
symbolics™

Volume4B
Program Development Tools

Volume 48. Program Development Tools

#996042

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed In USA. This document may not be reproduced in whole or in part without the
prior written consent of Symbolics, Inc.

Design: Schafer/LaCasse
Cover and title page typography: Li1ho Composition Co.
Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine system was a product of the efforts of many
people at the M.l.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
In this documentation set were written at the Al Lab.

symbolics TM

Contents

Program
Development
Tools

ZMACS
Zmacs Manual

DEBUG
Debugger

MAINT
Maintaining
Large Systems

COMP
The Compiler

MISCT
Other Tools

symbolics™

ZMACS Zmacs Manual

Cambridge, .Massachusetts

Zmacs Manual
990050

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Trtle to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., C8mbridge, Massachusetts.
UNIX is a trademark of Bell Laboratories, Inc.
PDP-10 is a trademark of Digital Equipment Corporation
VAX is a trademark of Digital Equipment Corporation
TENEX is a registered trademark of Bolt Beranek and Newman Inc.

Copyright C 1984, 1983, 1982, 1981, Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Introduction

Overview
Scope
Organization

Introduction to Zmacs
Overview
Commands
Keystrokes

Table of Contents

Extended Commands
Command Tables

Additional Notation Conventions
Documentation Conventions for Commands

Getting Started

Entering Zmacs
Introduction

Getting Help in Zmacs
Introduction
HELP
Completion
Yanking

Organization of the Screen
Introduction
Editor Window
Echo Area
Mode Line

Inserting Text
Introduction
Inserting Characters
Starting a New Line
Correcting Typos
Wrapping Lines
Inserting Formatting Characters

Numeric Arguments
Moving the Cursor

Description
Summary

Erasing Text
Description
Summary

Page

1

2
2
2
4
4
4
4
5
5
7
7

9

10
10
12
12
12
12
13
15
15
15
17
17
20
20
20
20
20
20
21
22
23
23
23
25
25
25

ii

Creating and Saving Buffers and Files
Description
Summary
Creating a Buffer
Saving a File
Creating a File
Editing Existing Files

Leaving Zmacs
Overview
SELECT Key
System Menu
c-i!

Getting Help

Getting Out of Trouble
Overview
Getting out of Prefixes and Prompts
Large Deletions

Finding Out About Zmacs Commands
Overview
HELP
Finding Out What a Command Does
Searching for Appropriate Commands
Finding Out What You Have Typed
More HELP Commands
General Information-giving Commands

The Editor Menu
Overview
Editor Menu Commands

More on the Minibuffer
Response Format
Response Help
More Ways to Enter Responses
Mousing
Completion

Moving the Cursor

Overview
Introduction
The Editor Window

Redisplaying the Window
Introduction
Recentering Window
Next Screen
Previous Screen
Positioning Window Around Definition

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

27
27
27
27
28
28
29
30
30
30
30
30

31

32
32
32
33
34
34
34
34
35
36
36
36
39
39
39
41
41
41
41
42
42

45

46
46
46
47
47
47
47
48
48

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Moving to Specified Line
Using the Mouse

Introduction
Mouse Documentation Line

Motion Commands
Introduction
Numeric Arguments
Motion by Character
Motion by Word
Motion by Sentence
Motion by Lisp Expression
Motion by Line
Goal Column

Motion by Paragraph
Introduction
Forward Paragraph
Backward Paragraph

Motion by Page
Introduction
Forward Page
Backward Page

Motion with Respect to the Whole Buffer
Beginning/End of Buffer

Deleting and Transposing Text

Deleting vs. Killing
Overview
Kill History
Viewing Kill History
Viewing the Editor· Command History
Using the Mouse on History Elements
Retrieving History Elements
Kill Merging

Deleting and Transposing Characters
Deleting the Last Character
Deleting the Current Character
Transposing Characters

Deleting and Transposing Words
Introduction
Deleting the Current Word
Deleting the Previous Word
Transposing Words

Deleting and Transposing Lisp Expressions
Introduction
Deleting the Current Expression
Deleting the Previous Expression

;;;

48
49
49
49
51
51
51
51
52
52
53
56
57
58
58
58
58
59
59
59
59
60
60

61

62
62
63
63
63
64
64
64
66
66
66
66
68
68
68
68
68
69
69
69
69

iV

Deleting the List Containing Current Expression
Transposing Expressions

Deleting and Transposing Lines
Introduction
Deleting the Current Line
Deleting Backward on the Line
Transposing Lines

Deleting Sentences
Introduction
Deleting the Current Sentence
Deleting the Previous Sentence

Working with Regions

What is a Region?
Introduction
Point
Mark
Creating a Region
The Point-pdl
Setting/Popping the Mark
Moving to Previous Points
Showing the Mark

Registers
Saving and Moving to Locations in Registers
Saving and Inserting Regions in Registers

Commands to Mark Regions
Overview
By Words
By Lisp Expressions
By Paragraphs
By Pages
By Buffers

Region-Manipulating Commands
Saving the Region
Deleting the Region
Compiling the Region
Transposing Regions
Hardcopying the Region
Filling the Region
Other Region-related Commands

Searching, Replacing, and Sorting

Searching
Overview
Incremental Search
Reverse Incremental Search

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

69
70
71
71
71
71
71
72
72
72
72

73

74
74
74
74
75
75
76
76
77
78
78
78
80
80
80
80
80
81
81
82
82
82
82
82
82
83
84

85

86
86
86
87

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

String Search
Locating and Replacing Strings Automatically

Overview
Making Global Replacements
Querying While Making Global Replacements
Querying While Making Multiple Global Replacements
Other Types of Replacements

Tags Tables and Search Domains
Introduction
How They Work
Specifying and Listing Tags Tables
Performing Operations With Tags Tables
Support Buffers

Sorting
Overview

Manipulating Buffers and Files

Working With Buffers and Files
Overview
Buffer and File Names
Buffer Flags for Existing Files
Buffer Flags for New Files

Selecting, Listing, and Examining Buffers
Current Buffer
Buffer History

Buffer Commands
Changing Buffers
Listing Buffers
Editing Buffers
Viewing a Buffer
Hardcopying the Buffer
Renaming the Buffer
Writing Out All Buffers
Reading a File Into a New Buffer
Reading a File Into an Existing Buffer
Writing the Buffer Contents to a File
Saving the Buffer Contents to the File
Re-reading a File Into the Buffer
Creating a Fundamental Mode Buffer
Associating a File With a Buffer
Destroying Buffers

Appending, Prepending, and Inserting Text
Appending a Region to a Buffer
Appending a Region to a File
Prepending a Region to a File
Inserting a Buffer Into Another Buffer

v

88
90
90
90
90
91
92
94
94
94
94
95
97

100
100

101

102
102
102
103
103
104
104
104
105
105
106
106
107
108
108
108
108
109
109
109
109
110
110
110
112
112
112
112
112

vi

Inserting a File Into a Buffer
Comparing Files and Buffers

Source Compare
Source Compare Merge
Compare/Merge Commands for Definitions

Window Commands
Using Two Windows, Select Bottom
Using Two Windows, Select Top
Two Windows, Specify Other Contents
Two Windows, Region in Top
Change Window Size
Choose Other Window
Return to One Window
Scroll Other Window
Split Screen

File Manipulation Commands
Overview
Listing Files in a Directory
Displaying the Contents of a Directory
Viewing a File
Viewing the Properties of a File
Hardcopying a File
Renaming a File
Copying a File Into Another
Creating Links to Files
Deleting Files
Deleting Multiple Versions
Changing the Properties of a File
Creating a Directory

Buffer and File Attributes
Attributes
Attribute-Manipulating Commands
File Attribute Checking
Setting the Package

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Other Set commands for File and Buffer Attributes

112
113
113
113
115
117
117
117
117
117
117
118
118
118
118
119
119
119
119
120
120
120
120
121
122
122
122
123
123
125
125
125
126
126
127
131
131
131
131
132
134
134
135
135
136
136

Dired Mode
'Overview
Entering Dired
The Dired Display
Dired Commands
Default Pathnames in Dired
Getting Out of Dired
Online Documentation for Dired
Dired Menu
Moving Around in Dired
Viewing File Attributes in Dired

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Changing File Properties in Dired
Viewing and Editing File Contents in Dired
Comparing Recent Versions of Files
Copying and Renaming Files
Marking Files for Deletion
Deleting Multiple Versions
Setting Generation Retention Count
Protecting Files From Being Reaped
Protecting Files From Being Deleted
Finding Files That Have Not Been Backed Up
Marking Files to be Hardcopied
Applying Arbitrary Functions to Files

Setting the M~or Mode

Major Editing Modes
Overview
Fundamental Mode
Lisp Mode
Text Mode
Macsyma Mode
Midas Mode
Bolio Mode
Teco Mode
Pll Mode
Electric Pll Mode

Changing Case and Indentation

Changing Case
Overview
Changing Case of Words
Changing Case of Regions
Changing Case of Buffers

Indentation
Overview
Indenting Current Line
Centering the CU:rrent Line
Indenting New Line
Reindenting Expression
Indenting Region
Going Back to First Indented Character
Indenting Region Uniformly
Aligning Indentation
Deleting Indentation
New Line with This Indentation
Moving Rest of Line Down
Inserting Blank Line

vii

136
137
137
137
138
138
139
139
140
140
140
141

143

144
144
144
144
144
144
145
145
145
145
145

147

148
148
148
148
149
150
150
150
150
151
151
151
151
152
152
152
152
153
153

viii

Deleting Blank Line

Editing Lisp Programs

Introduction
Commenting Code

Overview
Indenting for Comment
Killing a Comment
Moving Down to Comment on Next Line
Moving Up to Comment on Previous Line
Setting the Comment Column
Creating a New Indented Comment Line
Commenting Regions

Evaluation and Compilation
Overview
Evaluation
Compilation
Compiler Warnings

Parenthesizing Expressions
Expanding Expressions
Locating Source Code to Edit

Introduction
The Edit Definition Commands
The List Definition Commands
The Edit Callers Commands

Patching
Introduction
The Patch Commands

Customizing the Zmacs Environment

Overview
Introduction

Built-in Customization - Zmacs Minor Modes
Definition - Minor Modes
How It Works
Summary of Minor Modes

Major Modes
User-Defined Major Modes
File Types and Major Modes

Creating New Commands: Keyboard Macros
Definition
How It Works
Procedure
Start Keyboard Macro
End Keyboard Macro
View Keyboard Macro

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

153

155

156
157
157
157
157
158
158
158
158
159
160
160
160
162
163
164
165
166
166
166
168
169
172
172
172

177

178
178
179
179
179
180
182
182
182
183
183
183
183
184
184
184

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Call Last Keyboard Macro
Defining an Interactive Keyboard Macro
Nmning a Keyboard Macro
Using Keyboard Macros to Sort
Installing a Macro on a Key
Installing a Mouse Macro
Deinstalling a Macro
M;ore Features of the Keyboard Macro Facility

Key Bindings
Definition
How It Works: The Comtab
Set Key
Install Command

How to Specify Zmacs Variable Settings
Definition
Finding Out About Zmacs Variables
Describe Zmacs Variable
List Zmacs Variables
Variable Apropos
Set Variable

Customizing the Editor in Init Files
Introduction
Creating An Init File
Setting Editor Variables
Setting Mode Hooks
Key Bindings

APPENDIX A. Help Command Summary

Index

Zmacs commands for finding out about the state of buffers
Zmacs commands for finding out about the state of Zmacs
Zmacs commands for fmding out about Lisp
Zmacs commands for finding out about flavors
Zmacs commands for interacting with Lisp

ix

184
185
185
186
186
186
186
187
191
191
191
191
192
193
193
193
193
193
193
194
196
196
196
196
197
198

201

201
201
201
202
202

203

ZMACS Zmacs Manual 1

Symbolics. Inc. February 1984

Introduction

2

Overview

Scope

Organization

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

The Zmacs Manual is primarily a reference manual and is intended
for all users of Zmacs on the Lisp Machine. It contains both
conceptual overview and reference material that together describe
the Zmacs editor. We assume that you have already read the Lisp
Machine Summary.

The first three chapters contain introductory material for users who
are unfamiliar with Zmacs concepts. Experienced users can skim
the remaining chapters, which are organized according to editing
function, and use them as reference material.

"Introduction" gives an overview of Zmacs and describes Zmacs
documentation conventions in this manual.

"Getting Started" introduces basic Zmacs concepts and commands,
such as how to enter text, move the cursor, and make simple
corrections.

"Getting Help" describes ways to get out of trouble and how to get
Zmacs information during editing.

"Moving the Cursor" includes descriptions of both mouse and
keyboard motion commands.

"Deleting and Transposing Text" explains Zmacs deletion and text
retrieval concepts, as well as the ways to delete and transpose text.

"Working With Regions" tells how to manipulate blocks of text.

"Searching, Replacing, and Sorting'' describes the commands for
locating and replacing character strings in one or many files.

"Manipulating Buffers and Files" gives more information on
manipulating blocks of text, inserting files, keeping track of
everything, and editing your directory.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Overview. cont'd.

"Setting the Major Mode" documents the major editing modes and
their characteristics.

3

"Changing Case and Indentation" includes many commands for
changing code, comments, or text to uppercase or lowercase, as well
as commands for handling white space, indentation, and formatting.

"Editing Lisp Programs" the ways in which Zmacs is tailored for
use in writing and editing programs in Lisp.

"Customizing the Zmacs Environment" describes how to fine tune
your Zmacs environment using modes to set it up, keyboard macros
to perform special editing tasks, binding keys to the commands of
your choice, setting Zmacs variables to alter your standard system
defaults, and saving the customized environment in init files.

Appendix A summarizes Zmacs help commands according to the
context in which they are available.

4 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Introduction to Zmacs

Overview

Commands

Keystrokes

Zmacs, the Lisp Machine editor, is built on a large and powerful
system of text-manipulation functions and data structures, called
Zwei.

Zwei is not an editor itself, but rather a system on which other
text editors are implemented. For example, in addition to Zmacs,
the Zmail mail reading system also uses Zwei functions to allow
editing of a mail message as it is being composed or after it has
been received. The subsystems that are established upon Zwei are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text
in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp
environment, many of the commands available as Zmacs commands
are available in other editing contexts as well.

In this manual, we discuss Zmacs commands in the context of
Zmacs only. We also describe Dired, the directory editor, since it is
used within Zmacs.

Zmacs commands are Lisp functions that perform the editing work.
Every Zmacs command has a name, and many commands are
bound to keys. When a command is bound to a keystroke
combination, you invoke it by pressing those keys. For example,
the Forward Word command is invoked by typing the keystroke
M-F. When a command is not bound to a set of keystrokes, Zmacs
calls it an extended command and you invoke it using its name
preceded by M-X. For example, the command View Mail, an
extended command, is invoked View Mail (M-X). Command tables
assign keystrokes and names to commands. Each time you press a
key, Zmacs looks up the function associated with that key. For
ordinary characters, the function com-standard, in the standard
command table, inserts the character once.

A keystroke has a character component and a modifier component,
and is performed by pressing a primary key (alphanumeric), possibly
while holding down a shift key or a group of shift keys. The
primary key held down with either the SHIFT or SYMBOL keys
determines the character part of a keystroke. Whether you hold

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Introduction to Zmacs. cont'd.

down the other shift keys, CONTROL, META, HYPER, and SUPER,

determines the modifier part of the keystroke.

5

In general, commands that begin with a CONTROL (c-) key modifier
operate on single characters, commands that begin with a META (M-)

key modifier operate on words, and commands that begin with a
CONTROL META (c-M-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per
command. For example, to invoke the command c-x F, you first
type the prefix character c-X and then the primary key F. Prefix
character commands are not case-sensitive - that is, Zmacs
converts a lowercase character following a prefix character command
(like c-X) to uppercase. For example, c-X f is equivalent to c-X F.

Zmacs commands are ·self-delimiting. Unless otherwise specified,
you do not need to type a carriage return or other terminating
character to finish typing a command.

Extended Commands
Extended commands extend the range of commands past the one­
or-two-keystroke limitation. You invoke Zmacs extended commands
by name using the M-X command:

Extended Command

Prompts for the name of a Zmacs command and executes that
command.

Command completion is provided. (See "Completion" on page 12.)

Command Tables
There is always a currently active command table (comtab). When
you invoke a command, Zmacs looks it up in the associated
command table, checks to see if it is valid in the current context,
and performs the function. Zmacs uses many comtabs, a few of
which are the standard comtab, a comtab for commands that begin
with the c-x prefix, and a comtab for reading pathnames in the
minibuffer.

Many commands have no meaning outside their own limited
context. Sometimes you may get a message or see online
documentation about a command that says
Not available in current context. Those commands that are not
accessible via a keystroke and not accessible via M-X are likely to be
commands that do not work in the current context. For example,
a command that is part of Dired is only available on a key when
you are in Dired.

6 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Introduction to Zmacs. cont'd.

You can invoke a command that is not available in the current
comtab with the c-M-X command. c-M-X works like M-X: you press
the keys and then type the command name in the minibuffer.
This is primarily intended for debugging new editor commands that
have not yet been installed on any key. Using c-M-X to invoke a
command that is not in the current comtab because it only works
in some other context is a sure way to get into trouble.

Any Extended Command

Prompts for the name of a Zmacs command and executes that
command.

Command completion is provided.

ZMACS Zmacs Manual 7

Symbolics, Inc. February 1984

Additional Notation Conventions

Documentation
Conventions for Commands

Example 1

.
Example 2

Example 3

The word current, when describing a word, line, paragraph, page, or
any Zmacs-recognizable piece of text, refers to the text that
currently contains (or immediately follows) the cursor.

The invocation of a command shows exactly what keys you must
press to invoke, or call, a command. We use the following format
to describe Zmacs commands:

invocation
alternate invocation
alternate invocation

Formal description of command

Name

Since each extended (M-X) command contains its name as part of its
invocation, we do not repeat the name again on that line.

M-> Goto End

Moves point to the end of the buffer.

With a numeric argument n between 0 and 10, moves point to a
place n/10 of the way from the end of the buffer to the beginning.

<The M-> command goes to the end of the buffer - its name is
Goto End.)

Dired (M-X)

Prompts for the name of a directory to edit with Dired.

(The Dired (M-X) command is an extended command that enters
the directory editor.)

M-M
c-M-M
M-RETURN
c-M-RETURN

Back To Indentation

Positions point before the first nonblank character on the current
line.

(Back to Indentation has several possible invocations that all move
back to the first nonblank character on the line.)

8 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

ZMACS Zmacs Manual 9

Symbolics. Inc. February 1984

Getting Started

10 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Entering Zmacs

Introduction

SELECT E

Mouse

(ed)

You can enter, or invoke, the editor in several ways: Press
SELECT E, use the mouse, or run either the function (ed) or the
function zwei:edit-functions.

You can invoke the editor by pressing the SELECT key and then the
letter E:

• If you have already been in the editor since booting the machine,
Zmacs returns you to the same place in the same buffer that you
last used.

•If this is the first time you are entering Zmacs since booting the
machine, Zmacs puts you in an empty buffer named *Buff er-1 *·

SELECT E enters or returns you to the editor from anyplace in the
system, not just when you are talking to Lisp.

You can invoke the editor using the mouse.

Summon a System menu by clicking right twice [(R2)]. Then click
left on the Edit option [Edit (L)], which puts you into a Zmacs
buffer. The same as for SELECT E above, if you are returning to
the editor Zmacs puts you back at the same place in the same
buffer, and if you are entering Zmacs for the first time it puts you
in an empty buffer.

The Lisp functioned enters Zmacs from a Lisp Listener.

ed &optional arg Function

When reentering Zmacs within a login session, (ed) enters the
editor, preserving its state as it was when you last left. When
entering Zmacs for the first time within a login session, (ed)
initializes Zmacs and creates an empty buffer.

arg can have these values.

Value

t

Pathname or string

Description

The ed function enters the editor,
creates an empty buffer, and selects it.

Theed function enters the editor and
finds or creates a buffer with the
specified file in it.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Entering Zmacs. cont'd.

Defined symbol

The symbol zwei:reload

zwei:edit-functions

The editor tries to find the source
definition of that symbol for you to
edit. A defined symbol can be, for
example, a function, inacro, variable,
flavor, or system.

The system reinitializes the editor.
This destroys all existing buffers, so
use this only if you have to.

The Lisp function zwei:edit-functions also enters Zmacs from a
Lisp Listener.

11

zwei:edit-functions spec-list Function

zwei:edit-functions is like ed in that inside the editor process it
throws you back into the editor, whereas from another process it
just sends a message to the editor and selects the editor's window.
zwei:edit-functions gives spec-list to the editor in the same way
that Edit Callers (see page 169) and similar editor commands would.

This command is useful when you have collected the names of
things that you need to change, for example, using some program
to generate the list. spec-list is a list of definitions; these are either
function specs (if the definitions are functions) or symbols.

Zmacs sorts the list into an appropriate order, putting definitions
from the same file together, and creates a support buffer called
Function-Specs-to-Edit-n. It selects the editor buffer containing
the first definition in the list.

12 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Getting Help in Zmacs

Introduction

HELP

Completion

Zmacs has many features that provide information about Zmacs
commands, existing code, buffers, and files. Two features are
generally useful: the HELP key and completion. (See the chapter
"Getting Help", page 32, for details.)

Pressing the HELP key in a Zmacs editing window gives information
about Zmacs commands and variables. (Zmacs variables are
described in "How to Specify Zmacs Variable Settings", page 193).
The. kind of information it displays depends on the key you press
after HELP. Q_,'fj

HELP '?

HELP A

HELP C

HELP D

HELP L

HELP U

HELP V

HELP W

HELP SPACE

'v.JF_,.,

Displays a summary of HELP options.

Displays names, key bindings, and brief
descriptions of commands whose names contain a
string you specify. (The A refers to apropos, the
name of the function that finds the commands
and displays their documentation.)

Displays the name and description of a command
bound to a key you specify.

Displays documentation for a command whose
name you specify.

Displays a listing of the last 60 keys you pressed.

Offers to undo the last major Zmacs operation,
such as sorting or filling, when possible.

Displays the names and values of Zmacs variables
whose names contain a string you specify.
(Zmacs variables are described in "How to Specify
Zmacs Variable Settings", page 193).

Displays the key binding for a command you
specify. (The W refers to where.)

Repeats the last HELP command.

Some Zmacs operations require you to provide names - for
example, names of extended commands, Lisp objects, buffers, or
files. Often you do not have to type all the characters of a name;
Zmacs offers completion over some names. When completion is
available, the word Comp 1 et ion appears in parentheses above the
right side of the minibuffer.

ZMACS Zmacs Manual 13

Symbolics, Inc. February 1984

Getting Help in Zmacs. cont'd.

Yanking

You can request completion when you have typed enough
characters to specify a unique word or name. For extended
commands and most other names, completion works on initial
substrings of each word. For example, M-X c SPACE b is sufficient
to specify the extended command Compile Buffer. SPACE, COMPLETE,
RETURN, and END complete names in different ways. Press HELP or

. click right once, [(R)], on the editor window or minibuffer to list
possible completions for the characters you have typed. c-/ displays
every command that contains the substring.

SPACE

HELP or c-?

[(R)]

c-/

COMPLETE

RETURN or END

Completes words up to the current word.

Displays possible completions in the typeout area.

Pops up a menu of possible completions.

Runs Apropos for each of the partially typed
words in. the name.

Completes as much as possible. This could be
the full name.

Confirms the name if possible, whether or not
you have seen the full name.

Yanking helps you to get back any text that you have typed or
deleted, by retrieving it from a history. A history remembers
commands and pieces of text, placing them in a history list in stack
order, with the newer elements at the top of the history and the
older elements toward the bottom. Yanking commands yank back
an element of a history from any position in the history list that
you specify:

Yanking in the kill history:

c-0 c-Y

c-Y

Displays the elements of the kill history (saved
text). Click left on CN more elements in
history. > to display those not shown.

Yanks the first element in the kill history.

After c-Y, yanks the previous element in the kill
history. Subsequent M-Ys move down the kill
history list.

14 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Getting Help in Zmacs. cont'd.

Yanking in the command history:

c-0 c-M-Y

c-M-Y

M-Y

Displays the elements of the command history
(editor commands that use the minibuffer in any
way). Click left on <N more elements in
history.) to display those not shown.

Yanks the first element in the command history.

After c-M-Y, yanks the previous element in the
command history. Subsequent M-Ys move down
the command history list.

Killing and yanking are fully described in the chapter "Deleting and
Transposing Text", page 60.

ZMACS Zmacs Manual 15

Symbolics, Inc. February 1984

Organization of the Screen

Introduction
Zmacs divides its window into several areas - the editor window,
the echo area, and the mode line, each of which contains its own
type of information.

Editor Window

Buffer

The biggest area, the editor window, shows the text you are
editing. You c~ edit several different items at once with Zmacs;
each item is edited in a separate editing environment called a
buffer.

Zmacs gives every buffer a name. At any time you are editing only
one of them, the selected buffer. When we speak of what some
command does to "the buffer", we are talking about the currently
selected buffer. Multiple buffers in Zmacs make it easy to switch
among several files; the mode line tells you which one you are
editing.

Cursor and Point

Typeout

The small blinking rectangle, the cursor, usually appears somewhere
within the buffer, showing the position of point, the location at
which editing takes place. Although the cursor covers a single
character, we consider point to be at the left edge of the cursor,
between the character the cursor is blinking on and the previous
character.

When you request some other information from Zmacs (for
example, if you ask for HELP or a listing of a file directory), Zmacs
needs room to display this type of information. It prints this
typeout in a typeout window (at the top of the editor window),
which temporarily overlays the text in the editor window, using as
much room as it needs. Since the typeout is not part of the file
you are editing, Zmacs delineates it from the editor buffer by
drawing a line across the window between them (if both are
present). The typeout window goes away if you type any
command; if you want to make it go away immediately but not do
anything else, you can press SPACE. The cursor, which appears at
the end of the typeout, then moves back to its original location in
the buffer.

16 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Organization of the Screen. cont'd.

IZMRCS CFundamentaT) *-S-u1T'er-1*

02.1'221'84 14:21:16 SEG USER: Tyi

ZMACS Zmacs Manual 17

Symbolics, Inc. February 1984

Organization of the Screen. cont'd.

Echo Area

Minibuffer

Mode Line

A few lines at the bottom of the screen make up what is called the
echo area. Echoing means displaying the commands that you type.
Zmacs commands are usually not echoed at all, but if you pause in
the middle of a multicharacter command, then all the characters
(including numeric arguments and prefixes) typed so far are echoed.
This is intended to prompt you for the rest of the command. The
rest of the command is echoed, too, as you type it. Th~s behavior
is designed to give confident users optimum response, while giving
hesitant users maximum feedback.

Many Zmacs commands prompt you for additional information.
This prompting happens in a small window within the echo area
called the minibuffer.

When Zmacs prompts you, the cursor in the main editing window
stops blinking and a blinking cursor appears in the minibuffer.
Over the minibuffer, in the Zmacs mode line, some prompting text
appears, indicating what information Zmacs is prompting you for.

When you type a response to the prompt, that response is inserted
in the minibuffer. You can edit text in the minibuffer using the
same Zmacs commands used in the main Zmacs window.

When you are done typing (and possibly editing) a response to the
prompt, the RETURN key finishes your response.

The line above the echo area is known as the mode line. It is the
line that usually starts with ZHACS (Fundamenta 1) . Its purpose is to
display information about the current buffer. The mode line
consists of:

• The name of the major mode
•The name of the minor mode(s), if any
• The name of the buffer
• The version number of the file
• The status of the buffer
•A message telling whether the buffer contents extend above

and/or below the screen

The mode line has this format:

ZHACS (major-mode minor-mode(s)) buffer (version) buffer-status
[position-flag]

18 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Organization of the Screen. cont'd.

Major-mode

Minor-mode

Buffer

major-mode is always the name of the major mode you are in. At
any time, Zmacs is in one and only one of its possible major modes.
The major modes available include:

•Fundamental mode (which Zmacs starts out in)
•Text mode
•Lisp mode
• Macsyma mode

See the chapter "Setting the Major Mode", page 141, for full details
about all the major modes, how they differ, and how to select one.

minor-mode is a list of the minor modes that are turned on at the
moment. For example:

Fill

Electric Shift-lock

Abbrev

Overwrite

Auto Fill Mode

Electric Shift Lock Mode

Word Abbrev Mode

Overwrite Mode

See the chapter "Built-in Customization - Zmacs Minor Modes",
page 179, for more information.

buffer is the name of the workspace that holds the text you are
editing. A buffer can be named in one of two ways:

• By Zmacs, with a name that corresponds to the existing file that
it contains or with its standard name for an empty buffer

• By you, with any name you like

When a buffer contains a file, the buffer name is the pathname of
that file, rearranged with the file name first and the host and
directory at the end. (Pathname components are fully described in
the Lisp Machine Summary.) When a buffer does not contain a
file, the buffer name is a string. c-0 J,_ JIZ-~,. l , ~ 1 f,; :,

Buffers that do not contain files are empty, newly created, or
temporary buffers. When Zmacs creates and names a buffer, that
name begins and ends with an asterisk. When you create and
name a buffer, on the other hand, its name is of your choosing.

ZMACS Zmacs Manual 19

Symbolics. Inc. February 1984

Organization of the Screen. cont'd.

Version

Buffer-status

Position-flag

Example

When you first start up and enter Zmacs, your buffer is either:

•An empty buffer called *Buffer-1*, which is the only one that
exists when Zmacs starts up

•A buffer containing an existing file, which Zmacs appropriately
calls by its name

See the chapter "Multiple Buffers and Windows", page 103, for
information on multiple buffers.

(version) is the version number most recently visited or saved. The
mode line does not display any version number if the file is on a file
system that does not support version nuip.bers, such as UNIX.

~--(:))

If the mode line displays *, then changes have been made in the
buffer that have not been saved in the file. If the buffer has not
been changed since it was read in or. saved, the mode line does not
display a asterisk. ..,, '"Ir :> : ,,,,,,~, .p=

When the mode line displays the message [Hore above], then your
screen shows the end of your buffer contents; when the mode line
shows [Hore below], then your screen shows the beginning of your
buffer contents. When it says [More above and below], then the
buffer contents extend above and below the part that the screen
displays. When the display shows the entire buffer contents, this
message does not appear at all.

ZHACS (Text) text.text /dess/doc/books/ VAX: *[Hore above and
below]

In this sample mode line, we are in Zmacs Text Mode, editing a file
named text. text, which resides in the directory /dess/doc/books on
the host named VAX. The file has been changed since we last
saved it (indicated by the *), and the file contents extend above and
below the portion that Zmacs displays on the screen.

20

Inserting Text

Introduction

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

To insert new text anywhere in the buffer, position the cursor at
the place you want the new text to go and type the new text.
Zmacs always inserts characters at the cursor. The text to the
right of the cursor is pushed along ahead of the text being inserted.

Inserting Characters
When you type in new text, you are actually issuing Zmacs
commands. Ordinary printing characters are called self-inserting
because when you type one, it inserts itself into the text in your
buffer.

You can give numeric arguments to the keystrokes that insert
printing characters into the buffer; Zmacs interprets these
arguments as repeat counts.

Example: c-80 * inserts a line of 80 asterisks at the cursor.

Starting a New Line
Newline characters delimit lines of text. They have no visible
printed form, but are present at each line break. You can break
one line into two lines by inserting a newline (pressing RETURN)
where desired. Similarly, you can merge two lines into one by
deleting the intervening newline.

Correcting Typos
To correct text you have just inserted, use the RUBOUT key. RUBOUT
deletes the character before the cursor (not the one over which the
cursor is positioned; that is the character after the cursor). The
cursor and the rest of that line move to the left.

When the cursor is positioned on the first character on a line and
you press RUBOUT, the preceding newline character is deleted and
Zmacs appends the text on that line to the end of the previous
line.

Wrapping Lines
When you add too many characters to one line without breaking it
with a RETURN, the line grows to occupy two (or more) lines on the
screen, with an exclamation point at the extreme right margin of
all but the last of them. The ! means that the following screen
line is not really a distinct line in the file, but just the continuation
of a line too long to fit the screen.

ZMACS Zmacs Manual 21

Symbolics, Inc. February 1984

Inserting Text. cont'd.

Inserting
Formatting Characters

You can insert most characters directly into the buffer by simply
typing them, but other. characters act as editing commands and do
not insert themselves. If you need to insert a character that is
normally a command (for example,(fA~r RUBOUT), use the c-Q

1~
(Quoted Insert) command first to telrzmacs to insert the following
character into the buffer literally. c-Q prompts in the echo area for
the character to be inserted and inserts it into the text.

' r~·
C~ a~~,,..~..,. ,

'' r-~· }o o[k

22 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Numeric Arguments

Overview

Example

Defaults

Many Zmacs commands take numeric arguments, which you type
before the main command keystroke. Specify a numeric argument
by pressing any combination of any of the modifier keys (c::-, M-, s-,
or h-) with the number. This way, you can type sequences of
commands more easily without frequently alternating keys.

Numeric arguments to commands appear in the echo area when
you do not, type the command immediately. With no delay, the
argument does not appear.

In general, use negative arguments to tell a command to move or
act backwards. You can specify a negative argument by pressing
any modifier key with the minus sign followed by the number.
Most commands treat a numeric argument consisting of just a
minus sign the same as -1.

c::-F is the command to move the cursor forward one character.
c::-3 c::-5 c::-F moves point forward 35 characters; c::-- c::-3 c::-5 c::-F

moves point backward 35 characters.

Throughout this manual, instead of writing out c::-4 c::-5 c::-F or
M-4 M-5 M-8, we will usually abbreviate to c::-45F or M-458.

Many commands have default numeric arguments. This means
that in the absence of a numeric argument, the command behaves
as if the default argument was given. Most commands have a
default argument of 1. This includes all the commands that
interpret numeric arguments as repeat counts. Some commands
have a different default and still others have no default: their
behavior in the absence of a numeric argument is different from
their behavior with a numeric argument.

c::-u Quadruple Numeric Arg
This special command prefixes other commands, usually
representing a numeric argument of 4. You can repeat c::-U; it
multiplies the numeric argument by 4 each time. For example,
c::-u c::-U c::-F moves point forward 16 characters. Sometimes instead
of representing a numeric argument of 4, c::-U alters the action of a
command slightly; for example, when used with the command Set
Pop Mark, described in ''Working with Regions", page 72, c::-u takes
different actions with the mark.

ZMACS Zmacs Manual 23

Symbolics, Inc. February 1984

Moving the Cursor

Description

Summary

To do more than insert characters, you have to know how to move
the cursor.

The commands listed here and other cursor-moving commands are
described in detail in the chapter "Moving the Cursor", page 44.

c-A Beginning of Line
Moves to the beginning of the line.

c-E End of Line
Moves to the end of the line.

c-F Forward
Moves forward one character.

c-B Backward
Moves backward one character.

rtt-F Forward Word
Moves forward one word.

rtt-B Backward Word
Moves backward one word.

rtt-E Forward Sentence
Moves to the end of the sentence in text mode.

rtt-A Backward Sentence
Moves to the beginning of the sentence in text mode.

c-N Down Real Line
Moves down one line.

c-P Up Real Line
Moves up one line.

rvi-] Forward Paragraph
Moves to the start of the next paragraph.

,..._ C Backward Paragraph
Moves to the start of the current (or last) paragraph.

c-X] Next Page
Moves to the next page.

24 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Moving the Cursor. cont'd.

c-X [Previous Page
. Moves to the previous page.

c-v Next Screen
Moves down to display the next screenful of text.

M-V Previous Screen
Moves up to display the previous screenful of text.

M-< Goto Beginning
Moves to the beginning of the buffer.

M-> Goto End
Moves to the end of the buffer.

ZMACS Zmacs Manual 25

Symbolics. Inc. February 1984

Erasing Text

Description

Summary

Most commands th._~J-~rase text from the buffer save...it..& that JOlL
can get it back if you change your mind, or move or copy it to
other-parts of the buffer. These commands are known as kill
commands. The rest of the commands that erase text do not save
it; they are known as delete commands. The delete commands
include c-D and RUBOUT, which delete only one character at a time,
and those commands that delete only spaces or line separators.
Commands that can destroy significant amounts of <!~ta ~~ally
kill. The commands' names and individual descriptions use the
words "kill" and "delete" to say which they do.

If you issue a kill command by mistake, you can retrieve the text
with c-v, the Yank command. See the chapter ''Working with
Regions", page 72, for details on killing and retrieving text.

c-D Delete Forward
Deletes the character after point.

RUBOUT Rubout
Deletes the character before point.

M-D Kill Word
Kills forward one word.

M-RUBOUT Backward Kill Word
Kills backward one word~

M-K Kill Sentence
Kills forward one sentence.

c-X RUBOUT Backward Kill Sentence
Kills backward one sentence.

c-K Kill Line
Kills to the end of the line or kills an end of line.

c-W Kill Region
Kills region (from point to mark).

c-M-K Kill Sexp
Kills forward over exactly one Lisp expression.

c-M-RUBOUT Backward Kill Sexp
Kills backward over exactly one Lisp expression.

26 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Erasing Text. cont'd.

M-' Delete Horizontal Space
Deletes any spaces or tabs around point.

c-X c-o Delete Blank Lines ·
Deletes any blank lines following the end of the current line.

M-" Delete Indentation
Deletes RETURN and any indentation at front of line.

ZMACS Zmacs Manual 27

Symbolics, Inc. February 1984

Creating and Saving Buffers and Files

Description

Summary

You do all your text editing in Zmacs buffers, which are temporary
workspaces that can hold text. To keep any text permanently you
must put it in a file. Files store data for any length of time.

To edit the contents of a file using Zmacs, you create a buffer and
copy the file contents into it. To add text to the end of the buffer,
move point to the end of the buffer and type the new text.
Editing proceeds in the buffer, not in the file. The file remains
unchanged until you explicitly write the modified buffer contents to
the file. ·

If you create multiple buffers, Zmacs keeps track of which files you
are editing in which buffers. This association allows you to use
completion to switch among buffers while you are editing them; you
do not have to type the file name more than once. Zmacs always
displays the name of the file you are currently editing.

The information in this section allows you to find or create and
save a file; for complete information on buffers and files, see the
chapter "Manipulating Buffers and Files", page 100.

c-X c-F Find File
Reads the specified file into a buffer.

c-X c-S Save File
Saves out the changes to the current file.

c-X B Select Buffer
Selects the specified buffer. ,

c-X c-W Write File
Writes out the buffer to the specified file.

Creating a Buffer
Zmacs creates your initial buffer when you first enter the editor.
To create other buffers, use c-X B, Select Buffer, to create an
empty buffer or c-X e:-F, Find File, to create either an empty
buffer or a buffer containing a file.

. c-X B prompts for the name of the buffer to which you want to go.
Type the buffer name and RETURN. If the buffer exists, Zmacs
switches to that buffer and displays it on the screen. If the buffer
does not already exist, Zmacs offers to let you create it by
terminating the buffer name with c-RETURti. When you create a
new (empty) buffer, the display is blank.

28 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Creating and Saving Buffers and Files. cont'd.

Saving a File

The other way to create another buffer is c-X c-F, Find File.
(c-X c-F) is described in detail in "Editing Existing Files".) c-X c-F
prompts for the name of a file, terminated by RETURN.

When you type c-X c-F for the first time in a Zmacs session,
Zmacs offers you, as a default file name, an empty file (with the
Lisp suffix native to your host computer) in your home directory on
your host computer. For example:

System
Lisp Machine
UNIX
VMS

Empty Buffer Name
foo.lisp
foo.l
foo.lsp

The first time you use c-X c-F, you can create an empty buffer
using the Zmacs default file name, create an empty buffer using a
name that you specify, or create a buffer containing an existing file:

• To create an empty buffer with the initial default file name as
the one Zmacs associates with your buffer, press RETURN.

• To create a new empty buffer, respond with any name. Zmacs
switches to an empty buffer, gives the buffer the new name, and
displays (New File) in the echo area.

•To create a new buffer containing some file, respond to the
prompt with the name of that file. Zmacs switches to an empty
buffer, reads that file in, and names the buffer appropriately.

Once you have the file in your buffer, you can make changes and
then save the file with c-X c-S, the Save File command. This
makes the changes permanent and actually changes the file. Until
then, the changes are only inside your Zmacs buffer and the file
itself is not really changed.

Creating a File
The first time you save or write the buffer, Zmacs creates the new
file. You can create a new file with c-X c-s. Since a new file does
not have a name associated with it yet, Zmacs asks for a name for
the new file. It offers a default pathname, which is the name of
the buffer. If you wish to save the file out to the default
pathname, simply type a RETURN in response to the prompt.

If you wish to save the buffer in another file, provide that name as
your response. Completion is offered to simplify your response.

ZMACS Zmacs Manual 29

Symbolics, Inc. February 1984

Creating and Saving Buffers and Files. cont'd.

You can also write the buffer out with c-X c-"', Write File. Zmacs
prompts in the minibuffer for the name of the place you want to
write the buffer's contents. c-X c-"' also offers a default
pathname, in this case, the name you supplied with c-X c-F.

Editing Existing Files
To tell Zmacs to edit text in a file, use c-X c-F, the Find File
command, and give Zmacs a file name. You can enter the
pathname of any file on any host that is reachable by network
connections from your Lisp Machine. If the file already exists,
Zmacs locates the file and reads it into your buffer.

30 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Leaving Zmacs

Overview

SELECT Key

System Menu

c-2

Use a system-wide command to switch programs, such as SELECT,
FUNCTION s, the System menu, or, if you have multiple windows on
the screen, position the mouse to another window and click.

A set of windows is always available by pressing the SELECT key and
then one of the following keys:

Key Program
c Converse, for messages to other users
E Editor, the Zmaes text and program editor
F File system editor for access to files and directories
I Inspector, for inspecting and modifying data structures
L Lisp
M Mail reading and sending system
P Peek, a system status display
T Telnet, a virtual terminal utility for logging in to other

hosts
x Favor Examiner, for examining the structure of flavors

that are defined in the Lisp environment

The System menu is a momentary menu that lists several choices
for acting upon windows and calling programs (for example, a Lisp
Listener, Zmacs, or the Inspector). You can always call the System
menu by clicking [(R2)] (the right mouse button twice or holding
down the SHIFT key and clicking right once). Use the System
menu to do many things, among them:

• Create new windows.
• Select old windows.
•Change the size and placement of windows on the screen.
• Hardcopy a file.

The Zmacs command c-2 returns you to the window in which the
(ed) function was most recently called, usually the Lisp Listener.

ZMACS Zmacs Manual 31

Symbolics. Inc. February 1984

Getting Help

32 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Getting Out of Trouble

Overview
Sometimes you type the wrong command. Mostly it is obvious
what you have done wrong, and it is a simple matter to undo it.
There are, however, some kinds of trouble you can get into that
require special remedies. For example, you might accidentally delete
large chunks of text you need or you might begin to type a
command and then change your mind.

This section tells you how to recover from these situations.

Getting out of
Pref°IXes and Prompts

Prefixes

Most of the commands we have described are single keystrokes, but
some keystrokes are prefixes that must be completed with a second
keystroke to specify a command. c-X is the most important of
these.

If you press a c-X and don't mean it, you can get out by pressing
either c-G or ABORT. These are general "get me out of here"
commands, which you should use whenever you get yourself into a
confused state. ~BO_RT~Q_.s.:.!L~~~-JQ!" the_most~l!r!"-~
in Zmacs.

Minibuf{er Prompts
Sometimes you accidentally type a command that prompts for some
additional information, or you type such a command on purpose· and
change your mind afterwards. When Zmacs prompts and you j~t
want to get out of the minibuffer and back to where you were,
P-ress ABORT. If, instead, you wish to cancel and reenter your
response, use ~-GJ which clears any typein but leaves you still in
t~fJer. --When the 'iiilrubuffer IS-empty, 6-GCaiiCelstlie"rr-~
minibuffer command. (With some echo area prompts, you have to
use ABORT.)

ABORT Abort At Top Level

Cancels the last command typed. It also cancels numeric
arguments and region marking.

c-G Beep

Cancels the last command. It also cancels numeric arguments, and
region marking, except when given an argument. It cancels one
thing at a time, so that if you've typed a number of commands or

ZMACS Zmacs Manual 33

Symbolics, Inc. February 1984

Getting Out of Trouble. cont'd.

responses, you must use use successive c-Gs to cancel each one and
return to top level.

Large Deletions
Do not delete large pieces of text by repeatedly pressing RUBOUT and
c-D. Apart from being slow, text deleted character-by-character is
gone for good.

Instead, use delete and kill commands that save deleted regions in
the kill history. c-K, M-K, and the commands that deal with
regions easily wipe out and save larger chunks. Also, RUBOUT or c-D
with a numeric argument erases that many characters all at once
and saves them in the kill history. These delete and kill commands
are fully described in the chapter "Deleting and Transposing
Words", page 60.

Getting Text Back
The system has different histories for different contexts. One of
these is always the current history. The two histories that you
need to use for yanking in Zmacs are the kill history and the
command history. The kill history remembers pieces of text that
you killed or copied into it. In the context of Zmacs, the command
history remembers all the editor commands that use the minibuffer
in any way. Additions to the histories are placed at the top of the
list, so that history elements are stored in reverse chronological
order - the newer elements at the top of the history, the older
elements toward the bottom. A history remembers everything that
has been typed to it since the last cold boot - it has no size limit.

Yanking commands pull in the elements of the history. Top-level
commands start a yanking sequence; for example, c-V yanks back
the last text killed from the kill history, and c-M-V yanks back the
last command performed in the minibuffer. M-V performs all
subsequent yanks in the same sequence; for example, pressing M-V
while the kill history is the current history yanks the next item
from that history.

A yanking sequence ends when you type new text, execute a form
or command, or stru:t ano~~er yanking s~uence.

Killing and yanking is fully described in the chapter ''Working with
Regions", page 72.

34 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Finding Out About Zmacs Commands

Overview

HELP

Sometimes you want to know if a Zmacs command exists that
performs a certain function. Or, you might think that you know
what a certain keystroke does, but you still want to make sure, or
refresh your memory about its exact usage. This manual is one
resource you might use in these circumstances. Zmacs itself has a
number of built-in self-documentation facilities. This section
describes some ways to get at this documentation.

The HELP key is a prefix to a useful group of commands giving
various kinds of online help. If you forget what a command does,
which keystrokes perform an action, or have no idea how to
accomplish something, press HELP.

Whenever you have a question of any kind, press HELP - Zmacs
prompts you in the minibuffer for details on what kind of help. If
you don't know, press HELP again and it tells you, in the typeout
window, how to find what you're looking for. The typeout window
displays right over the editor window. The actual contents of the
buffer are not affected, and the next command you type restores
the buffer display.

Finding Out What
a Command Does

Example

HELP C

The command HELP c displays "Document Command:" below the
mode line and waits for you to type a command. When you do,
Zmacs displays the internal documentation for that command.

If you press HELP-C followed by c-F, the response is:

c-F is Forward, implemented by COM-FORWARD:
Moves forward one character.
With a numeric argument (n), it moves forward n characters.

The first line above tells you the name of the command (in this
case Forward), and the name of the internal Lisp function that
actually does the work (in this case com-forward). (You don't
need to know these internal names for basic editing.) The next
line is a very short description of what the command does; it
usually tells you what the command does without a numeric
argument and how a numeric argument modifies that behavior.

ZMACS Zmacs Manual 35
Symbolics, Inc. February 1984

Finding Out About Zmacs Commands, cont'd.

Prefix Commands
When you ask (with HELP C) for documentation on a prefix
command like c-X, Zmacs prompts you, in the typeout window, to
complete the command. Zmacs displays the documentation for the
prefix command in the typeout window.

Extended Commands

HELP D

When you want to find out what an extended command does, you
can display the documentation for the command by pressing HELP D,
which prompts in the minibuffer "Describe command:", to which
you type the command's name.

Searching for
Appropriate Commands

Example

How It Works

HELP A

When you can only guess at part of the name of a command by
the action it performs, there is a command, HELP A, to help you
scan all the available Zmacs commands to find the one you want.

Each Zmacs command has a name. The name is almost always
exactly what you would expect; that is, the name describes the
function of the command in reasonably plain English.

The command you perform when you use r.-Q is called "Fill
Paragraph", so you might expect a command that counts the
number of paragraphs in the buffer to be called something like
"Count Paragraphs" or "Paragraphs Count". No matter what, the
name is going to have the word paragraph in it.

To find the command you want, just press HELP A. Zmacs prompts
you for a substring, you enter your guess, and then Zmacs displays
short descriptions of all the commands whose names contain that
substring. If the string that you enter contains a space, then
Zmacs displays a short description of all the commands whose
names include a similarly positioned space. Each description gives
the short documentation for the command and tells what
keystrokes invoke it.

36 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Finding Out About Zmacs Commands. cont'd.

Finding Out What
You Have Typed

HELP L

As you are editing you might find yourself in a hopelessly confused
state and not know how to recover.

If this happens to you it is often· very enlightening to press HELP L
to list the last 60 keystrokes you typed. By examining your own
recent activity, it is often possible to find out where you went
wrong and how to save yourself.

More HELP Commands

General

HELP U

Offers to undo the last "major" operation (such as fill or sort).

HELP V

Displays all the Zmacs variables whose names contain a certain
substring. (Zmacs variables are described in "How to Specify Zmacs
Variable Settings", page 193).

HELP IJ

Finds out whether an extended command is bound to a key.

Information-giving Commands
The following commands display:
•Information about the location of point
•Documentation about a specified Lisp function
•Argument list for the specified Lisp function
•Information about the current Lisp variable
• The number of lines in the region or page
•Possible parenthesis mismatches
• Trace information ·about the specified Lisp function

The word current, when describing a Lisp function or a Lisp
variable, refers to (approximateJyTilie-fiiiictfon or variable whose
name is nearest to the cursor. -

, \

ZMACS Zmacs Manual 37

Symbolics, Inc. February 1984

Finding Out About Zmacs Commands. cont'd.

About Point

c-X = Where Am I

Displays various things about where point is. It displays the X and
Y positions, the octal code for the following character, the current
line number and its percentage of the total file size. If there is a
region, it displays the number of lines in it. Fast Where Am I
(c-=) displays a subset of this information faster.

c-= Fast Where Am I

Quickly displays various things about where point is. It displays the
X and Y positions and the octal code for the following character. If
there is a region, it displays the number of lines in it. Where Am I
displays the same things and more.

About Function Documentation

c-sh-D Brief Documentation

Displays brief documentation for the specified Lisp function. By
default, it displays documentation for the current function. With a
numeric argument, it prompts for a function name, which you can
either type in or select with the mouse. It displays the first line
from the summary paragraph in the echo area.

rti-sh-D Long Documentation

Displays the documentation for the specified function. It prompts
for a function name, which you can either type in or select with
the mouse. The default is the current function.

About Displaying
Argument Lists

c-sh-A Quick Arglist

Displays the argument list for the current function. With a
numeric argument, it reads the function name from the minibuffer.

Arglist (rti-X)

Displays the argument list of the specified function. It reads the
name of the function from the minibuffer) and displays the
argument list in the echo area.

38 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Finding Out About Zmacs Commands. cont'd.

About Describing
Lisp Variables

About Counting
Number of Lines

c-sh-V Describe Variable At Point

Displays information in the echo area about the current Lisp
variable. The information displayed shows whether it is declared
special, whether it has a value, and whether it has documentation
put on by defvar. When nothing is available, it checks for
lookalike symbols in other packages.

M-= Count Lines Region

Displays the number of lines in the region.

c-X L Count Lines Page

Displays the number of lines on the current page (or the buffer, if
there are no page delimiters). In parentheses, it displays the
number of lines up to the line containing point and the number of
lines after the line containing point.

About Finding
Unbalanced Parentheses

Find Unbalanced Parentheses (M-X)

Finds any parenthesis mismatch error in the buffer. It reads
through all of the current buffer and tries to find places in which
the parentheses do not balance. It positions point to possible
trouble spots, printing out a message that says what the trouble
appears to be. This command only finds one such error; if you
suspect more errors, run it again.

About Tracing
Function Executions

Trace (r-'r•X)

Traces or untraces a function. It reads the name of the function
from the minibuffer and then it pops up a menu of trace options.
With an argument, it omits the menu step.

ZMACS Zmacs Manual 39

Symbolics, Inc. February 1984

The Editor Menu

Overview
Click right in Zmacs to display the editor menu, a momentary menu
containing editor commands, each of which is a possible choice.
Position the mouse cursor over an item and then click the
appropriate button to make the choice.

The editor menu command summaries below point to complete
descriptions in appropriate chapters of the manual.

Editor Menu Commands
The Editor Menu commands are:

Command

Arglist

Edit Definition

List Callers

List Definitions

List Buffers

Kill Or Save Buffers

Split Screen

Compile Region

Description

Prints the argument list of the
specified function (see page 37).

Prepares to edit the definition of a
specified function (see the chapter
"Editing Lisp Programs", page 153).

Lists all functions that call the
specified function (see the chapter
"Editing Lisp Programs", page 153).

Displays the definitions in a specified
buffer (see the chapter "Editing Lisp
Programs", page 153).

Prints a list of all the buffers and
their associated files (see the chapter
"Manipulating Buffers and Files", page
100).

Offers a menu of modified files with
choices to kill, save, or remove the
modification flag from the file (see the
chapter "Manipulating Buffers and
Files", page 100).

Makes several windows split among
the buffers as specified (see the
chapter "Manipulating Buffers and
Files", page 100).

Compiles the region, or if no region is
defined, the current definition (see the
chapter "Editing Lisp Programs", page
153).

40

The Editor Menu. cont'd.

Indent Region

Change Default Font

Change Font Region

Uppercase Region

Lowercase Region

Indent Rigidly

Indent Under

ZMACS Zmscs Manual

Symbolics. Inc. February 1984

Indents each line in the region (see
the chapter "Changing Case and
Indentation", page 145).

Sets the default font (see the chapter
"Working With Regions", page 72).

Changes the font for the region (see
the chapter ''Working With Regions",
page 72).

Changes any lowercase characters in
the region to uppercase (see the
chapter ''Working With Regions", page
72).

Changes any uppercase characters in
the region to lowercase (see the
chapter "Working With Regions", page
72).

Shifts text in the region sideways as a
unit (see the chapter "Changing Case
and Indentation", page 145).

Indents to align under a string read
from the minibuffer (see the chapter
"Changing Case and Indentation",
page 145).

ZMACS Zmacs Manual 41

Symbolics, Inc. February 1984

More on the Minibuffer

Response Format

Response Help

Most commands only expect one line of response. In these cases,
the END key has the same meaning as the RETURN key, terminating
the response. (In completion, the RETURN key is not exactly the
same as the END key - see below.)

However, for commands that expect one or more lines of response,
RETURN has its usual significance, inserting a newline in the
minibuffer, and END marks the end of the response.

While responding to a prompt, you can press HELP to get
documentation describing the current situation. Zmacs tells you
exactly what input it expects and what the/ possible responses are.

More Ways to
Enter Responses

Yanking

Yanking and mousing provide quick and simple ways to enter
minibuffer responses without having to type them out. Both of
these methods are context-sensitive. Yanking works only when you
have previously entered a minibuffer response. Mousing works
when you click on a name that makes sense in the context of the
minibuffer prompt.

c-r.-V Repeat Last Minibuffer Command

Repeats a recent minibuffer command. It yanks the displayed
default if there is one, otherwise, it yanks the last thing typed in
this context. A numeric argument n yanks the nth previous one.
An argument of 0 lists the history of elements typed in the
minibuffer.

Repeat Last Minibuffer Command

After c-r.-V, r.-Y replaces what was yanked with a previous element
of the same history. A numeric argument of zero displays the
history. A positive numeric argument moves to that much older a
history element. A negative numeric argument moves to a newer
histocy element; this only makes sense after the history has been
rotated.

For more details, see "Retrieving History Elements", page 64.

42 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

More on the Minibuffer. cont'd.

Mousing

Completion

If the mouse is an arrow pointing straight up, you can point at the
name of something (for example, a function if the command is
reading a function name in the minibuffer) and click the left
button. Mouse-sensitive things that could be a valid argument are
highlighted with a box. The mouse only works this way when the
minibuffer is empty. If you type something and then decide that
you would rather use the mouse, erase what you typed with RUBOUT

or CLEAR-INPUT.

Sometimes, vvhen a command prompts you, you have only a limited
number of possible responses. The responses themselves can be
cumbersome to type. To save you from having to type the entire
response, some commands perform command completion.
Completing means presuming the rest of the your response, based
on what you have typed already. Each command that offers
completion has a list of acceptable answers and it checks what you
have typed so far against the list.

When Zmacs is reading a command argument from the minibuffer
and some sort of command or file name completion is available, the
right-hand side of the mode line says (Completion). You will soon
acquire a feeling for the contexts in which Zmacs provides
completion.

Completion Commands
The commands described in this section only behave in the
indicated manner when completion is allowed.

COMPLETE Complete

Pressing the COMPLETE key asks Zmacs to try to complete the
response you have typed so far.

Three things could happen:

1. In the optimal case, the response you have typed so far will have
exactly one completion. In this case, Zmacs performs the
completion. You can then press END to terminate the response
and continue the execution of the prompting command. Or, you
can choose to continue editing the response.

2. Often you will find that you have not yet typed enough to
specify a valid response unambiguously. When there is more
than one valid completion, Zmacs completes as far as it can and

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

More on the Minibuffer. cont'd.

then waits for more input from you since your response is not
yet complete. You can then complete your response by typing ·
more letters to clearly specify your desired response, thereby
disqualifying any other valid ones.

3. In the worst case, the response you have typed so far has no
valid completion. In this case, Zmacs beeps (audibly on the
LM-2) and continues to wait for additional input in the
minibuffer. You can continue to edit your response.

43

END Complete And Exit If Unique

Pressing the END key tries to complete your response so far. If the
completion is successful, it terminates the response and continues
executing the prompting command. If the completion is
unsuccessful (if the response was ambiguous or cannot be completed
in its present form), Zmacs waits for you to continue editing it.

Impossible-is-OK Completion
Each command that provides completion has a list of valid
responses. These are not always the only possible responses: It
might make sense for you to type a response the command had
never heard of. When this is true, the command does a special
kind of completion called impossible-is-OK completion. This is
implemented with the RETURN key.

RETURN Complete And Exit

Pressing the RETURN key tries to complete your response so far. If
we are doing impossible-is-OK completion, RETURN terminates the
response and returns to the prompting command whether or not the
completion was successful. Otherwise, it behaves exactly like END.

Completing
Responses in Chunks

Often the desired response has several components separated by
spaces or punctuation marks (for example, parentheses or hyphens).
The components are called chunks. Zmacs, rather than always
tiying to complete the response as a unit, completes all the chunks
separately and in parallel. For example, co b completes to Compi 1 e

Buffer in spite of other possible completions of co, such as Copy File
and Count Lines. When the response is ambiguous, Zmacs
completes the chunks that it can and positions the minibuffer's
cursor at the leftmost· chunk that needs further clarification.

44 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

More on the Minibuffer. cont'd.

Example

SPACE
)

Self Insert and Complete

When you press the SPACE bar, a close parenthesis, or any chunk
delimiter (chunk delimiters are context-dependent) you have finished
typing one chunk of your response. Zmacs then tries to complete
that chunk as part of the command name. If it does not succeed,
it assumes that you are not finished specifying your entire response.
If at any point it cannot supply a possible completion, it beeps.

The following command completes to Source Compare instead of to
Source Compare Merge:
m-X so SPACE co SPACE RETURN

The following commands complete to Source Compare Merge:
m-X so SPACE co SPACE m END

m-X so SPACE co SPACE m RETURN

Enumerating
Possible Completions

c-? List Completions
[Mouse (R)]

Enumerates the possible completions of your response so far.
Zmacs lists the possible completions in the typeout window. The
completions are mouse-sensitive, so you can select one by pointing
at it with the mouse and clicking left. [Mouse (R)] pops up a
menu, which also lists the possible completions.

c-/ Completion Apropos

Enumerates the commands whose names contain the response as a
substring. The command names are mouse-sensitive and you can
select one by clicking on it.

Getting Help While Completing
When completion is provided, the HELP key provides a summary of
the completion commands and a mouse-sensitive list of possible
completions, in addition to the standard documentation for
whatever command is prompting you.

ZMACS Zmacs Manual 45

Symbolics, Inc. February 1984

Moving the Cursor

46

Overview

Introduction

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

To make changes at some particular place in a Zmacs buffer, you
must move the cursor to that place, since most commands that
modify the buffer do so immediately around the cursor.

This section describes the commands that:
•View the contents of the buffer
• Redisplay the editor window
• Move the cursor around the buffer using mouse commands
• Move the cursor around the buffer using keystroke commands

The Editor Window
The editor window displays either a portion of your buffer or the
whole buffer, depending on the size of the buffer and your current
location in it.

When the current buffer is smaller than the exact size of the editor
window, Zmacs displays the contents of the buffer at the top of the
window and leaves the bottom of the window blank. You cannot
tell whether the buffer actually comes to an end where the text
stops, since there could be white space and newline characters after
the last visible piece of text.

When the buffer is too large to fit on the screen, the editor window
shows only a section of the buffer. The part that shows always
contains the cursor, so it never vanishes off the top or bottom of
the editor window. Zmacs changes the position of the editor
window inside the buffer as seldom as possible - usually only when
you try to move the cursor off the top or bottom of the screen.

Wraparound Lines
Lines that are too long to fit across the editor window are displayed
on as many physical lines as are necessary. An exclamation point
(!) in the (normally blank) last column means that the next
physical line is part of the same logical line.

ZMACS Zmacs Manual 47
Symbolics, Inc. February 1984

Redisplaying the Window

Introduction
Whenever you modify the buffer's contents or move point or the
mark (see the chapter "Working With Regions", page 7 4, for a
discussion of the mark), Zmacs updates the display to reflect the
change. This updating can be as simple as moving the cursor or as
involved as figuring out the whole display from scratch. These
operations are called redisplay and Zmacs performs them
automatically.

For example, when you move the cursor off the top or bottom of
the editor window, a complete redisplay is required. The window
has to shift to show a different part of the buffer in order to keep
the cursor visible.

You can explicitly tell Zmacs to do a redisplay with the Recenter
Window command, invoked by c-L. You might want to do this if
the cursor gets too close to the top or the bottom of the editor
window, and you want to redisplay with the cursor closer to the
center so that you can see more context in one direction or the
other.

It is important to remember that redisplay operations change only
the display, not the actual contents of the buffer.

Recentering Window

Next Screen

c-L Recenter Window

Completely redisplays the screen, leaving the cursor near the middle
of the editor window.

With a positive numeric argument of n, it leaves the cursor n lines
from the top of the window. With a negative numeric argument of
-n, it leaves the cursor n lines from the bottom of the window.

c-V Next Screen

Moves the cursor to the beginning of the last visible line in the
editor window and redisplays the screen with that line at the top of
the window.

With a numeric argument of n, it moves the text up n lines. With
a negative numeric argument -n, it moves the text down n lines.
The cursor does not move (with respect to the text) unless the
numeric argument is large enough to slide it off the screen. In
that case the cursor remains at the top.

48 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Redisplaying the Window. cont'd.

Previous Screen

Positioning

Previous Screen

Moves the cursor to the beginning of the first visible line in the
editor window and redisplays the screen with that line at the
bottom of the window.

With a numeric argument of n, it moves the text down n lines.
With a negative numeric argument -n, it moves the text up n lines.
The cursor does not move (with respect to the text) unless the
numeric argument is large enough to slide it off the screen. In
that case the cursor remains at the bottom.

Window Around Definition

Moving to
Specified Line

c-..... -R Reposition Window

Redisplays, trying to get all of the current function definition in the
window. It puts the beginning of the current definition at the top
of the window with the current position of the cursor still visible.
Doing c-..... -R twice pushes comments off the top of the window,
making more of the code of a large function visible.

Move To Screen Edge

Moves to the beginning of a specified line on the screen. With no
argument, it moves to the beginning of a line near the middle of
the screen. The exact line is controlled by the Zmacs variable
Center Fraction. A numeric argument specifies a particular line to
move to. Negative arguments count up from the bottom of the
window. (Zmacs variables are described in "How to Specify Zmacs
Variable Settings", page 193).

ZMACS Zmacs Manual 49

Symbolics, Inc. February 1984

Using the Mouse

Introduction
The easiest way to get the cursor where you want it is with the
mouse. (The mouse is fully documented in the Lisp Machine
Summary.)

Mouse
Documentation Line

The mouse documentation line:
• Appears just above the bottom line of the screen
• Normally stands out in reverse video
•Contains documentation on the current meaning of mouse clicks

In a regular Zmacs buffer, the mouse documentation line offers the
following options:

Notation

L:Move point

L2:Move to point

M:Mark thing

M2:Save/Kill/Yank

Description

Performs two separate actions:
• Relocates the cursor: position the mouse

cursor to the desired location and click left.
• Makes a region: position mouse cursor to

desired location, click left (keeping the
button down), move mouse cursor to end of
region and lift the button up.

Relocates the mouse cursor near the cursor:
click left twice.

Marks a small region: position mouse cursor
on either side or in the middle of a word,
Lisp expression, or after the end of a line,
and click middle. <Marking regions is fully
described in the chapter ''Working with
Regions", page 72.)

Performs one of four related actions:
• If there is a region, it saves the region in

the kill history while leaving it in the
buffer (like rta-W)

• If the last command saved the region, it
wipes it from the buffer <like c-W except it
does not save)

• If the above two conditions do not apply, it
yanks the first element from the kill
history (like c-V)

• If the last command was a yank command,
it yanks the next item from the kill history
(like M-V)

50

Using the Mouse. cont'd.

R:Menu

R2:System Menu

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

(Saving, killing, and yanking regions is fully
described in the chapter ''Working with
Regions", page 72.)

Displays a Zmacs menu offering mouse­
sensitive Zmacs commands.

Displays a System menu.

ZMACS Zmacs Manual 51

Symbolics, Inc. February 1984

Motion Commands

Introduction
Zmacs word, sentence, and paragraph motion commands all have
strict definitions for where words, sentences, and paragraphs begin
and end. These definitions can all be modified by the user.

Numeric Arguments

Example

All of the motion commands allow numeric arguments. For the
most part, these numeric arguments are interpreted as repeat
counts.

M-F moves the cursor forward one word, whereas M-l3F moves the
cursor forward 13 words.

Negative Numeric Arguments

Example

Most of the motion commands come in pairs, with one command
for forward motion over a particular unit and one command for
backward motion. Both kinds of commands often interpret negative
numeric arguments by reversing the direction of motion.

These conventions - that Zmacs interprets numeric arguments as
repeat counts, and that negative numeric arguments reverse the
direction of motion - together make up the motion convention.

M- -13F moves point backward 13 words. M-138 has exactly the
same effect.

Motion by Character
A Zmacs character can be any letter, number, or punctuation
character.

Forward Character

c-F Forward

Moves the cursor forward over one character. c-F interprets
numeric arguments as repeat counts.

Negative numeric arguments reverse the direction of motion. For
example, c-38 and c- -3F both move the cursor backwards three
characters.

52 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Motion Commands. cont'd.

Backward Character

c-B Backward

Moves the cursor backward over one character. c-B interprets
numeric arguments as repeat counts.

Negative numeric arguments reverse the direction of motion. For
example, c-3 c-B and c-- c-3 c-F both move the cursor backwards
three characters.

Motion by Word

Forward Word

Backward Word

Zmacs generally considers a word to consist of a sequential string of
alphanumeric characters, that is, any combination of the characters
a-z, A-Z, and 0-9. Different major modes define their own delimiter
characters. For example, in Text Mode an apostrophe (') is part of
a word, but in other modes it is a delimiter (see the chapter
"Setting the Major Mode", page 141, for mode descriptions).

Forward Word

Moves the cursor forward one word. Numeric arguments are
interpreted as repeat counts; negative numeric arguments reverse
the direction of motion.

M-F always places the cursor at the end of a word. If the cursor is
in the middle of a word, M-F moves the cursor to the end of that
word.

Backward Word

Moves the cursor backward one word. Numeric arguments are
interpreted as repeat counts; negative numeric arguments reverse
the direction of motion.

M-B always places the cursor at the beginning of a word. If the
cursor is in the middle of a word, M-B moves the cursor to the
beginning of that word.

Motion by Sentence
According to Zmacs, sentences can end with question marks,
periods, and exclamation points. Furthermore, these punctuation
marks only end a sentence when followed by:
1. a newline
2. a space followed by either a newline or another space.

ZMACS Zmacs Manual 53

Symbolics. Inc. February 1984

Motion Commands. cont'd.

However, Zmacs allows any number of closing characters, which are
", ',), and], between the sentence-ending punctuation and the
white space that follows it. A sentence also starts after a blank
line.

This corresponds pretty closely to standard typing conventions.
Zmacs does not recognize a period followed by one space as the end
of a sentence, for example, as in "e.g." or "Dr.".

Forward Sentence

M-E Forward Sentence

Moves the cursor forward one sentence.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M-E always places the cursor at the end of a sentence. If the
cursor is in the middle of a sentence, M-E moves the cursor to the
end of that sentence.

Backward Sentence

M-A Backward Sentence

Moves the· cursor backward one sentence.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M-A always places the cursor at the beginning of a sentence. If the
cursor is in the middle of a sentence, M-A moves the cursor to the
beginning of that sentence.

Motion by Lisp Expression
The next several pages deal with moving the cursor according to
Lisp code delimiters: lists and expressions. A list is something
enclosed in balanced parentheses. A Lisp expression is any readable
printed representation of a Lisp object - a list or the printed
representation of an atom.

Forward List

Moves forward over one list. It accepts a numeric argument for
repetition count.

54 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Motion Commands. cont'd.

Backward List

Moves backward over one list. It accepts a numeric argument for
repetition count.

Motion Along One
Nesting Level

Point always sits either between two expressions or in the middle of
an atom.

Forward Sexp

Moves point to the end of a surrounding atom if there is one, or
past the Lisp expression immediately to the right if not.

If parentheses are unbalanced to such an extent that it doesn't
make sense to talk about "the expression on the right", this
command gives an error message and does not move point at all.

c-M-F observes the motion convention for numeric arguments.

Backward Sexp

Moves point to the beginning of a surrounding atom if there is one,
or to the beginning of the Lisp expression immediately to the left if
not.

If parentheses are unbalanced to such an extent that it doesn't
make sense to talk about "the expression on the left", this
command gives an error message and does not move point at all.

c-M-8 observes· the motion convention for numeric arguments.

Motion Up and
Down Nesting Levels

Down List

Moves point forward past any intervening atoms to the next
nonatomic expression and leaves point just to the right of the open
parenthesis of that expression.

With a numeric argument of n, it moves down n nesting levels.

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Motion Commands. cont'd.

c-M-U
c-M-(

55

Backward Up List

Backs up out of nesting levels. It moves backward one level of list
structure. It searches for an open parenthesis and leaves point to
the left of that open parenthesis. Also, if called inside of a string,
it moves back up out of that string, leaving point to the left of its
starting quote. It accepts numeric arguments for repetition count.

With a numeric argument of n, it moves up n nesting levels.

c-M-) Forward Up List

Moves forward out of nesting levels. It moves forward one level of
list structure. It searches for a close parenthesis and leaves point
to the right of that close parenthesis. Also, if called inside of a
string, it moves up out of that string, leaving point to the right of
its ending quote. It accepts numeric arguments for repetition
count.

With a numeric argument of n, it moves up n nesting levels.

Motion Among Top­
Level Expressions

A Lisp file contains a sequence of expressions that we call top-level
expressions, to distinguish them from their own subexpressions.
Zmacs assumes that top-level expressions begin with an open
parenthesis against the left margin. It does not parse top-level
expressions by balancing parentheses, since parentheses do not
always balance while programs are being written. The indentation
represents the programmer's conception of program structure, and
provides a better guide. So by top-level expression, we mean a
section of text delimited by open parentheses at the beginning of
two lines.

In code that includes a string containing a carriage return followed
by an open parenthesis, show that the open parenthesis does not
start a top-level expression by putting a slash in front of it.

c-M-A
c-M-(

Beginning Of Definition

Moves point to the beginning of the current top-level expression.

With a positive numeric argument n, it moves back n top-level
expressions. With a negative numeric argument -n, it moves
forward n top-level expressions.

56 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Motion Commands. cont'd.

c-M-E
c-M-]

End Of Definition

Moves point to the end of the current top-level expression.

With a positive numeric argument n, it moves forward n top-level
expressions. With a negative numeric argument -n, it moves back
n top-level expressions.

Move Over)

Moves past the next close parenthesis, then does Indent New Line.
It removes any whitespace between point and the close parenthesis
before moving over it. With a positive argument n, after finding
the next close parenthesis and deleting whitespace before it, it
moves past n-1 additional close parentheses before doing Indent
New Line. It ignores numeric arguments that are less than 1.

Motion by Line

Down Line

Up Line

Lines are delimited by special characters called newlines.

c-ti Down Real Line

Moves the cursor straight down to the corresponding column of the
next line. If the cursor is positioned in the middle of the line, c-N
moves it to the middle of the next one.

With a numeric argument n, it moves the cursor down n lines.
Moving down a negative number of lines is the same as moving up.

c-P Up Real Line

Moves the cursor straight up to the corresponding column of the
previous line. If the cursor is positioned in the middle of the line,
c-P moves it to the middle of the previous one.

With a numeric argument of n, it moves the cursor up n lines.
Moving up a negative number of lines is the same as moving down.

ZMACS Zmacs Manual 57

Symbolics, Inc. February 1984

Motion Commands. cont'd.

Beginning of Line

End of Line

Goal Column

c-A Beginning of Line

Moves the cursor to the beginning of the current line.

With a numeric argument of n, it moves the cursor to the
beginning of the nth line after the current one, where the current
line is numbered 1, the preceding line is numbered 0, and so on.

c-E End Of Line

Moves the cursor to the end of the current line.

With a numeric argument of n, it moves the cursor to the end of
the nth line after the current one, where the current line is
numbered 1, the preceding line is numbered 0, and so on.

c-X c-N Set Goal Column

Sets the default column position (goal column). The goal column
sets point position for c-N and c-P. It disables the default action of
matching the goal column to point's current column and sets the
goal column to zero instead. With a numeric argument n, sets the
goal column to n. c-U turns it off (sets back to default state of
keeping cursor in same horizontal position for c-N and c-P).

58 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Motion by Paragraph

Introduction
A paragraph is delimited by:
• A newline followed by blanks (spaces or tabs)
• A blank line
• A Page character alone on a line
• various other mode-dependent things (for example, a line that

does not begin with the fill-prefix)

Forward Paragraph

M-] Forward Paragraph

Moves the cursor forward one paragraph.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M-] always places the cursor at the end of a paragraph. If the
cursor is in the middle of a paragraph, M-] moves the cursor to the
end of that paragraph.

Back\vard Paragraph

M-(Backward Paragraph

Moves the cursor one paragraph backward.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M- [always places the cursor at the beginning of a paragraph. If
the cursor is in the middle of a paragraph, M- [moves the cursor to
the beginning of that paragraph.

ZMACS Zmacs Manual 59

Symbolics, Inc. February 1984

Motion by Page

Introduction

Forward Page·

Pages are delimited by Page characters. You can insert a Page
character by pressing the PAGE key (on an LM-2, press
M-CLEAR-SCREEN). The Page delimiter belongs to the page that
precedes it and is therefore the last character on that page.

c-X] Next Page

Moves the cursor to the beginning of the next page; that is, puts
the cursor immediately after the nearest following Page delimiter.
If the buffer does not contain a Page delimiter, it goes to the end
of the buffer.

With a positive numeric argument n, it repeats this operation n
times to move forward n pages. A negative numeric argument -n
moves the cursor backward instead.

c-X [always places the cursor immediately to the right of the next
Page delimiter. If the cursor is immediately to the left of the Page
delimiter, c-X] goes to the beginning of the page after next rather
than just moving forward one character.

Backward Page

c-X [Previous Page

Moves the cursor to the beginning of the previous page; that is,
puts the cursor immediately after the nearest preceding Page
delimiter. If the buffer does not contain a Page delimiter, it goes
to the beginning of the buffer.

With a positive numeric argument n, it repeats this operation n
times to move backward n pages. A negative numeric argument -n
moves the cursor forward instead.

c-X [always places the cursor at the beginning of a page. If the
cursor is already at the beginning of the page, c-X [moves it to
the beginning of the previous page.

60 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Motion with Respect to the Whole Buffer

Beginning/End of Buffer

M-< Goto Beginning

Moves the cursor to the beginning of the buffer.

With a numeric argument n between 0 and 10, it moves the cursor
to a place n/10 of the way (counted in lines) from the beginning of
the buffer towards the end.

Goto End

Moves the cursor to the end of the buffer. You can use M-> if you
are in doubt as to the exact place on the screen where the buffer
stops.

With a numeric argument n between 0 and 10, it moves the cursor
to a place n/10 of the way (counted in lines) from the end of the
buffer towards the beginning.

ZMACS Zmacs Manual 61

Symbolics. Inc. February 1984

Deleting and Transposing Text

62 ZMACS lmacs Manual

Symbolics, Inc. February 1984

Deleting vs. Killing

Overview
Deleting text merely gets rid of it, but Zmacs deletion commands
not only kill text but also get it back. These commands save killed
text in a history stack. Other commands, called yanking
commands, retrieve elements from the history.

Deletion commands that operate on single characters do not save
what they delete. However, by giving them a numeric argument,
thus telling them to delete several characters, they too save the
deleted text.

The commands that only delete white space do not save it.

Zmacs uses several histories:

Type

Kill

Replace

Buffer

Pathname

Command

Definition

Description

History of text deleted or saved. The kill history
is shared with the input editor, thus allowing you
to move text between files and the Lisp Listener.

History of arguments to Query Replace (M-X) and
related commands. See the chapter "Searching,
Replacing, and Sorting'', page 84.

History of editor buffers visited in this window.
See the chapter "Manipulating Buffers and Files",
page 100.

History of file names that have been typed.

History of editor commands that use the
minibuffer, and their arguments. Commands
that do not use the minibuffer, for example,
M-RUBOUT, are not recorded in the history.

History of names of definitions that have been
typed.

History lengths are limitless but the typeout window displays only
the first 25 elements of the history. When the history contains
more than 25 elements, the screen displays a mouse-sensitive line:
n more elements in history. Clicking left displays the rest of the
history.

Only a single instance of each of these histories exists, shared
among all editors, including Zmacs, Zmail, and Dired.

ZMACS Zmacs Manual 63

Symbolics, Inc. February 1984

Deleting vs. Killing. cont'd.

Kill History
The kill history contains deleted text and is the history that saves
the results of the commands described in this chapter. It allows
you to move text from one editor window to another, for example,
from the editor to a Lisp Listener. The yanking commands
described below retrieve elements from the kill history.

Viewing Kill History

Viewing the

c-0 c-Y

Displays the elements of the kill history (saved text) in a typeout
window:
Ki 11 history:

1: last piece of killed text
2: next-to-last piece of killed text
3: this one is a very long piece of killed text .•.

(End of history.)

Editor Command History

c-0 c-r<a-Y

Displays the elements of the editor command history (commands
typed) in a typeout window:
Command history:

1: Control-X Control-F last-file-read-in
2: Help A
3: Control-X Control-F other-file-read-in

(End of history.)

This command is context-sensitive. When typed at the Lisp listener
level, it lists the recent commands typed there. When typed at the
minibuffer, it lists the history appropriate to what is being read in
the minibuffer, for example, a pathname or the name of a
definition.

64 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Deleting vs. Killing. cont'd.

Using the Mouse
on History Elements

History elements are mouse-sensitive. Click on an element of the
kill history to yank it to point; click on an element of the command
history to reexecute it.

Retrieving History· Elements

Kill Merging

c-Y Yank

Yanks back and inserts the last text killed or saved. If you have
moved point ·since you killed the text, put point where you want
the killed text to go before pressing c-Y. Point ends up after the
text, and mark before the text. An argument of c-u puts point
before the text instead. A numeric argument of zero displays the
kill history and does not yank anything. A nonzero numeric
argument selects an element of the kill history.

Repeat Last Minibuffer Command

Repeats a recent minibuffer command. A numeric argument does
the nth previous one. An argument of 0 lists the history.

Yank Pop

Corrects a yank to use a different element of its history. The most
recent command must be a yanking command (c-Y, M-V, or c-1"1-V).

The retrieved text that was yanked by that command is replaced by
the previous element of the relevant history. The history is rotated
(that is, the elements remain in the same order, but the pointer to
the current element moves with each successive -v) to bring this
element to the top.

A numeric argument of zero displays the history. A positive
numeric argument of n moves n elements back in the history list.
A negative numeric argument moves to a newer history element;
this only makes sense after you rotate the history.

Normally, each kill command pushes a new block onto the kill
history. However, two or more kill commands in a row combine
their text into a single element on the history, so that a single c-Y
command gets it all back as it was before it was killed. This means
that you do not have to kill all the text in one command; you can
keep killing line after line, or word after word, until you have killed
it all, and you can still get it all back at once.

ZMACS Zmacs Manual 65

Symbolics, Inc. February 1984

Deleting vs. Killing. cont'd.

Commands that kill forward from point add onto the end of the
previous killed text. Commands that kill backward from point add
onto the beginning. This way, any sequence of mixed forward and
backward kill commands puts all the killed text into one element
without rearrangement.

If a kill command is separated from the last kill command by other
commands, it starts a new element on the kill history, unless you
tell it not to by saying c-M-W (Append Next Kill) in front of it. The
c-M-W tells the following command, if it is a kill command, to
append the text it kills to the last killed text, instead of starting a
new element. With c-M-W, you can kill several discrete pieces of
text and accumulate them to be yanked back in one place.

c-M-W Append Next Kill

Makes the next kill command append text to the newest element of
the kill history.

66 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Deleting and Transposing Characters

Deleting the Last Character

RUBOUT Rubout

Deletes the character immediately to the left of the cursor.

If the cursor is at the beginning of a line, RUBOUT deletes the
newline character at the end of the previous line, thus appending
the current line to the previous one.

With a positive n~meric argument of n, RUBOUT deletes then
characters immediately to the left of the cursor. With a negative
numeric argument of -n, it deletes the n characters immediately to
the right of the cursor. With any numeric argument, it saves the
deleted characters on the kill history.

Deleting the
Current Character

c-D

Deletes the character at the cursor.

Delete Forward

If the cursor is at the end of a line, c-D deletes the newline
character at the end of the line, thus appending the next line to
the current one.

With a positive numeric argument of n, c-D deletes then
characters immediately to the right of cursor. With a negative
numeric argument of -n, it deletes the n characters immediately to
the left of cursor. With any numeric argument, it saves the
deleted characters on the kill history. ·

Transposing Characters

c-T Exchange Characters

Transposes two characters (the ones on each side of the cursor).

If the cursor is not at the end of a line, c-T transposes the
character at the cursor and the character to the left of the cursor
and advances the cursor one character. The result is that the
character· to the left of the cursor has been "dragged" one character
position to the right. Repeated use of c-T continues to pull that
character forward.

This is useful when you are typing and enter two characters in the
wrong order (for example, teh for the) - just use c-T to correct the
error.

If the cursor is at the end of a line, c-T transposes the two
preceding characters.

ZMACS Zmacs Manual 67

Symbolics, Inc. February 1984

Deleting and Transposing Characters. cont'd.

With a nonzero numeric argument of n, c-T deletes the character
to the left of the cursor, moves forward n characters, and reinserts
the deleted character. When n is negative, the cursor moves
backwards.

c-T can only be given a numeric argument of zero when the mark
is active. In this case, it exchanges the characters at point and
mark.

68 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Deleting and Transposing Words

Introduction

Deleting the
Current Word

Deleting the
Previous Word

See the chapter "Moving the Cursor", page 52, for a complete
description of how words are delimited.

M-D Kill Word

Kills the word after the cursor and saves it on the kill history. If
the cursor is in the middle of a word, M-D kills from the cursor to
the end of that word.

With a numeric argument n, it kills n words forward from the
cursor. If n is negative, it kills backward.

M-RUBOUT Backward Kill Word

Kills the word before the cursor and saves it on the kill history. If
the cursor is in the middle of a word, M-RUBOUT kills from the
cursor to the beginning of that word.

With a numeric argument n, it kills n words backward from the
cursor. If n is negative, it kills forward.

Transposiilg Words

Exchange Words

Transposes the current word and the previous one. If the cursor is
at the end of a line, M-T transposes the last word on that line and
the first one on the next, regardless of the amount or type of white
space between them.

With a nonzero numeric argument n, M-T goes to the beginning of
the current word, deletes the previous word, goes forward n words,
and reinserts the deleted word. Moving forward a negative amount
is equivalent to moving backward. An argument of zero transposes
the words at point and mark.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Deleting and Transposing Lisp Expressions

Introduction
See the chapter "Moving the Cursor", page 53, for a complete
description of how expressions are delimited.

Deleting the
Current Expression

69

c-M-K Kill Sexp

Kills the Lisp expression immediately to the right of point and saves
it on the kill history.

With a numeric argument of n, it kills the n succeeding
expressions. It is an error to kill off the end of a containing
expression. When the numeric argument is negative, it kills
backwards from point the same way.

Deleting the
Previous Expression

c-M-RUBOUT Backward Kill Sexp

Kills the Lisp expression immediately to the left of point and saves
it on the kill history.

With a numeric argument of n, it kills the n preceding expressions.
It is an error to kill off the beginning of a containing expression.
When the numeric argument is negative, it kills forward from point
the same way.

Deleting the List
Containing
Current Expression

Kill Backward Up List (c-M-X)

Deletes the list that contains the Lisp expression after point, but
leaves that expression itself.

70 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Deleting and Transposing Lisp Expressions. cont'd.

Transposing Expressions

c:-M-T Exchange Sexps

Point must be between two expressions to use this command.

Exchanges the two expressions on either side of point, preserving
current indentation.

With a numeric argument of n, it deletes the expression to the left
of point, moves forward n expressions, and reinserts the deleted
expression. With a negative numeric argument, it exchanges
expressions in the opposite directjon. An argument of zero
transposes the expressions at point and mark.

ZMACS Zmacs Manual 71

Symbolics, Inc. February 1984

Deleting and Transposing Lines

Introduction

Deleting the
Current Line

Deleting

See the chapter "Moving the Cursor'', page 56, for a complete
description of how lines are delimited.

c-K Kill Line

Kills a line at a time. and saves it on the kill histozy.

If the ·cursor is at the end of a line, c-K kills the newline, merging
the current line with the next one. If the cursor is elsewhere on
the line, c-K kills the text between the cursor and the end of the
current line.

With a numeric argument n, c-K kills up to the nth newline
following the cursor. When n is negative or zero, c-K kills back to
the 1-nth newline before the cursor. c:-0 c-K kills from the cursor
back to the beginning of the line that it is on.

Backward on the Line

CLEAR-INPUT Clear

Kills backward to the start of the current line and saves it on the
kill histozy. If point is already at the beginning of the line, it kills
the previous line. With a numeric argument n, it kills between
point and the start of the nth line above the current line. Use
CLEAR-INPUT when entering a new line of text, to delete the whole
line.

Transposing Lines

c-X c-T Exchange Lines

Exchanges the current line with the previous one and leaves the
cursor at the beginning of the next line.

With a nonzero numeric argument n, c-X c-T deletes the previous
line (including the following newline), moves down n lines, and
reinserts the deleted line.

With a numeric argument of zero, c-X c-T exchanges the lines at
point and mark, advancing both point and mark to the beginning of
the next line.

72 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Deleting Sentences

Introduction
See the chapter "Moving the Cursor", page 52, for a complete
description of how sentences are delimited.

Deleting the
Current Sentence

Kill Sentence

Kills the text between the cursor and the end of the current
sentence, and saves it on the kill history.

With a numeric argument of n, r.-K kills the text between the
cursor and the end of the nth sentence after the cursor, counting
the current sentence. If the argument is negative, r.-K kills -n
sentences before the cursor, counting the current sentence.

Deleting the
Previous· Sentence

c-X RUBOUT Backward Kill Sentence

Kills backward one sentence and saves it on the kill history.

With a negative argument, c-X RUBOUT kills forward one sentence in
a similar manner.

ZMACS Zmacs Manual 73

Symbolics, Inc. February 1984

Working with Regions

74 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

What is a Region?

Introduction

Point

Mark

Many Zmacs commands deal with the region. A region consists of
a block of information within the buffer that you want to
manipulate as a single entity. You define the area of the region,
which can be any size, from characters or chunks of code to pages
or the entire buffer.

Zmacs keeps track of one or more locations in a buffer using buffer
pointers. This section describes:

• The two buffer pointers named point and mark
• How Zmacs uses them to define the boundaries of a region
• The point-pdl, a ring of pointers to saved locations
•registers, pointers to locations that you name and save
• The region.manipulating commands

Point (shown by the cursor) is the most importarit buffer pointer.
Most editor commands depend on the position of point. Many
editor commands, invoked by either the mouse or the keyboard, can
be used to position point to the desired location in the buffer.
Point points to one end of the region.

Mark points to the other end of the region. To mark a piece of
text means to position point and mark on either side of the text,
making it the region. The simplest way to mark some text is to
position point (using either the mouse or keystrokes) to one
boundary (either the beginning or the e~d) of the text, set the
mark there (using the Set Pop Mark command described below),
and then reposition point at the other boundary.

Unlike point, the mark can be active or inactive. When mark is
active, the region is shown on the screen by underlining. When
mark is inactive, you cannot see it on the screen unless you
reactivate it with c-X c-X. Although normally you cannot see an
inactive mark, Zmacs keeps track of mark when it is inactive and
sometimes uses mark in its inactive state. For example, c-V leaves
point and mark surrounding what it yanks, but does not activate
mark. c-W immediately following c-V kills the region even though it
is not active. c-X c-X after c-V activates mark, making the region
visible. However, most commands will not use mark or the region
unless it is active.

ZMACS Zmacs Manual 75

Symbolics, Inc. February 1984

What is a Region?. cont'd.

You can set the mark three ways: when you create a region using
the mouse, explicitly with the command Set Pop Mark (c-SPACE), or
with one of the commands to mark regions (see "Commands to
Mark Regions", page 79). When you set the mark, you activate it
and make the region appear.

Creating a Region

With the Mouse

With Keystrokes

The Point-pdl

Create a region using either the mouse or keystrokes - everyone
determines their own favorite method.

The most common way to create a region is with the mouse. Hold
down the left mouse button and drag the cursor. Let up the
button to mark the end of the region.

Mouse middle creates a region too. It marks the "thing'' you point
the mouse at, "thing'' being mode-dependent (a word or Lisp
expression if you point with the mouse at text - a line if you point
with the mouse at white space before or after all the text on the
line).

You can also create a region using keystrokes. After setting the
mark, you can move point either forward or backward to define a
region in either direction; as you do so, Zmacs highlights the region
with underlining.

Typing a self-inserting character or c-G deactivates the mark and
removes the underlining that highlights the region. The mark does
not have an associated cursor like point. When inactive, the mark
is invisible, but you can go to it with c-X c-X, Swap Point And
Mark.

Zmacs maintains a special stack of buffer pointers called the
point-pdl, where pdl stands for push-down list, another name for a
stack.

Zmacs automatically saves point on the point-pdl as it executes
some commands (for example,"'-<) that move point great distances.
Whenever Zmacs pushes point onto the point-pdl, it displays "Point
pushed" in the echo area, moves point to its new location, and
pushes the previous point down onto the point-pdl.

76 ZMACS Zmacs Manual

Symbolics, Inc~ February 1984

What is a Region?. cont'd.

By popping the point-pdl, that is, resetting point to its last location
as recorded on the point-pdl, Zmacs returns point to where it was
when the pdl was last pushed.

Setting/Popping
the Mark

c-SPACE Set Pop Mark

With no argument, c-SPACE does three things:
1. Puts mark where point is
2. Makes mark active
3. Pushes point onto the point-pdl

Other commands can do each of these operations separately.
Creating a region with the mouse sets a mark and makes it active
but does not push point.

This command does other things depending on how many c-us are
typed in front of it:

Argument

one c-U

two c-us

Moving to
Previous Points

c-M-SPACE

Action Taken

Pops the location on the top of the point-pdl into
point (typically puts point where it set the last
mark).

Pops the location on the top of the point-pdl and
throws it away.

Move to Previous Point

Exchanges point and top of point-pdl. With a numeric argument n,
it rotates a ring consisting of point and the top n-1 elements of
point-pdl, thus the default argument is 2. With a numeric
argument of 1, it rotates the entire point-pdl. A negative numeric
argument rotates the ring in the other direction.

c-X c-rti-SPACE Move to Default Previous Point

Rotates the point-pdl, the same as c-rti-SPACE above except that
c-X c-rti-SPACE has a default of 3. A numeric argument specifies
the number of entries to rotate and sets the new default before
rotating the point-pdl.

ZMACS Zmacs Manual 77

Symbolics, Inc. February 1984

What is a Region?. cont'd.

Showing the Mark

c-X c-X Swap Point And Mark

Exchanges point and mark. It works even when no region is
active. It highlights the text between point and mark.

78

Registers

Saving and
Moving to

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Locations in Registers
You can assign one-character "names" to locations in the buffer,
which can be helpful for setting up a series of places in your text to
which you want to return for some reason - to double-check
several items without interrupting your text entry or editing, if you
are considering a format change that will affect several parallel
points, or simply to return quickly and easily to rough spots that
require further work.

c:-X S Save Position

Saves the current location in a register. It prompts for a one­
character register name.

c:-X J Jump to Saved Position

Moves point to a position that was saved in a register. It prompts
for a register name and switches buffers to move to the saved
position, if necessary.

Saving and
Inserting Regions
in Registers

c:-X X Put Register

Copies the text of the region into a register. It prompts for a
register name. With a numeric argument, it deletes the region
from the buffer after copying it.

c:-X G Open Get Register

Inserts text from a specified register into the buffer. It prompts for
the name of the register. It overwrites blank lines in the buffer
the way RETURN does (using the command Insert Crs). It leaves the
mark before the inserted text and point after it. With a numeric
argument, it puts point before the text and the mark after.

List Registers (M-X)

Displays names and contents of all defined registers. It shows the
name of the register and whether it contains a position or text. If
the register contains a position, it tells which character on the line

ZMACS Zmacs Manual 79

Symbolics, Inc. February 1984

Registers. cont'd.

the position is at, and shows the first 50 characters on that line.
If the register contains text, it shows the first 50 characters on the
first line of that text.

List of all registers:
D (text) This text was marked as a region and saved here
1 (position) Char 0. in "another line containing a position"
Done.

View Register (M-X)

Displays the contents of a register in the typeout window. It
prompts for a register name and then tells whether the register
contains a position or text:

Register A contains a position: Character O in this line:
this is the line
or
Register A contains text:

Kill Register (M-X)

Kills a register.

80 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Commands to Mark Regions

Overview

By Words

To mark a piece of text means activating mark and then
positioning point and mark on either side of the text, making it the
region. The simplest way to mark some text is to go to one end of
the text, set the mark there (using the Set Pop Mark command
described earlier in this section), and go to the other end of the
text. However, there are several convenient commands for marking
different amounts of text, which are described below.

Mark Word

Puts the mark at the end of the current word. With a numeric
argument of n, M-@ puts the mark n words forward from point.

By Lisp Expressions

By Paragraphs

Example

Mark Sexp

Marks the current expression by putting mark at the end. With a
numeric argument n, it moves forward n expressions and puts the
mark there. See c-M-F for a more detailed description of how to
move forward n expressions.

c-M-H Mark Defmition

Puts point and mark around the current definition.

Mark Paragraph

Puts the mark at the end of the current paragraph and moves
point to the beginning, so that the current paragraph becomes the
region. With a numeric argument n, M-H puts point at the
beginning of the current paragraph and marks n paragraphs
forward from there.

M-3H marks the current paragraph and the following two; M- -1H

marks the preceding paragraph. When marking preceding
paragraphs, point is left at the end of the region, and when
marking current and succeeding paragraphs, point is left at the
beginning of the region.

ZMACS Zmacs Manual 81

Symbolics, Inc. February 1984

Commands to Mark Region~

By Pages

By Buffers

c-X c-P Mark Page

Puts the mark at the end of the current page and moves point to
the beginning, so that the current page becomes the region.

With a numeric argument of n, c-X c-P marks the nth page after
the current one. If n is zero, this is the current page; if n is
negative, this page come~ before the current page.

c-X H Mark Whole

Marks the whole buffer by putting point at the beginning and the
mark at the end. With any numeric argument, c-X H puts the
mark at the beginning and point at the end.

From Here to End
of Buffer

c-> Mark End

Marks from the cursor to the end of the buffer by putting the
mark at the end of the buffer.

From Here to
Beginning of Buffer

c-< Mark Beginning

Marks from the cursor to the beginning of the buffer by putting
the mark at the beginning of the buffer.

82 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Region-Manipulating Commands

Saving the Region

M-W Save Region

Puts region on kill history list without deleting it. (See also the
section "Kill Merging'', page 64, including the description of the
Append Next Kill command, c-M-W.)

Deleting the Region

c-W Kill Region

Deletes the region. If there is no region, c-W produces an error.

This command ignores numeric arguments and places the deleted
text on the kill history list. (See also the section "Retrieving
History Elements", page 64, including the description of the Yank
command, c-V .)

Compiling the Region

c-sh-C Compile Region
Compile Region (M-X)

Compiles the region, or if no region is defined, the current
definition.

Transposing Regions

c->< T Exchange Regions

Exchanges two regions delimited by point and last three marks.

After transposing regions, you can undo the effect of this command
by invoking it again.

Hardcopying the Region

Hardcopy Region (M-X)

Sends a region's contents to the local hardcopy device for printing.

ZMACS Zmacs Manual 83

Symbolics, Inc. February 1984

Region-Manipulating Commands. cont'd.

Filling the Region
When Zmacs fills text it breaks it up so that it does not extend
past the fill column. The fill column determines the right margin,
and is the first column in which text is not to be placed by M-Q,

M-G, or Auto Fill Mode formatting. In addition, the fill prefix, if
set, is inserted:
• at the beginning of each new line typed in while in Auto Fill

Mode
• at the beginning of each line in a paragraph for M-Q and each

line in a region for M-G

The fill prefix determines the left margin, and is empty unless set
to contain some combination of spaces and characters. If you do
not set the fill prefix, the left margin is the left edge of your Zmacs
window. For example, to insert five spaces at the beginning of
every line, insert them at the beginning of the current line, and
with point at column six, use c-X • . To turn this fill prefix off,
put point at the beginning of~ line, and use c-X • again.

Adjusting or justifying text inserts extra spaces between the words
to make the right margin come out exactly even.

Fill Paragraph

Fills the current (or next) paragraph. A positive argument means
to adjust rather than fill.

Fill Region

Fills the current region. A positive argument means to adjust
rather than fill.

c-X . Set Fill Prefix

Defines Fill Prefix from the current line. All of the current line up
to point becomes the Fill Prefix. Fill Region starts each nonblank
line with the prefix (which is ignored for filling purposes). To stop
using a Fill Prefix, do a Set Fill Prefix at the beginning of a line.

84

Region-Manipulating Commands

Other Region­
related Commands

Name and Invocation

Uppercase Region c-X c-U

Lowercase Region c-X c-L

Uppercase Code in Region (M-X)

Lowercase Code in Region (M-X)

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

See Page

148

148

148

148

ZMACS Zmacs Manual 85

Symbolics, Inc. February 1984

Searching, Replacing, and Sorting

86

Searching

Overview

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Like other editors, Zmacs has commands for searching for an
occurrence of a string. Zmacs search commands are incremental;
that is, they begin to search as soon as you type the first character.

This section describes how to search incrementally forward and
backward in the buffer, as well as a method for specifying a
complete search string first and then specifying a direction in which
to search.

Incremental Search
The command to search is c-s (Incremental Search). c-s reads in
characters and positions the cursor at the first occurrence of the
characters that you have typed. If you type c-s and then t, the
cursor moves right after the first t. Type an r, and see the cursor
move to after the first tr. Add a y and the cursor moves to the
first try after the place where you started the search. At the same
time, the try has echoed at the bottom of the screen. Stop typing
when you have tYPed enough characters to identify the place you
want.

If you type a mistaken character, you can rub it out. After the
try, typing a RUBOUT makes the y disappear from the bottom of the
screen, leaving only tr. The cursor moves back to the tr. Rubbing
out the r and t moves the cursor back to where you started the
search. To exit from the search, press END or ESCAPE (AL TMODE does
the same thing on an LM-2). You can also use ABORT to exit from
the search. To abort out of the search and return to the original
starting point in the buffer, use c-G.

If you want to search for something else, press CLEAR-INPUT to get
rid of the current search string. You're still in the search loop, so
type another search string.

If the string cannot be found with c-s, type c-R to search
backward for the default string. Zmacs remembers the default
search string - you can reinvoke the search at any time using
c-s c-S, to search forward for it, or c-R c-R to search backward.

c-S Incremental Search

Searches for a character string while you type it, searching forward
to the end of the buffer. It prompts for a string in the echo area
with I-Search:. As you type characters in, c-S displays the
accumulating string in the echo area and searches for it at the
same time. If no string is found, it displays Fa i 1 i ng I-Search:.
When it locates the string, it puts the cursor after it so that
repeated c-ss locate subsequent occurrences of the default string in
the buffer.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Searching. cont'd.

RUBOUT

ESCAPE

END

c-G

c-Q

c-S

c-R

87

Removes a character and backs up the search to the
last match.

When typed before any search characters, switches to
String Search (see page 88).

Exits the search (ESCAPE also works for the 3600,
AL TMODE works for the LM-2).

Exits the search and returns to original starting
point in the buffer.

Quotes the next character, to prevent it from
terminating the search.

Repeats the search.

Reverses the search to search backwards.

If c-s or c-R is the first character typed, the previous search string
is used again as the default. Entering any other command
character terminates the search (and then executes that command).

Reverse
Incremental Search

c-R, Reverse Incremental Search, works exactly the same way as
c-S, except that it searches backward towards the top of the buffer
from point, instead of forward.

c-R Reverse Incremental Search

Searches for a character string while you type it, searching
backward to the beginning of the buffer. It prompts for a string in
the echo area with Reverse I-Search:. As you type characters in,
c-R displays the accumulating string in the echo area and searches
for it at the same time. If no string is found, it displays Failing
Reverse I-Search:. When it locates the string, it puts the cursor in
front of it so that repeated c-Rs locate previous occurrences of the
default string in the buffer.

RUBOUT

ESCAPE

END

c-G

Removes a character and backs up the search to the
last match.

When typed before any, search characters, switches to
Reverse String Search (see page 88).

Exits the search (ESCAPE also works for the 3600,
ALTMODE works for the LM-2).

Exits the search and returns to original starting
point in the buffer.

88 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Searching, cont'd.

String Search

c-Q

c-S

c-R

Quotes the next character, to prevent it from
terminating the search.

Reverses the search to search forward.

Repeats the search.

If c-s or c-R is the first character typed, the previous search string
is used again as the default. Entering any other command
character terminates the search (and then executes that command).

The string search command, invoked by c-s ESCAPE (c-S AL TMODE
on an LM-2), lets you type in the entire string and specify the
direction in which to search before starting the search.

c-S ESCAPE String Search

Searches for a specified string, according to the arguments given
with the special characters below. Another c-S always begins the
search. It prompts in the echo area String Search:. It saves
previous string search commands on a ring, retrievable with c-D.
The ring contains three elements and can be rotated with repeated
c-Ds. While you are entering the search string, the following
characters have special meanings:

c-B

c-E

c-F

c-G

c-D

c-L

c-Q

c-R

c-S

c-U

c-V

Searches forward from the beginning of the buffer.

Searches backwards from the end of the buffer.

Leaves point at the top of the window, if the window
must be recentered.

Aborts the search.

Gets a string to search for from the ring of previous
search strings.

Redisplays the typein line.

Quotes the next character.

Reverses the direction of the search.

Does the search, then comes back to the search
command loop.

Erases all characters typed so far (CLEAR- INPUT also
works for the 3600).

Delimited Search: Searches for occurrences of the
string surrounded by delimiters.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Searching. cont'd.

c-W

c-Y

RUBOUT

END

Word Search: Searches for words in this sequence
regardless of intervening punctuation, whitespace,
newlines, and other delimiters.

89

Appends the string on top of the string ring to the
search string.

Rubs out the previous character typed.

Does the search and exits (ESCAPE also works on a
3600; ALTMODE on an LM-2).

If you search for an empty string, it uses the default. Otherwise,
the string you type becomes the default, and the default is saved
unless it is a single character.

90 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Locating and Replacing Strings Automatically

Overview
c-7., Replace String, searches forward for a string and replaces that
string with another. c-?. prompts for the string to be replaced,
reads the string from the minibuffer, and then reads the
replacement string. After it goes through the buffer trying to
make the replacements, it tells you how many replacements it made
(1. replacement.), or that it made none.

You can also substitute one string for another selectively
throughout the buffer, with r1-?., Query Replace. r1-?. prompts first
for the string to be replaced (Query-replace some occurrences of:),
and then for the string to replace it with (Query-replace some
occurrences of "string" with:). Terminate each string you specify
with RETURN. r1-?. locates each occurrence and lets you decide what
to do about each one.

Making Global Replacements

c-7. Replace String
Replace String (r1-X)

Replaces all occurrences of a given string with another, where the
string can be characters, words, or phrases. It prompts first for the
string to remove and second for the string to replace it with. A
numeric argument n means to make n replacements. By default, it
begins at point and replaces all occurrences of the first string that
occur after point in the buffer. Usually it attempts to match the
case of the replacements with the case of the string being replaced.
This behavior is controlled by the Zmacs variable Case Replace P
(default t). When it is null, case matching does not take place.
(Zmacs variables are described in "How to Specify Zmacs Variable
Settings", page 193).

Querying While
Making Global Replacements

M-7. Query Replace
Query Replace (M-X)

Starting at point, replaces a string through the rest of the buffer,
asking about each occurrence, where the string can be characters,
words, or phrases. It prompts for each string. You first give it
STRING1, then STRING2, and it finds the first STRING1, displaying it in
context. You respond with one of the following characters:

SPACE

RUBOUT

Replaces it with STRING2 and shows next STRING1

Leaves this STRING1, but shows next STRING1

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Locating and Replacing Strings Automatically. cont'd.

Replaces this STRINGl and shows result, waiting
for a SPACE, c-R, or ESCAPE

91

Period

c-G

Replaces this STRINGl and ends query replace

Leaves this occurrence of STRINGl unchanged and
terminates the query replace

ESCAPE

c-W

c-R

c-L

Same as c-G

Returns to site of previous STRINGl

Kills this STRINGl and enters recursive edit

Enters editing mode recursively. Press END to
return to Query Replace.

Redisplays screen

Replaces all remaining STRINGls without asking

Entering any other character terminates the command. Usually
the command attempts to match the case of the replacements with
the case of the string being replaced. This behavior is controlled by
the Zmacs variable Case Replace P (default t). When it is null,
case matching does not take place. (Zmacs variables are described
in "How to Specify Zmacs Variable Settings", page 193).

If you give a numeric argument, it does not consider STRINGl s that
are not bounded on both sides by delimiter characters.

Querying While
Making Multiple
Global Replacements

While doing multiple query replacements, you can specify the
replacement strings either from the minibuffer or from another
buffer altogether.

Replacements from
the Minibuffer

Multiple Query Replace (r.-X)

Performs query replace (see the description for Query Replace (r.-X),

page 90) using many pairs of strings at the same time, where the
strings can be characters, words, or phrases. Strings are read in
alternate minibuffers; when you finish entering all strings, press
RETURN twice. An argument means that the strings must be
surrounded by delimiter characters. A negative argument means
that the strings must be delimited atoms, rather than words.

92 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Locating and Replacing Strings Automatically. cont'd.

Replacements from
Another Buffer

Multiple Query Replace From Buffer (M-X)

Performs query replace (see the description for Query Replace fr1-X),
page 90) using many pairs of strings supplied from the specified
buffer. The current buffer should contain a STRINGl, a space, and a
STRING2. Put quotation marks around any string that contains a
space, tab, backspace, semicolon, or newline character. Lines in the
buffer that begin with a semicolon or are blank are ignored. In
other words, each string in the buffer is a Lisp string, but
quotation marks can be omitted if the string contains no special
characters.

Other Types of Replacements
Besides making string replacements in text, Zmacs commands
replace:
• A region into the kill history
• Evaluated code into the buffer
• The value of LET into its variable
• A string for delimited atoms

Query Replace Last Kill

Query Replace Last Kill (M-X)

Replaces the first item in the kill history with the region.

Evaluate and
Replace Into Buffer

Evaluate and Replace Into Buffer (M-X)

Evaluates the next Lisp expression following point and replaces it
with the printed representation of its value.

Query Replace LET Binding

Query Replace Let Binding (M-X)

Replaces variable of LET with its value. Point must be after or
within the binding to be modified.

ZMACS Zmacs Manual 93

Symbolics, Inc. February 1984

Locating and Replacing Strings Automatically. cont'd.

Atom Query Replace

Atom Query Replace (M-X)

Performs query replace (see the description for Query Replace (M-X),

page 90) for delimited atoms.

94 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Tags Tables and Search Domains

Introduction
Tags tables, a means of global searching and replacing, allow you to
make sweeping changes to groups of files without having to
explicitly locate each file. Tags tables are sets of buffers and files.
Tags files provide a list of the names of files that belong together
as part of a system and a list of names and locations of definitions
within the files. The file names are made into a tags table; the
definition names are added to the completion table.

You could use tags tables, for example, to:
• Search for all references to a certain variable and alter them

consistently
• Search for all occurrences of an obsolete term and update it
• Search for all functions that send a certain message

How They Work

Example

First, you specify the buffers or files that will make up the tags
table (see "Specifying and Listing Tags Tables" below). Then you
can perform an operation (see "Performing Operations with Tags
Tables" below). Zmacs performs the operation on the files within
the tags table that you have specified.

Suppose you want to perform a tags query replace in several files.
Use Tags Query Replace (1"1-X) (described in detail below) to begin.
The minibuffer prompts as in Query Replace (1"1-X) for the string to
be replaced and the replacement string. The operation begins and
Zmacs displays Control-. is now Continue query replacement of
"string-old" with "string-new"; as it displays each occurrence, you
deal with each one using the appropriate response characters. Tags
Query Replace goes through all the files specified in the tags table,
listing their names in the minibuffer and stopping at each
occurrence of "string-old". When it finishes searching all the files,
it displays No more files.

Specifying and
Listing Tags Tables

Select All Buffers As Tag Table (1"1-X)

Selects all buffers currently read in. It creates a support buffer
(see "Support Buffers" below) called *Tag-Table-N*, which contains
a list of the names of all the buffers.

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Tags Tables and Search Domains. cont'd.

Select Tag Table ("-X)

Makes a tags table current for commands like tags search. It
prompts in the minibuffer for the name of the tags table to use.

Select System As Tag Table (M-X)

95

Creates a tags table for all files in a system defined by defsystem.
It prompts in the minibuffer for the name of a system - press
HELP -to see a display of system names. It selects the system but
does not read the files in.

List Tag Tables (M-X)

Lists in the typeout window the names of all the tags tables, and
for each one shows the files it contains.

Performing
Operations With
Tags Tables

Tags Search (M-X)

Searches for the specified string within files of the tags table. It
prompts in the minibuffer for the search string. If there is no
current tags table, it prompts for one.

Zmacs displays in the echo area the name of each of the files in
the tags table as it searches each file for the specified string. As
Zmacs begins the operation and finds the first occurrence, it
displays Point pushed. in the minibuffer and moves the cursor to
the occurrence. After you deal with that occurrence, use c-. , the
Edit Definition command (described below), to tell the command to
locate the next occurrence. Go through the specified files using c-.
to the end.

Tags Query Replace (M-X)

Replaces occurrences of one string with another within the files of
the tags table, asking about each occurrence. It prompts first for
the string to remove and second for the string to replace it with.
You first give it STRINGl, then STRING2, and it finds the first
STRINGl, displaying it in context. You respond with one of the
following characters:

SPACE Replaces it with STRING2 and shows next STRINGl

96 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Tags Tables and Search Domains. cont'd.

RUBOUT

Period

c:-C

ESCAPE

c:-lJ

c:-R

c:-L

Does not replace this occurrence, but shows next
STRING1

Replaces this STRING1 and shows result, waiting
for a SPACE, c:-R, or ESCAPE

Replaces this STRING1 and terminates the query
replace

Leaves this occurrence of STRING1 unchanged and
terminates the query replace

Same as c:-G

Returns to site of previous STRING1 (actually, pops
the point-pd})

Kills this STRING1 and enters recursive edit

Enters editing mode recursively. Press END to
return to Query Replace.

Redisplays screen

Replaces all remaining STRING1 s without asking

Entering any other command character terminates the command.
Usually the command attempts to match the case of the
replacements with the case of the string being replaced. This
behavior is controlled by the Zmacs variable Case Replace P (default
t). When it is null, case matching does not take place. (Zmacs
variables are described. in "How to Specify Zmacs Variable Settings",
page 193).

If you give a numeric argument, it does not consider STRINGls that
are not bounded on both sides by delimiter characters.

Tags Multiple Query Replace (M-X)

Performs tags query replace (see the description for Tags Query
Replace above) using many pairs of strings at the same time, where
the strings can be characters, words, or phrases. Strings are read
in alternate minibuffers; when you finish entering all strings, press
RETURN twice. An argument means that the strings must be
surrounded by delimiter ~haracters. A negative argument means
that the strings must be delimited atoms, rather than words.

Tags Multiple Query Replace From Buffer (M-X)

- Replaces occurrences of any number of strings with other strings
within the tags table files, asking about each change. The current

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Tags Tables and Search Domains. cont'd.

buffer should contain a STRINGl, a space, and a STRING2. Put
quotation marks around any string that contains a space, tab,
backspace, semicolon, or newline character. Lines in the buffer
that begin with a semicolon or are blank are ignored. In other
words, each string in the buffer is a Lisp string, but quotation
marks can be omitted if the string contains no special characters.

97

A positive numeric argument means to consider only the cases
where the strings to replace occur as a word (rather than within a
word). A negative numeric argument means to consider only
delimited atoms, rather than words.

This command has the same options as Tags Query Replace (see
above).

Find Files in Tag Table (M-X)

Reads every file in the selected tags table into the editor. If there
is no current tags table, it prompts for the name of one, which you
can specify as a file (F), all editor buffers (B), or a system (S).

Visit Tag Table (M-X)

Creates a tags table by reading in a tags file. First, it reads in the
specified tags file. It prompts for a file name from the minibuffer.
Next, it goes through the tags file and marks the name of each tag
as being a possible section of its file. The Edit Definition command
(M-.) uses these marks to figure out which file to use.

It uses a support buffer (see "Support Buffers" below) to hold the
elements of the tags table and another support buffer to hold the
state of a pending operation involving all the files in the tags table.
Each contains the names of the files.

Support Buffers
Zmacs creates support buffers to save lists that it creates as part of
the execution of some commands:
• Tags table commands.
• Edit Buffers (M-X).
•View File (M-X).
• Lists for Edit Definition (M-.), when more than one definition

exists.
• Buffers for Dired (M-X).
• Everything that edits a sequence of definitions, as in List Callers

(M-X) or List Methods (M-X).

This means that you can examine the buffers containing the lists
even after you have done some editing.

98 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Tags Tables and Search Domains. cont'd.

c-X c-B, the List Buffers command, displays these support buffers
in the listing of buffers. Their names are, for example,
Definitions-1, *Tags-Search-1*, and *Tags-Query-Replace-1*.

To avoid proliferation of editor buffers, Zmacs reuses support buffers
in most cases, so that it usually saves no more than two of each
type of support buffer at a time.

Possibility Buffers
Each time you use a command that generates a set of possibilities
(for example, Tags Search (rte-X) and Tags Query Replace (rte-X)), it
creates a possibility buffer for that set and pushes the set of
possibilities onto a stack. c-., Next Possibility, extracts the next
item from the set at the top of the stack. The set is popped from
the stack when no more items remain in it. Several informational
messages are associated with this facility. When the whole
possibilities stack is empty and you have nothing more pending it
displays:

No more sets of possibilities.

Displaying the Next Possibility

Example

c-. Next Possibility

Selects the next possibility for the current set of possibilities. With
a negative argument, pops off a set of possibilities. An argument of
c-u or any positive number displays the remaining possibilities in
the current set. With an argument of zero, selects the current
buffer of possibilities.

See the chapter "Editing Lisp Programs", page 153, for a description
of the Edit Definition and Edit Callers commands.

Suppose you had been using c-. to move through the set provided
by Tags Search and you then used Tags Query Replace to push a
new set of possibilities onto the stack. When you finished the set
provided by Tags Query Replace, you would see a message like the
following to notify you that the empty set had been popped off the
stack and the set of possibilities for Tags Search had been
reinstated.:

c-. is now Search for next occurrence of "string"

The position of point in the support buffer indicates the next item
for Next Possibility (c-.) . You can select the support buffer and
move point manually in order to skip or redo possibilities.

ZMACS Zmacs Manual 99

Symbolics, Inc. February 1984

Tags Tables and Search Domains. cont'd.

Typing c-. while in a support buffer that is not at the top of the
possibilities stack moves it to the top, prints an appropriate
message, then takes the next possibility from that support buffer.

100

Sorting

Overview

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

The following commands alphabetically sort a region by line,
paragraph, or whatever sort key you specify.

Sort Lines (M-X)

Sorts the region alphabetically by lines.

Sort Paragraphs (M-X)

Sorts the region alphabetically by paragraphs.

Sort Via Keyboard Macros (M-X)

Sorts the region, prompting for actions to define the records (the
units of the region to be rearranged) and the sort keys (the fields
in the records that are compared alphabetically to determine the
new order of records). It prompts you to define the records and
sort keys by performing positioning commands. It prompts for
three actions:

1. Move to the beginning of the sort key (that is, move the cursor
to the beginning of the field upon which to sort).

2. Move to the end of the sort key (that is, move to the end of the
sort field).

3. Move to the end of the sort record (that is, move to the end of
the record containing that field).

For each, it records the keystrokes that you use (as keyboard
macros) and plays those back to find and sort the records in the
region.

ZMACS Zmacs Manual 101

Symbolics, Inc. February 1984

Manipulating Butters and Files

102 ZMACS Zmacs Manual

Symbolics. Inc. · February 1984

Working With Buffers and Files

Overview
Files are semipermanent collections of information stored safely
outside the Zmacs environment. Buffers, on the other hand, are
more dynamic, temporary collections of information, used by Zmacs
for manipulating text. Buffers live in the active Zmacs
environment. Each buffer has its own point and mark as well as
other associated information.

We say we use Zmacs to "edit files", but what we really do is copy
a file into a buffer created for the purpose, edit the buffer, and
then write out a new version of the file from the edited buffer.
The old version of the file is retained, to be deleted explicitly when
appropriate. Successive versions of files are distinguished by version
number, a component of the file name that is incremented with
each new revised copy (except on file server hosts like UNIX that
do not have version numbers).

Zmacs allows multiple buffers, so that you can edit many files
simultaneously. Usually only one buffer is visible on the- screen at a
time. You can, however, divide the screen into multiple windows so
that you can view the contents of several buffers at once.

Zmacs keeps track of the association between files and buffers. If
you are editing a file's contents in a buffer, Zmacs gives that buffer
the same name as that of the file being edited.

Buffer and File Names
Both buffers and files have long names that indicate the host
directory as well as the file name (and version, where supported).
Hence completion is a necessary aid and is always provided for
entering buffer and file names.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Working With Buffers and Files. cont'd.

Buffer Flags for
Existing Files

103

Each buffer has a modification flag that tells whether the buffer
has been changed to be different from the associated file. You can
see the modification flag by clicking on either the List Buffers
command or the Kill or Save Buffers command in the editor menu
(editor menu is click right once), or by pressing c-X c-B for List
Buffers. The modification flag is cleared when:
• The file is read into the buffer from the file system.
• The buffer is saved, that is, whenever its c:__:ntents are written

out to the associated file. As soon as its contents are modified
thereafter, the modification flag is set and Zmacs displays an
asterisk (*): (1) in the mode line to the right of the buffer
name, and (2) whenever it displays output from the List Buffers
command.

Buffer Flags for
New Files

The List Buffers (c-X c-B) command uses the plus sign (+) to mark
new files that have not been saved. In addition, it uses + to mark
new buffers, not associated with files, that have text in them. This
helps when you put text into a new buffer and later want to be
reminded to write that buffer to a file.

104 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Selecting, Listing, and Examining Buffers

Current Buffer

Buffer History

At all times when using Zmacs, you have one selected buffer, which
is the buffer that you are actively editing" This is the buffer whose
cursor moves when you type c-F and in which all other current
activity takes place until you switch buffers.

With a single Zmacs window on the screen, the editor keeps one
buffer history, the global history list, which remembers the
previous-buffer history (stack history) of that window. The top
buffer in the stack is the currently selected one. Usually, when a
buffer is selected, it is dredged out of the stack and put on top.
The buffers near the top are usually the most recently used. Each
time you change buffers Zmacs offers the name of the most
recently used buffer as the default buffer name.

When we refer to the nth buffer, we mean the nth buffer in
Zmacs's stack of buffers.

Every additional window maintains its own buffer history, but the
global history list continues to display an entry for every buffer in
every window.

When you create a new window, Zmacs initially takes the history
list for the new window from the global history list. From then on,
as you switch from buffer to buffer within that window, the list for
that window reflects the history of those changes in chronological
order. This affects particularly c-M-L (Select Previous Buffer) and
the default for c-X B (Select Buffer).

The global history list still exists and is used for name completion
and c-X c-B (List Buffers).

ZMACS Zmacs Manual 105

Symbolics, Inc. February 1984

Buffer Commands

Changing Buffers

c-X B Select Buffer

Prompts for the name of a buffer and selects that buffer, displaying
its contents on the screen. If you press END or RETURN instead of a
name, it reselects the second most recently selected buffer.

Using completion, it takes the string you enter and tries to
complete it to an existing buffer name:
• When completion is successful, it selects that buffer.
•When completion is unsuccessful, (there is no buffer with the

name given), it either waits for you to type more characters (if
there are multiple possible completions) or it beeps to give you a
chance to correct a typing error (if there is no possible
completion). A subsequent response of c-RETURN creates a new
buffer with the specified name and selects it.

If you precede the c-x B command with a numeric argument,
Zmacs prompts for the name of the buffer and then creates and
selects it.

Select Previous Buffer

Selects a previously selected buffer. With a numeric argument n, it
selects the nth previous buffer. The default argument is 2. When
the argument is 1, it rotates the entire buffer history. A negative
argument means to rotate the other way. An argument of zero
displays the buffer history, which is mouse-sensitive.

Select Default Previous Buffer

With a numeric argument n, this is exactly the same as c-M-L.
Without a numeric argument, this command remembers the last
numeric argument it received and uses that as its argument this
time.

This is useful if you happen to be working with the top few buffers
on the buffer stack and want to cycle among them •,vithout having
to remember how many there are.

106 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer Commands. cont'd.

Listing Buffers

Example

c-X c-B List Buffers

Lists all the currently existing buffers in the typeout window, along
with the editor mode of the buffer and the name of the associated
file, if any. For buffers with associated files, it displays the version
number of the file, if any. If there is no associated file, c-X c-B
gives the size of the buffer in lines instead. For Dired buffers, it
displays the pathname used for creating the buffer. It lists
modified buffers with an asterisk. It lists the buffers sorted in
stack order. You can inhibit this sorting by setting the global
variable zwei:*sort-zmacs-buffer-list* to nil (default is t).

With an argument of c-u, it prompts for a substring and then lists
all buffers whose names contain that substring.

The buffer names are mouse sensitive. Click right on the name of
the buffer for a menu of operations (Ki 11, Not Modified, Save,
Select) for that buffer. You can select one of the buffers by
clicking left on its name.

Buffers in Zmacs:
Buffer name:

+ filel /dess/zmacs VIXEN:
= *Dired-1*
* doc.mss /dess/zmacs VIXEN:

Buffer-1

File Version:

VIXEN: /dess/zmacs/*

[1 line]

Major mode:

(Fundamental)
(Di red)
(Text)
(Fundamental)

+ means new file or non-empty non-file buffer. * means modified file.
= means read-only.

Editing Buffers
Edit Buffers (c-M-X) is not part of the standard comtab. It is
similar to List Buffers (c-X c-B), except that the buffer listing that
Edit Buffers produces is a buffer in its own right. (See "Setting
Editor Variables in lnit Files", page 196, for an example showing
how to make c-X c-B call Edit Buffers instead of List Buffers.) It
contains one line for each of the buffers in the editor.

ZMACS Zmacs Manual 107

Symbolics, Inc. February 1984

Buffer Commands. cont'd.

Edit Buffers (c-M-X)

Displays a list of all buffers, allowing you to save or delete buffers
and to select a new buffer. A set of single character subcommands
lets you specify various operations for the buffers. For example, you
can mark buffers to be deleted, saved, or not modified. The buffer
is read-only; like the Directory editor (Dired) buffer, you can move
around in it by searching and with commands like c-N and c-P.

The lines in the list are not mouse-sensitive. With the cursor on
the line for a buffer, the following single character commands apply
to that buffer:

RUBOUT

SPACE

D

u

s

x

Viewing a Buffer

Undeletes buffer above the cursor.

Selects the specified buffer immediately.

Marks the buffer for deletion (K, c-D, c-K are
synonyms).

Undeletes either the buffer on the current line or
the buffer on the line above.

Marks the buffer for saving.

Marks the buffer for setting not modified.

Executes an extended command (same as M-X).

View Buffer is for when you want to just look at a buffer, not edit
it.

c-X V View Buffer
View Buffer (M-X)

Prompts for the name of a buffer and prints out the buffer
contents for viewing only in the typeout window. If there is more
than a screenful, it pauses between screenfuls, displaying a - -MORE- -

message at the bottom.

SPACE

BACKSPACE

RUBOUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

108 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Buffer Commands. cont'd.

Hardcopying the Buffer

Hardcopy Buffer (M-X)

Prompts for the name of a buffer and then prints the specified
buffer on a hardcopy printer.

Renaming the Buffer

Rename Buffer (M-X)

Prompts for a new name for the current buffer and changes the
name accordingly. This operation removes any file association that
the buffer had.

Writing Out All Buffers

Save All Files (M-X)

Offers to write out each buffer that is associated with a file. It
prompts in the typeout window with the name of each buffer: save
file old.lisp /dass/pubs/pgs VIXEN:? (V or N).

Encrypt Buffer (M-X)

Encrypts the contents of the buffer. It prompts for a key and does
not echo it as you type it. It prompts for the same key again, just
in case you mistyped it because of the lack of echoing, and makes
sure you typed it the same both times. The encryption algorithm
is the same one used by the Hermes mail-reading system.

Decrypt Buffer (M-X)

Decrypts the contents of an encrypted buffer. It prompts for a key
and does not echo it as you type it. The encryption key given for
decrypting must match the one used for encrypting. The
encryption algorithm is the same one used by the Hermes mail­
reading system.

Reading a File
Into a New Buffer

c-X c-F Find File

Prompts for the name of a file and looks for a buffer currently
associated with that file. If one is found, c:-X c:-F selects it.
Otherwise, it creates a new buffer and reads that file into it.

ZMACS Zmacs Manual 109

Symbolics, Inc. February 1984

Buffer Commands. cont'd.

Reading a File
Into an Existing Buffer

The c-X c-V command, Visit File, is primarily useful when you type
in a mistaken file name after c-X c-F and Zmacs responds C New
Fi le>. You can simultaneously read in the correct file and get rid
of the unwanted buffer with Visit File.

c-X c-V Visit File

Prompts for the name of a file and reads that file into the current
buffer. This action associates the current buffer with the specified
file. This command can only be used if the current buffer is not
already associated with an existing file.

Writing the
Buffer Contents
to a File

c-X c-W Write File

Prompts for the name of a file and writes out the contents of the
current buffer to the specified file. This changes the current
buffer's name and associates it with the specified file. Subsequent
saves using c-X c-s save to the newly specified file. This operation
clears the modification flag.

Saving the Buffer
Contents to the File

c-X c-S Save File

Writes the contents of the current buffer out to the associated file
and clears the modification flag. It does not write the file if the
buffer is unchanged from when the file was last visited or saved.
It reads a file name from the minibuffer if the current buffer does
not have an associated file.

Re-reading a File
Into the Buffer

Revert Buffer (M-X)

Reads a file into the buffer that it is associated with. 'It prompts
for a buffer name, defaulting to the current buffer. The prompt
serves as a confirmation, since Revert Buffer (M-X) throws away any
modifications made to the buffer since you last saved or read the
file. This command is useful if you have damaged the buffer and
want to start over or if the associated file is more current than the
buffer. This operation clears the modification flag.

110 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer Commands. cont'd.

Creating a
Fundamental
Mode Buffer

Find File In Fundamental Mode (r.-X)

Creates a fundamental mode buffer containing the file. This is
useful because Zmacs does not parse the file while reading it in,
thus the names of the functions in the file do not conflict with
those already known to completion in r.-. and similar commands.
This command is necessary if the normal parsing of a Lisp Mode
file signals an error, preventing it from being read into the editor to
correct the cause of the error.

Associating a File
With a Buffer

Set Visited File Name (r.-X)

Prompts for the name of a file and associates the current buffer
with that file. This command does not read the specified file into
the buffer. Effectively, the current contents of the buffer are
declared to be the new intended contents of the specified file. This
command should be used with caution to avoid unintentionally
destroying the old contents of the specified file.

Destroying Buffers

c-X K Kill Buffer

Prompts for the name of a buffer and destroys that buffer. If you
press END or RETURN instead of a name, c-K destroys the current
buffer and prompts for the name of a buffer to select instead.

Kill Some Buffers (r.-X)

For each existing buffer, tells you something about the status of
the buffer and asks whether or not to delete it. If you elect to
delete a buffer that has been modified since it was last saved, the
command offers to save it first.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer Commands. cont'd.

Kill Or Save Buffers (r.-X)

Puts up a multiple-choice menu listing all existing buffers. You can
then choose which buffers to destroy and which to write out to
files. This command appears on the editor menu.

111

112

Appending, Prepending, and Inserting Text

Appending a
Region to a Buffer

c-X A

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Append To Buffer

Prompts ~or the name of a buffer and appends the contents of the
region onto the end of the specified buffer.

Appending a
Region to a File

Append To File (M-X)

Prompts for the name of a file (Append region to end of file:) and
appends the contents of the region onto the end of the specified
file, writing a new version of that file.

Prepending a
Region to a File

Prepend To File (M-X)

Prompts for the name of a file and prepends the contents of the
region onto the beginning of the specified file.

Inserting a Buffer
Into Another Buffer

Insert Buffer (M-X)

Prompts for the name of a buffer and inserts the entire contents of
that buffer into the current buffer at the cursor.

Inserting a File
Into a Buffer

Insert File (M-X)

Prompts for the name of a file and inserts the contents of that file
into the current buffer at the cursor.

ZMACS Zmacs Manual 113

. Symbolics. Inc. February 1984

Comparing Files and Buffers

Source Compare

Example

Source Compare (M-X)

Compares two files or buffers, prompting for type (F or B) and
name of each, and displays the results of the comparison in the
typeout window. It saves the output in a support buffer named
Source-Compare-N. You can read the comparison while checking
the file, for example, by going into two window mode with the
comparison in one window and the file in the other.

This example shows a comparison between the file new, as it was
read into the buffer, and the buffer new, which contains the
contents of the file new plus chan~s that have been made:

Source compare made by ESG on 12/21/83 12:30:40 -*-Fundamental-*­
of Buffer new /dass/pubs/pgs VIXEN: with File
VIXEN: /dass/pubs/pgs/new

****Buffer new /dass/pubs/pgs VIXEN:, Line #179
Source Compare Merge compares two files or buffers,
prompting for type and name, and merges the differences

****File VIXEN: /dass/pubs/pgs/new, Line 1179
Compares two files or buffers, prompting for type and
name, and merges the differences

Done.

Source Compare Merge

Source Compare Merge (M-X)

Compares two files or buffers, prompting for type and name, and .
produces a new version that reconciles the differences between the
two. You choose which version (if any) to accept. You can also
manually edit one or both versions.

114 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Comparing Files and Buffers. cont'd.

At each place where the sources differ, the command prompts you
twice. The first time you specify what to do to resolve the
difference (prompts: Spec i fy which version to keep:). (For
example, you can keep one or the other version, both of them, or
neither.) Respond to the prompt using these subcommands:

Option

1

2

*
I

SPACE

c-R

RUBOUT

Action

Leaves the first alternative in the text, redisplays the
contents, and asks for confirmation of change.

Leaves the second alternative in the text, redisplays
the contents, and asks for confirmation of change.

Leaves both alternatives in the text, redisplays the
contents, and asks for confirmation of change.

Leaves both alternatives in the text, along with the
message lines from the source compare (*** MERGE
LOSSAGE ***),but does not ask for confirmation.

Leaves both alternatives in the text, but does not
redisplay the contents or ask for confirmation.

Disposes of this and all remaining differences the
same way, without confirmation. It asks: What to do
with remaining differences (1, 2, *· I, or RUBOUT?

Edits. Press END to return to this question.

Leaves nothing in the new buffer, does not redisplay
the contents or ask for confirmation.

The second time you confirm or reject the change that was made.
The screen now shows the change that was made as a result of
your choice and prompts: Please confirm the change that has been
made: (SPACE, RUBOUT, or c-R). Confirming it keeps that change
and moves on to the next difference. Rejecting it returns to the
prior appearance so that you can make a different choice:

Option

SPACE

RUBOUT

c-R

Action

Yes, that's right.

No, take that back.

Edit. Press END to return to this question.

When you finish confirming your decisions, Zmacs incorporates all
changes into the new version in the specified buffer and the
minibuffer displays: Done. Resectionizing the buffer.

ZMACS Zmacs Manual 115

Symbolics, Inc. February 1984

Comparing Files and Buffers. cont'd.

Source Compare Merge also has a mouse interface. You can answer
the first question by clicking left on the text you want to keep or
on the dividing line between them to keep both. You can answer
the second question by clicking left for "yes" (changes confirmed) or
middle for "no" (changes rejected).

Compare/Merge
Commands for Definitions

The following commands operate on definitions by comparing, or
comparing and merging, the current version with the newest
version, newest version on disk, or installed version.

Comparing/Merging
Current/Newest Versions

Source Compare Newest Definition (M-X)

Compares the current definition with the newest version in the
normal source file for this definition, regardless of patch files.

Source Compare Merge Newest Definition (M-X)

Compares and merges the current definition with the newest
version in the normal source file.

Comparing/Merging
Current/Saved Versions

Source Compare Saved Definition (M-X)

Compares the current definition with the source for the newest
version on disk.

Source Compare Merge Saved Definition (M-X)

Compares and merges the current definition with the source for the
newest version on disk.

Comparing/Merging
Current/Installed Versions

Source Compare Installed Definition (M-X)

Compares the current definition with the source for the installed
version.

116 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Comparing Files and Buffers. cont'd.

Source Compare Merge Installed Definition (M-X)

Compares the current definition with the source for the installed
version, merging the results.

ZMACS Zmacs Manual 117

Symbolics, Inc. February 1984

Window Commands

Using Two
Windows, Select Bottom

Using Two

c-X 2 Two Windows

Shows two windows, selecting the bottom one. It splits the frame
into two editor windows, selects the bottom one, and displays the
next buffer from the global history in it. With a numeric
argument, it displays that same buffer in the second window.

Windows, Select Top

Two Windows,

c-X 3 View Two Windows

Shows two windows, selecting the top one. It splits the frame into
two editor windows, selects the top one, and displays the next
buffer from the global history in it. With a numeric argument, it
displays that same buffer in the second window.

Specify Other Contents

Two Windows,
Region in Top

c-X 4 Modified Two Windows

Selects a buffer, file, or definition in the other window. c-X 4

combines the functions of splitting the frame and selecting contents
for the second window. It prompts for the type of contents you
want for the second window (Se 1 ect what in other window? (B, F,
o, or J), for buffer, file, definition, or jump to register). Then it
reads the name of the file, buffer, definition, or register that you
want to select for that window.

c-X 8 Two Windows Showing Region

Makes two windows on the same buffer, with the top one
displaying the current region.

Change Window Size

c-X "' Grow Window

Changes the size of the current window by some number of lines.
With a positive numeric argument, it expands the window; with a
negative numeric argument, it shrinks the window.

118 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Window Commands. cont'd.

Choose Other Window

c-X 0 Other Window

Moves the cursor to the other window.

Return to One Window

c-X 1 One Window

Returns the editor frame to displaying only one window. It
expands the current window to use the whole frame. With a
numeric argument, it expands the other window to use the whole
frame.

Scroll Other Window

Split Screen

Scroll Other Window

Scrolls the other window up several lines. By default, it scrolls the
same way as c-V. With no argument, it scrolls a full screen. With
just a minus sign as an argument (c-M- -V), it scrolls a full screen
backward. A numeric argument tells it how many lines to scroll -
a positive number scrolls forward, a negative number scrolls
backward.

Split Screen (M-X)

Pops up a menu that offers to create a new buffer or find a file;
makes several windows split among the buffers as specified.

ZMACS Zmacs Manual 119

Symbolics, Inc. February 1984

File Manipulation Commands

Overview
The commands described in this section are unlike most other
Zmacs commands. Their main business is not manipulating buffers
and their contents, but rather files out in a file system. First we
discuss some commands for dealing with files, then we describe
buffer and file attributes, and finally we explain Dired Mode, a
special Zmacs mode for directory editing.

Listing ·Files in a Directory

Displaying the

List Files (M-X)

Prompts for the name of a directory and displays the names of all
the files in that directory.

The file names are mouse-sensitive. Pointing at a file name and
clicking left is just like doing a c-X c-F (Find File) on that file.
Clicking right pops up a menu with three items:

Load

Find

Compare

Loads the file into the Lisp world. The file must be
either a Lisp source file or a compiled Lisp ("bin " or
''qbin '? file.

Reads the file into an editor buffer.

Compares the file with its most recent version and
prints the differences.

Contents of a Directory

c-X c-D Display Directory

Displays the directory of the file in the current Zmacs buffer. c-X
c-D does not ask for a directory but lists files with the same host,
device, directory, and name as the file in the current buffer. It
lists files with any type and version. With a numeric argument, it
prompts for a directory to list and lists that directory.

The heading of the directory listing is mouse-sensitive; clicking left
on it selects a Dired buffer containing that directory listing.

c-U c-X c-D does the same thing as List Files, except that it gives
more details about each file.

120 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

File Manipulation Commands. cont'd.

Viewing a File
View File is for when you just want to look at a file, not edit it.

View File (M-X)

Prompts for the name of a file and prints out the file contents for
viewing only in the typeout window. If there is more than a
screenful, it pauses between screenfuls displaying a - -HORE- -
message at the bottom.

SPACE

BACKSPACE

RUBOUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

Viewing the
Properties of a File

View File Properties (M-X)

Prompts for the name of a file and displays all the properties of the
file that are maintained by the file system on which it resides.
These are the properties like creation date and time, author, time
of last access, and length. For files on a Lisp Machine file system,
it displays user-defined properties as well.

It prompts for a file specification, which it merges with the current
default to form the pathname. Wildcards are not accepted; this
must correspond to a unique file or directory name.

Hardcopying a File

Hardcopy File (M-X)

Prompts for the name of a file and then prints the specified file on
a hardcopy printer.

Renaming a File

Rename File (M-X)

Renames one or more files. It prompts for the name of a file and
then asks for a new name for that file. It renames the specified
file with that new name.

If the source file specification is wild, the target file specification
must also be wild.

ZMACS Zmacs Manual 121

Symbolics, Inc. February 1984

File Manipulation Commands. cont'd.

Copying a File
Into Another

Examples

Copy File (r.-X)

Copies any type of file to another specified file.

Prompts from the minibuffer for the names of two files and copies
the contents of the first into the second. In file systems supporting
multiple versions, this creates a new version of the second file
whose contents are identical to those of the first.

Copy File determines whether the source file is a character file or a
binary file and copies the file appropriately. Different file systems
sometimes use different character sets, and if the file is a character
file, character translations have to be done (for example, on some
hosts Return characters have to be converted into a carriage return
and a line feed).

The numeric argument controls copying of attributes and
properties. With no numeric argument, it copies creation date and
author and determines the mode (binary or character) of copy by
the file being copied. To force mode, or suppress author or creation
date copying, supply a numeric argument created by adding the
values corresponding to the descriptions below:

1 Force copy in 16-bit binary mode.

2 Force copy in character (text) mode.

4 Suppress copy of author.

8 Suppress copy of creation date.

For example, to suppress author and creation date for copying:

c-12 Copy File (r.-X)

Use wildcard pathnames to specify groups of files for copying. For
example, to copy all files in the subdirectory mine:

F:>program>mine>*.*

If the source file specification is wild, the target file specification
must also be wild.

122 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

File Manipulation Commands. cont'd.

you type: M-X Copy Fi 1 e
Zmacs: Copy File from:

you type: scrc:<lmfs>*.l*sp;O
(Copies all the newest .LISP and .LSPs)

Zmacs: to:
you type: ff:>sys-hold>scrc-sources>old-*.*·*

Zmacs: SCRC:<LHFS>TEST.LSP.3 is copied into
ff:>sys-hold>scrc-sources>old-test.lisp.3

SCRC:<LHFS>FILES.LISP.147 is copied into
ff:>sys-hold>scrc-sources>old-files.lisp.147

Note that .LSP gets mapped into .lisp because Copy File uses
canonical types when the type of the target pattern is :wild. This
command can copy file authors and creation dates, when the target
operating system supports setting these attributes. This action is
not the default.

Creating Links to Files

Deleting Files

Create Link (M-X)

Creates a link to a file. It prompts in the minibuffer for the names
of two files as arguments; first the name of the link, then the
name of the target pointed to by the link.

Delete File (M-X)

Deletes a file. It prompts in the minibuffer for a file name, which
can be wild. With a wild name as an argument, deletes multiple
files. It lists the files that would be deleted and requires that you
confirm the list. It deletes the files, showing any errors that occur
but continuing rather than halting. Displays a message in the
minibuffer if the specified file does not exist.

Deleting Multiple Versions

Reap File (M-X)

This command works in file systems supporting multiple versions.
It prompts for the name of a file (not including version number)
and deletes excess or temporary versions of the specified file,
keeping the most recent n files. With no numeric argument, the
default keeps two versions and deletes any excess. Any numeric
argument specifies the number of versions to keep. It prompts for
confirmation of files being deleted.

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

File Manipulation Commands. cont'd.

Clean Directory (M-X)

Deletes excess versions or temporary file types in the specified
directory. The default for excess versions is more than two. It
prompts for confirmation of files being deleted. With a numeric
argument n, it deletes excess versions greater than n.

123

Excess is defined by the value of the Zmacs variable File Versions
Kept or by the numeric argument. The temporary file types are
defined by the Zmacs variable Temp File Type List. It accepts
wildcards in the file name specification. (Zmacs variables are
described in "How to Specify Zmacs Variable Settings", page 193).

Changing the
Properties of a File

Change File Properties (M-X)

Edits the properties of a file. Properties are the qualities of the file
that are maintained by the file system on which it resides, such as
creation date and time, author, time of last access, and length. For
files on a Lisp Machine file system, this means user-defined
properties as well. It prompts for the name of a file and pops up a
choose-variable-values window, allowing you to alter various
properties of the file. The exact properties that can be varied
depend on the file system, but they might include:

• Generation (version) retention count
•Author
• Creation, modification, and reference dates
• Protection flags
• Other file-associated information

Creating a Directory

Create Directory (M-X)

Creates a new directory. It prompts for a directory name, using
the standard conventions for defaults. For consistency between.
hierarchical and nonhierarchical file systems, you specify the
directory to be created as the directory component of a pathname.
That is, you must end the directory name with whatever delimiter
or separator is appropriate for the host.

124 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

File Manipulation Commands. cont'd.

Example
Host Directory string Result
TOPS-20 <A.B.C> Creates directory C
Multics >udd>Sun>Luna>z> Creates directory z
Lisp Machine >sun>luna>b> Creates directory b
UNIX /usr/jek/new/ Creates directory new
Currently, the file servers for VAXNMS and TOPS-20 can fail to
create directories, due to missing options.

ZMACS Zmacs Manual 125

Symbolics, Inc. February 1984

Buffer and File Attributes

Attributes

How They Work

Attribute-

Each buffer and generic pathname has attributes, such as Package
and Base, which can also be displayed in the text of the buffer or
file as an attribute list. An attribute list must be the first
nonblank line of a file, and it must set off the listing of attributes
on each side with the characters-*-. If this line appears in a file,
the attributes it specifies are bound to the values in the attribute
list when you read or load the file.

Suppose you want your new program to be part of a package
named graphics that contains graphics programs. In this case,
you want to set the Package attribute to graphics in three places:
the generic pathname's property list; the buffer data structure; and
the buffer text. Here are two ways to make the change:
• If the package already exists in your Lisp environment, use Set

Package (M-X) to set the package for the buffer. The command
asks you whether or not to set the package for the file and
attribute list as well. You can use this command to create a new
package.

• Use Update Attribute List (M-X) to transfer the current buffer
attributes to the file and create a text attribute list. Edit the
attribute list, changing the package. Use Reparse Attribute List
(M-X) to transfer the attributes in the attribute list to the file
and the buffer data structure. If the package you specify by
editing the attribute list does not exist in your Lisp environment,
Reparse Attribute List asks you whether or not to create it with
default characteristics.

Manipulating Commands

Update Attribute List (M-X)

Updates the attribute list (-*- line) of the buffer. It creates or
updates the attribute list of the file, using the current set of
parameters. A new attribute list inherits the Package, Mode,
Backspace, and Fonts attributes of the current buffer. It includes
the Backspace and Fonts attributes in the line only if they have
values other than the defaults. It does not change other attributes
in an existing mode line.

Reparse Attribute List (M-X)

Reparses the attribute list (-*- line) of the buffer. It finds the
attribute list for the buffer and processes it to set up the

126 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer and File Attributes. cont'd.

Example

environment that the line specifies. It changes the major mode,
package, base, and so on, as necessary. When you edit the
attribute list, you should then use this command to make the
changes take effect in Zmacs. The changes take effect both for the
editor buffer and for the file that the buffer is editing.

Suppose the package for the current buffer is user and the base is
8. You want to create a package called graphics for the buffer
and associated file. You also want to set the base to 10. If no
attribute list exists, use Update Attribute List (P1-X) to create one
using the attributes of the current, buffer. An attribute list appears
as the first line of the buffer:

;;; -*-Mode: LISP; Package: USER; Base: 8 -*-

Now edit the buffer attribute list to change the package name from
USER to GRAPHICS and to change the base from a to 1 o. Use Reparse
Attribute List (P1-X). The command queries:

The file belongs in package GRAPHICS, which does not exist.
Create it with default characteristics,
Try again, or Use another package? (C, T, or U)

Answer C to create the new package. The package becomes
graphics and the base 10 for the buffer and the file.

File Attribute Checking
Zmacs notes errors in file attribute lists and warns you when it
finds an unknown attribute. It goes ahead and ignores the
unknown attribute in the list. The purpose of the warning is
simply to help you detect misspellings.

Setting the Package

Set Package (P1-X)

Changes the package associated with the buffer. It prompts for a
new package, offering to create the package if necessary. Forms
that are read from the buffer are read in that package. (The
default value for this attribute is user.)

You can have any package as the default package by specifying it as
the value of the Zmacs variable Default _Package. (Zmacs variables
are described in "How to Specify Zmacs Variable Settings", page
193). You can set the variable in your lispm-init.l file (see "Creating
an Init File", page 196) by using the internal form of its name.

ZMACS Zmacs Manual 127

Symbolics. Inc. February 1984

Buffer and File Attributes. cont'd.

Other Set
commands for

For example, in your init file:
(login-forms

(setq zwei:*default-package* (pkg-find-package "tv")))

If you set the variable to nil, it sets the default to the package
from the previous buffer.

Information about the package attribute exists in four places. Set
Package offers to set the package for the generic pathname
attribute list and updates the attribute line in the buffer when you
answer Yes to:

Set it for the file and attribute list too?

Your answer affects the various versions of the package attribute as
follows:

Location ''Y'" ''N"
Generic pathname changes same
Buffer property changes changes
Buff er text changes same
Current package changes changes

· The system is informed that the file belongs to the specified
package. If you are not sure what to answer, say Yes. The global
variable zwei:*set-attribute-updates-Iist* controls this query. Its
default value is :ask Setting the variable to t means yes; nil
means No.

File and Buffer Attributes
Each of the file attributes has a Set command associated with it.
You have two choices when you want to change an attribute for a
file:

• Edit the text of the buffer and then use Reparse Attribute List.

•Use the relevant Set command and answer Y to its query. The
meanings for Y and ti are the same as for the Set Package
command (except that only the Set Package command affects the
current package).

128 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer and File Attributes. cont'd.

Update Attribute
List Query

The Set commands use the value of the global variable
zwei:*set-attribute-updates-list• to determine whether to query
you about updating the file attribute list. The default value for the
variable is :ask; set to nil to suppress the query.

Value
:ask
nil
t

Meaning
Always asks whether to update the attribute list.
Never updates the attribute list.
Always updates the attribute list.

Set attribute (r.-X)

where attribute is one of the following: Backspace, Base, Fonts,
Lowercase, Nofill, Package, Patch File, Tab Width, or Vsp. It sets
attribute for the current buffer. It queries whether or not to set
attribute for the file and in the text attribute list.

Attribute Descriptions
The following table describes some of the attributes, their associated
Set commands, and the default value for the attribute.

Backspace

Base

Fonts

The Set Backspace command (default value nil)
controls whether a backspace character in a file
displays as the word "back-space" ("overstrike" on
an LM-2) with a lozenge around it or performs
the backspace. The default is the lozenge form.

The Set Base command (default value 8) specifies
the value of ibase that the Lisp reader uses
when reading forms from the file. Thus, Base
controls the ibase used when you evaluate or
compile parts of the buffer, and controls the
value of base for printing during evaluating all
or part of the buffer. This value does not affect
the values of either base or ibase in the Lisp
Listener you· get by using SUSPEND (BREAK on an
LM-2).

The Set Fonts command (default value nil)
changes the set of fonts to use. It reads a
sequence of fonts names separated by spaces
from the minibuffer.

ZMACS Zmacs Manual 129

Symbolics, Inc. February 1984

Buffer and File Attributes. cont'd.

Lowercase

Nofill

The Set Lowercase command (default value nil)
means that the file being edited is intended to
contain lowercase code or text. When the
Lowercase attribute is nil (that is, not present),
whatever you want in the way of case handling
prevails. People who want automatic uppercase
code would use the following in their lispm-init
file (see also "Creating An Init File", page 196):
(login-forms

(setq zwei:lisp-mode-hook
'zwei:electric-shift-lock-if-appropriate))

When the Lowercase attribute is anything but
nil (you answer v to its query), the Electric Shift
Lock Mode is never turned on automatically.

The Set N ofill command has a default value of
nil, which means that whatever you want in the
way of autofilling behavior prevails. When Nofill
is anything else (you answer v to its query), it
means that autofilling is not appropriate for
people who specify the mode of "autofilling if
appropriate".

Use Nofill sparingly. Setting it means that
everyone who edits the file has to be satisfied
with Auto Fill Mode being off by default. In
most cases, it is more reasonable to let an
individual user's preferences prevail. It is useful
for files that are not plain text, such as mailing
lists, where you need to avoid spurious line
breaks.

People who want to have autofilling turned on by
default should use the following in their lispm­
init file (see also "Creating An Init File", page
196):
(login-forms

(setq zwei:text-mode-hook
'zwei:auto-fill-if-appropriate))

People who do not want it never get it by
default.

130 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Buffer and File Attributes. cont'd.

Patch-File

Tab-Width

Vsp

The Set Patch File command has a default value
of nil, which means that the file does not
contain patches. When a file is classified as
containing patches (you answer v to its query),
fdefine does not warn about functions being
redefined during loading. Classifying something
as a patch file also affects Edit Definition (which
prefers files that are not patches) and defvar
(which becomes setq).

The Set Tab Width command (default 8
characters) specifies how many spaces the editor
uses between "tab stops".

The Set Vsp command (default 2 pixels) specifies
the vertical spacing (in pixels) between the text
lines of an editor window. It specifies the
distance between the descenders of one line and
the ascenders of the next.

ZMACS Zmacs Manual 131

Symbolics, Inc. February 1984

Dired Mode

Overview

Entering Dired

There is a special Zmacs mode, called Dired, just for doing
housekeeping in a directory. In this mode, you see the names of all
the files in a directory at once, and can manipulate these files in
various ways.

The following commands specify a directory to manipulate and enter
Dired mode.

Dired (1ri-X)

Prompts for a wildcard file specification for files contained in the
specified directory. The default edits all files in the current
directory by specifying wild name, type, and version. You must
type the pathname in the form acceptable to your host system.

c-X D Dired

Edits the files in the directory that contains the current file.

With a numeric argument of 1, shows files with the same host,
device, directory, and name as the file in the current buffer. It
lists files with any type and version.

With a c-U argument, it prompts for a wildcard file specification
showing the name of a directory to edit.

The Dired Display
When you go into Dired mode, Zmacs creates a special buffer that
contains the names of the files that are under consideration, as well
as some auxiliary information pertaining to those files. In a typical
Dired buffer, each line describes a single file and lists the following
information, from left to right:
•An indicator (D) that shows if the file has been marked for

deletion or is already deleted
•The physical volume of the file (on some hosts)
• The name of the file
• The length of the file in blocks (where the length of a block is

system-dependent)
• The length of the file in bytes, followed by the byte length in

bits, enclosed in parentheses
• ! if the file has not been backed up to tape
• $ if the file has been marked against reaping
• ® if the file has been marked against deletion
• The _file's creation date

132 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Dired Mode. cont'd.

• The file's creation time
• The date the file was last referenced, enclosed· in parentheses
• The author of the file
• Optionally, the name of the last user to read the file

If there are too many files to be displayed in one screenful, the
Zmacs window looks only at one section of the directory at a time
(although the buffer does contain the names of all the files).

The files are arranged in alphabetical order by name.

Updating the Display
Use the Revert Buffer (M-X) command (described on page 109) to
update a Dired display. After using Dired commands (or native
host commands) to perform operations on files in your directory,
invoke Revert Buffer, which reexecutes Dired with the default
directory name and rereads the updated directory into the buffer.

Dired Commands
Dired mode has its own command table (comtab) for manipulating
the files whose names are displayed. These commands are
described in this section. All invocations given in this section are
with respect to the Dired comtab and do not apply to regular
Zmacs.

You use Dired by moving the cursor around to various lines and
then specifying operations to be performed on the file listed on that
line (the current file, while in Dired Mode).

Most Dired commands schedule some action for the future rather
than performing it instantly. For example, when you want to
delete a file using Dired, you move the cursor to the line describing
that file and type D. Rather than deleting the file immediately,
Dired marks the file for deletion. The deletion actually happens
when you leave Dired mode and confirm your request. (see "Getting
Out of Dired", page 134).

Some of the commands in Dired mode take numeric arguments.
You type numeric arguments in exactly the same way as you do in
Zmacs proper, except that you do not have to hold the CONTROL key
down while typing the argument - just typing the number
suffices.

ZMACS Zmacs Manual 133

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Command Summary
The following table summarizes the Dired commands:

Character

RUBOUT

SPACE

$

@

=

A

c

D

E

G

nH

L

nN

Action

Undeletes file above the cursor.

Moves to the next file.

Moves to the next file that is not backed up.

Complements the Don't Reap($) flag.

Describes the attribute list of this file. In text files,
this is the -*- line of the file. In compiled Lisp files,
it includes information about the compilation as well.

Changes properties of current file.

Complements the Don't Delete (®)flag.

Compares this file with the newest version (Source
Compare).

Queues this file for function application.

Copies this file to someplace else.

Marks the file for deletion (K, c-D, c-K are
synonyms).

Edits the file in a buffer, or runs Dired if the line is
a subdirectory name.

Sets and enforces the generation retention count.

Marks excess versions of the file for deletion
(argument means whole directory).

Loads the file into Lisp.

Moves to the next file with more than n versions
(see the Zmacs variable File Versions Kept). (Zmacs
variables are described in "How to Specify Zmacs
Variable Settings", page 193).

134 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Default

p

Q

R

u

v

x

Prints the file on the standard hardcopy device.

Exits. It shows the files marked for deletion and
prompts for confirmation. The exit display marks
files that have special status, using the following
marks:

a link
> most recent version
$ file marked for not reaping

file not backed up

Renames this file to something else.

Undeletes either the file on the current line or the
file on the line above.

Views the file without creating a buffer (using View
File conventions).

Executes an extended command (same as M-X).

Pathnames in Dired
When the current buffer is a Dired buffer, and you execute an
editor command that accepts a file name as an argument, the
default file name is the file name that appears on the line of the
Dired buffer that point is on.

It makes it easier to do things to the file that you are currently
operating on in Dired. For example, you can move point to some
line, and then do Compile File (M-X), and it will default to that file
name.

Getting Out of Dired

Q

END
Dired Exit

~aves Dired mode. It prints the names of files marked for various
actions and gets your final confirmation that these actions are really
to be performed.

At this point the available options are:

v Delete but do not expunge, also doing any other marked
actions.

N Go back to Dired.

Q Abort out of Dired (X also works).

ZMACS Zmacs Manual 135

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Online
Documentation
for Dired

Dired Menu

E Delete files and expunge directory. This is meaningful for
file systems in which there is undeletion, such as TOPS-20,
TENEX, and the Lisp Machine file system. This command
is useful if you use Dired to free up disk space, since the
disk space is not deallocated until the directory is expunged.

Dired Exit performs those actions and returns to the previous
buffer.

ABORT Dired Abort

Leaves Dired mode at once, witho\lt performing any actions on
marked files. You can also just switch to another buffer.

If you do not have a manual and cannot remember what the
commands do, just press HELP.

?'

HELP

Displays a short table explaining the Dired commands.

Dired Help

Click right in Dired to display the Dired menu, which offers to
perform the following actions on the listing:

Sort by reference date (up)
Sort by reference date (down)
Sort by creation date (up)
Sort by creation date (down)
Sort by file name (up)
Sort by file name (down)
Sort by file size (up)
Sort by file size (down)
Dired Automatic
Dired Automatic All
Dired Change File Properties
Dired Describe Attribute List

Dired Automatic (which includes Dired Automatic All), Dired
Change File Properties, and Dired Describe Attribute List are
described later in this section.

136 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Moving Around in Dired

SPACE ,
c-N

Down Real Line

Moves point to the next line (same as in regular Zmacs). With a
numeric argument of n, it moves point forward n lines.

c-P Up Real Line

Moves point to the previous line (same as in regular Zmacs). With
a numeric argument of n, it moves point backward n lines.

Viewing File
Attributes in Dired

Dired Describe Attribute List

This command is also available on the pop-up menu that you get
when you click right in Dired. It prints out the contents of the
attribute list of the current file (the one where point is). It works
for character files and compiled files. It does not work for LM-2
compiled files when running on a 3600 or 3600 compiled files when
running on an LM-2.

Changing File
Properties in Dired

Dired Change File Properties

This command is also available on the pop-up menu that you get
when you click right in Dired. It edits the properties of the
current file. These properties are the qualities of the file that are
maintained by the file system on which it resides, such as creation
date and time, author, time of last access, and length. For files on
a Lisp Machine file system, this means user-defined properties as
well. It pops up a choose-variable-values window, allowing you to
alter various properties of the file. The exact properties that can be
varied depend on the file system, but they might include:
• Generation (version) retention count
•Author
• Creation, modification, and reference dates
• Protection flags
• Other file-associated information

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Dired Mode, cont'd.

Viewing and
Editing File
Contents in Dired

137

You might want to look at the contents of a file before deciding
what to do with it. You might also want to read the file into a
buffer and edit it. The following commands provide that capability:

v Dired View File

Displays the contents of the current file on the typeout window.

Use this command when you just want to skim the contents of the
file, not edit it. You can move forward while viewing with SPACE
and move backward with BACKSPACE.

E Dired Edit File

Reads the current file into a Zmacs buffer and selects that buffer.
You are then back in normal Zmacs and can edit the file normally.
When you want to return to Dired mode, just use the c-rti-L
command to reselect the Dired buffer.

Comparing Recent
Versions of Files

Often before deciding whether or not to delete a file, you want to
find out exactly how extensive the differences are between the file
and its most current version. Use the following command: .

= Dired Srccom

Compares the current file with its most recent version and displays
the differences on the typeout window. With an argument of c-u,
it asks what version to compare it to.

Copying and
Renaming Files

c Dired Copy File

Copies the current file. It prompts for the new pathname,
displaying the default pathname.

R Dired Rename File

Renames the current file. It prompts for the new pathname,
displaying the default pathname.

138 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Marking Files for Deletion

D
K

c-D
c-K

Dired Delete

Marks the current file for deletion. Dired puts a Din the first
column to show that the file has been so marked.

With a numeric argument of n, it marks the next n files for
deletion.

Sometimes you mark a file for deletion by mistake. Here is how
you recover from this error:

u Dired Undelete

u takes one of two actions:
1. If the current file is marked for deletion, printing, or a function

application (with a D, P, or A), reprieves it.
2. In file systems with soft deletion, u marks a deleted file for

undeletion.

In either case, u removes the D, P, or A next to the file. If the
current file is not marked with D, P, or A, u reprieves the file on
the immediately preceding line, positioning point on that line.

With a numeric argument of n, it reprieves the files on the next n
lines including the current line.

RUBOUT Dired Reverse Undelete

Reprieves the file on the preceding line.

With a numeric argument of n, it reprieves the files on the previous
n lines including the current line.

Deleting Multiple Versions
If you are using Dired for housekeeping purposes, the following
commands are useful:

N Dired Next Hog

Moves point to the next file with superfluous versions. Superfluous
is defined by the value of the Zmacs variable File Versions Kept
(whose default is 2) or by a numeric argument. (Zmacs variables
are described in "How to Specify Zmacs Variable Settings", page
193).

ZMACS Zmacs Manual 139

Symbolics, Inc. February 1984

Dired Mode. cont'd.

H Dired Automatic

This command is also available on the pop-up menu that you get
when you click right in Dired. It marks all the superfluous versions
of the current file for deletion. With an argument of c-u, it marks
superfluous versions of all files in the Dired buffer.

Setting
Generation
Retention Count

G Dired Set Generation Retention Count

Sets and enforces the generation retention count on this group of
files, which specifies how many versions to save (that is, deletes
multiple versions).

With a numeric argument n, se.ts it to n versions. With no
numeric argument, prompts for a number in the minibuffer. An
argument of zero means save all versions. Enforce means mark for
deletion or undeletion.

Protecting Files
From Being Reaped

In addition to keeping other users aware of protected files,
protection features can also inform the system itself. Some file
systems have automatic reaping facilities that go into action when
storage becomes Scarce. Most such systems have a don't reap bit
associated with each file; use it to protect only your most vital files.

$ Dired Complement No Reap Flag

Complements the Don't Reap flag associated with the current tile;
Dired displays the flag as $ between the length and date on that
line. With a numeric argument of n, it complements the flag on
the next n files, including the current one.

140 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Dired Mode. cont'd.

Protecting Files
From Being Deleted

Dired Complement Dont Delete Flag

Complements the Don't Delete flag associated with the current file;
Dired displays the flag as @ between the length and date on that
line.

With a numeric argument of n, it complements the flag on the
next n files, including the current one.

Finding Files That
Have Not Been
Backed Up

Many file systems have tape backup facilities so that files can be
copied onto tape against the possibility of a file system disaster.
These systems almost always associate a bit with each file that is
set when the file is created or modified and cleared when it is
backed up to tape.

Dired Next Undumped

Moves point forward to the next file that has not yet been backed
up; Dired displays the flag as ! between the length and date on
that line.

Marking Files to
be Hardcopied

You may want to obtain a hardcopy of a group of related files.
Dired allows you to mark files to be hardcopied as well as to be
deleted.

p Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first
column to show that the file has been so marked.

With a numeric argument n, marks the next n files for printing.

ZMACS Zmacs Manus/

Symbolics, Inc. February 1984

Dired Mode. cont'd.

Applying
Arbitrary
Functions to Files

141

Vecy occasionally, you want to perform some operation on selected
files in your directory for which there is no Dired command
provided. When this occurs, you can write up the operation that
you want to perform as a Lisp function, whose single argument is
the pathname of the file. The following command is relevant:

A Dired Apply Function

Marks the current file for having an arbitracy function applied to it.
Dired puts a A in the first column to show that the file has been
so marked. With a numeric argliment of n, it marks the next n
files, including the current one.

142 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

ZMACS Zmacs Manual 143

Symbolics, Inc. February 1984

Setting the Major Mode

144 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Major Editing Modes

Overview
Whenever you are editing some text, some set of modes is in effect.
The buffer is always associated with one major mode that tells the
editor what kind of document is being edited. A major mode has
the following characteristics:
• It has its own distinct set of key bindings.
• It affects groups of related language-specific items, such as

delimiter characters and indentation rules.

The major modes are listed below. You can establish the mode:
• By turning it on using the prefix M-X followed by the name of

the mode. For example, to invoke Lisp Mode, type: M-X Lisp
Mode.

• By setting it in the attribute list (see the section "Buffer and File
· Attributes", page 125)
• By having Zmacs do it for you when you read a file with c-x

c-F. It recognizes the type component of the pathname of the
file (for example, folon.lisp) and puts the buffer in the
corresponding mode.

Fundamental Mode

Lisp Mode

Text Mode

Note

Macsyma Mode

Fundamental Mode enters Zwei's fundamental mode (the default
mode).

Lisp Mode sets things up for editing Lisp code. It puts Indent-For­
Lisp on TAB.

Sets things up for editing English text. It puts Tab-To-Tab-Stop
on TAB.

Zmacs supports Fortran Mode as a part of FORTRAN '77, the
separately priced software product. For more information, see the
User's Guide to the FORTRAN '77 Tool Kit.

Macsyma Mode enters a mode for editing Macsyma code. It
modifies the delimiter dispatch tables appropriately for Macsyma
syntax, makes comment delimiters/* and */. It puts Indent­
Relative on TAB.

ZMACS Zmacs Manual 145

Symbolics, Inc. February 1984

Major Editing Modes

Midas Mode

Bolio Mode

Teco Mode

Pll Mode

Midas Mode sets things up for editing PDP-10 assembly language
code.

Bolio Mode sets things up for editing Bolio source files. It is like
Text Mode, but also makes c-f"l-N, c-"'-:, and c-"'-* insert font
characters, and makes word-abbrevs for znil and zt.

Teco Mode sets things up for editing TECO. It makes comment
delimiters be !* and *!. It puts Indent-Nested on TAB, Forward­
Teco-Conditional on"'-', and Backward-Teco-Conditional on"'-".

Pll Mode sets things up for editing PIJl programs. It makes
comment delimiters /* and */, and puts Indent-For-Pll on TAB, Roll­
Back-Pll-Indentation on c-f"l-H, and Plldcl on c-=. Underscore is
made alphabetic for word commands.

Electric Pll Mode
Electric Pll Mode sets things up for editing PIJl programs. It does
everything Pll Mode does: it makes comment delimiters/* and */,
puts Indent-for-Pll on TAB, Roll-Back-Pll-Indentation on c-f"l-H, ,
and Plldcl on c-=. Underscore is made alphabetic for word
commands. In addition, ; is Pll-Electric-Semicolon, : is Pll-Electric­
Colon, I is Rubout,@ is Clear,' is Quoted Insert.

146 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

ZMACS Zmacs Manual 147

Symbolics, Inc. February 1984

Changing Case and Indentation

148 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Changing Case

Overview
Zmacs offers extended commands that convert the case of the code
for words, regions, and buffers.

Changing Case of Words

M-C Uppercase Initial

Puts next word in lowercase, but capitalizes initial character. With
an argument, it capitalizes that many words.

M-l Lowercase Word

Puts next word in lowercase. With an argument, it puts that
many words in lowercase.

M-U Uppercase Word

Puts next word in uppercase. With a,n argument, it puts that
many words in uppercase.

Changing Case of Regions

c-X c-U Uppercase Region

Uppercases the region.

c-X c-L Lowercase Region

Lowercases the region.

Uppercase Code in Region (M-X)

Converts all code (not comments, strings, or quoted characters) to
uppercase. This gives the same effect

1
as retyping that text while

in Electric Shift Lock Mode. It operates on the region if there is
one, otherwise it operates on the current definition.

Lowercase Code in Region (M-X)

Converts all code (not comments, strings, or quoted characters) to
lowercase. It operates on the region if there is one, otherwise it
operates on the current definition.

ZMACS Zmacs Manual 149

Symbolics, Inc. February 1984

Changing Case. cont'd.

Changing Case of Buffers

Uppercase Code in Buffer (r.->O

Converts all code (not comments, strings, or quoted characters) to
uppercase. This gives the same effect as retyping that text while
in Electric Shift Lock Mode. It queries for a buffer name (the
default is the current buffer) and operates on that buffer.

Lowercase Code in Buffer (r.-X)

Converts all code (not comments, strings, or quoted characters) to
lowercase. It queries for a buffer name (the default is the current
buffer) and operates on that buffer.

150

Indentation

Overview

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Proper indentation helps make complicated Lisp programs readable.
Indentation should reflect the structure of a program. An
expression should be indented so that its subforms are easily
identifiable, and so that a function can be related to its arguments
by eye, without counting parentheses.

The indentation commands work in any Zmacs major mode; the
TAB key indents differently depending on the mode. When you give
an indent command an argument of n, n equals the number of
Space characters in the default font.

Indenting Current Line

Centering the
Current Line

TAB

In Lisp mode, the TAB key indents the current line of Lisp code
correctly with respect to the line above it. (In most other modes,
TAB inserts a Tab character.) Point remains fixed with respect to
the code.

With a numeric argument n, it indents the next n lines including
the current one, and leaves point at the n+lst line.

c-TAB Indent Differently

Tries to indent this line differently. If called repeatedly, it makes
multiple attempts.

M-TAB Insert Tab

Inserts a Tab character, even in Lisp Mode, in the buffer at point.

c-rta-TAB Indent For Lisp

Indents this line to make ground (indented) LISP code, even in a
mode other than Lisp mode. Numeric argument specifies number
of lines to indent.

M-S Center Line

Centers the text of the current line within the line. With an
argument n, it centers n lines and moves past them.

ZMACS Zmacs Manual 151

Symbolics, Inc. February 1984

Indentation. cont'd.

Indenting New Line
The keystroke combination RETURN TAB gets you into the right
position to start typing the next line of code. LINE is the
abbreviation for that combination.

LINE Indent New Line

If the next two lines are blank, goes to the next line; otherwise, it
creates a new blank line following the current one. In any case, it
does a TAB on that blank line.

Reindenting Expression

c-r.-Q Indent Sexp

Corrects the indentation of the expression following point by
adjusting the amount of space before each line in the expression.
c-r.-Q positions point in front of the incorrectly indented expression.
This does not affect the indentation of the current line, but only
fixes the indentation of following lines with respect to the current
line. Use after modifying an expression.

With a numeric argument of n, it fixes the indentation of the next
n expressions.

Indenting Region

Going Back to

c-M-' Indent Region

Indents each line in the region. With no argument, it calls the
current Tab command to indent. With an argument of n, it
indents each line n spaces in the current font.

First Indented Character

r.-M
c-r.-M
r.-RETURtf
c-r.-RETURtf

Back To Indentation

Positions point before the first nonblank character on the current
line.

152 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Indentation. cont'd.

Indenting Region Uniformly

c-X TAB
c-X c-I

Indent Rigidly

Shifts text in the region sideways as a unit. All lines in the region
have their indentation increased by the numeric argument of the
command (the argument can be negative).

Aligning Indentation

Indent Under (c-M-X)

Indents to align under string, which is read from the minibuffer.
It searches back, line by line, forward in each line, for a string that
matches the one read and that is farther to the right than the
cursor already is. It indents to align with the string found,
removing any previous indentation first.

Deleting Indentation

Delete Indentation

Deletes the newline character and any indentation at the beginning
of the current line. It tacks the current line onto the end of the
previous line, leaving one space between them when appropriate, for
example, at the beginning of a sentence.

With any numeric argument, it moves down a line first, thus killing
the end of the current line.

New Line with
This Indentation

This Indentation

Makes a new line after the current one, deducing the new line's
indentation from point's position on the current line. If point is to
the left of the first nonblank character on the current line, it
indents the new line exactly like the current one. But if point is to
the right of the first nonblank character, it indents the new line to
the current position of point. Regardless, it leaves point at the end
of the newly created line.

With a numeric argument, the new line is always indented like the
current one, no matter where point is. With an argument of zero,
it indents current line to point.

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Indentation. cont'd.

Moving Rest of
Line Down

153

Split Line

Moves rest of current line down one line. It inserts a carriage
return and indents new line directly beneath point. With a
numeric argument n, it moves down n lines.

Inserting Blank Line

c-0 Make Room

Inserts a blank line after point. With a numeric argument n, it
inserts n blank lines.

Deleting Blank Line

c-X c-0 Delete Blank Lines

Deletes any blank lines around the end of the current line.

154 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

ZMACS Zmacs Manual 155

Symbolics, Inc. February 1984

Editing Lisp Programs

156

Introduction

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Lisp Machine programmers develop programs in repeated cycles,
each a sequence of editing, compiling, testing, and debugging.
These cycles are often nested. Zmacs allows you to edit and test
large programs dynamically, without frequent file system operations.
This manual does not describe any style of interacting with the
environment in developing Lisp programs. However, the
Programming Development Tools and Techniques manual shows
just that: It focuses on the interaction between programmers and
the Lisp Machine, presenting ways of using helpful Lisp Machine
features and tools during each stage of program development.

As a programmer on a Lisp Machine you typically read a file
containing Lisp code into an editor buffer, make modifications, test
the results, make more changes, and so on, until satisfied with the
behavior of the program. Only then do you need to write the
buffer back out to the file system. The debugging loop is much
tighter and more responsive than in traditional programming
environments. You can even evaluate Lisp forms directly from
inside the editor, without returning to a Lisp Listener.
Alternatively, you can divide the screen into a Lisp Listener window
and a Zmacs window, so that you can direct your attention to
either without changing the display.

Zmacs provides extensive features for locating source code of
specified functions. If an error occurs, the Debugger can cause
Zmacs to read in the source of the function that got the error.
You can then debug and recompile the function. Similar features
complement the message-passing capabilities of the Zetalisp
language.

When you edit a file whose file type is "lisp", Zmacs puts that
buffer into Lisp mode. A command exists for explicitly placing a
buffer in Lisp mode: ,

Lisp Mode (r-.-X) Lisp Mode

Places the current buffer into Lisp mode.

ZMACS Zmacs Manual 157

Symbolics, Inc. February 1984

Commenting Code

Overview
Zmacs differentiates between the different comment indicators for
different major modes. Comments in Lisp begin with a semicolon.
The Lisp reader ignores everything between a (significant) semicolon
and the next newline. By convention, there are three kinds of
comments, beginning with one, two, and three semicolons:
•Comments beginning with a single semicolon are placed to the

right of a line of code, start in a preset column (the comment
column), and describe what is going on in that line.

•A comment with two semicolons is a long comment about code
within a Lisp expression and has the same indentation as the
code to which it refers. It describes the function of a group of
lines.

• A comment headed by three semicolons is normally placed against
the left margin, and describes a large piece of code like a function
or group of functions.

This section outlines Lisp commenting conventions and explains
Zmacs commands for manipulating comments.

Indenting for Comment

c:-; Indent For Comment
Pl-;

If the current line has no comment, moves point out to the
comment column (inserting spaces to get there, if necessary) and
starts a comment by inserting a semicolon there. If the current
line already has a comment, it indents it correctly and leaves point
at the beginning of it. Zmacs positions the various kinds of
comments appropriately. If a comment begins at the left margin, it
leaves it there.

With a numeric argument n, it realigns any comments on the next
n lines, including the current line, but does not create any new
comments.

In case a comment cannot be positioned at the comment column
because the associated line of code is too long, comments are moved
to the right until they are clearly separated from the code.

Killing a Comment

Kill Comment

If the current· line has a comment, deletes it.

158 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Commenting Code. cont'd.

Moving Down to
Comment on Next Line

Moving Up to
Comment on
Previous Line

Down Comment Line

Moves point to the beginning of the comment on the next line. If
there is no comment on the next line, it creates one. If the
comment on the current line is empty, it deletes it before going to
the next line.

With a numeric argument n, it moves point to the beginning of the
comment on the nth line after the current one.

M-P Up Comment Line

Moves point to the beginning of the comment on the previous line.
If there is no comment on the previous line, it creates one. If the
comment on the current line is empty, deletes it before going on to
the previous line.

With a numeric argument n, it moves point to the beginning of the
comment on the nth line before the current one.

Setting the
Comment Column

c-X ,; Set Comment Column

Sets the comment column to be the current horizontal position of
the cursor.

With a numeric argument, it finds the nearest comment above the
current line, sets the comment column to line up with that
comment, and actually puts a comment on the current line at that
column.

Creating a New
Indented
Comment Line

M-LINE Indent· New Comment Line

Makes a new blank line after the current line and starts a new
comment there, indented properly. If there was already a comment
on the current line, the comment on the new line is of the same
kind. That is, it has the same number of semicolons and is

ZMACS Zmacs Manual 159

Symbolics. Inc. February 1984

Commenting Code. cont'd.

indented the same. If there was no comment on the starting line,
M-LINE starts a new line, indenting the new line as appropriate for
the major mode.

Commenting Regions

c-X c-,; Comment Out Region

Comments out each of the lines in the region. When the region
ends at the beginning of a line, it does not comment out that line.
If any part of the line is part of the region, then it does comment
out that line.

A numeric argument activates lines in the region that have been
commented out. When any part of the line is part of the region, it
removes commenting from around that line. This assumes that
any comment starting in column 1 is fair game. It stops when it
encounters a line that does not begin the way a comment would,
even if more lines that have been commented out remain in the
region. It does keep the remainder of the region in this case, so
that you can resume.

Uncomment Region (M-X)

Removes all comments from lines whose beginnings are contained in
the region.

160 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Evaluation and Compilation

Overview

Evaluation

The commands in this section form a link between the Zmacs
editor and the Lisp language. They allow the evaluation and
compilation of code from Zmacs buffers. These commands are an
important part of the debugging loop.

When a Lisp form is being compiled or evaluated, the editor displays
a message that classifies what is being compiled.

It classifies macros as functions (because these go in the function
cell of a symbol). For example:
Compiling Function SUN
Evaluating Variable MARS
Compiling Flavor STAR

M-ESCAPE Evaluate Minibuffer

Evaluates expressions from the minibuffer. You enter Lisp
expressions in the minibuffer, which are evaluated when you press
END. The v~ue of the expression itself appears in the echo area. If
the expression displays any output, that appears as a typeout
window.

Evaluate Into Buffer (M-X)

Evaluates an expression read from the minibuffer and inserts the
result into the buffer. You enter a Lisp expression in the
minibuffer, which is evaluated when you press END. The result of
evaluating the expression appears in the buffer before point. With
a numeric argument, it also inserts any typeout that occurs during
the evaluation into the buffer.

Evaluate Buffer (M-X)

Evaluates the entire buffer. The result of evaluating the buffer
appears in the minibuffer. With a numeric argument, it evaluates
from point to the end of the buffer.

Evaluate Region (M-X)

c-sh-E

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in the echo
area.

ZMACS Zmacs Manual 161

Symbolics, Inc. February 1984

Evaluation and Compilation. cont'd.

c-M-sh-E Evaluate Region Verbose

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in a typeout
window.

Evaluate Region Hack (M-X)

Evaluates the region, ensuring that any Lisp variables appearing in
a defvar have their values set. When no region has been defined,
it evaluates the current definition. It shows the results in the echo
area.

Evaluate Changed Definitions (M-X)

Evaluates any definitions that have changed in any of the current
buffers. With a numeric argument, it prompts individually about
whether to evaluate particular changed definitions (the default
evaluates all changed definitions).

Evaluate Changed Definitions of Buffer (M-X)

M-sh-E

Evaluates any definitions that have changed in the current buffer.
Wi~h a numeric argument, it prompts individually about whether to
evaluate particular changed definitions (the default evaluates all
changed definitions).

Evaluate And Replace Into Buffer (M-X)

Evaluates the Lisp object following point in the buffer and replaces
it with its result.

Evaluate And Exit

Evaluates the buffer and exits Zmacs. It selects the window from
which the last ed function or the last debugger c-E command was
executed.

162 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Evaluation and Compilation. cont'd.

Compilation

Compile Buffer (M-X)

Compiles the entire buffer. With ·a numeric argument, it compiles
from point to the end of the buffer. (This is useful for resuming
compilation after a prior Compile Buffer has failed.)

Compile Changed Definitions (M-X)

Compiles any definitions that have changed in any of the current
buffers. With a numeric argument, it prompts individually about
whether to compile particular changed definitions (the default
compiles all changed defmitions).

Compile Changed Defmitions of Buffer (M-X)
M-sh-C

Compiles any defmitions that have changed in the current buffer.
With a numeric argument, it prompts individually about whether to
compile particular changed defmitions (the default compiles all
changed definitions).

Compile File (M-X)

Compiles a file, offering to save it first (if it has an associated buffer
that has been modified). It prompts for a file name in the
minibuffer, usii:ig the file associated with the current buffer as the
default.

Load File (M-X)

Loads a file, possibly saving and compiling it first. It prompts for a
file name, taking the default from the current buffer.

Compile And Exit

Compiles the buffer and exits Zmacs. It selects the window from
which the last (ed) function or *e last debugger c-E command
was executed.

ZMACS Zmacs Manual 163

Symbolics, Inc. February 1984

Evaluation and Compilation. cont'd.

Compiler Warnings
Compiler warnings are kept in an internal database that you can
inspect and manipulate in various ways with several editor
commands.

Compiler Warnings (M-X)

Creates the compiler warnings buffer (called *Compiler-Warnings-1*)
if it doesn't exist, puts all outstanding compiler warnings in that
buffer, and switches tot.hat buffer. You can peruse the compiler
warnings by scrolling around and doing text searches through them
(see Edit Compiler Warnings).

Edit Compiler Warnings (M-X)

Prompts you with the name of each file mentioned in the database,
allowing you to edit the warnings for that file. It then splits the
Zmacs frame into two windows: the upper window displays a
warning message and the lower one displays the source code whose
compilation caused the warning. After you have finished editing
each function, c-. gets you to the next warning: the top window
scrolls to show the next warning and the bottom window displays
the function associated with this warning. Successive c-. s take you
through all of the warning messages for all of the files you
specified. When you are done, the last c-. puts the frame back
into its previous configuration.

Edit File Warnings (M-X)

Asks you for the name of the file whose warnings you want to edit.
You can give either the source file or the compiled file. Only
warnings for this file are edited. If the database does not have any
entries for the file you specify, the command prompts you for the
name of a file that contains the warnings, in case you know that
the warnings are stored in another file.

Load Compiler Warnings (M-X)

Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that contains
the printed representation of compiler warnings. It always replaces
any warnings already in the database.

164 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Parenthesizing Expressions

r.-(Make 0

Inserts matching parentheses, leaving point between them. With a
numeric argument n, it encloses the next n Lisp expressions in
parentheses. When the number of expressions requested cannot be
satisfied, it beeps and does nothing. With point on the open
parenthesis of a defun, an argument of 1 encloses the whole defun
within a new set of parentheses. Any argument larger than 1
would have no effect. In text mode, a word or a phrase within
parentheses is treated as a Lisp form.

See also the description of the command r.-) , in "Motion Among
Top-Level Expressions", page 55.

ZMACS Zmacs Manual 165

Symbolics, Inc. February 1984

Expanding Expressions

The following editor commands allow you to expand macros.

c-sh-M Macro Expand Expression

Reads the Lisp expression following point and expands the form
itself but not any of the subforms within it. It displays the result
in the typeout window. With a numeric argument, it pretty-prints
the result back into the buffer immediately after the expression.

Macro Expand Expression All (M-X)

Reads the Lisp expression following point, and expands all macros
within it at all levels. It displays the result in the typeout window.
With a numeric argument, it pretty-prints the result back into the
buffer immediately after the expression. It assumes that every list
in the expression is a form; so if car of a list is a symbol with a
macro definition, the purported macro invocation is expanded.
(Some sublists are not intended to be Lisp forms, and attempts to
macro-expand them are incorrect and may not work.)

166 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Locating Source Code to Edit

Introduction

The Edit

The functions that make up a program or system can depend on
each other in complicated ways. When you are editing one
function, you sometimes have to go off and look at another
function, and possibly modify that one too.

This section describes the Edit Defmition command ··and other
commands that list and/or edit various sets of definitions. In
addition, two pairs of List and Edit commands help identify changed
code by finding or editing changed definitions in buffers. By
default, the changed commands find changes made since the file
was read; use numeric arguments to find defmitions that have
changed since they were last compiled or saved.

Definition Commands
Edit Definition (M-.) is a powerful command to fmd and edit
function definitions, macro defmitions, global variable definitions,
and flavor definitions. In general, Zmacs treats as a definition any
top-level expression having in functional position a symbol whose
name begins def.

It is particularly valuable for finding source code, including system
code, that is stored in a file other than that associated with the
current buffer. It finds multiple definitions when, for example, a
symbol is defined as a function, a variable, and another type of
object. It maintains a list of these defmitions in a support buffer.

Edit Defmition

Prompts for the name of any named Lisp object. Selects a buffer
containing that definition, reading in the source file if necessary,
and positions the cursor in front of the definition. With a numeric
argument, it edits another definition of the object now being edited.
This can be repeated until there are no more definitions of that
object.

The prompt has three helpful features: selection by mouse, context
default, and completion (for definitions already in the buffer). You
can specify a definition by typing the name into the minibuffer or
clicking left on a name already in the buffer. If you just press END
instead of typing a function name, Zmacs assumes that the
function you want is the one at the front of the innermost
expression containing point. This default is displayed with the
prompt.

ZMACS Zmacs Manual 167

Symbolics, Inc. February 1984

Locating Source Code to Edit cont'd.

Example

Zmacs finds definitions this way:
• If the definition is in the current buffer, it moves point there.
• If the definition is in a different buffer, it changes buffers to get

to the definition and moves point there.
• If the definition is in a file that has not been read into a Zmacs

buffer, Zmacs goes out to the file system to get it, creating a
new buffer and reading in the file, and then moves point to the
definition.

When a symbol has more than one definition (for example, list
might be defined both as a function and as a global variable),
Zmacs finds all the definitions, but only presents the first one for
editing. Zmacs remembers the other definitions, and tells you
about them with a message in the echo area. When you have
finished with the first definition, you can look at the next by
invoking M-. with a numeric argument. Each time you do this, you
bring up a new definition to be edited, until you run out of
definitions. M-. displays No more definitions if you try to continue.

Suppose you are modifying a function called sun, which was written
originally by someone else. sun calls the unfamiliar luna, and you
need to find out what luna does before proceeding. Use M-. to
peek at the defmition o_f luna.

When you type M-. , Zmacs prompts you for the name of a
definition. If point is right in the expression where luna is called,
the default name is luna, and you only need to press END. If, on
the other hand, point is somewhere else and the default is wrong,
you can point at the word Iuna with the mouse or you can type it
in. To let you know that you can define a name with the mouse,
the mouse cursor changes to an arrow pointing straight up. All the
symbols that are names of definitions you could specify become
mouse-sensitive.

Edit Changed Definitions (M-X)

Determines which definitions in any Lisp mode buffer have changed
and selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c-. (Next Possibility) to move
to subsequent defmitions.

168 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Locating Source Code to Edit cont'd.

The List

Edit Changed Definitions accepts a numeric argument to control
the time point for determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default).

2 For each buffer, since the buffer was last saved.

3 For each definition in each buffer, since the definition was
last compiled.

Edit Changed Definitions of Buffer (P'l-X)

Determines which definitions in the current buffer have changed
and selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c-. (Next Possibility) to move
to subsequent definitions.

Edit Changed Definitions of Buffer accepts a numeric argument to
control the time point for determining what has changed:

Value Meaning

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled.

Definition Commands

List Definitions (P'l-X)

Displays the definitions in a specified buffer. It reads the buffer
name from the minibuffer,·using the current buffer as the default.
It displays the list as a typeout window. The individual definition
names are mouse-sensitive.

List Changed Definitions (P'l-X)

Displays a list of any definitions that have been edited in any
buffer. Use c-. (Next Possibility) to start editing the definitions in
the list.

ZMACS Zmacs Manual 169

Symbolics, Inc. February 1984

Locating Source Code to Edit cont'd.

List Changed Definitions accepts a numeric argument to control the
time point for determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default).

2 For each buffer, since the buffer was last saved.

3 For each defmition in each buffer, since the definition was
last compiled.

List Changed Defmitions of Buffer (r1-X)

Displays the names of defmitions in the buffer that have changed.
It makes an internal list of the definitions changed since the buffer
was read in and offers to let you edit them. Use c-. (Ne~
Possibility) to move to subsequent definitions.

List Changed Definitions of Buffer accepts a numeric argument to
control the time point for determining what has changed:

Value Meaning

1 Since the file was last read (the default).

2 Since the buffer, was last saved.

3 Since the defmition was last compiled.

The Edit Callers Commands
When you are modifying a large system, you often have to make
sure that changing a function does not render unusable other
functions that call the modified one. Zmacs provides facilities for
editing the sources of all the functions defined in the current world
that call a given one. This removes some of the unpleasantness of
making incompatible changes to large programs and is a good
example of how Zmacs interacts with the Lisp environment to
make programming easier.

Edit Callers (r.-X)

Prepares for editing all functions that call the specified one. The
prompt is the same kind that Edit Definition gives you. It reads a
function name via the mouse or from the minibuffer with
completion. By default, it searches the current package. You can
control the package being searched by giving the function an

170 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Locating Source Code to Edit cont"d.

argument. With an argument of c-u, it searches all packages; with
c-U c-u, it prompts for the name of a package to search. It selects
the first caller; use c-. <Next Possibility) to move to a subsequent
definition.

Multiple Edit Callers (r.-X)

Prompts for the names of a group of functions and edits those
functions in the current package that call any of the specified ones.
It reads a function name from the minibuffer, with completion,
initially offering a default function name. It continues prompting
for more function names until you end the list with RETURN.

By default, it searches the current package. You can control the
package being searched by giving the function an argument. With
an argument of c-U, it searches all packages. With two c-Us, it
prompts for the name of a package.

List Callers (r.-X)

Prompts for the name of a function exactly the way Edit Callers
does, but instead of editing the callers in the current package of the
specified function, it simply displays their names. The names are
mouse-sensitive. If you point at one and click left, you can edit the
source of that caller. If you click right, a menu pops up that offers
to give the argument list of the selected caller, to disassemble it, to
edit it, or to see its documentation string. In addition, c-. (Next
Possibility) works in this context, offering the first caller to be
edited, and queuing, up the other callers to be edited in sequence.

With an argument of c-u, it lists all the callers in evezy package.
With two c-us, it prompts for the name of a package to search.

ZMACS Zmacs Manual 171

Symbolics. Inc. February 1984

Locating Source Code to Edit cont'd.

Multiple List Callers (M-X)

Usts all the functions that call the specified functions. It reads a
function name from the minibuffer, with completion. It continues
prompting for more function names until you end the list with
RETURN.

The list of function names is mouse-sensitive: see List Callers (M-X).
c-. CN ext Possibility) edits the callers.

By default, it searches the current package. You can control the
package being searched by giving the function an argument. With
an argument of c-u, it searches all packages. With two c-us, it
prompts for the name of a package.

172

Patching

Introduction

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

During a typical maintenance session you might make several edits
to a system's source files. The patch facility allows you to copy
these edits into a patch file so that they can be automatically
incorporated into the system to create a new minor version. Edits
in a patch file can be of varying levels of complexity - modified
function definitions, new functions, modified. defvars and
defconsts, or arbitrary forms to be evaluated, even including loads
of new files. (For complete information about patching, see the
section "Patching'' in the document Maintaining Large Systems.)

The Patch Commands
Start Patch (r.-X) and Start Private Patch (r.-X) are two commands
for initiating a patch.

Start Patch (r.-X)

Starts a new patch but does not move any Lisp forms into the
patch file. Prompts you for the system you want to patch; it must
be a system currently loaded. It allocates a new minor version
number for that particular system and starts constructing the patch
file in an editor buffer.

While you are making your patch file, the minor version number
that has been allocated for you is reserved so that nobody else can
use it. Thus, if two people are patching a system at the same
time, they cannot both get the same minor version number. Also
note that you can put together patches for only one system at a
time.

If you do a subsequent patch after finishing the current patch (see
Finish Patch (M-X)), Start Patch (r.-X) asks you which system you
wish to patch and starts a new minor version.

Start Private Patch (r.-X)

Similar to Start Patch (M-X), but it does not have any relationship
to systems, major and minor version numbers, and official patch
directories. Instead of prompting for a system, it prompts for a file
name. You can use other patching commands, like Add Patch
(r.-X), Finish Patch (r.-X), and Abort Patch (r.-X). When you finish
the patch it is written out to the specified file.

This command allows you to make a private patch file that you can
load, test, and share with other users before you install it as a
numbered patch that all users automatically get.

ZMACS Zmacs Manual 173

Symbolics, Inc. February 1984

Patching. cont'd.

If you change a function, you should recompile it and test it; then,
once it works, use Add Patch (r.-X), Add Patch Changed Definitions
(r.-X), or Add Patch Changed Definitions of Buffer (r.-X) to put the
code in the patch file.

Add Patch (r.-X)

Adds the region (if there is one) or else the current definition to
the patch file currently being constructed. If you mistakenly use
the command on code that does not work, select the buffer
containing the patch file and delete it. Then later you can use Add
Patch (M-X) on the corrected version.

Add Patch Changed Definitions of Buffer (r.-X)

Selects each definition that was changed in the buffer and asks you
whether or not you want the definition patched.

For each definition, you can respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

P Patches the definition and any additional definitions in
the same buffer without asking any more questions.

A definition needs to be patched if it has been changed since it was
last patched or if it has not been patched since the file was read
into the buffer.

Note that. patching any region of text lying entirely within a
definition (with Add Patch (r.-X)) counts as patching that definition.

Add Patch Changed Definitions (M-X)

Selects a buffer in which definitions were changed and asks
whether or not you want to patch the changed definitions.
Answering N skips the buffer and proceeds to the next buffer, if
any. Answering Y selects each definition that has changed in that
buffer and asks you whether or not you want the definition
patched.

174 ZMACS Zmscs Manual

Symbolics, . /nc. February 1984

Patching. cont'd.

For each definition, you can respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

P Patches the definition and any additional defmitions in
the same buffer without asking any more questions;
when done, it proceeds to the next buffer.

If there are more buffers containing defmitions to be patched, it
asks questions again when it gets to the next buffer.

A definition needs to be patched if it has been changed since it was
last patched or if it has not been patched since the file was read
into the buffer.

Note that patching any region of text lying entirely within a
definition (with Add Patch (ra-X)) counts as patching that definition.

After making and testing all of your patches, use Finish Patch
(ra-X).

Finish Patch (ra-X)

Installs the patch file so that other users can load it. This compiles
the patch file if you have not done so yourself (patches are always
compiled). It prompts you for a comment describing the reason for
the patch; load-patches and print-system-modifications print
these comments.

Sometimes you start making a patch file and for a variety of
reasons do not install it - for example, you decide to abort the
patch, you need to end your work session at this machine, or your
machine crashes.

Abort Patch (rra-X)

Deallocates the minor version number that was assigned by Start
Patch (ra-X). It tells Zmacs that you are no longer currently
making a patch; the next time you do Start Patch (rra-X), Zmacs
starts a new patch instead of appending to the one in progress.

ZMACS Zmacs Manual 175

Symbolics, Inc. February 1984

Patching. cont'd.

Resume Patch (M-X)

Allows you to go back to a patch that you were not able to finish
in the same session in which you started it. This command works
only if you have previously saved all modified buffers.

If the system crashes, use Resume Patch (M-X) and then Abort
Patch (M-X). Begin the patch again.

176 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

ZMACS Zmacs Manual 177

Symbolics, Inc. February 1984

Customizing the Zmacs Environment

178

Overview

Introduction

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Now that you are familiar with the basic Zmacs concepts and
techniques, you can set up a large set of minor modes, Zmacs and
Lisp variables, and parameters to change the way the editor works.
Zmacs's flexibility allows you to change which keys are connected to
which commands, write your own commands, and install them in
lieu of the standard system commands. A few users make
extremely radical changes to the point where almost every key has
a new meaning.

This section describes:
• Zmacs minor and major modes, and how they provide a degree of

customization
• Creating new commands with keyboard macros
• Setting key bindings
• Specifying Zmacs variable settings
• Sample init file forms for automatically reloading your customized

environment

ZMACS Zmacs Manual 179

Symbolics, Inc. February 1984

Built-in Customization - Zmacs Minor Modes

Definition -
Minor Modes

How It Works

A minor mode:
• Is an option.
• Is independent of other minor modes and of the selected major

mode.

Zmacs has an extended command for each minor mode (r.-X) that
turns the mode on or off. With no argument, the command turns ,
the mode on if it was off and off if it was on. This is known as
toggling. A positive argument always turns the mode on, and a
zero argument or a negative argument always turns it off. All the
minor mode commands are suitable for connecting to single- or
double-character commands if you want to enter and exit a minor
mode frequently. (See the section "Key Bindings", page 191.)

Example - Filling Text

Auto Fill Mode (r.-X)

Tums on Auto Fill Mode, a minor mode that inserts Return
characters automatically to break lines as you type. You can tum
Auto Fill Mode on regardless of your major mode. If the mode line
displays Fil 1, Auto Fill Mode is on. If Auto Fill Mode is already
turned on, this command turns it off.

This mode is useful when you are typing large amounts of text. It
makes it unnecessary to look at the screen or to worry about line
length: you just type in the text without newlines and Zmaes
inserts them whenever they are needed.

Auto Fill Mode works by establishing a hook that runs after you
press one of the activation characters (SPACE, RETURN, • , ? , ! , or ")
that activate filling in this mode. When you press one of these
characters in Auto Fill Mode, Zmaes does more than simply insert
it. First it checks to see whether the line exceeds the maximum
allowable line length or fill column (see Set Fill Column below). If
the line is too long, Zmacs finds the last word on the current line
that fits inside the fill column. Zmacs then inserts a newline right
after that word. Extra spaces (if any) are deleted from the
beginning of the newly formed line.

Because of the way Auto Fill Mode works, you will often find
yourself typing a word out beyond the fill column. The word will
be moved to the next line as soon as you press one of the· activation
characters.

180 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Built-in Customization - Zmacs Minor Modes. cont'd.

Summary of
Minor Modes

The fill column is used by Auto Fill Mode (and by the paragraph
adjusting commands) to decide where to break lines. It is measured
in pixels, not in characters, so that Auto Fill Mode works even if
characters of different widths appear in a buffer. (A pixel is a tiny
rectangular area on the screen that is either all white or all black.
Pixels are the smallest addressable region of the display. If you
look closely, you can see the separate rectangular pixels that make
up everything on the display.)

You can change the fill column with the following command:

c-X F Set Fill Column

Changes the fill column to match up with the current position of
the cursor. That means that if point is at the end of a line, filled
lines will not be longer than the current one from now on.

With a positive numeric argument n less than 200, the fill column
is set to be n character-widths, and if n is 200 or greater, the fill
column is set to be n pixels.

Atom Word Mode (r.-X)

Makes word-moving commands, in Lisp mode, move over Lisp atoms
instead of words. This command does not display anything in the
mode line.

Auto Fill Lisp Comments Mode (c-M-X)

Tums on auto filling of comments, but not code. This command
displays Fil 1-Comments in the mode line.

Auto Fill Mode (r.-X)

Tums on auto filling. Auto Fill mode allows you to type text
endlessly without worrying about the width of your screen. Return
characters are inserted where needed to prevent lines from
becoming too long. This command displays Fi 11 in the mode line.

Electric Font Lock Mode (M-X)

Puts comments in font B. This command displays
Electric Font- lock in the mode line.

ZMACS Zmacs Manual 181

Symbolics, Inc. February 1984

Built-in Customization - Zmacs Minor Modes, cont'd.

See ...

Electric Shift Lock Mode (r.-X)

Facilitates typing in programs that are in uppercase. Whenever you
type a character that is part of a Lisp symbol, such as the name of
a function, variable, or special form, Zmacs inserts it in uppercase,
but when you type a character that is part of a character string or
a comment or after a slash, Zmacs inserts it normally. This
command displays Electric Shift- lock in the mode line.

EMACS Mode (Pl-X)

Provides commands for EMACS users. It puts bit-prefix commands
on ESCAPE (ALTMODE on an LM-2), c-"", and c-C, and Universal
argument on c-U. It also makes c-I a synonym for TAB, c-H a
synonym for BACKSPACE, and c-] a synonym for ABORT. This
command displays EHACS in the mode line.

Overwrite Mode (r.-X)

Tums on overwrite mode. In overwrite mode, ordinary printing
characters replace existing text, instead of inserting themselves next
to it. It is good for editing pictures. This command displays
Overwrite in the mode line.

Word Abbrev Mode (r.-X)

Allows you to define word abbreviations that expand as you type
them. This command displays Abbrev in the mode line.

See "Setting Mode Hooks", page 197, for information about setting
minor modes permanently.

182

Major Modes

User-Defined
Major Modes

File Types and
Major Modes

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

In Zmacs, you can define your own major modes (see
zwei:defnutjor in the code).

You can control the default major mode associated with a particular
file type. For example, Zmaes sets the major mode to. Lisp for flies
with type lisp. The repository for this information is a list called
fs:•file-type-mode-alist•. For example, suppose you wanted to
associate the file type tex with text mode:

(push '(8 tex8
• :text) fs:*file-type-mode-alist*)

The car of an element should be either a canonical type symbol or
a string when the type. is not one of the known canonical types.

In addition, suppose you have files that would require Scribe mode,
if Zmacs had such a thing. You can define a correspondence
between two major modes, using a global variable called
zwei:•major-mode-translations•. It is an alist of major mode
names, expressed as keyword symbols. Example:

(push '(:scribe. :text) zwei:*major-mode-translations*)

ZMACS Zmacs Manual 183

Symbolics. Inc. February 1984

Creating New Commands: Keyboard Macros

Definition

How It Works

Procedure

Example

A keyboard macro is a command that you define to abbreviate a
sequence of other commands. If you discover that you are about to
type c-N c-D 40 times, you can defme a keyboard macro to do c-N

c-D and call it with a repeat count of 40.

You defme a keyboard macro by telling Zmacs that you are about to
write a macro and then typing the commands that are the
definition. That is, as you are defming a keyboard macro, the
definition is being executed for. the first time. When you are
finished, the keyboard macro is defined and also has been, in effect,
executed once. You can then do the whole thing over again by
invoking the macro.

1. To start defining a keyboard macro, type c-X (
(Start Kbd Macro). From then on, your commands continue to
be executed, but also become part of the definition of the macro.
Macro- 1eve1 : 1 appears in the mode line.

2. If you want to perform an operation on each line, do one of the
· following:

• Start by positioning point on the line above the first one to be
processed and then begin the macro defmition with a c-N

• Start on the proper line and end with a c-N.
Either way, repeating the macro operates on successive lines.

3. After defining the body of the macro, you can terminate it in
several ways.
• c-X) <End Kbd Macro) terminates the defmition.
•An argument of zero to c-X) automatically repeats the macro

(upon termination of the definition) until it gets an error or
reaches the end of the buffer.

• c-X) can be given a repeat count as a numeric argument, in
which case it repeats the macro that many times right after
defming it, but defining the macro counts as the first
repetition (since it is executed as you defme it). (Subsequent
invocations ignore the numeric argument contained in the
macro.)

Inserting an argument of 5 before ending the macro(... c-5 c-K))
executes the macro immediately four additional times.

184 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Creating New Commands: Keyboard Macros. cont·d.

Start Keyboard Macro

c-X C Start Kbd Macro

Begins defming a keyboard macro. A numeric argument means
append to the previous keyboard macro.

End Keyboard Macro

c-X) End Kbd Macro

Terminates the defmition of a keyboard macro.

View Keyboard Macro
To see the keyboard macro, use View Kbd Macro (r.-X), which
prints the macro at the top of your screen.

View Kbd Macro (r.-X)

Displays the specified keyboard macro. The name of the macro is
read from the minibuffer; just RETURtt means the last one defmed,
which can also be temporary.

Call Last
Keyboard Macro

Example

The macro thus defined can be invoked again with c-X E (Call Last
Kbd Macro), which can be given a repeat count as a numeric
argument to execute the macro many times.

c-X E Call Last Kbd Macro

Repeats the last keyboard macro.

The example below defines a keyboard macro that goes to the
beginning of a line, inserts a semicolon, and goes to the next line.
It also executes the macro four times, including once as it is being
defined.
c-X (
c-A

c-N
c-4 c-X

ZMACS Zmacs Manual 185

Symbolics. Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

Defining an
Interactive
Keyboard Macro

Within the keyboard macro definition, you can specify steps at
which you want the macro to query. To define an interactive
keyboard macro, use the Kbd Macro Query command after
beginning the macro definition (with Start Kbd Macro). Invoke
Kbd Macro Query at each spot in the macro where you want the
macro to query. Then close the definition with End Kbd Macro.

c-X Q Kbd Macro Query

, Allows user interaction on each iteration of macro, similar to Query
Replace (M-X). While defining a keyboard macro, press c-x Q at
each step where you want a pause to occur. Upon execution of the
macro, it stops and waits at each of those steps for one of the
following characters:

SPACE

RUBOUT

? or HELP

c-R

Naming a
Keyboard Macro

Continues execution of the macro.

Skips rest of keyboard macro (use nested c-X c
and c-X) for grouping to control range of skip).

Displays HELP information.

Continues but does not iterate anymore.

Continues, iterates, but does not ask anymore.

Enters editing mode; c-M-FUNCTION R (MACRO R on
an LM-2) resumes the keyboard macro.

Having defined a keyboard macro, you can name it with Name Last
Kbd Macro (M-X). A prompt (Name for macro:) appears in the
minibuffer.

Name Last Kbd Macro (M-X)

Assigns a name to the most recent temporary keyboard macro,
making it permanent. The new name for the macro is read from
the minibuffer.

186 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

Using Keyboard
Macros to Sort

You can use a keyboard macro to set up a sorting mechanism and
run it on any region of text. See the description of Sort Via
Keyboard Macros, page 100.

Installing a Macro
on a Key

To bind the macro to the key of your choice, use Install Macro
(M-X). You are asked to identify the macro and specify the key(s)
to which you want it bound.

Install Macro (M-X)

Installs a specified user macro on a specified key. The name of the
macro is read from the minibuffer, and the keystroke on which to
install it is read in the echo area. If the key is currently holding a
command prefix (like c-X), it asks you for another character, so
that you can redefine c-X commands. However, with a numeric
argument, it assumes you want to redefme c-X itself, and does not
ask for another character.

Installing a Mouse Macro
You can bind the macro to a mouse click instead of a key using
Install Mouse Macro (M-X). This command works similarly to
Install Macro.

Install Mouse Macro (M-X)

Installs a specified user macro on a specified mouse click. The
name of the macro is read from the minibuffer, and the mouse
click on which to install it is read in the echo area. When the
mouse is clicked to invoke this macro, the macro is invoked from
the current location of the mouse cursor.

Deinstalling a Macro
To remove the macro from that key, use Deinstall Macro (M-X).
The key is rebound to the standard system usage, if any.

Deinstall Macro (M-X)

Deinstalls a keyboard macro.

ZMACS Zmacs Manual 187

Symbolics, Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

Example

See ...

This example shows how to install a macro and deinstall the same
macro:

you type:
minibuffer:
you type:
minibuffer:
you type:

"-X Install Macro
Name of macro to install (CR for last macro defined):
"acro-na"e or CR
Key to get it:
h-T

A menu appears and asks you in which comtab to install the macro:
• Just this editor
• Zmacs
• Zwei

Click on your choice.

mini buffer:

you type:
minibuffer:
you type:

Command l<DTP-CLOSURE 34465726> installed on Hyper-T.

"-X Deinstall Macro
Key to deinstall:
h-T

The menu appears and asks you to specify in which of the three
comtabs to deinstall the macro. Click on your choice.

minibuffer: Command NIL installed on Hyper-T.

See "Key Bindings", page 198, for information about saving
keyboard macros permanently.

More Features of
the Keyboard
Macro Facility

The keyboard macro facility implemented with the c-"-FUNCTION

key provides more features, such as an easy way to make tables.

c-M-FUNCTION

Reads a keyboard macro command, consisting of an optional
numeric argument made up of any number of digits (0-9) followed
by a non-numeric character, usually a letter. Each keyboard macro
command must be preceded by the c-M-FUNCTION prefix. After
typing the prefix, you may type HELP for a list of available keyboard
macro commands.

188 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

Keyboard Macro Commands for c-M-FUNCTIOtt

0-9 Optional numeric argument.

c Calls a macro by name. Prompts in the minibuffer for the
name of the macro.

P Begins a macro definition (same as c-X (- see "Start
Keyboard Macro").

R Ends a macro definition (same as c-X) - see "End
Keyboard Macro").

M Defines a named macro. Prompts for the name of the
macro to define and then enters macro definition mode.

s Stops (aborts) macro definition (also c-G.

D Defines a named macro but does not execute it while
reading its characters.

SPACE Inserts pauses for user interaction in the macro (same as
c-X Q - see "Defining an Interactive Keyboard Macro").

A Steps .though characters on successive iterations (for
example, letters and numbers). Asks for starting character,
amount to increase (or decrease if negative) on each
iteration.

u Allows typein terminated by c-M-FUHCTIOtt R (MACRO R on
LM-2). This allows you to stop while in the middle of
defining the macro, do other things in the editor, and then
go back and finish defining the macro.

T Allows typein every iteration.

The difference between c-M-FUHCTIOtt u and c-M-FUHCTIOtt T is that
c-A-FUHCTIOH u allows typein while defining a macro that does not
get stored in the macro, hence does not executed on subsequent
iteration nor when the macro is called again. c-M-FUHCTIOH T
allows typein on every iteration. As with c-M-FUHCTIOtt u, the
typein while defining the macro does not get stored in the macro.
But on each subsequent iteration, new typein will be requested.

ZMACS Zmacs Manual 189

Symbolics, Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

Example

Example

The following· example shows how to create a macro that constructs
a table using c-r.-FUNCTI Ott A.

you type: c-X (
Hinibuffer: Hacro-level: 1 *

you type : c-r.-FUNCTI Ott A
Hinibuffer: Initial character (type a one-character string):

you type : a RETURN
Hinibuffer: Amount by which to increase it (type a decimal number):

you type: 1 RETURN
(Zmacs inserts the a into the buffer.)

you type: c-2 c-6 c-X)

As you close the macro, Zmacs inserts into the buffer:
a b c d e f g h i j k 1 m n o p r s t u v w x y z

by executing the macro 26 times, increasing the letter once each
time.

The following example shows how to create a macro that constructs
a table using c:-r.-FUNCTION A, and this time, c-r.-FUNCTION T, which
allows typein during ever:y iteration of the macro:

you type: c-X (
Hinibuffer: Hacro-level: 1 *

you type: Item SPACE
you type: c-r.-FUNCTI ON A

Hinibuffer: Initial character (type a one-character string):
you type: 1

Hinibuffer: Amount by which to increase it (type a decimal number):
you type: 1
you type: TAB
you type: c-r.-FUNCTI ON T

Hinibuffer: Hacro-level: 2 *
you type: Rosemary
you type: c:-r.-FUNCTION R

Hinibuffer: Hacro-level: 1 *
you type: RETURN
you type: c:-5 c:-X)
you type: Sage
you type: c-r.-FUNCT ION R
you type: Thyme
you type: c:-r.-FUNCTION R
you type: Parsley
you type: c:-r.-FUNCTION R
you type: Pepper
you type: c:-r.-FUNCTION R

190 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Creating New Commands: Keyboard Macros. cont'd.

The table looks like this:
Item 1 Rosemary
Item 2 Sage
Item 3 Thyme
Item 4 Parsley
Item 5 Pepper

ZMACS Zmacs Manual 191

Symbolics, Inc. February 1984

Key Bindings

Definition

How It Works:
The Comtab

Set Key

A key binding is the set of specific keystrokes that invoke a specific
command.

A command table, or comtab, assigns a command to each possible
keystroke. While Zmacs is running, there is always a unique
selected comtab, in which Zmacs fmds the command that
corresponds to each user keystroke. When you type a keystroke,
Zmacs looks up the keystroke in the currently selected comtab,
finds the appropriate command, and runs it. Usually the
command's side-effects all occur within the buffer: Point might be
moved and text might be deleted, inserted, or rearranged.
Sometimes a command has more extensive side-effects. A command
can alter or replace the selected comtab itself, in which case Zmacs
looks up the next keystroke in the new command table.

Zmacs' basic state consists of the standard editor key bindings,
which reside in one special command table, the standard comtab
<Zwei comtab). The standard comtab interacts with the Zmacs
comtab and the various mode-dependent comtabs. The typical
selected comtab when in Zmacs is "unnamed" for mode-specific key
bindings, which indirects to "Zmacs", which indirects to "Zwei".
Although the standard comtab can be temporarily replaced, it is
always reselected eventually, often after only one "nonstandard"
keystroke.

A keystroke that functions as a prefix actually runs a command
that replaces the standard comtab for one keystroke. This is the
mechanism by which multikeystroke commands are implemented.
For example, there are many two-stroke commands whose first
keystroke is c-X. This keystroke runs a command that brings in
its own comtab before interpreting the next stroke.

If you want to put a command on the keystroke of your choice, use
Set Key. This command works for any of the already defmed
commands.

Set Key (rl-X)

Installs a specified command on a specified key. If the key is
currently holding a command prefix (like c-X), it asks you for
another character so that you can redefme c-X commands.
However, with a numeric argument, it assumes you want to
redefine c-X itself and does not ask for another character.

192 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Key Bindings. cont'd.

It assigns key bindings in the editor that are active in all buffers,
and takes two arguments: the name of a command, and a
keystroke to invoke it. It reads the name of the command in the
minibuffer, completing any command name in any comtab.

Install Command

See ..•

If you want to put a function on the keystroke of your choice, use
Install Command. It takes a function, regards it as a command,
and puts it on a key.

Install Command (r.-X)

Installs a specified function as a command in the comtab, on a
specified key. It takes two arguments: the name of the function
(the current defmition, that is, top level expression), and a
keystroke to invoke it. (Zmacs treats as a definition any top-level
expression having in functional position a symbol whose name
begins "def'.) If the key is currently holding a command prefix
(like c-X), it asks you for another character so that you can
redefine c-X commands. However, with a numeric argument, it
assumes you want to redefme c-x itself and does not ask for
another character.

See "Key Bindings", page 198, for information about setting key
bindings permanently.

ZMACS Zmacs Manual 193

Symbolics. Inc. February 1984

How to Specify Zmacs Variable Settings

Definition

Finding Out

A variable is a name that is associated with a value, for example, a
number or a string. Zmacs has editor variables that you can set
for customization. <Variables can also be set automatically by major
modes.)

You can distinguish the names of Zmacs variables from other Lisp
variables by their names - the first letters are capitalized and the
names contain spaces rather than hyphens. For example, Region
Marking Mode is zwei:•region-marking-mode* internally.

About Zmacs Variables
To examine the value of a single Zmacs variable, use Describe
Variable (.-.-><). To print a complete list of all variables, use List
Variables (.-.-><).

Describe Zmacs Variable

Describe Variable c -x)

Displays the documentation and current value for a single Zmacs
variable. It reads the variable name from the minibuffer, using
completion.

List Zmacs Variables

List Variables (Pl-X)

Lists all Zmacs variables and their values. With a numeric
argument, this command also displays the documentation line for
the variable.

Variable Apropos

HELP V
c-HELP V
c-.-.-? V

Variable Apropos

Displays the names of all possible Zmacs variables containing a
specific substring. With a numeric argument, this command also
displays the documentation lines for the variables.

194 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

How to Specify Zmacs Variable Settings. cont'd.

Example

Set Variable

One example of such a Zmacs variable is the Fill Column variable,
which specifies the width, in pixels, used in filling text.

For example, c-1 HELP v prompts in the mimbufTer Variable
Apropos (substring): and you type fi 11 col. It does pattern
matching on the variable name and thus matches Fill column,
which displays: Fill column: 576. Width in pixels used in filling
text.

Set Variable (M-X)

Sets any existing Zmacs variable. This command reads the name of
a variable (with completion), displays its current value and
documentation, and prompts in the minibufTer for a new value. It
does some checking to see that the new value has the right type.

Although either uppercase or lowercase works, you are encouraged
to capitalize each word of the name for aesthetic reasons, since
Zmacs stores the name as you give it.

Settable Zmacs Variables
You can view all settable Zmacs variables with the List Variables
command.

The following are some examples of variables that can be set with
Set Variable. In addition, they can be set in init files by using the
internal form of their names. For example, Region Marking Mode
is zwei:•region-marking-mode• internally.

Region Marking Mode
Value: :reverse-video for setting the region to
reverse video. The default is :underline.

Region Right Margin Mode
Value: t. Causes whatever marks the region (reverse
video or underlining) to extend across unfilled space
to the right margin. The default is nil.

ZMACS Zmacs Manual 195

Symbolics, Inc. February 1984

How to Specify Zmacs Variable Settings. cont'd.

See ...

One Wmdow Default
Controls which window remains selected after a One
Window (c-x 1) command when you were using
more than one window. Possible values:
:current
:other
:top
:bottom

This feature operates best when the current layout
has no more than two windows. The value :current
is the only one that is always well defined with more
than two windows on the screen.

Check Unbalanced Parentheses When Saving
Controls whether Zmacs checks a file for unbalanced
parentheses when you are saving the file. The check
is on (t) by default. When it checks a file that you
are saving and finds unbalanced parentheses, it
queries you about whether to go ahead and save
anyway. This applies to all major modes based on
Lisp; it is ignored for text modes.

See "Customizing the Editor in Init Files", page 196, for information
about setting variables permanently.

196 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Customizing the Editor in lnlt Files

Introduction
As you gain sophistication with the more advanced features, you
will find the settings of parameters that most please you and put
these into a command tile (init file> that the system executes every
time you log in.

Creating An Init File
Create a file named lispm-init.l in your home directory on your
host system and put your Zmacs customizations there.

This section contains examples of forms that you can place inside of
a login-forms in your init file to customize the editor.

login-forms is a special form for wrapping around a set of forms in
your init file. It evaluates the forms and arranges for them to be
, undone when you log out.

Setting Editor Variables
The forms described show how to set Zmacs variables (the kind
that Set Variable ("'-X) sets).

Ordering Buffer Lists
(SETQ ZHEl:*SORT-ZMACS-BUFFER-LIST* NIL)

displays the list of buffers in the order the buffers were created
rather than in the order they were most recently visited.

Putting Buffers Into
Current Package

Setting Default
Major Mode

(SETQ ZHEl:*DEFAULT-PACKAGE* NIL)

puts buffers created with c-X B (Select Buffer) into whatever
package is current; the default is to put them in the USER
package.

(SETQ ZWEl:*DEFAULT-MAJOR-MODE* ':TEXT)

sets the default major mode to Text mode for buffers with no Mode
attribute and no major mode deducible from the file type; the
default is Fundamental mode.

ZMACS Zmacs Manual 197

Symbolics, Inc. February 1984

Customizing the Editor In lnit Files. cont'd.

Setting Fi,nd Fi,le
Not To Create New Fi,les

Setting Goal
Column for Real
Line Commands

(SETQ ZWEI:*FIND-FILE-NOT-FOUND-IS-AN-ERROR* T)

beeps and prints an error message when you give c-x c-F
(Find File) the name of a nonexistent file. The default prints
(New Fi 1 e) and creates an empty buffer, which when saved by
c-X c-s (Save File) creates the file that was nonexistent.

(SETQ ZWEI:•PERHANENT-REAL-LINE-GOAL-XPOS* O)

moves subsequent c-H and c-P (Down Real Line and Up Re81 Line)
commands to the left margin, like doing c-0 c-X c-H (Set Goal
Column to zero).

Fixing White Space
For Kill/Yank Commands

(SETQ ZWEI:•KILL-INTERVAL-SMARTS* T)

tells the killing and yanking commands optimize white space
surrounding the killed or yanked text.

Setting Mode Hooks
Each major mode has a mode hook, a variable which, if bound, is a
function that is called with no arguments when that major mode is
turned on.

Electric Shift Lock
in Lisp Mode

(SETQ ZWEl:LISP-HODE-HOOK 'ZWEl:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

tells Lisp major mode to tum on Electric Shift Lock minor mode
unless the buffer has a Lowercase attribute. The effect is that by
default Lisp code is written in upper case.

198 ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Customizing the Editor In lnlt Files. cont'd.

Auto Fill in Text Mode

Key Bindings

(SETQ ZWEl:TEXT-MODE-HOOK 'ZWEl:AUTO-FILL-IF-APPROPRIATE)

tells Text major mode to tUm on Auto Fill minor mode unless the
buffer has a Nofill attnbute. The effect is that by default lines of
text are automatically broken by carriage returns when they get too
wide.

To bind keys, you first define the comtab in which to put the
binding. For example, •standard-comtab• and
•standard-control-x-comtab• define features of all zwei-based
editors; •zmacs-comtab and •zmacs-control-x-comtab define
features that are Zmacs-specific.

Balanced Quotation
Marks and Asterisks

ZWEl:(SET-COHTAB *STANDARD-COMTAB*
'(l\m-/• COM-MAKE-/(/)

l\c-m-/• COM-MOVE-OVER/)
l\m-1* COM-HAKE-/(/)
l\c-m-1* COM-HOVE-OVER-/)
))

defines commands to insert balanced pairs of quotation marks or
asterisks into the buffer. For example, one can type an asterisked
special variable name as m-* FOO, which inserts *FOO* into the
buffer, ensuring that one does not forget to type the trailing
asterisk.

White Space In Lisp Code
ZWEI:(SET-COHTAB *STANDARD-CONTROL-X-COHTAB*

'(#\SP COM-CANONICALIZE-WHITESPACE))

defines c::-X SPACE as a command that makes the horizontal and
vertical white space around point (or around mark if given a
numeric argument or immediately after a yank command) conform
to standard style for Lisp code.

ZMACS Zmacs Manual 199

Symbolics, Inc. February 1984

Customizing the Editor in lnit Files. cont'd.

c-M-L on the SQUARE Key
ZWEl:(SET-COHTAB •ZMACS-COHTAB*

'(l\SQUARE COM-SELECT-PREVIOUS-BUFFER))

defines the Square key to do the same thing as c-M-L. This key
binding is placed in •zmacs-comtab• rather than
•standard-comtab• since buffers are a feature of Zmacs, not of all
Zwei-based editors.

Edit Buffers on c-X c-8
ZWEl:(SET-COHTAB •ZHACS-CONTROL-X-COMTAB*

'(l\c-B COM-EDIT-BUFFERS))

This makes c-X c-8 invoke Edit Buffers rather than List Buffers.
This key binding is placed in •zmacs-control-x-comtab• rather
than •standard-control-x-comtab• since buffers are a feature of
Zmacs, not of all Zwei-based editors.

Edit Buffers on M-X

M-. on M-[(L)J

ZWEI:(SET-COHTAB •ZHACS-COMTAB*
()

(HAKE-COHHAND-ALIST '(COM-EDIT-BUFFERS)))

This makes Edit Buffers available on iw.-X in Zmacs (by default it is
only available on c-M-X).

ZWEl:(SET-COHTAB •ZHACS-COHTAB*
'(l\m-HOUSE-L COM-EDIT-DEFINITION))

This makes clicking the Left mouse button while holding down the
Meta key do what "-. does. Invoking this command from the
mouse is convenient when you specify the name of the definition to
be edited by pointing at it rather than typing it.

200 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

ZMACS Zmacs Manual 201

Symbolics. Inc. February 1984

Appendix A
Help Command Summary

This section lists the names of· the available help commands grouped according to the
context in which they are available. The purpose of this section is to summarize the
capabilities and to help you determine both the overall contexts for which you can
find help and a particular function that might be what you are looking for.

Zmacs commands
for finding out
about the state of buffers
Edit Buffers (r.-X)
Edit Changed Definitions (r.-X)
Edit Changed Definitions Of Buffer (r.-X)
List Buffers (c-X c-B)
List Changed Definitions (r.-X)
List Changed Definitions Of Buffer (.-.-x)
List Definitions (r.-X)
List Matching Lines (r.-X)
Print Modifications (r.-X)
Select System as Tag Table (r.-X)
Tags Search (r.-X)

Zmacs commands
for finding out
about the state of Zmacs

Apropos (HELP A, r.-X)
De8cribe Variable (r.-X)
Edit Zmacs Command (r.-X)
List Commands (r.-X)
List Registers (r.-X)
List Some Word Abbrevs (r.-X)
List Tag Tables (r.-X)
List Variables (r.-X)
List Word Abbrevs (r.-X)

Zmacs commands
for finding out
about Lisp
Brief Documentation (c-sh-D)
Describe Variable At Point (c-sh-V)
Edit Callers (r.-X)
Edit Definition (...-.)

202

Edit File Warnings (,_-x)
Function Apropos (,_-x)
List Callers (,_-x)
List Matching Symbols (,_-X)

Long Documentation (,_-sh-D)
Multiple Edit Callers (,_-x)
Multiple List Callers (,_-x)
Quick Arglist (c-sh-A)
Where Is Symbol (,_-x)

Zmacs commands
for rmding out
about Oavors
Describe Flavor (,_-X)
Edit Combined Methods (,_-x)
Edit Methods (,_-x)
List Combined Methods (,_-x)
List Methods (,_-X)

Zmacs commands
for interacting
with Lisp
Break (SUSPEND - BREAK on an LM-2)
Compile And Exit (,_-i!)
Compile Buffer (,_-x)
Compile Changed Definitions (,_-x)
Compile Changed Definitions Of Buffer (,_-sh-C, .._-x)
Compile File (,_-x)
Compile Region (c-sh-C, .._-x)
Compiler Warnings (,_-x)
Edit Compiler Warnings (,_-x)
Evaluate And Exit (c-,_-i!)
Evaluate And Replace Into Buffer (,_-x)
Evaluate Buffer (,_-x)
Evaluate Changed Definitions (,_-x)
Evaluate Changed Definitions Of Buffer (,._-sh-E, ~x>
Evaluate Into Buffer (,_-x)
Evaluate Minibuffer ((ESCAPE - "-ALTMODE on an LM-2))
Evaluate Region (c-sh-E, "-X)
Evaluate Region Hack (,_-x)
Evaluate Region Verbose (c-"-sh-E)
Load Compiler Warnings (,_-X)

Macro Expand Expression (c-$h-M, "-X)
Trace (M-X)

Quit (c ... i!)

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

ZMACS Zmacs Manual 203

Symbolics, Inc. February 1984

Index

I I . .
! Dlred command 140

Exclamation point (!) line continuation Indicator 20. 46

$ $ $
I Dlred command 139

)
Move OVer

)
) 56

)

* * * * buffer status indicator 19

+ + +
+ nag In Zmacs 103

' ' ' , Dired command 136

1 1 1
c-X 1 Zmacs command 118

2 2 2
c-X 2 Zmacs command 117

3 3 3
c-X 3 Zmacs command 117

4 4 4
c-X 4 Zmacs command 117

8 8 8
c-X 8 Zmacs command 117

204

'

? .

A

c-X
Semicolon

c-X

HELP

c-X
HELP
Word
Word
Di red

Warnings
Zmacs commands for finding out
Zmacs commands for finding out
Zmacs commands for finding out
Zmacs commands for finding out

Finding Out

Macro Expand Expression
Select
Undo
Save

Point motion
Fast Where

Where
Point Motion

Oired

Searching for

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

• •
' ' ; Zmacs command 158

(;)comment Indicator 157

- -- -
= Olred command 137
= Zmacs command 37

? ? . .
? Olred command 135
? Zmacs command 12

A A
A Dlred command 141
A Zmacs command 112
A Zmacs command 12, 35
Abbrev mode 18
Abbrev Mode (m-X) Zmacs command 181
Abort 135
Abort At Top Level 32
ABORT Oired command 135
Abort Patch (m-X) Zmacs command 174
ABORT Zmacs command 32
about file attribute lists 126
about flavors 202
about Lisp 201
about the state of buffers 201
about the state of Zmacs 201
About Zmacs Commands 34
Accidental deletion 33
Add Patch (m-X) Zmacs command 173
Add Patch Changed Definitions (m-X) Zmacs

command 173
Add Patch Changed Definitions of Buffer (m-X) Zmacs

command 173
Additional Notation Conventions 7
Adjust paragraph 83
Adjust region 83
All 165
All Buffers As Tag Table (m-X) Zmacs command 94
all changes to buffer 109
All Files (m-X) Zmacs command 108
along nesting level 54
Am I 37
Am I 37
Among Top-Level Expressions 55
Any Extended Command 6
Append Next Kill 65
Append To Buffer 112
Append To File (m-X) Zmacs command 112
Appending, Prependlng, and Inserting Text 112
Apply Function 141
Applying Functions to Files 141
Appropriate Commands 35

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

, Completion
Variable
Variable

Echo
Quadruple Numeric

Quick

Display
Echoing

Negative Numeric
Numeric

Positioning Window

Apropos 12
Apropos 44
Apropos 193
Apropos Zmacs command 193
Area 17
Arg 22
Arglist 37
Arglist (m-X) Zmacs command 37
argument list 37
arguments 22
Arguments 51
arguments 20, 22, 34, 51
Around Definition 48
Assign key bindings 192
Association of buffers with files 27
Association of files with buffers 27

205

Backspace file
Base file

Lowercase file
Nofill file

Patch-File file
Tab-Width file

Unknown
Vsp file

File

Atom Query Replace (m-X) Zmacs command 93
Atom Word Mode (m-X) Zmacs command 180
attribute 128

Describe
Dired Describe

Reparse
Re parse
Update

Warnings about file
Buffer

Buffer and File
File

Set commands for file and buffer

Di red
Locating and Replacing Strings

attribute 128
attribute 128
attribute 129
attribute 129
attribute 130
attribute 126
attribute 130
Attribute Checking 126
Attribute list 125
Attribute List 136
Attribute List 136
Attribute Ust (•-X) Zmacs command 127
Attribute List (m-X) Zmacs command 125
Attribute List (m-X) Zmacs command 125
Attribute lists 126
attribute lists 126
attributes 125
Attributes 125
attributes 125
attributes 127
Auto Fill Lisp Comments Mode (c-m-X) Zmacs

command 180
Auto Fill mode 18, 129, 179
Auto Fill Mode (m-X) Zmacs command 180
Automatic 138, 139
Automatically 90

B B B
c->< B Zmacs command 27, 105

Back To Indentation 151
Set Backspace (m-X) Zmacs command 128

Backspace file attribute 128
File backup ft~ 140

Backward 23, 52
Backward character 51
Backward Kill Sentence 25, 72
Backward Kill Sexp 25, 69
Backward Kill Word 25, 68

206

Erase

Kill

Set

Goto
Mark

Move cursor to
Query Replace Let

Assign key
Command key

Extended command key
Key

Delete

Append To
Creating a

Current
Cursor motion within

Decrypt
Encrypt

id=unction-Specs-to-Edit-'1*
Insert text from register into

Kill
Mark

Motion with Respect to the Whole
Moving to end of

Select
Select Default Previous

Select Previous
Selected

Undo all changes to
View

Add Patch Changed Definitions of
Compile

Compile Changed Definitions of
Decrypt

Edit Changed Definitions of
Encrypt

Evaluate
Evaluate and Replace Into

Evaluate Changed Definitions of
Evaluate Into

Hard copy
Insert

List Changed Definitions of
Multiple Query Replace From

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Backward List 53, 54
Backward Paragraph 23, 58
Backward Sentence 23, 53
Backward Sexp 54
backward to start of line 71
Backward Up List 55
Backward Up List (c-m-X) Zmacs command 69
Backward Word 23, 52
Base 126
Base (m-X) Zmacs command 128
Base file attribute 128
Beep 32. 33
Beginning 24, 60
Beginning 81
Beginning Of Definition 55
Beginning of Line 23, 57
beginning of line 48
Binding (m-X) Zmacs command 92
bindings 192
bindings 12
bindings 36
Bindings 191
Blank Lines 26, 153
Bolio mode 145
Breaking a line 20
Brief Documentation 37
Buffer 112
Buffer 27
buffer 109
buffer 60
Buffer 108
Buffer 108
buffer 11
buffer 78
Buffer 110
buffer 81
Buffer 60
buffer 60
Buffer 27, 105
Buffer 105
Buffer 105
buffer 104
buffer 109
Buffer 107
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command
Buffer (m-X) Zmacs command

'"' 173
162
162
108
168
108
160
92, 161
161
160
108
112
169
92

ZMACS Zmacs Manual 207

Symbolics, Inc. February 1984

Rename
Revert
View

Set commands for file and

Current

*

Association of files with
comparing Files and

List
Multiple

Possibility
Selecting, Listing, and Examining

Support
Zmacs commands for ~finding out about the state of

Edit
Kill Or Save

Kill Some
Creating and Saving

Manipulating
Working With

Select All
Association of

List

c c

Buffer (m-X) Zmacs command 108
Buffer (m-X) Zmacs command 109
Buffer (m-X) Zmacs command 107
Buffer and File Attributes 125
Buffer attributes 125
buffer attributes 127
Buffer commands 105
Buffer History 104
buffer information 17
Buffer names 18
Buffer pointers 7 4
buffer status indicator 19
Buffers 15, 18, 27
buffers 27
Buffers 113
Buffers 106
buffers 102
Buffers 98
Buffers 104
buffers 98
buffers 201
Buffers (m-X) Zmacs command 107
Buffers (m-X) Zmacs command 110
Buffers (m-X) Zmacs command 110
Buffers and Files 27
Buffers and Files 101
Buffers and Files 102
Buffers As Tag Table (m-X) Zmacs command 94
buffers with files 27
Buffers Zmacs command 103

SELECT C 30
C Dired command 137

HELP C Zmacs command 12, 34
c-i Zmacs command 90
c-. Zmacs command 98, 168
c-1 completion command 13, 44
c-8 c-m-V yank command 14
c-; Zmacs command 157

c-X c-; Zmacs command 159
c-< Zmacs command 81
c- = Zmacs command 37
c-> Zmacs command 81
c-? completion command 13, 44
c-A Zmacs command 23, 57
c-B Zmacs command 23, 52

c-X c-B Zmacs command 103, 106
c-0 Dired command 138
c-0 Zmacs command 25, 33, 66

c-X c-0 Zmacs command 119
c-E Zmacs command 23, 57
c-F Zmacs command 23, 51

c-X c-F Zmacs command 28, 29, 108
c-G Zmacs command 32, 33

c-X c-G Zmacs command 32
c-HELP v Zmacs command 193

c

208

c-X

c-X

c-X

c-X

Auto Fill Lisp Comments Mode
Kill Backward Up List

c-0

c-X

c-X

c-X

c-X

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

c-1 Zmacs command 152
c-K Olred command 138
c-K Zmacs command 25, 71
c-L Zmacs command 47
c-L Zmacs command 148
c-m- C Zmacs command 55
c-m-> Zmacs command 55
c-m-; Zmacs command 157
c-m-? V Zmacs command 193
c-m-@ Zmacs command 80
c-m-A Zmacs command 55
c-m-B Zmacs command 54
c-m-0 Zmacs command 54
c-m-E Zmacs command 56
c-m-F Zmacs command 54
c-m-H Zmacs command 80
c-m-K Zmacs command 25, 69
c-m-L Zmacs command 105
c-m-L Zmacs command 105
c-m-M Zmacs command 151
c-m-N Zmacs command 53
c-m-0 Zmacs command 153
c-m-P Zmacs command 53
c-m-Q Zmacs command 151
c-m-R Zmacs command 48
c-m-RETURN Zmacs command 151
c-m-RUBOUT Zmacs command 25, 69
c-m-sh-E Zmacs command 160
c-m-SPACE Zmacs command 76
c-m-SPACE Zmacs command 76
c-m-T Zmacs command 70
c-m-U Zmacs command 55
c-m-V Zmacs command 118
(c-m-X) Zmacs command 180
(c-m-X) Zmacs command 69
c-m-V yank command 14
c-m-V yank command 14
c-m-Z Zmacs command 161
c-m- C Zmacs command 55
c-m-\ Zmacs command 151
c-m-l Zmacs command 56
c-m-" Zmacs command 152
c-N Dired command 136
c-N Zmacs command 23, 56, 183
c-N Zmacs command 57
c-0 c-V yank command 13
c-0 Zmacs command 153
c-0 Zmacs command 26, 153
c-P Dlred command 136
c-P Zmacs command 23, 56
c-P Zmacs command 81
c-R Zmacs command 87
c-S Zmacs command 28, 109
c-sh-A Zmacs command 37
c-sh-C Zmacs command 82
c-sh-0 Zmacs command 37
c-sh-E Zmacs command 160
c-sh-M Zmacs command 165

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

c-sh-V Zmacs command 38
c-SPACE Zmacs command 76
c-T Zmacs command 66

c-X c-T Zmacs command 71
c-U Zmacs command 22

c-X c-U Zmacs command 148
c-V Zmacs command 24, 47

c-X c-V Zmacs command 109
c-W Zmacs command 25, 82

c-X c-W Zmacs command 29, 109
c-X 1 Zmacs command 118
c-X 2 Zmacs command 117
c-X 3 Zmacs command 117
c-X 4 Zmacs command 117
c-X 8 Zmacs command 117
c-X ; Zmacs command 158
c-X = Zmacs command 37
c-X A Zmacs command 112
c-X B Zmacs command 27, 105
c-X c-; Zmacs command 159
c-X c-B Zmacs command 103, 106
c-X c-0 Zmacs command 119
c-X c-F Zmacs command 28, 29, 108
c-X c-G Zmacs command 32
c-X c-1 Zmacs command 152
c-X c-L Zmacs command 148
c-X c-m-L Zmacs command 105
c-X c-m-SPACE Zmacs command 76
c-X c-N Zmacs command 57
c-X c-0 Zmacs command 26, 153
c-X c-P Zmacs command 81
c-X c-S Zmacs command 28, 109
c-X c-T Zmacs command 71
c-X c-U Zmacs command 148
c-X c-V Zmacs command 109
c-X c-W Zmacs command 29, 109
c-X c-X Zmacs command n
c-X D Zmacs command 131
c-X E Zmacs command 184
c-X F Zmacs command 27, 180
c-X H Zmacs command 81
c-X K Zmacs command 110
c-X L Zmacs command 38
c-X O Zmacs command 118
c-X Q Zmacs command 185
c-X RUBOUT Zmacs command 25, 72
c-X S Zmacs command 27
c-X T Zmacs command 82
c-X V Zmacs command 107
c-X W Zmacs command 27
c-X Zmacs command 86, 183

c-X c-X Zmacs command n
c-X A Zmacs command 117
c-V yank command 13

c-0 c-Y yank command 13
c-Z Zmacs command 30
caJI Last Kbd Macro 184

Using the mouse to call up System menu 30

209

210

Edit
List

Multiple Edit
Multiple List

Changing
Changing
Changing

DI red

Add Patch
Compile

Edit
Evaluate

Add Patch

Compile

Edit

Evaluate

List

Undo all

Backward
Forward

Motion by
RUBOUT Zmacs

Prefix
Deleting and Transposing

Exchange
Inserting
Newline

File Attribute

l2:Move to point mouse
L:Move point mouse

M2:Save/Kill/Yank mouse
M :Mark thing mouse

R2:System menu mouse
R:Menu mouse

Current meaning of mouse
Commenting

Finding source
Lowercase
Uppercase

Editing the source

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

callers (m-X) Zmacs command 169
callers (m-X) Zmacs command 170
callers (m-X) Zmacs command 170
callers (m-X) Zmacs command 171
Cancel last command 32
Cancel response 32
Canonical types 122
carnage return 5
case 148
case and Indentation 147
case of Region 148
Center Line 150
Change File Properties 136
Change File Properties (m-X) Zmacs command 123
Changed Definitions (m-X) Zmacs command 173
Changed Definitions (m-X) Zmacs command 162
Changed Definitions (m-X) Zmacs command 167
Changed Definitions (m-X) Zmacs command 161
Changed Definitions of Buffer (m-X) Zmacs

command 173
Changed Definitions of Buffer (m-X) Zmacs

command 162
Changed Definitions of Buffer (m-X) Zmacs

command 168
Changed Definitions of Buffer (m-X) Zmacs

command 161
Changed Definitions of Buffer (m-X) Zmacs

command 169
changes to buffer 109
Changing case 148
Changing case and Indentation 147
Changing case of Region 148
character 51
character 51
character 51
character 66
character commands 5
Characters 66
Characters 66
Characters 20
characters 20
Check Unbalanced Parentheses When Saving 195
Checking 126
Clean Directory (m-X) Zmacs command 123
Clear 71
CLEAR-INPUT Zmacs command 71
click 49
click 49
click 49
click 49
click 50
click 50
clicks 49
Code 157
code 156
Code in Region 148
Code In Region (m-X) Zmacs command 148
code of a function 11

ZMACS Zmacs Manual 211

Symbolics. Inc. February 1984

Locating Source Code to Edit 166
Set Comment Column 158

Set Fill Column 180
Set Goat Column 57

Default column position 57
! Dired command 140
I Dired command 139
, Dired command 136

= Dired command 137
? Dired command 135
A Dired command 141

ABORT Dired command 135
Abort Patch (m-X) Zmacs command 174

ABORT Zmacs command 32
Add Patch (m-X) Zmacs command 173

Add Patch Changed Definitions (m-X) Zmacs command 173
Add Patch Changed Definitions of Buffer (m-X) Zmacs

Any Extended
Append To File (m-X) Zmacs

Arglist (m-X) Zmacs
Atom Query Replace (m-X) Zmacs

Atom Word Mode (m-X) Zmacs
Auto Fill Lisp Comments Mode (c-m-X) Zmacs

Auto Fill Mode (m-X) Zmacs
c Dired

c-% Zmacs
c-. Zmacs

c-1 completion
c-0 c-m-Y yank

c-; Zmacs
c-< Zmacs

c-= Zmacs
c-> Zmacs

c-? completion
c-A Zmacs
c-B Zmacs
c-0 Dired

c-0 Zmacs
c-E Zmacs
c-F Zmacs
c-G Zmacs

c-HELP V Zmacs
c-K Dired

c-K Zmacs
c-L Zmacs

c-m-C Zmacs
c-m-> Zmacs
c-m-; Zmacs

c-m-? V Zmacs
c-m-@ Zmacs
c-m-A Zmacs
c-m-B Zmacs
c-m-0 Zmacs
c-m-E Zmacs
c-m-F Zmacs
c-m-H Zmacs
c-m-K Zmacs

•

command 173
Command 6
command 112
command 37
command 93
command 180
command 180
command 180
command 137
command 90
command 98, 168
command 13, 44
command 14
command 157
command 81
command 37
command 81
command 13, 44
command 23, 57
command 23, 52
command 138
command 25, 33, 66
command 23, 57
command 23, 51
command 32, 33
command 193
command 138
command 25, 71
command 47
command 55
command 55
command 157
command 193
command 80
command 55
command 54
command 54
command 56
command 54
command 80
command 25, 69

212

c-m-L Zmacs
c-m-M Zmacs
c-m-N Zmacs
c-m-0 Zmacs
c-m-P Zmacs
c-m-0 Zmacs
c-m-R Zmacs

c-m-RETURN Zmacs
c-m-RUBOUT Zmacs

c-m-sh-E Zmacs
c-m-SPACE Zmacs

c-m-T Zmacs
c-m-U Zmacs
c-m-v Zmacs

c-m-V yank
c-m-Z Zmacs
c-m-C Zmacs
c-m-\ Zmacs
c-m-l Zmacs
c-m-A Zmacs

c-N Dired
c-N Zmacs

c-0 c-V yank
c-0 Zmacs

c-P Dired
c-P Zmacs
c-R Zmacs

c-sh-A Zmacs
c-sh-C Zmacs
c-sh-0 Zmacs
c-sh-E Zmacs
c-sh-M Zmacs
c-sh-V Zmacs

c-SPACE Zmacs
c-T Zmacs
c-U Zmacs
c-V Zmacs
c-W Zmacs

c-X 1 Zmacs
c-X 2 Zmacs
c-X 3 Zmacs
c-X 4 Zmacs
c-X 8 Zmacs
c-X ; Zmacs

c-X = Zmacs
c-X A Zmacs
c-X B Zmacs

c-X c-; Zmacs
c-X c-B Zmacs
c-X c-0 Zmacs
c-X c-F Zmacs
c-X c-G Zmacs
c-X c-1 Zmacs
c-X c-L Zmacs

c-X c-m-L Zmacs
c-X c-m-SPACE Zmacs

c-X c-N Zmacs
c-X c-0 Zmacs

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

command 105
command 151
command 53
command 153
command 53
command 151
command 48
command 151
command 25, 69
command 160
command 76
command 70
command 55
command 118
command 14
command 161
command 55
command 151
command 56
command 152
command 136
command 23, 56, 183
command 13
command 153
command 136
command 23, 56
command 87
command 37
command 82
command 37
command 160
command 165
command 38
command 76
command 66
command 22
command 24, 47
command 25, 82
command 118
command 117
command 117
command 117
command 117
command 158
command 37
command 112
command 27, 105
command 159
command 103, 106
command 119
command 28, 29, 108
command 32
command 152
command 148
command 105
command 76
command 57
command 26, 153

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

c-X c-P Zmacs
c-X c-S Zmacs
c-X c-T Zmacs
c-X c-U Zmacs
c-X c-V Zmacs
c-X c-IJ Zmacs
c-X c-X Zmacs

c-X D Zmacs
c-X E Zmacs
c-X F Zmacs
c-X H Zmacs
c-X K Zmacs
c-X L Zmacs
c-X 0 Zmacs
c-X Q Zmacs

c-X RUBOUT Zmacs
c-X S Zmacs
c-X T Zmacs
c-X V Zmacs
c-X IJ Zmacs

c-X Zmacs
c-X A Zmacs

c-V yank
c-Z Zmacs
cancel last

Change File Properties (m-X) Zmacs
Clean Directory (m-X) Zmacs

CLEAR-INPUT Zmacs
Compile Buffer (m-X) Zmacs

Compile Changed Definitions (m-X) Zmacs
Compile Changed Definitions of Buffer (m-X) Zmacs

Compile Fiie (m-X) Zmacs
Compile Region (m-X) Zmacs

Compiler Warnings (m-X) Zmacs
COMPLETE completion

Copy File (m-X) Zmacs
Create Directory (m-X) Zmacs

Create Link . (m-X) Zmacs
D Direct

Decrypt Buffer (m-X) Zmacs
Delnstall Macro (m-X) Zmacs

Delete File (m-X) Zmacs
Describe Variable (m-X) Zmacs

Direct (m-X) Zmacs
E Direct

Edit Buffers (m-X) Zmacs
Edit Callers (m-X) Zmacs

Edit Changed Definitions (m-X) Zmacs
Edit Changed Definitions of Buffer (m-X) Zmacs

Edit Compiler Warnings (m-X) Zmacs
Edit Definition

Edit File Warnings (m-X) Zmacs
Electric Font Lock Mode (m-X) Zmacs
Electric Shift Lock Mode (m-X) Zmacs

EMACS Mode (m-X) Zmacs
Encrypt Buffer (m-X) Zmacs

END completion
VEND Direct

command 81
command 28, 109
command 71
command 148
command 109
command 29, 109
command n
command 131
command 184
command 27, 180
command 81
command 110
command 38
command 118
command 185
command 25, 72
command 27
command 82
command 107
command 27
command 86, 183
command 117
command 13
command 30
command 32
command 123
command 123
command 71
command 162
command 162
command 162
command 162
command 82
command 163
command 13, 42
command 121
command 123
command 122
command 138
command 108
command 186
command 122
command 193
command 131
command 137
command 107
command 169
command 167
command 168
command 163
Command 166
command 163
command 180
command 180
command 181
command 108
command 13, 43
command 134

213

214

End Kbd Macro Zmacs
Evaluate and Replace Into Buffer (m-X) Zmacs

Evaluate Buffer (m-X) Zmacs
Evaluate Changed Definitions (m-X) Zmacs

Evaluate Changed Definitions of Buffer (m-X) Zmacs
Evaluate Into Buffer (m-X) Zmacs

Evaluate Region (m-X) Zmacs
Extended

Find File In Fundamental Mode (m-X) Zmacs
Find File Zmacs

Find Flies In Tag Table (m-X) Zmacs
Find Unbalanced Parentheses (m-X) Zmacs

Finding the right
Finish Patch (m-X) Zmacs

H Dired
Hardcopy Buffer (m-X) Zmacs

Hardcopy File (m-X) Zmacs
HELP? Zmacs
HELP A Zmacs
HELP C Zmacs

HELP completion
HELP D Zmacs

HELP Oired
HELP L Zmacs

HELP SPACE Zmacs
HELP u Zmacs
HELP v Zmacs
HELP LJ Zmacs

Insert Buffer (m-X) Zmacs
Insert File (m-X) Zmacs

Install Command (m-X) Zmacs
Install Macro (m-X) Zmacs

K Dired
Kill Backward Up List (c-m-X) Zmacs

Kill Or Save Buffers (m-X) Zmacs
Kill Some Buffers (m-X) Zmacs

LINE Zmacs
Lisp Mode (m-X) Zmacs

List Buffers Zmacs
List Gaiters (m-X) Zmacs

List Changed Definitions of Buffer (m-X) Zmacs
List Definitions (m-X) Zmacs

List Files (m-X) Zmacs
List Tag Tables (m-X) Zmacs

List Variables (m-X) Zmacs
Load Compiler Warnings (m-X) Zmacs

m-% Zmacs
m-C Zmacs
m-> Zmacs
m-. Zmacs
m-; Zmacs
m-< Zmacs

m-= Zmacs
m-> Zmacs

m-@ Zmacs
m-A Zmacs
m~B Zmacs
m-C Zmacs

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

command 183
command 92, 161
command 160
command 161
command 161
command 160
command 160, 161
Command 5
command 110
command 28, 29
command 97
command 38
command 35
command 174
command 138
command 108
command 120
command 12
command 12, 35
command 12, 34
command 13
command 12, 35
command 135
command 12, 36
command 12
command 12, 36
command 12, 36, 193
command 12
command 112
command 112
command 192
command 186
command 138
command 69
command 110
command 110
command 151
command 156
command 103
command 170
command 169
command 168
command 119
command 95
command 193
command 163
command 90
command 164
command 56
command 166
command 157
command 24, 60
command 38
command 24, 60
command 80
command 23, 53
command 23, 52
command 148

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

m-D Zmacs
m-E Zmacs

m-ESCAPE Zmacs
m-F Zmacs
m-H Zmacs
m-K Zmacs
m-L Zmacs

m-LINE Zmacs
m-M Zmacs
m-N Zmacs
m-0 Zmacs
m-P Zmacs
m-R Zmacs

m-RETURN Zmacs
m-RUBOUT Zmacs

m-S Zmacs
m-sh-C Zmacs
m-sh-D Zmacs
m-sh-E Zmacs

m-T Zmacs
m-U Zmacs
m-V Zmacs
m-i.J Zmacs

m-V yank
m-Z Zmacs
m-C Zmacs
m-\ Zmacs
m-l Zmacs
m-"' Zmacs

Macro Expand Expression (m-X) Zmacs
MuHiple Edit Callers (m-X) Zmacs
Multiple List Gaiters (m-X) Zmacs

Multiple Query Replace (m-X) Zmacs
Multiple Query Replace From Buffer (m-X) Zmacs

N Dired
Name Last Kbd Macro (m-X) Zmacs

overwrite Mode (m-X) Zmacs
P Dired

Prepend To File (m-X) Zmacs
a Dlred

Query Replace (m-X) Zmacs
Query Replace Last Kill (m-X) Zmacs

Query Replace Let Binding (m-X) Zmacs
R Dired

Reap File (m-X) Zmacs
Rename Buffer (m-X) Zmacs

Rename File (m-X) Zmacs
Reparse Attribute List {m-X) Zmacs

Repeat Last Minibuffer
Replace String (m-X) Zmacs

RETURN completion
RETURN Zmacs

Revert Buffer (m-X) Zmacs
RUBOUT Dired

RUBOUT Zmacs
Save All Flies (m-X) Zmacs

Save File Zmacs
Select All Buffers As Tag Table (m-X) Zmacs

command 25, 68
command 53
command 160
command 23, 52
command 80
command 25, 72
command 148
command 158
command 151
command 158
command 152
command 158
command 48
command 151
command 25, 68
command 150
command 162
command 37
command 161
command 68
command 148
command 24, 48
command 82
command 13, 14, 64
command 162
command 23, 58
command 26
command 23, 58
command 26, 152
command 165
command 170
command 171
command 91
command 92
command 138
command 185
command 181
command 140
command 112
command 134
command 90
command 92
command 92
command 137
command 122
command 108
command 120
command 125
Command 41, 64
command 90
command 13
command 43
command 109
command 138
command 25, 33
command 108
command 28
command 94

215

216 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Select System As Tag Table (m-X) Zmacs command 95
Select Tag Table (m-X) Zmacs command 94

Set Backspace (m-X) Zmacs command 128
Set Base (m-X) Zmacs command 128
Set Fonts (m-X) Zmacs command 128

Set Key (m-X) Zmacs command 191
Set Lowercase (m-X) Zmacs command 128

Set Nofill (m-X) Zmacs command 128
Set Package (m-X) Zmacs command 126, 127, 128

Set Patch File (m-X) Zmacs command 128
Set Tab Width (m-X) Zmacs command 128

Set Variable (m-X) Zmacs command 194
Set Visited File Name (m-X) Zmacs command 110

Set Vsp (m-X) Zmacs command 128
Sort Lines (m-X) Zmacs command 100

Sort Paragraphs (m-X) Zmacs command 100
Sort Via Keyboard Macros (m-X) Zmacs command 100

Source Compare (m-X) Zmacs command 113
Source Compare Merge (m-X) Zmacs command 113

SPACE completion command 13
SPACE Dlred command 136

SPACE Zmacs command 43
Start Patch (m-X) Zmacs command 172

Start Private Patch (m-X) Zmacs command 172
TAB Zmacs command 150

Tags Multiple Query Replace (m-X) Zmacs command 96
Tags Query Replace (m-X) Zmacs command 95

Tags Search (m-X) Zmacs command 95
Trace (m-X) Zmacs command 38

U Dired command 138
Uncomment Region (m-X) Zmacs command 159

Update Attribute List (m-X) Zmacs command 125
Uppercase Code in Region (m-X) Zmacs command 148

V Dired command 137
Variable Apropos Zmacs command 193
View Buffer (m-X) Zmacs command 107

View File (m-X) Zmacs command 120
View File Properties (m-X) Zmacs command 120

View Kbd Macro (m-X) Zmacs command 184
Visit Tag Table (m-X) Zmacs command 97

Word Abbrev Mode (m-X) Zmacs command 181
Write File Zmacs command 29

Install Command (m-X) Zmacs command 192
Command completion 42

Impossible-is-OK command completion 43
Command description 12
Command history 33

Yanking In the command history 14
Command key bindings 12

Extended command key bindings 36
Command name completion 44
Command Names 4
Command table 191
Command tables 5
Commands 4

Buffer Commands 105
Comment commands 157

Compilation commands 162

ZMACS Zmacs Manua/

Symbolics, Inc. February 1984

Completion
Cursor movement

Delete
DI red

Editor menu
Evaluation
Extended

File Manipulation
Finding Out About Zmacs

Kill
List the last sixty

Local names of
Motion

Mouse-sensitive Zmacs
Names of

Online documentation for
Prefix

Prefix character
Region-Manipulating

Searching for Appropriate
Set

Window
Set

Zmacs
Zmacs
Zmacs

Zmacs

Zmacs

Creating New
Indent For

Kill
Set

Semicolon(;)
Down

Indent New
Up

Auto Fill Lisp
Source
Source
Source
Source

Evaluation and

Commands 42
commands 23, 51
commands 25
Commands 132
commands 39
commands 160
commands 4, 5, 35
Commands 119
Commands 34
commands 25
commands 36
commands 6
Commands 51
commands 50
commands 5, 34
commands 34
Commands 35
commands 5
Commands 82
Commands 35
commands 128
Commands 117
commands for file and buffer attributes 127
commands for finding out about flavors 202
commands for finding out about Lisp 201
commands for finding out about the state of

buffers 201
commands for finding out about the state of

Zmacs 201
commands for Interacting with lisp 202
Commands for manipulating files 119
Commands to Mark Regions 80
Commands: Keyboard Macros 183
Comment 157
Comment 157
Comment Column 158
Comment commands 157
comment· indicator 157
Comment line 158
Comment Line 158
Comment line 158
Comment Out Region 159
Commenting Code 157
Commenting Regions 159
Comments Mode (c-m-X) Zmacs command 180
Compare 119
Compare (m-X) Zmacs command 113
Compare Merge 114
Compare Merge (m-X) Zmacs command 113
Comparing file versions 137
Comparing Flies and Buffers 113
Compilation 160
Compilation commands 162
Compile and Exit 162
Compile Buffer (m-X) Zmacs command 162
Compile Changed Definitions (m-X) Zmacs

command 162

217

Compile Changed Definitions of Buffer (m-X) Zmacs

218

Edit
Load
Dlred
DI red

Self Insert and

Command
Command name
Impossible-is-OK

Impossible-is-OK command
Using the HELP key with

c-/
c-?

COMPLETE
ENO

HELP
RETURN

SPACE

List
Standard

List
Exclamation point (!) line

Additional Notation
Entering

DI red

Dlred Set Generation Retention

Save

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

command 162
Compile File (m-X) Zmacs command 162
Compile Region 82
Compile Region (m-X) Zmacs command 82
Compiler Warnings (m-X) Zmacs command 163
Compiler Warnings (m-X) Zmacs command 163
Compiler Warnings (m-X) Zmacs command 163
Complement Dont Delete Flag 140
Complement No Reap Flag 139
Complete 42
Complete 43, 44
Complete And Exit 43
Complete And Exit If Unique 43
COMPLETE completion command 13, 42
Completion 12, 42
completion 42
completion 44
Completion 43
completion 43
completion 44
Completion Apropos 44
completion command 13, 44
completion command 13, 44
completion command 13, 42
completion command 13, 43
completion command 13
completion command 13
completion command 13
Completion Commands 42
Completions 44
comtab 191
Comtabs 5, 191
contents of a directory 119
continuation Indicator 20, 46
Conventions 7
Converse 30
Copy File 121
Copy File 137
Copy File (m-X) Zmacs command 121
Copying files 137
Correcting Typos 20
Count 139
Count Lines Page 38
Count Lines Region 38
Create Directory 124
Create Directory (m-X) Zmacs command 123
Create Link 122
Create Link (m-X) Zmacs command 122
Creating a Buffer 27
Creating a File 29
Creating a Region 75
Creating and Saving Buffers and Flies 27
Creating New Commands: Keyboard Macros 183
Current buffer 109
Current buffer information 17
current location in register 78
Current meaning of mouse clicks 49
Cursor 15

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

D

Moving the Cursor 23, 45, 50
Relocate cursor 49

Cursor Motion by Line 56
Cursor Motion by Lisp Expression 53
Cursor Motion by Page 59
Cursor Motion by Paragraph 58
Cursor Motion by Sentence 52
Cursor Motion by Word 52
Cursor motion within buffer 60
Cursor movement commands 23, 51

Move cursor to beginning of line 48
Customizing the Editor In lnit Files 196
Customizing the Zmacs Environment 1n

c-X
HELP

One Window

Select
Move to

Beginning Of
Edit

End Of
Mark

Positioning Window Around
Edit

Editing the
Add Patch Changed

Compile Changed
Edit Changed

Evaluate Changed
List

Add Patch Changed
Compile Changed

Edit Changed
Evaluate Changed

List Changed
zwel:

Dired

Dired Complement Dont

D
D Dired command 138
D Zmacs command 131
D Zmacs command 12, 35
Decrypt Buffer 108
Decrypt· Buffer (m-X) Zmacs command 108
Default 194
Default column position 57
Default major mode 182
Default Pathnames in Dired 134
Default Previous Buffer 105
Default Previous Point 76
Definition 55
Definition 166
Definition 56
Definition 80
Definition 48
Definition Command 166
definition of a function 11
Definitions (m-X) Zmacs command 173
Definitions (m-X) Zmacs command 162
Definitions (m-X) Zmacs command 167
Definitions (m-X) Zmacs command 161
Definitions (m-X) Zmacs command 168
Definitions of Buffer (m-X) Zmacs command 173
Definitions of Buffer (m-X) Zmacs command 162
Definitions of Buffer (m-X) Zmacs command 168
Definitions of Buffer (m-X) Zmacs command 161
Definitions of Buffer (m-X) Zmacs command 169
defmajor 182
Deinstall Macro (m-X) Zmacs command 186
Delete 138
Delete Blank Lines 26, 153
Delete commands 25
Delete File 122
Delete File (m-X) Zmacs command 122
Delete Flag 140
Delete Forward 25, 66
Delete Horizontal Space 26
Delete Indentation 26, 152
Deleting and Transposing Characters 66
Deleting and Transposing Lines 71
Deleting and Transposing lisp Expressions 69

219

D

220

Accidental
Large

DI red

Command
Indent

Editing
Create
Display

List contents of a
Clean

Create

Default Pathnames In

I

?
A

ABORT
c

c-0
c-K
c-N
c-P

0
E

ENO
H

HELP
K
N
p
a
R

RUBOUT
SPACE

u
v

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Deleting and Transposing Text 61
Deleting and Transposing Words 68
Deleting Multiple Versions 138
Deleting Sentences 72
Deleting vs. Killing 62
deletion 33
Deletions 33
Describe Attribute List 136
Describe Attribute List 136
Describe Variable (m-X) Zmacs command 193
Describe Variable At Point 38
description 12
Differently 150
directories 131
Directory 124
Directory 119
directory 119
Directory (m-X) Zmacs command 123
Directory (m-X) Zmacs command 123
Direct 131
Direct 134
Dlred (m-X) Zmacs command 131
Direct Abort 135
Direct Apply Function 141
Direct Automatic 138, 139
Direct Change File Properties 136
Direct command 140
Direct command 139
Direct command 136
Direct command 137
Direct command 135
Dlred command 141
Direct command 135
Direct command 137
Dired command 138
Direct command 138
Direct command 136
Dired command 136
Dired command 138
Direct command 137
Direct command 134
Direct command 138
Direct command 135
Direct command 138
Dired command 138
Dired command 140
Direct command 134
Direct command 137
Direct command 138
Direct command 136
Direct command 138
Direct command 137
Dired Commands 132
Direct Complement Dont Delete Flag 140
Direct Complement No Reap Flag 139
Direct Copy File 137
Direct Delete 138
Direct Describe Attribute List 136

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

E

Brief
Display function

Function
Long

Online
Online
Mouse

Tags Tables and Search
Dired Complement

SELECT
SELECT

c-X

Move To Screen
Locating Source Code to

Multiple

Dired

zwet:

E

Dired Edit File 137
Dlred Exit 134
Dired Hardcopy File 140
Dired Help 135
Dired menu 135. 136
Dired Mode 131
Dired move point 136
Dlred Next Hog 138
Dlred Next Undumped 140
Dired Rename File 137
Dired Reverse Undelete 138
Dired Set Generation Retention Count
Dlred Srccom 137
Dired Undelete 138
Dired View File 137
Display 47
Display argument list 37
Display Directory 119
Display function documentation 37
Displaying previous keystrokes 36
Documentation 37
documentation 37
Documentation 37
Documentation 37
documentation for commands 34
documentation for prefixes 35
Documentation Line 49
Domains 94
Dont Delete Flag 140
Down Comment Line 158
Down List 54
Down Real Line 23, 56, 136

E 30
E 10
E Dired command 137
E Zmacs command 184
Echo Area 17
Echoing 17
Echoing arguments 22
(ed) function 10, 30
Edge 48
Edit 166

139

Edit Buffers (m-X) Zmacs command 107
Edit callers (m-X) Zmacs command 169
Edit callers (m-X) Zmacs command 170
Edit Changed Definitions (m-X) Zmacs

command 167
Edit Changed Definitions of Buffer (m-X) Zmacs

command 168

221

E

Edit Compiler Warnings (m-X) Zmacs command 163
Edit Definition 166
Edit Definition Command 166
Edit File 137
Edit File Warnings (m-X) Zmacs command 163
edit-functions function 11

222

Major

Entering File System
Customizing the

The

Goto
Mark

Moving to

Using the mouse to

Customizing the Zmacs

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Editing a Fiie 29
Editing directories 131
Editing Lisp Programs 155
Editing Modes 144
Editing the definition of a function 11
Editing the source code of a function 11
Editor 30
Editor In lnlt Files 196
Editor Menu 39
Editor menu commands 39
Editor Window 15
Electric Font Lock Mode (m-X) Zmacs

command 180
Electric PU mode 145
Electric Shift Lock mode 18
Electric Shift Lock Mode (m-X) Zmacs

command 180
EMACS Mode (m-X) Zmacs command 181
Encrypt Buffer 108
Encrypt Buffer (m-X) Zmacs command 108
End 24, 60
End 81
END completion command 13, 43
END Oired command 134
End Kbd Macro 184
End Kbd Macro Zmacs command 183
end of buffer 60
End Of Definition 56
End of Line 23, 57
enter Zmacs 10
Entering Converse 30
Entering File System Editor 30
Entering Flavor Examiner 30
Entering Inspector 30
Entering Lisp 30
Entering Peek 30
Entering Terminal 30
Entering Zmacs 10, 30
Entering Zmall 30
Environment 1n
Erase backward to start of line 71
Erasing Text 25, 66
Error recovery 32
Escaping from prompts 32
Evaluate And Exit 161
Evaluate and Replace Into Buffer (m-X) Zmacs

command 92, 161
Evaluate Buffer (m-X) Zmacs command 160
Evaluate Changed Definitions (m-X) Zmacs

command 161
Evaluate Changed Definitions of Buffer (m-X) Zmacs

command 161
Evaluate Into Buffer (m-X) Zmacs command 160
Evaluate Minibuffer 160
Evaluate Region 160
Evaluate Region (m-X) Zmacs command 160, 161
Evaluate Region Verbose 160, 161
Evaluation and Compilation 160

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

F

Entering Flavor
Selecting, Listing, and

Compile and
Complete And

DI red
Evaluate And

Complete And

Macro
Macro
Macro

Cursor Motion by Lisp
Macro Expand

Mark Lisp
Top-level

Macro Expand
Macro Expand

Deleting and Transposing Lisp
Expanding

Parenthesizing
Point Motion Among Top-Level

Any

SELECT
c-X

Copy
Creating a

Delete
Dired Copy
Dired Edit

Dlred Hardcopy
Dired Rename

Dlred View
Editing a

Find
Naming a

Rename
Save
Visit

Write
Append To

Compile

F

Evaluation commands 160
Examiner 30
Examining Buffers 104
Exchange Characters 66
Exchange Lines 71
Exchange Regions 82
Exchange Sexps 70
Exchange Words 68

223

Exclamation point (I) line continuation indicator 20,
46

Exit 162
Exit 43
Exit 134
Exit 161
Exit If Unique 43
Exiting Zmacs 30
Expand Expression 165
Expand Expression (m-X) Zmacs command 165
Expand Expression All 165
Expanding Expressions 165
Expression 53
Expression 165
expression 80
expression 55
Expression (m-X) Zmacs command 165
Expression All 165
Expressions 69
Expressions 165
Expressions 164
Expressions 55
Extended Command 5
Extended Command 6
Extended command key bindings 36
Extended commands 4, 5, 35

F 30
F Zmacs command 27, 180
Fast Where Am I 37
File 19
File 121
File 29
File 122
File 137
File 137
File 140
File 137
File 137
File 29
File 27, 108
File 109
File 120
File 27, 109
File 109
File 27, 109
File (m-X) Zmacs command
File (m-X) Zmacs command

112 .
162

F

224

Copy
Delete

Hard copy
Insert

Prepend To
Reap

Rename
Set Patch

View
Set commands for

Backspace
Base

Lowercase
Nofill

Patch-File
Tab-Width

Vsp

Warnings about

Buffer and

Find

Set Visited
Dired Change

View
Change

View
Entering

Comparing
Edit
Find

Save
Write

*fs:

Applying Functions to
Association of buffers with

Commands for manipulating
Copying

Creating and Saving Buffers and
Customizing the Editor in lnit

I nit
Manipulating Buffers and

Protecting
Renaming

Using the mouse with List
Working With Buffers and

List
Save All

Comparing
Find

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

File (m-X) Zmacs command 121
File (m-X) Zmacs command 122
File (m-X) Zmacs command 120
Fiie (m-X) Zmacs command 112
Fiie (m-X) Zmacs command 112
File (m-X) Zmacs command 122
File (m-X) Zmacs command 120
Fiie (m-X) Zmacs command 128
File (m-X) Zmacs command 120
file and buffer attributes 127
file attribute 128
file attribute 128
file attribute 128
file attribute 129
file attribute 129
file attribute 130
file attribute 130
File Attribute Checking 126
file attribute lists 126
File attributes 125
File Attributes 125
File backup flag 140
File flags 103
File In Fundamental Mode (m-X) Zmacs

command 110
File Manipulation Commands 119
File Name (m-X) Zmacs command 110
File Properties 136
File Properties 120
File Properties (m-X) Zmacs command 123
File Properties (m-X) Zmacs command 120
File System Editor 30
File types and major modes 182
File types of major modes 182
File versions 102
file versions 137
File Warnings (m-X) Zmacs command 163
File Zmacs command 28, 29
File Zmacs command 28
File Zmacs command 29
file-type-mode-allst* Lisp variable 182
Files 27
Flies 141
files 27
files 119
files 137
Files 27
Files 196
Files 196
Files 101
Files 139
Files 137
Files 119
Files 102
Files (m-X) Zmacs command 119
Files (m-X) Zmacs command 108
Files and Buffers 113
Files in Tag Table (m-X) Zmacs command 97

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Association of
Set

Auto

Auto
Auto

Set

Zmacs commands for
Zmacs commands for
Zmacs commands for
Zmacs commands for

Dlred Complement Dont Delete
Dired Complement No Reap

File backup
Modification

+
Fiie

Entering
Zmacs commands for finding out about

Electric
Set

Response

Delete

Multiple Query Replace

Dired Apply
(eel)

Editing the definition of a
Editing the source code of a

zwel:edlt-functlons

Display

Zmacs support
Applying

Find Fiie In

files with buffers 27
Fill Column 180
Fill Lisp Comments Mode (c-m-X) Zmacs

command 180
Fill mode 18, 129, 179
Fill Mode (m-X) Zmacs command 180
Fill Paragraph 83
Fill Prefix 83
Fill Region 83
Find File 27, 108
Find File In Fundamental Mode (m-X) Zmacs

command 110
Find File Zmacs command 28, 29

225

Find Files In Tag Table (m-X) Zmacs command 97
Find Unbalanced Parentheses (m-X) Zmacs

command 38
finding out about flavors 202
finding out about Lisp 201
finding out about the state of buffers 201
finding out about the state of Zmacs 201
Finding Out About Zmacs Commands 34
Finding source code 156
Finding the right command 35
Finish Patch (m-X) Zmacs command 174
Flag 140
Flag 139
flag 140
flag 103
flag in Zmacs 103
flags 103
Flavor Examiner 30
flavors 202
Font Lock Mode (m-X) Zmacs command 180
Fonts (m-X) Zmacs command 128
Format 41
Forward 23, 51
Forward 25, 66
Forward character 51
Forward List 53
Forward Paragraph 23, 58
Forward Sentence 23, 53
Forward Sexp 54
Forward Up List 55
Forward Word 23, 52
From Buffer (m-X) Zmacs command 92
"fs:fll•type-mode-allst* Lisp variable 182
Function 141
function 10, 30
function 11
function 11
function 11
Function Documentation 37
function documentation 37
~unction-Specs-to-Edi t-'1* buffer 11
functions 98
Functions to Files 141
Fundamental mode 18, 144
Fundamental Mode (m-X) Zmacs command 110

226

G

H

Dlred Set
Open

lbase
zwel:*set-attrlbut•updat•llst*

Set

c-X

Dlred

Di red
Getting

Response

Getting

Using the

Buffer
Command

Kill
Yanking In the command

Yanking In the kill

Dlred Next
Delete

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

G G

H

Generation Retention Count 139
Get Register 78
Getting Help 31
Getting Help in Zmacs 12
Getting Out of Trouble 32
Getting Started 9
Global search and replace 94
global variable 128
global variable 128
Goal Column 57
Goto Beginning 24, 60
Goto End 24, 60
Grow Window 117

H Dlred command 138
H Zmacs command 81
Hardcopy Buffer (m-X) Zmacs command 108
Hardcopy File 140
Hardcopy File (m-X) Zmacs command 120
HELP 13, 34
Help 135
Help 31
Help 41
HELP ? Zmacs command 12
HELP A Zmacs command 12, 35
HELP c Zmacs command 12, 34
HELP completion command 13
HELP D Zmacs command 12, 35
HELP Dired command 135
Help in Zmacs 12
HELP key 12, 34
HELP key with completion 44
HELP L Zmacs command 12, 36
HELP SPACE Zmacs command 12
HELP U Zmacs command 12, 36
HELP V Zmacs command 12, 36, 193
HELP IJ Zmacs command 12
History 104
history 33
history 33, 65
history 14
history 13
History list 13
Hog 138
Horizontal Space 26
How to Specify Zmacs Variable Settings 193

H

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

I

J

Fast Where Am
SELECT

Where Am

Complete And Exit

Reverse

Back To
Changing case and

Delete
This

* buffer status
Exclamation point (I) line continuation

Semicolon(;) comment
Current buffer

I
I 37
I 30
I 37
lbase global variable 128
If Unique 43
Impossible-ls-OK command completion 43
Impossible-is-OK Completion 43
Incremental Search 86
Incremental Search 87
Indent Differently 150
Indent For Comment 157
Indent for Lisp 150
Indent New Comment Line 158
Indent New Line 151
Indent Region 151
Indent Rigidly 152
Indent Sexp 151
Indentation 150
Indentation 151
Indentation 147
Indentation 26, 152
Indentation 152
Indicator 19
indicator 20, 46
indicator 157
information 17
lnlt Files 196

Customizing the Editor In lnlt Files 196
Uppercase Initial 148

Self Insert and Complete 43, 44

Appending, Prepending, and
Entering

Zmacs commands for

What

~ Insert Buffer (m-X) Zmacs command 112
Insert File (m-X) Zmacs command 112
Insert Matching parentheses 164

J

Insert Tab 150
Insert text from register into buffer 78
Inserting Characters 20
Inserting Text 20
Inserting Text 112
Inspector 30
Install Command (m-X) Zmacs command 192
Install Macro (m-X) Zmacs command 186
Interacting with Lisp 202
Introduction 1, 156
Introduction to Zmacs 4
Invoking Zmacs 10
Is a Region? 74

Jump to Saved Position 78

227.

J

228

K

L

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

c-><
Call L..as1

End
Start

Name L..as1
View

End
HELP

RUBOUT
SELECT

Set

Assign
Command

Extended command
Using the RETURN

Using the HELP
Creating New Commands:

Sort Via
Sort Via

Shift

Displaying previous
List the last sixty

Append Next
Query Replace Last

K
K Dlred command 138
K Zmacs command 110
Kbd Macro 184
Kbd Macro 184
Kbd Macro 183, 184
Kbd Macro Cm-><) Zmacs command 185
Kbd Macro (m-X) Zmacs command 184
Kbd Macro Query 185
Kbd Macro Zmacs command 183
key 12, 34
key 20
key 30
Key Cm-><) Zmacs command 191
Key Bindings 191
key bindings 192
key bindings 12
key bindings 36
key In the mlnibuffer 41
key with completion 44
Keyboard Macros 183
Keyboard Macros 186
Keyboard Macros (m-><) Zmacs command 100
keys 5
Keystrokes 4
keystrokes 36
keystrokes 36
Kill 65
Kill (m-><) Zmacs command 92

K

Kill Backward Up List (c-m-><) Zmacs command 69
Kill Buffer 110

Yanking in the

Backward

Backward

Backward
Deleting vs.

L

Kill commands 25
Kill Comment 157
Kill history 33, 65
kill history 13
Kill Line 25, 71
Kill Or Save Buffers (m-X) Zmacs command 110
Kill Region 25, 82
Kill Sentence 25, 72
Kill Sentence 25, 72
Kill Sexp 25, 69
Kill Sexp 25, 69
Kill Some Buffers (m-X) Zmacs command 110
Kill Word 25, 68
Kill Word 25, 68
Killing 62

SELECT L 30
c->< L Zmacs command 38

HELP L Zmacs command 12, 36
L2:Move to point mouse click 49
L:Move point mouse click 49
Large Deletions 33

Cancel last command 32
call Last Kbd Macro 184

L

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Name
Query Replace

Repeat
List the
List the

Query Replace
Abort At Top

Point motion along nesting
Point motion between nesting

Beginning of
Breaking a

Center
Cursor Motion by

Down Comment
Down Real

End of
Erase backward to start of

Indent New
Indent New Comment

Kill
Mode

Mouse Documentation
Move cursor to beginning of

Move To Specified
Split

Starting a New
Up Comment

Up Real
Exclamation point (!)

Delete Blank
Deleting and Transposing

Exchange
Merging

Wraparound
Wrapping

Sort
Count
Count

Create
Create

Entering
Indent for

Zmacs commands for finding out about
Zmacs commands for interacting with

Auto Fiii

Cursor Motion by
Mark

Deleting and Transposing

Editing
fs:file-type-mode-allst

zwel:*major-mode-translatlons*
Attribute

Backward

Last Kbd Macro (m-X) Zmacs command 185
Last Kiii (m-X) Zmacs command 92
Last Minibuffer Command 41, 64
last sixty commands 36
last sixty keystrokes 36
Leaving Zmacs 30
Let Binding (m-X) Zmacs command 92
Level 32
level 54
levels 54
Line 23, 57
tine 20
Line 150
Line 56
Line 158
Line 23, 56, 136
Line 23, 57
line 71
Line 151
Line 158
Line 25, 71
line 17
Line 49
line 48
Line 48
Line 153
Line 20
Line 158
Line 23, 56, 136
line continuation indicator 20, 46
LINE Zmacs command 151
Lines 26, 153
Lines 71
Lines 71
lines 20
Lines 46
Lines 20
Lines (m-X) Zmacs command 100
Lines Page 38
Lines Region 38
Link 122
Link (m-X) Zmacs command 122
Lisp 30
Lisp 150
Lisp 201
Lisp 202
Lisp Comments Mode (c-m-X) Zmacs

command 180
Lisp Expression 53
Lisp expression 80
Lisp Expressions 69
Lisp mode 18, 144, 156
Lisp Mode (m-X) Zmacs command 156
Lisp Programs 155
Lisp variable 182
Lisp variable 182
list 125
List 53, 54

229

230

Backward Up
Describe Attribute

Dired Describe Attribute
Display argument

Down
Forward

Forward Up
History

Kill Backward Up
Reparse Attribute
Reparse Attribute
Update Attribute

Muhiple

Using the mouse with

Selecting,
Attribute

Warnings about file attribute

Save current
Electric Shift
Electric Font
Electric Shift

Set

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

List 55
List 136
List 136
list 37
List 54
List 53
List 55
list 13
List (c-m-X) Zmacs command 69
List (•-X) Zrnacs command 127
List (m-X) Zmacs command 125
List (m-X) Zmacs command 125
List Buffers 106
List Buffers Zmacs command 103
List Callers (m-X) Zmacs command 170
List callers (m-X) Zmacs command 171
List Changed Definitions of Buffer (m-X) Zmacs

command 169
List Completions 44
List contents of a directory 119
List Definitions (m-X) Zmacs command 168
List Files 119
List Files (m-X) Zmacs command 119
List Tag Tables (m-X) Zmacs command 95
List the last sixty commands 36
List the last sixty keystrokes 36
List Variables (m-X) Zmacs command 193
Listing, and Examining Buffers 104
lists 126
lists 126
Load Compiler Warnings (m-X) Zmacs

command 163
Local names of commands 6
Locating and Replacing Strings Automatically 90
Locating Source Code to Edit 166
location in register 78
Lock mode 18
Lock Mode (m-X) Zmacs command 180
Lock Mode (m-X) Zmacs command 180
Long Documentation 37
Lowercase (m-X) Zmacs command 128
Lowercase Code in Region 148
Lowercase file attribute 128
Lowercase Region 148
Lowercase Word 148

M M M
SELECT M 30

m-i Zmacs command 90
m- c Zmacs command 164
m-> Zmacs command 56
m-. Zmacs command 166
m-; Zmacs command 157
m-< Zmacs command 24, 60
m- = Zmacs command 38
m-> Zmacs command 24, 60
m-@ Zmacs command 80

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Abort Patch
Add Patch

Add Patch Changed Definitions
Add Patch Changed Definitions of Buffer

Append To File
Argllst

Atom Query Replace
Atom Word Mode

Auto Fill Mode
Change File Properties

Clean Directory
Compile Buffer

Compile Changed Definitions
cOmpile Changed Definitions of Buffer

Compile File
Compile Region

Compiler Warnings
Copy File

Create Directory
Create Link

Decrypt Buffer
Delnstall Macro

Delete File
Describe Variable

Dlred
Edit Buffers
Edit Callers

Edit Changed Definitions
Edit Changed Definitions of Buffer

Edit Compiler Warnings
Edit File Warnings

m-A Zmacs command 23, 53
m-B Zmacs command 23, 52
m-C Zmacs command 148
m-0 Zmacs command 25, 68
m-E Zmacs command 53
m-ESCAPE Zmacs command 160
m-F Zmacs command 23, 52
m-H Zmacs command 80
m-K Zmacs command 25, 72
m-L Zmacs command 148
m-LI NE Zmacs command 158
m-M Zmacs command 151
m-N Zmacs command 158
m-0 Zmacs command 152
m-P Zmacs command 158
m-R Zmacs command 48
m-RETURN Zmacs command 151
m-RUBOUT Zmacs command 25, 68
m-S Zmacs command 150
m-sh-C Zmacs command 162
m-sh-0 Zmacs command 37
m-sh-E Zmacs command 161
m-T Zmacs command 68
m-U Zmacs command 148
m-V Zmacs command 24, 48
m-IJ Zmacs command 82
(m-X) Zmacs command 174
{m-X) Zmacs command 173
(m-X) Zmacs command 173
{m-X) Zmacs command 173
(m-X) Zmacs command 112
(m-X) Zmacs command 37
(m-X) Zmacs command 93
{m-X) Zmacs command 180
(m-X) Zmacs command 180
{m-X) Zmacs command 123
(m-X) Zmacs command 123
(m-X) Zmacs command 162
{m-X) Zmacs command 162
{m-X) Zmacs command 162
(m-X) Zmacs command 162
{m-X) Zmacs command 82
(m-X) Zmacs command 163
{m-X) Zmacs command 121
{m-X) Zmacs command 123
{m-X) Zmacs command 122
{m-X) Zmacs command 108
(m-X) Zmacs command 186
(m-X) Zmacs command 122
{m-X) Zmacs command 193
(m-X) Zmacs command 131
(m-X) Zmacs command 107
{m-X) Zmacs command 169
(m-X) Zmacs command 167
(m-X) Zmacs command 168
(m-X) Zmacs command 163
(m-X) Zmacs command 163

231

232

Electric Font Lock Mode
Electric Shift Lock Mode

EMACS Mode
Encrypt Buffer

Evaluate and Replace Into Buffer
Evaluate Buffer

Evaluate Changed Definitions
Evaluate Changed Definitions of Buffer

Evaluate Into Buffer
Evaluate Region

Find File In Fundamental Mode
Find Flies In Tag Table

Find Unbalanced Parentheses
Finish Patch

Hardcopy Buffer
Hardcopy File

Insert Buffer
Insert File

Install Command
Install Macro

Kill Or Save Buffers
Kill Some Buffers

Lisp Mode
List Callers

List Changed Definitions of Buffer
· List Definitions

List Files
List Tag Tables

List Variables
Load Compiler Warnings

Macro Expand Expression
Multiple Edit Callers
Multiple List Callers

Multiple Query Replace
Multiple Query Replace From Buffer

Name Last Kbd Macro
overwrite Mode
Prepend To File
Query Replace

Query Replace Last Kill
Query Replace Let Binding

Reap File
Rename Buffer

Rename File
Reparse Attribute List

Replace String
Revert Buffer

Save All Files
Select All Buffers As Tag Table

Select System As Tag Table
Select Tag Table

Set Backspace
Set Base
Set Fonts

Set Key
Set Lowercase

Set Nofill
Set Package

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

(m-X) Zmacs command 180
(m-X) Zmacs command 180
(m-X) Zmacs command 181
(m-X) Zmacs command 108
(m-X) Zmacs command 92. 161
(m-X) Zmacs command 160
(m-X) Zmacs command 161
(m-X) Zmacs command 161
(m-X) Zmacs command 160
(m-X) Zmacs command 160, 161
(m-X) Zmacs command 110
(m-X) Zmacs command 97
(m-X) Zmacs command 38
(m-X) Zmacs command 174
(m-X) Zmacs command 108
(m-X) Zmacs command 120
(m-X) Zmacs command 112
(m-X) Zmacs command 112
(m-X) Zmacs command 192
(m-X) Zmacs command 186
(m-X) Zmacs command 110
(m-X) Zmacs command 110
(m-X) Zmacs command 156
(m-X) Zmacs command 170
(m-X) Zmacs command 169
(m-X) Zmacs command 168
(m-X) Zmacs command 119
(m-X) Zmacs command 95
(m-X) Zmacs command 193
(m-X) Zmacs command 163
(m-X) Zmacs command 165
(m-X) Zmacs command 170
(m-X) Zmacs command 171
(m-X) Zmacs command 91
(m-X) Zmacs command 92
(m-X) Zmacs command 185
(m-X) Zmacs command 181
(m-X) Zmacs command 112
(m-X) Zmacs command 90
(m-X) Zmacs command 92
(m-X) Zmacs command 92
(m-X) Zmacs command 122
(m-X) Zmacs command 108
(m-X) Zmacs command 120
(m-X) Zmacs command 125
(m-X) Zmacs command 90
(m-X) Zmacs command 109
(m-X) Zmacs command 108
(m-X) Zmacs command 94
(m-X) Zmacs command 95
(m-X) Zmacs command 94
(m-X) Zmacs command 128
(m-X) Zmacs command 128
(m-X) Zmacs command 128
(m-X) Zmacs command 191
(m-X) Zmacs command 128
(m-X) Zmacs command 128
(m-X) Zmacs command 126. 127, 128

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Set Patch File
Set Tab Width

Set Variable
Set Visited File Name

Set Vsp
Sort Lines

Sort Paragraphs
Sort Via Keyboard Macros

Source Compare
Source Compare Merge

Start Patch
Start Private Patch

Tags Multiple Query Replace
Tags Query Replace

Tags Search
Trace

Uncomment Region
Update Attribute List

Uppercase Code In Region
View Buffer

View File
View File Properties

View Kbd Macro
Visit Tag Table

Word Abbrev Mode

catl Last Kbd
End Kbd

Start Kbd
Deinstall

Install
Name Last Kbd

View Kbd

Kbd
End Kbd

Creating New Commands: Keyboard
Sort Via Keyboard
Sort Via Keyboard

Default
Setting the

File types and
File types of
User-defined

(m-X) Zmacs command 128
(m-X) Zmacs command 128
(m-X) Zmacs command 194
(m-X) Zmacs command 110
(m-X) Zmacs command 128
(m-X) Zmacs command 100
(m-X) Zmacs command 100
(m-X) Zmacs command 100
(m-X) Zmacs command 113
(m-X) Zmacs command 113
(m-X) Zmacs command 172
(m-X) Zmacs command 172
(m-X) Zmacs command 96
(m-X) Zmacs command 95
(m-X) Zmacs command 95
(m-X) Zmacs command 38
(m-X) Zmacs command 159
(m-X) Zmacs command 125
(m-X) Zmacs command 148
(m-X) Zmacs command 107
(m-X) Zmacs command 120
(m-X) Zmacs command 120
(m-X) Zmacs command 184
(m-X) Zmacs command 97
(m-X) Zmacs command 181
m-Y yank command 13, 14, 64
m-Z Zmacs command 162
m- C Zmacs command 23, 58
m-\ Zmacs command 26
m-1 Zmacs command 23, 58
m-A Zmacs command 26, 152
M2:Save/Kill/Yank mouse click 49
M:Mark thing mouse click 49
Macro 184
Macro 184
Macro 183, 184
Macro (m-X) Zmacs command 186
Macro (m-X) Zmacs command 186
Macro (m-X) Zmacs command 185
Macro (m-X) Zmacs command 184
Macro Expand Expression 165
Macro Expand Expression (m-X) Zmacs

command 165
Macro Expand Expression All 165
Macro Query 185
Macro Zmacs command 183
Macros 183
Macros 186
Macros (m-X) Zmacs command 100
Macsyma mode 18, 144
Major Editing Modes 144
major mode 182
Major Mode 143
Major Modes 182
major modes 182
major modes 182
major modes 182
Major-mode 18

233

234

zwel:

Commands for
File

Organization of this
Region Right

Set Pop
Swap Point And

Commands to

M:

Region

Insert
Current

Di red
System

The Editor
Using the mouse to call up System

Editor
R2:System

R:
Source Compare
Source Compare

Evaluate
More on the

Using the RETURN key In the
Repeat Last

Auto Fill
Bolio

Default major
DI red

Electric PU
Electric Shitt Lock

Fundamental
Lisp

Macsyma
Midas

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

•maJor-mode-tranalatlona• Lisp variable 182
Make region 49
Make Room 153
Manipulating Buffers and Files 101
manipulating flies 119
Manipulation Commands 119
manual 2
Margin Mode 194
Mark 74
Mark 76
Mark n
Mark Beginning 81
Mark buffer 81
Mark Definition 80
Mark End 81
Mark Lisp expression 80
Mark Page 81
Mark Paragraph 80
Mark region 49
Mark Regions 80
Mark Sexp 80
Mark thing mouse click 49
Mark Whole 81
Mark Word 80
Marking Mode 194
Marking text 80
Matching parentheses 164
meaning of mouse clicks 49
menu 135, 136
menu 30
Menu 39
menu 30
menu commands 39
menu mouse click 50
Menu mouse click 50
Merge 114
Merge (m-X) Zmacs command 113
Merging lines 20
Midas mode 145
Minibuffer 12, 17
Minibuffer 160
Minibuffer 41
mlnibuffer 41
Minibuffer Command 41, 64
Mlnibuffer Prompts 32
Minor Modes 179
Minor-mode 18
Mode 17
mode 18, 129, 179
mode 145
mode 182
Mode 131
mode 145
mode 18
mode 18, 144
mode 18, 144, 156
mode 18, 144
mode 145

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

PU
Region Marking

Region Right Margin
Setting the Major

Teco
Text

Two window
Word Abbrev

Auto Fill Lisp comments
Atom Word

Auto Fill
Electric Font Lock
Electric Shift Lock

EMACS
Find File In Fundamental

Lisp
overwrite

Word Abbrev

File types and major
File types of major

Major
Major Editing

Minor
User-defined major

Point
Point
Point

Cursor
Cursor

Cursor

Cursor
Cursor
Cursor

Cursor

Using the

l2:Move to point
L:Move point

M2:Save/Kill/Yank
M:Mark thing

R2:System menu
R:Menu

Current meaning of

Using the
Using the
Using the

mode 145
Mode 194
Mode 194
Mode 143
mode 145
mode 18, 144
mode 117
mode 18
Mode (c-m-X) Zmacs command 180
Mode (m-X) Zmacs command 180
Mode (m-X) Zmacs command 180
Mode (m-X) Zmacs command 180
Mode (m-X) Zmacs command 180
Mode (•-X) Zmacs command 181
Mode (m-X) Zmacs command 110
Mode (m-X) Zmacs command 156
Mode (m-X) Zmacs command 181
Mode (m-X) Zmacs command 181
Mode line 17
modes 182
modes 182
Modes 182
Modes 144
Modes 179
modes 182
Modification flag 103
Modified Two Windows 117
More on the Mlnlbuffer 41
Motion 50
motion along nesting level 54
Motion Among Top-Level Expressions 55
motion between nesting levels 54
Motion by character 51
Motion by Line 56
Motion by Lisp Expression 53
Motion by Page 59
Motion by Page 59
Motion by Paragraph 58
Motion by Paragraph 58
Motion by Sentence 52
Motion by Word 52
Motion commands 51
Motion with Respect to the Whole Buffer 60
motion within buffer 60
Mouse 10, 49, 106, 114, 166
Mouse 49
[Mouse (R)] 44
mouse click 49
mouse click 49
mouse click 49
mouse click 49
mouse click 50
mouse click 50
mouse clicks 49
Mouse Documentation Line 49
mouse to call up System menu 30
mouse to enter Zmacs 10
mouse with List Files 119

235

236 ZMACS Zmacs Manual

N

Symbolics, Inc. February 1984

Mouse-sensitive Zmacs commands 50
Move cursor to beginning of line 48
Move Over) 56

Dlred move point 136
L: Move point mouse click 49

Move to Default Previous Point 76
L2: Move to point mouse click 49

Move to Previous Point 76
Move To Screen Edge 48
Move To Specified Line 48

Cursor movement commands 23, 51
Moving the Cursor 23, 45, 50
Moving to end of buffer 60
Multiple buffers 102
Multiple Edit callers (m-X) Zmacs command 170
Multiple List callers (m-X) Zmacs command 171
Multiple Query Replace (m-X) Zmacs command 91

Tags Multiple Query Replace (m-X) Zmacs command 96
Multiple Query Replace From Buffer (m-X) Zmacs

command 92
Deleting Multiple Versions 138

Multiple windows 102

Set Visited File
Command

Buffer
Command

Local

Point motion along
Point motion between

Creating
Indent
Indent

Starting a

Di red
Append

Dlred
Dired Complement

Set

Additional

Quadruple

Negative

N
N Dired command 138
Name (m-X) Zmacs command 110
name completion 44
Name Last Kbd Macro (m-X) Zmacs command
names 18
Names 4
Names of commands 5, 34
names of commands 6
Naming a File 109
Negative Numeric Arguments 51
nesting level 54
nesting levels 54
New Commands: Keyboard Macros 183
New Comment Line 158
New Line 151
New Line 20
Newline characters 20
Newlines 20, 56
Next Hog 138
Next Kill 65
Next Page 23, 59
Next Possibility 98, 168
Next Screen 24, 47
Next Undumped 140
No Reap Flag 139
Nofill (m-X) Zmacs command 128
Nofill file attribute 129
Notation Conventions 7
Nullifying prefixes 32
Numeric Arg 22
Numeric arguments 20, 22, 34, 51
Numeric Arguments 51

N

185

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

0

p

c-X

Scroll
Zmacs commands for finding
Zmacs commands for finding
Zmacs commands for finding
Zmacs commands for finding

Finding
Getting

Comment

SELECT

Set

Count Lines
Cursor Motion by

Mark
Motion by

Next
Previous

Adjust
Backward

Cursor Motion by
Fill

Forward
Mark

Motion by
Sort

Insert Matching
Find Unbalanced

Check Unbalanced

Abort
Add

Finish
Start

Start Private
Add

Add

Set

0

p

o Zmacs command 118
One Window 118
One Window Defaun 194
Online documentation for commands 34
Online documentation for prefixes 35
Open Get Register 78
Organization of the Screen 15
Organization of this manual 2
Other Window 118
Other Window 118
out about flavors 202
out about Lisp 201
out about the state of buffers 201
out about the state of Zmacs 201
Out About Zmacs Commands 34
Out of Trouble 32
Out Region 159
Overview 2, 46, 178
Overwrite Mode (m-X) Zmacs command 181

p 30
P Dlred command 140
Package (m-X) Zmacs command 126, 127, 128
Packages 125, 126
Page 38
Page 59
Page 81
Page 59
Page 23, 59
Page 24, 59
paragraph 83
Paragraph 23, 58
Paragraph 58
Paragraph 83
Paragraph 23, 58
Paragraph 80
Paragraph 58
Paragraphs (m-X) Zmacs command 100
parentheses 164
Parentheses (m-X) Zmacs command 38
Parentheses When Saving 195
Parenthesizing Expressions 164
Patch (m-X) Zmacs command 174
Patch (m-X) Zmacs command 173
Patch (m-X) Zmacs command 174
Patch (m-X) Zmacs command 172
Patch (m-X) Zmacs command 172
Patch Changed Definitions (m-X) Zmacs

command 173
Patch Changed Definitions of Buffer (m-X) Zmacs

command 173
Patch File (m-X) Zmacs command 128
Patch-File file attribute 129
Patching 172

237

0

p

238

Default
Entering

Electric

Describe Variable At
Dlred move

Move to Default Previous
Move to Previous

Exclamation
Swap

L2:Move to
L:Move

Buffer
Yank

Set
Default column
Jump to Saved

Save

Next

Set Fill

Nullifying
Online documentation for

Appending,
Select

Select Default
Displaying

Move to
Move to Default

Return to
Start

Editing Lisp
Escaping from

Mlnlbuffer
Dired Change File

View File
Change File

View File

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Pathnames In Dlred 134
Peek 30
Pixel 180
PL1 mode 145
PL1 mode 145
Point 15, 37, 54, 74
Point 38
point 136
Point 76
Point 76
point (I) line continuation Indicator 20, 46
Point And Mark n
Point motion along nesting level 54
Point Motion Among Top-Level Expressions 55
Point motion between nesting levels 54
point mouse click 49
point mouse click 49
Polnt-pdl 75
pointers 74
Pop 64
Pop Mark 76
position 57
Position 78
Position 78
Positioning Window Around Definition 48
Possibilities 98
Possibility 98, 168
Possibility Buffers 98
Prefix 83
Prefix character commands 5
Prefix Commands 35
Prefixes 32
prefixes 32
prefixes 35
Prepend To File (m-X) Zmacs command 112
Prependlng, and Inserting Text 112
Previous Buffer 105
Previous Buffer 105
previous keystrokes 36
Previous Page 24. 59
Previous Point 76
Previous Point 76
Previous Screen 24, 48
previous window 30
Private Patch (m-X) Zmacs command 172
Programs 155
prompts 32
Prompts 32
Properties 136
Properties 120
Properties (m-X) Zmacs command 123
Properties (m-X) Zmacs command 120
Protecting Files 139
Put Register 78

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Q

R

c-X

Kbd Macro

Atom
Multiple

Tags
Tags Multiple

Multiple

[Mouse

Down
Up

Dlred Complement No

Error

Adjust
Changing Case of

Comment Out
Compile

Count Lines
Creating a

Evaluate
Fill

Indent
Kill

Lowercase
Lowercase Code In

Make
Mark
Save

Two Windows Showing
Uppercase

Compile
Evaluate

Uncomment
Uppercase Code In

239

Q Q

R

a Olred command 134
a Zmacs command 185
Quadruple Numeric Arg 22
Query 185
Query Replace 90
Query Replace (m-X) Zmacs command 90
Query Replace (m-X) Zmacs command 93
Query Replace (m-X) Zmacs command 91
Query Replace (m-X) Zmacs command 95
Query Replace (m-X) Zmacs command 96
Query Replace From Buffer (m-X) Zmacs

command 92
Query Replace Last Kill (m-X) Zmacs command 92
Query Replace Let Binding (m-X) Zmacs

command 92
Quick Arglist 37

R Dlred command 137
(R)] 44
R2:System menu mouse click 50
R:Menu mouse click 50
Real Line 23, 56, 136
Real Line 23, 56, 136
Reap File (m-X) Zmacs command 122
Reap Flag 139
Reaping 139
Recenter Window 47
recovery 32
Redisplay 47
Redisplaying the Window 47
Region 74
region 83
Region 148
Region 159
Region 82
Region 38
Region 75
Region 160
Region 83
Region 151
Region 25, 82
Region 148
Region 148
region 49
region 49
Region 82
Region 117
Region 148
Region (m-X) Zmacs command 82
Region (m-X) Zmacs command 160, 161
Region (m-X) Zmacs command 159
Region (m-X) Zmacs command 148
Region Marking Mode 194
Region Right Margin Mode 194

R

240

Evaluate

What Is a
Commands to Mark

Commenting
Exchange

Working with
Open Get

Put
Save current location In

Insert text from

Di red

Global search and
Query

Atom Query
Multiple Query

Query
Tags MuHlple Query

Tags Query
Multiple Query

Evaluate and
Query
Query

Locating and
Searching,

Motion with
Cancel

Dired Set Generation
Carriage

Using the

Dired

Finding the
Region
Indent
Make

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Region Verbose 160, 161
Region-Manipulating Commands 82
Region? 74
Regions 80
Regions 159
Regions 82
Regions 73
Register 78
Register 78
register 78
register into buffer 78
Registers 78
Reinitializing Zmacs 11
Relocate cursor 49
Rename Buffer (m-X) Zmacs command 108
Rename File 120
Rename File 137
Rename File (m-X) Zmacs command 120
Renamina Files 137
Reparse Attribute List (•-X) Zmacs command 127
Reparse Attribute List (m-X) Zmacs command 125
Repeat Last Minibuffer Command 41, 64
replace 94
Replace 90
Replace (m-X) Zmacs command 93
Replace (m-X) Zmacs command 91
Replace (m-X) Zmacs command 90
Replace (m-X) Zmacs command 96
Replace (m-X) Zmacs command 95
Replace From Buffer (m-X) Zmacs command 92
Replace Into Buffer (m-X) Zmacs command 92, 161
Replace Last Kill (m-X) Zmacs command 92
Replace Let Binding (m-X) Zmacs command 92
Replace String 90
Replace String (m-X) Zmacs command 90
Replacing Strings Automatically 90
Replacing, and Sorting 85
Reposition Window 48
Respect to the Whole Buffer 60
response 32
Response Format 41
Response Help 41
Restoring text 33
Retention Count 139
return 5
RETURN completion command 13
RETURN key in the minibuffer 41
Return to previous window 30
RETURN Zmacs command 43
Reverse Incremental Search 87
Reverse Undelete 138
Revert Buffer (m-X) Zmacs command 109
right command 35
Right Margin Mode 194
Rigidly 152
Room 153
Rubout 25, 66
RUBOUT Dired command 138

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

RUBOUT key 20
RUBOUT Zmacs character 66
RUBOUT Zmacs command 25, 33

c-X RUBOUT Zmacs command 25, 72

s
c-X

Kill Or

M2:
Jump to

Check Unbalanced Parentheses When
Creating and

Next
Organization of the

Previous
Spilt

Move To

Incremental
Reverse Incremental

String
Tags

Global
Tags Tables and

Backward

s
S Zmacs command 27
Save All Files (m-X) Zmacs command 108
Save Buffers (m-X) Zmacs command 110
Save current location In register 78
Save File 27, 109
Save File Zmacs command 28
Save Position 78
Save Region 82
Save/Kill/Yank mouse click 49
Saved Position 78
Saving 195
Saving Buffers and Files 27
Screen 24, 47
Screen 15
Screen 24, 48
Screen 118
Screen Edge 48
Scroll Other Window 118
Search 86
Search 87
Search 88
Search (m-X) Zmacs command 95
search and replace 94
Search Domains 94
Searching 86
Searching for Appropria1e Commands 35
Searching, Replacing, and Sorting 85
Select All Buffers As Tag Table (m-X) Zmacs

command 94
Select Buffer 27, 105
SELECT C 30
Select Default Previous Buffer 105
SELECT E 30
SELECT E 10
SELECT F 30
SELECT I 30
SELECT key 30
SELECT L 30
SELECT M 30
SELECT P 30
Select Previous Buffer 105
Select System As Tag Table (m-X) Zmacs

command 95
SELECT T 30
Select Tag Table (m-X) Zmacs command 94
SELECT X 30
Selected buffer 104
Selecting, Listing, and Examining Buffers 104
Self Insert and Complete 43, 44
Semicolon(;) comment Indicator 157
Sentence 23, 53

241

s

242

Backward Kiii
Cursor Motion by

, Forward
Kill

Deleting

Di red

zwel:

How to Specify Zmacs Variable
Backward

Backward Kill
Forward

Indent
Kill

Mark
Exchange

Electric
Electric

Two Windows
List the last
List the last

Kill

Searching, Replacing, and
Finding

Editing the
Locating

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Sentence 25, 72
Sentence 52
Sentence 23, 53
Sentence 25, 72
Sentences 72
Set Backspace (m-X) Zmacs command 128
Set Base (m-X) Zmacs command 128
Set commands 128
Set commands for file and buffer attributes 127
Set Comment Column 158
Set Fill Column 180
Set Fill Prefix 83
Set Fonts (m-X) Zmacs command 128
Set Generation Retention Count 139
Set Goal Column 57
Set Key (m-X) Zmacs command 191
Set Lowercase (m-X) Zmacs command 128
Set Nofill (m-X) Zmacs command 128
Set Package (m-X) Zmacs command 126, 127, 128
Set Patch File (m-X) Zmacs command 128
Set Pop Mark 76
Set Tab Width (m-X) Zmacs command 128
Set Variable 194
Set Variable (m-X) Zmacs command 194
Set Visited File Name (m-X) Zmacs command 110
Set Vsp (m-X) Zmacs command 128
aet-attrlbute-updale-llst global variable 128
Setting the Major Mode 143
Settings 193
Sexp 54
Sexp 25, 69
Sexp 54
Sexp 151
Sexp 25, 69
Sexp 80
Sexps 70
Shift keys 5
Shift Lock mode 18
Shift Lock Mode (m-X) Zmacs command 180
Showing Region 117
sixty commands 36
sixty keystrokes 36
Some Buffers (m-X) Zmacs command 110
Sort Lines (m-X) Zmacs command 100
Sort Paragraphs (m-X) Zmacs command 100
Sort Via Keyboard Macros 186
Sort Via Keyboard Macros (m-X) Zmacs

command 100
Sorting 100
Sorting 85
source code 156
source code of a function 11
Source Code to Edit 166
Source Compare 119
Source Compare (m-X) Zmacs,,command 113
Source Compare Merge 114
Source Compare Merge (m-X) Zmacs command 113
SPACE 13

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

T

Delete Horizontal

HELP
Vertical

Move To
How to

Di red

Erase backward to

Getting

Zmacs commands for finding out about the
Zmacs commands for finding out about the

* buff er
Replace
Replace

Locating and Replacing

Zmacs

Select
Entering File

Using the mouse to call up
R2:

SELECT
c-X

Insert
Set

Command
Find Files in Tag

Select All Buffers As Tag
Select System As Tag

Select Tag
Visit Tag

Command
List Tag

Tags
Find Flies in

Select
Select All Buffers As

Select System As
Visit
List

T

243

Space 26
SPACE completion command 13
SPACE Dired command 136
SPACE Zmacs command 43
SPACE Zmacs command 12
spacing 130
Specified Line 48
Specify Zmacs Variable Settings 193
Split Line 153
Split Screen 118
Srccom 137
Standard comtab 191
Start Kbd Macro 183. 184
start of line 71
Start Patch (m-X) Zmacs command 172
Start Private Patch (m-X) Zmacs command 172
Started 9
Starting a New Line 20
Starting Zmacs 10
state of buffers 201
state of Zmacs 201
status lndica1or 19
String 90
String (m-X) Zmacs command 90
String Search 88
Strings Automatically 90
Support buffers 98
support functions 98
Swap Point And Mark n
System As Tag Table (m-X) Zmacs command 95
System Editor 30
System menu 30
System menu 30
System menu mouse click 50

T 30
T Zmacs command 82
Tab 150
Tab Width (m-X) Zmacs command
TAB Zmacs command 150
Tab-Width file attribute 130
table 191
Table (m-X) Zmacs command 97
Table (m-X) Zmacs command 94
Table (m-X) Zmacs command 95
Table (m-X) Zmacs command 94
Table (m-X) Zmacs command 97
tables 5
Tables (m-X) Zmacs command 95
Tables and Search Domains 94
Tag Table (m-X) Zmacs command
Tag Table (m-X) Zmacs command
Tag Table (m-X) Zmacs command
Tag Table (m-X) Zmacs command
Tag Table (m-X) Zmacs command
Tag Tables (m-X) Zmacs command

128

97
94
94
95
97
95

T

244

u

Entering
Appending, Prepending, and Inserting

Deleting and Transposing
Erasing

Inserting
Marking

Restoring
Insert

M:Mark

Organization of
Append
Append
Prepend

Back
Move
Move

Abort At

Point Motion Among

Deleting and
Deleting and
Deleting and
Deleting and
Deleting and

Getting Out of

Modified
Using
View

Canonical
File
File

Correcting

HELP
Find

Check

DI red
Dired Reverse

u

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Tags Multiple Query Replace (m-X) Zmacs
command 96

Tags Query Replace (m-X) Zmacs command 95
Tags Search (m-X) Zmacs command 95
Tags Tables and Search Domains 94
Teco mode 145
Terminal 30
Text 112
Text 61
Text 25, 66
Text 20
text 80
text 33
text from register Into buffer 78
Text mode 18, 144
thing mouse click 49
This Indentation 152
this manual 2
To Buffer 112
To File (m-X) Zmacs command 112
To Fiie (m-X) Zmacs command 112
To Indentation 151
To Screen Edge 48
To Specified Line 48
Toggle 179
Top Level 32
Top-level expression 55
Top-Level Expressions 55
Trace (m-X) Zmacs command 38
Transposing Characters 66
Transposing Lines 71
Transposing Lisp Expressions 69
Transposing Text 61
Transposing Words 68
Trouble 32
Two window mode 117
Two Windows 117
Two Windows 117
Two Windows 117
Two Windows 117
Two Windows Showing Region 117
Typeout 15
Typeout window 15, 34
types 122
types and major modes 182
types of major modes 182
Typical use of Zmacs 156
Typos 20

u Dired command 138
U Zmacs command 12, 36

u
Unbalanced Parentheses (m-X) Zmacs command 38
Unbalanced Parentheses When Saving 195
Uncomment Region (m-X) Zmacs command 159
Undelete 138
Undelete 138

ZMACS Zmscs Manus/

Symbolics, Inc. February 1984

v

Dlred Next
Complete And Exit If

Backward
Forward

Kill Backward

Using the mouse to call

c-HELP
c-m-?

c-X
HELP

fs:file-type-mode-allst Lisp
lbase global

Set
zwel:*major-mode-translatlons* Lisp
zwel:*set-attrlbute-update-llst* global

Describe
Set

Describe
How to Specify Zmacs

Zmacs
List

Evaluate Region
Comparing file

Deleting Multiple
Fiie

Sort
Sort

DI red

Set
Deleting

Set

245

v

Undo all changes to buffer 109
Undumped 140
Unique 43
Unknown attribute 126
Up Comment Line 158
Up List 55
Up List 55
Up List (c-m-X) Zmacs command 69
Up Real Line 23, 56, 136
up System menu 30
Update Attribute List (m-X) Zmacs command
Uppercase Code In Region (m-X) Zmacs

command 148
Uppercase Initial 148
Uppercase Region 148
Uppercase Word 148
User-defined major modes 182

V Dired command 137
. v Zmacs command 193
v Zmacs command 193
V Zmacs command 107
V Zmacs command 12. 36, 193
variable 182
variable 128
Variable 194
variable 182
variable 128
Variable (m-X) Zmacs command 193
Variable (m-X) Zmacs command 194
Variable Apropos 193
Variable Apropos Zmacs command 193
Variable At Point 38
Variable Settings 193
variables 12, 36
Variables (m-X) Zmacs command 193
Verbose 160, 161
versions 137
Versions 138
versions 102
Vertical spacing 130
Via Keyboard Macros 186

125

v

Via Keyboard Macros (m-X) Zmacs command 100
View Buffer 107
View Buffer (m-X) Zmacs command 107
View File 137
View File (m-X) Zmacs command 120
View File Properties 120
View File Properties (m-X) Zmacs command 120
View Kbd Macro (m-X) Zmacs command 184
View Two Windows 117
Visit File 109
Visit Tag Table (m-X) Zmacs command 97
Visited File Name (m-X) Zmacs command 110
vs. Killing 62
Vsp (m-X) Zmacs command 128

246

w
c-X

HELP
Compiler

Edit Compiler
Edit File

Load Compiler

Check Unbalanced Parentheses

Fast
Mark

Motion with Respect to the
Set Tab

Editor
Grow
One

Other
Recenter

Redisplaying the
Reposition

Return to previous
Scroll Other

Typeout
Positioning

One
Two

Modified Two
Multiple

Two
Using Two
View Two

Two
Cursor motion

Backward
Backward Kill

Cursor Motion by
Forward

Kill
Lowercase

Mark
Uppercase

Atom
Deleting and Transposing

Exchange

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

Vsp file attribute 130

w
&ol Zmacs command 27
&ol Zmacs command 12
Warnings (m-X) Zmacs command 163
Warnings (m-X) Zmacs command -163
Warnings (m-X) Zmacs command 163
Warnings (m-X) Zmacs command 163
Warnings about file attribute lists 126
What Is a Region? 74
When Saving 195
Where Am I 37
Where Am I 37
Whole 81
Whole Buffer 60
Width (m-X) Zmacs command 128
Window 15
Window 117
Window 118
Window 118
Window 47
Window 47
Window 48
window 30
Window 118
window 15, 34
Window Around Definition 48
Window Commands 117
Window Default 194
window mode 117
Windows 117
windows 102
Windows 117
Windows 117
Windows 117
Windows Showing Region 117
within buffer 60
Word 23, 52
Word 25, 68
Word 52
Word 23, 52
Word 25, 68
Word 148
Word 80
Word 148
Word Abbrev mode 18
Word Abbrev Mode (m-X) Zmacs command 181
Word Mode (m-X) Zmacs command 180
Words 68
Words 68
Working With Buffers and Flies 102
Working with Regions 73
Wraparound lines 46
Wrapping lines 20
Write File 27, 109
Write File Zmacs command 29

w

ZMACS Zmacs Manual

Symbolics. Inc. February 1984

x x
SELECT X 30

y

z

c-0 c-m-V
c-m-V

c-0 c-V
c-V
m-V

+flag in
Entering

Exiting
Getting Help in
Introduction to

Invoking
Leaving

Reinitializing
Starting

Typical use of
Using the mouse to enter

Zmacs commands for finding out about the state of
RUBOUT

ABORT
Abort Patch (m-X)

Add Patch (m-X)
Add Patch Changed Definitions (m-X)

Add Pa1ch Changed Definitions of Buffer (m-X)
Append To File (m-X)

Arglist (m-X)
Atom Query Replace (m-X)

Atom Word Mode (m-X)
Auto Fill Lisp Comments Mode (c-m-X)

Auto Fill Mode (m-X)
c-i
c-.
c-;
c-<

c-=
c->
c-A
c-B
c-0
c-E
c-F
c-G

c-HELP V
c-K
c-L

y

z

Yank 64
yank command 14
yank command 14
yank command 13
yank command 13
yank command 13. 14. 64
Yank Pop 64
Yanking 13, 33
Yanking in the command history 14
Yanking in the kill history 13

Zmacs 103
Zmacs 10, 30
Zmacs 30
Zmacs 12
Zmacs 4
Zmacs 10
Zmacs 30
Zmacs 11
Zmacs 10
Zmacs 156
Zmacs 10
Zmacs 201
Zmacs character
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command

66
32
174
173
173
173
112
37
93
180
180
180
90
98, 168
157
81
37
81
23, 57
23, 52
25, 33, 66
23. 57
23, 51
32, 33
193
25, 71
47

247

x

y

z

248 ZMACS Zmacs Manual

Symbolics, Inc. February 1984

c-m-> Zmacs command 55
c-m-l Zmacs command 56
c-m-(Zmacs command 55
c-m-; Zmacs command 157

c-m-? V Zmacs command 193
c-m-@ Zmacs command 80
c-m-A Zmacs command 55
c-m-B Zmacs command 54
c-m-0 Zmacs command 54
c-m-E Zmacs command 56
c-m-F Zmacs command 54
c-m-H Zmacs command 80
c-m-K Zmacs command 25, 69
c-m-L Zmacs command 105
c-m-M Zmacs command 151
c-m-N Zmacs command 53
c-m-0 Zmacs command 153
c-m-P Zmacs command 53
c-m-Q Zmacs command 151
c-m-R Zmacs command 48

c-m-RETURN Zmacs command 151
c-m-RUBOUT Zmacs command 25, 69

c-m-sh-E Zmacs command 160
c-m-SPACE Zmacs command 76

c-m-T Zmacs command 70
c-m-U Zmacs command 55
c-m-V Zmacs command 118
c-m-Z Zmacs command 161
c-m-C Zmacs command 55
c-m-\ Zmacs command 151
c-m-A Zmacs command 152

c-N Zmacs command 23, 56, 183
c-0 Zmacs command 153
c-P Zmacs command 23, 56
c-R Zmacs command 87

c-sh-A Zmacs command 37
c-sh-C Zmacs command 82
c-sh-0 Zmacs command 37
c-sh-E Zmacs command 160
c-sh-M Zmacs command 165
c-sh-V Zmacs command 38

c-SPACE Zmacs command 76
c-T Zmacs command 66
c-U Zmacs command 22
c-V Zmacs command 24, 47
c-W Zmacs command 25, 82
c-X Zmacs command 86, 183

c-X 1 Zmacs command 118
c-X 2 Zmacs command 117
c-X 3 Zmacs command 117
c-X 4 Zmacs command 117
c-X 8 Zmacs command 117
c-X ; Zmacs command 158

c-X = Zmacs command 37
c-X A Zmacs command 112
c-X B Zmacs command 27, 105

c-X c-; Zmacs command 159
c-X c-8 Zmacs command 103, 106

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

c-X c-0
c-X c-F
c-X c-G
c-X c-1
c-X c-L

c-X c-m-L
c-X c-m-SPACE

c-X c-N
c-X c-0
c-X c-P
c-X c-S
c-X c-T
c-X c-U
c-X c-V
c-X c-1.1
c-X c-X

c-X D
c-X E
c-X F
c-X H
c-X K
c-X L
c-X 0
c-X Q

c-X RUBOUT
c-X S
c-X T
c-X V
c-X I.I
c-X A

c-Z
Change File Properties (m-X)

Clean Directory (m-X)
CLEAR-INPUT

Compile Buffer (m-X)
Compile Changed Definitions (m-X)

Compile Changed Definitions of Buffer (m-X)
Compile Fiie (m-X)

Compile Region (m-X)
Compiler Warnings (m-X)

Copy File (m-X)
Crea1e Directory (m-X)

Create Link (m-X)
Decrypt Buffer (m-X)

Deinstall Macro (m-X)
Delete File (m-X)

Describe Variable (m-X)
Dired (m-X)

Edit Buffers (m-X)
Edit Callers (m-X)

Edit Changed Definitions (m-X)
Edit Changed Definitions of Buffer (m-X)

Edit Compiler Warnings (m-X)
Edit File Warnings (m-X)

Electric Font Lock Mode (m-X)
Electric Shift Lock Mode (m-X)

EMACS Mode (11-X)
Encrypt Buffer (m-X)

Zmacs command 119
Zmacs command 28, 29, 108
Zmacs command 32
Zmacs command 152
Zmacs command 148
Zmacs command 105
Zmacs command 76
Zmacs command 57
Zmacs command 26, 153
Zmacs command 81
Zmacs command 28, 109
Zmacs command 71
Zmacs command 148
Zmacs command 109
Zmacs command 29, 109
Zmacs command n
Zmacs command 131
Zmacs command 184
Zmacs command 27, 180
Zmacs command 81
Zmacs command 110
Zmacs command 38
Zmacs command 118
Zmacs command 185
Zmacs command 25, 72
Zmacs command 27
Zmacs command 82
Zmacs command 107
Zmacs command 27
Zmacs command 117
Zmacs command 30
Zmacs command 123
Zmacs command 123
Zmacs command 71
Zmacs command 162
Zmacs.command 162
Zmacs command 162
Zmacs command 162
Zmacs command 82
, Zmacs command 163
Zmacs command 121
Zmacs command 123
Zmacs command 122
Zmacs command 108
Zmacs command 186
Zmacs command 122
Zmacs command 193
Zmacs command 131
Zmacs command 107
Zmacs command 169
Zmacs command 167
Zmacs command 168
Zmacs command 163
Zmacs command 163
Zmacs command 180
Zmacs command 180
Zmacs command 181
Zmacs command 108

249

250

End Kbd Macro
Evaluate and Replace Into Buffer (m-X)

Evaluate Buffer (m-X)
Evaluate Changed Definitions (m-X)

Evaluate Changed Definitions of Buffer (m-X)
Evaluate Into Buffer (m-X)

Evaluate Region (m-X)
Find File

Find File In Fundamental Mode (m-X)
Find Files in Tag Table (m-X)

Find Unbalanced Parentheses (m-X)
Finish Patch (m-X)

Hardcopy Buffer (m-X)
Hardcopy File (m-X)

HELP?
HELP A
HELP C
HELP D
HELP L

HELP SPACE
HELP U
HELP V
HELP lJ

Insert Buffer (m-X)
Insert File (m-X)

l.nstall Command (m-X)
Install Macro (m-X)

Kill Backward Up List (c-m-X)
Kill Or Save Buffers (m-X)

Kiii Some Buffers (m-X)
LINE

Lisp Mode (m-X)
List Buffers

List caners (m-X)
List Changed Definitions of Buffer (m-X)

List Definitions (m-X)
List Files (m-X)

List Tag Tables (m-X)
List Variables (m-X)

Load Compiler Warnings (m-X)
m-1
m-)

m-i
m-(
m-.
m-;
m-<

m-=
m->

m-@
m-A
m-B
m-C
m-D
m-E

m-ESCAPE
m-F
m-H

ZMACS Zmscs ManuBI

Symbolics, Inc. February 1984

Zmacs command 183
Zmacs command 92, 161
Zmacs command 160
Zmacs command 161
Zmacs command 161
Zmacs command 160
Zmacs command 160, 161
Zmacs command 28, 29
Zmacs command 110
Zmacs command 97
Zmacs command 38
Zmacs command 174
Zmacs command 108
Zmacs command 120
Zmacs command 12
Zmacs command 12, 35
Zmacs command 12, 34
Zmacs command 12, 35
Zmacs command 12, 36
Zmacs command 12
Zmacs command 12, 36
Zmacs command 12, 36, 193
Zmacs command 12
Zmacs command 112
Zmacs command 112
Zmacs command 192
Zmacs command 186
Zmacs command 69
Zmacs command 110
Zmacs command 110
Zmacs command 151
Zmacs command 156
Zmacs command 103
Zmacs command 170
Zmacs command 169
Zmacs command 168
Zmacs command 119
Zmacs command 95
Zmacs command 193
Zmacs command 163
Zmacs command 23, 58
Zmacs command 56
Zmacs command 90
Zmacs command 164
Zmacs command 166
Zmacs command 157
Zmacs command 24, 60
Zmacs command 38
Zmacs command 24, 60
Zmacs command 80
Zmacs command 23, 53
Zmacs command 23, 52
Zmacs command 148
Zmacs command 25, 68
Zmacs command 53
Zmacs command 160
Zmacs command 23, 52
Zmacs command 80

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

m-K
m-L

m-LINE
m-M
m-N
m-0
m-P
m-R

m.:..RETURN
m-RUBOUT

m-S
m-sh-C
m-sh-0
m-sh-E

m-T
m-U
m-V
m-IJ
m-Z
m-C
m-\
m-.....

Macro Expand Expression (m-X)
Multiple Edit Callers (m-X)
Multiple List Callers (m-X)

Multiple Query Replace (m-X)
Multiple Query Replace From Buffer (m-X)

Name Last Kbd Macro (m-X)
overwrite Mode (m-X)
Prepend To File (m-X)
Query Replace (m-X)

Query Replace Last Kill (m-X)
Query Replace Let Binding (m-X)

Reap File (m-X)
Rename Buffer(m-X)

Rename File (m-X)
Reparse Attribute List (m-X)

Replace String (m-X)
RETURN

Revert Buffer(m-X)
RUBOUT

Save All Files (m-X)
Save File

Select All Buffers As Tag Table (m-X)
Select System As Tag Table (m-X)

Select Tag Table (m-X)
Set Backspace (m-X)

Set Base (m-X)
Set Fonts (m-X)

Set Key (m-X)
Set Lowercase (m-X)

Set Nofill (m-X)
Set Package (m-X)

Set Patch File (m-X)
Set Tab Width (m-X)

Set Variable (m-X)
Set Visited File Name (m-X)

Set Vsp (m-X)

Zmacs command 25, 72
Zmacs command 148
Zmacs command 158
Zmacs command 151
Zmacs command 158
Zmacs command 152
Zmacs command 158
Zmacs command 48
Zmacs command 151
Zmacs command 25, 68
Zmacs command 150
Zmacs command 162
Zmacs command 37
Zmacs command 161
Zmacs command 68
Zmacs command 148
Zmacs command 24, 48
Zmacs command 82
Zmacs command 162
Zmacs command 23, 58
Zmacs command 26
Zmacs command 26, 152
Zmacs command 165
Zmacs command 170
Zmacs command 171
Zmacs command 91
Zmacs command 92
Zmacs command 185
Zmacs command 181
Zmacs command 112
Zmacs command 90
Zmacs command 92
Zmacs command 92
Zmacs command 122
Zmacs command 108
Zmacs command 120
Zmacs command 125
Zmacs command 90
Zmacs command 43
Zmacs command 109
Zmacs command 25, 33
Zmacs command 108
Zmaes command 28
Zmacs command 94
Zmacs command 95
Zmacs command 94
Zmacs command 128
Zmacs command 128
Zmacs command 128
Zmacs command 191
Zmacs command 128
Zmacs command 128
Zmacs command 126, 127, 128
Zmacs command 128
Zmacs command 128
Zmacs command 194
Zmacs command 110
Zmacs command 128

251

252

Sort Lines (m-X)
Sort Paragraphs (m-X)

Sort Via Keyboard Macros (m-X)
Source Compare (m-X)

Source Compare Merge (m-X)
SPACE

Start Patch (m-X)
Start Private Patch (m-X)

TAB
Tags Multiple Query Replace (m-X)

Tags Query Replace (m-X)
Tags Search (m-X)

Trace (m-X)
Uncomment Region (m-X)

Update Attribute List (m-X)
Uppercase Code in Region (m-X)

Variable Apropos
View Buffer (m-X)

View Fiie (m-X)
View File Properties (m-X)

View Kbd Macro (m-X)
Visit Tag Table (m-X)

Word Abbrev Mode (m-X)
Write Fiie

Finding Out About
Mouse-sensitive

Customizing the

How to Specify

Entering

ZMACS Zmacs Manual

Symbolics, Inc. February 1984

Zmacs command 100
Zmacs command 100
Zmacs command 100
Zmacs command 113
Zmacs command 113
Zmacs command 43
Zmacs command 172
Zmacs command 172
Zmacs command 150
Zmacs command 96
Zmacs command 95
Zmacs command 95
Zmacs command 38
Zmacs command 159
Zmacs command 125
Zmacs command 148
Zmacs command 193
Zmacs command 107
Zmacs command 120
Zmacs command 120
Zmacs command 184
Zmacs command 97
Zmacs command 181
Zmacs command 29
Zmacs Commands 34
Zmacs commands 50
Zmacs commands for finding out about flavors 202
Zmacs commands for finding out about Lisp 201
Zmacs commands for finding out about the state of

buffers 201
Zmacs commands for finding out about the state of

Zmacs 201
Zmacs commands for Interacting with Lisp 202
Zmacs Environment 177
Zmacs support functions 98
Zmacs Variable Settings 193
Zmacs variables 12, 36
Zmail 30
zwel:*major-mode-tranalatlona* Lisp variable 182
zwel:*aet-attrlbute-update-llst* global variable 128
zwel:defmajor 182
zwel:edit-functlona function 11

c-X "' Zmacs command 117

symbolics.™

DEBUG Debugger

Cambridge, _Massachusetts

Debugger
990015

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear In this
document.

Symbolics software described In this document Is furnished only under license, and may
be used only in accordance with the terms of such license. Trtle to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics Is a trademark of Symbolics, Inc., Gambrldge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Csmbrldge,
Massachusetts.
All rights reserved. Printed In USA.
This document may not be reproduced In whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

DEBUG Debugger i

Symbolics, Inc. February 1984

Table of Contents

Page

L Entering the Debugger 1

1.1 Error Display 2

2. How to Use the Debugger 5

3. Debugger Commands 9

4. Summary of Debugger Commands 15

5. Summary of Debugging Aids 17

8. Tracing Function Execution 19

6.1 Options to trace 20
6.2 Controlling the Format of trace Output 23
6.3 Untracing Function Execution 24

7. Advising a Function 25

7 .1 Designing the Advice 27
7.2 :around Advice 28
7.3 Advising One Function Within Another 29

8. Stepping Through an Evaluation 31

9. evalbook 33

9.1 applyhook 35

10. The MAR 37

1L Variable Monitoring 39

Index 41

DEBUG Debugger 1

Symbolics, Inc. February 1984

1. Entering the Debugger

When an error condition is signalled and no handlers decide to handle the error, an
interactive Debugger is entered to allow you to look around and see what went
wrong and to help you continue the program or abort it. This section describes how
to use the Debugger and the various debugging facilities.

The Debugger is invoked automatically when errors arise during program execution
or when you explicitly cause an error, for example, by typing a nonsense symbol
name, such as ahsdgf, at the Lisp read-eval-print loop.

You can also enter the Debugger explicitly by pressing r.-SUSPEND. Adding the
CONTROL modifier to this combination has the effect of saying "enter the Debugger
immediately". Thus, you can:

• Press r.-SUSPEND while the currently running program or read-eval-print loop is
reading from the console.

•Press c-,_-susPEND so that the currently running program enters the Debugger
whether or not it is reading from the console.

Note: Pressing the SUSPEND key without the META modifier or just pressing
c-SUSPEND enters a read-eval-print loop rather than the Debugger.

You can use the dbg function in your source code to help detect errors in your
programs.

•Insert a call to dbg (with no arguments) into your code and then recompile.

•Call dbg with an argument of process to force a process into the Debugger.

dbg &optional process Function
Forces process into the Debugger so that you can look at its current state.
dbg sets up a restart handler for c-i!, ABORT, and RESUME that exits from the
dbg function back to the original process. The message for this restart
handler is "Allow process to continue". You can use c-T, c-R, c-r.-R, and
other similar Debugger commands when you enter the Debugger via dbg.

•With no argument, it enters the Debugger as if an error had occurred
for the current process. It is not an error; in particular, errset and
catch-error do not handle it. You can include this form in program
source code as a means of entering the Debugger. This is useful for
breakpoints and causes a special compiler warning.

•With an argument oft (rather than a process, window, or stack group),
it finds a process that has sent an error notification.

Suppose you are running in process X and you use dbg on some process Y.
Process Y is forced into the Debugger, no matter what it is doing.

2 DEBUG Debugger

Symbolics, Inc. February 1984

Technically, it is "interrupted", similar to how c-SUSPEND, c-ABORT and
c-M-SUSPEND work. Process Y starts running the Debugger, using the stream
debug-io. debug-io gets the same stream as was bound to terminal-io in
Process X. At this time, Process X waits in a state called DBG until Process
Y leaves the Debugger, and so Process X does not contend for the stream.

For more information: See the special form break. See the section "Breakpoints".

1.1 Error Display

Errors are signalled by the Lisp Machine's microcode and by Lisp programs (by using
terror or related functions). Here is an example of an error:

f oo

>>Trep: The verieble FOO is unbound.

SI:•EVAL:
Are a (FOR"): FOO

s-A, 41111111>: Supply e velue to use this tine •• the velue of FOO
s-B, ft-C: Supply e value to store perftenently es the value of FOO
s-C: Retry the SYnEVAL instruction
s-D, 411111!>: Return to Lisp Top Level in Lisp Listener 1
•

» indicates entry to the Debugger. The word immediately following» shows what
caused you to enter the Debugger; most commonly you see Trap, Error, or Break.

Trap indicates a microcode error.
Error indicates a software error.
Break indicates entry by keystroke or the dbg function.

The message that follows describes the error in English, in this example, an
unbound variable. The next two lines in the example show the stack frame in
which the error occurred - the function that was being called and the current
value(s) of its argument(s).

The right-facing arrow (..) indicates that the Debugger is waiting for a command.
Multiple arrow prompts signal recursive invocations of the Debugger.

The Debugger provides options for proceeding from the error or restarting from some
prior point. When the Debugger is entered, all proceed types, special commands, or
restart handlers available in the error context are assigned to keystrokes with the
SUPER modifier, starting withs-A, s-B, and so on, from the most recently established
(innermost) to the oldest (outermost). Also, the RESUME key is assigned to the
innermost proceed type (or restart handler if there are no proceed types), and the
ABORT key is assigned to the innermost restart handler. All these keystroke

DEBUG Debugger

Symbolics. Inc. February 1984

assignments are displayed when you enter the Debugger or when you type the c-L

Debugger command. (See the document SignaUing and Handling Conditions.)

You can use one of these options or any of the Debugger commands. See the
section "Debugger Commands". See the section "How to Use the Debugger". For
details on the Debugger command keys: See the section "Special Keys".

Optionally, you can request that backtrace information appear when you enter the
Debugger by setting the variable dbg:*show-backtrace• in your init file. See the
section "Debugger Commands".

3

4 DEBUG Debugger

Symbolics, Inc. February 1984

L - rn- A. c 1>&.r: 0-c-j 1)

c..- tfi-L
c - rn -L

Ii

DEBUG Debugger

Symbolics, Inc. February 1984

2. How to Use the Debugger

Once inside the Debugger, you can give a wide variety of commands. With these
commands, you can see the arguments for the current stack frame, disassemble its
code, return a value for the stack frame, move up and down the stack, and enter
the editor to edit function definitions. Press the HELP key or the 7 key to display a
brief help message or c-HELP for documentation on all of the Debugger commands.

This section describes how to give the commands, and then explains them in
approximate order of usefulness.

When the Debugger prompts you with~, you can do one of the following:
• Type a Lisp expression
• Type a Debugger command
• Use the input editor to recall a previous Lisp expression

The Debugger considers most keys used with a modifier (such as CONTROL or SUPER)
to be commands. Most unmodified keys begin a Lisp expression; however, a few
keys are commands even without a modifier. (See the section "Debugger
Commands".) ·

5

The Debugger and the input editor use some ·of the same keys for commands. You
can enter the input editor at any time by pressing a key that is not a Debugger
command, for example, SPACE. Once there, you can type an input editor command
that is also a Debugger command.

When you press a key that is not a command, the Debugger prompts with Eva l : ,
which means that it will evaluate any Lisp expression that you type. The Debugger
interprets the Lisp expression as a Lisp form and evaluates it in the context of the
function that got the error. That is, all bindings that were in effect at the time of
the error will be in effect when your form is evaluated, with certain exceptions
explained later in this section. The result of the evaluation is printed, and the
Debugger prompts again with an arrow ..

If, during the typing of the form, you change your mind and want to get back to
the Debugger's command level, press ABORT or c-G; the Debugger responds with an
arrow prompt. In fact, you -~_Eress ABORT or c-G whenever the Debugger-~
typein in order to !hish what iou ar~ !fl>ing an~ ~! .. ?a~!t t~-~~-~!!!~.-.!~~l.
If a nontrivial error occurs in the evaluation of the Lisp expression, you are thrown
into a second_ Debugger looking at the new error. 1;Jie~_prompts with two
arrow.a...G~ to §how that Y.O\l ~j!!~.~_Debuggers. You can abort the
computation and get back to the first Debugger by pressing the ABORT key.
However, if the error is trivial the abort is done automatically and the original error
message is reprinted.

6 DEBUG Debugger

Symbolics. Inc. February 1984

Various Debugger commands ask for Lisp objects, such as an object to return or the
name of a catch-tag. WhQ.neve.r it ;rnguests a Lisp object, it~~ you to m>e in a
form; it will evaluate what you type in. This provides greater generality, since there
are objects to which you might want to refer that cannot be typed, such as arrays.
If the form you type is nontrivial (not just a constant form), the Debugger shows
you the result of the evaluation and asks you if it is what you intended. It expects
a v or N answer. (See the function y-or-n-p.) If you answer negatively it asks you
for another form. To exit the command, just press ABORT or c-G.

When the Debugger evaluates a form, the variable bindings at the point of error are
in effect with the following exceptions:

• terminal-io is rebound to the stream the Debugger is using.
dbg:old-terminal-io is bound to the value that terminal-io had at the point
of error.

•standard-input and standard-output are rebound to be synonymous with
terminal-io; their old bindings are saved in dbg:old-standard-input and
dbg:old-standard-output.

• query-io, debug-io, and error-output are rebound to be synonymous with
terminal-io; their old bindings are not directly accessible.

• + and •are rebound to the Debugger's previous form and previous value.
When the Debugger is first entered, + is the last form typed, which is typically
the one that caused error, and • is the value of the previous form. ++, +++,
••, •••, -, and / / are treated in an analogous fashion. See the section "The
Lisp Top Level". When the Debugger is exited, all of these variables are
restored to their original values; the interactions with the Debugger's read-eval­
print loop do not affect the interactions with the top-level Lisp read-eval-print
loop.

• rubout-handler and read-preserve-delimiters are rebound to nil, in case
the error occurred while in the input editor or the reader.

• evalhook is rebound to nil, turning off the step facility if it had been in use
when the error occurred. See the section "evalhook".

• dbg:*bound-handlers• and dbg:*default-handlers• are rebound to nil,
preventing conditions signalled by the form the Debugger is evaluating from
reaching condition handlers in the program being debugged. This prevents you
from accidentally being thrown out of the Debugger.

Note that the variable bindings are those in effect at the point of error, not those of
the current frame being examined.

The ~-s command can be used to evaluate a special variable in the context of the

DEBUG Debugger 7

Symbolics, Inc. February 1984

current frame. This works even for the special variables listed as exceptions (earlier
in this section).

8 DEBUG Debugger

Symbolics, Inc. February 1984

Ii

DEBUG Debugger 9

Symbolics, Inc. February 1984

3. Debugger Commands

All Debugger commands are single characters, usually with the CONTROL or META
modifiers. The single most useful comm.and is ABORT (or c-i!), which exits from the
Debugger and throws out of the computation that got the error. Often you are not
interested in using the Debugger at all and just want to get back to the command
level in the program you are running; ABORT lets you do this in one character.

The ABORT command returns control to the most recently established restart handler,
usually a command or read-eval-print loop. Pressing ABORT multiple times throws you
back to successively older read-eval-print or command loops until top level is reached.
Pressing c-M-ABORT, on the other hand, always throws you to top level. <Note:
c-M-ABORT is not a Debugger comm.and but a system command, which is available
from every program.)

Pressing ABORT in the middle of typing a form to be evaluated by the Debugger
aborts that form and returns to the Debugger's command level, whereas pressing
ABORT as a Debugger command returns out of the Debugger and the erring program
to the previous command level.

Documentation is provided by the HELP or? command, which types out a very brief
explanation of the Debugger. The c-HELP command gives documentation for all of
the Debugger commands. H you type c-L or press REFRESH, the Debugger clears the
screen, redisplays the error message and the current stack frame, displays a brief
backtrace, and lists the special commands that apply to the particular error currently
being handled and gives a one-line explanation of each of them.

Often you want to try to proceed from the error. To do this, use the RESUME (or
c-c) command. The exact way RESUME works depends on the kind of error that
happened. For some errors, there is no standard way to proceed, and RESUME just
tells you so and returns to the Debugger's command level. For the very common
"unbound variable" error, it requests that you supply the Lisp object that should be
used in place of the (nonexistent) value of the symbol. For unbound-variable or
undefined-function errors, you can also just type Lisp forms to set the variable or
define the function, and then press RESUME; execution proceeds after the Debugger
asks you to confirm that the new value is acceptable.

The Debugger knows about a current stack frame and has several commands that
use it. The initially current stack frame is the one that signalled the error: either
the one that got the microcode-detected error, or the one that called ferror, error,
or a related function. When the Debugger starts up it shows you this frame in the
following format:

FOO
Arg 0 (X): 13
Arg 1 (V): 1

10 DEBUG Debugger

Symbolics. Inc. February 1984

This means that foo was called with two arguments, whose names (in the Lisp
source code) are x and y. The current values of x and y are 13 and 1 respectively.
On the LM-2 these might not be the original arguments if the function happens to
setq its argument variables. On the 3600, the Debugger shows the original I
arguments. '

The Debugger provides several commands to allow you to examine the Lisp control
stack and to make other frames current than the one that got the error. The
control stack (or regular pdl) keeps a record of all functions that are currently
active. If you call foo at Lisp's top level, and it calls bar, which in tum calls baz,
and baz gets an error, then a backtrace (a backwards trace of the stack) would show
all of this information.

The Debugger has three backtrace commands:
c-B
r.-B
c-M-8

c-B simply displays the names of the functions on the stack, starting from the
current frame; in the above example it would display

BAZ • BAR • FOO• Sl:*EVAL • Sl:LISP-TOP-LEVELl • SI:LISP-TOP-LEVEL

The arrows indicate the direction of calling. A numeric argument specifies how
many frames to display.

The r.-B command displays a more extensive backtrace, indicating the names of the
arguments to the functions and their current values; for the example above it might
look like:

BAZ:
Arg 0 (X): 13
Arg 1 (V): 1

BAR:
Arg 0 (ADDEND): 13

FOO:
Arg 0 (FROB): (A B C • D)

c-r.-B is comparable to r.-B but also includes internal frames of the Lisp interpreter,
which normally are skipped.

The c-tl command moves down to the next frame (that is, it changes the current
frame to be the frame that called it) and displays the frame in this same format.
c-P or RETURN moves up to the previous frame (that is, the one that this one called)
and displays the frame in the same format.

r.-< moves to the stack frame where the error occurred (the top or most recent
frame), whereas r.-> goes to the bottom (the oldest frame); both display the new
current frame. Use c-P after r.-< to go up through signal, handlers, and so forth,
in tum, until you get to the highest possible frame - the call to the Debugger
itself.

/)
(

DEBUG Debugger 11

Symbolics, Inc. February 1984

c-s asks you for a string, and searches the stack for a frame whose executing
function's name contains that string. That frame becomes current and is displayed.

1'1-L displays the current frame in full-screen format, which shows the arguments
and their values, the local variables and their values, and the machine code with an
arrow pointing to the next instruction to be executed. On the 3600, if a function
setqs one of its arguments, 1'1-L shows both the original argument supplied by the
caller and the current value of the variable.

1'1-N moves to the next frame and displays it in full-screen format, and 1'1-P moves to
the previous frame and displays it in full-screen format.

Commands such as c-N and 1'1-tl, which are meaningful to repeat, take a prefix
numeric argument and repeat that many times. The numeric argument is typed by
using c- or 1'1- and the number keys, as in the editor.

c-E puts you into the editor, looking at the source code for the function in the
current frame. This is useful when you have found a function that caused the error
and needs to be fixed. The editor command c-i! will return to the Debugger, if it is
still there.

1'1-C is only available for such errors as an unbound variable or undefined function.
It is similar to c-c,- but actually setqs the variable or defines the function, so that
the error does not happen again. c-C (or RESUME) provides a replacement value but
does not actually change the variable.

c-sh-P is only available for such errors as an unbound variable or undefined function
when there is a variable or function in another package that has the same name.
It permits easy recovery when you forget to supply a package prefix.

c-R is used to return a value or values from the current frame; the frame that
called that frame continues running as if the function of the current frame had
returned. This command asks for, as many values as the caller expects, which might
be no values, one value, more than one, or an indefinite number of values. For each
value it prompts you for a form, which it evaluates; it returns the resulting value,
possibly after confirming it with you. If no values are expected, it requests
confirmation before returning.

The c-T command does a *throw to a given tag with a given value; you are
prompted for the tag and the value.

c-1'1-R is a variation of c-R; it starts the current frame over with the same function
and arguments. If the function has been redefined in the meantime (perhaps you
edited it and fixed its bug) the new definition is used. c.;..1'1-R asks for confirmation
before doing it.

The c-1'1-tl, c-1'1-P, and c-1'1-B commands are like the corresponding c- commands but
do not censor the stack. When running interpreted code, the Debugger tries to skip
over frames that belong to functions of the interpreter, such as •eval, prog, and
cond, and only show "interesting" functions. The c-1'1-U command goes down the
stack to the next interesting function and makes that the current frame.

12 DEBUG Debugger

Symbolics, Inc. February 1984

c-M-A takes a numeric argument n, and displays the value of the nth argument of
the current frame. The default value for the argument is 0, meaning the first '1

frame. It leaves• set to the value of the argument, so that you can use the Lisp
read-eval-print loop to examine it. It also leaves + set to a locative pointing to the
argument on the stack, so that you can change that argument (by calling rplacd on
the locative).

c~M-L is similar to c-M-A, but refers to the nth local variable of the frame.

c-M-V is similar to c-M-A, but refers to the nth value being returned by the frame.
If the frame is not in the process of returning values, the command displays an
error message. c-M-V is meaningful only when you are using trap-on-exit (see c-X)
and looking at a frame that is about to return.

c-M-F is similar to c-M-A, but refers to the function executing in the frame; it
ignores its numeric argument and does not allow you to change the function.

c-M-H describes any condition handlers established by the current frame (or its
subframes if it is an interpreted function).

c-M-S describes any special-variable bindings in the current frame (or its subframes if
it is an interpreted function).

M-S asks for the name of a special variable and displays its value in the binding
context of the current frame. It leaves • set to the value that was displayed.

M-I (for "Instance") helps you examine the values of instance variables in the stack
group being debugged. The command prompts you for the name of an instance
variable and displays the value of that instance variable, inside the instance that is
the value of self in the environment of the current frame.

c-M-1.1 calls the Display Debugger, a window-oriented Debugger, which is not
documented in this manual. It should, however, be usable without further
documentation.

c-M sends a bug report. It creates a new process and runs the bug function in that
process. It starts up a mail-sending window that contains a copy of the error
message and an extensive backtrace of the stack. You are expected to supply
context information explaining what you were doing when the problem occurred,
preferably including a way for the person reading the bug report to make it happen
again. The stack trace by itself is not adequate· information for debugging. When
you type the END key the bug report is transmitted as mail and the window
containing the Debugger is reselected. You can also use normal window-switching
commands such as FUNCTION s to switch back and forth between the Debugger and
the mail-sending window while composing the bug report. A numeric argument to
c-M controls the number of stack frames in the backtrace that have complete
information. The current stack frame at the time c-M is typed begins the backtrace,
so you might want to type M-< before c-M if you have been examining other frames
than the one that got the error.

DEBUG Debugger 13

Symbolics, Inc. February 1984

c:-X toggles the trap-on-exit flag of the current frame and displays its new state. M-X

sets the trap-on-exit flag in the current frame and all its callers. c:-M-X clears the
trap-on-exit flag in the current frame and all its callers. If a frame with the trap­
on-exit flag set returns or is thrown through, the Debugger is entered. Press
RESUME to continue returning or throwing. The ABORT key, however, bypasses the
trap-on-exit mechanism.

The Debugger's command loop lets you type in Lisp forms, which it reads, evaluates,
and prints. When you are typing these forms, you can use the following functions
to examine or modify the arguments, locals, function object, and values being
returned in the current frame.

dbg:arg name-or-number Function
Returns the value of argument name-or-number in the current stack frame.
(setf (dbg:arg n) x) sets the value of the argument n in the current frame
to the value of x. name-or-number can be the number of the argument (for
example, 0 to specify the first argument) or the name of the argument. This
function can be called only from the read-eval-print loop of the Debugger.

dbg:loc name-or-number Function I £f's ,}o>t)
Returns the value of the local variable name-or-number in the current stack , lo""'
frame. (setf (dbg:loc n) x) sets the value of the local variable n in the (J.-~'
current frame to the value of x. name-or-number can be the number of the
local variable (for example, 0 to specify the first local variable) or the name of
the local variable. This function can be called only from the read-eval-print
loop of the Debugger.

dbg:fun Function
Returns the function object of the current stack frame. (setf (dbg:fun) x)
sets the function object of the current frame to the value of x. This
function can be called only from the read-eval-print loop of the Debugger.

dbg:val &optional val-no 0 Function
Returns the value of the val-noth value to be returned from the current
stack frame. (setf (dbg:val val-no) x) sets the value of the val-noth value
to be returned from the current frame to the value of x. val-no must be a
fixnum (since values do not have names) and defaults to 0. (dbg:val) ~
without a value number gives the first value. This function can be called
only from the read-eval-print loop of the Debugger.

The Debugger uses the following variables:

dbg:*frame• Variable
Inside the read-eval-print loop of the Debugger, the value of dbg:*frame• is
the location of the current frame.

14 DEBUG Debugger

Symbolics, Inc. February 1984

dbg:*defer-package-dwim* Variable
When this is nil (the default), the Debugger searches over all packages to
find any look-alike symbols, when errors concerning unbound variables occur.

When the option is not nil, the search does not occur until you type c-sh-P.
In this case the Debugger offers c-sh-P in the list of commands even if the
search would find no look-alike symbols.

dbg:*debug-io-override* Variable
If the value of this variable is nil (the default), the Debugger uses the
stream that is the value of debug-io.(But if the value of
dbg:*debug-io-override* is not nil, the Debugger uses the stream that is
the value of this variable instead. This variable should always be set (using
setq), not bound, so all processes and stack groups can see it.

dbg:*show-backtrace* Variable
Backtrace information appears when you enter the Debugger. The default is
nil. ®symindexm(pkg={dbg:},sym={*show-backtrace*},key={show-backtrace*})

Value
nil

t

Meaning
The Debugger startup message does not include any
backtrace information.
The Debugger startup message includes a three-element
back trace.

.>{:'

DEBUG Debugger 15

Symbolics, Inc. February 1984

4. Summary of Debugger Commands

c-A Displays argument .list of function in current frame. It displays only
the names of the arguments, not their values.

c-M-A Examines or changes the nth argument of the current frame.

c-B Displays a brief backtrace, including only the names of the functions.

M-B Displays a more extensive backtrace than c-B, including the names of
the arguments to the functions and their current values.

c-M-B Displays a longer backtrace than c-B and M-B, providing the names of
the arguments to the functions and their current values as well as
the internal frames of the Lisp interpreter.

c-C, RESUME

M-C

c-E

c-M-F

c-G or ABORT

c-M-H

M-I

c-L, REFRESH

M-L

c-M-l

c-M

c-N, LINE

M-N

c-M-N

c-P, RETURN

M-P

Attempts t? continue execution, if possible.

Attempts to continue, setqing the unbound variable or otherwise
permanently fixing the error.

Puts you in the editor with the cursor positioned at the source code
for· the function in the current frame. c. ~ ~ -~,1.i::- .,.,,,

Sets • to the function in the current frame.

Quits various Debugger commands; use to escape from typing in a
form.

Describes any condition handlers established by the current frame.

Evaluates an instance variable of the instance that is self in the
current frame.

Redisplays error message and current frame.

Displays full-screen typeout of current frame .

Gets local variable n.

Sends mail to report a bug.

Moves to next frame. With argument of n, moves down n frames.

Moves to next frame with full-screen typeout. With argument of n,
moves down n frames.

Moves to next frame even if it is ''uninteresting". With argument of
n, moves down n frames.

Moves to previous frame. With argument of n, moves up n frames.

Moves to previous frame with full-screen typeout. With argument of
n, moves up n frames.

16 DEBUG Debugger

Symbolics. Inc. February 1984

c:-M-P Moves to previous frame even if it is "uninteresting". With argument
of n, moves up n frames.

c-R Returns from the current frame.

c-M-R Reinvokes the function in the current frame (throws back to it and
starts it over at its beginning).

c-s Searches for a frame containing a user-specified function.

M-S Evaluates a special variable in the binding context of the current
frame.

c-M-S Describes any special-variable bindings established by the current
frame.

c-T Throws a value to a tag.

c:-M-U Moves down the stack to the next "interesting" frame.

c:-M-V Gets the nth value being returned by the current frame.

c:-M-W Invokes the Display Debugger.

c-X Toggles the trap-on-exit flag of the current frame.

M-X Sets the trap-on-exit flag in the current frame and all its callers.

c:-M-X Clears the trap-on-exit flag in the current frame and all its callers.

c-i!, ABORT Aborts the computation and throws back to the most recent break or
Debugger, to the program's "command level", or to Lisp top level.

7 or HELP Displays a brief help message.

c-HELP Displays a detailed help message.

M-< Goes to top or most recent frame of stack, the stack where the error
occurred.

M-> Goes to bottom or oldest frame of stack.

c:-0-c-M-9 Numeric arguments to the following command are specified by typing
a decimal number with the CONTROL and/or META keys held down.

DEBUG Debugger

Symbolics, Inc. February 1984

5. Summary of Debugging Aids

Anyone who writes programs for the Lisp Machine should become familiar with
these debugging facilities.

• The trace facility provides the ability to perform certain actions at the time a
function is called or at the time it returns. The actions may be simple
typeout, or more sophisticated debugging functions. See the section "Tracing
Function Execution".

17

• The advise facility is a somewhat similar facility for modifying the behavior of
a function. See the section "Advising a Function".

• The step facility allows the evaluation of a form to be intercepted at evecy step
so that the user may examine just what is happening throughout the
execution of the form. See the section "Stepping Through an Evaluation".

• The evalhook facility allows you to get at a particular Lisp form whenever the
evaluator is called. The step facility uses evalhook. See the section
"evalhook".

•The MAR facility (available only on the LM-2) provides the ability to cause a
trap on any memocy reference to a word (or a set of words) in memocy. If
something is getting clobbered by agents unknown, the MAR facility can help
track down the· source of the problem.

See the section "Tracing and Stepping".

18 DEBUG Debugger

Symbolics. Inc. February 1984

DEBUG Debugger 19

Symbolics, Inc. February 1984

6. Tracing Function Execution

The trace facility allows you to trace some functions. Tracing is useful when you
need to find out why a program behaves in an unexpected manner, particularly
when you suspect that arguments are being passed incorrectly or functions are being
called in the wrong sequence. The trace facility is closely compatible with Maclisp.

Certain special actions are taken when a traced function is called and when it
returns. The default tracing action prints a message when the function is called,
showing its name and arguments, and another message when the function returns,
showing its name and value(s). See the section "Tracing".

You invoke the trace facility in several ways:
• Use the trace and untrace special forms.

• Click on [Trace] in the System menu. Enter or point to the function to be
traced; a menu of options pops up.

• Invoke the Trace (.-.-X) command in the editor. Enter the function to be
traced; a menu of options pops up.

The menu options are also available with trace; however, the syntax is complex.
For a table explaining the correspondence between menu options and trace options:
See the section "Tracing".

trace
A trace form looks like:

(trace spec-1 spec-2 ...)

Each spec can take any of the following forms:

a symbol

Special Form

This is a function name, with no options. The function is traced in
the default way, printing a message each time it is called and each
time it returns.

a list (function-name option-1 option-2 ...)
function-name is a symbol . and the options control how it is to be
traced. For a list of the various options: See the section "Options to
trace". Some options take arguments, which should be given
immediately following the option name.

a list (:function function-spec option-1 option-2 •••)
This option is like the previous form except that function-spec need
not be a symbol. (See the section "Function Specs".) It exists
because if function-name were a list in the previous form, it would
instead be interpreted as the following form:

20 DEBUG Debugger

Symbolics, Inc. February 1984

a list (({unction-1 function-2 •••) option-1 option-2 ...)
All of the functions are traced with the same options. Each function
can be either a symbol or a general function-spec.

trace returns as its value a list of names of all functions it traced. If called
with no arguments, as just (trace), it returns a list of all the functions
currently being traced.

If you attempt to trace a function already being traced, trace calls untrace
before setting up the new trace.

Tracing is implemented with encapsulation, so if the function is redefined (for
example, with defun or by loading it from a compiled code file) the tracing is
transferred from the old definition to the new definition.

See the section "Encapsulations".

6.1 Options to trace

The following trace options exist:

:breakpred
Enters a breakpoint after printing the entry trace information but before
applying the traced function to its arguments, if and only if pred evaluates to
non-nil. During the breakpoint, the symbol arglist is bound to a list of the
arguments of the function.

:exitbreak pred
This is just like :break except that the breakpoint is entered after the
function has been executed and the exit trace information has been printed,
but before control returns. During the breakpoint, the symbol arglist is
bound to a list of the arguments of the function, and the symbol values is
bound to a list of the values that the function is returning.

:error Calls the Debugger when the function is entered. Use RESUME (or c-C) to
continue execution of the function. If this option is specified, no printed
trace output appears other than the error message displayed by the
Debugger. CN ote: If you also want to call the Debugger when the function
returns, use the Debugger's c-X comm.and.)

:step Steps through the function whenever it is called. See the section "Stepping
Through an Evaluation".

:entrycond pred
Prints trace information on function entry only if pred evaluates to non-nil.

:exitcond pred
Prints trace information on function exit only if pred evaluates to non-nil.

DEBUG Debugger 21

Symbolics, Inc. February 1984

:condpred
Prints trace information on function entry and exit only if pred evaluates to
non-nil.

:wherein function
Traces the function only when it is called, directly or indirectly, from the
specified function function. You can give several trace specs to trace, all
specifying the same function but with different :wherein options, so that the
function is traced in different ways when called from different functions.

This is different from advise-within, which only affects the function being
advised when it is called directly from the other function. The
trace :wherein option means that when the traced function is called, the
special tracing actions occur if the other function is the caller of this function,
or its caller's caller, or its caller's caller's caller, and so on.

:argpdl pdl
Specifies a symbol pdl, whose value is initially set to nil by trace. When the
function is traced, a list of the current recursion level for the function, the
function's name, and a list of arguments is pushed onto the pdl when the
function is entered, and then popped when the function is exited. The pdl
can· be inspected from within a breakpoint, for example, and used to
determine the vecy recent history of the function. This option can be used
with or without printed trace output. Each function can be given its own
pdl, or one pdl can serve several functions.

:entryprint form
form is evaluated and the value is included in the trace message for calls to
the function. You can give this option more than once, and all the values
will appear, preceded by \ \.

:exitprint form
form is evaluated and the value is included in the trace message for returns
from the function. You can give this option more than once, and all the
values will appear, preceded by \ \.

:print form
form is evaluated and the value is included in the trace messages for both
calls to and returns from the function. You can give this option more than
once, and all the values will appear, preceded by\\.

:entry list
Specifies a list of arbitrary forms whose values are printed along with the
usual entry-trace. The list of resultant values, when printed, is preceded by
\ \ to separate it from the other information.

:exit list
Similar to :entry, but specifies expressions whose values are printed with the
exit-trace. The list of values printed is preceded by\\.

:arg :value :both nil
Specifies which of the usual trace printouts should be enabled.

22

If you specify

:arg

:value

:both

nil

None

DEBUG Debugger

Symbolics, Inc. February 1984

Then

On function entry prints the name of the function and the
values of its arguments.

On function exit prints the returned value(s) of the
function.

Same as if both :value and :arg were specified.

Same as if neither :value or :arg was specified.

The default is to :both.

If any further options appear after one of these, they are not treated as
options. Rather, they are considered to be arbitrary forms whose values are
to be printed on entry and/or exit to the function, along with the normal
trace information. The values printed are preceded by a / /, and follow any
values specified by :entry or :exit. Note that since these options "swallow"
all following options, if one is given it should be the last option s~ified.

H the variable ~t•i;·~sed in a:;· of the ;expi:~io~ given f; the' :co"LJ. :break,
:entry, or :exit options, or after the :arg, :value, :both, or nil option, when those
expressions are evaluated the value of arglist will be bound to a list of the
arguments given to the traced function. Thus the following form would cause a
break in foo if and only if the first argument to foo is nil.

(trace (foo :break (null (car arglist))))

If the :break or :error option is used, the variable arglist will be valid inside the
break-loop. If you setq arglist, the arguments seen by the function will change.

Similarly, the variable values will be a list of the resulting values of the traced
function. For obvious reasons, this should only be used with the :exit option. If
the :exitbreak option is used, the variables values and arglist are valid inside the
break-loop. If you setq values, the values returned by the function will change.

You can "factor" the trace specifications, as explained earlier. For example,

(trace ((foo bar) :break (bad-p arglist) :value))

is equivalent to

(trace (foo :break (bad-p arglist) :value)
(bar :break (bad-p arglist) :value))

Since a list as a function name is interpreted as a list of functions, nonatomic
function names are specified as follows:

(trace (:function (:method flavor :message) :break t))

(See the section "Function Specs".)

DEBUG Debugger 23

Symbolics, Inc. February 1984

trace-compile-ftag Variable
If the value of trace-compile-ftag is non-nil, the functions created by trace
will get compiled, allowing you to trace special forms such as cond without
interfering with the execution of the tracing functions. The default value of
this flag is nil.

6.2 Controlling the Format of trace Output

Tracing output is printed on the stream that is the value of trace-output. This is
synonymous with terminal-io unless you change it. Following is an example of the
default form of trace output:

1 Enter FACT 4.
I 2 Enter FACT 3.
I 3 Enter FACT 2.
I I 4 Enter FACT 1.
I I 5 Enter FACT 0.
I I 5 Exit FACT 1.
I I 4 Exit FACT 1.
I 3 Exit FACT ~.

I 2 Exit FACT 6.
1 Exit FACT 24.

You can use the variables si:•trace-columns-per-leveJ•, si:•trace-bar-p•,
si:*trace-bar-rate•, and si:•trace-old-style• to control the format of trace output.

si:•trace-columns-per-level• Variable
For trace output, controls the number of columns of indentation that are
added for each level of function eall. The value must be an integer. The
default is 2.

si:*trace-bar-p• Variable
For trace output, controls whether columns of vertical bars are printed. If
the value is not nil, they are printed; otherwise, spaces are printed instead of
the vertical bars. The default is t (print the bars).

si:•trace-bar-rate• Variable
When si:*trace-bar-p• is not nil, columns of vertical bars are printed in
trace output for evecy n levels of function eall, where n is the value. The
value must be an integer. The default is 2.

si:*trace-old-style• Variable
If not nil, the old, Maclisp-compatible form of printing trace output is used.
The default is nil (use the new style).

24 DEBUG Debugger

Symbolics. Inc. February 1984

6.3 Untracing Function Execution

untrace "e &rest fns Special Fonn
Use untrace to undo the effects of trace and restore functions fns to their
normal, untraced state. untrace takes multiple specifications, for example,
(untrace foo bar baz). Calling untrace with no arguments untraces all
functions currently being traced.

DEBUG Debugger 25

Symbolics, Inc. February 1984

7. Advising a Function

To advise a function is to tell a function to do something extra in addition to its
actual definition. Advising is achieved by means of the function advise. The
something extra is called a piece of advice, and it can be done before, after, or
around the definition itself. The advice and the definition are independent, in that
changing either one does not interfere with the other. Each function can be given
any number of pieces of advice.

Advising is fairly similar to tracing, but its purpose is different. Tracing is intended
for temporary changes to a function to give the user information about when and
how the function is called and when and with what value it returns. Advising is
intended for semipermanent changes to what a function actually does. The
differences between tracing and advising are motivated by this difference in goals.

Advice can be used for testing out a change to a function in a way that is easy to
retract. In this case, you would call advise from the terminal. It can also be used
for customizing a function that is part of a program written by someone else. In
this case you would be likely to put a call to advise in one of your source files or
your login init file rather than modifying the other person's source code. See the
section "Logging in".

Advising is implemented with encapsulation, so if the function is redefined (for
example, with defun or by loading it from a compiled code file), the advice will be
transferred from the old definition to the new definition. See the section
"Encapsulations".

advise function class name position &body forms
A function is advised by the special form

(advise function class name position
forml form2 . .. >

None of this is evaluated.

Special Form

function Specifies the function to put the advice on. It is usually a symbol,
but any function spec is allowed. (See the section "Function
Specs".)

class Specifies either :before, :after, or :around, and says when to
execute the advice (before, after, or around the execution of the
definition of the function). The meaning of :around advice is
explained a couple of sections below.

name Specifies an arbitrary symbol that is remembered as the name of
this particular piece of advice. It is used to keep track of multiple
pieces of advice on the same function. If you have no name in
mind, use nil; then we say the piece of advice is anonymous.

26 DEBUG Debugger

Symbolics, Inc. February 1984

A given function and class can have any number of pieces of
anonymous advice, but it can have only one piece of named advice
for any one name. If you try to define a second one, it replaces
the first.

Advice for testing purposes is usually anonymous. Advice used for
customizing someone else's program should usually be named so
that multiple customizations to one function have separate names.
Then, if you reload a customization that is already loaded, it does
not get put on twice.

position Specifies where to put this piece of advice in relation to others of
the same class already present on the same function.

fonns

Position can have these values:
• position can be nil. The new advice goes in the default

position: it usually goes at the beginning (where it is
executed before the other advice), but if it is replacing
another piece of advice with the same name, it goes in the
same place that the old piece of advice was ill..

• position can be a number, which is the number of pieces of
advice of the same class to precede this one. For example, 0
means at the beginning; a very large number means at the
end.

• position can have the name of an existing piece of advice of
the same class on the same function; the new advice is
inserted before that one.

Specifies the advice; they get evaluated when the function is
called.

Example: The following form modifies the factorial function so that
if it is called with a negative argument it signals an error instead of
running forever.
(advise factorial :before negative-arg-check nil

(if (minusp (first arglist))
(ferror •factorial of negative argument•)))

unadvise &optional function class position Special Fonn
Removes pieces of advice. None of its subforms are evaluated. function and
class have the same meaning as they do in the function advise. position
specifies which piece of advice to remove. It can be the numeric index (0
means the first one) or it can be the name of the piece of advice.

unadvise can remove more than one piece of advice if some of its arguments
are missing or nil. The arguments function, class, and position all act
independently. A missing value or nil means all possibilities for that aspect
of advice. For example, the following form removes all :before, :after, and
:around advice named negative-arg-check on the factorial function.

DEBUG Debugger 27

Symbolics, Inc. February 1984

(unadvise factorial nil negative-arg-check)

In this example unadvise removes all :around advice on all functions in all
positions with all names.

(unadvise nil :around)

In this example unadvise removes all classes of advice named
my-personal-advice on all functions.

(unadvise nil nil my-personal-advice)

(unadvise) removes all advice on all functions, since function, class, and
position take on all possible values.

The following are the primitive functions for adding and removing advice. Unlike
the special forms advise and un.advise, the following are functions and can be
conveniently used by programs. advise and unadvise are actually macros that
expand into calls to these two.

si:advise-1 function class name position forms Function
Adds advice. The arguments have the same meaning as in advise. Note
that the forms argument is not a &rest argument.

si:unadvise-1 function &optional class position . Function
Removes advice. function, class, and position are independent. If function,
class, or position, is nil, or if class or position is unspecified, all classes of
advice or advice for all functions, at all positions, or with all names is
removed.

You can find out manually what advice a function has with grindef, which grinds
the advice on the function as forms that are calls to advise. These are in addition
to the definition of the function.

To poke around in the advice structure with a program, you must work with the
encapsulation mechanism's primitives. See the section "Encapsulations".

si:advised-functions Variable
A list of all functions that have been advised.

7.1 Designing the Advice

For advice to interact usefully with the definition and intended purpose of the
function, it must be able to interface to the data flow and control flow through the
function. The system provides conventions for doing this.

The list of the arguments to the function can be found in the variable arglist.
:before advice can replace this list, or an element of it, to change the arguments
passed to the definition itself. If you replace an element, it is wise to copy the
whole list first with:

28 DEBUG Debugger

Symbolics, Inc. February 1984

(setq arglist (copylist arglist))

After the function's definition has been executed, the list of the values it returned
can be found in the variable values. :after advice can set this variable or replace
its elements to cause different values to be returned.

All the advice is executed within a prog, so any piece of advice can exit the entire
function and return some values with return. No further advice will be executed.
If a piece of :before advice does this, then the function's definition will not even be
called.

7.2 :around Advice

A piece of :before or :after advice is executed entirely before or entirely after the
definition of the function. :around advice is wrapped around the definition; that is,
the call to the original definition of the function is done at a specified place inside
the piece of :around advice. You specify where by putting the symbol :do-it in that
place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value
returned by the function. This could also be done by the following:

(setq values (list (+ 5 (car values))))

as :after advice.

When there is more than one piece of :around advice, they are stored in a sequence
just like :before and :after advice. Then, the first piece of advice in the sequence
is the one started first. The second piece is substituted for :do-it in the first one.
The third one is substituted for :do-it in the second one. The original definition is
substituted for :do-it in the last piece of advice.

:around advice can access arglist, but values is not set up until the outermost
:around advice returns. At that time, it is set to the value returned by the
:around advice. It is reasonable for the advice to receive the values of the :do-it
(for example, with multiple-value-list) and play with them before returning them
(for example, with values-list).

:around advice can return from the prog at any time, whether the original
definition has been executed yet or not. It can also override the original definition
by failing to contain :do-it. Containing two instances of :do-it can be useful under
peculiar circumstances. If you are careless, however, the original definition might be
called twice, but something like the following certainly works reasonably.

(if (foo) (+ 5 :do-it)(* Z :do-it))

DEBUG Debugger 29

Symbolics, Inc. February 1984

7.3 Advising One Function Within Another

It is possible to advise the function f oo only when it is called directly from a specific
other function bar. You do this by advising the function specifier
(:within bar foo). That works by finding all occurrences of foo in the definition
of bar and replacing them with altered-too-within-bar. This can be done even if
bar's definition is compiled code. The symbol altertd-foo-within-bar starts off
with the symbol foo as its definition; then the symbol altered-too-within-bar,
rather than foo itself, is advised. The system remembers that foo has been
replaced inside bar, so that if you change the definition of bar, or advise it, then
the replacement is propagated to the new definition or to the advice. If you remove
all the advice on (:within bar foo), so that its defiajtion becomes the symbol foo
again, then the replacement is unmade and everything returns to its original state.

(grindef bar) prints foo where it originally appeared, rather than
altered-too-within-bar, so the replacement will not be seen. Instead, grindef
prints calls to advise to describe all the advice that has been put on foo or
anything else within bar.

An alternate way of putting on this sort of advice is to use advise-within.

advise-within within-function function-to-advise class name position Special Form
&body forms

An advise-within form looks like this:
(advise-within within-function function-to-advise

class name position
forms ...)

It advises function-to-advise only when called directly from the function
within-function. The other arguments mean the same thing as with advise.
None of them is evaluated.

To remove advice from (:within bar foo), you can use unadvise on that function
specifier. Alternatively, you can use unadvise-within.

unadvise-within within-function &optional advised-function class
position

An unadvise-within form looks like this:

Special Form

C unadvi se-wi thin within-function function-to-advise class position)

It removes advice that has been placed on C :within within-function
function-to-advise>. The arguments class and position are interpreted as for
unadvise.

For example, if those two arguments are omitted, then all advice placed on
function-to-advise within within-function is removed. Additionally, if
function-to-advise is omitted, all advice on any function within within-function
is removed. If there are no arguments, than all advice on one function

30 DEBUG Debugger

Symbolics, Inc. February 1984

within another is removed. Other pieces of advice, which have been placed
on one function and not limited to within another, are not removed.

(unadvise) removes absolutely all advice, including advice for one function
within another.

The function versions of advise-within and unadvise-within are called
si:advise-within-1 and si:unadvise-within-1 respectively. advise-within and
unadvise-within are macros that expand into calls to the other two.

DEBUG Debugger 31

Symbolics, Inc. February 1984

8. Stepping Through an Evaluation

The step facility gives you the ability to follow ever:y step of the evaluation of a form
and examine what is going on. It is analogous to a single-step proceed facility often
found in machine-language debuggers. Use the step facility if your program is
behaving strangely, and it is not obvious how it is getting into this strange state.
See the section "Stepping".

You can enter the stepper in two ways:

• Use the step function.

•Use the :step option of trace.

step fonn Function
step evaluates fonn with single stepping. It returns the value of fonn.

For example, if you have a function named foo, and typical arguments to it
might bet and 3, you could say

(step '(foo t 3))

If a function is traced with the :step option, then whenever that function is called
it will be single stepped. See the section "Options to trace". Note that any
function to be stepped must be interpreted; that is, it must be a lambda-expression.
Compiled code cannot be handled by the stepper.

When evaluation is proceeding with single stepping, before any form is evaluated, it
is (partially) printed out, preceded by a right-facing arrow(..) character. When a
macro is expanded, the expansion is printed out preceded by a double arrow (..)
character. When a form returns a value, the form and the values are printed out
preceded by a left-facing arrow (•) character; if more than one value is being
returned, an and-sign(") character is printed between the values.

Since the forms can be ver:y long, the stepper does not print all of a form; it
truncates the printed representation after a certain number of characters. Also, to
show the recursion pattern of who calls whom in a graphic fashion, it indents each
form proportionally to its level of recursion.

After the stepper prints any of these things, it waits for a command from you. A
variety of commands exist to tell the stepper how to proceed, or to look at what is
happening.

c-N (Next)

SPACE

Steps to the next thing. The stepper continues until the next thing
to print out, and it accepts another command.

Goes to the next thing at this level. In other words, it continues to
evaluate at this level, but does not step anything at lower levels. In

32

c-U (Up)

c-X (eXit)

c-T (Type)

c-G (Grind)

c-E (Editor)

DEBUG Debugger

Symbolics, Inc. February 1984

this way you can skip over parts of the evaluation that do not
interest you.

Continues evaluating until we go up one level. Similar to the SPACE
command; it skips over anything on the current level as well as
lower levels.

Exits; finishes evaluating without any more stepping.

Retypes the current form in full (without truncation).

Grinds (that is, pretty-prints) the current form.

Enters the editor.

c-B (Breakpoint)

c-L

M-L

c-r.-L

? or HELP

This command puts you into a breakpoint (that is, a read-eval-print
loop) from which you can examine the values of variables and other
aspects of the current environment. From within this loop, the
following variables are available:

step-form The current form.

step-values The list of returned values.

step-value The first returned value.

If you change the values of these variables, it will work.

Clears the screen and redisplays the last ten pending forms (forms
being evaluated).

Like c-L, but does not clear the screen.

Like c-L, but redisplays all pending forms.

Prints documentation on these commands.

It is strongly suggested that you write a little function and try the stepper on it. If
you get a feel for what the stepper does and how it works, you will be able to tell
when it is the right thing to use to find bugs.

DEBUG Debugger 33

Symbolics, Inc. February 1984

9. evalhook

The evalhook facility provides a "hook" into the evaluator; it is a way you can get a
Lisp form of your choice to be executed whenever the evaluator is called. The
stepper uses evalhook; however, if you want to write your own stepper or
something similar, then use this primitive albeit complex facility to do so.

evalhook Variable
If the value of evalhook is non-nil, then special things happen in the
evaluator. When a form (any form, even a number or a symbol) is to be
evaluated, evalhook is bound to nil and the function that was evalhook's
value is applied to one argument - the form that was trying to be evaluated.
The value it returns is then returned from the evaluator.

evalhook is bound to nil by break and by the Debugger, and setqed to nil
when errors are dismissed by throwing to the Lisp top-level loop. This
provides the ability to escape from this mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several
restrictions are imposed on evalhook. It only applies to evaluation -
whether in a read-eval-print loop, internally in evaluating arguments in
forms, or by explicit use of the function eval. It does not have any effect on
compiled function references, on use of the function apply, or on the
"mapping" functions. (In Zetalisp, as opposed to Maclisp, it is not necessary
to do (*rset t) nor (sstatus evalhook t). Also, Maclisp's special-case check
for store is not implemented.)

evalhook form evalhook &optional applyhook Function
evalhook is a function that helps exploit the evalhook feature. The form
is evaluated with evalhook lambda-bound to the function evalhook. The
checking of evalhook is bypassed in the evaluation of form itself, but not in
any subsidiary evaluations, for instance of arguments in the form. This is
like a "one-instruction proceed" in a machine-language debugger.

34 DEBUG Debugger

Symbolics, Inc. February 1984

Example:
;; This function evaluates a form while printing debugging
; ; information.
(defun hook (x)

(terpri)
(evalhook x 'hook-function))

;; Notice how this function calls evalhook to evaluate the
;; form f, so as to hook the subforms.
(defun hook-function (f)

(let ((v (evalhook f 'hook-function)))
(format t "form: -s-xvalue: -s-x• f v)
v))

;; This isn't a very good program, since if f returns multiple
;; values, it will not work.

The following output might be seen from (book '(cons (car '(a • b)) 'c)):

form: (quote (a • b))
value: (a . b)
form: (car (quote (a • b)))
value: a
form: (quote c)
value: c
(a • c)

Normally after eval has evaluated the arguments to a function, it calls the
function. If applyhook exists, however, eval calls the hook with two
arguments: the function and its list of arguments. The values returned by
the hook constitute the values for the form. The hook could use apply on
its arguments to do what eval would have done normally. This hook is
active for special forms as well as for real functions.

Whenever either an evalhook or applyhook is called, both hooks are bound
off. The evalhook itself can be nil if only an applyhook is needed.

applyhook catches only apply operations done by eval. It does not catch
apply called in other parts of the interpreter or apply or funcall operations
done by other functions such as mapcar. In general, such uses of apply
can be dealt with by intercepting the call to mapcar, using the applyhook,
and substituting a different first argument.

The argument list is like an &rest argument: it might be stack-allocated but
is not guaranteed to be. Hence you cannot perform side-effects on it and you
cannot store it in . any place that does not have the same dynamic extent as
the call to applyhook.

DEBUG Debugger

Symbolics. Inc. February 1984

9.1 applyhook

applyhook provides a hook into apply, much as evalhook provides a hook into
eval.

35

applyhook Variable
When the value of this variable is not nil and eval calls apply, applyhook
is bound to nil and the function that was its value is applied to two
arguments: the function that eval gave to apply and the list of arguments
to that function. The value it returns is returned from the evaluator.

applyhook function args evalhook applyhook Function
function is applied to args with evalhook lambda-bound to the function
evalhook and with applyhook lambda-bound to the function applyhook.
Like the evalhook function, this bypasses the first place where the relevant
hook would normally be triggered. Either of the last two arguments can be
nil.

36 DEBUG Debugger

Symbolics. Inc. February 1984

DEBUG Debugger 37

Symbolics, Inc. February 1984

10. The MAR

The MAR facility exists only on the LM-2. The 3600 has no identical or equivalent
facility.

The MAR facility allows any word or contiguous set of words to be monitored
constantly, and can cause an error if the words are referenced in a specified manner.
The name MAR derives from a similar device on the ITS PDP-lOs and is an
acronym for Memory Address Register. The MAR checking is done by the Lisp
Machine's memory management hardware, and so the speed of general execution
when the MAR is enabled is not significantly slowed down. However, the speed of
accessing pages of memory containing the locations being checked is slowed down
somewhat, since every reference involves a microcode trap.

The MAR is controlled by the following functions:

dbg:set-mar location cycle-type &optional n-words '1 Function
The dbg:set-mar function clears any previous setting of the MAR, and sets
the MAR on n-words words, starting at location. location can be any object.
Often it will be a locative pointer to a cell, probably created with the locf
special form. n-words currently defaults to 1. cycle-type determines under
what conditions to trap and can have the following values:

:read

:write

t

Only reading the location should cause an error.

Only writing the location should cause an error.

Both reading and writing the location should cause an
error.

To set the MAR to detect setq (and binding) of the variable foo, use:

(dbg:set-mar (value-cell-location 'foo) ':write)

dbg:clear-mar Function
Tums off the MAR. Warm booting the machine disables the MAR but does
not tum it off; that is, references to the MARed pages are still slowed down.
dbg:clear-mar does not speed things back up until the next time the pages
are swapped out.

dbg:mar-mode Function
(dbg:mar-mode) returns a symbol indicating the current state of the MAR.
It returns one of the following:

nil The MAR is not set.

:read The MAR causes an error if there is a read.

38 DEBUG Debugger

Symbolics, Inc. February 1984

:write The MAR causes an error if there is a write.

t The MAR causes an error if there is any reference.

Note that using the MAR makes the pages on which it is set somewhat slower to
access, until the next time they are swapped out and back in again after the MAR
is shut off. Also, use of the MAR currently breaks the read-only feature if those
pages were read-only.

Proceeding from a MAR break allows the memory reference that got an error to
take place, and continues the program with the MAR still effective. When
proceeding from a write, the Debugger asks you whether to allow the write to take
place or to inhibit it, leaving the location with its old contents.

Most - but not all - write operations first do a read. setq and rplaca are
examples. This means that if the MAR is in :read mode it will catch writes as well
as reads; however, they will trap during the reading phase, and consequently the
data to be written will not be displayed. This also means that setting the MAR to t
mode causes most writes to trap twice, first for a read and then again for a write.
So when the MAR says that. it trapped because of a read, this means a read at the
hardware level, which might not look like a read in your program.

DEBUG Debugger 39

Symbolics, Inc. February 1984

11. Variable Monitoring

Variable monitoring works only on the LM-2.

monitor-variable sym &optional current-va/,ue-cell-only-p Function
monitor-function

Calls a given function just after sym is setqed (by compiled code or
otherwise). Does not trigger on binding of sym. The function is given both
the old and new values as arguments. It does not get sym, the name of
then variable, as an argument, so it is usually necessary to use a closure as
monitor-function in order to remember this. The old value is nil if sym had
been unbound.

The default monitoring function prints sym and the old and new values.
This behavior can be changed by specifying the monitor-function argument.

Normally this feature applies to all setqs, but if current-va/,ue-cell-only-p is
specified non-nil, it applies only to those setqs that would alter sym's
currently active value cell. This is only relevant when sym is subject to a
closure.

Do not try to use this feature with variables that are forwarded to A-memory
(for example, inhibit-scheduling-flag).

unmonitor-variable &optional sym Function
If sym is being monitored, it is restored to normal. If no sym is specified, all
variables that have been monitored are unmonitored.

40 DEBUG Debugger

Symbolics, Inc. February 1984

DEBUG Debugger

Symbolics, Inc. February 1984

A

B

c

Index

A
ABORT Debugger command 9, 15

:around Advice 28
Designing the Advice 27

Advice to functions 25
advise special form 25

al: advlse-1 function 27
advlse-wtthln special form 29

sl: advised-functions variable 27
Advising a Function 25
Advising One Function Within Another 29

Summary of Debugging Aids 17
Advising One Function Within Another 29

applyhook 35
applyhook function 35
applyhook variable 35

dbg: erg 13
dbg: erg function 13

:arg option to trace 20
argllst variable 20
:argpc:tl option to trace 20

Hook arguments 34
:around Advice 28

B

c

Backtrace 9, 15
Backtrace Information 14
Backtrace of the call stack 14
:both option to trace 20
:break option to trace 20
bug function 9
Bug mail 9, 15
Bug reports 9, 15

c-A Debugger command 15
c-B Debugger command 9, 15
c-C Debugger command 9, 15
c-E Debugger command 9, 15
c-G Debugger command 5
c-HELP Debugger command 9, 15
c-L Debugger command 9, 15
c-M Debugger command 9, 15
c-m-A Debugger command 9, 15
c-m-B Debugger command 9, 15
c-m-F Debugger command 9, 15
c-m-H Debugger command 9, 15
c-m-L Debugger command 9, 15
c-m-N Debugger command 9, 15
c-m-P Debugger command 9, 15

41

A

B

c

42

Backtrace of the
dbg:

ABORT Debugger
c-A Debugger
c-B Debugger
c-C Debugger
c-E Debugger
c-G Debugger

c-HELP Debugger
c-L Debugger
c-M Debugger

c-m-A Debugger
c-m-B Debugger
c-m-F Debugger
c-m-H Debugger
c-m-L Debugger
c-m-N Debugger
c-m-P Debugger
c-m-R Debugger
c-m-S Debugger
c-m-U Debugger
c-m-V Debugger
c-m-IJ Debugger
c-m-X Debugger

c-N Debugger
c-P Debugger
c-R Debugger
c-S Debugger

c-sh-P Debugger
c-T Debugger
c-X Debugger

HELP Debugger
m-< Debugger
m-> Debugger
m-B Debugger
m-C Debugger
m-I Debugger
m-L Debugger
m-N Debugger
m-P Debugger
m-S Debugger
m-X Debugger

RESUME Debugger
Debugger

DEBUG Debugger

Symbolics, Inc. February 1984

c-m-R Debugger command 9, 15
c-m-S Debugger command 9, 15
c-m-U Debugger command 9, 15
c-m-V Debugger command 9. 15
c-m-IJ Debugger command 9, 15
c-m-X Debugger command 9, 15
c-N Debugger command 9, 15
c-P Debugger command 9, 15
c-R Debugger command 9, 15
c-S Debugger command 9, 15
c-sh-P Debugger command 9, 15
c-T Debugger command 9, 15
c-X Debugger command 9, 15
c-Z In the Debugger 9, 15
call stack 14
clear-mar function 37
command 9, 15
command 15
command 9, 15
command 9, 15
command 9, 15
command 5
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9. 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 15
command 9, 13, 15
command 9, 15
command 9, 15
command 9, 15
command 5, 9, 15
command 9, 15
command 9, 15
Commands 9, 15

DEBUG Debugger

Symbolics. Inc. February 1984

D

Summary of Debugger Commands 15
:cond option to trace 20

Manipulating the control stack 9, 15
Controlling the Format of trace Output 23
Current stack frame 9, 15

Debugger functions to return values In current stack frame 13

dbg:

c-Z In the
Entering the

Functions used inside the
How to Use the

ABORT
c-A
c-B
c-C
c-E
c-G

c-HELP
c-L
c-M

c-m-A
c-m-B
c-m-F
c-m-H
c-m-L
c-m-N
c-m-P
c-m-R
c-m-S
c-m-U
c-m-V
c-m-W
c-m-X

c-N
c-P
c-R
c-5

c-sh-P

D
dbg function 1
dbg:*debug-lo-overrlde* variable 14
dbg:*defer-package-dwlm* variable 14
dbg:*frame* variable 13
dbg:*ahow-backtrace* variable 14
dbg:arg 13
dbg:arg function 13
dbg:clear-mar function 37
dbg:fun 13
dbg:fun function 13
dbg:loc 13
dbg:loc function 13
dbg:m•-mode function 37
dbg:set-m• function 37
dbg:val 13
dbg:val function 13
debug-lo-override variable 14
Debugger 1
Debugger 9, 15
Debugger 1
Debugger 13
Debugger 5
Debugger command 9, 15
Debugger command 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 5
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15

43

D

44

E

F

c-T
c-X

HELP
m-<
m->
m-B
m-C
m-1
m-L
m-N
m-P
m-S
m-X

RESUME

Summary of

Summary of
dbg:

Error

Stepping Through an

Tracing Function
Untraclng Function

advise special
advise-within special

trace special
unadvlse special

unadvlse-wlthln special
untrace special

Controlling the
Current stack

Debugger functions to return values In current stack
dbg:
dbg:
dbg:

Advising a

E

F

DEBUG Debugger

Symbolics, Inc. February 1984

Debugger command 9. 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 13, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger command 5, 9, 15
Debugger command 9, 15
Debugger command 9, 15
Debugger Commands 9, 15
Debugger Commands 15
Debugger functions to return values In current stack

frame 13
Debugging Aids 17
defer-package-dwlm variable 14
Designing the Advice 27
Display 2

Entering the Debugger
:entry option to trace 20
:entrycond option to trace 20
:entryprlnt option to trace 20
Error Display 2
:error option to trace 20
evalhook 33
evalhook function 33, 34
evalhook variable 33
Evaluation 31
Examining values of Instance variables 13
Execution 19
Execution 24
:exit option to trace 20
:exltbreak option to trace 20
:exltcond option to trace 20
:exltprlnt option to trace 20

form 25
form 29
form 19
form 26
form 29
form 24
Format of trace Output 23
frame 9, 15
frame 13
frame variable 13
fun 13
fun function 13
Function 25

E

F

DEBUG Debugger 45

Symbolics, Inc. February 1984

H

I

L

M

applyhook
bug
dbg

dbg:arg
dbg:cles-m•

dbg:fun
dbg:loc

dbg:m•-mode
dbg:set-m•

dbg:val
evalhook

monitor-variable
sl:advlse-1

sl:unadvlse-1
step

unmonltor-varlable
Tracing

Untraclng
Advising One

Advice to
Debugger

Backtrace
Functions used

Examining values of

H

I

L

function 35
function 9
function 1
function 13
function 37
function 13
function 13
function 37
function 37
function 13
function 33, 34
function 39
function 27
function 27
function 31
function 39
Function Execution 19
Function Execution 24
Function Within Another 29
functions 25
functions to return values in current stack frame 13
Functions used inside the Debugger 13

HELP Debugger command 9, 15
Hook arguments 34
How to Use the Debugger 5

information 14
inside the Debugger 13
instance variables 13

H

I

L
dbg: loc 13
dbg: loc function 13

M M
m-< Debugger command 9, 15
m-> Debugger command 9, 15
m-B Debugger command 9, 15
m-C Debugger command 9, 15
m-1 Debugger command 9, 13, 15
m-L Debugger command 9, 15
m-N Debugger command 9, 15
m-P Debugger command 9, 15
m-S Debugger command 5, 9, 15
m-X Debugger command 9, 15

Bug mail 9, 15
Manipulating the control stack 9, 15

The MAR 37
dbg: mar-mode function 37

monitor-variable function 39

46 DEBUG Debugger

Symbolics, Inc. February 1984

Variable Monitoring 39
Monitoring the value of a variable 27

0 0 0
Advising One Function Within Another 29

:arg option to trace 20
:argpdl option to trace 20

:both option to trace 20
:break option to trace 20
:cond option to trace 20
:entry option to trace 20

:entrycond option to trace 20
:entryprlnt option to trace 20

:error option to trace 20
:exit option to trace 20

:exltbreak option to trace 20
:exltcond option to trace 20
:exltprlnt option to trace 20

:print option to trace 20
:step option to trace 20

:value option to trace 20
:wherein option to trace 20

Options to trace 20
Controlling the Format of trace Output 23

trace output 23

p p p
:print option to trace 20

R R R
Bug reports 9, 15

RESUME Debugger command 9, 15
Debugger functions to return values in current stack frame 13

s s s
dbg: set-mar function 37
dbg: *ahow-backtrace* variable 14

al:*trace-bar-p* variable 23
al:*trace-bar-rate•· variable 23
al:*trace-columna-per-level* variable 23
al:*trace-old-style* variable 23
al:advlse-1 function 27
al:advlsed-functlons variable 27
al:unadvlse-1 function 27

advise special form 25
advise-within special form 29

trace special form 19
unadvlse special form 26

unadvlse-wlthln special form 29
untrace special form 24

Backtrace of the call stack 14
Manipulating the control stack 9, 15

Current stack frame 9, 15

DEBUG Debugger

Symbolics, Inc. February 1984

T

u

v

Debugger functions to return values In current stack frame 13
step function 31

:arg option to
:argpdl option to

:both option to
:break option to
:cond option to
:entry option to

:entrycond option to
:entryprlnt option to

:enor option to
:exit option to

:exltbreak option to
:exltcond option to
:exltprlnt option to

:print option to
:step option to

:value option to
:wherein option to

Options to

Controlling the Format of

sl:
sl:
sl:

sl:

T

u

:step option to trace 20
Stepping Through an Evaluation 31
Summary of Debugger Commands 15
Summary of Debugging Aids 17

trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace 20
trace output 23
trace Output 23
trace special form 19
trace-bar-p variable 23
trace-bar-rate variable 23
trace-columns-per-level variable 23
trace-complle-ftag variable 23
trace-old-style variable 23
Tracing Function Execution 19

unadvlse special form 26
sl: unadvlse-1 function 27

unadvlse-wlthln special form 29
unmonltor-varlable function 39
untrace special form 24
Untraclng Function Execution 24

Functions used Inside the Debugger 13

v
dbg: val 13
dbg: val function 13

Monitoring the value of a· variable 27
:value option to trace 20

Debugger functions to return values In current stack frame 13
Examining values of Instance variables 13

values variable 20
applyhook variable 35

47

T

u

v

48

w

DEBUG Debugger

Symbolics, Inc. February 1984

argllst
dbg:*debug-lo-overrlde*

dbg:*defer-package-dwlm*
dbg:*frame*

dbg:*ahow-backtrace*
evalhook

Monl1orlng the value of a
al:*trace-bar-p*

sl:*trace-bar-rate*
sl:*trace-columns-per-level*

al:*trace-old-style*
sl:advlsed-functlons

trace-compll•flag
values

Examining values of Instance

variable 20
variable 14
variable 14
variable 13
variable 14
variable 33
variable 27
variable 23
variable 23
variable 23
variable 23
variable 27
variable 23
variable 20
Variable Monl1orlng 39
variables 13

w
:wherein option to trace 20

Advising One Function Wl1hln Another 29

w

symbolics™

MAINT Maintaining Large
Systems

· Cambridge, Massachusetts

Maintaining Large Systems
995005

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained In this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no responslbllhy for any errors that might appear In this
document.

Symbolics software described in this document is furnished only under license, and may
be used only In accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., cambridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Gambrldge,
Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced In whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

Table of Contents

L Introduction to Making a System

2. Defining a System

3. Transformations

4. Loading the System Definition

6. Making a System

5.1 make-system keywords
5.2 Using the :version and :update-directory keywords
5.3 Maintaining Parallel Systems for the LM-2 and the 3600
5.4 Describing a System

8. Adding New Keywords to make-system

7. Adding New Options to defsystem

8. More Esoteric Transformations

9. Patch Facility

9.1 Finding Out About Patchable Systems
9.2 Types of Patch Files
9.3 Loading Patches
9.4 Making Patches
9.5 Patchable System Status

In des

I

Page

1

3

7

11

13

13
17
19
19

21

23

26

27

29
30
33
34
37

39

MA/NT Maintaining Large Systems 1

Symbolics. Inc. February 1984

1. Introduction to Making a System

When a program gets large, it is often desirable to split it up into several files. One
reason is to help keep the parts of the program organized, to make things easier to
find. Another is that programs broken into small pieces are more convenient to edit
and compile. It is particularly important to avoid the need to recompile all of a large
program every time any piece of it changes; if the program is broken up into many
files, only the files that have changes in them need to be recompiled.

The apparent drawback to splitting up a program is that more mechanism is needed
to manipulate it. To load the program, you now have to load several files separately,
instead of just loading one file. To compile it, you have to figure out which files
need compilation, by seeing which have been edited since they were last compiled,
and then you have to compile those files.

An even more complicated factor is that files can have interdependencies. You might
have a file called "defs" that contains some macro definitions (or flavor or structure
definitions), and functions in other files might use those macros. This means that
in order to compile any of those other files, you must first load the file "defs" into
the Lisp environment, so that the macros will be defined and can be expanded at
compile time. You would have to remember this whenever you compile any of those
files. Furthermore, if "defs" has changed, other files of the program might need to
be recompiled because the macros might have changed and need to be reexpanded.

ThiS'itchapter describes the system facility, which takes care of all these conditions for
you. The way it works is that you define a set of files to be a system, using the
defsystem special form. See the section "Defining a System". This system
definition includes the following:

• Which files make up the system.

• Which files depend on the presence of others.

• What properties the system should have, for example, the package into which
the object code should be compiled, or whether the system can be patched.

You put this system definition into its own little file, and then all you have to do is
load that file (or have your init file load it) and the Lisp environment will know
about your system and what files are in it. See the section "Loading the System
Definition". You can then use the make-system function to load all the files of the
system, recompile all the files that need compiling, and so on. See the section
"Making a System".

The system facility is very general and extensible. This chapter explains how to use
it and how to extend it. This chapter also explains the patch facility, which lets you
conveniently update a large program with incremental changes.

2 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

MAINT Maintaining Large Systems 3

Symbolics, Inc. February 1984

2. Defining a System

defsystem name &body options Special Form
Defines a system nruned name. options are keywords and fall into three
categories: properties of the system, modules, and transformations. <See the
section "Transformations".) The simplest system is a set of files and a
transformation to be performed on them.

Example 1.

(defsystem mysys
(:compile-load c•q:>george>prog1• •q:>george2>prog2•)))

Example 2.

(defsystem zmai 1
(:name •zmail")
(:pathname-default •q:>zmail>")
(:package zwei)
(:module defs "defs")
(:module mult •mult• :package tv)
(:module main ("top• •comnds• •mail" •user• "window•

•filter• mult •cometh"))
(:compile-load defs)
(:compile-load main (:fasload defs)))

Example 3.

(defsystem bar
(:module reader-macros "rdmac")
(:module other-macros •macros")
(:module main-program "main")
(:compile-load reader-macros)
(:compile-load other-macros (:fasload reader-macros))
(:compile-load main-program (:fasload reader-macros

other-macros)))

Example 1 defines a new system called mysys, which consists of two files, both of
which are to be. compiled and loaded.

Example 2 is somewhat more complicated. The primary difference is that there is a
module defs that must be loaded before main can be compiled. ,

Example 3 has two levels of dependency. reader-macros must be compiled and
loaded before other-macros can be compiled. Both reader-macros and
other-macros must then be loaded before main-program can be compiled.

All the defsystem options, except transformations, are listed here.

4

:name

:short-name

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

Specifies a "pretty" version of the name for the system, for use iii
printing.

Specifies an abbreviated name used in constructing disk label
comments and in patch flle names for some file systems.

:component-systems
Specifies the names of other systems used to make ·up this system.
Performing an operation on a system with component systems is
equivalent to performing the same operation on all the individual
systems. The format is

(:component-systems na1ne8 •••)

:package Specifies the package in which transformations are performed. A
package specified here overrides the one specified in the attribute
list of the file in question.

:pathname-default
Gives a local default within the definition of the system for strings
to be parsed into pathnames. Typically this specifies the directory,
when all the flies of a system are on the same directory.

:patchable Allows. the system to be patched. (See the section "Patch
Facility".) An optional argument specifies the directory to put
patch flies in. The default is the :pathname-default of the
system.

:initial-status Specifies what the status of the system should be when
make-system is used to create a new major version. The default
is :experimental. (See the section "Patchable System Status".)

:bug-reports Specifies the name of the system (a string) to which bug mail can
be sent. Supply a documentation string describing the purpose of
the bug mail. The name of the system appears in the Bug Mail
menu (evoked by clicking middle on [Mail] in Zmail) and the
documentation string appears in the mouse documentation line.
Exanlple: :bug-reports "Daedalus• "Report problems with the
Daedalus system.• sends mail to Bug-Daedalus.

:not-in-disk-label
Makes a patchable system not appear in the disk label comment.
This should probably never be specified for a user system. It is
used by patchable systems internal to the main Lisp system, to
avoid cluttering up the label.

:maintaining-sites
Specifies the list of sites that maintain the system; declares which
sites can patch a system and helps to monitor versions in order to
ensure that no changes are lost. This option is meaningful only
for patchable systems. For example:

MA/NT Maintaining Large Systems 5

Symbolics, Inc. February 1984

:module

(defsystem dla-file-system

(:maintaining-sites :mit)
...)

The default for :maintaining-sites when it is undeclared is
usually the local site. When you attempt to distribute a system
with an undeclared maintaining site, you are warned and urged to
supply a maintaining site.

When you attempt to patch a system that is not maintained at
your site, you see a warning like the following:

System OLA-FILE-SYSTEM is not normally maintained at
this site. Patching it here may result in version skews
and make it difficult for your site to receive
subsequent software updates.
Are you sure you really sure you want to patch it? (Yes
or No)

Allows assigning a name to a set of files within the system. You
can use this name instead of repeating the filenames. The format
is:

(: modu 1 e name module-specification options . •. >

module-specification can be any of the following:

A string A file name.

A symbol A module name. It stands for all of the files that are
in that module of this system.

An external module component
A list of the form <system-name module-names •.• >, to
specify modules in another system. It stands for all of
the files that are in all of those modules.

A list of module components
A module component is any module-specification.

A list of file names
Used in the case where the names of the input and
output files of a transformation are not related according
to the standard naming conventions, for example, when
a compiled code file has a different name or resides in a
different directory than the source file. The file names
in the list are used from left to right, thus, the first
name is the source file. Each file name after the first
in the list is defaulted from the previous one in the list.

To avoid syntactic ambiguity, this is allowed as a module
component but not as a module specification.

6 MA/NT Maintaining Large Systems

Symbolics. Inc. February 1984

The :module clause takes the :package option, which
overrides any package specified for the whole system for
transformations performed on just this module.
Sometimes you have a module that needs to use the
packages specified by the files' attribute lists rather than
the package declared for the system. You can make the
files' package specs override the general one by putting
:package nil in the module's plist (at the end of the
:module declaration).

The second defsystem example lists three modules. The first two each have only
one file, and the third one (main) is made up both of files and another module. To
take examples of the· other possibilities:

(:module prog (("q:>george>prog" •q:>georgeZ>prog•)))
(:module foo (defs (zmail defs)))

The prog module consists of one file, but it lives in two directories, george and
george2. If this were a Lisp program, that would mean that the file
"q:>george>prog.lisp" would be compiled into "q:>george2>prog.bin". The too module
consists of two other modules: the defs module in the same system and the defs
module in the zmail system. It is not generally useful to compile files that belong
to other systems; thus, this foo module would not normally be the subject of a
transformation. However, dependencies use modules and need to be able to refer to
(depend on) modules of other systems. See the section "Transformations".

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

3. Transformations

A transformation is an operation, such as compiling or loading, that takes one or
more files and does something to them. Transformations are of two types: simple
and complex. A simple transformation is a single operation on a file, such as
compiling it or loading it. A complex transformation takes the output from one
transformation and performs another transformation on it, for example, loading the
results of compilation.

The general format of a simple transformation is:

C name input dependencies condition)

7

name The name of the transformation to be performed on all the flies
in the module, or all the output files of the other transformation.

input

dependencies

condition

Usually a module specification or another transformation whose
output is used. A module specification can have many different
formats, including "anonymous" modules recursively including
other modules. Read the description of the :module keyword:
See the section "Defining a System".

Optional. dependencies is a transformation specification, which is
either a list:

(transformation-name module-names . .. >

or a list of such lists. module-names is either a symbol that is
the name of a module in the current system or a list
C system-name module-names . ..) .

Optional. condition is a predicate that specifies when the
transformation should take place. Generally it defaults according
to the type of the transformation. For a further discussion of
conditions: See the section "More Esoteric Transformations".

A dependency declares that all of the indicated transformations must be performed
on the indicated modules before the current transformation itself can take place.
Thus, in the last line of the following example, the defs module must have the
:fasload transformation performed on it before the :compile-load transformation
can be performed on main.

8

(def system zmai 1
(: name •zmail •)
(:pathname-default •q:>zmail>•)
(:package zwei)
(:module defs •defs•)
(:module mult •mult• :package tv)

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

(:module main (•top• •comnds• •mail• •user• •window•
•filter• mult •cometh•))

(:compile-load defs)
(:compile-load main (:fasload defs)))

The dependency has to be a transformation that was explicitly specified as a
transformation in the system definition, not just an action that might have been
performed by anything. That is, if you have a dependency (:fasload foo), it means
that (:fasload foo) is a transformation of your system and you depend on that
transformation; it does not simply mean that you depend on foo being loaded. It is
not sufficient if the action is performed as part of a transformation on an
anonymous module constructed of other modules, such as in the second example
below. It is sufficient if a complex transformation, such as :compile-load, expands
into the required transformation on the specified module, such as in the third
example below.

For example, the following is correct and works properly:
(defsystem foo

(:module foo •foo•)
(:module bar •bar•)
(:compile-load (foo bar)))

But the following example does not work because foo's :fasload does not occur.
The loading of foo is performed only implicitly as part of the :fasload
transformation on the anonymous module (foo bar) implicit in the
(:compile-load (foo bar)).

(defsystem foo
(:module foo •foo•)
(:module bar •bar")
(:module blort •blort•)
(:compile-load (foo bar))
(:compile-load blort (:fasload foo)))

You must instead write:
(defsystem foo

(:module foo •foo")
(:module bar •bar•)
(:module blort •blort•)
(:compile-load foo)
(:compile-load bar)
(:compile-load blort (:fasload foo)))

In the above example, (:fasload foo) is part of the expansion of
(:compile-load foo); therefore, it can be used as a dependency.

MA/NT Maintaining Large Systems 9

Symbolics, Inc. February 1984

The defined simple transformations are:

:fasload

:readf"lle

:compile

Calls the si:load-binary-file function to load the indicated
files, which must be compiled code files. The condition
defaults to si:file-newer-than-installed-p, which is t if a
newer version of the file exists on the file computer than was
read into the current environment.

Calls the readf'lle function to read the indicated files. Use
this for files that are not to be compiled. condition defaults to
si:file-newer-than-installed-p.

Calls the compiler:compile-file function to compile the
indicated files. condition defaults to si:file-newer-than-file-p,
which returns t if the source file has been written more
recently than the compiled code file.

A special simple transformation is:

:do-components (: do-components dependencies) inside a system with component
systems causes the dependeneies to be done before anything in
the component systems. This is useful when you have a
module of macro files used by all of the component systems.

The defined complex transformations are:

:compile-load (: compi 1e-1 oad input compile-dependencies load-dependencies
compile-condition load-condition> is the same as (: fas 1 oad
(: compi 1 e input compile-dependencies compile-condition)
load-dependencies load-condition>. This is the most commonly
used transformation. Everything after input is optional.

:compile-load-init See the section "More Esoteric Transformations".

Each file name in an input specification can in fact be a list of strings for the case
where the source file of a program differs from the binary file in more than just the
file type. In fact, every file name is treated as if it were an infinite list of file
names with the last file name, or, in the case of a single string, the only file name,
repeated forever at the end. Each simple transformation takes some number of
input file name arguments, and some number of output file name arguments. As
transformations are performed, these arguments are taken from the front of the file
name list. The input arguments are actually removed, and the output arguments
are left as input arguments to the next higher transformation.

To make this clearer, consider having the :compile-load transformation performed
on the prog module:

(:module prog (("q:>george>prog• •q:>george2>prog")))

10 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

This means that prog is given as the input to the :compile transformation and the
output from this transformation is given as the input to the :fasload
transformation. The :compile transformation takes one input file name argument
- the name of a Lisp source ftle - and one output file name argument - the
name of the compiled code file. The :fasload transformation takes one input file
name argument - the name of a compiled code file - and no output file name
arguments. So, for the first and only file in the prog module, the file name
argument list looks like ("q:>george>prog" "q:>george2>prog" "q:>george2>prog" ...).
The :compile transformation is given arguments of "q:>george>prog" and
"q:>george2>prog" and the ftle name argument list, which it outputs as the input to
the :fasload transformation, is ("q:>george2>prog" "q:>george2>prog" ...). The
:fasload transformation then is given its one argument of "q:>george2>prog".

Note that dependencies are neither transitive nor inherited. For example, if module
a depends on macros defined in module b, and therefore needs b to be loaded in
order to compile, and if b has a similar dependency on e, then e will not be loaded
during compilation of a. Transformations with these dependencies would be written
as follows:

(:compile-load a (:fasload b))
(:compile-load b (:fasload c))

To say that compilation of a depends on both b and e, you would instead write:

(:compile-load a (:fasload b c))
(:compile-load b (:fasload c))

If, in addition, a depended on e, but not b, during loading (perhaps a contains
defvars whose initial values depend on functions or special variables defmed inc)
you would write the transformations as follows:

(:compile-load a (:fasload b c) (:fasload c))
(:compile-load b (:fasload c))

MA/NT Maintaining Large Systems 11

Symbolics, Inc. February 1984

4. Loading the System Definition

Typically, you place the system definition (the defsystem invocation) in a source file.
The file must have the canonical file type of :lisp.

si:set-system-source-file system-name source-file Function
si:set-system-source-fi.le allows you to specify source-file, the source file that
contains the definition of the system called system-name, before the system is
loaded. source-file is loaded the first time that you use make-system to load
and/or compile your system. system-name is the symbol that you supply to
make-system.

Use si:set-system-source-tUe in your init file.

make-system offers to compile and load a new version of the file containing the
system definition if it has changed.

Note for users of ITS: This feature of make-system works only if the file
containing the defsystem form has a file type of lisp, that is, an FN2 of > on ITS.
Thus, if you have a file FOO PKG and want to benefit from using this feature of
make-system, you should rename the file FOOPKG >.

make-system has a feature for finding how out to make a system that has not
been defined already. When the system it is looking for has not been defined
already or been set up with si:set-system-source-fi.le, it looks for system definition
information in a file with the following name:

sys: site; system-name system

That file should contain si:set-system-source-file. For more information: See the
document Software Installation Guide.

12 MA/NT Maintaining LBfge Systems

Symbolics, Inc. February 1984

MA/NT. Maintaining Large Systems 13

Symbolics, Inc. February 1984

5. Making a System

make-system name &rest keywords Function
Compiles and/or loads a system defined by defsystem. Consider the
following system declaration:

(defsystem mysys
(:compile-load ("q:>george>progl" •q:>georgeZ>progZ")))

If "q:>george>progl" and "q:>george2>prog2" have both been compiled
recently, then make-system only loads them as necessary:

(make-system 'mysys)

make-system supports a number of keyword options. For example, if any of
the constituent files of mysys also needs to be compiled, then use:

(make-system 'mysys :compile)

make-system lists what transformations it is going to perform on what flies,
asks the user for confirmation, then performs the transformations. Prior to
each transformation a message is printed listing the transformation being
performed, the file to which it is being done, and the package.

Load all twenty-six of them? CY, N, or S)

If you answer S (meaning selective), you are asked for confirmation of each
individual transformation.

The behavior of make-system can be altered by keywords.

If you run make-system on a system that is patchable and not already
loaded, make-system calls load-patches after loading the system.
load-patches is called with the same options as make-system; if
make-system is specified with the :silent keyword, load-patches is also
silent.

5.1 make-system keywords

The make-system function recognizes the following keywords:

:batch

:compile

Allows a large compilation to be done unattended. It acts like
:noconfirm with regard to questions, tums off more-processing
and fdefine-warnings, and saves the compiler warnings in an
editor buffer and a file Cit asks you for the name). See the
variable inhibit-fdefine-warnings. ~c:.- '"'

Compiles files also if necessary. The default is to load but not
. compile. :compile always compiles the newest versions of the
system's files. ~ ~ _,,o o.. ,.':t"•c-~•'' ..,a·cu~

t~ 1) ~ ~ V'C-l'".S10'"-1 \

14

:noconfirm

:noload

:noop

:no warn

:print-only

:recompile

:reload

:selective

:silent

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

Assumes a yes answer for all questions that you would otherwise
be asked.

Does not load any flies except those required by dependencies. For
use in conjunction with the :compile option.

Is ignored. This is mainly useful for programs that call
make-system, so that such programs can include forms like:

(make-system 'mysys (if compile-p ':compile ':noop))

Suppresses questions requiring operator response. Otherwise you
must give permission (yes or no) to have straightforward tasks (like
reading files) performed.

Displays the transformations that would be performed; does not
actually do any compiling or loading.

Compiles all files, regardless of whether or not they need to be
compiled. Has the effect of :compile and :reload. :recompile
always compiles the newest versions of each constituent flle of a
system.

Bypasses the specified conditions for performing a transformation.
Thus files are compiled even if they have not changed and loaded
even if they are not newer than the installed version.

Asks the user whether or not to perform each transformation that
appears to be needed for each file.

Avoids printing out each transformation as it is performed.

In addition to the above keywords, you can use the following options for patchable
systems.

:increment-patch
Increment a patchable system's major version without doing any
compilations. See the section "Patch Facility".

:no-increment-patch

:version

When given along with the :compile option, disables the automatic
incrementing of the major system version that would otherwise
take place. See the section "Patch Facility".

Loads specific versions of a patchable system, as designated in the
system version-directory file: See the section "Types of Patch
Files". A system version can be expressed as the newest, released,
or latest version; a version number; or version name.

:version accepts several keyword arguments. Specify the keyword
and its arguments as a list. For example, to load version 34 of
mysys, invoke:

(make-system 'mysys '(:version 34.))

MA/NT Mainta;n;ng Large Systems

Symbolics, Inc. February 1984

Argument

:released

:latest

:newest

15

Meaning

Loads the system designated in the system
version-directory file as the released version. See

, the section "Types of Patch Files". When you do
not supply the :version, :compile, or
:recompile keyword, make-system loads the
released system. If there is no released version,
then make-system loads the latest version.

Example: To load the released version of george,
type:

(make-system 'george '(:version :released))
or just:

(make-system 'george)

Note: The system developer designates a
particular version of the system as the released
version by using the :update-directory keyword
to make-system. (See the :update-directory
keyword.)

Loads the system designated in the system
version-directory file as the latest version. See
the section "Types of Patch Files". The most
recently compiled version of the system is
automatically assigned the designation :latest.

Example: On Monday the system developer does
the following:

(make-system 'alphabet ':recompile)

This invocation compiles the most up-to-date
source files in the alphabet system and then
loads each newly compiled file. make-system
also automatically updates the system version­
directory file, marking Monday's version of
alphabet as the latest version.

On Tuesday the system developer wants to load
the version he compiled the day before; hence:

(make-system 'alphabet '(:version :latest))

System developers typically use the :latest
keyword to load systems under development.

Loads the most recently compiled version of each
file of a system. The newest version differs from
the latest version when individual files in the
system have been compiled by hand. Note that
you cannot define or load patches for the newest
system.

16 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

Example: On Tuesday the system developer loads
the latest version of the system alphabet, which
contains files A.lisp.10, A.bin.10, B.lisp.10,
B.bin.10, and so on, to Z.lisp.10, Z.bin.10. The
developer makes changes to several functions in
A.lisp.10, compiles the file to A.bin.11, and saves
the source file, A.lisp.11. On Wednesday the
developer wants to test the incremental changes
to the system, but, to be cautious, doesn't want
to destroy the latest system that was compiled
and loaded on Monday. To do so, the developer
uses the :newest keyword to load a system
consisting of the most recently compiled versions
of each of the system's flies: A.bin.11 and the
remaining files, B.bin.10 through Z.bin.10.

(make-system 'alphabet '(:version :newest))

The latest version remains intact; and the newest
version is the most experimental version of the
system.

version-number Loads a particular major version number of the
system.

(make-system 'george '(:version 23.))

Note the decimal point after the version number.

version-name Loads the particular version of the system known
as :version-name in the system version-directory
file. See the section "Types of Patch Files". The
system maintainer must have previously assigned
version-name by using the :update-directory
keyword to make-system.

Example: The system developer plans to
demonstrate the frog system to a group of
prospective customers from Japan. Aside from
the regular debugged version, there is a special
version that works in Japanese.

After assigning the version name :japanese to
this particular version of frog, the developer can
load it, as follows:

(make-system 'frog '(:version :japanese))

:update-directory
Updates the system version-directory· file for the currently loaded
version of the system. This keyword works properly only for the
loaded version of the system. Use :update-directory to assign a

MA/NT Maintaining Large Systems 17

Symbolics, Inc. February 1984

version-name to a particular system version or to designate a
particular system version as the released version.
:update-directory takes a keyword argument; specify
:update-directory and its argument as a list. When you specify
:update-directory without an argument, the default entry made
to the system version-directory file is :latest.

Example 1: The system developer wants to release the latest
version of george, version #34, for general use. There is currently
no released version. The following invocation loads the latest
version of george and designates it as the released version.

(make-system 'george '(:update-directory :released))

The developer could also have given this longer but equivalent
form:

(make-system 'george '(:version 34.) '(:update-directory :released))

Example 2: The system developer plans to demonstrate the frog
system to a group of prospective customers from Japan. Aside
from the regular debugged version, there is a special version that
works in Japanese. The developer decides to assign this special
version a version-name of :japanese. The system is already
loaded, so the developer invokes:

(make-system 'frog ':noload '(:update-directory :japanese))

To load this version in the future the developer must use the
version-name argument to the :version keyword.

5.2 Using the :version and :update-directory keywords

This section shows how the user and the developer might apply the :version and
:update-directory keywords to (1) update the rodent system from Release 4 to
Release 5 and (2) be able to maintain multiple versions of rodent in parallel. In
this example the site has a working version of the rodent system that runs in
Release 4.4.

1. In order to use the :version and :update-directory features introduced in
Release 4.5,. the system developer must compile the system in Release 4.5 by
an invocation of make-system; for example:

(make-system 'rodent ':compile)

To make this newly compiled version of rodent the released version, the
system developer updates the system version-directory file appropriately:

(make-system 'rodent ':noload '(:update-directory :released))

Note: Assume that version #34 corresponds to Release 4.5 software.

18 MAINT Maintaining Large Systems

Symbolics, Inc. February 1984

2. The system developer wants to work with Release 5 software. To run rodent
the developer must bring up a version of the system in Release 5 and
recompile it. (Although recompilation is not necessarily required to move from
one major software release to another, you must recompile the rodent system
to update to Release 5.) Note: Assume that this recompilation in Release 5
created version #35.

3. A user running Release 4.5 can still load the released version of rodent by
typing one of the following.

(make-system 'rodent)

or
(make-system 'rodent '(:version 34.))

However, the user cannot access the system while running Release 4.4 because
the format of the system version-directory file has changed incompatibly.

4. The developer wants to run the experimental version of rodent, the one
brought up in Release 5. The developer loads the system by issuing one of the
following:

(make-system 'rodent '(:version :latest))
or

(make-system 'rodent '(:version 35.))

The developer finds problems with rodent, fixes them, makes patches, and
decides to make the system now running the released version. While running
Release 5 in this world, the developer uses :update-directory to specify the
version:

(make-system 'rodent '(:update-directory :released))

Because some users still want to use the Release 4.5 version of rodent, the
developer decides to give this version a version-name of :old-system. The
developer boots Release 4.5, loads rodent, and designates this loaded system as
:old-system.

(make-system 'rodent '(:update-directory :old-system))

A user who wants to load the Release 4.5 version of rodent must do one of
the following:

(make-system 'rodent '(:version :old-system))
or

(make-system 'rodent '(:version 34.))

A user who wants to load the released version of rodent must do one of the
following:

(make-system 'rodent)
or

(make-system 'rodent '(:version 35.))

MA/NT Maintaining Large Systems 19

Symbolics, Inc. February 1984

5.3 Maintaining Parallel Systems for the LM-2 and the 3600

Normally, when a system is compiled, the system version-directory file is
automatically updated. However, maintaining parallel systems for LM-2s and 3600s
raises a special problem. Because you must specify :no-increment-patch in the
compilation for a second machine in order to keep the version number at the same
level, you must also specify :update-directory to get the correction information for
the second machine in the system version-directory file.

Example: Assuming the LM-2 is the second machine and that you have already
compiled the system on the 3600, you need to compile the system for the LM-2:

(make-system 'george ':compile ':noload ':no-increment-patch)

You then need to load the newly compiled files to record the system version
information in the database.

(make-system 'george '(:version :newest) ':update-directory)

5.4 Describing a System

describe-system is a useful function for finding information about a system.

describe-system system-name &key (show-files t) Function
(show-transformations t)

Displays useful information about the system nained system-name. This
includes the name of the system source file, the system package default if
any, and component systems. For a patchable system, describe-system
displays the system version and status, a typical patch file name, the sites
maintaining the system, and, if the user wants, a listing of patches. If
:show-files is t, it displays the history of the files in the system. Other
possible values are nil (do not show file history) and :ask (ask the user). If
:show-transformations is t, it displays the transformations required to
make the system. Other possible values are nil (do not display
transformations) and :ask (ask the user).

For finding ihrormation about patchable systems only: See the section "Finding Out
About Patchable Systems".

20 MA/NT Maintaining Large Systems

Symbolics. Inc. February 1984

MA/NT Maintaining Large Systems 21

Symbolics, Inc. February 1984

6. Adding New Keywords to make-system

make-system keywords are defmed as functions on the si:make-system-keyword
property of the keyword. The functions are called with no arguments. Some of the
relevant variables they can use are:

si:•system-being-made• Variable
The internal data structure that represents the system being made.

si:*make-system-forms-to-be-evaled-before• Variable
A list of forms that are evaluated before the transformations are performed.

si:*make-system-forms-to-be-evaled-after* Variable
A list of forms that are evaluated after the transformations have been
performed.

si:*make-system-forms-to-be-evaled-finally* Variable
A list of forms that are evaluated after the body of make-system has
completed. This differs from si:*make-system-forms-to-be-evaled-after* in
that these forms are evaluated outside of the "compiler context", which
sometimes makes a difference.

si:•query-type• Variable
Controls how questions are asked. Its normal value is· :normal. :noconfirm
means no questions are asked, and :selective asks a question for each
individual file transformation.

si:*silent-p• Variable
If t, no messages are displayed.

si:•batch-mode-p• Variable
If t, :batch was specified.

si:*redo-all• Variable
If t, all transformations are performed, regardless of the condition functions.

si:•top-level-transformations• Variable
A list of the names of transformations that will be performed, such as
(:fasload :readfile).

si:*f"ile-transformation-fonction• Variable
The actual function that gets called with the list of transformations that
need to be performed. The default is si:do-file-transformations.

22 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

si:define-make-system-special-variable name form &optional Special Form
(defvar-p t)

Causes the variable name to be bound to form, which is evaluated at
make-system time, during the body of the call to make-system. This
allows you to define new variables similar to those already existent. If you
specify defvar-p as (or defaulted to) t, name is defined with defvar. It is not
given an initial value. If defvar-p is specified as nil, name belongs to some
other program and is not defvared here.

The following simple example adds a new keyword to make-system called
:just-warn, which means that fdefine warnings regarding functions being
overwritten should be displayed, but the user should not be queried. <See the
function fdef"me.)

(si:define-make-system-special-variable
inhibit-fdefine-warnings inhibit-fdefine-warnings nil)

(defun (:just-warn si:make-system-keyword) ()
(setq inhibit-fdefine-warnings ':just-warn))

(See the variable inhibit-fdefine-warnings.)

make-system keywords can have effect either directly when called or by pushing a
form to be evaluated onto si:*make-system-forms-to-be-evaled-after• or one of
the other two similar lists. In general, the only useful thing to do is to set some
special variable defined by si:def"me-make-system-special-variable.

In addition to the ones mentioned earlier in this section, user-defined
transformations can have their behavior controlled by new special variables, which
can be set by new keywords. For example, if you want to get at the list of
transformations to be performed, the right way would be to set
si:*file-transformation-function• to a new function, which then might call
si:do-file-transformations with a possibly modified list. That is how the
:print-only keyword works.

Remember that when you execute make-system, it adds the loaded system to the
system version-directory file of patchable systems unless you specify certain keywords
that explicitly suppress this action. For example, :print-only is among these
keywords. Certain user-defined keywords - those that rebind
si:*file-transformation-function• and then recursively call make-system - must
also take into account this updating feature of make-system. The following code is
assumed to be in the si package.

(defun (:print-only make-system-keyword)()
(no-update-directory) ;Suppresses updating
(setq *file-transformation-function* 'print-file-transformations))

MA/NT Maintaining Large Systems 23

Symbolics, Inc. February 1984

7. Adding New Options to defsystem

Options to defsystem are defined as macros on the si:defsystem-macro property
of the option keyword. Such a macro can expand into an existing option or
transformation, or it can have side effects and return nil. They can use several
variables, but the only one of general interest is si:•system-being-defined.•.

si:•system-being-defined.• Variable
The internal data structure representing the system that is currently being
constructed.

si:define-defsystem-special-variable name form Special Form
Causes form to be evaluated and name to be bound to the result during the
expansion of the defsystem special form. This allows you to defiiie new
variables similar to si:•system-being-defined*.

si:define-simple-transformation name function default-condition Special Form
input-file-types output-file-types &optional
pretty-names (compile-like t) <load-like nil ll-p)

This is the most convenient way to define a new simple transformation. For
example,

(si:define-simple-transformation :compile si:compile-file-1
si:file-newer-than-file-p
(:lisp) (:bin))

input-file-types _and output-file-types are how a transformation specifies how
many input file names and output file names it should receive as arguments,
in this case one of each. They also, obviously, specify the default canonical
file type for these pathnames.

The si:compile-f"tle-1 function is mostly like compile-file, except for its
interface to packages. It takes input-file and output-file arguments.

pretty-names, an optional argument, specifies how the transformation will be
printed in messages to the user. It can be a list of the imperative
("Compile"), the present participle ("Compiling''), and the past participle
("compiled"). Note that the past participle is not capitalized, because it is not
used at the beginning of a sentence. pretty-names can be just a string,
which is taken to be the imperative, and the system will conjugate the
participles itself. If pretty-names is omitted or nil it defaults to the name of
the transformation.

compile-like and load-like, both optional arguments, specify when the
transformation should be performed. Compile-like transformations are
performed when the :compile keyword is given· to make-system. Load-like

24 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

transformations are performed unless the :noload keyword is given to
make-system. By default compile-like is t but load-like is nil.

Complex transformations are just defined as normal macro expansions, for example,

(defmacro (:compile-load si:defsystem-macro)
(input &optional com-dep load-dep

com-cond load-cond)
'(:fasload (:compile ,input ,com-dep ,com-cond)

,load-dep ,load-cond))

MA/NT Maintaining Large Systems 25

Symbolics. Inc. February 1984

8. More Esoteric Transformations

It is sometimes useful to specify a transformation upon which something else can
depend, which is not performed by default, but rather only when requested because
of that dependency. The transformation nevertheless occupies a specific place in the
hierarchy. The :skip defsystem macro allows specifying a transformation of this
type. For example, suppose a special compiler for the read table is not ordinarily
loaded into the system; the compiled version should still be kept up to date, and it
needs to be loaded if the read table ever needs to be recompiled.

(defsystem reader
(:pathname-default •AI: LHIO;•)
(:package system-internals)
(:module defs •RDDEFS•)
(:module reader •READ•)
(:module read-table-compiler •R1c•)
(:module read-table •RoTBL•)
(:compile-load defs)
(:compile-load reader (:fasload defs))
(:skip :fasload (:compile read-table-compiler))
(:rte-compile-load read-table (:fasload read-table-compiler)))

Assume that there is a complex transformation :rte-compile-load that is like
:compile-load, except that it is built on a transformation called something like
:rte-compile, which uses the read table compiler rather than the Lisp compiler. In
the above system, then, if the :rte-compile transformation is to be performed, the
:fasload transformation must be done on read-table-compiler first; that is, the
read table compiler must be loaded if the read table is to be recompiled. If you say
(make-system 'reader ':compile), then the :compile transformation will still
happen on the read-table-compiler module, compiling the read table compiler if
necessary. But if you issue (make-system 'reader), the reader and the read table
will be loaded, but the :skip keeps this from happening to the read table compiler.

So far nothing has been said about what can be given as a condition for a
transformation, except for the default functions that check for a source file being
newer than the binary, and so on. In general, any function that takes the same
arguments as the transformation function (for example, compile-file) and returns t
if the transformation needs to be performed, can be in this place as a symbol,
including, for example, a closure.

To take an example, suppose a file contains compile-flavor-methods for a system
and should therefore be recompiled if any of the flavor method definitions change.
In this case, the condition function for compiling that file should return t if either
the source of that file itself or any of the files that define the flavors have changed.
This is the purpose of the :compile-load-init complex transformation. It is defined
in the si package like this:

26 MAINT Maintaining Large Systems

Symbolics. Inc. February 1984

(defmacro (:compile-load-init defsystem-macro)
(input add-dep &optional com-dep load-dep
&aux function)

(setq function (let-closed ((*additional-dependent-modules*
(parse-module-components add-dep *system-being-defined*)))

'compile-load-init-condition))
'(:fasload (:compile ,input ,com-dep ,function) ,load-dep))

(defun compile-load-init-condition (source-file binary-file)
(or (file-newer-than-file-p source-file binary-file)

(local-declare ((special *additional-dependent-modules*))
(other-files-newer-than-file-p

additional-dependent-modules
binary-file))))

The condition function generated when this macro is used returns t either if
file-newer-than-file-p would do so with those arguments, or if any of the other
files in add-dep <which presumably is a module specification) are newer than the
compiled code file. Thus the file (or module) to which the :compile-load-init
transformation applies will be compiled if it or any of the source files on which it
depends has been changed, and will be loaded under the normal conditions. In most
(but not all cases), com-dep would be a :fasload transformation of the same files as
add-dep specifies, so that all the files on which this one depends would be loaded
before compiling it.

MA/NT Maintaining Large Systems 27

Symbolics, Inc. February 1984

9. Patch Facility

The patch facility allows a system maintainer to manage new releases of a large
system and issue patches to correct bugs. It is designed to be used to maintain the
Lisp Machine system itself as well as applications systems that are large enough to
be loaded into a Lisp world and saved into a FEP file (disk partition on an LM-2).

When a system of programs is veey large, it needs to be maintained; for example,
often problems are found and need to be fixed, or other little changes need to be
made. However, it takes a long time to load up all of the files that make up such a
system, and so rather than having users load up all the files eveey time they want
to use the system, usually the files just get loaded once into a Lisp world, and then
the Lisp world is saved away in a FEP file (disk partition on the LM-2). Users then
use this file (disk partition), and copies of it are distributed. The problem is that
since the users do not load up the system eveey time they want to use it, they do
not get all the latest changes.

The purpose of the patch system is to solve this problem. A patch file is a little file
that, when loaded, updates the old version of the sys~m into the new version of the
system. Most often, patch files just contain new function definitions; old functions
are redefined to perform their new contracts. When you want to use a system, you
first use the Lisp environment saved on the disk, and then you load all the latest
patches. Patch files are veey small, so loading them does not take much time. You
can even load the saved environment, load up the latest patches, and then save it
away, to save future users the trouble of even loading the patches. (Of course, new
patches can be made later, and then these will have to be loaded if you want to get
the veey latest version.)

Eveey system has a series of patches that have been made to that system. To get
the latest version of the system, you load each patch file in the series, in order.
Sooner or later, the system maintainer will want to stop building more and more
patches, and recompile eveeything, starting afresh. A complete recompilation is also
necessaey when a system is changed in a far-reaching way, in a way that cannot be
done with a small patch. For example, if you completely reorganize a program or
change a lot of names or conventions, you might need to completely recompile it to
make it work again. After a complete recompilation, the old patch files are no
longer suitable to use; loading them might even break things.

To keep track of all these changes the patch facility labels each version of a system
with a two-part number. The two parts are ·called the major version number and
the minor version number. The minor version number is increased eveey time a
new patch is made; the patch is identified by the major and minor version number
together. The major version number is increased when the program is completely
recompiled, and at that time the minor version number is reset to zero. A complete
system version is identified by the major version number, followed by a dot, followed
by the minor version number.

28 MA/NT Maintaining Large Systems

Symbolics. Inc. February 1984

The following typical scenario should clarify this.

1. A new system is created; its initial version number is 1.0.

2. Then a patch file is created; the version of the program that results from
loading the first patch tile into version 1.0 is called 1.1.

3. Then another patch tile might be created, and loading that patch tile into
system 1.1 creates version 1.2.

4. Then the entire system is recompiled, creating version 2.0 from scratch.

5. Now the two patch tiles are irrelevant, because they fix old software; the
changes that they reflect are integrated into system 2.0.

Note that the second patch tile should only be loaded into system 1.1 in order to
create system 1.2; you should not load it into 1.0 or any other system besides 1.1. It
is important that all the patch tiles be loaded in the proper order, for two reasons.

•First, it is very useful that any system numbered 1.1 be exactly the same
software as any other system numbered 1.1, so that if somebody reports a bug
in version 1.1, it is clear just which software is being cited.

• Secondly, one patch might patch another patch; loading them in some other
order might have the wrong effect.

The patch facility keeps track, in the tile system, of all the patch tiles that exist,
remembering which version each one creates. A separate numbered sequence of
patch flies exists for each major version of each system, for example, lmfs-37-15.lisp,
lmfs-37-16.lisp, and so forth. All of them are stored in the file system, and the
patch facility keeps track of where they all reside.

In addition to the patch files themselves, the patch-directory file contains the patch
facility's database by which the patch facility keeps track of what minor versions
exist for a major version, and what the last major version of a system is. For
example, lmfs-37.patch-dir contains a listing of the patches made for major version
37 and a comment on why each patch was made. These tiles and how to make
them are described in this section.

In order to use the patch facility, you must define your system with defsystem and
declare it as patchable with the :patchable option. (See the section "Defining a
System".) When you load your system with make-system, it is added to the list of
all systems present in the world. (See the function make-system.) Whenever you
use make-system to compile your patchable system, its major version in the flle
system is incremented; thus a major version is associated with a set of compiled code
files.

The patch facility keeps track of which version of each patchable system is present,
and where the data about that system reside in the file system. This information
can be used to update the Lisp world automatically to the latest versions of all the
systems it contains. Once a system is present, you can ask for the latest patches to

MA/NT Maintaining Large Systems 29

Symbolics, Inc. February 1984

be loaded, ask which patches are already loaded, and add new patches. You can also
load patches or whole new systems and then save the entire Lisp environment away
in a FEP file (disk partition). See the function disk-save.

9.1 Finding Out About Patchable Systems

When a Lisp Machine is booted, it displays a line of information telling you what
systems are present, and which version of each system is loaded. This information
is returned by the function si:system-version-info. It is followed by a text string
containing any additional information that was specified by whoever created the
current world load (disk partition on the LM-2). See the function disk-save.

print-system-modifications &rest system-names FuT£Ction
With no arguments, print-system-modifications lists all the systems
present in this world and, for each system, all the patches that have been
loaded into this world. For each patch it shows the major version number
<which will always be the same since a world can only contain one major
version), the minor version number, and an explanation of what the patch
does, as entered by the person who made the patch.

If print-system-modifications is ealled with arguments, only the
modifications to systems-named are listed.

si:get-system-version &optional (system 'System") Function
Returns three values. The first two are the major and minor version
numbers of the version of system currently loaded into the machine. The
third is the status of the system, as a keyword symbol: :experimental,
:released, :obsolete, or :broken. system defaults to System. This returns
nil if that system is not present at all.

si:system-version-info &optional (brief-p nil) FuT£Ction 1
Returns a string giving information about which systems and what versions ,,re"• ~. -:l.
of the systems are loaded into the machine (for systems that differ from the ~ 1 ~f " ,,>
released versions) and what microcode version is running. A typical string for ;i.

·t rod · r 1 to p uee is: ,,

•system 242.264, Zmail 83.42, LMFS 37.31, Vision 10.23, Tape 21.9,
microcode THC5-HIC 264, FEP 17"

If brief-p is t, it uses short names, suppresses the microcode version, any
systems that should not appear in the disk label comment, the name
System, and ·the commas:

•242.264 Vis 10.23•

If l(.a_J $9. ;l

30 MA/NT Maintaining Lsrge Systems

Symbolics, Inc. February 1984

si:patch-loaded-p major-version minor-version &optional (system Function
"System")

A predicate that tells whether the loaded version of system is past (or at) the
specified patch level. Returns t if:

• the major version loaded is major-version and the minor version loaded
is greater than or equal to minor-version

•the major version loaded is greater than major-version

Otherwise, the function returns nil.

Releases have numbers and status associated with them, just as systems do.
Symbolics staff assign the release number.

si:get-release-version Function
si:get-release-version returns three values, the release numbers and the
status of the current world load:
~ Major version number
:a.- Patch version number or string describing minor patch level

Status of the world load as a keyword symbol:
:experimental

.,,,,,- :released
:obsolete
:broken
nil (when status cannot be determined)

9.2 Types of Patch Files

The patch facility maintains several different types of files in the directory associated
with your system:

• System version-directory file

• Patch directory file

• Individual patch file

This directory is specified to defsystem via either the :patchable option or the
:pathname-default option. These files are maintained automatically, but so that
you will know what they are and when they are obsolete (because they are
associated with an obsolete version of your system), they are described in this
section.

System version information is recorded in a database called the system
version-directory file for each patchable system. Whenever you run make-system it
creates or updates this file, recording the name, ·type, and file version number of all

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

constituent files of each version of a patchable system. In addition, it contains
keywords describing the status of the system (for example, :released and :latest),
associating particular system versions with these keywords. (make-system
automatically updates the file when you specify the :update-directory keyword:
See the section "make-system keywords".) System version information is
maintained in parallel for both LM-2 and 3600 systems.

The physical file type of the system version-directory file is shown for some host
systems:

Host File type

TOPS-20 PATCH-DIR
UNIX pd
VMS VPD
ITS (PDIR)
LMFS patch-dir or directory
Multics patch-dir

Example: The system version-directory file for the lmfs system is:

q:>sys>lmfs>patch>lmfs.patch-dir.44

The host, device, and directory in this example come from the system definition.

31

The major benefit of this detailed record keeping is that your site can support
multiple versions of the same system. General users and system developers can load
specific versions of systems and specific versions of system files, even when newer
and possibly incompatible versions have been made. Some examples:

• System developers can work on the ·latest versions of systems, editing and
recompiling some files, without forcing the average user to contend with new
and experimental changes to the system.

• General users, on the other hand, can load the stable, released versions.

• Symbolics can more easily distribute versions of the system other than the
newest version.

• You can use pre-Release-5.0 versions of systems after recompiled versions have
been made for Release 5.0.

In addition, you can load a ·system in several different ways:
• by version number
• by version name
•by designation as released, latest, or newest

To load a specific system, use the :version keyword: See the section
"make-system keywords".

The released version is the fully debugged version intended for general use. You
must explicitly update the system version-directory file to indicate that a system is
released. See the :update-directory keyword to make-system.

32 MAINT Maintaining Larae Systems

Symbolics, Inc. February 1984

The latest version is the most recently compiled version of the system. The system
version-directory fi!a is automatically updated whenever you compile or recompile the
system.

The newest version is the version consisting of the most recently compiled version of
each file of a system. The newest version differs from the latest version when
individual files have been compiled by hand. The newest version of a system has no
version number. Note that you cannot define patches for the newest· system.

Each major version of the system has a patch directory file, which describes the
individual patches for a particular major version.

Example: The patch directory file· for major version #37 of the lmfs system:

q:>sys>lmfs>patch>lmfs-37.patch-dir.69

make-system creates a new patch directory file automatically when you recompile a
system or use the :increment-patch option. See the section "make-system
keywords".

Each minor version of the system has a patch source file, whose name is the system
name, the major version number, the minor version number, .lisp file type, and the
source file version number.

Example: The first patch of major version 37 of the lmfs system has the following
pathname:

q:>sys>lmfs>patch>lmfs-37-1.lisp.1

Patch files get compiled, so you will find patch files like the following:

q:>sys>lmfs>patch>lmfs-37-1.bin.1

A slightly different set of file name conventions are used, if the :patchable option
to defsystem is given an argument, telling it to put the patch files in a different
directory than the one which holds the other files of the system.

On TOPS-20, the file names take these forms:

System version-directory file
Patch directory file
Individual patch file

EE:PS:<PATDIR>systeni.PATCH-DIRECTORY
EE:PS:<PATDIR>systeni-nnn.PATCH-DIRECTORY
EE:PS:<PATDIR>systeni-nnn-ninini.LISP (or .BIN)

These file name conventions allow the patches for multiple systems to coexist in the
same directory.

MA/NT Maintaining Large Systems 33

Symbolics, Inc. February 1984

9.3 Loading Patches

load-patches &rest options Function
Used to bring the current world up to the latest minor version of whichever
major version it is, for all systems present, or for certain specified systems. If
there are any patches available, load-patches offers to read them in. With
no arguments, load-patches updates all the systems present in this world.

Note: When you do a make-system of a patchable system, make-system
calls load-patches after loading the system. If make-system is silent, then
load-patches is silent; if make-system asks for confirmation, then
load-patches asks for confirmation.

load-patches returns t if any patches were made, and nil otherwise.

options, if supplied, is one or more keywords or system names. The following
options are accepted:

:systems list list is a list of names of systems (symbols or strings) to be
brought up to date. If this option is not specified, all systems
are processed.

:verbose

:selective

Prints an explanation of what is being done. This is the
default.

For each patch, says what it is and then asks you whether or
not to load it. This is the default. Answering P turns off
selective mode for any remaining patches to the current
system.

:noselective Tums off :selective.

:silent Tums off both :selective and :verbose. In :silent mode all
necessary patches are loaded without printing anything and
without querying the user.

:nowarn Suppresses questions requiring operator response.

system-name The name of a system (symbol or string) to be brought up to
date.

load-patches returns t if any patches were loaded, otherwise nil.

load-and-save-patches &rest keyword-args Function
load-and-save-patches disables network services and MORE processing. If
no one is logged in, it logs in anonymously. It loads any patches that need
to be loaded and any new versions of the site files, calling load-patches with
arguments of :noselective and any other keywords provided as keyword-args.
If any patches have been loaded, it then calls disk-save to save the resulting
world load. If no patches have been loaded, it restores network services to

34 MA/NT Maintaining Large Systems

Symbolics, /nc. 1 February 1984

their state before load-and-save-patches was called,· and if it has logged in
anonymously it logs out.

Before disk-saving on the 3600, load-and-save-patches prompts for the
name of a FEP file in which to save the world load. Before disk-saving on
the LM-2, it calls print-disk-label and prints an estimate of the size of the
world load before prompting for a band in which to save the world load.

Call load-and-save-patches before you log in in order to avoid putting the
contents of your init file into the saved world load.

9.4 Making Patches

During a typical maintenance session you might make several edits to a system's
source files. The patch facility allows you to copy these edits into a patch file so
that they can be automatically incorporated into the system to create a new minor
version. Edits in a patch file can be of varying levels of complexity - modified
function definitions, new functions, modified defvars and defconsts, or arbitrary
forms to be evaluated, even including loads of new files.

Start Patch (r.-X) and Start Private Patch (r.-X) are two commands for initiating a
patch.

Start Patch (r.-X) Starts a new patch but does not move any Lisp forms into the
patch file. Prompts you for the system you want to patch; it
must be a system currently loaded. It allocates a new minor
version number for that particular system and starts
constructing the patch file in an editor buffer.

While you. are making your patch file, the minor version
number that has been allocated for you is reserved so that
nobody else can use it. Thus, if two people are patching a
system at the same time, they cannot both get the same
minor version number. Also note that you can put together
patches for only one system at a time.

If you do a subsequent patch after finishing the current patch
(see Finish Patch (r.-X)), Start Patch (r.-X) asks you which
system you wish to patch and start a new minor version.

Start Private Patch (r.-X)
Similar to Start Patch (r.-X), but it does not have any
relationship to systems, major and minor version numbers, and
official patch directories. Instead of prompting for a system, it
prompts for a file name. You can use other patching
commands, like Add Patch (r.-X), Finish Patch (r.-X), and Abort
Patch (r.-X). When you finish the patch it is written out to
the specified file.

MA/NT Maintaining Large Systems 35
Symbolics, Inc. February 1984

This command allows you to make a private patch file that
you can load, test, and share with other users before you
install a numbered patch that all users automatically get.

If you change a function, you should recompile it and test it; then, once it works,
use Add Patch (M-X), Add Patch Changed Definitions (M-X), or Add Patch Changed
Definitions of Buffer (M-X) to put the code in the patch file.

Add Patch (M-X) Adds the region (if there is one) or else the current
definition to the patch file currently being constructed. If
you mistakenly use the command on code that does not
work, select the buffer containing the patch file and delete
it. Then later you can use Add Patch (M-X) on the
corrected version.

Add Patch Changed Definitions of Buffer (M-X)
Selects each definition that was changed in the buffer and
asks you whether or not you want the definition patched.

For each definition, you can respond as follows:

Response
y

N
p

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional
definitions in the same buffer without
asking any more questions.

A definition needs to be patched if it has been changed
since it was last patched or if it has not been patched
since the file was read into the buffer.

Note that patching any region of text lying entirely within
a definition (with Add Patch (M-X)) counts as patching
that definition.

Add Patch Changed Definitions (M-X)
Selects a buffer in which definitions were changed and
asks whether or not you want to patch the changed
definitions. Answering N skips the buffer and proceeds to
the next buffer, if any. Answering Y selects each
definition that has changed in that buffer and asks you
whether or not you want the definition patched. For each
definition, you can respond as follows:

Response
y

Action

Patches the definition.

36

N
p

MAINT Maintaining Large Systems

Symbolics, Inc. February 1984

Skips the definition.

Patches the definition and any additional
definitions in the same buffer without
asking any more questions; when done, it
proceeds to the next buffer.

If there are more buffers containing definitions to be
patched, it asks questions again when it gets to the next
buffer.

A definition needs to be patched if it has been changed
since it was last patched or if it has not been patched
since the file was read into the buffer.

Note that patching any region of text lying entirely within
a definition (with Add Patch (Pa-X)) counts as patching
that definition.

After making and testing all of your patches, use Finish Patch (Pa-X).

Installs the patch file so that other users can load it .
. This compiles the patch file if you have not done so
yourself (patches are always compiled). It prompts you for
a comment describing the reason for the patch;
load-patches and print-system-modifications print
these comments.

Sometimes you start making a patch file and for a variety of reasons do not install it
- for example, you decide to abort the patch, you need to end your work session at
this machine, or your machine crashes.

Abort Patch (Pa-X)

Resume Patch (Pa-X)

Deallocates the minor version number that was assigned
by Start Patch (Pa-X). It tells Zmacs that you are no
longer currently making a patch; the next time you do
Start Patch (9"'-X), Zmacs starts a new patch instead of
appending to the one in progress.

Allows you to go back to a patch that you were not able
to finish in the same session in which you started it.
This command works only if you have previously saved all
modified buffers.

If the system crashes, use Resume Patch (,.-X) and then Abort Patch (...-X). Begin
the patch again.

MA/NT Maintaining Large Systems 37

Symbolics. Inc. February 1984

9.5 Patchable System Status

The patch system has the concept of the status of a major version of a system. The
status is displayed with the system version, in places such as the system print herald
and the comment properties in FEP files (disk partition comments on the LM-2
disk label). This status announces the state, or condition, of system software - for
example, whether a system is released or still experimental.

Use set-system-status to change the status of a system.

The status is one of the following keywords:

:experimental
The system has been built but has not yet been fully debugged and released
to users. This is the default status when a new major version is created,
unless it is overridden with the :initial-status option to defsystem.

:released
The system is released for general use. This status produces no extra text in
the print herald and the comment properties in FEP files.

:obsolete
The system is no longer supported.

:broken
Similar to :experimental but is used when the system was thought
incorrectly to have been debugged and hence was assigned :released status.

set-system-status system new-status &optional major-version
only-update-on-disk-p

Changes the status of a system.

system The name of the system.

Function

major-version The number of the major version to be changed; if
unsupplied it defaults to the version currently loaded into
the Lisp world.

new-status A defined keyword - :experimental, :released,
:obsolete, :broken. ·

only-update-on-disk-p
If its value of is t, the patch directory file is updated to
show new-status, but the running Lisp environment is not
modified.

Call set-system-status manually; you should not place it in patch files.

38 MA/NT Maintaining Large Systems

Symbolics. Inc. February 1984

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

3

A

B

c

Index

3
Maintaining Parallel Systems for the LM-2 and the 3600 19

A
Abort Patch (m-X) Zmacs command 34

Finding Out About Patchable Systems 29

B

Add Patch (m-X) Zmacs command 34
Add region to patch file 34
Adding New Keywords to make-system 21
Adding New Options to defsystem 23

:batch option for make-system 13
al: *batch-mode-p* variable 21

Abort Patch (m-X) Zmacs
Add Patch (m-X) Zmacs

Finish Patch (m-X) Zmacs
Resume Patch (m-X) Zmacs

Start Patch (m-X) Zmacs
Start Private Patch (m-X) Zmacs

c

:broken system status 37
:bug-reports option for defsystem 3

command 34
command 34
command 34
command 34
command 34
command 34
:compile option for make-system 13
:compile transformation 7
Compile-l!ke transformations 23
:compile-load transformation 7
:complle-load-lntt transformation 7
Complex transformations 23
:component-systems option for defsystem 3
Conditions 7, 25

39

3

A

B

c

D D D
al: deflne-defsystem-speclal-varlable special form 23
al: deflne-make-aystem-speclal-varlable special

al:

Loading the System
:bug-reports option for

:i:omponent-systems option for
:lnltlal-status option for

:maintaining-sites option for
:module option for

:name option for
:not-In-disk-label option for

form 22
define-simple-transformation special form 23
Defining a System 3
Definition 11
defsystem 3
defsystem 3
defsystem 3
defsystem 3
defsystem 3
defsystem 3
defsystem 3

40

E

F

G

MAINT Maintainina Larae Systems

Symbolics, Inc. February 1984

:package option for
:patchable option for

:pathname-defauft option for
:short-name option for
Adding New Options to

Patch

E

defaystem 3
defsystem 3, 27, 30
defaystem 3
defaystem 3
clefsystem 23
defsystem special form 3, 27
Dependencies 7
delcrlbe-1ystem function 19
Describing a System 19
directory file 30
:do-components transformation 7

More Esoteric Transformations 25
:experimental system status 37

Patch
System

Add region to patch
Install patch

Patch
Patch directory

System version-directory

al:
File types of patch

Types of Patch

clefsystem special
sl:define-defsystem-speclal-varlable special

sl:define-make-system-speclal-varlabla special
sl:define-slmple-transformatlon special

describe-system
load-and-save-patches

load-patches
make-system

print-system-modifications
set-system-status

sl:get-release-verslon
sl:get-system-verslon

sl:patch-loadedi»
sl:set-system-source-flle

al:system-verslon-lnfo

F

G

Facility 27
facility 1
:fasload transformation 7
file 34
file 34
file 27
file 30
file 30
File types of patch files 30
file-transformation-function variable 21
files 30
Flies 30
Finding Out About Patchable Systems 29
Finish Patch (m-X) Zmacs command 34
form 3, 27
form 23
form 22
form 23
function 19
function 33
function 33
function 11, 13
function 29
function 37
function 30
function 29
function 30
function 11
function 29

al: get-release-version function 30
al: get-system-version function 29

E

F

G

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

I

K

L

M

mak•system
Using the :version and :update-directory

Adding New

Patch
Maintaining Parallel Systems for the

:noselectlve option for
:nowam option for

:selective option for
:allent option for

:•ystem• option for
:velt>ole option for

Abort Patch
Add Patch

Finish Patch
Resume Patch

Start Patch
Start Private Patch

System

:batch option for
:compile option for

:Increment-patch option for
:no-Increment-patch option for

:noconftrm option for
:noload option for

:noop option for
:nowam option for

:print-only option for
:recompile option for

:reload option for
:eelectlve option for

:allent option for
:update-directory option for

I

K

L

:Increment-patch option for mak•system 13
:lnttlal-statua option for defsystem 3
Install patch file 34
Introduction to Making a System

keywords 13
keywords 17
Keywords to mak•aystem 21

41

I

K

L
:latest symbol In mak•system :version option 13
level 30

M

LM-2 and the 3600 19
load-and-save-patches function 33
Load-like transformations 23
load-patches 33
load-patches 33
load-patches 33
load-patches 33
load-patches 33
load-patches 33
load-patches function 33
Loading Patches 33
Loading the System Definition 11

(m-X) Zmacs command 34
(m-X) Zmacs command 34
(m-X) Zmacs command 34
(m-X) Zmacs command 34
(m-X) Zmacs command 34
(m-X) Zmacs command 34
Maintaining Parallel Systems for the LM-2 and the

3600 19
:malntalnlng-attes option for defsystem 3
maintenance 27
Major version 30
Major version number 27
mak•aystem 13
mak•aystem 13
make-system 13
m-.system 13
'mak•system 13
mak•aystem 13
mak•system 13
mak•aystem 13
mak•system 13
m-.syatem 13
make-system 13
make-eystem 13
make-system 13
make-ayatem 13

M

42

N

0

:version option for
Adding New Keywords to

:latest symbol In
:newest symbol In

:released symbol In

al:

al:

81:

Introduction to

Adding
Adding

Major version
Minor version

:latest symbol in mak•system :version
:newest symbol in mak•system :version

:released symbol in mak•system :version
:bug-reports

:component-systems
:lnltlal-status

:maintaining-sites
:module

:name
:not-In-disk-label

:package
:patchable

:pathname-default
:short-name
:noselectlve

N

MAINT Maintaining Large Systems

Symbolics. Inc. February 1984

makHystem 13
mak•system 21
mak•syatem :version option 13
mak•system :version option 13
mak•system :version option 13
mak•system function 11, 13
mak•system keywords 13
mak•system-fonn•to-be-evaled-after

variable 21
mak•system-fonn•to-be-evaled-before

variable 21
mak•system-fonns-to-be-evaled-flnally

variable 21
Making a System 13
Making a System 1
Making Patches 34
Minor version 30
Minor version number 27, 34
Module 3
:module option for defsystem 3
More Esoteric Transformations 25

:name option for defsystem 3
New Keywords to mak•system
New Options to defsystem 23

21

:newest symbol in mak•system :version
option 13

:no-Increment-patch option for mak•system
:noconflnn option for mak•system 13
:noload option for mak•system 13
:noop option for mak•system 13
:noselectlve option for load-patches 33
:not-In-disk-label option for defsystem 3
:nowam option for load-patches 33
:nowam option for mak•system 13
number 27
number 27, 34

N

13

0 0
:obsolete system status 37
option 13
option 13
option 13
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3
option for defsystem 3, 27, 30
option for defsystem 3
option for defsystem 3
option for load-patches 33

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

p

:nowam
:eelectlve

:silent
:systems
:verbose

:batch
:compile

:Increment.patch
:no-Increment-patch

:noconftrm
:noload

:noop
:nowam

:print-only
:recompile

:reload
:selective

:silent
:update-directory

:version
Adding New

Finding

Maintaining

Abort
Add

Finish
Resume

Start
Start Private

Add region to
Install

File types of
Types of

sl:

Status of a

Finding Out About
Loading
Making

Start

p

option for load-patches 33
option for load-patches 33
option for load-patches 33
option for load-patches 33
option for load-patches 33
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for mak•system 13
option for make-system 13
option for mak•system 13
option for mak•system 13
Options to defsystem 23
Out About Patchable Systems 29

:package option for defsystem 3
Parallel Systems for the LM-2 and the 3600 19
Patch 27
Patch (m-X) Zmacs command 34
Patch (m-X) Zmacs command 34
Patch (m-X) Zmacs command 34
Patch (m-X) Zmacs command 34
Patch (m-X) Zmacs command 34
Patch (m-X) Zmacs command 34
Patch directory file 30
Patch Facility 27
Patch file 27
patch file 34
patch file 34
patch files 30
Patch Files 30
Patch level 30
patch-loaded-p function 30
:patchable option for defsystem 3, 27, 30
patchable system 37
Patchable System Status 37
Patchable Systems 29
Patches 33
Patches 34
:pathname-defauft option for defsystem 3
:print-only option for make-system 13
print-system-modifications function 29
Private Patch (111-X) Zmacs command 34

43

p

44

Q

R

s

MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

Q Q
81: •query-type• variable 21

R
:redlle transformation 7
:recompile option for make-system 13

el: *redo-all* variable 21
Add region to patch file 34

81:

el:
defeystem

al:deflne-defsystem-apeclal-varlable
al:defln•mak•aystem-apeclal-varlable

al:deftn•almpl•tranafonnatlon

:broken system
:experimental system

s

:released symbol In mak•syatem :version
option 13

:released system status 37
:reload option for mak•ayatem 13
Resume Patch (11-X) Zmacs command 34

:aelectlve option for load-patches 33
:•lectlve option for mak•aystem 13
set-system-source-file function 11
181-system-statua function 37
:short-name option for defsystem 3
sl:*batch-mode-p* variable 21
al:*fll•transfonnatlon-functlon* variable 21
sl:*mak•aystem-fonn•to-be-evalecl-after*

variable 21
al:*mak•ayatem-fonn•to-be-evaled-before*

variable 21
sl:*mak•aystem-fonn•to-be-evalecl-flnally*

variable 21
sl:*query-type* variable 21
al:*redo-all* variable 21
sl:*allent-p* variable 21
al:*aystem-belng-deflned* variable 23
sl:*aystem-being-made* variable 21
al:*top-level-transformallons* variable 21
sl:deflne-defsystem-speclal-varlable special

form 23
al:defln.mak•aystem-apeclal-varlable special

form 22
al:defln.almpl•transformatlon special form 23
al:get-release-verslon function 30
sl:get-aystem-verslon function 29
sl:palch-loaded-p function 30
sl:181-ayatem-source-flle function 11
al:system-veralon-lnfo function 29
:silent option for load-patches 33
:silent option for mak•ayatem 13
allent-p variable 21
special form 3, 27
special form 23
special form 22
special form 23
Start Patch (11-X) Zmacs command 34
Start Private Patch (11-X) Zmacs command 34
status 37
status 37

R

s

MAINT Maintaining Large Systems

Symbolics, Inc. February 1984

T

u

:obsolete system
:ralealed system
Patchable System

:latest
:newest

:released

Defining a
Describing a

Introduction to Making a
Making a

Status cl a patchable
Loading the

:broken'
:expert mental

:obsolete
:ralealed
Patchable

st:
el:
el:

Finding OU1 About Patchable
Updating

Maintaining Parallel

al:
:compile

:compla.load
:compla.load-lntt
:do-components

:fas load
:readftte

Compile-like
Complex
Load-like

More Esoteric
User-defined

Fiie

T

u

status 37
status 37
Status 37
Status of a patchable system 37
symbol In mak•system :version option 13
symbol In mak•system :version option 13
symbol In make-system :version option 13
System 1
System 3
System 19
System 1
System 13
system 37
System Definition 11
System facility 1
System malntenanee 27
system status · 37
system status 37
system status 37
system status 37
System Status 37
System version-directory file 30
System versions 27
•system-being-defined* variable ~
•system-being-made• variable 21
aystem-venlon-lnfo function 29
Systems 29
systems 27
Systems for the LM-2 and the 3600 19
:systems option for load-patches 33

'*tOIHeVel-transformallona• variable 21
transformation 7
transformation 7
transformation 7
transformation 7
transformation 7
transformation 7
Transformations 7
transforma11ons 23
transformations 23
transformations 23
Transformations 25
transformations 21, 23
Types of Patch Flies 30
types of patch files 30

Using the :version and :updale-dlrectory keywords 17
:updalHllrectory option for mak•system 13
Updating systems 27
User-defined transformations 21, 23

45

T

u

46 MA/NT Maintaining Large Systems

Symbolics, Inc. February 1984

v v v
al:*balch-moclei»* variable 21

sl:*fil•transfonnallon-functlon* variable 21
11:•mak•system-fonn•to-be-evalecl-all_. variable 21

sl:*make-system-fonn•to-be-evalecl-before* variable 21
sl:*mak•system-fonn•to-be-evaled-flnally* variable 21

al:*query-type• variable 21
al:*redo-all* variable 21
sl:*sllent-p• variable 21

sl:*syatem-belng-deflned* variable 23
sl:*system-belna-m•* variable 21

•l: .. op-level-transfonnallons* variable 21
:verbose option for load-palchea 33

Major version 30
Minor version 30

Using the :version and :updale-dlrectory keywords 17
Major version number 27
Minor version number 27, 34

:latest symbol In make-system :version option 13
:newest symbol In mak•syatem :version option 13

:released symbol In make-system :venlon option 13
:version option for make-system 13

System version-directory file 30
System versions 27

z z z
Abort Patch (m-X) Zmacs command 34

Add Patch (m-X) Zmacs command 34
Finish Patch (11-X) Zmacs command 34

Resume Patch (m-X) Zmacs command 34
Start Patch (11-X) Zmacs command 34

Start Private Patch (11-X) Zmacs command 34

symbolics™

COMP The Compiler

Cambridge, Massachusetts

The Compiler
995009

February 1984

This document corresponds to Rele .. 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained In this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no responslbllHy for any errors that might appear In this
document.

Symbolics software described In this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Csmbridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Cambridge,
Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced In whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

COMP The Compiler

Symbolics, Inc. February 1984

Table of Contents

Page

L The Basic Operations of the Compiler 1

1.1 File Types 1

2. How to Invoke the Compiler 3

3. Input to the Compiler 5

3.1 declare and eval-wben 6

4. Compiler Declarations 9

5. Compiler Warnings Database 13

8. Controlling Compiler Warnings 15

'1. Compiler Source-level Optimizers 19

8. Files That Must Be Compiled on the 3600 and the LM-2 21

9. Files That Maclisp Must Compile 23

10. Putting Data in Compiled Code Files 25

Ind es 2'1

COMP The Compiler

Symbolics. Inc. February 1984

1. The Basic Operations of the Compiler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the
Lisp Machine's instruction set. Compiled functions run more quickly and take up
less storage than interpreted code. They are executed directly by the microcode.

Compiled functions are represented in Lisp by compiled code objects, which contain
machine code as well as various other information. On the 3600 the printed
representation of the object is as follows:

l<DTP-CO"PILED-FUNCTION name address>

On the LM-2 compiled code objects are represented by FEFs (Function Entry
Frames), whose printed representation is as follows:

l<DTP-FEF-POINTER address name>

1

The assembly language for the 3600 is very similar to that of the LM-2. If you
want to understand the output of the LM-2 compiler: See the section "How to Read
Assembly Language". For information on 3600. assembly language: See the section
"Assembly Language on the 3600".

The compiler checks for errors and issues warnings regarding faulty syntax,
typographical errors, unbound symbols, and the like. See the section "Controlling
Compiler Warnings".

1.1 File Types

The results of the compiler are written to a file of canonical type :bin (:qbin on the
LM-2). The actual file types for compiled-code files are host-dependent, of course.

The following table gives the file types of :bin and :qbin files respectively.

Host type

ITS
Lisp Machine
Multics
TENEX
TOPS-20
UNIX
VAXNMS

FUe type for compiled code
files on the 3600

BIN
bin
BIN
BIN
BIN
bn
BIN

File type for compiled code
files on the LM-2

QBIN
qbin
qbin
QBIN
QBIN
qb
QBN

2 COMP The Compiler

Symbolics. Inc. February 1984

COMP The Compiler

Symbolics. Inc. February 1984

2. How to Invoke the Compiler

You can invoke the compiler from the Lisp Machine in several ways.

•Use the function compile to compile an interpreted function in the Lisp
environment.

• Use Zmacs editor commands to read Lisp code in an editor buffer and compile
it.

3

• Use compiler:compile-f"tle and related functions to translate source files into
compiled code files.

Note 1: Loading the compiled. code tile is almost the same as reading in the source
file, except that the functions defmed in the file are defmed as compiled functions
instead of interpreted functions.

Note 2: Compiling code in a Zmacs buffer causes some side effects on the Lisp
environment, whereas compiling a source file does not. For more information:

• See the section "Compiling Code in a Zmacs Buffer".

• See the section. "Compiling and Loading a File".

For general information on compiling, evaluating, and loading code:

• See the document Zmacs Manual.

• See the section "Compiling and Evaluating Lisp".

•See the document Program Development Help Facilities.

On the 3600 you can compile as many processes as you want at one time.

On the LM-2 only one process at a time can use the compiler. Attempts to invoke
the compiler while it is running produce a message like the following:

[10:29 Compiler in process ZMACS-WINOOWS: waiting for resources.]

This means that you tried to run the compiler in the zmacs-windows process, but
some other process is running in the compiler and is holding the global compiler lock.
If you want to do your compilation, ·select the process that is using the compiler and
either abort it or wait for it to finish. Your process that produced the error then
wakes up and proceeds. Otherwise, you can give up on the attempt that produced
the error by using c-ABORT on that process.

compile name &optional lambda-exp Function
name is a function spec. See the section "Functions". The compiler converts
lambda-exp, if supplied, into a compiled code object, saves the lambda­
expression as the :previous-ex:pr-def"mition and :previous-def"mition

4 COMP The Compiler

Symbolics, Inc. February 1984

properties of name if it is a symbol, and changes name's definition to be the
compiled code object. See the function fdefine.

uncompile function-spec Function
If function-spec is not defined as an interpreted function and it has a
:previous-expr-def"inition property, then uncompile restores the function
cell from the value of the property. (Otherwise, uncompile does nothing
and returns "Not compiled".) This "undoes" the effect of compile. See
the function undefun.

compiler:compile-file infile &optional outfi,le in-package Function
dont-set-default-p

The file infile is given to the compiler, and the output of the compiler is
written to a file whose name is infile with a file type on the Lisp Machine of
.bin for a 3600 (.qbin for an LM-2). For a description of the input format for
files to the compiler: See the section "Input to the Compiler". outfile lets
you change where the output is written. dont-set-default-p suppresses the
changing of the default file name to infile, which normally occurs.

compiler:compile-file-load &rest compile-file-args Function
compiler:compile-f":tle-load compiles a file and then loads in the resulting
compiled code file. Its arguments are the same as those of
compiler:compile-file. See the function compiler:compile-f":tle.

To examine a compiled function in symbolic form: See the function disassemble.

COMP The Compiler 5

Symbolics, Inc. February 1984

3. Input to the Compiler

The purpose of compiler:compile-ftle is to take a file and produce a translated
version that does the same thing as the original except that the functions are
compiled. compiler:compile-rlle reads through the input file, processing the forms
in it one by one. For each form, suitable binary output is sent to the compiled code
file, which when loaded reproduces the effect of that source form. The differences
between source files and compiled code files are that:

1. The latter are in a compressed binary form that reads and executes much
faster but cannot be edited.

2. Function definitions in compiled code files have been translated from Lisp
forms to compiled code objects.

Thus, if the source contains a (defun •••) form at top level, then when the compiled
code file is loaded, the function is defined as a compiled function. If, on the other
hand, the source file contains a form that is not of a type known specially to the
compiler, then that form (encoded in binary format) is output "directly" into the
compiled code file, so tl?-at when that file is loaded that form is evaluated. For
example, if the source file contains (setq x 3), then the compiler places in the
compiled code file instructions to set x to 3 at load time (that is, when the compiled
code file is loaded into the Lisp environment). (It happens that compiled code files
have a specific way to setq a symbol. For a more general form, the compiled code
file would contain instructions to recreate the list structure of a form and then call
eval on it.)

Sometimes you might want to put things in the compiled code file that are n9t
meant merely to be translated into binary form. Top-level macro definitions f81I into
this category; the macros must actually get defined within the compiler in order for
the compiler to be able to expand them at compile time. So when a macro form is
seen, it should (sometimes) be evaluated at compile time, and should (sometimes) be
put into the compiled code file.

Compiler declarations also (all into this category. Compiler declarations are forms
that should be evaluated at compile time in order to tell the compiler something.
They should not be put into the compiled code file, unless they are useful for
working incrementally on the functions in the file, compiling them one by one from
the editor.

6 COMP The Compiler

Symbolics. Inc. February 1984

3.1 declare and eval-when

You might want the compiler to handle forms in a variety of ways. (See the section
"Input to the Compiler".) You might want a form to be:

• Put into the compiled code file (compiled, of course), or not.
• Evaluated within the compiler, or not.
• Evaluated if the file is read directly into Lisp, or not.

The compiler recognizes two forms that allow you to tell it exactly what to do with a
form: the completely general eval-when and the less general declare.

An eval-when form looks like this:

(eva 1-when times-list
forml
form2
...)

The times-list can contain one or more of the symbols load, compile, or eval.

If this symbol is present Then forms are

load Written into the compiled code file to be evaluated when
the compiled code file is loaded, with the exception that
defun forms put the compiled definition into the compiled
code file.

compile

eval

Evaluated in the compiler.

Evaluated when read into Lisp; this is because eval-when
is defined as a special form in Lisp. <The compiler ignores
eval in the times-list.)

Example: The following form would define foo as a macro
in the compiler and when the file is read in interpreted,
but not when the compiled code file is loaded.

(eval-when (compile eval) (macro foo (x) (cadr x)))

Note: For the rest of this section, we use lists such as are given to eval-when (for
example, (load eval), (load compile)) to describe when forms are evaluated.

A declare form looks like: ·

(dee 1 are forml form2 ...)
declare is defined in Lisp as a special fo1in that does nothing, so the forms within a
declare are not evaluated at eval time. The compiler does the following upon
finding form within a declare: If form is a call to either special or unspecial,
form is treated as (load compile); otherwise it is treated as (compile).

In addition to recognizing declare as the first forms in the body of a function, the
compiler recognizes declare as the first forms in the bodies of the following:

COMP The compiler

Symbolics. Inc. February 1984

let let•
do
do-named
prog
lambda

do*
do*-named
prog4'

This means that you can have special declarations that are local to any of these
blocks.

If a form is not enclosed in either an eval-when or a declare, then the times at
which it will be evaluated depend on the form. The following table summarizes at
what times evaluation will take place for any given form seen at top level by the
compiler.

(eva 1-when times-list forml ••.)
times-list

(declare (special ...))or (declare (unspecial •..))
(load compile)

(declare anything-else)
(compile)

(special ••.)or (unspecial •••)
(load compile eval)

(macro .•.)or (defmacro ...)or (defsubst ...)
(load compile eval)

(comment •.•)
Ignored at all times.

(compiler-let ((var val) ...)body ...)
Processes the body in its normal fashion, but at (compile eval) time, the
indicated variable bindings are in effect. These variables typically affect the
operation of the compiler or of macros. See the section "Nesting Macros".

(1oca1-dec 1 are (decl decl ...) body . ••)
Processes the body in its normal fashion, with the indicated declarations
added to the front of the list that is the value of local-declarations.

(defflavor •••) or (defstruct •.•)
(load compile eval)

(defun •••)or (defmethod •••) or (defselect •••)
(load eval), but at load time what is processed is not this form itself, but
the result of compiling it.

anything-else
(load eval)

7

8 COMP The Compiler

Symbolics. Inc. February 1984

Sometimes a macro wants to return more than one form for the compiler top level
to see (and to be evaluated). The following facility is provided for such macros. If
the following form is seen at the compiler top level, all of the forms are processed as
if they had been at compiler top level.

(progn (quote compi 1 e) forml form2 •..)

·cor course, in the interpreter they will all be evaluated, and the (quote compile)
will harmlessly evaluate to the symbol compile and be ignored.) For additional
discussion: See the section "Macros Expanding Into Many Forms".

eval-when "e times &rest body Special Form
When seen by the interpreter, if one of the times is the symbol eval, then
the body forms are evaluated. Otherwise eval-when does nothing; but when
seen by the compiler, this special form does special things. See the section
"Input to the Compiler''.

declare "e &rest ignore Special Form
declare does nothing, and returns the symbol declare.

But when seen by the compiler, this special form does special things. See
the section "Input to the Compiler". There is also a different use of
declare, used in conjunction with the arglist function. See the function
arglist. See the section "Compiler Declarations".

COMP The Compiler 9

Symbolics. Inc. February 1984

4. Compiler Declarations

This section describes functions meant to be called during compilation, and variables
meant to be set or bound during compilation, by using declare or local-declare.

local-declare declarations &body body
A local-declare form looks like

(1 oca 1-dec 1 are (decll decl2 ...)
forml
form2
...)

Example:

(local-declare ((special fool foo2))
(defun larry ()

)

(defun george ()
)

); end of local-declare

Special Form

Each decl is consed onto the list local-declarations while the forms are
being evaluated (in the interpreter) or compiled (in the compiler). There are
two uses for this. First, it can be used to pass information from outer
macros to inner macros. Secondly, the compiler will specially interpret certain
decls as local declarations, which only apply to the compilations of the forms.
It understands the following forms:

(special syml sym2 ...)
The variables syml, sym2, and so on are treated as special variables
during the compilation of the forms.

(unspecial syml sym2 ...)
The variables syml, sym2, and so on are treated as local variables
during the compilation of the forms.

(arglist • arglist)
Putting this local declaration around a defun saves arglist as the
argument list of the function, to be used instead of its lambda-list if
anyone asks what its arguments are. This is purely documentation.

(values • values)
Putting this local declaration around a defun saves values as the
return values list of the function, to be used if anyone asks what
values it returns. This is purely documentation.

(def function • defining-forms)

10 COMP The Compiler

Symbolics, Inc. February 1984

function is defined for the compiler during the compilation of the
forms. The compiler uses this to keep track of macros and open­
codeable functions (defsubsts) defmed in the file being compiled.
Note that the cddr of this item is a function.

special "e &rest symbols Special Form
Declares each of the symbols to be "special" for the compiler.

unspecial "e &rest symbols Special Form
Removes any "special" declarations of the symbols for the compiler.

The next three declarations are primarily for Maelisp compatibility.

•expr "e &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
function. In addition it prevents these functions from appearing in the list of
functions referenced but not defined, which appears at the end of the
compilation.

*lexpr "e &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
function. In addition it prevents these functions from appearing in the list of
functions referenced but not defmed printed at the end of the compilation.

*fexpr "e &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
special form. In addition it prevents these names ·from appearing in the list
of functions referenced but not defmed printed at the end of the compilation.

The compile-time values of the following variables affect the operation of the
compiler. You can set these variables by including in his file forms such as

(declare (setq open-code-map-switch t))

nm-in-maclisp-switcb Variable
This variable works only on the LM-2. If this variable is non-nil, the
compiler tries to warn you about any constructs that do not work in Maclisp.
By no means are all Lisp Machine system functions not built-in to Maclisp
cause for warnings - only those which could not be written by the user in
Maclisp (for example, make-array, value-cell-location, and so on). Also,
lambda-list keywords such as &optional and initialized prog variables are
mentioned. This switch also inhibits the warnings for obsolete Maclisp
functions. The default value of this variable is nil.

obsolete-function-warning-switch Variable
If this variable is non-nil, the compiler tries to warn you whenever an
"obsolete" Maclisp-compatibility function, such as maknam or samepnamep,
is used. The default value is t.

COMP The Compiler 11

Symbolics. Inc. February 1984

allow-variables-in-function-position-switch Variable
This variable works only on the LM-2. If this variable is non-nil, the
compiler allows the use of the name of a variable .in function position to
mean that the variable's value should be funcall'd. This is for compatibility
with old Maclisp programs. The default value of this variable is nil.

open-code-map-switch Variable
If this variable is non-nil, the compiler attempts to produce inline code for
the mapping functions (mapc, mapcar, and so on, but not mapatoms) if
the function being mapped is an anonymous some lambda-expression. This
allows that function to reference the local variables of the enclosing function
without the need for special declarations. The generated code is also more
efficient. The default value is t.

all-special-switch Variable
If this variable is non-nil, the compiler regards all variables as special,
regardless of how they were declared. This provides compatibility with the
interpreter at the cost of efficiency. The default is nil.

inhibit-style-warnings-switch Variable
If this variable is non-nil, all compiler style-cheeking is turned off. Style
cheeking is used to issue obsolete function warnings and won't-run-in-Maclisp
warnings, and other sorts of warnings. The default value is nil

See the macro inhibit-style-warnings. The inhibit-style-warnings macro
acts on only one level of an expression.

co~piler-let "e bindlist &rest body Macro
Syntactically identical to let, compiler-let allows compiler switches to be
bound locally at compile time, during the processing of the body forms. Value
forms are evaluated at compile time.

Example:
(compiler-let ((open-code-map-switch nil))

(map (function (lambda (x) •••)) foo))

This prevents the compiler from open-coding the map. When interpreted,
compiler-let is equivalent to let. This is so that global switches that affect
~he behavior of macro expanders can be bound locally.

compiler:compiler-verbose Variable
The compiler displays a message (using standard-output) each time it starts
compiling a function when the value is t. The default value is nil

12 COMP The Compiler

Symbolics, Inc. February 1984

COMP The Compiler 13

Symbolics, Inc. February 1984

5. Compiler Warnings Database

Compiler warnings are kept in an internal database, and several functions and editor
commands are provided that allow you to inspect and manipulate this database in
various ways.

The database of compiler warnings is organized by pathname; warnings that were
generated during the compilation of a particular file are kept together, and this body
of warnings is identified by the generic pathname of the file being compiled. Any
warnings that were generated while compiling some function not in any file (for
example, by using the compile function on some interpreted code) are stored under
the pathname nil. For each pathname, the database has entries, each of which
associates the name of a function (or a flavor) with the warnings generated during
its compilation.

The database starts out empty when you cold boot. Whenever you compile a file,
buffer, or function, the warnings generated during its compilation are entered into
the database. If you recompile a function, the old warnings are removed, and any
new warnings are inserted. If you get some warnings, fix the mistakes, and
recompile everything, the database becomes empty again.

·Warnings are printed out as well as stored in the database. If the value of the
special variable suppress-compiler-warnings is not nil, warnings are not printed,
although they are still stored in the database.

The database has a printed representation. print-compiler-warnings produces this
printed representation from the database, and compiler:load-compile-warnings
updates the database from a saved printed representation. Following are the details:

print-compiler-warnings &optional files (stream Function
standard-output)

Prints out the compiler warnings database. If files is nil (the default), it
prints the entire database. Otherwise, files should be a list of generic
pathnames, and only the warnings for the specified files are printed. (nil
can be a member of the list, too, in which case warnings for functions not
associated with any file are also printed.) The output is sent to stream; you
could use this to send the results to a file.

compiler:load-compiler-warnings file &optional Function
(flush-old-warnings t)

Updates the compiler warnings database. file should be the pathname of a
file containing the printed representation of the compiler warnings related to
the compilation of one or more files. If flush-old-warnings is t (the default),
any existing warnings in the database for the files in question are completely
replaced by the warnings in file. If flush-old-warnings is nil, the warnings
in file are added to those already in the database.

14 COMP The Compiler

Symbolics, Inc. February 1984

The printed representation of a set of compiler warnings is sometimes stored in a
file. You can create such a file using print-compiler-warnings, but it is usually
created with make-system given the :batch option. The default type for such files
is CWARNS.

Several Zmacs commands deal with the database.

Compiler Warnings (M-X)

Prints the compiler warnings database into a buffer called Compiler
Warnings, creates the buffer if it does not exist already, and switches to that
buffer. You can peruse the compiler warnings by scrolling around and doing
text searches through them.

Edit Compiler Warnings (M-X)
Prompts you with the name of each file mentioned in the database, allowing
you to edit the warnings for that file. It then splits the Zmacs frame into
two windows: the upper window displays a warning message, and the lower
one displays the source code whose compilation caused the warning. After
you have finished editing each function, c-. gets you to the next warning:
the top window scrolls to show the next warning, and the bottom window
displays the function associated with this warning. Successive c-. s take you
through all of the warning messages for all of the files you specified. When
you are done, the last c-. puts the frame back into its one-window
configuration.

Edit File Warnings (M-X)
Asks you for the name of the file whose warnings you want to edit. You can
give either the source file or the compiled tile. Only warnings for this file are
edited. If the database does not have any entries for the file you specify, the
command prompts you for the name of a file that contains the warnings, in
case you know that the warnings are stored in another file.

Load Compiler Warnings (M-X)

Prompts you for the name of a tile containing the printed representation of
some compiler warnings and loads them into the database. (This is like the
compiler:Ioad-compiler-warnings function.) This command always passes
t as the flush-old-warnings argument; that is, it replaces the old warnings
rather than merging with them. The default file type is CW ARNS and the
default version is :newest (the latest version).

COMP The Compiler 15

Symbolics. Inc. February 1984

6. Controlling Compiler Warnings

The compiler performs style checking on all forms. Style checking is implemented by
the compiler:style-checker property on a symbol; the value of the property is
called on all forms whose car is that symbol, except those immediately enclosed U:i
inhibit-style-warnings.

By controlling the compile-time values of the variables run-in-maclisp-switch,
obsolete-function-warning-switch, and inhibit-style-warning-switch you can
enable or disable some of the warning messages of the compiler. (See the section
"Compiler Declarations".)

The following special form is also useful:

inhibit-style-warnings body Macro
Prevents the compiler from performing style-checking on the top level of
body. Style-checking will still be done on the arguments of body. Both
obsolete function warnings and won't-run-in-Maclisp warnings are done by
means of the style-checking mechanism, so, for example,

(setq.bar (inhibit-style-warnings (value-cell-location foo)))

does not warn that value-cell-location will not work in Maclisp, but
(inhibit-style-warnings (setq bar (value-cell-location foo)))

will warn, since inhibit-style-warnings applies only to the top level of the
form inside it (in this case, to the setq).

Sometimes functions take arguments that they deliberately do not use. Normally
the compiler warns you ·if your program binds a variable that it never references. In
order to disable this warning for variables that you know you are not going to use,
you can do one of two things.

• You can name the variables ignore or ignored. The compiler will not
complain if a variable by one of these names is not used. Furthermore, by
special dispensation, it is all right to have more than one variable in a lambda­
list that has one of these names.

• Yotf can simply use the variable for effect (ignoring its value) at the front of
the function. Example:

(defun the-function (list fraz-name fraz-size)
fraz-size : This argument is not used •
. . .)

This has the advantage that arglist will return a more meaningful argument
list for the function, rather than returning something with ignores in it. See
the function arglist.

16 COMP The Compiler

Symbolics. Inc. February 1984

The compiler uses a set of variables and functions to keep track of which functions
have been defined and which have been referenced. These are the basis for the
messages "FOO .was defmed but never referenced" that occur during compiling.

The following variables, used for this purpose, are implemented as hash tables:

sys:f9Ile-local-declarations
compiler:functions-defined
compiler:functions-referenced

compiler:function-defined (spec Function
function-defined tells the compiler that the function (spec has been defmed
(by putting it into the hash table in compiler:functions-def9med).

compiler:file-declare thing declaration value Function
f9Ile-declare enters a declaration in the table sys:file-local-declarations for
the remaining extent of the compilation environment.

(compiler:file-declare 'foo 'special t)

compiler:file-declaration thing declaration Function
file-declaration looks up a declaration in the table
sys:file-local-declarations. It returns the declaration when thing is a
declaration of type declaration and nil otherwise.

In addition to the above functions, compiler:function-referenced is useful for
requesting compiler warnings in certain esoteric cases. Normally, the compiler
notices whenever any function x uses (calls) any other function y; it takes note of all
these uses, and then warns you at the end of the compilation if the function y got
called but was neither defined nor declared (by •expr). See the special form •es.pr.

This usually does what you want, but sometimes the compiler has no way of telling
that a certain function is being used. Suppose that instead of x's containing any
forms that call y, x simply stores y away in a data structure somewhere, and
someplace else in the program that data structure is accessed and funcall is done on
it. In this case the compiler cannot see that this is going to happen; the result is
that it cannot note the function usage and hence cannot create a warning message.
In order to make such warnings happen, you can explicitly call the function .
compiler:function-referenced at compile-time.

compiler:function-referencecl what &optional by Function
compiler:default-warning-function

what is a symbol that is being used as a function. by can be any function
spec. compller:function-referenced must be called at compile-time while a
compilation is in progress. It tells the compiler that the function what is
referenced by by. When the compilation is finished, if the function what has
not been defined, the compiler issues a warning to the effect that by referred
to the function what, which was never defined.

COMP The Compiler 17

Symbolics, Inc. February 1984

compiler:make-obsolete function reason Special Form
This special form declares a function to be obsolete; code that calls it gets a
compiler warning, under the control of obsolete-function-warning-switch.
See the function obsolete-function-warning-switch. This is used by the
compiler to mark as obsolete some Maelisp functions that exist in Zetalisp but
should not be used in new programs. It can also be useful when maintaining
a large system, as a reminder that a function has become obsolete and that
its use should be phased out. An example of an obsolete-function declaration
is:

(compiler:make-obsolete create-mumblefrotz
•use MU"BLIFY with the :FROTZ option instead•)

18 COMP The Compiler

Symbolics, Inc. February 1984

COMP The Compiler 19

Symbolics, Inc. February 1984

7. Compiler Source-level Optimizers

The optimizer feature of the 3600 compiler works differently in the LM-2 compiler.
The most important difference on the 3600 is that when an optimizer for a function
(not for a special form) is run, the argument forms it sees have already been
optimized. -

An optimizer can be used to transform code into an equivalent but more efficient
form, which can be compiled better. For example, (eq obj nil) is transformed into
(null obj), which can be compiled better.

An optimizer can also be. used to tell the compiler how to compile a special form.
For example, in the interpreter do is a special form, implemented by a function that
takes quoted arguments and calls eval. In the compiler, do is expanded in a macro­
like way by an optimizer, into equivalent Lisp code using prog, cond, and go, which
the compiler understands.

The compiler stores optimizers for source code on property lists in order to make it
easy for you to add them. The compiler finds the optimizers to apply to a form by
looking for the compiler:optimizers property of the symbol that is the car of the
form. The value of this. property should be a list of optimizers, each of which must
be a function of one argument. The compiler tries each optimizer in tum, passing
the form to be optimized as the argument. An optimizer that returns the original
form unchanged (eq to the argument) has "done nothing'', and the next optimizer is
tried. H the optimizer returns anything else, it has "done something'', and the
whole process starts over again. Only after all the optimjzers have been tried and
have done nothing is an ordinary macro definition processed. This is so that the
macro definitions, which will be seen by the interpreter, can be overridden for the
compiler by optimizers.

Do not use optimizers to defme new language features, because they take effect only
in the compiler; the interpreter (that is, the evaluator) does not know about
optimizers. So an optimizer should not change the effect of a form; it should
produce another form that does the same thing, possibly faster or with less memory.
If you want to actually change the form to do something else, you should use
macros.

compiler:add-optimizer "e target-function optimizer-name Special Form
&rest optimized-into ...

Puts optimizer-name on target-function's optimizers list if it is not there
already. optimizer-name is the name of an optimization function, and
target-function is the name of the function calls that are. to be processed.
Neither is evaluated.

(compiler:add-optimizer target-function optimizer-name optimize-into-I
optimize-into-2 ... also remembers optimize-into-1, and so on, as names of

20 COMP The Compiler

Symbolics. Inc. February 1984

functions that can be called in place of target-function as a result of the
optimization.

COMP The Compiler

Symbolics, Inc. February 1984

8. Files That Must Be Compiled on the 3600 and the
LM-2

In some cases it will be necessary to conditionalize pieces of programs so that one
version runs on the LM-2 and another runs on the 3600.

21

To facilitate this, the list returned by (status features) on the 3600 contains the
Lisp object 3600 (as a fixnum, 3600 decimal), whereas on the LM-2 it does not. To
conditionalize a piece of a program so that it runs on both the LM-2 and the 3600,

· use the #+ conditional expressions.

Example: Suppose a function solarize-screen that on the LM-2 expects coordinate
pairs of the form (x,y) was changed to expect them in (y, x) order on the 3600. One
way to write machine-dependent code is to conditionalize it, as follows:

l+cadr (solarize-screen argl argZ) ;the LH-Z version
1+3600 (solarize-screen argZ argl) ;the 3600 version

For information on sharp-sign (#) abbreviations: See the section "Sharp-sign
Abbreviations".

22 COMP The Compiler

Symbolics. Inc. February 1984

COMP The Compiler 23

Symbolics. Inc. February 1984

9. Files That Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Zetalisp. Their
source files need some special conventions. For example, all special declarations
must be enclosed in declares, so that the Maclisp compiler sees 'them. The main
issue is that many functions and special forms of Zetalisp do not exist in Maclisp. It
is suggested that you turn on run-in-maclisp-switch in such files, which warns you
about a great many problems that your program might have if you try to run it in
Maclisp.

The macro-character combination "#Q" causes the object that follows it to be visible
only when compiling for Zetalisp. The combination "#M" causes the following object
to be visible only when compiling for Maclisp. These work both on subexpressions of
the objects in the file, and at top level in the file. To conditionalize top-level objects,
however, it is better to put the macros if-for-lispm and if-for-maclisp around
them. (You can only put these around a single object.) The if-for-lispm macro
turns off run-in-maclisp-switch within its object, preventing spurious warnings
from the compiler. The #Q macro-character cannot do this, since it can be used to
conditionalize any Lisp object, not just a top-level form.

To allow a file to detect what environment it is being compiled in, the following
macros are provided:

if-for-lispm &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top level
if the output of the compiler is a compiled code file intended for Zetalisp. If
the Zetalisp interpreter sees this it evaluates forms (the macro expands into
forms).

if-for-maclisp &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top level
if the output of the compiler is a compiled code file intended for Maclisp (for
example, if the compiler is COMPLR). If the Zetalisp interpreter sees this it
ignores it (the macro expands into nil).

if-for-maclisp-else-lispm maclisp-form lispm-form Macro
When (if-for-maclisp-else-lispm forml form2) is seen at the top level of the
compiler, forml is passed to the compiler top level if the output of the
compiler is a compiled code file intended for Maclisp; otherwise form2 is
passed to the compiler top level.

if-in-lispm &rest forms Macro
In Zetalisp, (if-in-lispm forms) causes forms to be evaluated; in Maclisp,
forms is ignored.

24 COMP The Compiler

Symbolics, Inc. February 1984

if-in-maclisp &rest forms Macro
In Maclisp, (if-in-maclisp forms) causes forms to be evaluated; in Zetalisp,
forms is ignored.

When you have two definitions of one function, one conditionalized for one machine
and one for the other, put them next to each other in the source tile with the
second "(defun)" indented by one space, and the editor will put both function
definitions on the screen when you ask to edit that function.

In order to make sure that those macros are defined when reading the tile into the
Maclisp compiler, you must make the file start with a prelude, which should look
like:

(declare (cond ((not (status feature lispm))
(load 'IAI: LISPM2; CONDITJ))))

This will do nothing when you compile the program on the Lisp Machine. If you
compile it with the Maclisp compiler, it will load in definitions of the above macros,
so that they will be available to your program. The form (status feature lispm) is
generally useful in other ways; it evaluates to t when evaluated on the Lisp Machine
and to nil when evaluated in Maclisp.

COMP The Compiler 25

Symbolics, Inc. February 1984

10. Putting Data in Compiled Code Files

It is possible to make a compiled code tile containing data, rather than a compiled
program. This can be useful to speed up loading of a data structure into the
machine, as compared with reading in printed representations. Also, certain data
structures, such as arrays, do not have a convenient printed representation as text,
but can be saved in compiled code tiles.

In compiled programs, the constants are saved in the compiled code tile in this way.
The compiler optimizes by making constants which are equal become eq when the
file is loaded. This does not happen when you make a data tile yourself; identity of
objects is preserved. Note that when a compiled code tile is loaded, objects that were
eq when the file was written are still eq; this does not normally happen with text
files.

The following types of objects can be represented in compiled code files:

Symbols
Numbers of all kinds
Lists
Strings
Arrays of all kinds
Instances (for example, hash tables)
Compiled code objects

When an instance is put (dumped) into a compiled code file, it is sent a :fasd-form
message, which must return a Lisp form which, when evaluated, will recreate the
equivalent of that instance. This is because instances are often part of a large data
structure, and simply dumping all of the instance variables and making a new
instance with those same values is unlikely to work. Instances remain eq; the
:fasd-form message is sent only the first time a particular instance is encountered
during writing of a compiled code file. If the instance does not accept the
:fasd-form message, it cannot be dumped.

sys:dump-forms-to-file file forms-list &optional attribute-list Function
sys:dump-forms-to-CJ.le writes data to a file in binary form. forms-list is a
list of Lisp forms, each of which is dumped in sequence. It dumps the forms,
not their results. The forms are evaluated when you load the file.

For example, suppose a is a variable bound to any Lisp object, such as a list
or array. The following example creates a compiled code file that recreates
the variable a with the same value:

(sys:dump-forms-to-file •f:>foo>aval•
(list '(setq a ',a)))

For the purposes of understanding what this· function does, you can consider
that it is the same as the following:

26 COMP The. Compiler

Symbolics, Inc. February 1984

(defun sys:dump-forms-to-file (file forms)
(with-open-file (s file ':direction ':output)

(dolist (f forms)
(print f s))))

The real definition writes a binary file so it will load faster. It can also dump
arrays, which you cannot write to a Lisp source file.

attribute-list supplies an optional attribute list for the resulting compiled code
file. It has basically the same result when loading the binary file as the file
attribute list does for compiler:compile-me. Its most important application
is for controlling the package that the file is loaded into.

(sys:dump-forms-to-file •foo• forms-list '(:package •user•))

sys:dump-forms-to-file always puts a package attribute into the binary file
it writes. If you do not specify the attribute-list argument, or if attribute-list
does not contain a :package attribute, the function uses the user package.
This is to ensure that package prefmes on symbols are always interpreted
when they are loaded as they were intended when the file was dumped.

To examine a compiled code file, use si:unbin-file (si:unfasl on the LM-2). The
output format from unbin-f"lle is similar to that of unfasl but is improved to
include disassembled code for any compiled functions in the compiled code file.

si:unbin-file file &optional outfile Function
Converts the compiled code file file on the 3600 to human-readable file, which
you can optionally specify. It includes disassembled code for any compiled
functions in the compiled code file.

si:unfasl input-file &optional output-file Function
Converts the compiled code file input-file on the LM-2 to a human-readable
file, which you can optionally specify.

COMP The Compiler

Symbolics. Inc. February 1984

3

A

B

c

Index

3

#+3600 21
#+cadr 21
#M macro-character 23
#0 macro-character 23

Files That Must Be Complied on the 3600 and the LM-2 21

A
compiler: add-optimizer special form 19

all-speclal-swltch variable 11
allow-varlables-ln-functlon-posltion-awitch

variable 11
Ignored arguments 15

Arrays In compiled code flies 25

B
The Basic Operations of the Compiler

BIN file type 1

Conditionalizing
Arrays In compiled

Compiled code objects In compiled
File type for compiled
Instances In compiled

Lists in compiled
Numbers In compiled

Putting Data In Compiled
Symbols In compiled

Compiled
Compiled

Compiler Warnings (m-X) Zmacs
Edit Compiler Warnings (m-X) Zmacs

Edit File Warnings (m-X) Zmacs
Load Compiler Warnings (m-X) Zmacs

Files That Maclisp Must

compiler:
compiler:

c Arrays In
Compiled code objects In

Fiie type for
Instances In

Lists In
Numbers In

c
code 21
code flies 25
code flies 25
code flies 1
code flies 25
code flies 25
code flies 25
Code Files 25
code flies 25
code objects 1
code objects· In compiled code flies 25
command 13
command 13
command 13
command 13
Compile 23
compile function 3
compll•flle function 4
compll•fll•load function 4
compiled code flies 25
compiled code files 25
compiled code flies 1
compiled code flies 25
compiled code flies 25
compiled code flies 25

27

3

A

B

c

28

D

Putting Data In
Symbols In

Flies That Must Be

How to Invoke the
Input to the

Optimizer feature of the
The Basic Operations of the

Warnings from the

Specifying

Controlling

Edit
Load

Print
Update

complier:

Putting
Compiler Warnings

Print compiler warnings
Update compiler warnings

Complier

D

COMP The Compiler

Symbolics, Inc. February 1984

Complied Code Flies 25
compiled code flies 25
Compiled code objects 1
Compiled code objects In compiled code files 25
Compiled on the 3600 and the LM-2 21
Compiler 26
Compiler 3
Compiler 5
compiler 19
Compiler 1
complier 15
Compiler declarations 5, 9
compiler environments 23
Compiler not reentrant 3
Compiler Source-level Optimizers 19
Complier variables 15
Compiler Warnings 15
Complier Warnings (m-X) Zmacs command 13
Complier Warnings (m-X) Zmacs command 13
Compiler Warnings (m-X) Zmacs command 13
Complier Warnings Database 13
compiler warnings database 13
complier warnings database 13
complier-let macro 11
complier-verbose variable 11
compller:add-optlmlzer special form 19
compller:compll•flle function 4
compller:complle-fll•load function 4
compller:compller-verbose variable 11
compller:flle-declaratlon function 16
compller:flle-declare function 16
compller:functlon-deflned function 16
compller:functlon-referenced function 16
compller:functlons-deflned variable 15
compller:functlons-referenced variable 15
compller:load-compller-wamlngs function 13
compller:make-obsolete special form 17
Condltlonallzing code 21
Controlling Compiler Warnings 15
Controlling warning messages 15

Data In Complied Code Flies 25
Database 13
database 13
database 13
Declaration 9
declarations 5, 9.
declare 6
declare and eval-when 6
declare special form 6, 8
Definitions, functions 23
defun special form 23
do special form 6
do* special form 6
do*-named special form 6
do-named special form 6

D

COMP The Compt1er

Symbolics. Inc. February 1984

DTP-COMPILED-FUNCTION 1
eys: dump-fonn•to-file function 25

E

F

Zwei
Function

Specifying compiler
declare and

lambda

Optimizer

Source
BIN

QBIN

Edit
compiler:
compiler:

sys:
Arrays In compiled code

Compiled code objects In compiled code
File type for compiled code
Instances in compiled code

Lists In compiled code
Numbers In compiled code

Putting Data in Compiled Code
Symbols In compiled code

E

F

Edit Compiler Warnings (m-X) Zmacs command
Edit File Warnings (m-X) Zmacs command 13
editor 3
Entry Frame 1
environments 23
eval-when 6
eval-when special form 6. 8
Evaluation 5
Evaluation of special forms 6
*expr special form 10
expression 6

:fasd-fonn message 25
Fasdump 25
feature of the compiler 19
FEF 1
*fexpr special form 10
file 5
file type 1
file type 1
Fiie type for complied code files
Fiie Types 1
File Warnings (m-X) Zmacs command 13
file-declaration function 16
file-declare function 16
fil•local-declaratlons variable 15
files 25
files 25
files 1
files 25
files 25
files 25
Files 25
files 25
Files That Maclisp Must Compile 23

29

E
13

F

Flies That Must Be Compiled on the 3600 and the

compller:add-optlmlzer special
compller:make-obsolete special

declare special
defun special

do special
do* special

do*-named special
do-named special
eval-when special

*expr special
*fexpr special

let special
let* special

*lexpr special

LM-2 21
form 19
form 17
form 6, 8
form 23
form 6
form 6
form 6

, form 6
form 6, 8
form 10
form 10
form 6
form 6
form 10

30

H

I

L

COMP The Compiler

Symbolics. Inc. February 1984

local-declare special
prog special

prog* special
special special

unspeclal special
Evaluation of special

Function Entry
compile

compller:complle-ftle
compller:complle-flle-load

compller:flle-declaratlon
compiler:flle-declare

compller:functlon-deflned
compiler:function-referenced

compller:load-compller-warnlnga
print-compiler-warnings

sl:unbln-flle
sl:unfasl

sys:dump-forms-to-flle
uncompile

compiler:
compiler:
Definitions,
compiler:
compiler:

H

I

form 9
form 6
form 6
form 10
form 10
forms 6
Frame 1
function 3
function 4
function 4
function 16
function 16
function 16
function 16
function 13
function 13
function 26
function 26
function 25
function 4
Function Entry Frame 1
function-defined function 16
function-referenced function 16
functions 23
functions-defined variable 15
functions-referenced variable 15

How to Invoke the Compiler 3

lf-for-llspm macro 23
lf-for-macllsp macro 23
lf-for-macllsp-else-llspm macro 23
lf-ln-llspm macro 23
lf-ln-macllsp macro 24
Ignore variable 15
Ignored arguments 15
Inhibit-style-warnings macro 15
Inhibit-style-warnings-switch variable 11
Input to the Compiler 5
Instances In compiled code files 25

How to Invoke the Compiler 3

L
lambda expression 6
let special form 6
let* special form 6
*lexpr special form 10
Lists in compiled code files 25

Files That Must Be Compiled on the 3600 and the LM-2 21

H

I

L

Load Compiler Warnings (m-X) Zmacs command 13
compiler: load-compiler-warnings function 13

local-declare· special form 9

COMP The Compiler

Symbolics, Inc. February 1984

M

N

0

p

Q

R

Compiler Warnings
Edtt Compiler Warnings

Edtt Fiie Warnings
Load Compiler Warnings

Flies That
compiler-let
H-for-llapm

H-for-macllap
lf-for-macllsp-elsa-llspm

lf-ln-llspm
lf-ln-macllsp

lnhlblt-styl•wamlngs
#M
#0

compiler:
:fasd-form

Controlling warning
Flies That

Flies That Macllsp

M

N

(m-X) Zmacs command 13
(m-.X) Zmacs command 13
(m-X) Zmacs command 13
(m-X) Zmacs command 13
Maclisp 10
Macllsp Must Compile 23
macro 11
macro 23
macro 23
macro 23
macro 23
macro 24
macro 15
macro-character 23
macro-character 23
make-obsolete special form 17
message 25
messages 15
Must Be Compiled on the 3600 and the LM-2 21
Must Compile 23

Compiler not reentrant 3
Numbers in compiled code files 25

0
Compiled code objects 1
Compiled code objects in compiled code files 25

obsolet•functlon-wamlng-swltch variable 10
open-code-map-switch variable 11

The Basic Operations of the Compiler 1
Optimizer feature of the compiler 19

Compiler Source-level Optimizers 19

p

Q

R

Print compiler warnings database 13
print-compiler-warnings function 13
prog special form 6
prog* special form 6
Putting Data in Compiled Code Files 25

QBIN file type

Compiler not reentrant 3
run-ln-macllsp-swltch variable 10, 23

31

M

N

0

p

Q

R

32

s

T

u

COMP The Compiler

Symbolics, Inc. February 1984

Compiler
compller:add-optlmlzer

compller:make-obsolete
declare

defun
do

do*
do*-namecl
do-named
eval-when

*expr
*fexpr

let
let*

*lexpr
local-declare

prog
prog•

epeclal
unepeclal

Evaluation of

Warning

Flies
Files

BIN file
QBINfile

File
File

s

T

u

al:unbln-flle function 26
al:unfasl function 26
Source file 5
Source-level Optimizers 19
special form 19
special form 17
special form 6, 8
special form 23
special form 6
special form 6
special form 6
special form 6
special form 6, 8
special form 10
special form 10
special form 6
special form 6
special form 10
special form 9
special form 6
special form 6
special form 10
special form 10
special forms 6
epeclal special form 10
Special variables 6, 11
Specifying complier environments 23
switches 10
Symbols In compiled code files 25
aya:dump-form•to-flle function 25
sys:fll•local-declaratlons variable 15

That Macllsp Must Compile 23
That Must Be Complied on the 3600 and the

LM-2 21
type 1
type 1
type for compiled code files
Types 1

al: unbln-flle function 26
uncomplle function 4

al: unfasl function 26
unepeclal special form 10
Update compiler warnings database 13

s

T

u

COMP The Compiler

Symbolics, Inc. February 1984

v

w

z

v
all-speclal-awltch variable 11

11
11
15
15
15
11
10
11

allow-varlables-ln-functlon-posHlon-awllch variable
compller:compller-verboae variable
compller:functlons-deftned variable

compller:functlonHeferenced variable
Ignore variable

lnhlblt-styl•wamlnga-swltch variable
obsolet•functlon-wamlng-swltch variable

open-code-map-switch variable
run-ln-maclisp-swltch variable

sys:fll•local-declaratlons variable
10, 23
15

Compiler variables 15
6, 11 Special variables

Controlling

Controlling Compiler
Complier

Edit Compiler
Edit File

Load Compiler
Compiler

Print compiler
Update compiler

Compiler Warnings (m-X)
Edit Complier Warnings (m-X)

Edit File Warnings (m-X)
Load Complier Warnings (m-X)

w

z

warning messages 15
Warning switches 10
Warnings 15
Warnings (m-X) Zmacs command 13
Warnings (m-X) Zmacs command 13
Warnings (m-X) Zmacs command 13
Warnings (m-X) Zmacs command 13
Warnings Database 13
warnings database 13
warnings database 13
Warnings from the compiler 15

Zmacs command 13
Zmacs command 13
Zmacs command 13
Zmacs command 13
Zwel editor 3

33

v

w

z

syrnbO/ics TM·

MISCT Other Tools

Cambridge, Massachu$etts

Other Tools
995014

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained In this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear In this
document.

Symbolics software described in this document Is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics Is a trademark of Symbolics, Inc., Csmbrldge, Massachusetts.

Copyright C 1984, 1981, Symbolics, Inc. of Csmbridge, Massachusetts.
All rights reserved. Printed In USA.
This document may not be reproduced in whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 81 86 85 84 9 8 1 6 5 4 3 2 1

MISCT Other Tools

Symbolics, Inc. February 1984

Table of Contents

L The Inspector

1.1 Introduction to the Inspector
1.2 The Inspector History Pane
1.3 The Inspector Inspection Pane

1.3.1 Inspection Pane Display
1.4 The Inspector Interaction Pane
1.5 Special Characters Recognized by the Inspector
1.6 The Inspector Menu Pane

2. Flavor Examiner

Index

Page

1

1
1
3
3
4
4
5

7

9

ii MISCT Other Tools

Symbolics. Inc. February 1984

MISCT Other Tools iii

Symbolics, Inc. February 1984

List of Figures

Figure 1. The Inspector. 2

MISCT Other Tools

Symbolics, Inc. February 1984

1. The Inspector

1.1 Introduction to the Inspector

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The particular
components depend on the type of object; for example, the components of a list are
its elements, and those of a symbol are its value binding, function definition, and
property list.

The objects displayed on the screen by the Inspector are mouse-sensitive, allowing
you to do something to that object, such as inspect it, modify it, or give it as the
argument to a function.

1

The Inspector can be part of another program or it can be used standalone; for
example, the Display Debugger can utilize some of the panes of the Inspector. Note,
however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

You can enter the standalone Inspector via [Inspect] in the System menu or by the
inspect function, which inspects its argument, if any.

See the document Program Development Tools and Techniques.

Figure 1 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

•A small interaction pane
• A history pane and menu pane
•Some number of inspection panes (three by default)

1.2 The Inspector History Pane

The history pane maintains a list of all objects that have been inspected. The last
recently displayed object is at the top of the list, and the most recently displayed
object is at the bottom.

You can inspect any mouse-sensitive object in .the history pane by clicking on it. In
addition, you can perform other operations by placing the mouse cursor in the line
region, which is the left-hand side of the history pane, the area bounded by the
margin on one side and the list of objects on the other. In the line region the
shape of the mouse cursor changes to a rightward-pointing arrow.

• Clicking left in the line region inspects the object. This is sometimes useful

2 MISCT Other Tools

Symbolics, Inc. February 1984

Figure 1. The Inspector.

M<Package GLOBAL 2031S016>
1130
"GLOBAL"
SI : PKG-NEW-SYMBOL-EXTERNAL···ONL Y

-+:SOURCE-FILE-NAME

More aboN

MoHklow
Top of obJCCt

SI :PKG-NEW-SYMBOL-EXTERNAL-ONLY
Value is unbound
Function is M'SI:PKG-NEW-SYMBOL-EXTERNAL-ONLY
Property list: (:SOURCE-FILE-NAME tt<LOGICAL-PATHNAME "SYS: SYS; PACKAGE"»
Package: tt<Packase SYSTEM-INTERNALS 20043232>

:SOURCE-FILE-NAME
Value is :SOURCE-FILE-NAME
Function is unbound
Property list: NIL
Package: tt<Package KEYWORD 20333021>

Top of obJ'cct

Top of obJ'cct

Exit
Return
Modify
DeCache
Clear
Set \

#(LOGICAL-PATHNAME •svs: SYS; PACKAGE·> .
An instance of FS:LOGICAL-PATHNAME. tt<Message handler for FS:LOGICAL-PATHNAME>

FS:HOST:
FS:DEVICE:
FS:DIRECTORY:
FS:NAME:
FS:TYPE:
FS:VERSION:
SI:PROPERTY-LIST:
FS:STRING-FOR-PRINTING:

M<LOGICAL-HOST SYS>
:UNSPECIFIC
C "SYS")
"PACKAGE"
NIL
NIL
tt<LMFS-PATHNAME "Q:>sys>sys>packase">
"SYS: SYS; PACKAGE"

USER: -C-onsole rdle llr ninutes

MISCT Other Tools

Symbolics, Inc. February 1984

when the object is a list and it is inconvenient to position the mouse at the
open parenthesis.

• Clicking middle deletes the object from the history.

3

The history pane also maintains a cache allowing quick redisplay of previously
displayed objects. This means that merely reinspecting an object does not reflect
any changes in its state. Clicking middle in the line region deletes the object from
the cache as well as deleting it from the history pane. Use [DeCache] in the menu ..
pane to clear everything from the cache.

The history pane has a scroll bar at the far left, as well as scrolling zones in the
middle of its top and bottom edges. The last three lines of the history are always
the objects being inspected in the inspection panes.

1.3 The Inspector Inspection Pane

Each inspection pane can inspect a different object. When you inspect an object it
appears in the large inspection pane at the bottom, and the previously inspected
objects shift upward.

At the top of an inspection pane is either a label, which is the printed
representation of the object being inspected in that window, or the words "a list",
·which means a list is being inspected. The main body of an inspection pane is a
display of the components of the object, labelled with their names, if any. You can
scroll this display using the scroll bar on the left or the "more above" and "more
below" scrolling zones at the top and bottom.

Clicking on any mouse-sensitive object in an inspection pane inspects that object.
The three mouse buttons have distinct meanings, however.

• Clicking left inspects the object in the bottom pane, pushing the previous
objects up.

• Clicking middle inspects the object but leaves the source (namely, the object
being inspected in the window in which the mouse was clicked) in the second
pane from the bottom.

• Clicking right tries to find and inspect the function associated with the selected
object (for example, the function binding if a symbol was selected).

1.3.1 Inspection Pane Display

The inspection display that is chosen depends upon the type of the object:

Symbol The name, value, function, property list, and package of the symbol
are displayed. All but the name and the package are modifiable.

4

List

Instance

MISCT Other Tools

Symbolics. Inc. February 1984

The list is displayed ground by the system grinder. Any piece of
substructure is selectable, and any car or atom in the list can be
modified.

The flavor of the instance, the method table, and the names and
values of the instance-variable slots are displayed. The instance­
variables are modifiable.

Closure, Entity The function, and the names and values of the closed variables are
displayed. For an entity the type or class is displayed as well. The
values of the closed variables are modifiable.

Named structure The names and values of the slots are displayed. The values are
modifiable.

Array The leader of the array is displayed if present. For one­
dimensional arrays, the elements of the array are also displayed.
The elements are modifiable.

Compiled code object
The disassembled code is displayed.

Select Method The keyword/function pairs are shown, in alphabetical order by
keyword. The function associated with a keyword is settable via
the keyword.

Stack Frame This is a special internal type used by the Display Debugger. It is
displayed as either interpreted code (a list) or as a compiled code
object with an arrow pointing to the next instruction to be
executed.

1.4 The Inspector Interaction Pane

The interaction pane has two functions: to prompt you and to receive input. If you
are not being asked a question, then a read-eval-inspect loop is active. Any forms
you type are echoed in the interaction pane and evaluated. The result is not
printed, but rather inspected. When you are prompted for input, usually due to
having invoked a menu operation, any input you type at the read-eval-inspect loop is
saved away and erased from the interaction pane. When the interaction is finished,
the input is re-echoed and you can continue to type the form.

1.5 Special Characters Recognized by the Inspector

Some special keyboard characters are recognized when not in the middle of typing in
a form.

MISCT Other Tools 5

Symbolics. Inc. February 1984

c-i!

BREAK

ESCAPE

Exits and deactivates the Inspector.

Runs a break loop in the typeout window of the bottom-most inspection
pane.

Reads a form, evaluates it, and prints the result instead of inspecting it.
On the LM-2 use the AL TMODE key.

1.6 The Inspector Menu Pane

The menu pane (to the right of the history pane) displays these infrequently used
but useful commands:

[Exit]

[Return]

[Modify]

[DeCache]

[Clear]

[Set] \

Equivalent to c-i!. Exits the Inspector and deactivates the frame.

Similar to [Exit], but allows selection of an object to be returned as
the value of the eall to inspect.

Allows simple editing of objects. Selecting [Modify] changes the mouse
sensitivity of items on the screen to only include fields that are
modifiable. In the typical case of nmned slots, the nmnes are the
mouse-sensitive parts. When the field to modify has been selected, a
new vruue can be specified either by typing a form to be evaluated or
by using the mouse to select any normally mouse-sensitive object.
The object being modified is redisplayed. Clicking right at any time
aborts the modification.

Flushes all knowledge about the insides of previously displayed objects
and redisplays the currently displayed objects.

Clears out the history, the cache, and all the inspection panes.

Sets the value of the symbol \ by choosing an object.

6 M/SCT Other Tools

Symbolics, Inc. February 1984

MISCT Other Tools

Symbolics. Inc. February 1984

2. · Flavor Examiner

The Flavor Examiner is ·available via SELECT x or the system menu. This is strictly
an interim program; it is supported fully in Release 5 but will eventually be
incorporated into the Inspector.

Use the HELP command to learn how to use this new feature.

7

The Flavor Examiner utility lets you examine the structure of flavors defined in the
Lisp environment. The Flavor Examiner window is divided into six panes.

1-----------------------1-------------------------------1
I flavor history pane I method history pane I

'-----------------------'-------------------------------'· I I Edit
I examiner pane I Lock
I I
I I

'---'-------' I Edit
I examiner pane I Lock
I I
I I
'----~------------------------------~-----------'-------' I Edit I examiner pane I Lock
I I
I I
'---'-------' I Clear I
I interaction pane I Help I

'---'-------'

The examiner panes (the three middle panes) list the answer to a query. The edit
item of each examiner pane places the contents of the pane into a Zmacs possibilities
buffer. The lock item for a examiner pane prevents the pane from being updated.

You enter a flavor name or method-spec into the interaction pane (the bottom pane).

To get started, type the name of a flavor in the interaction pane.

Methods are listed in the following format:
"ESSAGE-NAHE method-type method-combination-type FLAVOR

If the method-combination-type is :case, this format is used:

HESSAGE-NAHE SUBHESSAGE-NA"E method-type method-combination-type FLAVOR

Clicking on a flavor results in these actions:

• A left click on a flavor presents a menu of flavors, and methods related to the
flavor. (Note that automatically generated methods to get and set instance
variables and methods associated with si:vanilla-flavor are not listed.)

8 MISCT Other Tools

Symbolics, Inc. February 1984

• A middle click on a flavor presents a menu of related instance variables.

•A right click on a flavor presents a menu of operations on the flavor, including
edit and inspect.

• Any click on a flavor places it in the flavor histo:ry pane if it is not already
there.

Clicking on a method results in these actions:

• A left click on a method lists the instance variables to which the method
refers.

• A middle click on a combined method lists the methods used to build the
combined method.

• A middle click on a noneombined method lists all methods for that message
from any flavor.

•A right click on a method presents a menu of operations on the method,
including [arglist], [documentation], [edit], [inspect], [method spec], [trace], and
[disassemble], unless the method is pseudocombined.

• Any click on a method places it in the method histo:ry if it is not already
there.

Clicking on an instance variable results in these actions:

• A left click on an instance variable lists the methods that refer to the instance
variable.

• A middle click on an instance variable shows the default value of the instance
variable.

M/SCT Other Tools

Symbolics, Inc. February 1984

A

B

c

D

E

F

H

Index

A
Inspecting an array 3

Mouse cursor as an arrow 1

Special

Inspecting a
Inspecting a compiled

BREAK Inspector
c-Z Inspector

ESCAPE Inspector
SELECT X
Inspector

Inspecting a
Mouse

B

c

D

BREAK Inspector command 4

c-Z Inspector command 4
Characters Recognized by the Inspector 4
[Clear] Inspector menu Item 5
closure 3
code object 3
command 4
command 4
command 4
command 7
commands 5
compiled code object 3
cursor as an arrow 1

[OeCache] Inspector menu Item 1, 5
Inspection Pane Display 3

E
Inspecting an entity 3

ESCAPE Inspector command 4
Flavor Examiner 7

[Exit] Inspector menu Item 5

F
Flavor Examiner 7

Inspecting a stack frame 3
Inspect function 1

H
Inspector history pane 1

The Inspector History Pane 1

9

A

B

c

D

E

F

H

10 MISCT Other Tools

Symbolics, Inc. February 1984

I I
Inspect function 1
Inspecting a closure 3
Inspecting a compiled code object 3
Inspecting a list 3
Inspecting a named structure 3
Inspecting a select method 3
Inspecting a stack frame 3
Inspecting a symbol 3
Inspecting an array 3
Inspecting an entity 3
Inspecting an Instance 3
Inspecting objects 3

Inspector Inspection pane 3
The Inspector Inspection Pane 3

Inspection Pane Display 3
Introduction to the Inspector 1

Special Characters Recognized by the Inspector 4
The Inspector 1

Using the mouse In the Inspector 1, 3
BREAK Inspector command 4

c-Z Inspector command 4
ESCAPE Inspector command 4

Inspector commands 5
Inspector history pane 1

The Inspector History Pane 1
Inspector Inspection pane 3

The Inspector Inspection Pane 3
Inspector interaction pane 4

The Inspector Interaction Pane 4
[Clear] Inspector menu Item 5

[Decache] Inspector menu Item 1,·5
[Exit] Inspector menu Item 5

[Modify] Inspector menu Item 5
[Return] Inspector menu Item 5
[Set\] Inspector menu Item 5

The Inspector Menu Pane 5
Inspector window 1
[Inspect] System menu Item

Inspecting an Instance 3
Inspector Interaction pane 4

The Inspector Interaction Pane 4
Introduction to the Inspector

L L L
Inspecting a

Line region
list 3

M M M
[Clear] Inspector menu Item 5

[Decache] Inspector menu Item 1, 5
[Exit] Inspector menu Item 5

Onspect] System menu Item 1
[Modify] Inspector menu item 5
[Return] Inspector menu Item 5

MISCT Other Tools 11

Symbolics, Inc. February 1984

N

0

p

R

s

w

x

[Set \] Inspector
The Inspector

Inspecting a select

Using the

N

menu Item 5
Menu Pane 5
method 3
[Modify] Inspector menu Item 5
Mouse cursor as an arrow 1
mouse in the Inspector 1, 3

Inspecting a named structure 3

0
Inspecting a compiled code object 3

Inspecting objects 3

Inspector history
Inspector Inspection
Inspector Interaction

The Inspector History
The Inspector Inspection
The Inspector Interaction

The Inspector Menu
Inspection

p

R

pane 1
pane. 3
pane 4
Pane 1
Pane 3
Pane 4
Pane 5
Pane Display 3

Special Characters Recognized by the Inspector 4
Line region 1

s
Inspecting a

[Return] Inspector menu Item 5

select method 3
SELECT x command 7
[Set \] Inspector menu Item 5

N

0

p

R

s

Inspecting a
Inspecting a named

Inspecting a
· [Inspect]

Special Characters Recognized by the Inspector 4
stack frame 3
structure 3
symbol 3
System menu Item

w w
Inspector window

x x
SELECT x command 7

12 MISCT Other Tools

Symbolics, Inc. February 1984

\ \ \
[Set \] Inspector menu Item 5

	00-001
	00-002
	00-003
	01-00001_990050_Zmacs_Feb84
	01-00002
	01-0001
	01-0002
	01-0003
	01-0004
	01-0005
	01-0006
	01-0007
	01-0008
	01-0009
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	01-009
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017
	01-018
	01-019
	01-020
	01-021
	01-022
	01-023
	01-024
	01-025
	01-026
	01-027
	01-028
	01-029
	01-030
	01-031
	01-032
	01-033
	01-034
	01-035
	01-036
	01-037
	01-038
	01-039
	01-040
	01-041
	01-042
	01-043
	01-044
	01-045
	01-046
	01-047
	01-048
	01-049
	01-050
	01-051
	01-052
	01-053
	01-054
	01-055
	01-056
	01-057
	01-058
	01-059
	01-060
	01-061
	01-062
	01-063
	01-064
	01-065
	01-066
	01-067
	01-068
	01-069
	01-070
	01-071
	01-072
	01-073
	01-074
	01-075
	01-076
	01-077
	01-078
	01-079
	01-080
	01-081
	01-082
	01-083
	01-084
	01-085
	01-086
	01-087
	01-088
	01-089
	01-090
	01-091
	01-092
	01-093
	01-094
	01-095
	01-096
	01-097
	01-098
	01-099
	01-100
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110
	01-111
	01-112
	01-113
	01-114
	01-115
	01-116
	01-117
	01-118
	01-119
	01-120
	01-121
	01-122
	01-123
	01-124
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131
	01-132
	01-133
	01-134
	01-135
	01-136
	01-137
	01-138
	01-139
	01-140
	01-141
	01-142
	01-143
	01-144
	01-145
	01-146
	01-147
	01-148
	01-149
	01-150
	01-151
	01-152
	01-153
	01-154
	01-155
	01-156
	01-157
	01-158
	01-159
	01-160
	01-161
	01-162
	01-163
	01-164
	01-165
	01-166
	01-167
	01-168
	01-169
	01-170
	01-171
	01-172
	01-173
	01-174
	01-175
	01-176
	01-177
	01-178
	01-179
	01-180
	01-181
	01-182
	01-183
	01-184
	01-185
	01-186
	01-187
	01-188
	01-189
	01-190
	01-191
	01-192
	01-193
	01-194
	01-195
	01-196
	01-197
	01-198
	01-199
	01-200
	01-201
	01-202
	01-203
	01-204
	01-205
	01-206
	01-207
	01-208
	01-209
	01-210
	01-211
	01-212
	01-213
	01-214
	01-215
	01-216
	01-217
	01-218
	01-219
	01-220
	01-221
	01-222
	01-223
	01-224
	01-225
	01-226
	01-227
	01-228
	01-229
	01-230
	01-231
	01-232
	01-233
	01-234
	01-235
	01-236
	01-237
	01-238
	01-239
	01-240
	01-241
	01-242
	01-243
	01-244
	01-245
	01-246
	01-247
	01-248
	01-249
	01-250
	01-251
	01-252
	02-0001_990015_Debugger_Feb84
	02-0002
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	03-0001_995005_Maint_Feb84
	03-0002
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	04-0001_995009_Compiler_Feb84
	04-0002
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	05-0001_995014_Other_Tools_Feb84
	05-0002
	05-001
	05-002
	05-003
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12

