by this program.

In this illustration, the variable *number-boxes-on-axis* is 3; that is, the Life

game is played on a 3 by 3 array. (In the program below, *number-boxes-on-axis*

is much larger than 3.) Each instance of box-with-cell is a unit of the Life game,

and displayed in each generation. To make it easier to compute live neighbors of

each box-with-cell, we have an invisible border composed of instances of cell (all

dead). This way, each box-with-cell has eight neighbors. The border cells are not

displayed. Only the inner part of the gameboard is displayed for the user.

 Life Gameboard

 +--------+-------+-------+-------+-------+

 | dead | dead | dead | dead | dead |

 | cell | cell | cell | cell | cell |

 +--------+-------+-------+-------+-------+

 | dead | box- | box- | box- | dead |

 | cell | with- | with- | with- | cell |

 | | cell | cell | cell | |

 +--------+-------+-------+-------+-------+

 | dead | box- | box- | box- | dead |

 | cell | with- | with- | with- | cell |

 | | cell | cell | cell | |

 +--------+-------+-------+-------+-------+

 | dead | box- | box- | box- | dead |

 | cell | with- | with- | with- | cell |

 | | cell | cell | cell | |

 +--------+-------+-------+-------+-------+

 | dead | dead | dead | dead | dead |

 | cell | cell | cell | cell | cell |

 +--------+-------+-------+-------+-------+�

Defining Variables Used in the Program

The program begins by defining and initializing special variables:

;;; This array is used for storing cells and box-with-cells.

(defvar *game-board* nil

 "array for the Life game.")

(defvar *number-boxes-on-axis* 30

 "number of boxes on each axis of gameboard")

;;; This window is used for displaying the *game-board*.

Page 568

(defvar *game-window* (tv:make-window ’tv:window

 :blinker-p nil

 :label "Game of Life")

 "Window for display.")

;;; The following numbers make a nice display:

(defvar *x-top-left-corner* 250

 "x coordinate of top left corner of display")

(defvar *y-top-left-corner* 100

 "y coordinate of top left corner of display")

(defvar *side-length* 15

 "length of each box for display")

(defvar *board-length* (* *side-length* *number-boxes-on-axis*)

 "length of gameboard for display")

(defvar *cell-radius* 6

 "radius of circle to draw live cells")�

Defining the Flavors

;;; A cell is a functional cell of the Life game. It stores

;;; its status and next-status (:alive or :dead), and a list of

;;; its neighbors. The x and y instance variables give the

;;; coordinates of this cell in the array *game-board*.

(defflavor cell (x y status next-status neighbors) ()

 (:initable-instance-variables x y status))

;;; A box is intended only to be displayed on the screen.

;;; box-x and box-y are the coordinates of its top-left corner.

;;; side-length is the length of one side of the box.

(defflavor box (box-x box-y box-x-center box-y-center side-length)

 ()

 (:initable-instance-variables box-x box-y side-length))

;;; A box-with-cell is a box that contains a functional Life cell.

;;; The cell component provides the necessary methods for playing Life.

;;; The box component makes it easy to display the game-board.

;;; box-with-cell has default initial values for our game.

(defflavor box-with-cell () ;no instance vars

 (box cell) ;two components

 (:default-init-plist :side-length *side-length*

 :status (if (evenp (random 2)) ’:alive ’:dead))

 (:required-methods aliveness count-live-neighbors

 get-next-status change-status

 draw-outline))�

Page 569

Defining the Generic Functions

Now we define the generic functions. The argument cell-unit implies that the

generic function can be used on instances of cell or any flavor built on cell, such

as box-with-cell. Similarly, the argument box-unit implies that the generic function

draw-outline can be used on instances of box or box-with-cell. We use the

defgeneric forms as the appropriate place to document the contract of the generic

function. (One additional generic function, change-status, is defined later on in

this section.)

(defgeneric aliveness (cell-unit)

 "Returns 1 if the cell-unit is currently alive, 0 otherwise.")

(defgeneric find-neighbors (cell-unit)

 "Calculates and stores the 8 neighbors of a cell-unit.")

(defgeneric count-live-neighbors (cell-unit)

 "Returns the number of live neighbors of a cell-unit.")

(defgeneric get-next-status (cell-unit)

 "Applies rules of the Life game, using count-live-neighbors.

 If overcrowded or too isolated, this cell-unit dies.

 If the environment is fine, this cell-unit lives.

 The result is remembered by the cell-unit."

(defgeneric draw-outline (box-unit)

 "Draws the outline of the given box-unit.")

(defgeneric draw-contents (box-with-cell)

 "Draws the cell contained in a box-with-cell.

 Live cells appear as filled-in circles; dead cells are invisible.")�

Defining the Methods

We now define the methods that implement the generic functions on instances of

cell and box. These methods are inherited by box-with-cell. Notice that the meth-

ods for draw-outline and draw-contents use message-passing to invoke methods

associated with the window system. There is no difficulty in writing programs that

use both generic functions and message-passing. (The methods for change-status

are defined later on in this section).

;;; aliveness returns 1 if cell is alive, 0 otherwise

(defmethod (aliveness cell) ()

 (if (eq status ’:alive) 1 0))

;;; the neighbors of a cell are its 8 adjacent cells

;;; because there is a border of dead cells, in this implementation

;;; every box-with-cell has 8 neighbors.

Page 570

(defmethod (find-neighbors cell) ()

 (setq neighbors (list

 (aref *game-board* x (1- y))

 (aref *game-board* x (1+ y))

 (aref *game-board* (1- x) y)

 (aref *game-board* (1+ x) y)

 (aref *game-board* (1- x) (1- y))

 (aref *game-board* (1- x) (1+ y))

 (aref *game-board* (1+ x) (1- y))

 (aref *game-board* (1+ x) (1+ y)))))

(defmethod (count-live-neighbors cell) ()

 (reduce #’+ (map ’list #’aliveness neighbors)))

(defmethod (get-next-status cell) ()

 (let ((number-live-neighbors (count-live-neighbors self)))

 (setq next-status

 (cond ((eq ’:dead status) ;empty cell

 (if (= number-live-neighbors 3)

 ’:alive

 ’:dead))

(t ;live cell

 (if (or (= number-live-neighbors 2)

 (= number-live-neighbors 3))

 ’:alive

 ’:dead))))))

;;; draw-outline uses message-passing (send function)

;;; to invoke the :draw-line method

(defmethod (draw-outline box) ()

 (send *game-window* :draw-line

box-x box-y

(+ box-x side-length) box-y)

 (send *game-window* :draw-line

box-x box-y

 box-x (+ box-y side-length))

 (send *game-window* :draw-line

(+ box-x side-length) box-y

(+ box-x side-length) (+ box-y side-length))

 (send *game-window* :draw-line

box-x (+ box-y side-length)

(+ box-x side-length) (+ box-y side-length)))

(defmethod (draw-contents box-with-cell) ()

 (if (= (aliveness self) 1)

 ;; draw a circle to represent an alive cell

Page 571

 (send *standard-output* :draw-filled-in-circle

 box-x-center box-y-center *cell-radius*)

 ;; erase a circle if the cell is dead

 (send *standard-output* :draw-filled-in-circle

 box-x-center box-y-center *cell-radius* tv:alu-andca)))

�

Using :and Method Combination

change-status illustrates the use of :and method combination. The generic func-

tion change-status has two methods written for it: one method implements

change-status on instances of cell; the other method implements change-status

on instances of box-with-cell. Because the :and type of method combination is

specified in the defgeneric form, the handler for instances of box-with-cell is a

combined method. The combined method first executes the method for cell (since

:most-specific-last order is used). If that method returns non-nil, the method for

box-with-cell is executed. This enables us to redisplay the contents of the cell only

if necessary; that is, only if the status of the cell has changed.

(defgeneric change-status (cell-unit)

 "When applied to a cell, updates it to next-status.

 When applied to a box-with-cell, checks to see if

 the status changed. If so, redisplays the contents."

 (:method-combination :and :most-specific-last))

;;; The following method is inherited by box-with-cell,

;;; combined with the :and type of method combination.

;;; The return value is important because it determines

;;; whether or not the box-with-cell needs to be redisplayed:

(defmethod (change-status cell) ()

 (if (eq status next-status)

 nil ;returns nil if no change

 (setq status next-status))) ;returns non-nil if status changed

(defmethod (change-status box-with-cell) ()

 (draw-contents self))

;;;Note that the combined method for change-status of a box-with-cell

;;;looks like this:

;;; (and (method for cell)

;;; (method for box-with-cell))�

Writing a Method for make-instance

We now write a method for make-instance of box-with-cell. This method is run

every time a new instance of box-with-cell is made. It does some further initializa-

tion of the new instance, depending on the fact that the instance variables box-x

and box-y are initialized.

Page 572

(defmethod (make-instance box-with-cell) (&rest ignore)

 (setq box-x-center (round (+ box-x (* .5 *side-length*))))

 (setq box-y-center (round (+ box-y (* .5 *side-length*)))))�

Using Flavors in Conjunction with an Array

Now that we have defined the flavors, generic functions, and methods for Life, we

need only put the pieces together to complete the program:

;;; play-life-game is the top-level function that plays the Life game.

(defun play-life-game (&optional (generations 3))

 (set-up-game-board) ;initialize gameboard

 (iterate-game-board #’find-neighbors)

 (iterate-game-board #’draw-outline) ;display gameboard grid

 (iterate-game-board #’draw-contents) ;display initial set-up

 (loop for i from 1 to generations

do

 (iterate-game-board #’get-next-status) ;compute next-status

 (iterate-game-board #’change-status))) ;update status & display

;;; *game-board* is a 2-dimensional array:

;;; outer border contains dead cells (easier to compute live neighbors)

;;; outer border is not displayed

;;; inner part contains box-with-cells (dead or alive by random)

(defun set-up-game-board ()

 (setq *game-board* (make-array (list (+ *number-boxes-on-axis* 2)

 (+ *number-boxes-on-axis* 2))))

 ;; initialize the border with dead cells

 (loop for x-pos from 0 to (1+ *number-boxes-on-axis*)

do

 (setf (aref *game-board* x-pos 0)

 (make-instance ’cell :status ’:dead))

 (setf (aref *game-board* x-pos (1+ *number-boxes-on-axis*))

 (make-instance ’cell :status ’:dead)))

 (loop for y-pos from 0 to (1+ *number-boxes-on-axis*)

do

 (setf (aref *game-board* 0 y-pos)

 (make-instance ’cell :status ’:dead))

 (setf (aref *game-board* (1+ *number-boxes-on-axis*) y-pos)

 (make-instance ’cell :status ’:dead)))

 ;; now initialize the inner part of the array with box-with-cells

 (loop for x-pos from 1 to *number-boxes-on-axis* ;inner part

 for x-offset from 0 by *side-length*

do

Page 573

 (loop for y-pos from 1 to *number-boxes-on-axis*

 for y-offset from 0 by *side-length*

 do

 ;; fill up with box-with-cells

 (setf (aref *game-board* x-pos y-pos)

 (make-instance ’box-with-cell

 :x x-pos

 :y y-pos

 :box-x (+ *x-top-left-corner* x-offset)

 :box-y (+ *y-top-left-corner* y-offset))))))

;;; iterate-game-board accesses the inner part of *game-board* and

;;; applies operation to each box-with-cell. Any operation that can be

;;; used on a single cell or box-with-cell can be used. For example:

;;; draw-outline, draw-contents, get-next-status, change-status

(defun iterate-game-board (operation)

 (loop for y from 1 to *number-boxes-on-axis*

do ;inner part of *game-board*

 (loop for x from 1 to *number-boxes-on-axis*

 do

 (funcall operation (aref *game-board* x y)))))�

Compiling Flavor Methods

The last line in the file that contains this program is:

(compile-flavor-methods cell box box-with-cell)�

This causes the combined methods for the three flavors to be compiled at compile-

time, and the data structures to be built at load-time, rather than both happening

at run-time. This speeds up the program considerably the first time it is run.

Flavors Tools

Flavors stores a lot of information about defined flavors, generic functions, and

methods in its internal framework. Flavors tools are designed to give you access to

that information in a form useful for program development and debugging.

The tools are divided into three groups:

• Show Flavor Commands

The Show Flavor commands provide a variety of powerful tools for developing,

debugging, and understanding Flavors-based programs. You can use these com-

mands in the command processor, the editor, and the Flavor Examiner. In a dy-

namic window, you can also specify them using the mouse. Click Right on a dis-

played instance, flavor name, generic function name, or method name for a

menu of Show Flavor commands.

Page 574

• Zmacs Commands for Flavors

These Zmacs commands help you deal with issues that come up when you are

editing definitions of flavors, methods, and generic functions. These commands

are available only in the editor.

• The Flavor Examiner

This is an environment for using the Show Flavor commands. Use SELECT X for

the Flavor Examiner. �

Summary of Show Flavor Commands

Genera provides the following tools for analyzing Flavors-based programs:

Show Flavor Components flavor keywords...

Answers: What is the order of flavor components, and why did the system

pick that order?

Show Flavor Dependents flavor keywords...

Answers: What flavors inherit from this one?

Show Flavor Differences flavor-1 flavor-2 keywords...

Answers: What are the differences between two flavors?

Show Flavor Functions flavor keywords

Answers: What internal flavor functions are defined for this flavor?

Show Flavor Handler operation flavor keywords...

Answers: When an operation (generic function or message) is applied to an

instance of a given flavor, what methods implement the operation? What

method combination type is used? What is the order of methods in the

handler?

Show Flavor Initializations flavor keywords...

Answers: How are new instances of this flavor initialized?

Show Flavor Instance Variables flavor keywords...

Answers: What state is maintained by instances of this flavor?

Show Flavor Methods flavor keywords...

Answers: What methods are defined for this flavor, or inherited from its

component flavors?

Show Flavor Operations flavor keywords...

Answers: What operations (generic functions and messages) are supported

by instances of this flavor?

Show Generic Function operation keywords...

Answers: What are the general characteristics of this generic function or

message? What flavors provide a method for it? What methods are imple-

mented for it?�

Page 575

These commands accept keywords that modify their behavior. Keyword options are

available to request information in brief form, in detailed form, sorted by flavor,

and so on. See the section "Keyword Options for Show Flavor Commands".

For details of each of these commands, and examples, see the section "Show Flavor

Commands".

Entering Input for Show Flavor Commands

The Show Flavor commands are integrated with the Dynamic Lisp Listener envi-

ronment.

To give a Show Flavor command you can:

• Type the name of the command in the command processor. Completion is offered

for the command names.

• Highlight a flavor, instance, generic function, or method with the mouse. Now

when you click Right, a menu of Show Flavor commands appears.�

To enter arguments to the commands you can:

• Type the desired argument. Completion is supported. You can include or omit

any package prefixes.

• Point with the mouse to the desired object on the screen (such as a flavor,

generic function, or method) and click Left. �

Note that input you have typed (such as a flavor name) is not mouse-sensitive.

The output of a previous Show Flavor command is mouse-sensitive.

Output of Show Flavor Commands

The output of Show Flavor commands is mouse-sensitive. Sometimes the output is

abbreviated. For example, a method might be represented by the name of the fla-

vor that provides it. Even when the representation of the method is abbreviated,

the method is mouse-sensitive.

You can use the output by clicking Left on the representation of an object to enter

it as input to another Show Flavor command, or clicking Right to get a menu of

commands. This way you can use the output of previous commands to continue to

explore the universe of defined flavors.

Keyword Options for Show Flavor Commands

This section gives a general description of the keyword options accepted by most

Show Flavor commands. Some of the keywords have a different meaning for each

command. The documentation on the individual commands states which keywords

are accepted, and describes the meaning of the keywords for that command (if they

differ from the meaning described here).

Page 576

Altering the Output Format

:sort {alphabetical, flavor} Indicates how to sort the display. Alpha-

betical means the output is sorted alphabetically, ignoring

package prefixes. For example, the output of Show Flavor

Methods is sorted alphabetically by generic function name. Al-

phabetical is the default. If flavor is specified, the output is

sorted according to the order of flavor components. �

Restricting the Output

:brief {yes, no} If yes, requests a brief answer to the question asked.

The exact meaning of :brief varies for each command.

:locally {yes, no} If yes, specifies that inherited characteristics are not

to be shown.

:match {string} Requests only those things (flavors, methods, generics,

or whatever was requested) that match this substring. If string

is omitted, requests all of them. :match has a different mean-

ing for each command. This option lets you pare down the out-

put.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

Requesting Additional Output

:detailed {yes, no} If yes, requests a detailed answer to the question

asked. The exact meaning of :detailed varies for each com-

mand.

:functions {string} Requests internal functions to flavors that match this

substring. If string is omitted, requests all of them. If the key-

word itself is not supplied, no internal functions are requested.

:initializations {string} Requests initializations that match this substring. If

string is omitted, requests all of them. If the keyword itself is

not supplied, no initializations are requested.

:instance variables {string} Requests instance variables that match this substring.

If string is omitted, requests all of them. If the keyword itself

is not supplied, no instance variables are requested.

Page 577

:methods {string} Requests methods for generics that match this sub-

string. If string is omitted, requests all of them. If the keyword

itself is not supplied, no methods are requested. �

Redirecting the Output

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window} En-

ables you to direct your output. The default is the stream

standard-output. Note that redirecting output to a printer

can be particularly useful.

Show Flavor Commands

The following commands show attributes of a flavor, generic function, method, or

handler. Only those keywords that are specific to each command (or have a differ-

ent meaning for each command) are explained in the command descriptions. For

an explanation of any keywords not covered in the command descriptions, see the

section "Keyword Options for Show Flavor Commands".

Show Flavor Components Command

Show Flavor Components flavor keywords�

Shows the order of the components of this flavor.

keywords :Brief, :Detailed, :Duplicates, :Functions, :Initializations, :In-

stance Variables, :Match, :Methods, and :Output Destination.

See the section "Keyword Options for Show Flavor Commands".�

:Duplicates {Yes, No} Indicates whether or not to display duplicate occur-

rences of flavors. The default is No.

:Brief {Yes, No} Yes indicates that the output should not be indented

to show the structure. The default is No. �

The flavor components are ordered from top to bottom. The top flavor is the most

specific flavor in the ordering. The indentation graphically represents which flavors

are components of which other flavors. In the example below, tv:minimum-window

has six direct components: tv:essential-expose, tv:essential-activate, tv:essential-

set-edges, tv:essential-mouse, tv:essential-window, and flavor:vanilla.

When you use the :duplicates keyword and show the components of complex fla-

vors, you notice special symbols in the display. For example:

Page 578

Command: Show Flavor Components TV:MINIMUM-WINDOW :Duplicates

 --> TV:MINIMUM-WINDOW

 TV:ESSENTIAL-EXPOSE

 [TV:ESSENTIAL-WINDOW] ↓

 TV:ESSENTIAL-ACTIVATE

 [TV:ESSENTIAL-WINDOW] ↓

 TV:ESSENTIAL-SET-EDGES

 [TV:ESSENTIAL-WINDOW] ↓

 TV:ESSENTIAL-MOUSE

 TV:ESSENTIAL-WINDOW

 TV:SHEET

 SI:OUTPUT-STREAM

 SI:STREAM

 FLAVOR:VANILLA�

Bracketed flavors are duplicates that are included by the parent flavor here, but

are not ordered in this position because of some ordering constraint. They appear

in another place in the display without brackets, in their correct order. All brack-

eted components have an arrow beside them. A down-arrow indicates that this

component’s position in the ordering is later in the display. An up-arrow indicates

that this component’s position in the ordering is earlier in the display; these oc-

currences are infrequent.

For example, the flavor tv:essential-window is a component of four other compo-

nents: tv:essential-expose, tv:essential-activate, tv:essential-set-edges, and

tv:minimum-window itself. Its correct position in the ordering is directly after

tv:essential-mouse, where it appears without brackets.

You can read the order of flavor components by reading all unbracketed flavors

from top to bottom, ignoring punctuation. If :Duplicates is No, this is all that is

displayed.

For information on how the order is determined, see the section "Ordering Flavor

Components".

� Show Flavor Dependents Command

Show Flavor Dependents flavor keywords�

Shows the names of flavors that are dependent on this flavor.

keywords :Brief, :Detailed, :Duplicates, :Functions, :Initializations, :In-

stance Variables, :Levels, :Match, :Methods, :Output Destina-

tion. See the section "Keyword Options for Show Flavor Com-

mands".�

:Brief {Yes, No} Yes indicates that the output should not be indented

to show the structure. The default is No.

Page 579

:Duplicates {Yes, No} Indicates whether or not to display duplicate occur-

rences of flavors. The default is No.

:Levels {All, integer} Specifies how many levels of indirect dependency

to display. The default is all, which shows all levels. For some

flavors the output can be voluminous, and it is helpful to use

:Levels to pare it down. �

A dependent flavor is a flavor that uses this flavor as a component (directly or

indirectly). This is useful in program development or debugging, to answer the

question "What flavors will be affected if I change the definition of this flavor?"

For example:

Command: Show Flavor Dependents TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT

 --> TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT

 TV:BASIC-PEEK

 TV:PEEK-PANE

 TV:BASIC-TREE-SCROLL

 LMFS:AFSE-MIXIN

 LMFS:FSMAINT-AFSE-PANE

 LMFS:FSMAINT-HIERED-PANE

 TV:MOUSABLE-TREE-SCROLL-MIXIN

 TV:TREE-SCROLL-WINDOW�

The output is indented to clarify which flavor is built on which component flavors.

The structure of the output is the inverse of the output of Show Flavor Compo-

nents. In this example, tv:basic-peek is a direct dependent of tv:scroll-window-

with-dynamic-typeout, and tv:peek-pane is a direct dependent of tv:basic-peek.

� Show Flavor Differences Command

Show Flavor Differences flavor1 flavor2 keywords�

Shows the characteristics that two flavors have in common, and the characteristics

in which they differ.

keywords :Match, :More Processing, :Output Destination. See the section

"Keyword Options for Show Flavor Commands".�

:Match {string} Displays only those generic functions or messages that

match the given substring.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

Page 580

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

This is most useful for two flavors that share many characteristics. Here is some

sample output:

Command: Show Flavor Differences TV:ESSENTIAL-WINDOW TV:MINIMUM-WINDOW

 --> TV:ESSENTIAL-WINDOW and TV:MINIMUM-WINDOW have

 common components:

 flavors...

 TV:MINIMUM-WINDOW has other components:

 flavors...

�

 Differences in :ACTIVATE methods from TV:ESSENTIAL-WINDOW

 to TV:MINIMUM-WINDOW

 TV:SHEET before, primary,

 TV:ESSENTIAL-ACTIVATE after [added]

�

 Differences in handling of :BURY

 Flavor TV:ESSENTIAL-WINDOW does not handle :BURY

 Methods of TV:MINIMUM-WINDOW:

 TV:ESSENTIAL-EXPOSE wrapper, TV:ESSENTIAL-ACTIVATE

 more differences...�

First, the common components are displayed. Second, the extra components of ei-

ther (or both) flavors are displayed. Third, any differences in handling of generic

functions are displayed.

In this example, tv:minimum-window has one method for :activate that

tv:essential-window does not have: an :after method provided by flavor

tv:essential-activate. The term [added] indicates that this method is defined for

the second flavor but not for the first flavor. If the command had been given such

that flavor-1 was tv:minimum-window and flavor-2 was tv:essential-window, the

term would have been [deleted]. To interpret which flavor "adds" or "deletes" a

method, look at the line that defines the perspective: "Differences in :ACTIVATE

methods from TV:ESSENTIAL-WINDOW to TV:MINIMUM-WINDOW".

When comparing two complex flavors, the output can be voluminous. You can use

:Match to pare down the output so it answers a specific question. For example:

Page 581

Command: Show Flavor Differences DYNAMIC-LISP-LISTENER SHEET :Match

 screen

 --> information about common and different components...

 Difference in handling of :FULL-SCREEN

 Method of DW::DYNAMIC-LISP-LISTENER: TV:ESSENTIAL-SET-EDGES

 Flavor TV:SHEET does not handle generic operation :FULL-SCREEN

 another difference...

 5 local functions found with no differences:

 TV:SCREEN-MANAGE-RESTORE-AREA

 TV:SCREEN-MANAGE-CLEAR-AREA

 TV:SCREEN-MANAGE-CLEAR-UNCOVERED-AREA

 TV:SCREEN-MANAGE-CLEAR-RECTANGLE

 TV:SCREEN-MANAGE-MAYBE-BLT-RECTANGLE

�

 15 differing local functions were found that did not

 contain the substring "screen".�

� Show Flavor Functions Command

Show Flavor Functions flavor keywords�

Shows internal flavor functions for the given flavor.

keywords :Locally, :Match, :Output Destination, and :Sort. See the sec-

tion "Keyword Options for Show Flavor Commands".�

:Locally {Yes, No} If yes, inherited internal flavor functions are not

shown. The default is no, which shows all internal flavor func-

tions defined for this flavor or inherited by this flavor.

:Match {string} Displays only those internal functions that match the

given substring. �

Internal flavor functions are defined by defun-in-flavor, defmacro-in-flavor, and

defsubst-in-flavor. See the section "Defining Functions Internal to Flavors".

Command: Show Flavor Functions TV:WINDOW

 --> TV:ADJUST-MARGINS

 SI:ANY-TYI-CHECK-EOF

 SI:ASSURE-INSIDE-INPUT-EDITOR

 others...�

� Show Flavor Handler Command

Show Flavor Handler operation flavor keywords�

Page 582

Provides information on the handler that performs operation (which can be a

generic function or a message) on instances of flavor.

keywords :Code and :Output Destination. See the section "Keyword Op-

tions for Show Flavor Commands".�

:Code {Yes, No, Detailed} Specifies whether the Lisp code of the han-

dler should be displayed. The default is No. Yes displays a tem-

plate that resembles the actual code of the handler. Detailed

displays the actual code of the handler. This displays some in-

ternal functions and data structures of the Flavors system. For

most purposes, Yes is more useful than detailed. �

If the handler is a single method (not a combined method), its function spec is

given:

Command: Show Flavor Handler CHANGE-STATUS CELL

 --> The handler for CHANGE-STATUS of an instance of CELL is

 the method (FLAVOR:METHOD CHANGE-STATUS CELL).

 The method-combination type is :AND :MOST-SPECIFIC-LAST.�

If the handler is a combined method, the method combination type and order of

methods are displayed. In the following example, the methods used in the com-

bined method are represented by the names of the flavors that implement them.

Even in this abbreviated format, the representation of the method is mouse-

sensitive.

Command: Show Flavor Handler CHANGE-STATUS BOX-WITH-CELL

 --> The handler for CHANGE-STATUS of an instance of

 BOX-WITH-CELL is a combined method, with

 method-combination type :AND :MOST-SPECIFIC-LAST.

 The methods in the combined method, in order of

 execution, are: CELL, BOX-WITH-CELL�

For combined methods, :Code Yes is useful. It requests a template that resembles

the actual code of the handler:

Command: Show Flavor Handler CHANGE-STATUS BOX-WITH-CELL :Code yes

 --> The handler for CHANGE-STATUS of an instance of

 BOX-WITH-CELL is a combined method, with

 method-combination type :AND :MOST-SPECIFIC-LAST.

 (DEFUN (FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)

 (SELF SYS:SELF-MAPPING-TABLE FLAVOR::.GENERIC.

 &REST FLAVOR::DAEMON-CALLER-ARGS.)

 (AND call (FLAVOR:METHOD CHANGE-STATUS CELL)

 call (FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL)))�

� Show Flavor Initializations Command

Show Flavor Initializations flavor keywords�

Page 583

Shows the initialization keywords accepted by make-instance of this flavor, and

any default initial values.

keywords :Detailed, :Locally, :Match, :Sort, and :Output Destination. See

the section "Keyword Options for Show Flavor Commands".�

:Detailed {Yes, No} The default is No, which requests the allowed ini-

tialization keywords that can be given to make-instance of

this flavor, including init keywords and initable instance vari-

ables. If :Detailed is Yes, any additional instance variables are

also shown; these are not initable instance variables. They are

initialized by default values given in the defflavor form. Also,

any initialization methods are shown. In other words, when

:Detailed is No, you see the initializations from an external

perspective (useful for making an instance). When :Detailed is

Yes, you see the initializations from an internal perspective

and gain information about how the flavor is constructed in-

ternally.

:Locally {Yes, No} If Yes, inherited initializations are not shown. The

default is No, which requests all initializations defined for this

flavor or inherited by this flavor.

:Match {string} Requests only those initializations matching the given

substring.�

For example:

Command: Show Flavor Initializations BOX-WITH-CELL :Detailed

 --> Instances of BOX-WITH-CELL are created in the default area

 Another area can be specified with the keyword :AREA

 Initialization keywords that initialize

 instance variables:

 :BOX-X → BOX-X

 :BOX-Y → BOX-Y

 :SIDE-LENGTH → SIDE-LENGTH, default is *SIDE-LENGTH*

 :STATUS → STATUS, default is (IF (EVENP (RANDOM 2))

 ’:ALIVE ’:DEAD)

 :X → X

 :Y → Y

 Initialization method:

 MAKE-INSTANCE method: BOX-WITH-CELL�

� Show Flavor Instance Variables Command

Show Flavor Instance Variables flavor keywords�

Shows the state maintained by instances of the given flavor.

Page 584

keywords :Detailed, :Locally, :Match, :Output Destination and :Sort. See

the section "Keyword Options for Show Flavor Commands".�

:Detailed {Yes, No} If Yes, the attributes of the instance variables are

shown, such as their accessibility or initializations. The default

is No.

:Locally {Yes, No} If Yes, inherited instance variables are not shown.

The default is No, which shows all instance variables defined

for this flavor or inherited by this flavor.

:Sort {Alphabetical, Flavor} If Flavor, each instance variable is dis-

played along with the component flavor that provides it. The

default is Alphabetical. �

For example:

Command: Show Flavor Instance Variables CELL

 --> NEIGHBORS

 NEXT-STATUS

 STATUS

 X

 Y�

� Show Flavor Methods Command

Show Flavor Methods flavor�

Displays all methods defined for the given flavor.

Keywords :Locally, :Match, :Output Destination, :Sort, and :Using In-

stance Variables. See the section "Keyword Options for Show

Flavor Commands".

:Locally {Yes, No} If Yes, inherited methods are not shown. The default

is No, which shows all methods defined for this flavor or in-

herited by this flavor.

:Match {string} Requests only those methods for generic functions that

match the given string.

:Using Instance Variable

{name} Requests only those methods that use the instance

variable named name. �

Each line of output contains the name of the generic function, followed by the

name of each flavor that provides a method for the generic function. If the method

is not a primary method, its type is also displayed.

Page 585

Command: Show Flavor Methods BOX-WITH-CELL

 --> ALIVENESS method: CELL

 CHANGE-STATUS methods: CELL, BOX-WITH-CELL

 COUNT-LIVE-NEIGHBORS method: CELL

 :DESCRIBE method: FLAVOR:VANILLA

 others...�

This command is similar to Show Flavor Operations. See the section "Show Flavor

Operations Command". The difference between the two commands is in the per-

spective:

Show Flavor Methods displays information from an internal perspective, answering

the question: What methods are defined for this flavor, or inherited from its com-

ponent flavors?

Show Flavor Operations displays information from an external perspective, answer-

ing the question: What operations (generic functions and messages) are supported

by instances of this flavor?

� Show Flavor Operations Command

Show Flavor Operations flavor keywords�

Shows all operations supported by instances of the given flavor, including generic

functions and messages.

keywords :Detailed, :Match, and :Output Destination. See the section

"Keyword Options for Show Flavor Commands".�

:Detailed {Yes, No} If Yes, the display shows the arguments of each op-

eration. The default is No.

:Match {string} Shows only those operations matching the given sub-

string. �

For example:

Command: Show Flavor Operations BOX-WITH-CELL

 --> ALIVENESS

 CHANGE-STATUS

 COUNT-LIVE-NEIGHBORS

 :DESCRIBE

 MAKE-INSTANCE

 SYS:PRINT-SELF (:PRINT-SELF)

 others...�

One of the operations can be performed by using the generic function sys:print-

self or sending the message :print-self. This operation was defined with

defgeneric, using the :compatible-message option.

This command is similar to Show Flavor Methods. See the section "Show Flavor

Methods Command". The difference between the two commands is in the perspec-

tive:

Page 586

Show Flavor Operations displays information from an external perspective, answer-

ing the question: What operations (generic functions and messages) are supported

by instances of this flavor?

Show Flavor Methods displays information from an internal perspective, answering

the question: What methods are defined for this flavor, or inherited from its com-

ponent flavors?

� Show Generic Function Command

Show Generic Function operation keywords�

Shows information on the given operation, which can be a generic function or

message.

keywords :Flavors, :Methods and :Output Destination. See the section

"Keyword Options for Show Flavor Commands".�

:Methods {Yes, No} Yes displays all methods for the generic function,

and their types.

:Flavors {Yes, No} Yes displays the flavors that implement methods for

the generic function. �

For example:

Command: Show Generic Function CHANGE-STATUS

 --> Generic function CHANGE-STATUS takes arguments: (CELL-UNIT)

 This is an explicit DEFGENERIC in file SYS:EXAMPLES;FLAVOR-LIFE.

 Method-combination type is :AND :MOST-SPECIFIC-LAST.�

Summary of Zmacs Commands for Flavors, Generic Functions, and Methods

This section lists the Zmacs commands that are related to flavors, generic func-

tions and methods. In many cases the name of the command (and the use of the

HELP key) is enough to begin using the command. The details of these commands

are described elsewhere in the documentation.

Any tools that give information on ordinary functions can be applied to generic

functions. The Zmacs commands listed below work for generic functions. See the

section "Finding Out About Existing Code".

Quick Arglist c-sh-A

Show Documentation m-sh-D

Long Documentation c-sh-D

Function Apropos (m-X)

List Callers (m-X)

Multiple List Callers (m-X)

Edit Callers (m-X)

Multiple Edit Callers (m-X)�

Page 587

For documentation of the following Zmacs commands,see the section "Zmacs Com-

mands for Flavors, Generic Functions, and Methods".

Edit Definition m-.

Show Effect of Definition (m-X)

Show Documentation Flavor m-sh-F

Quick Show Flavor Init Keywords and Documentation c-sh-F

Kill Definition (m-X)

Cleanup Flavor (m-X)

Add Patch Cleanup Flavor (m-X)

Insert Cleanup Flavor Forms (m-X)

List Methods (m-X)

Edit Methods (m-X)

List Combined Methods (m-X)

Edit Combined Methods (m-X)�

The following Zmacs commands provide the same functionality as their command

processor counterparts. For documentation of the CP commands, see the section

"Show Flavor Commands".

There are two ways to enter the Zmacs Show Flavor commands: with or without a

numeric argument of c-U. To enter a numeric argument, press c-U m-X before the

command name. Without a numeric argument, you are prompted only for the re-

quired arguments. With a numeric argument, you are also prompted for keyword

options. See the section "Keyword Options for Show Flavor Commands".

Show Flavor Components (m-X)

Show Flavor Dependents (m-X) (see below)

Show Flavor Differences (m-X)

Show Flavor Functions (m-X)

Show Flavor Handler (m-X)

Show Flavor Initializations (m-X)

Show Flavor Instance Variables (m-X)

Show Flavor Methods (m-X)

Show Flavor Operations (m-X)

Show Generic Function (m-X)�

Show Flavor Dependents accepts numeric arguments other than c-U; the argument

specifies how many levels of indirection to display. If you enter m-2 m-X Show Fla-

vor Dependents, two levels of indirection are displayed.

Zmacs Commands for Flavors, Generic Functions, and Methods

Edit Definition m-.

This command is one of the most valuable tools of the system.

When you are developing or debugging programs, you can use

m-. to find the definition of an ordinary function, generic

function, flavor, method, variable, package, or other type of

definition. Completion is supported on the definition, if it is al-

ready in an editor buffer.

Page 588

m-. prompts for a definition to find. You can enter a large va-

riety of representations, and m-. figures out what definition

you are seeking. For example, you can enter symbols with or

without package prefixes.

You can provide any of the following responses to the m-.

prompt:

symbol Finds the definition of symbol, which can

be an ordinary function or generic function.

For generic functions, the defgeneric form

is found if one exists; all existing methods

are also found. symbol can also be one of:

variable, package, defstruct structure, fla-

vor, or other types of definitions.

(generic-function flavor)

Finds the definitions of one method that

implements generic-function on instances of

flavor and asks if you mean that method. If

not, it proceeds to find other methods, in-

cluding special-purpose methods such as

:before, :after, :default, and so on.

(symbol property) Finds the function named by function spec

(:property symbol property). This is a handy

abbreviation.

function-spec Finds the definitions of function-spec. For

example, you could enter (flavor:method

change-status cell) to find the method of

that function spec. Often it is more conve-

nient to enter the list (change-status cell)

instead.

When the requested Lisp object has multiple definitions, one of

them is displayed. You can then use c-U m-. to cycle through

the other definitions. Also, a list of all definitions and the files

they are located in is stored in a buffer called *Definitions-n*.

The position of the cursor in that buffer controls where c-U

m-. will go next.

You can also point at forms with the mouse, in a buffer or in

other windows, and click m-Left to edit the definition.

Show Effect of Definition (m-X)

� Predicts the effect of evaluating the current definition (the

definition the cursor is inside), or the current region, if a re-

gion is highlighted. defflavor, defmethod, defgeneric,

defwrapper, and defwhopper forms are understood, among

others.

Page 589

Note: If the current definition is a method already defined in

the world, this command predicts the effect of killing the defi-

nition of the method.

Show Documentation Flavor m-sh-F

� Displays the documentation from the online documentation set

for the current flavor. The current flavor is the flavor whose

name the cursor is on, or the flavor marked by a region if a

region is marked.

Quick Show Flavor Init Keywords and Documentation c-sh-F

� Displays the initialization keywords for the current flavor.

With a numeric argument, c-sh-F also shows the documenta-

tion string for the flavor.

Kill Definition (m-X)

� Removes the current definition from the editor buffer and the

world. If a patch is in progress, this also removes the defini-

tion from the world being patched. The current definition is

the definition that the cursor is inside, or the definition

marked by a region if a region is marked.

Cleanup Flavor (m-X)

� Prompts for a flavor name. It then removes from the world any

methods defined for that flavor that have been removed from

the editor buffer for the file where they were defined.

Add Patch Cleanup Flavor (m-X)

� Prompts for a flavor name. It then inserts fundefine forms in

the current patch for any methods defined for that flavor that

have been removed from the editor buffer for the file where

they were defined.

Insert Cleanup Flavor Forms (m-X)

� Prompts for a flavor name. It then inserts fundefine forms at

the current point in the buffer for any methods defined for

that flavor that have been removed from the editor buffer for

the file where they were defined.

List Methods (m-X)

Prompts you for a generic function name (or message name).

Lists the methods of all flavors that handle the generic func-

tion, in a mouse-sensitive display. To edit one of the methods,

click on its function spec in the display. Alternatively, you can

use c-. to edit a method. c-. cycles through the methods,

each time choosing the next method for you to edit.

Edit Methods (m-X)

Prompts you for a generic function name (or message name).

One of the definitions is found and pulled into an editor buffer.

c-. cycles through the methods, each time choosing the next

method for you to edit.

Page 590

If more than one definition is available, the list of definitions

and their source files is stored in a buffer *METHODS-n*.

List Combined Methods (m-X)

� Prompts for a generic function name, then for a flavor name.

It then lists the methods for the specified generic function

when applied to the specified flavor. This is a mouse-sensitive

display. To edit one of the methods, click on its function spec

in the display. Alternatively, you can use c-. to edit a method.

c-. cycles through the methods, each time choosing the next

method for you to edit.

Error messages appear if the flavor does not handle the gener-

ic function, or if the flavor requested is not a composed, in-

stantiated flavor.

List Combined Methods (m-X) can be useful for predicting what

a flavor will do in response to a generic function. It shows you

the primary method, the daemons, and the wrappers and lets

you see the code for all of them.

Edit Combined Methods (m-X)

� Asks you for a generic function name and a flavor name. This

command finds all the methods that are called if that generic

function is called on an instance of the given flavor. You can

point to the generic function and flavor with the mouse; com-

pletion is available for the flavor name. As in Edit Methods

(m-X), the command skips the display and proceeds directly to

the editing phase.

Flavor Examiner

The Flavor Examiner enables you to examine flavors, methods, generic functions,

and internal flavor functions defined in the Lisp environment. You can select the

Flavor Examiner with SELECT X, or with the Select Activity Flavor Examiner com-

mand.

The Flavor Examiner lets you use all of the Show Flavor commands, saving the

output in three history windows. Because much of the output is mouse-sensitive, it

is convenient to use the mouse to select a flavor, method, or generic function from

an output window to use as input to another Show Flavor command.

For a brief overview of the commands, see the section "Summary of Show Flavor

Commands".

For a comprehensive description of each Show Flavor command, see the section

"Show Flavor Commands".

Figure ! shows the initial window.

The Flavor Examiner window is divided into five panes.

Menu of Commands  the top-left pane

Page 591

Figure 21. Flavor Examiner Window�

�

The top-left pane offers a menu of flavor-related commands, such as Flavor Compo-

nents; this is the same as the Show Flavor Components command. You can choose

one of these commands by clicking Left or Right. Clicking Left makes the com-

mand appear in the Command Input Pane. Clicking Right makes the command ap-

pear and also displays the command’s arguments, in a form that you can edit.

The Help command displays documentation on the flavor-related commands. The

HELP key provides information on all the CP commands you can enter.

The Flavor Examiner offers two commands for clearing and refreshing the display.

The CLEAR DISPLAY command clears the display from the three output panes; it

first asks for confirmation. The REFRESH DISPLAY command displays the information

on the screen again.

When you click Left or Right on a command name, the command appears in the

Command Input Pane.

Command Input Pane  the bottom-left pane

The bottom-left pane is a command processor window. If you click on commands in

the Menu of Commands, the commands appear in this window. You can enter argu-

Page 592

ments (or commands) by typing them at the keyboard. This pane saves the history

of all commands entered. You can click on the scroll bar to show different parts of

the history.

You are not restricted to the commands in the Menu of Commands. You can give

any command processor command.

The output of all commands appears in the Main Command Output Pane.

Main Command Output Pane  the bottom-right pane

Each command’s output appears here. This pane saves the history of the output of

all flavor-related commands. You can use the scroll bar to show different parts of

the history.

Parts of the output of flavor-related commands are mouse-sensitive, so you can

click on a flavor name or method name to enter it as an argument to another

command.

If you give commands that are not flavor-related (such as the Show Host com-

mand), the output appears in a typeout window in the Main Command Output

Pane. This kind of output is not saved in the history of this pane. The typeout

window is itself a dynamic window with its own history.

When the output of the current command appears in the Main Command Output

Pane, the output of the previous command is copied to the Previous Command

Output Pane.

Previous Command Output Pane  the middle-right pane

This pane displays the output of the previous command. This pane does not save a

history, but the second-to-last command is copied to the Second-to-Last Command

Output Pane.

Second-to-last Command Output Pane  the top-right pane

This pane displays the output of the second-to-last command. This pane does not

save a history. When another command is given, the contents of the Previous Com-

mand Output Pane are copied to this pane. Similarly, the contents of the Main

Command Output Pane are copied to the Previous Command Output Pane.

Summary of Flavor Functions and Variables

This summary gives a brief description of all functions, macros, special forms, and

variables related to Flavors. Each of the symbols listed here is described in detail

elsewhere: See the section "Dictionary of Flavor Functions and Variables".

Basic Use Of Flavors�

defflavor name instance-variables component-flavors &rest options

Defines a new flavor or redefines an existing one.

make-instance flavor-name &rest init-options

Creates and returns a new instance of the flavor.

Page 593

defgeneric name arglist &body options

Defines a generic function, and enables you to specify options or docu-

mentation pertaining to a generic function as a whole.

defmethod

Defines a method that performs a generic function on objects of a given

flavor.

compile-flavor-methods &rest flavor-names

Allows you to cause the combined methods of a program to be compiled

at compile-time, and the data structures to be generated at load-time,

rather than both happening at run-time.

Redefining Flavors, Instances, and Operations�

change-instance-flavor instance new-flavor

Changes the flavor of an instance to another flavor.

recompile-flavor flavor-name &key :generic :env :ignore-existing-methods (:do-

dependents t)

Updates the internal data of the flavor and any flavors that depend on

it.

flavor:remove-flavor flavor-name

Removes the definition of a flavor.

flavor:rename-instance-variable flavor-name old new

Changes the name of an instance variable, carrying the value of the old

instance variable to the new for any existing instances.

flavor:transform-instance instance new-fl

Executes code when an instance is changed to a new flavor; thus enables

you to perform initialization of the instance. Use this generic function by

defining methods for it. It is not intended to be called.

Method Combination�

define-simple-method-combination name operator &optional single-arg-is-value

(pretty-name (let ((*package* nil)) (format nil "~((~s)~)" flavor::name)))�

Defines a new type of method combination that simply calls all the

methods, passing the values they return to a given function.

define-method-combination name parameters method-patterns &body body

Enables you to declare a new type of method combination. Offers a rich

declarative syntax.

The following tools are used in define-method-combination forms:

flavor:call-component-method function-spec &key :apply (:arglist (if

flavor::apply-p (prog1 (list apply) (setq apply t)) (prog1

flavor::*combined-method-arguments* (setq apply flavor::*combined-

method-apply*))))

Page 594

Produces a form that calls the supplied function spec for a component

method.

flavor:call-component-methods function-spec-list &key (:operator ’progn)

Produces a form that invokes the supplied function or special form. Each

argument to that function is a call to one of the methods in the supplied

list of function specs.

flavor:multiple-value-prog2 before result &rest after

Like multiple-value-prog1 but returns all the values of the second form.�

flavor:method-options function-spec

Extracts the method options portion of a method’s function spec.

Internal Functions of Flavors�

defun-in-flavor (function-name flavor-name) arglist &body body

Defines a function internal to a flavor.

defmacro-in-flavor (function-name flavor-name) arglist &body body

Defines a macro internal to a flavor.

defsubst-in-flavor (function-name flavor-name) arglist &body body

Defines a substitutable function internal to a flavor.

Wrappers and Whoppers�

defwrapper (generic-function flavor) (arglist &rest combined-method-body) &body

body

Defines a wrapper.

defwhopper (generic-function flavor) arglist &body body

Defines a whopper.

continue-whopper &rest args

Calls the methods for the generic function that was intercepted by the

whopper. This is intended for use in defwhopper forms.

lexpr-continue-whopper &rest args

Like continue-whopper, but the last argument should be a list of argu-

ments to be passed. This is useful when the arguments to the intercept-

ed generic function include an &rest argument.

defwhopper-subst (generic-function flavor) arglist &body body

Defines a wrapper by combining the convenient syntax of defwhopper

with the efficiency of defwrapper.

Variables�

sys:*all-flavor-names*

A list of the names of all the flavors that have ever been created by

defflavor.

Page 595

flavor:*flavor-compile-trace-list*

A list of structures, each of which describes the compilation of a com-

bined method into the run-time (not the compile-time) environment, in

newest-first order.

self When a generic function is called on an object, the variable self is auto-

matically bound to that object.

flavor:vanilla and the Operations it Supports �

flavor:vanilla

The flavor included in all flavors that provides default behavior.

:describe

The object should print a description of itself onto the *standard-

output* stream.

sys:print-self object stream print-depth slashify-p

The object should output its printed representation to the specified

stream.

:print-self

This is a compatible message for sys:print-self.

:send-if-handles

The object should perform the operation (whether generic function or

message) if it has a method for it.

:which-operations

The object should return a list of the messages and generic functions it

can handle.

:operation-handled-p

The object should return t if it has a handler for the specified operation,

nil if it does not.

get-handler-for object operation

Returns the method of the specified object for particular operation, or nil

if the object has none.

Message-Passing�

send object message-name &rest arguments

Sends a message to a flavor instance.

lexpr-send object message argument &rest arguments

Like send, except that the last argument should be a list. All elements

of that list are passed as arguments.

send-if-handles object message &rest arguments

Sends a message to a flavor instance, if the flavor has a method defined

for this message.

Page 596

lexpr-send-if-handles object message argument &rest arguments

Like send-if-handles, except that the last element of arguments should

be a list. All elements of that list are passed as arguments.

Note that send-if-handles, :send-if-handles and lexpr-send-if-handles work by

sending the :send-if-handles message. You can customize the behavior of these op-

erations by defining a method for that message.

A Flavor’s Handler for an Operation�

flavor:compose-handler generic flavor-name &key :env

Finds the methods that handle the specified generic operation on in-

stances of the specified flavor.

flavor:compose-handler-source generic flavor-name &key :env

Finds the methods that handle the specified generic operation on in-

stances of the specified flavor, and finds the source code of the combined

method (if any).

operation-handled-p object message-name

Returns t if the flavor of the given instance has a method defined for

the given generic function or message; nil otherwise.

get-handler-for object operation

Returns the method of the specified object for particular operation, or nil

if the object has none.

A Flavor’s default-init-plist�

flavor:flavor-default-init-get flavor indicator &optional default

Retrieves a property from the default-init-plist of the specified flavor.

flavor:flavor-default-init-putprop flavor value indicator

Puts a property on the default-init-plist of the specified flavor.

flavor:flavor-default-init-remprop flavor indicator

Removes a property from the default-init-plist of the specified flavor.

A Flavor’s Instance Variables�

symbol-value-in-instance instance symbol &optional no-error-p

Allows you to read or write the value of an instance variable, or get a

locative to an instance variable.

boundp-in-instance instance symbol

Returns t if the specified instance variable is bound in the given in-

stance, nil otherwise.

Getting Other Information on Flavors�

flavor:find-flavor flavor-name &optional (error-p t) env

Informs you whether a given flavor is defined in the world.

Page 597

flavor:flavor-allowed-init-keywords flavor-name

Provides a list of all symbols that are valid init options for a given fla-

vor.

flavor-allows-init-keyword-p flavor-name keyword

Informs you whether a given keyword is a valid init option for the speci-

fied flavor.

flavor:get-all-flavor-components flavor-name &optional env

Returns a list of the components of the specified flavor, in the sorted or-

dering of flavor components.

Other Flavors Tools�

instancep x

Returns t if the object is a flavor instance, nil otherwise.

flavor:describe-instance instance

Prints a description of an instance, including the values of its instance

variables, to the *standard-output* stream.

flavor:print-flavor-compile-trace &key :flavor :generic :newest :oldest :newest-first

Enables you to view information on the compilation of combined methods

that have been compiled into the run-time environment.

:unclaimed-message

If an operation is performed on a flavor instance, and no appropriate

method exists, the Flavor system checks for a method for the

:unclaimed-message message, and invokes it if it exists.

sys:property-list-mixin

This mixin flavor provides methods that perform a set of operations on

property lists of flavors.

flavor:generic generic-function-name

Used in conjunction with the :function option for defgeneric.

sys:eval-in-instance instance form

Evaluates a form in the lexical environment of an instance.

sys:debug-instance instance

Enters the Debugger in the lexical environment of an instance.

flavor:with-instance-environment (instance env) &body body

Enables you to create a listener loop like that of the Debugger when ex-

amining a method, in which you can reference an instance’s instance

variables and internal functions directly.�

Note: The following Zetalisp functions have been included to help you read old pro-

grams. In your new programs, use the Common Lisp versions of these functions.

zl:get-flavor-handler-for flavor-name operation

Given a flavor and an operation, this function returns the flavor’s

method for the operation or nil if it has none.

Page 598

zl:locate-in-instance instance symbol

Returns a locative pointer to the cell inside the specified instance that

holds the value of a specified instance variable.

zl:set-in-instance instance symbol value

Allows you to write the value of an instance variable.

zl:symeval-in-instance instance symbol &optional no-error-p

Allows you to read the value of an instance variable.

Method Combination

Before reading this section, it is important to understand the usual way the flavor

system constructs a single handler from a set of available methods for a generic

function. See the section "Inheritance of Methods".

This section describes how to use different types of method combination. The sys-

tem offers several built-in types of method combination. You can also define your

own type of method combination, using define-simple-method-combination or

define-method-combination.

To use either a built-in type or a new type of method combination that you have

defined, you supply the :method-combination option to defflavor or defgeneric.

Often you also write special-purpose methods to be used in conjunction with the

type of method combination, by supplying the options argument to defmethod.

Using the :method-combination Option

This section describes the syntax and use of the :method-combination option,

which can be given to defflavor and defgeneric. Each generic function has an as-

sociated type of method combination. If no method combination is explicitly speci-

fied, the default is (:method-combination :daemon :most-specific-first).

The syntax of this option is different for defflavor and defgeneric.

The :method-combination option to defflavor is given as follows:

(:method-combination

 generic-function name

 generic-function (name args...)

 ...)�

The :method-combination option to defgeneric is given as follows:

(:method-combination name args...)

Each generic function is associated with a certain type of method combination

specified by name. You can supply a built-in type of method combination, or a new

type you have defined yourself. See the section "Built-in Types of Method Combina-

tion".

Sometimes the method combination type requires additional arguments, which are

supplied as args.

Page 599

In the built-in types of method combination, the first argument is usually the or-

der that methods should be combined, either :most-specific-first or :most-specific-

last. Often this argument is optional, and :most-specific-first is the default; this

depends on the type of method combination used. See the section ":most-specific-

first and :most-specific-last Method Order".

The following example uses :daemon-with-or method combination type for the

generic function fast-hardcopy; the :most-specific-first method order is supplied.

The :case method combination type is used for the generic function set-attribute.

(defflavor line-printer ((name "Tortoise")

 (baud-rate 1200))

 ()

 :initable-instance-variables

 (:method-combination

fast-hardcopy (:daemon-with-or :most-specific-first)

 set-attribute :case))�

The following is an example of providing the :method-combination option to

defgeneric:

(defgeneric hardcopy-file (device filename)

 (:method-combination :and :most-specific-first))�

If :method-combination is specified for the same generic function by both

defflavor and defgeneric, they must agree.

Any component of a flavor can specify the type of method combination to be used

for a generic function. If more than one component of a flavor specifies a type of

method combination, they must agree on the specification. Otherwise an error is

signalled.

:most-specific-first and :most-specific-last Method Order

This section describes the meaning of :most-specific-first and :most-specific-last,

two keywords often supplied as the order argument to the :method-combination

option to defflavor and defgeneric.

In this example, the ordering of flavor components for person is:

(person primate living-thing flavor:vanilla)

person is the most specific flavor, and flavor:vanilla is the least specific flavor in

the flavor ordering. flavor:vanilla is always the least specific flavor unless it is

explicitly excluded from the flavor by using the :no-vanilla-flavor option to

defflavor.

Several primary methods are available for the generic function get-nutrition:

• Flavor person supplies a method for get-nutrition, using a fork and spoon.

• Flavor primate supplies a method for get-nutrition, using hands (or paws) and

teeth.

Page 600

• Flavor living-thing supplies a very general method for get-nutrition that would

be appropriate for any living thing, including plants.

• flavor:vanilla supplies no methods for get-nutrition.�

Choosing a Single Primary Method

Some method combination types use the order argument to choose a single primary

method from the set of available primary methods. :daemon method combination

type is one example. If :most-specific-first order is used, the primary method cho-

sen is the primary method that is supplied by the first flavor in the ordering of

flavor components.

Using :most-specific-first method order, the method implemented by flavor person

would be chosen.

Using :most-specific-last method order, the method implemented by flavor living-

thing would be chosen.

Indicating the Order of Methods in a Combined Method

Most built-in types of method combination use the order argument to determine

what order the methods are run in the combined method. For example, consider

the :or type of method combination, which executes every method inside an or spe-

cial form.

Using :most-specific-first order, the combined method resembles:

(or (method-for-person)

 (method-for-primate)

 (method-for-living-thing))�

Using :most-specific-last order, the combined method resembles:

(or (method-for-living-thing)

 (method-for-primate)

 (method-for-person))�

Built-in Types of Method Combination

You can use the following types of method combination by supplying one of the fol-

lowing keywords as the name argument to the :method-combination option to ei-

ther defgeneric or defflavor.

The default method combination type :daemon is presented first. The other types

appear in alphabetical order.

:daemon &optional (order ’:most-specific-first)

This is the default type of method combination. :daemon selects all :before

and :after methods, and a single primary method, which is the first method

in the given order. The combined method calls the :before methods in

Page 601

:most-specific-first order, then the chosen primary method, then the :after

methods in :most-specific-last order. The result of the combined method is

whatever the primary method returns. The combined method resembles:

(flavor:multiple-value-prog2

 (progn (before-method-1)

 (before-method-2))

 (primary-method-1)

 (progn (after-method-2)

 (after-method-1)))�

:and &optional (order ’:most-specific-first)

Selects all primary and :and methods and calls them in the given order in-

side an and special form. If a method returns nil, no more methods are

called. The value returned is the value of the last method called, or nil if

any method returns nil. Each :and method can return a single value only.

The combined method resembles:

(and (method-1)

 (method-2)

 (method-3))�

:append &optional (order ’:most-specific-first)

Selects all primary and :append methods and calls them in the given order

inside a call to the append function. Each of the methods must return a

single value only, which is a list. The final result is the result of appending

all these lists. The combined method resembles:

(append (method-1)

 (method-2)

 (method-3))�

:case Invokes methods inside a case special form, using the second argument to

the generic function to select the appropriate case. This argument is usually

a keyword. Methods used with :case method combination must always in-

clude an option in their name, which specifies which case they implement.

For example:

(defmethod

 (proceed subscript-out-of-bounds :new-subscript)

 (&optional (sub (prompt-and-read

 :integer

 "Subscript to use instead:")))

 "Supply a replacement subscript"

 (values :new-subscript sub))�

This method is invoked by (proceed condition :new-subscript), which

prompts the user for a new subscript, and by (proceed condition :new-

subscript n), which uses n as the new subscript.

There are three special values of option, used to define special-purpose

methods:

Page 602

:otherwise This method is invoked if the second argument to the

generic function is one for which a method has not been

defined. The :otherwise method receives the unmatched

second argument keyword as its first argument and the

third and following arguments to the generic function as

its remaining arguments. If no :otherwise method is de-

fined for this flavor, a system-supplied method is called;

it signals an error.

:which-operations This method is invoked if the second argument to the

generic function is the symbol :which-operations. It is

expected to take no additional arguments and to return

two values: a list of the supported cases, and t if there

is an otherwise method, or nil if there is not. If no

:which-operations method is defined for this flavor, a

system-supplied method is called.

:case-documentation

This method is invoked if the second argument to the

generic function is the symbol :case-documentation. It

is expected to take one argument (the third argument to

the generic function), which is the name of one of the

cases, and is expected to return a string, which is the

documentation of that case, or nil if no documentation is

known. If no :case-documentation method is defined for

this flavor, a system-supplied method is called; it looks

for documentation strings in the methods.�

Note that the usual check for consistency of defmethod arguments with the

arguments in the defgeneric form is not performed when :case method com-

bination type is used, since the arguments can be different for each case.

Here is an example of defining a generic function that uses :case method

combination type:

(defgeneric zzbuffer-next-unlinked-line (buffer selector line)

 "for buffers with disconnected sections, crosses a hard

 section boundary."

 (:method-combination :case)

 (:method (zznode :otherwise)

 (ignore selector line) nil) ; no unlinked lines

 (:method (zznode :foo)

 (ignore line) nil) ; no selector here

)�

:daemon-with-and &optional (order ’:most-specific-first)

Selects all :before, :after, and :and methods, and a single primary method.

This is like the :daemon method combination type, except that the primary

method is wrapped in an and special form after the :and methods. To write

an :and method, supply the keyword :and as the options argument to

Page 603

defmethod. The result is the values returned by the primary method if it is

run, nil otherwise. The combined method resembles:

�

(flavor:multiple-value-prog2

 (progn (before-method-1)

 (before-method-2)

 (and (and-method-1)

 (and-method-2)

 (primary-method-1))

 (progn (after-method-2)

 (after-method-1)�

The order argument indicates the order of :and methods and the choice of

the primary method.

:daemon-with-or &optional (order ’:most-specific-first)

Selects all :before, :after, and :or methods, and a single primary method.

This is like the :daemon method combination type, except that the primary

method is wrapped in an or special form with all the :or methods. To write

an :or method, supply the keyword :or as the options argument to

defmethod. The result is either the single value returned by the first :or

method to return non-nil, or the values returned by the primary method (if

it is run). The combined method resembles:

�

(flavor:multiple-value-prog2

 (progn (before-method-1)

 (before-method-2)

 (or (or-method-1)

 (or-method-2)

 (primary-method-1))

 (progn (after-method-2)

 (after-method-1)�

The order argument indicates the order of :or methods and the choice of the

primary method.

This is primarily useful for flavors in which a mixin introduces an alterna-

tive to the primary method. Each :or method gets a chance to run before

the primary method and to decide whether or not the primary method should

be run; if any :or method returns a non-nil value, the primary method is not

run (nor are the rest of the :or methods).

:daemon-with-override &optional (order ’:most-specific-first)

Selects all :before, :after, and :override methods, and a single primary

method. This is similar to the :daemon and :daemon-with-or method combi-

nation types. The :before methods, the primary method, and the :after

methods are run only if all of the :override methods return nil. The result

is either the single value returned by the first :override method to return

non-nil, or the values returned by the primary method (if it is run). To

Page 604

write an :override method, supply the keyword :override as the options ar-

gument to defmethod. The combined method resembles:

(or (override-method-1)

 (override-method-2)

 (flavor:multiple-value-prog2

 (progn (before-method-1)

 (before-method-2))

 (primary-method-1)

 (progn (after-method-2)

 (after-method-1))))�

The order argument indicates the order of :override methods and the choice

of the primary method.

:inverse-list

Selects all primary and :inverse-list methods. The combined method calls

each method in :most-specific-first with one argument; these arguments are

successive elements of the list given as an argument to the generic function.

Returns no particular value. If the result of a :list-combined generic function

is sent back with an :inverse-list-combined generic function, with the same

ordering and with corresponding method definitions, each component flavor

receives the value that came from that flavor.

The generic function is called as follows:

(generic-function object arg1 arg2 arg3)�

The combined method resembles:

(progn (method-1 arg1)

 (method-2 arg2)

 (method-3 arg3))�

:list &optional (order ’:most-specific-first)

Selects primary and :list methods and calls them in the given order inside a

call to the list function. Each method used with :list method combination

can return a single value only. The result is a list of the returned values of

the methods. The combined method resembles:

(list (method-1)

 (method-2)

 (method-3))�

:max &optional (order ’:most-specific-first)

Selects all primary and :max methods and calls them in the given order in-

side a call to the max function. Each method should return a numeric value.

The result is the largest value of the set of values returned by the methods.

The combined method resembles:

(max (method-1)

 (method-2)

 (method-3))�

Page 605

:min &optional (order ’:most-specific-first)

Selects all primary and :min methods and calls them in the given order in-

side a call to the min function. Each method should return a numeric value.

The result is the smallest value of the set of values returned by the meth-

ods. The combined method resembles:

(min (method-1)

 (method-2)

 (method-3))�

:nconc &optional (order ’:most-specific-first)

Selects all primary and :nconc methods and calls them in the given order

inside a call to the nconc function. Each of the methods must return a sin-

gle value only, which is a list. The final result is the result of concatenating

these lists destructively. The combined method resembles:

(nconc (method-1)

 (method-2)

 (method-3))�

:or &optional (order ’:most-specific-first)

Selects all primary and :or methods and calls them in the given order inside

an or special form. If a method returns a non-nil value, that value is re-

turned and none of the other methods is called; otherwise, the next method

is called. Thus each method is given a chance to handle the generic func-

tion. Methods that do not intend to handle the generic function should re-

turn nil to give the next method a chance to try. Each method can return a

single value only. The combined method resembles:

(or (method-1)

 (method-2)

 (method-3))�

:pass-on order &rest arglist

Selects all primary and :pass-on methods and calls them in the given order.

The arguments to each method are the values returned by the preceding

method. The values returned by the combined method are those the last

method called. arglist is the argument list, which can include the &aux and

&rest keywords.

For example, the flavors, generic function, and methods are defined as fol-

lows:

(defflavor f1 () ())

(defflavor f2 () (f1))

(defflavor f3 () (f2))

�

(defgeneric foo (fl a b c)

 (:method-combination :pass-on

 :most-specific-first a b c))

Page 606

�

(defmethod (foo f1) (a b c) (values a b c))

(defmethod (foo f2) (a b c) (values a b c))

(defmethod (foo f3) (a b c) (values a b c))�

The combined method for the generic function foo for flavor f3 resembles:

(multiple-value-setq (A B C)

 (method-for-f3 A B C))

(multiple-value-setq (A B C)

 (method-for-f2 A B C))

(method-for-f1 A B C)�

:progn &optional (order ’:most-specific-first)

Selects primary and :progn methods and calls them in the given order inside

a progn special form. The result of the combined method is whatever the

last method returns. The combined method resembles:

(progn (method-1)

 (method-2)

 (method-3))�

:sum &optional (order ’:most-specific-first)

Selects all primary and :sum methods and calls them in the given order in-

side a call to the + function. The combined method resembles:

(+ (method-1)

 (method-2)

 (method-3))�

:two-pass &optional (order ’:most-specific-first)

Selects all primary methods and all :after methods. The combined method

calls the primary methods in the given order, then the :after methods in

:most-specific-last order. Returns the values returned by the last primary

method that is executed. The combined method resembles:

(multiple-value-prog1

 (progn (primary-method-1)

 (primary-method-2)

 (primary-method-3))

 (progn (after-method-3)

 (after-method-2)

 (after-method-1)))�

This is the type of method combination used by the make-instance generic

function. For more information:

See the section "Writing Methods for make-instance".

Defining Special-Purpose Methods

This section describes how to define methods that are not primary methods; these

are methods used in conjunction with different types of method combination.

Page 607

:before and :after methods are examples of special-purpose methods; they are used

with :daemon method combination type. For examples of defining :before and

:after methods: See the section "Defining Before- and After-Daemons".

For information on which types or methods are appropriate for the various built-in

method combination types: See the section "Types of Methods Used by Built-in

Method Combination Types".

The syntax of defmethod is as follows:

(defmethod (generic-function flavor options..) (arg1 arg2..) body..)�

The options argument is used when you are defining a special-purpose method. To

define a primary method (the most common type of method), you do not supply the

options argument.

To define an :override method (to be used with :daemon-with-override method

combination):

(defmethod (update-display window-pane :override) (arg1 arg2..)

 body..)�

To define a method to be used with :case method combination:

(defmethod (proceed subscript-out-of-bounds :new-subscript)

 (&optional

 (sub (prompt-and-read :integer

 "Subscript to use instead:")))

 "Supply a replacement subscript"

 (values :new-subscript sub))�

Using :default Methods

A :default method is ignored if any primary methods are present. However, if no

primary methods are defined, the :default method acts as a primary method.

This is useful in some types of method combination, such as :and and :or. That is,

if no other methods are available to be combined in the and or or special form,

the :default method is executed. The :default method might print a warning, or

otherwise deal with the situation. If one or more primary methods are available,

the :default method is not part of the combined method, and is not executed.

In the past, programmers defined :default methods for the most basic flavor. This

usage guaranteed that the method would not be used in the combined method if a

primary method were defined for any other flavor component. This was sometimes

necessary, to compensate for the way that flavor components were ordered, in pre-

vious versions of the flavor system. It is no longer necessary to use :default meth-

ods for this purpose, because flavor component ordering works more predictably

now than in previous releases.

Types of Methods Used by Built-in Method Combination Types

Page 608

This section shows which types of methods are appropriate to be used in conjunc-

tion with each of the built-in types of method combination.

Some types of method combination expect a certain type of method to be used with

them. For example, :before methods are used by :daemon, :daemon-with-override,

:daemon-with-or, and :daemon-with-and method combination types. However, the

other built-in types of method combination do not use :before methods.

It is important to realize that each method combination type ignores methods that

are not appropriate for it. For example, if you have written a :before method for a

generic function that uses :list method combination, that :before method will not

be used in the combined method. A warning to that effect is printed.

Method Accepted

Combination Method Types

:and primary, :and, :default

:append primary, :append, :default

:case :keyword, :which-operations,

:documentation, :otherwise

:daemon primary, :before, :after, :default

:daemon-with-and primary, :before, :after,

:and, :default

:daemon-with-or primary, :before, :after, :or, :default

:daemon-with-override primary, :before, :after,

:override, :default

:inverse-list primary, :inverse-list, :default

:list primary, :list, :default

:max primary, :max, :default

:min primary, :min, :default

:nconc primary, :nconc, :default

:sum primary, :sum, :default

:or primary, :or, :default

Page 609

:pass-on primary, :pass-on, :default

:progn primary, :progn, :default

:two-pass primary, :after, :default

�

The chart above shows that many types of method combination accept both prima-

ry methods and another kind of method. For example, :and method combination ac-

cepts primary and :and methods, and treats them the same when constructing the

combined method. The only reason to use :and in the defmethod form is for docu-

mentation purposes; it clarifies that the method is intended to be used with :and

method combination type. Other method types that fall into this category include:

:append, :or when used with :or method combination, :list, :max, :min, :inverse-

list, :pass-on, and :progn.

Example of Using Method Combination

This example might be part of a game in which each player has a country named

by a color. Each country consists of a military presence, represented by the flavor

the-military. Some countries have organized their military presence into branches

represented by the flavors army, navy, and so on. In our example, army is built

on the-military.

The game consists of moving armies and navies geographically. An important ele-

ment of the game is keeping track of supplies, such as food and fuel. In this ex-

ample, fuel is stored in three places:

• In a reserve storehouse  managed by the-military (it can be used by any

branch of the military that needs it)

• In an auxiliary storehouse  managed by each branch

• In the field  managed by each branch�

The following two defflavor forms represent the-military and army:

;;; the-military keeps its own storehouse of fuel supplies

;;; the-military has supplies of diesel, gas, and coal

(defflavor the-military ((reserve-diesel-supply 1200)

 (reserve-gas-supply 1350)

 (reserve-coal-supply 5600))

 ())

Page 610

�

;;; the army’s auxiliary supply augments fuel stored in the field

;;; the army has supplies of diesel and gas, but no coal

(defflavor army ((aux-diesel-supply 100)

 (field-diesel-supply 150)

 (aux-gas-supply 225)

 (field-gas-supply 230))

 (the-military)) ;the-military is a component�

Each player must keep track of fuel supplies. We organize this by writing a gener-

ic function total-fuel-supply. This function takes two arguments: military-group

and fuel-type. It returns the total available supply of the given fuel-type (which can

be :diesel, :coal, or :gas) for that military-group (it could be an instance of army

or the-military). The generic function makes use of the :sum type of method com-

bination.

;;; define a new type of method combination called :sum

;;; :sum creates combined methods like

;;; (+ (method-1)

;;; (method-2))

(define-simple-method-combination :sum + t)

�

(defgeneric total-fuel-supply (military-group fuel-type)

 "Returns today’s total supply

 of the given type of fuel available to this military group."

 (:method-combination :sum :base-flavor-last))

�

(defmethod (total-fuel-supply army) (fuel-type)

 (case fuel-type

(:diesel (+ aux-diesel-supply field-diesel-supply))

(:gas (+ aux-gas-supply field-gas-supply))

(:otherwise 0)))

�

(defmethod (total-fuel-supply the-military) (fuel-type)

 (case fuel-type

(:diesel reserve-diesel-supply)

(:gas reserve-gas-supply)

(:coal reserve-coal-supply)

(:otherwise 0)))�

When we use total-fuel-supply on an instance of the-military, it responds with

the amount of fuel available in the reserve storehouse managed by the-military.

The handler is just the method for the-military.

When we use total-fuel-supply on an instance of army, it responds with the sum

total of that type of fuel available to that object of army flavor, including its own

auxiliary storehouse, its fuel in the field, and the fuel available to it stored in the

reserve storehouse of the-military as a whole. The handler is a combined method

that resembles:

Page 611

(+ (method-for-army)

 (method-for-the-military))�

Here is an illustration of using total-fuel-supply:

(setq blue-army (make-instance ’army))

=>#<ARMY 36431263>

�

(total-fuel-supply blue-army :coal)

=>5600

�

(total-fuel-supply blue-army :diesel)

=>1450�

Defining a New Type of Method Combination

This section describes the tools that enable you to define a new type of method

combination.

Summary of Method Combination Functions

define-simple-method-combination name operator &optional single-arg-is-value

(pretty-name (let ((*package* nil)) (format nil "~((~s)~)" flavor::name)))�

Defines a new type of method combination that simply calls all the

methods, passing the values they return to a given function.

define-method-combination name parameters method-patterns &body body

Enables you to declare a new type of method combination. Offers a rich

declarative syntax.

The following tools are used in define-method-combination forms:

flavor:call-component-method function-spec &key :apply (:arglist (if

flavor::apply-p (prog1 (list apply) (setq apply t)) (prog1

flavor::*combined-method-arguments* (setq apply flavor::*combined-

method-apply*))))

Produces a form that calls the supplied function spec for a component

method.

flavor:call-component-methods function-spec-list &key (:operator ’progn)

Produces a form that invokes the supplied function or special form. Each

argument to that function is a call to one of the methods in the supplied

list of function specs.

flavor:multiple-value-prog2 before result &rest after

Like multiple-value-prog1 but returns all the values of the second form.�

flavor:method-options function-spec

Extracts the method options portion of a method’s function spec.

Page 612

define-simple-method-combination name operator &optional single-arg-is-value

pretty-name Special Form

Defines a new type of method combination that simply calls all the methods, pass-

ing the values they return to the function named operator.

It is also legal for operator to be the name of a special form. In this case, each

subform is a call to a method. It is legal to use a lambda expression as operator.

name is the name of the method-combination type to be defined. It takes one op-

tional parameter, the order of methods. The order can be either :most-specific-

first (the default) or :most-specific-last.

When you use a new type of method combination defined by define-simple-

method-combination, you can give the argument :most-specific-first or :most-

specific-last to override the order that this type of method combination uses by

default.

If single-arg-is-value is specified and not nil, and if there is exactly one method, it

is called directly and operator is not called. For example, single-arg-is-value makes

sense when operator is +.

pretty-name is a string that describes how to print method names concisely. It de-

faults to (string-downcase name).

Most of the simple types of built-in method combination are defined with define-

simple-method-combination. For example:

(define-simple-method-combination :and and t)

(define-simple-method-combination :or or t)

(define-simple-method-combination :list list)

(define-simple-method-combination :progn progn t)

(define-simple-method-combination :append append t)�

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

define-method-combination name parameters method-patterns &body body Function

Provides a rich declarative syntax for defining new types of method combination.

This is more flexible and powerful than define-simple-method-combination.

name is a symbol that is the name of the new method combination type. parame-

ters resembles the parameter list of a defmacro; it is matched against the parame-

ters specified in the :method-combination option to defgeneric or defflavor.

method-patterns is a list of method pattern specifications. Each method pattern se-

lects some subset of the available methods and binds a variable to a list of the

function specs for these methods. Two of the method patterns select only a single

method and bind the variable to the chosen method’s function spec if a method is

found and otherwise to nil. The variables bound by method patterns are lexically

available while executing the body forms. See the section "Method-Patterns Option

to define-method-combination". Each option is a list whose car is a keyword.

These can be inserted in front of the body forms to select special options. See the

Page 613

section "Options Available in define-method-combination". The body forms are

evaluated to produce the body of a combined method. Thus the body forms of

define-method-combination resemble the body forms of defmacro. Backquote is

used in the same way. The body forms of define-method-combination usually pro-

duce a form that includes invocations of flavor:call-component-method and/or

flavor:call-component-methods. These functions hide the implementation-

dependent details of the calling of component methods by the combined method.

Flavors performs some optimizations on the combined method body. This makes it

possible to write the body forms in a simple and easy-to-understand style, without

being concerned about the efficiency of the generated code. For example, if a com-

bined method chooses a single method and calls it and does nothing else, Flavors

implements the called method as the handler rather than constructing a combined

method. Flavors removes redundant invocations of progn and multiple-value-prog1

and performs similar optimizations.

The variables flavor:generic and flavor:flavor are lexically available to the body

forms. The values of both variables are symbols:

flavor:generic value is the name of the generic operation whose handler is

being computed.

flavor:flavor value is the name of the flavor.�

The body forms are permitted to setq the variables defined by the method-patterns,

if further filtering of the available methods is required, beyond the filtering pro-

vided by the built-in filters of the method-patterns mechanism. It is rarely neces-

sary to resort to this. Flavors assumes that the values of the variables defined by

the method patterns (after evaluating the body forms) reflect the actual methods

that will be called by the combined method body.

body forms must not signal errors. Signalling an error (such as a complaint about

one of the available methods) would interfere with the use of flavor examining

tools, which call the user-supplied method combination routine to study the struc-

ture of the erroneous flavor. If it is absolutely necessary to signal an error, the

variable flavor:error-p is lexically available to the body forms; its value must be

obeyed. If nil, errors should be ignored.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

The syntax of define-method-combination is complex. We present examples here

and continue with the syntax later on in this section.

Examples of define-method-combination

This form defines the :daemon method-combination type:

(define-method-combination :daemon

 (&optional (order ’:most-specific-first))

 ;; select methods and bind them to variables

Page 614

 ((before "before" :every :most-specific-first (:before))

 ;; select primary method,

 ;; if none is present, select :default method

 (primary "primary" :first order () :default)

 (after "after" :every :most-specific-last (:after)))

 ;;return values from primary method

 ‘(flavor:multiple-value-prog2

 ,(flavor:call-component-methods before)

 ,(flavor:call-component-method primary)

 ,(flavor:call-component-methods after)))�

This form defines the :two-pass method combination type:

(define-method-combination :two-pass

 (&optional (order ’:most-specific-first))

 ((first "first-pass" :every order () :default)

 (second "after" :every :most-specific-last (:after)))

 ;;return values from last primary method to run

 ‘(multiple-value-prog1

 ,(flavor:call-component-methods first)

 ,(flavor:call-component-methods second)))�

This form defines the :inverse-list method combination type:

(define-method-combination :inverse-list () ;take no parameters

 ;; select methods of type :inverse-list or :default

 ((methods "inverse-list" :every :most-specific-first

 () (:inverse-list) :default))

 (:arglist ignore list)

 (:method-transformer

 ;; each method receives a single argument, regardless

 (:generic-method-arglist ‘(list-element)))

 ‘(let ((list ,list))

 ,@(loop for (method . rest) on methods

 collect (flavor:call-component-method method

 :arglist ‘(,(first list)))

 when rest

 collect ‘(setq list (cdr list)))))�

This form defines the :case method combination type:

;;; -*- Mode: LISP; Syntax: Common-Lisp; Base: 10; Package: FLAVOR -*-

(define-method-combination :case (&optional

 (order ’:most-specific-first))

((case-documentation "case-documentation" :first order

 (:case-documentation))

 (which-operations "which-ops" :first order (:which-operations))

Page 615

 (otherwise "otherwise" :first order (:otherwise))

 (cases "case ~s" :remove-duplicates order (*)))

 (:order cases case-documentation which-operations otherwise)

 (:arglist ignore subtype &rest args)

 (:method-transformer

 ;; the cases methods receive funny arguments, and the arguments

 ;; may be different for each case, so don’t bother validating them.

 (:inhibit-checking t))

 (let ((alist (loop for case in cases

 collect (list (first (method-options case)) case))))

 ‘(case ,subtype

 ,@(loop for (subtype method) in alist

 collect ‘((,subtype)

 ,(call-component-method method :apply args)))

 ((:case-documentation)

,(if case-documentation

 (call-component-method case-documentation :apply args)

 ‘(get-case-documentation (first ,args) ’,alist)))

 ((:which-operations)

,(if which-operations

 (call-component-method which-operations :apply args)

 ‘(values ’,(mapcar #’car alist) ’,(not (null otherwise)))))

 (otherwise

,(if otherwise

 (call-component-method otherwise)

 ‘(case-method-combination-missing-method self ’,generic

 ,subtype

 ,args))))))

�

Method-Patterns Option to define-method-combination

Each method-pattern is a list of the form:

(variable printer filter order pattern pattern...)�

variable is a variable to be bound to the list of method function specs resulting

from the application of this method-pattern (or to a single function spec or nil, in

the case where filter is one of the symbols :first or :last). Each pattern selects

some subset of the methods (multiple patterns are combined with or). The order

specifies the ordering of this subset and the filter specifies further pruning of it.

printer controls the concise printing of method function specs for Flavors tools.

printer should concisely describe the options of the function spec; the generic func-

tion name and flavor are printed separately. When Flavors tools are used, printer

is printed on *standard-output*. Thus printer can be a string, which is given to

format along with arguments that are the elements of the flavor:method-options

Page 616

of the method’s function spec. See the function flavor:method-options. Alterna-

tively, printer can be a function to be called with method-combination and function-

spec as its arguments. printer is not evaluated. The printing of :default methods is

handled automatically, independent of printer.

filter is not evaluated; the filter type cannot be variable at run time. filter must be

one of the following symbols:

:first Selects the first method in the specified order (nil if there are

no methods).

:last Selects the last method in the specified order (nil if there are

no methods).

:every Selects all the methods.

:remove-duplicates Selects all of the methods, excluding any duplicate methods. If

duplicates are present, only the first method is selected. Dupli-

cate methods are detected by applying equal to their

defmethod options.�

You can also do your own filtering in the body by using setq on a variable.

order is a form that must evaluate to :most-specific-first or :most-specific-last.

Often it is simply one of those keywords, a self-evaluating constant. Another com-

mon practice is for order to be one of the variables in parameters.

Each pattern is a list or nil. A method matches the pattern if its options in the

defmethod form match the given pattern. The pattern nil matches methods with

no options; that is, primary methods. If you do not specify any patterns, a default

pattern of nil is assumed. patterns may be dotted lists.

Match is by equal, except that * matches anything. Each * in a pattern matches

anything in that position of a method function spec. Dotted * might be useful for

variable length.

You can intermix special symbols with the patterns. The only such symbol current-

ly allowed is:

:default If the other patterns find any methods, this is ignored. If no

other methods are found, the methods matched by the pattern

(:default) are selected. �

method-patterns are considered sequentially in the order they are written. The first

method-pattern that matches a component method with its patterns takes care of

that method, either including it or rejecting it depending on its filter and any

:default processing specified. Subsequent method-patterns do not see that method.

This means you should put the most general patterns last if more than one

method-pattern clause could match the same method. The methods are expected to

be called in the order the method patterns are written. If this is not so, you

should include an :order clause. See the section "Options Available in define-

method-combination".

Page 617

Any methods not taken care of by any method patterns are extraneous, and Flavors

warns about them. Flavors automatically takes care of special methods, such as

wrappers and whoppers; you need not do anything to handle them when defining a

new method combination type.

Here is an example of the method-patterns used by :case method combination type:

((case-documentation "case-documentation" :first order (:case-documentation))

 (which-operations "which-operations" :first order (:which-operations))

 (otherwise "otherwise" :first order (:otherwise))

 (cases "case ~s" :remove-duplicates order (*)))�

Options Available in define-method-combination

The options to define-method-combination include:

(:arglist args...)

Specifies the argument list of the generic function, including the first or

self argument. You can use ignore for arguments of no interest to the

method-combination function, such as the self argument. As the body

forms are being executed, each variable in args is bound to a form that

accesses the relevant argument when evaluated as part of the combined-

method body returned by the body forms. &optional and &rest are permit-

ted in args. If :dispatch is used in the defgeneric form, the :arglist op-

tion mentions the arguments in the order received by the methods, with

the dispatching argument moved to the front.

The :arglist option is useful when the action of the combined-method de-

pends on the arguments (rather than simply passing the arguments on to

the component methods), as in :case or :inverse-list method combination.

See the section "Examples of define-method-combination".

(:order vars...)

Specifies the order in which the component methods will be called, for the

benefit of flavor examining tools. Each of the vars must be a variable

bound by one of the method-patterns. Normally all of the vars bound by

method-patterns would be included in the :order option, but this is not re-

quired. If no order is specified, the default is to use the vars in the order

in which the method-patterns are written.

(:method-transformer clauses...)

This can make changes to the arguments and body of methods for generic

functions that use this type of method combination, and can control the

validation of the arguments in the defmethod against the arguments in

the defgeneric. Code in clauses receives arguments bound to the following

variables, and also has the parameters of the define-method-combination

available to it:

Page 618

sys:function-spec

The name of the method

flavor:method-combination

The method-combination type

flavor:method-arglist

The arglist specified for the method

flavor:method-body

The body of the method, including declarations

flavor:generic-method-arglist

The arglist specified for methods in the defgeneric. �

Each clause consists of a keyword and a form evaluated to produce a re-

placement for a normal item. The clauses are:

:method-arglist

Replaces the argument list specified in defmethod.

:method-body

Replaces the body specified in defmethod.

:generic-method-arglist

Replaces the argument list for methods specified in defgeneric.

:inhibit-checking

If non-nil, inhibits comparing flavor:method-arglist and

flavor:generic-method-arglist for the wrong number of argu-

ments.

Interface to the Method Combination System

The interface takes care of calling the functions defined by the expansion of the

define-method-combination special form, optimizing the results, and adding wrap-

pers and whoppers to it to make the complete combined method.

The external interface to the method combination system consists of the following

functions:

flavor:compose-handler generic flavor-name &key :env

Finds the methods that handle the specified generic operation

on instances of the specified flavor.

flavor:compose-handler-source generic flavor-name &key :env

Finds the methods that handle the specified generic operation

on instances of the specified flavor, and finds the source code

of the combined method (if any).

Page 619

Defining Functions Internal to Flavors

Flavors allows you to define functions that are lexically "inside" the flavor. Such

functions have access to the instance variables of some instance of that flavor, or

of a flavor built on it, defined by the value of self. There are two kinds of func-

tions inside a flavor: methods and internal functions.

Methods Internal Functions

Can be called from anywhere, Can be called only from another

via the generic function function already inside the flavor.

mechanism. The caller can be a method or

an internal function.

Can serve as entry-points Can be used to share

or interfaces. subroutines among methods.

Receive self as an argument. Share the self

of their caller.

Are defined with defmethod. Are defined with defun-in-flavor,

defsubst-in-flavor, and

defmacro-in-flavor.

Have lexical access to Have lexical access to

instance variables of the instance variables of the

object self. object self.

Are inherited from Are inherited from

component flavors, using component flavors,

method combination rules. somewhat differently.

�

You can shadow a globally defined function with an internal function with the

same name. The globally defined function can be an ordinary function or a generic

function. However, common practice is to use unique names for internal functions,

to minimize possible confusion.

Scoping of Internal Functions

The scoping of internal functions is as if each function inside the flavor were sur-

rounded by a flet form that declared all of the internal functions. This is analo-

gous to the scoping of instance variables. Internal functions are inherited from

component flavors. If there are several internal functions with the same name, the

first one in the ordering of flavor components is chosen.

If the name of an internal function of a flavor is used with the function special

form (or the #’ syntax), a closure is created that captures the value of self and the

instance variables. This closure can be passed as a functional argument. Note that

you use the name of the internal function, not its function spec.

Page 620

Because internal functions of flavors are lexically scoped, they must be declared or

defined before their callers. Otherwise the caller would not be compiled or evaluat-

ed in the proper lexical environment, and would not know that the name of the in-

ternal function refers to an internal function rather than to an ordinary function

in the global environment. The :functions option to defflavor can be used to de-

clare the names of defun-in-flavor internal functions of the flavor.

Inheritance of Internal Functions

The inheritance of internal functions works differently than the inheritance of

methods. The following example suggests that it is good practice not to give two

internal functions for related flavors the same name:

(defflavor flav1 () ())

(defflavor flav2 () (flav1))

(defmethod (meth flav1) () 1)

(defmethod (meth flav2) () 2)

(defun-in-flavor (func flav1) () 1)

�

(defmethod (test flav2) () (list (meth self) (func)))

�

(test (make-instance ’flav2))

=> (2 1)

 ;method calls (defun-in-flavor func flav1)

�

;;;now we define a new defun-in-flavor for flav2

(defun-in-flavor (func flav2) () 2)

�

(test (make-instance ’flav2))

=> (2 1)

 ;method still calls (defun-in-flavor func flav1),

 ;even though there’s now a (defun-in-flavor func flav2)�

The last example shows that when you define an internal flavor function that

shadows another internal flavor function for a less specific flavor, any methods

written on the more specific flavor are still left calling the less specific function.

In the method for test, the inheritance of meth depends on the actual flavor of

self at run-time, but the inheritance of func depends on the flavor for which the

method that calls func is being defined, flav1 in this case. Also, the binding from

the short name of an internal flavor function to the full function-spec happens at

compile time, not at the time the function is called. If you want the more dynamic

inheritance, use methods instead of internal flavor functions.

Redefining Internal Functions

You can redefine internal flavor functions by evaluating another defun-in-flavor,

defsubst-in-flavor, or defmacro-in-flavor form. The new definition replaces the

old.

Page 621

Note that if you have defined an internal function, and decide to change it to a

method, you must remove the definition of the internal function using fundefine

and the function spec of the internal function.

Function Specs for Internal Functions

For documentation on the function specs for internal functions, macros, and substi-

tutable functions, see the section "Function Specs for Flavor Functions".

Related Functions:

defun-in-flavor (function-name flavor-name) arglist &body body

Defines a function internal to a flavor.

defmacro-in-flavor (function-name flavor-name) arglist &body body

Defines a macro internal to a flavor.

defsubst-in-flavor (function-name flavor-name) arglist &body body

Defines a substitutable function internal to a flavor.

Wrappers and Whoppers

Wrappers and whoppers are used in certain cases in which :before and :after dae-

mons are not powerful enough. :before and :after daemons let you put some code

before or after the execution of a method; wrappers and whoppers let you put

some code around the execution of the method. For example, you might want to

bind a special variable to some value during the execution of a method. Or you

might want to establish a condition handler, or set up a catch or unwind-protect.

Wrappers and whoppers can also decide whether or not the primary method should

be executed.

Whoppers are used more frequently than wrappers.

Wrappers Whoppers

Similar to a macro. Similar to a function.

If a wrapper is modified, all If a whopper is modified,

combined methods using it must only the whopper must be

be recompiled (this is done recompiled.

automatically).

The body of a wrapper is expanded The body of a whopper is

in all the combined methods in not expanded in multiple

which it is involved. The code places.

is duplicated, not shared.

Wrappers are slightly faster than Whoppers require two extra

whoppers. function calls each time

Page 622

they are called.

�

Because they involve the interaction of several complex mechanisms, you should

use great care when using wrappers and whoppers.

The function specs for wrappers and whoppers are described elsewhere: See the

section "Function Specs for Flavor Functions".

Changing and removing the definition of wrappers and whoppers is described else-

where: See the section "Redefining Flavors, Methods, and Generic Functions".

Summary of Functions Related to Wrappers and Whoppers

defwrapper (generic-function flavor) (arglist &rest combined-method-body) &body

body

Defines a wrapper.

defwhopper (generic-function flavor) arglist &body body

Defines a whopper.

continue-whopper &rest args

Calls the methods for the generic function that was intercepted by the

whopper. This is intended for use in defwhopper forms.

lexpr-continue-whopper &rest args

Like continue-whopper, but the last argument should be a list of argu-

ments to be passed. This is useful when the arguments to the intercept-

ed generic function include an &rest argument.

defwhopper-subst (generic-function flavor) arglist &body body

Defines a wrapper by combining the convenient syntax of defwhopper

with the efficiency of defwrapper.

Examples of Wrappers

The use of defwrapper is best explained by example. Suppose you need a lock

locked during the processing of the drain generic function on an instance of the

cistern flavor. The drain function takes one argument, valve-position. You have

written a lock-faucet special form that knows how to lock the lock. lock-faucet

needs to know the valve-position, the first argument to the drain function.

(defwrapper (drain cistern) ((valve-position) form)

 ;;; set lock for duration of method

 ‘(lock-faucet (self valve-position)

 ,form)) ; Execute method itself�

Note that the argument variable valve-position is not referenced with a comma

preceding it. Argument variables are not bound at the time the defwrapper-

defined macro is expanded and the back-quoting is done. Rather, the result of that

macroexpansion and back-quoting is a form that is evaluated with those variables

Page 623

bound to the arguments of the generic function, at the time the generic function

is called.

Consider another example. You might want to run some code before executing the

primary method. In addition, if the argument is nil you wanted to return from the

generic function immediately, without executing the primary method. You could

not do this using a :before daemon because :before methods are constrained to

proceed to the primary method. You can use a wrapper to solve the problem. The

following wrapper checks the argument and prevents anything further from hap-

pening, if it is nil. Instead of having a :before daemon, the "before" code is incor-

porated into the wrapper itself:

�

(defwrapper (drain cistern) ((valve-position) form)

 ‘(unless (null valve-position) ; Do nothing if valve closed

 before-code ; Execute some "before" code

 ,form)) ; Execute the body of the method�

Suppose you need a variable for communication among the daemons for a particu-

lar generic function; perhaps the :after daemons need to know what the primary

method did, and it is something that cannot be easily deduced from the arguments

alone. You might use an instance variable for this, or you might create a special

variable that is bound during the processing of the generic function, and used free

by the methods. For example:

(defvar *communication*)

(defwrapper (drain cistern) (ignore form)

 ‘(let ((*communication* nil))

 ,form))�

Similarly you might want a wrapper that puts a catch around the processing of a

generic function so that any one of the methods could throw out in the event of an

unexpected condition.

Examples of Whoppers

The following whopper adds code around the execution of the method that per-

forms the generic function print-integer on instances of the foo flavor. Specifical-

ly, the whopper binds the value of the special variable base to 3 around the execu-

tion of the method. This function takes one argument, n:

(defwhopper (print-integer foo) (n)

 (let ((base 3))

 (continue-whopper n)))�

The following whopper sets up a catch around the execution of the compute-

height method of flavor giant, regardless of what arguments this methods accepts:

(defwhopper (compute-height giant) (&rest args)

 (catch ’too-high

 (lexpr-continue-whopper args)))�

Page 624

Mixing Flavors that Use Whoppers and Daemons

Like daemon methods, whoppers work in outward-in order; when you add a

defwhopper to a flavor built on other flavors, the new whopper is placed outside

any whoppers of the component flavors. However, all whoppers happen before any

daemons happen. Thus, if a component defines a whopper, methods added by new

flavors are considered part of the continuation of that whopper and are called only

when the whopper calls its continuation.

Mixing Flavors that Use Wrappers and Whoppers

Whoppers and wrappers are considered equal for purposes of combination. If two

flavors are combined, one having a wrapper and the other having a whopper for

some method, then the wrapper or whopper of the flavor that is further out is on

the outside. If, for some reason, the very same flavor has both a wrapper and a

whopper for the same message, the wrapper goes outside the whopper.

Mixing Flavors that Use Wrappers and Daemons

When mixing flavors, wrappers work in outside-in order, just as daemons work.

When you add a defwrapper to a flavor built on other flavors, the new wrapper is

placed outside any wrappers of the component flavors. When the combined method

is built, the calls to the before daemon methods, primary methods, and after dae-

mon methods are all placed together, and then the wrappers are wrapped around

them. Thus, if a component flavor defines a wrapper, methods added by new fla-

vors execute within that wrapper’s context.

Complete Options for defflavor

This section describes the options to defflavor. For information on the format of

the options, see the special form defflavor.

See the section "Inheritance of defflavor Options".

:abstract-flavor

Declares that the flavor exists only to define a protocol; it is not intend-

ed to be instantiated by itself. Instead, it is intended to have more spe-

cialized flavors mixed in before being instantiated.

Trying to instantiate an abstract flavor signals an error.

:abstract-flavor is an advanced feature that affects paging. It decreases

paging and usage of virtual memory by allowing abstract flavors to have

combined methods. Normally, only instantiated flavors get combined

methods, which are small Lisp functions that are automatically built and

compiled by the flavor system to call all of the methods that are being

combined to make the effective method. Sometimes many different in-

stantiated flavors use the same combination of methods. If this is the

case, and the abstract flavor’s combined methods are the same ones that

Page 625

are needed by the instantiated flavors, then all instantiated flavors can

simply share the combined methods of the abstract flavor instead of hav-

ing to each make their own. This sharing improves performance because

it reduces the working set.

compile-flavor-methods is permitted on an abstract flavor. It is useful

for combined methods that most specializations of that flavor would be

able to share.

(:area-keyword symbol)

Changes the :area keyword to make-instance of this flavor to the sup-

plied argument. This is useful if the flavor is using the :area keyword

for some other purpose, such as an init keyword for an object’s geomet-

ric or geographic area. This option is similar to the :conc-name option.

Whereas :conc-name enables you to supply a prefix for an automatically

generated function, the :area-keyword option to defflavor enables you to

rename the :area keyword that is given to make-instance when making

an instance of this flavor.

In rare cases, you might want to use the keyword :area for other pur-

poses. For example, a geometric program might have a triangle flavor

that has an instance variable named area that is equal to one-half of the

product of its width and height. It is then important to distinguish be-

tween the instance variable area and the keyword that denotes in which

area to create instances. You can rename that keyword for the affected

flavor by providing the :area-keyword keyword to defflavor. For exam-

ple:

(defflavor triangle (area) ;instance var.

 ()

 :initable-instance-variables

 (:area-keyword :cons-area))�

Now, when you make an instance, :area refers to the instance variable,

and :cons-area indicates the area in which instances are to be created:

(make-instance ’triangle

 :area 44.23

 :cons-area GEOMETRY-AREA)�

(:component-order args...)

Enables you to state explicitly the ordering constraints for the flavor

components whose order is important. You can use it to relax ordering

constraints on component flavors for which order is not important. You

can also use it to add ordering constraints on flavors that are not com-

ponents; this means that if this flavor is later mixed with another flavor,

the ordering of components takes into account the constraints given by

this option.

If :component-order is given, the order of flavor components at the top

of the defflavor form is no longer significant. The arguments to

Page 626

:component-order are lists. The members of each list are constrained to

appear in the order they appear in the list. Any component that does not

appear in these lists has no ordering constraints placed on it.

For example, the following form imposes many constraints on the order-

ing of the seven flavor components:

(defflavor foo (var1 var2)

 (a b c d e f g))�

However, your program might not depend on a specific ordering of com-

ponents, because the components have no effect on each other. For ex-

ample, your program might depend only these ordering constraints:

• Flavor c must precede d.

• Flavor b must precede g.

• If flavor x is present (it could be a component of one of the compo-

nents, or it could be mixed into flavor foo to create a new flavor), it

must follow b and precede g.�

You can specify those restrictions by giving the following option to

defflavor:

(defflavor foo (var1 var2)

 (a b c d e f g)

 (:component-order (c d) (b x g)))�

Note that this does not constrain flavors c and d to precede flavors b, x,

and g. Also, it is not an error to specify an ordering constraint for a fla-

vor that is not a component of this flavor. For example, it is valid to

constrain the order of x, although x might not be a direct or indirect

component of this flavor.

For details on the way the flavor system determines the order of flavor

components, see the section "Ordering Flavor Components".

(:conc-name symbol)

Enables you to specify a prefix for the accessor functions created when

the :readable-instance-variables, :writable-instance-variables, or

:locatable-instance-variables options are supplied. Normally the accessor

function to access the instance variable v of flavor f is named f-v, such

as:

ship-mass

You can specify a different prefix as follows:

(defflavor ship (captain mass) ()

 (:conc-name get-)

 :readable-instance-variables)�

The accessor functions for ship are thus named get-captain and get-

mass.

Page 627

You can use :conc-name to specify no prefix as follows:

(defflavor ship (captain mass) ()

 (:conc-name nil)

 :readable-instance-variables)�

The accessor functions for ship are named captain and mass.

For information on an alternate syntax of defflavor which enables you to

explicitly specify the names of accessor functions, see the section "Speci-

fying Names for Functions that Access Instance Variables".

(:constructor args...)

Automatically generates a constructor function that enables you to create

new instances of this flavor. The main advantage to constructor func-

tions is that they are much faster than using make-instance. Whereas

make-instance takes a flavor name argument and looks up information

about the flavor, constructor functions have this information compiled in-

to Lisp code. Constructor functions run any make-instance methods that

are defined for this flavor.

The constructor function can take positional arguments instead of key-

word arguments, or a mix of positional and keyword arguments. You can

give the :constructor option more than once within a single defflavor to

define several different constructors, each with its own arguments.

It is necessary to do a compile-flavor-methods to ensure that the con-

structor function is defined. The constructor function is defined as part

of the macro-expansion of compile-flavor-methods, not part of the

macro-expansion of defflavor. This makes it possible to define a flavor

before all component flavors are defined. If you are incrementally devel-

oping code, you can put a compile-flavor-methods form into an editor

buffer and use c-sh-C before running code that calls the constructor

function.

The :constructor option takes two arguments. The first argument speci-

fies the name of the constructor function. The second argument is op-

tional; it is used to describe the argument list of the constructor. If no

second argument is given, the constructor function uses the same &key

arglist that make-instance would accept after the flavor name, including

keywords for: each initable instance variable, each init-keyword, and

:area.

For example, a simple case like (:constructor make-foo (a b c)) defines

make-foo to be a three-argument constructor function whose arguments

are used to initialize the instance variables named a, b, and c.

In addition, you can use the keywords &optional, &rest, &key, &allow-

other-keys, and &aux in the argument list. They work as you might ex-

pect, but note the following:

Page 628

(defflavor foo (a b c d e f g h i) ()

 (:constructor make-foo

 (a &optional b (c ’sea)

&rest d

&key i

&aux e (f ’eff))))

�

(compile-flavor-methods foo)�

This defines make-foo to be a constructor that accepts one or more ar-

guments. The first argument is used to initialize the a instance variable.

The second argument is used to initialize the b instance variable. If

there is no second argument, then the default value given in the body of

the defflavor (if given) is used instead. The third argument is used to

initialize the c instance variable. If there is no third argument, then the

symbol sea is used instead. Any arguments following the third argument

are collected into a list and used to initialize the d instance variable. If

the keyword :i is supplied with a value, that value is used to initialize

the i instance variable. If there are three or fewer arguments, then nil

is placed in the d instance variable; the initial value of e is undefined;

and the f instance variable is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow

you to specify all possible behaviors. Note that the &aux "variables" can

be used to completely override the default initializations given in the

defflavor form.

In summary, each parameter of a constructor can be:

• The name of an instance variable. In this case, the argument is stored

into the instance variable.

• Something that matches the area keyword; by default this is :area,

but the :area-keyword option can be used to specify a different area

keyword. In this case, the argument is the area in which the instance

is created.

• Something that matches an init keyword declared by the :init-keyword

option. In this case, the argument is passed to the make-instance

and/or :init methods as the appropriate keyword argument.

Above, "something that matches" means the following: For &key param-

eters, something matches if it is eq to the keyword. Note the (&key

((:key var))) syntax can be used to specify a keyword that is different

from the variable name. For non-&key parameters, something matches if

it is eq to a symbol with the same name as the parameter variable, but

in the keyword package.

Defaulting occurs as follows: If no default is specified in the constructor

argument list, then the default is not nil (unlike the behavior of a nor-

Page 629

mal argument list). Instead, for &aux parameters the default is to leave

the instance variable unbound or not pass the init keyword to the make-

instance and/or :init methods. For non-&aux parameters, if no default is

specified then default is whatever default that make-instance would use.

The area defaults the same regardless of whether it is &aux or not,

since it is impossible not to have an area for making an instance.

(:default-handler function-name)

The argument is the name of a function that is to be called when a

generic function is called for which there is no method. The function is

called with the arguments the instance was called with, including the

message name; the values it returns are returned. If this option is not

specified on any component flavor, it defaults to a function that signals

an error.

The function specified with the :default-handler option to defflavor re-

ceives two additional arguments. The first argument is self and the sec-

ond is always nil.

The following example shows the use of :default-handler.

(defflavor lisp-stream (forward) ()

 (:default-handler lisp-stream-forward))

�

(defun lisp-stream-forward (self ignore message &rest arguments)

 (lexpr-funcall (send self :forward) message arguments))�

This is equivalent to defining a method for the :unclaimed-message

message. See the message :unclaimed-message.

(:default-init-plist plist)

Provides a list of alternating keywords and default value forms for key-

word arguments that are allowed for make-instance of this flavor. The

keywords can be: initable instance variables, init keywords, required init

keywords, :allow-other-keys, or :area. If you do not specify one or more

of these keywords as arguments to make-instance, they are set to the

default in :default-init-plist. For the meaning of the :allow-other-keys

and :area keywords, see the function make-instance.

This option allows one component flavor to default an option to another

component flavor. The value forms are evaluated only when and if they

are used. For example, the following would provide a default "frob array"

for any instance for which the user did not provide one explicitly as an

argument to make-instance:

(:default-init-plist :frob-array

 (make-array 100))�

Elements in the :default-init-plist that are init keywords are supplied to

any methods defined for make-instance of this flavor. However, :default-

init-plist elements that initialize instance variables are not supplied to

make-instance methods.

Page 630

(:documentation string)

The list of arguments to this option is remembered on the flavor’s prop-

erty list as the :documentation property. The convention for this list is

as follows: A string describes what the flavor is for; this could consist of

a brief overview in the first line followed by several paragraphs of de-

tailed documentation. A symbol is one of the following keywords:

:mixin A flavor that you might want to mix with others to

provide a useful feature.

:essential-mixin A flavor that must be mixed in to all flavors of its

class, or inappropriate behavior follows.

:lowlevel-mixin A mixin used only to build other mixins.

:combination A combination of flavors for a specific purpose.

:special-purpose A flavor used for some internal purpose by a particu-

lar program, which is not intended for general use.�

(:functions internal-function-names)

Declares the names of defun-in-flavor functions internal to the flavor.

The arguments are names of internal functions.

defun-in-flavor functions are lexically scoped. They must either be de-

fined before their callers, or declared by using the :functions option for

defflavor. Otherwise the caller would not be compiled or evaluated in

the proper lexical environment, and would not know that the name of

the internal function refers to a defun-in-flavor function rather than to

an ordinary function in the global environment. see the section "Defining

Functions Internal to Flavors".

The :functions option is not appropriate for internal functions defined by

defsubst-in-flavor or defmacro-in-flavor.

(:gettable-instance-variables vars...)

This option is available for compatibility with the old message-passing

flavor system. When writing new code, it is good practice to use the

:readable-instance-variables option instead.

Enables automatic generation of methods for getting the values of in-

stance variables. The message name is the name of the variable, in the

keyword package (that is, put a colon in front of it.)

To use the automatically-generated method, use the old send syntax. For

example:

(send my-ship :mass)

You can give this option with arguments, to specify the instance vari-

ables to which it applies. If no arguments are provided, this option ap-

plies to all instance variables listed at the top of the defflavor form.

Page 631

(:init-keywords symbols...)

Declares its arguments as keywords that should be accepted by make-

instance of this flavor. Init keywords are:

• Keyword arguments to be processed by methods defined for make-

instance for this flavor

When you write a method for make-instance that accepts keyword ar-

guments, you should include those keywords as init keywords. For re-

lated information, see the section "Writing Methods for

make-instance".

• Keywords defined by the :mixture option to defflavor

When you define a family of flavors, you should include any :mixture

keywords as init keywords.�

:init-keywords is used for error-checking when you create an instance.

All keywords given to make-instance are either initable instance vari-

ables or init keywords, or keywords accepted by make-instance, like

:area. If the caller misspells a keyword or otherwise uses a keyword that

no component flavor handles, make-instance signals an error.

Note that whenever you have a :required-init-keywords clause contain-

ing keywords that are to be used by make-instance methods, it is neces-

sary to include those keywords in the :init-keywords clause as well.

It is allowed but pointless to include keywords that initialize instance

variables as init keywords.

(:initable-instance-variables vars...)

Enables you to initialize the specified instance variables when making an

instance of this flavor. The instance variables are sometimes called

initable. In the make-instance form, you initialize values by including

the keyword (name of the instance variable) followed by its value, as fol-

lows:

(make-instance flavor-name :variable-name value)�

For example, when making an instance of the ship flavor, we can initial-

ize the mass instance variable (assuming it is initable), as follows:

(make-instance ’ship :mass 105)�

You can give this option with arguments, to specify the instance vari-

ables to which it applies. If no arguments are provided, this option ap-

plies to all instance variables listed at the top of the defflavor form.

If you want to specify that an instance variable inherited from another

component flavor should be initable, you can include the name of that in-

stance variable explicitly in the top of the defflavor form. This option

checks for spelling errors, so any instance variables that are declared

Page 632

initable must appear at the top of the defflavor form, or be in the list

of :required-instance-variables.

defflavor offers an alternate syntax enabling you to explicitly specify the

keyword to be used to initialize an instance variable. For information on

it, see the section "Specifying Names for Functions that Access Instance

Variables".

(:locatable-instance-variables vars...)

Enables you to use locf to get a locative pointer to the cell inside an in-

stance that contains the value of an instance variable as follows:

(locf (accessor object))�

If the accessor function is ship-mass, and the object is my-ship, you can

get a locative pointer to the cell inside my-ship containing the value of

the mass instance variable as follows:

(locf (ship-mass my-ship))�

You can give this option with arguments, to specify the instance vari-

ables to which it applies. If no arguments are provided, this option ap-

plies to all instance variables listed at the top of the defflavor form.

Any instance variables specified by :locatable-instance-variables are au-

tomatically made readable as well; that is, an accessor function is auto-

matically defined.

defflavor offers an alternate syntax enabling you to explicitly specify the

names of accessor functions. For information on it, see the section "Spec-

ifying Names for Functions that Access Instance Variables".

(:method-combination symbol)

Declares the way that methods from different flavors are to be combined.

The syntax is:

(:method-combination

 generic-function name

 generic-function (name args...)

 ...)�

If the :method-combination option is also supplied to defgeneric, that

option must agree with the :method-combination option given to

defflavor.

For further details on usage and an example, see the section "Using the

:method-combination Option".

(:method-order generic-function-names)

The arguments are names of generic functions that are frequently used

or for which speed is important. Their handlers are inserted into the

handler hash table first, so that they are found by the first hash probe.

(:mixture specs...)

Defines a family of related flavors. The organization of this family usual-

Page 633

ly consists of one basic flavor and several mixin flavors. The flavors in

the family are automatically constructed by mixing various mixins with

the basic flavor. When make-instance is called, it uses its keyword argu-

ments (or defaults to values in the :default-init-plist of the defflavor

form) to choose which flavor of the family to instantiate.

The basic flavor is the one that includes the :mixture option in its

defflavor. By convention, it is often named basic-foo. Often the basic fla-

vor is not intended to be instantiated. If so, you should supply the

:abstract-flavor option to specify that.

The names for the family members are chosen automatically. The name

of such an automatically constructed flavor is a concatenation of the

names of its components, separated by hyphens. Note that obvious redun-

dancies are removed heuristically. An example is shown later in this

section.

defflavor of the basic flavor defines the automatically constructed fla-

vors as well as the basic flavor. Similarly, compile-flavor-methods of the

basic flavor also compiles combined methods of the automatically con-

structed flavors.

The :mixture option is not inherited by flavors from their component

flavors. You can still build a new flavor from a flavor that uses

:mixture, but you should not expect that the new flavor follows the con-

ventions specified by the :mixture option of its component. If you try to

apply the :mixture conventions of a component flavor to the new flavor

built on it, you will get a warning. If you want the new flavor to follow

the same conventions, you can include the same :mixture option in the

defflavor of the new flavor.

The :mixture option has the following form:

(:mixture spec spec ...)

Each spec is processed independently, and all the resulting mixins are

mixed together. A spec can be any of the following:

(keyword mixin)

Add mixin if the value of keyword is t; add nothing if nil.

(keyword (value mixin) (value mixin) ...)

Look up the value of keyword in this alist and add the specified

mixin.

(keyword mixin subspec subspec ...)

(keyword (value mixin subspec subspec ...) ...)�

A subspec has the same form as a spec. Subspecs are processed only

when the specified keyword has the specified value. Use them when

there are interdependencies among keywords.

A mixin is one of the following:

Page 634

symbol The name of a flavor to be mixed in.

nil No flavor needs to be mixed in if the keyword takes

on this value.

string This value is invalid: Signal an error with the string

as part of the message.�

A value can be anything that is acceptable as a clause key for case. This

includes symbols, numbers, characters, instances, and named structures;

but excludes lists, strings, and arrays other than named structures. The

symbol otherwise is treated specially, as in case. For example, if you

want to allow for values of :size other than 1, the :mixture clause is:

(:mixture (:size (1 small-mixin)

 (otherwise nil)))�

make-instance checks that the keywords are given with valid values, if

you do not have otherwise as a clause key. You need an :init-keywords

declaration for any keywords that are used only in the :mixture declara-

tion. You cannot specify constructors for the flavors generated by the

:mixture option.

The following example defines a basic flavor called cereal-stream:

(defflavor cereal-stream (...) (stream)

 ...

 :abstract-flavor

 (:init-keywords :characters :direction

 :ascii :hang-up-when-close)

 (:mixture (:characters

 (t nil (:direction

(:in buffered-line-input-stream)

(:out buffered-output-character-stream))

 (:ascii ascii-translating-character-stream))

 (nil nil (:direction (:in buffered-input-stream)

 (:out buffered-output-stream))

 (:ascii "Ascii translation is not

meaningful for binary streams")))

 (:hang-up-when-close hang-up-when-close-mixin)))�

The declaration above indicates that the basic flavor cereal-stream can-

not be instantiated alone. The :direction option and an appropriate value

(:in or :out) must be provided to make-instance. The :characters option

does not itself add any mixins (hence the nil), but the processing of the

:direction option depends on the value of the :characters option, which

selects a character stream or a binary stream. The :ascii option is al-

lowed only for character streams, and an error message is specified if it

is used with a binary stream. If :ascii had not been mentioned in the

:characters nil case, the keyword would have been ignored by make-

instance on the assumption that a make-instance method was going to

use it. Any kind of cereal-stream can have a :hang-up-when-close op-

tion.

Page 635

You could make an instance of a member of this family as follows:

(make-instance ’cereal-stream :characters t

 :direction :in

 :hang-up-when-close t)�

The name of the flavor that is instantiated is: hang-up-when-close-

buffered-line-input-cereal-stream.

:no-vanilla-flavor

Normally when a flavor is defined, the special flavor flavor:vanilla is in-

cluded automatically at the end of its list of components. The

flavor:vanilla flavor provides some default methods for several useful

functions that all objects are supposed to understand, including

sys:print-self and :which-operations, among others.

If any component of a flavor specifies the :no-vanilla-flavor option,

flavor:vanilla is not included in that flavor. This option should not be

used casually.

(:ordered-instance-variables symbols)

:ordered-instance-variables increases efficiency at the cost of dynamic

modification. This is an advanced option that can be used to micro-

optimize certain programs. It should not be used casually. The argu-

ments are names of instance variables that must appear first (and in

this order) in all instances of this flavor or any flavor depending on this

flavor. If the keyword is given alone, the arguments default to the list of

instance variables given at the top of this defflavor.

When you use this option, you must specify all of this flavor’s instance

variables in the list of instance variables at the top of the defflavor

form, including any inherited instance variables. When you build a flavor

from another flavor that uses :ordered-instance-variables, both flavors

must specify the same order of instance variables. The new flavor can

add instance variables, but they must come after the inherited instance

variables. For example:

(defflavor latched-object (simple-latch)

 ()

 (:ordered-instance-variables simple-latch))

�

(defflavor ordered-lock (simple-latch next-lock number)

 (latched-object)

 (:ordered-instance-variables simple-latch next-lock number))

If you try to redefine a flavor that has ordered instance variables, you

will notice that the actual order of the instance variables does not

change once the Flavors system has committed to a particular order. Fla-

vors gives you a warning when this occurs. However, you can change the

order by reloading the code into a world in which the flavor has not yet

been defined.

Page 636

(:readable-instance-variables vars...)

Creates an accessor function for querying an object for the value of each

of the specified instance variables. The name of the function is the name

of the flavor, followed by a dash "-", followed by the name of the in-

stance variable. The accessor function for the instance variable v of fla-

vor f is:

f-v

For example, the ship flavor has an instance variable named mass. If

the :readable-instance-variables option is given, an accessor function

named ship-mass is created. You can use it on an instance of ship as

follows:

(ship-mass my-ship)

You can give this option with arguments, to specify the instance vari-

ables to which it applies. If no arguments are provided, this option ap-

plies to all instance variables listed at the top of the defflavor form.

This function is created in the package that is current at macro-

expansion time. defflavor offers an alternate syntax for specifying the

full name of accessors explicitly, which enables you to specify the pack-

age as well as the function name. See the section "Specifying Names for

Functions that Access Instance Variables".

You can use ":conc-name Option for defflavor" to specify a different

name for the accessor function.

(:required-flavors flavor-names)

Specifies flavors that must be included as components (directly or indi-

rectly) in a new flavor incorporating this one, if the flavor is to be in-

stantiated. The arguments are names of the required flavors. Typically

the :required-flavors option is used when defining a mixin flavor to

specify which base flavor or flavors it requires.

The difference between giving the :required-flavors option and listing

them directly as components at the top of the defflavor form is that the

:required-flavors option does not make any commitments about where

those flavors should appear in the ordered list of components. The order

of the :required-flavors is determined by the flavor that does specify

them as components.

Declaring a flavor as required using the :required-flavors option

• Allows instance variables declared by that flavor or its components to

be accessed.

• Allows you to use any internal functions defined for the flavors in the

:required-flavors clause, or for their components. see the section

"Defining Functions Internal to Flavors".

Page 637

• Provides error checking. An attempt to instantiate a flavor that does

not include the required flavors as components signals an error.

(:required-init-keywords init-keywords)

Specifies keywords that must be supplied when making an instance of

this flavor. The arguments are the required keywords. It is an error to

try to make an instance of this flavor or incorporate it without specify-

ing these keywords as arguments to make-instance or as a :default-init-

plist option in a component flavor. This error is often detected at com-

pile-time.

Each keyword argument to be accepted by make-instance must be de-

clared by one of the following options: :initable-instance-variables, :init-

keywords, :area-keyword, or be the default area-keyword :area. Note

that the :required-init-keywords option does not imply any one of the

above four, so any :required-init-keywords must also be declared in one

of ways listed above.

(:required-instance-variables vars...)

Declares that any flavor incorporating this one that is instantiated into

an object must contain the specified instance variables. The arguments

are the required instance variables. It is an error to try to make an in-

stance of this flavor or a flavor incorporating it if it does not have the

required instance variables.

Required instance variables can be freely accessed by methods just like

normal instance variables. The difference between using the :required-

instance-variables option and listing them at the front of the defflavor

is that the latter declares that this flavor "owns" those variables and will

take care of initializing them, while the former declares that this flavor

depends on those variables but that some other flavor must be provided

to manage them and whatever features they imply.

(:required-methods generic-function-names)

Specifies generic functions that must be supported with methods by a

new flavor incorporating this one, if the flavor is to be instantiated. The

arguments are the names of the generic functions that must be support-

ed with methods.

It is an error to instantiate such a flavor if it lacks a method for one of

these generic functions. When the :required-methods option is given, it

is possible for the error to be detected when the flavor is defined (usual-

ly at compile-time), rather than at run-time.

Typically this option appears in the defflavor form for a base flavor.

Usually this is used when a base flavor calls a generic function on itself,

but the base flavor does not provide a method for that generic function.

:required-methods indicates that the base flavor cannot be instantiated

alone, but must be instantiated with other components (mixins) that do

handle the required generic functions.

Page 638

(:settable-instance-variables vars...)

This option is available for compatibility with the old message-passing

flavor system. When writing new code, it is good practice to use the

:writable-instance-variables option instead.

Enables automatic generation of methods for setting the values of in-

stance variables. The message name is ":set-" followed by the name of

the variable. All settable instance variables are also automatically made

gettable and initable.

To use the automatically-generated method, use the old send syntax. For

example:

(send my-ship :set-mass 100)

You can give this option with arguments, to specify the instance vari-

ables to which it applies. If no arguments are provided, this option ap-

plies to all instance variables listed at the top of the defflavor form.

(:special-instance-variables vars...)

This option is intended for internal system uses only. It is documented

for completeness.

Use the :special-instance-variables option if you need instance variables

to be bound as special variables to values in the instance, when certain

methods are called. (The methods are specified with :special-instance-

variable-binding-methods.) This option detracts from performance and

should be avoided.

The format of :special-instance-variables is the same as that of

:readable-instance-variables. If the option is given alone, all instance

variables are bound. If the option is given in the format (:special-

instance-variables a b c), only the variables a, b, and c are bound.

(:special-instance-variables-binding-methods generic-function-names)

This option is intended for internal system uses only. It is documented

for completeness.

This option specifies names of generic functions and messages that

should cause any instance variables declared :special-instance-variables

to be bound as special variables to values in the instance.

(:writable-instance-variables vars...)

Enables you to use setf to set the value of an instance variable as fol-

lows:

(setf (accessor object) value)�

If the accessor function is ship-mass, and the object is my-ship, you can

set the value of the mass instance variable to 100 as follows:

(setf (ship-mass my-ship) 100)�

You can give this option arguments, to specify the instance variables to

which it applies. If no arguments are provided, this option applies to all

instance variables listed at the top of the defflavor form.

Page 639

Any instance variables specified by :writable-instance-variables are au-

tomatically made readable as well.

For information on an alternate syntax of defflavor which see the sec-

tion "Specifying Names for Functions that Access Instance Variables".

Specifying Names for Functions that Access Instance Variables

This section describes an alternate format of defflavor that enables you to explic-

itly specify the name of the generic functions that read, write, or locate an in-

stance variable. Using this format, you specify the name of the reader function;

note that the name of the writer function always involves setf and the locator

function involves locf. You can also explicitly specify the keyword used to initialize

an instance variable. If you are using message-passing, this flexible syntax also ap-

plies to gettable and settable instance variables.

This example exhibits the syntax of all of these:

(defflavor test-flavor (a b c d e f g h i j k l m n o p) ()

 (:initable-instance-variables a b (:sea c))

 (:settable-instance-variables d e (:change-f f))

 (:gettable-instance-variables g h (:eye i))

 (:readable-instance-variables j (get-kay k))

 (:writable-instance-variables l (m-value m))

 (:locatable-instance-variables n (get-o o)))�

When making an instance of test-flavor, you can initialize the variables a, b, and

c as follows:

(setq test-instance (make-instance ’test-flavor :a 2

 :b 4

 :sea 6))�

You can set the value of the variables d, e and f as follows:

(send test-instance :set-d 22)

(send test-instance :set-e 44)

(send test-instance :change-f 66)�

You can get the value of the variables g, h and i as follows:

�

(send test-instance :g)

(send test-instance :h)

(send test-instance :eye) �

You can read the values of the variables j, k, l, m, n and o as follows:

Page 640

(test-flavor-j test-instance)

(get-kay test-instance)

(test-flavor-l test-instance)

(m-value test-instance)

(test-flavor-n test-instance)

(get-o test-instance)�

You can write the value of the variable m as follows:

(setf (m-value test-instance) 33)�

You can locate the value of the variables n and o as follows:

(locf (test-flavor-n test-instance))

(locf (get-o test-instance))�

Specifying defflavor Options More than Once

Some defflavor options may be specified more than once. Those that are not al-

lowed to be specified more than once cause a warning to occur if you do so. This

is the list of options that can be specified more than once:

:constructor

:default-init-plist

:functions

:gettable-instance-variables

:init-keywords

:initable-instance-variables

:locatable-instance-variables

:method-combination

:method-order

:ordered-instance-variables

:readable-instance-variables

:required-flavors

:required-init-keywords

:required-instance-variables

:required-methods

:settable-instance-variables

:special-instance-variables

:special-instance-variable-binding-methods

:writable-instance-variables

�

Advanced Concepts for defmethod

defmethod Declarations

Page 641

It is legal to give the same declare statements to defmethod as are accepted by

defun. defmethod also accepts these additional declare statements:

(declare (flavor:solitary-method))

If this declaration is used, and only one method is available for

the generic function, Flavors implements the generic function

with the goal of saving space, and at the expense of making

the method slower to call. The generic function calls the

method directly, bypassing the usual dispatching mechanism.

If more than one method is available for the generic function,

this declaration has no effect. Also, this declaration saves space

only when a method is inherited by more than one flavor.

The input editor illustrates the use of solitary methods. Each

input editor command is a method. There are many commands,

and there is no need for them to be any faster than the user

can type them. Declaring these commands solitary methods op-

timizes space.

(declare (flavor:inhibit-arglist-checking))

Normally, Flavors checks the arguments of defmethod forms

to ensure that they are consistent with the arguments expected

by the generic function. This declaration prevents that consis-

tency check from occurring. For example:

(defmethod (accept encapsulating-output-stream)

 (presentation-type &rest args)

 (declare (flavor:inhibit-arglist-checking))

 (lexpr-send stream ’accept presentation-type :stream

 self args))�

Implicit Blocks for Methods

The interpreter and compiler generate implicit blocks for functions whose name is

a list (such as methods) just as they do for functions whose name is a symbol. You

can use return-from for methods. The name of a method’s implicit block is the

name of the generic function it implements. If the name of the generic function is

a list, the block name is the second symbol in that list.

Variant Syntax of defmethod

The following variant defmethod syntax is supported, but rarely used:

(defmethod (generic-function flavor options..) symbol)�

symbol is the name of an ordinary function (not a generic function) that is to be

used as the method for performing generic-function on instances of the given

flavor.

Page 642

For example:

(defmethod (delete-file logical-pathname) logical-pathname-pass-on)�

symbol cannot be an internal flavor function defined by defun-in-flavor, defmacro-

in-flavor, or defsubst-in-flavor. You can use the body of the normal defmethod

syntax to call an internal flavor function to perform the operation.

Function Specs for Flavor Functions

This section tells what the function specs are for various types of flavor functions,

such as generic functions, methods, and wrappers. For more detailed information

on how to use function specs: See the section "Function Specs".

Type of Function Function Spec

Combined method (flavor:combined generic-function flavor)

Generic function Its name, usually a symbol

Handler (:handler generic-function flavor)

Internal function (defun-in-flavor function-name flavor)

Internal macro (defun-in-flavor macro-name flavor)

Internal substitutable function (defun-in-flavor subst-name flavor)

Locator function (locf function)

Method (flavor:method generic-function flavor options..)

Setter function (setf generic-function)

Whopper (flavor:ncwhopper generic-function flavor)

Wrapper (flavor:wrapper generic-function flavor)

A note to Zetalisp programmers: the function spec of a setter function is (setf

generic-function), not (zl:setf generic-function).

Setter and Locator Function Specs

A setter function is a generic function that sets an instance variable. A locator

function is a generic function that locates an instance variable.

You invoke a setter function by typing something like:

(setf (ship-mass my-ship) 100)

The function spec for the above setter function is (setf ship-mass).

Similarly, you invoke a locator function by typing:

(locf (ship-mass my-ship))

The function spec for the above locator function is (locf ship-mass).

Page 643

A setter function can be defined in the following ways:

• Automatically: by providing the :writable-instance-variables option for

defflavor. For example:

(defflavor ship (x-velocity y-velocity mass)

 ()

 :writable-instance-variables)�

• Implicitly: by using defmethod to define a method, which in turn creates a

generic function. For example:

(defmethod ((setf ship-mass) ship) (new-mass)

 (setq mass new-mass

 mass-squared (* new-mass new-mass))

 new-mass)�

• Explicitly: by defining the generic function (setf ship-mass) using defgeneric.

This would be unusual.�

It is not necessary to use defsetf to tell setf how to deal with setter functions

such as ship-mass. The existence of the function named (setf ship-mass) is

enough for setf to know what to do.

Note that not all setter functions have the function spec (setf function). Only those

that were defined in one of the three ways described above have such a function

spec. Setter functions defined with defsetf do not have such a function spec. Here

is an example of using the setter function spec:

(let ((setter (if cond #’(setf foo) #’(setf bar))))

 (dolist (thing things)

 (funcall setter thing nil)))�

Property List Methods

It is often useful to associate a property list with an abstract object, for the same

reasons that it is useful to have a property list associated with a symbol. This sec-

tion describes a mixin flavor that can be used as a component of any new flavor in

order to provide that new flavor with a property list.

sys:property-list-mixin Flavor

Provides methods that perform the generic functions on property lists.

sys:property-list-mixin provides methods for the following generic functions:

:get indicator Message

Page 644

Looks up the object’s indicator property. If it finds such a property, it returns the

value; otherwise it returns nil.

:getl indicator-list Message

Like the :get message, except that the argument is a list of indicators. The :getl

message searches down the property list for any of the indicators in indicator-list

until it finds a property whose indicator is one of those elements. It returns the

portion of the property list beginning with the first such property that it found. If

it does not find any, it returns nil.

:putprop property indicator Message

Gives the object an indicator-property of property.

:remprop indicator Message

Removes the object’s indicator property by splicing it out of the property list. It re-

turns that portion of the list inside the object of which the former indicator-

property was the car.

:push-property value indicator Message

The indicator-property of the object should be a list (note that nil is a list and an

absent property is nil). This message sets the indicator-property of the object to a

list whose car is value and whose cdr is the former indicator-property of the list.

Executing the form

(send object :push-property value indicator)�

is analogous to doing

(zl:push value (send object :get indicator))�

See the function zl:push.

:property-list Message

Returns the list of alternating indicators and values that implements the property

list.

:set-property-list list Message

Sets the list of alternating indicators and values that implements the property list

to list.

(flavor:method :property-list sys:property-list-mixin) list Init Option

Page 645

Initializes the list of alternating indicators and values that implements the proper-

ty list to list.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

Generic Functions and Messages Supported by flavor:vanilla

This section lists the generic functions and messages for which flavor:vanilla pro-

vides a method.

Any flavor can override a flavor:vanilla method by providing a method for one of

the operations listed below.

You can write a method for flavor:vanilla. No method defined for flavor:vanilla

can access instance variables, because the flavor has none. Note that when you

write a method for flavor:vanilla, it takes a long time for the Flavor system to

update all flavors dependent on flavor:vanilla.

flavor:vanilla Flavor

This flavor is included in all flavors by default. flavor:vanilla has no instance

variables, but it provides several basic useful methods, some of which are used by

the Flavor tools.

Every flavor has flavor:vanilla as a component flavor, unless you specify not to in-

clude flavor:vanilla by providing the :no-vanilla-flavor option to defflavor. It is

unusual to exclude flavor:vanilla.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

flavor:vanilla provides methods for the following generic functions:

:describe Calls flavor:describe-instance, which prints the following in-

formation onto the *standard-output* stream: a description of

the instance, the name of its flavor, and the names and values

of its instance variables. It returns the instance.

get-handler-for Returns the given object’s method for a specified operation, or

nil if the object has no method for the operation.

:operation-handled-p

Returns t if the given object has a handler for the specified

operation, nil if it does not.

sys:print-self Produces a printed representation of the given object.

:send-if-handles Performs the specified generic function if the given object has

a method defined for it; otherwise returns nil.

:which-operations Returns a list of generic functions and messages that the given

object supports with methods. �

Page 646

Copying Instances

Flavors does not include any built-in way to copy instances. In order to copy an in-

stance you must understand a lot about the instance. You must understand the se-

mantics of the instance variables, so that their values can be copied if necessary.

You must understand the instance’s relations to the external environment so that

new relations can be established for the new instance. At a more basic level, you

must understand whether it makes sense to copy this particular instance at all.

Copying is conceptually a generic operation, whose implementation for a particular

instance depends on detailed knowledge relating to the flavor of that instance.

Modularity dictates that this knowledge be contained in the instance’s flavor, not

in a general copying function. Thus the way to copy an instance is to use a

method that takes care of all the ramifications of making a copy.

Copying instances raises a number of issues, such as:

• Should any make-instance methods be applied to the new instance? If so, what

arguments should be supplied to those methods?

• If the instance has a property list, you should copy the property list (for exam-

ple, with copy-list) so that sending a :putprop or :remprop message to one of

the instances does not affect the properties of the other instance.

• The instance might be contained in data structure maintained by the program of

which it is a part. For example, a graphics system might have a list of all the

objects that are currently visible on the screen. Copying such an instance re-

quires making the appropriate entries in the data structure. Some of the follow-

ing points are specific examples of this general point.

• If the instance is a pathname, the concept of copying is not even meaningful.

Pathnames are interned, which means that there can only be one pathname ob-

ject with any given set of instance-variable values.

• If the instance is a stream connected to a network, some of the instance vari-

ables represent an agent in another host elsewhere in the network. Copying the

instance requires that a copy of that agent somehow be constructed.

• If the instance is a stream connected to a file, should copying the stream make

a copy of the file or should it make another stream open to the same file?

Should the choice depend on whether the file is open for input or for output? �

Because copying instances involves so many semantic issues, Flavors does not pro-

vide a default method for copying an instance, nor does it suggest a standard

name for the generic function that does the copying.

One way that programmers have organized copying of instances is to define a

generic function that uses :append method combination. Each component flavor

controls the copying of its own aspect of the instance’s behavior, by supplying

some make-instance arguments. Inside the generic function, make-instance is

Page 647

called with the appended list as its arguments. Each component flavor has a

make-instance method that extracts the keyword arguments that are relevant to it

and initializes the appropriate aspect of the new instance. A simple example fol-

lows:

(defflavor copyable-object () ())

�

(defgeneric make-copy (copyable-object)

 (:method-combination :append :most-specific-first)

 ;; call make-instance with the correct arguments,

 ;; which come from the values of each method

 (:function

 (apply

 #’make-instance

 (type-of copyable-object)

 (funcall (flavor:generic make-copy) copyable-object))))

�

(defflavor copyable-property-list-mixin () (si:property-list-mixin)

 (:init-keywords :properties))

�

(defmethod (make-copy copyable-property-list-mixin) ()

 ;;ensure that the properties get copied

 ‘(:properties ,(copy-list (send self :property-list))))

�

(defmethod (make-instance copyable-property-list-mixin)

 (&key properties &allow-other-keys)

 (send self :set-property-list properties))

�

(defflavor color-mixin (color) ()

 :initable-instance-variables

 (:readable-instance-variables (get-color color)))

�

(defmethod (make-copy color-mixin) ()

 ;;ensure that the color instance variable gets copied

 ‘(:color ,color))

�

(defflavor example () (copyable-property-list-mixin

 color-mixin

 copyable-object))

(setq *obj* (make-instance ’example :color :red

 :properties ’(value 1 other-value 2)))

�

(get-color *obj*) => :RED

(send *obj* :get ’value) => 1

�

(setq *new-obj* (make-copy *obj*))

Page 648

�

;;;the new object has the same properties as the old

(get-color *new-obj*) => :RED

(send *new-obj* :get ’value) => 1

�

;;;the new object has its own copy of the property list

(send *new-obj* :putprop 5 ’value) => 5

(send *new-obj* :get ’value) => 5

(send *obj* :get ’value) => 1�

A related feature is the :fasd-form message, which provides a way for an instance

to tell the compiler how to copy it from one Lisp world into another, via a bin file.

This is different than making a second copy of the instance in the same Lisp

world. :fasd-form is a way to get an equivalent instance when the bin file is load-

ed.

Note on make-instance and :fasd-form

Flavor instances are dumped as the forms which are evaluated to create them. As

long as the creating forms do not change, flavor instances are compatible across

releases and machine architectures. It is always possible that the syntax of make-

instance will change from one release to another. For this reason, we suggest that

you avoid returning make-instance from :fasd-form, but instead define your own

function with a name such as make-foo-for-loading-from-file and have :fasd-form

return a call to that function.

If you later need to change something, you can make your :fasd-form start return-

ing calls to a second function such as make-foo-for-loading-from-file-version-2.

You can keep the previous function make-foo-for-loading-from-file around for

compatibility with old files, so you can continue to load them.

The Order of Defining Flavors and Flavor Operations

Programmers have a certain amount of freedom in the order in which they do

defflavors, defmethods, and defwrappers. This freedom makes it easy to load pro-

grams containing complex flavor structures without having to do things in a cer-

tain order. Flavors does not require that all methods and operations for a flavor

must be defined in the same file. Thus the partitioning of a program into files can

be along modular lines.

The rules for the order of definition are as follows.

• Before any flavor operation can be defined, the flavor must have been defined

with defflavor. This rule applies for defmethod, defwhopper, defwhopper-

subst, defwrapper, defun-in-flavor, defmacro-in-flavor, and defsubst-in-flavor.

This is necessary because the system needs a place to remember the method (or

other type of operation), and must know the flavor’s instance variables in order

to compile the method.

Page 649

• A flavor can be defined before its component flavors have been defined. This al-

lows defflavors to be spread between files according to a program’s modularity.

• In some cases, a method can be defined for a flavor before all of the component

flavors are defined. However, if the method accesses an instance variable for a

component flavor that is not yet defined, the method will not work. In these

cases, compiling those methods produces a warning that an instance variable

was declared special (because the system did not realize it was an instance

variable).

• Any methods automatically generated by the defflavor options :readable-

instance-variables and :writable-instance-variables are generated at the time

the defflavor is done.

• At the time that a flavor is "composed", it is necessary that all of its component

flavors must be defined. A flavor is composed when compile-flavor-methods is

evaluated, or when the first instance is made. When a flavor is composed, the

system performs some error-checking (such as the check that :required-

instance-variables are included); generates the combined methods for the fla-

vor; and generates any constructor functions indicated by the :constructor op-

tion for defflavor. Note that compile-flavor-methods generates combined meth-

ods and constructors at compile-time, and verifies that they are still correct at

load-time. If any of the combined methods or constructors have become obsolete

(for example, if the definition of the flavor has changed), they are regenerated

at load-time.

• Because internal functions of flavors are lexically scoped, they must be declared

or defined before their callers. Otherwise the caller would not be compiled or

evaluated in the proper lexical environment, and would not know that the name

of the internal function refers to an internal function rather than to an ordinary

function in the global environment. The :functions option to defflavor can be

used to declare the names of defun-in-flavor internal functions of the flavor.

See the section "Defining Functions Internal to Flavors".

Implementation of Flavors

This section describes the Symbolics implementation of Flavors. There is no need

to read or understand this section to use Flavors.

Efficiency Considerations of Flavors

The efficiency philosophy of Flavors is to optimize run-time speed to the maximum

extent that does not compromise other goals, such as the flexibility to redefine

anything while the program is running. In addition to Flavors-related goals, gener-

al Symbolics system goals, such as full run-time error checking, avoiding

widespread use of declarations, and providing the best functionality, are not com-

promised for the sake of efficiency.

Page 650

CPU time and page fault rate determine response time, so they are more impor-

tant than virtual memory size, which only consumes inexpensive disk storage. Con-

sequently Flavors maintains multiple copies of information when that improves vir-

tual memory locality or execution speed. Keeping those multiple copies consistent

slows down program development operations, especially when modifying flavors

that have hundreds of dependents. This tradeoff is acceptable, since development

operations need not be faster than human speeds (several seconds), while run-time

operations must operate at computer speeds (microseconds). Speeding up the run-

time operations also speeds up the development tools built on them.

The key areas that are important to optimize in an object-oriented programming

system are:

• Selection of one or more methods when a generic function is called

• Instance variable access from a method

• Instance creation�

The following sections discuss how Flavors implements these operations.

Implementation of Method Selection

The first time a flavor is instantiated, or during compilation of the program if so

directed, a handler function is precomputed for each generic function that the fla-

vor supports. The method-combination procedure selects a set of methods and pro-

duces Lisp code that combines them. If the code can be optimized into calling a

single method, that method is the handler. Otherwise a combined method is gen-

erated, compiled to machine code, and used as the handler. The combined method

calls the methods with ordinary Lisp function calls.

The results of this precomputation are saved in a handler table associated with the

flavor, keyed by the generic function. Thus when a generic function is called, the

method selection process consists of finding the instance’s flavor, looking in the

handler table, and calling the handler. The handler table is a hash table whose

structure is optimized to exploit the pipelined characteristics of the 3600’s memory

bus.

Subsequent changes to the program such as adding methods, removing methods,

declaring a different method combination type, or changing a flavor’s components

incrementally update all affected handler tables, compiling new combined methods

when necessary. For this purpose each flavor is linked to the flavors that depend

on it and each combined method records how it was generated.

Implementation of Instance Variable Access

An instance is represented as a block of storage whose first word references the

flavor and whose remaining words contain values of instance variables. Offsets

within the instance of instance variables cannot be compiled into methods that ac-

cess the variables. These offsets are variable at run time, depending on the flavor

of the instance, which can be any flavor that has the method’s flavor as a compo-

nent. Multiple inheritance makes it impossible to allocate fixed offsets to instance

variables, because two flavors using the same offset for different instance variables

might later be mixed together and one of them would have to change.

Page 651

The solution is to use indirect addressing. Each entry in a handler table includes a

mapping table, which contains instance variable offsets. A method receives a map-

ping table as an argument. Offsets into the mapping table are compiled into meth-

ods. These offsets don’t change, because when two flavors are mixed together each

has its own mapping table. Accessing an instance variable fetches the instance

variable’s offset from the mapping table, adds it to the address of the instance,

and references that memory location.

When a combined method calls another method, it supplies a mapping table

fetched from its own mapping table. Thus mapping tables actually form a tree

structure parallel to the tree structure of flavor components.

In principle every flavor needs a separate mapping table for each component, and

the total number of mapping tables could be proportional to the square of the

number of flavors. In practice the average number of components of a flavor is

small and only components that have instance variables need mapping tables. Thus

the average number of mapping tables per flavor is only 4.1 and the total memory

occupied by mapping tables is negligible.

Flexible Representation of Instances

Redefining a flavor in a way that changes the representation of instances, such as

adding or deleting an instance variable, arranges for existing instances to be up-

dated automatically. It makes a new flavor (with the same name) and changes the

old flavor’s handler table so that all generic functions rearrange the instance,

change its flavor reference to the new flavor, and retry the operation. If the new

instance representation is larger, rearranging the instance allocates new storage,

copies the instance variable values into it, and deposits forwarding addresses with

a sys:dtp-structure-forward and sys:dtp-element-forward tag into the old stor-

age. The instance variable accessing instructions and the garbage collector recog-

nize these forwarding pointers.

Implementation of Instance Creation

The first time a flavor is instantiated, the initialization information from all its

components is combined and saved in a convenient form. Subsequent instantiations

consist of allocating storage, copying a template instance, initializing any instance

variables whose initial values are not constant, and invoking initialization methods

if any have been defined.

Using Message-Passing Instead of Generic Functions

Message-passing is supported for compatibility with previous versions of the flavor

system. This section describes the features that support message-passing. When

writing new programs, it is good practice to use generic functions instead of mes-

sage-passing.

Defining Methods to Be Called by Message-Passing

The syntax for defmethod is as follows:

Page 652

(defmethod (generic-function flavor options..) (arg1 arg2..) body..)�

To define a method to be invoked by sending a message (instead of calling a

generic function), supply a keyword as the generic-function argument to

defmethod. The keyword is the name of the message. For example:

;;; define a message :speed-of, to be used with send syntax

;;; on instances of the ship flavor

�

(defmethod (:speed-of ship) ()

 (sqrt (+ (expt x-velocity 2)

 (expt y-velocity 2))))�

This method should be invoked by the old send syntax:

(send instance message args...)�

For example:

(send my-ship :speed-of)�

You can also specify that any methods for a certain flavor should be invocable both

by generic functions and messages. To do so, supply the :compatible-message op-

tion to defgeneric. Thus, any methods for that generic function can be called with

the generic function syntax, or the old send syntax.

For any methods invocable by messages, you can call defgeneric to update the fla-

vor to treat those methods as generic functions. If you do so, the old send syntax

no longer works.

Defining a Compatible Message for a Generic Function

The :compatible-message option to defgeneric indicates that any methods written

for this generic function should be callable in two ways: by calling the generic

function or by sending a message. One example of the use of :compatible-message

is in conjunction with a programming construct that recognizes messages only as

selectors, such as defselect.

The name of the generic function is given as an argument to defgeneric. The

name of the message is given as an argument to the :compatible-message option.

For example:

(defgeneric speed (moving-objects)

 (:compatible-message :speed-of))

�

(defmethod (speed ship) ()

 (sqrt (+ (expt x-velocity 2)

 (expt y-velocity 2))))�

You can invoke the generic function speed as follows:

(speed my-ship)

You can invoke the same method by sending the :speed-of message as follows:

Page 653

(send my-ship :speed-of)

You can also use either speed or :speed-of in defmethod; :speed-of is automati-

cally changed to speed in the method’s function spec.

If you are converting message-passing programs to generic functions, and using

:compatible-message to define messages so that old programs that use those mes-

sages will continue to work, you should be sure that every use of the message you

are defining is within your program. If other programs are using the same mes-

sage name for different purposes, your defgeneric form will have an effect on the

other methods. For example, all methods for that message are constrained to take

the arguments that your generic function takes. Also, when any methods for that

message are compiled, they are defined as being methods for your generic func-

tion.

Note that if a generic function uses both the :compatible-message and :function

options, the way to trigger the generic dispatch within the :function option is by

sending the message, not by calling the generic function.

Functions for Passing Messages

send object message-name &rest arguments

Sends a message to a flavor instance.

lexpr-send object message argument &rest arguments

Like send, except that the last argument should be a list. All elements

of that list are passed as arguments.

send-if-handles object message &rest arguments

Sends a message to a flavor instance, if the flavor has a method defined

for this message.

lexpr-send-if-handles object message argument &rest arguments

Like send-if-handles, except that the last element of arguments should

be a list. All elements of that list are passed as arguments.

Note that send-if-handles, :send-if-handles and lexpr-send-if-handles work by

sending the :send-if-handles message. You can customize the behavior of these op-

erations by defining a method for that message.

Conditions

Introduction to Signalling and Handling Conditions

This chapter is tailored for applications programmers. It contains descriptions of

all conditions that are signalled by Genera. With this information, you can write

your own handlers for events detected by the system, or define and handle classes

of events appropriate for your own application.

The chapter covers the following major topics:

Page 654

• Mechanisms for handling conditions signalled by system or application code.

• Mechanisms for defining new conditions.

• Mechanisms appropriate for application programs to use to signal conditions.

• All of the conditions defined by and used in the system software.�

Overview of Signalling and Handling

An event is something that happens during execution of a program that the system

can detect, like the effect of dividing by zero. Some events are errors  which

means something happened that was not part of the contract of a given function

 and some are not. In either case, a program can report that the event has oc-

curred, and it can find and execute user-supplied code as a result.

The reporting process is called signalling, and subsequent processing is called han-

dling. A handler is a piece of user-supplied code that assumes control when it is

invoked as a result of signalling. Genera includes default mechanisms to handle a

standard set of events automatically.

The mechanism for reporting the occurrence of an event relies on flavors. Each

standard class of events has a corresponding flavor called a condition. For exam-

ple, occurrences of the event "dividing by zero" correspond to the condition

sys:divide-by-zero.

The mechanism for reporting the occurrence of an event is called signalling a con-

dition. The signalling mechanism creates a condition object of the flavor appropri-

ate for the event. The condition object is an instance of that flavor. The instance

contains information about the event, such as a textual message to report, and var-

ious parameters of the condition. For example, when a program divides a number

by zero, the signalling mechanism creates an instance of the flavor sys:divide-by-

zero.

Handlers are pieces of user or system code that are bound for a particular condi-

tion or set of conditions. When an event occurs, the signalling mechanism searches

all of the currently bound handlers to find the one that corresponds to the condi-

tion. The handler can then access the instance variables of the condition object to

learn more about the condition and hence about the event.

Handlers have dynamic scope, so that the handler that is invoked for a condition is

the one that was bound most recently.

The condition system provides flexible mechanisms for determining what to do af-

ter a handler runs. The handler can try to proceed, which means that the program

might be able to continue execution past the point at which the condition was sig-

nalled, possibly after correcting the error. Any program can designate restart

points. This facility allows a user to retry an operation from some earlier point in

a program.

Page 655

Some conditions are very specific to a particular set of error circumstances and

others are more general. For example, fs:delete-failure is a specialization of

fs:file-operation-failure which is in turn a specialization of fs:file-error. You

choose the level of condition that is appropriate to handle according to the needs

of the particular application. Thus, a handler can correspond to a single condition

or to a predefined class of conditions. This capability is provided by the flavor in-

heritance mechanism.

How Applications Programs Treat Conditions

This section provides an overview of how applications programs treat conditions.

• A program signals a condition when it wants to report an occurrence of an

event.

• A program binds a handler when it wants to gain control when an event occurs.�

When the system or a user function detects an error, it signals an appropriate

condition, and some handler bound for that condition then deals with it.

Conditions are flavors. Each condition is named by a symbol that is the name of a

flavor, for example, sys:unbound-variable, sys:divide-by-zero, fs:file-not-found.

As part of signalling a condition, the program creates a condition object of the ap-

propriate flavor. The condition object contains information about the event, such as

a textual message to report and various parameters. For example, a condition ob-

ject of flavor fs:file-not-found contains the pathname that the file system failed to

find.

Handlers are bound with dynamic scope, so the most recently bound handler for

the condition is invoked. When an event occurs, the signalling mechanism searches

all of the current handlers, starting with the innermost handler, for one that can

handle the condition that has been signalled. When an appropriate handler is

found, it can access the condition object to learn more about the error.

Example of a Handler

condition-case is a simple form for binding a handler. For example:

(condition-case ()

 (/ a b)

 (sys:divide-by-zero *infinity*))�

This form does two things:

• Evaluates (/ A b) and returns the result.

• Binds a handler for the sys:divide-by-zero condition, which applies during the

evaluation of (/ A b).�

In this example, it is a simple handler that just returns a value. If division by zero

Page 656

happened in the course of evaluating (/ A b), the form would return the value of

infinity instead. If any other error occurred, it would be handled by the system’s

default handler for that condition or by some user handler of higher scope.

You can also bind a handler for a predefined class of conditions. For example, the

symbol fs:file-operation-failure refers to the set of all error conditions in file sys-

tem operations, such as "file not found" or "directory not found" or "link to nonex-

istent file", but not to such errors as "network connection closed" or "invalid argu-

ments to open", which belong to different classes.

Signalling

You can signal a condition by calling either signal or error. signal is the most

general signalling function; it can signal any condition. It allows either a handler

or the user to proceed from the error. error is a more restrictive version, which

accepts only error conditions and does not allow proceeding. error is guaranteed

never to return to its caller.

Both signal and error have the same calling sequence. The first argument is a

symbol that names a condition; the rest are keyword arguments that let you pro-

vide extra information about the error. See the section "Signalling Conditions".

Full details on using the signalling mechanism are in that section.

Applications programs rarely need to signal system conditions although they can.

Usually, programs that want to signal conditions define their own condition flavor

to signal.

Zetalisp Note: Two simpler signalling functions, zl:ferror and zl:fsignal, are ap-

plicable when you want to signal without defining a new condition. These two

functions are now obsolete, however; in new programs, use error instead of

zl:ferror, and cerror instead of zl:fsignal.

It is very important to understand that signalling a condition is not just the same

thing as throwing to a tag. throw is a simple control-structure mechanism that al-

lows control to escape from an inner form to an outer form. Signalling is a con-

vention for finding and executing a piece of user-supplied code when one of a class

of events occurs. A condition handler might, in fact, do a throw, but it is under no

obligation to do so. User programs can continue to use throw; it is simply a differ-

ent capability with a different application. For more information: See the section

"Flow of Control".

Condition Flavors

Symbols for conditions are the names of flavors; sets of conditions are defined by

the flavor inheritance mechanism. For example, the flavor lmfs:lmfs-file-not-found

is built on the flavor fs:file-not-found, which is built on fs:file-operation-failure,

which, in turn, is built on the flavor error.

The flavor inheritance mechanism controls which handler is invoked. For example,

when a Genera file system operation fails to find a file, it could signal lmfs:lmfs-

file-not-found. The signalling mechanism invokes the first appropriate handler it

Page 657

finds, in this case, a handler for fs:file-not-found, one for fs:file-operation-failure,

or one for error. In general, if a handler is bound for flavor a, and a condition ob-

ject c of flavor b is signalled, then the handler is invoked if (typep c ’a) is true;

that is, if a is one of the condition flavors that b is built on.

The symbol condition refers to all conditions, including simple, error, and debug-

ger conditions. The symbol error refers to the set of all error conditions. Figure !

shows an overview of the flavor hierarchy.

conditions

debugger conditions

error conditions

sys:network-error fs:file-error fs:pathname-error

..

.

sys:local-network-error sys:remote-network-error fs:file-request-failure fs:file-operation-error

simple conditions

(fquery fs:login-required sys:abort)

simple debugger conditions

(sys:pdl-overflow)

Figure 22. Condition Flavor Hierarchy

�

error is a base flavor for many conditions, but not all. Simple conditions are built

on condition; debugger conditions are built on dbg:debugger-condition. Error con-

ditions or errors are built on error. For your own condition definitions, whether

you decide to treat something as an error or as a simple condition is up to the se-

mantics of the application.

From a more technical viewpoint, the distinction between simple conditions and de-

bugger conditions hinges on what action occurs when the program does not pro-

vide its own handler. For a debugger condition, the system invokes the Debugger;

for a simple condition, signal simply returns nil to the caller.

A warning mechanism also exists; the function warn is like the function signal,

allowing either a handler or the user to proceed from the error. If the variable

break-on-warnings has a nil value, warn prints its message without entering

the Debugger; if *break-on-warnings* has a non-nil value, warn prints its warn-

ing message from the Debugger.

Creating New Conditions

An application might need to detect and signal events specific to the application.

To support this, you need to define new conditions.

Defining a new condition is straightforward. For simple cases, you need only two

forms: One defines the flavor, and the other defines a dbg:report method. You can

build the flavor definition on either error or condition, depending on whether or

not the condition you are defining represents an error. The following example de-

fines an error condition.

Page 658

(defflavor block-wrong-color () (error))

�

(defmethod (dbg:report block-wrong-color) (stream)

 (format stream "The block was of the wrong color."))�

Your program can now signal the error as follows:

(error ’block-wrong-color)�

dbg:report requires one argument, which is a stream for it to use in printing an

error message. Its message should be a sentence, ending with a period and with no

leading or trailing newline characters.

The dbg:report method must not depend on the dynamic environment in which it

is invoked. That is, it should not do any free references to special variables. It

should use only its own instance variables. This is because the condition object

might receive a dbg:report message in a dynamic environment that is different

from the one in which it was created. This situation is common with condition-

case.

The above example is adequate, but does not take advantage of the power of the

condition system. For example, the error message tells you only the class of event

detected, not anything about this specific event. You can use instance variables to

make condition objects unique to a particular event. For example, add instance

variables block and color to the flavor so that error can use them to build the

condition object:

(defflavor block-wrong-color (block color) (error)

 :initable-instance-variables

 :readable-instance-variables)

�

(defmethod (dbg:report block-wrong-color) (stream)

 (format stream "The block ~S was ~S, which is the wrong color."

 block color))�

The :initable-instance-variables option defines :block and :color init options; the

:readable-instance-variables option defines methods for the block-wrong-color

flavor, which handlers can call.

Your program would now signal the error as follows:

(error ’block-wrong-color :block the-bad-block

 :color the-bad-color)�

It is a good idea to use compile-flavor-methods for any condition whose instantia-

tion is considered likely, to avoid the need for run-time combination and compila-

tion of the flavor. See the macro compile-flavor-methods. Otherwise, the flavor

must be combined and compiled the first time the event occurs, which causes per-

ceptible delay.

The only other interesting thing to do when creating a condition is to define pro-

ceed types. See the section "Proceeding".

Page 659

Creating a Set of Condition Flavors

You can define your own sets of conditions and condition hierarchies. Just create a

new flavor and build the flavors on each other accordingly. The base flavor for the

set does not need a dbg:report method if it is never going to be signalled itself.

For example:

(defflavor block-world-error () (error))

�

(defflavor block-wrong-color (block color) (block-world-error)

 :initable-instance-variables)

�

(defflavor block-too-big (block container) (block-world-error)

 :initable-instance-variables)

�

(defmethod (dbg:report block-too-big) (stream)

 (format stream "The block ~S is too big to fit in the ~S."

 block container))

�

(defmethod (dbg:report block-wrong-color) (stream)

 (format stream "The block ~S was ~S, which is the wrong color."

 block color))�

Establishing Handlers

What is a Handler?

A handler consists of user-supplied code that is invoked when an appropriate condi-

tion signal occurs. Genera includes default handlers for all standard conditions.

Application programs need not handle all conditions explicitly, but can provide

handlers for just the conditions most relevant to the needs of the application.

Classes of Handlers

There are five classes of handlers:

• Bound

• Default

• Global

• Interactive

• Restart

Bound Handlers

The simplest form of handler handles every error condition, each in the same way.

The form for binding this handler is ignore-errors. In addition, three basic forms

Page 660

are available to bind handlers for particular conditions. Each of these has a stan-

dard version and a conditional variant. In the conditional variants, the handlers

are bound only if some expression is true.

Basic Forms for Bound Handlers

condition-bind list &body body

This is the most general form. It allows the handler to run in

the dynamic environment in which the error was signalled and

to try to proceed from the error.

condition-bind-if cond-form list &body body

The conditional variant of condition-bind.

condition-case (&rest varlist) form &rest clauses

This is the simplest form to use. It returns to the dynamic en-

vironment in which the handler was bound and so, does not al-

low proceeding.

condition-case-if (cond-form &rest varlist) form &rest clauses

The conditional variant of condition-case.

condition-call (&rest varlist) form &body clauses

This is a more general version of condition-case. It uses user-

specified predicates to select the clause to be executed.

condition-call-if (cond-form &rest varlist) form &body clauses

The conditional variant of condition-call.

ignore-errors &body body

Sets up a very simple handler on the bound handlers list that

handles all error conditions. If an error signal occurs while

body is executing, ignore-errors immediately returns, with nil

as its first value and something not nil as its second value.

Default Handlers

Default handlers are examined by the signalling mechanism only after all of the

bound handlers have been examined. Thus, handlers established by a condition-

bind that is dynamically outside of a condition-bind-default can take precedence

over handlers established by condition-bind-default. In all other respects, the

binding forms work like those for bound handlers.

For example, consider this program:

 (condition-bind ((a a-handler))

 (condition-bind-default ((b b-handler))

 ...))

In this example, a-handler is established by a condition-bind that is dynamically

outside of a condition-bind-default. In this case, the condition-bind handler,

a-handler, takes precedence over the condition-bind-default handler, b-handler.

Page 661

Bound handlers always take precedence over default handlers, even if the default

handler is on the inside of the bound handler. Regardless of how they are nested,

the whole list of bound handlers is searched before the list of default handlers.

Basic Forms for Default Handlers

condition-bind-default list &body body

This is a variant of condition-bind. It binds a handler on the

default condition list instead of the bound condition list. The

distinction is described in these two sections. See the section

"Signalling Conditions". See the section "Default Handlers and

Complex Modularity".

condition-bind-default-if cond-form list &body body

The conditional variant of condition-bind-default.

Global Handlers

A global handler is like a bound handler, with an important exception: Unlike a

bound handler, which is of dynamic extent, a global handler is explicitly defined

and is of indefinite extent. (Whereas condition-bind is like binding a special vari-

able, define-global-handler is like setting a special variable.) Once defined, a glob-

al handler must, therefore, be specifically removed.

Caution: The global handler functions do not maintain the order of the global

handler list in any way. If the conditions of two handlers overlap each other in

such a way that either handler could handle some instantiable condition, then ei-

ther handler might run, depending on the order in which they were defined.

Basic Forms for Global Handlers

define-global-handler name condition arglist &body body

Defines a global handler function named name.

undefine-global-handler name

Removes the global handler function named name.

dbg:describe-global-handlers

Displays the list of conditions for which global handlers have

been defined, as well as a list of these handlers.

Application: Handlers Examining the Stack

condition-bind handlers are invoked in the dynamic environment in which the er-

ror is signalled. Thus, the Lisp stack still holds the frames that existed when the

error was signalled. A handler can examine the stack using the functions described

in this section.

Page 662

One important application of this facility is for writing error logging code. For ex-

ample, network servers might need to keep providing service even though no user

is available to run the Debugger. By using these functions, the server can record

some information about the state of the stack into permanent storage, so that a

maintainer can look at it later and determine what went wrong.

These functions return information about stack frames. Each stack frame is identi-

fied by a frame, represented as a Lisp locative pointer. In order to use any of

these functions, you need to have appropriate environment bindings set up. The

macro dbg:with-erring-frame both sets up the environment properly and provides

a frame pointer to the stack frame that got the error. Within the body of that

macro, use the appropriate functions to move up and down stack frames; these

functions take a frame pointer and return a new frame pointer by following links

in the stack.

These frame-manipulating functions are actually subprimitives, even though they

do not have a % sign in their name. Given an argument that is not a frame point-

er, they stand a good chance of crashing the machine. Use them with care.

The functions that return new frame pointers work by going to the next frame or

the previous frame of some category. "Next" means the frame of a procedure that

was invoked more recently (the frame called by this one; toward the top of the

stack). "Previous" means the frame of a procedure that was invoked less recently

(the caller of this frame; toward the base of the stack).

These functions assume three categories of frames:

• Active frames are procedures that are currently running (or active) on the stack.

• Interesting active frames include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as frames for eval, apply,

funcall, let, and other basic Lisp special forms. The list of such functions is the

value of the system constant dbg:*uninteresting-functions*.

• Open frames include all the active frames, as well as frames that are still under

construction, for functions whose arguments are still being computed. Open

frames and active frames are synonymous on the 3600 series.�

Functions for Examining Stack Frames

The functions in this section all take a frame pointer, frame, as an argument. For

functions that indicate a direction on the stack, using nil as the argument indi-

cates the frame at the relevant end of the stack. For example, when you are using

a function that looks up the stack, nil as the argument indicates the top-most

stack frame.

Remember to use the functions in this section only within the context of the

dbg:with-erring-frame macro.

Page 663

dbg:with-erring-frame (frame-var condition) &body body

Sets up an environment with appropriate bindings for using

the rest of the functions that examine the stack.

dbg:get-frame-function-and-args frame

Returns a list containing the name of the function for frame

and the values of the arguments.

dbg:frame-next-active-frame frame

Returns a frame pointer to the next active frame following

frame, or nil if frame is the last active frame on the stack.

dbg:frame-next-interesting-active-frame frame

Returns a frame pointer to the next interesting active frame

following frame, or nil if frame is the last active frame on the

stack.

dbg:frame-next-open-frame frame

Returns a frame pointer to the next open frame following

frame, or nil if frame is the last open frame on the stack.

dbg:frame-previous-active-frame frame

Returns a frame pointer to the previous active frame before

frame, or nil if frame is the first active frame on the stack.

dbg:frame-previous-interesting-active-frame frame

Returns a frame pointer to the previous interesting active

frame before frame, or nil if frame is the first active frame on

the stack.

dbg:frame-previous-open-frame frame

Returns a frame pointer to the previous open frame before

frame, or nil if frame is the first open frame on the stack.

dbg:frame-next-nth-active-frame frame &optional (count 1) skip-invisible

Returns a frame pointer to the next nth active frame following

frame, or nil if frame is the last active frame on the stack.

dbg:frame-next-nth-interesting-active-frame frame &optional (count 1) skip-

invisible

Returns a frame pointer to the next nth interesting active

frame following frame, or nil if frame is the last active frame

on the stack.

dbg:frame-next-nth-open-frame frame &optional (count 1) skip-invisible

Returns a frame pointer to the next nth open frame following

frame, or nil if frame is the last open frame on the stack.

dbg:frame-out-to-interesting-active-frame frame

Returns a frame pointer to the out to interesting active frame,

(this include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as the

frames for eval, zl:apply, funcall, let, and other basic Lisp

special forms. The list of such functions is the value of the

Page 664

system constant, dbg:*uninteresting-functions*, or nil if frame

is the last active frame on the stack.

dbg:frame-active-p frame

Determines if t if the frame is active; returns t if it is, or nil

otherwise.

dbg:frame-real-function frame

Returns either the function object associated with frame, or the

value of self when the frame was the result of sending a mes-

sage to an instance.

dbg:frame-total-number-of-args frame

Returns a number of arguments that were passed in frame.

dbg:frame-number-of-spread-args frame &optional (type :supplied)

Returns a number of "spread" arguments that were passed in

frame. type requests more specific definition of the number.

dbg:frame-arg-value frame arg-name-or-number &optional callee-context no-error-p

Returns a value of the nth argument to frame. Returns a sec-

ond value, which is a locative pointer to the word in the stack

that holds the argument. If n is out of range, the function

takes action based on no-error-p; if the no-error-p is nil, it sig-

nals an error, otherwise it returns nil.

dbg:frame-number-of-locals frame

Returns a number of local variables allocated for frame.

dbg:frame-local-value frame local-name-or-number &optional no-error-p

Returns a value of the nth local variable in frame. Returns a

second value, which is a locative pointer to the word in the

stack that holds the local variable.

dbg:frame-self-value frame &optional instance-frame-only

Returns a value of self in frame, or nil if self does not have a

value.

dbg:frame-real-value-disposition frame

Returns a symbol indicating how the calling function is going

to handle the values to be returned by this frame. If the call-

ing function just returns the values to its caller, then the sym-

bol indicates how the final recipient of the values is going to

handle them.

dbg:print-function-and-args frame &optional show-pc-p show-source-file-p show-

local-if-different

Prints the name of the function executing in frame and the

names and values of its arguments, in the same format as the

Debugger uses. If show-pc-p is true, the program counter value

of the frame, relative to the beginning of the function, is print-

ed in octal.

Page 665

dbg:print-frame-locals frame local-start &optional (indent 0) n-args-and-locals

Prints the names and values of the local variables of frame.

Signalling Conditions

Signalling Mechanism

The following functions and macros invoke the signalling mechanism, which finds

and invokes a handler for the condition.

error

signal

cerror

signal-proceed-case�

Zetalisp Note: zl:ferror and zl:fsignal are the Zetalisp commands for invoking the

signalling mechanism.

Finding a Handler

The signalling mechanism finds a handler by inspecting five lists of handlers in

the following order:

1. It first looks down the list of bound handlers, which are set up by condition-

bind, condition-case, and condition-call forms.

2. Next, it looks down the list of default handlers, which are set up by

condition-bind-default.

3. Next, it looks down the list of global handlers, which are set up by define-

global-handler.

4. Next, it looks down the list of interactive handlers. This list normally contains

only one handler, which enters the Debugger if the condition is based on

dbg:debugger-condition, and declines to handle it otherwise.

5. Finally, it looks down the list of restart handlers, which are set up by error-

restart, error-restart-loop, and catch-error-restart. See the section "Default

Handlers and Complex Modularity". See the section "Restart Handlers".

If it gets to the end of the last list without finding a willing handler, one of two

things happen:

• signal returns nil when both of the following are true:

° The condition is signalled with signal, cerror, signal-proceed-case, or

zl:fsignal.

Page 666

° The condition object is not an instance of a condition based on error.�

• Otherwise, the Debugger assumes control.�

The signalling mechanism checks each handler to see if it is willing to handle the

condition. Some handlers have the ability to decline to handle the condition, in

which case the signalling mechanism keeps searching. It calls the first willing

handler it finds.

As we have seen, the signalling mechanism searches for handlers in a specific or-

der. It looks at all the bound handlers before any of the default handlers, and all

of the default handlers before any of the restart handlers. Thus, it tries any

condition-bind handler before any handler bound by condition-bind-default, even

though the condition-bind-default is within the dynamic scope of the condition-

bind. Similarly, it considers a condition-bind handler before an error-restart

handler, even when the error-restart handler was bound more recently. See the

section "Default Handlers and Complex Modularity".

While a bound or default handler is executing, that handler and all handlers inside

it are removed from the list of bound or default handlers. This is to prevent infi-

nite recursion when a handler signals the same condition that it is handling, as in

the following simplistic example:

(condition-bind ((error #’(lambda (x) (error "foo"))))

 (error "foo"))�

If you want recursion, the handler should bind its own condition.

Signalling Simple Conditions

If a simple condition or a debugger condition not based on error is signalled, the

signalling mechanism searches for a handler on the bound handler and default

handler lists. When it finds one, it invokes it. Otherwise, the signalling mechanism

checks for a global handler and invokes it if found. If there are no global handlers,

the signalling mechanism checks for an interactive handler, invoking the first one

it finds. If there are no interactive handlers, the first restart handler for that con-

dition is invoked. If no restart handler for the condition is found, signal returns

nil; error enters the Debugger.

Normally, there is only one interactive handler. This handler calls the Debugger if

the condition is a debugger condition and not a simple condition.

Signalling Errors

In practice, if the signal function is applied to an error condition object, signal is

very unlikely to return nil, because most processes contain a restart handler that

handles all error conditions. The function at the base of the stack of most process-

es contains a catch-error-restart form that handles error and sys:abort. Thus, if

you are in the Debugger as a result of an error, you can always use ABORT. The

restart handler at the base of the stack always handles sys:abort and either termi-

nates or restarts the process.

Page 667

Restriction Due to Scope

A condition must be signalled only in the environment in which the event that it

represents took place, to insure that handlers run in the proper dynamic environ-

ment. Therefore, you cannot signal a condition object that has already been sig-

nalled once. In particular, when you are writing a handler, you cannot have that

handler signal its condition argument. Similarly, if a condition object is returned

by some program (such as the open function given nil for the :error keyword), you

cannot signal that object.

It is not correct to pass on the condition by signalling the handler’s condition ar-

gument. This is incorrect:

 (defun condition-handler (condition)

(if something (throw ...) (signal condition)))�

Instead you should do this:

 (defun condition-handler (condition)

(if something (throw ...) nil))�

or this:

 (defun condition-handler (condition)

(if something (throw ...) (signal ’some-other-condition)))�

Condition-Checking and Signalling Functions and Variables

signal flavor &rest init-options

This is the primitive function for signalling a condition. Cre-

ates a new condition object of the specified flavor and signals

it.

error {format-string &rest format-args} or {condition &rest init-options} or {condi-

tion-object}

Signals a condition that is not proceedable. In the simplest

case, signals a zl:ferror condition. If no handler for the condi-

tion exists, the debugger assumes control whether or not the

object is an error object. In its most advanced form error is

called with a single argument, condition-object and init-options

is ignored. error never returns to its caller. If called with con-

dition &rest init-options, creates a condition of type condition

and signals it.

cerror optional-condition-name continue-format-string error-format-string &rest args

Signals a proceedable error and enters the Debugger.

warn optional-options optional-condition-name format-string &rest format-args

Prints a warning message and does not enter the debugger if

*break-on-warnings is nil, otherwise enters the debugger,

prints the message, and allows the user to proceed.

Page 668

break-on-warnings

If value of this variable is nil, warn prints its warning mes-

sage without entering the Debugger; if the value is not nil,

warn enters the Debugger and prints the warning message.

Default is nil.

catch-error form &optional (printflag t)

Evaluates form, trapping all errors. If the value of printflag is

not nil and an error occurs during evaluation, the function

prints an error message and returns t. If no error occurred,

the value of form and nil are returned. form is not evaluated

for multiple values.

make-condition condition-name &rest init-options

Creates a condition object of the specified condition-name with

the specified init-options. This object can then be signalled by

passing it to signal or error.

errorp thing Returns t if thing is an error object, and nil otherwise.

check-type place type &optional (type-string ’nil)

Signals a proceedable error if the contents of place are not of

the desired type. Accepts replacement value for place.

assert test-form &optional references format-string &rest format-args

Signals a proceedable error if the value of test-form is nil. Ac-

cepts replacement values for variables in test-form.

ccase object &body body

"Continuable exhaustive case." Like case, selects one of its

clauses for execution by comparing a value to various con-

stants, but does not allow an explicit t clause. Signals a pro-

ceedable error if no clause is satisfied; accepts replacement

value for object.

ecase object &body body

"Exhaustive case," or "error-checking case." Like case, selects

one of its clauses for execution by comparing a value to vari-

ous constants, but does not allow an explicit t clause. Signals

an error if no clause is satisfied. It is not permissible to con-

tinue from this error.

ctypecase object &body body

"Continuable exhaustive type case." Like typecase, selects one

of its clauses by examining the type of an object, but does not

allow an explicit otherwise or t clause. Signals a proceedable

error if no clause is satisfied. Accepts replacement value for

object.

etypecase object &body body

"Exhaustive type case," or "error-checking type case." Like

typecase, but does not allow an explicit otherwise or t clause.

Page 669

Signals an error if no clause is satisfied. It is not permissible

to continue from this error.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:fsignal format-string &rest format-args

Signals dbg:proceedable-ferror. This is a sim-

ple function signalling when you do not care to

use a particular condition. Use the Common

Lisp function cerror.

zl:ferror format-string &rest format-args

This is a simple function for signalling when

you do not care what the condition is. Use the

Common Lisp function, error.

zl:parse-ferror format-string &rest format-args

Signals an error of flavor zl:parse-ferror.

zl:check-arg arg-name predicate-or-form type-string

Checks arguments to make sure they are valid.

Accepts replacement value for arg-name.

zl:check-arg-type arg-name type &optional type-string

A useful variant of zl:check-arg.

zl:argument-typecase arg-name &body clauses

This is a hybrid of zl:typecase and zl:check-

arg-type. Automatically generates an

otherwise clause that signals an error. Accepts

replacement value for arg-name.

Default Handlers and Complex Modularity

When more than one handler exists for a condition, which one should be invoked?

The signalling mechanism has an elaborate rule, but in practice, it usually invokes

the innermost handler. See the section "Finding a Handler". "Innermost" is defined

dynamically and thus means "the most recently bound handler".

This decision is made on the basic principle of modularity and referential trans-

parency: A function should behave the same way, regardless of what calls it.

Therefore, whether a handler bound by a function gets invoked should not depend

on what is going on with that function’s callers.

For example, suppose function a sets up a handler to deal with the fs:file-not-

found condition, and then calls procedure b to perform some service for it. Now,

unbeknownst to a, b sometimes opens a file, and b has a condition handler for

fs:file-not-found. If b’s file is not found, b’s handler handles the error rather than

a’s. This is as it should be, because it should not be visible to a that b uses a file

Page 670

(this is a hidden implementation detail of b). a’s unrelated condition handler

should not meddle with b’s internal functioning. Therefore, the signalling mecha-

nism follows a basic inside-to-outside searching rule.

Sometimes a function needs to signal a condition but still handle the condition it-

self if none of its callers handles it. On first encounter, this need seems to require

an outside-to-inside searching rule instead of the inside-to-outside searching rule

mandated by modularity considerations. How can you circumvent the rules to allow

a function to handle something only if no outer function handles it?

Several strategies are available for dealing with this. Genera provides several

mechanisms in order to allow experimentation and flexibility.

• The simplest solution is to provide a proceed type for proceeding from the De-

bugger. That is, your program signals an error to allow callers to handle the

condition. If none of them handles it, the Debugger assumes control. Provided

the user decides to use the proceed type, your program then gets to handle the

condition. If what your program wanted to do was to prompt the user anyway,

this might be the right thing. This is most likely true if you think that a pro-

gram error is probably happening and the user might want to be able to trace

and manipulate the stack using the Debugger.

• Another simple solution is to signal a condition that is not an error. signal re-

turns nil when no handler is found, and your program can take appropriate ac-

tion.

• Use condition-bind-default to create a handler on the default handler list. The

signalling mechanism searches this list only after searching through all regular

bound handlers. One drawback of this scheme is that it works only to one level.

If you have three nested functions, you cannot get outside-to-inside modularity

for all three, because only two lists exist, the bound list and the default list.

This facility is probably good enough for some applications however.

• Use dbg:condition-handled-p to determine whether a handler has been bound

for a particular flavor. This has the advantage that it works for any number of

levels of nested handler, instead of only two. One disadvantage is that it can re-

turn :maybe, which is ambiguous.

The simple solutions work only if your program is doing the signalling. If some

other program is signalling a condition, you cannot control whether the condition

is an error condition or whether it has any proceed types; you can only write han-

dlers.

Restart Handlers

One way to handle an error is to restart at some earlier point in the program that

got the error. A program can specify points where it is safe or convenient for it to

be restarted should a condition signal occur during processing of a function. The

basic special form for doing this is error-restart. The following example is taken

Page 671

from the system code:

(defun connect (address contact-name

&optional (window-size default-window-size)

(timeout (* 10. 60.))

&aux conn real-address (try 0))

 (error-restart (sys:connection-error

 "Retry connection to ~A at ~S with longer timeout"

 address contact-name)

 forms...))�

This code fragment evaluates forms and returns the final value(s) if successful. If

the Debugger assumes control as a result of a sys:connection-error condition, the

user is given the opportunity of restarting the program. The Debugger’s prompt

message would be something like this:

s-A: Retry connection to SCRC at FILE 1 with longer timeout�

If the user were to press s-A at this point, the forms implementing the connection

would be evaluated again. That is, the body of the error-restart would be started

again from the beginning.

Two variations on this basic paradigm are provided. error-restart-loop is an infi-

nite loop version of error-restart. It always starts over regardless of whether a

condition has been signalled. catch-error-restart never restarts, even when a con-

dition is signalled. Instead it always returns, returning either the values from the

body (if successful) or nil if a condition signal occurred.

catch-error-restart is the most primitive version of this control structure. The

other two are built from it. It too has a conditional variant, catch-error-restart-if,

for binding a restart handler conditionally.

A common paradigm is to use one of these forms in the command loop of an inter-

active program, with condition-flavor being the list (error sys:abort). This way, if

an unhandled error occurs, the user is offered the option of returning to the com-

mand loop, and the ABORT key returns to the command loop. Which form you use

depends on the nature of your command loop.

Restart Functions

The use of "error-" in the names of these functions has no real significance. They

could have been called cl:condition-restart cl:condition-restart-loop and so on,

because they apply to all conditions.

error-restart (flavors description &rest args) &body body

The basic special form for a program to specify safe restart

points. Establishes a restart handler for flavors and then evalu-

ates body. If restart handler is not invoked, error-restart re-

turns the values produced by the last form in body. If restart

handler is invoked, control is thrown back to the dynamic envi-

ronment inside the error-restart form, and execution of body

starts all over again.

Page 672

error-restart-loop (flavors description &rest args) &body body

Establishes a restart handler for flavors and then evaluates

body. If the handler is not invoked, error-restart-loop evalu-

ates body again and again, in an infinite loop. Use the return

function to leave the loop. This mechanism is useful for inter-

active top levels. If a condition is signalled during the execu-

tion of body and the restart handler is invoked, control is

thrown back to the dynamic environment inside the error-

restart-loop form and execution of body is started all over

again.

catch-error-restart (flavors description &rest args) &body body

Establishes a restart handler for flavors and then evaluates

body. If the handler is not invoked, catch-error-restart returns

the values produced by the last form in body, and the restart

handler disappears. If a condition is signalled during the exe-

cution of body and the restart handler is invoked, control is

thrown back to the dynamic environment of the catch-error-

restart form. In this case, catch-error-restart also returns nil

as its first value and something other than nil as its second

value.

catch-error-restart-if cond (flavors description &rest args) &body body

The conditional variant of catch-error-restart. This form es-

tablishes its restart handler conditionally.

Invoking Restart Handlers Manually

Function dbg:invoke-restart-handlers searches the list of restart handlers to find

a restart handler. The first handler it finds to handle the condition is invoked. The

function returns nil if no appropriate restart handler is found.

dbg:invoke-restart-handlers can be called by handlers set up by condition-bind

or condition-bind-default. The object argument should be the condition object

passed to the handler. The handler calls this function to bypass the interactive

handlers list, letting the innermost restart handler handle the condition. A pro-

gram that wants to attempt to continue with a computation in the presence of er-

rors might find this useful. For example, it could be used to support batch-mode

compilation, with the user away from the console.

Proceeding

In some situations, execution can proceed past the point at which a condition was

signalled. Events for which this is the case are called proceedable conditions. Some

external agent makes the decision about whether it is reasonable to proceed after

repairing the original problem. The agent is either a condition-bind handler or

the user operating the Debugger.

Page 673

In general, many different ways are available to proceed from a particular condi-

tion. Each way is identified by a proceed type, which is represented as a symbol.

Condition objects created with error instead of signal do not have any proceed

types.

Protocol for Proceeding

In order for proceeding to work, two conceptual agents must agree:

• The programmer who wrote the program that signals the condition.

• The programmer who wrote the condition-bind handler that decided to proceed

from the condition, or else the user who told the Debugger to proceed.�

The signaller signals the condition and provides the various proceed types. The

handler chooses from among the proceed types to make execution proceed.

Each agent has certain responsibilities to the other; each must follow the protocol

described below to make sure that any handler interacts correctly with any sig-

naller. The following description should be considered a two-part protocol that each

agent must follow in order to communicate correctly with the other.

In very simple cases, the signaller can use cerror, which does not require any new

flavor definitions.

In all other cases, the signaller signals the condition using signal or signal-

proceed-case. The signaller also defines a condition flavor with at least one

method to handle a proceed type. New proceed types are always defined by adding

a new case to the sys:proceed method (which is defined to use :case method com-

bination) to the condition flavor. The method must always return values rather

than throwing.

In :case method combination, the second argument to the sys:proceed method is

like a subsidiary message name, causing a further dispatch, just as the original

message name caused a primary dispatch. See the section ":case Method Combina-

tion Type".

Here’s an example from the system:

(defmethod (sys:proceed sys:subscript-out-of-bounds :new-subscript)

 (&optional (sub (prompt-and-read :number

 "Subscript to use instead: ")))

 "Supply a different subscript."

 (values :new-subscript sub))�

This code fragment creates a proceed type called :new-subscript for the condition

flavor sys:subscript-out-of-bounds.

To proceed from a condition, a handler function calls the sys:proceed generic

function with one or more arguments. The first argument is the condition object.

The second argument is the proceed type, and any remaining arguments are the

arguments for that proceed type.

Page 674

The condition flavor defined by the program signalling the error defines the pro-

ceed types that are available to sys:proceed for a particular condition. You can al-

so define a method that creates a new proceed type with the :case method combi-

nation.

All of the arguments to a sys:proceed method must be optional arguments. The

sys:proceed method should provide default values for all its arguments. One use-

ful way of doing this is to prompt a user for the arguments using the *query-io*

stream. The example uses prompt-and-read. If all the optional arguments are

supplied, the sys:proceed method must not do any input or output using *query-

io*.

This facility has been defined assuming that condition-bind handlers would supply

all the arguments for the method themselves. The Debugger runs this method and

does not supply arguments, relying on the method to prompt the user for the ar-

guments.

As in the example, the method should have a documentation string as the first

form in its body. The dbg:document-proceed-type generic function for a proceed-

able condition object displays the string. This string is used by the Debugger as a

prompt to describe the proceed type. For example, the subscript example might re-

sult in the following Debugger prompt:

s-A: Supply a different subscript�

The string should be phrased as a one-line description of the effects of proceeding

from the condition. It should not have any leading or trailing newline characters.

(You can use as models the messages that the Debugger prints out to describe the

effects of the s- commands, if you are interested in stylistic consistency.)

Sometimes a simple fixed string is not adequate. You can provide a piece of Lisp

code to compute the documentation text at run time by providing your own method

for dbg:document-proceed-type. This method definition takes the following form:

(defmethod (dbg:document-proceed-type condition-flavor proceed-type)

 (stream)

 body...)�

The body of the method should print documentation for proceed-type of condition-

flavor onto stream.

The body of the sys:proceed method can do anything it wants. In general, it tries

to repair the state of things so that execution can proceed past the point at which

the condition was signalled. It can have side-effects on the state of the environ-

ment; it can return values so that the function that called signal can try to fix

things up; or it can do both. Its operation is invisible to the handler; the signaller

is free to divide the work between the function that calls signal and the

sys:proceed method, as it sees fit. When the sys:proceed method returns, signal

returns all of those values to its caller. That caller can examine them and take ac-

tion accordingly.

The meaning of these returned values is strictly a matter of convention between

the sys:proceed method and the function calling signal. It is completely internal

to the signaller and invisible to the handler. By convention, the first value is usu-

ally the name of a proceed type. See the section "Signallers".

Page 675

A sys:proceed method can return a first value of nil if it declines to proceed from

the condition. If a nil returned by a sys:proceed method becomes the return value

for a condition-bind handler, this signifies that the handler has declined to handle

the condition, and the condition continues to be signalled. When the sys:proceed

function is called by the Debugger, the Debugger prints a message saying that the

condition was not proceeded, and it returns to its command level. This might be

used by an interactive sys:proceed method that gives the user the opportunity ei-

ther to proceed or to abort; if the user aborts, the method returns nil. Returning

nil from a sys:proceed method should not be used as a substitute for detecting

earlier (such as when the condition object is created) that the proceed type is inap-

propriate for that condition.

Proceed Type Functions

By default, condition objects have to handle all proceed types defined for the condi-

tion flavor. Condition objects can be created that handle only some of the proceed

types for their condition flavor. When the signaller creates the condition object

(with signal or make-condition), it can use the :proceed-types init option to spec-

ify which proceed types the object accepts. The value of the init option is a list of

keyword symbols naming the proceed types.

(signal ’my-condition :proceed-types ’(:abc))�

The dbg:proceed-types generic function for a condition object returns a list of

keywords for the proceed types that the object is prepared to handle.

The dbg:proceed-type-p generic function examines the list of valid proceed types

to see whether it contains a particular proceed type.

A condition flavor might also have an :init daemon that could modify its

dbg:proceed-types instance variable.

Proceeding with condition-bind Handlers

Suppose the handler is a condition-bind handler function. Just to review, when

the condition is signalled, the handler function is called with one argument, the

condition object. The handler function can throw to some tag, return nil to say

that it doesn’t want to handle the condition, or try to proceed the condition.

The handler must not attempt to proceed using an invalid proceed type. It must

determine which proceed types are valid for any particular condition object. It

must do this at run time because condition objects can be created that do not han-

dle all of the proceed types for their condition flavor. See the init option

(flavor:method :proceed-types condition).

In addition, condition objects created with error instead of signal do not have any

proceed types. The handler can use the dbg:proceed-types and dbg:proceed-

type-p functions to determine which proceed types are available.

To proceed from a condition, a handler function calls sys:proceed on the condition

object with one or more additional arguments. The first additional argument is the

Page 676

proceed type (a keyword symbol) and the rest are the arguments for that proceed

type. All of the standard proceed types are documented with their condition fla-

vors. Thus, the programmer writing the handler function can determine the mean-

ings of the arguments. The handler function must always pass all of the argu-

ments, even though they are optional.

Calling sys:proceed should be the last thing the handler does. It should then re-

turn immediately, propagating the values from the sys:proceed method back to its

caller. Determining the meaning of the returned values is the business of the sig-

naller only; the handler should not look at or do anything with these values.

Proceed Type Names

Any symbol can be used as the name of a proceed type, although using keyword

symbols is conventional. The symbols :which-operations and :case-documentation

are not valid names for proceed types because they are treated specially by the

:case flavor combination. Do not use either of these symbols as the name of a pro-

ceed type when you create a new condition flavor.

Signallers

Signallers can use the signal-proceed-case special form to signal a proceedable

condition. signal-proceed-case assumes that the first value returned by every pro-

ceed type is the keyword symbol for that proceed type. This convention is not cur-

rently enforced.

Example of User-Defined Error Flavor

Here is an example of an application program defining its own error flavor, which

indicates that an editor buffer was not found, with two proceed types: One proceed

type asks the user to supply a new buffer name; the other offers to create a new

buffer.

�

(defflavor buffer-not-found ((pathname nil) (name nil)

 defaults create-p load-p) (error)

 :initable-instance-variables

 :readable-instance-variables)

�

(defmethod (dbg:report buffer-not-found) (stream)

 (format stream "The buffer ~:[named~;for pathname~]

 /"~A/" was not found."

(null name) (or name pathname)))

Page 677

�

(defmethod (sys:proceed buffer-not-found :choose-another-buffer)

 (&optional new-name)

 (if (not new-name)

 (setq new-name

 (cond (name (prompt-and-read ’:string

 "Supply another buffer name to use instead of ~A: "

 name))

 (t (prompt-and-read ’:pathname

 "Supply another pathname to

 use instead of ~A~ ~:[~; (Default = ~A)~]: "

 name defaults

 (fs:default-pathname

defaults)))))

 (find-or-create-buffer nil (and name new-name)

 (and pathname (fs:parse-pathname

 new-name))

 nil nil

 defaults

 create-p load-p nil)))

�

(defmethod (dbg:document-proceed-type buffer-not-found

 :choose-another-buffer)

 (stream)

 (format stream

 "Supply another ~:[buffer name~;pathname~]

 to use instead."

 (null name)))

�

(defmethod (sys:proceed buffer-not-found :create-buffer) ()

 (find-or-create-buffer nil name pathname nil nil

 defaults t load-p nil))

�

(defmethod (dbg:document-proceed-type buffer-not-found

 :create-buffer)

 (stream)

 (if (null name)

 (format stream "Create a buffer for file /"~A/"

 ~:[~; and load it from the file~]."

 pathname load-p)

 (format stream "Create a buffer named /"~A/"." name)))

�

(compile-flavor-methods buffer-not-found)

�

Issues for Interactive Use

Page 678

Tracing Conditions

The variable sys:trace-conditions is provided for debugging purposes only. It lets

you trace the signalling of any condition so that you can figure out what condi-

tions are being signalled, and by what function. You can set this variable to error

to trace all error conditions, for example, or you can be more specific.

You can also customize the error message displayed by the Debugger by binding

the variable sys:error-message-hook to a function that prints what you want.

When the Debugger finds the value of sys:error-message-hook, to be non-nil, it

funcalls (applies the function) with no arguments, and displays the results at the

end of its error message display.

Breakpoints

The functions breakon and unbreakon can be used to set breakpoints in a pro-

gram. They use the encapsulation mechanism like, trace and advise, to force the

function to signal a condition when it is called.

Breakpoint Functions

breakon &optional function (condition t)

Sets a breakpoint for the function. condition can be used for

making a conditional breakpoint. It is evaluated when the func-

tion is called. If it returns nil, the function call proceeds with-

out signalling anything. condition is evaluated in the dynamic

environment of the function call. You can inspect the argu-

ments of function by looking at the variable arglist.

unbreakon &optional function (condition t)

Turns off a breakpoint set by breakon. If function is not pro-

vided, all breakpoints set by breakon are turned off. If condi-

tion is provided, it turns off only that condition, leaving any

others. If condition is not provided, the entire breakpoint is

turned off for that function. See the section "Encapsulations".

Calling a function for which a breakpoint is set signals a condition with the fol-

lowing message:

Break on entry to function name

It provides a :no-action proceed type, which allows the function entry to proceed.

The "trap on exit" bit is set in the stack frame of the function call, so that when

the function returns, or is thrown through, another condition is signalled. Similar-

ly, the "Break on exit from marked frame" message and the :no-action proceed

type are provided, allowing the function return to proceed.

Debugger Bug Reports

Page 679

The :Mail Bug Report (c-M) command in the Debugger sends a bug report, creat-

ing a new process, which, by default, sends the bug report to the BUG-GENERA

mailing list. Also by default, the mail-sending text buffer initially contains a stan-

dard set of information dumped by the Debugger. You can control this behavior for

your own condition flavors. You can control the mailing list to which the bug re-

port is sent by defining your own primary method for the following message. You

can also control the character style of the system You.

To control the initial contents of the mail-sending buffer, alter the handling of the

following message, either by providing your own primary method to replace the de-

fault message, or by defining a :before or :after daemon to add your own special-

ized information before or after the default text.

Debugger Bug Report Functions

dbg:bug-report-recipient-system condition

Returns the mailing list to which to send the bug report mail.

dbg:bug-report-description condition stream nframes

Prints out the initial contents of the mail-sending buffer.

dbg:*character-style-for-bug-mail-prologue*

Controls the character style for initial contents of the mail-

sending buffer. The default is ’(nil nil :tiny), which makes the

information compact.

Debugger Special Commands

When the Debugger assumes control because an error condition was signalled and

not handled, it offers the user various ways to proceed or to restart. Sometimes

you want to offer the user other kinds of options. In the system, the most common

example of this occurs when you forget to type a package prefix. It signals a

sys:unbound-symbol error and offers to let you use the symbol from the right

package instead. This is neither a proceed type nor a restart-handler; it is a De-

bugger special command.

You can add one or more special commands to any condition flavor. For any partic-

ular instance, you can control whether to offer the special command. For example,

the package-guessing service is not offered unless some other symbol with the

same print name exists in a different package. Special commands are called only

by the Debugger; condition-bind handler functions never see them.

Special commands provide the same kind of functionality that a condition-bind

handler does. There is no reason, for example, that the package-prefix service

could not have been provided by condition-bind. It is only a matter of convenience

to have it in a special command.

To add special commands to your condition flavor, you must mix in the flavor

dbg:special-commands-mixin, which provides both the instance variable

Page 680

dbg:special-commands and several method combinations. Each special command to

a particular flavor is identified by a keyword symbol, just the same way that pro-

ceed types are identified. You can then create handlers for any of the following

messages:

Debugger Special Command Functions

dbg:special-command condition &rest per-command-args

Sent when the user invokes the special command.

dbg:document-special-command condition special-command

Prints the documentation of special-command.

dbg:initialize-special-commands condition

The Debugger calls this after it prints the error message. The

methods for this generic function can remove items from the

list dbg:special-commands in order to decide not to offer

these special commands.

Special Keys

The system normally handles the ABORT and SUSPEND keys so that ABORT aborts

what you are doing and SUSPEND enters a breakpoint. Without a CONTROL modifier,

such a keystroke command takes effect only when the process reads the character

from the keyboard; with the CONTROL modifier, a keystroke command takes effect

immediately, regardless of what the process is doing. The META modifier means "do

it more strongly"; m-ABORT resets the process entirely, and m-SUSPEND enters the

Debugger instead of entering a simple read-eval-print loop.

A complete and accurate description of what these keys do requires a discussion of

conditions and the Debugger.

With no CONTROL modifier, ABORT and SUSPEND are detected when your process

tries to do input from the keyboard (typically by doing an input stream operation

such as :tyi on a window). Therefore, if your process is computing or waiting for

something else, the effects of the keystrokes are deferred until your process tries

to do input.

With a CONTROL modifier, ABORT and SUSPEND are intercepted immediately by the

Keyboard Process, which sends your process an :interrupt message. Thus, it per-

forms the specified function immediately, even if it is computing or waiting.

ABORT Prints the following string on the *terminal-io* stream, unless

it suspects that output on that stream might not work.

[Abort]�

It then signals a (process-abort *current-process*), which is a

simple condition. Programs can set up bound handlers for

sys:abort, although most do not. Many programs set up restart

Page 681

handlers for sys:abort; most interactive programs have such a

handler in their command loops. Therefore, ABORT usually

restarts your program at the innermost command loop. Inside

the Debugger, ABORT has a special meaning.

m-ABORT Prints the following string on the *terminal-io* stream, unless

it suspects that output on that stream might not work.

[Abort all]�

It then sends your process a :reset message, with the argu-

ment :always. This has nothing to do with condition sig-

nalling. It just resets the process completely, unwinding its en-

tire stack. What the process does after that depends on what

kind of process it is and how it was created: it might start

over from its initial function, or it might disappear. See the

section "How the Scheduler Works".

SUSPEND Calls the zl:break function with the argument zl:break. This

has nothing to do with condition signalling. Pressing the RE-

SUME key causes the process to resume execution. See the spe-

cial form zl:break.

m-SUSPEND Causes the Debugger to assume control without signalling any

condition. The RESUME key in the Debugger causes the Debug-

ger to return and the process to resume what it was doing.�

Several techniques are available for overriding the standard operation of ABORT and

SUSPEND when they are being used with modifier keys.

• For using these keys with the CONTROL modifier, use the asynchronous character

facility. See the section "Asynchronous Characters".

• Defining your own hook function and binding tv:kbd-tyi-hook to it also over-

rides the interception of these characters with no CONTROL modifier. See the sec-

tion "Windows as Input Streams".�

At the Debugger command loop, ABORT is the same as the Debugger :Abort (c-Z)

command. It throws directly to the innermost restart handler that is appropriate

for either the current error or the sys:abort condition.

When the Debugger assumes control, it displays a list of commands appropriate to

the current condition, along with key assignments for each. Proceed types come

first, followed by special commands, followed by restart handlers. One alphabetic

key with the SUPER modifier is assigned to each command on the list. In addition,

ABORT is always assigned to the innermost restart handler that handles sys:abort

or the condition that was signalled; RESUME is always assigned to the first proceed

type in the dbg:proceed-types list. See the section "Proceed Type Functions".

If RESUME is not otherwise used, it invokes the first error restart that does not

handle sys:abort. When you enter the Debugger with m-SUSPEND, RESUME resumes

the process.

Page 682

You can customize the Debugger, assigning certain keystrokes to certain proceed

types or special commands, by setting the variables listed below in your init file:

Debugger Special Key Variables

dbg:*proceed-type-special-keys*

The value of this variable should be an association list associ-

ating proceed types with characters. When an error supplies

any of these proceed types, the Debugger assigns that proceed

type to the specified key.

dbg:*special-command-special-keys*

The value of this variable should be an association list associ-

ating proceed types with characters. When an error supplies

any of these special commands, the Debugger assigns that spe-

cial command to the specified key.

Condition Flavors Reference

A condition object is an instance of any flavor built out of the condition flavor. An

error object is an instance of any flavor built out of the error flavor. The error

flavor is built out of the dbg:debugger-condition flavor, which is built out of the

condition flavor. Thus, all error objects are also condition objects.

Every flavor of condition that is instantiated must handle the dbg:report generic

function. (Flavors that just define sets of conditions need not handle it). This mes-

sage takes a stream as its argument and prints out a textual message describing

the condition on that stream. The printed representation of a condition object is

like the default printed representation of any instance when slashifying is turned

on. However, when slashifying is turned off (by princ or the ~A format directive),

the printed representation of a condition object is its dbg:report method. Example:

(condition-case (co)

 (open "f:>a>b.c")

 (fs:file-not-found

 (prin1 co))) prints out #<QFILE-NOT-FOUND 33712233>

�

(condition-case (co)

 (open "f:>a>b.c")

 (fs:file-not-found

 (princ co))) prints out The file was not found

For F:>a>b.c �

Generic Functions and Init Options

These functions can be applied to any condition object. They are handled by the

basic condition flavor, on which all condition objects are built. Some particular

Page 683

condition flavors handle other methods; those are documented along with the par-

ticular condition flavors in another section. See the section "Standard Conditions".

Basic Condition Methods and Init Options

dbg:document-proceed-type condition proceed-type stream

Prints out a description of what it means to proceed, using the

given proceed-type, from this condition, on stream.

dbg:proceed-type-p condition proceed-type

Returns t if proceed-type is one of the valid proceed types of

this condition object. Otherwise, returns nil.

dbg:proceed-types condition

Returns a list of all the valid proceed types for this condition.

dbg:set-proceed-types condition new proceed-types

Sets the list of valid proceed types for this condition to new-

proceed-types.

dbg:special-commands condition

Returns a list of all Debugger special commands for this con-

dition.

:proceed-types This init option defines the set of proceed types to be handled

by this instance. proceed-types is a list of proceed types (sym-

bols); it must be a subset of the set of proceed types under-

stood by this flavor. If this option is omitted, the instance is

able to handle all of the proceed types understood by this fla-

vor in general, but by passing this option explicitly, a subset of

acceptable proceed types can be established. This is used by

signal-proceed-case.

dbg:special-command-p condition special-command

Returns t if special-command is a valid debugger special com-

mand for the condition object, condition. Returns nil otherwise.

dbg:report condition stream

Prints the text message associated with this object onto stream.

dbg:report-string condition

Returns a string containing the report message associated with

this object. (sends dbg:report to the object.)

Standard Conditions

This section presents the standard condition flavors provided by the system. Some

of these flavors are the flavors of actual condition objects that get instantiated in

response to certain conditions. Others never actually get instantiated, but are used

to build other flavors.

Page 684

In some cases, the flavor that the system uses to signal an error is not exactly the

one listed here, but rather a flavor built on the one listed here. This often comes

up when the same error can be reported by different programs that implement a

generic protocol. For example, the condition signalled by a remote file-system

stream when a file is not found is different from the one signalled by a local file-

system stream; however, only the generic fs:file-not-found condition should ever

be handled by programs, so that a program works regardless of what kind of file-

system stream it is using. The exact flavors signalled by each file system are con-

sidered to be internal system names, subject to change without notice and not doc-

umented here.

Do not look at system source code to figure out the names of error flavors without

being careful to choose the right level of flavor! Furthermore, take care to choose

a flavor that can be instantiated if you try to signal a system-defined condition.

For example, you cannot signal a condition object of type fs:file-not-found, because

this is really a set of errors and this flavor does not handle the dbg:report mes-

sage. If you were to implement your own file system and wanted to signal an error

when a file cannot be found, it should probably have its own flavor built on fs:file-

not-found and other flavors.

Choosing the appropriate condition to handle is a difficult problem. In general you

should not choose a condition on the basis of the apparent semantics of its name.

Rather, you should choose it according to the appropriate level of the condition fla-

vor hierarchy. This holds particularly for file-related errors. See the section "File-

System Errors".

There are six classes of standard conditions:

• Fundamental Conditions

• Lisp Errors

• File-system Errors

• Pathname Errors

• Network Errors

• Tape Errors

Individual classes, their base flavors, and the conditions built on them, are dis-

cussed below.

Fundamental Conditions

These conditions are basic to the functionality of the condition mechanism, rather

than having anything to do with particular system errors.

Here is a summary list of fundamental conditions. More detailed discussion of each

follows the listing.

• condition

• dbg:debugger-condition

• error

• zl:ferror

Page 685

• dbg:proceedable-ferror

• sys:no-action-mixin

• sys:abort

• zl:break�

condition Flavor

This is the basic flavor on which all condition objects are built. User-defined con-

ditions are not normally built directly upon condition.

dbg:debugger-condition Flavor

This flavor is built on condition. It is used for entering the Debugger without

necessarily classifying the event as an error. This is intended primarily for system

use; users should normally build on error instead.

error Flavor

This flavor is built on dbg:debugger-condition. All flavors that represent errors,

as opposed to debugger conditions or simple conditions, are built on this flavor.

zl:ferror Flavor

This is a simple error flavor for the zl:ferror function. Use it when you do not

want to invent a new error flavor for a certain condition. Its only state informa-

tion is an error message, normally created by the call to the zl:ferror function. It

has two readable and initable instance variables format-string and format-args.

The zl:format function is applied to these values to produce the dbg:report mes-

sage.

dbg:proceedable-ferror Flavor

This is a simple error flavor for the zl:fsignal function. Use it when you do not

want to invent a new error flavor for a certain condition, but you want the condi-

tion to be proceedable. Its only state information is an error message, created by

the call to the zl:fsignal function. Its only proceed type is :no-action. Proceeding

in this way does nothing and causes zl:fsignal (or signal) to return the symbol

:no-action.

sys:no-action-mixin Flavor

This flavor can be mixed into any condition flavor to define a proceed type called

:no-action. Proceeding in this way causes the computation to proceed as if no er-

ror check had occurred. The signaller might try the action again or might simply

go on doing what it would have done. For example, proceedable-ferror is just

zl:ferror with this mixin.

Page 686

sys:abort Flavor

The ABORT key on the keyboard was pressed. This is a simple condition. When

sys:abort is signalled, control is thrown straight to a restart handler without en-

tering the Debugger.

Note: It is preferable to use (process-abort *current-process*) instead of (signal

sys:abort). See the section "Special Keys".

zl:break Flavor

This is the flavor of the condition object passed to the Debugger as a result of the

m-BREAK command. It is never actually signalled; rather, it is a convention to en-

sure that the Debugger always has a condition when it assumes control. This is

based on dbg:debugger-condition. See the section "Special Keys".

Lisp Errors

This section describes the conditions signalled for basic Lisp errors. All of the con-

ditions in this section are based on the error flavor unless otherwise indicated.

Lisp errors include the following ten major groups:

• Base Flavor: sys:cell-contents-error

• Location Errors

• Base Flavor: sys:arithmetic-error

• Base Flavor: sys:floating-point-exception

• Miscellaneous System Errors Not Categorized by Base Flavor

• Function-Calling Errors

• Array Errors

• Eval Errors

• Interning Errors Based on sys:package-error

• Errors Involving Lisp Printed Representations

Base flavor: sys:cell-contents-error

This group includes the following errors:

• sys:cell-contents-error

• sys:unbound-variable

• sys:unbound-symbol

• sys:unbound-closure-variable

• sys:unbound-instance-variable

• sys:undefined-function

• sys:bad-data-type-in-memory

sys:cell-contents-error Flavor

Page 687

All the kinds of errors resulting from finding invalid contents in a cell of virtual

memory are built on this flavor. This represents a set of errors including the vari-

ous kinds of unbound-variable errors, the undefined-function error, and the bad da-

ta-type error.

Proceed type Action

:new-value Takes one argument, a new value to be used instead of the

contents of the cell.

:store-new-value Takes one argument, a new value to replace the contents of

the cell.

:no-action If you have intervened and stored something into the cell, the

contents of the cell can be reread.�

sys:unbound-variable Flavor

All the kinds of errors resulting from unbound variables are built on this flavor.

Because these are a subset of the "cell contents" errors, this flavor is built on

sys:cell-contents-error. The :variable-name message returns the name of the

variable that was unbound (a symbol).

sys:unbound-symbol Flavor

An unbound symbol (special variable) was evaluated. Some instances of this flavor

provide the :package-dwim special command, which takes no arguments and asks

whether you want to examine the value of various other symbols with the same

print name in other packages. This proceed type is provided only if any such sym-

bols exist in any other packages. (See also dbg:*defer-package-dwim*.) This flavor

is built on sys:unbound-variable. The proceed types from sys:cell-contents-error

are provided, as is the :variable-name message from sys:unbound-variable.

sys:unbound-closure-variable Flavor

An unbound closure variable was evaluated. This flavor is built on sys:unbound-

variable. The proceed types from sys:cell-contents-error are provided, as is the

:variable-name message from sys:unbound-variable.

sys:unbound-instance-variable Flavor

An unbound instance variable was evaluated. The :instance message returns the

instance in which the unbound variable was found. The proceed types from

sys:cell-contents-error are provided, as is the :variable-name message from

sys:unbound-variable.

sys:undefined-function Flavor

Page 688

An undefined function was invoked; that is, an unbound function cell was refer-

enced. This flavor is built on sys:cell-contents-error and provides all of its pro-

ceed types. The :function-name message returns the name of the function that

was undefined (a function spec). This also provides :package-dwim service, like

sys:unbound-symbol.

sys:bad-data-type-in-memory Flavor

A word with an invalid type code was read from memory. This flavor is built on

sys:cell-contents-error and provides all of its proceed types.

Message Value returned

:address virtual address, as a locative pointer, from which the word was

read

:data-type numeric value of the data-type tag field of the word

:pointer numeric value of the pointer field of the word�

Location Errors

This group includes the following errors:

• sys:unknown-setf-reference

• sys:unknown-locf-reference

sys:unknown-setf-reference Flavor

zl:setf did not find a zl:setf property on the car of the form. The :form message

returns the form that zl:setf tried to operate on. This error is signalled when the

zl:setf macro is expanded.

sys:unknown-locf-reference Flavor

locf did not find a locf property on the car of the form. The :form message re-

turns the form that locf tried to operate on. This error is signalled when the locf

macro is expanded.

Base Flavor: sys:arithmetic-error

This group includes the following errors:

• sys:arithmetic-error

• sys:divide-by-zero

• sys:non-positive-log

• math:singular-matrix�

Page 689

sys:arithmetic-error Flavor

Represents the set of all arithmetic errors. No condition objects of this flavor are

actually created; any arithmetic error signals a more specific condition, built on

this one. This flavor is provided to make it easy to handle any arithmetic error.

All arithmetic errors handle the :operands message. This returns a list of the

operands in the operation that caused the error.

sys:divide-by-zero Flavor

Division by zero was attempted. This flavor is built on sys:arithmetic-error. The

:function message returns the function that did the division.

sys:non-positive-log Flavor

Computation of the logarithm of a nonpositive number was attempted. This flavor

is built on sys:arithmetic-error. The :number message returns the nonpositive

number.

math:singular-matrix Flavor

A singular matrix was given to a matrix operation such as inversion, taking of the

determinant, or computation of the LU decomposition. This flavor is built on

sys:arithmetic-error.

Base flavor: sys:floating-point-exception

sys:floating-point-exception and the condition flavors based on it are designed to

support IEEE floating-point standards. See the section "Numbers". By default, all

IEEE traps are enabled, except for the inexact-result trap. See the special form

without-floating-underflow-traps.

The trap handlers that signal these conditions from the system all cause pressing

the RESUME key to mean "return the result that would have been returned if the

trap had been disabled". For example, pressing RESUME on an overflow returns the

appropriately signed infinity as the result. On an underflow it returns the denor-

malized (possibly zero) result.

This group includes the following errors:

• sys:floating-point-exception

• sys:float-divide-by-zero

• sys:floating-exponent-overflow

• sys:floating-exponent-underflow

• sys:float-inexact-result

• sys:float-invalid-operation

• sys:float-invalid-compare-operation

Page 690

• sys:negative-sqrt

• sys:float-divide-zero-by-zero�

sys:floating-point-exception Flavor

This is the base flavor for floating-point exceptional conditions. No condition ob-

jects of this flavor are actually created. This flavor is provided to make it easy to

handle any floating-point exception. It is built on sys:arithmetic-error.

Message Value returned

:operation A symbol indicating the operation that caused the exception.

:operands The list of operands to the operation.

:non-trap-result The result that would have been returned if this trap had been

disabled.

:saved-float-operation-status

The value of sys:float-operation-status at the time of the ex-

ception.�

Proceed type Action

:new-value Takes one argument and uses this value as the result of the

operation.

sys:float-divide-by-zero Flavor

A floating-point division by zero was attempted. This flavor is built on sys:divide-

by-zero and sys:floating-point-exception.

sys:floating-exponent-overflow Flavor

Overflow of an exponent occurred during floating-point arithmetic. This flavor is

built on sys:floating-point-exception. The :function message returns the function

that got the overflow, if it is known, and nil if it is not known. The :new-value

proceed type is provided with one argument, a floating-point number to use in-

stead.

sys:floating-exponent-underflow Flavor

Underflow of an exponent occurred during floating-point arithmetic. This flavor is

built on sys:floating-point-exception. The :function message returns the function

that got the underflow, if it is known, and nil if it is not known. The :use-zero

proceed type is provided with no arguments; a 0.0 is used instead.

sys:float-inexact-result Flavor

A floating-point result does not exactly represent the operation’s result, due to the

fixed precision of floating-point representation. Since most floating-point calcula-

tions are inexact, the inexact-result trap is disabled by default. This flavor is built

on sys:floating-point-exception.

Page 691

sys:float-invalid-operation Flavor

An invalid floating-point operation was attempted, such as dividing infinity by in-

finity. This flavor is built on sys:floating-point-exception.

sys:float-invalid-compare-operation Flavor

This is built on and is identical to sys:float-invalid-operation, except that it does

not expect a numeric result. This flavor is raised for any arithmetic comparison (<,

>, ≤, ≥, =, ≠) in which at least one of the operands is a NaN (IEEE not-a-number

object).

For example:

(< (/ 0.0 0.0) 0.0)�

signals sys:float-invalid-compare-operation if you "proceed" from the invalid divi-

sion by zero operation.

sys:negative-sqrt Flavor

Computing the square root of a negative number was attempted. This flavor is

built on sys:float-invalid-operation.

sys:float-divide-zero-by-zero Flavor

A floating-point division of zero by zero was attempted. This flavor is built on

sys:float-invalid-operation and sys:float-divide-by-zero. Most programs handle

not this condition itself, but rather one of the component condition flavors.

Miscellaneous System Errors Not Categorized by Base Flavor

This group includes the following errors:

• deallocate-resource

• sys:end-of-file

• sys:stream-closed

• sys:wrong-stack-group-state

• sys:draw-off-end-of-screen

• sys:draw-on-unprepared-sheet

• sys:bitblt-destination-too-small

• sys:bitblt-array-fractional-word-width

• sys:write-in-read-only

• sys:pdl-overflow

• sys:area-overflow

• sys:virtual-memory-overflow

• sys:region-table-overflow

• sys:cons-in-fixed-area

Page 692

• sys:throw-tag-not-seen

• sys:disk-error

• sys:redefinition

• si:resource-extra-deallocation

• si:resource-error

• si:resource-object-not-found �

sys:end-of-file Flavor

A function doing input from a stream attempted to read past the end-of-file. The

:stream message returns the stream.

sys:stream-closed Flavor

An operation that required a stream to be open was attempted on a closed stream.

sys:stream-closed accepts the following messages and has corresponding required

init keywords:

:attempt Returns a string briefly describing the attempted action onzl-

user:stream, for example, "read from"

:stream Returns the stream�

Example:

(error ’sys:stream-closed :attempt "write to" :stream self)�

sys:wrong-stack-group-state Flavor

A stack group was in the wrong state to be resumed. The :stack-group message

returns the stack group.

sys:draw-off-end-of-screen Flavor

Drawing graphics past the edge of the screen was attempted.

sys:draw-on-unprepared-sheet Flavor

A drawing primitive (such as sys:%draw-line) was used on a screen array not in-

side a tv:prepare-sheet special form. The :sheet message returns the sheet (win-

dow) that should have been prepared.

sys:bitblt-destination-too-small Flavor

The destination array of a bitblt was too small.

Page 693

sys:bitblt-array-fractional-word-width Flavor

An array passed to bitblt does not have a first dimension that is a multiple of 32

bits. The :array message returns the array.

sys:write-in-read-only Flavor

Writing into a read-only portion of memory was attempted. The :address message

returns the address at which the write was attempted.

sys:pdl-overflow Flavor

A stack (pdl) overflowed. The :pdl-name message returns the name of the stack (a

string, such as "regular" or "special"). The :grow-pdl proceed type is provided,

with no arguments; it increases the size of the stack. This is based on

dbg:debugger-condition, not on error.

sys:area-overflow Flavor

The maximum-size (:size argument to make-area) was exceeded.

sys:virtual-memory-overflow Flavor

An irrecoverable error that is signalled when you run out of virtual memory.

sys:region-table-overflow Flavor

An irrecoverable error that is signalled when you run out of regions.

sys:cons-in-fixed-area Flavor

Allocation of storage from a fixed area of memory was attempted.

Message Value returned

:area name of the area

:region region number�

sys:throw-tag-not-seen Flavor

throw or zl:*throw was called, but no matching catch or zl:*catch was found.

Page 694

Message Value returned

:tag Catch-tag that was being thrown to.

:values List of the values that were being thrown. If zl:*throw was

called, this is always a list of two elements, the value being

thrown and the tag; if the throw special form of Common Lisp

is used, the list can be of any length.�

The :new-tag proceed type is provided with one argument, a new tag (a symbol) to

try instead of the original.

sys:redefinition Flavor

This is a simple condition rather than an error condition. It signals an attempt to

redefine something by some other file than the one that originally defined it. The

:definition-type argument specifies the kind of definition: it might be defun if the

function cell is being defined, zl:defstruct if a structure is being defined, and so

on.

Message Value returned

:name symbol (or function spec) being redefined

:old-pathname pathname that originally defined it

:new-pathname pathname that is now trying to define it�

Either pathname is nil if the definition was from inside the Lisp environment

rather than from loading a file.

The following proceed types are provided:

Message Action

:proceed Redefinition should go ahead; in the future no warnings should

be signalled for this pair of pathnames.

:inhibit-definition Definition is not changed and execution proceeds.

:no-action Function should be redefined as if no warning had occurred.�

Note: if this condition is not handled, the action is controlled by the value of

sys:inhibit-fdefine-warnings.

Resource Errors Based on si:resource-error

This group includes the following errors:

• si:resource-error

• si:resource-extra-deallocation

• si:resource-object-not-found �

� si:resource-error Flavor

All resource-related error conditions are built on si:resource-error. Used primarily

for zl:typep.

Page 695

� si:resource-object-not-found Flavor

Signifies an error in the client and gives the error message "Object not found in

resource". This occurs when a deallocated object was not found in the resource.

This situation can be created in two ways:

• Not creating the object on the resource with the following:

 (si:allocate-resource <resource name>...)

• Executing the following form between the original allocation, and the dealloca-

tion:

 (si:clear-resource <resource name>)

Use the :no-action proceed type to ignore this error. The :object message returns

the object. The :resource message returns the resource.

� si:resource-extra-deallocation Flavor

Detects situations where there is extra deallocation, and enters the Debugger. Ex-

tra deallocation occurs when deallocate-resource is called more than one time on

an object.

Use the :no-action message to ignore this error. The :object message returns the

object. The :resource message returns the resource.

Function-Calling errors

This group includes the following errors:

• sys:zero-args-to-select-method

• sys:too-few-arguments

• sys:too-many-arguments

• sys:wrong-type-argument�

sys:zero-args-to-select-method Flavor

A select method was applied to no arguments.

sys:too-few-arguments Flavor

A function was called with too few arguments.

Message Value returned

:function the function

:nargs number of arguments supplied

:argument-list list of the arguments passed�

Page 696

The :additional-arguments proceed type is provided with one argument, a list of

additional argument values to which the function should be applied. If the error is

proceeded, these new arguments are appended to the old arguments and the func-

tion is called with this new argument list.

sys:too-many-arguments Flavor

A function was called with too many arguments.

Message Value returned

:function the function

:nargs number of arguments supplied

:argument-list list of the arguments passed�

The :fewer-arguments proceed type is provided with one argument, the new num-

ber of arguments with which the function should be called. In proceeding from

this error, the function is called with the first n arguments only, where n is the

number specified.

sys:wrong-type-argument Flavor

A function was called with at least one argument of invalid type.

Message Value returned

:function function with invalid argument(s)

:old-value invalid value

:description description of valid value

:arg-name name of the argument

:arg-number number of the argument (the first argument to a function is 0,

and so on) or nil if this does not apply�

:description, :arg-name, and :arg-number are valid messages only when the error

was signalled by zl:check-arg, zl:check-arg-type, or zl:argument-typecase. Check

to be sure that the message is valid before sending it (remember :operation-

handled-p).

Proceed type Action

:argument-value Takes one argument, the new value to use for the argument.

:store-argument-value

Takes one argument, the new value to use and to store back

into the local variable in which it was found. �

Array Errors

This group includes the following errors:

• dbg:bad-array-mixin

• sys:bad-array-type

Page 697

• sys:array-has-no-leader

• sys:array-wrong-number-of-dimensions

• sys:array-wrong-number-of-subscripts

• sys:number-array-not-allowed

• sys:subscript-out-of-bounds �

dbg:bad-array-mixin Flavor

Errors involving an array that seems to be the wrong object include this flavor.

This condition flavor is never instantiated. It provides the :array message, which

returns the array.

Proceed type Action

:new-array Takes one argument, an array to use instead of the old one.

:store-new-array Takes one argument, an array to use instead of the old one

and to store back into the local variable in which it was found.�

sys:bad-array-type Flavor

A meaningless array type code was found in virtual memory, indicating a system

bug. The :type message returns the numeric type code.

sys:array-has-no-leader Flavor

Using the leader of an array that has no array leader was attempted. The :array

message returns the array. This includes the dbg:bad-array-mixin flavor.

sys:array-wrong-number-of-dimensions Flavor

The rank of the array provided was wrong; the array is in error and the subscripts

are correct.

Message Value returned

:dimensions-given Number of subscripts presented.

:dimensions-expected Number that should have been given.

:array The array.�

This includes the dbg:bad-array-mixin flavor.

sys:array-wrong-number-of-subscripts Flavor

This assumes that the array is correct and that the user/application caused the er-

ror by providing the incorrect number of subscripts.

Page 698

Message Value returned

:array The array.

:subscripts-given A list of the subscripts given.

:number-of-subscripts-given The number of subscripts given.

:number-of-subscripts-expected The rank of the array .�

The following example signals sys:array-wrong-number-of-subscripts:

(array-in-bounds-p some-3-dimensional-array 2 3)�

sys:number-array-not-allowed Flavor

A number array (such as an sys:art-4b or sys:art-16b) was used in a context in

which number arrays are not valid, such as an attempt to make a pointer to an el-

ement with zl:aloc or locf. This includes the dbg:bad-array-mixin flavor.

sys:subscript-out-of-bounds Flavor

An attempt was made to reference an array using out-of-bounds subscripts, an out-

of-bounds array leader element, or an out-of-bounds instance variable.

Message Value returned

:object The object (an array or instance) if it is known, and nil other-

wise.

:function Function that did the reference, or nil if it is not known.

:subscript-used The subscript that was actually used.

:subscript-limit The limit that it passed.�

The individual subscripts are reported for the :subscript-used and :subscript-limit

messages. These values are fixnums; if a multidimensional array was used, they

are computed products.

Proceed type Action

:new-subscript Takes an arbitrary number of arguments, the new subscripts

for the array reference.

:store-new-subscript

Takes the same arguments as :new-subscript and stores them

back into the local variables in which they were found.�

Eval Errors

This group includes the following errors:

• sys:invalid-function

• sys:undefined-keyword-argument

• sys:unclaimed-message�

Page 699

sys:invalid-function Flavor

The evaluator attempted to apply an object that is not a function or a symbol

whose definition is an object that is not a function. The :function message returns

the object that was applied. sys:invalid-function is signalled but is not proceed-

able.

sys:undefined-keyword-argument Flavor

The evaluator attempted to pass a keyword to a function that does not recognize

that keyword.

Message Value returned

:keyword Unrecognized keyword.

:value The value passed with it.�

Proceed type Action

:no-action The keyword and its value are ignored.

:new-keyword Specifies a new keyword to use instead. Its one argument is

the new keyword.�

sys:unclaimed-message Flavor

This flavor is built on error. The flavor system signals this error when it finds a

message for which no method is available.

Message Value returned

:object The object.

:message The message-name.

:arguments The arguments of the message.�

The object can be an instance or a select method.

Interning Errors Based on sys:package-error

This group includes the following errors:

• sys:package-error

• sys:package-not-found

• sys:package-locked�

sys:package-error Flavor

All package-related error conditions are built on sys:package-error.

sys:package-not-found Flavor

Page 700

A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns nil if only

absolute names are being searched, or else the package whose relative names are

also searched.

The :no-action proceed type can be used to try again. The :new-name proceed

type can be used to specify a different name or package. The :create-package pro-

ceed type creates the package with default characteristics.

sys:package-locked Flavor

There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns the

package.

The :no-action proceed type interns the symbol just as if the package had not

been locked. Other proceed types are also available when interning the symbol

would cause a name conflict.

Errors Involving Lisp Printed Representations

This group includes the following errors:

• sys:print-not-readable

• sys:parse-error

• zl:parse-ferror

• sys:read-error

• sys:read-premature-end-of-symbol

• sys:read-end-of-file

• sys:read-list-end-of-file

• sys:read-string-end-of-file�

sys:print-not-readable Flavor

The Lisp printer encountered an object that it cannot print in a way that the Lisp

reader can understand. The printer signals this condition only if si:print-readably

is not nil (it is normally nil). The :object message returns the object. The :no-

action proceed type is provided; proceeding this way causes the object to be print-

ed as if si:print-readably were nil.

sys:parse-error Flavor

This flavor is built on error and is the type of error caught by the input editor.

This flavor accepts the init keyword :correct-input. If the value is t, which is the

default, the input editor prints "Type RUBOUT to correct your input" and does not

erase the message until a non-self-inserting character is typed. If the value is nil,

Page 701

no message is printed, and any typeout from the read function is erased immedi-

ately after the next character is typed. Syntax errors signalled by read functions

should be built on top of this flavor.

zl:parse-ferror Flavor

This flavor is built on sys:parse-error and zl:ferror. It accepts the init keywords

:format-string and :format-args as well as :correct-input. This flavor exists for

read functions that do not have a special flavor of error defined for them.

sys:read-error Flavor

This flavor, built on sys:parse-error, includes errors encountered by the Lisp

reader.

sys:read-premature-end-of-symbol Flavor

This is a new error flavor based on sys:read-error. It can be used for signalling

when some read function finishes reading in the middle of a string that was sup-

posed to contain a single expression.

Message Value returned

:short-symbol The symbol that was read.

:original-string The string that it was reading from

when it finished in the middle.�

An example of the use of sys:read-premature-end-of-symbol is in zwei:symbol-

from-string.

sys:read-end-of-file Flavor

The Lisp reader encountered an end-of-file while in the middle of a string or list.

This flavor is built on sys:read-error and sys:end-of-file.

sys:read-list-end-of-file Flavor

The Lisp reader attempted to read past the end-of-file while it was in the middle

of reading a list. This is built on sys:read-end-of-file. The :list message returns

the list that was being built.

sys:read-string-end-of-file Flavor

The Lisp reader attempted to read past the end-of-file while it was in the middle

of reading a string. This is built on sys:read-end-of-file. The :string message re-

turns the string that was being built.

Page 702

File-System Errors

The following condition flavors are part of Genera’s generic file system interface.

These flavors work for all file systems, whether local Lisp Machine File Systems

(LMFS), remote LMFSes (accessed over a network), or remote file systems of other

kinds, such as UNIX or TOPS-20. All of them report errors uniformly.

Some of these condition flavors describe situations that can occur during any file

system operation. These include not only the most basic flavors, such as fs:file-

request-failure and fs:data-error, but also flavors such as fs:file-not-found and

fs:directory-not-found. Other file system condition flavors describe failures related

to specific file system operations, such as fs:rename-failure, and fs:delete-failure.

Given all these choices, you have to determine what condition is appropriate to

handle, for example in checking for success of a rename operation. Would

fs:rename-failure include cases where, say, the directory of the file being renamed

is not found?

The answer to this question is that you should handle fs:file-operation-failure.

fs:rename-failure and all other conditions at that level are signalled only for er-

rors that relate specifically to the semantics of the operation involved. If you can-

not delete a file because the file is not found, fs:file-not-found would be signalled.

Suppose you cannot delete the file because its "don’t delete switch" is set, which is

an error relating specifically to deletion. fs:delete-failure would be signalled.

Therefore, since you cannot know whether a condition flavor related to an opera-

tion requested or some more general error is signalled, you usually want to handle

one of the most general flavors of file system error.

Under normal conditions, you would bind only for fs:file-request-failure or fs:file-

operation-failure rather than for the more specific condition flavors described in

this section. Some guidelines for using the different classes of errors:

error Any error at all. It is not wise in general to attempt to han-

dle this, because it catches program and operating system

bugs as well as file-related bugs, thus "hiding" knowledge of

the system problems from you.

fs:file-error Any file related error at all. This includes fs:file-operation-

failure as well as fs:file-request-failure. Condition objects

of flavor fs:file-request-failure usually indicate that the file

system, host operating system, or network did not operate

properly. If your program is attempting to handle file-

related errors, it should not handle these: it is usually bet-

ter to allow the program to enter the debugger. Thus it is

very rare that one would want to handle fs:file-error.

fs:file-operation-failure

This includes almost all predictable file-related errors,

whether they are related to the semantics of a specific op-

eration, or are capable of occurring during many kinds of

operations. Therefore, fs:file-operation-failure is usually the

appropriate condition to handle.

Page 703

Specific conditions It is appropriate and correct to handle specific conditions,

like fs:delete-failure, if your program assigns specific mean-

ing to (or has specific actions associated with) specific oc-

currences, such as a nonexistent directory or an attempt to

delete a protected file. If you do not "care" about specific

conditions, but you wish to handle predictable file-related

errors, you should handle fs:file-operation-failure. You

should not attempt to handle, say, fs:delete-failure to test

for any error occurring during deletion; it does not mean

that.�

File-system errors include the following major groups:

• fs:file-error Errors

• fs:file-request-failure Errors

• fs:file-operation-failure Errors

• Request Failures Based on fs:file-request-failure

• Login Errors

• File Lookup Errors

• fs:access-error Errors

• fs:invalid-pathname-syntax Errors

• fs:wrong-kind-of-file Errors

• fs:creation-failure Errors

• fs:rename-failure Errors

• fs:change-property-failure Errors

• fs:delete-failure Errors

• Errors Loading Binary Files

• Miscellaneous Operations Failure Errors

fs:file-error Flavor

This set includes errors encountered during file operations. This flavor is built on

error.

Message Value returned

:pathname Pathname that was being operated on or nil.

:operation Name of the operation that was being done: this is a keyword

symbol such as :open, :close, :delete, or :change-properties,

and it might be nil if the signaller does not know what the op-

eration was or if no specific operation was in progress.�

In a few cases, the :retry-file-error proceed type is provided, with no arguments;

it retries the file system request. All flavors in this section accept these messages

and might provide this proceed type.

fs:file-request-failure Flavor

Page 704

This set includes all file-system errors in which the request did not manage to get

to the file system.

fs:file-operation-failure Flavor

This set includes all file-system errors in which the request was delivered to the

file system, and the file system decided that it was an error.

Note: every file-system error is either a request failure or an operation failure,

and the rules given above explain the distinction. However, these rules are slightly

unclear in some cases. If you want to be sure whether a certain error is a request

failure or an operation failure, consult the detailed descriptions in the rest of this

section.

Request Failures Based on fs:file-request-failure

This group includes the following errors:

• fs:data-error

• fs:host-not-available

• fs:no-file-system

• fs:network-lossage

• fs:not-enough-resources

• fs:unknown-operation

fs:data-error Flavor

Bad data is in the file system. This might mean data errors detected by hardware,

or inconsistent data inside the file system. This flavor is built on fs:file-request-

failure. The :retry-file-operation proceed type from fs:file-error is provided in

some cases; send a :proceed-types message to find out.

fs:host-not-available Flavor

The file server or file system is intentionally denying service to users. This does

not mean that the network connection failed; it means that the file system explicit-

ly does not care to be available. This flavor is built on fs:file-request-failure.

fs:no-file-system Flavor

The file system is not available. For example, this host does not have any file sys-

tem, or this host’s file system cannot be initialized for some reason. This flavor is

built on fs:file-request-failure.

fs:network-lossage Flavor

Page 705

The file server had some sort of trouble trying to create a new data connection

and was unable to do so. This flavor is built on fs:file-request-failure.

fs:not-enough-resources Flavor

Some resource was not available in sufficient supply. Retrying the operation might

work if you wait for some other users to go away or if you close some of your own

files. This flavor is built on fs:file-request-failure.

fs:unknown-operation Flavor

An unsupported file-system operation was attempted. This flavor is built on fs:file-

request-failure.

Login Errors

Some login problems are correctable, and some are not. To handle any correctable

login problem, you set up a handler for fs:login-required rather than handling the

individual conditions.

The correctable login problem conditions work in a special way. Genera’s generic

file system interface, in the user-end of the remote file protocol, always handles

these errors with its own condition handler; it then signals the fs:login-required

condition. Therefore, to handle one of these problems, you set up a handler for

fs:login-required. The condition object for the correctable login problem can be ob-

tained from the condition object for fs:login-required, by sending it an :original-

condition message.

This group includes the following errors:

• fs:login-problems

• fs:correctable-login-problems

• fs:unknown-user

• fs:invalid-password

• fs:not-logged-in

• fs:login-required

fs:login-problems Flavor

This set includes all problems encountered while trying to log in to the file sys-

tem. Currently, none of these ever happens when you use a local file system. This

flavor is built on fs:file-request-failure.

fs:correctable-login-problems Flavor

This set includes all correctable problems encountered while trying to log in to the

foreign host. None of these ever happens when you use a local file system. This

flavor is built on fs:login-problems.

Page 706

fs:unknown-user Flavor

The specified user name is unknown at this host. The :user-id message returns

the user name that was used. This flavor is built on

fs:correctable-login-problems.

fs:invalid-password Flavor

The specified password was invalid. This flavor is built on fs:correctable-login-

problems.

fs:not-logged-in Flavor

A file operation was attempted before logging in. Normally the file system inter-

face always logs in before doing any operation, but this problem can come up in

certain unusual cases in which logging in has been aborted. This flavor is built on

fs:correctable-login-problems.

fs:login-required Flavor

This is a simple condition built on condition. It is signalled by the file-system in-

terface whenever one of the correctable login problems happens.

Message Value returned

(send (send error :access-path) :host)

The foreign host.

:host-user-id User name that would be the default for this host.

:original-condition Condition object of the correctable login problem.�

The :password proceed type is provided with two arguments, a new user name

and a new password, both of which should be strings. If the condition is not han-

dled by any handler, the file system prompts the user for a new user name and

password, using the zl:query-io stream.

File Lookup

This group includes the following errors:

• fs:file-lookup-error

• fs:file-not-found

• fs:multiple-file-not-found

• fs:directory-not-found

• fs:device-not-found

• fs:link-target-not-found�

fs:file-lookup-error Flavor

Page 707

This set includes all file-name lookup errors. This flavor is built on fs:file-

operation-failure.

fs:file-not-found Flavor

The file was not found in the containing directory. The TOPS-20 and TENEX "no

such file type" and "no such file version" errors also signal this condition. This fla-

vor is built on fs:file-lookup-error.

fs:multiple-file-not-found Flavor

None of a number of possible files was found. This flavor is built on fs:file-

lookup-error. It is signalled when load is not given a specific file type but cannot

find either a source or a binary file to load.

The flavor allows three init keywords of its own. These are also the names of mes-

sages that return the following:

:operation The operation that failed.

:pathname The pathname given to the operation.

:pathnames A list of pathnames that were sought unsuccessfully.�

The condition has a :new-pathname proceed type to prompt for a new pathname.

fs:directory-not-found Flavor

The directory of the file was not found, or does not exist. This means that the

containing directory was not found. If you are trying to open a directory, and the

actual directory you are trying to open is not found, fs:file-not-found is signalled.

This flavor is built on fs:file-lookup-error.

This flavor has two Debugger special commands: :create-directory, to create only

the lowest level of directory, and :create-directories-recursively, to create any

missing superiors as well.

Errors of this flavor support the :directory-pathname message. This message,

which can be sent to any such error, returns (when possible) a "pathname as di-

rectory" for the actual directory that was not found.

Example:

Assume the directory x:>a>b exists, but has no inferiors. The following produces

an error instance to which :pathname produces #<LMFS-PATHNAME

x:>a>b>c>d>thing.lisp> and :directory-pathname produces #<LMFS-PATHNAME

x:>a>b>c> >.

(open "x:>a>b>c>d>thing.lisp")�

Note: Not all hosts and access media can provide this information (currently, only

local LMFS and LMFS accessed via NFILE can). When a host does not return this

Page 708

information, :directory-pathname returns the same as :pathname, whose value is

a pathname as directory for the best approximation known to the identity of the

missing directory.

fs:device-not-found Flavor

The device of the file was not found, or does not exist. This flavor is built on

fs:file-lookup-error.

fs:link-target-not-found Flavor

The target of the link that was opened did not exist. This flavor is built on fs:file-

lookup-error.

fs:access-error Errors

This group includes the following errors:

• fs:access-error

• fs:incorrect-access-to-file

• fs:incorrect-access-to-directory�

fs:access-error Flavor

This set includes all protection-violation errors. This flavor is built on fs:file-

operation-failure.

fs:incorrect-access-to-file Flavor

Incorrect access to the file in the directory was attempted. This flavor is built on

fs:access-error.

fs:incorrect-access-to-directory Flavor

Incorrect access to some directory containing the file was attempted. This flavor is

built on fs:access-error.

fs:invalid-pathname-syntax Errors

This group includes the following errors:

• fs:invalid-pathname-syntax

• fs:invalid-wildcard

• fs:wildcard-not-allowed �

Page 709

fs:invalid-pathname-syntax Flavor

This set includes all invalid pathname syntax errors. This is not the same as

fs:parse-pathname-error. These errors occur when a successfully parsed pathname

object is given to the file system, but something is wrong with it. See the specific

conditions that follow. This flavor is built on fs:file-operation-failure.

fs:invalid-wildcard Flavor

The pathname is not a valid wildcard pathname. This flavor is built on fs:invalid-

pathname-syntax.

fs:wildcard-not-allowed Flavor

A wildcard pathname was presented in a context that does not allow wildcards.

This flavor is built on fs:invalid-pathname-syntax.

fs:wrong-kind-of-file Errors

This group includes the following errors:

• fs:wrong-kind-of-file

• fs:invalid-operation-for-link

• fs:invalid-operation-for-directory�

fs:wrong-kind-of-file Flavor

This set includes errors in which an invalid operation for a file, directory, or link

was attempted.

fs:invalid-operation-for-link Flavor

The specified operation is invalid for links, and this pathname is the name of a

link. This flavor is built on fs:wrong-kind-of-file.

fs:invalid-operation-for-directory Flavor

The specified operation is invalid for directories, and this pathname is the name of

a directory. This flavor is built on fs:wrong-kind-of-file.

fs:creation-failure Errors

This group includes the following errors:

• fs:creation-failure

• fs:file-already-exists

Page 710

• fs:create-directory-failure

• fs:directory-already-exists

• fs:create-link-failure�

fs:creation-failure Flavor

This set includes errors related to attempts to create a file, directory, or link. This

flavor is built on fs:file-operation-failure.

fs:file-already-exists Flavor

A file of this name already exists. This flavor is built on fs:creation-failure.

fs:create-directory-failure Flavor

This set includes errors related to attempts to create a directory. This flavor is

built on fs:creation-failure.

fs:directory-already-exists Flavor

A directory or file of this name already exists. This flavor is built on fs:create-

directory-failure.

fs:create-link-failure Flavor

This set includes errors related to attempts to create a link. This flavor is built on

fs:creation-failure.

fs:rename-failure Errors

This group includes the following errors:

• fs:rename-failure

• fs:rename-to-existing-file

• fs:rename-across-directories

• fs:rename-across-hosts�

fs:rename-failure Flavor

This set includes errors related to attempts to rename a file. The :new-pathname

message returns the target pathname of the rename operation. This flavor is built

on fs:file-operation-failure.

fs:rename-to-existing-file Flavor

Page 711

The target name of a rename operation is the name of a file that already exists.

This flavor is built on fs:rename-failure.

fs:rename-across-directories Flavor

The devices or directories of the initial and target pathnames are not the same,

but on this file system they are required to be. This flavor is built on fs:rename-

failure.

fs:rename-across-hosts Flavor

The hosts of the initial and target pathnames are not the same. This flavor is

built on fs:rename-failure.

fs:change-property-failure Errors

This group includes the following errors:

• fs:change-property-failure

• fs:unknown-property

• fs:invalid-property-value�

fs:change-property-failure Flavor

This set includes errors related to attempts to change properties of a file. This

might mean that you tried to set a property that only the file system is allowed to

set. For file systems without user-defined properties, it might mean that no such

property exists. This flavor is built on fs:file-operation-failure.

fs:unknown-property Flavor

The property is unknown. This flavor is built on fs:change-property-failure.

fs:invalid-property-value Flavor

The new value provided for the property is invalid. This flavor is built on

fs:change-property-failure.

fs:delete-failure Errors

This group includes the following errors:

• fs:delete-failure

• fs:directory-not-empty

• fs:dont-delete-flag-set�

Page 712

fs:delete-failure Flavor

This set includes errors related to attempts to delete a file. It applies to cases

where the file server reports that it cannot delete a file. The exact events involved

depend on what the host file server has received from the host. This flavor is built

on fs:file-operation-failure.

fs:directory-not-empty Flavor

An invalid deletion of a nonempty directory was attempted. This flavor is built on

fs:delete-failure.

fs:dont-delete-flag-set Flavor

Deleting a file with a "don’t delete" flag was attempted. This flavor is built on

fs:delete-failure.

Miscellaneous Operations Failures

This group includes the following errors:

• fs:circular-link

• fs:unimplemented-option

• fs:inconsistent-options

• fs:invalid-byte-size

• fs:no-more-room

• fs:filepos-out-of-range

• fs:file-locked

• fs:file-open-for-output

• fs:not-available �

fs:circular-link Flavor

The pathname is a link that eventually gets linked back to itself. This flavor is

built on fs:file-operation-failure.

fs:unimplemented-option Flavor

This set includes errors in which an option to a command is not implemented.

This flavor is built on fs:file-operation-failure.

fs:inconsistent-options Flavor

Some of the options given in this operation are inconsistent with others. This fla-

vor is built on fs:file-operation-failure.

Page 713

fs:invalid-byte-size Flavor

The value of the "byte size" option was not valid. This flavor is built on

fs:unimplemented-option.

fs:no-more-room Flavor

The file system is out of room. This can mean any of several things:

• The entire file system might be full.

• The particular volume that you are using might be full.

• Your directory might be full.

• You might have run out of your allocated quota.

• Other system-dependent things.�

This flavor is built on fs:file-operation-failure. The :retry-file-operation proceed

type from fs:file-error is sometimes provided.

fs:filepos-out-of-range Flavor

Setting the file pointer past the end-of-file position or to a negative position was

attempted. This flavor is built on fs:file-operation-failure.

fs:file-locked Flavor

The file is locked. It cannot be accessed, possibly because it is in use by some oth-

er process. Different file systems can have this problem in various system-

dependent ways. This flavor is built on fs:file-operation-failure.

fs:file-open-for-output Flavor

Opening a file that was already opened for output was attempted. This flavor is

built on fs:file-operation-failure.

Note: ITS, TOPS-20, and TENEX file servers do not use this condition; they signal

fs:file-locked instead.

fs:not-available Flavor

The file or device exists but is not available. Typically, the disk pack is not mount-

ed on a drive, the drive is broken, or the like. Probably, operator intervention is

required to fix the problem: retrying the operation is likely to work after the prob-

lem is solved. This flavor is built on fs:file-operation-failure. Do not confuse this

with fs:host-not-available.

Errors Loading Binary Files

Page 714

This group includes the following errors:

• sys:binary-file-obsolete-version

• sys:binary-file-obsolete-version-3�

sys:binary-file-obsolete-version Flavor

A condition based on sys:binary-file-obsolete-version is signalled whenever the

system reads a binary file whose version is obsolete but that can still be loaded,

with incorrect results. If you want the file loaded, proceed from this condition with

:no-action.

sys:binary-file-obsolete-version-3 Flavor

A condition based on sys:binary-file-obsolete-version-3 is signalled whenever the

system reads a version 3 (Release 6) binary file. The file can still be loaded, possi-

bly with incorrect results. If you want the file loaded, proceed from this condition

with :no-action.

Pathname Errors

Pathname errors include five major groups:

• fs:pathname-error

• fs:parse-pathname-error

• fs:invalid-pathname-component

• fs:unknown-pathname-host

• fs:undefined-logical-pathname-translation

fs:pathname-error Flavor

This set includes errors related to pathnames. This is built on the error flavor.

The following flavors are built on this one.

fs:parse-pathname-error Flavor

A problem occurred in attempting to parse a pathname.

fs:invalid-pathname-component Flavor

Attempt to create a pathname with an invalid component.

Page 715

Message Value returned

:pathname The pathname.

:component-value The invalid value.

:component The name of the component (a keyword symbol such as :name

or :directory).

:component-description

A "pretty name" for the component (such as "file name" or

"directory").�

The :new-component proceed type is defined with one argument, a component val-

ue to use instead.

At the time this is signalled, a pathname object with the invalid component has

actually been created; this is what the :pathname message returns. The error is

signalled just after the pathname object is created, before it goes in the pathname

hash table.

fs:unknown-pathname-host Flavor

The function fs:get-pathname-host was given a name that is not the name of any

known file computer. The :name message returns the name (a string).

fs:undefined-logical-pathname-translation Flavor

A logical pathname was referenced but is not defined. The :logical-pathname mes-

sage returns the logical pathname. This flavor has a :define-directory proceed

type, which prompts for a physical pathname whose directory component is the

translation of the logical directory on the given host.

Network Errors

Network errors include four major groups:

• sys:network-error

• Local Network Problems

• Remote Network Problems

• Connection Problems

sys:network-error Flavor

This set includes errors signalled by networks. These are generic network errors

that are used uniformly for any supported networks. This flavor is built on error.

Local Network Errors

This group includes the following errors:

Page 716

• sys:local-network-error

• sys:network-resources-exhausted

• sys:unknown-address

• sys:unknown-host-name

sys:local-network-error Flavor

This set includes network errors related to problems with your own Symbolics

computer, rather than with the network or the foreign host. This flavor is built on

sys:network-error.

sys:network-resources-exhausted Flavor

The local network control program exhausted some resource; for example, its con-

nection table is full. This flavor is built on sys:local-network-error.

sys:unknown-address Flavor

The network control program was given an address that is not understood. The

:address message returns the address. This flavor is built on sys:local-network-

error.

sys:unknown-host-name Flavor

The host parser (net:parse-host) was given a name that is not the name of any

known host. The :name message returns the name. This flavor is built on

sys:local-network-error.

Remote Network Errors

This group includes the following errors:

• sys:remote-network-error

• sys:bad-connection-state

• sys:connection-error

• sys:host-not-responding �

sys:remote-network-error Flavor

This set includes network errors related to problems with the network or the for-

eign host, rather than with your Symbolics computer.

Message Value returned

:foreign-host The remote host.

:connection The connection, or nil if no particular connection is involved.�

Page 717

This flavor is built on sys:network-error.

sys:bad-connection-state Flavor

This set includes remote errors in which a connection enters a bad state. This fla-

vor is built on sys:remote-network-error. It actually can happen due to local

causes, however. In particular, if your Symbolics computer stays inside a without-

interrupts for a long time, the network control program might decide that a host

is not answering periodic status requests and put its connections into a closed

state.

sys:connection-error Flavor

This set includes remote errors that occur while trying to establish a new network

connection. The :contact-name message to any error object in this set returns the

contact name that you were trying to connect to. This flavor is built on

sys:remote-network-error.

sys:host-not-responding Flavor

This set includes errors in which the host is not responding, whether during ini-

tial connection or in the middle of a connection. This flavor is built on

sys:remote-network-error.

Connection Errors

This group includes the following errors:

• sys:host-not-responding-during-connection

• sys:host-stopped-responding

• sys:connection-refused

• sys:connection-closed

• sys:connection-closed-locally

• sys:connection-lost

• sys:connection-no-more-data

• sys:network-stream-closed

sys:host-not-responding-during-connection Flavor

The network control program timed out while trying to establish a new connection

to a host. The host might be down, or the network might be down. This flavor is

built on sys:host-not-responding and sys:connection-error.

sys:host-stopped-responding Flavor

Page 718

A host stopped responding during an established network connection. The host or

the network might have crashed. This flavor is built on sys:host-not-responding

and sys:bad-connection-state.

sys:connection-refused Flavor

The foreign host explicitly refused to accept the connection. The :reason message

returns a text string from the foreign host containing its explanation, or nil if it

had none. This flavor is built on sys:connection-error.

sys:connection-closed Flavor

An established connection was closed. The :reason message returns a text string

from the foreign host containing its explanation, or nil if it had none. This flavor

is built on sys:bad-connection-state.

sys:connection-closed-locally Flavor

The local host closed the connection and then tried to use it. This flavor is built

on sys:bad-connection-state.

sys:connection-lost Flavor

The foreign host reported a problem with an established connection and that con-

nection can no longer be used. The :reason message returns a text string from

the foreign host containing its explanation, or nil if it had none. This flavor is

built on sys:bad-connection-state.

sys:connection-no-more-data Flavor

No more data remains on this connection. This flavor is built on sys:bad-

connection-state.

sys:network-stream-closed Flavor

This is a combination of sys:network-error and sys:stream-closed and is usually

used as a base flavor by network implementations (for example, Chaos and TCP).

Tape Errors

Tape errors include four major groups:

• tape:tape-error

• tape:mount-error

• tape:tape-device-error

• tape:end-of-tape

Page 719

tape:tape-error Flavor

This set includes all tape errors. This flavor is built on error.

tape:mount-error Flavor

A set of errors signalled because a tape could not be mounted. This includes prob-

lems such as "no ring" and "drive not ready". Normally, tape:make-stream handles

these errors, and manages mount retry. This flavor is built on tape:tape-error.

tape:tape-device-error Flavor

A hardware data error, such as a parity error, controller error, or interface error,

occurred. This flavor has tape:tape-error as a :required-flavor.

tape:end-of-tape Flavor

The end of the tape was encountered. When this happens on writing, the tape usu-

ally has a few more feet left, in which the program is expected to finish up and

write two end-of-file marks. Normally, closing the stream does this automatically.

Whether or not this error is ever seen on input depends on the tape controller.

Most systems do not see the end of tape on reading, and rely on the software that

wrote the tape to have cleanly terminated its data, with EOFs.

This flavor is built on tape:tape-device-error and tape:tape-error.

Condition Functions in the Common Lisp Package with Symbolics Common

Lisp Extensions

Here is a list of condition functions in the Conditions chapter that have Symbolics

Common Lisp extensions:

Function Extension(s)

warn optional-options, optional-condition-name

error In Symbolics Common Lisp you can use error with the argu-

ments condition and init-options, or with the argument condi-

tion-object.

cerror optional-condition-name

Packages

The Need for Packages

Page 720

A Lisp program is a collection of function definitions. The functions are known by

their names, and so each must have its own name to identify it. Clearly a pro-

grammer must not use the same name for two different functions.

Genera is a huge Lisp environment, in which many programs must coexist. All of

the "operating system", the compiler, the editor, and a wide variety of programs

are provided in the initial environment. Furthermore, every program that you use

during your session must be loaded into the same environment. Each of these pro-

grams is composed of a group of functions; each function must have its own dis-

tinct name to avoid conflicts. For example, if the compiler had a function named

pull, and you loaded a program that had its own function named pull, the com-

piler’s pull would be redefined, probably breaking the compiler.

It would not really be possible to prevent these conflicts, since the programs are

written by many different people who could never get together to hash out who

gets the privilege of using a specific name such as pull.

Now, if two programs are to coexist in the Lisp world, each with its own function

pull, then each program must have its own symbol named "pull", because one sym-

bol cannot have two function definitions. The same reasoning applies to any other

use of symbols to name things. Not only functions but variables, flavors, and many

other things are named with symbols, and hence require isolation between symbols

belonging to different programs.

A package is a mapping from names to symbols. When two programs are not close-

ly related and hence are likely to have conflicts over the use of names, the pro-

grams can use separate packages to enable each program to have a different map-

ping from names to symbols. In the example above, the compiler can use a pack-

age that maps the name pull into a symbol whose function definition is the com-

piler’s pull function. Your program can use a different package that maps the

name pull into a different symbol whose function definition is your function. When

your program is loaded, the compiler’s pull function is not redefined, because it is

attached to a symbol that is not affected by your program. The compiler does not

break.

The word "package" is used to refer to a mapping from names to symbols because

a number of related symbols are packaged together into a single entity. Since the

substance of a program (such as its function definitions and variables) consists of

attributes of symbols, a package also packages together the parts of a program.

The package system allows the author of a group of closely related programs that

should share the same symbols to define a single package for those programs.

It is important to understand the distinction between a name and a symbol. A

name is a sequence of characters that appears on paper (or on a screen or in a

file). This is often called a printed representation. A symbol is a Lisp object inside

the machine. You should keep in mind how Lisp reading and loading work. When a

source file is read into Genera, or a compiled binary file is loaded in, the file itself

obviously cannot contain Lisp objects; it contains printed representations of those

objects. When the reader encounters a printed representation of a symbol, it uses a

package to map that printed representation (a name) into the symbol itself. The

loader does the same thing. The package system arranges to use the correct pack-

Page 721

age whenever a file is read or loaded. (For a detailed explanation of this process:

See the section "Specifying Packages in Programs".

Example of the Need for Packages

Suppose there are two programs named chaos and arpa, for handling the Chaos-

net and Arpanet respectively. The author of each program wants to have a func-

tion called get-packet, which reads in a packet from the network. Also, each wants

to have a function called allocate-pbuf, which allocates the packet buffer. Each

"get" routine first allocates a packet buffer, and then reads bits into the buffer;

therefore, each version of get-packet should call the respective version of allocate-

pbuf.

Without the package system, the two programs could not coexist in the same Lisp

environment. But the package system can be used to provide a separate space of

names for each program. What is required is to define a package named chaos to

contain the Chaosnet program, and another package arpa to hold the Arpanet pro-

gram. When the Chaosnet program is read into the machine, the names it uses are

translated into symbols via the chaos package. So when the Chaosnet program’s

get-packet refers to allocate-pbuf, the allocate-pbuf in the chaos package is

found, which is the allocate-pbuf of the Chaosnet program  the right one. Simi-

larly, the Arpanet program’s get-packet would be read in using the arpa package

and would refer to the Arpanet program’s allocate-pbuf.

Sharing of Symbols Among Packages

How the Package System Allows Symbol Sharing

Besides keeping programs isolated by giving each program its own set of symbols,

the package system must also provide controlled sharing of symbols among pack-

ages. It would not be adequate for each package’s set of symbols to be completely

disjoint from the symbols of every other package. For example, almost every pack-

age ought to include the whole Lisp language: car, cdr, format, and so on should

be available to every program.

There is a critical tension between these two goals of the package system. On the

one hand, we want to keep the packages isolated, to avoid the need to think about

conflicts between programs when we choose names for things. On the other hand,

we want to provide connections among packages so that the facilities of one pro-

gram can be made available to other programs. All the complexity of the package

system arises from this tension. Almost all of the package system’s features exist

to provide easy ways to control the sharing of symbols among packages, while

avoiding accidental unwanted sharing of symbols. Unexpected sharing of a symbol

between packages, when the authors of the programs in those packages expected to

have private symbols of their own, is a name conflict and can cause programs to go

awry. See the section "Package Name-Conflict Errors".

Page 722

Note that sharing symbols is not as simple as merely making the symbols defined

by the Lisp language available in every package. A very important feature of Gen-

era is shared programs; if one person writes a function to, say, print numbers in

Roman numerals, any other function can call it to print Roman numerals. This

contrasts sharply with many other systems, where many different programs have

been written to accomplish the same thing.

For example, the routines to manipulate a robot arm might be a separate program,

residing in its own package. A second program called blocks (the blocks world, of

course) wants to manipulate the arm, so it would want to call functions from the

arm package. This means that the blocks program must have a way to name those

robot arm functions. One way to do this is to arrange for the name-to-symbol map-

ping of the blocks package to map the names of those functions into the same

identical symbols as the name-to-symbol mapping of the arm package. These sym-

bols would then be shared between the two packages.

This sharing must be done with great care. The symbols to be shared between the

two packages constitute an interface between two modules. The names to be

shared must be agreed upon by the authors of both programs, or at least known to

them. They cannot simply make every symbol in the arm program available to the

blocks program. Instead they must define some subset of the symbols used by the

arm program as its interface and make only those symbols available. Typically each

name in the interface is carefully chosen (more carefully than names that are only

used internally). The arm program comes with documentation listing the symbols

that constitute its interface and describing what each is used for. This tells the

author of the blocks program not only that a particular symbol is being used as

the name of a function in the arms program (and thus cannot be used for a func-

tion elsewhere), but also what that function does (move the arm, for instance)

when it is called.

The package system provides for several styles of interface between modules. For

several examples of how the blocks program and the arm program might commu-

nicate, see the section "Examples of Symbol Sharing Among Packages".

An important aspect of the package system is that it makes it necessary to clarify

the modularity of programs and the interfaces between them. The package system

provides some tools to allow the interface to be explicitly defined and to check that

everyone agrees on the interface.

External Symbols

The name-to-symbol mappings of a package are divided into two classes, external

and internal. We refer to the symbols accessible via these mappings as being exter-

nal and internal symbols of the package in question, though really it is the map-

pings that are different and not the symbols themselves. Within a given package, a

name refers to one symbol or to none; if it does refer to a symbol, that symbol is

either external or internal in that package, but not both.

External symbols are part of the package’s public interface to other packages.

These are supposed to be chosen with some care and are advertised to outside

Page 723

users of the package. Internal symbols are for internal use only, and these symbols

are normally hidden from other packages. Most symbols are created as internal

symbols; they become external only if they are explicitly exported from a package.

A symbol can appear in many packages. It can be external in one package and in-

ternal in another. It is valid for a symbol to be internal in more than one package,

and for a symbol to be external in more than one package. A name can refer to

different symbols in different packages. However, a symbol always has the same

name no matter where it appears. This restriction is imposed both for conceptual

simplicity and for ease of implementation.

Package Inheritance

Some name-to-symbol mappings are established by the package itself, while others

are inherited from other packages. When package A inherits mappings from pack-

age B, package A is said to use package B. A symbol is said to be accessible in a

package if its name maps to it in that package, whether directly or by inheritance.

A symbol is said to be present in a package if its name maps to it directly (not by

inheritance). If a symbol is accessible to a package, then it can be referenced by a

program that is read into that package. Inheritance allows a package to be built

up by combining symbols from a number of other packages.

Package inheritance interacts with the distinction between internal and external

symbols. When one package uses another, it inherits only the external symbols of

that package. This is necessary in order to provide a well-defined interface and

avoid accidental name conflicts. The external symbols are the ones that are care-

fully chosen and advertised. If internal symbols were inherited, it would be hard to

predict just which symbols were shared between packages.

A package can use any number of other packages; it inherits the external symbols

of all of them. If two of these external symbols had the same name it would be

unpredictable which one would be inherited, so this is considered to be a name-

conflict error. Consequently the order of the used packages is immaterial and does

not affect what symbols are accessible.

Only symbols that are present in a package can be external symbols of that pack-

age. However, the package system hides this restriction by copying an inherited

mapping directly into a package if you request that the symbol be exported. Note:

When package A uses package B, it inherits the external symbols of B. But these

do not become external symbols of A, and are not inherited by package C that uses

package A. A symbol becomes an external symbol of A only by an explicit request

to export it from A.

A package can be made to use another package by the :use option to defpackage

or make-package or by calling the use-package function.

Global Packages

Almost every package should have the basic symbols of the Lisp language accessi-

ble to it. This includes:

Page 724

• Symbols that are names of useful functions, such as cdr, cons, and print

• Symbols that are names of special forms, such as cond

• Symbols that are names of useful variables, such as *read-base*, *standard-

output*, and *

• Symbols that are names of useful constants, such as lambda-list-keywords

• Symbols that are used by the language as symbols in their own right, such as

&optional, t, nil, and special�

Rather than providing an explicit interface between every program and the Lisp

language, listing explicitly the particular symbols from the Lisp language that that

program intends to use, it is more convenient to make all the Lisp symbols acces-

sible. Unless otherwise specified, every package inherits from a global package.

Common Lisp packages inherit from common-lisp-global (or cl) and Zetalisp pack-

ages inherit from global (or zl). The external symbols of common-lisp-global are

all the symbols of the Lisp language, including all the symbols documented without

a colon (:) in their name. The common-lisp-global package has no internal sym-

bols.

All programs share the global symbols, and cannot use them for private purposes.

For example, the symbol delete is the name of a Lisp function and thus is in the

common-lisp-global package. Even if a program does not use the delete function,

it inherits the global symbol named delete and therefore cannot define its own

function with that name to do something different. Furthermore, if two programs

each want to use the symbol delete as a property list indicator, they can bump in-

to each other because they do not have private symbols. You can use a mechanism

called shadowing to declare that a private symbol is desired rather than inheriting

the global symbol. See the section "Shadowing Symbols". You can also use the

where-is function and the Where Is Symbol (m-X) editor command to determine

whether a symbol is private or shared when writing a program.

Similar to the common-lisp-global package is the system package, which contains

all the symbols that are part of the "operating system" interface or the machine

architecture, but not regarded as part of the Lisp language. The system package

is not inherited unless specifically requested.

Here is how package inheritance works in the example of the two network pro-

grams. (See the section "Example of the Need for Packages".) When the Chaosnet

program is read into the Lisp world, the current package is the chaos package.

Thus all of the names in the Chaosnet program are mapped into symbols by the

chaos package. If there is a reference to some well-known global symbol such as

append, it is found by inheritance from the common-lisp-global package, assum-

ing no symbol by that name is present in the chaos package. If, however, there is

a reference to a symbol that you created, a new symbol is created in the chaos

package. Suppose the name get-packet is referenced for the first time. No symbol

by this name is directly present in the chaos package, nor is such a symbol inher-

Page 725

ited from common-lisp-global. Therefore the reader (actually the intern function)

creates a new symbol named get-packet and makes it present in the chaos pack-

age. When get-packet is referred to later in the Chaosnet program, that symbol is

found.

When the Arpanet program is read in, the current package is arpa instead of

chaos. When the Arpanet program refers to append, it gets the common-lisp-

global one; that is, it shares the same symbol that the Chaosnet program got.

However, if it refers to get-packet, it does not get the same symbol the Chaosnet

program got, because the chaos package is not being searched. Rather, the arpa

and common-lisp-global packages are searched. A new symbol named get-packet

is created and made present in the arpa package.

So what has happened is that there are two get-packets: one for chaos and one

for arpa. The two programs are loaded together without name conflicts.

Home Package of a Symbol

Every symbol has a home package. When a new symbol is created by the reader

and made present in the current package, its home package is set to the current

package. The home package of a symbol can be obtained with the symbol-package

function.

Most symbols are present only in their home package; however, it is possible to

make a symbol be present in any number of packages. Only one of those packages

can be distinguished as the home package; normally this is the first package in

which the symbol was present. The package system tries to ensure that a symbol

is present in its home package. When a symbol is first created by the reader (actu-

ally by the intern function), it is guaranteed to be present in its home package. If

the symbol is removed from its home package (by the unintern function), the

home package of the symbol is set to nil, even if the symbol is still present in

some other package.

Some symbols are not present in any package; they are said to be uninterned. See

the section "Mapping Names to Symbols". The make-symbol function can be used

to create such a symbol. An uninterned symbol has no home package; the symbol-

package function returns nil given such a symbol.

When a symbol is printed, for example, with prin1, the printer produces a printed

representation that the reader turns back into the same symbol. If the symbol is

not accessible to the current package, a qualified name is printed. See the section

"Qualified Package Names". The symbol’s home package is used as the prefix in

the qualified name.

Importing and Exporting Symbols

A symbol can be made accessible to packages other than its home package in two

ways, importing and exporting.

Any symbol can be made present in a package by importing it into that package.

This is how a symbol can be present in more than one package at the same time.

Page 726

After importing a symbol into the current package, it can be referred to directly

with an unqualified name. Importing a symbol does not change its home package,

and does not change its status in any other packages in which it is present.

When a symbol is imported, if another symbol with the same name is already ac-

cessible to the package, a name-conflict error is signalled. The shadowing-import

operation is a combination of shadowing (See the section "Shadowing Symbols")

and importing; it resolves a name conflict by getting rid of any existing symbol ac-

cessible to the package.

Any number of symbols can be exported from a package. This declares them to be

external symbols of that package and makes them accessible in any other packages

that use the first package. To use a package means to inherit its external symbols.

When a symbol is exported, the package system makes sure that no name conflict

is caused in any of the packages that inherit the newly exported symbol.

A symbol can be imported by using the :import, :import-from, or :shadowing-

import option to defpackage and make-package, or by calling the import or

shadowing-import function. A symbol can be exported by using the :export option

to defpackage or make-package, or by calling the export function. See the sec-

tion "Defining a Package". See the section "Functions that Import, Export, and

Shadow Symbols".

Shadowing Symbols

You can avoid inheriting unwanted symbols by shadowing them. To shadow a sym-

bol that would otherwise be inherited, you create a new symbol with the same

name and make it present in the package. The new symbol is put on the package’s

list of shadowing symbols, to tell the package system that it is not an accident

that there are two symbols with the same name. A shadowing symbol takes prece-

dence over any other symbol of the same name that would otherwise be accessible

to the package. Shadowing allows the creator of a package to avoid name conflicts

that are anticipated in advance.

As an example of shadowing, suppose you want to define a function named nth

that is different from the normal nth function. (Perhaps you want nth to be com-

patible with the Interlisp function of that name.) Simply writing (defun nth ...) in

your program would redefine the system-provided nth function, probably breaking

other programs that use it. (The system detects this and queries you before pro-

ceeding with the redefinition.)

The way to resolve this conflict is to put the program (call it snail) that needs the

incompatible definition of nth in its own package and to make the snail package

shadow the symbol nth.

Now there are two symbols named nth, so defining snail’s nth to be an Interlisp-

compatible function does not affect the definition of the global nth. Inside the

snail program, the global symbol nth cannot be seen, which is why we say that it

is shadowed. If some reason arises to refer to the global symbol nth inside the

snail program, the qualified name common-lisp-global:nth can be used.

Page 727

A shadowing symbol can be established by the :shadow or :shadowing-import op-

tion to defpackage or make-package, or by calling the shadow or shadowing-

import function. See the section "Functions that Import, Export, and Shadow Sym-

bols".

The Keyword Package

The Lisp reader is not context-sensitive; it reads the same printed representation

as the same symbol regardless of whether the symbol is being used as the name of

a function, the name of a variable, a quoted constant, a syntactic word in a special

form, or anything else. The consistency and simplicity afforded by this lack of con-

text sensitivity are very important to Lisp’s interchangeability of programs and

data, but they do cause a problem in connection with packages. If a certain func-

tion is to be shared between two packages, then the symbol that names that func-

tion has to be shared for all contexts, not just for functional context. This can ac-

cidentally cause a variable, or a property list indicator, or some other use of a

symbol, to be shared between two packages when not desired. Consequently, it is

important to minimize the number of symbols that are shared between packages,

since every such symbol becomes a "reserved word" that cannot be used without

thinking about the implications. Furthermore, the set of symbols shared among all

the packages in the world is not legitimately user-extensible, because adding a new

shared symbol could cause a name conflict between unrelated programs that use

symbols by that name for their own private purposes.

On the other hand, there are many important applications for which the package

system just gets in the way and one would really like to have all symbols shared

between packages. Typically this occurs when symbols are used as objects in their

own right, rather than just as names for things.

This dilemma is partially resolved by the introduction of keywords into the lan-

guage. Keywords are a set of symbols that is disjoint from all other symbols and

exist as a completely independent set of names. There is no separation of packages

as far as keywords are concerned; all keywords are available to all packages and

two distinct keywords cannot have the same name. Of course, a keyword can have

the same name as one or more ordinary symbols. To distinguish keywords from or-

dinary symbols, the printed representation of a keyword starts with a colon (:)

character. The sharing of keywords among all packages does not affect the separa-

tion of ordinary symbols into private symbols of each package.

Specifying Packages in Programs

If you are an inexperienced user, you need never be aware of the existence of

packages when writing programs. The user package is selected by default as the

package for reading expressions typed at the Lisp Listener. Files are read in the

user package if no package is specified. Since all the functions that users are like-

ly to need are provided in the global package, which is used by user, they are all

accessible. In the documentation, functions that are not in the global package are

documented with colons in their names, so typing the name the way it is docu-

Page 728

mented works. Keywords, of course, must be typed with a prefix colon, but since

that is the way they are documented it is possible to regard the colon as just part

of the name, not as anything having to do with packages.

The current package is the value of the variable *package* (zl:package). The cur-

rent package in the "selected" process is displayed in the status line. This allows

you to tell how forms you type in are read.

If you are writing a program that you expect others to use, you should put it in

some package other than user, so that its internal functions do not conflict with

names other users use. For whatever reason, if you are loading your programs into

packages other than user, you need to know about special constructs including

defpackage, qualified names, and file attribute lists. See the section "Defining a

Package". See the section "Qualified Package Names".

Obviously, every file must be loaded into the right package to serve its purpose. It

might not be so obvious that every file must be compiled in the right package, but

it is just as true. Any time the names of symbols appearing in the file must be

converted to the actual symbols, the conversion must take place relative to a pack-

age.

The system usually decides which package to use for a file by looking at the file’s

attribute list. See the section "File Attribute Lists". A compiled file remembers the

name of the package it was compiled in, and loads into the same package. In the

absence of any of these specifications, the package defaults to the current value of

package, which is usually the user package unless you change it.

The file attribute list of a character file is the line at the front of the file that

looks something like:

;;; -*- Mode:Lisp; Package:System-Internals -*-�

This specifies that the package whose name or nickname is system-internals is to

be used. Alphabetic case does not matter in these specifications. Relative package

names are not used, since there is no meaningful package to which the name could

be relative. See the section "Relative Package Names".

If the package attribute contains parentheses, then the package is automatically

created if it is not found. This is useful when a single file is in its own package,

not shared with any other files, and no special options are required to set up that

package. The valid forms of package attribute are:

-*- Package: Name -*-

Signal an error if the package is not found, allowing you to load the pack-

age’s definition from another file, specify the name of an existing package

to use instead, or create the package with default characteristics.

-*- Package: (Name) -*-

If the package is not found, create it with the specified name and default

characteristics. It uses global so that it inherits the Lisp language symbols.

-*- Package: (Name use) -*-

If the package is not found, create it with the specified name and make it

use use, which can be the name of a package or a list of names of pack-

ages.

Page 729

-*- Package: (Name use size) -*-

If the package is not found, create it with the specified name and make it

use use, which can be the name of a package or a list of names of pack-

ages. size is a decimal number, the number of symbols that expected to be

present in the package.

-*- Package: (Name keyword value keyword value...) -*-

If the package is not found, create it with the specified name. The rest of

the list supplies the keyword arguments to make-package. In the event of

an ambiguity between this form and the previous one, the previous one is

preferred. You can avoid ambiguity by specifying more than one keyword.�

Binary files have similar file attribute lists. The compiler always puts in a

:package attribute to cause the binary file to be loaded into the same package it

was compiled in, unless this attribute is overridden by arguments to load.

Package Names

Introduction to Package Names

Each package has a name and perhaps some nicknames. These are assigned when

the package is created, though they can be changed later. A package’s name

should be something long and self-explanatory like editor; there might be a nick-

name that is shorter and easier to type, like ed. Typically the name of a package

is also the name of the program that resides in that package.

There is a single namespace for packages. Instead of setting up a second-level

package system to isolate names of packages from each other, we simply say that

package name conflicts are to be resolved by using long explanatory names. There

are sufficiently few packages in the world that a mechanism to allow two packages

to have the same name does not seem necessary. Note that for the most frequent

use of package names, qualified names of symbols, name clashes between packages

can be alleviated using relative names.

The syntax conventions for package names are the same as for symbols. When the

reader sees a package name (as part of a qualified symbol name), alphabetic char-

acters in the package name are converted to uppercase unless preceded by the "/"

escape character or unless the package name is surrounded by "|" characters.

When a package name is printed by the printer, if it does not consist of all upper-

case alphabetics and non-delimiter characters, the "/" and "|" escape characters are

used.

Package name lookup is case-insensitive, but it it is not considered good style to

have two packages whose names differ only in alphabetic case.

Internally names of packages are strings, but the functions that require a package-

name argument from the user accept either a symbol or a string. If you supply a

symbol, its print-name is used, which has already undergone case conversion by

the usual rules. If you supply a string, you must be careful to capitalize the string

in the same way that the package’s name is capitalized.

Page 730

Note that |Foo|:|Bar| refers to a symbol whose name is "Bar" in a package

whose name is "Foo". By contrast, |Foo:Bar| refers to a 7-character symbol with

a colon in its name, and is interned in the current package. Following the conven-

tion used in the documentation for symbols, we show package names as being in

lowercase, even though the name string is really in uppercase.

Invisible Packages

In addition to normal packages, there can be invisible packages. An invisible pack-

age has a name, but it is not entered into the system’s table that maps package

names to packages. An invisible package cannot be referenced via a qualified name

(unless you set up a relative name for it) and cannot be used in such contexts as

the :use keyword to defpackage and make-package (unless you pass the package

object itself, rather than its name). Invisible packages are useful if you simply

want a package to use as a data structure, rather than as the package in which to

write a program.

Relative Package Names

See the section "Introduction to Package Names". In addition to the absolute pack-

age names (and nicknames) described there, packages can have relative names. If p

is a relative name for package B, relative to package A, then in contexts where

relative names are allowed and A is the contextually relevant package the name p

can be used instead of b. The relative name mapping belongs to package A and de-

fines a new name (p) for package B. It is important not to confuse the package

that the name is relative to with the package that is named.

Relative names are established with the :relative-names and :relative-names-for-

me options to defpackage and make-package. For example, to be able to refer to

symbols in the common-lisp package with the prefix lisp: instead of cl: when they

need a package prefix (for instance, when they are shadowed), you would use

:relative-names like this:

(defpackage my-package (:use cl)

 (:shadow error)

 (:relative-names (lisp common-lisp)))

�

(let ((*package* (find-package ’my-package)))

 (print (list ’my-package::error ’cl:error)))�

Then, when the current package (that is the value of *package*) is my-package,

you can refer to the common-lisp package as lisp both when reading and when

printing. You can also use the pkg-add-relative-name function to establish a rela-

tive name. The pkg-delete-relative-name function removes a relative name.

There are two important differences between relative names and absolute names:

relative names are recognized only in certain contexts, and relative names can

"shadow" absolute names. One application for relative names is to replace one

package by another. Thus if a program residing in package A normally refers to

the thermodynamics package, but for testing purposes we would like it to use the

Page 731

phlogiston package instead, we can give A a relative name mapping from the

name thermodynamics to the phlogiston package. This relative name shadows the

absolute name thermodynamics.

Another application for relative names is to ease the establishment of a family of

mutually dependent packages. For example, if you have three packages named

algebra, rings, and polynomials, these packages might refer to each other so fre-

quently that you would like to use the nicknames a, r, and p rather than spelling

out the full names each time. It would obviously be bad to use up these one-letter

names in the system-wide space of package names; what if someone else has a pro-

gram with two packages named reasoning and truth-maintenance, and would like

to use the nicknames r and t? The solution to this name conflict is to make the

abbreviated names be relative names defined in the algebra, rings, and

polynomials packages. These abbreviations are seen by references emanating from

those packages, and there is no conflict with other abbreviations defined by other

packages.

An extension of the shadowing application for relative names is to set up a com-

plete family of packages parallel to the normal one, such as experimental-global

and experimental-user. Within this family of packages you establish relative name

mappings so that the usual names such as global and user can be used. Certain

system utility programs work this way.

When package A uses package B, in addition to inheriting package B’s external

symbols, any relative name mappings established by package B are inherited. In

the event of a name conflict between relative names defined directly by A and in-

herited relative names, the inherited name is ignored. The results are unpre-

dictable if two relative name mappings inherited from two different packages con-

flict.

The Lisp system does not itself use relative names, so a freshly booted Genera sys-

tem contains no relative-name mappings.

Relative names are recognized in the following contexts:

• Qualified symbol names  The package name before the colon is relative to the

package in which the symbol is being read (the value of the variable

package). The printer prefers a relative package name to an absolute package

name when it prints a qualified symbol name.

• Package references in package-manipulating functions  For example, the pack-

age names in the :use option to defpackage and in the first argument to use-

package can be relative names. All such relative names are relative to the val-

ue of the variable *package*.

• Package arguments that default to the current package  The functions intern,

intern-local, intern-soft, intern-local-soft, unintern, export, unexport, import,

shadow, shadowing-import, use-package, and unuse-package all take an op-

tional second argument that defaults (except in the case of unintern) to the

current package. If supplied, this argument can be a package, an absolute name

Page 732

of a package, or a relative name of a package. All such relative names are rela-

tive to the value of the variable *package*.�

Relative names are not recognized in "global" contexts, where there is no obvious

contextual package to be relative to, such as:

• File attribute lists ("-*-" lines)

• Package names requested from you as part of error recovery, or in commands

such as the Set Package (m-X) editor command.

• The pkg-find-package function (unless its optional third argument is specified).

• Package arguments to the zl:mapatoms, zl:pkg-goto, describe-package, and

pkg-kill functions.

• Package specifiers in the do-symbols, do-local-symbols, and do-external-

symbols special forms, and the interned-symbols and local-interned-symbols

loop iteration paths.�

When a package object is printed, if it has a relative name (relative to the value

of *package*) that differs from its absolute name, both names are printed.

Qualified Package Names

Introduction to Qualified Package Names

Often it is desirable to refer to an external symbol in some package other than the

current one. You do this through the use of a qualified name, consisting of a pack-

age name, then a colon, then the name of the symbol. This causes the symbol’s

name to be looked up in the specified package, rather than in the current one. For

example, editor:buffer refers to the external symbol named buffer of the package

named editor, regardless of whether there is a symbol named buffer in the cur-

rent package. If there is no package named editor, or if no symbol named buffer

is present in editor or if buffer is an internal symbol of editor, an error is sig-

nalled.

On rare occasions, you might need to refer to an internal symbol of some package

other than the current one. It is invalid to do this with the colon qualifier, since

accessing an internal symbol of some other package is usually a mistake. See the

section "Specifying Internal and External Symbols in Packages". However, this op-

eration is valid if you use "::" as the separator in place of the usual colon. If the

reader sees editor::buffer, the effect is exactly the same as reading buffer with

package temporarily rebound to the package whose name is editor. This special-

purpose qualifier should be used with caution.

Qualified names are implemented in the Lisp reader by treating the colon charac-

ter (:) specially. When the reader sees one or two colons preceded by the name of

Page 733

a package, it reads in the next Lisp object with *package* bound to that package.

Note that the next Lisp object need not be a symbol; the printed representation of

any Lisp object can follow a package prefix. If the object is a list, the effect is ex-

actly as if every symbol in that list had been written as a qualified name, using

the prefix that appears in front of the list. When a qualified name is among the

elements of the list, the package name in the second package prefix is taken rela-

tive to the package selected by the first package prefix. The internal/external mode

is controlled entirely by the innermost package prefix in effect.

Specifying Internal and External Symbols in Packages

To ease the transition for people whose programs are not yet organized according

to the distinction between internal and external symbols, a package can be set up

so that the ":" type of qualified name does the same thing as the "::" type. This is

controlled by the package that appears before the colon, not by the package in

which the whole expression is being read. To set this attribute of a package, use

the :colon-mode keyword to defpackage and make-package. :external causes ":"

to access only external symbols. See the section "Qualified Names of Symbols". See

the section "Qualified Package Names as Interfaces". :internal causes ":" to behave

the same as "::", accessing all symbols. Note that :internal mode is compatible

with :external mode except in cases where an error would be signalled. The de-

fault mode is :external and all predefined system packages are created with this

mode.

Qualified Package Names as Interfaces

See the section "How the Package System Allows Symbol Sharing". In the example

of the blocks world and the robot arm, a program in the blocks package could call

a function named go-up defined in the arm package by calling arm:go-up. go-up

would be listed among the external symbols of arm, using :export in its

defpackage, since it is part of the interface allowing the outside world to operate

the arm. If the blocks program uses qualified names to refer to functions in the

arm program, rather than sharing symbols as in the original example, then the

possibility of name conflicts between the two programs is eliminated.

See the section "Example of the Need for Packages". Similarly, if the chaos pro-

gram wanted to refer to the arpa program’s allocate-pbuf function, it would sim-

ply call arpa:allocate-pbuf, assuming that function had been exported. If it was

not exported (because arpa thought no one from the outside had any business call-

ing it), the chaos program would call arpa::allocate-pbuf.

Qualified Names of Symbols

The printer uses qualified names when necessary. (The princ function, however,

never prints qualified names for symbols.) The goal of the printer (for example,

the prin1 function) when printing a symbol is to produce a printed representation

that the reader turns back into the same symbol. When a symbol that is accessible

in the current package (the value of *package*) is printed, a qualified name is not

Page 734

used, regardless of whether the symbol is present in the package. This happens for

one of three reasons: because this is its home package, is present because it was

imported, or is not present but was inherited. When an inaccessible symbol is

printed, a qualified name is used. The printer chooses whether to use ":" or "::"

based on whether the symbol is internal or external and the :colon-mode of its

home package. The qualified name used by the printer can be read back in and

yields the same symbol. If the inaccessible symbol were printed without qualifica-

tion, the reader would translate that printed representation into a different symbol,

probably an internal symbol of the current package.

The qualified name used by the printer is based on the symbol’s home package,

not on the path by which it was originally read (which of course cannot be

known). Suppose foo is an internal symbol of package A, has been imported into

package B, and has then been exported from package B. If it is printed while

package is neither A nor B, nor a package that uses B, the name printed is

a::foo, not b:foo, because foo’s home package is A. This is an unlikely case, of

course.

In addition to the simplest printed representation of a symbol, its name standing

by itself, there are four forms of qualified name for a symbol. These are accepted

by the reader and are printed by the printer when necessary; except when printing

an uninterned symbol, the printer prints some printed representation that yields

the same symbol when read. The following table shows the four forms of qualified

name, assuming that the foo package specifies :colon-mode :external, as is the

default. If foo specifies :colon-mode :internal, the first and second forms are

equivalent.

foo:bar When read, looks up bar among the external symbols of the

package named foo. Printed when the symbol bar is external

in its home package foo and is not accessible in the current

package.

foo::bar When read, interprets bar as if foo were the current package.

Printed when the symbol bar is internal in its home package

foo and is not accessible in the current package.

:bar When read, interprets bar as an external symbol in the

keyword package. Printed when the home package of the sym-

bol bar is keyword.

#:bar When read, creates a new uninterned symbol named bar.

Printed when the symbol named bar has no home package.�

Multilevel Qualified Package Names

Due to shadowing by relative names, a given package might sometimes be inacces-

sible. In this case a multilevel qualified name, containing more than one package

prefix, can be used.

Page 735

Suppose packages moe, larry, curly, and shemp exist. For its own reasons, the

moe package uses curly as a relative name for the shemp package. Thus, when

the current package is larry the printed representation curly:hair designates a

symbol in the curly package, but when the current package is moe the same

printed representation designates a symbol in the shemp package.

If the moe package is current and the symbol hair in the curly package needs to

be read or printed, the printed representation curly:hair cannot be used since it

refers to a different symbol. If curly had a nickname that is not also shadowed by

a relative name it would be used, but suppose there is no nickname. In this case

the only possible way to refer to that symbol is with a multilevel qualified name.

larry:curly:hair would work, since the larry: escapes from the scope of moe’s rel-

ative name. The printer actually prefers to print global:curly:hair because of the

way it searches for a usable qualified name.

Examples of Symbol Sharing Among Packages

See the section "How the Package System Allows Symbol Sharing". Consider again

the example of the robot arm in the blocks world. Two separate programs, written

by different people, interact with each other in a single Lisp environment. The

arm-control program resides in a package named arm, and the blocks-world pro-

gram resides in a package named blocks. The operation of the two programs re-

quires them to interact. For example, to move a block from one place to another

the blocks program calls functions in the arm program with names like

raise-arm, move-arm, and grasp. To find the edges of the table, the arm program

accesses variables of the blocks program.

Communication between the two programs requires that they both know about cer-

tain objects. Usually these objects are the sort that have names (for example, func-

tions or variables). The names are symbols. Thus each program must be able to

name some symbols and to know that the other program is naming the same sym-

bols.

Let us consider the case of the function grasp in the arm-control program, which

the blocks-world program must call in order to pick up a block with the arm. The

grasp function is named by the symbol grasp in the arm package. Assume that

we are not going to use either of the mechanisms (keywords and the global pack-

age) that make symbols available to all packages; we only want grasp to be shared

between the two specific packages that need it. There are basically three ways pro-

vided by the package system for a symbol to be known by two separate programs

in two separate packages.

1. If the blocks package imports the symbol grasp from the arm package, then

both packages map the name grasp into the same symbol. The blocks pack-

age could be defined by:

(defpackage blocks

(:import-from arm grasp))�

Page 736

2. The arm package can export the symbol grasp, along with whatever other

symbols constitute its interface to the outside world. If the blocks package

uses the arm package, then both packages again map the name grasp into

the same symbol. The package definitions would look like:

(defpackage arm

(:export grasp move-arm raise-arm ...))

�

(defpackage blocks

(:use arm global))�

Note that the blocks package must explicitly mention that it is using the

global package as well as the arm package, since it is not letting its :use

clause default. The difference between this method (the export method) and

the first method (the import method) is that the list of symbols that is to

constitute the interface is associated with the arm package, that is, the pack-

age that provides the interface, not the package that uses the interface.

3. In the third method, we do not have the two packages map the same name

into the same symbol. Instead we use a different, longer name for the symbol

in the blocks program than the name used by the arm program. This makes

it clear, when reading the text of the blocks program, which symbol refer-

ences are connected with the interface between the two programs. These

longer names are called qualified names. Again, the arm package defines the

interface:

(defpackage arm

(:export grasp move-arm raise-arm ...))�

A fragment of the blocks-world program might look like

(defun pick-up (block)

 (clear-top block)

 (arm:grasp (block-coordinates block :top))

 (arm:raise-arm))�

arm:grasp and arm:raise-arm are qualified names. pick-up, block, clear-top,

and block-coordinates are internal symbols of the blocks-world program.

defun is inherited from the global package. :top is a keyword. Note that al-

though the two programs do not use the same names to refer to the same

symbol, the names they use are related in an obvious way, avoiding confusion.

The package system makes no provision for the same symbol to be named by

two completely arbitrary names.�

Consistency Rules for Packages

Package-related bugs can be very subtle and confusing: the program is not using

the same symbols as you think it is using. The package system is designed with a

number of safety features to prevent most of the common bugs that would other-

wise occur in normal use. This might seem overprotective, but experience with

earlier package systems has shown that such safety features are needed.

Page 737

In dealing with the package system, it is useful to keep in mind the following con-

sistency rules, which remain in force as long as the value of *package* is not

changed by you or your code:

• Read-Read consistency: Reading the same print name always gets you the same

(eq) symbol.

• Print-Read consistency: An interned symbol always prints as a sequence of char-

acters that, when read back in, yields the same (eq) symbol.

• Print-Print consistency: If two interned symbols are not eq, then their printed

representations cannot be the same sequence of characters.�

These consistency rules remain true in spite of any amount of implicit interning

caused by typing in Lisp forms, loading files, and so on. This has the important

implication that results are reproducible regardless of the order of either loading

files or typing in symbols. The rules can only be violated by explicit action: chang-

ing the value of *package*, forcing some action by continuing from an error, or

calling a function that makes explicit modifications to the package structure

(unintern, for example).

To ensure that the consistency rules are obeyed, the system ensures that certain

aspects of the package structure are chosen by conscious decision of the program-

mer, not by accidents such as which symbols happen to be typed in by a user. Ex-

ternal symbols, the symbols that are shared between packages without being ex-

plicitly listed by the "accepting" package, must be explicitly listed by the "provid-

ing" package. No reference to a package can be made before it has been explicitly

defined.

How Package Universes Work

Some dialects of Lisp have mutually incompatible constraints on package names.

For example, both Zetalisp and Common-Lisp define a user package, but with in-

compatible meanings. Similarly, we have provided two different implementations of

Common Lisp (in the CLtL and the Common-Lisp syntax), and both need a package

named lisp.

Rather than make incompatible changes to our definitions of existing language di-

alects as we introduce new ones into Genera, we have created the notion of a

package universe. This is the currently active global mapping from names of pack-

ages to package objects. So, for example, if you enter lisp:if in a Lisp Listener, you

will get the symbol cltl:if if you are in CLtL syntax or if if you are in Common-

Lisp syntax.

The active package universe is a direct function of the readtable. Each readtable

has an associated universe. The binding of the *readtable* controls the interpreta-

tion of written syntax like lisp:if.

The implementation of a package universe is mediated by a "relative names" list

for each syntax. Conceptually, this is like the relative names that packages have;

Page 738

package relative names are searched first, then syntax relative names, then finally

the global package namespace (if appropriate to the syntax; in some syntaxes, such

as the CLtL-Only syntax, the global package namespace is never searched). At this

time, there is no published interface for accessing or modifying the syntax relative

names data structure, but it may help you to know that this is the mechanism.

Note, however, that some functions, such as the various find-package functions, are

not sensitive to the dynamically current readtable. This is because they were read

in a certain lexical environment but may be running in a hostile environment. For

example, if you write

 ;-*- Syntax: Common-Lisp; ... -*-

 (defun foo () (find-package "lisp"))�

it should be possible to run the program foo sometime later in an environment

where the readtable has been changed, without the program being broken. Thus,

find-package or cltl:find-package or future-common-lisp:find-package will automati-

cally use the proper package universe for their needs (Common-Lisp, CLtL, or AN-

SI-Common-Lisp, respectively).

Note that the following forms return the values shown, regardless of the binding

of the readtable. These actions are not sensitive to the readtable since they are

not read-related actions.

(CL:FIND-PACKAGE "LISP")

=> #<Package LISP 134103336> ; the Genera LISP package �

(CLTL:FIND-PACKAGE "LISP")

=> #<Package COMMON-LISP-THE-LANGUAGE 14155367> ; the CLTL package�

(CL:FIND-PACKAGE "COMMON-LISP")

=> #<Package LISP 134103336> ; the Genera LISP package �

(FUTURE-COMMON-LISP:FIND-PACKAGE "COMMON-LISP")

=> #<Package FUTURE-COMMON-LISP 20031662500> ;the dpANS CL COMMON-LISP package�

How Package Universes Work

Some dialects of Lisp have mutually incompatible constraints on package names.

For example, both Zetalisp and Common-Lisp define a user package, but with in-

compatible meanings. Similarly, we have provided two different implementations of

Common Lisp (in the CLtL and the Common-Lisp syntax), and both need a package

named lisp.

Rather than make incompatible changes to our definitions of existing language di-

alects as we introduce new ones into Genera, we have created the notion of a

package universe. This is the currently active global mapping from names of pack-

ages to package objects. So, for example, if you enter lisp:if in a Lisp Listener, you

will get the symbol cltl:if if you are in CLtL syntax or if if you are in Common-

Lisp syntax.

Page 739

The active package universe is a direct function of the readtable. Each readtable

has an associated universe. The binding of the *readtable* controls the interpreta-

tion of written syntax like lisp:if.

The implementation of a package universe is mediated by a "relative names" list

for each syntax. Conceptually, this is like the relative names that packages have;

package relative names are searched first, then syntax relative names, then finally

the global package namespace (if appropriate to the syntax; in some syntaxes, such

as the CLtL-Only syntax, the global package namespace is never searched). At this

time, there is no published interface for accessing or modifying the syntax relative

names data structure, but it may help you to know that this is the mechanism.

Note, however, that some functions, such as the various find-package functions, are

not sensitive to the dynamically current readtable. This is because they were read

in a certain lexical environment but may be running in a hostile environment. For

example, if you write

 ;-*- Syntax: Common-Lisp; ... -*-

 (defun foo () (find-package "lisp"))�

it should be possible to run the program foo sometime later in an environment

where the readtable has been changed, without the program being broken. Thus,

find-package or cltl:find-package or future-common-lisp:find-package will automati-

cally use the proper package universe for their needs (Common-Lisp, CLtL, or AN-

SI-Common-Lisp, respectively).

Note that the following forms return the values shown, regardless of the binding

of the readtable. These actions are not sensitive to the readtable since they are

not read-related actions.

(CL:FIND-PACKAGE "LISP")

=> #<Package LISP 134103336> ; the Genera LISP package �

(CLTL:FIND-PACKAGE "LISP")

=> #<Package COMMON-LISP-THE-LANGUAGE 14155367> ; the CLTL package�

(CL:FIND-PACKAGE "COMMON-LISP")

=> #<Package LISP 134103336> ; the Genera LISP package �

(FUTURE-COMMON-LISP:FIND-PACKAGE "COMMON-LISP")

=> #<Package FUTURE-COMMON-LISP 20031662500> ;the dpANS CL COMMON-LISP package�

Package Name-Conflict Errors

Introduction to Package Name-Conflict Errors

A fundamental invariant of the package system is that within one package any

particular name can refer to only one symbol. A name conflict is said to occur

when more than one candidate symbol exists and it is not obvious which one to

choose. If the system does not always choose the same way, the read-read consis-

tency rule would be violated. For example, some programs or data might have been

Page 740

read in under a certain mapping of the name to a symbol. If the mapping changes

to a different symbol, then additional programs or data are read, the two programs

do not access the same symbol even though they use the same name. Even if the

system did always choose the same way, a name conflict is likely to result in a dif-

ferent mapping from names to symbols than you expected, causing programs to ex-

ecute incorrectly. Therefore, any time a name conflict occurs, an error is signalled.

You can continue from the error and tell the package system how to resolve the

conflict.

Note that if the same symbol is accessible to a package through more than one

path, for instance as an external of more than one package, or both through inher-

itance and through direct presence in the package, there is no name conflict.

Name conflicts only occur between distinct symbols with the same name.

See the section "Shadowing Symbols". As discussed there, the creator of a package

can tell the system in advance how to resolve a name conflict through the use of

shadowing. Every package has a list of shadowing symbols. A shadowing symbol

takes precedence over any other symbol of the same name that would otherwise be

accessible to the package. A name conflict involving a shadowing symbol is always

resolved in favor of the shadowing symbol, without signalling an error (except for

one exception involving import). The :shadow and :shadowing-import options to

defpackage and make-package can be used to declare shadowing symbols. The

functions shadow and shadowing-import can also be used.

Checking for Package Name-Conflict Errors

Name conflicts are detected when they become possible, that is, when the package

structure is altered. There is no need to check for name conflicts during every

name lookup. The functions use-package, import, and export check for name con-

flicts.

Using a package makes the external symbols of the package being used accessible

to the using package; each of these symbols is checked for name conflicts with the

symbols already accessible.

Importing a symbol adds it to the internals of a package, checking for a name con-

flict with an existing symbol either present in the package or accessible to it.

import signals an error even if there is a name conflict with a shadowing symbol,

because two explicit directives from you are inconsistent.

Exporting a symbol makes it accessible to all the packages that use the package

from which the symbol is exported. All of these packages are checked for name

conflicts. (export s p) does (intern-soft s q) for each package q in (package-used-

by-list p). Note that in the usual case of exporting symbols only during the initial

definition of a package, there are no users of the package yet and the name-

conflict checking takes no time.

intern does not need to do any name-conflict checking, because it never creates a

new symbol if there is already an accessible symbol with the name given.

Page 741

Note that the function intern-local can create a new symbol with the same name

as an already accessible symbol. Nevertheless, intern-local does not check for

name conflicts. This function is considered to be a low-level primitive and indis-

criminate use of it can cause undetected name conflicts. Use import, shadow, or

shadowing-import for normal purposes.

shadow and shadowing-import never signal a name-conflict error, because by call-

ing these functions the user has specified how any possible conflict is to be re-

solved. shadow does name-conflict checking to the extent that it checks whether a

distinct existing symbol with the specified name is accessible, and if so whether it

is directly present in the package or inherited; in the latter case a new symbol is

created to shadow it. shadowing-import does name-conflict checking to the extent

that it checks whether a distinct existing symbol with the same name is accessible;

if so it is shadowed by the new symbol, which implies that it must be uninterned

(with unintern) if it was directly present in the package.

unuse-package, unexport, and unintern (when the symbol being removed is not a

shadowing symbol) do not need to do any name-conflict checking, because they only

remove symbols from a package; they do not make any new symbols accessible.

unintern of a shadowing symbol can uncover a name conflict that had previously

been resolved by the shadowing. If package A uses packages B and C, A contains a

shadowing symbol x, and B and C each contain external symbols named x, then un-

interning x from A reveals a name conflict between b:x and c:x if those two sym-

bols are distinct. In this case unintern signals an error.

Resolving Package Name-Conflict Errors

Aborting from a name-conflict error leaves the original symbol accessible. Package

functions always signal name-conflict errors before making any change to the pack-

age structure. Note: when multiple changes are to be made, for example when ex-

porting a list of symbols, it is valid for each change to be processed separately, so

that aborting from a name conflict caused by the second symbol in the list does

not unexport the first symbol in the list. However, aborting from a name-conflict

error caused by exporting a single symbol does not leave that symbol accessible to

some packages and inaccessible to others; exporting appears as an atomic opera-

tion.

Continuing from a name-conflict error offers you a chance to resolve the name

conflict in favor of either of the candidates. This can involve shadowing or unin-

terning. Another possibility that is offered to you is to merge together the conflict-

ing symbols’ values, function definitions, and property lists in the same way as

globalize. This is useful when the conflicting symbols are not being used as ob-

jects, but only as names for functions (or variables, or flavors, for example). You

are also offered the choice of simply skipping the particular package operation that

would have caused a name conflict.

A name conflict in use-package between a symbol directly present in the using

package and an external symbol of the used package can be resolved in favor of

the first symbol by making it a shadowing symbol, or in favor of the second sym-

Page 742

bol by uninterning the first symbol from the using package. The latter resolution

is dangerous if the symbol to be removed is an external symbol of the using pack-

age, since it ceases to be an external symbol.

A name conflict in use-package between two external symbols inherited by the us-

ing package from other packages can be resolved in favor of either symbol by im-

porting it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol al-

ready present in a package that would inherit the newly exported symbol can be

resolved in favor of the exported symbol by uninterning the other one, or in favor

of the already present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two distinct

symbols with the same name from two other packages can be resolved in favor of

either symbol by importing it into the using package and making it a shadowing

symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol inher-

ited from some other package can be resolved in favor of the symbol being import-

ed by making it a shadowing symbol, or in favor of the symbol already accessible

by not doing the import. A name conflict in import with a symbol already present

in the package can be resolved by uninterning that symbol, or by not doing the

import.

Good user-interface style dictates that use-package and export, which can cause

many name conflicts simultaneously, first check for all of the name conflicts before

presenting any of them to you. You can then choose to resolve all of them whole-

sale, or to resolve each of them individually, requiring considerable interaction but

permitting different conflicts to be resolved different ways.

External-only Packages and Locking

A package can be locked, which means that any attempt to add a new symbol to it

signals an error. Continuing from the error adds the symbol.

When reading from an interactive stream, such as a window, the error for adding

a new symbol to a locked package does not go into the Debugger. Instead it asks

you to correct your input, using the input editor. You cannot add a new symbol to

a locked package just by typing its name; you must explicitly call intern, export,

or globalize.

A package can be declared external-only. This causes any symbol added to the pack-

age to be exported automatically. Since exporting of symbols should be a conscious

decision, when you create an external-only package it is automatically locked. Any

attempt to add a new symbol to an external-only package signals an error because

it is locked. If adding the symbol would cause a name conflict in some package

that uses the package to which the symbol is being added, the error message men-

tions that fact. Continuing from the error adds the symbol anyway. In the event of

name conflicts, appropriate proceed types for resolving name conflicts are offered.

Page 743

To set up an external-only package, it can be temporarily unlocked and then the

desired set of symbols can be interned in it. Unlocking an external-only package

disables name-conflict checking, since the system (perhaps erroneously) assumes

you know what you are doing. The global package is external-only and locked. Its

contents are initialized when the system is built by reading files containing the de-

sired symbols with *package* bound to the global package object, which is tem-

porarily unlocked. The system package is external-only, locked, and initialized the

same way.

Package Functions, Special Forms, and Variables

Packages are represented as Lisp objects. A package is a structure that contains

various fields and a hash table that maps from names to symbols. Most of the

structure field accessor functions for packages are only used internally by the

package system and are not documented.

The packagep function returns t if its argument is a package object. This is

equivalent to (typep obj ’package).

Many of the functions that operate on packages accept either an actual package or

the name of a package. A package name can be either a string or a symbol.

Common Lisp naming convention uses a prefix of "package-" on names that do not

already contain the word package. Many of the Zetalisp functions and variables

associated with packages have names that begin with "pkg-". This naming conven-

tion is considered obsolete.

The Current Package

The current package is the value of the variable *package*.

The following two functions change the current package:

zl:pkg-goto pkg Make pkg the current package.

zl:pkg-bind pkg body Evaluate body with pkg the current package.�

Defining a Package

The defpackage special form is the preferred way to create a package. A

defpackage form is treated as a definition form by the editor; hence the Edit Defi-

nition (m-.) command can find package definitions.

Typically you put a defpackage form in its own file, separate from the rest of a

program’s source code. The reason to use a separate file is that a package must be

defined before it can be used. In order to compile, load, or edit your program, the

package in which its symbols are to be read must already be defined. Typically the

file containing the defpackage is read in the user package, while all the rest of

the files of your program are read in your own private package.

Page 744

When a large program consisting of multiple source files is maintained with the

system system, one source file typically contains nothing but a defpackage form

and a defsystem form. (Occasionally a few other housekeeping forms are present.)

This file is called the system declaration file. The packages and systems built into

the initial Lisp system are defined in two files: SYS:SYS;PKGDCL defines all the pack-

ages while SYS:SYS;PKGDCL defines all the systems. See the section "System Con-

struction Tool".

In the simplest cases, where no nontrivial defpackage options are required, the

defpackage form can be omitted and no separate file is required. All the informa-

tion required to create your package is contained in the file attribute list of the

file containing your program. See the section "Specifying Packages in Programs".

The make-package function is available as the primitive way to create package

objects.

Functions for Defining a Package

defpackage name options Define a package named name.

make-package name Primitive subroutine called by defpackage.

defpackage should be used in new programs.

pkg-kill package Kill package.�

Mapping Names to Symbols

The name of a symbol is a string, corresponding to the printed representation of

that symbol with quoting characters removed. Mapping the name of a symbol into

the symbol itself is called interning, for historical reasons. Interning is only mean-

ingful with respect to a particular package, since packages are name-to-symbol

mappings. Unless a package is explicitly specified, the current package is assumed.

There are four functions for interning: intern, intern-soft, intern-local, and

intern-local-soft. Each function takes two arguments and returns two values. The

arguments are a name and a package. The name can be a string or a symbol. The

package argument can be a package, the name of a package as a string or a sym-

bol, or nil or unsupplied, in which case the current package (the value of

package) is used by default.

The -soft functions do not create new symbols, but only find existing symbols. The

other two functions add a new symbol to the package if no existing symbol with

the specified name is found. When adding a new symbol, if the name argument is

a string, a new symbol is created and its home package is made to be the specified

package. If the name argument is a symbol, that symbol is used as the new sym-

bol. If it has a home package, it is not changed, but if it does not have a home

package its home package is set to the package to which it was just added.

The -local functions only look for symbols present in the package; they do not

search through inherited symbols. The other two functions see all accessible sym-

bols.

Page 745

The first value is the symbol that was found or created, or nil if no symbol was

found and a -soft function was called. The second value is a flag that takes on one

of the following values:

nil No preexisting symbol was found. If the function called was

not a -soft version, a new internal symbol was added to the

package.

:internal An existing internal symbol was found to be present in the

package.

:external An existing external symbol was found to be present in the

package.

:inherited An existing symbol was found to be inherited by the package.

This symbol is necessarily external in the package from which

it was inherited, and cannot be external in the package being

searched.�

Note that the first value should not be used as a flag to detect whether or not a

symbol was found, since the false value, nil, is a symbol. The second value must be

used for this purpose. The -soft functions return both values nil if they do not

find a symbol.

Note: interning is sensitive to case; that is, it considers two character strings dif-

ferent even if the only difference is one of uppercase versus lowercase (unlike

most string comparisons elsewhere in Genera). Symbols are converted to uppercase

when you type them in because the reader converts the case of characters in the

printed representation of symbols; the characters are converted to uppercase before

intern is ever called. So if you call intern with a lowercase "foo" and then with

an uppercase "FOO", you do not get the same symbol.

Functions That Map Names to Symbols

intern string &optional (pkg *package*)

Finds or creates a symbol named string in pkg. Inher-

ited symbols in pkg are included in the search for a

symbol named string.

intern-local sym &optional pkg

Finds or creates a symbol named string directly

present in pkg. Symbols inherited by pkg from pack-

ages it uses are not considered, thus intern-local can

cause a name conflict.

intern-soft sym &optional pkg

Finds a symbol named string accessible to pkg, either

directly present in pkg or inherited from a package it

uses.

intern-local-soft sym &optional pkg

Find a symbol named string directly present in pkg.

Symbols inherited by pkg from packages it uses are

not considered.

Page 746

find-symbol string &optional (pkg *package*)

Searches pkg for the symbol string. It behaves like

intern except that it never creates a new symbol.

find-all-symbols str Searches all packages for symbols named string and

returns a list of them.

unintern symbol &optional pkg

Removes sym from pkg and from pkg’s shadowing-

symbols list.

zl:intern sym &optional pkg

Finds or creates a symbol named sym accessible to the

package pkg, either directly present in pkg or inherit-

ed from a package it uses.

zl:remob sym &optional (pkg (symbol-package si:sym))

In your new programs, we recommend that you use

the function unintern which is the Common Lisp

equivalent of the function zl:remob.

zl:remob symbol Removes symbol.

Functions that Find the Home Package of a Symbol

symbol-package symbol

Return the package in which symbol resides.

sys:package-cell-location symbol

Return a locative pointer to symbol’s package cell.

keywordp object Check if object is a symbol in the keyword package.

Mapping Between Names and Packages

find-package package Returns the package object whose name is package.

package-name package Returns the name of the package object package as a

string.

rename-package pkg new-name

Replaces the old name of pkg with new-name.

pkg-find-package thing Tries to interpret thing as a package.

zl:pkg-name package Gets the primary name of package as a string.

Package Iteration

The following functions allow you to operate on the symbols in a package.

do-symbols variable body Evaluates body with variable bound to

each symbol accessible in current pack-

age in turn.

Page 747

do-local-symbols variable body Evaluates body with variable bound to

those symbols present in the current

package in turn.

do-external-symbols variable body Evaluates body with variable bound to

those symbols exported from the current

package in turn.

do-all-symbols variable body Evaluate body with variable bound to

each symbol in all packages in turn.

zl:mapatoms function Applies function to all symbols in cur-

rent package.

zl:mapatoms-all functions Applies function to all symbols in all

packages.�

See the section "Iteration Paths for loop". This section contains a discussion of the

interned-symbols and local-interned-symbols loop iteration paths.

Interpackage Relations

pkg-add-relative-name from-package name to-package

Allows from-package to use name to

refer to to-package.

pkg-delete-relative-name from-package name

Removes name.

package-use-list package Lists other packages used by package.

package-used-by-list package Lists the packages that use package.

use-package packages-to-use Lets packages-to-use be used by the cur-

rent package.

unuse-package packages-to-unuse Remove packages-to-unuse from the use-

list.�

Functions that Import, Export, and Shadow Symbols

export symbols Makes symbols external.

unexport symbols Makes symbols internal.

import symbols Makes symbols internal.

shadowing-import symbols Makes symbols internal.

shadow symbols Makes symbols internal.

package-external-symbols package Lists external symbols.

package-shadowing-symbols package

Lists the shadowing symbols in package.�

Package "Commands"

describe-package package Displays the attributes of package.

Page 748

where-is pname Displays a description of each symbol named

pname with its home package.

globalize name Exports name.�

There is a subtle pitfall in the interaction between globalize and the binary files

output by the compiler. Because of this it is best to use a string, rather than a

symbol, as the argument to globalize in files that are to be compiled. Suppose a

file contains the following form at top level:

(eval-when (compile load eval)

 (globalize ’si:rumpelstiltskin))�

If the file is loaded without being compiled, the form is read and evaluated in the

obvious fashion. rumpelstiltskin is read as the symbol by that name in the si

package, that symbol is passed to the globalize function, and the symbol is moved

to the global package. Now suppose the file is compiled. Again rumpelstiltskin is

read as the symbol by that name in the si package. The eval-when causes the

compiler first to evaluate the globalize form, and then to place a representation of

the form into its output file. But at the time the output file is being generated,

the symbol rumpelstiltskin is global; the compiler no longer has any way to know

that it came from the si package. When the binary file is loaded, it globalizes the

symbol rumpelstiltskin in the current package, not the one in the si package as

the programmer intended. Furthermore, if at compile time there was a

rumpelstiltskin symbol in the current package, the compile-time globalize turns

that symbol into a shadowing symbol. When the binary file is loaded, it tries to

refer to the symbol rumpelstiltskin in the global package, which gets an error

since the global package is locked. The same pitfall can arise without the use of

eval-when if the file being compiled was previously loaded into the Lisp that com-

piled it, perhaps for test purposes.

System Packages

The following are some of the packages initially present in the Lisp world. New

packages will be added to this list from time to time. The list is presented in

"logical" order, with the most important or interesting packages first. A number of

packages that are not of general interest have been omitted from the list for the

sake of brevity.

cl, common-lisp or common-lisp-global

Contains the global symbols of Common Lisp. Inside of Com-

mon Lisp this package is called lisp. common-lisp-global does

not inherit symbols from any other package.

zl or global Contains the global symbols of the Zetalisp language, including

function names, variable names, special form names, and so on.

All symbols in global are supposed to be documented. global

does not inherit symbols from any other package.

scl or symbolics-common-lisp

Contains the symbols that make up Symbolics extensions to

Page 749

Common Lisp. symbolics-common-lisp uses common-lisp-

global.

keyword Contains keyword symbols. keyword has a blank nickname so

that keywords print as :foo rather than keyword:foo. keyword

does not inherit symbols from any other package.

cl-user or common-lisp-user

The default package for user programs that do not have their

own package. When first booted the Symbolics Lisp Machine

uses the cl-user package to read expressions typed in by the

user. Inside of Common Lisp, cl-user is called user. cl-user us-

es common-lisp-global.

zl-user or zetalisp-user

The default package for Zetalisp user programs. (See the sec-

tion "Set Lisp Context Command".) Inside Zetalisp, zl-user is

called user. zl-user uses global.

sys or system Contains symbols shared among various system programs.

system is for symbols global to the Genera "operating system",

while common-lisp-global and global are for symbols global to

the Symbolics Common Lisp language.

si or system-internals

Most of the programs that implement the Lisp language and

operating system are in the system-internals package. system-

internals is one of the packages that uses system. The exter-

nally advertised symbols of these programs are in system or

global.

compiler Contains the Lisp compiler. compiler is one of the packages

that use system.

dbg or debugger Contains the condition system and the debugger. debugger is

one of the packages that use system.

cp or command-processor

Contains the Command Processor.

flavor Contains some symbols related to Flavors

clos Exports symbols related to CLOS.

future-common-lisp

Contains symbols in the evolving ANSI Common Lisp standard

including the symbols in the CLOS package that are part of

the standard.

future-common-lisp-user

The ANSI Common Lisp equivalent of the user package, except

that future-common-lisp-user uses only the future-common-

lisp package; it does not include any Symbolics extensions to

the language.

Page 750

dw or dynamic-windows

Contains the dynamic window system. dw uses system.

tv Contains the window system window system substrate. tv is

one of the packages that use system.

zwei Contains the editor and Zmail.

mailer Contains the Symbolics Store-and-Forward mailer.

fs or file-system Contains pathnames and the generic file access system. file-

system is one of the packages that use system.

lmfs Contains the Genera file storage system. lmfs is one of the

packages that use system.

format Contains the function format and its associated subfunctions.

hardcopy Contains the functions for sending output to printers.

net or network Contains the external interfaces to the generic network system.

network is one of the packages that uses system. Each net-

work implementation and network-related program has its own

package, which uses network.

neti or network-internals

Contains the programs that implement the generic network

system. network-internals uses network and system.

chaos Contains the Chaosnet control program. chaos is one of the

packages that use network and system.

fonts Contains the names of all fonts. fonts does not inherit symbols

from any other package.�

The following variables have the most important packages as their values.

zl:pkg-global-package The global package.

sys:pkg-keyword-package The keyword package.

zl:pkg-system-package The system package.�

Package-related Conditions

These are the most basic package-related conditions. There are other conditions

built on these, but most programmers should not need to deal with them.

sys:package-error Basic error condition for packages.

sys:package-not-found Package lookup did not find a package with the speci-

fied name.

sys:external-symbol-not-found

The specified symbol is not external.

sys:package-locked There was an attempt to intern a symbol in a locked

package.

Page 751

sys:name-conflict Any sort of name conflict.�

Multipackage Programs

Usually, each independent program occupies one package. But large programs,

such as MACSYMA, are usually made up of a number of subprograms, and each

subprogram might be maintained by a different person or group of people. We

would like each subprogram to have its own namespace, since the program as a

whole has too many names for anyone to remember. The package system can pro-

vide the same benefits to programs that are part of the same superprogram as it

does to programs that are completely independent.

Putting each subprogram into its own package is easy enough, but it is likely that

a fair number of functions and symbols should be shared by all of MACSYMA’s

subprograms. These would be internal interfaces between the different subpro-

grams.

A package named macsyma can be defined and each of the internal interface sym-

bols can be exported from it. Each subprogram of MACSYMA has its own package,

which uses the macsyma package in addition to any other packages it uses. Thus

the interface symbols are accessible to all subprograms, through package inheri-

tance. These interface symbols typically get their function definitions, variable val-

ues, and other properties from various subprograms read into the various internal

MACSYMA packages, although there is nothing wrong with also putting a subpro-

gram directly into the macsyma package. This is similar to the way the Lisp sys-

tem works; the global package exports a large number of symbols, which get their

values, definitions, and so on from programs residing in other packages that use

global, such as system-internals or compiler.

It is also often convenient for the macsyma package to supply relative names that

can be used by the various subprograms to refer to each other’s packages. This al-

lows package name abbreviations to be used internally to MACSYMA without con-

taminating the external environment.

The system declaration file for MACSYMA would then look something like the fol-

lowing:

;Contains the interfaces between the various subprograms

(defpackage macsyma

 (:export meval mprint ptimes ...)

 (:colon-mode :external)) ;error-checking in qualified names

�

;The integration package based on the Risch algorithm

(defpackage risch

 (:use macsyma global))

Page 752

�

;The integration package based on pattern matching

(defpackage sin

 (:use macsyma global))

�

;Interface to the operating system. This uses the SYSTEM package

;because it needs many system-dependent functions and constants.

;This package also has a local nickname because its primary name

;is so long.

(defpackage macsyma-system-interface

 (:relative-names-for-me (macsyma sysi))

 (:use macsyma system global))

�

You can break the interface symbols down into separate categories. For instance,

you might want to separate internal symbols used only inside MACSYMA from

symbols that are also useful to the outside world. The latter symbols clearly should

be externals of the macsyma package. You could create an additional package

named macsyma-internals that exports all the symbols that are interfaces be-

tween different subprograms of MACSYMA but are not for use by the outside

world. In this case we would have:

(defpackage risch

 (:use macsyma-internals macsyma global))�

A program in the outside world that needed to use parts of MACSYMA would ei-

ther use qualified names such as macsyma:solve or would include macsyma in

the :use option in its package definition.

The interface symbols can be broken down into even more categories. Each sub-

package can have its own list of exported symbols, and can use whichever other

subpackages it depends on. The subset of these exported symbols that are also use-

ful to the outside world can be exported from the macsyma package as well. In

this case our example system declaration file would look something like:

;Contains the interfaces between the various subprograms

(defpackage macsyma

 (:export solve integrate ...)

 (:colon-mode :external)) ;error-checking in qualified names

�

;The rational function package

(defpackage rat

 (:export ptimes ...)

 (:use macsyma global))

�

;The integration package

(defpackage risch

 (:export integrate)

 (:use rat macsyma global))

Page 753

�

;The macsyma interpreter

(defpackage meval

 (:export meval mprint ...))

�

The symbol integrate exported by the macsyma package and the symbol integrate

exported by the risch package are the same symbol, because risch inherits it from

macsyma.

Sometimes you can get involved in forward references when setting up this sort of

package structure. In the above example, risch needs to use rat, hence rat was de-

fined first. If rat also needed to use risch, there would be no way to write the

package definitions using only defpackage. In this case you can explicitly call use-

package after both packages have been defined. For example:

;The rational function package

(defpackage rat

 (:export ptimes ...)

 (:use macsyma global)) ;also uses risch

�

;The integration package

(defpackage risch

 (:export integrate)

 (:use rat macsyma global))

�

;Now complete the forward references

(use-package ’risch ’rat)�

An analogous issue arises when using :import.

Now, the risch program and the sin program both do integration, and so it would

be natural for each to have a function called integrate. From inside sin, sin’s

integrate would be referred to as integrate (no prefix needed), while risch’s

would be referred to as risch::integrate or as risch:integrate if risch exported it

(which is likely). Similarly, from inside risch, risch’s own integrate would be

called integrate, whereas sin’s would be referred to as sin::integrate or

sin:integrate.

If sin’s integrate were a recursive function, you would refer to it from within sin

itself, and would not have to type sin:integrate every time; you would just say

integrate.

If the names sin and risch are considered to be too short to use up in the general

space of package names, they can be made local abbreviations within MACSYMA’s

family of package through local names. The package definitions would be

;Contains the interfaces between the various subprograms

(defpackage macsyma

 (:export meval mprint ptimes ...)

 (:colon-mode :external)) ;error-checking in qualified names

Page 754

�

;The integration package based on the Risch algorithm

(defpackage macsyma-risch-integration

 (:relative-names-for-me (macsyma risch))

 (:use macsyma global))

�

;The integration package based on pattern matching

(defpackage macsyma-pattern-integration

 (:relative-names-for-me (macsyma sin))

 (:use macsyma global))�

From inside the macsyma package or any package that uses it the two integration

functions would be referred to as sin:integrate and as risch:integrate. From any-

where else in the hierarchy, they could be called macsyma:sin:integrate and

macsyma:risch:integrate, or macsyma-pattern-integration:integrate and

macsyma-risch-integration:integrate.

Package Functions in the Common Lisp Package with Symbolics Common

Lisp Extensions

Here is the function in the "Packages" chapter that has Symbolics Common Lisp

extensions:

Function Extension(s)

make-package :prefix-name, :shadow, :export, :import, :shadowing-import, :im-

port-from, :relative-names, :relative-names-for-me, :size, :external-

only, :new-symbol-function, :hash-inherited-symbols, :invisible,

:colon-mode, :prefix-intern-function, :include

Input/Output Facilities

How the Reader Works

The purpose of the reader is to accept characters, interpret them as the printed

representation of a Lisp object, and return a corresponding Lisp object. The reader

cannot accept everything that the printer produces; for example, the printed repre-

sentations of arrays (other than strings), compiled code objects, closures, stack

groups, and so on cannot be read in. However, it has many features that are not

seen in the printer at all, such as more flexibility, comments, and convenient ab-

breviations for frequently used unwieldy constructs.

In general, the reader operates by recognizing tokens in the input stream. Tokens

can be self-delimiting or can be separated by delimiters such as whitespace. A to-

ken is the printed representation of an atomic object such as a symbol or a num-

ber, or a special character such as a parenthesis. The reader reads one or more to-

kens until the complete printed representation of an object has been seen, and

then constructs and returns that object.

Page 755

What the Reader Recognizes

The chapters on individual data types describe how the reader recognizes objects

of those types. See the section "Data Types".

The relevant sections within that chapter are:

"How the Reader Recognizes Characters"

"How the Reader Recognizes Complex Numbers"

"How the Reader Recognizes Floating-Point Numbers"

"How the Reader Recognizes Integers"

"How the Reader Recognizes Lists"

"How the Reader Recognizes Numbers"

"How the Reader Recognizes Rational Numbers"

"How the Reader Recognizes Ratios"

"How the Reader Recognizes Sequences"

"How the Reader Recognizes Strings"

"How the Reader Recognizes Symbols"�

How the Reader Recognizes Macro Characters

Certain characters are defined to be macro characters. When the reader sees one

of these, it calls a function associated with the character. This function reads

whatever syntax it likes and returns the object represented by that syntax. Macro

characters are always token delimiters; however, they are not recognized when

quoted by slash or vertical bar, nor when inside a string. Macro characters are a

syntax-extension mechanism available to the user. Lisp comes with several prede-

fined macro characters:

Quote (’) An abbreviation to make it easier to put constants in pro-

grams. ’foo reads the same as (quote foo).

Semicolon (;) Used to enter comments. The semicolon and everything up

through the next carriage return are ignored. Thus a comment

can be put at the end of any line without affecting the reader.

Backquote (‘) Makes it easier to write programs to construct lists and trees

by using a template. See the section "Backquote-Comma

Syntax".

Comma (,) Part of the syntax of backquote. It is invalid if used other than

inside the body of a backquote. See the section "Backquote-

Comma Syntax".

Sharp sign (#) Introduces a number of other syntax extensions. See the sec-

tion "Sharp-sign Reader Macros". Unlike the preceding charac-

ters, sharp sign is not a delimiter. A sharp sign in the middle

of a symbol is an ordinary character.�

The function zl:set-syntax-macro-char can be used to define your own macro

characters.

Page 756

Reader macros that call a read function should call si:read-recursive.

si:read-recursive stream

si:read-recursive should be called by reader macros that need

to call a function to read. It is important to call this function

instead of zl:read in macros that are written in Zetalisp but

used by the Common Lisp readtable. In particular, this func-

tion must be called by macros used in conjunction with the

Common Lisp #n= and #n# syntaxes.

Sharp-sign Reader Macros

The reader’s syntax includes several abbreviations introduced by sharp sign (#)

take the general form of a sharp sign, a second character that identifies the syn-

tax, and following arguments. Certain abbreviations allow a decimal number or

certain special "modifier" characters between the sharp sign and the second char-

acter.

The function zl:set-syntax-#-macro-char can be used to define your own sharp-

sign abbreviations.

#\ or #/

#\x (or #/x in Zetalisp) reads in as the character x. For example, #\a. This is

the recommended way to include character constants in your code. Note

that the backslash causes this construct to be parsed correctly by the edi-

tor.

As in strings, upper- and lowercase letters are distinguished after #\. Any

character works after #\, even those that are normally special to read, such

as parentheses.

#\name (or #/name) reads in as the name for the nonprinting character sym-

bolized by name. A large number of character names are recognized. See

the section "Special Character Names". For example, #\return reads in as a

character, being the character code for the Return character in the Genera

character set. In general, the names that are written on the keyboard keys

are accepted. The abbreviations #\cr for #\return and #\sp for #\space are

accepted and generally preferred, since these characters are used so fre-

quently. The page separator character is called #\page, although #\form and

#\clear-screen are also accepted since the keyboard has one of those leg-

ends on the page key. The rules for reading name are the same as those

for symbols; thus upper- and lowercase letters are not distinguished, and

the name must be terminated by a delimiter such as a space, a carriage

return, or a parenthesis.

When the system types out the name of a special character, it uses the

same table as the #\ reader; therefore, any character name typed out is ac-

ceptable as input.

Page 757

#\ (or #/) can also be used to read in the names of characters that have

control and meta bits set. The syntax looks like #\control-meta-B to get a

"B" character with the control and meta bits set. You can use any of the

prefix bit names shift, control, meta, hyper, and super. They can be in

any order, and upper- and lowercase letters are not distinguished. The last

hyphen can be followed by a single character, or by any of the special char-

acter names normally recognized by #\. If it is a single character, it is

treated the same way the reader normally treats characters in symbols; if

you want to use a lowercase character or a special character such as a

parenthesis, you must precede it with a backslash character. Examples:

#\hyper-super-A, #\meta-hyper-roman-i, #\ctrl-meta-\(.

Note that the specification of Common Lisp in Steele’s Common Lisp: the

Language states that the printed representation of the character #\a with

control and meta bits on would be #\control-meta-\a. In the Symbolics im-

plementation, there is no character corresponding to a lowercase a with the

control and meta bits on. Therefore, the printed representation of #\control-

meta-\a is #\control-meta-\A.

#^

#^x

Generates Control-x. In Maclisp x is converted to uppercase and then exclu-

sive-or’ed with 100 (octal). Thus #^x always generates the character re-

turned by tyi if the user holds down the control key and types x.

NOTE: #^ Reader Macro is supported in Zetalisp only.

#’

#’foo is an abbreviation for (function foo). foo is the printed representation

of any object. This abbreviation can be remembered by analogy with the ’

macro character, since the function and quote special forms are somewhat

analogous.

#,

#,foo evaluates foo (the printed representation of a Lisp form) at read time,

unless the compiler is doing the reading, in which case it is arranged that

foo be evaluated when the FASL file is loaded. This is a way, for example,

to include in your code complex list-structure constants that cannot be writ-

ten with quote. Note that the reader does not put quote around the result

of the evaluation. You must do this yourself, typically by using the ’ macro-

character. An example of a case where you do not want quote around it is

when this object is an element of a constant list.

#.

#.foo evaluates foo (the printed representation of a Lisp form) at read time,

regardless of who is doing the reading.

#:

Page 758

#:name reads name as an uninterned symbol. It always creates a new sym-

bol. Like all package prefixes, #: can be followed by any expression. Exam-

ple: #:(a b c).

#b

#brational reads rational (an integer or a ratio) in binary (radix 2). Exam-

ples:

#B1101 <=> 13.

#B1100\100 <=> 3�

#o

#o number reads number in octal regardless of the setting of ibase. Actual-

ly, any expression can be prefixed by #o; it is read with ibase bound to 8.

#x

#x number reads number in radix 16. (hexadecimal) regardless of the setting

of ibase. As with #o, any expression can be prefixed by #x. The number can

contain embedded hexadecimal "digits" A through F as well as the 0

through 9. See the section "Reading Integers in Bases Greater Than 10".

#r

#radixR number reads number in radix radix regardless of the setting of

ibase. As with #o, any expression can be prefixed by #radixR; it is read

with ibase bound to radix. radix must consist of only digits, and it is read

in decimal. number can consist of both numeric and alphabetic digits, de-

pending upon radix.

For example, #3R102 is another way of writing 11. and #11R32 is another

way of writing 35.

#Q

#Q foo reads as foo if the input is being read by Zetalisp, otherwise it reads

as nothing (whitespace).

Note: #Q is supported only for Zetalisp.

#M

#M foo reads as foo if the input is being read into Maclisp, otherwise it

reads as nothing (whitespace).

Note: #M is supported only for Zetalisp.

#N

#N foo reads as foo if the input is being read into NIL or compiled to run

in NIL, otherwise it reads as nothing (whitespace). Also, during the reading

of foo, the reader temporarily defines various NIL-compatible sharp-sign

reader macros (such as #! and #") in order to parse the form correctly,

even though it is not going to be evaluated.

Note: #N is supported only for Zetalisp.

Page 759

#+

This abbreviation provides a read-time conditionalization facility similar to,

but more general than, that provided by #M, #N, and #Q. It is used as

#+feature form. If feature is a symbol, then this is read as form if (status

feature feature) is t. If (status feature feature) is nil, then this is read as

whitespace. Alternately, feature can be a boolean expression composed of

and, or, and not operators and symbols representing items which can ap-

pear on the (status features) list. (or lispm amber) represents evaluation

of the predicate (or (status feature lispm) (status feature amber)) in the

read-time environment. Note that the feature names are found in the key-

word package.

For example, #+lispm form makes form exist if being read by Symbolics

Common Lisp, and is thus equivalent to #Q form. Similarly, #+maclisp form

is equivalent to #M form. #+(or lispm nil) form makes form exist on either

Symbolics Common Lisp or in NIL. Note that items can be added to the

(status features) list by means of (sstatus feature feature), thus allowing

the user to selectively interpret or compile pieces of code by parameterizing

this list. See the special form zl:status. See the special form zl:sstatus.

#-

#-feature form is equivalent to #+(not feature) form. Note that the feature

names are found in the keyword package.

#|

#| begins a comment for the Lisp reader. The reader ignores everything

until the next |#, which closes the comment. Note that if the |# is inside a

comment that begins with a semicolon, it is not ignored; it closes the com-

ment that began with the preceding #|. #| and |# can be on different lines,

and #|...|# pairs can be nested.

Using #|...|# always works for the Lisp reader. The editor, however, does

not understand the reader’s interpretation of #|...|#. Instead, the editor re-

tains its knowledge of Lisp expressions. Symbols can be named with vertical

bars, so the editor (not the reader) behaves as if #|...|# is the name of a

symbol surrounded by pound signs, instead of a comment.

Note: Use #||...||# instead of #|...|# to comment out Lisp code.

The reader views #||...||# as a comment: the comment prologue is #|, the

comment body is |...|, and the comment epilogue is |#. The editor, howev-

er, interprets #||...||# as a pound sign (#), a symbol with a zero-length

print name (||), Lisp code (...), another symbol with a zero length print

name (||), and a stray pound sign (#). Therefore, inside a #||...||#, the ed-

itor commands that operate on Lisp code, such as balancing parentheses

and indenting code, work correctly.

#<

This is not valid reader syntax. It is used in the printed representation of

objects that cannot be read back in. Attempting to read a #< causes an er-

ror.

Page 760

#◊

#◊ turns infix expression syntax into regular Lisp code. It is intended for

people who like to use traditional arithmetic expressions in Lisp code. It is

not intended to be extensible or to be a full programming language. We do

not intend to extend it into one.

(defun my-add (a b)

 #◊a+b◊)

The quoting character is backslash. It is necessary for including special

symbols (such as -) in variable names.

! reads one Lisp expression, which can use this reader-macro inside itself.

#◊ supports the following syntax:

Delimiters Begin the reader macro with #◊, complete it with ◊.

#◊A+b-c◊

Escape characters

Special characters in symbol names must be preceded with

backslash (\). You can escape to normal Lisp in an infix ex-

pression; precede the Lisp form with exclamation point (!).

Symbols Start symbols with a letter. They can contain digits and un-

derscore characters. Any other characters need to be quoted

with \.

Operators It accepts the following classes of operators. Arithmetic oper-

ator precedence is like that in FORTRAN and PL/I.

Operator Infix Lisp Equivalent

Assignment x : y (setf x y)

Functions f(x,y) (f x y) -- also works for

defstruct accessors, and so on.

Array ref a[i,j] (aref a i j)

Unary ops + - not same

Binary ops + - * / ^ = ≠ same

< ≤ > ≥ and or same

Conditional if p then c (if p c)

if p then c else a (if p c a)

Grouping: (a, b, c) (progn a b c) -- even

works for (1+2)/3�

The following example shows matrix multiplication using an infix expres-

sion.

Page 761

(defun matrix-multiply (a b)

 (let ((n (array-dimension-n 2 a)))

 (unless (= n (array-dimension-n 1 b))

 (ferror "Matrices ~S and ~S do not have compatible ~

 dimensions") a b)

 (let ((d1 (array-dimension-n 1 a))

 (d2 (array-dimension-n 2 b)))

 (let ((c #◊ make\-array(list(d1, d2), !:type, art\-float)◊))

(dotimes (i d1)

 (dotimes (j d2)

 #◊ c[i,j] : !(loop for k below n

 sum #◊ a[i,k]*b[k,j] ◊)◊))

c))))�

The line containing the infix expression could also have been written like

this:

(let ((sum 0))

 (dotimes (k n) #◊ sum:sum+a[i,k]*b[k,j] ◊)

 #◊ c[i,j]:sum ◊)�

Special Character Names

The following are the recognized special character names in alphabetical. These

names can be used after a #\ to get the character code for that character. Most of

these characters type out as this name enclosed in a lozenge.

The special characters are:

Abort

Alpha

And-sign

Back-Space

Beta

Center-Dot

Circle

Circle-Plus

Circle-X

Clear-Input

Close

Close-parenthesis

Complete

Delta

Double-Arrow

Down-Arrow

Down-Horseshoe

End

Eow-Down

Epsilon

Page 762

Equal-sign

Equivalence

Escape

Existential-Quantifier

Function

Gamma

Greater-Or-Equal

Greater-sign

Help

Infinity

Integral

Lambda

Left-Arrow

Left-Horseshoe

Less-Or-Equal

Less-sign

Line

Lozenge

Minus-sign

network

Not-Equals

Not-Sign

Null

Open

Open-parenthesis

Or-sign

Page

Partial-Delta

Pi

Plus-Minus

Plus-sign

Refresh

Resume

Return

Right-horseshoe

Rightarrow

Rubout

Scroll

Select

Space

Square

Suspend

Symbol-Help

Tab

Triangle

Universal-Quantifier

Up-Arrow

Up-Horseshoe�

Page 763

The following are special characters sometimes used to represent single and double

mouse clicks. The buttons can be called either l, m, r or 1, 2, 3 depending on

stylistic preference. The list below represents single mouse clicks (preceed with an

sh- to represent double mouse clicks).

Mouse-L-1=Mouse-1-1 Mouse-L-2=Mouse-1-2

Mouse-M-1=Mouse-2-1 Mouse-M-2=Mouse-2-2

Mouse-R-1=Mouse-3-1 Mouse-R-2=Mouse-3-2�

The Readtable

A data structure called the *readtable* (or readtable) is used to control the read-

er. It contains information about the syntax of each character. Initially it is set up

to give the standard Lisp meanings to all the characters, but you can change the

meanings of characters to alter and customize the syntax of characters. It is also

possible to have several readtables describing different syntaxes and to switch

from one to another by binding the symbol *readtable*.

You can program the reader by changing the readtable in any of three ways:

• The syntax of a character can be set to one of several predefined possibilities.

• A character can be made into a macro character, whose interpretation is con-

trolled by a user-supplied function that is called when the character is read.

• You can create a completely new readtable, using the readtable compiler

(sys:io;rtc) to define new kinds of syntax and to assign syntax classes to charac-

ters. Use of the readtable compiler is not documented here.�

Functions and Variables Related to Readtables

copy-readtable &optional (from-readtable *readtable*) to-readtable

A copy is made of from-readtable, which defaults to the current

readtable.

zl:copy-readtable &optional (a-readtable zl:readtable) another-readtable

from-readtable, which defaults to the current readtable, is

copied. If to-readtable is unsupplied or nil, a fresh copy is

made. Otherwise to-readtable is clobbered with the copy.

readtablep object Returns t if object is a readtable, otherwise it returns nil.

readtable The current readtable.

zl:readtable *readtable* is the Common Lisp equivalent of zl:readtable.

si:initial-readtable The value of si:initial-readtable is the initial standard

readtable.

Page 764

Functions That Change Character Syntax

set-syntax-from-char to-char from-char &optional (to-readtable *readtable*) from-

readtable

This makes the syntax of to-char in to-readtable be the same as

the syntax of from-char in from-readtable.

zl:set-syntax-from-char char known-char &optional (a-readtable zl:readtable)

(known-readtable si:initial-readtable)

Makes the syntax of to-char in to-readtable be the same as the

syntax of from-char in from-readtable.

set-character-translation char &optional value (a-readtable zl:readtable)

Changes readtable so that from-char is translated to to-char up-

on read-in, when readtable is the current readtable.

zl:set-syntax-from-description char description &optional (a-readtable zl:readtable)�

Sets the syntax of char in readtable to be that described by the

symbol description.

Functions That Change Characters Into Macro Characters

make-dispatch-macro-character char &optional non-terminating-p (a-readtable

readtable)

Causes char to be a dispatching macro character in readtable.

set-dispatch-macro-character disp-char sub-char function &optional (a-readtable

readtable)

Causes function to be called when the disp-char followed by

sub-char is read.

get-dispatch-macro-character disp-char sub-char &optional (a-readtable

readtable)

Returns the macro-character function for sub-char under disp-

char, or nil if there is no function associated with sub-char.

set-macro-character char function &optional non-terminating-p (a-readtable

readtable)

Causes char to be a macro character that causes function to be

called when it is seen by the reader.

get-macro-character char &optional (a-readtable *readtable*)

Returns two values: the function associated with char, and the

value of the non-terminating-p flag.

zl:set-syntax-macro-char char function &optional (a-readtable zl:readtable) non-

terminating

Changes readtable so that char is a macro character.

zl:set-syntax-#-macro-char char function &optional (a-readtable zl:readtable)

Causes function to be called when #char is read.

Page 765

Readtable Functions for Maclisp Compatibility

zl:setsyntax char magic more-magic

The syntax of character is altered in the current readtable, ac-

cording to arg2 and arg3.

zl:setsyntax-sharp-macro char type fun &optional (rdtbl zl:readtable)

This exists only for Maclisp compatibility; zl:set-syntax-#-

macro-char is preferred.

Input Functions

Most of these functions take an optional argument to specify the stream from

which to take characters, called input-stream in Common Lisp and stream in Zetal-

isp. input-stream is the stream from which the input is to be read; if unsupplied it

defaults to the value of *standard-input*. The special pseudostreams nil and t are

also accepted. nil means the value of *standard-input* (that is, the default) and t

means the value of *terminal-io* (that is, the interactive terminal). See the sec-

tion "Introduction to Streams". These functions also take optional end-of-file argu-

ments. In Common Lisp, the options are eof-error-p and eof-value. eof-error-p con-

trols what happens if input is from a file (or any other input source that has a

definite end) and the end of the file is reached. If eof-error-p is t (the default), an

error will be signalled at the end of a file. If it is nil, then no error is signalled,

and instead the function returns eof-value.

In Zetalisp, if no eof-option argument is supplied, an error is signalled. If there is

an eof-option, it is the value to be returned. Note that an eof-option of nil means

to return nil if the end of the file is reached; it is not equivalent to supplying no

eof-option.

Functions such as read that read an "object" rather than a single character always

signal an error, regardless of eof-error-p or eof-option, if the file ends in the middle

of an object. For example, if a file does not contain enough right parentheses to

balance the left parentheses in it, read complains. If a file ends in a symbol or a

number immediately followed by end-of-file, read reads the symbol or number suc-

cessfully and when called again, sees the end-of-file and obeys eof-error-p. Any

whitespace at the end of a file is not considered to be an object. A file that ends

in whitespace will only signal an error if eof-error-p is t.

The optional argument recursive-p specifies whether a call to an input function is

a "top-level" or an embedded call. If the argument is t, the function call is treated

recursively. The context of the recursive-p argument is most often found in the

definition of a macro character. For example, if the single quote macro is defined

as:

(set-macro-character

 #\’

 #’(lambda (stream char)

 (declare (ignore char))

 (list ’quote (read stream))))

Page 766

then an expression such as

(cons ’#1=(a b c) ’(#1# . 1 2 3))

will not be read properly. The recursive call to read by the first ’ is not treated

recursively and the label is lost when the expression

’#1=(a b c)

is completed. The second ’ is also interpreted as a "top-level" call to read. When

the pointer #1# is reached and there is no associated label, the Lisp Reader traps

the error and offers the opportunity to correct the input.

The single quote macro below is defined properly. Note the use of recursive-p in

the call to read:

(set-macro-character

 #\’

 #’(lambda (stream char)

 (declare (ignore char))

 (list ’quote (read stream :recursive-p t))))

Now, when the expression

(cons ’#1=(a b c) ’(#1# . 1 2 3))

is evaluated, the recursive calls to read are properly recognized.

recursive-p also determines the kind of error that is signalled if eof-error-p is not

nil. If recursive-p is not nil and the end-of-file (EOF) is encountered, the EOF is

considered to have occured in the middle of an object, and an error is signaled. If

recursive-p is nil and the EOF is encountered, the EOF is considered to have oc-

cured between objects, and no error is signalled.

Note that all of these functions except zl:readline-no-echo echo their input if used

on an interactive stream (one that supports the :input-editor operation. The func-

tions that input more than one character at a time (zl:read, zl:readline) allow the

input to be edited using rubout. zl:tyipeek echoes all of the characters that were

skipped over if zl:tyi would have echoed them; the character not removed from the

stream is not echoed either.

Input Functions That Work on Streams

The following functions work on input or bidirectional streams:

read &optional input-stream (eof-errorp t) eof-value recursive-p

Reads in the printed representation of a Lisp object from

stream, builds a corresponding Lisp object, and returns the ob-

ject.

zl:read &optional (stream zl:standard-input) eof-option

Reads in the printed representation of a Lisp object from

stream, builds a corresponding Lisp object, and returns the ob-

ject.

Page 767

sys:read-character &optional stream &rest keywords &key (:fresh-line t) :any-tyi

:no-hang :eof (:notification t) :prompt :help (:refresh t) (:suspend

t) (:abort t) :timeout :input-wait :input-block :input-wait-handler

:whostate :status :presentation-context

This function displays notifications and help messages and re-

prompts at appropriate times.

zl:tyi &optional stream eof-option

Inputs one character from stream and returns it.

sys:read-for-top-level &optional (stream zl:standard-input) eof-option

Differs from zl:read only in that it ignores close parentheses

seen at top level, and it returns the symbol si:eof if the stream

reaches end-of-file if you have not supplied an eof-option (in-

stead of signalling an error as zl:read would).

zl:read-expression &optional stream &key :completion-alist :completion-delimiters

(:presentation-type ’sys:expression)

Like sys:read-for-top-level except that if it encounters a top-

level end-of-file, it just beeps and waits for more input.

zl:read-form &optional stream &key (:edit-trivial-errors-p zl:*read-form-edit-trivial-

errors-p*) (:completion-alist zl:*read-form-completion-alist*)

(:completion-delimiters zl:*read-form-completion-delimiters*)

(:environment si:*read-form-environment*) (:presentation-type

’sys:form)

Like zl:read-expression except that it assumes that the re-

turned value will be given immediately to eval.

read-or-end &optional (stream zl:standard-input) reader

Like zl:read-expression except that if it is reading from an in-

teractive stream and the user presses END as the first charac-

ter or the first character after only whitespace characters, it

returns two values, nil and :end.

zl:read-or-character &optional delimiters stream reader &rest reader-args &key

:presentation-type &allow-other-keys

Like zl:read-expression, except that if it is reading from an

interactive stream and the user types one of the delimiters as

the first character or the first character after only whitespace

characters, it returns four values: nil, :character, the charac-

ter code of the delimiter, and any numeric argument to the

delimiter. If it encounters any nonwhitespace characters, it

calls the reader function with an argument of stream to read

the input.

zl:read-and-eval &optional stream (catch-errors t) &key (:environment si:*read-

form-environment*)

Calls zl:read-expression to read a form, without completion.

read-line &optional input-stream (eof-errorp t) eof-value recursive-p

Reads in a line of text.

Page 768

zl:readline &optional (stream zl:standard-input) eof-option

This function is usually used to get a line of input from the

user.

read-line-trim &optional input-stream (eof-errorp t) eof-value recursive-p

Reads in a line of text and returns it as the first value after

trimming leading and trailing whitespace, that is, spaces and

tabs.

zl:readline-trim &optional (stream zl:standard-input) (eof-option ’si:no-eof-option)

like zl:readline except that zl:readline-trim trims leading and

trailing whitespace  spaces and tabs  from string input.

zl:readline-or-nil &optional (stream zl:standard-input) (eof-option ’si:no-eof-option)�

Reads in a line of text.

read-line-no-echo &optional stream &rest keywords &key (:terminators ’(#\return

#\line #\end)) :full-rubout (:notification t) :prompt :help

Reads a line of input from stream without echoing the input,

and returns the input as a string, without the terminating

character.

zl:readline-no-echo &optional stream &rest keywords &key (:terminators ’(#\return

#\line #\end)) :full-rubout (:notification t) :prompt :help

Reads a line of input from stream without echoing the input,

and returns the input as a string, without the terminating

character.

read-delimited-list char &optional stream recursive-p

Reads objects from stream until the next character after an

object’s representation is char.

read-delimited-string delimiters &optional stream eof-error-p eof-value &rest make-

array-args

The characters read up to the delimiter are returned as a

string.

zl:read-delimited-string &optional (delimiters #\end) (stream zl:standard-input) eof

&rest (make-array-args (quote ((100 :type sys:art-string))))

Characters are read from stream until one of the delimiter

characters is encountered.

read-preserving-whitespace &optional input-stream (eof-errorp t) eof-value recur-

sive-p

Used for some specialized situations where it is desirable to

determine precisely what character terminated the extended

token.

read-char &optional input-stream (eof-errorp t) eof-value recursive-p

Reads one character from input-stream, and returns it as a

character object.

Page 769

zl:readch &optional stream eof-option

Provided for Maclisp compatibility only. zl:readch is just like

zl:tyi, except that instead of returning a character object, it re-

turns a symbol whose print name is the character read in.

read-char-no-hang &optional input-stream (eof-errorp t) eof-value recursive-p

Performs the same operation as read-char, but if it would be

necessary to wait in order to get a character (as from a key-

board), nil is immediately returned without waiting.

unread-char character &optional input-stream

Puts character onto the front of input-stream.

read-byte binary-input-stream &optional (eof-errorp t) eof-value

Reads one byte from binary-input-stream and returns it in the

form of an integer.

peek-char &optional peek-type input-stream (eof-errorp t) eof-value recursive-p

Returns the next character to be read from input-stream, with-

out actually removing it from the stream. (This is the default

behavior, which can be modified by the peek-type argument.)

zl:tyipeek &optional peek-type stream eof-option

Provided mainly for Maclisp compatibility; the :tyipeek stream

operation is usually preferred.

clear-input &optional input-stream

Clears any buffered input associated with input-stream.

listen &optional input-stream

Returns t if there is a character immediately available from in-

put-stream, and otherwise it returns nil.

Non-stream Input Functions

The following are input functions that do not operate on streams:

read-from-string string &optional (eof-errorp t) eof-value &key (:start 0) :end :pre-

serve-whitespace

Reads a Lisp object from a string

zl:read-from-string string &optional (eof-option ’si:no-eof-option) (start 0) end (pre-

serve-whitespace zl:read-preserve-delimiters)

The characters of string are given successively to the reader,

and the Lisp object built by the reader is returned.

parse-integer string &key (:start 0) :end (:radix 10) :junk-allowed (:sign-allowed t)

Examines the substring of string delimited by :start and :end,

skips over whitespace, and then attempts to parse an integer.

zl:readlist si:*iolst Provided mainly for Maclisp compatibility. The elements in

char-list are given successively to the reader, and the Lisp ob-

ject built by the reader is returned.

Page 770

See the function with-input-from-string.

Read Control Variables

There are a number of reader variables that affect the performance of read func-

tions.

read-suppress When the value of *read-suppress* is nil, the Lisp reader op-

erates normally.

zl:read-preserve-delimiters

Useful for certain reader macros or special syntaxes.

zl:*read-form-edit-trivial-errors-p*

If not nil, zl:read-form checks for two kinds of errors; if a

symbol is read, it checks whether the symbol is bound.

zl:*read-form-completion-alist*

If not nil, zl:read-form sets up COMPLETE and c-? as input edi-

tor commands.

zl:*read-form-completion-delimiters*

If zl:*read-form-completion-delimiters* is nil, the entire text

of the current symbol is a single "chunk".

Printed Representation

Printed Representation Of Lisp Objects

People cannot deal directly with Lisp objects, because the objects live inside the

machine. In order to let us get at and talk about Lisp objects, Lisp provides a rep-

resentation of objects in the form of printed text; this is called the printed repre-

sentation.

Functions such as print, prin1, and princ take a Lisp object and send the charac-

ters of its printed representation to a stream. These functions (and the internal

functions they call) are known as the printer. The read function takes characters

from a stream, interprets them as a printed representation of a Lisp object, builds

a corresponding object and returns it; read and its subfunctions are known as the

reader. See the section "Introduction to Streams".

The printed representation of an object depends on its type. For descriptions of

how different Lisp objects are printed, See the section "What the Printer

Produces".

Effects of Slashification on Printing

Printing is done either with or without slashification. The unslashified version is

nicer looking, but zl:read cannot handle it properly. The slashified version, howev-

er, is carefully set up so that zl:read is able to read it in.

Page 771

The primary effects of slashification are:

• Special characters used with other than their normal meanings (for example, a

parenthesis appearing in the name of a symbol) are preceded by slashes or

cause the name of the symbol to be enclosed in vertical bars.

• Symbols that are not from the current package are printed out with their pack-

age prefixes. (A package prefix looks like a symbol followed by a colon).

What the Printer Produces

The printed representation of lists is documented elsewhere. See the section

"Printed Representation of Lists".

Printed Representation of Symbols

If slashification is off, the printed representation of a symbol is simply the succes-

sive characters of the print-name of the symbol. If slashification is on, two changes

must be made.

1. The symbol might require a package prefix for read to work correctly, assum-

ing that the package into which read reads the symbol is the one in which it

is being printed. (See the section "System Packages".)

2. If the printed representation would not read in as a symbol at all (that is, if

the print-name looks like a number, or contains special characters), the print-

ed representation must have one of the following kinds of quoting for those

characters.

• Backslashes ("\") before each special character

• Vertical bars ("|") around the whole name�

The decision whether quoting is required is made using the readtable, so it is al-

ways accurate provided that *readtable* has the same value when the output is

read back in as when it was printed. See the variable *readtable*.

Uninterned symbols are printed preceded by #:. You can turn this off by evaluating

(setf (si:pttbl-uninterned-prefix *readtable*) "").

Printed Representation of Common Lisp Character Objects

For Common Lisp, character objects always print as #\char.

Printed Representation of Strings

If slashification is off, the printed representation of a string is simply the succes-

sive characters of the string. If slashification is on, the string is printed between

double quotes, and any characters inside the string that need to be preceded by

slashes are. Normally these are just double-quote and slash. Compatibly with

Maclisp, carriage return is not ignored inside strings and vertical bars.

Page 772

Printed Representation of Instances

If the instance has a method for the :print-self message, that message is sent with

three arguments: the stream to print to, the current depth of list structure, and

whether slashification is enabled. The object should print a suitable printed repre-

sentation on the stream. (See the section "Flavors". Instances are discussed there.)

See the section "Printed Representation of Miscellaneous Data Types". Most such

objects print as described there, except with additional information such as a

name. Some objects print only their name when slashification is not in effect

(when princed).

Printed Representation of Arrays That Are Named Structures

If the array has a named structure symbol with a named-structure-invoke proper-

ty that is the name of a function, then that function is called on five arguments:

• The symbol :print-self

• The object itself

• The stream to print to

• The current depth of list structure

• Whether slashification is enabled

A suitable printed representation should be sent to the stream. This allows you to

define your own printed representation for the array’s named structures. See the

section "Named Structures". If the named structure symbol does not have a

named-structure-invoke property, the printed representation is like that for mis-

cellaneous data types: a number sign and a less-than sign ("<"), the named struc-

ture symbol, the numerical address of the array, and a greater-than sign (">").

Printed Representation of Arrays That Are Not Named Structures

The printed representation of an array that is not a named structure contains the

following elements, in order:

• A number sign and a less-than sign ("<")

• The "art-" symbol for the array type

• The dimensions of the array, separated by hyphens

• A space, the machine address of the array, and a greater-than sign (">")�

Printed Representation of Miscellaneous Data Types

For a miscellaneous data type, the printed representation starts with a number

sign and a less-than sign, the "dtp-" symbol for this data type, a space, and the oc-

tal machine address of the object. Then, if the object is a microcoded function,

compiled function, or stack group, its name is printed. Finally, a greater-than sign

is printed.

Page 773

Including the machine address in the printed representation makes it possible to

tell two objects of this kind apart without explicitly calling eq on them. This can

be very useful during debugging. It is important to know that if garbage collection

is turned on, objects are occasionally moved, and therefore their octal machine ad-

dresses are changed. It is best to shut off garbage collection temporarily when de-

pending on these numbers.

None of the printed representations beginning with a number sign can be read

back in, nor, in general, can anything produced by instances and named structures.

See the section "What the Reader Recognizes". This can be a problem if, for ex-

ample, you are printing a structure into a file with the intent of reading it in

later. But by setting the *print-readably* variable, you can make sure that what

you are printing can indeed be read with the reader.

print-readably A boolean that signals an error if the object to be printed is

not in a form that the reader will accept.

sys:printing-random-object (object stream &rest either of: :no-pointer or :typep)

&body body

The vast majority of objects that define sys:print-self methods

have much in common. This macro is provided for convenience,

so that users do not have to write out that repetitious code. It

is also the preferred interface to sci:*print-readably*.

Controlling the Printed Representation of an Object

If you want to control the printed representation of an object, usually you make

the object an array that is a named structure, or an instance of a flavor. See the

section "Named Structures". See the section "Flavors". Occasionally, however, you

might want to get control over all printing of objects in order to change in some

way how they are printed. The best way to do this is to customize the behavior of

si:print-object, which is the main internal function of the printer. All the printing

functions, such as print and princ, as well as format, go through this function.

The way to customize it is by using the "advice" facility. See the special form

advise.

Output Functions

For producing formatted output, see the section "Formatted Output".

Functions That Print or Write Output

The following functions take an optional argument called output-stream, which is

where to send the output. If unsupplied or nil, output-stream defaults to the value

of *standard-output*. If it is t, the value of *terminal-io* is used (that is, the in-

teractive terminal). See the section "Introduction to Streams".

Page 774

write object &key :stream :escape :radix :base :circle :pretty :level :length :case :gen-

sym :array :integer-length :array-length :string-length :bit-vector-

length :abbreviate-quote :readably :structure-contents :exact-float-

value

The printed representation of object is written to the output

stream specified by :stream.

prin1 object &optional output-stream

Outputs the printed representation of object to stream, with

slashification. Roughly speaking, the output from prin1 is suit-

able for input to the function zl:read.

zl:prin1-then-space object &optional output-stream

Like prin1 except that output is followed by a space.

prin1-to-string object

The object is printed as if by prin1, and the characters that

would be output are made into a string, which is returned.

print object &optional output-stream

Like prin1 except that output is preceded by a Newline and

followed by a space.

princ object &optional output-stream

Like prin1 except that the output is not slashified. The general

rule is that output from princ is intended to look good to peo-

ple, while output from prin1 is intended to be acceptable to the

function read.

princ-to-string object

The object is printed as if by princ, and the characters that

would be output are made into a string, which is returned.

pprint object &optional output-stream

The printed representation of object is written to the output-

stream using the pretty printer.

write-byte integer binary-output-stream

Writes one byte, the value of integer to binary-output-stream.

write-char character &optional output-stream

Outputs character as a printing character to output-stream, and

returns character as a character object.

write-line string &optional output-stream &key (:start 0) :end

Writes the characters of the specified substring of string to

output-stream, followed by a newline.

write-string string &optional output-stream &key (:start 0) :end

Writes the characters of the specified substring of string to

output-stream, without a following newline.

write-to-string object &key :escape :radix :base :circle :pretty :level :length :case :gen-

sym :array :integer-length :array-length :string-length :bit-vector-

Page 775

length :abbreviate-quote :readably :structure-contents :exact-float-

value

The object is printed as if by write, and the characters that

would be output are made into a string, which is returned.

si:print-object exp i-prindepth slashify-p stream &optional (which-operations

(funcall si:stream ’:which-operations)) recursive

Outputs the printed representation of object to stream, as modi-

fied by prindepth and slashify-p.

si:print-list exp i-prindepth slashify-p stream which-operations

This is the part of the Lisp printer that prints lists. A

stream’s :print handler can call this function.

zl:tyo char &optional stream

Outputs the character char to stream.

fresh-line &optional output-stream

Outputs a newline only if the stream is not already at the

start of a line.

terpri &optional output-stream

Outputs a newline to output-stream, and returns nil.

zl:terpri &optional stream

Outputs a carriage return character to stream.

clear-output &optional output-stream

Attempts to abort any outstanding output operation in progress

in order to allow as little output as possible to continue to the

destination.

finish-output &optional output-stream

Attempts to ensure that all output sent to output-stream has

reached its destination, and only then returns nil.

force-output &optional output-stream

Initiates the emptying of any internal buffers, but returns nil

without waiting for completion or acknowledgment.

In addition to the functions summarized above, the zl:format function is very use-

ful for producing nicely formatted text. zl:format can generate a string or output

to a stream. See the section "Formatted Output".

The grindef function is useful for formatting Lisp programs. See the special form

grindef.

See the function with-output-to-string.

Print Control Variables

There are a number of print variables that affect the performance of print func-

tions.

Page 776

print-level Controls how many levels of a nested data object will be print-

ed.

print-length Controls how many elements at a given level are printed.

print-abbreviate-quote

Provides a way to print quoted forms in their short form. It is

incorporated into *print-pretty*, so the value of *print-pretty*

must be nil in order for *print-abbreviate-quote* to have any

effect.

print-array A boolean which controls whether the contents of arrays other

than strings are printed.

print-array-length

Controls the number of objects in the array that will be print-

ed.

print-base Determines the radix in which the printer prints rational num-

bers (integers and ratios).

print-bit-vector-length

Controls the number of objects in the bit vector that will be

printed.

print-case Controls the case in which to print any uppercase characters

in the names of symbols when vertical-bar syntax is not used.

print-circle Controls whether or not the printer tries to detect cycles in

the structure to be printed.

print-escape Controls whether or not the printer outputs escape characters.

print-exact-float-value

When this variable is set to t, it prints the exact number rep-

resented by a floating-point number, not the rounded version,

which is normally printed by the printer.

print-gensym Controls whether the prefix #: is printed before symbols that

have no home package.

print-integer-length

Controls the printing of bignums.

print-pretty Controls the amount of whitespace output when printing an

expression.

print-pretty-printer

Allows wholesale replacement of the pretty printer used by

Common Lisp.

print-radix If t, rational numbers are printed with a radix specifier indi-

cating what radix the printer is using.

print-readably A boolean that signals an error if the object to be printed is

not in a form that the reader will accept.

Page 777

print-string-length

Controls the number of string characters that will print.

print-structure-contents

Controls how structures are printed. The default is t, which

uses the #S convention, printing the structure with all its slots

filled in.

Functions for Formatting Lisp Code

grindef &rest fcns Prints the definitions of one or more functions, with indenta-

tion to make the code readable.

zl:grind-top-level exp &optional si:grind-width (si:grind-real-io zl:standard-output)

si:grind-untyo-p (si:grind-displaced ’si:displaced) (terpri-p t)

si:grind-notify-fun (loc (ncons exp))

Pretty-prints exp on stream, inserting up to si:grind-width char-

acters per line. This is the primitive interface to the pretty-

printer.

Miscellaneous Output Functions

stream-copy-until-eof from-stream to-stream &optional leader-size &key (:include-

diagrams t)

Inputs characters from from-stream and outputs them to to-

stream until it reaches the end-of-file on the from-stream.

beep &optional beep-type (stream zl:terminal-io)

Tries to attract the user’s attention by causing an audible

beep, or flashing the screen, or something similar.

sys:printing-random-object (object stream &rest either of: :no-pointer or :typep)

&body body

The vast majority of objects that define sys:print-self methods

have much in common. This macro is provided for convenience,

so that users do not have to write out that repetitious code. It

is also the preferred interface to sci:*print-readably*.

zl:cursorpos &rest args

This function exists primarily for Maclisp compatibility. It per-

forms operations related to the cursor position, such as return-

ing the position, moving the position, or performing another

cursor operation.

zl:exploden x Returns a list of characters (as integers) that are the charac-

ters that would be typed out by (princ x) (that is, the un-

slashified printed representation of x).

zl:explodec x Returns a list of characters represented by symbols that are

the characters that would be typed out by (princ x) (that is,

the unslashified printed representation of x).

Page 778

zl:explode x Returns a list of characters represented by symbols that are

the characters that would be typed out by (prin1 x) (that is,

the slashified printed representation of x).

sys:flatsize x Returns the number of characters in the slashified printed rep-

resentation of x.

sys:flatc x Returns the number of characters in the unslashified printed

representation of x.

Formatted Output

You can control the appearance of program output using the format function.

format uses a control string written in a special format specifier language to con-

trol the output format.

For simple tasks in which only the most basic format specifiers are needed,

format is easy to use and has the advantage of brevity. For more complicated

tasks, the format specifier language becomes somewhat obscure and hard to read,

but has the advantage of being extremely powerful.

You can also use other functions that are specially designed for complex format-

ting tasks. Some of these include format:print-list and format-textual-list.

A number of global control variables affect the results of format. See the section

"Print Control Variables".

Additional tools are available for formatting Lisp code (as opposed to text and

tables). See the section "Functions for Formatting Lisp Code".

format destination control-string &rest args Function

Formats output as specified by control-string and sends it to destination.

control-string contains the format directives and optionally, all or part of the in-

tended output. Most directives use one or more elements of args to create their

output; the typical directive puts the next element of args into the output, format-

ted in some special way.

Format directives begin with a tilde (~). The character after the tilde, possibly

preceded by prefix parameters and modifiers, specifies the kind of formatting de-

sired. For more on format directives: See the section "Format Directives".

destination specifies what format does with the results:

nil A string is created that contains the output; this string is re-

turned as the value of the call to format.

t The output is sent to *standard-output*. format returns nil.

stream The output is sent to stream. format returns nil.

Page 779

string The output is added to the end of string. string should have a

fill-pointer. See the section "What is a Fill Pointer?". format

returns nil.�

format includes some extremely complicated and specialized features. It is not nec-

essary to know all or even most of its features to use format efficiently. The more

sophisticated features are there for use in programs with complicated formatting

requirements.

Compatibility Note for format

Some format directives are named, that is, instead of a one-character directive,

such as ~A, the directive has a name within backslashes (\), such as ~\\date\\.

The escape character for the Common Lisp reader is the backslash \, while the es-

cape character for the Zetalisp reader is the slash /. In order to output a back-

slash character in Common Lisp it is necessary to double the character when typ-

ing it.

Therefore, the name of such a directive in a Common Lisp environment is

~\\date\\, while the name in a Zetalisp environment is ~\date\. If you are using any

of the named directives, it is very important that you keep track of the package in

which you are evaluating or compiling such code.

Format Directives

A directive consists of a tilde, optional prefix parameters separated by commas, op-

tional colon (:) and at-sign (@) modifiers, and a single character indicating the

kind of formatting desired. The alphabetic case of this character is ignored. The

prefix parameters are generally signed integers. Examples of directives:

"~S" ; This is an S directive with no parameters or modifiers.

"~3,4:@s" ; This is an S directive with two parameters, 3 and 4,

 ; and both the colon and at-sign flags.

"~,4S" ; The first prefix parameter is omitted and takes

 ; on its default value, while the second is 4.�

Sometimes a prefix parameter is used to specify a character, such as the padding

character in a right- or left-justifying operation. In this case a single quote (’) fol-

lowed by the desired character can be used as a prefix parameter. For example,

you can use the following to print a decimal number in five columns with leading

zeros.

"~5,’0d" instead of "~5,48d"�

In place of a prefix parameter to a directive, you can put the letter V, which takes

an argument from args as a parameter to the directive. Normally this should be a

number but it does not have to be. This feature allows variable column-widths and

the like. Also, you can use the character # in place of a parameter; it represents

the number of arguments remaining to be processed.

Page 780

Formatting Examples

Here are some examples of how format is used. They range from the very simple

to some of the more complex operations. More information about these examples

can be found in the section that discusses the appropriate format directive.

(format nil "Simple output") => "Simple output"

�

(setq x 5)

(format nil "Print a decimal number: ~D" x) =>

"Print a decimal number: 5"

(format nil "Print a decimal number and some space: ~5D." x) =>

"Print a decimal number and some space: 5."

�

(setq y "elephant")

(format nil "Print a symbol: ~A!" y) =>

"Print a symbol: elephant!"

�

(format nil "Print out part of this string, a carriage return ~% ~

 and then an odd character: ~:C"

 (set-char-bit #\D :control t)) =>

"Print out part of this string, a carriage return

 and then an odd character: Control-D"

�

(setq n 3)

(format nil "Pluralize based on the value of n.~

 ~%~D item~:P found." n) =>

"Pluralize based on the value of n.

3 items found."

�

(format nil "Select the verb based on the value of n.~

 ~%Here ~[~1;is~:;are~] ~:*~R pupp~:@P." n) =>

"Select the verb based on the value of n.

Here are three puppies."

�

(setq foo "Decide how to format the items based ~

 on how many there are. ~%Items:~#[none~; ~S~; ~S and ~S~:;~

 ~@{~#[~1; and~] ~S~^,~}~].")

(format nil foo ’foo ’bar) =>

"Decide how to format the items based on how many there are.

Items: FOO and BAR."

�

(format nil "Print in ~’i⊂italics~⊃ or ~V⊂bold~⊃."

’(:fix :bold :normal)) =>

"Print in italics or bold."�

Format Directives That Operate on Lisp Objects

Page 781

~A

Prints the next element from the args of the format function without slashifica-

tion (as by princ). If you simply specify mincol, as in ~mincolA, format inserts

spaces on the right, if necessary, to make the column width at least mincol.

The format is:

~mincol,colinc,minpad,padchar:@A

It expects its argument to be a Lisp object.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

colinc Padding characters are inserted colinc characters at a time.

The default is 1.

minpad The minimum number of copies of padchar to use. The default

is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

: Prints () if the element is nil; this is useful when printing

something that is always supposed to be a list.

@ Inserts padchar on the left rather than the right.�

Examples:

(setq arg ’|elephant|) => |elephant|

(format nil "Look at the ~A!" arg) => "Look at the elephant!"

(format nil "Look at the ~12A!" arg) => "Look at the elephant !"

(format nil "Look at the ~12@A!" arg) =>

"Look at the elephant!"

(format nil "Look at the ~12,3,,’!A" arg) =>

"Look at the elephant!!!!"

�

(setq arg ’()) => NIL

(format nil "Look at the ~10A!" arg) => "Look at the NIL !"

(format nil "Look at the ~10:A!" arg) => "Look at the () !"�

~S

Prints the next element from the args of the format function with slashification

(as by prin1). If you simply specify mincol, as in ~mincolS, format inserts spaces

on the right, if necessary, to make the column width at least mincol. For an expla-

nation of slashification: See the section "What the Printer Produces".

The format is:

Page 782

~mincol,colinc,minpad,padchar:@S

It expects its argument to be a Lisp object.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

colinc Padding characters are inserted colinc characters at a time.

The default is 1.

minpad The minimum number of copies of padchar to use. The default

is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

: Prints () if the element is nil; this is useful when printing

something that is always supposed to be a list.

@ Inserts padchar on the left rather than the right.�

Examples:

(setq arg ’#\b)

(format nil "Print a character: ~S" arg) => "Print a character: #\\b"

�

(setq arg ’|elephant|) => |elephant|

(format nil "Look at the ~S!" arg) => "Look at the |elephant|!"

(format nil "Look at the ~12S!" arg) => "Look at the |elephant| !"

(format nil "Look at the ~12@S!" arg) =>

"Look at the |elephant|!"

(format nil "Look at the ~12,3,,’!S" arg) =>

"Look at the |elephant|!!"

�

(setq arg ’()) => NIL

(format nil "Look at the ~10S!" arg) => "Look at the NIL !"

(format nil "Look at the ~10:S!" arg) => "Look at the () !"�

Format Directives That Operate on Numbers

~D

Prints the next element from the args of the format function in decimal radix.

The arg should be an integer. If it is not, it is printed in ~A format and decimal

base. ~D never puts a decimal point after the integer. If you simply specify mincol,

as in ~mincolD, format inserts spaces on the left, if the number requires fewer

than mincol columns for its digits and sign. If the number does not fit in mincol

columns, additional columns are used as needed.

Page 783

The format is:

~mincol,padchar,commachar:@D

It expects its argument to be an integer. If the argument is not an integer, it is

printed in ~A format and decimal base. Thus, this directive can be used to print

some list structure, showing all fixnums in decimal.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

commachar The character used to separate groups of three digits within

the number. The default is #:|#,|.

: Prints commachar between groups of three digits.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

(setq arg 123456) => 123456

(format nil "~D" arg) => "123456"

(format nil "~12,’~D" arg) => "~~~~~~123456"

(format nil "~12,’~:@D" arg) => "~~~~+123,456"

(format nil "~5,’~:@D" arg) => "+123,456"

�

(setq arg ’(31. 53. 79. 11.)) => (31 53 79 11)

(format nil "~D" arg) => "(31 53 79 11)"

(format nil "~A" arg) => "(31 53 79 11)"�

~B

Prints the next element from the args of the format function in binary radix (base

2). ~B never puts a decimal point after the number nor a #b prefix before the

number. If you simply specify mincol, as in ~mincolB, format inserts spaces on the

left, if the number requires fewer than mincol columns for its digits and sign. If

the number does not fit in mincol columns, additional columns are used as needed.

The format is:

~mincol,padchar,commachar:@B

It expects its argument to be an integer. If the argument is not an integer, it is

printed in ~A format and binary base. Thus, this directive can be used to print

some list structure, showing all integers in binary.

Page 784

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

commachar The character used to separate groups of three digits within

the number. The default is #:|#,|.

: Prints commachar between groups of three digits.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

(setq arg 245) => 245

(format nil "~B" arg) => "11110101"

(format nil "~12,’~B" arg) => "~~~~11110101"

(format nil "~12,’~:@B" arg) => "~+11,110,101"

(format nil "~5,’~:@B" arg) => "+11,110,101"

�

(setq arg ’(31. 53. 79. 11.)) => (31 53 79 11)

(format nil "~B" arg) => "(11111 110101 1001111 1011)"

(format nil "~A" arg) => "(31 53 79 11)"�

~O

Prints the next element from the args of the format function in octal radix (base

8). ~O never puts a decimal point after the number nor a #o prefix before the

number. If you simply specify mincol, as in ~mincolO, format inserts spaces on the

left, if the number requires fewer than mincol columns for its digits and sign. If

the number does not fit in mincol columns, additional columns are used as needed.

The format is:

~mincol,padchar,commachar:@O

It expects its argument to be an integer. If the argument is not an integer, it is

printed in ~A format and octal base. Thus, this directive can be used to print some

list structure, showing all integers in octal.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

Page 785

commachar The character used to separate groups of three digits within

the number. The default is #:|#,|.

: Prints commachar between groups of three digits.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

(setq arg 245) => 245

(format nil "~O" arg) => "365"

(format nil "~12,’~O" arg) => "~~~~~~~~~365"

(format nil "~12,’~:@O" arg) => "~~~~~~~~+365"

(format nil "~2,’~:@O" arg) => "+365"

�

(setq arg ’(31. 53. 79. 11.)) => (31 53 79 11)

(format nil "~O" arg) => "(37 65 117 13)"

(format nil "~A" arg) => "(31 53 79 11)"�

~X

Prints the next element from the args of the format function in hexadecimal radix

(base 16). ~X never puts a decimal point after the number nor a #x prefix before

the number. If you simply specify mincol, as in ~mincolX, format inserts spaces on

the left, if the number requires fewer than mincol columns for its digits and sign.

If the number does not fit in mincol columns, additional columns are used as

needed.

The format is:

~mincol,padchar,commachar:@X

It expects its argument to be an integer. If the argument is not an integer, it is

printed in ~A format and hexadecimal base. Thus, this directive can be used to

print some list structure, showing all integers in hexadecimal.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

commachar The character used to separate groups of three digits within

the number. The default is #:|#,|.

: Prints commachar between groups of three digits.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Page 786

Examples:

(setq arg 1234567890) => 1234567890

(format nil "~X" arg) => "499602D2"

(format nil "~12,’~X" arg) => "~~~~499602D"

(format nil "~12,’~:@X" arg) => "~+49,960,2D2"

(format nil "~5,’~@X" arg) => "+499602D2"

�

(setq arg ’(31. 53. 79. 11.)) => (31 53 79 11)

(format nil "~X" arg) => "(1F 35 4F B)"

(format nil "~A" arg) => "(31 53 79 11)"�

Zetalisp Note: The ~X directive for zl:format prints a space. If you want to out-

put multiple spaces, you can use either a numerical prefix or the V prefix.

For example:

(zl:format nil "~15X") => " "

�

(setq n 15)

(zl:format nil "~VX" n) => " "�

~E

Prints the next element from the args of the format function in exponential nota-

tion. Given the prefixes w, d and e, the argument prints as w characters wide,

filled as follows: appropriate padding on the left, a possible sign, a sequence of

digits containing an embedded decimal point that represents the fractional part of

the argument, an exponent character, a sign, and a sequence of digits representing

the power of ten by which the fraction must be multiplied to properly represent

the rounded value of the argument.

If w, d and e are omitted, the argument is printed using ordinary free-format expo-

nential notation (such as prin1 uses on very small or very large numbers).

The format is:

~w,d,e,k,overflowchar,padchar,exponentchar@E

It expects its argument to be a floating-point number. If the argument is a ra-

tional number, it is coerced to be a floating-point number. If the argument is a

complex number or a non-numeric object, it is printed using the format directive

~wD. This prints the argument as a decimal integer with a field width of w.

w The width of the output field. If w is present, and the argu-

ment is printable within the specified width, then the argu-

ment is printed with enough padding on the left to fill w char-

acters.

If w is present and the argument is not printable within the

specified width, one of two alternatives may occur, depending

on whether overflowchar is specified. If overflowchar is speci-

Page 787

fied, w copies of that character are printed. If overflowchar is

not specified, the argument is printed using as many more

characters as are needed.

If w is not present, the field width is variable. The argument

is printed with no leading pad characters.

d The number of digits to print after the decimal point. The

number of digits printed depends on the scale factor k. If k is

zero, d digits are printed after the decimal point, and a zero

appears before the decimal point if the total field width per-

mits.

If k is either not present or positive, it must be less than d+2.

In this case, k significant digits are printed before the decimal

point and d-k+1 digits are printed after the decimal point.

If k is negative, it must be greater than -d. In this case, a sin-

gle 0 appears before the decimal point if the total field width

permits, and k zeros followed by d+k significant digits are

printed after the decimal point.

e The number of digits to print for the exponent. This is the

power of ten by which the printed fraction must be multiplied

to represent the value of the argument. If e is not present, the

exponent is printed using the smallest number of digits neces-

sary to represent its value.

k A scale factor that interacts with d to determine the format of

the fractional part. The default is 1.

overflowchar A character printed in place of the argument when it is impos-

sible to fit the argument within the specified format.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

exponentchar The character printed to flag the start of the exponent part of

the argument. The default is \#e.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

Page 788

(setq arg 123.456) => 123.456

(format nil "~E" arg) => "123.456"

(format nil "~15,6,2,,’%,’~,’E@E" arg) => "~~+1.234560E+02"

(format nil "~15,6,2,5,’%,’~,’E@E" arg) => "~~+12345.60E-02"

(format nil "~15,6,2,-2,’%,’~,’E@E" arg) => "~~+0.001235E+05"

(format nil "~10,6,2,,’%,’~,’E@E" arg) => "%%%%%%%%%%"

(format nil "~15,8,2,,’%,’~,’E@E" arg) => "+1.23456000E+02"

(format nil "~15,4,2,,’%,’~,’E@E" arg) => "~~~~+1.2346E+02"�

Zetalisp Note: The ~E directive for zl:format has different prefix notation.

The format is:

~n@E

It expects its argument to be a floating-point number. If the element is not a

number, it is printed in ~A format. Note that the prefix parameter n is not mincol;

it is the number of digits of precision desired.

n ~nE rounds the element to a precision of n digits. The mini-

mum value of n is 2, since a decimal point is always printed.�

(setq arg 123.456) => 123.456

(zl:format nil "~3E" 5.) => "5.0e0"

(zl:format nil "~E" arg) => "1.23456e2"

(zl:format nil "~10E" arg) => "1.23456e2"

(zl:format nil "~3E" arg) => "1.23e2"�

~F

Prints the next element from the args of the format function in floating-point for-

mat. Given the prefixes w and d, the argument prints as w characters wide, filled

as follows: appropriate padding on the left, a possible sign, then a sequence of dig-

its containing an embedded decimal point. The sequence of digits represents the

value of the argument multiplied by 10k, rounded to d digits beyond the decimal

point.

If w and d are omitted, the argument is printed using ordinary free-format nota-

tion (such as prin1 uses on smaller numbers).

The format is:

~w,d,k,overflowchar,padchar@F

It expects its argument to be a floating-point number. If the argument is a ra-

tional number, then it is coerced to be a floating-point number. If the argument is

a complex number or a non-numeric object, it is printed using the format directive

~wD. This prints the argument as a decimal integer with a field width of w.

w The width of the output field. If w is present, and the argu-

ment is printable within the specified width, then the argu-

ment is printed with enough padding on the left to fill w char-

acters.

Page 789

If w is present and the argument is not printable within the

specified width, one of two alternatives may occur, depending

on whether overflowchar is specified. If overflowchar is speci-

fied, w copies of that character are printed. If overflowchar is

not specified, the argument is printed using as many more

characters as are needed.

If w is not present, the field width is variable. The argument

is printed with no leading pad characters.

d The number of digits to print after the decimal point. If d is

omitted, as many digits as possible are printed after the deci-

mal point, subject to the width w and the constraint that no

trailing zeroes may appear in the fraction.

k A scale factor used to adjust the argument by factors of ten.

The argument is multiplied by 10k. The default is 0.

overflowchar A character printed in place of the argument when it is impos-

sible to fit the argument within the specified format.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

(setq arg 123.456) => 123.456

(format nil "~F" arg) => "123.456"

(format nil "~12,4,,’%,’~F" arg) => "~~~~123.4560"

(format nil "~12,4,2,’%,’~F" arg) => "~~12345.6001"

(format nil "~8,4,,’%,’~F" arg) => "123.4560"

(format nil "~12,6,,’%,’~F" arg) => "~~123.456000"

(format nil "~10,2,,’%,’~F" arg) => "~~~123.46"�

Zetalisp Note: The ~F directive for zl:format has different prefix notation.

The format is:

~n@F

It expects its argument to be a floating-point number. If the element is not a

number, it is printed in ~A format. Note that the prefix parameter n is not mincol;

it is the number of digits of precision desired.

n ~nF rounds the element to a precision of n digits. The mini-

mum value of n is 2, since a decimal point is always printed. If

the magnitude of the element is too large or too small, it is

printed in exponential notation.�

Page 790

(setq arg 123.456) => 123.456

(zl:format nil "~3F" 5) => "5.0"

(zl:format nil "~F" arg) => "123.456"

(zl:format nil "~4F" arg) => "123.5"

(zl:format nil "~8F" arg) => "123.456"

(zl:format nil "~3F" 1e10) => "1.0e10"�

~$

Prints the next element from the args of the format function in fixed-format float-

ing-point notation for dollars and cents.

The format is:

~rdig,ldig,field,padchar:@$

It expects its argument to be a floating-point number. If the argument is not a

floating-point number, it is printed using the format directive ~fieldD. This prints

the argument as a decimal integer with a field width of field.

rdig The number of digits to be printed after the decimal point.

The default is 2.

ldig The minimum number of digits to be printed before the deci-

mal point. The default is 1.

field The full width of the field to print in. The field is padded to

the left with padchar if the number of characters output is

less than field. The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

: Prints the sign character at the beginning of the field, before

the padding, rather than just to the left of the number.

@ Always prints the sign of the number. The default is to print

it only if the number is negative.�

Examples:

(setq n 1459.32)

(format nil "The amount is $~$" n) =>

"The amount is $1459.32"

(format nil "The amount is $~,2,16:@$" n) =>

"The amount is $+ 1459.32"

(format nil "The amount is $~,,16,’x$" n) =>

"The amount is $xxxxxxxx+1459.32"�

Page 791

~G

Prints the next element from the args of the format function in either fixed-

format or exponential floating-point notation using either the ~E or the ~F format

directive.

Whether ~E or ~F will be used is determined by the magnitude of the argument

and the number of digits to print after the decimal point. Let n be an integer such

that 10n-1 ≤ arg < 10n. If arg is zero, let n be 0. Let dd be d - n. If d is omitted,

let q be the number of digits needed to print arg with no loss of information and

without leading or trailing zeros. Then let d be (max q (min n 7)). If 0 ≤ dd < d,

~F is used, otherwise the ~E format directive is used.

When the ~F format directive is used, the format is:

~ww,dd,,overflowchar,padchar@F~ee@T

where ee is e + 2 (or 4 if e is omitted) and ww is w - ee. Note that the scale factor

k is not passed to ~F. Also note that ee spaces are printed after the number. The

@ modifier is passed to ~F only if one was specified in the ~G directive.

When the ~E format directive is used, the format is:

~w,d,e,k,overflowchar,padchar,exponentchar@E

The @ modifier is passed to ~E only if one was specified in the ~G directive.

The format for the ~G format directive is:

~w,d,e,k,overflowchar,padchar,exponentchar@G

It expects its argument to be a floating-point number. If the argument is a ra-

tional number, it is coerced to be a floating-point number. If the argument is a

complex number or a non-numeric object, it is printed using the format directive

~wD. This prints the argument as a decimal integer with a field width of w.

For an explanation of the arguments, see the appropriate format directive. See the

section "~F". See the section "~E".

Examples:

(setq arg1 123.456) => 123.456

(setq arg2 1234567890.123) => 1.234568e9

(format nil "~G" arg1) => "123.456 "

(format nil "~G" arg2) => "1.234568e+9"

(format nil "~15,6,2,,’%,’~,’E@G" arg1) => "~~~+123.456 "

(format nil "~15,6,2,,’%,’~,’E@G" arg2) => "~~+1.234568E+09"

(format nil "~15,6,2,5,’%,’~,’E@G" arg1) => "~~~+123.456 "

(format nil "~15,6,2,5,’%,’~,’E@G" arg2) => "~~+12345.68E+05"�

Zetalisp Note: The ~G directive for zl:format performs a different function.

In Zetalisp, ~G "goes to" the nth argument. Directives following this one corre-

spond to the sequence of arguments following the argument that is the target of

~G. Inside a ~{ directive, the "goto" is relative to the list of arguments being pro-

cessed by the iteration. This is an absolute goto. For a relative goto: See the sec-

tion "~*".

Page 792

The format is:

~nG

It takes no arguments.

n ~nG branches to the nth element in the argument list. For ex-

ample, ~0G goes back to the first argument in the args of the

format function.�

~R

Prints the next element from the args of the format function in a specified radix,

or as a number in special format. When radix is specified, prints the argument in

radix. If there are no prefixes, prints the argument as a cardinal English number

(for example, four).

The format is:

~radix,mincol,padchar,commachar:@R

It expects its argument to be an integer.

radix The base to use for printing the argument.

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

commachar The character used to separate groups of three digits within

the number. The default is #:|#,|.

: Prints the sign character at the beginning of the field, before

the padding, rather than just to the left of the number. When

no prefixes are given, prints as an ordinal number (for exam-

ple, fourth).

@ Always prints the sign of the number. The default is to print

it only if the number is negative. When no prefixes are given,

prints as a Roman numeral (for example, IV).

:@ Performs both the : and @ operations. When no prefixes are

given, prints as an old Roman numeral (for example, IIII).�

Examples:

Page 793

(format nil "~R" 14) => "fourteen"

(format nil "~@R" 14) => "XIV"

(format nil "~3R" 14) => "112"

(format nil "~8,5,’~R" 14) => "~~~16"

(format nil "~8,5,’~:@R" 1400) => "+2,570"�

~P

Prints the non-directive text immediately preceding ~P in the control-string either

singular or plural depending on whether the next element from the args of the

format function is 1 or not. If the next element in the args of the format function

is not 1, a lowercase "s" is output.

The format is:

~:@P

It expects its argument to be an integer.

: Prints a possible "s" after backing up one element in the argu-

ment list. That is, prints a lowercase "s" if the previous argu-

ment is not 1.

@ Prints a lowercase "y" if the next argument is 1 or "ies" if it is

not.

:@ Prints a possible "y" after backing up one element in the argu-

ment list. That is, prints a lowercase "y" if the previous ele-

ment in the list of arguments is 1 or "ies" if it is not.�

Examples:

(format nil "We have ~D dog~:P" 1) => "We have 1 dog"

(format nil "We have ~D dog~:P" 5) => "We have 5 dogs"

(format nil "We have ~D pupp~:@P" 1) => "We have 1 puppy"

(format nil "We have ~D pupp~:@P" 5) => "We have 5 puppies"�

Format Directives That Operate on Characters

~C

Prints the next element from the args of the format function as a character ob-

ject. The argument is treated as a keyboard character and thus can contain extra

modifier bits. The constants char-control-bit, char-meta-bit, char-hyper-bit, char-

super-bit, and char-bits return the modifier bits for characters. The modifier bits

are printed first, represented as appropriate prefixes: c- for Control, m- for Meta,

c-m- for Control plus Meta, h- for Hyper, s- for Super. If the character is not a

keyboard character but a mouse character, it is printed as Mouse-, the name of the

button, -, and the number of clicks.

Page 794

The format is:

~:@C

It expects its argument to be a character object.

: Spells out the names of the modifier bits (for example, Con-

trol-Meta-F), and represent non-printing characters by their

names (for example, RETURN) rather than as objects.

@ Prints the character in such a way that the Lisp reader can

understand it, using "#/" or "#\".

:@ Prints the colon-only format, and if the SYMBOL or another spe-

cial key is required to type it, this fact is mentioned (for ex-

ample, SYMBOL-l). This is the format used in prompt messages,

for instance, to tell the user about a key he or she is expected

to press.�

Examples:

Character ~C ~:C ~@C ~:@C

�

#\a a a #\\a a

#\Return Does it Return #\\Return Return

#\Mouse-L Mouse-L Mouse-Left #\\Mouse-Left Mouse-Left

#\Control-D c-D Control-D #\\c-D Control-D

#\Center-Dot ⋅ Center-Dot #\\Center-Dot Center-Dot (Symbol-’)

�

(format nil "The character ~:@C is normal." #\F) =>

"The character F is normal."

(format nil "The character ~:@C is strange." #o0) =>

"The character Center-Dot (Symbol-’) is strange."

(format nil "Type ~:C to ~A"

 (set-char-bit #\D :control t)

 "delete all your files") =>

"Type Control-D to delete all your files"�

~◊

Prints the name of the next element from the args of the format function inside a

lozenge. The ~C directive does this with some characters, but ~◊ does it with all of

them. If the stream does not support drawing a lozenge, it will enclose the charac-

ter within angle brackets. This format directive is a Symbolics extension to Com-

mon Lisp.

The format is:

~◊

It expects its argument to be a character object.

Page 795

Examples:

(format nil "Press ~◊ when ready." #\Return) =>

"Press <Return> when ready."

(format nil "Type ~◊ to continue." #\y) =>

"Type <y> to continue."�

Format Directives That Operate on Whitespace

~T

Spaces over to a given column in units of characters. If you simply specify colnum,

as in ~colnumT, output colnum spaces. If you specify colnum and colinc, as in ~col-

num,colincT, prints enough spaces to move the cursor to column colnum, or if the

cursor is already past colnum, output enough spaces to move the cursor to the

next tab stop beyond colnum.

Note: This operation works properly only on streams that support the :read-

cursorpos and :set-cursorpos stream operations. On other streams, any ~T opera-

tion simply outputs two spaces.

The format is:

~colnum,colinc:@T

It takes no arguments.

colnum Outputs sufficient spaces to move the cursor to colnum. The

default is 1.

colinc If the cursor is at or beyond colnum, output the smallest posi-

tive number of spaces necessary to move the cursor to a col-

umn that is a multiple of colinc. If you wish the cursor not to

move if you are beyond colnum, set colinc to 0. The default is

1.

: Outputs spaces in units of pixels.

@ Performs relative tabulation. ~colnum,colinc@T outputs colnum

spaces, then outputss the smallest positive number of spaces

necessary to move the cursor to a column that is a multiple of

colinc. If the current output column cannot be determined, col-

inc is ignored and exactly colnum spaces are output.�

Examples:

(format nil "!~3T!") => "! !"

(format nil "!~5,8T!") => "! !"

(format nil "!~5,8@T!") => "! !"

(format nil "!~1,0T!") => "!!"

(format nil "!~20,0T!") => "! !"�

Page 796

~|

Outputs a page separator character (#:|#PAGE|). ~n| outputs n page characters.

The format is:

~n:|

It takes no arguments.

: If the output stream supports the :clear-screen operation this

directive clears the screen; otherwise it outputs page separator

character(s) as if no : modifier were present.�

Examples:

(format t

 "This is the end of one page. ~| And the start of another.") =>

This is the end of one page. And the start of another.

NIL�

~%

Outputs a #\Newline character (carriage return plus line feed). ~n% outputs n

newlines. Simply putting a Newline in the control string would work, but ~% is

usually used because it makes the control string look nicer in the Lisp source pro-

gram.

The format is:

~n%

It takes no arguments.

Examples:

(format nil

 "This is the end of one line. ~2% And the start of another.") =>

"This is the end of one line.

�

 And the start of another."�

~&

Performs a fresh-line operation on the output stream. Unless the stream knows

that it is already at the beginning of a line, this outputs a #\Newline character.

~n& does a fresh-line operation and then outputs n-1 more #\Newline characters.

The format is:

~n&

It takes no arguments.

Examples:

Page 797

(format t

 "This is the start of a line.") => This is the start of a line.

NIL

(format t "~&This is the start of a line.") =>

This is the start of a line.

NIL�

~<Newline>

Ignores the Newline character and any whitespace at the beginning of the next

line. This directive is typically used when a format control string is too long to fit

nicely into one line of the program.

The format is:

~:@<Newline>

It takes no arguments.

: Preserves the following whitespace.

@ Preserves the following newline.

:@ Preserves both the following Newline and whitespace. This

modifier instruction is a Symbolics extension to Common Lisp.�

Examples:

(format nil "This is the ~

 start of a line.") => "This is the start of a line."

(format nil "This is the ~:

 start of a line.") => "This is the start of a line."

(format nil "This is the ~@

 start of a line.") => "This is the

start of a line."

(format nil "This is the ~:@

 start of a line.") => "This is the

 start of a line."�

Special Purpose Format Directives

~~

Outputs a tilde. Since a tilde introduces a directive, ~~ must be used when you

want to output a tilde character. ~n~ outputs n tildes.

The format is:

~n~

It takes no arguments.

Page 798

Examples:

(format nil "~~Hello~~") => "~Hello~"�

~*

Ignores the next element in the args of the format function. This is a "relative

branch". ~n* ignores the next n arguments. ~n@* branches to the nth argument (0

is the first). This is an "absolute branch". Within the ~{ format directive, the

branch (in either direction) is relative to the list of arguments being processed by

the iteration.

The format is:

~n:@*

It takes no arguments.

: "Ignores backwards"; that is, backs up in the list of arguments

so that the argument last processed processed again. ~n:*

backs up n arguments.

@ Goes back to the first argument in the args of the format

function. Directives after a ~n@* take sequential arguments af-

ter the one that is the target of the branch.�

Examples:

(format nil

 "Pick the second arg and print it: ~* ~S"

 ’foo ’bar) =>

"Pick the second arg and print it: BAR"

(format nil

 "Print the first arg then print it again: ~S~:* ~S"

 ’foo ’bar) =>

"Print the first arg then print it again: FOO FOO"

(format nil

 "Print the first arg, the second arg, then print the ~@

 first again: ~S ~S~@* ~S" ’foo ’bar) =>

"Print the first arg, the second arg, then print the

first again: FOO BAR FOO"�

~^

Terminates the immediately enclosing ~{ or ~< format directives if no more argu-

ments remain to be processed. If there is no such enclosing directive, terminates

the entire formatting operation. In the ~< case, the formatting is performed, but

no more segments are processed before doing the justification. The ~^ should ap-

pear only at the beginning of a ~< formatting clause, because it aborts the entire

clause. ~^ can appear anywhere in a ~{ formatting clause.

Page 799

If ~^ is used within a ~:{ clause, it merely terminates the current iteration step

(because in the standard case it tests for remaining arguments of the current step

only); the next iteration step commences immediately. To terminate the entire iter-

ation process, use ~:^.

When prefixes are used, not all of the prefix parameters should be constants; at

least one of them should be a # or a V parameter.

The format is:

~n,m,p:^

It takes no arguments.

n Terminates the loop only if n is zero.

n,m Terminates the loop only if n = m.

n,m,p Terminates the loop only if n ≤ m ≤ p.

: Within an ~:{...~} construct, terminates the entire iteration

process.�

Examples:

(setq donestr "Done.~^ ~D warning~:P.~^ ~D error~:P.")

(format nil donestr) => "Done."

(format nil donestr 3) => "Done. 3 warnings."

(format nil donestr 1 5) => "Done. 1 warning. 5 errors."�

~Q

Escapes to arbitrary user-supplied code. Use this directive when you want to call a

function, but do not want to output its returned value. arg is called as a function;

its arguments are the prefix parameters to ~Q, if any. args can also be passed to

the function by using the V prefix parameter. Note that if you use the V prefix

parameter, the V is processed before the Q, so the arguments are reversed. The

called function can output to *standard-output* and can look at the variables

format:colon-flag and format:atsign-flag, which are t or nil, to reflect the : and

@ modifiers of the ~Q. The value return by the called function is discarded, so the

only way output may be seen is if it is a side effect. This format directive is a

Symbolics extension to Common Lisp.

The format is:

~nQ

It expects its argument to be a function.

Examples:

(format t "~VQ" 1 ’tan)

(format t "~1Q" ’tan)�

are equivalent to saying

Page 800

(funcall tan 1)�

and discarding the value.

~?

Substitutes the next element in args of the format function as control-string, and

the element after it as the list of arguments. control-string is processed as the new

format control string, with the elements of the list following it as the correspond-

ing arguments. The processing of the format string containing ~? resumes when

the processing of ~?’s string is finished. This directive allows nested

control-strings.

The format is:

~@?

It expects its argument to be a string followed by a list.

@ The next element in args must be a string; it is processed as

part of the main format string, as if it were substituted for the

~@? directive.�

Examples:

(format nil "~? ~D" "<~A ~D>" ’("Myname" 50.) 7) => "<Myname 50> 7"

(format nil "~@? ~D" "<~A ~D>" "Myname" 50. 7) => "<Myname 50> 7"�

~[str~]

Provides a set of alternative control strings. The alternatives (called clauses) are

separated by ~; and the construct is terminated by ~]. ~] is only used in this con-

struct. ~; is also used as a separator in the justification (~<) construct but is used

in no other construct.

For example:

"~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~

 ~;Tiger ~]kitty"�

Where arg is the next element from the args of the format function, the argth al-

ternative is selected; 0 selects the first. If a prefix parameter is given (that is,

~n[), then the parameter is used instead of an argument (this is useful only if the

parameter is "#", which dispatches on the number of arguments left to be pro-

cessed). If arg is out of range, no alternative is selected. After the selected alter-

native has been processed, the control string continues beyond the ~].

The format is:

~:@[str0~;str1~;...~;strn~:;default~]

It expects its argument to be an integer.

~; Separates the clauses.

Page 801

~:;default The default clause. If the last ~; used to separate clauses is in-

stead ~:;, then the last clause is an "else" clause, which is pro-

cessed if no other clause is selected.

~[~a1,b1,...;str1~a2,b2,...;str2...~]

Matches tags to the clause that follows them. The prefixes to

each ~; are numeric tags for the clause that follows it.

Whichever clause has a tag matching the argument is pro-

cessed.

~[~a1,a2,b1,b2,...:;str1...]

Matches a range of values, a1 through a2 (inclusive), b1

through b2, and so on, to the clause that follows them.

Whichever clause matches the argument within its range of

values is processed. ~:; with no parameters can be used at the

end to denote a default clause.

~:[false~;true~] Selects the false control string if arg is nil, and selects the

true control string otherwise.

~@[true~] Tests the argument. If the argument is not nil, then it is not

used up, but is the next one to be processed. If the argument

is nil, then it is discarded, and the clause is not processed.

Dispatches the string on the number of arguments left. This is

useful, for example, in dealing with English conventions for

printing lists. See the function format-textual-list.�

Examples:

(setq arg1 0)

(setq arg2 7)

(format nil "We have a ~[Siamese ~;Manx ~;Persian ~;Tiger ~

 ~:;Bad ~]kitty." arg1) => "We have a Siamese kitty."

(format nil "We have a ~[Siamese ~;Manx ~;Persian ~;Tiger ~

 ~:;bad ~]kitty." arg2) => "We have a bad kitty."

�

(setq arg 3)

(format nil "There ~[~1;was~2;is~3;will be~:;will have been~] ~

 a mess." arg) => "There will be a mess."

(format nil "There ~[~0,2:;was~3,5:;is~6,8;will be~

 ~:;will have been~] a mess." arg) => "There is a mess."

�

(setq *print-level* nil *print-length* 5)

(format nil "~:[*PRINT-LEVEL* is defaulted~; *PRINT-LEVEL*=~D~]"

 print-level) => " *PRINT-LEVEL* is defaulted"

(format nil "~@[*PRINT-LEVEL*=~D~]~@[*PRINT-LENGTH*=~D~]"

 print-level *print-length*) => " *PRINT-LENGTH*=5"

Page 802

�

(setq foo "Items:~#[none~; ~S~; ~S and ~S~

 ~:;~@{~#[~1; and~] ~S~^,~}~].")

(format nil foo) => "Items: none."

(format nil foo ’foo) => "Items: FOO."

(format nil foo ’foo ’bar) => "Items: FOO and BAR."

(format nil foo ’foo ’bar ’baz) => "Items: FOO, BAR, and BAZ."

(format nil foo ’foo ’bar ’baz ’quux) =>

"Items: FOO, BAR, BAZ, and QUUX."�

~{str~}

Provides an iteration mechanism. The corresponding argument of the format func-

tion should be a list, which is used as a set of arguments, as if for a recursive call

to format. The terminator ~} is only used in this construct.

The string str is used repeatedly as the control string. Each iteration can absorb

as many elements of the list as it likes; if str uses up two arguments by itself, two

elements of the list are used up each time around the loop.

If, before any iteration step, the list is empty, the iteration is terminated. Also, if

a prefix parameter n is given, there are, at most, n repetitions of processing str.

If str is empty, an argument is used as str. It must be a string and must precede

any arguments processed by the iteration. For example, the following are equiva-

lent:

(apply #’format stream string args)

(format stream "~1{~:}" string args)�

This uses string as a formatting string. The ~1{ says to process it at most once,

and the ~:} says to process it at least once. Therefore it is processed exactly once,

using args as the arguments.

The format is:

~n:@{str~:}

It expects its argument to be a list of items.

n Performs, at most, n repetitions.

: Performs iteration on a list of sublists. At each repetition step,

one sublist is used as the set of arguments to str; on the next

repetition a new sublist is used, whether or not all of the last

sublist has been processed.

@ Performs iteration on the remaining elements in the argu-

ments list. At each repetition step, the next element is used

for an argument to str.

:@ Performs iteration on the remaining elements in the argu-

ments list, each of which should be a list. At each repetition

step, the next argument is used as a list of arguments to str.

Page 803

~:} Forces str to be processed at least once even if the initial list

of arguments is null (however, do not override an explicit pre-

fix parameter of zero).�

Examples:

(format nil "Here it is:~{ ~S~}." ’(a b c)) =>

"Here it is: A B C."

�

(format nil "Pairs of things:~{ <~S,~S>~}."

 ’(a 1 b 2 c 3)) =>

"Pairs of things: <A,1> <B,2> <C,3>."

(format nil "Pairs of things:~:{ <~S,~S>~}."

 ’((a 1) (b 2) (c 3))) =>

"Pairs of things: <A,1> <B,2> <C,3>."

(format nil "Pairs of things:~@{ <~S,~S>~}."

 ’a 1 ’b 2 ’c 3) =>

"Pairs of things: <A,1> <B,2> <C,3>."

(format nil "Pairs of things:~:@{ <~S,~S>~}."

 ’(a 1) ’(b 2) ’(c 3)) =>

"Pairs of things: <A,1> <B,2> <C,3>."�

As another example, the format function itself uses format:format-error to signal

error messages, which in turn uses zl:ferror, which uses format recursively.

format:format-error takes a string and arguments, like format, but also prints

some additional information: if the control string in ctl-string actually is a string

(it might be a list), it prints the string and a small arrow showing where, in the

processing of the control string, the error occurred. The variable ctl-index points

one character after the place of the error.

(defun format-error (string &rest args)

 (if (stringp ctl-string)

 (ferror nil "~1{~:}~%~VT↓~%~3X/"~A/"~%"

 string args (+ ctl-index 3) ctl-string)

 (ferror nil "~1{~:}" string args)))�

This first processes the given string and arguments using ~1{~:}, then tabs a vari-

able amount for printing the down-arrow, then prints the control string between

double-quotes. The effect is something like this:

(format t "The item is a ~[Foo~;Bar~;Loser~]." ’quux)

>>ERROR: The argument to the FORMAT "~[" command

 must be a number

 ↓

 "The item is a ~[Foo~;Bar~;Loser~]."�

~<str~>

Justifies str within a field at least mincol wide. The next argument in args of the

format function must be a string. The terminator ~> is only used in this con-

struct.

Page 804

With no modifiers, the leftmost text segment is left justified in the field, and the

rightmost text segment right justified. If there is only one segment, as a special

case, it is right justified.

Note that str can include format directives. One of the examples illustrates how

the ~< directive can be combined with the ~f directive to provide more advanced

control over the formatting of numbers. Another example illustrates the use of ~^

within a ~< construct. ~^ eliminates the segment in which it appears and all fol-

lowing segments if there are no more arguments. If a segment contains a ~^ and

format runs out of arguments, it stops there instead of getting an error, and that

segment, as well as the rest of the segments, is ignored.

If the first clause of a ~< is terminated with ~:; instead of ~;, it is used in a spe-

cial way. The first clause is ignored in performing the spacing and padding. When

the padded result has been determined, if it will fit on the current line of output,

it is output, and the text for the first clause is discarded. If, however, the padded

text will not fit on the current line, the text segment for the first clause is output

before the padded text. The first clause should contain a carriage return (~%). The

first clause is always processed, and so any arguments to which it refers are used;

the decision is whether to use the resulting segment of text, not whether to pro-

cess the first clause.

If the ~:; has a prefix parameter n, the padded text must fit on the current line

with n character positions to spare, to avoid overprinting the first clause’s text.

For example, the following control string can be used to print a list of items sepa-

rated by commas, without breaking items over line boundaries, and beginning each

line with ";; ".

"~%;; ~{~<~%;; ~1:; ~S~>~^,~}.~%"�

The prefix parameter 1 in ~1:; accounts for the width of the comma that follows

the justified item if it is not the last element in the list, or the period if it is. If

~:; has a second prefix parameter, it specifies the width of the line, overriding the

natural line width of the output stream. To make the preceding example use a line

width of 50, you would write:

"~%;; ~{~<~%;; ~1,50:; ~S~>~^,~}.~%"�

If the second parameter is not specified, format sees whether the stream handles

the :size-in-characters message. If it does, format sends that message and uses

the first returned value as the line width in characters. If it does not, format uses

72 as the line width.

Rather than using this complicated syntax, you can often use either format:print-

list, or format-textual-list. See the function format:print-list. See the function

format-textual-list.

The format is:

~mincol,colinc,minpad,padchar<str~;str~>

It expects its argument to be a list of items.

Page 805

mincol The total output width is at least mincol, filled out by padchar.

The default is 0.

colinc Padding characters are inserted colinc characters at a time.

The default is 1.

minpad The minimum number of copies of padchar to use between

each segment. The default is 0.

padchar The character used for padding the field, if the field is wider

than the object to be printed. This character should be speci-

fied by using an quote (’) followed by the padding character.

The default is the #\space character.

~; Separates the strings into segments. Any spacing is evenly di-

vided between the text segments.

~:; The first clause is ignored in performing the spacing and

padding. When the padded result has been determined, if it

will fit on the current line of output, it is output, and the text

for the first clause is discarded. If, however, the padded text

will not fit on the current line, the text segment for the first

clause is output before the padded text. The first clause should

contain a carriage return (~%). The first clause is always pro-

cessed, and so any arguments to which it refers are used; the

decision is whether to use the resulting segment of text, not

whether to process the first clause.

: Adds spacing before the text segments.

@ Adds spacing after the last text segment.

:@ Divides spacing evenly before the first segment, between each

segment, and after the last segment. �

Examples:

(format nil "~12<foo~;bar~>") => "foo bar"

(format nil "~12:<foo~;bar~>") => " foo bar"

(format nil "~12:@<foo~;bar~>") => " foo bar "

(format nil "~12<foobar~>") => " foobar"

(format nil "~12:<foobar~>") => " foobar"

(format nil "~12@<foobar~>") => "foobar "

(format nil "~12:@<foobar~>") => " foobar "

(format nil "$~10,,,’*<~4f~>" 2.59023) => "$******2.59"

�

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo)

=> " FOO"

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo ’bar)

=> "FOO BAR"

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo ’bar ’baz)

=> "FOO BAR BAZ"

Page 806

�

(format nil "~%;; ~{~<~%;; ~1,50:;~S~>~^, ~}.~%"

 ’(june july august september october november december)) =>

"

;; JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER,

;; NOVEMBER, DECEMBER.

"�

~→str~←

Indents str at the cursor position that is current at the time of the ~→. The next

argument in args of the format function must be a string. The terminator ~← is

only used in this construct. ~→ and ~← can be nested like ~[~] and ~<~>; if they

are nested, the indentation of an inner pair is relative to the margin set by the

pair containing it. A numeric argument, if supplied, specifies how far to indent.

This directive is especially useful in making error messages indent properly. This

format directive is a Symbolics extension to Common Lisp.

The format is:

~n~→str~←

It expects its argument to be a string.

Examples:

(format t "~&Error: ~→~A~←" "File not found

for FOO.LISP.1")

Error: File not found

for FOO.LISP.1�

~(str~)

Formats a string in appropriate case. With no prefixes, every uppercase character

is mapped to the corresponding lowercase character. The ~(directive must be

matched by a corresponding ~) directive.

The format is:

~:@(str~)

It expects its argument to be a string.

: Capitalizes all words (like string-capitalize).

@ Capitalizes the first word and force the rest to lowercase.

:@ Converts every lowercase character to the corresponding upper-

case character.�

Examples:

Page 807

(format nil "~(~S~)" "fOo BaR") => "\"foo bar\""

(format nil "~:(~S~)" "fOo BaR") => "\"Foo Bar\""

(format nil "~@(~S~)" "fOo BaR") => "\"Foo bar\""

(format nil "~:@(~S~)" "fOo BaR") => "\"FOO BAR\""�

~⊂str~⊃

Formats str in a specified character style. The character style can be specified as a

prefix parameter to the directive, as in ~character-style⊂str~⊃, or as an argument,

using V (as explained below). See the section "Character Styles". The ~⊂ directive

must be matched by a corresponding ~⊃ directive, which is only used in this con-

struct. This format directive is a Symbolics extension to Common Lisp.

You can supply the character style parameter in the format control string as a sin-

gle character, as in ~’i⊂...~⊃. In that case, the character should be one of the

following:

’i :italic

’b :bold

’p :bold-italic

’r :roman�

You can also have the character style parameter taken as an argument, using

~V⊂...~⊃. In that case, it may be a character style face code, like :italic; or else

something acceptable to si:parse-character-style, such as a list like (:fix :italic�

nil) or an actual character style object. See the section "Character Styles".

The format is:

~:⊂str~⊃

It expects its argument to be a string.

: ~:⊂...~⊃ binds the line-height of the output stream. See the

function with-character-style.�

Examples:

(format nil "Moose bites can be ~’i⊂very~⊃ nasty, mind you.") =>

"Moose bites can be very nasty, mind you."

(format nil "Half the square root of ~’i⊂two~⊃ is ~v⊂~s~⊃."

’(:fix :bold :normal) (sind 45)) =>

"Half the square root of two is 0.7071068."�

~\\quoted-string\\

Prints a quoted string. The modifiers work as follows: A colon prints the quotes

only if they are needed for the current readtable, and an at-sign uses a vertical

bar (|) instead of a double-quote (") for quoting. For example:

Page 808

(format t "~{~%~\\quoted-string\\ ~:\\quoted-string\\ ~

 ~@\\quoted-string\\ ~:@\\quoted-string\\~}~%"

 ’("foo" "foo" "foo" "foo" "foo bar" "foo bar" "foo bar" "foo bar"))

"foo" foo |foo| foo

"foo bar" "foo bar" |foo bar| |foo bar|�

~\\date\\

Prints its argument as a date and time, assuming the argument is a universal

time. Writes the date out in words. It uses the function time:print-universal-date.

(format nil "Today is ~\\date\\" (time:get-universal-time)) =>

"Today is Friday the twenty-sixth of September, 1986; 5:56:19 pm"�

~\\time\\

Prints its argument as a date and time, assuming the argument is a universal

time. Writes the date in short form. It uses the function

time:print-universal-time.

(format nil "Today is ~\\time\\" (time:get-universal-time)) =>

"Today is 9/26/86 17:58:05"�

~\\datime\\

Prints the current date and time of day. It does not take an argument. It uses the

function time:print-current-time.

(format nil "Today is ~\\datime\\") => "Today is 9/26/86 17:59:56"�

~\\time-interval\\

Prints the length of a time interval. It uses the function time:print-interval-or-

never.

(setq a (time:get-universal-time))

...

(format nil "It is ~\\time-interval\\ since I set this variable"

 (- (time:get-universal-time) a)) =>

"It is 3 days 7 minutes 18 seconds since I set this variable"�

~\\presentation\\

Prints its argument via present. An object’s presentation can define how it is

printed, and this may be more readable than (write object :escape nil). If so,

~\\presentation\\ is a better choice than ~A. The presentation type can also affect

the object’s mouse sensitivity. See the section "Presentation Substrate Facilities".

Page 809

The format is:

~@\\presentation\\

It expects its argument to be a Lisp object suitable for present.

@ Prints the object using the presentation type specified as the

next element in the list of arguments.�

Examples:

(format nil "~\\presentation\\" ’(a b c)) => "(A B C)"

(format nil "~@\\presentation\\"

 ’(a b c) ’((sequence sys:expression))) => "A, B, and C"�

Functions Related to format

format:defformat directive (arg-type) arglist &body body

Defines a new format directive.

format:print-list destination element-format-string list &optional (separator-format-

string ", ") (start-line-format-string " ") (tilde-brace-options "")

Provides a simpler interface for the specific purpose of print-

ing comma-separated lists where no element from the list is

broken at the end of a line.

sys:with-indentation (stream-var relative-indentation) &body body

Within the body of sys:with-indentation, any output to stream-

var is preceded by a number of spaces. At every recursion, the

additional indentation is specified by relative-indentation.

Streams

Introduction to Streams

Many programs accept input characters and produce output characters. Methods

for performing input and output vary greatly from one device to another. Programs

should be able to use any device available without each program having to know

about each device.

The concept of streams solves this problem. A stream is a source and/or sink of

data. A set of operations is available with every stream; operations include such ac-

tions as "output a character" and "input a character". The way to perform an oper-

ation to a stream is the same for all streams, although what happens inside a

stream depends on the kind of stream it is. Thus a program needs to know only

how to deal with streams in general.

In Genera, streams are implemented as flavors. You can operate on a stream by

using generic functions or by sending it messages, depending on what type of oper-

Page 810

ations the stream supports. Flavors, generic functions, and message-passing are de-

scribed elsewhere: See the section "Flavors".

Some streams can do only input, some only output, and some can do both. Some

streams support only some operations; however, unsupported operations might

work, although slowly, because the sys:stream-default-handler can handle them.

An operation called :which-operations returns a list of the names of all operations

that are supported "natively" by a stream. (All streams support :which-operations,

so it might not be in the list itself.)

Types of Streams

In addition to the streams documented in this chapter, Genera supports hardcopy

streams, which are documented elsewhere.

See the section "Hardcopy Streams".

Standard Common Lisp Streams

Several variables whose values are streams are used by many functions in the Lisp

system. By convention, variables that are expected to hold a stream capable of in-

put have names ending with -input. Similarly, variables expected to hold a stream

capable of output have names ending with -output. Those expected to hold a bidi-

rectional stream have names ending with -io.

The variables *standard-input*, *standard-output*, *error-output*, *trace-

output*, *query-io*, and *debug-io* are initially bound to synonym streams that

pass all operations on to the stream that is the value of *terminal-io*. Thus any

operation performed on those streams goes to the terminal.

No user program should ever change the value of *terminal-io*. For example, a

program to divert output to a file should do so by binding the value of *standard-

output*; that way, error messages sent to *error-output* can still get to the user

by going through *terminal-io*, which is usually what is desired.

standard-input In the normal Lisp top-level loop, input is read from whatever

stream is the value of *standard-input*.

standard-output In the normal Lisp top-level loop, output is sent to whatever

stream is the value of *standard-output*.

error-output A stream to which error messages should be sent.

terminal-io The stream that connects to the user’s console.

query-io A stream to be used when asking questions of the user.

debug-io A stream to be used for interactive debugging purposes.

trace-output The stream on which the trace function prints its output.

Standard Zetalisp Streams

Page 811

The variables zl:standard-input, zl:standard-output, zl:error-output, zl:trace-

output, and zl:query-io are initially bound to synonym streams that pass all opera-

tions on to the stream that is the value of zl:terminal-io. Thus any operation per-

formed on those streams goes to the terminal.

These variables are synonyms for the Common Lisp variables with similar names.

For example, zl:standard-input is a synonym for *standard-input*. When writing

new programs, you should use the Common Lisp variables instead of the Zetalisp

variables.

zl:standard-input In your new programs, we recommend that you use the vari-

able *standard-input* which is the Common Lisp equivalent of

zl:standard-input.

zl:standard-output

In your new programs, we recommend that you use the vari-

able *standard-output* which is the Common Lisp equivalent

of zl:standard-output.

zl:error-output In your new programs, we recommend that you use the vari-

able *error-output* which is the Common Lisp equivalent of

zl:error-output.

zl:query-io In your new programs, we recommend that you use the vari-

able *query-io* which is the Common Lisp equivalent of

zl:query-io.

zl:terminal-io In your new programs, we recommend that you use the vari-

able *terminal-io* which is the Common Lisp equivalent of

zl:terminal-io.

zl:trace-output In your new programs, we recommend that you use the vari-

able *trace-output* which is the Common Lisp equivalent of

zl:trace-output.

zl:debug-io In your new programs, we recommend that you use the vari-

able *debug-io*, which is the Common Lisp equivalent of

zl:debug-io.

dbg:*debug-io-override*

Diverts the Debugger to a stream that is known to work.

Coroutine Streams

Functions that produce data as output (output functions) are written in terms of

write-char and other output operations. Functions that receive data as input (in-

put functions) are written in terms of read-char and other input operations. Out-

put functions operate on output streams, using the write-char function. Input

functions operate on input streams, which use the read-char function. Sometimes

it is desirable to view an output function as an input stream, or an input function

as an output stream. You can do this with coroutine streams.

Page 812

Here is a simplified explanation of how coroutine streams work. A coroutine input

stream can be built from an output function. Whenever that stream sees the read-

char function, it invokes the output function in a separate stack group so that the

function can produce the data that read-char returns. A coroutine output stream

can be built out of an input function; it works in the opposite fashion. Whenever

the output stream sees write-char, it invokes the input function in a separate

stack group so that the function can receive the data transmitted by write-char. It

is also possible to connect functions that do both input and output, by using bidi-

rectional coroutine streams. Since you can use coroutine streams to connect two

functions, they are the logical inverse of stream-copy-until-eof, a function used to

connect two streams.

To create a coroutine stream, use one of the following:

• If you want to make an input stream from an output function, use sys:open-

coroutine-stream and give :direction the argument :input.

• If you want to make an output stream to an input function, use sys:open-

coroutine-stream and give :direction the argument :output.

• If you want to make a bidirectional stream for a function that does both input

and output, use sys:open-coroutine-stream and give :direction the argument

:io.�

Following is an example using a coroutine input stream:

(with-open-stream

 (input-stream

 (sys:open-coroutine-stream

 #’(lambda (output-stream)

 (with-open-stream (output-stream output-stream)

 (zl:print-disk-label 0 output-stream)))

�

 (read-line input-stream)

 => "1645 free, 260499//262144 used (99%)"

)�

Following is an example using a coroutine output stream:

(with-open-stream

 (output-stream

 (sys:open-coroutine-stream

 #’(lambda (input-stream) (setq x (read input-stream))

:direction :output))

 (write-string "(a b c)" output-stream))

�

 x => (A B C)

)�

Coroutine streams are implemented as buffered character streams. Each function

that makes a coroutine stream actually creates two streams and one new stack

group. One stream is associated with the new stack group and the other stream

with the stack group that is current when the stream-making function is called.

Page 813

When you use sys:open-coroutine-stream to make input or output coroutine

streams, one stream is an input stream and the other is an output stream; they

share a common buffer. If you make bidirectional coroutine streams, both streams

are bidirectional; the input buffer of each stream is the output buffer of the other.

When you use sys:open-coroutine-stream to make input streams, the output func-

tion runs in the new stack group. When you make output streams, the input func-

tion runs in the new stack group. With bidirectional streams, the function that

does input or output runs in the new stack group.

In the case of creating input streams, for example, you typically use the read-char

function on the input stream that sys:open-coroutine-stream returns. The output

stream is associated with the new stack group. When the input stream sees read-

char, the new stack group is resumed, and the output function runs in that stack

group. The output function typically uses write-char on the output stream associ-

ated with the stack group from which sys:open-coroutine-stream was called.

When the output stream sees write-char, the associated stack group is resumed.

The data transmitted to the output stream become input to read-char via the buf-

fer that the two streams share. Creating output streams and bidirectional streams

work in an analogous fashion.

In addition to read-char and write-char coroutine streams support other standard

input and output operations, such as :line-in and :string-out. Actually, the :next-

input-buffer method of the input stream and the :send-output-buffer method of

the output stream resume the new stack group, not the receipt of read-char and

write-char functions. Because the streams are buffered, use with-output-stream to

or close the stream when you’re done. Or, you can send a :force-output message

to an output stream to cause the new stack group to be resumed.

Do not confuse coroutine streams with pipes. Coroutine streams are used for in-

traprocess communication; pipes are used for interprocess communication.

Functions That Handle Coroutine Streams

To create a coroutine stream, use sys:open-coroutine-stream:

sys:open-coroutine-stream function &key (:direction :input) (:buffer-size 1024) (:ele-

ment-type ’character) (:serving-stream-flavor ’cli::coroutine-

stream) &allow-other-keys

Creates either input streams, output streams, or bidirectional

streams, each with a shared buffer, depending on the argument

given to :direction.

Coroutine streams are implemented as instances of the following flavors:

si:coroutine-input-stream

Used to construct an input stream from a function written in

terms of output operations.

si:coroutine-output-stream

Used to construct an output stream to a function written in

terms of input operations.

Page 814

si:coroutine-bidirectional-stream

Used to construct a bidirectional stream to a function written

in terms of input and output operations.

When reading older code, you might see the following obsolete functions used:

sys:make-coroutine-input-stream function &rest arguments

This function is obsolete; use sys:open-coroutine-stream in-

stead.

sys:make-coroutine-output-stream function &rest arguments

This function is obsolete. Use sys:open-coroutine-stream in-

stead.

sys:make-coroutine-bidirectional-stream function &rest arguments

This function is obsolete. Use sys:open-coroutine-stream in-

stead.

Direct Access File Streams

LMFS supports direct access file streams, which are designed to facilitate reading

and writing data from many different points in a file. They are typically used to

construct files organized into discrete extents or records, whose positions within a

file are known by programs that access them in nonsequential order. Although this

could be done with the :set-pointer message to input file streams, the direct ac-

cess facility provides the following additional functions:

• Direct access to output files.

• Bidirectional file streams, which allow interspersed reading and writing of data

to and from varied locations in a file.

• No use of network connections or file buffers during the time between data

reading and the next call to position. In contrast, using the :set-pointer mes-

sage with ordinary ("sequential") input file streams incurs a significant network

and data transfer overhead if the program repeatedly positions, reads several

bytes, and then computes for a time.�

It is important to note that the default unit of transaction for the stream is any

character, which is not supported by direct access file streams. The :element-type

argument of the open operation should therefore be ’string-char.

Direct Access Input File Streams

You can operate on direct access input file streams by sending the :read-bytes

message:

Page 815

:read-bytes Sent to a direct access input or bidirectional file stream, this

requests the transfer of n-bytes bytes from position file-position

of the file. The message itself does not return any data to the

caller. It causes the stream to be positioned to that point in

the file, and the transfer of n-bytes bytes to begin. An EOF is

sent following the requested bytes. The bytes can then be read

using :tyi, :string-in, or any of the standard input messages or

functions.

Direct Access Output File Streams

You create direct access output to output and bidirectional direct access file

streams by sending a :set-pointer message to the stream, and beginning to write

bytes using standard messages, such as :tyo, :string-out, and so forth. The bytes

are written to the file starting at the location requested, at successive file posi-

tions. Although you can extend the file in this manner, you cannot do a :set-

pointer to beyond the current end of the file.

Direct access output, therefore, consists of sequences of :set-pointer messages and

data output. Data are not guaranteed to actually appear in the file until either the

stream is closed or a :finish message is sent to the stream. See the message

:finish.

Direct Access Bidirectional File Streams

Bidirectional direct access file streams combine the features of direct access input

and output file streams. Sequences of :read-bytes messages and reading data can

be interspersed with sequences of :set-pointer messages and writing data. The

stream is effectively switched between "input" and "output" states by the :read-

bytes and :set-pointer messages. You cannot read data with :tyi or similar mes-

sages if a :set-pointer message has been sent to the stream since the last :read-

bytes message. Similarly, you cannot write data with :tyo or similar messages un-

less a :set-pointer message has been sent to the stream since the last :read-bytes

or :tyi messages, or similar operation.

When the EOF of a byte sequence requested with a :read-bytes message has been

read for a bidirectional stream, the system frees network and buffering resources.

Effect of Character Set Translation on Direct Access File Streams

The Symbolics generic file access protocol was designed to provide access to

ASCII-based file systems for Symbolics computers. Symbolics machines support

8-bit characters and have 256 characters in their character set. This results in dif-

ficulties when communicating with ASCII machines that have 7-bit characters.

The file server, on machines not using the Symbolics character set, is required to

perform character translations for any character (not binary) opening. Some Sym-

bolics characters expand to more than one ASCII character. Thus, for character

files, when we speak of a given position in a file or the length of a file, we must

specify whether we are speaking in Symbolics units or server units.

Page 816

This causes major problems in file position reckoning. It is useless for the Symbol-

ics machine (or other user side) to carefully monitor file position, counting charac-

ters, during output, when character translation is in effect. This is because the op-

erating system interface for "position to point x in a file", which the server must

use, operates in server units, but the Symbolics machine (or other user end) has

counted in Symbolics units. The user end cannot try to second-guess the transla-

tion-counting process without losing host independence.

Since direct access file streams are designed for organized file position manage-

ment, they are particularly susceptible to this problem. As with other file streams,

it is only a problem when character files are used.

You can avoid this problem by always using binary files. If you must use character

files, consider doing one of the following:

• Know the expansions of the Symbolics machine, that is, characters such as Re-

turn that do not expand into single host characters. Note that this sacrifices

host independence.

• Do not use these characters. See the section "NFILE Character Set Translation".

This section explains which characters are expanded on the Symbolics computer.�

Compression Streams

Overview of the Compression System

The compression system is designed to make files smaller. It uses an adaptive

compression algorithm based on Lempel-Ziv-Welch, or LZW coding, described in "A

Technique for High-Performance Data Compression", by Terry A. Welch, IEEE

Computer, June 1984, pp. 8-19. This documentation does not explain the details of

that algorithm; you should consult the original paper if you want an in-depth un-

derstanding of how the compression works. This compression algorithm is compati-

ble with UNIX compression. However, by default, files are written with a more de-

scriptive preamble that includes information such as the element-type of the un-

derlying stream that was compressed. For compatibility with UNIX hosts, Genera

can read (automatically) and write (with specification of a keyword argument)

UNIX-style compressed files.

Note: The Compression Substrate is preliminary in Genera 8.0. It might be radically

altered in function and/or interface in future releases.

Some terminology: A compressor is some stream that compresses its input to de-

crease its redundancy. A decompressor is some stream that reverses this transfor-

mation to reconstruct the original data. Decompressed data is data that has been

compressed and then decompressed; uncompressed data is data that has never been

compressed at all. If the decompressor correctly decompressed some compressed

data, then the decompressed data is exactly equal to the uncompressed data. The

reason we are careful to keep the terms decompressed and uncompressed data sep-

Page 817

arate is to make it easier to talk about issues such as performance (the time it

takes to copy uncompressed vs. compressed data, for example). The other reason

this terminology is important is so you look for the correct stream flavors: To in-

vert the action of a compressing stream, look for its corresponding decompressing

stream; there is no uncompressing stream.

The compression algorithm is a one-pass, stream-oriented compressor that can

compress any arbitrary data without rewinding the stream. The input stream can

be any multiple of eight bits wide; the output stream is always eight bits wide.

The amount of compression achieved depends on the redundancy of the data, hence

on the entropy present. A purely random stream of bits will compress to a larger

stream, since there is overhead in the compression protocol itself; however, most

real data compresses fairly substantially. Text files typically compress to 40% of

their original size; binary files (.bin or .ibin) typically compress to 60% of their

original size; world loads typically compress about 50% of their original size.

Since the compression substrate is stream-oriented and obeys the stream protocol,

a compressing or decompressing stream may be inserted between any two other

streams in an application. However, since the compressed data is only useful to a

decompressor, usually the compressing stream is the last stream in a chain of

streams before the data gets written to permanent storage, and the decompressing

stream is the first stream in a chain when the data is read back again.

The compressed data is representated as eight-bit binary bytes. If you store such

data on a file server, the file server must understand that this is binary data and

not apply any transformations to it that would change the data (such as perform-

ing character set translation or newline translation). Hence, if you write such data

to, for example, a UNIX host and then use FTP on the UNIX host to move it

somewhere else, you should be using binary mode. The Genera side handles the

data correctly, of course, since binary streams are created; this is only a problem

if you expect the compressed data to be of the same data type (for example, text)

as the uncompressed data, and is exactly the same problem that any user of the

UNIX compress program must be aware of. (In other words, the compressed data is

like any other binary stream; Genera choses a binary stream to communicate with

the file server, which likewise handles the stream as binary data. Reading the data

back works the same way, though you must be careful that you are actually open-

ing the stream as a eight-bit binary stream. If you manipulate the compressed data

on the server, you must manipulate it as if it were any other binary data, not

character data.)

Using the Compression Substrate

Before using the compression substrate, you must make two important decisions:

1. Whether you want Symbolics-style or UNIX-style compression.

2. Whether you want character set translation to be applied to the data before it

is compressed or after it is uncompressed.�

Page 818

� Choosing the Type of Data Compression

Currently, the actual stream of compressed data is essentially the same between

the Genera and UNIX formats, with the exception of a preamble which differs in

Symbolics-style and UNIX-style compression. However, Symbolics makes no guaran-

tees that the data will always match this closely. In the future, different compres-

sion algorithms may be used that mean that compressed data is not even approxi-

mately the same across the two formats; however, this should be a transparent

change, as no programs need to understand the exact format of Symbolics-style

compression except the Genera-supplied decompressor.

The Symbolics-style preamble is useful because it is often essential to know what

the underlying element-type of the uncompressed data was when opening a stream

to write decompressed data from an input stream of compressed data. Also, it is

useful to embed a version number in the compressed data so it is trivial to change

algorithms to increase performance while still being to read old compressed data

correctly. The Symbolics-style preamble embeds these parameters and many more

into the preamble to allow correct reconstruction of the compressed data.

The UNIX-style preamble, on the other hand, is a fixed-size (three bytes) pream-

ble, of which the first two bytes are simply a magic value to identify this as a

compressed file, followed by a byte whose sixth bit indicates whether so-called

"block compression" is in effect, and whose low five bits indicate the number of

bits used in keying the internal hash table. This information is completely insuffi-

cient if an application needs to know what sort of data was originally stored in its

now-compressed form. UNIX copes with this by treating everything as eight-bit

bytes; Genera’s more flexible generic stream and network requires more sophisti-

cated information.

Choosing When Character Set Translation is Applied to Data

To make it easier to interoperate with UNIX hosts, the compression substrate will

also do character set translation between the Symbolics character set and ASCII if

the :unix-translation-in-effect? keyword is non-nil when the compressing or de-

compressing stream is instantiated. You should set this keyword non-nil if you are

compressing or decompressing data which is a subtype of ’character. Do not speci-

fy translation if the data is binary (e.g., a UNIX tar file or some similar object).

compression::*likely-unix-binary-formats* Variable

A list of the file types that Compress File and Decompress File assume are binary

files and do not need character set translation. This is only important if you are

reading or writing a file with a UNIX-style compression preamble and are using

:Translation Strategy Heuristicate. Users are encouraged to add or remove items

from this list.

The current value of this variable is:

Page 819

"TAR" "ARC" "ZOO" "LZH" "ZIP" "MID"

"GIF" "IFF" "TIF" "TIFF" "GEM" "NEO"

"SPC" "LIB" "OLB" "GL"

�

Compress File Command

Compress File input-files output-files keywords�

Compresses the data in input-files and produces output-files. Wildcards are allowed.

If input-files and output-files are the same files, the input files are replaced by the

output files.

input-files {pathname(s)} One or more files to compress.

output-files {pathname(s)} One or more files to contain the compressed da-

ta.

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Preamble Type {Symbolics, UNIX} Type of preamble to use.

:Query {Yes, No, Ask} Whether to ask before compressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, reading each input file as a text file. Binary means

not to do ASCII character set translation, reading each input

Page 820

file as a binary file. Query asks, for each file, whether to treat

the file as text or binary. Heuristicate attempts to guess

whether the file is text or binary based on its name, as fol-

lows: The filename is broken up into words, where each word

is separated by a non-alphanumeric character. A rightmost

word of "Z" is removed (if present). Then the current right-

most word is checked against compression::*likely-unix-

binary-formats* If a match is found, the file is assumed to be

binary, otherwise it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.

Decompress File Command

Decompress File input-files output-files keywords�

Decompresses the data in input-files and produces output-files. Wildcards are al-

lowed. If input-files and output-files are the same files, the input files are replaced

by the output files.

input-files {pathname(s)} One or more files to decompress.

output-files {pathname(s)} One or more files to contain the decompressed

data.

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy�

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation-date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Page 821

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No, Ask} Whether to ask before decompressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, writing each resulting file as a text file. Binary

means not to do ASCII character set translation, writing each

resulting file as a binary file. Query asks, for each file,

whether to treat the file as text or binary. Heuristicate at-

tempts to guess whether the file is text or binary based on its

name, as follows: The filename is broken up into words, where

each word is separated by a non-alphanumeric character. A

rightmost word of "Z" is removed (if present). Then the cur-

rent rightmost word is checked against compression::*likely-

unix-binary-formats*, and if a match is found, the file is as-

sumed to be binary, else it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.�

Compressing Data - Details and Examples

The compressor and decompressor are streams. You can use them by creating a

stream instance of an appropriate flavor and passing input to or receive output

from the instance. The compressor and decompressor perform in accordance with

the init keywords you specify in the make-instance form.

Symbolics recommends that you do not bind the variety of global variables influ-

encing the defaults for the various keywords. Instead, you can specify non-default

values by specifying keywords in the call to make-instance, not by binding these

global variables.

Use caution in choosing keyword values when constructing the compressing

stream. The decompressing stream usually sets up most of its parameters using

the Symbolics preamble and therefore does not need you to specify much in the

way of keywords. Note that the compressor enables you to specify many meaning-

less combinations but malfunctions when you attempt to use them.

Page 822

Stream Flavors for Compression and Decompression

Two stream flavors are available in compressing and decompressing data:

• compression:buffered-compressing-output-stream

• compression:buffered-decompressing-input-stream�

Both streams are buffered and obey the protocol for buffered streams. Note that

buffered streams conduct operations one buffer of data at a time, requiring you to

specify the type of data a buffer can store. When using compression or decompres-

sion streams, specify the type of buffer the streams create in accepting input data

or producing output data based on the stream receiving the input or producing the

output.

Compression Example

Consider the following example and note that you have to compile the example in

the compression package.

(defun COMPRESS (from to)

 (with-open-file (outstream to :direction :output :element-type ’(unsigned-byte 8))

 (with-open-stream (the-stream (make-instance ’buffered-compressing-output-stream

 :stream outstream

 :uncompressed-stream-element-type ’string-char

 :public-buffer-element-type ’string-char))

 (with-open-file (instream from :direction :input :element-type ’string-char)

(stream-copy-until-eof instream the-stream))))

 (values))

compress creates the output file with an element-type of ’(unsigned-byte 8) (com-

pressed data is always treated as eight-bit binary data). compress then creates the

compressing stream. The :stream argument enables you to hook the compressing

stream’s output to the output stream written to stable storage. These keywords are

required in any compressing stream:

:uncompressed-stream-element-type

Describes the data before compression, and is dependent on the

file type opened.

:public-buffer-element-type

Specifies the type of buffer the compressing stream makes

available for the input stream to fill. In other words, we have

an input stream (in this case, instream) which returns data of

a particular type (for example, string-char or character or

’(unsigned-byte 16)). The stream-copy-until-eof identifies the

stream as a buffered stream and sends it a :new-output-buffer

message, and attempts to copy from the input stream into the

buffer provided by the :new-output-buffer. Note that the data

type in instream must match the type for each element of the

buffer provided by the-stream’s response to a :new-output-

Page 823

buffer message.�

compress creates the input stream by opening the input file and copying data

from the input stream into the compressing stream. The compressing stream out-

puts data to the final output stream which is written out to the file server.

You may wonder why both :uncompressed-stream-element-type and :public-

buffer-element-type are needed. Consider an application where we are reading

styled characters, whose type is character. In order to notify the decompressor

that the data it is receiving consists of styled characters, you specify :uncom-

pressed-stream-element-type ’character. However, you cannot read data of type

’character from a file system. True styled characters are 32-bit wide quantities

whose style bits are not constant from one world load to another. (For more infor-

mation, see the section "Fields of a Character".) Therefore, you must read and

write styled characters to permanent storage by writing them as objects of type

’string-char. You have to write the styled characters even though the streams con-

vert styled characters to sequences of epsilons and unstyled characters (these

translating streams are automatically used when writing styled characters as

’string-char characters and are normally invisible). Note that when compressing a

file containing styled characters (which actually contains unstyled characters and

some epsilon characters), you can specify :public-buffer-element-type and :uncom-

pressed-stream-element-type as both ’string-char. This is because you would sim-

ply read and write the same unstyled characters that the file system supplies, and

the result is the same as if they were first read as epsilons-and-unstyled-

characters, converted to true styled (fat) characters, converted back to epsilons-

and-unstyled-characters, and written back out again.

Consider a case that arises in the Distribution dumper and reloader (the Distribute

Systems and Restore Distribution activities), which deal with streams from some

file server, compressing streams, and tape streams simultaneously. For example,

the distribution dumper always sends eight-bit binary data to the tape stream, so

:public-buffer-element-type must always be ’(unsigned-byte 8). (In other words,

the tape stream always expects us to give it buffers in which each element type is

’(unsigned-byte 8).) However, files as read from the file system may have any ele-

ment type. Therefore, the Distribution dumper creates the compressing stream

with a value for :uncompressed-stream-element-type obtained by calling stream-

element-type on the file system stream and using whatever that returns.

Consider this example where a function compresses .bin and .ibin files, knowing

that such files are always of element-type ’(unsigned-byte 16):

Page 824

(defun COMPRESS-BINARY-NATIVE-WIDTH (from to)

 (with-open-file (outstream to :direction :output :element-type ’(unsigned-byte 8))

 (with-open-stream (compression-stream (make-instance ’buffered-compressing-output-

 stream

 :stream outstream

:uncompressed-stream-element-type ’(unsigned-byte 16)

:public-buffer-element-type ’(unsigned-byte 16)))

 (with-open-file (instream from :direction :input :element-type ’(unsigned-byte 16))

(fs:stream-copy-until-eof instream compression-stream))))

 (values))

Working backwards from the element-type of the input file, the input is 16-bit bi-

nary data requiring instream to be of that type. :public-buffer-element-type must

also be of that type to enable copying from stream to stream. Since the eventual

decompressor of this data has to know how wide the original stream was, :uncom-

pressed-stream-element-type must also be of this type. Finally, note that out-

stream is still opened with element-type ’(unsigned-byte 8), since compressed data

is always an 8-bit binary stream.

Decompression Example

(defun DECOMPRESS (input output)

 (with-open-file (instream input

 :direction :input

 :element-type ’(unsigned-byte 8))

 (with-open-stream (the-stream

(make-instance ’buffered-decompressing-input-stream

 :stream instream))

 (with-open-file (outstream output

 :direction :output

 :element-type (cl:stream-element-type the-stream))

(stream-copy-until-eof the-stream outstream))))

 (values))�

This example opens the compressed file, creates a decompressing stream that

reads from the stream of compressed data, creates an output file stream that will

write the decompressed data, and copies. Note that the element-type of the output

stream is derived from the element-type of the original (uncompressed) data, by

asking the decompressing stream itself via stream-element-type.

Note that :uncompressed-stream-element-type is not supplied in creating the de-

compressing stream. The decompressor has no way of forcing the element-type of

the original, uncompressed data. Instead, the decompressing stream learns that ele-

ment-type by examining information in the preamble (if it’s a Symbolics-style

preamble), or by assuming that the original element-type of the uncompressed data

was ’string-char (if it’s a UNIX-style preamble). This example assumes that the

output file will always be of type ’string-char. (If you are decompressing UNIX da-

ta which is really a binary file, you may use :public-buffer-element-type ’(un-

signed-byte 8) to ensure that you actually get a binary stream back from the de-

compressor.)

Page 825

If you do not supply :public-buffer-element-type when creating a decompressing

stream, the decompressor attempts to heuristicate an appropriate element-type by

parsing the preamble. You may then determine what sort of buffer will be used by

evaluating (hence the element-type of each individual item returned by the decom-

pressing stream) by simply sending the stream an :element-type message, or by

using the generic function stream-element-type. This is usually the recommended

approach.

If you have an application which requires a particular type of element-type re-

turned from the decompressing stream regardless of what the element-type of the

uncompressed data was, you can specify a value for :public-buffer-element-type

when you create the decompressing stream. This is often useful when the incom-

ing data is known to be binary, but may be, for example, either eight or sixteen

bits wide, whereas your application (a tape stream, for example) may only be able

to cope with eight-bit data. Rather than using fs:stream-copy-16-to-8 or similar

functions, you can ask the decompressing stream to do this for you.

Note that, if you specify :public-buffer-element-type, the value returned by send-

ing an :element-type message to the decompressing stream does not change. This

means that you will have created a stream which could return data which is not

the same element-type as returned by the :element-type message. This is not rec-

ommended, and is one reason why :public-buffer-element-type should only be used

in unusual circumstances.

The act of creating the decompressing stream (that is, evaluating the make-

instance form) causes the preamble to be read from the compressed data. The de-

compressor now knows which :public-buffer-element-type and :uncompressed-

stream-element-type are appropriate before it reads any real data (e.g., after the

preamble) from the stream. The stream supplied to the :stream keyword must be

available to be read when the decompressing stream is instantiated.

Interoperating with UNIX Compression

To specify that the compressor should translate lisp machine characters into

ASCII, including UNIX-style newline translation, include :unix-translation-in-

effect? t when you create the compressing stream. The uncompressed data must

be some subtype of ’character. If reading data compressed with a Symbolics-style

preamble, the decompressor determines from reading the preamble whether charac-

ter set translation was performed and uses this information in deciding whether to

translate back. If reading data compressed with a UNIX-style preamble, you must

specify whether you want character set translation when decompressing the data.

In general, this is appropriate for UNIX files which contain characters, and not

appropriate for binary files such as tar files

In most cases, translating from the lisp machine character set to ASCII is only

half the story. Having compressed ASCII data is important when interoperating

with UNIX, which cannot understand Symbolics-preamble compressed data. Hence,

if you expect UNIX to run uncompress or zcat on your compressed data, you must

ensure that a UNIX-style preamble is written. You can specify a UNIX-style

preamble by specifying :preamble-type :unix (the default is :symbolics) when cre-

ating the compressing stream.

Page 826

It is not recommended that you use UNIX-style compression by default in code you

write, since UNIX-style compression loses a great deal of information (such as the

element-type of the original data) that is easier to retain rather than to recon-

struct after the fact. However, if you write data that UNIX utilities must be able

to decompress, using UNIX-style preambles is mandatory, and should work ade-

quately, since UNIX utilities simply assume that they are getting data which is al-

ready of the right type.

Using Compression/Decompression with Unrewindable or Uncloseable Streams

You can compress or decompress data embedded in a larger stream. For example,

the Distribute Systems activity writes compressed files to a distribution tape. The

actual compressed data is written to a tape stream which is never closed until the

tape is completely written. When Restore Distribution reads the compressed data,

it cannot close or rewind the stream until the tape is completely read. However,

each file compresses individually, enabling you to read particular files from the

tape without having to read the entire tape.

These restrictions pose additional complications for the compression substrate. The

compression substrate depends on knowing when all data of a particular stream

being compressed is read. When writing compressed data to tape, you cannot close

the compressing stream at the end of a file since closing that stream (which feeds

into the tape stream) prematurely closes the tape stream.

Consider this example: assume you are compressing 8-bit binary data. Even though

the uncompressed data is eight bits wide, the compressor does not preserve any

particular byte-for-byte correspondence between compressed output and uncom-

pressed input. The compressor transforms the incoming bytes into a stream of ob-

jects of varying sizes, usually ranging from 9 to 16 bits wide. It then packs these

variable-sized objects into an 8-bit-wide output stream without wasting any bits in

padding. The compressor has a few "leftover bits" that could not go into the last

byte produced (because it was already full), but cannot be put in a byte of its own

because there is more data waiting to be compressed contributing additional bits of

output. The compressor writes output data bytes asynchronously from input bytes.

Under normal circumstances, the compressor only outputs "leftover bits" in its own

byte if there is no additional input. The compressor cannot determine whether ad-

ditional input is present until it encounters the end of the input stream.

Problems to Consider

It is inconvenient if the compressor simply outputs its final byte of output when

encountering the end of the input stream. It may occasionally be useful to copy

more than one file into the same compressed output, for example, which would re-

quire complicated mechanisms (probably ruling out use of stream-copy-until-eof)

to ensure that the end of the compressor’s input stream occurred only once, at the

very end. These problems are also present when decompressing, in which the de-

compressor may be decompressing from a tape stream containing several files, all

separately compressed. The decompressor does not know when it is done until it

encounters the end of input stream. The tape stream never returns an end-of-

stream indication until we reach the end of the tape.

Page 827

Solutions

You can avoid these problems using compression::finalize-output and

compression::finalize-input. These routines accomplish the work involved in writ-

ing or reading these leftover bits. The :close methods for the compressing and de-

compressing streams call these functions (which do not work if they’ve already

been called). However, if you have an application that cannot close the compress-

ing or decompressing stream when you have processed all the relevant data, you

can call the appropriate routine and flush the pending state in the compression

substrate to the output stream. For example:

(let ((compression-stream

 (make-instance ’compression::buffered-compressing-output-stream

:stream tape-stream

:uncompressed-stream-element-type data-element-type

:public-buffer-element-type ‘(cl:unsigned-byte data-byte-size))))

 (stream-copy-until-eof data compression-stream)

 (compression::finalize-output compression-stream nil))�

(The second argument to compression::finalize-output, nil, determines whether

the output is closed in :abort mode. The :close method for the stream uses this

information, setting this value to non-nil if the stream is being aborted).

Stream Operations

Making Your Own Stream

Functions for Creating Streams

This section summarizes some standard functions that make streams for you, such

as make-synonym-stream and make-two-way-stream. For examples of using

these functions to make a stream, see the section "Examples of Making Your Own

Stream".

Genera also offers forms that allow you to evaluate Lisp forms while performing

input or output on a stream, such as with-open-stream and zl-user:with-input-

from-stream. For more information on with-open-... forms: See the section "Ac-

cessing Files".

make-concatenated-stream &rest streams

Returns a stream that only works in the input direction.

make-echo-stream input-stream output-stream

Not currently available.

make-string-input-stream string &optional (start 0) end

Returns an input stream.

make-string-output-stream

Returns an output stream that will accumulate all string out-

put given it.

Page 828

get-output-stream-string stream

Returns a string containing all of the characters output to

stream so far.

make-synonym-stream stream-symbol

Creates and returns a "synonym stream".

zl:make-syn-stream stream-symbol

zl:make-syn-stream creates and returns a "synonym stream"

(syn for short).

make-two-way-stream input-stream output-stream

Returns a bidirectional stream that gets its input from input-

stream and sends its output to output-stream.

sys:stream-default-handler fctn op arg1 args

Tries to handle the op operation on stream.

sys:null-stream op &rest args

Used as a dummy stream object.

Examples of Making Your Own Stream

You can also write your own streams. Here is a sample output stream that accepts

characters and conses them onto a list.

(defvar *the-list* nil)

(defun list-output-stream (op &optional arg1 &rest rest)

 (selectq op

 (:tyo

 (setq the-list (cons arg1 *the-list*)))

 (:which-operations ’(:tyo))

 (otherwise

 (stream-default-handler (function list-output-stream)

 op arg1 rest))))�

The lambda-list for a stream must always have one required parameter (op), one

optional parameter (arg1), and a rest parameter (rest). This allows an arbitrary

numbe<r of arguments to be passed to the default handler. This is an output

stream, so it supports the :tyo operation. Note that all streams must support

:which-operations. If the operation is not one that the stream understands (for

example, :string-out), it calls the sys:stream-default-handler. The calling of the

default handler is required, since the willingness to accept :tyo indicates to the

caller that :string-out will work.

Here is a typical input stream that generates successive characters of a list.

Page 829

(defvar *the-list*) ;Put your input list here

(defvar untyied-char nil)

(defun list-input-stream (op &optional arg1 &rest rest)

 (selectq op

 (:tyi

 (cond ((not (null untyied-char))

 (prog1 untyied-char (setq untyied-char nil)))

 ((null *the-list*)

 (and arg1 (error arg1)))

 (t (prog1 (car *the-list*)

 (setq *the-list* (cdr *the-list*))))))

 (:untyi

 (setq untyied-char arg1))

 (:which-operations ’(:tyi :untyi))

 (otherwise

 (stream-default-handler (function list-input-stream)

 op arg1 rest))))�

The important things to note are that :untyi must be supported, and that the

stream must check for having reached the end of the information and do the right

thing with the argument to the :tyi operation.

The above stream uses a free variable (*the-list*) to hold the list of characters,

and another one (untyied-char) to hold the :untyied character (if any). You might

want to have several instances of this type of stream, without their interfering

with one another. This is a typical example of the usefulness of closures in defin-

ing streams. The following function will take a list and return a stream that gen-

erates successive characters of that list.

(defun make-a-list-input-stream (list)

 (let-closed ((*the-list* list) (untyied-char nil))

 (function list-input-stream)))�

The above streams are very simple. When designing a more complex stream, it is

useful to have some tools to aid in the task. The defselect function aids in defin-

ing message-receiving functions. The Flavor System provides powerful and elabo-

rate facilities for programming message-receiving objects. See the section

"Flavors".

General Stream Functions

streamp x Returns t if x is a stream, and otherwise it returns nil.

input-stream-p stream

Returns t if stream can handle input operations, otherwise re-

turns nil.

output-stream-p stream

Returns t if stream can handle output operations, and other-

wise it returns nil.

Page 830

stream-element-type stream

Returns a type specifier which indicates what objects can be

read from or written to stream.

General-Purpose Stream Operations

Basic General-Purpose Stream Operations

:tyo char Puts the char into the stream.

:tyi Gets the next character from the stream and returns it.

:untyi The stream will remember the character char, and the next

time a character is input, it will return the saved character.

:which-operations The object should return a list of the messages and generic

functions it can handle.

:operation-handled-p

The object should return t if it has a handler for the specified

operation, nil if it does not.

:send-if-handles The object should perform the operation (whether generic func-

tion or message) if it has a method for it.

:characters Returns t if the stream is a character stream, nil if it is a bi-

nary stream.

:direction Returns one of the keyword symbols :input, :output, or

:bidirectional.

:interactive The :interactive message to a stream returns t if the stream

is interactive and nil if it is not.

Advanced General-Purpose Stream Operations

Any stream must either support :tyo or support both :tyi and :untyi. Several more

advanced input and output operations work on any stream that can do input or

output (respectively). Some streams support these operations themselves; you can

tell by looking at the list returned by the :which-operations operation. Others are

handled by the "stream default handler" even if the stream does not know about

the operation itself. However, in order for the default handler to do one of the

more advanced output operations, the stream must support :tyo, and for the input

operations the stream must support :tyi (and :untyi).

Here is the list of such operations:

:input-wait Message to an input stream causes the stream to process-wait

with whostate.

:listen The main purpose of :listen is to test whether the user has

pressed a key.

Page 831

:tyipeek On an input stream, returns the next character that is about

to be read, or nil if the stream is at end-of-file.

:fresh-line Tells the stream to position itself at the beginning of a new

line.

:clear-rest-of-line Erases from the current position to the end of the current line.

:string-out The characters of string are successively output to the stream.

:line-out The characters of string, followed by a carriage return charac-

ter, are output to the stream.

:string-in Reads characters from an input stream into vector, using the

sub-vector delimited by start and end.

:line-in The stream should input one line from the input source and

return it as a string with the carriage return character

stripped off.

:string-line-in Allows you to read many lines successively into the same buf-

fer without creating strings.

:clear-input The stream clears any buffered input.

:clear-output The stream clears any buffered output.

:force-output Causes any buffered output to be sent to a buffered asyn-

chronous device.

:finish Does a :force-output to a buffered asynchronous device.

:close Closes a stream.

:eof Indicates the end of data on an output stream.

Special-Purpose Stream Operations

Basic Special-Purpose Stream Operations

See the section "General-Purpose Stream Operations". There are several other de-

fined operations that the default handler cannot deal with; if the stream does not

support the operation itself, sending that message causes an error. This section de-

scribes the most commonly used, least device-dependent stream operations. Win-

dows, files, and Chaosnet connections have their own special stream operations,

which are documented separately.

:input-editor Supported by interactive streams such as windows.

:beep Attracts the attention of the user by making an audible beep

and/or flashing the screen.

:tyi-no-hang Identical to :tyi except that if it would be necessary to wait in

order to get the character, returns nil instead.

Page 832

:untyo-mark This is used by the grinder if the output stream supports it.

:untyo This is used by the grinder in conjunction with :untyo-mark.

Special-Purpose Operations for Window Streams

The following operations are implemented by window streams only. There are

many other special-purpose stream operations for graphics. See the section "Using

the Window System".

:read-cursorpos Returns two values, the current x and y coordinates of the

cursor.

:set-cursorpos Sets the position of the cursor.

:increment-cursorpos

Sets the position of the cursor; x and y are the amounts to in-

crement the current x and y coordinates.

:home-cursorpos Sets the position of the cursor and puts the cursor back at the

begining of the stream.

:clear-window Erases the window on which this stream displays.

:clear-rest-of-window

Erases from the current position to the end of the current

window.

Special-Purpose Operations for Buffered Input Streams

The following operations are implemented by buffered input streams. They allow

increased efficiency by making the stream’s internal buffer available to the user.

:read-input-buffer Returns three values: a buffer array, the index in that array of

the next input byte, and the index in that array just past the

last available input byte.

:advance-input-buffer

If new-pointer is non-nil, it is the index in the buffer array of

the next byte to be read. If new-pointer is nil, the entire buffer

has been used up.

Special-Purpose Operations for Buffered Output Streams

The following operations are provided for buffered output streams. They allow you

to hand the stream’s output buffer to a function that can fill it up.

:get-output-buffer Returns an array and starting and ending indices.

:advance-output-buffer

Says that the array returned by the last :get-output-buffer op-

eration was filled up through index.

Page 833

File Stream Operations

The following messages can be sent to file streams, in addition to the normal I/O

messages that work on all streams. Note that several of these messages are useful

to send to a file stream which has been closed. Also note that some of these mes-

sages do not work for some file systems, because the host file system determines

which messages are valid. See the section "Naming of Files".

:pathname Returning the pathname opened to get a stream.

:truename Returning the pathname of a file opened on a stream.

:length Return the length of a file in bytes or characters.

:characters Returns t if the stream is a character stream, nil if it is a bi-

nary stream.

:creation-date Returns the creation date of the file, as a number which is a

universal time.

:info Returns a cons of the truename and creation date of the file.

:delete Deletes an open file in a stream.

:rename Renames an open file in a stream.

:properties A list whose car is the pathname of a file and whose cdr is a

list of the properties of the same file.

:change-properties

Changing the file properties of a file open on a stream.

File output streams implement the :finish and :force-output messages.

:finish Does a :force-output to a buffered asynchronous device.

:force-output Causes any buffered output to be sent to a buffered asyn-

chronous device.

The following operations are implemented by streams to random-access devices,

principally files.

:read-pointer Returns the current position within the file, in characters

(bytes in fixnum mode).

:set-pointer Sets the reading position within the file to new-pointer (bytes

in fixnum mode).

Network Stream Operations

:connected-p Returns t if the stream is fully connected to an active network

connection, nil otherwise.

:start-open-auxiliary-stream

This message is sent to a stream to establish another stream,

Page 834

via another connection, over the same network medium, to the

same host. It is used for either end of the connection.

:complete-connection

This message is sent to a new stream created by :start-open-

auxiliary-stream, in order to wait for the connection to be ful-

ly established. :complete-connection is used whether or not

this side is active.

:set-input-interrupt-function

This message assigns a function to be applied to any args�

whenever input becomes available on the connection, or the

connection goes into an unusable state.

The :read and :print Stream Operations

A stream can specially handle the reading and printing of objects by handling the

:read and :print stream operations. Note that these operations are optional and

that most streams do not support them.

If the zl:read function is given a stream that has :read in its which-operations,

then instead of reading in the normal way it sends the :read message to the

stream with one argument, zl:read’s eof-option if it had one or a magic internal

marker if it did not. Whatever the stream returns is what zl:read returns. If the

stream wants to implement the :read operation by internally calling zl:read, it

must use a different stream that does not have :read in its which-operations.

If a stream has :print in its which-operations, it can intercept all object printing

operations, including those due to the print, prin1, and princ functions, those due

to format, and those used internally, for instance in printing the elements of a

list. The stream receives the :print message with three arguments: the object be-

ing printed, the prindepth (for comparison against the zl:prinlevel variable), and

slashify-p (t for prin1, nil for princ). If the stream returns nil, then normal print-

ing takes place as usual. If the stream returns non-nil, then print does nothing;

the stream is assumed to have output an appropriate printed representation for the

object. The two following functions are useful in this connection; however, they are

in the system-internals package and might be changed without much notice.

