
User’s Guide to Symbolics C

Preface to the User’s Guide to Symbolics C

0.0.6. Purpose and Scope of the User’s Guide

The User’s Guide to Symbolics C describes the Symbolics programming environ-

ment and run-time library.

Symbolics C is fully integrated with Genera. You must have a thorough under-

standing of Genera utilities and operations before you begin using Symbolics C.

The Genera documentation set describes the editor, Command Processor, Debug-

ger, and other utilities and features of the system.

If you are new to the Genera environment, read and use the Genera Workbook for

an overview and tutorial introduction to the system.

0.0.7. Overview of Documentation

This guide is designed to be used with the online-only C reference manual, C: A

Reference Manual by Samuel Harbison and Guy Steele, Jr. These two books make

up the documentation for Symbolics C.

C: A Reference Manual can be found in Document Examiner in the Current Candi-

dates pane under its title. Sections of the book are identified by the prefix C-Ref:

� Introduction to Symbolics C

Overview of Symbolics C

0.0.8. Conforms to Draft ANSI C Standard

This implementation of Symbolics C conforms to the requirements of the draft AN-

SI standard. Future versions of Symbolics C will reflect the most recent ANSI

standard.

Error messages refer to sections of the ANSI document.

� Features of Symbolics C

The Symbolics C development environment includes these features:

• Incremental compilation from the editor

• A C editor mode that supports a template and completion facility

• A C-language source-level debugger

Page 1704

• A system generation facility

• Ability to build the C run-time system into applications

• A Dynamic C Listener window

• Ability to support the Metering Interface

• Online reference and user guide documentation

� Installation Procedure for Symbolics C

0.0.9. Introduction

This section describes the installation procedure for Symbolics C,

and provides instructions for installing and loading the Symbolics C system.

�

0.0.10. Procedure

Restoring the tape

Before restoring the tape, see the section "Restore Distribution Command". This

fully describes the tape restoration procedure.

If you are using a machine with a tape drive, you can follow this procedure:

 1. Restore the contents of the tape by placing the system distribution

tape in the tape drive and typing this command at the Command

processor:

Restore Distribution

 2. Press RETURN when you see this prompt:

** A tape is needed to read distribution.

Enter a tape spec [default Local: Cart]:

After you restore the tape, create the directory, sys:c;tmp;

Loading the system

 After the contents of the tape is loaded onto the sys

host, load the C system by typing this command at the

Command Processor:

Load System C :Query No

Page 1705

 The machine informs you when the system loads successfully.

 If you find that the system attempts to complete C to some other

 system, type:

Load System "C"

� Introduction to Program Development

Introduction to Editing C Programs

This section illustrates some editing basics by taking you through the steps needed

to create a simple C program.

For further information:

See the section "Zmacs Manual".

See the section "C Editor Commands".

See the section "Summary of Standard Editor Mode Commands for C".

0.0.11. Procedure

1. Select Zmacs by pressing SELECT E.

2. Use the Find File command, c-X c-F, to create a new buffer for the C pro-

gram you are creating. To invoke the Find File command, hold down the CTRL

key as you press first the X key, and then the F key.

3. Choose a name for the buffer. When prompted, type the name into the

minibuffer at the bottom of the screen and press RETURN. Use the pathname

conventions appropriate for the host operating system.

4. Example: In order to create a new C source file, quadratic.c, that you want to

store in your home directory on a host machine called quabbin (q for short),

type the following:

c-X c-F q:>my-dir>quadratic.c

5. Make sure that the name includes the proper C file type (extension) for your

host; for example, quadratic.c is the correct name for a file residing on

LMFS, the Genera file system.

6. Use m-X C Mode to set the mode of the buffer to C. Press the META and X

keys together. Then type C mode and press RETURN.

Page 1706

The mode line, located below the editor window, displays "C". Use m-X Update

Attribute List to display the attribute list, which specifies the properties of

the buffer, among them the mode and the package. The attribute list is the

first line of a file and looks something like:

�

/*-*- Mode: C; Package: C-USER -*- */

7. Type in the program and check the code in your buffer against the example.

For the editor commands that control cursor movement and text manipula-

tion: see the section "Summary of Standard Editor Mode Commands for C".

8. If you want to save the source code in a disk file, use c-X c-S. If the file

contains syntax errors, you are informed and asked whether you want to cor-

rect the errors or proceed with saving the file. �

� Compilation, Execution, and Debugging from the Editor

This section presents two simple examples of how to compile, execute, and debug

C code from the editor. The first example shows how to compile and execute the

quadratic function shown in figure 67. The second example asks you to edit that

program to create a simple error and then takes you through the steps to compile,

execute, and debug the quadratic function.

0.0.12. Procedure 1: Compiling and Executing a Function from the Editor

1. Compile the buffer with m-X Compile Buffer. M-X Compile Buffer performs

two compilation steps: it compiles the preprocessor directives #in-

clude<stdio.h> and #include <math.h>, and it compiles the function main_quad.

The minibuffer at the bottom of the screen displays the stages of the compila-

tion as they complete. If the compilation completes successfully, go to Step 3.

2. If the typeout window displays compiler errors or warnings, press the space

bar to erase the typeout window and return to the editor window; correct the

code or use m-X Edit Compiler Warnings to resolve the warnings.

3. Press SUSPEND to enter a Zmacs C mode breakpoint. A typeout window ap-

pears at the top of the screen, overlaying a portion of the editor window.

4. Type:

Execute C Function main_quad

5. The program prompts:

Page 1707

This program uses the quadratic formula to solve for x in

a quadratic equation. It finds two roots. The root must

be a real number value. Enter values based on the formula

ax(2) + bx + c = 0.

#include <stdio.h>

#include <math.h>

main_quad()

{

 int a, b, c, d;

 double drt, x1, x2;

 printf("\nSolves the equation ax(2) + bx + c = 0");

 printf("\nfor x.");

 printf("\nEnter values for a, b, and c: ");

 scanf("%d %d %d", &a, &b, &c);

 d=((b*b)-(4*(a*c)));

 if (d <= 0)

 {

 printf("This program cannot solve a quadratic formula whose");

 printf("\nresult is an imaginary number.");

 }

 else {

 drt = sqrt((double)d);

 x1=(-b+drt)/(2*a);

 x2=(-b-drt)/(2*a);

 printf("The value of root one is %f ", x1);

 printf("\nThe value of root two is %f ", x2);

 }

}

�

Figure 67. The main_quad Function�

Solves the equation ax(2) + bx + c = 0;

for x.

Enter values for a, b, and c: �

Type:

1 0 -9 <RETURN>

The window should display the following:

The value of root one is 3.000000

The value of root two is -3.000000�

Page 1708

0.0.13. Procedure 2: Compiling, Executing, and Debugging a Function from the

Editor

1. Rerun the program, this time causing a run-time error. Go to line 12 of

main_quad (the line, scanf("%d %d %d", &a, &b, &c);). Delete &b and replace it

with &a.

2. Compile the changed function with c-sh-c, and execute it, following steps 3

and 4 in Procedure 1.

3. Genera automatically invokes the Debugger, which displays an error message

and a list of suggested actions and their outcomes. Type m-L at the Debugger

prompt, indicated by to see a detailed debug frame. ! Press ABORT to re-

turn to the editor breakpoint.

4. Press ABORT again to return to the editor window and correct the error.

This completes the edit-compile-debug cycle for the sample program. We suggest

that you spend some time editing the code, recompiling, and rerunning the pro-

gram until you feel comfortable with the process.
�

� Naming C Functions

Naming conventions for Symbolics C functions differ slightly from the traditional

C style. The difference in naming convention is due to the fact that in the Genera

environment, functions must have unique names within a package. For example,

you cannot have more than one function named main in C-User, the default C

package. This differs from many C implementations, designed for file oriented sys-

tems, where the convention is to name the function where execution begins as

main.

The following examples show a traditional-style C function main and two Genera-

style solutions to the need for unique function names within packages.

Traditional C style:

int main(argc, argv)

Genera style: Using a descriptive name

int sort_test_main(argc, argv)

Genera style: Using the package system

1. Use the command Create C Package from the C Listener. For example:

Create C Package sort-test

2. You may now define a function named name in a buffer or file with package

attribute sort-test. For more information, see the section "Set Package Com-

mand". For example:

int main(argc, argv)

Page 1709

Figure 68. Producing a run-time error in the sample program.

The routine main in the package sort-test is distinct from the routine main in

c-user.

� Using the Editor to Write C Programs

C Mode

0.0.14. Syntax-directed Editor

The C editor mode extension to Zmacs is based on a syntax-directed editor. The

syntax-directed editor understands the syntax of C and makes use of this knowl-

edge in providing language-specific commands and information while editing, for

example, indicating the location of the next syntax error in the buffer.

Page 1710

The editing commands in C mode operate on C language units and on language

tokens and expressions. This means, in effect, that the syntax-directed editor un-

derstands how to distinguish one unit from another.

In addition to the Zmacs textual model of editing, the syntax-directed editor pro-

vides the features of a structure or template editor as well. Unlike many structure

editors, the syntax-directed editor does not restrict the size or the illegality of the

contents of the buffer. However, the more syntactically correct a program, the

more helpful the editor.

0.0.15. Relation to Zmacs

The syntax-directed editor provides the standard commands and capabilities of

Zmacs that are applicable to C. For example, c-N moves the cursor to the next line

in both Lisp mode and C mode as well as in text mode buffers.

One important difference is that Zmacs commands that operate on Lisp forms in a

Lisp mode buffer operate on statements and larger language-specific constructs

(like functions) in C modes. Separate commands operate on language expressions;

others exhibit even more refined behavior, such as deleting a C language token or

finding C syntax errors.

Where possible, the C editor mode commands are modeled on their analogous Lisp

mode commands. For example, in Lisp mode c-m-RUBOUT deletes the previous Lisp

form; in C mode the same command deletes the previous C language statement or

definition.

0.0.16. Special C Commands in Zmacs C Mode

meta-x Kill Definition

Removes a C definition from the editor buffer and/or the current world. When you

remove a definition from the current world, the command also offers to remove the

definition from the editor buffer. If the source file is an include file, the command

offers to remove the definition from all files containing the definition.

meta-x Resolve C Identifier

Presents the object associated with an identifier in the context of the current

statement. You can obtain all possible resolutions of the identifier by supplying a

numeric argument. Supplying a numeric argument places the object in the current

statement into bold.

0.0.17. Online Documentation from the Editor

You can display documentation for the Symbolics C run-time functions and for C

reserved words and template items. You can access documentation for template

items by clicking the right mouse button when pointing the cursor at an item on a

menu of template. Additionally, you can access documentation for functions and re-

served words by pressing m-sh-d and pointing the cursor directly after a function.

Page 1711

� C Fundamental Mode

C fundamental mode is a major editor mode, parallel to C mode. You can use a

subset of C editor commands in this mode, including: m-X Compile Buffer, c-sh-C,

and the directory search list commands also available in C mode. Use m-X C Fun-

damental Mode to set up this environment.

Since the C editor mode performs no macro expansion during parsing of a C buf-

fer, you should use C Fundamental Mode for any C source in which C preprocessor

macros hide the actual C syntax from the C editor mode.

For example, use C Fundamental Mode when you define macros of the form:

#define ROUTINE

#define IS

#define BEGIN {

#define END }

and their use ends up hiding a routine definition, such as:

ROUTINE main IS ()

BEGIN

 ...

END

� Finding Syntax Errors

0.0.18. Introduction

Usually you become aware of syntax errors only when you try to compile a unit of

source code. The syntax-directed editor, however, parses source code as you type it

and keeps track of all syntax errors. However, the editor notifies you of such er-

rors only in certain circumstances:

• You explicitly query about syntax errors using either c-sh-N or c-sh-P.

• Some compilation commands, for example, c-sh-C, notify you when syntax errors

are encountered.

• Deletion commands like c-m-K and c-m-RUBOUT mark the region containing a

syntax error in inverse video and query you about whether or not to proceed

with the deletion.

• You press LINE after entering a line of source code.�

0.0.19. c-sh-N and c-sh-P

• c-sh-N

Finds the nearest syntax error to the right of the cursor, if any, and moves the

cursor there. With a numeric argument, it finds the last syntax error in the

buffer. c-sh-P

Page 1712

Finds the nearest syntax error to the left of the cursor and moves the cursor

there. With a numeric argument, it finds the first syntax error in the buffer.

Sometimes a single error results in a cascade of error messages from c-sh-N or

c-sh-P. In such cases, correct the errors starting with the first error.

0.0.20. LINE

In addition to indenting the current line correctly with respect to the line above it,

LINE also detects syntax errors within that line, indicating in the minibuffer the

point of error, as in:

j := k + ;

 ^

� C Mode Completion and Templates

Introduction to Completion and Templates in C Mode

C editor mode provides a general completion facility over the set of C language

constructs, as well as over the set of predeclared identifiers and reserved words.

For example, as soon as you type enough characters in a C keyword or predefined

identifier signalling a word as unique, you can ask for completion. The remaining

characters of the identifier are inserted in the buffer. If you do not type enough

letters to identify the word as unique, you can ask to see all possible completions

to what you typed so far. The completion facility can also insert templates, showing

the pattern of the syntactic constructs of C.

� C Mode Templates

Positioning the cursor after a keyword and pressing END inserts the syntactic pat-

tern (template) of the appropriate language structure into the buffer. The template

consists of some combination of descriptive items and C keywords.

Where a single valid construct is possible, the END key inserts the template match-

ing the keyword. Where multiple possibilities exist, END pops up a menu of tem-

plate items for all the constructs valid in the current context.

0.0.21. Template Items

In addition to keywords, the template contains template items, which are syntactic

constructs surrounded by horseshoes.

These template items contain constructs either required, optional and repeating, or

repeating. The delimiters of the template item indicate the type of construct it de-

scribes, in accordance with extended Backus-Naur form.

Type of template item Delimiter

Page 1713

⊂{ optional repeating }⊃ braces

⊂[optional]⊃ square brackets

⊂ required ⊃ horseshoes only�

0.0.22. Moving Among Template Items

You can move from one template item to another by pressing c-m-N to move to the

beginning of the next item, or c-m-P to move to the beginning of the previous

item.

0.0.23. Filling in a Template Item

A template item is just text, in the sense that you can write out or read in a file

containing template items. The editor treats (parses) a template item as what it

represents; for example, ⊂identifier⊃ acts as though an identifier is present. How-

ever, unlike regular text, the template item disappears when you begin to fill it in.

� The c-Help Command

The c-HELP command displays a mouse-sensitive menu of all language constructs

valid at the cursor position. The c-HELP mechanism understands the syntax of C

and works by comparing its understanding with the relative position of the cursor

in the buffer.

Because the c-HELP command relies heavily on language context, its behavior is al-

tered by incompleteness or syntax errors in your program. In general, the more ac-

curate and complete your program, the more accurate and useful the help infor-

mation.

In general, the c-HELP command is useful for finding out which language con-

structs are valid at the cursor position.

Select a menu item by clicking the left, middle, or right button on the mouse.

Click Left, Middle, or Right on [Exit] to return to editing.

Left Inserts the selected template at the cursor position.

Middle Displays the selected template in a temporary window. Move

the mouse pointer off the window to make the template disap-

pear.

Right Displays documentation for the template item. Press SELECT E

to return to the editor window.

� Completing Reserved Words and Predeclared Identifiers

Use the COMPLETE command to complete reserved words and predeclared identi-

fiers. Consider the following example: you begin typing a predeclared identifier and

wish to take advantage of the completion facility. Positioning the cursor at the end

Page 1714

of your typein (as long as it is not inside a comment or string), and pressing the

COMPLETE key compares what you typed with the set of all reserved words and pre-

declared identifiers. If your typein completes to a unique string, the completion fa-

cility inserts the remaining characters of the identifier and adjusts the face and

case of the identifier as appropriate.

� Electric C Mode

Electric C mode is an editor facility available in C-mode buffers. As you type,

Electric C Mode places input into the appropriate font and case, depending on the

syntactic context into which you insert the input. For example, by default, a word

typed within a comment is rendered in an italic face. A reserved word used in a

function, such as double is placed in lowercase and boldface.

By default, Electric C mode places comments in mixed-case italics. To change the

defaults, use m-X Adjust Face and Case.

0.0.24. Using Electric C Mode

You can only use Electric mode when in C-mode buffers. If the buffer is created in

such a way that the editing mode is not implicit (for example, via c-X B), set the

buffer mode to C via m-X C Mode. Then turn on electric mode using m-X Electric

C Mode. The mode line displays (C Electric Mode).

To turn off the mode if it is on, reissue the command.

0.0.25. Converting Code to Electric C Mode Format

The C editor mode provides a facility for applying the character style and capital-

ization rules of Electric C mode to code not originally written using Electric C

mode. This facility changes the face and case of reserved words to lowercase bold,

and the face of comments to italics.

You can convert code to Electric C Mode format using the m-X Format Language

Region command. You can apply the command to an editor region, or, if no region

is defined, to the current C language unit. Supplying a numeric argument reverses

the effect: all formatting is removed from the specified editor region or routine.

� Customizing Electric C Mode

When you use Electric C mode, typed input displays in the appropriate face and

case, depending on the syntactic context into which you insert the input. Syntactic

context refers to the following types of text:

• Body (plain) text

• Reserved words

• Comments

• Template items

Page 1715

Electric C mode supplies a default case and face setting for each of these contexts.

This section describes the default settings provided by Electric C mode and ex-

plains how to change them, where possible.�

0.0.26. Default Case and Face

The table below shows the default case and face for each syntactic context.

Context Case Face

Body text Lower Roman

Reserved words Lower Bold

Comments Leave alone Italic

Template items Leave alone Roman

Leave alone means that input displays exactly as typed.

0.0.27. Changing the Global Defaults

You can use the special form zwei:change-syntax-editor-defaults to change the C

editor mode’s defaults for case, face, and indentation.

zwei:change-syntax-editor-defaults Special Form

No documentation available for special form ZWEI:CHANGE-SYNTAX-EDITOR-

DEFAULTS.

0.0.28. Changing Indentation Globally

In order to change the global indentation of C source code, select a C mode buffer

and position the cursor at the beginning of the construct whose indentation you

are changing. Press SPACE or RUBOUT for as many characters as you wish to indent

or outdent the construct, respectively. Then press c-I. When the change is suc-

cessful the editor displays a message, for example:

Indentation for the construct changed to 2

However, when the change is not successful, such as when you cannot change the

indentation for a construct, the editor displays a message to that effect. Once you

are satisfied with the indentation, use m-X Save Indentation. The command pro-

duces a Lisp form in another buffer reflecting your changes; evaluate this form af-

ter the C editor is loaded.

0.0.29. Changing Face and Case in the Current Buffer

Use m-X Adjust Face and Case to change the face and case of the syntactic

contexts (templates, comments, reserved words, text) in the current C mode buffer.

The command displays a menu of face and case choices for reserved words, com-

ments, text, and template items. Boldfaced words indicate the current defaults.

Page 1716

Once you select new defaults for the buffer, click on Done. Invoke m-X Format

Language Region to put the changes into effect in the current buffer.

Note that you cannot alter the case of comments. You can specify the case for

template items, reserved words, and plain text using on of the following:

Case Meaning Example

Upper All caps PROCEDURE

Lower All lowercase Procedure

Capitalize Initial cap Initial_cap_on_first_word

Capitalize words All initial caps Initial_Cap_On_Each_Word

Leave alone Exactly as typed EXACTLY_as_tYpEd�

� The Dynamic C Listener

The Dynamic C Listener is a Dynamic Window from which you can issue both

C-specific Genera Command Processor (CP) commands. The window has all the

features of a Dynamic Lisp Listener: A command history is available, you can

scroll back through previous work, and you can operate on many items on screen

with the mouse. For example, you can use the mouse to reexecute a command with

or without modifying its arguments.

For further information on Dynamic Windows, see the section "Introduction to

Genera".

In addition to the usual features of a dynamic language listener window, the C

Listener includes three menus listing abbreviations for C-specific commands.

All C-specific commands must be executed in a C Listener. You can also exe-

cute other CP commands in a C Listener. Press HELP at the C Listener prompt to

see a list of the commands you can use there.

The C Listener supports tools for incremental development of C programs similar

to tools that Genera provides for Lisp. For details, see the section "C Evaluation".

How to Use the Dynamic C Listener

This section discusses these aspects of the C Listener:

• How to select the C Listener window.

• The C Listener window components.

• How to issue commands.

• How to use the command menu.

Selecting the C Listener

Page 1717

After loading the C system, type Select Activity C at a Listener window. This

places you at the C Listener window and makes the window accessible via the Sys-

tem menu and the Select Activity command in future work sessions.

If you wish to customize a key combination with which to select C, use the Select

Key Selector utility. (Press SELECT = to get to this window). See "Customizing the

SELECT Key" for further information.

� The C Listener Window

The major components of the Dynamic C Listener window are:

• The window name.

• The command menus, which list mouse-sensitive, abbreviated forms of C com-

mands.

• The scroll bar.

• The "C command:" prompt.

• The mouse documentation line.

Figure 69. Dynamic C Listener Window�

Page 1718

� Issuing Commands

You can issue commands at the C command prompt as you would any Genera

command. Command completion is supported and you are prompted for missing

command arguments. Note that HELP, COMPLETE, c-/, and c-? are useful to dis-

cover further information on available argument choices.

Previously typed commands are mouse-sensitive, and the mouse documentation line

(in reverse video at the bottom of the screen) tells you what action occurs when

you click the left, middle, or right mouse button.

In general, mouse clicks from the C command prompt have these meanings:

Left Reexecute command.

Middle Reexecute command after modifying arguments.

Right Menu of further options.

� Using the C Command Menu

In issuing C commands from the C Listener window, you have the option to use

the menu of command abbreviations. These abbreviations are mouse-sensitive.

Clicking on an abbreviation activates that command and causes the C Listener to

prompt you for additional arguments to the command.

In general, when pointing to a previous command, mouse clicks from the command

menu have these meanings:

Left Read arguments. Uses the standard CP format to read arguments as

you type them and to prompt you for missing arguments.

Middle Not in use.

Right Choose arguments. Presents command arguments in a menu form that

you complete.

� C Listener Commands

All the usual Genera command processor commands are available in the C Listen-

er. In addition, the C Listener provides commands specific to C. This chapter de-

scribes those commands.

0.0.30. Edit Commands

� Edit C Definition Command

Menu abbreviation: Edit

Edit C Definition (Definition name) definition-name keyword

Page 1719

Finds the C definition definition-name, places it in a Zmacs editor buffer, and

brings up the editor buffer.

definition-name Name of the definition to edit. A definition is a C procedure.

keyword :Pathname

:Pathname The pathname of the source file containing the C definition.

Kill C Definition Command

Menu abbreviation: Kill

Kill C Definition (Definition name) definition-name keywords�

definition-name The name of the definition to kill.

keywords :Pathname, :Type, :Query�

:Pathname The pathname of the source file containing the C

definition you are killing.

:Type {All, Function, Macro, Variable, Type} The type

of C definition you are killing.

:Query Enables the system to ask you whether to kill a

C definition.

Describe Type Command

Menu abbreviation: Desc Type

Describe Type (A procedural language type) type

Describes in some detail any C type.

type A C type.�

� Find C Name Command

Menu abbreviation: Find Name

Find C Name (substring) substring keywords

Finds the globals whose names contain substring. You can specify that the name be

of a given type and exist in a given package. The list of names produced is mouse-

sensitive. You can click on a name to get further information about it, such as a

variable’s type.

Page 1720

substring Substrings of the name to find.

keywords :Packages, :Type

:Packages {All, package-name} Package in which to search. The default is

C-USER.

:Type {All-Types, Function, Typedef, Variable} The type of definition

to search for. The default is All-Types.�

Show C Callers Command

Menu abbreviation: Show Callers

Show C Callers (Definition name) definition-name keywords

Shows the functions that call definition-name.

definition-name The name of a defined function whose callers to locate.

keywords :Package, :Pathname, :System

:Package Lists only callers in the specified package.

:Pathname Source file pathname for definition.

:System Lists only callers in the specified system. �

0.0.31. Compile Commands

� Add File Command

Menu abbreviation: Add File

Add File (Pathname) pathnames

Adds the names from the indicated files to the environment and performs their

preliminary initialization so that they are visible to the C evaluator.

pathnames Pathnames of one or more C source files.�

� Create C User Package Command

Menu abbreviation: Create Package

Create C User Package (package name) symbol

Creates a C package named with the specified symbol.

Page 1721

symbol The symbol that becomes the package name.

� Define C Include Directory Search List Command

Menu abbreviation: Define Search

Define C Include Directory Search List (Search list name) name

 (List of pathnames) pathnames

Defines the search list name as a list of directory pathnames. This list is used in

program compilation as the basis for a search for #include files. The directories

are searched in the order in which they are listed.

The directory of the current source file is implicitly the first item in a search list

and the directory SYS:C;INCLUDE; is implicitly the last item.

name The name for the directory search list.

pathnames The pathnames of the directories that make up the search list.�

� Establish Environment Command

Menu abbreviation: Establish Environment

Establish Environment (Program Name or Pathnames) name keywords

Establishes an environment for a particular C Listener.

name The argument is either a function name or a list of files. For

any function or list of files you must load or compile the equiv-

alent files.

keywords :File Context, :New Name Environment, :Reinitialize, :Search

List From Pathname

:File Context A pathname of the file in whose immediate context you are

compiling; in other words, all types defined in this file are visi-

ble in this environment.

:New Name Environment

Defines whether or not you inherit the names currently defined

in the environment active in the C environment. A value of

Yes sets up a new environment where names are not inherited.

A value of No does inherit the names already defined.

:Reinitialize A value of Yes causes reinitialization of the global variables in

the environment as a result of establishing this environment. A

value of No does not cause reinitialization.

Page 1722

:Search List From Pathname

A value of Yes resets the search list of the environment ac-

cording to the search list defined by the file whose pathname

serves as the immediate file context. A value of No keeps the

search list as it already was in the environment.�

� Execute C Function Command

Menu abbreviation: Execute

Execute C Function (program name) function-name keywords

Executes a C function.

function-name

The name of the function you want to execute as a main function.

keywords

:Arguments, :Program Name, :User File Pathname, :Temporary File Pathname De-

faults, :Enter Debugger On Error

:Arguments Comma-separated list of arguments to the C program. The ar-

guments are treated as strings and set up as an argc/argv ar-

ray.

:Program Name Name of the C program to execute. This corresponds to the

name you provide for an executable module in conventional ar-

chitectures.

:User File Pathname Defaults

A pathname for the default directory for user files during pro-

gram execution.

:Temporary File Pathname Defaults

A pathname for the default directory for temporary files during

program execution. The initial default is SYS:C;TMP;.

:Enter Debugger On Error

Boolean for whether to enter the Debugger on a runtime error.

The default value is nil, not to enter the Debugger.

� Generate C System Command

Menu abbreviation: Generate System

Generate C System Definition (System Name) system-name

 (Source Pathnames) pathnames keywords

�

Page 1723

Prepares a C system for compilation by generating a defsystem form. The com-

mand creates two C editor buffers:

1. *system-name-SYSTEM*  contains the defsystem form generated by this com-

mand.

2. *system-name-System-Warnings*  contains any warnings produced in generat-

ing the defsystem.

system-name A name for the system you are generating.

pathnames The pathnames of the source files generating the system. You

must specify more than one pathname, separated by commas.

You must specify a file type "c". Wildcards are accepted.

keywords :Default pathname, :Searchlist name�

:Default pathname The defsystem’s default pathname. The default value is the di-

rectory named by the first pathname in the source pathname

list.

:Searchlist name The name of a previously defined include file directory search

list.

� Make C Main Program Command

Menu abbreviation: Main Program

Make C Main Program (Main Program Name) name

Makes the specified C definition a main program.

name A C definition.

Note: The Execute C Function CP command automatically performs this command

before executing the specified function.

� Set C Environment Search List Command

Menu abbreviation: Set Search

Set C Environment Search List (Search List Name) name keyword

Sets the search list for the current environment.

name Name of a search list.

keyword Predefined

Page 1724

Predefined If Yes, this command sets the predefined search list of the en-

vironment. If No, this command sets the regular search list.�

� Set File Context Command

Menu abbreviation: Set File

Set File Context (Pathname) pathname keyword

Sets the file context of the current environment as the indicated file.

pathname Pathname of a C source file.

keyword :Search List From Pathname

:Search List From Pathname

A value of Yes resets the search list of the environment ac-

cording to the search list defined by the file whose pathname

serves as the immediate file context. A value of No keeps the

search list as it already was in the environment.

� Show C Established Environment Command

Menu abbreviation: Show Env

Show C Established Environment

Displays the current state of the environment, including the file context, the

search list, the files in the environment, and the names defined locally in the en-

vironment.

� Show C Include Directory Search List Command

Menu abbreviation: Show Search

Show C Include Directory Search List (Search list names) name

Displays the components of the specified search lists.

name {:All, :Default, name} The search list you want to display. �

0.0.32. Debug Commands

� Trace C Definition Command

Page 1725

Menu abbreviation: Trace

Trace C Definition (Definition name) name keyword

Enables the trace facility for the specified definition. Reads the name of the C

function and places it in a menu of trace options. For a description of these op-

tions: See the section "Tracing Function Execution".

Figure 70. The trace menu

name The name of a static C definition.

keyword :Pathname

:Pathname The pathname for the C definition.

� C Include Command Menu Command

Menu abbreviation: Include

C Include Command Menu

Presents a menu of commands that work with include files. When you type or click

on the command, the following menu appears:

You can click on one of these choices to activate a specific command. The mouse

documentation line informs you what action takes place.

For Show Include Files, clicking left shows the source file for a loaded include file

you specify from the menu presented; clicking right shows the source files for all

loaded include files.

Page 1726

For List Include Files, any mouseclick lists the names of all include files and the

time each file is read in.

For Clear Include Files, clicking left clears the specified include file from memory;

clicking right clears all include files from memory.

� C Evaluation

To enhance incremental development, the Symbolics C environment enables you to

evaluate C statements and/or declarations within some environment at both the top

level of a C Listener and from a Debugger break in a C function. This section ex-

plains how to evaluate C statements and expressions in the Symbolics environment.

The Symbolics C Development Paradigm

The normal mode of development in the Symbolics environment (under Lisp) is

quite different from a more traditional environment, such as UNIX.

In traditional environments, program development repeats four steps: editing, com-

pilation, linking, execution. The link step causes association between a global name

(function or variable) and a particular storage location applicable during the execu-

tion of the program. When the program finishes execution, the association is bro-

ken and the name is no longer associated with that storage location.

In the Symbolics environment, you do not have to execute a link step to perform

the association between a variable and the storage location containing the vari-

able’s value. The association is formed at the time you define the variable. We say

that variables have indefinite extent, and though executing some function may

change the value, the variable remains accessible after the function returns. You

can then evaluate other C statements that use this value and examine the value of

the variable for correctness, all of which aids incremental development.

These techniques are useful for the C programmer. Names with indefinite extent

allow rapid incremental development and increased ease in debugging, because you

can build and examine data structures incrementally as a sequence of actions is

applied to the data. Names bound at link time are more useful when porting from

another system or when there are two communicating programs that need consis-

tent self-contained data. The Symbolics C environment supports both models of ex-

ecution by enabling evaluation to take place at the top level within a particular C

environment, and by providing the Execute C Function CP command that forces

name binding at function execution time.

Using C Evaluation

C evaluation enables you to type a C expression, a C statement, or a C declaration;

the result from evaluating the statement/declaration is presented. C evaluation is

enabled in the following contexts:

• A C listener

Page 1727

• A suspend break from an editor buffer in C mode

• The Debugger�

To use the C evaluator:

1. Begin the C statement with a comma to distinguish between a C statement

and a CP command.

2. End the C statement by pressing the END key to get the evaluator to take ef-

fect. �

For example:

C command: ,printf("hello, world\n");[END]

hello, world

13�

To get the value of a global variable, simply invoke the evaluator on that particu-

lar variable.

C command: ,CHAR_MAX[END]

255�

If the variable has more detailed values, a mouse click expands it.

Restrictions to C Evaluation

Conceptually, each C evaluation takes place as though the statement/declaration

were contained inside a C function whose execution has not yet completed. Unfor-

tunately, this implies that there are some restrictions to C evaluation. First, you

cannot define new functions in a C evaluation. To achieve the equivalent function-

ality, define the function in an editor buffer contained in the C environment. The

function becomes visible for evaluating in the C environment. Second, statements

causing actions to happen at the end of program execution such as the C atexit

statement, have no effect. Finally, statements that cause nonlocal flow-of-control

such as setjmp and longjmp have no effect. Each C evaluation is invoked within

the context of a C environment which controls how names are associated with val-

ues. See the section "Name Resolution in C Environments".

Name Resolution in C Environments

This section describes how Symbolics C controls the association of a C variable,

function, typedef, macro, structure definition, or static variable with a value during

evaluation. C is inherently file oriented. Typedefs, macros, and structure definition

names have semantics only within the context of a given file.

In other operating systems, C programs usually consist of a set of files compiled

and linked together into an object module. Symbolics C follows that structure in

that you can define a C environment consisting of a set of loaded files that estab-

lish the name scope in which evaluation can take place.

Page 1728

Once the environment is defined, you can extend the names visible in the environ-

ment by:

• Evaluating declarations at top level

• Adding files to the environment

• Establishing a new environment that inherits names from this environment�

You can designate an environment by a set of files or a function that you are go-

ing to execute. In the latter case, the system computes all the files needed in the

environment so that this function and each of its callees are executed. Further,

each environment designates a particular file called the file context used to resolve

names to typedefs and macros when evaluating a C statement or declaration. You

can change the file context (for example, to gain access to particular typedefs)

without affecting the rest of the current environment. Typedefs and macros de-

fined at top level supersede the typedefs and macros defined in a particular file

context.

Environments for C Evaluation

You can establish a default environment by starting a C listener, or using a sus-

pend break in the editor. This environment includes the C run-time system and

whatever names you previously entered into the default environment; you can mod-

ify the environment used for the default environment.

Once you establish the default environment, you can establish any number of envi-

ronments desired for performing incremental development. You can use the tradi-

tional model of rebinding the C environment each time the function is called by

invoking by Execute C Function command. A number of CP commands enable you

to query the state of a particular environment. All values and types are presented

to the screen in such a way that you can examine their values using the mouse

when applicable.

Creating and Manipulating C Environments

Whenever you start a C Listener or use suspend break in C mode, a C environ-

ment is established with the default environment, consisting of all the names that

exist in the C runtime library. You can then modify that environment by using the

following commands:

Establish Environment Command

Establishes an environment for a particular C listener.

Set File Context Command

Sets the file context of the current environment as the indicat-

ed file.

Add File Command Adds the names from the indicated files to the environment.

Page 1729

Set C Environment Search List Command

Sets the search list for the current environment.

The following commands enable you to obtain information about C environments:

Describe Type Command

Describes in some detail any C type.

Find C Name Command

Finds the globals whose names contain the given substring.

Show C Established Environment Command

Displays the current state of the environment.

For more information concerning the arguments to these commands: See the sec-

tion "C Listener Commands".

� Debugging C Programs

Debugging Capabilities

0.0.33. Standard Debugger

The standard Debugger starts automatically when an error occurs, and provides

information about the Lisp or C routine causing the error.

The Debugger provides features enabling you to:

• Examine the backtrace of routines leading to the error at the source level. If

the error occurs in a C routine, the location of the error in the source file is in-

dicated by a small arrow on the left side of the code. In other cases, you can ex-

amine the sequence of calls, at the source level, from the C program to the er-

ror site.

• Examine variables and arguments at the source level.

• Enter executable C statements and evaluate them at the debug level.

• Set and clear breakpoints.

The standard Debugger presents these capabilities in the Listener window in

which the program is executed.

0.0.34. Display Debugger

You can invoke the Display Debugger from the standard Debugger. The Display

Debugger has the same functionality as the standard debugger, but provides a

structured framework for you to work with in the form of a in the multi-paned

window. For more information concerning the Display Debugger interface, see the

section "Using the Display Debugger". You can invoke the Display Debugger by

typing c-m-W from the C Debugger prompt.

Page 1730

Figure 71. A C Program in the Display Debugger

� Invoking the Debugger

You enter the Debugger under these circumstances:

• When you encounter a run-time error and are automatically thrown into the

Debugger.

• By setting a breakpoint from the editor.

0.0.35. Exiting the Debugger

You can exit the Debugger using the ABORT key, the :Abort command, or by invok-

ing a restart option.

If you are in the middle of a series of recursive Debugger levels, press ABORT to re-

turn to the previous level. Keep pressing ABORT until you leave the Debugger and

return to the top level. Pressing m-ABORT from a recursive Debugger level brings

you back to top level immediately.

Page 1731

0.0.36. Using Help

� The Debugger offers you online help. Pressing the HELP key inside the Debugger

displays several help options for you to choose:

• c-HELP displays documentation about all Debugger commands. This documenta-

tion consists of brief command descriptions and available key-binding accelera-

tors.

• The ABORT key takes you out of the Debugger. (You can enter the :Abort com-

mand or press c-Z instead of pressing ABORT.)

• c-m-W brings you into the Window Debugger. (You can enter the :Window De-

bugger command instead of pressing c-m-W.)

The REFRESH key, the :Show Frame command, or the :Show Frame command accel-

erator c-L clears the screen, then redisplays the error message for the current

stack frame.

You can also ask for help with keywords. If you do not remember what keywords

are available for the command you are entering, press the HELP key after you re-

ceive the keywords prompt. The Debugger displays a list of keywords for that

command. For example:

→ :Previous Frame (keywords) HELP

You are being asked to enter a keyword argument

�

These are the possible keyword arguments:

:Detailed Show locals and disassembled code

:Internal Show internal interpreter frames

:Nframes Move this many frames

:To Interesting Move out to an interesting frame

�

� C Frames in the Debugger

If you are unfamiliar with the Genera Debugger, you can refer to the Genera doc-

umentation set for background information. See the section "Debugger". This dis-

cussion assumes you have some knowledge of Debugger concepts and capabilities.

In particular, it refers to:

• Stack frame  A frame from the control stack that holds the local variables for

the routine.

• Current stack frame  The context within which Debugger commands operate.

The Debugger uses the current frame environment for performing operations ac-

cording to the suspended state of your program. Also, the Debugger evaluates

forms in the context of the suspended state of the current function’s stack

Page 1732

frame.

When you use the Debugger on a frame compiled in C, you can get information

about local and global variables and about the type and value of variables at vari-

ous points in the source. You can also evaluate expressions and statements.

The Debugger prompt indicates whether the frame is compiled in C or in Lisp.

The Lisp prompt is a plain arrow. The C prompt is indicated by this icon:

The next example shows a Debugger operation in the context of a C frame for a

program in which a division by zero is attempted. For more information concern-

ing the program generating these examples: See the section "Sample Program for

Symbolics C Debugger Examples".

You can perform a variety of Debugger operations from this prompt. Most multi-

language Debugger operations are performed easily using the mouse. The mouse

documentation line describes the meaning of a mouse click in the context of the

current location of the cursor and also provides help messages for some operations.

Most mouse gestures have typein command equivalents or are bound to command

accelerators. For further information: See the section "C Language Debugger Com-

mands".

You can begin a debugging session using the command :Show Frame :Detailed (or

the command accelerator m-L) at the C Debugger prompt. This shows a list of lo-

cal variables and their values for the function in question as shown in the next

example, a continuation of the previous one:

Page 1733

From this point you have a number of options.

For example, you can see a translation of the summarized value ≤coeffs 96781403≥,

by using the :Show Detailed Value command and clickingon this value from the

Show Frame display when prompted. In this case, you can see that the summarized

value represents a structure with three members, coeff1, coeff2, and ccoeff.

�

Additionally, you can perform operations such as displaying detailed information

for a variable’s type. The next example shows how to find the type of the variable

coeff. As a first step, examine its type, pcoeff, by pointing the cursor at pcoeff in

the Show Frame display and clicking mouste-middle invoking the :Show Type De-

tailed command. The presented result indicates that pcoeff declares a pointer to a

type named coeffs. Clicking Mouse-middle on coeffs in the presented result shows

that coeffs is a structure type with three members each of type int.

0.0.37. Setting and Clearing Breakpoints

You can set a breakpoint in source code clicking left on a line of code. Clear the

breakpoint by clicking middle. From the editor, set a breakpoint clicking c-m-Left,

while pointing to a line of code. Clear the breakpoint by clicking c-m-Left, while

pointing to a line of code.

Page 1734

� Looking at Variables, Values, and Types

Local variables and their values are mouse-sensitive items. The mouse documenta-

tion line displays the action associated with each mouse click. The following table

summarizes information for variables, values, and types.

Language Mouse click

Object

Left Middle Right

variable Show value :Show type menu

value returns the value Describes the value menu

type Show type :Show type :detailed menu

Using the mouse offers a quick and efficient way to inspect a variable, value, or

type. In particular, you can get a complete description of a complex type.

� How Values Are Displayed in the Debugger

Uninitialized valuesAn uninitialized value prints out as the symbol: undefined

Values that exist out of range of an object

When you attempt to access a value beyond the range of the

underlying allocated hardware object, the value prints out as

the symbol: unallocated_memory

Note there is no one-to-one correspondence between a hardware

object and a C language object, since many C language objects

are allocated within a hardware object. Thus, violating the

bounds of a language object does not always yield the symbol

unallocated_memory.

Summarized values Summarized values are given for objects whose values are too

large for printing by default. For instance, unless requested ex-

plicitly by the user, arrays and structures are printed out in

summary form between the characters ≤≥. The summary form

contains an abbreviated type indication followed by a unique

number that helps distinguish two different values.

For example,

≤struct {...} 97541456≥

≤struct {...} 12345678≥

Values not of the Declared Type

A value printed between horseshoes when the value, as indicat-

ed by the tags in the hardware, does not correspond to the de-

clared type for the value. For example, obtaining the value of a

variable declared as an integer but actually containing a real

yields a result in this form.

Page 1735

For example,

⊂1.3⊃�

� C Language Debugger Commands

0.0.38. Variables, Values, and Types

The following tables summarize the Debugger commands available in C frames and

provide specific information for C variables, values, and types. The left column

represents Command Processor commands and accelerators, the right column

shows corresponding menu choices in the first table, and a definition of the com-

mand in the second table.

Commands Menu choices

Commands for variables

 :Show Locals not applicable

 :Show Frame not applicable

 :Show Typed Variable not applicable

 :Show Typed Value not applicable

Commands for values

 :Show Variable’s Value Examines the value associated with this variable

Commands for types

 :Show Variable’s Type Examines the type associated with this variable

 :Describe Type Detailed Describe the type in greater detail

 :Show Type Name Show the type name

Other:

from menu only Edit Viewspecs �

:Show Source Code

Page 1736

Commands Definition

Commands for stepping

 :Statement Step For Function

 Program execution stops in the debugger

 before the execution of each statement

 :Clear Statement Step For Function

 Clears the :Statement Step For Function

 enabling the program to execute normally

�

The following debugging commands are useful when using the stepping

feature. In order to see a complete list of all debugging commands,

specify :language help from the debugger. �

 c-X c-D Show the source code for the function in the current frame.

:Next Frame

 c-N, � Move down a frame (takes numeric argument), skipping invisible frames.

 m-sh-N Move down a frame, not skipping invisible frames.

 m-N Move down a frame, displaying detailed information about it.

 c-m-N Move down a frame, not hiding internal interpreter frames.

 :Previous Frame

 c-P Move up a frame (takes numeric argument), skipping invisible frames.

 m-sh-P Move up a frame, not skipping invisible frames.

 m-P Move up a frame, displaying detailed information about it.

 c-m-P Move up a frame, not hiding internal interpreter frames.

 c-m-U Move to the next frame that is not an internal interpreter frame.

:Show Backtrace

 c-B Displays a brief backtrace, hiding invisible frames,

 but not censoring continuation frames.

 c-sh-B Displays a brief backtrace of the stack, censoring invisible

internal (continuation) frames. Use a numeric

argument to indicate how many frames to display.

 m-B Displays a detailed backtrace of the stack.

 m-sh-B Displays a brief backtrace, without censoring invisible

 or continuation frames.

 c-m-B Displays a backtrace of the stack, including internal frames.�

Page 1737

0.0.39. C Listener Commands Available in the Debugger

The C listener commands available in the debugger are as follows:

:Show C Callers

:Find C Name

:Execute C Function

:Make C Main Program

:Show C Include Directory Search List

:Define C Include Directory Search List

:Create C User Package

:Trace C Definition

:C Include Command Menu

:Kill C Definition

:List C Include Files

:Show C Include Files

:Clear C Include Files�

For more information on these commands: See the section "C Listener Commands".

0.0.40. Monitor Expression Commands

:Monitor C Expression

:Monitor C Expression expression keywords

Monitors a C address associated with a specified C expression.

expression The C expression you are monitoring.

keywords :Read, :Write, :Query

:Read Enables the command to trap the reads.

:Write Enables the command to trap the writes.

:Query Enables you to specify whether the command queries for reso-

lution field types.�

:Unmonitor C Expression

:Unmonitor C Expression expression keywords

Stops monitoring a C address associated with a specified C expression.

expression The C expression you want to stop monitoring.

keywords :Query

:Query Enables you to specify whether the command queries for reso-

lution union field types.

Page 1738

0.0.41. Expressions and Statements

You can evaluate expressions and statements from the Debugger. Type the expres-

sion or statement after the C debugger prompt, then press END for evaluation. The

result reflects the values and conditions present in the Debugger context: the point

at which program execution stopped (see the following example).

The example evaluates the members of the structure coeffs (note that you must

use the END key and not RETURN).

� Genera Debugger Commands for Use with C

You can use the following kinds of Genera Debugger commands to help debug C

programs. These commands are described in the Genera documentation set. For

more information, see the section "Debugging C Programs".

• Commands for viewing a stack frame.

• Commands for stack motion.

• Commands for general information display.

• Commands to continue execution.

• Trap commands.

• Commands for breakpoints and single stepping.

• Commands for system transfer.

You can choose to use Lisp mode debugging at any point in a debugging session by

using the :Use Lisp Mode command. This command is similar to choosing to debug

a program at the assembly language level in conventional machines.

� Sample Program for Symbolics C Debugger Examples

This program solves for x in the quadratic formula ax(2) +bx +c = 0. The program

is written using arrays, structures, and derived types as an illustration of how

these constructs appear in various debugging scenarios.

/*-*- Mode: C; Package: C-USER -*- */

Page 1739

�

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

�

struct coeffs {

 int coeff1, coeff2, ccoeff;

};

�

typedef struct coeffs *pcoeffs;

�

main_quad()

{

 int d;

 double drt, x[2];

 pcoeffs coeffs;

�

 coeffs = malloc(sizeof(struct coeffs));

�

 printf("\nSolves the equation ax(2) + bx + c = 0");

 printf("\nfor x.");

 printf("\nEnter values for a, b, and c: ");

 scanf("%d %d %d", &coeffs->coeff1, &coeffs->coeff2, &coeffs->ccoeff);

 d=((coeffs->coeff2*coeffs->coeff2)-(4*(coeffs->coeff1*coeffs->ccoeff)));

 if (d <= 0)

 {

 printf("This program cannot solve a quadratic formula whose");

 printf("\nresult is an imaginary number.");

 }

 else {

 drt = sqrt((double)d);

 x[0]=(-coeffs->coeff2+drt)/(2*coeffs->coeff1);

 x[1]=(-coeffs->coeff2-drt)/(2*coeffs->coeff1);

 printf("The value of root one is %f ", x[0]);

 printf("\nThe value of root two is %f ", x[1]);

 }

}�

� Using Include Files with Symbolics C

Symbolics C provides several means for manipulating directories of user-defined

and predefined include files.

A user-defined include file is included with the double-quote syntax, as follows:

Page 1740

#include "filename" �

A predefined include file is one which you include with the angle-bracket syntax,

as follows:

#include <filename> �

This section describes how you can manipulate include files, and describes how

Genera caches include files.

Search Lists for Include File Directories

You can define search lists for include files. A search list tells the compiler where

to look for include files. A search list has a name and an ordered list of directo-

ries. You first define the search list, and then you use it by associating the search

list with a file or buffer. You can associate a file and its search lists via file at-

tributes. See the section "Defining Search Lists for Include Files". See the section

"Setting the Search Lists of a Source File".

Each C source file can have two different search lists: one for user-defined include

files (which we call the regular search list), and one for predefined include files

(which we call the predefined search list).

You can also define default search lists. A default regular search list is searched

when a source files has no regular search list associated with it. Similarly, you can

define a default predefined search list that is searched when a source file has no

predefined search list associated with it. See the section "Defining Default Search

Lists for Include Files".

When the compiler looks for user-defined include files (which use the double-quote

syntax with #include), it does the following:

1. Checks the directory in which the current source file exists.

2. If it is not found there, checks each directory in the regular search list asso-

ciated with the source file. If the file has no regular search list, the directo-

ries in the default regular search list are checked.

3. If it is not found there, checks the SYS:C;INCLUDE; directory.

4. If it is not found there, signals an error. �

When the compiler looks for predefined include files (which use the angle-bracket

syntax with #include), it does the following:

1. Checks each directory in the predefined search list associated with the source

file. If the file has no predefined search list, the compiler checks the directo-

ries in the default predefined search list.

2. If it is not found there, checks the SYS:C;INCLUDE; direcory.

Page 1741

3. If it is not found there, signals an error. �

Commands and Functions for Using Search Lists

You can use the following commands and functions to create and use search lists

for directories of C include files:

• C Listener commands

° Define C Include Directory Search List

° Set C Environment Search List

° Show C Include Directory Search List�

• Editor commands

° m-X Define C Search List

° m-X Set C Search List for Buffer

° m-X Show C Search List

° m-X Undefine C Search List

• Functions

° c-system::define-default-search-list

° c-system::define-search-list

See individual commands for further descriptions.

Defining Search Lists for Include Files

You can define a search list in three ways:

From the C Listener, with Define C Include Directory Search List

From the editor, with m-X Define Search List

With the function, c-system::define-search-list

When you specify the directories in these commands, you can use a subset of wild-

card syntax. Specifically, you can use this syntax:

>*.*.*�

Wildcard directory mapping is not supported, nor is specifying a portion of the

pathname as a wildcard.

Page 1742

c-sys:define-search-list name &rest directories Function

Defines a search list of C include file directories, using name as the name for the

search list and the specified directories as its components. It lists the directories in

the order in which you want them searched.

See also: "Defining Default Search Lists for Include Files"

Setting the Search Lists of a Source File

To ensure that the compiler uses a given search list for a C source file, you have

to associate that search list with the source file (use the m-X Set C Search List for

Buffer command). This command gives the file an attribute specifying the name of

the search list. Note that this does not associate the list of pathnames with the

file.

If you are using the search list for user-defined include files, use the m-X Set Us-

ing the Set C Search List for Buffer command with no argument. This sets the

Search-List file attribute as the given search list.

If the search list is used for predefined include files, use the m-X Set C Search

List for Buffer with a numeric argument. This sets the Predefined-Include-Search-

List file attribute as the given search list.

� Defining Default Search Lists for Include Files

In addition to defining explicitly named search lists, you can also define a search

list as the default search list for include files.

You can define a default regular search list searched for user-defined include files

if the source file has no regular search list associated with it.

Similarly, you can define a default predefined search list searched for predefined in-

clude files, if the source file has no predefined search list associated with it.

Default search lists do not have names. There is at most one default regular

search list and one default predefined search list in effect in any given Lisp world.

You can define or redefine them with the functions described below. Note that if

you define a default search list within login-forms, the effects are automatically

undone when you log out.

c-sys:define-default-search-list &rest directories Function

Defines a default search list for user-defined C include files to be the specified di-

rectories. It lists the directories in the order in which they are searched.

To undo the effects of calling this function to set up a default search list, call the

function again with no arguments.

c-sys:define-predefined-default-search-list &rest directories Function

Page 1743

Defines a default search list for predefined C include files as the specified directo-

ries. It lists the directories in the order in which they are searched.

To undo the effects of calling this function to set up a default search list, call the

function again with no arguments.

Exporting Include Files for Shared Use

We recommend that you "export" include files intended for use across a set of C

source files. This prevents the C binary files from becoming very large, due to un-

necessary copying of definitions. When you are sure that the definitions in an in-

clude file remain the same when compiled with each C source file that is part of

the system, then the compiler compiles and loads one set of those definitions,

which are shared by all C files that include them.

Consider what happens if you do not export include files. The compiler makes a

copy of the definitions from an include file in each .c file that includes that file.

For example, each .c file that includes stdio.h has its own copy of a given symbol

or object. This results in very large binary files.

The procedure for exporting include files is simple. You perform the following

steps:

1. Create a file including a set of include files; this is called the export file. Be

sure that the definitions in each file included in the export file remain the

same when compiled on each C source file which is part of the system.

2. Set the Export attribute of the buffer to be yes using the command m-X Set

Export for Buffer.

3. Include the export file as a module of your system. The export file is a C

source file; you must compile and load it before all other C sources. Compil-

ing and loading the export file defines the objects shared across subsequent

files in the system.�

Symbolics C supplies a predefined export file including all the standard predefined

include files. Include this file as part of the system definition of any system using

standard include files, even if it only uses one or two of the standard include files.

The name of the predefined export file is:

SYS:C;EXPORT-C-LIBRARY.BIN�

Most C applications include the predefined export file and a separate export file

corresponding to application-specific data as part of their system definitions.

Here we give an example of an include file that is not a good candidate for ex-

porting. The include file named include.h contains this definition:

struct x {

 TWO_WORD_TYPE f;

};�

Page 1744

One file in the system contains the following:

#define TWO_WORD_TYPE double

#include "include.h"�

Another file in the system contains the following:

#define TWO_WORD_TYPE char *

#include "include.h"�

Since the two source files define TWO_WORD_TYPE differently, do not export the head-

er file that uses TWO_WORD_TYPE. The default behavior of the compiler (to textually

include the definitions from include files for each C source file) is appropriate for

this situation.

Note: Using one export file reduces the size of C binary files with symbol infor-

mation. It has no effect on the size of run-time-only binary files. See the section

"Minimizing the Size of Compiled Files for C Programs".

Caching Include Files

The Symbolics C system caches include files in these ways:

Compiling to Memory

When compiling to memory, the include cache is ignored if a corresponding Zmacs

file buffer exists. Instead, information from the buffer is used. If there is no file

buffer and a new version of the file is written to disk, the system updates the

cache.

Compiling to File

When compiling to file, using the Compile File command, the cache is updated if a

new version of the file is written to disk. Include files cached in memory are up-

dated to match the latest version written to disk. Zmacs file buffers are ignored.

When compiling to file using the Compile System command, the current state of

any include files on disk is updated once at the start of the compile system, and

that cached state is used throughout the system compilation. Any new include files

written to disk during the compile system operation do not update the state of the

include file cache.

� Using the Package System with C Programs

An important characteristic of the Genera environment is that the "operating sys-

tem," the editor, and a wide variety of other programs exist in one environment

where their names and the names of their functions and variables are each associ-

ated with a symbol. The programs you use during a work session are also loaded

into this environment. This presents the potential for a conflict in names. For ex-

ample, if the function foo already exists in the environment and you load a pro-

gram that has a function named foo, the original foo is redefined by the new

function foo.

Page 1745

Genera provides a mechanism for separating like-named functions by assigning

each to a distinct context or namespace. The namespace is called a package.

Example: c-user:foo and cl-user:foo define two functions named foo, one in the

package c-user, the other in the package cl-user. These functions can coexist in

the same Genera environment.

In a more conventional environment, these correspond to two different foos in dif-

ferent programs where the programs may not coexist at the same time in memory

or to two different foos that exist in separate processes.

Effect of the Package System on Naming C Functions

It is common practice in C programming to use the name main for the function at

which execution of a program begins. You can use this practice in the Genera en-

vironment if you place each C program in its own package. However, it is advanta-

geous to place closely related programs in the same package. See the section

"Sharing of Symbols Among Packages".

Consequently, it is most efficient to give the function at which execution begins a

name more descriptive of the purpose of the function, such as allocate-main.

� Predeclared C Package

Symbolics C recognizes one predeclared packages, c-user, which is the default

package for Symbolics C.

How to Declare a C Package

You can create a C package with the appropriate attributes with the C Listener

command Create C User Package or with the function c-system::package-declare-

with-no-superiors. After you create a package declaration, you must compile it for

it to become effective.

Create C User Package Command

Menu abbreviation: Create Package

Create C User Package (package name) symbol

Creates a C package named with the specified symbol.

symbol The symbol that becomes the package name.

� c-sys:package-declare-with-no-superiors name Function

Creates a package for use with C. The package has no inheritance from other

packages.

Page 1746

name A symbol assigned as the package name.

� How to Assign a C Package

You can assign a package name as part of a file’s attribute list or as a value in a

system declaration.

Adding the package name to a file’s attribute list enables editor-based compilation

of routines in the file without referencing a system declaration or the default

package.

To change the package name in the attribute list, use m-X Set Package and type

the package name. Alternatively, you can edit the attribute list directly by typing ;

Package: and the package name. Use m-X Reparse Attribute List to make this

change take effect.

You may specify a default package for a C system of several files in a system dec-

laration. See the section ":default-package option for defsystem".

See the function defsubsystem. Any package attribute in a file’s attribute list

overrides the default package you have specified in your system definitions.

� Using the System Construction Tool with C Programs

Managing a large program is easier by splitting it into several files. The Genera

System Construction Tool (SCT) provides a way to manage such a program. It lets

you construct a system by specifying a set of source files and a set of rules and

procedures defining the relations among these files. This system makes up a com-

plete program. For an overview of SCT: See the section "Introduction to the Sys-

tem Construction Tool". There are three basic steps in using a system:

• Generating a system definition.

• Compiling the system.

• Loading the system.

You define the system using SCT’s defsystem special form. The definition, called a

system declaration, specifies such information as the names of the source files,

modules, or both in your system and what operations you must perform on each

module in what order. For example, the system declaration specifies compilation

order for modules.

After creating a system declaration and evaluating it, you can compile the system.

You can then choose to load the system, edit it, or distribute it by tape.

The command Compile System and the compile-system function provide a means

to compile a system you define it.

Page 1747

You can load a C system using the Load System command or load-system func-

tion. See the section "Load System Command".

See the function load-system.

Creating Defsystems for C Programs

There are two ways to generate defsystems for C programs. If you are describing a

simple program, you can define a defsystem of your own. If you have a large

amount of code, use the Generate C System Definition command or

c-system::create-c-defsystem-from-pathnames function to automate the process.

See the section "Creating Defsystems for Large C Programs". To create your own

defsystem:

1. Define a module corresponding to each file.

2. For each include file dependency, define a C compilation dependency using

the :uses-definitions-from keyword.

The C system provides the module types :c-include and :c and the parameter type

:searchlist. For more information:

See the section "Long-form Module Specifications".

See the section ":module Keyword Options".

See the section ":parameters option for defsystem".

After creating the defsystem that corresponds to your system, you must compile

or evaluate the defsystem to actually define the system.

� Creating Defsystems for Large C Programs

The C Listener command Generate C System Definition and the c-system::create-

c-defsystem-from-pathnames form provide a simple way to generate SCT

defsystem forms for large or complicated programs. These both use the arguments

you supply to create a system declaration. They read a set of C files, deduce the

proper compilation dependencies, and create a defsystem form.

The defsystem form is written to an editor buffer whose name follows the form

system-name-System. Any warnings produced in generating the defsystem appear

in the buffer *system-name-System-Warnings*. Edit the generated system definition

in the *system-name-definitions* buffer to correct any errors found in the *system-

name-System-Warnings* buffer. Save the contents of the *system-name-definitions*

buffer to a file for preservation between reboots.

Note that you cannot specify information concerning include file search lists or

component systems with Generate C System definition or for c-system::create-c-

defsystem-from-pathnames. In such cases, edit the defsystem form directly.

Generate C System Command

Page 1748

Menu abbreviation: Generate System

Generate C System Definition (System Name) system-name

 (Source Pathnames) pathnames keywords

�

Prepares a C system for compilation by generating a defsystem form. The com-

mand creates two C editor buffers:

1. *system-name-SYSTEM*  contains the defsystem form generated by this com-

mand.

2. *system-name-System-Warnings*  contains any warnings produced in generat-

ing the defsystem.

system-name A name for the system you are generating.

pathnames The pathnames of the source files generating the system. You

must specify more than one pathname, separated by commas.

You must specify a file type "c". Wildcards are accepted.

keywords :Default pathname, :Searchlist name�

:Default pathname The defsystem’s default pathname. The default value is the di-

rectory named by the first pathname in the source pathname

list.

:Searchlist name The name of a previously defined include file directory search

list.

� c-sys:create-c-defsystem-from-pathnames system-name pathnames &key (:default-

pathname (send (first c-sys::pathnames) :new-pathname :name nil :type nil

:version nil)) :component-systems :search-list-name :buffer-or-file-name (:buffer-p ’t)

Function

Prepares a C system for compilation by generating a defsystem form.

system-name A name for the system.

pathnames The pathnames of the source files generating the system. You

can specify more than one pathname as a Lisp list. Files that

are C source files must have the file type "c". Wildcards are

accepted.

keywords :default-pathname, searchlist-name, :buffer-or-file-name�

:default-pathname The defsystem’s default pathname. The default value is the di-

rectory named by the first pathname in the source pathname

list.

Page 1749

:searchlist-name The name of a previously defined include file directory search

list.

� Generate C System Example

This example illustrates the use of the Generate C System Definition command to

create a defsystem. The case described is one in which we are given the files

board.h , board.c, check.h, check.c, and life.c in local:>. The Generate C System

Definition command reads through the files, checking for dependencies, and calcu-

lates an accurate defsystem form.

The next section shows each of these files, the CP command used to generate a

defsystem for them, and the defsystem form that results.

Example

The file contents are:

board.c

/*-*- Mode: C; Package: C-USER -*- */

/**board.c**/

�

/** this file contains no include files **/�

check.c

/*-*- Mode: C; Package: C-USER -*- */

�

#include <time.h> /**check.c**

#include "board.h"

.

.

.�

life.c

/*-*- Mode: C; Package: C-USER -*- */

�

#include <stdio.h> /**life.c**/

#include "board.h"

#include "check.h"

�

.

.

.�

The following command creates a defsystem named life and places the defsystem

form in the Zmacs buffer *life-system*.

C Command: Generate C System Definition (System Name) life (Source

 Pathnames) local:>*.c

Page 1750

�

 Output found in the Zmacs buffer: *life-system*.

 Warnings found in the Zmacs buffer: *life-system-warnings*

the *life-system* editor buffer

;;; -*- mode: lisp; syntax: common-lisp; package: user; base: 10 -*-

�

(DEFSYSTEM

 LIFE

 (:DEFAULT-PATHNAME "local:>" :DEFAULT-MODULE-TYPE :C)

 (:MODULE C-MODULE-0 "local:>board.c" (:TYPE :C))

 (:MODULE C-MODULE-2 "local:>check.h" (:TYPE :C-INCLUDE))

 (:MODULE C-MODULE-3 "local:>board.h" (:TYPE :C-INCLUDE))

 (:MODULE C-MODULE-4

 "local:>check.c"

 (:TYPE :C)

 (:USES-DEFINITIONS-FROM C-MODULE-3))

 (:MODULE C-MODULE-1

 "local:>life.c"

 (:TYPE :C)

 (:USES-DEFINITIONS-FROM C-MODULE-2 C-MODULE-3))

 (:PARALLEL C-MODULE-0 C-MODULE-2 C-MODULE-3 C-MODULE-4 C-MODULE-1))

�

The :maintain-journals Option in C Defsystems

Do not use the (:maintain-journals nil) option of defsystem when you create sys-

tems whose modules (or some subset of whose modules) are C source and C in-

clude files. The compilation dependencies on C include files are not properly com-

puted, and unnecessary recompilation of C source files occurs.

Note that the Generate C System Definition command produces system definitions

without the :maintain-journals option, so it defaults to t, which is correct for sys-

tems whose modules are C files.

Compiling and Loading C Systems

You can compile a system with the Genera command Compile System or with the

compile-system function. You can load a system with the Load System command,

with a keyword argument to the Compile System command, or with the compile-

system function.

� Building Applications with C Run-time Systems

Symbolics C supports features enabling you to build and distribute minimally sized

C applications including the C run-time system. You can run applications including

this system in environments not running the C development system.

Page 1751

Customers who distribute an application with the C run-time system must sign a

Sublicense Addendum to the Terms and Conditions of Sale, License, and Service.

For more information, see the section "Sublicense Addendum for Symbolics C".

0.0.42. Components of a Run-time System

A run-time system (as opposed to the development system) for a language is made

up of the minimal subset of the development system software required to load and

execute a program. From a user’s perspective, it contains the library routines de-

fined for the language, the loader, and the function that initiates execution. The

following functionality, normally present in the development system, is absent in

the run-time system:

• Language-specific Zmacs Editor Mode

• Compiler

• Language-specific Source Level debugger

• CP window, to support language-specific CP commands�

The C run-time system is called C-Runtime.

0.0.43. Creating Applications

Normally, you follow these steps to develop and deliver an application that includes

the C run-time system:

1. Develop the application using the full development environment.

2. As an option, during program compilation, set a global variable to filter out

debugging information from binary files. This reduces the size of the finished

application.

3. Include the C run-time system as a component system in the system defini-

tion when you write the system declaration for the C application.

� Minimizing the Size of Compiled Files for C Programs

During a normal compilation, the compiler produces information that supports de-

bugging and incremental compilation. This information is normally written out to

the bin file, a binary file identified by the file extension bin, or ibin on Ivory based

machines. You can exclude this information from the bin file by setting the special

variable compiler-tools-system::*compile-for-run-time-only* to the Lisp boolean t.

Doing so minimizes the size of the binary files produced for an application.

By convention, binary files produced in this manner are referred to as run-time on-

ly (rto) bins (but are assigned the file extension). Using rto binary files limits your

ability to debug and compile source code, so use this facility judiciously. Use of

Page 1752

this facility does not change the generated code. The section "Program Configura-

tions: Development and Run-time System Options for C Systems" specifies the ca-

pabilities of rto binary files.

� Incorporating the Runtime System Into a C Application

Package the run-time system as a dependent component system of the application.

You must meet these requirements when defining such a packaged system:

• The packaged system definition must cause the run-time system to load before

any of the application program loads. Specifying the appropriate :serial depen-

dency loads the run-time system correctly.

• The definition must cause the reading of the system declaration (sysdcl) file for

the run-time system before encountering any C file in an application system

definition.

The following example illustrates how an application named a1 is packaged. Note

that a1 is a component system (with accompanying separate system declaration, or

sysdcl file) and not a separate subsystem when the sysdcl contains references to

objects defined in the system or user package defined by the run-time system in

question.

(defsystem a1

 (:default-pathname "foo:bar;"

 :distribute-binaries t

 :default-module-type :C)

 (:serial "f1.C" "f2.C"))

�

(defsystem packaged-a1

 (:default-pathname "foo:pkg-bar;"

 :distribute-binaries t)

 (:module C-runtime "C-runtime" (:type :system))

 (:module a1 "a1" (:type :system))

 (:serial C-runtime a1))

You can use the distribution software to distribute the packaged software.

For further information, see the sections:

"Distribute Systems Command"

"Distribute Systems Frame"

"Restore Distribution Command"

"Restore Distribution Frame"

� Program Configuration Options for C Systems

Given the capabilities of a run-time system and the ability to produce rto bins, you

can have a program in a configuration obtained by the following cross product:

Page 1753

 (normal bin, rto bin) X (development system, run-time system)

The (normal bin, development system) configuration is the usual configuration and

the one that makes the full functionality of the development system available. Oth-

er configurations limit the functionality in various ways.

The following table describes the properties of each possible configuration.

0.0.44. Program Configurations: Development System and Run-time System

Options

Development System Run-time System

Normal Bin Incremental Incremental

 Compilation: Yes Compilation: No

Batch compilation: Yes Batch compilation: No

Language-specific Language-specific

 debugging: Yes debugging: No

Rto Bin Incremental Incremental

 Compilation: * Compilation: No

Batch compilation: * Batch compilation: No

Language-specific Language-specific

 debugging: No debugging: No

*Incremental compilation is possible, after all references external to the unit being

incrementally compiled are compiled. For C, this means that a file or buffer is

compiled before an individual function within it is recompiled. �

0.0.45. Purpose of Configurations

Normal bin, Development system:

This is the normal configuration for software development.

Normal bin, Run-time system: This configuration is advantageous when software is

actively developed, but is also simultaneously used in a run-

time system.

Rto bin, Run-time system: This is the desired configuration for software of

minimal size that is released.

Rto bin, Development system: This is not a recommended configuration. You

should re-create normal bin files if you plan to do any debug-

ging or development work with these files.

� C - Lisp Interaction

Page 1754

This chapter discusses the interface between Lisp and C and presents information

on these areas:

• lispobj, a new type specifier for representing Lisp objects in C programs

• lisp, a new storage class specifier used in a function directive to declare a Lisp

function so that you can call it from a C procedure

• Passing double values

• Calling C from Lisp

• Calling Lisp from C

� lispobj: C Type Specifier to Represent Lisp Data Objects

In addition to the type specifiers defined in ANSI C, Symbolics C supports a new

type specifier called lispobj. By declaring a variable a lispobj, you can represent

any Lisp data object. You can form arrays of lispobjs and declare lispobj func-

tions.

The only valid operations on objects of the lispobj type are assignment and pa-

rameter passing; you cannot read, write, or compare lispobjs. You cannot coerce a

lispobj into another type, nor can you coerce another type into a lispobj.

� lisp: C Function Directive

Symbolics C supports a new function directive, lisp, allowing you to declare a Lisp

function that you can call from a C function.

Note: The function directive is similar to a macro in that when a directive

changes, you must recompile all callers of the function defined in the directive.

The format for declaring a Lisp function in a C function is:

lisp ["Lisp-function"] output-type c-name ([parameter-list]);

0.0.46. Example of Function Declaration

For example, to declare a Lisp function length for use with a C function, you

might use:

lisp "global:length" int length (lispobj list);

This specifies the routine directive lisp and declares the function whose Lisp

name is global:length, where global is the package name. It assigns the type int

to any value returned from global:length, specifies the C name for the Lisp rou-

tine, and names a parameter value list of type lispobj.

Note that you use a lisp directive much like you use a macro. When a change is

made to the directive, you must recompile all callers.

Page 1755

0.0.47. Description of Fields

Lisp-function A string argument that is the name of the Lisp function you

are declaring. This string argument reflects Lisp naming con-

vention, rather than C convention in determining the name of

the Lisp function. So that, unlike C, which is a case-sensitive

language, you can use "global:length" or "GLOBAL:LENGTH"

to specify the same Lisp function.

When the C name for the Lisp routine is identical to the Lisp

function name, you do not have to specify the string argument.

If the string argument is not specified, the Lisp function must

have the same name as c-name and the same package as the C

file. Do not compile C in a package that inherits from global

or Slc.

For further information: See the section "How to Use the Lisp-

function Field".

type The C type of any return value from the function specified by

lisp-routine.

c-name Specifies the name you want to use in your C code to call the

Lisp routine. Make sure c-name is a valid C identifier.

Note that you can specify only one C name per directive. Each

Lisp function that you call from C requires its own declaration

statement.

parameter-list Specifies a C parameter list, which can include the types and

names of the parameters. All C data types are permitted, in-

cluding lispobj. You have to pass these scalar types by value

to Lisp, not by reference. See the section "Passing Double Val-

ues in C".

Structure parameters are passed either by value or by refer-

ence. Note that aggregate objects do not necessarily have one

element per Lisp array word. Also, arrays of doubles are

stored unpacked.�

How to Use the Lisp-function Field

You use the optional Lisp-function field in the case where the Lisp function

1. Is not in the same package as that specified in the attribute line of the C

source file.

2. Has a name that uses a character that is illegal in a C identifier.

Page 1756

0.0.48. Case Sensitivity

If you define a function in the default c-user package such as:

(defun c-user::|my-lisp-proc| (arg1 arg2) ...)

and the package into which you are compiling C routines is the c-user package,

then

lisp "|my-lisp-proc|" void my_lisp_proc();

is a correct declaration. On the other hand, if the Lisp routine is defined as:

(defun c-user::my-lisp-proc (arg1 arg2) ...)

you can use the lisp storage-class-specifier as follows:

lisp "MY-LISP-PROC" void my_lisp_proc();

or

lisp "my-lisp-proc" void my_lisp_proc();

As a final example, if you define two Lisp routines as

(defun c-user::|my_lisp_proc| (arg1 arg2) ...)

(defun c-user::|MY_LISP_PROC| (arg1 arg2) ...)

the C declarations

lisp void my_lisp_proc();

lisp void MY_LISP_PROC();

establish proper linkage to the two different Lisp routines.

� Passing Double Values in C

Values of the type double are represented as boxed numbers in the Genera envi-

ronment, and as unboxed numbers in C. C procedures expect to receive data of

type double in unboxed form. They also return their results unboxed.

Example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

Page 1757

�

(defun c-user::dsr (double-hi double-lo)

 (declare (values double-hi double-lo))

 (si:with-double-components

 ((let ((to-be-squared (si:%make-double double-hi double-lo)))

 (* to-be-squared to-be-squared))

 ret-hi ret-lo)

 (values ret-hi ret-lo)))

�

(defun c-square-and-add (i j)

 (declare (values double-precision-float))

 (multiple-value-bind (ret-hi ret-lo)

 (c-user::|dsquare_and_add| i j)

 (si:%make-double ret-hi ret-lo)))

/*-*- Mode: C; Package: C-USER -*- */

�

lisp double DSR(double to_be_quartered);

�

double dsquare_and_add(int i, int j)

{

 return DSR(i) + j;

}

� Passing Structures Between C and Lisp

There are three cases you should concern yourself with when passing structures

from C to Lisp:

1. Structures of size 1 word or less.

2. Structures of size 2 words or less.

3. Structures of a size greater than 2 words.

In the first case, structures are passed by value and appear as a single Lisp argu-

ment. In the second case, structures are passed by value and appear as two consec-

utive Lisp arguments. In the third case, structures are passed by reference. For

these cases, the Symbolics C compiler guarantees preservation of by-value seman-

tics for C routines. EXTERN functions defined in Lisp should avoid violating

structure by-value semantics.

The following examples show how to access the various fields of a structure for

each of these cases.

Page 1758

0.0.49. Example 1: Structures of Size One Word or Less

For

struct ts { int f1; } s = { 1 };

extern int add_one_to_f1(struct ts s);

you can

(defun |add_one_to_f1| (s) (1+ s))

0.0.50. Example 2: Structures of Size Two Words or Less

For

struct ts { int f1, f2; } s = { 1 };

extern int add_one_to_f1_plus_f2(struct ts s);

you can

(defun |add_one_to_f1_plus_f2| (s1 s2) (+ s1 s2 1))

0.0.51. Example 3: Structures of A Size Greater than Two Words

For

struct ts { int f1, f2, f3; } s = { 1 };

extern int add_one_to_f1_plus_f2_plus_f3(struct ts s);

you can

 (defun |add_one_to_f1_plus_f2_plus_f3| (c-array c-offset)

 (let ((lisp-offset (rot c-offset -2)))

 (+ (aref c-array lisp-offset)

 (aref c-array (+ lisp-offset 1))

 (aref c-array (+ lisp-offset 2))

 1)))

� Returning Structures in C

� Calling Lisp From C

A Lisp function can call a C main program directly.

The following program passes a C array to a Lisp function listarray, returning a

list of the elements. It then calls the Lisp function reverse to reverse the lispobj

list returned, and finally calls the Lisp function print displaying the result on the

console:

/*-*- Mode: C; Package: C-USER -*- */

Page 1759

�

void revarray()

{

 #define ASIZE 10

�

 int a[ASIZE], i;

 extern lispobj listarray(int a[], int count);

 lisp "global:reverse" lispobj reverse(lispobj list);

 lisp "global:print" void print(lispobj anyobj);

�

 for (i = 0; i < 10; i++) a[i] = i;

 print(reverse(listarray(a, ASIZE)));

}

The Lisp code:

;;; -*- Mode: LISP; Syntax: Common-Lisp; Base: 10; Package: USER; Lowercase: Yes-*-

�

(defun c-user::|listarray| (array-pointer-object array-object-byte-offset count)

 (loop for i from (floor array-object-byte-offset 4)

 for count from count above 0

 collect (aref array-pointer-object i)))

� Calling C From Lisp

To call a C function from Lisp, you place a C function called from Lisp on the call

tree of a C function invoked by c-system::execute if that function has any static

data needing initialization. Data initialization occurs when the main program is

executes.

Static data includes:

1. Any data of static storage duration defined by or referenced in the C func-

tion.

2. Any string literals referenced in the C function.

Passing Arguments to a C Main Program in Argc, Argv Format

You can use the function c-system::build-expanded-argument-list for translating

Lisp strings into the argc, argv format needed by C main programs. This function

is useful when calling the C program by c-system::execute.

c-system::build-expanded-argument-list takes two arguments. The first argument

is a string naming the C program; this is the same as the :Program Name key-

word to the Execute C Function command. The second argument is a list of Lisp

strings corresponding to argv strings. c-system::build-expanded-argument-list

Page 1760

converts this list into the corresponding argc, argv pair, and returns two values:

argc and argv.

� Porting C Programs

Overview of Porting C Programs

This chapter discusses considerations in porting programs developed on other com-

pilers to the 3600-series of machines for use in the Genera environment. In par-

ticular, it describes some effects of run-time data type-checking, the treatment of

uninitialized variables in the Genera environment, and presents a table showing

the size of language data types in this implementation.

� Run-time Data Type-Checking in C

Run-time data type-checking is the most noticeable difference if you are accus-

tomed to conventional untagged architectures. Operations that are meaningless,

but performed undetected in conventional hardware, are trapped by the Symbolics

3600-series machine.

Attempts at pointer operations on non-pointer values in C are trapped by the

tagged hardware. In addition, references via pointers are checked to ensure that

the access is restricted to the allocated object and does not corrupt storage.

� Uninitialized Variables in C

In Genera, all variables start out with the distinguished value "undefined" unless

explicitly initialized or assigned. You cannot write or coerce an undefined value.

You can also initialize data to undefined values, which is true for both the I/O

case and the non-I/O case. Signalling an error, in such a case, is preferable to

picking up a random machine-dependent value, and actually eases the porting pro-

cess.

� Size and Alignment of Symbolics C Language Data Types

You can use the information in this section is for porting C applications. If you

have an existing C application, you can use this information to access the data it

contains from Lisp. You can convert C data into Lisp objects.

Table ! shows the sizes and alignments of C language data types.

All C structures are allocated in sys:art-q arrays. Each element is a 32-bit Lisp

word. The alignment column below shows how the various C data types are

aligned within the 32-bit words.

Bit fields require bit alignment. A bit field length specifier of 0 forces alignment

to the nearest 8-bit boundary.

Page 1761

Type Size Alignment

char 8 bits 8-bit boundary

long 1 word 8-bit boundary

int 1 word 1-word boundary

short 16 bits 16-bit boundary

float 1 word 1-word boundary

double 2 words 1-word boundary

pointer 2 words 1-word boundary

Table 1. Sizes and Alignments of C Data Types�

Pointers and integers are different sizes on the Symbolics 3600 series. Pointers are

represented as an [array-object, index] pair and are two words in length; integers

are one word long.

Here we give examples of how you can pack structures into arrays. We define one

structure as follows:

struct {

 char c1;

 char c2;

 char c3;

 short s1;

};�

The array representing that structure is:

c1 c2 c3

s1

32 bits

first array element

second array element
�

We define another structure as follows:

struct {

 char c1;

 short s1;

 double d1;

};�

The array representing that structure is:

Page 1762

c1 s1

32 bits

first array element

second array element

third array element

d1 (part 1)

d1 (part 2)

�

As mentioned earlier, an [array-object, index] pair represents a pointer and occu-

pies two words:

array object

index
�

You can access a pointer from Lisp by defining a function which takes two argu-

ments, array-object and index.

� Symbolics C Run-time Libraries

Overview of the Run-time Libraries

This section lists and describes run-time routines defined in the Symbolics C Run-

time Library. These routines conform to the ANSI standard definition of C.

The routines are grouped into these libraries:

assert.h math.h stdio.h

ctype. setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h

locale.h stddef.h

�

The routines are grouped alphabetically by library, and are described in this form:

Synopsis: #include <commonlib.h>

type routine-name(parameters);

Description: What the routine does, what it is used for.

Returns: Values returned.

The on-line reference, C: A Reference Manual, also describes C run-time library

routines. Use these as a resource for additional description and discussion of these

Page 1763

routines, in particular, for a comparison of ANSI and non-ANSI implementations.

Note that the routine descriptions in the Symbolics C Run-time Library take prece-

dence in describing specifics of the Symoblics C run-time libraries.

Run-time Library Table

The following table is an alphabetical list of run-time routines and the libraries

where they are located.

Function Library Purpose

abort stdlib.h environment function

abs stdlib.h integer arithmetic function

acos math.h trigonometric function

asctime time.h date and time function

asin math.h trigonometric function

assert assert.h diagnostic function

atan math.h trigonometric function

atan2 math.h trigonometric function

atexit stdlib.h environment function

atof stdlib.h string conversion function

atoi stdlib.h string conversion function

atol stdlib.h string conversion function

bsearch stdlib.h searching and sorting function

calloc stdlib.h memory management function

ceil math.h exponential and logarithmic function

clearerr stdio.h I/O function

clock time.h date and time function

cos math.h trigonometric function

cosh math.h trigonometric function

ctime time.h date and time function

difftime time.h date and time function

exit stdlib.h environment function

exp math.h exponential and logarithmic function

fabs math.h exponential and logarithmic function

fclose stdio.h I/O function

feof stdio.h I/O function

Page 1764

ferror stdio.h I/O function

fflush stdio.h I/O function

fgetc stdio.h I/O function

fgetpos stdio.h I/O function

fgets stdio.h I/O function

floor math.h exponential and logarithmic function

fmod math.h exponential and logarithmic function

fopen stdio.h I/O function

fprintf stdio.h I/O function

fputc stdio.h I/O function

fputs stdio.h I/O function

fread stdio.h I/O function

free stdlib.h memory management function

freopen stdio.h I/O function

frexp math.h exponential and logarithmic function

fscanf stdio.h I/O function

fseek stdio.h I/O function

fsetpos stdio.h I/O function

ftell stdio.h I/O function

fwrite stdio.h I/O function

getc stdio.h I/O function

getchar stdio.h I/O function

getenv stdlib.h environment function

gets stdio.h I/O function

gmtime time.h date and time function

isalnum ctype.h character processing function

isalpha ctype.h character processing function

iscntrl ctype.h character processing function

isdigit ctype.h character processing function

isgraph ctype.h character processing function

islower ctype.h character processing function

isprint ctype.h character processing function

ispunct ctype.h character processing function

Page 1765

isspace ctype.h character processing function

isupper ctype.h character processing function

isxdigit ctype.h character processing function

labs stdlib.h integer arithmetic function

ldexp math.h exponential and logarithmic function

ldiv stdlib.h integer arithmetic function

localtime time.h date and time function

log10 math.h exponential and logarithmic function

longjmp setjmp.h non-local jump function

malloc stdlib.h memory management function

memchr string.h string handling function

memcmp string.h string handling function

memcpy string.h string handling function

memmove string.h string handling function

memset string.h string handling function

mktime time.h date and time function

modf math.h exponential and logarithmic function

perror stdio.h I/O function

pow math.h exponential and logarithmic function

printf stdio.h I/O function

putc stdio.h I/O function

putchar stdio.h I/O functions

puts stdio.h I/O function

qsort stdlib.h searching and sorting function

raise signal.h signal handling function

rand stdlib.h pseudo-random number generator

realloc stdlib.h memory management function

remove stdio.h I/O function

rename stdio.h I/O function

rewind stdio.h I/O function

scanf stdio.h I/O function

setbuf stdio.h I/O function

setjmp setjmp.h non-local jump function

Page 1766

setlocale locale.h locale parameters function

setvbuf stdio.h I/O function

signal signal.h signal handling function

sin math.h trigonometric function

sinh math.h trigonometric function

sprintf stdio.h I/O function

sqrt math.h exponential and logarithmic function

srand stdlib.h pseudo-random number generator

sscanf stdio.h I/O function

strcat string.h string handling function

strchr string.h string handling function

strcmp string.h string handling function

strcoll string.h string handling function

strcpy string.h string handling function

strcspn string.h string handling function

strerror string.h string handling function

strftime time.h date and time function

strlen string.h string handling function

strncat string.h string handling function

strncmp string.h string handling function

strncpy string.h string handling function

strpbrk string.h string handling function

strrchr string.h string handling function

strspn string.h string handling function

strstr string.h string handling function

strtod stdlib.h string conversion function

strtok string.h string handling function

strtol stdlib.h string conversion function

strtoul stdlib.h string conversion function

strtou stdio.h I/O function

system stdlib.h environment function

tan math.h trigonometric function

tanh math.h trigonometric function

Page 1767

time time.h date and time function

tmpfile stdio.h I/O function

tmpnam stdio.h I/O function

tolower ctype.h character processing function

toupper ctype.h character processing function

ungetc stdio.h I/O function

va_arg stdarg.h variable arguments list function

va_end stdarg.h variable arguments lists

va_start stdarg.h variable arguments list function

vfprintf stdio.h I/O function

vprintf stdio.h I/O function

vsprintf stdio.h I/O function

� The limits.h library

The limits provided in <limits.h> for Symbolics C are as follows:

 CHAR_BIT 8 width in number of bits for the type char

 SCHAR_MIN -127 minimum value of a signed char

 SCHAR_MAX +127 maximum value of a signed char

 UCHAR_MAX 255U maximum value of an unsigned char

 CHAR_MIN 0 minimum value of a char

 CHAR_MAX UCHAR_MAX maximum value of a char

 SHRT_MIN -32767 minimum value of a short int

 SHRT_MAX +32767 maximum value of a short int

 USHRT_MAX 65535U maximum value of an unsigned short

 INT_MIN -2147483648 minimum value of an int

 INT_MAX +2147483647 maximum value of an int

 UINT_MAX 4294967295U maximum value of an unsigned int

 LONG_MIN -2147483648 minimum value of a long int

 LONG_MAX +2147483647 maximum value of a long int

 ULONG_MAX 4294967295U maximum value of an unsigned long �

� The float.h Library

The type characteristics of floating-point types defined in <float.h> are as follows:

radix of exponent representation for all floating types

 FLT_RADIX +2

addition rounds

Page 1768

 FLT_ROUNDS +1

number of (base-FLT_RADIX) digits in the floating-point mantissa

 FLT_MANT_DIG +24

 DBL_MANT_DIG +53

 LDBL_MANT_DIG +53

minimum x>0.0 such that 1.0+x !=1.0

 FLT_EPSILON +5.960465E-8F

 DBL_EPSILON +1.1102230246251568E-16

 LDBL_EPSILON +1.1102230246251568E-16

number of decimal digits of precision

 FLT_DIG +6

 DBL_DIG +15

 LDBL_DIG +15

maximum x such that 2 x-1approximates FLT_MAX

 FLT_MAX_EXP +128

 DBL_MAX_EXP +1024

 LDBL_MAX_EXP +1024

minimum x such that 2x-1 approximates FLT_MIN

 FLT_MIN_EXP -125

 DBL_MIN_EXP -1021

 LDBL_MIN_EXP -1021

maximum representable finite number

 FLT_MAX +3.4028235e38F

 DBL_MAX +1.7976931348623157E308

 LDBL_MAX +1.7976931348623157E308

minimum normalized positive number

 FLT_MIN +1.1754944e-38F

 DBL_MIN +2.2250738585072014E-308

 LDBL_MIN +2.2250738585072014E-308

maximum x such that 1Ex approximates FLT_MAX

 FLT_MAX_10_EXP +38

 DBL_MAX_10_EXP +308

 LDBL_MAX_10_EXP +308

minimum x such that 1Ex approximates FLT_MIN

 FLT_MIN_10_EXP -37

 DBL_MIN_10_EXP -307

 LDBL_MIN_10_EXP -307

�

Page 1769

� The stddef.h Library

This header file defines these types and macros:

ptrdiff_t The type that is the result of subtracting two pointers.

size_t The type that is the result of the sizeof operator.

NULL A macro that defines the value of the null pointer constant.

offsetof(type, identifier) Describes in bytes the offset of identifier in type.

errno A macro that returns an indicator for error conditions. When

you first run a program, the value of the indicator is set to

zero. During the course of a program, various library functions

can set the value to a positive. Because a call to a library

function cannot set the value of errno to zero, the program has

to reset the indicator to zero before a call, and inspect it be-

fore subsequent calls.

� The assert.h library

The assert Macro

Synopsis: #include <assert.h> void assert(int expression);

Description: Tests whether an expression is true or false at that point in the pro-

gram. If the expression evaluates to false, this macro writes informa-

tion to the standard error file for the faulty call, using this format:

**** C assertion assert_expr_string failed at

 line assert_line in file assert_file

�

It then calls the abort function.

Note: The assert facility disables when the NDEBUG macro is defined

in the header file <assert.h>.

Returns: Returns no value.

� The ctype.h Library

The isalnum Function

Synopsis: #include <ctype.h> int isalnum(int c);

Description: Tests whether c is an alphanumeric character. An alphanumeric char-

acter is one of:

Page 1770

The digits 0 through 9

The letters a through z

The letters A through Z

Returns: Returns a nonzero value if this condition is true, otherwise, returns a

value of zero.

The isalpha Function

Synopsis: #include <ctype.h> int isalpha(int c);

Description: Tests whether c is an alphabetic character. An alphabetic character is

either a through z or A through Z.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The iscntrl Function

Synopsis: #include <ctype.h> int iscntrl(int c);

Description: Tests whether c is a control character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The isdigit Function

Synopsis: #include <ctype.h> int isdigit(int c);

Description: Tests whether c is a decimal digit character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The isgraph Function

Synopsis: #include <ctype.h> int isgraph(int c);

Description: Tests whether c is a graphic character. A graphic character is any

printing character with the exception of the space (‘ ’) character.

Page 1771

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.

The islower Function

Synopsis: #include <ctype.h> int islower(int c);

Description: Tests whether c is a lowercase alphabetic character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The isprint Function

Synopsis: #include <ctype.h> int isprint(int c);

Description: Tests whether c is a printing character, including the space (‘ ’)

character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.

The ispunct Function

Synopsis: #include <ctype.h> int ispunct(int c);

Description: Tests whether c is a punctuation character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The isspace Function

Synopsis: #include <ctype.h> int isspace(int c);

Description: Tests whether c is a whitespace character. A whitespace character is

one of:

Page 1772

space (‘ ’)

form feed (‘\f’)

newline (‘\n’)

carriage return (‘\r’)

horizontal tab (‘\t’)

vertical tab (‘\v’)�

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.

The isupper Function

Synopsis: #include <ctype.h> int isupper(int c);

Description: Tests whether c is an uppercase letter.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The isxdigit Function

Synopsis: #include <ctype.h int isxdigit(int c);

Description: Tests whether c is a hexadecimal digit character.

Returns: Returns a nonzero value if the condition is true, otherwise, returns a

value of zero.�

The tolower Function

Synopsis: #include <ctype.h> int tolower(int c);

Description: Converts c from an uppercase letter to a lowercase letter.

Returns: Returns the corresponding lowercase letter. If there is no correspond-

ing lowercase letter, the argument c is returned unchanged.

The toupper Function

Synopsis: #include <ctype.h> int toupper(int c);

Description: Converts c from a lowercase letter to an uppercase letter.

Page 1773

Returns: Returns the corresponding uppercase letter. If there is no correspond-

ing uppercase letter, the argument c is returned unchanged.

� The locale.h Library

The locale.h library enables you to change the way certain functions behave,

based on local conventions of language and culture. It is the hook for targeting a

program to users in one or more countries in the international community.

This library includes the setlocale function and the following macros, all of which

are used as the category argument to setlocale:

LC_ALL

LC_COLLATE

LC_CTYPE

LC_NUMERIC

LC_TIME�

The setlocale Function

Synopsis: #include <locale.h> char *setlocale(int category, const char

*locale);

Description: Selects the locale of the program, according to the category and lo-

cale arguments. The category argument indicates which portion of the

program’s current locale is changed or queried.

category value Affects

LC_ALL program’s entire current locale

LC_COLLATE strcoll

LC_TYPE character-handling functions

LC_NUMERIC the decimal-point character for I/O and string con-

version functions

LC_TIME strftime�

The locale argument specifies the desired locale. A null pointer for

locale simply queries for the current locale, without changing it. Oth-

er values for locale request to change the current locale. A value of

"C" for locale specifies the minimal environment for C translation;

this is the English C locale. A value of "" for locale specifies the im-

plementation-defined native environment. You can also make this argu-

ment implementation-defined string values.

Returns: If a pointer to a string is given for locale and the selection is hon-

ored, this function returns the string specifying the category for the

Page 1774

new locale. If the selection is not supported, a null pointer is re-

turned, and the program’s locale remains unchanged.

If a null pointer is given for locale, this function returns the string

associated with the category of the program’s current locale, and the

locale remains unchanged.�

Note: If you specify a category other than LC_ALL, the specific subcategory is de-

fined, but the overall category LC_ALL is undefined. In this case, an inquiry for the

category LC_ALL results in a null pointer being returned.

Note: Symbolics C supports two locales: the minimal locale and the C locale

(which are the same in this implementation).

� The math.h Library

The acos Function

Synopsis: #include <math.h> double acos(double x);

Description: Computes the principal value of the arc cosine of x. If an argument is

not in the range [-1,1], a domain error occurs.

Returns: Returns the arc cosine in the range [0, π].

The asin Function

Synopsis: #include <math.h> double asin(double x);

Description: Computes the principal value of the arc sine of x. If an argument is

not in the range [-1,1], a domain error occurs.

Returns: Returns the arc sine in the range [-π/2, π/2].

The atan Function

Synopsis: #include <math.h> double atan(double x);

Description: Computes the principal value of the arc tangent of x.

Returns: Returns the arc tangent in the range [-π/2, π/2].�

The atan2 Function

Synopsis: #include <math.h> double atan2(double y, double x);

Page 1775

Description: Computes the principal value of the arc tangent of the value y/x. The

function uses the signs of both arguments in determining the quad-

rant for the return value. The value is a floating-point value. If both

arguments are zero, a domain error occurs.

Returns: Returns a result in radians for the arc tangent of y/x whose value is

in the range [-π, π].

The ceil Function

Synopsis: #include <math.h> double ceil(double x);

Description: Computes the smallest integer not less than x.

Returns: Returns the smallest integer not less than x, where x is expressed as

a double type.

The cos Function

Synopsis: #include <math.h> double cos(double x);

Description: Computes the cosine of x (measured in radians).

Returns: Returns the cosine value. In cases where you give a large magnitude

argument, the result is of little or no significance.

The cosh Function

Synopsis: #include <math.h> double cosh(double x);

Description: Computes the hyperbolic cosine of x. If the magnitude of x is too

large, a range error occurs.

Returns: Returns the hyperbolic cosine value.

� The exp Function

Synopsis: #include <math.h> double exp(double x);

Description: Computes the exponential function of x. If the magnitude of x is too

large, a range error occurs.

Returns: Returns the exponential value.

Page 1776

The fabs Function

Synopsis: #include <math.h> double fabs(double x);

Description: Computes the absolute value of floating-point number x.

Returns: Returns the absolute value of x.

The floor Function

Synopsis: #include <math.h> double floor(double x);

Description: Computes the largest integer not greater than x.

Returns: Returns the absolute value of x.

The fmod Function

Synopsis: #include <math.h> double fmod(double x, double y);

Description: Computes the floating-point remainder of x/y.

Returns: Returns the remainder of x/y when y is nonzero. Returns zero if y is

zero.

The frexp Function

Synopsis: #include <math.h> double frexp(double value, int *exp);

Description: Breaks a floating-point number into an integral power of 2 and a nor-

malized fraction. The integer is stored in the int object pointed to by

exp.

Returns: Returns the value x. The value is a double with magnitude in the in-

terval [1/2, 1] or zero and is equal to x times 2 raised to the power

*exp. If value is zero, both parts of the result are zero.

The ldexp Function

Synopsis: #include <math.h> double ldexp(double x, int exp);

Description: Multiplies a floating-point number by an integral power of 2. A range

error may occur.

Returns: Returns the value of x times 2 raised to the power exp.

The ldiv Function

Synopsis: #include <stdlib.h> ldiv_t ldiv(long int numer, long int denom);

Page 1777

Description: Computes the quotient and remainder of the division of numer by

denom.

Returns: Returns a structure of type ldiv_t. The type ldiv_t is a structure

whose members are named quot and rem and that contains long int

members.

� The log Function

Synopsis: #include <math.h> double log(double x);

Description: Computes the natural logarithm of x. If the argument is negative, a

domain error occurs. If the argument is zero, a range error occurs.

Returns: Returns the natural logarithm.

� The log10 Function

Synopsis: #include <math.h> double log10(double x);

Description: Computes the base-ten logarithm of x. If the argument is negative, a

domain error occurs. If the argument is zero, a range error occurs.

Returns: Returns the base-ten logarithm.

The modf Function

Synopsis: #include <math.h> double modf(double value, double *iptr);

Description: Breaks the argument value into fractional and integral parts, each of

which has the same sign as the argument. It stores the integral part

as a double in the object pointed to by iptr.

Returns: Returns the signed fractional part of value.

The pow Function

Synopsis: #include <math.h> double pow(double x, double y);

Description: Computes x raised to the power y. If x is zero and y is less than or

equal to zero, or if x is negative and y is not an integer, a domain er-

ror occurs. A range error may occur.

Returns: Returns the value of x raised to the power of y.

The sin Function

Synopsis: #include <math.h> double sin(double x);

Page 1778

Description: Computes the sine of x (measured in radians). A result of little or no

significance is returned from a large magnitude argument.

Returns: Returns the sine value.

The sinh Function

Synopsis: #include <math.h> double sinh(double x);

Description: Computes the hyperbolic sine of x. If the magnitude of x is too large,

a range error occurs.

Returns: Returns the hyperbolic sine value.

The sqrt Function

Synopsis: #include <math.h> double sqrt(double x);

Description: Computes the non-negative square root of x. If the argument is nega-

tive, a domain error occurs.

Returns: Returns the value of the square root.

The tan Function

Synopsis: #include <math.h> double tan(double x);

Description: Computes the tangent of x (measured in radians). A result of little or

no significance is returned from a large magnitude argument.

Returns: Returns the tangent value.

The tanh Function

Synopsis: #include <math.h> double tanh(double x);

Description: Computes the hyperbolic tangent of x.

Returns: Returns the hyperbolic tangent value.

� The setjmp.h Library

Page 1779

The setjmp Function

Synopsis: #include <setjmp.h> int setjmp(jmp_buf env);

Description: Saves the calling environment in env, the "jump buffer."

Returns: Returns zero, if called directly. Returns 1, if called from longjmp.

The longjmp function

Synopsis: #include <setjmp.h> void longjmp(jmp_buf env, int val);

Description: Restores the environment saved in env with setjmp.

Returns: Returns the value of val.

� The signal.h Library

This header file defines several macros and one type. The type is:

 sig_atomic_t Identifies an object that you can modify

 atomically in the presence of in the presence of

asynchronous interrupts. �

The macros are:

 Macro Meaning

 SIG_DFL Passed as second argument to signal;

 requests default handling for the signal.

 SIG_ERR Possible returned value for signal;

 indicates that the signal was not generated.

 SIG_IGN Passed as second argument to signal;

 requests that the signal be ignored.

 Macro Action Meaning

 SIGABRT The program is aborted. abort signal

 SIGFPE The Debugger is entered. floating-point exception signal

 SIGILL The program is aborted. illegal instruction signal

 SIGINT The Debugger is entered. interrupt signal

 SIGSEGV The Debugger is entered. segment violation signal

 SIGTERM The program is aborted. termination signal

Page 1780

�

� The raise Function

Synopsis: #include <signal.h> int raise(int sig);

Description: Sends the signal sig to the executing program.

Returns: Returns zero if successful, otherwise, returns nonzero.

� The signal Function

Synopsis: #include <signal.h> void (*signal(int sig, void

(*func)(int)))(int);

Description: Specifies the way the signal number sig is handled when it is raised.

If the value of func is SIG_DFL, default handling for that signal oc-

curs. If the value of func is SIG_IGN, the signal is ignored. If the val-

ue of func is other than these, func acts as a pointer to a function

called when that signal occurs.

Returns: If the request is successful, returns the value of func for the previous

call to signal for the signal named by sig. Otherwise, a value of

SIG_ERR returns and errno is set to indicate an error. �

� The stdarg.h Library

Type Declaration in the <stdarg.h> Header File

This header declares the type va_list.

va_list An array type used to declare the local state variable ap, used

by functions in the stdarg.h library to traverse parameters.

The va_arg Macro

Synopsis: #include <stdarg.h> type va_arg(va_list ap, type);

Description: Expands to an expression that has the value and type of the next ar-

gument in the call. The internal argument pointer ap moves to the

next argument, if any exist.

Returns: Returns the argument that follows parmN (represented in function

variable lists by: ...). Successive calls return successive arguments

from this list.

Page 1781

The va_end Function

Synopsis: #include <stdarg.h> void va_end(va _list ap);

Description: Performs clean-up operations after all arguments are read by va_arg.

Returns: Returns no value.

The va_start Macro

Synopsis: #include <stdarg.h> void va_start(va_list ap, parmN);

Description: Initializes ap, the va_list variable. ParmN is the argument for the

name of the right-most parameter in the variable parameter list for a

function. Use va_start before any calls to va_arg or va_end.

Returns: Returns no value.

� The stdio.h Library

Macros and Types Declared in the <stdio.h> Header

The following macros and types are declared in the <stdio.h> header:

FILE A type used to record the information to control a stream.

fpos_t A type used to record the information that uniquely specifies every po-

sition within a file. For more information, see the section "The

fgetpos Function".

_IOFBF, _IOLBF, _IONBF Macros representing full buffering, line buffering, and

no buffering, respectively. See the section "The setvbuf Function".

BUFSIZE Macro representing the size of the buffer used by the setbuf function.

EOF Represents a negative integral constant.

L_tmpnam Represents the size of a file name array. See the section "The

tmpnam Function".

SEEK_CUR Represents the current file position.

SEEK_END Represents the end of file.

SEEK_SET Represents the start of file.

OPEN_MAX Represents the minimum number of simultaneously open files.

TMP_MAX Macro representing the number of times successive calls to tmpnam

generates unique names. See the section "The tmpnam Function".

Page 1782

Streams:

stderr The output stream that receives error messages

stdin The stream for normal input

stdout The stream for normal output

These streams are intialized before the start of an application program.

The clearerr Function

Synopsis: #include <stdio.h> void clearerr(FILE *stream);

Description: Clears the end-of-file and error indicators for the stream being pointed

to.

Returns: Returns no value.

The fclose Function

Synopsis: #include <stdio.h> int fclose(FILE *stream);

Description: Closes the specified file and disassociates it from the specified stream

object. In the Genera environment, performs any equivalent :finish op-

erations required on the file descriptor and sends the Genera stream

object the :finish message. It then sends the stream object the :close

message and marks the file descriptor as closed. For an input stream,

the :finish operations are omitted.

Returns: Returns zero if the file is closed successfully. Returns a nonzero value

if an error returns or if the file is closed when you call this function.�

The feof Function

Synopsis: #include <stdio.h> int feof(FILE *stream);

Description: Tests for an end-of-file indicator for the stream to which you are

pointing. End-of-file is indicated when an attempt is made to read be-

yond the last character.

Returns: Returns a nonzero value if the end-of-file indicator for the stream is

found. Otherwise, returns zero. �

The ferror Function

Synopsis: #include <stdio.h> int ferror(FILE *stream);

Page 1783

Description: Tests for an error indicator for the stream to which you are pointing

and returns its status. Use the clearerr or fclose function to reset the

error indicator.

Returns: Returns a nonzero value if the error indicator is set, indicating that

an error occurred while writing to or reading from the stream. Other-

wise, returns zero.�

The fflush Function

Synopsis: #include <stdio.h> int fflush(FILE *stream);

Description: For an output or update stream, finalizes file content by writing to

file any unwritten data for stream. That is, it performs any equivalent

:finish operations required on the file descriptor and sends the Genera

stream object the :finish message. Performs any internal file descrip-

tor bookkeeping required to note that no pending data transfers to the

stream are outstanding.

For an input or update stream, undoes the effect of a previous ungetc

operation on the file descriptor or stream.

Returns: Returns a nonzero value if a write error occurs. Otherwise, returns

zero. �

The fgetc Function

Synopsis: #include <stdio.h> int fgetc(FILE *stream);

Description: At the point indicated by the file position indicator, reads the next

character from stream, returns the value of that character as an int,

and advances to the next character in the stream. Use the feof facility

to determine if the end-of-file is reached. See the section "The getc

Function". See the section "The getchar Function".

Returns: Returns the value of the character as an int type. If the stream is at

the end of file, returns EOF. If a read error occurs, returns EOF and

sets the error indicator.

The fgetpos Function

Synopsis: #include <stdio.h> int fgetpos(FILE *stream, fpos_t *pos);

Description: Gets the current value of the file position indicator for stream and re-

turns it as a value that can be used by fsetpos.

Page 1784

Returns: If successful, returns zero. If unsuccessful, returns a nonzero value

and sets errno.

The fgets Function

Synopsis: #include <stdio.h> char *fgets(char *s, int n, FILE *stream);

Description: Reads n - 1 characters from the stream s into stream. Characters are

read in at the point specified by FILE, if you set FILE. If the specified

string contains a newline character or an end-of-file, the function

stops reading the string. The function appends a null character to fol-

low the last character read into the array stream.

Unlike the gets function, newline characters are read into the array.

Returns: Returns s, if successful. Returns a null pointer if no string is read, or

if a read error occurs.

The fopen Function

Synopsis: #include <stdio.h> FILE *fopen(const char *filename, const char

*mode);

Description: Associates the file named by filename with a stream. The file is

opened or created with the modes specified by the argument mode.

This argument must be a character string that begins with one of the

options described in the next table.

Returns: Returns a pointer to the object controlling the stream. If unsuccessful,

returns a null pointer.�

The following table lists the C file mode options and their effects and also maps

the C file mode options into the Genera open options.

r Open an existing text file for reading (input)

Option Value

:element-type string-char

:direct nil

:direction :input

:if-exists :dont-care

:if-does-not-exist :error

w Create a text file for writing (output), or truncate an existing one to

zero length

Page 1785

Option Value

:element-type string-char

:direct nil

:direction :output

:if-exists :truncate

:if-does-not-exist :create

a Append, or open or create a text file for writing (output) at end-of-file

Option Value

:element-type string-char

:direct nil

:direction :output

:if-exists :append

:if-does-not-exist :error

v Create a new text file for writing (output) for file systems that sup-

port file version numbers, or truncate an existing one to zero length

for file systems that do not support file version numbers

Option Value

:element-type string-char

:direct nil

:direction :output

:if-exists :new-version

:if-does-not-exist :create

rb Open an existing file for reading (input)

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :input

:if-exists :dont-care

:if-does-not-exist :error

wb Create a binary file for writing (output) or truncate an existing one to

zero length

Page 1786

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :output

:if-exists :truncate

:if-does-not-exist :create

ab Append, or open or create a text file for writing (output) at end-of-file

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :output

:if-exists :append

:if-does-not-exist :create

vb Create a binary file for writing (output) for file systems that support

file version numbers, or truncate an existing one to zero length for

file systems not supporting file version numbers

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :output

:if-exists :new-version

:if-does-not-exist :create

r+ Open an existing text file for updating (reading or writing)

Option Value

:element-type string-char

:direct nil

:direction :io

:if-exists :overwrite

:if-does-not-exist :error

w+ Create a text file for update, or truncate an existing file to zero

length for update

Page 1787

Option Value

:element-type string-char

:direct nil

:direction :io

:if-exists :truncate

:if-does-not-exist :create

a+ Append, or open or create a text file for writing (output) at end-of-file

Option Value

:element-type string-char

:direct nil

:direction :io

:if-exists :append

:if-does-not-exist :create

v+ Create a text file for update for file systems supporting file version

numbers, or truncate an existing file to zero length for update for file

systems not supporting file version numbers

Option Value

:element-type string-char

:direct nil

:direction :io

:if-exists :new-version

:if-does-not-exist :create

r+b Open an existing binary file for updating (reading or writing)

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :io

:if-exists :overwrite

:if-does-not-exist :error

w+b Create a binary file for update, or truncate an existing file to zero

length for update

Page 1788

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :io

:if-exists :truncate

:if-does-not-exist :create

a+b Append, or open or create a text file for writing (output) at end-of-file

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :io

:if-exists :append

:if-does-not-exist :create

v+b Create a binary file for update for file systems supporting file version

numbers, or truncate an existing file to zero length for update for file

systems not supporting file version numbers

Option Value

:element-type (unsigned-byte 8)

:direct t

:direction :io

:if-exists :new-version

:if-does-not-exist :create�

The fprintf Function

Synopsis: #include <stdio.h> int fprintf(FILE *stream, const char *format,

...);

Description: Performs output formatting and writes output to the specified stream.

The format argument is the format control string and specifies how

arguments are converted for output. See also: printf, sprintf.

Returns: Returns the number of characters sent to the output stream, if no er-

ror occurs. Returns EOF if an error occurs.�

Page 1789

Summary of Conversion for Print Functions

The format control string can consist of text and conversion specifiers.

A conversion specification is introduced by the % character. It can consist of the

following items in this order:

• A flag character, which can be one of

° -, specifying left-justification of a field.

° 0, specifying zero as the pad character.

° +, specifying that signed conversions are preceded with a + or - sign.

° space, which prepends a space if the first character of a conversion is not a +

or - sign.

° #, which converts the result to one of the variant forms specified for conver-

sion characters.

• A minimum width field, represented by a decimal integer constant.

• A precision specifier, represented by a "." character and an optional decimal in-

teger.

• A conversion operation, represented by one of the characters described in the

next table.�

Conversion Characters Description

d,i signed decimal conversion

u unsigned decimal conversion

o unsigned octal conversion

x,X unsigned hexadecimal conversion

c prints as a character

s prints as a string

p for an argument that is a pointer to void, prints as

an object pointed to followed by a byte offset

n writes the number of characters output to an argu-

ment of type int *;

f signed decimal floating-point conversion

e,E signed decimal floating-point conversion

g,G signed decimal point conversion

Page 1790

% prints a percent sign�

For a more detailed description of conversion specifiers for print functions: See the

section "C-Ref: FPRINTF, PRINTF, SPRINTF".

The fputc Function

Synopsis: #include <stdio.h> int fputc(int c, FILE *stream);

Description: Writes the character c to the output stream pointed to by stream and

advances to the next character. If the file position indicator is defined,

the character is placed at that point in the stream. Otherwise, the

character is appended to the stream. Use the feof facility in determin-

ing whether the end-of-file is reached. See the section "The putc

Function". See the section "The putchar Function".

Returns: Returns the character c as an int type. If a write error occurs, re-

turns EOF and sets the error indicator.

The fputs Function

Synopsis: #include <stdio.h> int fputs(const char *s, FILE *stream);

Description: Copies the string pointed to by s to the stream pointed to by stream.�

Adds a newline character to string after it is copied.

Returns: Returns zero, if successful. Otherwise, returns a nonzero value. �

The fread Function

Synopsis: #include <stdio.h> size_t fread(void *ptr, size_t size, size_t

nmemb, FILE *stream);

Description: Reads up to nmemb number of objects from stream into the array point-

ed to by ptr. The size argument specifies the size of nmemb.

Returns: Returns the number of objects read.

The freopen Function

Synopsis: #include <stdio.h> FILE *freopen(const char *filename, const

char *mode, FILE *stream);

Description: This function associates the file pointed to by *filename with the

stream pointed to by *stream. It opens or creates the file with with

the modes specified by the argument mode. See the section "The

fopen Function".

Page 1791

Returns: If successful, returns the value of stream. Otherwise, returns a null

pointer.�

The fscanf Function

Synopsis: #include <stdio.h> int fscanf(FILE *stream, const char *format,

...);

Description: Reads characters from stream, interpreting them according to the

string format. The format field consists of one or more of:

• A whitespace character

• A text character

• A conversion specification

Compare scanf and sscanf.

Returns: Returns the number of characters assigned to stream, if successful.

Otherwise, returns EOF.�

Summary of Conversion Specifiers for Scan Functions

The format field can consist of one or more of:

• A whitespace character

• A text character

• A conversion specification

A conversion specification is introduced by the % character. It can consist of the

following items:

1. An assignment suppression flag, represented by the * character.

2. A maximum field width, represented by an unsigned decimal integer greater

than zero.

3. A size specification, represented by the character h, meaning short, or by the

character l, meaning long.

4. A conversion operation, represented by one of the characters described in the

next table.�

Conversion Characters Description

Page 1792

d signed decimal conversion

i signed, based integer conversion

u unsigned decimal conversion

o unsigned octal conversion

x,X unsigned hexadecimal conversion

c reads one or more characters

s reads a string delimited by whitespace

p converts a pointer value

n writes out the number of characters read

f,e,E,g,G signed decimal conversion

% accepts a % character as input

[scans a sequence of characters

For a detailed description of conversion specifiers for scan functions, see the sec-

tion "C-Ref: FSCANF, SCANF, SSCANF".

The fsetpos Function

Synopsis: #include <stdio.h> int fsetpos(FILE *stream, const fpos_t *pos);

Description: Sets the stream’s position specified by its pos argument. The function

verifies that pos was obtained by a previous call to fgetpos on the

same stream and hence verifies that the stream saved in the pos ar-

gument is eq to the stream specified in the stream file descriptor.

Returns: Returns zero if successful. If unsuccessful, returns a non-zero value

and sets errno.�

The fseek Function

Synopsis: #include <stdio.h> int fseek(FILE *stream, long int offset, int

whence);

Description: Sets the file position indicator for stream. The value of wherefrom can

be on of the constants SEEK_SET, SEEK_CUR, or SEEK_END. The

new file position is offset number of characters from wherefrom.

Returns: Returns a value of zero, if successful. Returns a nonzero value, if un-

successful.�

Page 1793

The ftell Function

Synopsis: #include <stdio.h> long int ftell(FILE *stream);

Description: Gets the current value of the file position indicator for stream. You

can use the value as the second argument to the fseek function.

Returns: If successful, returns the current value of the file position indicator. If

unsuccessful, returns -1L and sets errno.

The fwrite Function

Synopsis: #include <stdio.h> size_t fwrite(const void *ptr, size_t size

size_t nmemb, FILE *stream);

Description: Writes up to nmemb number of objects from the array pointed to by

ptr.

Returns: Returns the number of objects written. size specifies the size of nmemb.

The getc Function

Synopsis: #include <stdio.h> int getc(FILE *stream);

Description: Equivalent to fgetc. Reads the next character from the stream given

as an argument, returns the value of that character as an int, and ad-

vances to the next character in the stream. See the section "The fgetc

Function". See the section "The getchar Function".

Returns: Returns the value of the character as an int type. If the stream is at

the end-of-file, returns EOF. If a read error occurs, returns EOF and

sets the error indicator. Use the feof facility to determine if the end-

of-file is reached.

The getchar Function

Synopsis: #include <stdio.h> int getchar(void);

Description: Equivalent to fgetc, except that the stdin stream is used as the input

stream. Reads the next character from the stdin stream given as an

argument, returns the value of that character as an int, and advances

to the next character in the stream. Use the feof facility in determin-

ing whether the end-of-file is reached. See the section "The fgetc

Function". See the section "The getc Function".

Returns: Returns the value of the character as an int type. Returns EOF if the

stream is at end-of-file, or if a read error occurs.

The gets Function

Page 1794

Synopsis: #include <stdio.h> char *gets(char *s);

Description: Reads characters from the standard input stream, stdin, into the ar-

ray pointed to by s. The string of characters terminates when it

reaches an end-of-file or a newline character. When a newline charac-

ter is read, a null character is written to the array, and the newline

character is discarded.

Returns: Returns s if successful. Returns a null pointer if no string is read, or

if a read error occurs.�

The perror Function

Synopsis: #include <stdio.h> void perror(const char *s);

Description: Writes information concerning errors detected with errno.

Returns: Returns no value.

The printf Function

Synopsis: #include <stdio.h> int printf(const char *format, ...);

Description: Sends the formatted output of the string format control string format

to the standard output stream stdout, and then to any additional ar-

guments. The format control string can contain text and conversion

specifiers. For a summary of conversion specifiers: See the section

"The fprintf Function".

Returns: If no error occurs, returns the number of characters sent, otherwise,

returns a negative number. �

The putc Function

Synopsis: #include <stdio.h> int putc(int c, FILE *stream);

Description: Equivalent to fputc: Writes the character c to the output stream

pointed to by stream, and advances to the next character. If you de-

fined the file position indicator, the character is placed at that point

in the stream. Otherwise, the character appends to the stream. Use

the feof facility to determine whether the end-of-file is reached. See

the section "The fputc Function". See the section "The putchar Func-

tion".

Returns: Returns the character c as an int type. If a write error occurs, re-

turns EOF and sets the error indicator. �

Page 1795

The putchar Function

Synopsis: #include <stdio.h> int putchar(int c);

Description: Equivalent to fputc, but uses the stdout stream as the output stream.

Writes the character c to the standard output stream and advances to

the next character. If you define the file position indicator, the charac-

ter is placed at that point in the stream, otherwise, the character ap-

pends to the stream. Use the feof facility to determine whether the

end-of-file is reached. See the section "The fputc Function". See the

section "The putc Function".

Returns: Returns the character c as an int type. If a write error occurs, re-

turns EOF and sets the error indicator.

The puts Function

Synopsis: #include <stdio.h> int puts(const char *s);

Description: Copies the string pointed to by s to the standard output stream, std-

out. Adds a newline character to the string after it is copied.

Returns: Returns zero if successful, otherwise, returns a nonzero value.�

The remove Function

Synopsis: #include <stdio.h> int remove(const char *filename);

Description: Removes the files specified by filename.

Returns: Returns zero if successful, otherwise, returns a nonzero value.

The rename Function

Synopsis: #include <stdio.h> int rename(const char *old, const char *new);

Description: Renames the file pointed to by old to the name pointed to by new.

Returns: Returns zero if successful, otherwise, returns a nonzero value.

The rewind Function

Synopsis: #include <stdio.h> void rewind(FILE *stream);

Page 1796

Description: Resets the file position indicator for stream to the beginning of the

file.

Returns: Returns no value.

The scanf Function

Synopsis: #include <stdio.h> int scanf(const char *format, ...);

Description: Reads characters from the standard input stream stdin and interprets

them according to the string format. The format field can consist of

one or more of:

• A whitespace character

• A text character

• A conversion specification

For further information on conversion specifications: See the section

"Conversion Specifiers for Scan Functions". Compare fscanf and ss-

canf.

Returns: Returns the number of characters read, if successful. Otherwise, it re-

turns EOF.�

The setbuf Function

Synopsis: #include <stdio.h> void setbuf(FILE *stream, char *buf);

Description: Equivalent to the setvbuf function, controls the buffering of the

stream, using buf instead of an automatically assigned buffer. This

function assumes _IOFBF for mode and BUFSIZE size if buf is not a

null pointer. In such a case, _IONBF is the value of mode. For more

information, see the section "The setvbuf Function".

Returns: Returns no value.

The setvbuf Function

Synopsis: #include <stdio.h> int setvbuf(FILE *stream, char *buf, int

mode, size_t size);

Description: Sets the buffering for a stream to full buffering, line buffering, or no

buffering. Use this function after associating a stream with an open

file and before reading from or writing to the stream. The argument

mode sets buffering for the stream pointed to by stream.

Page 1797

Mode can be one of these:

Mode Meaning

_IOFBF Input/output is fully buffered.

_IOLBF Input/output is line-buffered. The buffer is

flushed when a newline character is written,

when input is requested, or when the buffer is full.

_IONBF Input/output is not buffered.

Returns: Returns zero, if successful. Otherwise, returns a nonzero value.

The sprintf Function

Synopsis: #include <stdio.h> int sprintf(char *s, const char *format,

...);

Description: Similar to fprintf, except that formatted output is sent to the array s,

rather than to a stream. For a summary of conversion specifiers: See

the section "The fprintf Function".

Returns: Returns the number of characters written to the array.

The sscanf Function

Synopsis: #include <stdio.h> int sscanf(const char *s, const char *format,

...);

Description: Reads characters from the string s and interprets them according to

the string format. The format field can consist of one or more of:

• A whitespace character

• A text character

• A conversion specification

For further information on conversion specifications: See the section

"Conversion Specifiers for Scan Functions". Compare fscanf and scanf.

Returns: Returns the number of characters assigned to s, if successful. Other-

wise, returns EOF.

The tmpfile Function

Synopsis: #include <stdio.h> FILE *tmpfile(void);

Page 1798

Description: Creates a temporary file open for output. This binary file exists for

the duration of the program (or until closed).

Returns: Returns a pointer to the new file, if successful. Otherwise, returns a

null pointer.�

The tmpnam Function

Synopsis: #include <stdio.h> char *tmpnam(char *s);

Description: Generates a unique file-name string. If s is a null pointer, the new

file name is stored in a static object. If s is not a null pointer, the

new file name is stored in s.

Returns: If successful, returns a pointer to the new file name. Otherwise, re-

turns a null pointer. �

The ungetc Function

Synopsis: #include <stdio.h> int ungetc(int c, FILE *stream);

Description: Pushes the character c back onto the input stream named in the ar-

gument stream. One character of pushback is guaranteed, and the

character c is returned by the next call to fgetc, getc, or getchar�

on that stream. An intervening call to fflush or to any file positioning

function removes any characters that have been pushed back.

Returns: Returns c if successful. Otherwise, returns EOF.�

The vfprintf Function

Synopsis: #include <stdio.h> int vfprintf(FILE *stream, const char *for-

mat, va_list arg);

Description: Similar to fprintf, except that additional arguments are given as a

variable argument list. For further information on variable argument

lists: See the section "The va_arg Macro".

Returns: Returns the number of characters sent to the output stream, if no er-

ror occurs. Returns EOF if an error occurs.

The vprintf Function

Page 1799

Synopsis: #include <stdio.h> int vprintf(const char *format, va_list arg);

Description: Similar to printf, except that additional arguments are given as a

variable argument list. For further information on variable argument

lists: See the section "The va_arg Macro".

Returns: Returns the number of characters sent, if successful. Otherwise, re-

turns a negative number.

The vsprintf Function

Synopsis: #include <stdio.h> int vsprintf(char *s, const char *format,

va_list arg);

Description: Similar to sprintf, except that additional arguments are given as a

variable argument list. For further information on variable argument

lists: See the section "The va_arg Macro".

Returns: Returns the number of characters written in the array.

� The stdlib.h Library

The abort Function

Synopsis: #include <stdlib.h> void abort(void);

Description: Causes the unsuccessful termination of a program.

Returns: Returns a nonzero value.

� The abs Function

Synopsis: #include <stdlib.h> int abs(int j);

Description: Computes the absolute value of j.

Returns: Returns the absolute value of j as an integer type.

� The atexit Function

Synopsis: #include <stdlib.h> int atexit(void (*func)(void));

Description: Places the function pointed to by func on a list of functions invoked

upon normal program termination.

Returns: Returns a zero value if successful. Otherwise, returns a nonzero value.

�

Page 1800

� The atof Function

Synopsis: #include <stdlib.h> double atof(const char *nptr);

Description: Converts the string pointed to by *nptr to a double representation.

The function ignores leading whitespace when it begins reading the

string and stops reading the string when it reaches an unrecognized

character. This function is equivalent to the strtod function, except

for its treatment of error conditions. For further information, see the

section "The strtod Function".

Returns: Returns the converted value.

� The atoi Function

Synopsis: #include <stdlib.h> int atoi(const char *nptr);

Description: Converts the string pointed to by *nptr to an int representation. The

function ignores leading whitespace when it begins reading the string,

and stops reading the string when it reaches an unrecognized charac-

ter. This function is equivalent to the strtol function, except for its

treatment of error conditions. For further information, see the section

"The strtol Function".

Returns: Returns the converted value.

� The atol Function

Synopsis: #include <stdlib.h> long int atol(const char *nptr);

Description: Converts the string pointed to by *nptr to a long int representation.

The function ignores leading whitespace when it begins reading the

string, and stops reading the string when it reaches an unrecognized

character. This function is equivalent to the strtol function, except for

its treatment of error conditions. See the section "The strtol

Function".

Returns: Returns the converted value.

The bsearch Function

Synopsis: #include <stdlib.h> void *bsearch(const void *key, const void

*base, size_t nmemb, size_t size, int (*compar)(const void *, const

void *));

Description: Searches an array for an object that matches the one pointed to by

*key. The argument base is the initial object in the array, nmemb speci-

Page 1801

fies the number of objects to search in the array, and size specifies

the size of each object.

Returns: Returns a pointer to the matching array member. If no match is

found, the function returns a null pointer.

� The calloc Function

Synopsis: #include <stdlib.h> void *calloc(size_t nmemb, size_t size);

Description: Allocates memory for nmemb objects of size size where the unit of size

is in bytes. All bits in the region are initialized to zero.

Returns: Returns a pointer to the first element of the region, if successful.

Otherwise, returns a null pointer.�

� The div Function

Synopsis: #include <stdlib.h> div_t div(int numer, int denom);

Description: Computes the quotient and remainder of the division of numer by

denom.

Returns: Returns a structure of type div_t. The type div_t is a structure whose

members are named quot and rem and that contains int members.

� The exit Function

Synopsis: #include <stdlib.h> void exit(int status);

Description: Causes the normal termination of a program by following these steps:

Calls all functions registered by atexit (in reverse order from regis-

tration), flushes all open output streams, closes all open streams, and

removes all files created by the tmpfile function.

Returns: Returns no value.

� The free Function

Synopsis: #include <stdlib.h> void free(void *ptr);

Description: Frees a region of memory previously allocated by calloc, malloc, or

realloc. The region is pointed to by ptr. If ptr is null, no action is

taken.

Returns: Returns no value.

Page 1802

� The getenv Function

Synopsis: #include <stdlib.h> char *getenv(const char *name);

Description: Searches an environment list for a string matching the string pointed

to by name. The getenv function in Symbolics C can return values for

one of the following "key" strings:

• user-file-pathname-defaults

• temporary-file-pathname-defaults�

Returns: If successful, returns a value that is a pointer to a C string whose

contents are the converted versions (from Lisp string to C string)

specified. Otherwise, returns a null pointer.

� The labs Function

Synopsis: #include <stdlib.h> long int labs(long int j);

Description: Computes the absolute value of j.

Returns: Returns the absolute value of j as a long int.�

� The malloc Function

Synopsis: #include <stdlib.h> void *malloc(size_t size);

Description: Allocates an area of memory of size size.

Returns: Returns a pointer to the first element of the the region allocated, if

successful. Otherwise, returns a null pointer.

� The qsort Function

Synopsis: #include <stdlib.h> void qsort(void *base, size_t nmemb, size_t

size, int (*compar)(const void *, const void *));

Description: Sorts an array of objects in ascending order. The argument base is the

initial object in the array. nmemb specifies the number of objects to

sort, and size specifies the size of each object.

Returns:

� The rand Function

Synopsis: #include <stdlib.h> int rand(void);

Page 1803

Description: Computes a pseudo-random number in the range 0 to RAND_MAX.

See the section "The srand Function".

Returns: Returns a pseudo-random number of type int.

� The realloc Function

Synopsis: #include <stdlib.h> void *realloc(void *ptr, size_t size);

Description: Changes the size of a memory region previously allocated with malloc

or calloc by reallocating the region. In doing so, may move the region.

The contents of the region are the same up to the lesser of the old or

new size.

If *ptr is specified as a null pointer, the function behaves like malloc.

That is, it allocates a region of the specified size.

If size is specified as zero and *ptr is not a null pointer, the region

is deallocated and the function returns a null pointer.

Returns: Returns a pointer to the start of the reallocated object. Note that the

object may have been moved. If the object cannot be reallocated, re-

turns a null pointer and leaves the region unchanged. �

� The srand Function

Synopsis: #include <stdlib.h> void srand(unsigned int seed);

Description: Reinitializes the pseudo-random number generator by specifying the

seed for a sequence of pseudo-random numbers generated by the next

call to rand.

After a call to srand, successive calls to rand produce a reproducible

series of pseudo-random numbers. You can reproduce the series by

calling srand again with the same argument, and then using rand.

Use the argument 1 with this function to replicate calls to rand prior

to the first time srand was called.

Returns: Returns no value.

� The strtod Function

Synopsis: #include <stdlib.h> double strtod(const char *nptr, char

**endptr);

Description: Converts the string pointed to by *nptr to a double representation and

returns its value. After converting the string, it sets **endptr, if not

null, to point to the first character in *nptr immediately following the

converted part of the string.

Page 1804

The function decomposes a string by breaking it down into three parts

in this order:

• Whitespace characters, if any, as defined by isspace.

• A subject sequence of recognized characters.

• A final group of one or more unrecognized characters.

Unrecognized characters include the whitespace character and the ter-

minating null character. The subject sequence is the object being

converted. It is defined as the longest sequence of characters consist-

ing of:

1. An optional plus or minus sign.

2. A sequence of decimal digits that can include a single decimal

point.

3. An optional exponent, made up of an e or E and a sequence of

decimal digits.

That is, a legal subject sequence may be one of a decimal-constant, an

octal-constant, or a floating-constant. A type-marker is not recognized

as part of a subject sequence.

Returns: If successful, returns the result of the conversion. If no conversion is

possible, returns zero, sets endptr (if not null) to the value of nptr,

and sets errno to ERANGE. If the number converted causes overflow,

returns HUGE_VAL (correctly signed), and sets errno to ERANGE. If

the number converted causes underflow, returns zero and sets errno

to ERANGE.

The strtol Function

Synopsis: #include <stdlib.h> long int strtol(const char *nptr, char

**endptr, int base);

Description: Converts the initial part of the string pointed to by *nptr to an inte-

ger of type long int and returns its value. After converting the string,

it sets **endptr, if not null, to point to the first character in *nptr�

immediately following the converted part of the string.

The function decomposes a string by breaking it down into three parts

in this order:

• Whitespace characters, if any, as defined by isspace.

• A subject sequence of recognized characters.

Page 1805

• A final group of one or more unrecognized characters.

Unrecognized characters include the whitespace character and the ter-

minating null character. The subject sequence is the object being

converted.

If the value of base is 0, the subject sequence is defined as the

longest sequence of characters consisting of an integer-constant with

an optional preceding sign. Type-markers are not considered part of

the sequence. The radix is derived from the format of the number.

If the value of base is 2 through 36, the subject sequence consists of a

nonzero sequence of letters and digits representing an integer in the

specified base with an optional preceding sign. Letters a through z (or

A through Z) represent values from 10 through 35. Hex-markers are

considered part of the sequence. The radix is derived from the value

of base.

Returns: Returns the result of the conversion, if successful. If no conversion is

possible, returns zero, sets endptr (if not null) to the value of nptr,

and sets errno to ERANGE. If the number converted causes an over-

flow, returns LONG_MAX or LONG_MIN (depending on sign of the

result) and sets errno to ERANGE. If the number converted causes an

underflow, returns zero and sets errno to ERANGE.�

� The strtoul Function

Synopsis: #include <stdlib.h> unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Description: Converts the initial part of the string pointed to by *nptr to an inte-

ger of type unsigned long int and returns its value. After converting

the string, it sets **endptr, if not null, to point to the first character

in *nptr immediately following the converted part of the string.

The function decomposes a string by breaking it down into three parts

in this order:

• Whitespace characters, if any, as defined by isspace.

• A subject sequence of recognized characters.

• A final group of one or more unrecognized characters.

Unrecognized characters include the whitespace character and the ter-

minating null character. The subject sequence is the object being

converted.

Page 1806

If the value of base is 0, the subject sequence is defined as the

longest sequence of characters consisting of an integer-constant. Type-

markers are not considered part of the sequence. The radix is derived

from the format of the number.

If the value of base is 2 through 36, the subject sequence consists of a

nonzero sequence of letters and digits representing an integer in the

specified base. Letters a through z (or A through Z) represent values

from 10 through 35. Hex-markers are considered part of the sequence.

The radix is derived from the value of base.

Returns: If successful, returns the result of the conversion. If no conversion is

possible, returns zero, sets endptr to the value of nptr, and sets errno

to ERANGE. If the number converted causes an overflow, returns

ULONG_MAX and sets errno to ERANGE. �

� The system Function

Synopsis: #include <stdlib.h> int system(const char *string);

Description: Executes a Command Processor command given in string. The func-

tion works by passing string to the Genera environment.

Returns: Returns 1 if an error is signalled, otherwise, returns 0.

� The string.h Library

The memchr Function

Synopsis: #include <string.h> void *memchr(const void *s, int c, size_t n);

Description: Searches for the first occurrence of the character c in the first n

characters of *s.

Returns: If the character is located, returns a pointer to it. If the character is

not located, returns a null pointer.�

The memcmp Function

Synopsis: #include <string.h> int *memcmp(const void *s1, const void *s2,

size_t n);

Description: Compares the first n characters of *s1 with the first n characters of

*s2.

Page 1807

Returns: Returns an integer indicating whether *s1 is greater than, less than,

or equal to *s2. If *s1 is greater than *s2, returns an integer greater

than zero; if *s1 is less than *s2, returns an integer less than zero; if

*s1 is equal to *s2, returns zero.

The memcpy Function

Synopsis: #include <string.h> void *memcpy(void *s1, void *s2, size_t n);

Description: Copies n characters from the object pointed to by s2 into the object

pointed to by s1. Behavior is undefined if the objects *s1 and *s2

overlap. See the section "The memmove Function".

Returns: Returns the value of s1, the object into which n characters are copied.

The memmove Function

Synopsis: #include <string.h> void *memmove(void *s1, void *s2, size_t n);

Description: Copies n characters from the object pointed to by s2 into the object

pointed to by s1. Unlike the memcpy function, this function supports

copying between overlapping strings.

Returns: Returns the value of s1, the object into which n characters are copied.

� The memset Function

Synopsis: #include <string.h> void *memset(const void *s, int c, size_t n);

Description: Copies the value of c into each of the first n characters of the object

pointed to by S.

Returns: Returns the value of s.�

The strcat Function

Synopsis: #include <string.h> char *strcat(char *s1, const char *s2);

Description: Appends a copy of the string s2 to s1. The terminating null character

of s1 is overwritten by s2, and the terminating null character of s2 is

copied as part of that string.

Returns: Returns the value of s1.

The strchr Function

Page 1808

Synopsis: #include <string.h> char *strchr(const char *s, int c);

Description: Finds the first occurrence of the character c in the string pointed to

by s. (c is converted to a char).

Returns: Returns a pointer to the first occurrence of c. If c is not found, the

function returns a null pointer.

The strcmp Function

Synopsis: #include <string.h> int *strcmp(const char *s1, const char *s2);

Description: Compares the string s1 to the string s2.

Returns: If s1 is equal to s2, returns zero. If s1 is greater than s2, returns an

integer greater than zero. If s1 is less than s2, returns an integer less

than zero.�

The strcoll Function

Synopsis: #include <string.h> size_t strcoll(char *to, size_t maxsize, con-

st char *from);

Description: Takes the string from, transforms it, and places the transformed

string into to. You can use the transformed string as an argument to

strcmp or memcmp.

Returns: Returns the number of characters in to, if that number is less than

maxsize. Otherwise, this function returns zero.�

The strcpy Function

Synopsis: #include <string.h> char *strcpy(char *s1, const char *s2);

Description: Copies the string s2 into the string s1.

Returns: Returns the value of s1.

The strcspn Function

Synopsis: #include <string.h> size_t strcspn(const char *s1, const char

*s2);

Description: Finds the length of the initial segment of s1 that does not contain any

of the same characters as s2. Compare: "The strspn Function". Re-

turns: Returns the length of the segment.

Page 1809

The strerror Function

Synopsis: #include <string.h> char *strerror(int errnum);

Description: Maps the error number in errnum to an error message string.

Returns: Returns a pointer to the string.

� The strlen Function

Synopsis: #include <string.h> size_t strlen(const char *s);

Description: Finds the number of characters in the string pointed to by s, exclud-

ing the terminating null character, and returns the value as the type

size_t.

Returns: Returns the number of characters in the string s.�

� The strncat Function

Synopsis: #include <string.h> char *strncat(char *s1, const char *s2,

size_t n);

Description: Appends up to n characters of s2 to s1, and terminates the catenation

with the null character.

Returns: Returns the value of s1. �

The strncmp Function

Synopsis: #include <string.h> int *strncmp(const char *s1, const char *s2,

size_t n);

Description: Compares n characters of the string s1 to the string s2.

Returns: If s1 is equal to s2, returns zero. If s1 is greater than s2, returns an

integer greater than zero. If s1 is less than s2, returns an integer less

than zero.

The strncpy Function

Synopsis: #include <string.h> char *strncpy(char *s1, const char *s2,

size_t n);

Description: Copies n characters of the string s2 to the array s1. If the number of

characters in s2 is less than n, n - s2 null characters are appended.

Page 1810

Returns: Retruns the value of s1.

The strpbrk Function

Synopsis: #include <string.h> char *strpbrk(const char *s1, const char

*s2);

Description: Finds the first occurrence of any character in the string s2 in the

string s1. Compare: "The strcspn Function". Returns:

Returns a pointer to the first character found from s2.

The strrchr Function

Synopsis: #include <string.h> char *strrchr(const char *s, int c);

Description: Finds the last occurrence of the character c in the string s. (c is con-

verted to char).

Returns: Returns a pointer to the first occurrence of c. If c is not found, the

function returns a null pointer.

The strspn Function

Synopsis: #include <string.h> size_t strspn(const char *s1, const char

*s2);

Description: Compares the string s1 with s2 and finds the number of characters in

the initial segment of s1 that match the characters in s2.

Returns: Returns the number of characters.

The strstr Function

Synopsis: #include <string.h> char *strstr(const char *s1, const char *s2);

Description: Finds the first occurrence of the string s2 in the string s1.

Returns: Returns a pointer to s1. If s2 is not found, returns a null pointer.

The strtok Function

Synopsis: #include <string.h> char *strtok(char *s1, const char *s2);

Description: Separates the string s1 into tokens separated by a character from the

string s2. For further information, see the section "C-Ref: STRSTR,

STRTOK".

Returns: Returns a pointer to the first character of a token. If there is no to-

ken, returns a null pointer. �

Page 1811

� The time.h Library

Macros and Types Declared in the <time.h> Header

The header <time.h> declares:

• The type clock_t, for representing CPU times.

• The type time_t, for representing calendar time.

• The macro CLK_TCK, which defines the number of clock_t units per second.

• The structure tm, which contains elements that describe components of calendar

time. A time described by a tm structure is called broken-down time.

Meaning Normal Range

struct tm {

 int tm_sec, seconds after the minute 0 - 59

 tm_min, minutes after the hour 0 - 59

 tm_hour, hours since midnight 0 - 23

 tm_mday, day of the month 1 - 31

 tm_mon, months since January 0 - 11

 tm_year, years since 1900 ---

 tm_wday, days since Sunday 0 - 6

 tm_yday, days since January 1 0 - 365

 tm_isdst; Daylight Savings Time flag positive for DST

zero for no DST

negative for no information

} /*--- struct tm ---*/

The asctime Function

Synopsis: #include <time.h> char *asctime(const struct tm *timeptr);

Description: Converts the time represented in the structure timeptr to a string of

the form:

Sun Sep 16 01:03:52 1973\n\0

Returns: Returns a pointer to the asctime string.

The clock Function

Page 1812

Synopsis: #include <time.h> clock_t clock(void);

Description: Determines the processor time used.

Returns: Returns the processor time used by the program since program invo-

cation. If processor time is undetermined, returns the value

(clock_t)-1.

The ctime Function

Synopsis: #include <time.h> char *ctime(const time_t *timer);

Description: Converts the calendar time pointed by timer to local time. This func-

tion is equivalent to:

asctime(localtime(timer))

Returns: Returns a pointer to the equivalent of the asctime argument.

The difftime Function

Synopsis: #include <time.h> double difftime(time_t time1, time_t time0);

Description: Computes the difference in seconds between time1 and time0.

Returns: Returns the difference in seconds.

The gmtime Function

Synopsis: #include <time.h> struct tm *gmtime(const time_t *timer);

Description: Converts the calendar time pointed to by timer into a time expressed

as Greenwich Mean Time (GMT).

Returns: Returns a pointer to the structure containing components of the con-

verted time. If GMT cannot be calculated, returns a null pointer.�

The localtime Function

Synopsis: #include <time.h> struct tm *localtime(const time_t *timer);

Description: Converts the calendar time pointed to by timer into a time expressed

as local time.

Returns: Returns a pointer to the structure containing components of the con-

verted time.

The mktime Function

Page 1813

Synopsis: #include <time.h> time_t mktime(struct tm *timeptr);

Description: Converts the time components in timeptr into calendar time.

Returns: Returns the new time value and sets the tm_wday and tm_day compo-

nents. Returns the value (time_t)-1, if unsuccessful.�

The strftime Function

Synopsis: #include <time.h> size_t strftime(char *s, size_t maxsize, con-

st char *(format, const struct tm *timeptr);

Description: Prints dates and times in a locale-determined format. The function

converts the timeptr argument into s, which is of size maxsize, using

format specifiers given in format. The format argument can consist of

format specifiers and characters. The *timeptr argument points to a

structure that describes locale values for the format specifiers. The

following table lists the format specifiers and their values.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date and time representation.

%d Decimal number representing the day of the

month.

%H Decimal number representing the hour, based on a

24-hour clock.

%I Decimal number representing the hour, based on a

12-hour clock.

%j Decimal number representing the day of the year.

%m Decimal number representing the month.

%M Decimal number representing the minute.

%p A value equivalent to AM or PM.

%S Decimal number representing the second.

%U Decimal number representing the week number of

the year, using Sunday as the first day of the

week.

%w Decimal number representing the day of the week,

using Sunday as the first day of the week (0 - 6).

Page 1814

%W Decimal number representing the week number of

the year, using Monday as the first day of the

week.

%x A date representation.

%X A time representation.

%y A decimal number representing the year without

the century.

%Y A decimal number representing the year without

the century.

%Z The timezone name. If no timezone exists, no val-

ue is supplied.

%% Represents %.�

Returns: Returns the number of characters sent to the array s if that number

is not greater than maxsize. Otherwise, returns zero. In such a case, s

array contents are indeterminate.�

The time Function

Synopsis: #include <time.h> time_t time(time_t *timer);

Description: Determines the current calendar time.

Returns: Returns the current calendar time and assigns this value to the object

pointed to by timer. If the calendar time is undeterminable, returns

the value time_t - 1.�

� Summary of Standard Editor Mode Commands

0.0.52. Cursor Movement Commands

Keystroke Meaning

c-m-F Moves the cursor to the end of the current or next language-

specific unit.

c-m-B Moves the cursor to the start of the current or previous lan-

guage-specific unit.

c-m-A Moves the cursor to the start of the current or previous lan-

guage definition.

Page 1815

c-m-E Moves the cursor to the end of the current or next language

definition.

c-sh-F Moves the cursor to the end of the current or next language

expression.

c-sh-B Moves the cursor to the start of the current or previous lan-

guage expression.

c-m-H Moves the cursor to the start of the current language defini-

tion and marks the entire definition as a region. The editor

underlines the region.

c-m-N Moves the cursor to the next template in the buffer, if any.

c-m-P Moves the cursor to the previous template in the buffer, if any.�

0.0.53. Deletion Commands

Keystroke Meaning

m-sh-X Deletes the language expression to the left of the cursor.

c-sh-X Deletes the language expression to the right of the cursor.

c-m-RUBOUT Deletes the language construct to the left of the cursor.

c-m-K Deletes the language construct to the right of the cursor.

c-sh-K Deletes the language construct around point (the cursor).

c-sh-T Deletes the language token (for example, an identifier or com-

ment) to the right of the cursor.

m-sh-T Deletes the language token (for example, an identifier or com-

ment) to the left of the cursor.�

0.0.54. Syntax Error Detection Commands

Keystroke Meaning

c-sh-N Finds the nearest syntax error to the right of the cursor, if

any, and moves the cursor there. With a numeric argument, it

finds the last syntax error in the buffer.

c-sh-P Finds the nearest syntax error to the left of the cursor and

moves the cursor there. With a numeric argument, it finds the

first syntax error in the buffer.�

0.0.55. Template and Completion Commands

Keystroke Command

END Inserts a template that matches the keyword to the right of

the cursor.

Page 1816

c-END Inserts whatever uniquely closes a language construct to the

left of the cursor. For example, c-END inserts a close bracket

"]" to match a "[", or a then to match an if.

COMPLETE Completes a keyword to the left of the cursor or further fills

in the current template.

c-HELP Provides a list of templates for valid language constructs in-

serted at the cursor.

c-? Lists in an editor typeout window the possible completions of

predeclared identifiers for the name immediately to the left of

the cursor.

m-X Remove Template Item Deletes the next template to the right of the cursor.

SPACE Deletes the next template item to the right of the cursor.

c-m-N Moves the cursor to the next template in the buffer.

c-m-P Moves the cursor to the previous template in the buffer.�

0.0.56. Indentation Commands

Keystroke Command

c-m-Q Corrects the indentation of the language structure following

point (cursor position).

LINE Indents the current line correctly with respect to the line

above it. It also positions the cursor on the next line and

aligns it with the preceding line. LINE opens a new blank line.

If a syntax error is found on that line, the editor points out

the error.

TAB Indents the current line correctly with respect to the line

above it and positions the cursor at the first character on the

line.

m-X Save Indentation After using c-I to change global indentation of C

language constructs, the command produces a Lisp form re-

flecting the new indentation values. Evaluate this form after

the C editor loads.

0.0.57. Formatting Commands

Keystroke Command

m-X Adjust Face and Case Modifies the face and case settings for a particular

language or dialect.

m-X Electric C Mode Turns on Electric C mode, or, if it is on, turns it off.

Once the mode is on, you can use the Adjust Face and Case

command. The Electric C Mode command works only when the

buffer is in C mode.

Page 1817

m-X Format Language Region Conforms the face and case in the region to the

settings for the buffer. A numeric argument removes any spe-

cial typefaces from the region but leaves the case untouched.�

� C Editor Commands

This chapter summarizes some Zmacs commands specific to the C editor mode.

m-X C Fundamental Mode Sets the editor to C fundamental mode, a major edit-

ing mode, parallel to C mode, that binds the C compiler. You

can use a subset of C commands in this mode, including Com-

pile Buffer, Compile Region, and the C mode include directory

search list commands.

m-X C Mode Sets the editor buffer to C mode. C mode supports template

completion.

m-X Electric C Mode Toggles Electric C mode. Electric mode places key-

words and comments in their own font.

m-X Compile and Execute C Function

Compiles and executes the C function that the cursor is on.

m-X Compile Buffer Compiles the current C buffer to memory. With a numeric ar-

gument, compiles from the point indicated by the cursor to the

end of the buffer.

m-X Compile Changed Definitions of Buffer or m-sh-C

Compiles any definitions changed in the current buffer. With a

numeric argument, it prompts individually about whether to

compile particular changed definitions. The default compiles all

changed definitions.

c-sh-C Compiles the currently defined region, a contiguous delimited

section of text in the editor buffer. If none is defined, it com-

piles the C declaration or definition the cursor is on.

m-X Compile File Compiles a file, offering to save it first if the buffer is modi-

fied. It prompts for a file name in the minibuffer, using the

file associated with the current buffer as the default. The com-

mand writes a compiled-code file to disk but does not change

or create any data or function in memory.

m-X Compiler Warnings Places all pending compiler warnings in a buffer and

selects that buffer. Loads the compiler warnings database into

a buffer called *Compiler-Warnings-1*, creating that buffer if it

does not exist.

m-X Edit Compiler WarningsAllows you to edit some or all routines whose compila-

tion caused a warning message. For each file mentioned in the

compiler warnings database, you are asked whether you want

Page 1818

to edit the warnings for the routines in that file. It splits the

screen, placing the warning message in the top window and

source code whose compilation caused the error in the bottom

window. Use c-. to move to the next pair of warning and

source code.

m-X Edit C Definition (m-.) Edits the definition of a compiled C unit. When you

are prompted for the name of a unit, you can: 1) type the

name in the minibuffer at the bottom of the screen, or 2) use

the mouse to select a name in the current buffer. The com-

mand finds the unit, places it in an editor buffer, and positions

the cursor there.

The echo area displays a message indicating multiple occur-

rences of the definition, if any. Use c-. to move to the next

occurrence.

You can use this command to edit any C definition currently

loaded regardless of whether the file that contains it is cur-

rently in a buffer.

m-X Execute C Function Checks to see that the cursor is positioned near a

valid, compiled C program. Then executes the program without

run-time options, and with predefined files input and output

bound to the editor typeout window.

Format Language Region (c-m-Q) Places the contents of the marked region in

Electric C Mode format. If no region is defined, it acts on the

current C definition. With a numeric argument, this command

removes Electric C Mode formatting.

Mark C Definition (c-m-H) Marks the definition of a compiled C declaration or

definition.

m-X Reparse Attribute List Reparses the attribute list for a buffer, causing any

changed attributes to take effect.

m-X Define C Search List Defines the search list name as a list of directory

pathnames. When a source file uses this search list, the com-

piler searches these directories for #include files. The directo-

ries are searched in the order in which they are listed.

m-X Set C Search List for Buffer Sets the include directory search list for the

current buffer. With a numeric argument, sets the search list

for predefined include files (those that are included with the

angle-bracket syntax).

m-X Set Export for Buffer Sets the Export attribute of the buffer to Yes.

m-X Set Package Sets the package for the buffer.

m-X Show C Search List Displays the current list of directories associated with

the specified search lists.

Page 1819

Show Documentation (m-sh-D) Displays documentation for the C library function or

reserved word preceding the cursor.

m-X Undefine C Search List Removes a defined C include directory search list.

m-X Update Attribute List Creates or updates the attribute list for a file.

� Sublicense Addendum for Symbolics C

Your purchase of Symbolics C under the Terms and Conditions of Sale, License,

and Service (3/89) allows you to use this product on a designated processor. Cus-

tomers who distribute an application that includes the Symbolics C run-time sys-

tem must sign a Sublicense Addendum to the Terms and Conditions of Sale, Li-

cense and Service (3/89). This agreement spells out the terms and conditions under

which you can sublicense any application that contains the Symbolics C run-time

system. The Sublicense Addendum appears on the next page. If you have not done

so already, read the Sublicense Addendum carefully, sign it, detach it, and return

it to your Symbolics sales representative.

Note: You are required to sign the sublicense agreement even if you only distribute

your application internally  to end users who work for your company.

Page 1820

Sublicense Addendum to Symbolics Inc. Terms and Conditions of Sale, License and

Service (3/89)

Addendum made this _____ day of __________, 199__, ("this Addendum") to

Symbolics, Inc. Standard Terms and Conditions of Sale, License and Service (3/89)

dated, _______, 199__, (the "Agreement"), both of which are by and between Sym-

bolics Inc. and Customer. All capitalized terms used in this Addendum, if not de-

fined in this Addendum, shall have the meanings assigned to them in the Agree-

ment.

1. The Software. The Software to which this Addendum applies is defined as

follows:

Model Description Release

SLAN-CSymbolics C 1.2

2. Right of Sublicense.

Customer may sublicense all or any portion of the run-time system binary

code (the "Code") of the Software to Customer’s end users provided that:

(i) such Code is part of Customer’s application software program subli-

censed to such end users;

(ii) the Customer’s application software program is licensed by Cus-

tomer to Customer’s end users to run on a Symbolics computer system or proces-

sor; and

(iii) Symbolics’ copyright and trademark notices shall not be removed

from the Software.

3. End User.

The term "end user" for the purposes of this Addendum shall mean Cus-

tomer’s customers and includes Customer’s own internal end users of its applica-

tion software programs.

CUSTOMER SYMBOLICS, INC.

______________________________ ______________________________

Name Name

______________________________ ______________________________

Title Title

 ______________________________ ______________________________

(Address) (Address)

