

symbolics

1 Users:GLfide to
Symbolics Computers

Cambridge, Massachusetts

User's Guide to Symbolics Computers
996015

March 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise

valuable trade secrets of, Symbolics, Inc. They are given In confidence by Symbolics

pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Copyright C> 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.

Font Library Copyright <c> 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLlCS-LlSP,

ZETALlSP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of

Symbolics, Inc.

TENEX is a registered trademark of Bolt Beranek and Newman Inc. UNIX is a

trademark of Bell Laboratories, Inc. VAX and VMS are trademarks of Digital Equipment

Corporation.

Restricted Rights Legend
Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause

at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-

family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1

Laser Graphics Printers.
Cover design: Schafer/LaCasse
Cover printer: W.E. Andrews Co., Inc.

Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 32 1

iii

March 1985 User's Guide to Symbofics Computers

1. Starting up

1.1 Getting Started
1.2 Logging Out

2. The Console

2.1 The Screen

Table of Contents

2.2 Mouse Documentation Line
2.3 Status Line
2.4 Process State
2.5 Run Bars
2.6 The Keyboard
2.7 The Mouse

3. Communicating with the Lisp Machine

3.1 Entering Commands
3.1.1 Overview of the Command Processor
3.1.2 Parts of a Command
3.1.3 Entering a Command
3.1.4 Editing a Command
3.1.5 Help in the Command Processor
3.1.6 Completion in the Command Processor
3.1.7 Command History
3.1.8 Error Handling in the Command Processor
3.1.9 Turning the Command Processor on and Off

3.2 Command Descriptions
3.2.1 Compile Commands
3.2.2 Copy Commands
3.2.3 Create Commands
3.2.4 Delete Commands
3.2.5 Disable Commands
3.2.6 Edit Commands
3.2.7 Enable Commands
3.2.8 Expunge Commands
3.2.9 Find Commands
3.2.10 Halt Commands
3.2.11 Hardcopy Commands
3.2.12 Help Commands
3.2.13 Initialize Commands

Page

1

1
3

5

5
5
5
6
6
7
7

9

9
9
9

10
14
14
14
15

·15
15
16
16
18
19
20
20
20
21
22
22
23
23
24
24

iv

User's Guide to Symbolics Computers March 1985

3.2.14 Inspect Commands 26
3.2.15 Load Commands 26
3.2.16 Login and Logout Commands 28
3.2.17 Rename Commands 29
3.2.18 Reset Commands 29
3.2.19 Save Commands 30
3.2.20 Select Commands 30
3.2.21 Send Commands 31
3.2.22 Set Commands 31
3.2.23 Show Commands 35
3.2.24 Start Commands 40
3.2.25 Undelete Commands 41

4. Recovering From Errors and Stuck States 43

4.1 Introduction 43
4.2 ~ove~ Procedures 43
4.3 The Debugger: ~overing From Errors and Stuck States 44
4.4 Resetting the FEP 44
4.5 Warm Booting 44
4.6 Halting 45

5. Creating and Manipulating Files 47
5.1 Overview 47
5.2 Introduction to Entering Zmacs 47

5.2.1 Entering Zmacs with SELECT E 47
5.2.2 Entering Zmacs with the Mouse 48
5.2.3 Entering Zmacs with ed 48
5.2.4 Entering Zmacs with zwei:edit-functions 48

5.3 Commands 49
5.4 Extended Commands 49
5.5 Keystrokes 49
5.6 Introduction to Moving the Cursor 50

5.6.1 Description of Moving the Cursor 50
5.6.2 Summ~ of Moving the Cursor 50

5.7 Introduction to the Motion Commands 51
5.8 Introduction to Zmacs Help 51
5.9 Introduction to Inserting Text 53
5.10 Introduction to Erasing Text 53

5.10.1 Description of Erasing Text 53
5.10.2 Summary of Erasing Text 53

5.11 Creating a Buffer 54
5.12 Creating a File 55

6. Sending and Receiving Messages and Mail 57

v

March 1985 User"s Guide to Symbolics Computers

6.1 Using Zmail 57
6.1.1 Introduction 57
6.1.2 Starting up Zmail 57
6.1.3 Sending Your Mail 62
6.1.4 Reading Your Mail 64
6.1.5 What to Do After Reading a Message 66
6.1.6 Getting Fancy with Zmail 67

6.2 Talking to Other Users 69
6.2.1 Introduction to Converse 69
6.2.2 Using Converse 70

7. How to Change Fonts 75

7.1 What Are Fonts? 75
7.2 Displaying Fonts 75
7.3 Standard Lisp Machine Fonts 75
7.4 Setting Fonts 78

7.4.1 Setting Fonts in the Input Editor 78
7.4.2 Setting Fonts in Zmacs 79

8. Getting Help 83

8.1 Reference Material 83
8.2 HELP Key 83
8.3 Interaction with Completion and Typeout Windows 84

8.3.1 Zmacs Completion 84
8.3.2 Completion in Other Contexts 85
8.3.3 Typeout Windows in Zmacs 85
8.3.4 FEP Command Completion 85

8.4 Summary of Help Functions in Different Contexts 86
8.4.1 Zmacs Commands for Finding Out About the State of Buffers 86
8.4.2 Zmacs Commands for Finding Out About the State of Zmacs 86
8.4.3 Zmacs Commands for Finding Out About Lisp 86
8.4.4 Zmacs Commands for Finding Out About Flavors 87
8.4.5 Zmacs Commands for Interacting with Lisp 87
8.4.6 Lisp Facilities for Finding Out About Lisp 88

8.5 Reference Description of Help Functions 88
8.6 Editing Your Input 101

8.6.1 How the Input Editor Works 101

9. When and How to Use the Garbage Collector 105

10. How to Get Hardcopy 107

10.1 Commands for Producing Hardcopy 107
10.1.1 Hardcopying From the System Menu 107
10.1.2 Hardcopying From Zmacs 107
10.1.3 Hardcopying From Zmail 108

vi

User's Guide to Symbolics Computers March 1985

10.1.4 Hardcopying From Dired 108
10.1.5 Hardcopying the Screen 108
10.1.6 Hardcopying From the File System Editor 108

10.2 Checking the Status of Hardcopy Devices 109

lL Understanding Networks and the Namespace System 111

11.1 Introduction to the Namespace System m
11.1.1 N amespace System Classes 112
11.1.2 Namespace System Attributes 112
11.1.3 Data Types of Namespace System Attributes 112
11.1.4 Names and Namespaces 113

11.2 U sing the Network 115
11.3 Updating the Namespace Database 116

11.3.1 Editing a Namespace Object 117
11.3.2 Creating a New Namespace Object 117

12. Using the Online Documentation System 119

12.1 Introduction to the Document Examiner 119
12.2 Looking up Documentation 120
12.3 Documentation Lookup Commands 122
12.4 Document Examiner Window 129

12.4.1 Document Examiner Viewer 129
12.4.2 Document Examiner List of Current Candidates 131
12.4.3 Document Examiner List of Bookmarks 132
12.4.4 Document Examiner Command Pane 133

12.5 Repositioning Text in the Document Examiner 134
12.6 Document Examiner Private Documents 136

13. Index of Function Keys 139

13.1 Introduction 139
13.2 ABORT 139
13.3 c-ABORT 139
13.4 M-ABORT 139
13.5 c-M-ABORT 139
13.6 BACKSPACE 140
13.7 CLEAR INPUT 140
13.8 COMPLETE 140
13.9 END 140
13.10 ESCAPE 140
13.11 FUNCTION Key 140

13.11.1 Display and Hardcopy Commands 141
13.11.2 Selection and Notification Commands 142
13.11.3 Recovering From Stuck States 143

13.12 HELP 144

vii

March 1985 User's Guide to Symbolics Computers

13.13 LINE 144
13.14 LOCAL 144
13.15 NETWORK 144
13.16 PAGE 144
13.17 REFRESH 144
13.18 RESUME 145
13.19 RETURN Key 145
13.20 RUBOUT 145
13.21 SCROLL 145
13.22 SELECT Key 145
13.23 SUSPEND 146
13.24 c-SUSPEND 146
13.25 M-SUSPEND 146
13.26 C-M-SUSPEND 146
13.27 SYMBOL 146
13.28 TAB Key 146
13.29 Keys Not Currently Used 147

14. Quick Summary of Mouse Functions 149

14.1 Mouse Cursor Shape 149
14.2 Scrolling with the Mouse 149

15. A Brief Introduction to the Lisp World 151

15.1 The Lisp Top Level 151
15.1.1 Standard Variables 151

15.2 Logging in 155
15.3 Some Utility Functions 158

16. Customizing Your Environment 161

16.1 What is Customizing? 161
16.2 Init Files 161
16.3 How to Create an Init File 164
16.4 Logging in Without Processing Your Init File 164
16.5 Customizing the Command Processor 164

16.5.1 Setting the Command Processor Mode 165
16.5.2 Setting the Command Processor Prompt 165
16.5.3 Setting Command Processor Special Characters 166
16.5.4 Customizing Command Processor Display 166

16.6 Zmacs Customization in Init Files 167
16.6.1 Setting Editor Variables 167
16.6.2 Key Bindings 168
16.6.3 Setting Mode Hooks 170

16.7 Customizing Zmail 170
16.8 Customizing Converse 172

viii

User's Guide to Symbofics Computers

16.9 Customizing Hardcopy Facilities
16.10 Changing the Default Printer

17. Checking on What the Machine is Doing

17.1 Poking Around in the Lisp World
17.1.1 Variables for Examining the Lisp World

17.2 Utility Functions
17.3 Dribble Files
17.4 status and sstatus
17.5 Using Peek

17.5.1 Peek
17.5.2 Peek Modes

18. Tools for Lisp Debugging

18.1 . How the Inspector Works
18.2 Entering and Leaving the Inspector
18.3 Flavor Examiner
18.4 Entering the Debugger

18.4.1 Entering the Debugger by Causing an Error
18.4.2 Entering the Debugger with M-SUSPEND
18.4.3 Entering the Debugger with the dbg Function

APPENDIX A. Front-end Processor

A.1 Introduction to the FEP
A.2 Hints on Using the FEP
A.3 Cold Booting
AA Resetting the FEP
A.5 FEP Commands

A.5.1 Commonly Used FEP Commands
A.5.2 Less Common FEP Commands

A.6 FEP File System Overview
A.6.1 Microcode Loads
A.6.2 World Loads
A.6.q Configuration Files
A.6A How LMFS Uses the FEP File System
A.6.5 Virtual Memory
A.6.6 FEP File Comment Properties
A.6.7 Installing Microcode
A.6.8 Renaming FEP Files
A.6.9 Using a Spare World Load for Paging
A.6.10 Adding a Spare World Load as LMFS File Space

A.7 Disk Handling
A. 7.1 Disk Handling Commands
A. 7.2 Multiple Disk Units

March 1985

174
175

177

177
179
182
183
184
185
185
186

189

189
189
191
192
193
194
194

197

197
197
198
199
200
200
201
208
208
209
209
209
209
209
210
212
212
212
213
213
213

ix

March 1985 User's Guide to Symbo/ics Computers

A.8 Finding Out Why Your Machine Crashed 214
A.B.1 Decoding Micro PCs 215
A.8.2 Decoding Macro PCs 216

A.9 FEP Show Status Command Output 217
A.10 Debugging in the FEP 222

APPENDIX B. System Conventions and Helpful Hints

B.1 Miscellaneous Conventions
B.2 Answering Questions the System Asks
B.3 Questions Users Commonly Ask
BA Questions About the FEP and LMFS

APPENDIX C. Documentation Notation Conventions

C.1 Understanding Notation Conventions
C.l.1 Lisp Objects
C.1.2 Macro Characters
C.1.3 Character Case
C.1A Packages and Keyword Names
C.l.5 Maclisp
C.l.6 The Character Set

C.2 Notation Conventions Quick Reference

Index

227

227
227
228
229

231

231
231
233
234
234
235
235
235

239

x

User's Guide to Symbolics Computers March 1985

March 1985

Figure l.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

List of Figures

Top-level Display
Top-level Display with Mail File
Mail Mode Display (One-window Mode)
A Message about to be Sent
Mail Mode Display (Two-window Mode)
Show Font Display of Fonts
Show Font Display of Font Characters
Namespace Object Editor Window
Proflle mode display
The Inspector

xi

User's Guide to Symbolics Computers

58
59
63
65
68
76
77

116
172
190

xii.

User's Guide to Symbo/ics Computers March 1985

1

March 1985 Starting up

1. Starting up

This section provides information about how to start, cold boot, log in to, and log out
of the 3600 family of machines. It assumes that the software is installed and your
site has been configured. If you are not sure that this has been done, check with
your site manager. The software must be installed and the site configured before
you attempt to use the system. For information on installation and site
configuration: See the section "Software Installation Guide" in Installation and Site
Operations.

1.1 Getting Started

To power up and start using the your Symbolics Computer, use the following
procedure:

1. If you have a 3600:

a. Plug in the 3600. The front panel lights on the processor cabinet display
"3600" when the machine is plugged in.

b. Tum the key on the front panel to the vertical position, marked LOCAL.

c. After the front panel lights display "Power up?", push the spring-loaded
switch marked YES. The front panel lights then display "3600 on".

2. If you have a 3670 or 3640:

a. Plug in the machine.

b. Press the Power button on the front panel.

3. After you have turned the machine on, the FEP has control of the console.
Now you Cold boot the machine.

Cold booting is a complete reset of Lisp. It loads in a new world. Cold booting
erases the contents of the Lisp environment, including the contents of editor
and mail buffers. Never cold boot a machine that is being used by someone
else.

You can cold boot the machine when all of the following conditions hold:

• The screen is white.

2

User's Guide to Symbofics Computers March 1985

• The FEP prompt (Fep» appears in the upper left-hand comer.

• A blinking cursor appears.

However, you cannot cold boot if any of the following conditions is true:

• The screen is black. This might indicate that the console is not turned
on.

• The screen is white, but no characters appear. This might indicate that
the video cable is disconnected. If the video cable is connected, this
condition might indicate a malfunction of the FEP, and you should call
your Symbolics Field Service Representative.

Cold boot the machine by typing the FEP command Boot at the FEP prompt
(Fep» and pressing RETURN.

on the screen:
you type:
you press:

Fep>
boot
RETURN

As it cold boots the machine, the FEP executes the commands in the latest
version of the file named FEPO:>boot.boot. Booting takes about two minutes.
When the FEP has successfully completed the cold boot, the herald (a
multiline message beginning Symbol ics 3600 System, or Symbol ics 3670 System as
appropriate) appears.

4. Log in.

After cold booting, you are in a window named Lisp Listener 1. You are now
ready to log in. If your login name is Whit, you can log in in any of the
following ways: (Note that the examples are given in upper and lower case, but
the machine is not case sensitive. You can use all upper case, all lower case,
or mixed case as you prefer.)

• To log into the default host machine, using your init file, type
Login Whit

• To log into your machine, without your init file, type
Login Whit :init file none

• To log into another machine "sc3", using your init file, type
Login Whit :host sc3

If the host machine you log in to is a timesharing computer system, you must
have a directory and account on that host machine.

• For more information about cold booting: See the section "Front-end
Processor", page 197.

3

March 1985 Starting up

• For more information about logging in: See the section "Login Command",
page 28.

• For more information about how to write init files: See the section
"Customizing Your Environment", page 161.

1.2 Logging Out

1. Use a Lisp Listener by pressing SELECT L.

2. Log out by typing either the command logout or the function (logout).

Wait until the Lisp Listener says that you have been logged out before you go
to the next step.

3. Cold boot the machine.

This step is optional. It is not necessary to cold boot if the machine has been
used only a short while and if no major changes to the machine state have
been made. If the machine has been used for several hours and many files
have been loaded or read into it, we recommend that the machine be cold­
booted.

Cold booting frees up virtual memory and puts the machine in a fresh state.
In this way your customizations do not affect the next user's environment.

Note: You need not tum the machine off each night; however, it does not hurt the
machine to do so.

4

User's Guide to Symbo/ics Computers March 1985

5

March 1985 The Console

2. The Console

This chapter describes the basic characteristics of the devices that are used to talk to
Symbolics Lisp Machines. These include one or more bit-raster displays, a specially
extended keyboard, and a graphical input device called a mouse. Collectively these
form a complete and extremely flexible user interface, called the console.

2.1 The Screen

The screen always contains one or more windows. Regardless of which windows are
displayed, the screen always contains some information displays, including a mouse
documentation line and a status line. These information displays are helpful in
determining whether a 3600 is operating normally or needs intervention. See the
section "Recovering From Errors and Stuck States", page 43.

2.2 Mouse Documentation Line

The mouse documentation line contains information about what different mouse
clicks mean. As you move the mouse across different mouse-sensitive areas of the
screen, the mouse documentation line changes to reflect the changing commands
available.

When no documentation appears, it does not necessarily mean that the mouse clicks
are undefined. Not all programs have provided material for the mouse
documentation line. When the mouse documentation line is blank at "top level" in a
window, the mouse usually offers some standard commands. Mouse-L selects a
window; Mouse-R brings up either the system menu or a menu specific to the
application.

The mouse documentation line is normally displayed in reverse video. Pressing
FUHCTIOH M-C complements the video state of the mouse documentation line.

2.3 Status Line

The status line is the line of text at the bottom of the screen. It contains the
following information:

• Date and time
• Login name

6

User's Guide to Symbolics Computer~ March 1985

• Current package
• Process state
• Run bars
• Other context-dependent information, such as

o Console idle time
o Network service indicators

2.4 Process State

The process state refers to the processes associated with the selected window. See
the section "Selecting and Creating Windows". The following list shows some
common states:

State
House Out
Net In
Net Out
Open
Run
Tyi

2.5 Run Bars

Meaning
Waiting for the mouse process to notice a change of windows.
Waiting for data from another machine on the network.
Waiting to send data to another machine on the network.
Waiting to open a file on another machine on the network.
Process is running.
Waiting for input from keyboard or mouse.

The run bars are thin horizontal lines near the process state in the status line. A
description of each one follows:

GC bar (under the package name)

Disk bar

Left half is visible when the scavenger is looking for references to
objects that are candidates to become garbage. Right half is
visible when the transporter is copying an object.

Visible when the processor is waiting for the disk, typically
because of paging. Nonpaging disk 110 usually waits via
process-wait, in which case this bar does not appear.

Run bar (under the run/wait state)

Disk-save bar

Visible when a process is running and not waiting for the disk.
Not visible when the scheduler is looking for something to do.

Visible when disk-save is reading from the disk; disk-save
alternatively reads and writes large batches of pages. The
alternating state of this bar tells you that disk-save is working
while you wait for it.

7

March 1985 The Console

2.6 The Keyboard

There are 88 physical keys on the keyboard. The keyboard has unlimited rollover,
meaning that a keystroke is sensed when the key is pressed, no matter what other
keys are depressed at the time.

The keys are divided into three groups: function keys, character keys, and modifier
keys. Function keys and character keys transmit something. They have white
labels on the tops and are typed in sequence. ~fodifier keys are intended to be held
down while a function or character key is typed, to alter the effect of the key.
They have dark labels on the tops.

Function Keys
FUNCTION~ ESCAPE~ REFRESH~ CLEAR INPUT~ SUSPEND~ RESUME~ ABORT~

NETWORK~ HELP~ LOCAL~ TAB~ BACKSPACE~ PAGE~ COMPLETE~ SELECT~ RUBOUT~

RETURN~ LINE~ END and SCROLL

Character Keys
abc d e f 9 h ; j k 1 M n 0 p q r stu v w x y z 0 1 2 3 4 5 6 7 8 9
: - = ' " I 0 ; , ~ . / and the space bar.

Modifier Keys
CAPS-LOCK~ SYMBOL~ SHIFT~ REPEAT~ MODE LOCK~ HYPER~ SUPER~ META, and
CONTROL

The following keys are reserved for use by the user (for example, to put custom
editor commands or keyboard macros on):

CIRCLE
SQUARE
TRIANGLE
HYPER

2.7 The Mouse

The mouse is a pointing device that can be moved around on a flat surface. These
motions are sensed by the Lisp Machine, which usually responds by moving a cursor
around on the screen in a corresponding manner. The shape of the cursor varies,
depending on context.

There are three buttons on the mouse, called left, middle, and right. They are used
to specify operations to be performed. Typically you point at something with the
mouse and specify an operation by clicking the mouse buttons. "Shift clicks",
indicated by sh-, are conventionally distinguished from single clicks. Holding down
the SHIFT key while clicking a button is the same as clicking that button twice
quickly. In any specific context, there are up to six operations that can be performed

8

User's Guide to Symbo/ics Computers March 1985

with the mouse, invoked by Left, sh-Left, Middle, sh-Middle, Right, and sh-Right
clicks. Some of these operations are local to particular programs such as the editor,
and some are defined more widely across the system.

Typically the operations available by clicking the mouse buttons are listed at the
bottom of the screen. This display, called the mouse documentation line, changes as
you move the mouse around or run different programs.

Sometimes holding a mouse button down continuously for a period of time may also
be defined to perform some operation, for example, drawing a curve on the screen.
This will be indicated by the word "Hold". For example, "Middle Hold" means to
click the middle mouse button down and hold it down, releasing it only when the
operation is complete. "sh-Left Hold" means hold down the SHIFT key and click left,
then release the SHIFT key but hold the left button down until the operation is
complete.

9

March 1985 Communicating with the Usp Machine

3. Communicating with the Lisp Machine

3.1 Entering Commands

3.1.1 Overview of the Command Processor

The command processor is a utility program that collects arguments on behalf of a
command and then runs that command for you. The command processor takes care
of various chores:

• Prompting for arguments

• Checking arguments for correctness

• Providing completion when possible

• Providing documentation on request

By default, the command processor is on in all Lisp Listeners and break loops. The
prompt "Command: " indicates that you should enter a command or a Lisp form. In
the default command processor mode, input to a Lisp Listener or break loop is
treated as a command if it begins with an alphabetic character. Input is treated as
a Lisp form if it begins with a nonalphabetic character or is preceded by a comma.

For information on entering a command: See the section "Entering a Command",
page 10.

For information on changing the command processor's mode, prompt, and other
characteristics: See the section "Customizing the Command Processor", page 164.

For information on turning the command processor on and off: See the section
"Turning the Command Processor on and Oft", page 15.

For descriptions of predefined commands: See the section "Command Descriptions",
page 16.

For information on the command processor reader and the facility for defining your
own commands: See the section "The Command Processor Program Interface" in
Programming the User Interface.

3.1.2 Parts of a Command

A command has three logical parts to it, which you specify in this order:

1. Command name. This is a word or a series of words separated by spaces.

10

User's Guide to Symbolics Computers March 1985

2. Positional arguments. These are arguments that the command processor
prompts for directly after the command name. Some commands have several
positional arguments; others have none. Commands that have arguments
might use default values for the ones that you don't specify.

3. Keyword arguments. Some commands have keyword arguments that make it
simple to modify the meaning of the commands. Most of these arguments
require values. These arguments have default values that the command
processor assumes if you specify the command without mentioning the
argument name. Some commands have arguments whose values differ
according to whether you omit the argument altogether or mention the
argument name and omit its value. Some keyword arguments do not have
values at all.

A command actually has other logical parts as well. These are characters that serve
to delimit the command, the command name, and the arguments. Still other
characters serve as "commands" inside the command, providing completion and help
messages.

For information on entering command names and arguments: See the section
"Entering a Command", page 10. See the section "Completion in the Command
Processor", page 14.

For information on help in the command processor: See the section "Help in the
Command Processor", page 14.

3.1.3 Entering a Command

In entering a command, you enter the components in order: first the command
name, then its positional arguments, then its keyword arguments, then the
command terminator (RETURN or END). (When the command processor is in
:form-preferred mode, you must precede the entire command by a colon: See the
section "Setting the Command Processor Mode", page 165.)

The command processor can complete components of commands. While you are
typing a command name or keyword argument name, if you press SPACE the
command processor attempts to complete the current word and all previous words in
that command name or keyword argument name. If you press COMPLETE, the
command processor attempts to complete the entire command name or keyword
argument name. The command processor can also complete argument values that
are members of a limited set of possibilities. When you terminate a command, the
command processor completes any command component in progress.

Some arguments have default values. If you press SPACE instead of typing an
argument, the command processor uses the default for that argument. The
command processor also uses the defaults for any arguments you haven't specified at
all when you terminate the command.

11

March 1985 Communicating with the Usp Machine

All this means that you don't have to type an entire command to enter it. Suppose,
for example, that you type the following:

d e SPACE f SPACE f 0 0 • ~ SPACE : q SPACE Y RETURN

You see the following on the screen:

Delete File (file [default ACHE-BLUE:>joe>foo.lisp]) foo.~
(keywords) :Query (Yes, No, or Ask) Yes

While entering a command, pressing HELP or c-? displays documentation appropriate
for the current stage of entering the command. See the section "Help in the
Command Processor", page 14.

3.1.3.1 Supplying a Command Name

You type the command name, or some portion of it, followed by SPACE. The
command processor either recognizes the command from what you have typed or it
doesn't.

• When it recognizes the command, it fills in the part of the command name
that you didn't type and then prompts you for the first argument. For
example, you type:

d e SPACE f SPACE

The command processor displays:

Delete File (file [default ACHE-BLUE:>joe>foo.lisp])

• When it doesn't recognize what you have typed so far as being the possible
beginning of a command, the command processor informs you that no such
commands are available. You have to edit your input or erase it and start
over.

• When it determines that what you have typed matches the beginning of
several different commands, it fills in as much of the command as possible and
waits for more input. You can use SPACE again to see if there is a default
completion for this command, or you can use HELP or c-? to see the set of
commands that begin with what you typed.

3.1.3.2 Supplying Positional Arguments to a Command

When the command processor has prompted you for a positional argument, you
enter whatever argument is appropriate for the command. The prompt words
indicate what the command expects:

Delete File (file [default ACHE-BLUE:>joe>foo.lisp])
Set Package (A package)
Load Patches (for systems)

An argument can be either a single item or, sometimes, a set of items separated by
commas. An argument cannot end with a comma, so SPACE can appear after a

12

User's Guide to Symbolics Computers March 1985

comma for attractiveness if you want; the command processor just ignores SPACE

after a comma.

load Patches (for systems) System, Zmail

You end each argument with SPACE. The command processor then checks whatever
you have entered and prompts for the next argument (if there is one) or for the
keyword arguments. If you haven't typed anything except SPACE, it fills in the
default argument when one exists. Otherwise it checks what you typed for validity
(for example, if the command wants a number, it makes sure that you didn't enter
a string).

Delete File (file [default ACHE-BlUE:>joe>foo.lisp]) foo.* (keywords)

Some arguments can only be members of a limited set of possibilities, displayed in
the prompt. In this case the command processor can attempt to complete the
argument. If you begin to type the argument and press SPACE, the command
processor attempts to complete the current word and all words before that word in
the argument. If you begin to type the argument and press COMPLETE, the command
processor attempts to complete the entire argument. For example, you type:

s e SPACE c SPACE P SPACE f - P SPACE

The command processor displays:

Set Command Processor (Form-Only, Form-Preferred, Command-Preferred,
or Command-Only) Form-Preferred (prompt string)

What if one of the items in the argument list needs to contain one of the special
characters (SPACE, comma, leading colon, or RETURN)? Use double quotes to delimit
that item:

Show Hosts (hosts) Hissouri,"Red River H

Most arguments have a default, which is usually indicated by the argument's
prompt. When you want to use the default for an argument, you can indicate that
simply by using SPACE. This terminates the argument, causing the command
processor to fill in the default.

Sometimes when you supply a value for argument, the yalue that the command
processor actually uses is a function of both the default and what you type. This is
what happens with pathname arguments; the default pathname and the value that
you type are merged to form the argument value that the command processor gives
to the command.

Once you have specified as many of the arguments as you need (even none), you can
use RETURN or END to enter the command. The command processor uses the defaults
for any arguments you haven't specified.

Suppose you want to use the defaults for the remaining positional arguments, but
you want to supply some keyword arguments. You must use SPACE to fill in the
default for each of the remaining positional arguments. When you have finished the
positional arguments, the command processor prompts for keyword arguments.

13

March 1985 Communicating with the Lisp Machine

3.1.3.3 Supplying Keywords and Values for a Command

The command processor prompts for keyword arguments when you have entered all
of the positional arguments for the command.

Suppose you have supplied all of the arguments to the Delete File command and are
now being prompted for any keywords for modifying the standard action of the
command. You enter keywords and their values in any order, finishing off the
command with RETURN or END. The keyword prompt does not appear for every
keyword, as that would clutter up your command.

The command processor can attempt to complete keyword argument names and
values that are members of a limited set of possibilities. When you are typing a
word, if you press SPACE the command processor attempts to complete that word and
all previous words in the current keyword argument name or values. If you press
COMPLETE, the command processor attempts to complete the entire keyword argument
name or value in progress. For example, you type the following:

d e SPACE f SPACE f 0 0 • * SPACE : e SPACE n SPACE
: q SPACE a RETURN

The command processor displays:

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.~
(keywords) :Expunge (Yes, No, or Ask) No :Query (Yes, No, or Ask) Ask

Most keyword arguments have several values, but some are flag keywords with no
value. For these keywords, you do not specify a value. Often, such flag keywords
exist as synonyms for some other keyword/value combination. For example, suppose
there was a keyword argument called :Expunge that had three values: Yes, No, and
Ask. The person defining the command could have decided for convenience to offer
:No-Expunge as a flag keyword that is synonymous with n:Expunge No".

Some commands have keyword arguments with interesting defaulting behavior.
These arguments have two different kinds of "defaults", one that applies when you
mention the keyword without explicitly supplying a value, and one that applies when
you omit the keyword altogether. For example, consider the :Expunge argument for
Delete File. When you omit :Expunge, the command processor assumes you mean
n:Expunge Non. When you supply :Expunge and use SPACE to fill in the default, it
assumes you mean ":Expunge Yes". This style of argument occurs less often than
the one with the conventional defaulting behavior.

Keywords can be specified at most once in a command line. The command processor
views a command line in which the same keyword has been specified twice as
ambiguous; you have to correct the problem by removing one of the keyword
argument pairs.

14

User's Guide to Symbofics Computers March 1985

3.1.4 Editing a Command

The command processor uses the input editor to manage typing, displaying, and
editing of a command that you are entering. You can move from field to field
within a command, change arguments, delete keywords, even change the command
name.

3.1.5 Help in the Command Processor

Press HELP to the command processor at any time before or during entering a
command. (Once you have started to enter a command, you can also use c-?) It
provides documentation that is appropriate for the particular stage you have reached
in entering the command.

Before starting Explains how to enter a command processor command.

Command name Shows the commands that could be completions of what you have
typed so far.

Positional argument
Explains the characteristics of the argument that is required at
this position, including possible values.

Keyword argument name
If you have not yet typed a keyword flag character, the command
processor lists the remaining arguments and briefly describes
them. If you have typed a keyword flag character, the command
processor shows the keywords that could be completions of what
you have typed so far.

Keyword argument value
The command processor presents documentation for the meaning
of all the possible values of the argument.

3.1.6 Completion in the Command Processor

The command processor offers two kinds of completion: partial completion and token
completion. A token is a command component, such as the command name or a
keyword argument name.

• Partial completion: When you are typing a word in a command name or
keyword argument name, if you press SPACE the command processor attempts
to complete the current word and all previous words in the current command
name or keyword argument name.

• Token completion: When you are typing a command name or keyword
argument name, if you press COMPLETE the command processor attempts to
complete the entire command name or keyword argument name in progress.

15

March 1985 Communicating with the Lisp Machine

Completion is also available for argument values that are members of a limited set of
possibilities, and for system and package names.

3.1.7 Command History

Command processor commands are maintained in the input editor input history,
along with other input to the Lisp Listener or break loop. C-M-Y yanks the last
element of the history. c-M-0 C-M-Y lists the elements of the history. A numeric
argument to C-M-Y yanks the element of the history specified by the argument. See
the section "Using the Input Editor".

3.1.8 Error Handling in the Command Processor

Part of the command processor's contract with the programs it serves is to collect
syntactically valid arguments for the command you want to use. Thus if the
command wants a numeric argument and you have entered a file spec, the
command processor notices the problem, complains about the argument that you
typed, moves the cursor there, and requests that you edit what you typed in order
to make it appropriate for the command.

The command processor checks for errors of omission as well, warning you when you
try to finish a command before specifying some argument that needs to be explicit.

In making its error warnings, the command processor prints out a diagnosis of the
problem and asks you to correct your input. It never removes anything from what
you have typed, since you are the best judge of how to remedy the problem.

3.1.9 Turning the Command Processor on and Off

The command processor is on by default in all Lisp Listeners and break loops. You
can turn the command processor on and off, but normally you should have to do
neither. If you want the command processor to treat input differently from the
default, or if you want a prompt that is different from the default, you can change
these characteristics by using the Set Command Processor command or setting
special variables: See the section "Setting the Command Processor Mode", page 165.
See the section "Setting the Command Processor Prompt", page 165.

For example, suppose you want the command processor to act as if it weren't there.
You can use the Set Command Processor command to set the dispatch mode to
:fonn-only and the prompt to the empty string. Alternatively, you can set
si:*cp-dispatch-mode* to :form-only and si:*cp-prompt* to nil or the empty
string. If you then want to return the command processor to its default behavior,
you can set si:*cp-dispatch-mode* to :command-preferred and si:*cp-prompt*
to "Command: ".

If for some reason you need to turn the command processor off completely, you can
call cp-off.

16

User's Guide to Symbolics Computers March 1985

cp-off Function
Turns off the command processor in all Lisp Listeners and break loops.

Once you call cp-off, you must call cp-on to turn the command processor back on.

cp-on &optional (dispatch-mode si:*cp-dispatch-mode*) prompt Function
Turns on the command processor and sets its mode and prompt· in all Lisp
Listeners and break loops.

dispatch-mode is :form-only, :command-only, :form-preferred, or
:command-preferred. For the meaning of these keywords: See the section
"Setting the Command Processor Mode", page 165. This argument becomes
the value of the variable si:*cp-dispatch-mode*. The default mode is the
current mode (the current value of si:*cp-dispatch-mode*). The initial
default mode is :command-preferred

prompt is a prompt option for displaying the command processor prompt in
Lisp Listeners and break loops. This argument becomes the value of the
variable si:*cp-prompt* and is passed to the input editor as the value of the
:prompt option. The value can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Programming the User Interface.

The default prompt depends on dispatch-mode. If dispatch-mode is
:command-preferred or :command-only, the default prompt is
"Command: ". If dispatch-mode is :form-preferred or :form-only, the
default prompt is the empty string, and no prompt is displayed. If you
supply a value of nil or the empty string, no prompt is displayed.

3.2 Command Descriptions

3.2.1 Compile Commands

Compile File Command

Compile File file-spec keywords

Compile the file designated in file-spec.

file-spec

keywords

The pathname of the file to compile. The default is the usual file
default.

can be:

: query

:load

{yes no ask} Whether to ask for confirmation
before compiling. The default is no.

{yes no ask} Whether to load the file after
compiling. The default is yes.

March 1985

:compiler

17

Communicanng with the Lisp Machine

{Lisp use-canonical-type} The compiler to use.
The default is use-canonical-type.

Compile System Command

Compile System system keywords

Compile the files that make up system.

system-spec

keywords

name of the system to compile. The default is the last system
loaded.

can be:

:automatic answer {yes no} Proceed as if any questions the system
might ask during the compilation process are
answered yes. The default is yes. This allows
you to start a compilation that you know will
take a long time and leave it to finish by itself
without interruption for questions such as
"pathname not found, continue anyway? (Y or
N)".

:condition {always new-source} Under what conditions to
compile each file in the system. Always means
compile each file. New-source means compile a
file only if it has been changed since the last
compilation. The default is new-source.

:new major version

: query

: simulate

:version

{yes no ask} Whether to give your newly
compiled version of the system the next higher
version number. The default is yes. Giving
the choice no will ask you to confirm that you
really want to "prevent incrementing system
major version number".

{yes no ask} Whether to ask for confirmation
before compiling each file. The default is no.

{yes no} Print a simulation· of what compiling
would do. The default is fio. Adding this
keyword to your Compile System command
string is the same as :simulate yes.

{released latest newest use-default
version-number version-name} Version of the
system files to compile. The default is use­
default, that is latest.

18

User's Guide to Symbolics Computers March 1985

3.2.2 Copy Commands

Copy File Command

Copy File from file-spec to destination-spec keywords

Makes a copy of a file.

file-spec

destination-spec

keywords

The pathname of the file you want to copy.

The pathname of the location you want to put the file.

can be:

:byte size A number. Byte size in which to do the copy
operation.

:copy properties list of file properties. The properties you want
duplicated in the new file. The default is
author and creation-date.

:create directories {yes error query-each} What to do if the
destination directory does not exist. The
default is query-each.

: mode

: query

{character binary default} The mode in which to
perform the transfer. The default is default.

{yes no ask} Whether to ask for confirmation
before copying each file. The default is no.

Copy Microcode Command

Copy Microcode version destination keywords

Installs a version of microcode.

version

destination

keywords

Microcode version number to copy. version is required (no
default).

FEP file specification. The default is created from the microcode
version.

can be:

:update boot file {FEP-file-spec none}. The default is the current
default boot file name.

This command installs standard microde versions. It uses the Lisp command
si:install-microcode. If you want to install a nonstandard microcode, you must use
si:install-microcode directly.

19

March 1985 Communicating with the Lisp Machine

Copy World Command

Copy World file destination keywords

Makes a copy of a world load.

file

destination

keywords

FEP file spec. file is required (no default). Note: Completion is
not available for this file specification since the FEP file system
does not support completion.

FEP file spec. Required when copying a world from the local
host.

can be:

:byte count Number. The default is the length of the
band.

:start byte Number. The default is o.
:update boot file {FEP-file-spec none}. The default is the current

default boot file name if destination is the local
host.

3.2.3 Create Commands

Create Directory Command

Create Directory file-spec

file-spec The pathname of the directory to be created.

Create link Command

Create Link pathname target keywords

Creates an association between one pathname and a second pathname, called the
target. The first pathname is linked to the target so that any references to the
first pathname actually refer to the target.

pathname

target

keywords

The pathname you want to link from. The default is the
standard file default.

The pathname you want to link to. This pathname must exist.
There is no default.

can be:

: type {Read-Only, Read-Write, Create-Through, All, or
Use-Default} The kind of link to create. The
default is Use-Default.

20

User's Guide to Symbolics Computers March 1985

3.2.4 Delete Commands

Delete File Command

Delete File file-spec keywords

Deletes or marks for deletion the file file-spec.

file-spec Pathname of the file to delete. The default is the usual file
default. The version defaults to newest.

keywords can be:

: expunge

:query

3.2.5 Disable Commands

Disable Services Command

Disable Services seroice-type

{yes no ask}. Whether to expunge the file.
The default is no. Adding this keyword to your
Delete File command is the same as :expunge
yes.

(yes no ask} Whether to ask for confirmation
before deleting the file. The default is no.

Turns off service(s) on the local machine.

seroice-type {All-Services Append Chaos-Status Converse Lgp-Status Lispm­
Finger Telnet Time} The service to turn off. The default is all­
services.

3.2.6 Edit Commands

Edit Definition Command

Edit Definition name

Finds the definition of the object name and puts it in an editor buffer for you to
edit.

name Name of the object whose defInition you want to edit.

Edit Directory Command

Edit Directory directory-spec keywords

Invokes the directory editor dired in Zmacs. See the section "Dired Mode in Zmacs"
in Text Editing and Processing.

21

March 1985 Communicating with the Usp Machine

directory-spec

keywords

Pathname of the directory to edit. The default is the usual file
default.

can be:

:version {all newest number} The default is all.

Edit File Command

Edit File file-spec

Enters the editor and reads in file-spec.

file-spec The pathname of the file to edit. The default is the usual file
default.

Edit Font Command

Edit Font font

Invokes the Font Editor with font loaded to be edited.

font A font name. There is no default. Issuing the command with no
arguments invokes the font editor with no font loaded.

Edit Namespace Object Command

Edit Namespace Object class name keywords

Create or modify an object in the namespace database.

class

name

keywords

{User Printer Network Host Site Namespace any} The kind of
object to create or edit. The default is any.

Name of the object to create or edit. The default is any.

can be

: locally {yes no} Whether to edit only a local copy of the
information for the object. The default is no,
meaning to edit the object in the central
namespace database. Mentioning :locally in
your command means yes, edit only a local
copy.

3.2.7 Enable Commands

22

User's Guide to Symbofics Computers March 1985

Enable Services Command

Enable Services service-type

Turns on service(s) on the local machine.

service-type {All-Services Append Chaos-Status Converse Lgp-Status Lispm­
Finger Telnet Time} The service to turn on. The default is all­
services.

3.2.8 Expunge Commands

Expunge Directory Command

Expunge Directory file-spec keywords

Expunges files marked for deletion. The :query option is useful for directories
containing subdirectories or if you have used a wildcard in the pathname.

file-spec

keywords

The pathname of the directory to be expunged. The default is
the usual file default.

can be:

: query {yes no ask} Ask for confirmation before
expunging the directory. The default is no.

3.2.9 Find Commands

Find Symbol Command

Find Symbol name keywords

Tries to find the symbol name.

name

keywords

The symbol to look for.

can be:

: package

: type

{all package-name} The package to search for
the symbol. The default is the current
package.

{all-types variable function flavor resource
unbound} The type of the symbol. The default
is all-types.

23

March 1985 Communicating with the Usp Machine

3.2.10 Halt Commands

Halt commands shut down some activity in such a way that you can resume it.

Halt GC Command

Halt GC

Turns garbage collection off.

Halt Machine Command

Halt Machine

Halt Machine stops execution of Lisp and gives control to the FEP. You can now
enter Fep commands, for example, to warm or cold boot the machine.

3.2.11 Hardcopy Commands

Hardcopy File Command

Hardcopy File file-spec keywords

Sends a file to the local hardcopy device.

file-spec

keywords

The pathname of the file to be printed. The default is the usual
file default.

can be:

:banner message string. Title to appear on the cover page to
identify the output. The default is the User
ID.

:copies

:delete

:file types

:font

: format

N. The number of copies to print. The
default is 1.

Whether to delete the file after it is printed.
The default is no, not to delete. Adding the
:delete keyword to your hardcopy command
string is the same as :delete yes.

{Text, Suds-Plot, Press, Lgp, Xgp or use­
canonical-type} The internal format of the
contents of the file, to interpret for printing.
The default is use-canonical-type.

Font in which to print the file. The default is
determined from the default-font attribute for
the printer in the namespace database.

{landscape portrait} Orientation on the paper for

24

User's Guide to Symbolics Computers

: printer

:query

:running head

3.2.12 Help Commands

Help Command

Help

March 1985

the output. Portrait is left to right across the
short dimension of the paper. Landscape is
bottom to top across the long dimension. The
default is portrait.

The printer to use to output the file. The
default is determined from your init file or from
the default-printer attribute for the host in the
namespace database.

{yes no ask} Ask before printing each copy.
The default is no.

{none numbered} Type of running head to print
on the top of each page. The default is
numbered.

Displays a list of all the available command processor commands.

3.2.13 Initialize Commands

Initialize Mail Command

Initialize Mail

Reloads Zmail without disturbing the rest of the system. The state of your mail on
the machine is lost, so you only want to use this when your Zmail process is
irreparably stuck.

Initialize Mouse Command

Initialize Mouse

Restarts the mouse process.

Initialize Time Command

Initialize Time time keywords

Resets the time. You can use this function to correct the time if it appears to be
inaccurate.

time A string representing date and time. The default is obtained
from the network or from the calendar clock if there is no
network available.

25

March 1985 Communicating with the Lisp Machine

keywords can be:

:time source {status-line calendar-clock both} The Lisp
Machine time sources to update. The default is
both.

Initialize Time accepts most reasonable printed representations of date and time and
converts them to the standard internal forms. The following are representative
formats that are accepted by the parser:

"March 15, 1960" "15 March 1960" "3/15/60" "3/15/1960"
"3-15-60" "3-15" "15-March-60" "15-Ma~-60" "March-15-60"
"1960-3-15" "1960-March-15" "1960-Mar-15"
"1130." "11:30" "11:30:17" "11:30 pm" "11:30 am" "1130" "113000"
"11.30" "11.30.00" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt"
"15 March 60" "15 March 60 seconds"
"fifteen March 60" "the fifteenth of March, 1960;"
"one minute after March 3, 1960"
"two days after March 3, 1960"
"Three minutes after 23:59:59 Dec 31, 1959"
"now" "today" "yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd", where:

yyyy

mm

dd

Four digits representing the year

The name of the month, an abbreviation for the month, or one or
two digits representing the month

One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900.

• A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19:54:00" or "7:54 pm", not the year 1954.

• The parser does not recognize dates in European format. "For example,
"3/4/85" or "3-4-85" is always the same as "March 4, 1985", never
"April 3, 1985". A string like "15/3/85" is an error. In such strings, the first
integer is always parsed as the month and the second integer as the day.

26

User's Guide to Symbofics Computers

3.2.14 Inspect Commands

Inspect Command

Inspect object

March 1985

Displays the components of object. This is similar to Show Object but it uses the
Inspector, a window oriented program for showing data structures. It allows you to
do something to that object, such as inspect it, modify it, or give it as the argument
to a function. You exit from the Inspector by clicking the mouse on EXIT in the
Inspector menu.

object Any Lisp object. The default is "unspecified".

See the section "The Inspector" in Program Development Utilities.

3.2.15 Load Commands

Load File Command

Load File file-spec keywords

Loads files into the current world.

file-spec

keywords

The pathname of the file to load. More than one pathname may
be specified, separated by commas. . The default is the usual file
default.

can be:

: package

:query

: silently

package-name The package into which to load
the file. The default is the file's "home"
package.

{yes no ask} Whether to ask for confirmation
before loading each file. The default is no.

{yes no} Whether to print a line as each file is
loaded.

Load Patches Command

Load Patches system keywords

Loads patches into the current world for the indicated systems or for all systems.

system

keywords

{all system-namel, system-name2 ... } The default is all.

can be:

March 1985

: query

: save

:show

27

Communicating with the Lisp Machine

{yes no ask} Whether to ask for confirmation
before loading each patch. The default is no.

{file-spec None} The file in which to save the
world with all patches loaded. Omitting this
keyword means do not save the world. The
default when this keyword is added to your
command is None which means save the world
and then prompt for a pathname.

{yes no ask} Whether to print the patch
comments as each patch is loaded. The default
is yes.

Load System Command

Load System system keywords

Loads a system into the current world.

system

keywords

Name of the system to load. The default is the last system
loaded.

can be:

:automatic answer {yes no} Proceed as if any questions the system
might ask during the loading process are
answered yes. The default is yes. This allows
you to start a loading process that you know
will take a long time and leave it to finish by
itself without interruption for questions such as
''path name not found, continue anyway? (Y or
N)".

: compile

: condition

:declare status

{always never new-source} Whether or not to
compile the system before loading. The default
is never. The mentioned default is new-source,
meaning that mentioning :compile means
compile if there have been changes made to the
source file(s) since the last compilation.

{always never newly-compiled} Under what
conditions to load each file in the system.
Always means load each file. Newly-compiled
means load a file only if it has been compiled
since the last load. The default is always.

{released latest name} Declares the status of
this particular loaded system, so that it can be
specified in the :version keyword of subsequent

28

User's Guide to Symbolics Computers March 1985

Load System commands. This is the way to
make a particular version of a system the
"released" version, or to specify a particular
configuration by name; for instance, a version of
an application program that is intended for use
with a Release 6 world load might be named
"release-B". The default is latest.

:new major version

: query

: simulate

:version

{yes no ask} Whether to give the your newly
loaded version of the system the next higher
version number. The default is ask.

{yes no ask} Whether to ask for confirmation
before loading each file. The default is no.

{yes no} Print a simulation of what compiling
and loading would do. The default is no.
Adding this keyword to your Load System
command string is the same as :simulate yes.

{released latest newest use-default
version-number version-name} Which version
number to load. The default is use-default,
that is latest.

The behavior of the :new major version keyword is determined by
the setting of the :compile keyword. If :new major version is ask
and you are compiling, you are asked "Prevent incrementing
system major version number?" If you are not compiling the
question is unnecessary and is not asked. If :new major version is
no and you are compiling, the system is compiled and loaded using
the same version number (this is rarely useful). If :new major
version is yes, a new version number is created for the loaded
system, whether or not you have one of the :compile options.
(Incrementing the major version number without compiling might
be useful if you have a set of patches you wish to escape from.)

3.2.16 Login and Logout Commands

Login Command

Login user keywords

Logs the user into the Lisp Machine.

user

keywords

Any string. Your user-ide

can be:

March 1985

:host

:init file

Logout Command

Logout keywords

29

Communicating with the Lisp Machine

{local any-host-name} A particular host
computer. local as an argument to :host is
particularly useful if your namespace system is
down and you wish to log in to your Lisp
Machine without having it try to use the
namespace database. The default comes from
login host for your user object in the
namespace database.

{default-init-file none} Whether to load your in it
file. The default is to load your default in it file.
To avoid loading your init file, use :init file
none.

Logs you out of the Lisp Machine.

keywords can be:

:save buffers

:save mail

{yes no ask} Whether to write out modified
editor buffers to disk. The default is yes.

{yes no ask} Whether to write out modified mail
buffers to disk. The default is yes.

3.2.17 Rename Commands

Rename File Command

Rename File

from-file

to-file

keyword

from-file to-file keyword

The pathname of the file to be renamed. The default is the
usual file default.

The new pathname. The default is the usual file default.

can be:

: query {yes no ask} Whether to' ask for confnmation
before renaming. The default is no.

3.2.18 Reset Commands

30

User's Guide to Symbolics Computers March 1985

Reset Network Command

Reset Network

Turns your network interface off and back on again. This is useful if your
connections appear to be stuck and nothing is being transmitted or received.

3.2.19 Save Commands

Save File Buffers Command

Save File Buffers keywords

Saves your Zmacs file buffers on disk.

keywords can be:

: query

Save Mail Buffers Command

Save Mail Buffers keywords

{yes no ask} The default is yes, meaning that it
asks you about each buffer before writing it
out.

Saves on disk any mail buffers you have loaded.

keywords can be:

: expunge

: query

Save World Command

Save World file-spec

Saves the current world in file-spec.

{yes no ask} Whether to expunge each buffer
before saving. The default is ask.

{yes no ask} The default is yes, meaning that it
asks you about each buffer before writing it
out.

file-spec The pathname to use for the saved world. The default is the
FEP file specification for the local machine, based on the version
number of the current system.

3.2.20 Select Commands

31

March 1985 Communicating with the Usp Machine

Select Activity Command

Select Activity activity

Selects activity and makes it current.

Activity can be:

Activity
"Common Lisp"
Converse
"Document Examiner"
Editor
"File System Maintenance"
Inspector
Lisp
Zmail
Notifications
Peek
Terminal
"Flavor Examiner"

3.2.21 Send Commands

Report Bug Command

Report Bug system name

Synonym

Zmacs
FSMaint

Mail

Flavex

Sends a bug report. It starts up a bug mail window with the message header To:
BUG-system name. If system name is omitted, BUG-lISPH is used.

3.2.22 Set Commands

Set commands set status variables.

Set Base Command

Set Base number

Sets the input and output bases to number.

The value of base is a number that is the radix in which integers are printed, or a
symbol with a si:princ-function property. The initial value of base is 10. base
should not be greater than 36.

number A number in base 10. The default is 10.

32

User's Guide to Symbolics Computers March 1985

Set calendar Clock Command

Set Calendar Clock time

time A date string.

Machines in the 3600 family have a calendar clock that operates independently of
the other Lisp Machine timers. When you cold boot and the machine fails to get
the time from the network, it asks you to type in the time. If the calendar clock
has been set, it uses the calendar clock reading as the default for the time you
specify. If the calendar clock has not been set, it offers to set it to the time you
type in.

Set Calendar Clock allows you to set this clock if you need to. It accepts the
standard formats for date and time. See the section "Set Time Command", page 33.

Set Command Processor Command

Set Command Processor mode prompt-string

Sets the mode for the command processor.

mode

prompt-string

form-only Anything typed is taken as a Lisp form to be
evaluated.

form-preferred Anything typed is taken as Lisp forms unless it
is preceded by a colon (:), in which case it is
taken as a command processor command.

command-preferred

command-only.

Anything typed is taken as a command
processor command unless it begins with a left
parenthesis or, in the case of a variable to be
evaluated, a comma (,) or any non alphabetic
character.

Anything typed is taken as a command
processor command.

The default is command-preferred.

Any string. The default for command-preferred and command­
only modes is Conunand: . The default for form-preferred and form­
only modes is " ". To include a space in your prompt, you must
enclose the string in double quotes. For example:

Set Command Processor Command-Preferred "Conunand: "

33

March 1985 Communicating with the Usp Machine

Set Input Base Command

Set Input Base new-base

new-base Valid n. The default is 10.

The value of base is a number that is the radix in which integers are printed, or a
symbol with a si:princ-function property. The initial value of base is 10. base
should not be greater than 36.

Since the Input Base is closely linked to the Output Base, if you set one of them,
you should set the other to the same value.

Set Output Base Command

Set Output Base new-base

new-base Valid N. The default is 10.

The value of base is a number that is the radix in which integers are printed, or a
symbol with a si:princ-function property. The initial value of base is 10. base
should not be greater than 36.

Since the Output Base is closely linked to the Input Base, if you set one of them,
you should be sure to set the other to the same value.

Set Package Command

Set Package package-name

Makes package-name the current package; in other words, the variable package is
set to the package named by package-name.

package The name of a package.

Set Site Command

Set Site site name

Starts a dialogue to set the current site to be site name.

Set Time Command

Set Time time-spec

Sets the local time on your machine. This allows you to set the time that appears
in the lower left hand corner of the status line if you need to.

time-spec A date string.

Set Time accepts most reasonable printed representations of date and time and

34

User's Guide to Symbolics Computers March 1985

converts them to the standard internal forms. The following are representative
formats that are accepted by the parser:

"March 15, 1960" "15 March 1960" "3/15/60" "3/15/1960"
"3-15-60" "3-15" "15-March-60" "15-Mar-60" "March-15-60"
"1960-3-15" "1960-March-15" "1960-Mar-15"
"1130." "11:30" "11:30:17" "11:30 pm" "11:30 am" "1130" "113000"
"11.30" "11.30.00" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt"
"15 March 60" "15 March 60 seconds"
"fifteen March 60" "the fifteenth of March, 1960;"
"one minute after March 3, 1960"
"two days after March 3, 1960"
"Three minutes after 23:59:59 Dec 31, 1959"
"now" "today" "yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd", where:

yyyy

nun

dd

Four digits representing the year

The name of the month, an abbreviation for the month, or one or
two digits representing the month

One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900.

• A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19:54:00" or "7:54 pm", not the year 1954.

• The parser does not recognize dates in European format. For example,
"3/4/85" or "3-4-85" is always the same as "March 4, 1985", never
"April 3, 1985". A string like "15/3/85" is an error. In such strings, the first
integer is always parsed as the month and the second integer as the day.

Set User Id Command

Set User ID user-id

Sets the user ID appearing in the status line at the bottom of the screen. This
allows you to change the apparent user of the machine without logging out and
logging in again, thus preserving the current environment. The new user ID
appears as the author of files and in the result of a Show Users command. Zmail
buffers and messages sent are not affected, so you might want to manually insert a
From: field in any mail you send.

35

March 1985 Communicating with the Usp Machine

user-id A string.

3.2.23 Show Commands

Show commands allow you to request informational displays of all kinds. These are
displays that you do not interact with.

Show Command Processor Status Command

Show Command Processor Status

Displays the current mode of the Command Processor and the current prompt.

Show Directory Command

Show Directory· pathname keywords

Displays a directory listing. The default for name, type, and version of path name is
:wild. The format of the listing varies with the operating system.

path name

keywords

The default is the usual file default.

can be:

:size

: since

:before

: order

Show Disabled Services Command

Show Disabled Services

same or larger than N blocks. The default is l.

a date.

a date.

{oldest-first smallest-first largest-first newest­
first standard} The default is standard.

Shows you which services are disabled (with the Disable Services Command).

Show Documentation Command

Show Documentation topic keywords

Displays the documentation for topic. If you omit topic, you are prompted for it. If
topic is more than one word, it must be enclosed in douhle-quotes:

Show Documentation (for topic) "The Document Examiner"

keywords can be:

: destination {screen or 19p}. Where to display (print) the
documentation. The default is screen.

36

User's Guide to Symbolics Computers March 1985

See the section "Using the Online Documentation System", page 119.

Show FEP Directory Command

Show FEP Directory host unit

Displays a description of the FEp· files on unit.

host

unit

A host on the network. The default is local.

Disk structure. The default is FEPO:. unit can be one of the
following:

• An integer smaller than 20., interpreted as a disk unit
number on the local host.

• An integer larger than 19., interpreted as the Chaosnet
address of a remote host. Displays the contents of unit 0
on that host.

• A symbol, interpreted as the name of a remote host.
Displays the contents of unit 0 on that host.

• A string of the form "host I unit", where host is the name or
Chaosnet address of a remote host and unit is an integer
representing a disk unit number on that host.

Show FEP Directory first displays an estimate of the number of free blocks and the
proportion of blocks used on unit. It then displays a summary of the files on unit,
one line per file. For each file, it displays the file name, the length in blocks and in
bytes, the byte size, the creation date, the comment, and the author.

Show File Command

Show File file-spec

Displays a file on the screen. If there is more than one screenful, it pauses between
screenfuls displaying --Hore-- at the bottom.

file-spec The pathname of the· file to be printed. The default is the usual
file default.

Show Font Command

Show Font font

Displays all characters of the font. You can get a list of the fonts loaded by clicking
on List Fonts in the font editor. You enter the font editor by using the edit font
command with no arguments.

37

March 1985 Communicating with the Lisp Machine

font Font name.

Show GC Status Command

Show GC Status

Displays statistics about the garbage collector.

Show Herald Command

Show Herald keywords

Displays the herald message. The herald is part of the screen display on a cold
booted machine. It shows you the name of the FEP file or partition for the current
world load, any comment added to the herald, a measure of the physical memory
and swapping space available, the versions of the systems that are running, the site
name, and the machine's own host name.

keywords can be:

:detailed

Show Hosts Command

Show Hosts host-spec keywords

{yes no} Whether or not to print the version
information in full detail. The default is no.

Asks each of the hosts for its status, and prints the results. If no hosts are
specified, all hosts on the Chaosnet are asked. Hosts can be specified by either
name or octal number.

For each host, a line is displayed that either says that the host is not responding or
gives metering information for the host's network attachments. If a host is not
responding, probably it is down or there is no such host at that address. A Lisp
Machine can fail to respond if it is looping inside without-interrupts or paging
extremely heavily, such that it is simply unable to respond within a reasonable
amount of time.

host-spec List of hosts (names or numbers) or sites. The default is the local
Chaosnet.

Show Legal Notice Command

Show Legal Notice

Displays the Symbolics Legal Notices, such as copyrights and trademarks.

38

User's Guide to Symbofics Computers March 1985

Show Mail Command

Show Mail file-spec

Displays your mail inbox on the screen. If there is more than one screenful, it
pauses between screenfuls displaying --Hore-- at the bottom.

file-spec The pathname of the mail inbox to be read. The default is the
default inbox.

Show Notifications Command

Show Notifications keywords

Re-displays any notifications that have been received. Notifications are asynchronous
messages from the Lisp Machine system.

keywords can be:

:before

: through

:matching

:newest

:oldest

: from

:since

Show Object Command

Show Object name keywords

A date to serve as one limit for notifications to
show:

: before 1111/84

A number to use as the last notification to
show:

:through 17

A string to search for. Only show notifications
that contain that string:

:matching hardcopy

A number of notifications to show, for instance,
the ten most recent ones:

:newest 10

A number of notifications to show, for instance,
the ten earliest ones:

:oldest 10

A number to use as the first notification to
show.

A date to serve as one limit for notifications to
show.

39

March 1985 Communicating with the Usp Machine

Show Object tries to tell you all the interesting information about any object (except
for array contents). Show Object knows about areas, structures, packages,
pathnames, systems, variables, functions, flavors, and resources. It displays the
attributes of each. Show Object symbol will tell you about symbol's value, its
definition, and each of its properties.

name

keywords

Any Lisp object.

can be:

: type {all area structure partition package logical-host
pathname system variable function flavor
resource}. The default is all.

Show System Modifications Command

Show System Modifications
system-name keywords

With no arguments, Show System Modifications lists all the systems present in this
world and, for each system, all the modifications that have been loaded into this
world. For each modification it shows the major version number (which will always
be the same since a world can only contain one major version), the minor version
number, and an explanation of what the modification does, as entered by the person
who made it.

If Show System Modifications is called with an argument, only the modifications to
system-name are listed.

system-name

keywords

The system for which to show modifications. The default is All.

can be:

:author

:before

: through

: matching

A name. Show modifications by a particular
person. For example:

:show modifications system :author kjones

would only show those modifications made by
the person whose user ID is kjones.

A date to serve as one limit for modifications to
show:

:before 11/1/84

A number to use as the last modification to
show:

:through 17

A string to search for in the comments and
only show modifications whose comment contain
that string:

40

User's Guide to Symbolics Computers

: newest

: number

:oldest

: from

: since

Show Users Command

Show Users host keywords

Shows the users logged into host.

March 1985

:matching namespace

A number of modifications to show, for instance
the ten most recent ones:

:newest 10

A number. Show only this particular
modification. For example:

Show Modifications :number 6

would show modification number 6.

A number of modifications to show, for instance
the ten earliest ones:

:oldest 10

A number to use as the first modification to
show.

A date to serve as one limit for modifications to
show.

host-spec

keywords

Host name or all. The default is all.

can be:

: format

: destination

3.2.24 Start Commands

Start GC Command

Start GC keywords

Turns on the garbage collector.

keywords can be:

: dynamic

{brief standard detailed} How much information
to display. The default is brief. Adding :format
to your command means standard.

{typeout pop-up-window} Where to display the
information. The" default is typeout.

Dynamic Level of incremental GC.

41

March 1985 Communicating with the Usp Machine

: ephemeral

: immediately

Ephemeral Level of incremental GC.

Perform a complete garbage collection right
now.

3.2.25 Undelete Commands

Undelete File Command

Undelete File file-spec keywords

Undeletes a deleted file, if the host on which the file resides supports undelete. It
prompts for the name of a file to undelete. It displays a message if the specified file
does not exist.

file-spec

keywords

The pathname of the fIle to be undeleted. The default is the
usual file default.

can be:

: query {yes no ask} The default is no.

42

User's Guide to Symbolics Computers March 1985

43

March 1985 Recovering From Errors and Stuck States

4. Recovering From Errors and Stuck States

4.1 Introduction

Sometimes it is hard to know whether or not your machine is in trouble, because
some operations, particularly those involving other network machines, can take a
long time. Periodically check the process state and the run bars on the status line.
The run bars flicker when the machine is working. As long as the run bars are
flickering and the process state is changing occasionally, the machine is probably
working properly. Some process states mean trouble if they persist, say, for a
minute or more.

Look at the clock in the status line. If the clock is ticking, processes are being
scheduled. If the clock is not ticking, the 3600 is halted. As long as the FEP is
working, it prints a message near the top of the screen when the 3600 has halted
and then gives its Fep> prompt. When the 3600 resumes its previous state, it
updates the clock with the correct time.

4.2 Recovery Procedures

If the status line displays one of the following process states, recover by using the
appropriate procedure:

State
Wait Forever
Output Hold

Arrest
lock

Selected
(no window)

Recovery procedure
Select a different window, then reselect the one you were in.
Press FUNCTION ESCAPE (the ESCAPE key is in the top row, second
from the left); if that puts you in the Debugger, use ABORT.

Press FUNCTION - A (that is, a three-key sequence).
Try FUNCTION 0 S to see if any windows want to type out. If
that does not help, press c-ABORT.

Press FUNCT I ON 0 S.

Use the mouse or SELECT key to select the window you want.

You can press SUSPEND to get to a Lisp read-eval-print loop. You can press
C-M-SUSPEND to force the current process into the Debugger.

44

User's Guide to Symbolics Computers March 1985

4.3 The Debugger: Recovering From Errors and Stuck States

Errors that are not caught and handled by the program that triggered them invoke
the Debugger. See the section "Entering the Debugger", page 192.

4.4 Resetting the FEP

Resetting the FEP restarts the FEP system, thereby discarding knowledge of the
FEP's free storage area. Resetting might be necessary if you unplug the console
video cable from either end or tum the console off and on. You also need to reset
the FEP if you receive the error message: Request for N longs failed. You can
reset the FEP from either the keyboard or the processor front panel.

• To reset the FEP from the keyboard:

1. TYPe the form (5 i : ha 1 t) to stop the computer and give control of the
keyboard to the FEP.

2. Type the command Reset Fep to the FEP prompt.

Alternatively, if no Lisp Listener is responsive:

1. Press h-c-upper-left to stop the computer and give control of the
keyboard to the FEP.

2. Type the command Reset Fep.

Press y to answer the confirmation prompt.

• To reset the FEP from the processor front panel:

1. Push the red RESET button on the processor front panel.
2. Press the spring-loaded YES switch to answer the '''Reset FEP?"

question.

After you reset the FEP, the keyboard is connected to the FEP, not to Lisp. Give
the Start command and press RETURN to warm boot the machine and Lisp, and
return control of the keyboard to Lisp.

4.5 Warm Booting

If an error occurs in the keyboard process, window system, or scheduler, making the
machine unresponsive to the keyboard, you may have to warm boot the machine.
Warm booting causes either a :t1ush or :reset message to be sent to all processes in
the system, depending on the type of process.

To warm boot the computer, use the following procedure:

45

March 1985 Recovering From Errors and Stuck States

1. Type one of the following to a Lisp Listener:

• Halt Machine

• (si :halt)

You are now connected to the FEP.

If you cannot obtain a Lisp Listener window or if no Lisp Listener is
responding to keyboard input, you should use h-c-upper-left, (upper-left is the
key in the upper left corner of the keyboard. It corresponds to LOCAL on old
keyboards and FUNCT I ON on new keyboards.)

2. Type start at the FEP prompt (Fep» and press RETURN.

Sometimes, the prints prints 1 isp stopped itself and returns control to the FEP.
When this happens, at the FEP prompt (Fep» you should type show status, check
the information it provides, and then type 5 tart.
For more information about :flush and :reset: See the section "Bashing the
Process" in Internals, Processes, and Storage Management.

4.6 Halting

Halting the 3600 leaves all Lisp states intact. To halt the 3600 in order to connect
to the FEP, type si:halt to a Lisp Listener or use h-c-upper-left. You are now
connected to the FEP. To return to Lisp, type continue at the FEP prompt (Fep»

and press RETURN.

on the screen:
you type:
you press:

Fep>
continue
RETURN

The 3600 can halt itself under exceptional conditions. In this case, try typing
continue. If continue does not work, use start.

46

User's Guide to Symbolics Computers March 1985

47

March 1985 Creating and Manipulating Files

5. Creating and Manipulating Files

5.1 Overview

Zmacs, the Lisp Machine editor, is built on a large and powerful system of text­
manipulation functions and data structures, called Zwei.

Zwei is not an editor itself, but rather a system on which other text editors are
implemented. For example, in addition to Zmacs, the Zmail mail reading system also
uses Zwei functions to allow editing of a mail message as it is being composed or
after it has been received. The subsystems that are established upon Zwei are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp environment,
many of the commands available as Zmacs commands are available in other editing
contexts as well.

In this manual, we discuss Zmacs commands in the context of Zmacs only. We also
describe Dired, the directory editor, since it is used within Zmacs.

5.2 Introduction to Entering Zmacs

You can enter, or invoke, the editor in several ways: Press SELECT E, use the
mouse, or run either the function ed or the function zwei:edit-functioDB. , You can
also use the command Select Activity, specifying either Zmacs or Editor as its
argument.

5.2.1 Entering Zmacs with SELECT E

You can invoke the editor by pressing the SELECT key and then the letter E:

• If you have already been in the editor since booting the machine, Zmacs
returns you to the same place in the same buffer that you last used.

• If this is the first time you are entering Zmacs since booting the machine,
Zmacs puts you in an empty buffer named *Buffer-l *.

SELECT E enters or returns you to the editor from anyplace in the system, not just
when you are talking to Lisp.

48

User's Guide to Symbolics Computers March 1985

5.2.2 Entering Zmacs with the Mouse

You can invoke the editor using the mouse.

Summon a System menu by clicking right twice [(R2)]. Then click left on the Edit
option [Edit (L)], which puts you into a Zmacs buffer. AI; for SELECT E, if you are
returning to the editor Zmacs puts you back at the same place in the same buffer,
and if you are entering Zmacs for the first time it puts you in an empty buffer.

5.2.3 Entering Zmacs with ed

The Lisp function ed enters Zmacs from a Lisp Listener. See the function ed, page
158.

When reentering Zmacs within a login session, ed enters the editor, preserving its
state as it was when you left. When entering Zmacs for the frrst time during a
login session, ed initializes Zmacs and creates an empty buffer.

arg can have these values.

Value

t

Pathname or string

Defined symbol

The symbol zwei:reload

Description

The ed function enters the editor, creates an empty
buffer, and selects it.

The ed function enters the editor and finds or creates
a buffer with the specified file in it.

The editor tries to find the source definition of that
symbol for you to edit. A defined symbol can be, for
example, a function, macro, variable, flavor, or system.

The system reinitializes the editor. This destroys all
existing buffers, so use this only if you have to.

5.2.4 Entering Zmacs with zwei:edit-functions

The Lisp function zwei:edit-functions also enters Zmacs from a Lisp Listener.

zwei:edit-functions Function

zwei:edit-functions is like ed in that inside the editor process it throws you back
into the editor, whereas from another process it just sends a message to the editor
and selects the editor's window. zwei:edit-functions gives spec-list to the editor in
the same way that Edit Callers and similar editor commands would. See the section
"The Zmacs Edit Callers Commands" in Text Editing and Processing.

This command is useful when you have collected the names of things that you need
to change, for example, using some program to generate the list. spec-list is a list of
definitions; these are either function specs (if the definitions are functions) or
symbols.

49

March 1985 Creating and Manipulating Files

Zmacs sorts the list into an appropriate order, putting definitions from the same file
together, and creates a support buffer called *Function-Specs-to-Edit-n*. It selects
the editor buffer containing the first definition in the list.

5.3 Commands

Zmacs commands are Lisp functions that perform the editing work. Every Zmacs
command has a name, and many commands are bound to keys. When a command
is bound to a keystroke combination, you invoke it by pressing those keys. For
example, the Forward Word command is invoked by typing the keystroke M-F.

When a command is not bound to a set of keystrokes, Zmacs calls it an extended
command and you invoke it using its name preceded by M-X. For example, the
command View Mail, an extended command, is invoked by View Mail M-X.

Command tables assign keystrokes and names to commands. Each time you press a
key, Zmacs looks up the function associated with that key. For ordinary characters,
the function com-standard, in the standard command table, inserts the character
once.

5.4 Extended Commands

Extended commands extend the range of commands past the one-or-two-keystroke
limitation. You invoke Zmacs extended commands by name using the M-X command:

M-X Extended Command

Prompts for the name of a Zmacs command and executes that command.

Command completion is provided.

See the section "Completion in the Minibuffer".

5.5 Keystrokes

A keystroke has a character component and a modifier component, and is performed
by pressing a primary key (alphanumeric), possibly while holding down a shift key or
a group of shift keys. The primary key held down with either the SHIFT or SYMBOL
keys de.termines the character part of a keystroke. Whether you hold down the
other shift keys, CONTROL, META, HYPER, and SUPER, detennines the modifier part of
the keystroke.

In general, commands that begin with a CONTROL (c-) key modifier operate on single
characters, commands that begin with a META (M-) key modifier operate on words,

50

User's Guide to Symbofics Computers March 1985

sentences, paragraphs, and regions, and commands that begin with a CONTROL META

(C-M-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per command. For
example, to invoke the command c-X F, you first type the prefix character c-x and
then the primary key F. Prefix character commands are not case-sensitive - that
is, Zmacs converts a lowercase character following a prefix character command (like
c-X) to uppercase. For example, c-X f is equivalent to c-X F.

Zmacs commands are self-delimiting. Unless otherwise specified, you do not need to
type a carriage return or other terminating character to finish typing a command.

5.6 Introduction to Moving the Cursor

5.6.1 Description of Moving the Cursor

To do more than insert characters, you have to know how to move the cursor.

For complete descriptions of the commands summarized here and other cursor­
moving commands: See the section "Moving the Cursor in Zmacs" in Text Editing
and Processing.

5.6.2 Summary of Moving the Cursor

c-A Beginning of Line
Moves to the beginning of the line.

c-E End of Line
Moves to the end of the line.

c-F Forward
Moves forward one character.

c:-B Backward
Moves backward one character.

M-F Forward Word
Moves forward one word.

M-B Backward Word
Moves backward one word.

M-E Forward Sentence
Moves to the end of the sentence in text mode.

M-A Backward Sentence
Moves to the beginning of the sentence in text mode.

c-N Down Real Line
Moves down one line.

51

March 1985 Creating and Manipulating Files

c-P Up Real Line
Moves up one line.

M-] Forward Paragraph
Moves to the start of the next paragraph.

M-[Backward Paragraph
Moves to the start of the current (or last) paragraph.

c-X] Next Page
Moves to the next page.

c-X [Previous Page
Moves to the previous page.

c-V, SCROLL Next Screen
Moves down to display the next screenful of text.

M~V, M-SCROLL Previous Screen
Moves up to display the previous screenful of text.

M-< Ck>to Beginning
Moves to the beginning of the buffer.

M-) Ck>to End
Moves to the end of the buffer.

5.7 Introduction to the Motion Commands

Zmacs word, sentence, and paragraph motion commands all have strict definitions for
where words, sentences, and paragraphs begin and end. You can modify all these
definitions.

5.8 Introduction to Zmacs Help

Zmacs has many features that provide information about Zmacs commands, existing
code, buffers, and files. Two features are generally useful: the HELP key and
completion. See the section "Getting Help in Zmacs" in Text Editing and
Processing.
Pressing the HELP key in a Zmacs editing window gives information about Zmacs
commands and variables. For descriptions of Zmacs variables: See the section "How
to Specify Zmacs Variable Settings" in Text Editing and Processing. The kind of
information it displays depends on the key you press after HELP.

HELP ?

HELP A

Displays a summruy of HELP options.

Displays names, key bindings, and brief descriptions of commands

52

User's Guide to Symbolics Computers March 1985

HELP C

HELP D

HELP L

HELP U

HELP V

HELP W

HELP SPACE

whose names contain a string you specify. (The A refers to
apropos, the name of the function that finds the commands and
displays their documentation.)

Displays the name and description of a command bound to a key
you specify.

Displays documentation for a command whose name you specify.

Displays a listing of the last 60 keys you pressed.

Offers to undo the last major Zmacs operation, such as sorting or
filling, when possible.

Displays the names and values of Zmacs variables whose names
contain a string you specify. For descriptions of Zmacs variables:
See the section "How to Specify Zmacs Variable Settings" in Text
Editing and Processing.

Displays the key binding for a command you specify. (The W
refers to where.)

Repeats the last HELP command.

Some Zmacs operations require you to provide names - for example, names of
extended commands, Lisp objects, buffers, or files. Often you do not have to type all
the characters of a name; Zmacs offers completion over some names. When
completion is available, the word Comp 1 et i on appears in parentheses above the right
side of the minibuffer.

You can request completion when you have typed enough characters to specify a
unique word or name. For extended commands and most other names, completion
works on initial substrings of each word. For example, M-X c SPACE b is sufficient to
specify the extended command Compile Buffer. SPACE, COMPLETE, RETURN, and END

complete names in different ways. Press HELP or click right once, [(R)], on the
editor window or minibuffer to list possible completions for the characters you have
typed. c-/ displays every command that contains the substring.

SPACE

HELP or c-1

[(R)]

c-/

COMPLETE

RETURN or END

Completes words up to the current ~ord.

Displays possible completions in the typeout area.

Pops up a menu of possible completions.

Runs Apropos for each of the partially typed words in the name.

Completes as much as possible. This could be the full name.

Confirms the name if possible, whether or not you have seen the
full name.

53

March 1985 Creating and Manipulating Fifes

5.9 Introduction to Inserting Text

To insert new text anywhere in the buffer, position the cursor at the place you
want the new text to go and type the new text. Zmacs always inserts characters at
the cursor. The text to the right of the cursor is pushed along ahead of the text
being inserted.

5.10 Introduction to Erasing Text

5.10.1 Description of Erasing Text

Most commands that erase text from the buffer save it so that you can get it back
if you change your mind, or move or copy it to other parts of the buffer. These
commands are known as kill commands. The rest of the commands that erase text
do not save it; they are known as delete commands. The delete commands include
c-D and RUBOUT, which delete only one character at a time, and those commands
that delete only spaces or line separators. (However, when given a numeric
argument, c-D and RUB OUT do save that sequence of deleted characters on the kill
ring.) Commands that can destroy significant amounts of information generally kill.
The commands' names and individual descriptions use the words "kill" and "delete"
to say which they do.

If you issue a kill command by mistake, you can retrieve the text with c-Y, the
Yank command. For details on killing and retrieving text: See the section "Working
with Regions in Zmacs" in Text Editing and Processing.

5.10.2 Summary of Erasing Text

c-D Delete Forward
Deletes the character after point.

RUBOUT Rubout
Deletes the character before point.

M-D Kill Word
Kills forward one word.

M-RUBOUT Backward Kill Word
Kills backward one word.

M-K Kill Sentence
Kills forward one sentence.

c-)(RUBOUT Backward Kill Sentence
Kills backward one sentence.

c-K Kill Line
Kills to the end of the line or kills an end of line.

54

User's Guide to Symbolics Computers March 1985

e-W Kill Region
Kills region (from point to mark).

e-M-K Kill Sexp
Kills forward over exactly one Lisp expression.

e-M-RUBOUT Backward Kill Sexp
Kills backward over exactly one Lisp expression.

M-' Delete Horizontal Space
Deletes any spaces or tabs around point.

e-X e-O Delete Blank Lines
Deletes any blank lines following the end of the current line.

M-'" Delete Indentation
Deletes RETURN and any indentation at front of line.

5.11 Creating a Buffer

Zmacs creates your initial buffer when you first enter the editor. To create other
buffers, use e-X B, Select Buffer, to create an empty buffer or e-X e-F, Find File, to
create either an empty buffer or a buffer containing a file.

e-X B prompts for the name of the buffer to which you want to go. Type the
buffer name and RETURN. If the buffer exists, Zmacs switches to that buffer and
displays it on the screen. If the buffer does not already exist, Zmacs offers to let
you create it by terminating the buffer name with e-RETURN. When you create a
new (empty) buffer, the display is blank.

The other way to create another buffer is e-X e-F, Find File. (e-X e-F) is described
in detail in "Editing Existing Files".) e-X e-F prompts for the name of a file,
terminated by RETURN.

When you type c-X e-F for the first time in a Zmacs session, Zmacs offers you, as a
default file name, an empty file (with the Lisp suffIX native to your host computer)
in your home directory on your host computer. For example:

System
Lisp Machine
UNIX
VMS

Empty Buffer Name
foo.1isp
foo.1
foo.1sp

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not
begin with an attribute line containing Base and Syntax attributes, Zmacs warns
that the file "has neither a Base nor a Syntax attribute" and announces that it will
use the defaults, Base 10 and Zetalisp. See the section "Buffer and File Attributes".

55

March 1985 Creating and Manipulating Files

Buffer Contents with c-x c-F

The first time you use c-X c-F, you can create an empty buffer using the Zmacs
default file name, create an empty buffer using a name that you specify, or create a
buffer containing an existing file:

• To create an empty buffer with the initial default file name as the one Zmacs
associates with your buffer, press RETURN.

• To create a new empty buffer, respond with any name. Zmacs switches to an
empty buffer, gives the buffer the new name, and displays (New File) in the
echo area.

• To create a new buffer containing some file, respond to the prompt with the
name of that file. Zmacs switches to an empty buffer, reads that file in, and
names the buffer appropriately.

5.12 Creating a File

The first time you save or write the buffer, Zmacs creates the new file. You can
create a new file with c-X c-S. Since a new file does not have a name associated
with it yet, Zmacs asks for a name for the new file. It offers a default pathname,
which is the name of the buffer. If you wish to save the file out to the default
pathname, simply type a RETURN in response to the prompt.

If you wish to save the buffer in another file, provide that name as your response.
Completion is offered to simplify your response.

You can also write the buffer out with c-X c-w, Write File. Zmacs prompts in the
minibuffer for the name of the place you want to write the buffer's contents. c-X

c-W also offers a default pathname, in this case, the name you supplied with c-X

c-F.

56

User's Guide to Symbolics COmputers March 1985

57

March 1985 Sending and Receiving Messages and Mail

6. Sending and Receiving Messages and Mail

6.1 Using Zmail

6.1.1 Introduction

Zmail is a display-oriented mail system for the Lisp Machine. Using Zmail, you can
send and receive mail, archive your mail in disk files, and operate on groups of
messages selected according to very flexible criteria.

Since messages are typed into editor buffers, some familiarity with the editor is also
helpful. (See the section "Zmacs Manual" in Text Editing and Processing.)

6.1.2 Starting up Zmail

Before running Zmail, be sure that you are logged in. See the section "Getting
Started", page 1.

To run Zmail, do one of the following:

• Give the command Select Activity Zmail (or Select Activity Mail).
• Press SELECT M.

You get a display similar to Figure 1, called the top-level display. At this time you
can send or read mail.

The top-level display, with a mail file read in, is shown in Figure 2. It consists of
four windows: the Summary window, the Command menu, the Message window,
and the Minibuffer, which contains the Mode line.

6.1.2.1 Summary Window

The Summary Window displays a line for each message in the current sequence,
with an arrow indicating the current message.

The information provided in the summary line is:

No.

status letter

The message number. Whenever Zmail displays a list of messages,
it numbers them for easy reference. The numbers refer only to
the position of the message in the list, so when you list subsets of
the mail file, the messages show up with different numbers. And
when you delete or rearrange messages, the numbers change
accordingly.

The status letter is the letter or symbol following the message
number. Possible status letters are:

The message has not yet been seen.

58

User's Guide to Symbolics Computers March 1985

NrI 1"II~:! D~tl'! Fr-o,.,.To hilt. I .. "t'~ n,. : .. "t'

.Profile 9ult. Uelete Undelete . Reply
Configure Save Next. Previou, Cont.inue

Survey Get. inbox Jump Keyword, Mail
Sort. Map over Move Select. Other

Type the HELP key for help.
To read your "ail, click Left on "Get inbox".
To send a "essage, click Left on "Mail".
To send a bug report, click Middle on "Mail".

Me:!sage
',.,a11 No current eequence

Figure 1. Top-level Display

59

March 1985 Sending and Receiving Messages and Mail

No . i n~!I D8t~ F,..o,.,. r 0 Subl~"t n,.. r t:
7B 2& 21-Dec LANG •• lang warehouse facility
71 15 21-Dec LANG.dess Acting nanager
72 28 21-Dec J~ALKER. Re: blank pages in Rel. 5 docunentation
73
74
75
76
77
78
79
89
£:1
82
83
84
85
86
87

• 88
89
99

36 22-Dec .IR~IN. Doc Rel-5 Doc.
11 22-Dec .writers blank pages
26 22-Dec LANG.IR~IN,Doc Rel-5 Doc.
28 22-Dec RN.SVn80LICS Inter-conpany release
12 22-Dec CEC. Phone Nunber
58 26-Dec lang.rll Docunentation warehouse space
42 27-Dec JAYNE.scrc Insurance Open Enrollnent
8 28-Dec abc.Znailtest test

19 28-Dec .'erner Znailtest~
12 28-Dec .CEC Znail test
14 28-Dec IIteve·scrc Unused Airline Tickets
15 28-Dec abc.Znail test test
12 29-Dec IIned., i IIpn-users COMPLETE on Cupid

9 29-Dec . artwork
19 29-Dec ·'erner nore Znailtest
12 29-Dec Znailtest·Znailtest
16 29-Dec •
25 29-Dec

Profile
Configure

Survey
Sort.

DODDS.L i IIpM-Users
[Znailtest at SCRC-VIHEN: J
New ~orld for the New Vear

.flUlt.
Save

Get. inboJ(
Map over

Uelet.e
Next.
Jump
Move

Decenber 22, 1983

Received: fron scrc-yukon by scrc-vixen with CHAOS; 29 Dec 1983 14:15:55-EST
Received: fron SCRC-SEINE by SCRC-VUKON with CHAOS; Thu 29-Dec-B3 14:16:3B-EST
Date: Thurllday. 29 Decenber 1983. 14:16-EST
Fron: 111 <Zna1ltest at SCRC-VIHEN>
Subject:
To: Znailtest at SCRC-VIHEN

Message
Zmail VIXEN: /usr2/abc.ma11box Msg 1188 99 (fo,..wa,..ded) {}

Figure 2. Top-level Display with Mail File

~ndelet.e
Previous
Keywords

Select.

~eply

Cont.inue
Mail

Other

60

User's Guide to Symbofics Computers

A

o

The message has been or is displayed.

The message has been answered.

The message has been deleted.

March 1985

(The above list is in reverse order of precedence; that is, a deleted
message is marked D whether or not it has been answered.)

Li nes The message length in lines.

Date The date the message was sent.

From .. To The sender (From field) and as much of the recipients (To field) of
the message as will fit, summarized on either side of the -+. A
missing name before or after the arrow means the message was
from or to you. For example, -+PJF, , MJH represents a message
from you to PJF, yourself, and MJH. Only the To: recipients are
listed, not the Cc: or Bcc: recipients. See the section "Sending
Your Mail", page 62. See the section "Commands for Sending
Mail" in Communicating with Other Users.

Keywords The keywords attached to the message are enclosed in braces.

Subject or Text The Subject: field of the message, or in the absence of a Subject:
field, the first lin~ of meaningful text in the message.

6.1.2.2 Command Menu

The Command Menu provides a mouse-sensitive menu of the most useful top-level
commands. Some of these commands (for example, [DeleteD apply only to the
current message. In this manual, when we say, for example, "[Get inbox]", we
mean the Get inbox command in this menu.

6.1.2.3 Message Window

The Message Window displays the current message. The message window is an
editor buffer.

Initially, there is no current message; instead, there is· a short note explaining how
to read and send mail. When you read your mail, the first new message becomes
the current message; if there is no new mail, the first old message is the current
message. As you move around the mail file to inspect other messages, they are
selected as the current message and displayed.

6.1.2.4 Zmail Minibuffer

The minibuffer contains the mode line. It is also where some short notifications get
displayed .

61

March 1985 Sending and Receiving Messages and Mail

Mode Line

The various information included is:

Program status The mode the program is in. Possibilities are:

Zmai 1

Zmail Mail

Zma i 1 Profil e

Zmail Marking

Zmail is at top level.

Zmail is in mail mode, in which mail is sent.
Following the word Mail is the word (Text),
which identifies the mode in which the message
to be sent is being edited. The editor mode is
followed by either Message, Headers, or Mail,
indicating which window the cursor is in. (For
a description of these windows, see the
explanation of the c-X 0, c-X 1, and c-X 2
commands. See the section "Configuring and
Selecting Zmail Windows" in Communicating
with Other Users. See the section "Sending
Your Mail", page 62. See the section "Replying
to Mail", page 67.

Zmail is in Profile mode, in which you can
customize Zmail. See the section "Customizing
Zmail", page 170. Following the word Profi 1 e is
the name of your init file, in which the
customizations are stored.

Zmail is in Marking mode, executing the mark­
survey command.

Zmail Editing Message
Zmail is in Editing Message mode, in which you
can edit your copy of a previously received
message.

Current mail file The name of the current mail file, or "No current rna i 1 fi 1 e" if
there is none.

Current message number/total number of messages

Message properties Properties describing the current message, in parentheses.
Possible properties are:

unseen
deleted
recent
last
filed
answered

Message is now being seen for the first time
Message has been marked for deletion
Message was new mail in the current session
Message is the last in the file
Message has been copied to another file
Message has been replied to

62

User's Guide to Symbolics Computers March 1985

forwarded ~essage has been fo~arded
redistributed

badheader
~essage has been redistributed
Message has a bad header

Keywords Any keywords that have been saved on this message, in braces.

Second Mode Line

The second mode line gives useful information on what the program is doing at
various times. In Figure 2, for example, the new mail message means Zmail
detected new mail in your inbox. Other messages that appear in the second mode
line tell you what file the program is reading or writing, what error just occurred
(Zmail flashes the screen also), or what certain keys do (for example, END and ABORT).

It is a good idea to check the mode lines if you are unsure where in the program
you are or how to get elsewhere.

Most of the screen is mouse-sensitive.

Figure 2 shows Zmail at top level. The information about the current mail file and
current message is only displayed at top level; the first mode line is used for other
information when the program is in different modes.

6.1.3 Sending Your Mail

To send mail, use [Main, which is displayed in the command menu. Zmail displays
two windows, one for the message headers, and one for the message itself. (See 3)

At this point, the headers window is selected, with the cursor following the word
To:. The program is prompting you for the contents of the To: field, which specifies
to whom the message is to be sent. Respond by entering a list of one or more user
names or mailing lists separated by commas.

If you wish to send someone a carbon copy of the message (which means they also
get the message, but are not considered a primary recipient), press RETURN, then type
Cc: followed by a list of one or more user names or mailing lists, separated by
commas. If you want to save a copy of the message for yourself, include your own
name on the Cc: list (or on the To: list).

It is recommended that you include a Subject: field with your message, as this is
then used in the summary display of the recipient's mail file. (If you have no
Subject: field, the text of the first meaningful line is used.) To add a Subject: field,
press RETURN, then type Subject: (or S: for short), followed by a line giving the
subject of your message.

To enter the message itself, select the message window by pressing END. The
message window is an editor window; you can type in the message using all the
commands of the editor. See the section "Zmacs Manual" in Text Editing and
Processing. The headers window is also an editor window.

63

March 1985 Sending and Receiving Messages and Mail

To: ,.
Subject:

Heeder-s
II

Meil
Zneil Me11 <Text Fill) Heeder-s End edds nor-e text, Abor-t ebor-ts
Type END when done editing.

Figure 3. Mail Mode Display (One-window Mode)

64

User's Guide to Symbolics Computers March 1985

At any time during editing you can return to the headers window to add or change
entries; just click left on the headers window. To get back to the mail window,
press END or click left on the mail window.

If you change your mind while working on the message and decide that you do not
want to send anything, press ABORT, and you return to top level; nothing is sent. If
you later decide that you did want to send the message after all, use [Continue].
See the section "Continuing Completed or Aborted Zmail Messages" in
Communicating with Other Users.

When you are satisfied, press END to send the message. If you are in the headers
window, press END twice. See 4 for a message about to be sent.

If the message is sent successfully, Zmail displays "Message sent" and returns to top
level. If there is a problem, Zmail tells you about it and remains in mail mode.
Typical problems are omitting the To: field, trying to send mail to a nonexistent
user, or mistyping a user name. Correct the error and resend the message by
pressing END twice.

6.1.4 Reading Your Mail

To read your mail, use [Get inbox]; Zmail reads in your primary mail file (containing
old mail) and any new mail.

Command Meaning

[Get inbox] or G from the keyboard
Gets the new mail (inbox) for the current buffer. It has no effect
when a collection is current.

[Get inbox (M)] Prompts you for an inbox name for the current buffer.

[Get inbox (R)] Calls up a menu of possible buffers to get the new mail for.

Two files are involved here: your primary mail file, which contains messages you
have already seen, and your inbox, which contains new mail. If you do not have a
mail file - as might be the case the first time you run Zmail - the program offers
to create one for you. Press RETURN to let Zmail create the file, or ABORT if for some
reason you do not want a mail file. No similar problem with inbox files exists; they
are created when needed, and are deleted when Zmail reads your new mail from
them.

While an internal data structure used for conversation and reference commands is
created, the following message appears in the Zmail minibuffer:

Creating reference hash table for buffer filename

The parsing required in the creation of reference hash tables is time-consuming for
large unparsed files. The appearance of this message in the minibuffer notifies you
that it is building a reference hash table so that you do not think something is
wrong.

65

March 1985 Sending and Receiving Messages and Mail

TOI whit, rSll
CCI avruch, Zna11test
SubJect I R nessage about to be sen~
Headers
This 18 • conpleted nessage. Hittin9 END nOli will send the neseage to
llhi t, r • ." avruch, and Znal1 test .•

Z"all Ma11 (Text F11l) Ma11 End nails, Abort aborts

Figure 4. A Message about to be Sent

66

User's Guide to Symbolics Computers March 1985

If you have no new mail, Zmail says so. Otherwise, the summary window starts to
scroll as lines appear for new messages, and the first new message is displayed in
the message window as the current message.

If the message does not fit entirely in the window, the words ,...-more below-- appear
in the mode line. When text is off-screen both above and below, the message reads
--more above and below--; when you reach the final screen of the message, the
message reads --more above--. Use the following commands to move from screen to
screen:

Command Action

SPACE or c-V Displays the next screen of the message

BACKSPACE or M-V Goes back to the previous screen

Returns to the beginning of the current message

To use the mouse for scrolling, you can click left on the - -more- - message to scroll
forward one screen, or click middle to scroll back one screen. If you click right, you
get a menu of four items: [Forward] and [Backward], which move forward and
backward by one screen, and [Beginning] and [End], which move to the beginning
and the end of the message. For more precise control of scrolling, use the scroll bar
in the left margin of the window. See the section "Scrolling".

6.1.5 What to Do After Reading a Message

Once you have finished reading a particular message, there are several things you
might want to do. You might want to read the next new message (if any), you
might want to delete the message if it is no longer of value, or you might want to
reply to the message.

6.1.5.1 Deleting and Undeleting Messages

After you have finished reading a message, you often want to delete it and move on
to the next one. To do this, use [Delete]. This marks the message as deleted - a
o appears in its summary line - and moves to the next message.

If you change your mind, you can undelete a message; use [Undelete]. This starts
at the current message and searches backward for a deleted message, undeletes it,
and selects it as the current message. Deleted messages do not actually disappear
until the mail file is saved, which is why Undelete is possible.

6.1.5.2 Moving Among Messages

When you finish reading a message that you do not want to delete, use [Next] to
read the next message. To go back to the previous message, use [Previous]. To
jump to the first message in the file, use [Previous (M)]; for the last message, use
[Next (M)]. (Note: These commands ignore deleted messages; they actually give you
the next undeleted message, previous nondeleted, first nondeleted, and last
undeleted.)

67

March 1985 Sending and Receiving Messages and Mail

To read an arbitrary message, select it from the summary window by clicking left on
its summary line. If the summary does not all fit in the window, you might first
have to scroll the display using the left-margin scroll bar.

6.1.5.3 Replying to Mail

To reply to the current message, use [Reply] or [Reply (M)]. This sets up the
screen as three windows: the Message window displays the current message, the
Headers window contains the reply headers, and the Mail window is where you write
the reply itself. (See Figure 5.)

The cursor is in the Mail window, so you can just type in the text of the message,
using editor commands to edit what you are typing. To send the message, press
END. If you change your mind and do not want to reply, press ABORT. If you want
to edit the headers, you can select the Headers window by clicking left on it. These
commands are the same as in mail mode. See the section "Sending Your Mail", page
62.

What is special about reply mode is that the reply headers are written automatically.
The headers that Zmail writes are the To: field, the cc: field, the Subject: field, and
the In-Rep ly-To: field. The Subject: field is simply a copy of the original Subject:.
Defaults for the To: and cc: fields are provided. Notice the mouse-documentation
line. To set up alternate To: and cc: fields, use [Reply (R)] and choosing from the
pop-up menu the combination of To: and CC: you want.

6.1.5.4 Saving the Mail File

When you have finished reading your new mail, you should save your mail file by
using [Save]. This expunges deleted messages from the file and then saves it,
writing the modified mail file back out to the file system where it is kept until next
time.

If you now wish to leave Zmail, select another program using the SELECT key or the
System menu.

6.1.6 Getting Fancy with Zmail

6.1.6.1 Encrypting Messages

Zmail supports encryption. Commands are available both when you are composing
mail and when you are reading mail. Encrypted messages contain a new header
field to indicate that they contain encrypted text.

The command to encrypt a message draft is Encrypt Text (M-X). Use it after you
have completed the message draft but before you send it. Zmail prompts for an
encryption key that the recipient must provide in order to decrypt the message. It
converts the draft to a form that you cannot read. Decrypt Text is also available for
message drafts. Both of these commands appear on the draft editor menu.

Decrypt Msg (M-X) displays an encrypted message as plain text, prompting for the

68

User's Guide to Symbolics Computers March 1985

I~ceived: fro" scrc-yukon by scrc-lIl1cen with CHAOS; 29 Dec 1983 14:15:55-EST
Received: fro" SCRC-SEINE by SCRC-YUKON with CHAOS; Thu 29-Dec-83 14:16:38-EST
Date: Thursday, 29 Dece"ber 1983, 14:16-EST
Fro": ??? <Z"ailtest at SCRC-VIXEN>
Subject:
To: Z"ailtest at SCRC-VIXEN

This is a test of reply "ode.

I~.: Z"a1ltesUSCRC-VIXEN
Subject:
In-reply-to: The "essage of 29 Dec 83 14:16-EST f,.o" ??? <Z"ailtest at SCRC-VIXEN>
Headers

End "ails, Abort aborts

Figure 5. Mail Mode Display (Two-window Mode)

69

March 1985 Sending and Receiving Messages and Mail

encryption key. By this operation, you are only viewing the plain text form; use a
numeric argument to store the plain text version in the mail file.

Text yanked by Forward and Reply prompts for a decryption key rather than
yanking unreadable text.

The only encryption algorithm currently supported is the NBS algorithm, used by
Hermes.

6.1.6.2 Fonts in Messages

Zmail can interpret messages that contain fonts. These are the same fonts that the
editor uses in Set Fonts (M-X) and the editor font commands.

6.2 Talking to Other Users

6.2.1 Introduction to Converse

Converse is a facility for communicating interactively with other logged-in users.

The Converse interactive message editor is operated by a window with its own
process. Converse keeps track of all of the messages that you have received or sent.
The Converse window shows all of the messages that have been sent or received
since the machine was cold booted.

Messages sent between you and another user are organized into a conversation.
Conversations are separated from each other by a thick black line. Within each
conversation are all messages, outgoing and incoming, arranged in chronological
order, and separated by thin black lines.

You can use Converse to look at conversations, send messages, and receive messages.
Converse is built on the Zwei edito:r, so you can edit your message as you type it in,
or pick up and move around text between one message and another, or among
messages, files, and pieces of mail.

To enter Converse, do one of the following:

• Press SELECT C.

• Evaluate (qsend).

• Use [Select / Converse] in the System menu.

• Answer C in the Converse pop-up window when a message arrives.

70

User's Guide to Symbolics Computers March 1985

6.2.2 Using Converse

When you enter Converse for the first time, the window is empty except for a blank
message at the top of the screen, starting with To:. You start a message by filling
in a recipient after the To: and typing the message text. To send the message,
press END. When the message has been sent successfully, it appears as a
conversation. A blank message remains at the top of the screen, and just below
that a heavy black line delimits the message(s) of the conversation you just started.
Just below the heavy black line is another blank message, but this one has the
name of the other person in the conversation filled in. Below this blank message,
separated by a thin black line, appears the message you just sent, with the date and
time it was sent.

When the person to whom you sent the message replies, the reply appears in the
conversation above the message you sent, and below the blank message. Your cursor
is left in the blank message so you can reply easily.

You can use the regular editor comm~"lds to move around in the Converse ~vindo~v.
There are two commands specific to Converse that are particularly useful: C-M-]

(move to next conversation) and C-M- [(move to previous conversation).

You exit from Converse by pressing ABORT or by selecting another window. You can
also press c-END when sending a message to send the message and exit from
Converse.

To start a conversation, enter Converse, go to the top of the Converse window and
fill in the blank message, starting with the To: line to specify the new recipient.
Finish by pressing END to send the message. To send the message and exit
Converse, finish by pressing c-END.

To send a message as part of an existing conversation, find that conversation in
Converse and fill in the blank message at the beginning of the conversation,
finishing by pressing END to send the message, or by pressing c-END to send the
message and exit Converse.

You do not have to be in the main Converse window to receive messages. Converse
will deliver a message to you in any window. Since this might be annoying, you can
customize what happens when a message arrives by using the variable
zwei:*converse-mode*. See the section "Customizing Converse", 172.

When you are in a window other than Converse and a new message arrives, a
window pops up at the top of the screen displaying the message. You can respond R
to type in a reply, N (for "no action") to make the message window deexpose, or c to
enter Converse. Entering Converse has several advantages: you can look over the
previous messages in the conversation, and you can use the editor to help you
construct a reply.

Converse remembers all messages that you send or receive, even if you did not use
the main Converse window to send them or reply to them.

71

March 1985 Sending and Receiving Messages and Mail

Converse lets you know as soon as a message comes in, by beeping or flashing the
screen, and if it is supposed to notify you, it does so without waiting for the main
Converse process to wake up. In pop-up mode, if the pop-up message window is
already in use, an incoming message causes the message window to beep or flash but
not to display the message. This is necessary since only one message. at a time
should pop up. When the message window is deexposed it is reexposed immediately
with the new message in it.

If the main Converse window is exposed, a new message is shown there with its
conversation; it is never shown via a notification or a pop-up message window. If
the main Converse window is exposed but its process is busy (typically, when it is in
the Debugger or in an editor command arid waiting for typein), Converse beeps or
flashes but does not display the message. You can display the message by clearing
the Converse process. You can usually clear the Converse process by pressing ABORT.

6.2.2.1 Converse Commands

Converse has several commands for managing your conversations.

HELP

END

c-END

ABORT

c-M

C-M-[

Displays a summary of Converse commands.

Sends the current message. The behavior of this key can be
changed by the variable zwei:*converse-end-exits·.

Sends the current message and exits from Converse. The
behavior of this key can be changed by the variable
zwei:*converse-end-exits· .

Exits Converse.

Mails the current message instead of sending it. This is useful if
Converse reports that the person you want to send the message
to is not logged in anywhere.

Moves to the previous conversation.

Moves to the next conversation.

M-X Delete Conversation
Deletes the current conversation from the Converse window.

M-X Write Buffer Writes the entire Converse buffer (all conversations) to a file. It
prompts for a pathname.

M-X Write Conversation
Writes only the current conversation to a file. It prompts for a
pathname.

M-X Append Buffer
Appends the entire Converse buffer (all conversations) to the end
of a file. It prompts for a pathname.

72

User's Guide to Symbolics Computers March 1985

M-X Append Conversation
Appends only the current conversation to the end of a file. It
prompts for a pathname.

M-X Regenerate Buffer
Rebuilds the structure of the Converse buffer. This might be
necessary if you damage the buffer in some way, for instance by
removing one of the black lines separating conversations. Some
error messages might ask you to give this command and try again.
The message you are currently typing might be lost, but you can
prevent this by putting the text on the kill ring before issuing the
M-X Regenerate Buffer command.

6.2.2.2 Lisp Listener Commands for Converse

zwei:qsends-off &optional (gag-message t) Function
Sometimes, you might wish not to be interrupted with interactive messages.
A function called zwei:qsends-off exists for such occasions. If you give it a
string argument, gag-message, the variable zwei:*converse-gagged* is set
to this string and the string is returned to anyone who tries to send a
message to you. Otherwise, they just get a note saying that you are not
accepting messages. zwei:qsends-on toggles zwei:*converse-gagged*.

zwei:qsends-on Function
After using zwei:qsends-off to notify interactive message senders that you
are not accepting messages, zwei:qsends-on allows interactive messages to
be received again.

chaos:notify-local-lispms &optional (message Function
(zwei:qsend-get-message "all lisp machines"»

Sends message to all Lisp Machines at your site based upon information it
gets from the namespace database about the Lisp Machines. at the local site.
message should be a string; if it is not provided, the function prompts for a
message. Each recipient receives the message as a notification, rather than
as an interactive message.

qsend &optional destination message Function
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form "name@host", to specify the
recipient. If you omit the @host part and just give a name, qsend looks at
all of the Lisp Machines at your site to find any that name is logged into; if
the user is logged into one Lisp Machine, it is used as the host; if more than
one, qsend asks you which one you mean. If you leave out destination
altogether, doing just (qsend), Converse is selected as if you had pressed
SELECT C.

73

March 1985 Sending and Receiving Messages and Mail

message should be a string. If it is omitted, qsend asks you to type in a
message. You should type in the contents of your message and press END

when you are done.

The input editor is used while you type in a message to qsend. So you get
some editing power, although not as much as with full Converse (since the
latter uses Zwei). See the section "Using the Input Editor". This function
predates Converse and is retained for compatibility.

print-sends &optional (stream standard-output) Function
Prints out all messages you have received (but not messages you have sent),
in forward chronological order, to stream. Converse is more useful for looking
at your messages, but this function predates Converse and is retained for
compatibility.

qreply &optional text Function
Sends a reply to the Converse message received most recently. You can
supply a string as the text of the message or omit it and let qreply prompt
for it. It returns a string of the form "user@host", indicating the recipient of
the message. This function predates Converse and is retained for
compatibility.

74

User's Guide to Symbolics Computers March 1985

75

March 1985 How to Change Fonts

7. How to Change Fonts

7.1 What Are Fonts?

On the Symbolics Lisp Machine, characters can be typed out in any of a number of
different typefaces. Some text is printed in characters that are small or large,
boldface or italic, or in different styles altogether. EE\ch such typeface is called a
font. A font is conceptually an array, indexed by character code, of pictures showing
how each character should be drawn on the screen. The Font Editor (FED) is a
program that allows you to create, modify, and extend fonts.

A font is represented inside the Lisp Machine as a Lisp object. Each font has a
name. The name of a font is a symbol, usually in the fonts package, and the
symbol is bound to the font. A typical font name is tr~. In the initial Lisp
environment, the symbol fonts:trS is bound to a font object whose printed
represen tation is something like:

H

The initial Lisp environment includes many fonts. Usually there are more fonts
stored in BFD files in file computers. New fonts can b~ created, saved in BFD files,
and loaded into the Lisp environment; they can also simply be created inside the
environment.

7.2 Displaying Fonts

The Show Font command displays fonts. The Show Font command has no
default-it displays either:

• The names of all the fonts that have been automatically loaded into the
system (Show Font SPACE HELP)

• If you specify one of those names, all characters as they appear in the specified
font (Show Font font-name)

7.3 Standard Lisp Machine Fonts

You can use Show Font HELP in the Lisp Listener or the List Fonts (P'I-X) command in
Zmacs to get a list of all the fonts that are currently loaded into the Lisp
environment. The fonts package contains the names of all fonts. Here is a list of
some of the useful fonts:

76

User's Guide to Symbolics Computers

Font: font from which to show every character, one of:
,3VXMS HELVETICA10SB MEDFNB
5X5 HELVETICA12SB MEDFNT
ABACUS HELVETICA1SSB METS
BIGFNT HELVETICABSI METSI
CENTURYSCHODLBOOK10S HIPP012 MOUSE
CENTURYSCHOOLBOOK10SB HL10 NAMEO-STRUCTURE-SYMBOL
CENTURYSCHOOLBOOKJ.0S1 HL10B NARROW
CPT-FONT HL12 OENG25
CPTFONT HL12B OENGS0
CPTFONTB HL12BI PACKAGE
CPTFONTCB HL121 S3SGER
CPTFONTI HL6 SAIL10
EUREX12I HLr SEARCH
EUREX2'I JESS13 SPACES
FIX10e JESS1, SYMBOL10
FIX9 JESS1,B SYMBOL12
GERMAN9 JESS!1GB TALLY
GOTHIC11 l~T10 TIMESROMAN10
GREEK MATH10 TIMESROMAN10B
GREEK9 MATH12

C> Show Font (font name)

Lisp Listener 1

03.101.185 11:13:30 b~1i USEI<: Ty1

Figure ,6. Show Font Display of Fonts

TIMESROMAN10I
TIMESROMANB
TINY
TOG
TR10
TR10B
TR10BI
TR101
TR12
TR12B
TR121
TR1B
TR1BB
TR8
TRBB
TRBI
TVFONT
TVFONT9
WORM

March 1985

March 1985

(> Show Font (font name) BIGFNT

Font BIGFNT:
• ~ ~ ~ ~ ~ E n ~ t S f * • mac ~ n u V 3 • • • ~ ~ ~ ~ ~ • y

.+.~A~En~~Stt •• ac~nUU3.$~~~t$~.v
! " .. S%8.' () M+. - ./0123iS6i1B9:; <=>?
! ",.XC' ().+,-./8123456789: ;<=>?

• ABC 0 E F G H I J K L M N 0 P DRS T U V W x Y 2 [\) A _

eABCDEFGHIJKLnNOPQRSTUVYXYZ[\]A_
'abcdefghi jkl mnoPQrstuvwxyz{ I }-!
• .bcdefgh i jk I .nopqrstuvwxyz{ I }-J

(>1

Llap Liatener 1

USER: iy1

Figure 7. Show Font Display of Font Characters

77

How to Change Fonts

78

User's Guide to Symbolics Computers March 1985

fonts:cptfont

fonts:jess14

fonts:cptfonti

fonts:cptfontcb

fonts:medfnt

fonts:medfnb

fonts:hl12i

fonts:trlOi

fonts:hllO

fonts:hllOb

7.4 Setting Fonts

This is the default font, used for almost everything.

This is the default font in menus. It is a variable­
mdth rounded font, slightly larger and more attractive
than medfnt.

This is a fIxed-width italic font of the same width and
shape as fonts:cptfont, the default screen font. It is
most useful for italicizing running text along with
fonts:cptfont.

This is a fIxed-width bold font of the same width and
shape as fonts:cptfont, the default screen font.

This is a fIXed-width font with characters somewhat
larger than those of cptfont.

This is a bold version of medfnt. When you use Split
Screen, for example, the [Do It] and [Abort] items are
in this font.

This is a variable-width italic font. It is useful for italic
items in menus; Zmail uses it for this in several menus.

This is a very small italic font. It is the one used by
the Inspector to say "More above" and "More below".

This is a very small font used for nonselected items in
Choose Variable Values windows.

This is a bold version of hllO, used for selected items in
Choose Variable Values windows.

7.4.1 Setting Fonts in the Input Editor

The font map contains a list of all fonts available to the input editor and the
command processor; these programs display typein in one of the fonts given in the
map. You can explicitly set the font map, that is, name the fonts that you want to
use, with the M-J command, or you can use the default contents of the font map.
When you log in, the font map always contains (at least) one font.

The font you are currently using is known as the default font. To use a different
font in the font map you must explicitly select it with the c-J command.

When you set the map (name the fonts), the input editor assigns a number to each
font in the order in which you type the names. The first font named is font #0,
the second font, #1, and so on. When you select a font from the list, you refer to it

79

March 1985 How to Change Fonts

by its number, not its name. The input editor then translates the number to the
name of the font. For example, suppose you specify the names of fonts in your font
map to be cptfont and bigfnt, in that order; the input editor maps the number #0
to cptfont and the number 1 to bigfnt. Unless you reset the map, font #0 means
cptfont. Font #0 is also the default font, unless you subsequently select another
font in the map as the default. For example, to have typein displayed in bigfnt,
select this font from the map by typing its number and the c-J command: c-l c-J.
Note that selecting a font does not change its placement in the list.

If the font you want to use is not named in the font map, you must first reset the
map to make that font available to the input editor. To reset the map you must
retype the entire font map. For example, suppose, in addition to cptfont and
bigfnt, you want to make medfnt available to the input editor. Type:

M-J cptfont bigfnt medfnt RETURN

To select medfnt, type: c-2 c-J.

7.4.1.1 Input Editor Font Commands

. r'I-J: Sets the font map in the current Lisp Listener. It prompts for the names of
one or more fonts, separated by spaces.

r'I-HELP: Displays the names of the fonts in the font map and other state
information relating to the input editor.

c-J: Sets the typein font number in the current Lisp Listener. Preceded by a
numeric argument, this command sets the font name ~ be that which corresponds
to that numeric argument in the font map.

7.4.1.2 Example

To set the fonts:

r'I-J cptfont bigfnt RETURN

Once you have set the fonts, to set the default typein font to be cptfont type:

c-0 c-J

To set it to bigfnt type:

c-l c-J

c-J without any numeric argument is the same as c .. 0 c-J.

7.4.2 Setting Fonts in Zmacs

Zmacs sets fonts in two ways:

• It reads them from attribute list of the fue or buffer

• It allows you to explicitly specify them

80

User's Guide to Symbo/ics Computers March 1985

In addition, Zmacs allows you to specify different fonts for individual characters,
words, and regions.

7.4.2.1 In the Attribute List

The attribute list at the top of your buffer or file specifies information about the
attributes of the file, including font information:

-*- Mode: Fundamental; Fonts: JESS14.BIGFNT; -*-
(See the section "Buffer and File Attributes in Zmacs" in Text Editing and
Processing.) If the attribute list appears in a file, Zmacs binds the attributes it
specifies to the values in the attribute list when you read or load the file. In the
case of fonts, it sets any fonts listed as the current fonts, mapping them to the code
letters and displaying the text in the buffer correspondingly. For example, when
reading in a file containing the above attribute list, Zmacs maps jess14 to font A,
higfnt to font B, and displays the text accordingly. References to the default font
now refer to A, which is jess14, in which Zmacs displays subsequent typein.

To set the fonts in the attribute list, you can manually edit it, use the Set Fonts
(M-X) command, or use the attribute-manipulating commands Update Attribute List
(M-X) and Reparse Attribute List (M-X). These three commands immediately update
the attribute list and display font changes in the buffer. See the section "Update
Attribute List" in Text Editing and Processing. See the section "Reparse Attribute
List" in Text Editing and Processing.

7.4.2.2 With Set Fonts (m-X)

The font you are currently using is known as the default font. To use different
fonts in Zmacs, you must first name (set) them so that Zmacs knows about them.
You can explicitly set the fonts that you want to use with the Set Fonts (M-X)

command. Then you can select one of these named fonts with C-M-J.

When you set the fonts, Zmacs assigns a letter to each font in the order in which
you type the names. The first font named is font A, the second font, B, and so on.
When you select a font from the list, you refer to it by its letter, not its name.
Zmacs then translates the letter to the name of the font. For example, suppose you
specify the names of fonts in Zmacs to be cptfont and bigfnt, in that order; the
input editor maps the letter A to cptfont and the letter B to bigfnt. Unless you
reset the fonts, font A means cptfont. Font A is also the default font, unless you
subsequently select another font as the default. For example, to have subsequent
type in displayed in bigfnt, select this font from the map by typing the C-M-J

command and then B.

If you have not previously set the font you want to use, you must first set the fonts
to make that font available to Zmacs. To reset the fonts you must retype the entire
list of fonts. For example, suppose, in addition to cptfont and bigfnt, you want to
make medfnt available to Zmacs. Type:

81

March 1985 How to Change Fonts

M-X Set Fonts RETURN
cptfont bigfnt medfnt RETURN

To select medfnt, type: C-M-J and then C.

7.4.2.3 Zmacs Font Commands

When one of the Zmacs font commands prompts you for the name of a font, you
can:

• Type a font letter

• Press ESCAPE to enter a new font name in a minibuffer

• ([L]) on any character selects its font

• ([R]) displays a menu of loaded fonts

Display Font (M-X), Show Font (M-X): Prompts for the name of a font (Font to
display:).

List Fonts (M-X): Lists the fonts that have been automatically loaded in your world.
With a numeric argument, it also lists the font files on the file computer. It offers
to display any of the fonts listed (C1 ick on name to display a sample).

Set Fonts (M-X): Changes the set of fonts to use. It reads a list of font names,
separated by spaces, commas, or both, from the minibuffer and also offers to clear all
previously set (fonts font'. {ont2 •... : (Return to clear fonts».

e-M-J: Changes the default font. It prompts for the name (letter) of the new font
in the echo area. The size of the blinker adjusts correspondingly to the size of the
font characters. It does not redisplay the buffer in the newly specified font.

c-J: Changes the font of one or more characters forward. It prompts for the name
(letter) of the new font in the echo area. With a numeric argument n, it changes
the font for the next n characters. It immediately displays the character in the
newly specified font.

M-J: Changes the font of one or more words forward. It prompts for the name
(letter) of the new font in the echo area. With a numeric argument n, it changes
the font for the next n words. It immediately displays the word in the newly
specified font.

e-X e-J: Changes the font of the text in the region. It prompts for the name
(letter) of the new font in the echo area. It immediately displays the region in the
newly specified font.

82

User's Guide to Symbolics Computers March 1985

83

March 1985 Getting Help

8. Getting Help

The Symbolics-Lisp environment contains many help facilities. This chapter
summarizes the facilities for finding out information about the program you are
writing and about the general state of your Lisp environment.

This chapter is a collection of the support tools and facilities available for finding the
kind of information that you need while programming. It is not exhaustive but
suggestive. It does not recommend strategies for applying these facilities but rather
lays out what is available for creating a personal style of using the Symbolics
computer effectively.

8.1 Reference Material

See the section "Using the Online Documentation System", page 119.

8.2 HELP Key

The key labelled" HELP looks up context-dependent documentation.

HELP

c-HELP

sy-HELP

SELECT HELP

FUNCTION HELP

Shows documentation available for the current activity. In some
programs, c-HELP, M-HELP, and so on, provide additional
documentation.

Shows a list of input editor commands (when typed at a Lisp
Listener).

Shows a list of the special function keys and the special character
keys.

Shows programs and utilities that you can select using the SELECT
key.

Shows a list of useful functions that you can invoke using the
FUNCTION key.

See the section ''HELP Key in Any Zmacs Editing Window'.

84

User's Guide to Symbolics Computers March 1985

8.3 Interaction with Completion and Typeout Windows

The Symbolics-Lisp software has some general interaction conventions. For example,
many editor commands offer name completion. You can apply these facilities to
exploring the command space of the machine. This section describes some general
facilities and strategies for making more effective use of the machine.

8.3.1 Zmac8 Completion

Zmacs minibuffer commands offer completion, a facility for reducing the number of
keys you need to type to specify a name. As soon as you have typed enough
characters for a name to be recognized as unique, you can ask for completion. Up
until then, you can ask to see which names are possible completions of what you
have typed. You can tell when completion is available; the notation "(Completion)"
appears at the right end of the minibuffer label line.

0.5.1.1 Compieiion ior Extended Cummands (m-i(Cuffifficiiidsj

The following table summarizes the keys that control completion for entering
extended commands.

Key Action in m-X commands
SPACE Completes the words up to the current word, as far as they are unique.
HELP or c-? Shows the possible completions in the typeout area.
(R) Pops up a menu of the possible completions.
c-/ Runs Apropos for each of the partially typed words in the name.
COMPLETE Displays the full command name, if possible.
RETURN .. END Confirms the command when possible, whether or not you have seen its

full name.

Request completion by typing either COMPLETE or RETURN. Using COMPLETE shows the
completed name, requiring a further RETURN to confirm it; using RETURN gets you
completion and confirmation in one step.

Any time you are typing in a Zmacs extended command name, completion is
available. Zmacs command name completion works on initial substrings of each word
in the command. For example, "m-X e z" is enough to specify the extended
command "Edit Zmacs Command".

Until Zmacs can recognize the name as unique, your request for completion just
completes as far as possible. Using COMPLETE at this point·moves the input cursor to
the first ambiguous place in the command name.

Whenever you are entering a name in a minibuffer that offers completion, you can
find out all possible completions of what you have typed so far. Two styles are
possible. Using HELP or c-? shows the list of completions in the typeout area; the
names are mouse sensitive. Using [(R)] shows the list in a pop-up menu. One good

85

March 1985 Getting Help

strategy for browsing is to look at the list of completions for initial substrings that
are common command verbs, like "list" or "set".

8.3.1.2 Completion for m-.

The M-. (Edit Definition) command offers completion over the set of names that is
in the files that have already been loaded into editor buffers. In this case, you
request completion with COMPLETE and then confirm it with RETURN.

M-. offers initial substring name completion, with hyphens rather than spaces
delimiting the words. For example, "e-d-i" would be sufficient for specifying
edit-definition-internal (assuming that Zmacs had previously parsed the source file
containing it into a buffer).

8.3.2 Completion in Other Contexts

Completion is available in several other contexts, for example, buffer names and
package names. Be on the lookout for the presence of "(Completion)" in the
minibuffer label line. The conventions for extended commands usually apply.

8.3.3 Typeout Windows in Zmacs

Most of the Zmacs commands for looking up information display the information in a
typeout window. A typeout window overlays the current buffer display with its
contents and disappears as soon as you type any character. Most typeout windows
contain mouse-sensitive items. In particular, Zmacs commands and Lisp function
specs are mouse sensitive and small menus of operations on the names are available
(Arglist, Edit Definition, and so on). See the mouse documentation line.

8.3.4 FEP Command Completion

While the keyboard is connected to the FEP, the following forms of completion are
available:

• Pressing the HELP key at the FEP prompt (Fep» or after typing part of the
first word of a command shows the commands understood by the FEP
command processor.

• Pressing the HELP key after typing the first word of a command shows a list of
commands that begin with that word. Example: set SPACE HELP gives a list
of commands that begin with the word set.

86

User's Guide to Symbolics Computers March 1985

8.4 Summary of Help Functions in Different Contexts

Both Zmacs and Lisp offer facilities for finding information either about themselves
or about the current environment. In addition, Zmacs offers ways to find
information about Lisp functions and variables.

This section lists the names of the functions and commands that are available,
grouped according to the context in which they are available. The purpose of this
section is to summarize the capabilities and to help you determine both the overall
contexts for which you can find help and a particular function that might be what
you are looking for. Explanations for each of these functions appear in an
alphabetical listing in the third part of this document.

8.4.1 Zmacs Commands for Finding Out About the State of Buffers

Edit Buffers (I"I-x)
Edit Changed Definitions (I"I-x)
Edit Changed Definitions Of Buffer (I"I-x)
List Buffers (c-X c-s)
List Changed Definitions (M-X)
List Changed Definitions Of Buffer (M-X)
List Definitions (M-X)
List Matching Lines (I"I-X)

Print Modifications (M-X)
Select System as Tag Table (I"I-X)
Tags Search (I"I-x)

8.4.2 Zmacs Commands for Finding Out About the State of Zmacs

Apropos (HELP A, I"I-X)
Describe Variable (I"I-x)
Edit Zmacs Command (I"I-x)
List Commands (M-X)
List Registers (M-X)

List Some Word Abbrevs (M-X)
List Tag Tables (M-X)

List Variables (M-X)
List Word Abbrevs (I"I-x)

8.4.3 Zmacs Commands for Finding Out About Lisp

Describe Variable At Point (c-sh-V)

Edit Callers (M-X)

Edit Definition (1"1-.)
Edit File Warnings (I"I~X)

March 1985

Function Apropos (M-X)
List Callers (M-X)
List Matching Symbols (M-X)
Long Documentation (c-sh-D)

Multiple Edit Callers (M-X)
Multiple List Callers (M-X)

Quick Arglist (c-sh-A)
Show Documentation (M-sh-D)
Show Documentation Function (M-sh-A)
Show Documentation Variable (M-sh-V)
Where Is Symbol (M-X)

8.4.4 Zmacs Commands for Finding Out About Flavors

Describe Flavor (M-X)
Show Documentation Flavor (M-sh-F)
Edit Combined Methods (M-X)
Edit Methods (M-X)

List Combined Methods (M-X)
List Methods (M-X)

8.4.5 Zmacs Commands for Interacting with Lisp

Break (SUSPEND)
Compile And Exit (M-2)
Compile Buffer (M-X)
Compile Changed Definitions (M-X)

Compile Changed Definitions Of Buffer (M-sh-C, M-X)
Compile File (M-X)
Compile Region (c-sh-C, M-X)
Compiler Warnings (M-X)
Edit Compiler Warnings (M-X)
Evaluate And Exit (c-M-2)
Evaluate And Replace Into Buffer (M-X)
Evaluate Buffer (M-X)
Evaluate Changed Definitions (M-X)
Evaluate Changed Definitions Of Buffer (M-sh-E, M-X)
Evaluate Into Buffer (M-X)
Evaluate Minibuffer (ESCAPE)
Evaluate Region (c-sh-E, M-X)
Evaluate Region Hack (M-X)

Evaluate Region Verbose (c-M-sh-E)
Load Compiler Warnings (M-X)
Macro Expand Expression (c-sh-M, M-X)
Trace (M-X)
Quit (c-2)

87

Getting Help

88

User's Guide to Symbolics Computers

8.4.6 Lisp Facilities for Finding Out About Lisp

(apropos string package inferiors superiors)
(arglist function flgg)
(describe object)
(describe-area area-name)
(describe-defstruct instance structure-name)
(describe-flavor flavor-name)
(describe-package package-name)
(describe-system system-name)
(disassemble function)
(documentation function)
(si:flavor-aIlowed-init-keywords flavor-name)
(inspect object)
(compiIer:load-compiler-warnings file flush-flag)
(mexp)
(trace specs)
(untrace specs)
(variable-boundp variable)
(what-files-caIl string package)
(where-is symbol package)
(who-caIls symbol package inferiors superiors)

8.5 Reference Description of Help Functions

March 1985

This section contains a summary paragraph of documentation for each of the
information-finding commands and functions appearing in the summary lists of this
document.

This reference list is in alphabetical order by name of the command or function.
Zmacs editor commands appear according to the names of the commands that
implement them, rather than according to the names of the keys that invoke them.
For example, !"'I-X Compile Buffer appears under "G" rather than under "M"; c-sh-A

appears under "Q" (because its name is Quick Arglist) rather than under "C". For
commands that are usually invoked by a single key rather than by !"'I-X, the key
name appears with the command. (Remember you can always use HELP W to find a
key name.)

Some Zmacs commands come in pairs, for example, List Callers and Edit Callers.
The commands are very similar. The List version allows you to just look at the list
or to decide to start editing the items in the list. The list items are always mouse
sensitive. For the Edit version of the command, c-. is always the command for
moving to the next item.

Apropos (HELP A, M-X)

March 1985

89

Getting Help

Displays all the Zmacs commands whose names contain a specified
substring. You type the substring. Zmacs displays one line of
documentation for the command and which key invokes it in the
current context, if any.

(apropos string package inferiors superiors)
Displays all of the symbols whose print names contain the string.
By default, it looks in the global package and its descendants, but
you can specify a package name. For symbols that have function
bindings, it displays the argument list. For symbols that are
bound, it displays a notation "Bound". apropos returns the list
of symbols that it found.

(apropos "forward" 'zwei)

(arglist function 11!JJI.) (see also Quick Arglist)
Returns a representation of the arguments that the function
expects. When the original function definition contained an
arglist declaration, arglist returns that list when flag is not
specified or nil. When flag is not nil, then arglist returns the
real argument list from the function. When the original function
used a values declaration, arglist returns the names for the
values returned by the function.

(arglist -make-array)

You cannot use arglist to fmd the arguments for combined
methods.

Break (SUSPEND) Enters a Lisp Listener from the current window. It uses the
·screen area of the frame that was selected when you used
SUSPEND. When you use it from the editor, any Lisp forms you
type are evaluated in the current package (the one showing in the
status line). Use RESUME to return to the original context.

c-M-sh-E See Evaluate Region Verbose.

c-sh-A See Quick Arglist.

c-sh-C See Compile Region.

c-sh-D See Long Documentation.

c-sh-E See Evaluate Region.

c-sh-V See Describe Variable At Point.

Compile And Exit (M-2)

Compiles the buffer and returns from top level. It selects the
window from which the last (ed) function or the last debugger
c-E command was executed.

Compile Buffer (M-X)

Compiles the entire buffer. With a numeric argument, it compiles

90

User's Guide to Symbolics Computers March 1985

from point to the end of the buffer. (This is useful for resuming
compilation after a prior Compile Buffer has failed.)

Compile Changed Definitions (M-X)
Compiles any definitions that have changed in any Lisp mode
buffers. With a numeric argument, it queries individually about
whether to compile each changed definition.

Compile Changed Definitions Of Buffer (M-sh-C, M-X)
Compiles any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually about
whether to compile each changed definition.

Compile File (M-X) Compiles a file, offering to save it first. It prompts for a file name
in the minibuffer, using the file associated with the current buffer
as the default. It offers to save the file if the buffer has been
modified.

Compile Region (c-sh-C, M-X)

Compiies the region, or ii no region is defined, the current
definition.

Compiler Warnings (M-X) (see also Edit Compiler Warnings)
Puts all pending compiler warnings in a buffer and selects that
buffer. It loads the compiler warnings database into a buffer
called *Compiler-Warnings-l*, creating that buffer if it does not
exist.

(describe object) (see also inspect)
Displays available information about an object, in a format that
depends on the type of the object. For example, describing a
symbol displays its value, definition, and properties. describe
returns the object.

(describe 'time:get-time)

(describe-area area-name)
Displays attributes of the specified area.

(describe-area (%area-nurnber 'faa»
(describe-area 'working-storage-area)

(describe-defstruct instance structure-name)
Displays a description of the instance, showing the contents of
each of its slots. structure-name is not necessary for named
structures but must be provided for unnamed structures. When
you supply structure-name, you force the function to use that
structure name instead of letting the system figure it out; in
addition, it overrides the :describe option for structures that
know how to describe themselves.

Describe Flavor (M-X) (see also describe-flavor)

March 1985

91

Getting Help

Displays a description of a flavor. It reads a flavor name via the
mouse or from the minibuffer using completion. It displays a
description of the flavor in a typeout window. The description
includes names of flavors that the specified one directly depends
on and names of flavors that depend on it. It also displays the
documentation and the names of its instance variables.

(describe-flavor flavor-name) (see also Describe Flavor)
Displays descriptive information about a flavor.

(describe-flavor 'tv:basic-menu)

(describe-package package-name)
Displays information about a package.

(describe-package 'zwei)

That example is the same as this one:

(describe (pkg-find-package 'zwei»

(describe-system system-name)
Displays information about a system, including the name of the
file containing the system declaration and when the files in the
current version of the system were compiled.

Describe Variable (M-X)
Displays the documentation and current value for a Zmacs
variable. It reads the variable name from the minibuffer, using
completion.

Describe Variable At Point (c-sh-V)
Displays information, in the echo area, about the current Lisp
variable. The information includes whether the variable is
declared special, whether it has a value, what file defines it, and
whether it has documentation put on by defvar or defconst.
When nothing is available, it checks for lookalike symbols in other
packages.

(disassemble function) (see also mexp, Macro Expand Expression)
Displays the macro-instructions for the function. It does not work
for functions that are not compiled or that are implemented in
microcode, like cons or car.

(disassemble 'plus)

Use this function for things like finding clues about whether a
macro is being expanded correctly.

Edit Buffers (M-X) (see also List Buffers)
Displays a list of all buffers, allowing you to save or delete buffers
and to select a new buffer. A set of single character
subcommands lets you specify various operations for the buffers.
For example, you can mark buffers to be deleted, saved, or not

92

User's Guide to Symbolics Computers March 1985

modified. Use HELP to see further explanation. The buffer is
read-only; you can move around in it by searching and with
commands like c-N or c-P.

Edit Callers (M-X) (see also List Callers, Multiple Edit Callers)
Prepares for editing all functions that call the specified one. It
reads a function name via the mouse or from the minibuffer with
completion. By default, it searches the current package. You can
control the package being searched by giving the function an
argument. With c-u, it searches all packages; with c-U c-u, it
prompts for a package name. It selects the first caller; use c-.
(Next Possibility) to move to a subsequent definition. It takes
about 5 minutes to search all packages.

Edit Changed Definitions (M-X) (see also List Changed Definitions)
Determines which definitions in any Lisp mode buffer have
changed and selects the first one. It makes an internal list of all
the definitions that have changed in the current session and
selects the first one on the list. Use c-. (Next Possibility) to
move to a subsequent definition. Use a numeric argument to
control the starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

Edit Changed Definitions Of Buffer (M-X) (see also List Changed Definitions Of
Buffer)
Determines which definitions in the buffer have changed and
selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c-. (Next Possibility) to
move to subsequent definitions. Use a numeric argument to
control the starting point for determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.
3 Since the definition was last compiled, for each definition in

the buffer.

Edit Combined Methods (M-X) (see also List Combined Methods)
Prepares to edit the methods for a specified message to a specified
flavor. It prompts first for a message name, then for a flavor
name. It selects the first combined method component. Use c-.
(Next Possibility) to move to a subsequent definition. The
definitions appear in the order that they would be called when the
message was sent. Error messages appear when the flavor does
not handle the message and when the flavor requested is not a
composed, instantiated flavor.

93

March 1985 Getting Help

Edit Compiler Warnings (!"I-x) (see also Compiler Warnings)
Prepares to edit all functions whose compilation caused a warning
message. It queries, for each of the files mentioned in the
database, whether you want to edit the warnings for the
functions in that file. It splits the screen, putting the warning
message in the top window. The bottom window displays the
source code whose compilation caused the message. Use c-. (Next
Possibility) to move to a subsequent warning and source function.
Mter the last warning, it returns the screen to its previous
configuration.

Edit Definition (!"I-.)
Prepares to edit the definition of a function, variable, flavor, or
anything else defined with a "defsomething" special form. It
prompts for a definition name from the minibuffer . Name
completion is available for definitions in files that have already
been loaded into buffers. You can select a name by clicking the
mouse over a definition name in the current buffer. It selects the
buffer containing the definition for that name, first reading in the
file if necessary. With a numeric argument, it selects the next
definition that satisfies the most recent name given. It tells you
in the echo area when it finds more than one definition for a
name.

Edit File Warnings (!"I-X)
Prepares to edit any functions in a specified file for which
warnings exist. It prompts for a file name, which can be either a
source file or a compiled file. It splits the screen, putting a
warning message from the warnings database in the top window.
The bottom window displays the source code whose compilation
caused the message. If the database does not contain any
warnings for this file, it prompts for the name of a file containing
the warnings. Use c-. (Next Possibility) to move to a subsequent
warning and source function. Mter the last warning, it returns
the screen to its previous configuration.

Edit Methods (!"I-X) (see also List Methods)
Prepares to edit all the methods on any flavor for a particular
message. It prompts for a message name. It finds all the flavors
with handlers for the message, makes an intemallist of. the
method names, and selects the definition for the first one. Use
c-. (Next Possibility) to move to subsequent definitions.

Edit Zmacs Command (!"I-x)
Finds the source for the function installed on a key. You can
press any key combination or enter an extended command name.
Use a numeric argument to edit the function that implements a
prefix command (like I"l-X or c-x).

94

User's Guide to Symbolics Computers March 1985

Evaluate And Exit (c-M-2)
Evaluates the buffer and returns from top level. It selects the
window from which the last ed function or the last debugger c-E
command was executed.

Evaluate And Replace Into Buffer (M-X)
Evaluates the Lisp object following point in the buffer and
replaces it with its result.

Evaluate Buffer (M-X)
Evaluates the entire buf!er. With a numeric argument, it
evaluates from point to the end of the buffer.

Evaluate Changed Definitions (M-X)
Evaluates any definitions that have changed in any buffers. With
a numeric argument, it prompts individually about whether to
evaluate particular changed definitions.

Evaluate Changed Definitions Of Buffer (M-sh-E, M-X)

Evaluates any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually about
whether to evaluate particular changed definitions.

Evaluate Into Buffer (M-X)

Evaluates a form read from the minibuffer and inserts the result
into the buffer. You enter a Lisp form in the minibuffer, which
is evaluated when you press END. The result of evaluating the
form appears in the buffer before point. With a numeric
argument, it also inserts any typeout that occurs during the
evaluation into the buffer.

Evaluate Minibuffer (M-ESCAPE)

Evaluates forms from the minibuffer. You enter Lisp forms in
the minibuffer, which are evaluated when you press END. The
value of the form itself appears in the echo area. If the form
displays any output, that appears as a typeout window.

Evaluate Region (c-sh-E, M-X)

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in the echo
area.

Evaluate Region Hack (M-X)
Evaluates the region, ensuring that any variables appearing in a
defvar have their values set. When no region has been defined,
it evaluates the current definition. It shows the results in the
echo area.

Evaluate Region Verbose (c-M-sh-E)

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in a typeout
window.

95

March 1985 Getting Help

(flavor-allowed-init-keywords flavor-name) (In si:)
Returns a list containing the init keywords and inittable instance
variables allowed for a particular flavor.

(si:flavor-allowed-init-keywords'tv:basic-menu)

Function Apropos (M-X)

Displays all the Lisp functions whose print names contain a
particular substring. It reads the substring from the minibuffer.
By default, it searches the current package. You can control the
package being searched by giving the function an argument. With
c-u, it searches all packages; with c-U c-u, it prompts for a
package name.

(inspect object) (see also describe)
Creates or selects an Inspector window and displays available
information about an object. inspect and describe provide
similar information, except that inspect is an interactive facility
for further exploring a data structure.

(inspect tv:selected-window)
(inspect (tv:window-under-mouse»

List Buffers (c-X c-s) (see also Edit Buffers)
Prints a list of all the buffers and their associated files. The lines
in the list are mouse sensitive, offering a menu of operations on
the buffers. Clicking left on a line selects the buffer. For buffers
with associated files, the version number of the file appears. For
buffers without associated files, the size of the buffer in lines
appears. For Dired buffers, the pathname used for creating the
buffer appears as the version. The list of buffers appears sorted
in order of last access, with the currently selected one at the top.
You can inhibit sorting by setting zwei:*sort-zmacs-buffer-list*
to nil.

List Callers (M-X) (see also Edit Callers, Multiple List Callers)
Lists all functions that call the specified function. It reads a
function name via the mouse or from the minibuffer with
completion. By default, it searches the current package: You can
con trol the package being searched by giving the function an
argument. With c-u, it searches all packages; with c-U c-u, it
prompts for a package name. The names are mouse sensitive.
Use c-. (Next Possibility) to start editing the definitions in the
list. It takes about 5 minutes to search all packages.

List Changed Definitions (M-X) (see also Edit Changed Definitions)
Displays a list of any definitions that have been edited in any
buffer. Use c-. (Next Possibility) to start editing the definitions
in the list. Use a numeric argument to control the starting point
for determining what has changed:

96

User's Guide to Symbolics Computers March 1985

1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

List Changed Definitions Of Buffer (M-X) (see also Edit Changed Definitions Of
Buffer)
Displays the names of definitions in the buffer that have changed.
It makes an internal list of the definitions changed since the
buffer was read in and offers to let you edit them. Use C-. (Next
Possibility) to move to subsequent definitions. Use a numeric
argument to control the starting point for determining what has
changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.
3 Since the definition was last compiled, for each definition in

the buffer.

List Combined Methods (M-X) (see also Edit Combined Methods)
Lists the methods for a specified message to a specified flavor. It
prompts first for a message name, then for a flavor name. It lists
the names in a typeout window. Error messages appear when
the flavor does not handle the message and when the flavor
requested is nota composed, instantiated flavor. Use C-. (Next
Possibility) to start editing the definitions in the list.

List Commands (M-X)
Lists names and one;.line summaries for all extended commands
available in the current context. It displays the names in a
typeout window. The list is not sorted.

List Definitions (M-X)
Displays the definitions from a specified buffer. It reads the
buffer name from the minibuffer, using the current buffer as the
default. It displays the list as a typeout window. The individual
definition names are mouse sensitive."

List Matching Lines (M-X)
Displays all the lines following point in the current buffer that
contain a given string. It prompts for the string in the
minibuffer. With a numeric argument, it shows only the first n
occurrences of the string following point. The lines are mouse
sensitive.

List Matching Symbols (M-X)

Lists the symbols that satisfy a predicate. It prompts for a
predicate lambda expression of one argument. The predicate gets
compiled, for speed. The predicate must return something other
than nil for the symbol to be included in the list. For example

March 1985

you pressed: M-X L M S
minibuffer contains: ' (LAMBDA (SYMBOL»

97

Getting Help

revised minibuffer: '(LAMBDA (SYMBOL) (string-search "foo"
symbol»

By default, it searches the current package. You can control the
package being searched by giving the function an argument. With
c-u, it searches all packages; with c-U c-u, it prompts for a
package name. It selects the first one; use c- . (Next Possibility)
to move to a subsequent definition.

List Methods (M-X) (see also Edit Methods)
Lists all the function specs for all methods on any flavor that
handle a particular message. It prompts for the message name. It
finds all the flavors with methods for the message and displays
the information in a typeout window. The function specs are
mouse sensitive.

List Registers (M-X)
Displays names and contents of all defined registers. Use Apropos
to see commands for manipulating registers.

List Some Word Abbrevs (M-X)
Lists the abbreviations or expansions that contain the given
string. Use Apropos to see the other abbreviation commands.

List Tag Tables (M-X)
Lists the names of all the tag tables currently available. Use
Apropos to see other commands using tags.

List Variables (M-X)
Lfsts all Zmacs variable names and their values. With a numeric
argument, it also displays the documentation line for the variable.
Zmacs variables are those that have been provided for customizing
the editor. Their names differ from their internal Lisp names:

List Word Abbrevs (M-X)

Zmacs variable name: Fill Column
Internal Lisp name: zwei:*fill-column*

Lists all current abbreviations and their expansions.

(load-compiler-warnings file flush-flag) (In compiler:) (see also Load Compiler
Warnings)
Loads a file containing compiler warning messages into the
warnings database. It expects to load a file containing the printed
representation of compiler warnings (as saved by
print-compiler-warnings). It uses flush-flag to determine
whether to replace any of the warnings already in the database.
When the flag is not nil, it deletes any warnings associated with
a source file before loading any new warnings for that file.
Otherwise, it merges warnings from the file with those already in
the warnings database. The default is t.

98

User's Guide to Symbolics Computers March 1985

Load Compiler Warnings (!"'I-x) (see also compiler:load-compiler-warnings)
Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that
contains the printed representation of compiler warnings. It
always replaces any warnings already in the database.

Long Documentation (c-sh-D) (see also Show Documentation)

M-ESCAPE

M-sh-A

M-sh-C

M-sh-D

M-sh-E

M-sh-F

M-sh-V

Displays the summary documentation for the specified Lisp
function. It prompts for a function name, which you can either
type in or select with the mouse. The default is the current
function.

See Edit Definition.

See Evaluate MiniBuffer.

See Show Documentation Function.

See Compile Changed Definitions Of Buffer.

See Show Documentation.

See Evaluate Changed Definitions Of Buffer.

See Show Documentation Flavor.

See Show Documentation Variable.

Macro Expand Expression (c-sh-M, M-X)
Displays the macro expansion of the next Lisp expression in the
buffer. It reads the Lisp expression following point and expands
all macros within it at all levels, displaying the result on the
typeout window. With a numeric argument, it pretty-prints the
result back into the buffer, immediately following the expression.

(mexp) (see also disassemble)
Displays the expansion of a macro. It prompts for a macro
invocation to expand and then displays its expansion without
evaluating it. It continues prompting until you enter something
that is not a cons (for example, 0 stops it.)

Multiple Edit Callers (M-X) (see also Edit Callers)
Prepares for editing all functions that call the specified ones. It
reads a function name from the minibuffer, with completion. It
then keeps asking for another function name until you end it
with just RETURN. By default, it searches the current package.
You can control the package being searched by giving the function
an argument. With c-u, it searches all packages; with c-u c-u, it
prompts for a package name. It selects the first caller; use c-.
(Next Possibility) to move to a subsequent definition.

Multiple List Callers (M->O (see also List Callers)
Lists all the functions that call the specified functions. It reads a

March 1985

99

Getting Help

function name from the minibuffer, with completion. It continues
prompting for a function name until you end it with just RETURN.
By default, it searches the current package. You can control the
package being searched by giving the function an argument. With
c-u, it searches all packages; with c-u c-U, it prompts for a
package name. Use c-. (Next Possibility) to start editing the
definitions in the list.

Print Modifications (M-X)

Displays the lines in the current buffer that have changed since
the file was first read into a buffer. With a numeric argument, it
displays the lines that have changed since the last save. To
provide context, it shows the fJIst line of each section that
contains a change, whether or not that line has changed. The
lines are mouse sensitive, allowing you to move to the location of a
change.

Quick Arglist (c-sh-A) (see also arglist)
Displays the argument list for the current function. With a
numeric argument, it reads the function name via the mouse or
from the minibuffer. When the original function uses a values
declaration, Quick Arglist returns the names for the values
returned by the function.

Quit (c-2) Returns from top level. It selects the window from which the last
(ed) function or the last debugger c-E command was executed.

Select Some Buffers as Tag Table (M-X)

Creates a tag table by selecting some buffers currently read in,
querying about each one. With a numeric argument, it asks only
about buffers whose name contains a given string.

Select System as Tag Table (M-X)
Creates a tag table for all the files in a system. It uses the file
names as they appear in the defsystem function for that system.

Show Documentation (M-X, M-sh-D)
Looks up a topic from the documentation database and displays it
on a typeout window. It offers the current definition as a default,
but prompts for a definition, which can be supplied by mouse or
minibuffer. It accepts only those topics for which documentation
has been installed.

Show Documentation Flavor (M-sh-F)
Displays the documentation for the current flavor. With a
numeric argument, it prompts for a device. The devices currently
supported are the screen and an LGP printer.

Show Documentation Function (r.-sh-A)
Displays the documentation for the current function. With a

100

User's Guide to Symbolics Computers March 1985

numeric argument, it prompts for a device. The devices currently
supported are the screen and an LGP printer.

Show Documentation Variable (M-sh-V)
Displays the documentation for the current variable. With a
numeric argument, it prompts for a device. The devices currently
supported are the screen and an LGP printer.

Tags Search (M-X) Searches all files in a tags table for a specified string. It reads
the string from the minibuffer and then prompts for a tags table
name.

Trace (!"'I-x) (see also untrace)
Toggles tracing for a function. With a numeric argument, it
simply enables tracing for some function, without prompting you
for trace options. It uses the same interface for specifying options
as the Trace program in the System menu. See the section
"Tracing Function Execution" in Program Development Utilities.

(trace specs) (see also untrace)
Turns on tracing for a function. With no arguments, it returns a
list of all things currently being traced. With no additional
options, tracing displays the name and arguments for a function
each time it is called and its name and value(s) each time it
returns. Complex options are available for entering breakpoints or
executing code conditionally during tracing. See the section
"Tracing Function Execution" in Program Development Utilities.
See the section "Trace" in Text Editing and Processing.

(trace faa bar)
(trace #'(:method command-found :push»

Tracing very common functions (like fonnat) or functions used by
trace itself or by the scheduler (like time:get-time) can crash
the machine.

(untrace specs) Turns off tracing for a function that is being traced. With no
argument, it turns off tracing for all functions currently being
traced.

(variable-boundp variable)
Returns nil or t indicating whether or not the variable is bound.

(variable-boundp tv:current-window>

(what-files-call symbol package)
Displays the names of files that contain uses of symbol as a
function, variable, or constant. It searches all the function cells of
all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the pathnames
of the files containing the callers.

101

March 1985 Getting Help

Where Is Symbol (!"I-x)
Displays the names of packages that contain symbols with the
specified name.

(where-is string package)
Displays the names of all packages that contain a symbol whose
print name is string. It ignores the case of string. By default, it
looks in the global package and its descendants. where-is returns
a list of the symbols that it finds.

(where-is "foobar")

<who-calls symbol package inferiors superiors)
Displays a line of information about uses of the symbol as a
function, variable, or constant. It searches all the function cells of
all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the names of the
callers.

(who-calls 'time:get-time 'hacks)

8.6 Editing Your Input

When you make a mistake in typing or change your mind when typing a command
or expression to the system, you have two choices:

• Press ABORT and begin again.

• Edit your input.

You do not need to invoke the input editor explicitly. RUBOUT and many simple
Zmacs commands such as c-A, c-D, c-E, !"I-F, and !"I-B are always available.

A history of all the commands you have typed is maintained and you can recall
previous commands for editing and re-submission. See the section "Command
History", page 15.

8.6.1 How the Input Editor Works

The input editor is a feature of all interactive streams, that is, streams that connect
to terminals. Its purpose is to let you edit minor mistakes in typein. At the same
time, it is not supposed to get in the way; Lisp is to see the input as soon as you
have typed a syntactically complete form. The defmition of "syntactically complete
form" depends on the function that is reading from the stream; for read, it is a
Lisp e~pression. This section describes the general protocol used for communication
between the input editor and reading functions such as read and readline.

By reading {unction we mean a function that reads a number of characters from a

102

User's Guide to Symbolics Computers March 1985

stream and translates them into an object. For example, read reads a Lisp
expression and returns an object. readline reads a line of characters and returns a
string as its first value. Reading functions do not include the more primitive :tyi
and :any-tyi stream operations, which take and return one character or blip from
the stream.

The tricky thing about the input editor is the need for it to figure out when you are
all done. The idea of an input editor is that as you type in characters, the input
editor saves them up in an input buffer so that if you change your mind, you can
edit them and replace them with different characters. However, at some point the
input editor has to decide that the time has come to stop putting characters into the
input buffer and let the reading function start processing the characters. This is
called "activating".

The right time to activate depends on the function calling the input editor, and
determining it may be very complicated. If the function is read, figuring out when
one Lisp expression has been typed requires knowledge of all the various printed
representations, what all currently defined reader InaCl'OS do, WId so 011. The input
editor should not have to know how to parse the characters in the input buffer to
figure out what the caller is reading and when to activate; only the caller should
have to know this. The input editor interface is organized so that the calling
function can do all the parsing, while the input editor does all the handling of
editing commands, and the two are kept completely separate.

Following is a summary of how the input editor works. The input editor used to be
called the rubout handler, and some operations and variables still have "rubout­
handler" in their names.

When a reading function is called to read from a stream that supports the
:input-editor operation, that function "enters" the input editor. It then goes ahead
:tyi'ing characters from the stream. Because control is inside the input editor, the
stream echoes these characters so the user can see the input. (Normally echoing is
considered to be a higher-level function outside of the province of streams, but when
the higher-level function tells the stream to enter the input editor it is also handing
it the responsibility for echoing). The input editor is also saving all these characters -
in the input buffer, for reasons disclosed in the following paragraph. When the
reading function decides it has enough input, it returns and control "leaves" the
input editor. That was the easy case.

If you press RUBOUT or a keystroke that represents another editing command, the
input editor processes the command and lets you insert characters before the last
one in the line. The input editor modifies the input buffer and the screen
accordingly. Then, when you type the next nonediting character at the end of the
line, a throw is done, out of all recursive levels of read, reader macros, and so
forth, back to the point where the input editor was entered. Now the read is tried
over again, rereading all the characters you had typed and not rubbed out, but not
echoing them this time. When the saved characters have been exhausted, additional
input is read from you in the usual fashion.

103

March 1985 Getting Help

The input editor has options that can cause the throw to occur at other times as
well. With the :activation option, when you type an activation character a throw
occurs, a rescan is done if necessary, and a final blip is returned to the reading
function. With the :preemptable and :command options, a blip or special
character in the input stream causes control to be returned from the input editor
immediately, without a rescan. These options let you process mouse clicks or special
keystroke commands as soon as they are read.

The effect of all this is a complete separation of the functions of input editing and
parsing, while at the same time mingling the execution of these two functions in
such a way that input is always "activated" at just the right time. It does mean
that the parsing function (in the usual case, read and all macro-character
definitions) must be prepared to be thrown through at any time and should not
have nontrivial side-effects, since it may be called multiple times.

If an error occurs while inside the input editor, the error message is printed and
then additional characters are read. When you press RUBOUT, it rubs out the error
message as well as the last character. You can then proceed to type the corrected
expression; the input is reparsed from the beginning in the usual fashion.

104

User's Guide to Symbolics Computers March 1985

105

March 1985 When and How to Use the Garbage Collector

9. When and How to Use the Garbage Collector

The garbage collector is a program in the Symbolics-Lisp system that automatically
finds, tracks, and recovers memory occupied by unused objects (garbage) in the
current Lisp world. It is a particular implementation of automatic storage
management, meaning that programmers (and also nonprogrammer users of the
system) can do things that allocate, use, and discard large amounts of virtual
memory, without having to pay any attention to the management of the memory.
In systems without this feature, most large-scale uses of virtual memory have to be
managed "manually" (under control of a user program); manual storage management
is difficult and error-prone because it is quite difficult for a program to "prove" that
an object really is of no use to any other system component.

Automatic storage management also has the desirable effect of lengthening the
"session" you spend with a particular world between cold boots. Without it, most
normal uses of a Lisp system will exhaust virtual memory rather quickly. With it,
normal use (whether or not for programming) is longer and more convenient.

When the usual, incremental garbage collector is operating, the Scavenger periodically
goes through virtual memory, looking for objects that can be proven not to be
garbage. These "good" objects are transported to a safe place, and the memory
occupied by the garbage is reclaimed automatically. In the meantime, new objects
can still be created. (More extensive information on automatic storage management
is available elsewhere; See the section "Operation of the Garbage Collector" in
Internals, Processes, and Storage Management.)

There are different kinds of garbage collection available in Symbolics-Lisp. All
require some additional virtual memory for their own use. Until the scavenging
process is complete, running with the garbage collector can require up to twice as
much space as running without the garbage collector (depending on how much of old
space was garbage, compared to how much had to be copied). If you have been
running without the garbage collector for a long time, you might not have enough
room to successfully run the garbage collector and collect all the garbage. If the
garbage collector is not operating, the system sends notifications as you approach a
certain percentage full. See the section "Storage Requirements for Garbage
Collection" in Internals, Processes, and Storage Management.

The command Show GC Status allows you to check on how much free space you
have and determine whether or not you should turn on the garbage collector.

Show GC Status

Status of the ephemeral garbage collector: On
First level of WORKING-STORAGE-AREA: capacity 196K, 416K allocated, 10K used.
Second level of WORKING-STORAGE-AREA: capacity 9BK, 256K allocated, 137K used.

106

User's Guide to Symbolics Computers March 1985

Status of the dynamic garbage collector: On
Dynamic (new+copy) space 1,746,767. Old space O. Static space 6,856,801.
Free space 6,957,056. Committed guess 6,559,133, leaving 135,779 to use

before flipping.
There are 2,343,001 words available before (GC-IHHEDIATElV) might run out of
space.
Doing (GC-IHHEDIATElV) now would take roughly 14 minutes.
There are 6,957,056 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full
Scavenging during cons: On, Scavenging when machine idle: On
The GC generation count is 2 (1 full GC, 0 dynamic GC's, and 1 ephemeral Ge).
Evaluate (CHOOSE-GC-PARAHETERS) to examine or modify the GC parameters.

The command Start GC turns on the garbage collector.

Start GC keywords

Turns on the garbage collector.

keywords can be:

: dynamic

: ephemeral

: immediately

Dynamic Level of incremental GC.

Ephemeral Level of incremental GC.

Perform a complete garbage collection right
now.

Start GC :ephemeral is recommended for general purposes. This cleans up after you
as you work, keeping virtual memory requirements for garbage collecting to a
minimum. When, in spite of scavenging, enough garbage has accumulated, you
receive a notification. At that point you can use Start GC :immediately to do a
complete garbage collection. See the section "Ephemeral-object Garbage Collection"
in Internals, Processes, and Storage Management.

107

March 1985 How to Get Hardcopy

10. How to Get Hardcopy

10.1 Commands for Producing Hardcopy

You can produce hardcopy using the System Menu, from the editor, from Zmail,
from Dired in the editor, and from the file system editor. You can also get a
hardcopy of your screen at any time.

In order for menu items, commands, and functions that refer to printing and
hardcopy to work, your site must have a properly connected printing device.
Printers are objects in the namespace database. See the section "Namespace System
Printer Objects" in Networks.

10.1.1 Hardcopying From the System Menu

To produce hardcopy using the System Menu, click on [Hardcopy]. This pops up a
menu that allows you to specify the pathname of the file to be hardcopied, the
printer to send it to, and some options for format.

10.1.2 Hardcopying From Zmacs

You can hardcopy a region, a buffer, or a file from Zmacs.

Hardcopy Region (M-X)

Sends a region's contents to the local hardcopy device for printing.

Hardcopy Buffer (M-X)

Prompts for the name of a buffer and then prints the specified buffer on the local
hardcopy device.

Hardcopy File (M-X)

Sends a file to the local hardcopy device for printing.

Kill Or Save Buffers (M-X)

Puts up a multiple-choice menu listing all existing buffers. Choices are: Save, Kill,
Unmodify, and Hardcopy. Specify these options next to the buffer names in the
menu. This command appears on the editor menu.

108

User's Guide to Symbolics Computers March 1985

10.1.3 Hardcopying From Zmail

You can hardcopy a single message or a collection of messages from Zmail.

Action Command
One message [Move / Hardcopy]

Click right on its summary line
then [Move / Hardcopy]

All messages in current sequence [Map over / Move / Hardcopy]

In any of these commands you can use [Hardcopy (R)] to get a menu that permits
you to specify the number of copies, the font, and which printer to use. The Other
option in the list of printers allows you to specify an arbitrary printer, using either
its pretty name or its namespace name. This printer becomes the selected printer,
and remains in the menu for subsequent hardcopy commands.

10.1.4 Hafcicopying From Direci

You can mark files to be hardcopied in Dired. When you exit from Dired, the files
marked to be hardcopied are sent to the printer.

p Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first column to show that
the file has been so marked.

With a numeric argument n, marks the next n files for printing.

10.1.5 Hardcopying the Screen

You can get a hardcopy of what is displayed on your screen by pressing FUNCTION Q:

Q Hardcopies the entire screen.

c-Q Hardcopies the selected window.

M-Q Hardcopies the entire screen, minus the status and mouse
documentation lines.

10.1.6 Hardcopying From the File System Editor

You can invoke the system hardcopy menu from FSEdit. You click on Hardcopy in
the menu of file operations invoked by clicking right on a file name.

109

March 1985 How to Get Hardcopy

10.2 Checking the Status of Hardcopy Devices

You can find out the status of a hardcopy device in Zmacs:

Show Hardcopy Status (M-X)

Show the status of a hardcopy device or all of them.

110

User's Guide to Symbolics Computers March 1985

111

March 1985 Understanding Networks and the Namespace System

11. Understanding Networks and the Namespace
System

11.1 Introduction to the Namespace System

When computers are connected by means of networks to form a distributed
computing environment, the computers should all be able to share information that
describes that environment. For example, all the computers need to know or be able
to find out about the names and addresses of the other computers to which they
can communicate. A personal workstation computer might want to know what
printers are available on which server computers. A computer trying to send mail to
a particular user might want to know on which computer that user's mailbox resides
on.

The Symbolics Lisp Machine system has a convention by which such information can
be maintained and shared in a simple database. The database is maintained by a
namespace seroer. Other systems can query or make changes to the database by
communicating over the network with the server. This database is the namespace
database, a specific example of a distributed network database. Both the more
specific term names pace database and the generic term network database are used to
refer to it. However, in general, names pace database refers to the Symbolics
implementation of network databases and namespace system refers to the namespace
database and the tools to use it.

The database is structured to understand that there can be many different networks
in a distributed environment, and so there are network objects to represent different
networks. Hosts can be on more than one network, and some hosts that are on
two networks can serve as gateways from one network to the other. One of the
purposes of the database is to let a user host find a path to a server host, using
whichever networks and gateways are necessary.

The database is designed so that it is not specific to the Lisp Machine; in theory,
any computer system could be made to use the database, and act as a user or
server.

The database consists of a collection of objects. Each object has
• A class. See the section "N amespace System Classes", page 112.
• Attributes. See the section "Namespace System Attributes", page 112.
• A name. See the section "Names and Namespaces", page 113.

All objects except namespaces themselves are added to the namespace database by
using the namespace editor, which is invoked with Edit Namespace Object (or from
Lisp with tv:edit-namespace-object). See the section "Updating the Namespace
Database", page 116.

112

User's Guide to Symbolics Computers March 1985

11.1.1 Namespace System Classes

Every object has a class, which tells what kind of object it is. Every class is
identified by a global-name.

The following classes are especially important to the Lisp Machine system:

host

user

network

printer

site

namespace

A host object represents any computer, usually connected to a
network.

A user object represents a person who uses any of the hosts, or a
daemon user, for example, a Lisp Machine.

A network object represents a computer network, to which some
hosts are attached.

A printer object represents a device for producing hardcopy.

A site object represents a collection of hosts, printers, and
networks that are grouped together in one physical location.

A namespace object represents a mapping from names of objects
to objects.

11.1.2 Namespace System Attributes

Attributes represent characteristics of the object. Each attribute has an indicator
(the name of the attribute) and a value; they work like property lists in Lisp. For
example, every host has a system-type (saying which operating system it runs), every
printer has a type (saying what type of printer it is), and every user has a personal­
name.

Each object class has one or more required attributes. However, most attributes are
optional; for example, hosts can optionally have a pretty-name, printers can have a
default-font, and a user can have a home-address. Some attributes can occur more
than once for a given object; for example, a host object can have multiple addresses
if it is attached to more than one network.

Each object has a fixed set of attributes: you cannot' create additional attributes.

11.1.3 Data Types of Namespace System Attributes

Each class has attributes that are defined to have specific data types. Since the
actual representation of the various types of data represented in the database varies
from system to system, the namespace system uses the following system-independent
types:

March 1985

Data type
object-class

name

global-name

token

set

pair

triple

113

Understanding Networks and the Namespace System

Value

An object in the database, for example, a site object. See the
section "Namespace System Classes", page 112.

A name in some namespace; name is not shared by all
namespaces.

A name which is not specific to a particular namespace but is
shared by all namespaces.

An arbitrary character string.

An ordered set of elements of the same data type. For example,
a value can be a set of names or a set of triples.

A list of two elements of specific data types; each element can be
of a differf3nt data type.

A list of three elements; each element can be of a different data
type.

Name, global-name, and token require simple values, whereas set, pair, and triples
require compound values.

Note: The namespace data types specific to the Lisp Machine are described
elsewhere: See the section "Namespace System Lisp Data Types" in Networks.

11.1.4 Names and Namespaces

Every object has a name, which is a character string. Two objects of different
classes can have the same name; for example, there can be a printer named george
and a user named george; the two are unrelated. An object is identified by its class
and its name; if you want to look up an object in the database and you know its
name, you have to say "Find the printer named george" or "Find the user named
george", not just "Find george".

When long-distance networks are used to link together different sites, however, the
possibility of name conflicts arises; that is, two sites may use the same name in the
same class for conflicting purposes. For example, suppose you had a host named
orange, and you wanted to connect your site over a long-distance network to some
other site that happens to have picked the name orange for one of its own hosts.
Neither site is forced to change its host names just because it wants to connect to
the other site.

To avoid these naming conflicts, the database can include more than one namespace.
A namespace is a mapping from names to objects, and names in one namespace are
unrelated to names in another namespace. (More strictly, it is a mapping from
[name, class] pairs to objects, since an object is identified by its class and its name.)
Normally each site has one namespace, and the names of all the objects at that site
are in that namespace. An object in some other namespace than your own
namespace can be referred to using a qualified name, which consists of the name of
the namespace, a vertical bar, and the name of the object in that namespace.

114

User's Guide to Symbolics Computers March 1985

For example, suppose both Harvard and Yale had computer centers. Harvard has
three hosts named yellow, orange, and blue, and Yale has three hosts named apple,
orange, and banana. Each computer center would have its own namespace, one
named harvard and one named yale. At Harvard, the Harvard computers would be
referred to by their unqualified names (yellow, orange, and blue), whereas the Yale
computers would be referred to (by users at Harvard) by qualified names (yale I apple,
yalelorange, and yale I banana). At Yale it would all work the other way around.

Each namespace also has a list of namespaces called search rules. When a name is
looked up, each of the namespaces in the search rules list is consulted in turn, until
an object of that name is found in one of the namespaces. If you have some other
namespace in your search list, it is easier to refer to objects in that namespace,
because you do not have to use qualified names unless a name conflict exists.

For example, in the scenario above, the search list for the harvard namespace could
have the harvard namespace first and the yale namespace second. Then users at
Harvard could refer to Yale's computers as apple, yalelorange, and banana. The
qualified na..~e is only necessary beceuse of the !!9...l!le co!!f1ict.

Actually, only some classes of objects have names that are in namespaces; other
classes of objects are globally named, which means that the names are universal,
and conflicts are not permitted. In particular, classes, namespaces, and sites are
globally named; networks, hosts, printers, and users are named within namespaces.
There is never a need for multiply-qualified names; the names of namespaces are
global and never need to be qualified themselves.

Some namespaces do not correspond to any local site. Most large nationwide or
worldwide networks have their own host naming convention. For example, the
Department of Defense Arpanet has its own set of host names, and this is
considered a namespace. If a local site includes some hosts that are on the Arpanet,
it might want to put the Arpanet namespace into its search list, and install
gateways on its Arpanet machine so that other machines on the local network can
access the Arpanet.

Some objects can also have nicknames. In particular, networks and hosts can have
nicknames; objects of other classes cannot. A nickname serves as an alternative
name by which the object can be referred. Sometimes you give an object a
nickname because its full name is too long to type conveniently, like some host
whose name you type frequently. However, each object always has one primary
name, which is used when the object is printed.

It is possible for an object to be in several namespaces at once. For example, a host
which is on both the Arpanet and a local network at some site might be in both the
Arpanet namespace and the local namespace. In this case, each namespace
maintains its own separate information on the object. The information from each
namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a

115

March 1985 Understanding Networks and the Namespace System

name and Yale's namespace is in Harvard's search list, Yale's search list is not
relevant.

11.2" Using the Network

If your machine is on a network and configured properly, you access the network
with the terminal program.

The terminal program is available on SELECT T. Since it uses the generic network
system, it allows access (in the presence of appropriate gateways) via autodialers to
dialups, as well as direct Chaosnet and TCP through a gateway.

The prompt is Connect to host:. To this you simply type the name of any host.
(Naming of hosts, setting up host databases, declaring host addresses and supported
login services are covered in the network documentation.) The network system picks
the best login service supported by the host and the optimum route to it. Pressing
HELP in response to the initial prompt gives you input editor documentation.

Once connected, commands are given by pressing NETWORK and another single
character.

The following commands are available:

A

D

L

Q
M

send an ATTN (in Telnet, a new Telnet "Interrupt Process").

Disconnect.

Log out of remote host, and break the connection.

Disconnect and deselect this window. (Quit)

Toggle MORE processing.

More complicated commands are entered with the extended command, NETWORK X.

This command uses a choose variable values window.

NETWORK X provides the capability to change the following:

• the escape character

• whether characters overstrike or erase

• whether MORE processing is enabled

• in the case of Telnet, whether Imlac terminal codes are interpreted in host
output

• a facility for logging host output to a file (wallpaper).

116

User's Guide to Symbolics Computers March 1985

You must be connected to a host before pressing NETWORK X.

See the section "Using the Terminal Program with Hosts Connected to the Serial
Line" in Reference Guide to Streams, Files, and I/O.

11.3 Updating the Namespace Database

When you modify the namespace database, you use the command Edit N amespace
Object or evaluate the form (tv:edit-namespace-object). Figure 8 shows the initial
window.

Help
View

Add Namespace

EdIt.
Copy

Locally

Top

Save
Delete
Quit .0 current obJect. Cl,ck on Ed,t, V,ew, or Create.

Figure 8. Namespace Object Editor Window

Creat.e
Primary Name

The top pane is where the information about an object is displayed. The bottom
pane is for prompting for new information. The middle pane is the command menu.
The available commands are:

Help Displays a brief explanation.

March 1985

View

Edit

Locally

Save

Delete

Create

Quit

Copy

Add N amespace

Primary Name

117

Understanding Networks and the Namespace System

Displays information about an object for inspection but not
editing.

Displays information about an object for editing.

Toggles whether to edit the local or global copy of the information
for an object. The initial state is global. ·

Saves the current information about an object.

Remove an object from the database.

Add a new object to the database.

Exit from the namespace editor, without saving the current
information. ([Save] should be used before [Quit] when you want
to save information.

Create a new object by copying the current one.

Add an existing object to a new namespace.

Change the primary name of the current object.

11.3.1 Editing a Namespace Object

To edit an existing namespace object, click on [Edit]. A menu of object classes pops
up. Click on the class of object you want to edit. You are prompted for the name
of an object to edit. The information for the object is retrieved and displayed in the
top window. The fields are mouse sensitive. Clicking on a field prompts you for
information in the bottom window. Clicks have the following meaning:

Left

Middle

Right

Replace the information in the field.

Delete information in the field.

Edit the information in the field.

The window can be scrolled. See the section "Scrolling with the Mouse", page 149.

When you are satisfied with the information, click on [Save] to enter it in the
database. Click on [Quit] to exit the namespace editor.

11.3.2 Creating a New Namespace Object

To create a new namespace object, click on [Create]. A menu of object classes pops
up. Click on the class of object you want to create. A template for the information
is displayed in the top window. The fields are mouse sensitive. Clicking on a field
prompts you in the bottom window for the information to put in the field.

You can also create a new object by copying an existing object by clicking on [Copy]
and then editing the object as appropriate.

118

User's Guide to Symbolics Computers March 1985

The window can be scrolled. See the section "Scrolling with the Mouse", page 149.

When you are satisfied with the information, click on [Save] to enter it in the
database. Click on [Quit] to mdt the namespace editor.

119

March 1985 Using the Online Documentation System

12. Using the Online Documentation System

12.1 Introduction to the Document Examiner

The Document Examiner is a utility for finding and reading documentation.

• Using the Document Examiner is not unlike using the printed documentation.
With the printed documentation, you can open a volume to any topic and read
through to the end of that topic. With the Document Examiner, you can also
"open" the documentation to any topic and read to the end of that topic.

• When you use the Document Examiner, you do not have to remember how
information is arranged; for example, you do not have to remember the section,
chapter, or printed book in which a particular function is explained. Each
function (and each section, chapter, or other division of printed information -
even entire books), is directly accessible.

• In addition to looking up documentation, you can create private
documents with the Document Examiner by placing bookmarlls in
documentation topics and saving the list of bookmarks for future use.

• The online documentation is kept in a documentation database. The
documentation database consists of documentation binary files. Loaded into
your Lisp world is index information about the documentation database.

• Each documentation topic is stored as a record in the documentation database.
Each record contains information on a particUlar topic and is uniquely
identified by a topic name. Records fall into two categories: Object records
documenting code objects, such as login or tv:menu, and concept records
documenting abstract ideas that are not tied to code, such as "Introduction to
the Document Examiner". Records also have a type designation. Examples of
object record types are function, flavor, and variable. Concept records have a
type of section.

• SELECT D, [Document Examiner] in the System Menu, and the command
Select Activity Document Examiner select the Document Examiner. Pressing
HELP in the Document Examiner displays a listing of its commands.

120

User's Guide to Symbolics Computers March 1985

12.2 Looking up Documentation

You can look up documentation in the Document Examiner, in an editor (Zmacs,
Zmail, Converse), or at a Lisp Listener using a variety of commands. One command
looks up and displays documentation by name. Another set of commands pops up a
menu of all documentation topic names that satisfy a query request. Such query
requests are carried out by matching an initial substring, substrings, or whole words
against documentation topic names or their keywords. (A keyword is comparable to a
word in an index entry.) Clicking on a topic in one of these menus looks up and
displays the documentation for that topic. See the section "Documentation Lookup
Commands", page 122.

Another set of commands is available for repositioning text in the Document
Examiner. See the section "Repositioning Text in the Document Examiner", page
134.

Your lookup reflllest. is always made in terms of a documentation topic name. You
are prompted for a type (section or function, for instance) only when several topics
have the same topic name but different types. For instance, suppose there are two
topics whose names are "error"; one documents a flavor and the other a function.
Requesting a display of "error" causes a menu of the possible types (flavor or
function) to pop up. You choose the type you want displayed.

When you look up documentation, the more general the topic you look up, the larger
the amount of documentation you see for it. The most general topic names are the
names of the books in the printed documentation set. If you are unsure what level
in the documentation you need, use the command Find Table Of Contents giving, it
the name of the printed book or section that interests you.

In the Document Examiner, you can look at an overoiew of a given topic. The
overview includes the topic(s) and book(s) in which the topic appears. In addition,
the overview includes a list of keywords included in the topic.

U sing the overview facility is a good way to "look back a few pages" in the
documentation. Suppose you are looking at the topic "login" and you wonder what
the topics before it have to say. You can look at the overview for the topic "login"
and see that this topic is included in the topic "Logging In" and in the book "User's
Guide to Symbolics Computers". Now you can look at the topic "Logging In".

You can look at a topic's overview by using one of the following methods:

• Click middle on a mouse-sensitive item in the viewer.

• Click middle on a topic in the list of current candidates or the list of
bookmarks.

• Use Show Overview at the command prompt and supply the name of a topic.

121

March 1985 Using the Online Documentation System

• Use [Show (M)] in the command menu and supply the name of a topic.

For more information on the overview facility: See the section "Show Overview",
page 127.

In addition, you can find the printed book the topic appears in by using What
Document (M-X) in the editor.

When you use one of the documentation find commands at a Lisp Listener, an
editor, or the Document Examiner, a menu of topic names is displayed. This menu
includes all the topic names that fulfill your lookup query. When you click on one of
the topic names, the chosen topic is displayed. The find commands are Find Initial
Substring Candidates, Find Whole Word Candidates, Find Any Candidates, or Find
Table Of Contents.

Recovering From a Stuck Document Examiner

When you look up documentation at a Lisp Listener or an editor, the Document
Examiner is updated to include the last topic or menu you looked up. This normally
happens within a few seconds. Occasionally, the topic you look up in the editor or
Lisp Listener does not show up in a matter of seconds in the Document Examiner.
If this occurs, enter Peek. In Peek, type p to see a listing of processes. Notice that
a process called "DEX background" is showing. This process appears only if there is
a problem. Click on this process and select "Debugger" from the menu. You should
see a number of proceed options in the debugger, one of which offers to skip trying
to process the current topic and move on to the next pending one. Choose that
proceed option. The background process· that feeds queued topics or candidates lists
to the Document Examiner should then "unplug" and put everything that it has
been saving into the Document Examiner, one thing at a time.

Topics Pruned From the Documentation Database

When the Documentation Database is installed at your site, the installation manager
has the option of pruning the database. By selecting from a menu of major sections
in the database, the system manager specifies which files are deleted from the
documentation database file server. In this way, space can be saved on the file
server by pruning sections not needed at your site.

Trying to display a topic that has been pruned from the database causes a "dummy"
topic to be displayed. Suppose, for example, the files containing the section
"Streams" were pruned from the database at your site, then trying to display the
topic ":tyi" produces the following display:

:tyi
Documentation for :tyi as a Message is omine.
It appears in document: Reference Guide to Streams, Files, and I/O
Reload the file SYS: DOC; STR; STR2.SABA to make this topic
accessible online.

message

122

User's Guide to Symbolics Computers March 1985

If you decide you do want to see the topic online, you can load the file that contains
the index information for the topic. Use sage:load-index-info.

12.3 Documentation Lookup Commands

The Document Examiner, the editor, and the command processor all provide various
commands for looking up documentation. Some commands are available in all three
contexts, while others are available in only one of the contexts. The following are
descriptions of the commands provided, categorized according to the context in which
the command is available.

Lookup Commands Available in the Document Examiner, Editor, and Command
Processor

Show Documentation (an Overviewj

Show Documentation looks up a topic and displays it. You can use the command in
the Document Examiner, in an editor, and at a command processor.

• In the Document Examiner, Show Documentation prompts for a topic name,
with completion, accepting only those topics for which documentation exists in
the database. You can use Show Documentation in the Document Examiner
any of the following ways:

o Type the command at the command pane.

o Use [Show] in the Document Examiner command pane menu.

o Click left on a mouse-sensitive item in the viewer or an item in the list
of candidates or list of bookmarks.

• In an editor, Show Documentation (M-X, M-sh-D) prompts you for a topic name,
with completion, accepting only those topics for which documentation exists in
the database. You can direct the display of a documentation topic to the local
Symbolics LGP by issuing Show Documentation (M-X) with a numeric
argument. This pops up a menu offering to display the documentation on the
screen or route it to the local Symbolics LGP.

• At a command processor, Show Documentation prompts you for a topic name,
with completion, accepting only those topics for which documentation exists in
the database. You must enclose multiword topic names in double quotes to
provide the name on the command line. You can default the topic name and
Show Documentation then prompts you for the name, using
prompt-and-read, so you do no supply quotes in that case. When you give

123

March 1985 Using the Online Documentation System

the command the keyword argument :destination, the command offers to
display the documentation on the screen (the default) or route it to the local
Symbolics LGP.

It should be noted that topic names for methods are of the form
(:method flavor-name :method-name), for example, (:method tv:graphics-mixin :point).
To look up documentation for methods, use one of the following strategies:

• Use Show Documentation giving it the topic name of the method in the form
(:method flavor-name :method-name).

• Use Find Whole Word Candidates giving it the name of the method in the
form :method-name. Then click on the item whose documentation you want to
see.

Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a string or strings in mind dealing with
that subject. Using the command Find Any Candidates, you can search the
database for any topics whose topic names or keywords contain the string or strings
as substring(s).

A substring is a string that appears somewhere in another string. A substring can
be an initial substring. However, when you use the command Find Any Candidates,
the search is for a substring that appears anywhere in another string, not
necessarily as the initial substring of some word or words in the string. The string
"et" is a substring of the strings "set" and "setq". The string "et" is both a
substring and an initial substring of the string "etc". The string "et" is not a
substring of the strings "est" and "login".

The following situation shows how you can use this command: You want to know if
the database contains any topics about setting values of variables. You guess that
any such topics would use the string "set" somewhere in their topic names or
keywords. So, you use the command Find Any Candidates to search the database
for any topics whose topic names or keywords contain the string "set" as a substring.
The search returns a list of over 200 candidates.

You can provide the command with a string of several words, for instance, the string
"resource window". Note that when the given string contains any space or hyphen
characters, the command breaks the string in to tokens using the space and hyphen
characters as delimiters. For example, given the string "resource window", the
command breaks it into two tokens, "resource" and "window".

The command looks at all the topic names and keywords in the database listing any
in which all the tokens appear as substrings, in effect performing a logical and test

124

User's Guide to Symbolics Computers March 1985

on the tokens. Given the string "resource window", the command lists several
topics, among them the function defwindow-resource and the section "The Top­
level Function". Both tokens are substrings in the topic name
defwindow-resource and in the keywords of "The Top-level Function". The order
in which you provide the words does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you often
find topic names in which the given string does not appear at all. It does, however,
appear among the topic's keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. At an editor, the list takes the form of a menu.

In an editor you can direct the display of a documentation topic to the local
Symbolics LGP by issuing Find Any Documentation with a numeric argument. This
pops up a menu offering to display the documentation on the screen or route it to
the local Symbolics LGP.

This command is also available as [Find (R)] in the Document Examiner command
pane menu.

Find Initial Substring Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have an initial substring or substrings in
mind dealing with that subject. Using the command Find Initial Substring
Candidates, you can search the database for any topics whose topic names or
keywords contain the substring or substrings as initial substring(s).

An initial substring is a string that appears as the beginning of some string. For
example, the string "set" is an initial substring of the string "setq". The string "set"
is not an initial substring of the string "reset". The string "set" is a substring of
the string "reset".

The following situation shows how you can use this command: You want to know if
the database contains any topics about setting values of variables. You guess that
any such topics would use the string "set" as an initial substring somewhere in their
topic names or keywords. So, you use the command Find Initial Substring
Candidates to search the database for any topics whose topic names or keywords
contain the string "set" as an initial substring. What the search returns is a list of
over 100 candidates.

You can provide the command with a string of more than one word, for instance the
string "set-globally". Note that when the given string contains any space or hyphen
characters, the command breaks the string into tokens using the space and hyphen
characters as delimiters. For example, given the string "set globally", the command
breaks it into two tokens, "set" and "globally".

125

March 1985 Using the Online Documentation System

The command looks at all the topic names and keywords in the database, listing any
in which all the tokens appear as initial substrings (in effect performing a logical
and test on the tokens). Given the string "set globally", the command lists two
topic names, the functions set-globally and setq-globally. Both tokens are initial
substrings in each topic name. The order in which you provide the words does not
affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you often
find topic names in which the given string does not appear at all. It does, however,
appear among the topic's keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. At an editor, the list takes the form of a menu.

Find Initial Substring Candidates treats leading punctuation as part of the word.
Thus, asking for initial substring of "area" does not return "*area" or "%area". If
you want "anything containing area" you have to use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to the local
Symbolics LGP by issuing Find Initial Substring Candidates with a numeric
argument. This pops up a menu offering to display the documentation on the
screen or route it to the local Symbolics LGP.

This command is also available as [Find (M)] in the Document Examiner command
pane menu.

Find Table of Contents

Displays a menu containing the given topic's table of contents. For example, the
table of contents of "The Document Examiner" displays as:

The Document Examiner
Introduction to the Document Examiner
Looking Up Documentation

Recovering From a Stuck Document Examiner
Topics Pruned From the Documentation Database

Documentation Lookup Commands
Lookup Commands Available in the Document Examiner, Editor, and Command Processor

Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

You can ask to see a table of contents for any topic; it is not limited to top-level
books. The table of contents of "Documentation Lookup Commands" displays as:

126

User's Guide to Symbolics Computers March 1985

Documentation Lookup Commands
Lookup Commands Available in the Document Examiner, Editor, and Command Processor

Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

This command is also available as [Show (R)] in the Document Examiner command
pane menu.

Find Whole Word Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a word or words in mind dealing with
that subject. Using the command Find Whole Word Candidates, you can search the
database for any topics whose topic names or keywords contBjn the word or words as
whole word(s).

A whole word is a string separated from other strings by space or hyphen
characters. The string "set" appears as a whole word in the topic name "Creating a
Set of Condition Flavors" and in the topic name "set-globally". It does not appear as
a whole word in the topic name "setq". In the topic name "setq", the string "set"
appears as an initial substring.

The following situation shows how you can use this command: You want to know if
the database contains any topics about setting values of variables. You guess that
any such topics would use the string "set" in their topic names or keywords. So,
you use the command Find Whole Word Candidates to search the database for any
topics whose topic names or keywords contain the string "set" as a whole word. The
search returns a list of over 70 candidates.

You can provide the command with more than one word. For example, you give the
command the string "set globally". Note that when the given string contains any
space or hyphen characters, the command breaks the string into tokens using the
space and hyphen characters as delimiters. For example, given the string "set
globally", the command breaks it into two tokens, "set" and "globally".

The command looks at all the topic names and keywords in the database listing any
in which all the tokens appear as whole words (in effect performing a logical and
test on the tokens). Given the string "set globally", the command lists exactly one
topic, the function set-globally. The order in which you provide the words does not
affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you often
find topic names in which the given string does not appear at all. It does, however,
appear among the topic's keywords.

127

March 1985 Using the Online Documentation System

In the Document Examiner, the command lists the topic names it has found in the
candidates list. At an editor, the list takes the form of a menu.

Find Whole Word Candidates treats leading punctuation as part of the word. Thus,
asking for whole word match of "area" does not return "*area" or "%area". If you
want "anything containing area" you have to use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to the local
Symbolics LGP by issuing Find Whole Word Candidates with a numeric argument.
This pops up a menu offering to display the documentation on the screen or route it
to the local Symbolics LGP.

This command is also available as [Find] in the Document Examiner command pane
menu.

Lookup Commands Available in the Document Examiner

Select Candidate List

Selects from the history of candidates lists, popping up a menu of the documentation
find commands and their arguments issued in the current session. You can
reinstate a list of candidates by using this command.

This command is very helpful when, for instance, you need to cycle through several
lists. Instead of reconstructing a candidate list each time you want to look at it, just
use Select Candidate List and click on the list that you want to see.

This command is also available as [Select] in the Document Examiner command pane
menu.

Show Overview

Prompts for a topic name. Shows an overview of the given topic. This overview
includes the type (section or function, for instance) and name of the topic, possibly a
short summary of the topic, the names of any other topics in the documentation
that include this one, the names of any printed books that contain the topic, and
the topic's keywords. The names of the topic(s) and book(s) are mouse sensitive.

The overview facility is a good way to explore the context in which a topic occurs.
This is the online equivalent of looking in a printed book at the immediately
surrounding pages for a topic. For example, when you do Find Whole Word
Candidates on "register" you get 16 candidates. Then when you click middle on
"sys:array-register" you get an overview that says this record appears in the section
"Array Registers" and in the book "Reference Guide to Symbolics-Lisp". Now you
can do Find Table Of Contents on "Array Registers" and get the following listing:

128

User's Guide to Symbolics Computers

Array Registers
sys:array-register
Array Registers and Performance
Hints for Using Array Registers
Array Register Restrictions

March 1985

Using the overview facility in combination with Find Table Of Contents is analogous
to turning pages back and forth to see what the context is for a particular topic. If
the overview for a particular topic does not give you enough information, try an
overview on something listed in the first overview. So, in the example above, you do
an overview on "Array Registers" and find that it appears in the section "Arrays"
and in the book "Reference Guide to Symbolics-Lisp". Now do a Find Table Of
Contents on "Arrays" and you get a very long listing of that topics table of contents.

This command is also available as [Show (M)] in the Document Examiner command
pane menu.

The following is an example of the overview for the function string-lessp:

Overview
Function: string-lessp
It is included in topic: "String Comparisons Ignoring Case, Style, and

Bits"
It appears in documents: "Release 6.0 Release Notes","Reference Guide

to Symbolics-Lisp"
Keywords: STRING LESSP

Lookup Commands Available in an Editor

What Document (M-X)

Displays the name of the printed book that contains the given documentation topic.
If the topic is included in more than one book, the titles of all the books containing
the given topic are listed. In the Document Examiner, this information is available
in the topic overview by clicking middle on any mouse-sensitive item in the viewer or
any item in the list of current candidates or list of bookmarks.

Lookup Commands Available At a Lisp Listener and in Zmacs

When you are typing at a Lisp Listener or in Lisp Mode in Zmacs, you can use the
following input editor commands to look up the documentation for the current Lisp
object. For example, pressing M-sh-A after typing (login 'whit displays the
documentation for login. "Current", refers to the Lisp object that precedes point.

M-sh-A

M-sh-V

M-sh-F

Looks up the documentation for the current function.

Looks up the documentation for the current variable.

Looks up the documentation for the current flavor.

129

March 1985 Using the Online Documentation System

When you look up documentation at a Lisp Listener using one of these input editor
commands, the documentation appears on the screen, and the input editor then
redisplays whatever you were typing.

When these commands do not find any documentation for the current
function/variable/flavor in the documentation database, they check the object itself
for a documentation string. If they find a documentation string, the string is
displayed.

It should be noted that once a documentation string is displayed in this manner, the
string has been installed as the documentation in your world. Thereafter, the
display does not change if the documentation string is changed. In other words, this
facility does not provide support for your putting new documentation into the
documentation database.

12.4 Document Examiner Window

When you look at the Document Examiner window you see the following panes:

Pane

Viewer

Description

Displays documentation.

Current candidates

Bookmarks

Commands

Displays the menu of topics that appeared the last time you used
one of the documentation find commands.

Displays a list of bookmarks, which are the names of topics
displayed in the viewer or added to the list of bookmarks without
being displayed.

Accepts commands at the prompt to the left and displays a menu
of selected Document Examiner commands to the right.

12.4.1 Document Examiner Viewer

The large area on the left of the Document Examiner window is called the viewer.
Documentation is displayed in the viewer. You can have multiple viewers, just as
you can have multiple editor buffers. The viewer currently visible is called the
current viewer. You can choose another viewer by using the command menu item
[Viewer].

To view documentation topics in the Document Examiner viewer, you can do one of
several things:

• Click on mouse-sensitive items in the viewer.
• Click on topics in the list of current candidates or the list of bookmarks. See

the section "Document Examiner List of Current Candidates", page 131. See
the section "Document Examiner List of Bookmarks", page 132.

130

User's Guide to Symbolics Computers March 1985

• Use the Show Documentation command in the command pane. See the
section "Show Documentation (an Overview)", page 122.

• Use [Show] in the command pane menu. See the section "Document
Examiner Command Pane", page 133.

In the Document Examiner, when you select a topic for viewing, the topic is
displayed at the end of the current viewer and the topic's name is added to the list
of bookmarks. Topics chosen for display in the viewer are separated by horizontal
lines.

When you select a topic for viewing at a Lisp Listener or an editor, the topic is
displayed there, added to end of the current Document Examiner viewer, and the
topic name is added to the end of the list of bookmarks. However, when you abort
out of viewing a topic at a Lisp Listener or an editor, the Document Examiner just
adds the topic name to the end of the list of bookmarks and does not display the
topic in the current viewer.

Examples of Lisp code whose lines are wider than the viewer display with those lines
truncated. When you need to see such examples in their entirety, use the
Command Processor command Show Documentation in a wider window (for example,
a Lisp Listener).

In the viewer, cross-references and documented Lisp objects are mouse sensitive.
The following actions can be performed on mouse-sensitive items:

Mouse click

left

middle

sh-middle

Action

Displays the topic in the current viewer.

Shows an overoiew of the topic, including the type (section or
function, for instance) and name of the topic, possibly a short
summary of the topic, the names of any other topic(s) in the
documentation that include this one, the names of the printed
books that contain the topic, and the topic's keywords. The
names of the topic(s) and book(s) that include this topic are mouse
sensitive. For example:

Overview
Function: string-lessp
It is included in topic: "String Comparisons Ignoring Case, Style,

and Bits"
It appears in documents: "Release 6.0 Release Notes " ,"Reference Guide

to Symbolics-Lisp"
Keywords: STRING LESSP

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes this display to go away.

On a mouse-sensitive item in the viewer or list of current

March 1985

right

131

Using the Online Documentation System

candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse-sensitive do not apply to
the pane on which you clicked.

You can create, remove, and hardcopy viewers whenever you want and select
another viewer by using the following commands in the Document Examiner.

Command Action

Select Viewer Selects or creates a viewer, prompting for a name. Also available
as [Viewer] in the command menu.

Remove Viewer Removes a viewer, prompting for a name, then selects the last
viewer displayed. Also available as [Viewer (M)] in the command
pane.

Hardcopy Viewer Prompts for the name of a viewer and prints that viewer on the
local Symoblics LGP. Also available as [Viewer (R)] in the
command menu.

12.4.2 Document Examiner List of Current Candidates

The upper right-hand pane of the Document Examiner window contains the list of
current candidates, the menu of topics that appeared the last time you used one of
the documentation find commands. This menu remains until it is superseded by the
next such command. It should be noted that lines that are wider than the list of
current candidates pane are truncated.

You can reinstate a list of candidates by using the command Select Candidate List or
the menu command [Select], which pops up a menu of the documentation find
commands and their arguments issued in the current session.

The following actions can be performed on topics in the list of current candidates:

Mouse click

left

middle

Action

Displays the topic in the current viewer.

Shows an overview of the topic, including the type (section or
function, for instance) and name of the topic, possibly a short
summary of the topic, the names of any other topic(s) in the
documentation that include this one, the names of the printed
books that contain the topic, and the topic's keywords. The
names of the topic(s) and book(s) that include this topic are mouse
sensitive. For example:

132

User's Guide to Symbolics Computers March 1985

sh-middle

right

Overview
Function: string-Iessp
It is included in topic: "String Comparisons Ignoring Case, Style,

and Bits"
It appears in documents: "Release 6.0 Release Notes " ,"Reference Guide

to Symbolics-Lisp"
Keywords: STRING LESSP

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes this display to go away.

On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse-sensitive do not apply to
the pane on which you clicked.

12.4.3 Document Examiner List of Bookmarks

The lower right-hand pane of the Document Examiner window contains the list of
bookmarks. This is a history of bookmarks you place in the documentation. A
bookmark is a pointer to a documentation topic. Each time you display a topic, a
bookmark is placed in that topic, and the name of the topic is added to the list of
bookmarks. You can also simply place a bookmark in a topic without displaying it in
the viewer by clicking middle twice on an item in the list of current candidates.
When you select another viewer, the list of bookmarks associated with it is also
selected.

The list of bookmarks distinguishes between bookmarks whose topics have been
displayed and those that have not. Topics that are displayed in the viewer are listed
on a white background in the order in which you looked them up. Topics not
displayed in the viewer follow and are listed on a gray.background in the order in
which you created the bookmarks. A marker on the list of bookmarks indicates the
topic currently being displayed at the top of the viewer.

Lines that are wider than the list of bookmarks pane are truncated.

The following actions can be performed on topic names:

Mouse click

left

middle

Action

Displays the topic in the current viewer.

Shows an overoiew of the topic, including the type (section or
function, for instance) and name of the topic, possibly a short
summary of the topic, the names of any other topic(s) in the

March 1985

sh-middle

right

133

Using the Online Documentation System

documentation that include this one, the names of the printed
books that contain the topic, and the topic's keywords. The
names of the topic(s) and book(s) that include this topic are mouse
sensitive. For example:

Overview
Function: string-Iessp
It is included in topic: "String Comparisons Ignoring Case, Style,

and Bits"
It appears in documents: "Release 6.0 Release Notes","Reference Guide

to Symbolics-Lisp"
Keywords: STRING LESSP

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes this display to go away.

On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse-sensitive do not apply to
the pane on which you clicked.

12.4.4 Document Examiner Command Pane

The bottom portion of the Document Examiner window contains the command pane.
The command pane offers completion on command names as well as topic names.
c-? displays a mouse-sensitive list of possible completions. Press HELP to see a
display of the available commands.

The command pane contains a command menu at the lower right. Use the
following mouse clicks to. perform these actions or commands.

Mouse
[Help]
[Help (M)]

[Show]
[Show (M)]
[Show (R)]

[Viewer]
[Viewer (M)]
[Viewer (R)]

Command
Brief command summary
Show the Document Examiner documentation

Show Documentation
Show Overview
Find Table Of Contents

Select Viewer
Remove Viewer
Hardcopy Viewer

134

User's Guide to Symbolics Computers

[Find]
[Find (M)]
[Find (R)]

[Select]

[Private]
[Private (M)]
[Private (R)]

Find Whole Word Candidates (XXXXX)
Find Initial Substring Candidates (XXX)
Find Any Candidates (. .XXX . .)

Select Candidate List

Read Private Document
Load Private Document
Save Private Document

12.5 Repositioning Text in the Document Examiner

March 1985

The Document Examiner viewer, list of current candidates, and list of bookmarks
each have a bar located at its right edge. Each of the bars has a thick arrow at its
top and bottom. These bars are one means for repositioning text in the viewer or
items in the list of current candidates or list of bookmarks. The Document
Examiner positioning mechanism is neither MORE processing nor scrolling. The
positioning actions are more closely analogous to those positioning actions available in
an editor. The Document Examiner positioning actions are described in the mouse
documentation line when you move the mouse into one of these bars.

When you display a multipage topic, the positioning mechanism knows about only
the part of the topic you have seen. If you look at only one page of a mUlti-page
topic, the Document Examiner knows about only that page. Positioning in the
Document Examiner works this way so as to limit the amount of space that
documentation takes up in memory.

For instance, suppose you have "Arrays and Strings", a multipage topic, in a viewer
followed by "setq". You have looked at only the first two pages of "Arrays and
Strings". When you reposition backward from "setq", what you see is not the end of
the topic "Arrays and Strings" but the last part of that topic that you have looked
at. When you then reposition forward again, you see the next page of "Arrays and
Strings" rather than "setq".

A bar looks like this when its pane is empty:

When the pane contains some text, part of the bar is gray. The part of the bar left

135

March 1985 Using the Online Documentation System

blank indicates the percentage of the text currently displayed. The bar looks like
this when its pane contains some text and the top 25 percent of that text is
currently displayed:

The bar looks like this when its pane contains some text and the middle 25 percent
of that text is currently displayed:

The mouse cursor appears differently and the positioning options change depending
on the cursor's location in the bar.

Cursor
o

<>

•
•
•

Location

Top bar arrow

Bottom bar arrow

Top gray section of bar

Bottom gray section of bar

Blank box

You can perform several types of positioning with the mouse and the bar. You can
get a listing of positioning commands by pressing HELP while in the Document
Examiner.

• To reposition text forward one screen:
o Use c-v.
o Use SCROLL.
o Click left in the gray area near the bottom of the bar.

• To reposition text backward one screen:
o Use rw.-V.
o Use rw.-SCROLL.
o Click left in the gray area near the top of the bar.

• To reposition quickly to any part of the current viewer:

136

User's Guide to Symbolics Computers March 1985

o Click left and hold the left button down on the blank box in the bar.
Then drag the box to another position in the bar and the display
changes accordingly.

• To reposition a few lines forward:
o Use c-SCROLL.

o Click left in the arrow at the bottom of the bar.

• To reposition a few lines backward:
o Use c-M-SCROLL.

o Click left in the arrow at the top of the bar.

• To reposition to the beginning or end of the current viewer or topic:
o Use M-< to reposition to the beginning of the current viewer.
o Use M-> to reposition to the end of the current viewer. (Please note that

using this command while you have a partially displayed topic exposed in
the viewer might cause an error. This is a known bug. To recover,
simply press ABORT.)

o Use the command Beginning of Topic to reposition to the beginning of
the current topic.

o Use the command End of Topic to reposition to the last screen dislayed
for the current topic.

• To reposition the current screen:
o Click middle next to a line to position it at the top of the screen.
o Click sh-middle next to a line to position the top line at that place on the

screen.
o Click right next to a line to position it at the bottom of the screen.

12.6 Document Examiner Private Documents

The Document Examiner provides mechanisms for placing bookmarks in the online
documentation and for creating private documents out of these bookmarks. The
bookmarks are pointers to documentation topics in the database. A private
document is a collection of bookmarks you put together and write out to a file. For
instance, you might want a private document that consists of a set of documentation
topics to which you frequently refer.

To create a private document you first create a list of bookmarks, either by looking
up some topics or by clicking appropriately on the list of candidates or on mouse­
sensitive items in the viewer. Then you save the list of bookmarks, using the
command Save Private Document, answering its prompt with a pathname of a file to
contain the bookmarks. You can load (Load Private Document) or read (Read
Private Document) the private document back into the Document Examiner at any
time, again answering the prompt with the pathname of the file that contains the
bookmarks for the private document. For example:

'137

March 1985 Using the Online Documentation System

1. Create a list of bookmarks consisting of some topics documenting login
procedures and functions. For example:

login-forms
10gin-setq
System Initialization Lists
login

2. Use Save Private Document. The command prompts you and you answer with
the pathname of a file to contain the private document's bookmarks.
Following is the prompt for Save Private Document:

Enter a pathname for the document to contain these bookmarks
(default ACME-BLUE: lusr2/whit/private.psb):

Pathname merging is supported by this command and the default location for
a private document is always your home directory. So, with a home directory
of lusr2/whitl on ACME-BLUE, if you give Save Private Document the filename
"login-book", the command writes the list of bookmarks to ACME-BLUE:
lusr2/whitllogin-book.psb.

The following commands manipulate private documents:

Save Private Document
Saves the current list of bookmarks as a private document,
prompting for a pathname. Save Private Document writes the list
of bookmarks to the file whose pathname is given.

Read Private Document
Reads a private document into your computer and shows it in the
viewer. This command prompts for the pathname of a file
containing the bookmarks of a private document and the name of
a viewer to show it in. The default location for a private
document is always your home directory and pathname merging
follows the standard rules.

Load Private Document
Loads a private document into your computer but does not show
it in the viewer. This command prompts for the pathname of a
file containing the bookmarks of a private document and the
name of a viewer. The default location for a private document is
always your home directory and pathname merging follows the
standard rules.

Hardcopy Private Document
Prints a private document on the local Symbolics LGP. This
command prompts for the pathname of a file containing the
bookmarks of a private document. The default location for a
private document is always your home directory and pathname
merging follows the standard rules.

138

User's Guide to Symbolics Computers March 1985

139

March 1985 Index of Function Keys

13. Index of Function Keys

13.1 Introduction

This is a quick reference guide to the Symbolics 3600 Family function keys. Most of
these keys have the same function in any window. However, a few of them perform
differently in different contexts.

13.2 ABORT

When this is read by a program, the program aborts what it is doing and returns to
its "command loop". Lisp Listeners, for example, respond to ABORT by throwing back
to the read-eval-print loop (top level or break). Note that ABORT takes effect when
it is read, not when it is pressed; it will not stop a running program.

13.3 c-ABORT

Aborts the operation currently being performed by the process you are typing at,
immediately (not when it is read). For instance, this will force a Lisp Listener to
abandon the present computation and return to its read-eval-print loop.

13.4 m-ABORT

When this is read by a program, the program aborts what it is doing and returns
through all levels of commands to its "top level". Lisp Listeners, for example, throw
completely out of their computation, including any break levels, then start a new
read-eval-print loop_ .

13.5 c-m-ABORT

A combination of c-ABORT and M-ABORT, this immediately throws out of all levels of
computation and restarts the process you type at which you type it.

140

User's Guide to Symbofics Computers March 1985

13.6 BACKSPACE

In a Lisp Listener, BACKSPACE moves the cursor back, as does c-B, so that you can
insert additional text or edit. In Zmacs, Converse, and Zmail message windows, it
inserts a BACKSPACE into the buffer. In the main Zmail window it scrolls the current
message backward (as does M-SCROLL).

13.7 CLEAR INPUT

Usually erases the input expression you are typing.

13.8 COMPLETE

Completes partially typed commands.

13.9 END

Marks the end of input to many programs. Single-line input can be ended with
RETURN, but END will terminate multiple-line input where RETURN is useful for
separating lines. The END key does not apply when typing in Lisp expressions, which
are self-delimiting. END terminates input you have edited: See the section "Using
the Input Editor".

13.10 ESCAPE

Displays the input editor history. c-ESCAPE displays the global kill history. Sends
Escape/Altmode (octal 033) in the Terminal program.

13j1 FUNCTION Key

This key is a prefIx for a family of commands relating to the display, which you can
type at any time, no matter what program you are running.

141

March 1985 Index of Function Keys

13.11.1 Display and Hardcopy Commands

The FUNCT I ON commands that control screen display and hardcopying are:

RUB OUT Does nothing; press this key to cancel FUNCTION if you typed the latter
by accident.

CLEAR I NPUT Discards typeahead.

REFRESH

A

Clears and redisplays all windows.

Arrests the process shown in the status line. FUNCT I ON - A resumes the
process.

B Buries the currently selected window, if any - that is, it moves it
underneath all other windows. This usually brings up some other
window, which is automatically selected.

C Complements the entire screen. An argument of 1 means white-on­
black; an argument of 0 means black-on-white.

c-C Complements the selected window, with the same argument as FUNCTION
C.

M-C Complements the mouse documentation line, with the same argument as
FUNCTION C.

F Shows users logged in on the associated machine. With numeric
arguments, it shows users logged in on various machines.

H Shows status of network hosts. With an argument, it prompts for
hosts.

M Controls global MORE processing. No argument means toggle, 0 means
turn off, 1 means turn on.

c-M Controls MORE processing for the selected window. The arguments are
the same as for FUNCT I ON M.

o Selects another exposed window.

Q Hardcopies the entire screen.

c-Q Hardcopies the selected window.

M-Q Hardcopies the entire screen, minus the status and mouse
documentation lines.

142

User's Guide to Symbolics Computers March 1985

13.11.2 Selection and Notification Commands

The FUNCTION commands that control window selection and notification are:

s

T

Selects the most recently selected window. With an argument n (default
is 2), it selects the nth previously selected window and rotates the top n
windows. An argument of 1 rotates through all windows (a negative
argument rotates in the other direction); 0 selects a window that
requires attention (for example, to report an error).

Controls the selected window's input and output notification
characteristics. If an attempt is made to output to a window when it is
not exposed, one of three things can happen: the program can simply
wait until the window is exposed, it can send a notification that it wants
to type out and then wait, or it can quietly type out "in the
background"; when the window is next exposed the output will become
visible. Similarly, if an attempt is made to read input from a window
that is not selected (and has no typed-ahead input in it), the program
can either wait for the window to become selected, or send a notification
that it wants input and then wait.

The FUNCT I ON T command controls these characteristics based on its
numeric argument,' as follows:

no argument

o
1

2

3

4

5

If output notification is off, turns input and output
notification on. Otherwise turns input and output
notification off. This essentially toggles the current
state.

Turns input and output notification off.

Turns input and output notification on.

Turns output notification on, and input notification
off.

Turns output notification off, and input notification
on.

Allows output to proceed in the background, and
turns input notification on.

Allows output to proceed in the background, and
turns input notification off.

Controls the status line. With no argument, the status line is
redisplayed. The numeric arguments control what process the status
line watches. The options are:

o Gives a menu of all processes, and freezes the status
line on the process you select. When the status line

March 1985

1

2

3

4

143

Index of Function Keys

is frozen on a process, the name of that process
appears where your user ID normally would (next to
the date and time), and the status line does not
change to another process when you select a new
window.

The status line watches whatever process is talking to
the keyboard, and changes processes when you select
a new window. This is the default initial state.

Changes the status line so that it displays the name
of the process instead of the name of the user. This
also freezes the status line on that process; normally
the status line switches to display a different process
whenever the window system tells it to.

Use this if you see an unexpected state in the status
line. It will help you find out what process is in that
state; you may find that you are not talking to the
process you think you should be.

Rotates the status line among all processes.

Rotates the status line in the other direction.

13.11.3 Recovering From Stuck States

The following FUNCTION commands should all be used with caution.

ESCAPE

c-:-A

SUSPEND

c-T

Helps you recover from stuck states such as "Output Hold" and "Sheet
Lock".

Arrests all processes except the one shown in the status line and critical
system processes, such as the keyboard and mouse processes. FUNCT I ON
- c-A resumes all processes arrested by this command.

Gets to the cold-load stream.

Deexposes temporary windows. This is useful if the system seems to be
hung because there is a temporary window on top of the window that is
trying to type out.

c-CLEAR-INPUT
Clears window system locks. This is a last resort, although not as
drastic as warm booting. Use this when none of the windows will talk
to you, when you cannot get a System menu, and so on.

144

User's Guide to Symbolics Computers March 1985.

13.12 HELP

Usually gets you some online documentation or programmed assistance.

13.13 LINE

The function of this key varies considerably. It is used as a command by the
Debugger, and sends a line feed character in the Terminal program.

13.14 LOCAL

On 3670 and 3640 consoles this key controls local console functions:

LOCAL-G
LOCAL-D
LOCAL-B
LOCAL-Q
LOCAL-L
LOCAL-n LOCAL-C

13.15 NETWORK

Rings the bell.
Makes the screen dimmer.
Makes the screen brighter.
Makes the audio quieter.
Makes the audio louder.
Changes the contrast of the screen.
n is a digit between 1 and 4.

This key is used to get the attention of the Terminal program. As such it functions
as a command prefIx. You must be connected to a host via the Terminal program
before you can use this key.

13.16 PAGE

In Zmacs (in searches and after c-Q) this key inserts a page separator character,
which displays as "page" in a box.

13.17 REFRESH

Usually erases and redisplays the selected window.

145

March 1985 Index of Function Keys

13.18 RESUME

Continues from the break function and the Debugger. In the Terminal program
this sends a backspace character.

13.19 RETURN Key

"Carriage return" or end of line. The exact significance of carriage return vruys
according to context.

13.20 RUBOUT

Usually erases the last character typed.

13.21 SCROLL

In Zmail and the Document Examiner, scrolls the display forward. M-SCROLL scrolls
it backward.

13.22 SELECT Key

This key is a prefix for a family of commands, generally used to select a window of a
specified type, such as a Lisp Listener or Zmail. The current list is:

). (sy-sh-L)
C
D
E

F
I
L
M
N
P

T
X

Common Lisp
Converse
Document Examiner
Editor
File system maintenance
Inspector
Lisp
Zmail
Notifications
Peek
Terminal
Flavor Examiner

c-SELECT creates a new window of the specified type.

146

User's Guide to Symbolics Computers March 1985

13.23 SUSPEND

Usually forces the process you are typing at into a break read-eval-print loop, so
that you can see what the process is doing, or stop it temporarily. The effect occurs
when the character is read, not immediately. Press RESUME to continue the
interrupted computation (this applies to the three modified forms of the SUSPEND key
as well).

13.24 c-SUSPEND

This is like SUSPEND, but takes effect immediately rather than when it is read.
Press RESUME to continue the interrupted computation.

13.25 m-SUSPEND

Forces the process you type it at into the Debugger when it is read. It should type
out "> >BREAK: ", any proceed options, and the Debugger prompt "~". You can
examine the process, then press RESUME or c-C to continue.

13.26 c-m-SUSPEND

Forces the process you type it at into the Debugger, whether or not it is running.

13.27 SYMBOL

Acts as a modifier key to produce special characters. Pressing sYI'fJ-HELP produces a
display of special function and special character keys.

13.28 TAB Key

This key is only sometimes defined. Its exact function depends on· context, but in
general it is used to move the cursor to an appropriate point to the right.

141

March 1985 Index of Function Keys

13.29 Keys Not Currently Used

The following keys currently have no function:

MODELOCK
REPEAT

The following keys are reserved for use by the user (for example, to put custom
editor commands or keyboard macros on):

CIRCLE
SQUARE
TRIANGLE
HYPER

148

User's Guide to Symbolics Computers March 1985

149

March 1985 Quick Summary of Mouse Functions

14. Quick Summary of Mouse Functions

14.1 Mouse Cursor Shape

These are some of the more common mouse cursors:

A thin arrow pointing North by Northwest (up and to the left). This is the default
mouse cursor. It indicates that there no special commands on the mouse buttons.
Clicking left will select the window pointed to. Clicking right will get you the
System menu.

A thin arrow pointing North by Northeast (up and to the right). This means the
mouse is in an editor window. You have several editor commands on the mouse
buttons. See the section "Mouse Documentation Line in Zmacs" in Text Editing and
Processing.

A slightly thicker arrow pointing North (straight up). The editor uses this to show
that it is asking you for the name of a function or for a symbol. If you point the
mouse at a function name, and stop moving it, the name will light up and you can
click to select it.

A small x. This is used when the mouse cursor should be unobtrusive, for instance
in menus.

14.2 Scrolling with the Mouse

Some windows display "contents" that are too big to fit entirely in the window. The
editor and the inspector are examples. When this is the case, you see only a portion
of the contents, and you can scroll the contents up and down using the mouse.

The following mouse cursors indicate that the mouse is being used to control
scrolling:

• A fat arrow, pointing up or down. This indicates you are in a scrolling zone.
Moving the mouse slowly in the direction of the arrow scrolls the window,
revealing more of the text in the direction the arrow points.

• Scrolling zones often say more above or more below in small italic letters.
Clicking on one of these legends scrolls the window up and down by its height,
thus you see the next or previous windowful. When the top or bottom of the
window contents is reached, so that it is not possible to scroll any farther in
one direction, the legend in the scrolling zone changes to indicate this.

• A fat double-headed arrow. A thin black bar appears at the left border of the

150

User's Guide to Symbolics Computers March 1985

window, the "scroll bar". The size of this bar relative to the edge of the
window to which it is attached shows what portion of the window's contents is
visible. The vertical position of the bar within the edge shows the position of
the visible portion of the window's contents relative to the whole. The mouse
commands in this case are:

Left

sh-Left

Right

sh-Right

Middle

Move the line next to the mouse to the top of the window.

Move the line next to the mouse to the bottom of the
window.

Move the top line to where the mouse is.

Move the bottom line to where the mouse is. Because of
this command definition, you cannot get to the System
menu while the mouse is displaying a double-headed fat
arrow.

Jump to a place in the window's contents as far,
proportionally, from its beginning as the mouse is from the
top of the window.

151

March 1985 A Brief Introduction to the Lisp World

15. A Brief Introduction to the Lisp World

15.1 The Lisp Top Level

These functions constitute the Lisp top level and its associated functions.

shlisp-top-level Function
This is the first function called in the initial Lisp environment. It calls
lisp-reinitiaIize, clears the screen, and calls si:lisp-top-leveIL

lisp-reinitialize &optional (caUed-by-user t) Function
This function restarts the Lisp system, resetting the values of various global
constants and initializing the error system.

si:lisp-top-levell stream Function
This is the actual top-level loop. It reads a form from standard-input,
evaluates it, prints the result (with slashification) to standard-output, and
repeats indefinitely. If several values are returned by the form, all of them
will be printed. Also the values of *, +, -, / /, ++, **, +++, and *** are
maintained.

defvar-resettable name initial-value &optional (wann-boot-value nil Special Fonn
wbv-p) documentation

defvar-resettable is like defvar, except that it also maintains a wann-boot
value. See the section "Variables" in Reference Guide to Symbolics-Lisp.
During a warm-boot, the system sets the variable to its warm-boot value. If
you want a variable to be reset at warm boot time, define it with
defvar-resettable.

15.1.1 Standard Variables

Standard variables are special variables that are used to control some aspect of the
Lisp environment. These are the currently defined standard variables, their
standard values, and their valid values:

symbol standard value valid values
base 10 2 ~ base ~ 36
ibase 10 2 ~ base ~ 36
*nopoint t
prinlevel nil nil or a non-

negative integer
prinlength nil nil or a non-

negative integer
si:*princase* :upcase :upcase, :downcase

152

User's Guide to Symbolics Computers March 1985

or :capitaIize
si:prinradix nil nil or 2 s base s 36
print nil
si:*print-gensym* t
prinarray nil
package si:pkg-user-paekage
readtable si:standard-readtable
default-eons-area working-storage-area [3]
el:*read-default-float-format*
fs:*automatieally-Iogin-to-sys-host*
neti:*inhibit-obsolete-information-warnin~
alphabetie-ease-affeets-string-eomparison

Notes:

[1]
[2]

'el:single-float
nil
nil
nil

1. The value of package must be an unlocked package that uses one of the
packages in si:*reasonable-paekages*.

2. The readtable must be one of the readtables on the list
si:*valid-readtables* .

3. The value of default-eons-area must be an allocated area.

The following functions and variables pertain to standard variables:

defvar-standard name initial-value &optional (warm-boot-value nil Special Form
wbv-p) (standard-value nil sv-p)
validation-predicate documentation

defvar-standard is like defvar-resettable, except that it also defines a
standard value that the variable should be bound to in command and
breakpoint loops. For example, the standard values of base and ibase are
10. The validation-predicate is used to ensure that the value of the variable
is valid when it is bound in command loops.

base is defined like this:

(defvar-standard base 10. 10. 10. validate-base)
(defun validate-base (b)

(and (fixnump b) « 1 b 37.»)

setq-standard-value name form &optional (setq-p t) (globaUy-p t) Special Form
(error-p t)

setq-standard-value sets the standard value of name to the value of form.
If you want to change your default base to 8 (octal), do this:

(setq-standard-value base 8)
(setq-standard-value ibase 8)

setq-standard-value runs the validation function associated with the symbol

153

March 1985 A Brief Introduction to the Lisp World

and signals an error if the validation function fails. You can only use
setq-standard-value on symbols defined with defvar-standard.

When a breakpoint of some kind is entered, the system finds out the
standard values for all the symbols defined with defvar-standard. It then
compares these values against the current bindings for these symbols. If the
curren t bindings do not match the standard bindings, you are warned, and
the symbols are bound to the standard values.

There are two association lists, si:*standard-bindings* and
si:*interactive-bindings*. si:*interactive-bindings* is never set, only
bound and si:*standard-bindings* is never bound, only set. The standard
binding for a variable is gotten by looking on si:*interactive-bindings*. If
no binding is found on si:*interactive-bindings*, then
si:*standard-bindings* is checked. For example, zwei:com-break puts the
value of package, base, and ibase from the file attribute list onto
si:*interactive-bindings* so that they become the standard binding for
Zmacs. pkg-goto puts the new value of package onto
si:*standard-bindings*. Evaluation of forms in Zmacs, for example,
Evaluate Into Buffer !"'I-X, also binds the symbols to their standard values.

As a result, whenever you enter a breakpoint you are guaranteed predictable,
consistent behavior with regard to the bindings of these variables.

standard-value-let vars-and-vais &body body Macro
Like let except that it also pushes the values in vais onto the
si:*interactive-bindings* alist, causing them to become the new standard
bindings. All the symbols in vars are then bound to vais (with a let) and
body is executed in this context.

Example:

(defun octal-top-level ()
(standard-value-let

« base 8)
(i base 8)
(package (pkg-find-package 'new-command-loop»)

(let «standard-io 'terminal-io»
(loop

as form = (read)
do (print (eval form»»»

standard-value-let· vars-and-vais &body body Macro
Like let* except that it also pushes the values in vais onto the
si:*interactive-bindings* alist, causing them to become the new standard
bindings. All the symbols in vars are then bound to vals (with a let*) and
body is executed in this context.

154

User's Guide to Symbolics Computers March 1985

standard-value-progv vars vals &body body Macro
Causes all of the symbols in vars to have their corresponding value in vals
pushed onto the si:*interactive-bindings* alist (that is, those values
become the new standard bindings). All the symbols in vars are then bound
to vals (with a progv) and body is executed in this context. This is useful
for writing Lisp style command loops.

si:standard-readtable Variable
The value of si:standard-readtable is that readtable to use when typing
forms interactively to the Lisp interpreter. When a distribution world is cold
booted, the value of si:standard-readtable is a copy of si:initial-readtable.
If you wish to customize the syntax of forms typed to the Lisp interpreter,
you should make your customizations to si:standard-readtable. readtable
is bound to si:standard-readtable whenever a break loop or debug loop is
entered. readtable is set to si:standard-readtable using the standard
variable mechanism whenever the machine is warm booted.

If warm booting the machine were impossible, then si:standard-readtable
would not be necessary. The top-level value of readtable could be used
instead. However, if the machine is warm booted while readtable is bound,
the top-level value of readtable is lost.

Examples:

• This example illustrates the use of binding readtable in order to
implement a special syntax. Forms are to be read from a file while
preserving the case of symbols.

(defvar case-sensitive-readtable (copy-readtable»

(loop for code from (char-code #/a) to (char-code #/z)

as char = (code-char code)
do (setf (si:rdtbl-trans case-sensitive-readtable code) char»

(defun read-case-sensitive-file (file)
(with-open-file (stream file :direction :input)

(let «readtable case-sensitive-readtable»
(loop do (process-form (read stream»»»

In case an error occurs while inside process-form or inside a reader
macro invoked by read, readtable is bound to si:standard-readtable,
which is most useful for debugging.

• This example illustrates the use of si:standard-readtable and
si:initial-readtable to customize the environment for typing
expressions interactively. "@" is defined as an abbreviation for
location-contents, in the same manner that "'" is an abbreviation for
quote.

155

March 1985 A Brief Introduction to the Lisp World

(defun at-sign-macro (ignore stream)
(values (list 'location-contents (read stream» 'list»

(defvar my-readtable (copy-readtable»
(set-syntax-macro-char #/@ 'at-sign-macro my-readtable)

(defun enable-my-readtable ()
(setq si:standard-readtable my-readtable)
(setq readtable my-readtable»

(defun disable-my-readtable ()
(setq si:standard-readtable si:initial-readtable)
(setq readtable si:initial-readtable»

While it is useful for the user to set the values of readtable and
si:standard-readtable, the value of si:initial-readtable should never be
changed. In addition, the readtable that is the value of
si:initial-readtable should never be modified, modifications should be made
only to the readtable that is the value of si:standard-readtable. See the
function copy-readtable in Reference Guide to Symbolics-Lisp.

See the section "The Readtable" in Reference Guide to Symbolics-Lisp.

~~ ~~k
The value of this variable is normally nil. If it is non-nil, then the read­
eval-print loop uses its value instead of the definition of print to print the
values returned by functions. This hook lets you control how things are
printed by all read-eval-print loops - the Lisp top level, the break function,
and any utility programs that include a read-eval-print loop. It does not
affect output from programs that call the print function or any of its
relatives such as print and format; to do that, you need more information
on customizing the printer. See the section "Output Functions" in Reference
Guide to Streams, Files, and I/O. If you set prinl to a new function,
remember that the read-eval-print loop expects the function to print the
value but not to output a Return character or any other delimiters.,

15.2 Logging in

Logging in tells the Lisp Machine who you are, so that other users can see who is
logged in, you can receive messages, and your init file can be run. An init file is a
Lisp program that is loaded when you log in; you can use it to set up a personalized
environment.

When you log out, it should be possible to undo any personalizations you have made
so that they do not affect the next user of the machine. Therefore, anything done
by an init file should be undoable. Thus, for every form in the init file, you should

156

User's Guide to .symbolics Computers March 1985

add to the list that is the value of logout-list a Lisp form to undo its effects. The
functions login-forms and login-setq help make this easy.

login user-name &key host (load-init-file t) no-query-when-unknown Function
login logs the user user-name in to the Lisp Machine. host is a particular
host computer. If the value of load-init-file is t, as it is by default, the
user's in it file is loaded from host. If the value of load-init-file is nil the init
file is not loaded. This is the Lisp version of the Login command in the
Command Processor. See the section "Login Command", page 28.

The user object in the namespace database that contains your user-name also
contains the name of the host(s) where your mail and init files reside.
Therefore, you seldom need to supply a host argument to login.

You can log in as a registered user by not specifying a host, or you can log in
to a specific host as a user on that host, not registered in the Lisp Machine
namespace database.

If host requires passwords for logging in, you are asked for a password.
When logging in to a TOPS-20 host, typing an asterisk before your password
enables any special capabilities you might be authorized to use.

If anyone is logged in to the machine already, login logs that user out before
logging in user-name. See the function logout, page 157. login also runs
the login-initialization-list. See the section "System Initialization Lists" in
Internals, Processes, and Storage Management.

When login loads an init file, it looks for a file whose name depends on the
host. See the section "Init File Naming Conventions" in Reference Guide to
Streams, Files, and I/O. Init files should be written using login-forms so
that logout can undo them. Usually, however, you cold boot the machine
before logging in, to remove any traces of the previous user.

A typical use of login looks like this:

(login 'kjones)

A typical use of login to avoid loading your init file looks like this:

(login 'kjones :load-init-file nil)

Supplying all the arguments might look like this:

(login 'kjones :host local :load-init-file nil)

The host 1 oca 1 is particularly useful if your namespace system is down and
you wish to log in to your Lisp Machine without having it try to use the
namespace database.

If you supply an unknown user id and do not specify :host, you are given an
opportunity to specify a particular host for the current login session, and to
add the user object thus created to the network database (accomplished via

157

March 1985 A Brief Introduction to the Usp World

Edit Namespace Object or tv:edit-namespace-object) for subsequent logins.
You can instead select the Retry option, which is useful when the namespace
server did not respond to your initial login request.

The :no-query-when-unknown keyword is for internal use by the system, it
is not intended for users.

logout Function
First, logout evaluates the forms on logout-list. Then it sets user-id to an
empty string and logout-list to nil. Then it runs the :logout initialization
list and returns t. See the section "Initializations" in Internals, Processes,
and Storage Management.

user-id Variable
The value of user-id is either the name of the logged in user, as a string, or
an empty string if there is no user logged in. It appears in the status line.

site-name Variable
The value is a keyword, the name of the site at which this machine is
located. site-name can be used to conditionalize programs. For example:

(when (eq site-name :acme)
(load "apricot:>smith>cerebrum-server"»

Site names are described in more detail: See the section "Namespace System
Site Objects" in Networks.

logout-list Variable
The value of logout-list is a list of forms that are evaluated when a user
logs out.

login-forms &body forms Special Form
login-forms is a special form for wrapping around a set of forms in your init
file. It evaluates the forms and arranges for them to be undone when you
log out.

login-forms always evaluates the forms, even when it does not know how to
undo them. For forms that it cannot undo, it prints a warning message.

In the following example, login-forms arranges for the base to be reset at
logout to 10 (the default) and for bar either to become undefined or to get
its old function definition. It would warn you about quux being impossible to
undo.

(login-forms
(setq-standard-value base 8)
(setq-standard-value ibase 8)
(defun bar (x y) (+ x y»
(quux 3»

158

User's Guide to Symbolics Computers March 1985

You can create functions to undo forms that login-forms does not recognize.
To undo a given form, you put a property on the symbol that is the car of
the form to undo. For example, to create a function to undo quux:

(defun (:property quux :undo-function) (form)
'(undo-quux ,(cadr form»)

The value returned by an undo function is a form to be evaluated at logout
time. .

setq-globally &rest vars-and-vals Special Fonn
setq-globally should be used with login-forms for anything that might be
bound while evaluating the login-forms.

setq-globally works like setq but sets the global values, bypassing any
special-variable bindings. login-forms knows how to undo this.
setq-globally is the recommended way to set things in your init file that are
not set with setq-standard-value.

An example:

(login-forms
(setq-globally zwei:*converse-beep-count* 4»

15.3 Some Utility Functions

zwei:save-all-files &optional (ask t) Function
This function is useful in emergencies in which you have modified material in
Zmacs buffers that needs to be saved, but the editor is partially broken.
This function does what the editor command Save File Buffers (M-X) does,
but it stays away from redisplay and other advanced facilities so that it might
work if other things are broken.

zwei:zmail-save-all-files is similar, but saves mail files from Zmail.

ed &optional thing Function
ed is the main Lisp function for entering Zmacs. Select Activity Zmacs is
the command for entering Zmacs.

(ed) or (ed nil) enters Zmacs, leaving everything as it was when you last
left Zmacs. If Zmacs has not yet been used in the current session, it is
initialized and an empty buffer created.

(ed t) enters Zmacs, and creates and selects an empty buffer.

If the argument is a pathname or a string, the ed function enters Zmacs,
and finds or creates a buffer with the specified file in it. This is the same as
the Edit File command.

159

March 1985 A Brief Introduction to the Lisp World

If the argument is a symbol that is defined as a function, Zmacs will try to
find the source definition for that function for the user to edit. This is the
same as the Edit Definition command.

Finally, if the argument is the symbol zwei:reload, Zmacs will be
reinitialized. All existing buffers will be lost, so use this only if you have to.

dired &optional (pathname '''~ Function
Puts up a window and edits the directory named by pathname, which
defaults to the last file opened. While editing a directory you may view, edit,
compare, hardcopy, and delete the files it contains. While in the directory
editor press the HELP key for further information. This is similar to the Edit
Directory command, except that Edit Directory enters Zmacs and runs Dired
(M-X).

mail &optional initial-destination initial-body prompt initial-idx Function
bug-report (make-subject
(memq zwei:*require-subjects* (quote (t :init»»
initial-subject

Sends mail by putting up a window in which you can compose the mail.

initial-destination is a symbol or string that is the recipient.

initial-body is a string that is the initial contents of the mail. If these are
unspecified they can be typed in during composition of the mail. Press the
END key to send the mail and return from the mail function.

prompt and initial-idx are used by programs, such as bug, that call mail.
prompt is a string printed in the minibuffer of the mail window created by
mail. initial-idx positions point in the mail window.

bug &optional (system (quote zwei:lispm» additional-body prompt Function
point-before-additional-body (make-subject
(memq zwei:*require-subjects* (quote (t :init :bug»»
initial-subject

Reports a bug. This is the same as the Report Bug command. . bug is like
mail but includes information about the system version and what machine
you are on in the text of the message.

system is the name of the faulty program (a symbol or a string). It defaults
to Iispm (the Lisp Machine system itself). This information is important to
the maintainers of the faulty program; it aids them in reproducing the bug
and in determining whether it is one that is already being worked on or has
already been fixed.

additional-body is user-supplied text appended to the information supplied by
the system.

prompt is text supplied by the system printed in the minibuffer of the mail
window concerning the bug-mail you are sending.

160

User's Guide to Symbolics Computers March 1985

point-before-additional-body is a position for point supplied by the system.

qsend &optional destination message Function
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form "name@host:', to specify the
recipient. If you omit the @host part and just give a name, qsend looks at
all of the Lisp Machines at your site to find any that name is logged into; if
the user is logged into one Lisp Machine, it is used as the host; if more than
one, qsend asks you which one you mean. If you leave out destination
altogether, doing just (qsend), Converse is selected as if you had pressed
SELECT C.

message should be a string. If it is omitted, qsend asks you to type in a
message. You should type in the contents of your message and press END

when you are done.

The input editor is used while you type in a message to qsend. So you get
some editing power, although not as much as with full Converse (since the
latter uses Zwei). See the section "Using the Input Editor". This function
predates Converse and is retained for compatibility.

161

March 1985 Customizing Your Environment

16. Customizing Your Environment

16.1 What is Customizing?

When you load a file or set a variable (for example, specifying that your hardcopies
are sent to a certain printer, changing the default font, or changing the appearance
of the command prompt), you alter the default system behavior in your environment
for the rest of the time you remain logged in. This type of per-session customization
does not remain in effect in your machine after you log out or cold boot. If you load
a file or set a variable for an intentionally temporary effect, this is fine.

However, if you decide that you want these changes to be put into effect every time
you log in (permanently in your environment), you can save them in an init file,
thereby instructing the system to automatically execute this sequence of commands
every time you log in.

16.2 Init Files

An init file is a Lisp program that gets loaded when you log in; it can be used to set
up a personalized environment. An init file contains only Lisp forms. The name
depends on the type of file system it is stored on:

3600
UNIX 4.1
UNIX 4.2
VMS
TOPS-20
ITS

lispm-init.lisp
lispm-init.l
lispm-init.lisp
lispmini.lsp
lispm-init.lisp
name lispm

A simple in it file consists primarily of the login-forms and the setq special forms.
The login-forms special form evaluates forms in your init file and arranges for them
to be undone when you log out. The setq special form sets the value of one or
more variables.

Here is an example of a simple init file:

; -*- Mode: LISP; Package: USER; Lowercase: T; Patch-file: T -*-

(login-forms
(setq si:*cp-prompt* 'si:arrow-prompt)

zwei:
(setq text-made-hook 'auto-fill-if-appropriate)

162

User's Guide to Symbolics Computers March 1985

(setq si:local-finger-location
(cond «y-or-n-p "in your office? ")

"340 Domingo x562")
(t (format t "-&Where are you? ")

(readline query-io»»)

(si:set-default-hardcopy-device "Echo-Lake")
(si:set-screen-hardcopy-device "Echo-Lake")

In this simple init file, the first setq changes the value of the variable that displays
the command processor prompt from the default Command: to an arrow. The second
setq specifies that the system automatically fill text that you type in any editor­
based activity when appropriate. The third setq sets the value of the variable that
reports your user ID and on what machine you are logged in to ask you when you
log in whether you are in your office, and if not, where you are so that it can send
that information to the network namespace database.

The rest of the init file contains two functions that set the default printer for the
various commands that hardcopy files and for the FUNCTION Q Screen Hardcopy
command.

Here is the description of setq:

setq {variable value}... Special Form
U sed to set the value of one or more variables. The first value is evaluated,
and the first variable is set to the result. Then the second value is
evaluated, the second variable is set to the result, and so on for all the
variable/value pairs. setq returns the last value, that is, the result of the
evaluation of its last subform. Example:

(setq x (+ 3 2 1) Y (cons x nil»

X is set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

If you do not cold boot your machine after each session, you should arrange for your
customizations to be undone when you log out. You do this by using login-forms:

login-forms &body forms Special Form
login-forms is a special form for wrapping around a set of forms in your init
file. It evaluates the forms and arranges for them to be undone when you
log out.

login-forms always evaluates the forms, even when it does not know how to
undo them. For forms that it cannot undo, it prints a warning message.

In the following example, login-forms arranges for the base to be reset at

163

March 1985 Customizing Your Environment

logout to 10 (the default) and for bar either to become undefined or to get
its old function definition. It would warn you about quux being impossible to
undo.

(login-forms
(setq-standard-value base 8)
(setq-standard-value ibase 8)
(defun bar (x y) (+ x y»
(quux 3»

You can create functions to undo forms that login-forms does not recognize.
To undo a given form, you put a property on the symbol that is the car of
the form to undo. For example, to create a function to undo quux:

(defun (:property quux :undo-function) (form)
'(undo-quux ,(cadr form»)

The value returned by an undo function is a form to be evaluated at logout
time.

setq-standard-value is a special form, similar to setq, that you should use if you
reset any of the variables that control aspects of the Lisp environment (for example,
the default base) as opposed to convenience features. See the section "Standard
Variables", page 151.

Other variables can be set inside login-forms using setq-globally:

setq-globally &rest vars-and-vals Special Form
setq-globally should be used with login-forms for anything that might be
bound while evaluating the login-forms.

setq-globally works like setq but sets the global values, bypassing any
special-variable bindings. login-forms knows how to undo this.
setq-globally is the recommended way to set things in your init file that are
not set with setq-standard-value.

An example:

(login-forms
(setq-globally zwei:*converse-beep-count* 4»

To load individual files from your init file, use the load function:

(load "vixen:llusrllkjoneslltoolslltoolkitH
)

(load "SYS: LISP; MY-PROJECT")
(load "Tuna:>kjones>examples>decorate")

The first sample form loads a file from a Unix system in the appropriate syntax (the
slashes are doubled). The second form loads a file using its logical pathname; the
third form loads a Lisp Machine file using its physical pathname.

To load a system consisting of many files, use the make-system function:

164

User's Guide to Symbolics Computers March 1985

(make-system 'my-tools :noconfirm :compile :silent)

This make-system fO'rm makes a system named my-tools, perfO'rming all necessary
transfO'rmations withO'ut asking fO'r cO'nfirmatiO'n (:nocO'nfirm), IO'ading the cO'mpiled
cO'de files O'r newest versiO'ns O'f sO'urce files (:cO'mpile), and suppressing repO'rting O'f
each transfO'rmatiO'n as it O'ccurs (:silent). See the sectiO'n "Making a System" in
Program Development Utilities.

16.3 How to Create an Init File

The easiest way to' create an init file is by cO'Pying the sample init file shO'wn here
and then building O'n it, O'r by cO'Pying sO'meone else's init file. Often yO'U acquire
cllstO'mizatiO'ns that yO'U find O'ut abO'ut frO'm people who have been using Lisp
Machines longer than you.

16.4 Logging in Without Processing Your Init File

YO'U might want to' IO'g in and wO'rk in the standard default system envirO'nment,
that is, withO'ut having yO'ur init file set up your usual customizatiO'ns. Perhaps yO'U
want to' test a prO'gram O'f yO'urs in the standard envirO'nment O'r try a new system
feature in an unpO'lluted envirO'nment. LO'g in this way:

Login username :init file none

to' tell the Login cO'mmand that yO'U dO' nO't want yO'ur init file autO'matically IO'aded.

16.5 Customizing the Command Processor

YO'U can change the cO'mmand prO'cessor's mode, prO'mpt, and special characters, and
yO'U can custO'mize the display O'f the prO'mpt and help messages. Usually yO'U
custO'mize the cO'mmand prO'cessO'r by setting special variables. YO'U might want to' dO'
this in yO'ur init file, inside a login-forms special fO'rm.

Whenever yO'U change the cO'mmand prO'cessO'r's mO'de, prO'mpt, O'r O'ther
characteristics, yO'U set its state fO'r all Lisp Listeners and break IO'O'Ps. YO'U cannO't
put the cO'mmand processO'r into O'ne mO'de in O'ne Lisp listener and anO'ther mO'de in
anO'ther.

If yO'U change the cO'mmand prO'cessO'r's mode O'r prO'mpt, O'r if yO'U tum the
cO'mmand prO'cessO'r O'n O'r O'ff, the change takes place immediately in that Lisp
Listener O'r break loop but nO't in O'thers that are waiting fO'r input. FO'r example,
suppose yO'U use the Set CO'mmand Processor cO'mmand in a break loop to' change

165

March 1985 Customizing Your Environment

the prompt and dispatch mode. These changes do not take effect in a Lisp Listener
that is waiting for input until you execute a command or form or you press ABORT
there.

16.5.1 Setting the Command Processor Mode

The command processor mode determines how input is treated. Following are the
four modes and their meanings:

:form-only All input is treated as a Lisp form.

:command-only All input is treated as a command invocation.

:form-preferred Input is treated as a Lisp form unless you precede it by a
command dispatch character. In this case it is treated as a
command invocation. By default, the command dispatch character
is a colon.

: command-preferred
Input is treated as a command invocation if it begins with an
alphabetic character. Input is treated as a Lisp form if it is does
not begin with an alphabetic character or if you precede it by a
form dispatch character. By default, the form dispatch character
is a comma.

You can set the command processor mode for Lisp Listeners and break loops in two
ways:

1. Use the Set Command Processor command. The first argument to this
command is the dispatch mode. See the section "Set Command Processor
Command", page 32."

2. Set the value of the special variable si:*cp-dispatch-mode*.

si:*cp-dispatch-mode* Variable
The current command processor dispatch mode in Lisp Listeners and break
loops; a keyword. Possible values are :form-only, :form-preferred,
:command-only, and :command-preferred. For the meanings of these
values: See the section "Setting the Command Processor Mode", page 165.
The default is :command-preferred.

The default dispatch mode for read-command-or-form is the value of
si:*cp-default-dispatch-mode* .

16.5.2 Setting the Command Processor Prompt

You can set the command processor prompt for Lisp Listeners and break loops in
two ways:

166

User's Guide to Symbofics Computers March 1985

1. Use the Set Command Processor command. The second argument to this
command is a string to be displayed as the prompt. See the section "Set
Command Processor Command", page 32.

2. Set the value of the special variable si:*cp-prompt*.

si:*cp-prompt* Variable
A prompt option for displaying the current command processor prompt in
Lisp Listeners and break loops. The value of this variable is passed to the
input editor as the value of the :prompt option. The value can be nil, a
string, a function, or a symbol other than nil (but not a list): See the
section "Displaying Prompts in the Input Editor" in Programming the User
Interface.

The default is "Command: ". If the value is nil or the empty string, no
prompt is displayed. If the value is si:arrow-prompt, an arrow is displayed
as the prompt.

The default prompt for read-command and read-command-or-form is the
value of si:*cp-default-prompt*.

16.5.3 Setting Command Processor Special Characters

You can change the command and form dispatch characters by setting the special
variables si:*cp-command-dispatchers* and si:*cp-form-dispatchers*.

si:*cp-command-dispatchers* Variable
A list of characters that precede commands, distinguishing them from input
to the Lisp interpreter, when the command processor is in :form-preferred
mode. The default is (#/:).

si:*cp-form-dispatchers* Variable
A list of characters that precede Lisp forms, distinguishing them from
commands, when the command processor is in :command-preferred mode.
(These characters are needed only when the Lisp form begins with an
alphabetic character.) The default is (#/,).

16.5.4 Customizing Command Processor Display

By setting special variables, you can control the action the command processor takes
when you type a blank line and how it displays the screen when you ask for help.

si:*cp-blank-line-mode* Variable
A keyword that determines what action the command processor takes when
you type a blank line in Lisp Listeners and break loops:

: reprompt Redisplay the prompt, if any. This is the default.

167

March 1985 Customizing Your Environment

:beep

:ignore

Beep.

Do nothing.

The default blank line mode for read-command and
read-command-or-form is the value of si:*cp-default-blank-line-mode*.

si:*cp-typeout-default* Variable
A keyword that determines how the command processor prints help
messages. Possible values are those acceptable as the first argument to the
:start-typeout message to interactive streams:

:insert The help message, like a notification, is inserted before the
current input.

: overwrite The help message is inserted before the current input, but
the next time an :insert or :overwrite operation is done,
this message is overwritten. This is the default.

: append The help message appears after the current input, which
is reprinted after the help message.

:temporary The help message appears after the current input and
disappears when you type the next character.

:clear-window The window is cleared and the help message appears at
the top.

For more information: See the method
(:method si:interactive-stream :start-typeout) in Programming the User
Interface.

16.6 Zmacs Customization in Init Files

You can set Zmacs parameters in your init file also. This section gives you some
guidelines for how to set different types of parameters. For information about the
available features: See the section "Zmacs Manual" in Text Editing qnd Processing.

16.6.1 Setting Editor Variables

The forms described show how to set Zmacs variables (the kind that Set Variable
(M-X) sets).

To set these variables, which are symbol macros, you must use the setf macro. For
a description of symbol macros: See the section "Symbol Macros" in Reference Guide
to Symbolics-Lisp. For a description of the setf macro: See the macro setf in
Reference Guide to Symbolics-Lisp.

168

User's Guide to Symbo/ics Computers March 1985

16.6.1.1 Ordering Buffer Lists

(SElF ZWEI:*SORl-ZHACS-BUFFER-lISl* NIL)

This displays the list of buffers in the order the buffers were created rather than in
the order they were most recently visited.

16.6.1.2 Putting Buffers Into Current Package

(SElF ZWEI:*DEFAULl-PACKAGE* NIL)

This puts buffers created with c-X B (Select Buffer) into whatever package is
current; the default is to put them in the user package.

16.6.1.3 Setting Default Major Mode

(SElF ZWEI:*DEFAUll-HAJOR-HODE* ':lEXl)

This sets the default major mode to Text Mode for buffers with no Mode attribute
and no major mode deducible from the file type; the default is Fundamental Mode.

16.6.1.4 Setting Find File Not to Create New Files

(SElF ZWEI:*FIND-FIlE-NOl-FOUND-IS-AN-ERROR* l)

This beeps and prints an error message when you give c-X c-F (Find File) the name
of a nonexistent file. The default prints (New File) and creates an empty buffer,
which when saved by c-X c-s (Save File) creates the file that was nonexistent.

16.6.1.5 Setting Goal Column for Real Line Commands

(SElF ZWEI:*PERHANENl-REAL-LINE-GOAL-XPOS* 0)

This moves subsequent c-N and c-P (Down Real Line and Up Real Line) commands
to the left margin, like doing c-0 c-X c-N (Set Goal Column to zero).

16.6.1.6 Fixing White Space for KiliNank Commands

(SElF ZWEI:*KILL-INlERVAL-SMARlS* l)

This tells the killing and yanking commands optimize white space surrounding the
killed or yanked text.

16.6.2 Key Bindings

To bind keys, you first define the comtab in which to put the binding. For example,
standard-comtab and *standard-control-x-comtab* define features of all Zwei­
based editors; *zmacs-comtab* and *zmacs-control-x-comtab* define features that
are Zmacs-specific.

16.6.2.1 Balanced Quotation Marks and Asterisks

169

March 1985 Customizing Your Environment

ZWEI:(SET-COHTAB *STANDARD-COHTAB*
'(#\m-I" COH-HAKE-/(/)

#\c-m-I" COH-HOVE-OVER/)
#\m-I* COH-HAKE-/(/)
#\c-m-I* COH-MOVE-OVER-/)
»

This defines commands to insert balanced pairs of quotation marks or asterisks into
the buffer. For example, you can type an asterisked special variable name as m-*
FOO, which inserts *FOO* into the buffer, ensuring that one does not forget to type
the trailing asterisk.

16.6.2.2 White Space in Lisp Code

ZWEI:(SET-COMTAB *STANDARD-CONTROL-X-COMTAB*
'(#\SP COM-CANONICALIZE-WHITESPACE»

This defines c-X SPACE as a command that makes the horizontal and vertical white
space around point (or around mark if given a numeric argument or immediately
after a yank command) conform to standard style for Lisp code.

16.6.2.3 c-m-L on the SQUARE Key

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
t(#\SQUARE COH-SELECT-PREVIOUS-BUFFER»

This defines the SQUARE key to do the same thing as c-rva-L. This key binding is
placed in *zmacs-comtab* rather than *standard-comtab* since buffers are a
feature of Zmacs, not of all Zwei-based editors.

16.6.2.4 Edit Buffers on c-x c-B

ZWEI:(SET-COHTAB *ZMACS-CONTROL-X-COMTAB*
'(#\c-B COH-EDIT-BUFFERS»

This makes c-X c-B invoke Edit Buffers rather than List Buffers. This key binding
is placed in *zmacs-control-x-comtab* rather than ·standard-control-x-comtab*
since buffers are a feature of Zmacs, not of all Zwei-based editors.

16.6.2.5 Edit Buffers on m-X

ZWEI:(SET-COHTAB *ZHACS-COHTAB*
()

(HAKE-COHHAND-ALIST '(COH-EDIT-BUFFERS»)

This makes Edit Buffers available on rva-X in Zmacs (by default it is only available on
c-rva-x).

16.6.2.6 m-. on m-(L)

ZWEI:(SET-COHTAB *ZMACS-COMTAB*
'(#\m-MOUSE-L COH-EDIT-DEFINITION»

This makes clicking the left mouse button while holding down the META key do what
rva-. does. Invoking this command from the mouse is convenient when you specify
the name of the definition to be edited by pointing at it rather than typing it.

170

User's Guide to Symbolics Computers March 1985

16.6.3 Setting Mode Hooks

Each major mode has a mode hook, a variable which, if bound, is a function that is
called with no arguments when that major mode is turned on.

16.6.3.1 Electric Shift Lock in Lisp Mode

(SETF ZWEI:LISP-HODE-HOOK 'ZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor mode unless the
buffer has a Lowercase attribute. The effect is that by default Lisp code is written
in upper case.

16.6.3.2 Auto Fill in Text Mode

(SETF ZWEI:TEXT-MODE-HOOK 'ZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode unless the buffer has a
Nofill attribute. The effect is that by default lines of text are automatically broken
by carriage returns when they get too wide.

16.7 Customizing Zmail

The Profile command allows you to customize Zmail by setting various display and
command options to your personal taste. You can set an option temporarily or
permanently, the latter by saving the option in your Zmail Profile.

Classes of options you can set include the following:

• Format used for hardcopies of messages

• Mail-file attributes

• Lists of mail files and other objects that Zmail knows about at startup

• Associations between certain objects

• (M) actions for many top-level commands

• Screen configurations

• Default actions taken when reading, sending, replying to, or forwarding mail

• Command Tables

Customizing is done in profile mode, entered by clicking on [Profile] in the command
menu at top level. The profile mode display (Figure 9) shows the text of your profile
and the current settings of various options.

171

March 1985 Customizing Your Environment

Setting and Saving Options

Option settings are stored in eight distinct places:

• Your mind: your conception of how the options should be set.

• The Zmail environment: the way the options are actually set at the moment.

• The defaults: the way the options are actually set before you alter them.

• The editor buffer: the in-memory buffer of your profile.

• The source version of your profile: on disk.

• The compiled version of your profile: also on disk.

• Mail buffers: options associated and stored with the individual mail buffers.

• Mail files: options associated with a mail buffer saved as a file.

The simplest way to use profile mode is:

1. Make the changes you want using the menu items or user options window,
two regions of the display indicated in Figure 9. For a list of the various
options and what they mean: See the section "Zmail Profile Options" in
Communicating with Other Users.

2. Use [Exit] to leave profile mode. Check to see that you like your changes.

3. To save your changes, reenter profile mode and use [Save]. Before you do this
for the first time, use [Save (M)] and press RETURN to the question Zmail asks.
This specifies that you want your file compiled, which makes it load and run
faster. Answer yes to any questions about inserting changes or recompiling
your file. At this point Lisp code corresponding to your option settings will be
stored in your profile. Options changed using [File options] or [Keywords] are
stored in the individual mail buffers and must be saved using [Save] on the
top-level command menu.

What [Save] actually does is move option settings from the environment (where you
altered them in the first step) to the editor buffer, then from the editor buffer to
the source copy of your init file, and finally from the source file to the compiled file
(by recompiling). You can also move option settings one step at time, by using
[Reset] and [Default], and the menu options available by using [Save].

172

User's Guide to Symbo/ics Computers

I Filters I I Unlverae. I I Ma" f"e.1 I File opt lone I

rO~
Predicate for .orting keyword. in keyword nenul Alphabetic Aeverse alphabetic None
Add header field. to other ~.g. when expunging ~.gl V.,"
Delete ~e •• age when ~oved into buffer: v .. No
Show header • .net a.tc before expunging deleted ~e •• apsl v.. No
Forwarded ne.sage. are .upplied with a subject: V .. No
Move to fir.t ~ •• age even when no new ~ail in inbox: V., ..
Just .how headers and text after yanking in ne •• age: v.. No
Autonatically eave buffer after reading inbox: .. v.,
Read in inbox in the background: V .. No
Periodically check for new nan in the background: No V ..
Prune header. of yanked ne •• ap.: V.s ..

I Keyword. I

Direction to nove after delete: Backward'...-N ov. No forward/A.mov. Backward/Aemove

March 1985

I Hardcopy I

Direction to ~ove for click ~iddle on delete: forward Remov. No forward/fte,.ove Backward/A.mov.
Default .tartup window .etup: SunNlar)' only Messa .. only fxperllllental

N018 "'aw
~ I Reset I I Default. I I Save I I Edit I

IEllen's ZMAIL profile -1-Mode:LISPiPeck.ge:ZWEI-I-

III

III

III

III This block contains forn. repre.enting the non-default sett1nas of user
opt1~s that you nade using the profile ~enus. It is generated
auto~at1cally. Rvoid inserting any other forns before the end of the block.

(LOGIN-SETD aDUERY-BEFORE-EKPUNGEI T)
(LOGIN-SETD aINHIBIT-BRCKGROUND-SAVEsa T)
(LOGIN-SETD aREDUIRE-SUBJECTSI I:INIT)
(LOGIN-SETD aDEFAULT-CC-LIST' '«:NAME "ellen" :HOST NIL»)
(LOGIN-SETD aDELETE-EXPIRED-n5GS' ':RSK)
(LOGIN-SETD aREPLY-MODE' ':SENDER)
(LOGIN-SETD a1R-REPLY-MODEa ':ALL)
(LOGIN-SETD aMIDDLE-REPLY-WINDOU-MODEa ':YANK)
(LOGIN-SETa IFOR~ARDED-MESSAGE-BEGINa '"-----ge91n Forwarded "e •• age-----")
(LOGIN-SETD aFOR~ARDED-MESSAGE-SEPARRTORa '"--------------------")
(LOGIN-SETD IFOR~ARDED-MESSAGE-END. ,"------End Forwarded Mes •• ge------")
(LOGIN-SETD aZMAIL-STARTUP-FILE-NAnE' '"S:>ellen>ellen.babyl")
(LOGIN-SETD 'DEFAULT-MOVE-MAIL-FILE-NAME' '"S:>ellen>ellen.xna1l")
(LOGIN-SETD 'DEFAULT-DRAFT-FILE-NAME' '"S:>ellen>draft.tenp")
(LOGIN-SETD IDEFAULT-MAIL-BUFFER-GENERATION-RETENTION-COUNT' 1)
(LOGIN-SETD 'FILTER-REFERENCE-UNIVERSE-ALIST'

'«ITra1n1ngl "VIXEN: "ufa"nacsyna"ellen"dess"tra1n1ng.txt"»)
(LOGIN-SETa 'OTHER-MAIL-FILE-NAMES' '("POS:<ELLEN>ELLEN.BABYL"»
(LOGIN-SETD 'HARDCOPY-DEVICE' '"UALDEN")
Profile
Znail Profile VIXEN: 'ufs'nacsyna'ellen'Enail-1nit.l
Loading init file VIXEN: 'ufs'nacsyna'ellen'Ena1l-1n1t.bn
Reading profile VIXEN: 'ufs'nacsyna'ellen'Enail-1nit.l

Figure 9. Profile mode display

16.8 Customizing Converse

The following variables allow you to customize Converse's behavior.
them in your init file.

zwei:*converse-mode*
Controls what happens when an interactive message arrives.
one of the following values:

You can set

Variable
It should have

March 1985

:pop-up

: auto

:notify

173

Customizing Your Environment

(This is the default.) A message window pops up at the
top of the screen, displaying the message. You are asked
to type R (for Reply), N (for Nothing), or C (for Converse).
If you type R, you can type a reply to the message inside
the message window. When you type END, this reply is
sent back to whomever sent the original message to you,
and the pop-up message window window disappears. If
you type N, the message window disappears immediately.
If you type c, the Converse window is selected. The input
editor is used while you reply to a message in the pop-up
message window, so you get some editing power, although
not as much as with full Converse (since the latter uses
Zwei). See the section "Using the Input Editor".

The Converse window is selected. This is the window that
shows you all of your conversations, letting you see
everything that has happened, and letting you edit your
replies with the full power of the Zwei editor. With this
window selected, you can reply to the message that was
sent, send new messages, participate in other
conversations, or edit and write out messages or
conversations. You can exit with c-END or ABORT (c-END
sends a message and exits; ABORT just exits), or you can
select a new window by any of the usual means (such as
the FUNCTION or SELECT keys).

A notification is printed, telling you that a message arrived
and from whom. If you want to see the message, enter
Converse by pressing SELECT C. There you can read the
message and reply if you want to.

:notify-with-message
A notification is printed, which includes the entire contents
of the message and the name of the sender. If you want
to reply, you can enter Converse.

zwei:*converse-append-p* Variable
If the value is nil (the default), a new message is prepended to its
conversation. If the value is not nil, a new message is appended to its
conversation. print-sends is not affected by this variable; it always displays
messages in forward chronological order.

zwei:*converse-beep-count* Variable
The value is the number of times to beep or flash the scree~ when a
message arrives. The default value is two. Beeping or flashing occurs only if
the Converse window is exposed or if the value of zwei:*conversc-mode* is
:pop-up or :auto. (Otherwise, notification tells you about the message and
includes the usual beeping or flashing.)

174

User's Guide to Symbolics Computers March 1985

zwei:*converse-end-exits* Variable
Controls the behavior of END and c-END. If ·converse-end-exits· is set to
nil, the default, END sends the message and you remain in Converse. c-END

sends the message and exits Converse. Setting ·converse-end-exits* to t
reverses this, so that c-END sends the message and remains in Converse and
END sends and exits.

16.9 Customizing Hardcopy Facilities

You can specify the printer you want to use for hardcopying files and screen images
in your init file.

si:set-default-hardcopy-device name Function
si:set-default-hardcopy-device specifies the printer to be used for all of the
hardcopy commands except the screen copy command. name is a string
specifying the device name. This is the real name of the printer, its name
attribute not its pretty-name. For example: caspian-sea is the real name
of the printer whose pretty name is Caspian Sea. (The valid set of device
names are the printer objects in your namespace database.)

si:set-screen-hardcopy-device name Function
si:set-screen-hardcopy-device specifies the printer to be used for screen
copies (by the FUNCT I ON Q command). name is a string specifying the device
name. This is the real name of the printer, its name attribute not its
pretty-name. For example: caspian-sea is the real name of the printer
whose pretty name is Caspian Sea. (The valid set of device names are the
printer objects in your namespace database.)

You can specify personal default fonts for each device in your init file.

si:*hardcopy-default-fonts* Variable
si:*hardcopy-defauIt-fonts* is a variable whose value is an association list
where each element specifies a device and a set of keyword/value pairs
designating the font. The keywords are :default-font and :header-font.

For example:

(login-forms
(setq si:*hardcopy-default-fonts*

'«"Itasca" :default-{ont "FixlBB"»»

in your init file will specify Fix18B as the default font for the printer Itasca.

You can use Show Font HELP in the Lisp Listener or the List Fonts (M-X)

command in Zmacs to get a list of all the fonts that are currently loaded into
the Lisp environment. The fonts package contains the names of all fonts.
Here is a list of some of the useful fonts:

March 1985

fonts:cptfont

fonts:jess14

fonts:cptfonti

fonts:cptfontcb

fonts:medfnt

fonts:medfnb

fonts:hl12i

fonts:trlOi

fonts:hllO

fonts:hllOb

175

Customizing Your Environment

This is the default font, used for almost
everything.

This is the default font in menus. It is a
variable-width rounded font, slightly larger and
more attractive than medfnt.

This is a fIxed-width italic font of the same
width and shape as fonts:cptfont, the default
screen font. It is most useful for italicizing
running text along with fonts:cptfont.

This is a fIxed-width bold font of the same
width and shape as fonts:cptfont, the default
screen font.

This is a fIxed-width font with characters
somewhat larger than those of cptfont.

This is a bold version of medfnt. When you
use Split Screen, for example, the [Do It] and
[Abort] items are in this font.

This is a variable-width italic font. It is useful
for italic items in menus; Zmail uses it for this
in several menus.

This is a very small italic font. It is the one
used by the Inspector to say ''More above" and
''More below".

This is a very small font used for nonselected
items in Choose Variable Values windows.

This is a bold version of hllO, used for selected
items in Choose Variable Values windows.

16.10 Changing the Default Printer

When a site has more than one printer, one of the printers is specifIed as the site
default hardcopy device. You can change the default in your init fIle to specify the
printer that is most convenient for you. See the function
si:set-default-hardcopy-device, page 174.

In the System Menu, using [Hardcopy] allows you to specify a different printer
name; the printer name is mouse-sensitive.

176

User's Guide to Symbo/ics Computers March 1985

177

March 1985 Checking on What the Machine is Doing

17. Checking on What the Machine is Doing

17.1 Poking Around in the Lisp World

This section describes a number of functions, most of which are not normally used
in programs, but are "commands", that is, things that you type directly at Lisp.
They are useful for finding information about your current state or about the Lisp
world in general.

who-calls symbol &optional pkg (do-inferiors t) (do-superiors t) Function
symbol must be a symbol or a list of symbols. who-calls tries to find all the
functions in the Lisp world that call symbol as a function, use symbol as a
variable, or use symbol as a constant. (It does not find things that use
constants that contain symbol, such as a list one of whose elements is
symbol; it only finds it if symbol itself is used as a constant.) It tries to find
all the functions by searching the function cells and properties of all the
symbols in a certain set of packages. The set always includes the package
pkg. If do-inferiors is true, the set also includes all packages that use pkg.
If do-superiors is true, the set also includes all packages that pllg uses. pkg
defaults to the global package, and so normally all packages are checked.

If who-calls encounters an interpreted function defmition, it simply tells you
if symbol appears anywhere in the interpreted code. who-calls is smarter
about compiled code.

If symbol is a list of symbols, who-calls does them all simultaneously.

The editor has a command, List Callers (M-X), that is similar to who-calls.

The symbol unbound-function is treated specially by who-calls.
<who-calls 'unbound-function) searchs the compiled code for any calls
through a symbol that is not currently defined as a function. This is useful
for finding errors such as functions whose names you misspelled or forgot to
write.

who-calls prints one line of information for each caller it finds. It also
returns a list of the names of all the callers.

The compiler records, as part of its debugging-info property, which top-level
macros were expanded in the process of compiling it. This information is
used by who-calls and similar functions. Thus you can use who-calIs for
macros. who-calls can also find callers of open-coded functions, such as
substitutable functions. Functions compiled in earlier versions of the system
have not recorded this information; hence who-calls will not be able to find
them until those sources have been recompiled.

178

User's Guide to Symbolics Computers March 1985

what-files-call symbol-or-symbols &optional pkg (do-inferiors t) Function
(do-superiors t)

Similar to who-calls but returns a list of the pathnames of all the files that
contain functions that who-calls would have printed out. This is useful if
you need to recompile and/or edit all those files.

apropos apropos-substring &optional pkg (do-packages-used-by t) Function
do-packages-used

Tries to find all symbols whose print-names contain apropos-substring as a
substring. When it finds a symbol, it prints out the symbol's name; if the
symbol is defined as a function and/or bound to a value, it tells you so, and
prints the names of the arguments (if any) to the function. It checks all
symbols in a certain set of packages. The set always includes pkg. If
do-packages-used-by is true, the set also includes all packages that use pkg.
If do-packages-used is true, the set also includes all packages that pkg uses.
pkg defaults to the global package, so normally all packages are searched.
apropos returns a list of all the symbols it finds. This is similar to the Find
Symbol command, except that Find Symbol only searches the current package
unless you specify otherwise.

where-is pname Function
Finds all symbols named pname and prints on standard-output a description
of each symbol. The symbol's home package and name are printed. If the
symbol is present in a different package than its home package (that is, it
has been imported), that fact is printed. A list of the packages from which
the symbol is accessible is printed, in alphabetical order. where-is searches
all packages that exist, except for invisible packages.

If pname is a string it is converted to uppercase, since most symbols' names
use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

The find-all-symbols function is the primitive that does what where-is does
without printing anything.

describe anything &optional no-complaints Function
Tries to tell you all the interesting information about any object except array
contents). describe knows about arrays, symbols, all types of numbers,
packages, stack groups, closures, instances, structures, compiled functions, and
locatives, and prints out the attributes of each in human-readable form.
Sometimes it describes something that it finds inside something else; such
recursive descriptions are indented appropriately. For instance, describe of a
symbol tells you about the symbol's value, its definition, and each of its
properties. describe of a floating-point number shows you its internal
representation in a way that is useful for tracking down roundoff errors and
the like.

179

March 1985 Checking on What the Machine is Doing

If anything is a named-structure, describe handles it specially. To
understand this: See the section "Named Structures" in Reference Guide to
Symbolics-Lisp. First it gets the named-structure symbol, and sees whether
its function knows about the :describe operation. If the operation is known,
it applies the function to two arguments: the symbol :describe, and the
named-structure itself. Otherwise, it looks on the named-structure symbol
for information that might have been left by defstruct; this information
would tell it the symbolic names for the entries in the structure. describe
knows how to use the names to print out each field's name and contents.

describe describes an instance by sending it the :describe message. The
default method prints the names and values of the instance variables.

This is the same as the Show Object command.

describe always returns its argument, in case you want to do something else
to it.

inspect &optional object Function
A window-oriented version of describe. See the section "How the Inspector
Works", page 189.

disassemble {unction Function
{unction is either a compiled function, or a symbol or function spec whose
definition is a compiled function. disassemble prints out a human-readable
version of the macroinstructions in {unction.

17.1.1 Variables for Examining the Lisp World

Variable
While a form is being evaluated by a read-eval-print loop, - is bound to the
form itself.

+ Variable
While a form is being evaluated by a read-eval-print loop, + is bound to the
previous form that was read by the loop.

• furiabk

II

While a form is being evaluated by a read-eval-print loop, * is bound to the
result printed the last time through the loop. If several values were printed
(because of a multiple-value return), * is bound to the first value. If no
result was printed, * is not changed.

Variable
While a form is being evaluated by a read-eval-print loop, I I is bound to a list
of the results printed the last time through the loop.

180

User's Guide to Symbolics Computers March 1985

++

+++

••

•••

Variable
++ holds the previous value of +, that is, the form evaluated two interactions
ago.

Variable
+++ holds the previous value of ++.

Variable
•• holds the previous value of ., that is, the result of the form evaluated two
interactions ago.

Variable
••• holds the previous value of **.

grindef function-spec... Special Fonn
Prints the definitions of one or more functions, with indentation to make the
code readable. Certain other "pretty-printing' transformations are performed:

• The quote special form is represented with the' character.
• Displacing macros are printed as the original code rather than the

result of macro expansion.
• The code resulting from the backquote (') reader macro is represented

in terms of '.

The subforms to grindef are the function specs whose definitions are to be
printed; ordinarily, grindef is used with a form such as (grindef foo) to
print the definition of foo. When one of these subforms is a symbol, if the
symbol has a value its value is prettily printed also. Definitions are printed
as defun special forms, and values are printed as setq special forms.

If a function is compiled, grindef says so and tries to find its previous
interpreted definition by looking on an associated property list. See the
function uncompile. This works only if the function's interpreted definition
was once in force; if the definition of the function was simply loaded from a
BIN file, grindef does not find the interpreted definition and cannot do
anything useful.

With no subforms, grindef assumes the same arguments as when it was last
called.

break &optional tag (conditional t) Special Fonn
Enters a breakpoint loop, which is similar to a Lisp top-level loop.
(break tag) always enters the loop; (break tag conditional) evaluates
conditional and only enter the break loop if it returns non-nil. If the break
loop is entered, break prints out:

;Breakpoint tag; Resume to continue, Abort to quit.

The standard values for any variables are checked. If break rebinds any of

181

March 1985 Checking on What the Machine is Doing

these standard variables, it warns you that it has done so. break then
enters a loop reading, evaluating, and printing forms. A difference between a
break loop and the top-level loop is that when reading a form, break checks
for the following special cases: If the ABORT key is pressed, control is returned
to the previous break or Debugger, or to top level if there is none. If the
RESUME key is pressed, break returns nil. If the list (return form) is typed,
break evaluates form and returns the result.

Inside the break loop, the streams standard-output, standard-input, and
query-io are bound to be synonymous to tenninal-io; tenninal-io itself is
not rebound. Several other internal system variables are bound, and you can
add your own symbols to be bound by pushing elements onto the value of the
variable sys:*break-bindings*. (See the variable sys:*break-bindings*,
page 181.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program: (break)
gets a read-eval-print loop, and (dbg) gets the Debugger. (These are the
programmatic equivalents of the SUSPEND and M-SUSPEND keys on the
keyboard.)

sys:*break-bindings* Variable
When break is called, it binds some special variables under control of the list
that is the value of sys:*break-bindings*. Each element of the list is a list
of two elements: a variable and a form that is evaluated to produce the value
to bind it to. The bindings happen sequentially. You can push things on
this list (adding to the front of it), but should not replace the list wholesale
since several of the variable bindings on this list are essential to the operation
of break.

dbg:*debugger-bindings* Variable
When the Debugger is entered, it binds some special variables under control
of the list that is the value of dbg:*debugger-bindings*. Each element of
the list is a list of two elements: a variable and a form that is evaluated to
produce the value to bind it to. The bindings happen sequentially. You can
push things on this list (adding to the front of it), but should not replace
the list wholesale since several of the variable bindings on this list are
essential to the operation of the Debugger.

lisp-crash-list Variable
The value of lisp-crash-list is a list of forms. lisp-reinitialize sequentially
evaluates these forms, and then sets lisp-crash-list to nil.

In most cases, the initialization facility should be used rather than
lisp-crash-list. See the section "Initializations" in Internals, Processes, and
Storage Management.

182

User's Guide to Symbolics Computers March 1985

17.2 Utility Functions

zwei:save-all-files &optional (ask t) Function
This function is useful in emergencies in which you have modified material in
Zmacs buffers that needs to be saved, but the editor is partially broken.
This function does what the editor command Save File Buffers (M-X) does,
but it stays away from redisplay and other advanced facilities so that it might
work if other things are broken.

zwei:zmail-save-all-files is similar, but saves mail files from Zmail. .

print-sends &optional (stream standard-output) Function
Prints out all messages you have received (but not messages you have sent),
in forward chronological order, to stream. Converse is more useful for looking
at your messages, but this function predates Converse and is retained for
compatibility.

print-notifications &optional (from 0) (to Function
(1- (length tv:notification-history»)

Reprints any notifications that have been received. The difference between
notifications and sends is that sends come from other users, while
notifications are asynchronous messages from the Lisp Machine system itself.
If from or to is specified, prints only part of the notifications list.

Example: (print-notifications 0 4) prints the five most recent notifications.

This is the same as the Show Notifications command.

si:print-Iogin-history &optional (whole-history si:login-history) Function
Prints one line for each time the login function has been called in this world
load. Each line contains the name of the user that logged in, the name of
the machine on which the world load was running at that time, and the date
and time. If you cold boot, log in, and then call si:print-Iogin-history, the
last line refers to your own login and all previous lines refer to logins that
were done before running disk-save.

This information is useful to determine how many times a world load has
been disk-saved, on what machines it was disk-saved, and who disk-saved it.

The first couple of lines do not contain any date or time, because they were
made during the initial construction of the world load before it found out the
current time. Names of users at other sites that are not in the local site's
namespace search list are qualified with the site's namespace name and a
vertical bar. The user seRe I LISP-MACHINE is the dummy user used by
si:login-to-sys-host at SeRC, the site where new world loads are created.

183

March 1985 Checking on What the Machine is Doing

hostat &rest hosts Function
Asks each of the hosts for its status, and prints the results. If no hosts are
specified, all hosts on the Chaosnet are asked. Hosts can be specified by
either name or octal number.

For each host, a line is displayed that either says that the host is not
responding or gives metering information for the host's network attachments.
If a host is not responding, probably it is down or there is no such host at
that address. A Lisp Machine can fail to respond if it is looping inside
without-interrupts or paging extremely heavily, such that it is simply
unable to respond within a reasonable amount of time.

To abort the host status report produced by hostat or FUNCTION H, press
c-ABORT.

uptime &rest hosts Function
Queries the specified hosts, asking them for their ''uptime''; each host
responds by saying how long it has been up and running. uptime prints out
the results. If uptime reports that a host is "not responding", either the
host is not responding to the network, or it does not support the UPTIME
protocol.

The uptime function is a variant of hostat.

17.3 Dribble Files

Sometimes it is useful to have a more permanent record of what is happening on
your screen when a program is running. Dribble files allow you to save the output
from or interaction with a program in a file or a buffer. Formerly such files were
called wallpaper files because the resulting long strips of paper output resembled
wallpaper and were sometimes posted on the wall to demonstrate the operation of a
program. Now that display consoles are in wide use, the files are referred to as
dribble files because the output "dribbles" out of the running program.

dribble-start pathname &optional editor-p <concatenate-p t) Function
Opens filename as a "dribble file". It rebinds standard-input and
standard-output so that all of the terminal interaction is directed to the file
as well as to the terminal. If editor-p is non-nil, then instead of opening
filename on the file computer, dribble-start directs the terminal interaction
into a Zmacs buffer whose name is filename, creating it if it does not exist.

dribble-end Function
Closes the file opened by dribble-start and resets the 110 streams.

184

User's Guide to Symbolics Computers March 1985

17.4 status and sstatus

The status and sstatus special forms exist for compatibility with Maclisp. Programs
that are designed to run in both Maclisp and ZetaIisp can use status to determine
in which one they are running. Also, (sstatus feature ..•) can be used as it is in
Maclisp.

status status-function &optional (item nil item-p) Special Fonn
(status features) returns a list of symbols indicating features of the Lisp
environment. The default list for the Lisp Machine is:

(:DEFSTORAGE :lOOP :DEFSTRUCT :lISPH :SVHBOlICS 3600 :CHAOS :SORT
:FASlOAD :STRING :NEWIO :ROHAN :TRACE :GRINDEF :GRIND)

The value of this list will be kept up to date as features are added or
removed from the Lisp Machine system. Most important is the symbol
:lispm; this indicates that the program is executing on the Lisp Machine.
The order of this list should not be depended on, and might not be the same
as shown above.

The following symbols in the features list can be used to distinguish different
Lisp implementations, using the #+ and #- reader syntax.

Three symbols indicate which Lisp Machine hardware is running:

:lispm

:cadr

:3600

Any kind of Lisp Machine, as opposed to Maclisp

An M.I.T. CADR

A 3600-family machine

One symbol indicates which kind of Lisp Machine software is running:

:symbolics Symbolics software

See the section "Sharp-sign Reader Macros" in Reference Guide to
Symbolics-Lisp.

(status feature symbol) returns t if symbol is on the (status features) list,
otherwise nil.

(status nofeature symbol) returns t if symbol is not on the
(status features) list, otherwise nil.

(status userid) returns the··name of the logged-in user.

(status tabsize) returns the number of spaces per tab stop (always 8).
Note that this can actually be changed on a per-window basis: however, the
status function always returns the default value of 8.

(status opsys) returns the name of the operating system, always the symbol
:lisPIJl.

185

March 1985 Checking on What the Machine is Doing

(status site) returns the name of the local machine, for example,
"MIT-LISPM-6". Note that this is not the same as the value of site-name.

(status status) returns a list of all status operations.

(status sstatus) returns a list of all sstatus operations.

sstatus status-function item Special Fonn
(sstatus feature symbol) adds symbol to the list of features.

(sstatus nofeature symbol) removes symbol from the list of features.

17.5 Using Peek

17.5.1 Peek

You start up Peek by pressing SELECT P, by using the Select Activity Peek command,
or by evaluating (peek).

The Peek program gives a dynamic display of various kinds of system status. When
you start up Peek, a menu is displayed at the top, with one item for each system­
status mode. The item for the currently selected mode is highlighted in reverse
video. If you click on one of the items with the mouse, Peek switches to that mode.
Pressing one of the keyboard keys as listed in the Help message also switches Peek
to the mode associated with that key. The Help message is a Peek mode; Peek
starts out in this mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was
invoked.

Most of the modes are dynamic: they update some part of the displayed status
periodically. The time interval between updates can be set using the 2 command.
Pressing n2, where n is some number, sets the time interval between updates to n
seconds. Using the 2 command does not otherwise affect the mode that is running.

Some of the items displayed in the modes are mouse sensitive. These items, and
the operations that can be performed by clicking the mouse on them, vary from
mode to mode. Often clicking the mouse on an item gives you a menu of things to
do to that object.

The Peek window has scrolling capabilities, for use when the status display is longer
than the available display area. See the section "Scrolling".

As long as the Peek window is exposed, it continues to update its display. Thus a
Peek window can be used to examine things being done in other windows in real
time.

186

User's Guide, to Symbolics Computers March 1985

17.5.2 Peek Modes

Processes (p)

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu
item, you see all the processes running in your environment, one line for each. The
process names are mouse sensitive; clicking on one of them pops up a menu of
operations that can be performed:

Arrest (or Un-Arrest)

Flush

Reset

Kill

Debugger

Describe

Inspect

Arrest causes the process to stop immediately. Unarrest causes it
to pick up where it left off and continue.

Causes the process to go into the state Wait Forever. This is one
way to stop a runaway process that is monopolizing your machine
and not responding to any other commands. A process that has
been flushed can be looked at with the debugger or inspector and
can be reset.

Causes the process to start over in its initialized state. This is
one way to get out of stuck states when other commands do not
work.

Causes the process to go away completely.

Enters the Debugger to look at the process.

Displays information about the process.

Enters the Inspector to look at the process.

See the section "Introduction: Processes" in Internals, Processes, and Storage
Management.

Areas (A)

Areas mode, invoked by pressing A or by clicking on [Areas], shows you information
about your machine's memory. The first line is hardware information: the amount
of physical memory on the machine, the amount of swapping space remaining in
virtual memory, and how many wired pages of memory the machine has. The
following lines show all the areas in virtual memory, one line for each. For each
area you are shown how many regions it contains, what percentage of it is free, and
the number of words (of the total) in use. Clicking on an area inserts detailed
information about each region: its number, its starting address, its length, how
many words are used, its type, and its GC status. See the section "Areas" in
Internals, Processes, and Storage Management.

187

March 1985 Checking on What the Machine is Doing

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of all
the metering variables for storage, the garbage collector, and the disk. There are
two types of storage and disk meters:

Timers

Counts

Timers have names that start with *ms-time- and keep a total of
the milleseconds spent in some activity.

Counts have names that start with *count- and keep a running
total of the number of times some event has occurred.

The garbage collector meters fall into two groups according to which part of the
garbage collector they pertain to: the scavenger or the transporter. See the section
"Operation of the Garbage Collector" in Internals, Processes, and Storage
Management.

File System (F)

File System mode, invoked by pressing F or by clicking on [File System], provides you
information about your network connections for file operations. For each host the
access path, protocol, user-id, host or server unit number, and connection state are
listed. For active connections information about the actual packet flow is also given.
The various items are mouse sensitive. For hosts, you can get hostat information,
do a file reset, log in remotely, find out who is on the remote machine, and send a
message to the machine. You can reset, describe, or inspect data channels, and close
streams.

Resetting an access path makes the server on a foreign host go away, which might
be useful to free resources on that host or if you suspect that the server is not
working correctly.

Windows (w)

Windows mode, invoked by pressing W or clicking on [Windows], shows you all the
active windows in your environment with the panes they contain. This allows you
to see the hierarchical structure of your environment. The items are mouse
sensitive. Clicking on a window name pops up a menu of operations that you can
perform on the window.

Servers (s)

Clicking on [Servers] or pressing s puts Peek in Servers mode. If your machine is a
server (for example, a file server), Servers mode shows the status of each active
server.

188

User's Guide to Symbo/ics Computers March 1985

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows information
about the networks connected to your machine. For each network there are three
headings for information:

Active connections The data channels that your machine has opened to another
machine or machines on the network.

Meters

Routing table

Information about the data flow (packets) between your machine
and other machines on the network.

A list of all the subnets and for each the route to take to send
packets to a host on that subnet.

To view the information under one of these headings, you click on the heading.
The hosts and data channels in the list of active connections are mouse sensitive.
For hosts, you can get hostat information,do a file reset, login remotely, find out
who is on the remote machine, and send a message to the machine. You can reset,
describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as
metering variables for the networks.

Hostat (H)

Clicking on [Hostat] or pressing H starts polling all the machines connected to the
local network. For each host on the network a line of information is displayed.
Those machines that do not respond to the poll are marked as "Host not
responding". You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item displays the help information that is displayed
when Peek is selected the first time.

Clicking on [Quit] buries the Peek window and returns you to the window from
which you invoked Peek.

189

March 1985 Toofs for Lisp Debugging

18. Tools for Lisp Debugging

18.1 How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The particular
components depend on the type of object; for example, the components of a list are
its elements, and those of a symbol are its value binding, function definition, and
property list.

The component objects displayed on the screen by the Inspector are mouse-sensitive,
allowing you to do something to that object, such as inspect it, modify it, or give it
as the argument to a function. Choose these operations from the menu pane at the
top-right part of the screen.

When you click on a component object itself, that component object gets inspected.
It expands to fill the window and its components are shown. In this way, you can
explore a complex data structure, looking into the relationships between objects and
the values of their components.

The Inspector can be part of another program or it can be used standalone; for
example, the Display Debugger can utilize some of the panes of the Inspector. Note,
however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

Figure 10 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

• A small interaction pane
• A history pane and menu pane
• Some number of inspection panes (three by default)

18.2 Entering and Leaving the Inspector

You can enter the standalone Inspector via:

•. Select Activity Inspector

• SELECT I

• [Inspect] in the System menu

• The Inspect command, which inspects its argument, if any

190

User's Guide to Symbolics Computers March 1985

~
To, ollli.,y EXlt Return

Modify DeCache
Clear Set \

.oIIc«t 01111."
To, 01 obi",

Empty

.oIttitM 01 obI"'
To,o/obl.a

Empty

1<ItttlM o/obl.a
TOIO/obJ"'

Empty

\

lotI«rt o/obJ«1
~hoose a value bl ointing at the value. Ri'lht finds function definition.

Ty1 ~ai"ea's console idle 21 "inutes

Figure 10. The Inspector

191

March 1985 Tools for Usp Debugging

• The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it.
In this case you cannot use SELECT L to return to the Lisp Listener; you should
always exit via the [Exit] or [Return] option in the Inspector menu. If you forget
and exit the Inspector by selecting another activity, you might need to use
c-M-ABORT to return the Lisp Listener to its normal state.

18.3 Flavor Examiner

The Flavor Examiner utility examines the structure of flavors defined in the Lisp
environment. You can select the Flavor Examiner with either SELECT X or the
System menu.

The Flavor Examiner window is divided into six panes.
TO,

•

[di~

Lode

[di~

Lode

[di~

Lode

The examiner panes (the three middle panes) list the answer to a query. The edit
item of each examiner pane places the contents of the pane into a Zmacs possibilities
buffer. The lock item for a examiner pane prevents the pane from being updated.

You enter a flavor name or method-spec into the interaction pane (the bottom pane).

To get started, type the name of a flavor in the interaction pane.

Methods are listed in the following format:

MESSAGE-NAME method-type method-combination-type FLAVOR

192

User's Guide to Symbolics Computers March 1985

If the method-combination-type is :case, this format is used:

MESSAGE-NAME SUBMESSAGE-NAME method-type method-combination-type FLAVOR

Clicking on a flavor results in these actions:

• A left click on a flavor presents a menu of flavors and methods related to the
flavor. (Note that automatically generated methods to get and set instance
variables and methods associated with si:vanilIa-tlavor are not listed.)

• A middle click on a flavor presents a menu of related instance variables.

• A right click on a flavor presents a menu of operations on the flavor, including
edit and inspect.

• Any click places on a flavor it in the flavor history pane if it is not already
there.

Clicking on a method results in these actions:

• A left click on a method lists the instance variables to which the method
refers.

• A middle click on a combined method lists the methods used to build the
combined method.

• A middle Click.qn a noncombined method lists all methods for that message
from any flavor.

• A right click on a method presents a menu of operations on the method,
including [arglist], [documentation], [edit], [inspect], [method spec], [trace], and
[disassemble], unless the method is pseudocombined.

• Any click on a method places it in the method history if it is not already
there.

Clicking on an instance variable results in these actions:

• A left click on an instance variable lists the methods that refer to the instance
variable.

• A middle click on an instance variable shows the default value of the instance
variable.

18.4 Entering the DebLigger

When an error condition is signalled and no handlers decide to handle the error, an
interactive Debugger is entered to allow you to look around and see what went
wrong and to help you continue the program or abort it. This section describes how
to use the Debugger and the various debugging facilities.

193

March 1985 Tools for Lisp Debugging

18.4.1 Entering the Debugger by Causing an Error

The Debugger is invoked automatically when errors arise during program execution
or when you explicitly cause an error, for example, by typing a nonsense symbol
name, such as ahsdgf, at the Lisp read-eval-print loop.

18.4.1.1 Error Display

Errors are signalled by the microcode and by Lisp programs (by using ferror or
related functions). Here is an example of an error:

faa

»Trap: The variable FOO is unbound.

SI:*EVAl:
Arg 0 (FORH): FOO

s-A,
s-B,
s-C:
s-O, ..

RESUHE:
m-C:

ABORT:

Supply a value to use this time as the vaue of FOO
Supply a value to store permanently as the value of Faa
Retry the SVHEVAl instruction
Return to lisp Top level in lisp listener 1

» indicates entry to the Debugger. The word immediately following » shows what
caused you to enter the Debugger; most commonly you see Trap, Error, or Break.

Trap indicates a microcode error.
Error indicates a software error.
Break indicates entry by keystroke or the dbg function.

The message that follows describes the error in English, in this example, an
unbound variable. The next two lines in the example show the stack frame in
which the error occurred - the function that was being called and the current
value(s) of its argument(s).

The right-facing arrow (..) indicates that the Debugger is waiting for a command.
Multiple arrow prompts signal recursive invocations of the Debugger.

Debugger Proceed and Restart Options

The Debugger provides options for proceeding from the error or restarting from some
prior point. When the Debugger is entered, all proceed types, special commands, or
restart handlers available in the error context are assigned to keystrokes with the
SUPER modifier, starting with s-A, s-B, and so on, from the most recently established
(innermost) to the oldest (outermost). Also, the RESUME key is assigned to the
innermost proceed type (or restart handler if there are no proceed types), and the
ABORT key is assigned to the innermost restart handler. All these keystroke
assignments are displayed when you enter the Debugger or when you type the c-L
Debugger command. (See the section "Conditions" in Reference Guide to
Symbolics-Lisp .)

194

User's Guide to Symbolics Computers March 1985

You can use one of these options or any of the Debugger commands. See the
section "How to Use the Debugger" in Program Development Utilities. For details
on the Debugger command keys: See the section "Special Keys" in Reference Guide
to Symbolics-Lisp.

Optionally, you can request that backtrace information appear when you enter the
Debugger by setting the variable dbg:*show-backtrace* in your init file.

18.4.2 Entering the Debugger with m-SUSPEND

You can also enter the Debugger explicitly by pressing M-SUSPEND. Adding the
CONTROL modifier to this combination has the effect of saying "enter the Debugger
immediately". Thus, you can:

• Press M-SUSPEND while the currently running program or read-eval-print loop is
reading from the console.

• Press C-M-SUSPEND so that the currently running program enters the Debugger
whether or not it is reading from the console.

Note: Pressing the SUSPEND key without the META modifier or just pressing
c-SUSPEND enters a read-eval-print loop rather than the Debugger.

18.4.3 Entering the Debugger with the dbg Function

You can use the dbg function in your source code to help detect errors in your
programs.

• Insert a call to dbg (with no arguments) into your code and then recompile.

• Call dbg with an argument of process to force a process into the Debugger.

dbg &optional process Function
Forces process into the Debugger so that you can look at its current state.
dbg sets up a restart handler for c-2, ABORT, and RESUME that exits from the
dbg function back to the original process. The message for this restart
handler is "Allow process to continue". You can use c-T, c-R, c-M-R, and
other similar Debugger commands when you enter the Debugger via dbg.

• With no argument, it enters the Debugger as if an error had occurred
for the current process. It is not an error; in particular, errset and
catch-error do not handle it. You can include this form in program
source code as a means of entering the Debugger. This is useful for
breakpoints and causes a special compiler warning.

• With an argument of t (rather than a process, window, or stack group),
it finds a process that has sent an error notification.

Suppose you are running in process X and you use dbg on some process Y.
Process Y is forced into the Debugger, no matter what it is doing.

195

March 1985 Tools for Lisp Debugging

Technically, it is "interrupted", similar to how c-SUSPEND, c-ABORT and
C-M-SUSPEND work. Process Y starts running the Debugger, using the stream
debug-io. debug-io gets the same stream as was bound to terminal-io in
Process X. At this time, Process X waits in a state called DBG until Process
Y leaves the Debugger, and so Process X does not contend for the stream.

For more information: See the special form break, page 180. See the section
"Breakpoints" in Reference Guide to Symbolics-Lisp.

196

User's Guide to Symbolics Computers March 1985

197

March 1985 Front-end Processor

Appendix A
Front-end Processor

A.1 Introduction to the FEP

Symbolics computers use a front-end processor known as the FEP. The FEP is a
small computer inside the processor cabinet, based on a microcomputer chip. It plays
several roles in the operation of the system, the most visible being booting (loading
and starting the software of) the Lisp system.

This discussion corresponds to FEP software version 17 or higher, which are required
for Release 6.0. Use the Show Version command to determine the FEP version of
your machine. See the section "Commonly Used FEP Commands", page 200. If you
have a FEP of version lower than 17, contact Field Service.

A.2 Hints on Using the FEP

The Fep> prompt is displayed when you are at FEP command processor level. The
FEP command processor provides defaults and documentation where appropriate.
When using it, remember these hints:

• You need type only enough of a FEP command to identify it uniquely, as
shown below:

Input
b RETURN
I W RETURN
st RETURN

Completes to
Boot
Load World > World1.load
Start

• You can press the HELP key for a list of all FEP commands. For example:

HELP

Possible choices are: Add Boot Clear Continue
Copy Disk Dismount Halt Load Hount Reset
return-keyboard-to-lisp set show start test

Some of these commands are used in ordinary booting; others exist primarily
for system maintainers, to help them debug unusual problems.

198

User's Guide to Symbofics Computers March 1985

• You can press the HELP key after typing a command name for a list of all
possible completions to that command. For example:

set HELP

Possible choices are: chaos-address
default-disk-unit disk-type
microcode-name-and-version

Note that you must press SPACE after typing a command name and before
pressing HELP to receive a list of the command's arguments.

• You can insert parenthetical comments in any white space within or after
FEP commands. For example:

load world >World1.1oad (contains geological survey programs)
set chaos-address 401 (ACHE-earthquake)

load world >World1.load and set chaos-address 401 are FEP commands, and
the parenthetical phrases are user-supplied comments. Such comments make
useful documentation for configuration files.

• Finally, be careful! If you make a mistake when giving FEP commands, you
might leave the machine in a state from which it cannot be cold booted.

A.3 Cold Booting

Cold booting completely resets Lisp. When you are finished using the computer, you
can cold boot it to put it into a fresh state for the next user. Avoid cold booting a
machine that someone else may be using, though, since the other person may be
expecting the machine to remain in its current state.

First, log out if you are logged in. Then, halt the machine by typing the Halt
Machine command to a Lisp Listener. (The function sys:halt can also be used.)

If you cannot obtain a Lisp Listener window, or if no Lisp Listener is responding to
keyboard input, press h-c-upper-left. However, sys:halt is the preferred way to stop
Lisp than h-c-upper-left because h-c-upper-left might interrupt disk I/O operations.

With FEP version 18 and later versions, pressing h-c-upper-left does not immediately
stop Lisp. Instead, the FEP asks Lisp to stop itself cleanly. If Lisp does stop itself,
the FEP prints the message "Lisp stopped itself." If Lisp does not stop itself after
about three seconds, the FEP prints, "Waiting for Lisp to stop itself. .. " If after
another three seconds Lisp does not stop itself, the FEP forcibly stops Lisp and
prints, "Halting execution of Lisp." The purpose of this behavior is to reduce the
chance of halting the computer during a disk write, which might cause ECC errors.

199

March 1985 Front-end Processor

When control has returned to the FEP, type the following FEP command to cold
boot the machine:

boot file-name RETURN

where file-name is a configuration file. Its default value is the last file name given
the Boot or Show File command. Its initial default value is >Boot.boot on the
current default disk unit. The following is a typical configuration file:

clear machine
load microcode >Microcodel.mic
load world >World1.1oad
set chaos-address 401
start

Alternatively, if the microcode is already loaded and the Chaosnet address is set, you
can type these FEP commands manually:

load world >World1.1oad
start

File names specified in a command file refer by default to the disk unit containing
the command file. For example, the FEP command Load World >World1.load, if
contained in the file fepO:>Boot.boot, loads the world file fepO:>Worldl.load.

Cold booting takes approximately one minute. It takes another minute for Lisp to
start. During this time, the machine might print a message asking you to enter
date and time information if it has no other way to find it. (This behavior is site
dependent.) If so, type it in the following format:

09/21/83 15:04

Be sure to enter the date and time correctly, as it is important that the file system
know exactly when files are created and modified. If the calendar clock has been
set, the machine uses the calendar clock reading as the default time for you to type
in. If the calendar clock has not been set, it offers to set it to the time you specify.

A.4 Resetting the FEP

Resetting the FEP restarts the FEP system, thereby discarding knowledge of the
FEP's free storage area. Resetting might be necessary if you unplug the console
video cable from either end or turn the console off and on. You also need to reset
the FEP if you receive the error message: Request for N longs fa; led. You can
reset the FEP from either the keyboard or the processor front panel.

• To reset the FEP from the keyboard:

1. Type the form (s i : ha 1 t) to stop the computer and give control of the
keyboard to the FEP.

200

User's Guide to SymboJics Computers March 1985

2. Type the command Reset Fep to the FEP prompt.

Alternatively, if no Lisp Listener is responsive:

1. Press h-c-upper-lejt to stop the computer and give control of the
keyboard to the FEP.

2. Type the command Reset Fep.

Press y to answer the confirmation prompt.

• To reset the FEP from the processor front panel:

1. Push the red RESET button on the processor front panel.
2. Press the spring-loaded YES switch to answer the "Reset FEP?"

question.

After you reset the FEP, the keyboard is connected to the FEP, not to Lisp. Give
the Start command and press RETURN to warm boot the machine and Lisp, and
return control of the keyboard to Lisp.

A.5 FEP Commands

Some FEP commands are involved in normal use of the computer. These include
Boot, Show Directory, Show Version, and Start. Other commands are used primarily
by system maintainers to debug unusual problems. Among these are Clear Machine,
Disk Restore, Disk Format, and Load World. Be careful when giving these latter
commands. If you make a mistake, you might destroy the state of the loaded or
saved Lisp system.

A.S.1 Commonly Used FEP Commands

Boot file-name Boot executes the commands specified in file-name. file-name is
the name of a configuration file; it defaults to the last file name
given the Boot or Show File command. Its initial default is
> Boot. boot.

Show subcommand
Show has several subcommands:

Show Configuration
Displays the hardware configuration, scans the
backplane, and describes the boards that exist
on the Lbus.

Show Directory directory-spec
Displays the contents of a directory in the FEP
file system and the associated file comments.
directory-spec must end in >* and can be

March 1985

201

Front-end Processor

preceded by fep: or fepn:. For example, Show
Directory >* is acceptable. The default
directory-spec is >*.

Use Show Directory to see whether the FEP is
able to access the disk properly.

Show Disk-label unit
Displays the label of unit, the specified disk
unit. This is done independently of the unit's
being mounted, so you can tell what the label
seems to contain. The default for unit is the
current default disk unit.

Show File file-name

Show Status

Show Version

Displays the contents of file-name, a file in the
FEP file system. file-name defaults to the last
file name given the Show File or Boot
command. Its initial default is >Boot.boot.

Displays the internal status of some machine
registers. For information on interpreting the
output of this command: See the section
"Finding Out Why Your Machine Crashed",
page 214. See the section "FEP Show Status
Command Output", page 217.

Displays the version number of loaded FEP
software.

A.S.2 Less Common FEP Commands

Add Disk-type Lets you declare an arbitrary disk type to the FEP. You can
declare up to four disk types before you have to give the Clear
Disk-types command. Add Disk-Type is needed only to format
and restore disks. It is not needed for normal operation of any
validly formatted disk with a FEP file system.

Add Disk-type has the following arguments, for which it prompts
with the argument names in parentheses:

name

cylinders

heads

sectors

gap1

The textual name by which this disk type is
known

The number of cylinders supported by the drive

The number of heads on the drive

The number of sectors

The length of "gap!"

202

User's Guide to Symbolics Computers March 1985

gap2

gap3

fast

The length of "gap2"

The length of "gap3"

o for slower disks, 1 for faster disks

These numbers require careful computation and involve some
restrictions of the computer hardware. The calculation should 00
done by Symbolics personnel.

Add Paging-file file-name
Adds the data pages of file-name to the paging tables. file-name
defaults to >page.page on the currently selected disk unit. This
command is executed implicitly during a Load World command.
Beginning with V23 proms, >reserve.page is the default for Add
Paging-file. For earlier proms, >page.page is the default.

Note: If you are executing a Boot command, Add Paging-file uses
the same disk unit as the command file to find the page file. If
you type in Load World, Add Paging-file uses the default disk
unit, which might be different from that containing the world file
just loaded, to find the page file.

If you are typing in this command or if you are adding more than
one paging file, you should first use the Clear Paging-files
command. Neither the FEP nor Lisp has any error checking to
detect doubly allocated disk blocks. Not clearing the paging files
will eventually cause surprising errors to occur after booting.

The Start command notifies you if no paging file has been
established. It prompts for confirmation before starting the
processor.

Clear subcommand

Continue

This command has the following subcommands:

Clear Disk-types Clears all disk types declared with the Add
Disk-type command.

Clear Machine

Clear Screen

Clears the internal state of the registers and
memories.

Clears the console's screen.

Clear Paging-files Clears all information in memory about what
part of the disk holds virtual memory. Use this
command after loading a world and before using
an Add Paging-file command and starting the
processor.

Continues the computer's operation from where it left off.
However, if you have stopped the world and loaded new microcode,

March 1985

Copy

Disk Format

Disk Restore

203

Front-end Processor

Continue does not work. Instead, you must warm boot by using
Start.

Not currently implemented.

Formats the disk. This command overwrites all data on the disk.
When you give the command, the FEP asks several questions; it
expects answers in the following form:

Questions
Of type
On unit
With pack id
From cylinder
Through cylinder

Valid answers
M2284, T306, M2351, or D2257
Disk unit number
o
Cylinder number; inclusive lower bound
Cylinder number; inclusive upper bound

Restores the file system or files from cartridge tapes to disk.
Note: Before using Disk Restore, first ensure that memory is
clear and the appropriate microcode is in place, by giving the
commands Clear Machine and Load Microcode Tape: . Note the
trailing colon (:) after Tape.

U sing Disk Restore causes three questions to be displayed:

1. Have you used Set Disk-type for all units that do not have
valid label blocks?

The disk type must be known before the first reference to
it, in case the label block is not yet written.

2. Is there a microcode at the beginning that should be
skipped?

The program that generates tapes to be used for disk
restoring writes microcode followed by an EOF (end-of-file)
mark so the FEP can easily skip it, since the microcode is in
a stream format and the tape restoration data is not.
Usually, continuation tapes (used, for example, when a world
is too big to fit on a single reel of tape) do not begin with
microcode; only the first reel begins with microcode.

A tape can contain information in either image restore (block
restore) format or file restore format. In both cases, up to
1152 characters of information are displayed, describing the
contents of the section of the tape. Usually the information
is supplied by the person producing the tape.

204

User's Guide to Symbolics Computers March 1985

Dismount disk-unit

• image restore: Data recorded in this format can be
either an initial file system or raw disk blocks from a
source disk. The tape-generating program writes out
block numbers normalized to block 0 (and writes the
number of the original starting block into the header
information) so that they can be written to the new
disk at a different location if desired. File systems
must be restored to block 0; the header information
reminds you of this.

• file restore: Data recorded in this format must be a
file. The header includes the name of the source file,
its length, and a comment supplied by the writer of
the tape. You are asked for a destination pathname
for the data; the default disk unit is assumed unless
another is specified. Both a file system and the
specified destination file must already exist on the
unit, and the destination file must be large enough to
hold the tape data. If the data pages of the
destination file are not contiguous (because of bad
blocks, say, or lack of contiguous space), then the
restored data is fragmented also.

When the file restoration is completed, a special
restoration block is read, containing the length of the
file, the author, the creation date, and a comment.

Large files (for example, worlds not compacted by
garbage collection) cross tape boundaries. But since all
block numbers are relative to the beginning of the file,
the second reel of tape is logically continuous with the
first, and file restoration proceeds as for single-reel
files.

3. Do you want to restore it?

Answering "no" skips the current tape restore section and
searches for the next one.

Dismounts the unit, forcing a remount on the next reference.
The default value of disk-unit is the current default disk unit.

Halt Halts the FEP. To restart (and reset) it, push the RESET button
on the processor front panel. The Halt command is being
replaced by the Shutdown command.

Load Fep file-name

March 1985

205

Front-end Processor

Loads and starts loadable FEP programs. The names of the FEP
programs are usually of the form Vxx-name, where xx is the
number of the FEP version on which the program runs and name
is the name of the program. For example, the file name
FEP:> V22-debug.flod would indicate that the program ran on FEP
version 22 and was used for debugging Lisp crashes.

Load Microcode file-name
Loads microcode memory and other high-speed memories from the
specified file. The default value of file-name is the last file name
given the Load Microcode command. Its initial default is
>Microcodel.mic. Use Clear Machine first if the computer was
just powered on.

Load Sync-program file-name
Loads the specified file (of type .SYNC) into the sync program
memory of the I/O board and causes the screen to clear. This is
used for machines with monitors that require different sync
programs than the one that is preprogrammed into the FEP.
The default value of file-name is the last file name given the Load
Sync-program command. Its initial default is >Sync.sync.

Load World file-name
Restores enough of the saved world in the computer so that you
can start up the machine. It prints both the desired microcode
version for this world and the currently loaded microcode version.
The default value of file-name is the last file name given the Load
World command. Its initial default is >Worldl.load.

Mount disk-unit Reads the disk label of the specified disk unit to learn the number
of cylinders, number of heads, fast mode, pack id, and location of
the root directory. The FEP does an implicit Mount whenever
files are referenced and the unit has not previously been mounted.
The default value of disk-unit is the current default disk unit.

Reset subcommand
Resets various parts of the computer. Subcommands include:

Reset Cart

Reset Clock

Resets the cartridge tape drive.

Resets the processor clock.

Reset Disk unit-number

Reset Fep

Selects, fault-clears, and recalibrates the unit,
clearing any error conditions. The default value
of unit-number is the current default disk unit.

Restarts the FEP program, discarding the
FEP's knowledge of what microcode was loaded,
and so on. If the FEP is running in RAM,
asks whether to switch back to PROM.

206

User's Guide to Symbolics Computers March 1985

Reset Lbus

Reset Most

Resets the Lbus.

Resets the processor clock, the Lbus, the'
sequencer, the video, and the disks. If you
think that the internal state of the computer is
inconsistent, try Reset Most before power­
cycling.

Reset Sequencer Resets the sequencer data paths.

Reset Video Reloads the console screen's sync program.

Return-keyboard-to-lisp
Returns control of the keyboard to Lisp from the FEP. This
command is used if the computer has been started via debugging
cables instead of by typing to the FEP. It tells the FEP to send
keyboard input to Lisp rather than process it as FEP commands.

Set subcommand This command has the following subcommands:

Set Chaos-address octal-value
Sets the Chaosnet address. The default value
of octal-value is the previous Chaosnet address,
which is set to zero when the FEP is started.

The FEP checks for an acceptable Chaosnet
address before starting Lisp. If none is
specified as argument to this command, it
warns you, asks whether the current setting is
acceptable, and allows you to change it if
necessary.

Set Default-disk-unit unit
Sets the default disk unit. unit becomes the
default for most subsequent disk references.
However, within a command file executed by a
Boot command, the default disk unit is the one
on which the command file is located.

Set Disk-type unit type pack-id
Tells the FEP that disk unit is of type type and
has pack id pack-id. Disk Restore might need
this information if the disk has no label block
or if the label block contains incorrect
information. Give Set Disk-type after an
implicit or explicit Mount command.

Set Display-string string
Displays the string in the nanofep display of
machines that have a nanofep display. The
length of the string is limited to 12 characters,

March 1985

Shutdown

207

Front-end Processor

the number of characters in the nanofep
display. If more characters are used, the string
is truncated. This command can be used in a
.boot file.

Set Microcode-name-and-version name version
Sets name and version in the computer's
memory after the world is loaded. Use this
command if the FEP warns that it does not
know that microcode is loaded. The
information is also recorded for subsequent Load
World commands.

If you load microcode, restart the FEP, and
load a world, the FEP warns that the
microcode has not been loaded and that it
therefore cannot set its name and version in
the computer's memory. Set Microcode-name­
and-version is chiefly for use by Symbolics
developers.

Set Monitor-type monitor-type
Specifies the monitor type. The Set Monitor­
type commmand ensures that the sync program
used is for the monitor type requested.
monitor-type can be either Monitenn or
Philips; the types can be abbreviated to their
first letter, m for Monitenn and p for
Philips.

Set Monitor-type is used if the monitor is
changed at a site and the m prom is not
changed accordingly. This command can be
used in a boot file.

The following examples show two valid uses of
the same command.

Set Honitor-type Honiterm

set mon m

Halts the FEP. To restart (and reset) it, push the RESET button
on the processor front panel. The preferred way to turn off the
machine is:

• Halt the 3600-family processor, using si:haIt.

208

User's Guide to Symbolics Computers March 1985

Start

Test

• Halt the FEP, using the Shutdown command.

• Power off the processor and console.

On the 3600, the Shutdown command asks "Do you really want
to halt the FEP?" and displays the message "FEP Halted" in the
nanofep display.

On the 3670, the Shutdown command asks the question "Do you
really want to power down the 3600?" and it lights the fault light
on the switch panel.

Note: the Shutdown command replaces the Halt command.

Starts the computer. If the world has just been loaded, this is a
cold boot; if the world had been loaded previously, this is a warm
boot. Start checks for an acceptable network address; if none was
set, it is read from the computer and you are asked to confirm it.

Performs simple tests of main memory, A memory, and the disks.
Currently, the Test command is chiefly for use by Symbolics
developers. A full set of Test commands is scheduled for a future
release.

A.6 FEP File System Overview

The Symbolics computer disk has a file system called the FEP file system. The
entire disk is divided up into FEP files (that is, files of the FEP file system). FEP
files have names syntactically similar to those of files in the Symbolics computer's
own local file system. However, the FEP file system and the Lisp Machine File
System (LMFS) are completely distinct.

FEP files (for example, fepO:>Boot.boot) can be accessed from Lisp. The following
files are part of the FEP file system and should never be disturbed.

>disk-label.fep
>root-directory.dir
>free-pages.fep
>bad-blocks.fep
>sequence-number.fep

A.6.1 Microcode Loads

By convention, files of type MIC are microcode loads. These files contain images of
the microcode and the contents of other internal high-speed memories that are
initialized when the computer is booted.

209

March 1985 Front-end Processor

A.6.2 World Loads

By convention, FEP files of type LOAD contain world loads, or bands (images of
entire Lisp worlds).

A.6.3 Config uration Files

Configuration files contain FEP commands tailored for a particular Lisp Machine
configuration. The commands are executed if you specify the file as argument to a
Boot command when cold booting the machine. See the section "FEP Commands",
page 200.

The configuration file >Boot.boot usually contains FEP commands to:

• Clear the internal state of the machine
• Load the microcode
w Load a world
• Set the Chaosnet address
• Start the machine

To change the selection of microcode and world loads that are booted by default,
simply use Zmacs to edit the file >Boot.boot. Be careful to avoid typographical
errors; otherwise, you might have to type in the commands manually in order to
boot the machine. Also, be sure that the last command in the file is followed by
RETURN.

A.6.4 How LMFS Uses the FEP File System

The FEP file fepO:>lmfs.file is where LMFS normally keeps its files. It holds the
machine's local file system. The entire Symbolics computer local file system normally
resides inside one big file of the FEP file system.

The file fepO:>fspt.fspt tells LMFS which FEP files to use for file space, if not
fepO :>lmfs.file.

A.6.S Virtual Memory

The FEP file fepO:>page.page holds the virtual memory of the Lisp system while
Lisp is running. To increase the effective size of virtual memory, you can add
additional paging files. See the section "Allocating Extra Paging Space" in Reference
Guide to Streams, Files, and 110.

A.6.6 FEP File Comment Properties

Comment properties supply additional information about the contents of FEP fues.
In the Dired mode of Zmacs, they are listed inside square brackets, where the
reference or expunge date appears for other fue systems. You can list the contents

210

User's Guide to Symbolics Computers March 1985

of the FEP file system by using the function print-disk-label. The Zmacs
command Dired (M-X) of fep:>*, or the form (dired "fep:>*") invokes the directory
editor on the FEP file system. An example of the Zmacs Dired command output
follows:

48150 free. 322330/370480 used (87%)
FEPO:>BAD-BLOCKS.FEP.1 776 0(8) 9/14/83 11:46:56 [List of bad blocks] rll
FEPO:>boot.boot.15 1 121(8) 1/15/84 12:19:15 [] DEG
FEPO:>boot.boot.16 1 121(8) 1/29/84 13:06:43 [] DEG
FEPO:>boot.boot.17 1 121(8) 2/21/84 13:35:28 [] whit
FEPO:>boot.boot.18 1 124(8) 2/21/84 13:39:20 [] whit
FEPO:>DISK-LABEL.FEP.1 24 0(8) 9/14/83 11:46:55 [The disk label] rll
FEPO:>FREE-PAGES.FEP.1 41 0(8) 9/14/83 11:46:56 [Free pages map] rll
FEPO:>fspt.fspt.1 1 0(8) 9/14/83 11:46:58 [A filesystem partition table] rll
FEPO:>LMFS.file.150000 0(8) 1/05/84 23:20:13 [] ptaylor
FEPO:>Microcode1.MIC.1 103 117020(8) 6/30/83 08:19:16 [TMC5-MIC 219] Feinberg
FEPO:>PAGE.PAGE.1 150000 0(8) 9/14/83 11:46:58 [Main paging area] rll
FEPO:>Release-5-0.load.l 19109 22013568(8) 11/02/83 17:02:31 [Release 5 Beta Test] joseph
FEPO:>ROOT-DIRECTORV.DIR.1 2 0(8) 9/14/83 11:46:55 [His highness] rll
FEPO:>sequence-number.fep.1 1 0(8) 9/14/83 11:49:39 [] rll
FEPO:>System-243-463.load.1 22348 25733376(8) 1/02/84 11:46:14 [Exp 243.463] Zippy
FEPO:>system-243-481.load.1 20544 23666688(8) 1/11/84 22:48:56 [Exp 243.481. Full-GC]
FEPO:>system-243-516.load.1 20754 23908608(8) 1/24/84 23:23:41 [Exp 243.516. Full-GC] Zippy
FEPO:>system-243-559.load.1 19157 22068864(8) 2/19/84 19:32:45 [Exp 243.559. Full-GC] Moon
FEPO:>TMC5-MIC.MIC.247 103 118018(8) 10/03/83 20:25:07 [TMC5-MIC 247. Beta Test] joseph
FEPO:>TMC5-MIC.MIC.262 101 115233(8) 12/27/83 21:15:16 [TMC5-MIC 262] whit
FEPO:>TMC5-MIC.MIC.273 101 115810(8) 2/19/84 15:13:56 [TMC5-MIC 273] whit
FEPO:>World1.load.1 19138 20318976(8) 10/07/83 12:09:08 [Rel 4.5] LISPMNIL

A.S.7 Installing Microcode

Use si:install-microcode to retrieve any new microcode from the file system of the
sys host.

si:install-microcode from-file-or-version &optional to-file-or-version Function
boot-file-to-update

Installs microcode from a system file into a file in the FEP file system.

from-file-or-version is a microcode version number (in decimal). The file
resides in the logical directory sys:l-ucode;.

to-file-or-version rarely needs to be supplied. It defaults to a file on FEP:>
(the root directory of the boot disk) whose name is based on the microcode
name and version. If supplied, to-file-or-version is either a pathname (string)
of a file on FEP:>, or an integer n, which stands for the file TMC5-
MIC.MIC.n on FEP:>.

211

March 1985 Front-end Processor

The logical directory 8Y8: l-ucode; includes mUltiple typ~s of microcode for each
version number. The correct microcode to install depends upon the particular
hardware configuration of your machine. When your machine is shipped, the
default microcode filename is correct, but if your machine is upgraded (for
example, an FPA board is installed) you might need to override the default
used by si:install-microcode to get the correct type for your configuration.
Below is an example of how you would get the microcode for a 3600 running
6.0, with no console upgrade but an FPA board installed:

(si:install-microcode "tmc5-fpa-mic.mic.319")

The correct microcode types for each system and hardware configuration are
shown below. The names in this table omit the suffIx mic.n that you must
include to indicate the version of the required microcode. The version
number must be followed by a period. Microcode version 319. is required for
Release 6.0.

3600

No FPA
FPA

tmc5
tmc5-mic.
tmc5-fpa-mic.

ifu
ifu-mic.
ifu-fpa-mic.

3670/3600 with console upgrade
tmc5 ifu

No FPA
FPA

3640

NoFPA
FPA

tmc5-io4-mic.
tmc5-io4-fpa-mic.

tmc5
tmc5-io4-st506-mic.
tmc5-io4-st506-fpa-mic.

ifu-io4-mic.
ifu-io4-fpa-mic.

ifu
ifu-io4-st506-mic.
ifu-i04-st506-fpa-mic.

If you use the wrong microcode for your configuration, your machine will not
boot, except in the case where your system has an FPA and you use a non­
FPA microcode. In this case, the machine functions normally, but does not
make use of the FPA at all.

boot-file-to-update specifies whether to update the boot file with the new
microcode version number. It accepts one of these values (the default value
is nil):

Value

nil

pathname

Action

Prompts for a boot file to update.

Does not prompt but uses pathname as the
boot file to update.

212

User's Guide to Symbolics Computers March 1985

:no-boot-file-update Does not prompt or update.

Initially, the Symbolics personnel who install your system establish these microcode
files for you.

A.6.S Renaming FEP Files

FEP files can be renamed. For example, if you save a world containing MACSYMA,
you might want to rename the world file to >macsyma.load or >macsymal.load. Be
sure to update your boot file if you intend this to be the default world.

A.6.9 Using a Spare World Load for Paging

You can reuse FEP file space by specifying a FEP file, usually a spare world load file,
to be used as an extension of the file >page.page. To do so, use the FEP Add
Paging-file command. Note that this action overwrites the previous contents of the
specified file.

You should rename this file to, say, >extra. page, so that other users do not attempt
to use the file space (to hold customized world loads, for instance).

You can also create new FEP files and use them for extra paging space. See the
section "Allocating Extra Paging Space" in Reference Guide to Streams, Files, and
110.

A.6.10 Adding a Spare World· Load as LMFS File Space

Partitions can be added to LMFS with [Local FS Maint] on the File System Editor
menu. Select this item to get a menu of file-system maintenance operations. The
[Initialize (R)] command yields a menu of initialization options, which offers [New
File System] and [Auxiliary Partition] as a choice. [New File System] is similar to
[Initialize (L)]; it initializes a partition to be the basis of a file system.

When you add a new partition or a partition on another disk, the disk should be
free of errors and properly initialized and formatted, and the partition should exist.

To add another partition, use [Auxiliary Partition]. Enter the pathname of the FEP
file to be used as the new partition. The default presented, which is correct for
[New File System], is never correct for adding a partition. Then use [Do It]. The
system then performs much verificat~on and error checking, roughly as much as
when initializing a new partition. It must not be interrupted while performing these
actions. When finished, it adds the partition and edits the FSPT automatically.

213

March 1985 Front-end Processor

A.7 Disk Handling

You can include a disk specification of the form fepn:, where n refers to disk unit n,
as the first field of file and directory references to the FEP. A specification of fep:
(with no unit number) refers to the disk unit from which the current Lisp world
was booted, that is, the unit containing the world load file. If fepn: is omitted
entirely, the default disk unit, set by Set Default-disk-unit is assumed. See the
section "Less Common FEP Commands", page 201.

A.7.1 Disk Handling Commands

The following FEP commands manipulate disk units. See the section "Commonly
Used FEP Commands", page 200. See the section "Less Common FEP Commands",
page 201.

• Add Disk-type

• Clear Disk-types

• Dismount disk-unit

• Mount disk-unit

• Reset Disk unit-number

• Set Default-disk-unit unit

• Set Disk-type unit type pack-id

• Show Directory directory-spec

• Show Disk-label unit

• Show File file-name

A.7.2 Multiple Disk Units

Each Lisp Machine can access more than one local disk drive. The following
conditions apply:

• The FEP can access any drive at all. Currently, the hardware allows a
maximum of four drives.

• You can boot a Lisp world from any drive by using the FEP command Load
World. Also, you can add paging files from any drive by using the FEP
command Add Paging-fue.

214

User's Guide to Symbolics Computers March 1985

• The form fep: refers to disk 0; it is equivalent to the form fepO:. However, it
is also possible to specify another disk explicitly, using such forms as fep1: or
fep2:.

• You can access only drive 0 from Lisp. In particular, you cannot disk-save to
any drive other than drive O. This means that users cannot save customized
world loads onto any other drive, or store user files on any other drive.

• World loads are not specific to a type of drive. This means that if one Lisp
Machine has a T306 drive and another has an M2284 drive, world loads can be
transferred back and forth between the drives.

A.7.2.1 Disk Types

The FEP currently supports the following types of disk drive:

• M2351 (470 megabytes unformatted capacity)

• T306 (300 megabytes unformatted capacity - removable)

• M2284 (167 megabytes unformatted capacity)

• D2257 (167 megabytes unformatted capacity)

• Maxtor XT -1140 (140 megabytes unformatted capacity)

A.a Finding Out Why Your Machine Crashed

When your machine crashes, the FEP Show Status command displays information
that can be useful in diagnosing the cause of the crash. For an outline of the
information that Show Status prints: See the section "FEP Show Status Command
Output", page 217.

The Show Status output section "3600 program counters" includes the macro PC,
the CPC, and the 16 OPCs. The macro PC is the address of the current instruction
of compiled Lisp code. The CPC is the address of the current microinstruction. The
OPCs are the addresses of the 16 most recently executed microinstructions; OPC+O is
the most recent, OPC+17 the earliest. An arrow points at either the CPC or the
first OPC, depending on the error condition that stopped the machine. This is the
microinstruction that was executing when the event occurred that was the
proximate cause of the machine's stopping itself.

215

March 1985 Front-end Processor

A.8.1 Decoding Micro pes

Use the function dbg:decode-micro-pc to decode the microcode PCs printed by the
FEP command Show Status.

dbg:decode-micro-pc pc &optional (name Function
sys:%microcode-version) (version
(sys:microcode-version-number sys:%microcode-version»)

dbg:decode-micro-pc is useful for investigating why a machine crashed. It
decodes the octal microinstruction addresses printed by the FEP command
Show Status. To use this function you should first write down the Show
Status output. You can then either warm boot the machine using the Start
command or call dbg:decode-micro-pc on another machine.

pc is an address in the microcode, taken from the CPC or OPC information
printed by the Show Status command. Show Status prints these numbers in
octal; if your default radix is decimal, precede pc by ;H:U. N' ormally the
number in the Show Status output with the arrow (..) pointing to it is the
relevant number, but it can sometimes be useful to try decoding all of the
numbers to get additional clues.

name and version are optional; they specify the version of the microcode that
was running at the time of the crash. You can omit these arguments if you
call dbg:decode-micro-pc while using the machine that crashed and while
running the same microcode version as at the time of the crash. You can
also omit these arguments if you call this function from another machine
that has a software and hardware configuration that is identical to that of
the machine that crashed. To find the microcode version name and number
that a machine is running, use (print-herald :verbose t) or take the name
and version number of the microcode file in the machine's boot file (normally
fepO:>Boot.boot). Microcode version numbers are decimal; include a period at
the end of the number if your default radix is octal.

Example:

(dbg:decode-micro-pc #044552 "tmc5-mic" 253.)

dbg:decode-micro-pc prints information that depends on the
microinstruction:

Microinstruction

Halt instruction

Signaller of a Lisp error

Infonnation printed

The reason it halts the machine. An
example is "error in the error handler".
These reasons are constant strings in
the microcode source program and do not
represent any dynamic analysis of the
state of the machine.

The internal form of the error message.

216

User's Guide to Symbo/ics Computers March 1985

This is not the same form of error
message you would ever see otherwise;
normally Lisp software translates these
messages into conditions and signals
them, and the conditions define more
readable error messages. This is useful
mainly in decoding OPCs earlier than
the one with the arrow, when the
machine halted because of "error in the
error handler".

Handler for a macroinstruction in compiled Lisp code
The name of that macroinstruction. A
halt here might be caused by running a
world together with an incompatible
microcode, such as a microcode from an
earlier release, that does not implement
an instruction used by that world.

If all else fails, the function offers to load the microcode symbol table (from
the sys:l-ucode; directory) and then prints the symbolic name of the
microinstruction. Loading the microcode symbol table takes a few minutes.
Microinstruction symbolic names can sometimes be clues to help in figuring
out what the machine was doing at the time it crashed.

Two types of symbolic names exist: those with and without parentheses.

If the name includes parentheses, it is a list of the name of a microcode
routine and the path through that routine to reach the microinstruction in
question. Beware of a pitfall! These names are not unique; the same
microinstruction can be reached by multiple paths from different microcode
routines. For example, a microinstruction named (FTN-AR-l 3) might also be
part of the microcode for the CAR instruction; you cannot assume too much
from the name if it contains parentheses. It is only a clue.

If a symbolic name is just a symbol and has no parentheses, it is unique and
names the first microinstruction of a microcode routine.

Beware of assuming too much. If the reason Lisp stopped itself is not
"microcode halted", the information that dbg:decode-micro-pc prints is not
likely to be helpful, though it might be useful to people who understand the
hardware.

A.8.2 Decoding Macro pes

To decode the macrocode PC printed by the FEP command Show Status, warm boot
or go to another machine running identical software and call the function
%find-structure-beader on the number printed by the FEP. This is an octal

217

March 1985 Front-end Processor

number; use #0 if necessary. It should return a compiled-function object, which is
the function that was executing at the time. To fmd the exact place in the function
that was executing, note the different between the number printed by the FEP and
the address in the printed representation of the compiled-function object. You can
use %pointer-difference to compute this difference. Multiply this by 2, and add 1
if the FEP said the PC was odd (not even). The result is the instruction number of
the current instruction; disassemble the compiled function to see it.

Example:

Fep>Show status

3600 program counters:
Macro PCI (Odd)1244531

Fep>Start

(%find-structure-header #01244531)
#<DTP-COMPILED-FUNCTION EQUAL 1244530>
(%pointer-difference #01244531 *)
1
(1+ (* * 2»
3
(disassemble ***)

o ENTRY: 2 REQUIRED, 0 OPTIONAL
1 PUSH-LOCAL FPIO ;A
2 PUSH- LOCAL FP 11 ; B
3 BUILTIN EQL STACK

Instruction 3 (EQL) is the one that halted.

A.9 FEP Show Status Command Output

The register contents and program counters displayed by the Show Status command
give some information on machine states causing the FEP message "Lisp stopped
itself'. They are generally not useful for interpreting wired-ferror halts. Show
Status merely prints the contents of certain hardware registers, decoding the bits
symbolically. The FEP does not interpret these contents, so some output might not
be meaningful. The following cautions apply:

• You must interpret some bits depending on the value of other bits.

• Some registers listed below are printed only if they contain "useful"
information.

The most important registers are Sequencer status and Me error status. For

218

User's Guide to Symbolics Computers March 1985

information on decoding the PCs printed elsewhere: See the section "Finding Out
Why Your Machine Crashed", page 214.

FEP buffer status

Bit
Spy DMA Enb

Write to dev / Read from dev
Drive busy
Int Enb
Count up / Count down
Busy
Spy DMA busy
DMA setup

FEP Lbus control

Bit
ECC Diag

Doorbell In t Enb
Use Uncorrected Data

Ignore Double ECC Error

Task 3 Req

Doorbell
Lbus Buffer Busy
Lbus Buffer Some Parity Error

FEP Board 10 control

Bit
Continuity

Lbus ID Req

Half Speed

Meaning
Spy bus being used by FEP to access disk or net
(means spy bus being used for normal functions)
Spy DMA direction
Spy DMA mode (who controls busy line)
Spy DMA enable to interrupt FEP
Spy DMA address increment direction
Spy DMA busy (inside FEP)

Spy DMA busy line (actual line on backplane)
[meaning unknown]

Meaning
Normal memory error correction logic disabled;
instead, FEP can read or write the 8 extra bits of
main memory
Doorbell (Lisp-to-FEP signal) interrupt enabled
FEP unaware of corrected Lbus data if single-bit­
error
FEP does not get bus error if uncorrectable Lbus
error (either double-bit error or nonexistent
memory)
FEP trying to wake up microtask 3
Doorbell ringing (Lisp-to-FEP signal)
[self-explanatory]
[self-explanatory]

Meaning
Read-back of random signal that checks board
presence
Lbus reading board IDs, not doing normal
functions
Main processor clock running at half speed

March 1985

FEP Proc control

Bit
Lbus Power Reset

Lbus Reset
Clear Errors

FEP In tEnable
Kept Alive
Lbus Power Reset (on bus)

Lbus Reset (on bus)
FEP Ram Par Err

Sequencer error status

219

Front-end Processor

Meaning
Reset all Lbus devices due to power turn-on or
turn-off
Reset all Lbus devices
Bit that clears FEP error registers (not an error)
FEP interrupt enable (not an error)
FEP died and was reset by nanofep
Same as above, but actually read back from the
bus
[•.. J
Parity error in dynamic ram on FEP board

(Status of the SQ board and the main error status bits that can halt the machine)

Bit Meaning
Microcode-halted

Self-explanatory hardware errors:

Bit
Spare-error-bit

GC-Map-parity-error
Type-map-parity-error
Page-Tag-parity-error
A-memory-parity-error
B-memory-parity-error

A "halt" microinstruction was executed, for one of
the following reasons:

• A call to the %HALT function (due to a
wired-ferror or a call to HALT)

• A fatal error, such as an error while entering
the error handler or an error in wired code
(page fault, disk handlers)

• Executing an undefined macroinstruction
(running too old a version of microcode or
executing bad macrocode)

• Failure of a microcode consistency check
(stack frame too large, stack overwritten)

Meaning
[never happens, unless manually wired to some
signal]

GC MAP ram on DP board
TYPE MAP ram on DP board
PAGE TAG ram on FEP board
AMEM ram on DP board
BMEM ram on DP board

MC-error (map, ifu, or main mem)
Error on MC board; see MC error status

220

User's Guide to Symbolics Computers

AU-error
Task-state-memory-parity-error

Control-memory-parity-error

March 1985

Error on AU (FPA) board (if the machine has one)
TSKM ram on SQ board (doesn't always halt
machine)
CMEM ram on SQ board (also for microcode
breakpoints if an L-Console program is cabled up
for debugging)

Hardware "errors" that are not always errors:

Bit Meaning
CTOS-low-parity-error CSTK ram on SQ board (low half of output

register)
CTOS-high-parity-error CSTK ram on SQ board (high half of output

register)

(Note: If CTOS-came-from-IFU (see below) is true, above two bits have no
meaning.)

Sequencer miscellaneous status

(Status bits that are not errors)

Bit
CTOS-came-from-IFU

Meaning
CTOS register holds macroinstruction dispatch
address from IFU (or TMC) rather than contents
of CSTK ram

TSK-STOP (sequencer stopped) Machine is stopped for some reason
ErrhaIt-Sync Some error bit is on (stops machine)
MC Wait Microinstruction waiting for memory control to

allow it
Task Switch Switching to a different microtask

Me Error status

Bit Meaning
Double bit error An uncorrectable error in main memory, or a

reference to a non-existent Lbus address. Further
in,formation in ECC syndrome (see below).

Map A parity error, Map B parity error

Hit in both map A and map B

Parity errors in the map caches on the MC (TMC,
IFU) board.
Both map caches claiming to map the same
address. Could be the map hardware, or some
hardware or microcode problem causing map to be
written with bad data.

221

March 1985 Front-end Processor

ECC syndrome

(An oCtal number followed by an address with x's in it)

This register contains the most recent main-memory read-error correction status.
The error can be caused by a read by the processor, a read by the FEP, or a read
by a DMA 110 device. The events that set this register include nonexistent memory
reference, single-bit error correction, and double-bit error detection. Non-existent
memory and double-bit error halt the processor (even if it was the FEP or an 110
device that got the error). Currently, the FEP disables itself from getting a bus
error if it references nonexistent Lbus memory or gets a double-bit error in Lbus
memory.

One other event that can set this register is a bug in the FEP's code for examining
the machine's status. Generally, the first two digits of the address are 77 in this
case.

The address is the physical address of the location referenced. Only bits 23-18 and
1-0 are valid (the rest are x'ed out). These are sufficient bits to determine which
Lbus slot (bits 23-19) and which of the 8 banks within a memory board are being
referenced. To convert the address to an Lbus slot number, consider the one or two
digits at the left of the x's to be an octal value, and divide it by 2. This is a logical
slot number, as printed (in decimal) by the Show Configuration command. It is not
related to the numbers printed on the machine chassis. Slot 0 is at the left, as seen
from the front of the machine.

The syndrome codes are as follows:

000
ala
020
030
040
050

060
070
100
110
120
130
140
150
160
170

a

okay
39
40

2-bit
41

2-bit
2-bit

NXH
42

2-bit
2-bit

17
2-bit

27
32

2-bit

36
2-bit
2-bit

18
2-bit

28
33

2-bit
2-bit

4
11

2-bit
21

2-bit
2-bit

unused

2

37
2-bit
2-bit

19
2-bit

29
34

2-bit
2-bit

5
12

2-bit
22

2-bit
2-bit

unused

3

2-bit
6

13
2-bit

23
2-bit
2-bit

unused
a

2-bit
2-bit

unused
2-bit

unused
unused
2-bit

4

38
2-bit
2-bit

20
2-bit

30
35

2-bit
2-bit

7
14

2-bit
24

2-bit
2-bit

unused

5

2-bit
8

15
2-bit

25
2-bit
2-bit

unused
1

2-bit
2-bit

unused
2-bit

unused
unused
2-bit

6

2-bit
9

16
2-bit

26
2-bit
2-bit

unused
2

2-bit
2-bit

unused
2-bit

unused
unused
2-bit

7

3
2-bit
2-bit

unused
2-bit

31
unused
2-bit
2-bit

10
unused
2-bit

unused
2-bit
2-bit

unused

222

User's Guide to Symbofics Computers

3600 program counters

Label

Macro PC

Current micro PC (CPC)
Old PCs (OPC)

March 1985

Meaning
The address of the current instruction of compiled
Lisp code. This is prefaced with either (Odd) or
(Even) since there are two instructions per word.
The address of the current microinstruction.
The addresses of the 16 most recently executed
microinstructions. OPC+O was executed most
recently, OPC+17 least recently.

A.10 Debugging in the FEP

The release tapes include some files provided as an extra debugging aid. These files
can be used to enter a debugging mode in the FEP. This mode is especially useful
for problems that cause control to return to the FEP, making it impossible to use
the debugging methods normally used in Lisp.

These files have names of the form: vn-debug.flod, where n is the FEP version
number. The files should now reside on your sys host in the directory with the
logical pathname sys: l-fep; vnn-debug flod where nn indicates the version of FEP
software.

To use these files, you should copy the appropriate file to the FEP file system before
you need to use it. To copy the file, first find out which version of FEP software is
installed in your machine. You can do this by either typing the Lisp function
print-herald to Lisp or by typing the Show Version command at the FEP level. To
copy this file to your FEP file system, use the Zmacs command Copy File (M-X).

For example, if you are using FEP version 22 software, you would use the following
command to copy the .flod file to the FEP file system:

Copy File (M-X) sys:l-fep;v22-debug.flod fepO:>v22-debug.flod

The FLOD file cannot be used on any other FEP version; trying to use one on a
different FEP version has no effect.

After you have copied the file to the FEP file system, you can enter the debugging
mode by loading the file with the Load Fep command, as shown in the following
example:

Fep>Load Fep >v22-debug.flod

This puts you into a debugging mode very similar to the Debugger under Lisp,
whereby you can move up and down the stack to examine the state of the machine
and determine the source of the problem. The HELP key lists the commands that
are available.

One particularly useful command, when the machine has crashed during paging, is

223

March 1985 Front-end Processor

C-M-S. This command allows you to switch between the auxiliary stack (where
paging code runs) and the normal stack (where user code runs). If the machine
crashed while executing on the auxiliary stack, user stack frames will not be found
until C-M-S is executed.

sys:halt &optional rep-commands Function
The function si:halt stops execution of Lisp and gives' control to the FEP.
This function does not interrupt disk 110 operations when it stops Lisp.

The function sys:%halt should no longer be used as it can halt disk
operations. Interrupting a disk write can cause a fatal ECC error later,
because the contents of the disk block are incomplete. This can render
directories and other files inaccessible and is a particular problem when
halting the machine while using LMFS.

If the optional rep-commands are not supplied or if the argument is nil,
si:halt places you at the FEP ieveL if you suppiy a string for {ep-conunands,
Lisp causes the FEP to interpret the string as if the string were typed in
from the keyboard or read from a command file. It is important to use a
new line for each command that is part of the string.

The following form halts Lisp, passes control to the FEP and causes the
Show Version and Continue commands to be executed.

(si:halt "Show Version
Continue
")

This example generates the following display:

(si:halt "Show Version
Continue
")
Lisp stopped itself.
ClOSing command file.
Fep)
Fep)Show Version
Fep version 22 running in prom.
NIL

si:halt with optional rep-commands can be included in function definitions to
define booting and loading procedures, as shown in the following examples:

(defun boot-macsyma ()
(si:halt "Boot)Hacsyma.boot

"»
(defun reboot ()

(si:halt (format nil "Boot-~"»)

;boots using)Hacsyma.boot

;boots using the default
;boot file

224

User's Guide to Symbolics Computers March 1985

(defun reload-world ()
(si:halt (format nil "Load Wor1d-~Start-~"»)

(defun reload-microcode ()
(si:ha1t (format nil "Load Hicrocode-~Start-%"»)

;loads the default world
; and starts Lisp

;loads the default
;microcode and starts

si:machine-model Function
This function returns a keyword symbol designating the model number of the
current 3600-family computer.

Possible return values are as follows:

:unknown The model number cannot be determined (usually
indicating lack of some ID prom)

:/3600 or : 13600 1 (The keyword whose print-name is "3600".) The machine
is a Symbolics 3600.

:/3670

:/3640

The machine is a Symbolics 3670.

The machine is a Symbolics 3640.

si:show-configuration Function
This function displays the hardware configuration of the current machine.
For example:

March 1985

225

Front·end Processor

(si:show-configuration)
NanoFEP (P.N. 170018) S.N. 382, manufactured on 1983-08-16

Hachine serial number o.
Hanufactured as rev 1, functions as rev 1, ECO level 0

Datapath (P.N. 170032) S.N. 100, manufactured on 1983-04-05
Manufactured as rev 3, functions as rev 3, ECO level 0

Sequencer (P.N. 170042) S.N. 100, manufactured on 1984-01-05
Manufactured as rev 4, functions as rev 4, ECO level 0

Memory Control (P.N. 170052) S.N. 1254, manufactured on 1983-09-21
Hanufactured as rev 5, functions as rev 5, ECO level 0

Front End (P.N. 170062) S.N. 167, manufactured on 1983-03-18
Hanufactured as rev 5, functions as rev 5, ECO level 0

512K Hemory (P.N. 170002) S.N. 511, manufactured on 1983-09-29
Hanufactured as rev 2, functions as rev 2, ECO level 0
LBUS slot 0 (octal base address 0)

512K Memory (P.N. 170002) S.N. 588, manufactured on 1983-10-14
HanuFactured as rev 2, functions as rev 2, ECa level 0
LBUS slot 6 (octal base address 14000000)

10 (P.N. 170082) S.N. 228, manufactured on 1983-05-31
Manufactured as rev 2, functions as rev 2, ECO level 0
LBUS slot 8 (octal base address 20000000)

FEP Paddle Card (P.N. 170066) S.N. 240, manufactured on 1983-06-02
Hanufactured as rev 1, functions as rev 1, ECO level 0

10 Paddle Card (P.N. 170086) S.N. 334, manufactured on 1983-09-12
Ethernet address: 08-00-05-01-70-0A
Monitor-type: Philips
Manufactured as rev 1, functions as rev 1, ECO level 0

NIL

226

User's Guide to Symbofics Computers March 1985

227

March 1985 System Conventions and Helpful Hints

Appendix B
System Conventions and Helpful Hints

B.1 Miscellaneous Conventions

All uses of the phrase "Lisp reader", unless further qualified, refer to the part of
Lisp that reads characters from I/O streams (the read function), and not the person
reading this documentation.

By default, Symbolics-Lisp displays numbers in base 10. If you wish to change it:
See the section "What the Reader Recognizes" in Reference Guide to Symbolics-Lisp.

Several terms that are used widely in other references on Lisp are not used much in
Symbolics documentation, as they have become largely obsoleLe and lIiisleading.
They are: "S-expression", which means a Lisp object; "Dotted pair", which means a
cons; and "Atom", which means, roughly, symbols and numbers and sometimes other
things, but not conses. For definitions of the terms "list" and "tree": See the
section "Manipulating List Structure" in Reference Guide to Symbolics-Lisp.

B.2 Answering Questions the System Asks

The system occasionally asks you to confirm some command. There are two forms
this can take:

• Simple commands such as Load File or Save File Buffers might ask you to
confirm with a question requiring a Y (for yes) or an N (for no).

Save Buffer program.lisp >kjones>new-project> tuna: ? (Y or N)

You press Y or SPACE for yes, N for no.

• Destructive commands, such as Initialize Mail, require that you type the entire
word yes to confirm them.

Do you really want to do this? (Yes or No)

You must type the entire word yes to confirm the the command. Thus you
are less likely to issue such a command accidentally.

Lisp provides several functions for this kind of querying: See the section "Querying
the User" in Programming the User Interface.

228

User's Guide to Symbo/ics Computers March 1985

8.3 Questions Users Commonly Ask

What is a Logical Path name?

A logical pathname is a kind of pathname that doesn't correspond to any particular
physical file server or host. Logical pathnames are used to make it easy to keep
software on more than one file system. An important example is the software that
constitutes the Lisp Machine system. Every site has a copy of all of the sources of
the programs that are loaded into the initial Lisp environment. Some sites might
store the sources on a UNIX file system, while others might store them on a
TOPS-20. However, the software needs to find these files no matter where they are
stored. This is accomplished by using a logical host called SYS. All pathnames for
system software files are actually logical pathnames with host SYS. At each site,
SYS is defined as a logical host, and there is a translation table that maps the SYS
host to the actual physical machine for that site.

Here is how translation is done. For each logical host, there is a mapping that takes
the name of a directory on the logical host, and produces a device and a directory for
the corresponding physical host. For example, the logical host SYS has a directory
SITE;. At a site that keeps its sources on a TOPS-20 this might map to SS:<SITE>
. Then the file SYS:SITE;NAMESPACE.LISP translates to
SS:<SITE>NAMESPACE.LISP. On a UNIX system this same file might translate to
/usr/systemlnamespace.l. The important thing is that everyone can refer to the file
by its logical pathname, SYS:SITE;NAMESPACE.LISP, where the name before the
":" is the logical host name, and logical directories are separated by ";"s. You can
define the translation of a logical pathname to be any physical pathname of any
operating system type, but to access a file with a logical pathname you need only to
use logical pathname syntax.

The function fs:set-Iogical-pathname-host is used to define a logical host and its
logical directories. Here are some sample uses:

(fs:set-logical-pathname-host "SVS" :physical-host "my_vms"
:translations '«"games;" "[games]")

("*;" "[symbolics.*]"»)

This says that sys:games; translates to my-vms:[games], and that any other logical
directory on the logical host SYS translates to a subdirectory under [symbolics] of the
same name. See the function fs:set-Iogical-pathname-host in Reference Guide to
Streams, Files, and I/O.

What is a World Load?

A world load can be thought of as a snapshot of an operating Lisp environment. All
of the functions, variables, and other Lisp objects that were present in the Lisp
environment when the snapshot was made are contained in the world load file on
the disk. Typically, snapshots of worlds are made only when such a snapshot would

229

March 1985 System Conventions and Helpful Hints

save significant time later. For example, after you have initially configured your new
machine at your site, it is useful to make a snapshot of the configured environment
because it saves you time in the future (you don't have to configure the machine
each time you boot it). If you usually load MACSYMA or FORTRAN each time you
boot, it is advantageous to make a snapshot of a world with that software loaded, to
save you the time of loading it. Remember, everything in the environment is
contained in the snapshot, so you don't want to create a world load file after you've
been using the editor or most system facilities (you don't want to find old text in
your editor buffer when you cold boot.). The way to create a snapshot and save it
to disk is by using the command Save World or the function (disk-save).

Why Do You Name Machines and Printers?

Naming inanimate objects such as hosts, printers, sites, and networks may seem
foolish if you have one or fewer of each, but if you have large numbers of machines,
nan.1es are a convenient vay to easily refer to a particular machine '.~lith a particular
address without having to remember its network address, machine type, and physical
location. One customer named its machines after the characters in Winnie the
Pooh, while another named its after the wives of Henry VIll.

B.4 Questions About the FEP and LMFS

Why Can't I Write Out Files When I Have Free Dis({ Space?

The 3600 disk is physically divided into partitions known as FEP files. This division
of the disk is called the FEP file system. However, when one speaks of the file
system of a Lisp Machine, one is generally referring to the LMFS (Lisp Machine File
System) of that machine. This is the file system you edit when you click left on
[Tree Edit Root] in the FSEdit window, and is the file system used when you specify
file names of the form Lisp Machine Name:>directory>{ilename.type.version. The
entire Lisp Machine local file system normally resides inside one big file of the FEP
file system (typically FEPO:>LMFS.FILE.l). Thus, LMFS is full when the amount of
space allocated to it (in other words, FEPO:>LMFS.FILE.l) is full. Thus, LMFS
could be full but there could still be 100,000 unused blocks on the disk (not even
allocated as FEP files). See the section "Adding a Spare World Load as LMFS File
Space", page 212.

How Do I Create a FEP File?

There aren't too many reasons for creating FEP files. If you want to create a file
to allocate more LMFS file space, simply enter the File System Editor window
(FSEdit), by using SELECT F, by clicking on [File System] in the System Menu, or by
using the Select Activity FSMaint command. Then click on [Local FS Maint]. Click
right on [Initialize]. A menu pops up. Click on [Auxiliary Partition] and click on

230

. User's Guide to Symbofics Computers March 1985

the name above this so that you can specify a name for the auxiliary partition.
Typically, a good name is FEPO:>LMFS-AUX.FILE. (Of course, if you have more
than one drive, or a FEP file named LMFS-AUX.FILE already exists) you should
choose another name.) Then click on [Do ItJ. It will ask you how much space to
allocate to this file; specify a number of blocks.

When working with FEP files, the File System Editor is good only for creating FEP
files to be allocated to LMFS. If you need a FEP file for another purpose (extra
paging, for example) and create it with FSEdit, the LMFS data structure contained
on your disk might become very confused, and can potentially destroy the file system
of your machine. The following Lisp form creates a FEP file for purposes other
than a LMFS partition.

(WITH-OPEN-FILE (FILE FEPn: >Filename.type.version
:DIRECTION :BLOCK
:IF-EXISTS :ERROR)

(SEND FILE :GROW 30000»

The italicized string above represents the name of the FEP file to be created, and
the italicized 30000 represents the size you want to make the file.

For more information about LMFS and the FEP file system: See the section "FEP
File System Overview", page 208.

231

March 1985 Documentation Notation Conventions

Appendix C
Documentation Notation Conventions

C.1 Understanding Notation Conventions

You should understand several notation conventions before reading the
documen tation.

C.1.1 Lisp Objects

C.1.1.1 Functions

A typical description of a Lisp function looks like this:

function-name argl arg2 &optional arg3 (arg4 (foo 3») {unction
Adds together argl and arg2, and then multiplies the result byarg3.
If arg3 is not provided, the multiplication is not done. function-name
then returns a list whose first element is this result and whose second
element is arg4. Examples:

(function-name 3 4) =) (7 4)
(function-name 1 2 2 'bar) =) (6 bar)

The word "&optional" in the list of arguments tells you that all of the arguments
past this point are optional. The default value can be specified explicitly, as with
arg4, whose default value is the result of evaluating the form (foo 3). If no default
value is specified, it is the symbol nil. This syntax is used in lambda-lists in the
language. (For more information on lambda-lists: See the section "Evaluating a
Function Form" in Reference Guide to Symbolics-Lisp.) Argument lists can also
contain "&rest", which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function
description, for example, the name of the function is in boldface in the first line, and
the arguments are in italics. Within the text, printed representations of Lisp objects
are in the same boldface font, such as (+ foo 56), and argument references are
italicized, such as argl and arg2.

Other fonts are used as follows:

Fixed-width font (function-name)
For user input or Lisp examples that are set off from the text

"Key" font (RETURN, c-L)
For keystrokes in running text

232

User's Guide to Symbolics Computers March 1985

C.1.1.2 Macros and Special Forms

The descriptions of special forms and macros look like this:

do-three-times form Special Form
Evaluates form three times and returns the result of the third evaluation.

with-foo-bound-to-nil form ...
Evaluates the forms with the symbol foo bound to nil.
It expands as follows:

(with-foo-bound-to-nil
forml
form2 ...) ==>
(let « foo nil»
forml
form2 ...)

Macro

Since special forms and macros are the mechanism by which the syntax of Lisp is
extended, their descriptions must describe both their syntax and their semantics;
unlike functions, which follow a simple consistent set of rules, each special form is
idiosyncratic. The syntax is displayed on the first line of the description using the
following conventions.

• Italicized words are names of parts of the form that are referred to in the
descriptive text. They are not arguments, even though they resemble the
italicized words in the first line of a function description.

• Parentheses ("()") stand for themselves.

• Square brackets ("l]") indicate that what they enclose is optional.

• Ellipses (" ... ") indicate that the subform (italicized word or parenthesized list)
that precedes them can be repeated any number of times (possibly no times at
all).

• Curly brackets followed by ellipses ("{ } •.. ") indicate that what they enclose can
be repeated any number of times. Thus, the first line of the description of a
special form is a "template" for what an instance of that special form would
look like, with the surrounding parentheses removed.

The syntax of some special forms is too complicated to fit comfortably into this style;
the first line of the description of such a special form contains only the name, and
the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which
subforms are evaluated and what the returned value is. Usually this is clarified with
one or more examples.

233

March 1985 Documentation Notation Conventions

A convention used by many special forms is that all of their subforms after the frrst
few are described as "body •.• ". This means that the remaining subforms constitute
the "body" of this special form; they are Lisp forms that are evaluated one after
another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:

twiddle-frob [(frob option ...)] {parameter value}... Special Fonn
Twiddles the parameters of frob, which defaults to default-frob if not
specified. Each parameter is the name of one of the adjustable parameters
of a frob; each value is what value to set that parameter to. Any number of
parameter/value pairs can be specified. If any options are specified, they
are keywords that select which safety checks to override while twiddling the
parameters. If neither frob nor any options are specified, the list of them
can be omitted and the form can begin directly with the first parameter
name.

frob and the values are evaluated; the parameters and options are
syntactic keywords and are not evaluated. The returned value is the frob
whose parameters were adjusted. An error is signalled if any safety check
is violated.

C.1.1.3 Methods and Variables

Methods, the message-passing equivalent of ordinary Lisp's functions, are described
in this style:

message-name argl arg2 &optional arg3 (of flavor-name) Method
This is the documentation of the effect of sending a message named
message-name, with arguments argl, arg2, and arg3, to an instance of
flavor flavor-name.

Descriptions of variables ("special" or "global" variables) look like this:

typical-variable Variable
The variable typical-variable has a typical value

C.1.2 Macro Characters

The characters acute accent (') (also called the single quote character) and semicolon
(;) have special meanings when typed to Lisp; they are examples of what are called
macro characters. It is important to understand their effect.

When the Lisp reader encounters a single quote, it reads in the next Lisp object and
encloses it in a quote special form. That is, 'foo-symbol turns into
(quote foo-symbol), and '(cons '8 'b) turns into
(quote (cons (quote a) (quote b»). The reason for this is that "quote" would
otherwise have to be typed in very frequently and would look ugly.

234

User's Guide to Symbolics Computers March 1985

Note that, in Lisp, quoting a character means inhibiting what would otherwise be
special processing of it. Thus, the character "I" is used for quoting unusual
characters so that they are not interpreted in their usual way by the Lisp reader,
but rather are treated the way normal alphabetic characters are treated. So, for
example, in order to give a "I" to the reader, you must type "I I", the first "I"
quoting the second one. When a character is preceded by a "I" it is said to be
slashified. Slashifying also turns off the effects of macro characters such as single
quote and semicolon.

The following characters also have special meanings, and cannot be used in symbols
without slashification, These characters are explained in detail elsewhere: See the
section "Printed Representation" in Reference Guide to Symbolics-Lisp.

Double-quote delimits character strings.

Number-sign introduces miscellaneous reader macros.

Backquote is used to construct list structure.

Comma is used in conjunction with backquote.

Colon is the package prefix.

Characters between pairs of vertical bars are quoted.

o Circle-X lets you type in c!laracters using their octal codes.

The semicolon is used as a commenting character. When the Lisp reader sees one,
the remainder of the line is discarded.

C.1.3 Character Case

All Lisp code in the documentation is written in lowercase. In fact, the reader turns
all symbols into uppercase, and consequently everything prints out in uppercase.
You can write programs in whichever case you prefer.

C.1.4 Packages and Keyword Names

Various symbols have the colon (:) character in their names. By convention, all
keyword symbols in the system have names starting with a colon. The colon
character is not actually part of the print name, but is a package prefix indicating
that the symbol belongs to the package with a null name, which means the
keyword package. (For more information on colons: See the section "Introduction
to Keywords" in Reference Guide to Symbolics-Lisp. For now, just pretend that the
colons are part of the names of the symbols.)

The document set describes a number of internal functions and variables, which can
be identified by the "si:" prefix in their names. The "si" stands for
"system-internals". These functions and variables are documented because they
are things you sometimes need to know about. However, they are considered

235

March 1985 Documentation Notation Conventions

internal to the system and their behavior is not as guaranteed as that of everything
else.

C.1.S Maclisp

Symbolics-Lisp is descended from Maclisp; throughout the documentation, there are
notes about differences between the dialects. For the new user, it is important to
note that some Symbolics-Lisp functions exist solely for Maclisp compatibility; they
should not be used in new programs. Such functions are clearly marked in the text.

C.1.6 The Character Set

The Symbolics 3600-family character set is not the same as the ASCII character set
used by most operating systems. For more information: See the section "The
Character Set" in Reference Guide to Streams, Files, and 110.

Unlike ASCII, there are no "control characters" in the character set; Control and
Meta are merely things that can be typed on the keyboard.

C.2 Notation Conventions Quick Reference

Modifier Key Conventions

Modifier keys are designed to be held down while pressing other keys. They do not
themselves transmit characters. A combined keystroke like META-X is pronounced
"meta x" and written as M-X. This notation means that you press the META key and,
while holding it down, press the X key.

Modifier keys are abbreviated as follows:
Key Abbreviation
CTRL c-
META M-
SUPER 5-

HYPER h-
SHIFT sh-
SYMBOL sy-

The keys with white lettering <like X or SELECT) all transmit characters.
Combinations of these keys are meant to be pressed in sequence, one after the
other. This sequence is written as, for example, SELECT L. This notation means that
you press the SELECT key, release it, and then press the L key.

Documentation Conventions

This documentation uses the following notation conventions:
Appearance in document Representing

236

User's Guide to Symbo/ics Computers March 1985

send, chaos:host-up
RETURN, ABORT, c-F
SPACE
login
(make-symbol "foo")
(function-name argl arg2)
argl

arg2
Undo, Reply, Start

Insert File (M-X)

[Map Over]
(L), (R2)

Printed representation of Lisp objects in running text.
Keyboard keys.
Space bar.
Literal type in.
Lisp code examples.
Syntax description of the invocation of function-name.
Argument to the function function-name, usually
expressed as a word that reflects the type of argument
(for example, string).
Optional argument; you can leave it out.
Command Processor command names and command
names in Zmacs, Zmail, and the front-end processor
(FEP) appear with the initial letter of each word
capitalized.
Extended command names in Zmacs and Zmail. Use
M-X to invoke one.
Menu items.
Mouse clicks: L=left, L2=sh-Ieft, M =middle,
M2=sh-middle, R=right, R2=sh-right.
(sh-Ieft means that you press the SHIFT key while
holding down the left mouse button. You can achieve
the same result by clicking the button quickly twice.)

Mouse Command Conventions

The following conventions are used to represent mouse actions:

1. Square brackets delimit a menu item.

2. Slashes (/) separate the members of a compound mouse command.

3. The standard clicking pattern is as follows:

• For a single menu item, always click left. For example, the following two
commands are identical:

[Previous]
[Previous (L)]

• For a compound command, always click right on each menu item (to
display a submenu) except the last, where you click left (to cause an
action to be performed). For example, the following two compound
commands are identical:

[Map Over I Move I Hardcopy]
[Map Over (R) I Move (R) I Hardcopy (L)]

237

March 1985 Documentation Notation Conventions

4. When a command does not follow the standard clicking order, the notation for
the command shows explicitly which button to click. For example:

[Map Over / Move (M)]
[Previous (R)]

238

User's Guide to Symbolics Computers March 1985

March 1985

+

/

?

A

Index

FepO:

HELP

FUNCTION
Areas

Zmacs Commands for Finding OU1
Lisp Facilities for Finding Out

Zmacs Commands for Finding Out
Questions

Zmacs Commands for Finding OU1
Zmacs Commands for Finding Out

Write
Enter

Creating
Reporting

Acute
Editing

Entering
Parts of

Supplying Keywords and Values for
Supplying Positional Arguments to

Supplying
Document Examiner

Document Examiner Command Pane
Display status of

Select

+

/

)

?

A

+ + + variable 180
+ + variable 180
+ variable 179

/I variable 179

)Imfs.file file 209

? Zmacs command

A 141
(A) 186

51

Abbreviated FEP inpU1 197
ABORT 139
ABORT command 62, 67
AboU1 Flavors 87
About Lisp 88
About Lisp 86
About the FEP and LM FS 229
AboU1 the State of Buffers 86
About the State of Zmacs 86
a breakpoint into a program 180
a breakpoint loop 180
A Brief Introduction to the Lisp World 151
a Buffer 54, 55
a bug 159
accent 233
a Command 14
a Command 10
a Command 9
a Command 13
a Command 11
a Command Name 11
Actions 130, 131, 132
Actions 133
active processes 185
Activity Command 31
AcU1e accent 233
Add Disk-type command 201
Adding a LMFS Parti1ion 212
Adding a Spare World Load as LM FS File

239

Index

+

/

)

?

A

240

User's Guide to Symbolics Computers March 1985

Chaosnet
Setting Chaos net
How Do I Create

Creating
RestOring

Editing the definition of
Editing the source code of

Lookup Commands Available At
Sending message to

Space 212
Add Paging-file command 201
address 198
address 201
a FEP File? 229
a File 55
a file system 201
a function 48, 158
a function 48, 158
a Lisp Listener and in Zmacs 128
all Lisp Machines at site 72
All reply mode 67

Adding a LMFS Partition 212
What is a Logical Path name? 228

A message status 57
Editing a Namespace Object 117

Init File Form: Balanced Quotation Marks and Asterisks 168
Lookup Commands Available in the Document Examiner, Editor,

and Command Processor 122
Lookup Commands Available in the Document Examiner

FUNCT I ON Key: Display
System Conventions

When
Lookup Commands Available At a Lisp Listener

Notation Conventions for Packages
Entering

Questions About the FEP
Login

Sending and Receiving Messages
Creating

Names
FUNCT ION Key: Selection

Turning the Command Processor on
Why Do You Name Machines

Help
Sending

Debugger Proceed
Setting

Notation Conventions for Macros
status

Introduction: Recovering From Errors
Recovering From Errors

The Debugger: Recovering From Errors
Base

Understanding Networks
Date

Interaction with Completion
Deleting

Supplying Keywords
Notation Conventions for Methods

Lookup Commands Available in
Entering the Debugger by Causing

Creating
How to Create

Sending message to
Show Documentation

and Editor 123
and Hardcopy Commands 141
and Helpful Hints 227
and How to Use the Garbage Collector 105
and in Zmacs 128
and Keyword Names 234
and Leaving the Inspector 189
and LMFS 229
and Logout Commands 28
and Mail 57
and Manipulating Files 47
and Namespaces 113
and Notification Commands 142
and Off 15
and Printers? 229
and Quit 188
and Receiving Messages and Mail 57
and Restart Options 193
and Saving Zmail Options 171
and SpeCial Forms 232
and sstatus 184
and Stuck States 43
and Stuck States 43
and Stuck States 44
and Syntax Default Settings for Lisp 54
and the Namespace System 111
and time 198
and TypeoU1 Windows 84
and Undeleting Zmail Messages 66
and Values for a Command 13
and Variables 233
an Editor 128
an Error 193
a New Namespace Object 117
an Init File 164
another user 72, 160
(an OVerview) 122
Answered message property 57

March 1985

B

Find

Write a breakpoint Into

Display status of window
Display status of

Supplying Positional
Questions Users Commonly

Answering Questions the System
Adding a Spare World Load

Adding
Using

Init File Form: Balanced Quotation Marks and
Recovering From

Lookup Commands Available

Sending message to all Lisp Machines

Setting the Zmacs Font In the
Data Types of Namespace System

Namespace System

Init File Form:
Lookup Commands
Lookup Commands
Lookup Commands
Lookup Commands

Lookup Commands
What is

HELP
Scrolling

What to Do After Reading

FUNCTION

Init File Form:

Run
Default

Set
Set Input

B

241

Index

Answering Questions the System Asks 227
Any Candidates 123
Append Buffer (m-X) Converse Command 71
Append Conversation (m-X) Converse Command 72
a program 180
Apropos 51
apropos function 178
area 185
areas 185
Areas (A) 186
Arguments to a Command 11
Ask 228
Asks 227
as LMFS File Space 212
a Spare World Load as LMFS File Space 212
a Spare World Load for Paging 212
Asterisks 168
a Stuck Document Examiner 121
At a Lisp Listener and in Zmacs 128
Atom 227
at site 72
Attribute indicator 112
Attribute List 80
Attributes 112
Attributes 112
Attribute value 112
Auto Fill in Tex1 Mode 170
Available At a Lisp Listener and in Zmacs 128
Available in an Editor 128
Available In the Document Examiner 127
Available in the Document Examiner, Editor, and

Command Processor 122
Available in the Document Examiner and Editor 123
a World Load? 228
A Zmacs command 51
a Zmail Message 66
a Zmail Message 66

B 141
Backquote constructing list structure 233
BACKSPACE 140
Backward 50
Backward Kill Sentence 53
Backward Kill Sexp 53
Backward Kill Word 53
Backward Paragraph 50
Backward Sentence 50
Backward Word 50
Badheader message property 57
Balanced Quotation Marks and Asterisks 168
Bands 209
Bars 6
base 227
Base and Syntax Default Settings for Lisp 54
Base Command 31
Base Command 33

B

242

User's Guide to Symbolics Computers March 1985

Set Output Base Command 33
Beeping 70

Goto Beginning 50

Default
Set sleep time
Documentation

Setting Key

Beginning of Line 50
Beginning of Topic 134
Behavior of Converse 70
between updates Peek command 185
binary file 119
Bindings in Init Files 168
Binding Standard Variables for Writing Lisp Style

Command Loops 153
Delete Blank Lines 53

Document Examiner List of
List of
List of

Cold
Cold

Cold
Warm
Curly

Square
sys:

Block restore format 201
Bookmarks 136
Bookmarks 132
bookmarks 129
bookmarks display 132
boot after logging out 3
boot after powering up 1
Boot command 200
Booting 201
Booting 198, 201
Booting 44, 201
brackets 232
brackets 232
break-bindings variable 181
Break loop 151
Breakpoint 151

Write a breakpoint into a program 180
Enter a breakpoint loop 180

break special form 180
A Brief Introduction to the Lisp World 151

Creating a
Deleting messages from mail

*Function-Specs-to-Edit-~
Restoring messages to mail

Browsing documentation 120, 127
Buffer 54, 55
buffer 66
buffer 48
buffer 66
Buffer Contents with c-x c-F 55

Init File Form: Ordering Buffer lists 168
Append Buffer (m-X) Converse Command 71

Regenerate Buffer (m-X) Converse Command 72
Write Buffer (m-X) Converse Command 71

Hardcopy Buffer (m-X) Zmacs command 107

Save File
Save Mail

Init File Form: Putting
Init File Form: Edit
Init File Form: Edit

Reporting a
Report

Reset
Mouse

Entering the Debugger
c-x

Zmacs Commands for Finding Out About the State of
Buffers 86

Buffers Command 30
Buffers Command 30
Buffers Into Current Package 168
Buffers on c-X c-B 169
Buffers on m-X 169
bug 159
Bug Command 31
bug function 159
button 44, 199
buttons 7
by Causing an Error 193
B Zmacs command 55

March 1985

c c
FUNCTION C 141

HELP or

Set
Functions for identifying

list
Identifying

Select
Document Examiner list of Current

Find Any
Find Initial Substring

Find Whole Word
list of current

Notation Conventions for Character
Entering the Debugger by

Init File Form: Edit Buffers on c-x

SELECT

Buffer Contents with c-X

c-X
How to
"F font

Set

Setting

RUBOUT Zmacs
Notation Conventions for

Prefix
Macro

Notation Conventions for Macro
Notation Conventions for Quoting

Setting Command Processor Special
Special

Notation Conventions for the
Double-quote

Namespace System

Memory
Register

c-/ completion command 52
c-? 52
c-? completion command 52
c-ABORT 139
Calendar Clock Command 32
callers 177
Callers (m-X) Zmacs command 177
callers of variables 177
Candidate list 127. 131
Candidates 131
Candidates 123
Candidates 124
Candidates 126
candidates 127
Carbon copies 62
Carriage return 49
Case 234
Causing an Error 193
c-A Zmacs command 50
c-B 169
c-B Zmacs command 50
Cc field 62
C command 69
c-O Zmacs command 53
c-ENO Converse command 71
c-E Zmacs command 50
c-F 55
c-F Zmacs command 50
c:"--F Zmacs command 55
Change Fonts 75
change indicators 69
Changing the Default Printer 175
Chaos-address command 201
Chaosnet address 198
Chaosnet address 201
chaos:notlfy-local-lIspms function 72
character 145
Character Case 234
character commands 49
characters 233
Characters 233
Characters 233
Characters 166
characters 233
Character Set 235
character strings 233
Checking on What the Machine is Doing 177
Checking the Status of Hardcopy Devices 109
c-HELP 83
Circle-X 233
c-K Zmacs command 53
Classes 113
Classes 112
Clear Disk-types command 201
clearing 201
clearing 201

243

Index

c

244

User's Guide to Symbofics Computers

FUNCTION

Mouse
Set Calendar

FUNCTION

Init File Form:

Init File Form: White Space in Lisp
Editing the source

OVerview of Garbage
When and How to Use the Garbage

Init File Form: Setting Goal
Subject or Text Zmail display

ABORT
Add Dlsk-t)lp,,::

Add Paglng-flIe
Append Buffer (m-X) Converse

Append Conversation (m-X) Converse
Boot

c-/ completion
c-? completion

c-A Zmacs
c-B Zmacs
c-O Zmacs

c-ENO Converse
c-E Zmacs
c-F Zmacs
c-K Zmacs

Clear Disk-types
Clear Machine

Clear Paging-files
Clear Screen

c-m- [Converse
c-M Converse

c-m-] Converse
c-m-K Zmacs

c-m-RUBOUT Zmacs
c-N Zmacs

Compile File
Compile System

COMPLETE completion

CLEAR INPUT 140
CLEAR INPUT 141
Clear Machine command 201
Clear Paging-files command 201
Clear Screen command 201
clicks 7
Clock Command 32
Clock resetting 201
c-M 141
c-m-ABORT 139
c-m- [Converse Command 71
c-M Converse Command 71
c-m-] Converse Command 71
c-m-K Zmacs command 53
c-m-L on the SQUARE Key 169
c-m-RUBOUT Zmacs command 53
c-m-SCROLL 134
c-m-SUSPENO 146
c-N Zmacs command 50
Code 169
code of a function 48, 158
Cold boot after logging out 3
Cold boot after powering up
Cold Booting 198, 201
Collection 105
Collector 105
Colon 234
Column for Real Line Commands 168
column heading 57
Comma 233
command 62, 67
command 201
command 201
Command 71
Command 72
command 200
command 52
command 52
command 50
command 50
command 53
command 71
command 50
command 50
command 53
command 201
command 201
command 201
command 201
Command 71
Command 71
Command 71
command 53
command 53
command 50
Command 16
Command 17
command 52

March 1985

March 1985

Continue
Copy

Copy File
Copy Microcode

Copy World
c-P Zmacs

Create Directory
Create Link
C-V Zmacs
c-W Zmacs

C-X B Zmacs
c-x c-F Zmacs
C-X c-O Zmacs
C-X c-W Zmacs

c-x 0
C-X RUBOUT Zmacs

c-x] Zmacs
C-X [Zmacs

Decrypt Msg (m-X) Zmail
Delete Conversation (m-X) Converse

Delete File
Disable Services

Disk Format
Disk Restore

Dismount
Edit Definition
Edit Directory

Edit File
Edit Font
Editing a

Edit Namespace Object
Enable Services

END
END completion

END Converse
. Entering a

Expunge Directory
Extended

Find File Zmacs
Find Symbol
FUNCTION H

G Zmail
Halt

Halt GC
Halt Machine

Hardcopy Buffer (m-X) Zmacs
Hardcopy File

h-c-upper-Ieft
Help

HELP? Zmacs
HELP A Zmacs

HELP completion
HELP C Zmacs
HELP D Zmacs
HELP L Zmacs

HELP SPACE Zmacs
HELP U Zmacs
HELP V Zmacs

command 201
command 201
Command 18
Command 18
Command 19
command 50
Command 19
Command 19
command 50
command 53
command 55
command 55
command 53
command 55
command 62
command 53
command 50
command 50
command 67
Command 71
Command 20
Command 20
command 201
command 201
command 201
Command 20
Command 20
Command 21
Command 21
Command 14
Command 21
Command 22
command 62, 67
command 52
command 71
Command 10
Command 22
Command 49
command 55
Command 22
command 183
command 64
command 201
Command 23
Command 23
command 107
Command 23
command 44, 199
Command 24
command 51
command 51
command 52
command 51
command 51
command 51
command 51
command 51
command 51

245

Index

246

User's Guide to Symbolics Computers

HELP lJ Zmacs
Initialize Mail

Initialize Mouse
Initialize Time

Inspect
Inspect

List Callers (m-X) Zmacs
List Fonts (m-X) Zmacs

Load Fep file
Load File

Load Microcode
Load Patches

Load Sync-program
Load System

Load World
Login

Logout
m-< Zmacs
m-> Zmacs
m-A Zmacs
m-B Zmacs
m-O Zmacs
m-F Zmacs
m-K Zmacs

Mount
m-RUBOUT Zmacs
m-SCROLL Zmacs

m-sh-A input editor
m-sh-O editor

m-sh-F input editor
m-sh-V input editor

m-V Zmacs
m-l Zmacs
m- [Zmacs
m-\ Zmacs
m_A Zmacs
NETWORK X

Parts of a
P Dired

[Profile] Zmail
Regenerate Buffer (m-X) Converse

Rename File
Report Bug

Reset
Reset Network

RETURN completion
Return-keyboard-to-lisp

RUBOUT Zmacs
Save File Buffers
Save Mail Buffers

Save World
SCROLL Zmacs
Select Activity

SELECT C
SELECT M
Set Base

Set Calendar Clock
Set Chaos-address

command 51
Command 24
Command 24
Command 24
Command 26
command 189
command 177
command 75. 174
command 201
Command 26
command 201
Command 26
command 201
Command 27
command 201
Command 28
Command 29
command 50
command 50
command 50
command 50
command 53
command 50
command 53
command 201
command 53
command 50
command 122
command 122
command 122
command 122
command 50
command 50
command 50
command 53
command 53
command 115
Command 9
command 108
command 170
Command 72
Command 29
Command 31
command 44, 199, 201
Command 30
command 52
command 201
command 53
Command 30
Command 30
Command 30
command 50
Command 31
command 69
command 57
Command 31
Command 32
command 201

March 1985

March 1985

Set Command Processor
Set Default-disk-unlt

Set Disk-type
Set Display-string

Set Input Base
Set M Icrocode-name-and-verslon

Set Monitor-type
Set Output Base

Set Package
Set Site

Set sleep time between updates Peek
Set Time

Set User Id
Show Command Processor Status

Show Configuration
Show Directory
Show Directory

Show Disabled Services
Show Disk-label

Show Documentation
Show FEP Directory

Show File
Show File

Show Font
Show GC Status

Show Herald
Show Hosts

Show Legal Notice
Show Mall

Show Notifications
Show Object
Show Status

Show System Modifications
Show Users

Show Version
Shutdown

SPACE completion
Start

Start GC
Supplying Keywords and Values for a

Supplying Positional Arguments to a
Test

Undelete File
Write Buffer (m-X) Converse

Write Conversation (m-X) Converse
Write File Zmacs

FEP
Help facilities, FEP

Mouse

Binding Standard Variables for Writing Usp Style
Document Examiner

Zmail
Supplying a

FEP Show Status

247

Index

Command 32
command 201
command 201
command 201
Command 33
command 201
command 201
Command 33
Command 33
Command 33
command 185
Command 33
Command 34
Command 35
command 200
Command 35
command 200
Command 35
command 200
Command 35
Command 36
Command 36
command 200
Command 36
Command 37
Command 37
Command 37
Command 37
Command 38
Command 38
Command 38
command 200
Command 39
Command 40
command 200
command 201
command 52
command 201
Command 40, 106
Command 13
Command 11
command 201
Command 41
Command 71
Command 71
command 55
Command Completion 85
command completion 85
Command Conventions 236
Command Descriptions 16
Command History 15
Command Loops 153
command menu 133
Command Menu 60
Command Name 11
Command Names 49
:command-only command processor mode 165
Command Output 217

248

User's Guide to Symbolics Computers March 1985

Document Examiner Command Pane 133
Document Examiner Command Pane Actions 133

:command-preferred command processor mode 165
Completion In the Command Processor 14

Customizing the Command Processor 164
Error Handling in the Command Processor 15

Help In the Command Processor 14
Lookup Commands Available In the Document Examiner, Editor, and

Command Processor 122
OVerview of the Command Processor 9

Set Command Processor Command 32
Customizing Command Processor Display 166

:command-only command processor mode 165
:command-preferred command processor mode 165

:form-only command processor mode 165
:form-preferred command processor mode 165

Setling the Command Processor Mode 165
Turning the Command Processor on and Off 15
Setling the Command Processor Prompt 165

Setling Command Processor Special Characters 166
Show Command Processor Status Command 35

Commands 49
Commen1s In FEP commands 197

Commonly Used FEP Commands 200
Compile Commands 16

Converse Commands 71
Copy Commands 18

Create Commands 19
Cursor movement commands SO, 51

Delete Commands 20
Delete commands 53

Disable Commands 20
Disk Handling Commands 213

Documentation find commands 120, 122
Documentation Lookup Commands 122

Edit Commands 20
Enable Commands 21

Entering Commands 9
Expunge Commands 22
Extended commands 49

FEP Commands 200
Find Commands 22

FUNCTION Key: Display and Hardcopy Commands 141
FUNCTI ON Key: Selection and Notification Commands 142

Halt Commands 23
Hardcopy Commands 23

Help Commands 24
Inlt File Form: Fixing White Space for Kill/Yank Commands 168

Inlt File Form: Setling Goal Column for Real Une Commands 168
Initialize Commands 24

Input Editor Font Commands 79
Inspect Commands 26

Introduction to the Motion Commands 51
Introduction to Zmacs Commands 49

Introduction to Zmacs Extended Commands 49
Kill commands 53

Less Common FEP Commands 201
Load Commands 26

March 1985

Login and Logout
Prefix character

Rename
Reset
Save

Select
Send

Set
Show
Start

Undelete
Zmacs Font

Completion for Extended Commands (m-X
Lookup

Lookup
Lookup
Lookup

Lookup

Usp Ustener
Zmacs
Zmacs
Zmacs

Zmacs

Zmacs

Completion for Extended
FEP File

Disk label

Less
Questions Users

Keyboard

FEP Command
Help facilities, FEP command

Zmacs
Interaction with

c-/
c-?

COMPLETE
END

HELP
RETURN

SPACE

Commands 28
commands 49
Commands 29
Commands 29
Commands 30
Commands 30
Commands 31
Commands 31
Commands 35
Commands 40
Commands 41
Commands 81
Commands) 84
Commands Available At a Usp Ustener and in

Zmacs 128
Commands Available in an Editor 128

249

Index

Commands Available In the Document Examiner 127
Commands Available In the Document Examiner,

Editor, and Command Processor 122
Commands Available In the Document Examiner and

Editor 123
Commands for Converse 72
Commands for Finding Out About Flavors 87
Commands for Finding Out About Usp 86
Commands for Finding Out About the State of

Buffers 86
Commands for Finding Out About the State of

Zmacs 86
Commands for Interacting with Usp 87
Commands for Producing Hardcopy 107
Commands (m-X Commands) 84
Comment Properties 209
Comments 233
comments 209
Comments in FEP commands 197
Common FEP Commands 201
Commonly Ask 228
Commonly Used FEP Commands 200
Communicating with the Usp Machine 9
communication 201
Compile Commands 16
Compile File Command 16
Compile System Command 17
COMPLETE 140
COMPLETE completion command 52
Completion 52
Completion 85
completion 85
Completion 84
Completion and Typeout Windows 84
completion command 52
completion command 52
completion command 52
completion command 52
completion command 52
completion command 52
completion command 52
Completion for Extended Commands (m-X

250

User's Guide to Symbolics Computers

Documentation
Zmail Message Window
Zmall Summary Window

Show

FEP
The

Backquote
File

Find Table of
Buffer

Completion In Other
Summary of Help Functions in Different

Documentation
Documentation Notation

Miscellaneous
Modifier Key

Mouse Command
Understanding Notation

System
Notation
Notation
Notation
Notation
Notation
Notation
Notation
Notation
Notation
Notation
Notation
Append
Delete
Write

Customizing
Default Behavior of

Introduction to
Lisp Listener Commands for

Using
zwel:
zwel:

Append Buffer (m-X)
Append Conversation (m-X)

c-END
c-M

c-m-]
c-m- [

Delete Conversation (m-X)
END

Regenerate Buffer (m-X)
Write Buffer (m-X)

March 1985

Commands) 84
Completion for m-. 85
Completion in Other Contexts 85
Completion in the Command Processor 14
Completion in the Document Examiner 133
concept record 119
Configuration 60
Configuration 57
Configuration command 200
Configuration files 198. 209
configuration files 209
Console 5
constructing list structure 233
contents 200. 213
Contents 125
Contents with c-x c-F 55
Contexts 85
Contexts 86
Continue command 201
Conventions 235
Conventions 231
Conventions 227
Conventions 235
Conventions 236
Conventions 231
Conventions and Helpful Hints 227
Conventions for Character Case 234
Conventions for Functions 231
Conventions for Lisp Objects 231
Conventions for Maclisp 235
Conventions for Macro Characters 233
Conventions for Macros and Special Forms 232
Conventions for Methods and Variables 233
Conventions for Packages and Keyword Names 234
Conventions for Quoting Characters 233
Conventions for the Character Set 235
Conventions Quick Reference 235
Conversation (m-X) Converse Command 72
Conversation (m-X) Converse Command 71
Conversation (m-X) Converse Command 71
Conversations 69
Converse 172
Converse 70
Converse 69
Converse 72
Converse 70
converse-append-p variable 173
converse-beep-count variable 173
Converse Command 71
Converse Command 72
Converse command 71
Converse Command 71
Converse Command 71
Converse Command 71
Converse Command 71
Converse command 71
Converse Command 72
Converse Command 71

March 1985

Write Conversation (m-X)

mel:
zwel:

Turning off
Turning on

zwel:

Carbon
Default printer for screen

c-x
51:
al:
81:
81:

sl:
fonts:

sl:

FUNCTION
Finding Out Why Your Machine

How Do I
How to

Init File Form: Setting Find File Not to

Document Examiner Ust of
Ust of

Keys Not

Init File Form: Putting Buffers Into
Description of Moving the
Introduction to Moving the

Summary of Moving the

Mouse
Zmacs

What is

Converse Command 71
Converse Commands 71
converse-end-exlts variable 174
converse-gagged 72
Converse messages 72
Converse messages 72
converse-mode variable 172
Converse Pop-up Message Window 70
Converse variables 172
copies 62
copies 174
Copy command 201
Copy Commands 18
Copy File Command 18
Copy Microcode Command 18
Copy World Command 19
c-O Zmacs command 53
cp-biank-line-mode variable 166
cp-command-dlspateher5 variable 166
cp-dlspateh-mode variable 165
cp-form-dispatehers variable 166
cp-off function 16
ep-on function 16
cp-prompt variable 166
cptfont font 75, 174
cp-typeout-default variable 167
C-P Zmacs command 50
c-Q 108, 141
Crashed 214
Create a FEP File? 229
Create an Init File 164
Create Commands 19
Create Directory Command 19
Create Unk Command 19
Create New Files 168
Creating a Buffer 54, 55
Creating a File 55
Creating and Manipulating Files 47
Creating a New Namespace Object 117
c-SCROLL 134
c-SUSPENO 146
Curly brackets 232
Current Candidates 131
current candidates 127
Currently Used 147
Current mail file 57
Current message 64
Current Package 168
Cursor 50
Cursor 50
Cursor 50
Cursor movement commands 50, 51
Cursor Shape 149
Customization In Init Files 167
Customizing? 161
Customizing Command Processor Display 166
Customizing Converse 172
Customizing Hardcopy Facilities 174

251

Index

252

User's Guide to Symbolics Computers March 1985

Customizing the Command Processor 164
Customizing Your Environment 161
Customizing Zmall 170
c-v 134
c-V Zmacs command 50
c-lJ Zmacs command 53

C-X c-IJ Zmacs command 55
c-x B Zmacs command 55

Init File Form: Edit Buffers on c-x c-B 169
Buffer Contents with c-x c-F 55

c-X c-F Zmacs command 55
c-x c-O Zmacs command 53
c-x c-lJ Zmacs command 55
C-X 0 command 62
c-x RUBOUT Zmacs command 53
c-x] Zmacs command 50
c-X [Zmacs command 50

HELP C Zmacs command 51

D D D
SELECT

Documentation
Pruning the documentation

Topics Pruned From the Documentation
Updating the Namespace

Documentation
Database

Message

Entering the Debugger with the

Entering the
clJg:

Entering the

The

Entering the
Entering the

Tools for Usp

dbg:

Zmail

Set

o 119
D2257 disk drive 214
database 119
database 121
Database 121
Database 116
Database data types 112
database installation 121
data types 112
Data Types of Namespace System A11ribu1es 112
date 57
Date and time 198
dbg:*debugger-blndings* variable 181
dbg:decode-mlcro-pc function 215
dbg function 194
dbg Function 194
Debugger 44
Debugger 192
debugger-blndlngs variable 181
Debugger by Causing an Error 193
Debugger Proceed and Restart Options 193
Debugger: Recovering From Errors and Stuck

States 44
Debugger with m-SUSPENO 194
Debugger with the dbg Function 194
Debugging 189
Debugging In the FEP 222
decode-mlcro-pc function 215
Decoding Macro PCs 216
Decoding Micro PCs 215
Decrypt Msg (m-X) Zmall command 67
Decrypt Text 67
Default base 227
Default Behavior of Converse 70
Default-disk-unit command 201
Default font 75, 174
:defauH-font keyword to

253

March 1985 Index

sl:*hardcopy-default-fonts* 174
Personal default fonts 174

Init File Form: Setting Default Major Mode 168
Default printer 174

Changing the Default Printer 175
Default printer for screen copies 174
[Default] Profile Mode menu item 171

Base and Syntax Default Settings for Usp 54
Edit Definition Command 20

Editing the definition of a function 48, 158
Formatted print of function definitions 180

defvar-reseHable special form 151
defvar-standard special form 152
Delete Blank Unes 53
Delete Commands 20
Delete commands 53
Delete Conversation em-X} Converse Command 71
Deleted message property 57

Expunging deleted messages 67
Delete File Command 20
Delete Forward 53
Delete Horizontal Space 53
Delete Indentation 53
[Delete] Zmail menu item 66
Deleting and Undeleting Zmail Messages 66
Deleting messages from mail buffer 66
describe function 178
Description of Erasing Text 53

Reference Description of Help Functions 88
Description of Moving the Cursor 50

Command Descriptions 16
Checking the Status of Hardcopy Devices 109

Summary of Help Functions in Different Contexts 86
Edit directory 159

Root directory 208
Sys: I-ucode; logical directory 210

Create Directory Command 19
Edit Directory Command 20

Expunge Directory Command 22
Show Directory Command 35
Show Directory command 200

Show FEP Directory Command 36
Hardcopying From Dired 108

P Dired command 108
dlred function 159
Dired Hardcopy File 108
Disable Commands 20

Show Disabled Services Command 35
Disable Services Command 20
disassemble function 179

Tape restore to disk 201
Disk dismount 201, 213

02257 disk drive 214
M2284 disk drive 214
M2351 disk drive 214

Maxtor XT-1140 disk drive 214
T306 disk drive 214

Disk drives 214

254

User's Guide to Symbo/ics Computers

Multiple

Show

Formatting
World load

Why Can't I Write Out Files When I Have Free

Setting
Add
Set

Clear
Multiple

Disk

Customizing Command Processor
Display status of file system

Documentation
Error

List of bookmarks
FUNCTION Key:

Subject or Text Zmail

Documentation

Set

Hardcopy Private
Load Private
Read Private
Save Private

Browsing
Looking up

Use of Fonts in the
Show

Show

Pruning the
Topics Pruned From the

disk drives 213
Disk drive support 214
Disk Format command 201
Disk Handling 213
Disk Handling Commands 213
Disk-label command 200
Disk label comments 209
Disk label Information 200, 213
Disk mount 201, 213
Disk resetting 201, 213
Disk Restore command 201
disks 201
disk-saves 182
Disk Space? 229
Disk switching 201, 213
disk type 201, 213
Disk-type command 201
Disk-type command 201
Disk Types 214
Disk-types command 201
Disk Units 213
dismount 201, 213
Dismount command 201
Display 166
display 185
display 122
Display 193
display 132
Display and Hardcopy Commands 141
display column heading 57
Displaying Fonts 75
Displaying pruned topics 121
display in the Document Examiner 129
Display status of active processes 185
Display status of areas 185

March 1985

Display status of file system display 185
Display status of hostat 185
Display status of window area 185
Display-string command 201
o message status 57
Document 136
Document 136
Document 136
Document 136
documentation 120. 127
Documentation 120
Documentation 231
Documentation (an Overview) 122
Documentation binary file 119
Documentation Command 35
Documentation concept record 119
Documentation Conventions 235
Documentation database 119
documentation database 121
Documentation Database 121
Documentation database installation 121
Documentation display 122
Documentation display in the Document

March 1985

Loading

Mouse

Using the Online

Completion In the
Documentation display in the

HELP In the
Introduction to the

Lookup Commands Available in the
Recovering From a Stuck
Repositioning Text in the

Lookup Commands Available in the

Lookup Commands Available in the

[Find]
[Find (R)]

[Show]
[Show (R)

[Select]
[Show (M)]

Multiple

Private
Document Examiner Private

Checking on What the Machine is

Powering

02257 disk
M2284 disk
M2351 disk

Maxtor XT-1140 disk
T306 disk

Disk
Multiple disk

Disk
HELP

Examiner 129
Documentation find commands 120, 122
documentation index files 121
Documentation key\vords 120
Documentation Une 5
Documentation Lookup Commands 122
Documentation Notation Conventions 231
Documentation object record 119
Documentation overview 120, 127
Documentation record 119
Documentation System 119
Documentation topic name 119, 120
Documentation topic type 119, 120
Document Examiner 133
Document Examiner 129
Document Examiner 119, 133
Document Examiner 119
Document Examiner 127
Document Examiner 121
Document Examiner 134
Document Examiner, Editor, and Command

Processor 122
Document Examiner Actions 130. 131. 132
Document Examiner and Editor 123

255

Index

Document Examiner command menu 133
Document Examiner Command Pane 133
Document Examiner Command Pane Actions 133
Document Examiner List of Bookmarks 132
Document Examiner List of Current Candidates 131
Document Examiner menu item 126
Document Examiner menu item 123
Document Examiner menu item 122
Document Examiner menu item 125
Document Examiner menu item. 127
Document Examiner menu item. 127
Document Examiner Private Documents 136
Document Examiner Viewer 129
Document Examiner viewers 129
Document Examiner Window 129
document name 136
Documents 136
Doing 177
Dotted pair 227
Double-quote character strings 233
down 201
Down Real Line 50
dribble-end function 183
Dribble Files 183
dribble-start function 183
drive 214
drive 214
drive 214
drive 214
drive 214
drives 214
drives 213
drive support 214
o Zmacs command 51

256

User's Guide to Symbolics Computers March 1985

E E
Entering Zmacs with SELECT E 47

SELECT E 47
Entering Zmacs with ed 48

ed function 48. 158
Inlt File Form: Edit Buffers on c-x c-B 169
Init File Form: Edit Buffers on m-X 169

Edit Commands 20
Edit Definition Command 20
Edit directory 159
Edit Directory Command 20
Edit File Command 21
Edit Font Command 21

Entering Zmacs with zwel: edH-functlons 48
zwel: edit-functions function 48

Editing a Command 14
Editing a Namespace Object 117
Editing message mode 57
Editing terminal Input 101
Editing the definition of a function 48. 158
Editing the source code of a function 48. 158
Editing Your Input 101
Edit Namespace Object Command 21

Entering Zwel editor 158
Example of Setting Fonts In the Input Editor 79

Hardcopylng From the File System Editor 108
Input editor 101

Lookup Commands Available In an Editor 128
Lookup Commands Available in the Document Examiner and

Editor 123
Setting Fonts In the Input Editor 78

Lookup Commands Available In the Document Examiner.

m-sh-A Input
m-sh-D

m-sh-F input
m-sh-V Input

Input
Setting

How the Input
Inlt File Form:

Editor, and Command Processor 122
editor command 122
editor command 122
editor command 122
editor command 122
Editor Font Commands 79
Editor Variables In Inlt Files 167
Editor Works 101
Electric Shift Lock In Lisp Mode 170
Enable Commands 21
Enable Services Command 22
Encrypting Zmall Messages 67

NBS encryption 67
Zmall Encrypt Text 67

END 140
Goto End 50

END command 62. 67
END completion command 52
END Converse command 71
End of Line 50
End of Topic 134
Enter a breakpoint loop 180
Entering a Command 10
Entering and Leaving the Inspector 189
Entering Commands 9
Entering the Debugger 192

E

. March 1985

Introduction to

Using the mouse to
Customizing Your

Usp

Description of
Introduction to

Summary of
Entering the Debugger by causing an

Introduction: Recovering From
Recovering From

The Debugger: Recovering From

Completion In the Document
Documentation display In the Document

Flavor
HELP In the Document

Introduction to the Document
Lookup Commands Available In the Document

Recovering From a Stuck Document
Repositioning Text in the Document

Lookup Commands Available In the Document
Document

Lookup Commands Available In the Document
Document
Document
Document
Document
Document

[Find] Document
[Find (R)] Document

[Show] Document
[Select] Document

[Show (M)] Document
Document
Document

Multiple Document
Document

Variables for

257

Index

Entering the Debugger by Causing an Error 193
Entering the Debugger with m-SUSPENO 194
Entering the Debugger with the dbg Function 194
Entering Zmacs 47
Entering Zmacs 47
Entering Zmacs with ed 48
Entering Zmacs with SELECT E 47
Entering Zmacs with the Mouse 48
Entering Zmacs with zwel:edit-functlons 48
Entering Zwei editor 158
enter Zmacs 48
Environment 161
environment features list 184
Erasing text 145
Erasing Text 53
Erasing Text 53
Erasing Text 53
Error 193
Error Display 193
Error Handling in the Command Processor 15
Errors and Stuck States 43
Errors and Stuck States 43
Errors and Stuck States 44
ESCAPE 140
Examiner 133
Examiner 129
Examiner 191
Examiner 119, 133
Examiner 119
Examiner 127
Examiner 121
Examiner 134
Examiner, Editor, and Command Processor 122
Examiner Actions 130, 131, 132
Examiner and Editor 123
Examiner command menu 133
Examiner Command Pane 133
Examiner Command Pane Actions 133
Examiner Ust of Bookmarks 132
Examiner Ust of Current Candidates 131
Examiner menu item 126
Examiner menu item 123
Examiner menu Item 122
Examiner menu item. 127
Examiner menu Item. 127
Examiner Private Documents 136
Examiner Viewer 129
Examiner viewers 129
Examiner Window 129
Examining the Usp World 179
Example of Setting Fonts In the Input Editor 79
Exi1ing the Inspector 189
[Exit] Profile Mode menu item 171
Expunge Commands 22
Expunge Directory Command 22
Expunging deleted messages 67
Extended Command 49
Extended commands 49

258

User's Gu;de to Symbolics Computers

F

Introduction to Zmacs
Completion for

FUNCTION
File System

Customizing Hardcopy
Help
Help
Lisp
Help

Request for N longs
Getting

Lisp environment

Debugging in the
Halting the

Hints on Using the
Introduction to the

Resetting the
LOAD file type

MIC file type

Questions About the

Help facilities,

Comments in
Commonly Used

Less Common

Show
How Do I Create a

Load

Renaming

How LM FS Uses the

Abbreviated

Cc
Subject

To
Creating a

Current mall
Dlred Hardcopy

Documentation binary
FepO:)lmfs.file

How to Create an Init
Logging in Without Processing Your Init

F

March 1985

Extended Commands 49
Extended Commands (m-X Commands) 84
Extra paging space 212

F 141
(F) 187
Facilities 174
facilities 83
facilities, FEP command completion 85
Facilities for Finding Out About Lisp 88
facilities reference material 83
fa i led. 44, 199
Fancy with Zmail 67
features list 184
FEP 197
FEP 222
FEP 201
FEP 197
FEP 197
FEP 44,199
(FEP) 209
(FEP) 208
FEP, HELP key 85
FepO:)lmfs.file file 209
FEP and LM FS 229
FEP Command Completion 85
FEP command completion 85
FEP Commands 200
FEP commands 197
FEP Commands 200
FEP Commands 201
FEP configuration files 209
FEP Directory Command 36
FEP File? 229
Fep file command 201
FEP File Comment Properties 209
FEP file properties 209
FEP Files 212
FEP file system 200
FEP File System 209
FEP File System OVerview 208
FEP Input 197
FEP resetting 201
FEP Show Status Command Output 217
FEP software version 200
FEP version 197
field 62
field 62
field 62
File 55
file 57
File 108
file 119
file 209
File 164
File 164

F

March 1985

Mall
Paging

Primary mail
Saving terminal interactions in

Saving the Mail
Wallpaper

How Do I Create a FEP
Save

Compile
Copy

Delete
Edit

Hardcopy
Load

Load Fep
Rename

Show
Show

Undelete
FEP

Init
Init

Init
Init
Init
Init
Init

Init
Init
Init
Init
Init

Init

Init
Init File Form: Setting Find

FEP

Configuration
Creating and Manipulating

Dribble
FEP configuration

Init
Init File Form: Setting Find File Not to Create New

Loading documentation index
Multiple reel tape

Paging
Renaming FEP

Setting Editor Variables In Inlt
Setting Key Bindings In Inlt
Setting Mode Hooks In Inlt

V nn-debug.flod
Zmacs Customization In Inlt

259

Index

file 64
file 209
file 64
file 183
File 67
file 183
File? 229
File Buffers Command 30
File Command 16
File Command 18
File Command 20
File Command 21
File Command 23
File Command 26
file command 201
File Command 29
File Command 36
File command 200
File Command 41
File Comment Properties 209
File contents 200, 213
Filed message property 57
File Form: Auto Fill in Text Mode 170
File Form: Balanced Quotation Marks and

Asterisks 168
File' Form: c-m-L on the SQUARE Key 169
File Form: Edit Buffers on c-x c-8 169
File Form: Edit Buffers on m-X 169
File Form: Electric Shift Lock in Lisp Mode 170
File Form: Fixing White Space for Kill/Yank

Commands 168
File Form: m-. on m-(L) 169
File Form: Ordering Buffer Lists 168
File Form: Putting Buffers Into Current Package 168
File Form: Setting Default Major Mode 168
File Form: Setting Find File Not to Create New

Files 168
File Form: Setting Goal Column for Real Line

Commands 168
File Form: White Space in Lisp Code 169
File Not to Create New Files 168
file properties 209
File restore format 201
files 198, 209
Files 47
Files 183
files 209
files 155, 161
Files 168
files 121
files 201
files 201
Files 212
Files 167
Files 168
Files 170
files 222
Files 167

260

User's Guide to Symbolics Computers

Adding a Spare World Load as LMFS
Why Can't I Write Out

FEP
How LM FS Uses the FEP

Restoring a
Display status of

Hardcopying From the

FEP
LOAD

MIC
Find

Write
Init File Form: Auto

Documentation

Init File Form: Setting

Zmacs Commands for
Lisp Facilities for

Zmacs Commands for
Zmacs Commands for
Zmacs Commands for

Init File Form:

Zmacs Commands for Finding Out About
Default

fonts:cptfont
"'F

Edit
Show

Input Editor
Zmacs

Setting the Zmacs
Displaying

How to Change
Introduction to

Personal default
Setting

Standard Lisp Machine
What Are

Use of
Example of Setting

Setting
Setting

March 1985

File Space 212
Files When I Have Free Disk Space? 229
file system 200
File System 209
file system 201
file system display 185
File System Editor 108
File System (F) 187
File System OVerview 208
file type (FEP) 209
file type (FEP) 208
File Zmacs command 55
File Zmacs command 55
Fill in Text Mode 170
[Find] 133
Find Any Candidates 123
Find Commands 22
find commands 120. 122
[Find] Document Examiner menu item 126
Find File Not to Create New Files 168
Find File Zmacs command 55
Finding Out About Flavors 87
Finding Out About Lisp 88
Finding Out About Lisp 86
Finding Out About the State of Buffers 86
Finding Out About the State of Zmacs 86
Finding Out Why Your Machine Crashed 214
Find Initial Substring Candidates 124
[Find (M)] 124. 133
[Find (R)] 133
[Find (R)] Document Examiner menu item 123
Find Symbol Command 22
Find Table of Contents 125
Find Whole Word Candidates 126
Fixing White Space for KiIIlYank Commands 168
Flavor Examiner 191
Flavors 87
font 75. 174
font 75. 174
font change indicators 69
Font Command 21
Font Command 36
Font Commands 79
Font Commands 81
Font in the Attribute List 80
Fonts 75
Fonts 75
Fonts 75
fonts 174
Fonts 78
Fonts 75
Fonts? 75
fonts:cptfont font 75. 174
Fonts In the Documentation 231
Fonts In the Input Editor 79
Fonts in the Input Editor 78
Fonts in Zmacs 79
Fonts In Zmall Messages 69

March 1985

Setting the Zmacs Font with Set
Ust

Setting the Zmacs
break special

defvar-reseHable special
defvar-standard special

grlndef special
login-forms special

setq-globally special
setq special

setq-standard-value special
sstatus special
status special
Block restore

File restore
Image restore

Disk

Init File
Init File
Init File
Init File
Init File
Init File
Init File

Init File

Init File

Init File
Notation Conventions for Macros and Special

Init File
Init File
Init File

Init File
Request

Delete

Why Can't I Write Out Files When I Have
Recovering

Hardcopying
Introduction: Recovering

Recovering
The Debugger: Recovering

FUNCT ION Key: Recovering
Topics Pruned

Hardcopying
Hardcopying
Hardcopying
Hardcopylng

apropos

261

Index

Fonts (m-X) 80
Fonts (m-X) Zmacs command 75, 174
Font with Set Fonts (m-X) 80
form 180
form 151
form 152
form 180
form 157, 158, 162, 163
form 158, 163
form 162
form 152
form 185
form 184
format 201
format 201
format 201
Format command 201
Formatted print of function definitions 180
Formatting disks 201
Form: Auto Fill in Text Mode 170
Form: Balanced Quotation Marks and Asterisks 168
Form: c-m-L on the SQUARE Key 169
Form: Edit Buffers on c-X c-B 169
Form: Edit Buffers on m-X 169
Form: Electric Shift Lock in Lisp Mode 170
Form: Fixing White Space for KilllYank

Commands 168
Form: m-. on m-(L) 169
:form-only command processor mode 165
Form: Ordering Buffer Lists 168
:form-preferred command processor mode 165
Form: Putting Buffers Into Current Package 168
Forms 232
Form: Setting Default Major Mode 168
Form: Setting Find File Not to Create New Files 168
Form: Setting Goal Column for Real Line

Commands 168
Form: White Space in Lisp Code 169
for N longs fa i led. 44, 199
Forward 50
Forward 53
Forwarded message property 57
Forward Paragraph 50
Forward Word 50
Free Disk Space? 229
From a Stuck Document Examiner 121
From Dired 108
From Errors and Stuck States 43
From Errors and Stuck States 43
From Errors and Stuck States 44
From Stuck States 143
From the Documentation Database 121
From the File System Editor 108
From the System Menu 107
From Zmacs 107
From Zmall 108
Front-end Processor 197
function 178

262

User's Guide to Symbolics Computers

bug
chaos:notlfy-local-llspms

ep-off
cp-on

dbg
dbg:decode-mlcro-pc

describe
dlred

disassemble
drlbble-end

dribble-start
ed

Editing the definition of a
Editing the source code of a

Entering the Debugger with the dbg
hostat

inspect
Keys with No

lisp-reinltiallze
login

logout
mail

prlnt-disk-Iabel
print-notifications

print-sends
qreply
qsend

sl :install-mlcrocode
si:lisp-top-Ievel

si :lisp-top-leveI1
si:machine-model

si:print-Iogin-history
si :set-defau It-hardcopy-device
si:set-screen-hardcopy-device

si :show-configuration
sys:halt
uptime

what-files-call
where-Is

who-calls
zwei :edit-functions

zwei :qsends-off
zwel :qsends-on

zwel : save-all-files

Formatted print of

function 159
function 72
function 16
function 16
function 194
function 215
function 178
function 159
function 179
function 183
function 183
function 48. 158
function 48. 158
function 48, 158
Function 194
function 183
function 179. 189
Function 147
function 151
function 156
function 157
function 159
function 209
function 182
function 73. 182
function 73
function 72. 160
function 210
function 151
function 151
function 224
function 182
function 174
function 174
function 200. 224
function 223
function 183
function 178
function 178
function 177
function 48
function 72
function 72
function 158. 182
FUNCTI ON A 141
FUNCTION B 141
FUNCTI ON C 141
FUNCTION CLEAR INPUT 141
FUNCTI ON c-M 141
FUNCT I ON c-Q 108. 141
function definitions 180
FUNCTI ON F 141
FUNCTION H 141
FUNCTI ON H command 183
FUNCTI ON HELP 83
FUNCTION Key 140
FUNCT I ON Key: Display and Hardcopy

Commands 141

March 1985

March 1985

G

H

Index of
Introduction: Index of

Internal
Notation Conventions for

Quick Summary of Mouse
Reference Description of Help

Some Utility
Utility

Summary of Help

Overview of
When and How to Use the

Halt
Start

Show

How to
Zmail:

Init File Form: Setting

FUNCTION
Hostat

sys:

Disk
Disk
Error

FUNCTI ON Key: Recovering From Stuck States
Function Keys 139
Function Keys 139
FUNCT ION Key: Selection and Notification

Commands 142
FUNCTION M 141
FUNCTI ON m-Q 108, 141
FUNCTI ON 0 141
FUNCTION Q 108. 141, 174
FUNCTION REFRESH 141
FUNCTI ON RUBOUT 141
functions 234
Functions 231
Functions 149
Functions 88
Functions 158
Functions 182
Functions for Identifying callers 1n
Functions in Different Contexts 86
*Function-Spec9-to-Edit-~ buffer 48

G

H

Garbage Collection 105
Garbage. Collector 105
GC Command 23
GC Command 40. 106
GC Status Command 37
Gc-status Output 105
Get Hardcopy 107
Get Inbox 64
Getting Fancy with Zmail 67
Getting Help 83
Getting new mail 64
Getting Started 1
Globally named objects 113
Global-name 112
Goal Column for Real Line Commands
Goto Beginning 50
Goto End 50
grindef special form 180
G Zmail command 64

H 141
(H) 188
Halt command 201
Halt Commands 23
halt function 223
Halt GC Command 23
Halting 45
Halting the FEP 201
Halt Machine Command 23
Handling 213
Handling Commands 213
Handling in the Command Processor 15

168

263

Index

143

G

H

264

User's Guide to Symbolics Computers

Commands for Producing
How to Get

FUNCT ION Key: Display and
:defauH·font keyword to sl:
:header·font keyword to sl:

sl:
Checking the Status of

Customizing
Dlred

Tape
FUNCTION

Subject or Text Zmail display column

FUNCTION
Getting

Introduction to Zmacs
SELECT

System Conventions and
Reference Description of

Summary of

FEP,

Hardcopy 107
Hardcopy 107

March 1985

Hardcopy Buffer (m-X) Zmacs command 107
Hardcopy Commands 23
Hardcopy Commands 141
hardcopy-default·fonts 174
hardcopy-defauH·fonts 174
hardcopy-defauH·fonts variable 174
Hardcopy Devices 109
Hardcopy Facilities 174
Hardcopy File 108
Hardcopy File Command 23
Hardcopylng From Dlred 108
Hardcopylng From the File System Editor 108
Hardcopying From the System Menu 107
Hardcopying From Zmacs 107
Hardcopylng From ZmaJl 108
Hardcopying the Screen 108
Hardcopy Private Document 136
[Hardcopy] Zmall menu Item 108
Hardware resetting 201
hardware resetting 201
H command 183
h-c-upper·/eft command 44, 199
h-c-upper·/eft key 198
:header·font keyword to

sl:*hardcopy-defauh·fonts* 174
Headers window 67
heading 57
HELP 144
HELP 83
Help 83
Help 51
HELP 83
[Help] 133
HELP ? Zmacs command 51
Help and Quit 188
HELP A Zmacs command 51
Help Command 24
Help Commands 24
HELP completion command 52
HELP C Zmacs command 51
HELP 0 Zmacs command 51
Help facilities 83
Help facilities, FEP command completion 85
Help facilities reference material 83
Helpful Hints 227
Help Functions 88
Help Functions In Different Contexts 86
Help In the Command Processor 14
HELP In the Document Examiner 119, 133
HELP key 51, 83, 197
HELP key 85
HELP L Zmacs command 51
[Help (M)] 133
HELP or c-? 52
HELP SPACE Zmacs command 51
HELP U Zmacs command 51

March 1985

Show
System Conventions and Helpful

Command
Setting Mode

Delete
Display status of

Quitting

Show

When and

SELECT
Set User

Functions for

Logging
Lookup Commands Available

Zmail: Get

Delete
Loading documentation

Introduction:
Attribute

4= font change
Summary of Help Functions

Comments
Saving terminal interactions

Disk label
Zmail Mode Une

Setting Editor Variables
Setting Key Bindings
Setting Mode Hooks

Zmacs Customization
How to Create an

Logging In Without Processing Your

HELP V Zmacs command 51
HELP W Zmacs command 51
Herald Command 37
Hints 227
Hints on Using the FEP 197
HistOlY 15
Hooks In Inlt Files 170
Horizontal Space 53
hostat 185
Hostat 183
hostat function 183
Hostat (H) 188
Host object 112
Hosts 113
Hosts Command 37
Host Status 37. 183
Host status report 183
How Do I Create a FEP File? 229
How LMFS Uses the FEP File System 209
How the Input Editor Works 101
How the Inspector Works 189
How to Change Fonts 75
How to Create an Init File 164
How to Get Hardcopy 107
How to Use the Garbage Collector 105

I 189
Id Command 34
Identifying callers 177
Identifying callers of variables 177
Image restore format 201
in 1. 155
in an Editor 128
Inbox 64
Inbox 64
Incoming messages 70
Indentation 53
index files 121
Index of Function Keys 139
Index of Function Keys 139
indicator 112
indicators 69
in Different Contexts 86
In FEP commands 197
In file 183
Information 200. 213
Information 61
in Inlt Files 167
in Init Files 168
In Init Files 170
in Init Files 167
Init File 164
Init File 164
Init File Form: Auto Fill in Text Mode 170
Init File Form: Balanced Quotation Marks and

Asterisks 168

265

Index

I

266

User's Guide to Symbolics Computers

Setting Editor Variables in
Setting Key Bindings in
Setting Mode Hooks in

Zmacs Customization in

sl:
Find

Init File Form: White Space
Init File Form: Electric Shift Lock

Completion
Abbreviated FEP

CLEAR
Editing terminal

Editing Your
FUNCTION CLEAR

Set

Example of Setting Fonts in the
Setting Fonts in the

m-sh.-A
m-sh-F
m-sh-V

How the
Introduction to

Entering and Leaving the
Exiting the

How the
Documentation database

51:
[Inspect]

Zmacs Commands for

March 1985

Init File Form: c-m-L on the SQUARE Key 169
Init File Form: Edit Buffers on c-x c-8 169
Init File Form: Edit Buffers on m-X 169
Init File Form: Electric Shift Lock in Lisp Mode 170
Init File Form: Fixing White Space for Kill/Yank

Commands 168
Init File Form: m-. on m-(L) 169
Init File Form: Ordering Buffer Lists 168
Init File Form: Putting Buffers Into Current

Package 168
Init File Form: Setting Default Major Mode 168
Init File Form: Setting Find File Not to Create New

Files 168
Init File Form: Setting Goal Column for Real Line

Commands 168
Init File Form: White Space in Lisp Code '169
Init files 155, 161
Init Files 167
Init Files 168
Init Files 170
Init Files 167
Initialize Commands 24
Initialize Mail Command 24
Initialize Mouse Command 24
Initialize Time Command 24
Inltlal-readtable variable 180
Initial Substring Candidates 124
In Lisp Code 169
in Lisp Mode 170
in Other Contexts 85
input 197
INPUT 140
input 101
Input 101
INPUT 141
Input Base Command 33
Input editor 101
Input Editor 79
Input Editor 78
input editor command 122
input editor command 122
input editor command 122
Input Editor Font Commands 79
Input Editor Works 101
Inserting Text 53
Inspect Command 26
Inspect command 189
Inspect Commands 26
Inspect function 179, 189
[Inspect] in System menu 189
Inspector 189
Inspector 189
Inspector Works 189
Installation 121
Installing Microcode 210
Install-microcode function 210
in System menu 189
Interacting with Lisp 87

March 1985

Saving terminal

si:
Sending

System

Init File Form: Auto Fill
Setting the Zmacs Font

Completion
Error Handling

Help
Use of Fonts

Completion
Documentation display

HELP
Lookup Commands Available

Repositioning Text
Lookup Commands Available

Lookup Commands Available
Debugging

Example of Setting Fonts
Setting Fonts

Poking Around
Write a breakpoint

Init File Form: Putting Buffers
Sharp-sign

Zmail Tutorial

A Brief

Logging
Lookup Commands Available At a Lisp Listener and

Setting Fonts
Typeout Windows

Fonts
[Default] Profile Mode menu

[Delete] Zmail menu

267

Index

interactions in file 183
Interaction with Completion and Typeout

Windows 84
interactive-bindings 152
interactive m~ssages 70
Interactive streams 101
Interactive Variables 151. 152
Internal functions 234
internals 234
Internal variables 234
in Text Mode 170
in the Attribute List 80
in the Command Processor 14
in the Command Processor 15
In the Command Processor 14
in the Documentation 231
in the Document Examiner 133
in the Document Examiner 129
in the Document Examiner 119. 133
in the Document Examiner 127
in the Document Examiner 134
in the Document Examiner. Editor. and Command

Processor 122
in the Document Examiner and Editor 123
in the FEP 222
in the Input Editor 79
in the Input Editor 78
in the Lisp Wortd 1n
into a program 180
Into Current Package 168
introducing reader macros 233
Introduction 57
Introduction: Index of Function Keys 139
Introduction: Recovering From Errors and Stuck

States 43
Introduction to Converse 69
Introduction to Entering Zmacs 47
Introduction to Erasing Text 53
Introduction to Fonts 75
Introduction to Inserting Text 53
Introduction to Moving the Cursor 50
Introduction to the Document Examiner 119
Introduction to the FEP 197
Introduction to the Lisp World 151
Introduction to the Motion Commands 51
Introduction to the Namespace System 111
Introduction to Zmacs Commands 49
Introduction to Zmacs Extended Commands 49
Introduction to Zmacs Help 51
Introduction to Zmacs Keystrokes 49
Invoking Zmacs 47
in Without Processing Your Init File 164
in Zmacs 128
in Zmacs 79
In Zmacs 85
In Zmail Messages 69
item 171
item 66

268

User's Guide to Symbolics Computers

K

[Exit] Profile Mode menu
[Find] Document Examiner menu

[Find (R)] Document Examiner menu
[Hardcopy] Zmail menu

[MaiO Zmail menu
[Map over] Zmail menu

[Move] Zmail menu
[Next] Zmail menu

[Previous] Zmail menu
[Profile] Zmail menu
[Reply] Zmail menu

[Reset] Profile Mode menu
[Save] Zmail menu

[Show] Document Examiner menu
[Undelete] Zmail menu

[Select] Document Examiner menu
[Show (M)] Document Examiner menu

FEP, HELP
FUNCTION

h-c-upper -left
HELP

Inl1 File Form: c-m-L on the SQUARE
RETURN
SELECT

SELECT T
TAB

Setting
The

Modifier
FUNCTION
FUNCTION

Index of Function
Introduction: Index of Function

Shift
FUNCTION

Introduction to Zmacs

Notation Conventions for Packages and
Documentation

Message
Supplying

:default·font
:header·font

Inl1 File Form: Fixing Whl1e Space for

Backward

Backward

March 1985

K

l1em 171
item 126
item 123
l1em 108
item 62
item 108
item 108
l1em 66
item 66
item 170
item 67
item 171
item 67, 171
l1em 122
l1em 66
item. 127
item. 127

key 85
Key 140
key 198
key 51, 83, 197
Key 169
Key 145
Key 145
key 115
Key 146
Key Bindings in Init Files 168
Keyboard 7
Keyboard communication 201
Key Conventions 235
Key: Display and Hardcopy Commands 141
Key: Recovering From Stuck States 143
Keys 139
Keys 139
keys 49
Key: Selection and Notification Commands 142
Keys Not Currently Used 147
Keys Reserved for the User 7, 147
Keystrokes 49
Keystrokes 49
Keys wl1h No Function 147
Keyword Names 234
keywords 120
keywords 57
Keywords and Values for a Command 13
keyword to sl:*hardcopy-default-fonts* 174
keyword 10 sl:*hardcopy-default-fonts* 174
KiIIlYank Commands 168
Kill commands 53
Kill Una 53
Kill Region 53
Kill Sentence 53
Kill Sentence 53
Kill Sexp 53
Kill Sexp 53

K

269

March 1985 Index

L

Kill Word 53
Backward Kill Word 53

Disk
Disk

Entering and
Show

Message status
The Lisp Top

Beginning of
Down Real

End of
Kill

Mouse Documentation
Status

Up Real
Zmail Second Mode

Init File Form: Setting Goal Column for Real
Zmail Mode

Delete Blank
Create

Base and Syntax Default Settings for
Lisp Facilities for Finding Out About

Zmacs Commands for Finding Out About
Zmacs Commands for Interacting with

Inlt File Form: White Space In

Tools for

lookup Commands Available At a

Communicating with the
Standard

Sending message to all
Init File Form: Electric Shift lock in

Notation Conventions for

Binding Standard Variables for Writing
The

81:
81:

A Brief Introduction to the
Poking Around In the

Variables for Examining the
Lisp environment features

Select Candidate
Setting the Zmacs Font In the Attribute

lookup Commands Available At a Lisp
Lisp

L
label comments 209
label information 200, 213
Last message property 57
Lbus resetting 201
Leaving the Inspector 189
legal Notice Command 37
Less Common FEP Commands 201
letters 57
level 151
LINE 144
Line 50
Line 50
Line 50
Line 53
Line 5
Line 5
Line 50
Line 62
Line Commands 168
Line Information 61
Lines 53
Link Command 19
Lisp 54
Lisp 88
Lisp 86
Lisp 87
Lisp Code 169
IIsp-crash-list variable 181
Lisp Debugging 189
Lisp environment features list 184
Lisp Facilities for Finding Out About Lisp 88
Lisp Listener and In Zmacs 128
Lisp Listener Commands for Converse 72
Lisp Machine 9
Lisp Machine Fonts 75
Lisp Machines at site 72
Lisp Mode 170
Lisp Objects 231
Lisp Reader 227
IIsp-relnltlallze function 151
Lisp Style Command loops 153
Lisp Top level 151
IIsp-top-leve" function 151
IIsp-top-level function 151
Lisp World 151
Lisp World 1n
Lisp World 179
list 184
List 127, 131
List 80
List GaIters (m-X) Zmacs command 1n
Listener and In Zmacs 128
Listener Commands for Converse 72

L

270

User's Guide to Symbolics Computers

Document Examiner

Document Examiner
Init File Form: Ordering Buffer

Backquote constructing

Local
Questions About the FEP and

Adding a Spare World Load as
Adding a

How
What is a World

Adding a Spare World

World

Using a Spare World
World

Microcode
World

Inlt File Form: Electric Shift

Cold boot after
Sys: I-ucode;

What is a

Login and

Request for N

Documentation

March 1985

List Fonts (m-X) Zmacs command 75, 174
List of bookmarks 129
List of Bookmarks 132
List of bookmarks display 132
List of current candidates 127
List of Current Candidates 131
Lists 168
list structure 233
LMFS 208
LMFS 209
LMFS 229
LMFS File Space 212
LMFS Partition 212
LM FS Uses the FEP File System 209
Load? 228
Load as LMFS File Space 212
Load Commands 26
load disk-saves 182
Load Fep file command 201
Load File Command 26
LOAD file type (FEP) 209
Load for Paging 212
loading 201
Loading documentation index files 121
Load Microcode command 201
Load Patches Command 26
Load Private Document 136
Loads 208
Loads 209
Load Sync-program command 201
Load System Command 27
Load World command 201
LOCAL 144
Local LM FS 209
Lock In Lisp Mode 170
Logging In 1, 155
Logging In Without Processing Your Inlt File 164
Logging Out 3
logging out 3
logical directory 210
Logical Path name? 228
Login and Logout Commands 28
Login Command 28
login-forms special form 157, 158, 162, 163
login function 156
Logout Command 29
Logout Commands 28
logout function 157
logout-list variable 157
longs fa i led. 44, 199
Looking up Documentation 120
Lookup Commands 122
Lookup Commands Available At a Lisp Listener and

in Zmacs 128
Lookup Commands Available In an Editor 128
Lookup Commands Available in the Document

Examiner 127
Lookup Commands Available In the Document

March 1985

M

Examiner, Editor, and Command
Processor 122

Lookup Commands Available in the Document
Examiner and Editor 123

Break loop 151
Enter a breakpoint loop 180

Read-eval-print loop 151, 155
Top-level loop 151

271

Index

Binding Standard Variables for Writing Lisp Style Command
Loops 153

Sys: I-ucode; logical directory 210
HELP L Zmacs command 51

FUNCTION
[Find
[Help

[Private
[Viewer
Meters

Completion for
Init File Form:

Communicating with the Lisp
Clear

Halt
Finding Out Why Your

Standard Usp
Checking on What the

al:
Why Do You Name

Sending message to all Usp

Notation Conventions for
standard-value-let

standard-value-let·
standard-value-progv

Notation Conventions for
Decoding

Sharp-sign Introducing reader
Notation Conventions for

Get1ing new
Reading Your

Replying to
Send

Sending and Receiving Messages and
Sending Your

Deleting messages from
Restoring messages to

Save

M
M 141
(M)] 124, 133
(M)] 133
(M)] 133
(M)] 133
(M) 187
m-. 85
m-. on m-(L) 169
M2284 disk drive 214
M2351 disk drive 214
m-< 134
m-< Zmacs command 50
m-> 134
m-> Zmacs command 50
m-ABORT 139
Machine 9
Machine command 201
Machine Command 23
Machine Crashed 214
Machine Fonts 75
Machine Is Doing 1n
machine-model function 224
Machines and Printers? 229
Machines at site 72
Maclisp 184
Maclisp 235
macro 153
macro 153
macro 154
Macro characters 233
Macro Characters 233
Macro PCs 216
macros 233
Macros and Special Forms 232
mail 64
Mail 64
Mail 67
mail 159
Mail 57
Mail 62
mail buffer 66
mail buffer 66
Mail Buffers Command 30

M

272

User's Guide to Symbo/ics Computers

Initialize
Show

Current
Primary

Saving the

Init File Form: Setting Default
Creating and

Single Quotation

Init File Form: Balanced Quotation
Help facilities reference

Reference

SELECT
[Show

Virtual

Document Examiner command
Hardcopying From the System

[Inspect] in System
Zmail Command

[Default] Profile Mode
[Delete] Zmail

[Exit] Profile Mode
[Find] Document Examiner

[Find (R)] Document Examiner
[Hardcopy] Zmail

[MaiO Zmail
[Map over] Zmail

[Move] Zmail
[Next] Zmail

[Previous] Zmail
[Profile] Zmail
[Reply] Zmail

[Reset] Profile Mode
[Save] Zmail

[Show] Document Examiner
[Show (R)] Document Examiner

[Undelete] Zmail
[Select] Document Examiner

[Show (M)] Document Examiner
Current

Scrolling a Zmail
What to Do After Reading a Zmail

Editing

Answered

Mail Command 24
Mall Command 38
Mail file 64
mail file 57
mail file 64
Mail File 67
mall function 159
Mail mode 57
[MaiO Zmail menu Item 62
Major Mode 168
Manipulating Files 47
[Map over] Zmail menu Item 108
Mapping names to objects 113
mark 233
Marking mode 57
Marks and Asterisks 168
material 83
Material 83
Maxtor XT-1140 disk drive 214
m-A Zmacs command 50
m-8 Zmacs command 50
M command 57

March 1985

(M)] Document Examiner menu item. 127
m-O Zmacs command 53
Memory 209
Memory clearing 201
menu 133
Menu 107
menu 189
Menu 60
menu item 171
menu item 66
menu item 171
menu item 126
menu item 123
menu item 108
menu item 62
menu item 108
menu item 108
menu item 66
menu item 66
menu item 170
menu item 67
menu item 171
manu item 67, 171
menu item 122
menu Item 125
menu item 66
menu item. 127
menu item. 127
message 64
Message 66
Message 66
Message date 57
Message keywords 57
message mode 57
Message properties 57
message property 57

March 1985

Badheader
Deleted

Filed
Forwarded

Last
Recent

Redistributed
Unseen

Deleting and Undeletlng Zmall
Encrypting Zmail

Expunging deleted
Fonts in Zmail

Incoming
Moving Around Zmail

Printing
Reprint

Selecting
Sending Interactive

Turning off Converse
Turning on Converse

Sending and Receiving

Deleting

A
D

Restoring
Sending
Sending

Converse Pop-up
Using the mouse to scroll the

Zmail
Zmail

Notation Conventions for

Installing
Copy
Load

Set
Decoding

Zmail

Init File Form: m-. on
All reply

:command-only command processor
:command-preferred command processor

Editing message
:form-only command processor

:form-preferred command processor
Init File Form: Auto Fill in Text

message property 57
message property 57
message property 57
message property 57
message property 57
message property 57
message property 57
message property 57
Message recipients 57. 62
Messages 66
Messages 67
messages 67
Messages 69
messages 70
Messages 66
messages 108
messages 73. 182
messages 66
messages 70
messages 72
messages 72
Messages and Mall 57
Message sender 57
messages from mail buffer 66
message status 57
message status 57
message status 57
message status 57
Message status letters 57
messages to mail buffer 66
message to all Lisp Machines at site 72
message to another user 72. 160
Message window 57. 67
Message Window 70
message window 64
Message Window 60
Message Window Configuration 60
Meters (M) 187
Methods and Variables 233
m-F Zmacs command 50
MIC file type (FEP) 208
Microcode 210
Microcode Command 18
Microcode command 201
Microcode Loads 208
Microcode-name-and-version command 201
Micro PCs 215
Minibuffer 60
Miscellaneous Conventions 227
m-K Zmacs command 53
m-(L) 169
mode 67
mode 165
mode 165
mode 57
mode 165
mode 165
Mode 170

273

Index

274

User's Guide to Symbolics Computers

Init File Form: Electric Shift Lock in Usp
Init File Form: Setting Default Major

Mall
Marking

Profile
Reply

Sender reply
Setting the Command Processor

Using Zmail Profile
Setting

Zmail Second
Zmall

[Default] Profile
[Exit] Profile

[Reset] Profile
Profile
Peek

Show System

Set
Introduction to the

Disk

Entering Zmacs with the
Scrolling with the

The

Initialize

Quick Summary of
Using the
Using the

Cursor

Description of
Introduction to

Summary of
FUNCTION

Decrypt

Entering the Debugger with

Mode 170
Mode 168
mode 57
mode 57
mode 57. 170. 171
mode 67
mode 67
Mode 165
Mode 171
Mode Hooks in Init Files 170
Mode Une 62
Mode Une Information 61
Mode menu item 171
Mode menu l1em 171
Mode menu item 171
mode options 170
Modes 186
Modifications Command 39
Modifier Key Conventions 235
Monitor-type command 201
Motion Commands 51
mount 201. 213
Mount command 201
Mouse 48
Mouse 48
Mouse 149
Mouse 7
Mouse buttons 7
Mouse clicks 7
Mouse Command 24
Mouse Command Conventions 236
Mouse Cursor Shape 149
Mouse Documentation Une 5
Mouse Functions 149
mouse to enter Zmacs 48

March 1985

mouse to scroll the message window 64
movement commands 50. 51
[Move] Zmail menu l1em 108
Moving Around Zmail Messages 66
Moving the Cursor 50
Moving the Cursor 50
Moving the Cursor 50
m-Q 108. 141
m-RUBOUT Zmacs command 53
m-SCROLL 134
m-SCROLL Zmacs command 50
Msg (m-X) Zmail command 67
m-sh-A input editor command 122
m-sh-O editor command 122
m-sh-F Input editor command 122
m-sh-V input editor command 122
m-SUSPENO 146
m-SUSPENO 194
Multiple disk drives 213
Multiple Disk Units 213
Multiple Document Examiner viewers 129
Multiple reel tape files 201
m-V 134

March 1985

N

Init File Form: Edit Buffers on
Setting the Zmacs Font with Set Fonts

Completion for Extended Commands
Append Buffer

Append Conversation
Delete Conversation

Regenerate Buffer
Write Buffer

Write Conversation
Hardcopy Buffer

List Callers
List Fonts

Decrypt Msg

Network

Documentation topiC
Private document

Qualified
Supplying a Command

Globally
Why Do You

Command
Notation Conventions for Packages and Keyword

Updating the

Creating a New
Editing a

Edit

Names and
Introduction to the

Understanding Networks and the

Data Types of

Mapping

Using the
Reset

Understanding

Init File Form: Setting Find File Not to Create
Getting

Creating a

N

m-V Zmacs command 50
m-X 49
m-X 169
(m-X) 80
(m-X Commands) 84
(m-X) Converse Command 71
(m-X) Converse Command 72
(m-X) Converse Command 71
(m-X) Converse Command 72
(m-X) Converse Command 71
(m-X) Converse Command 71
(m-X) Zmacs command 107
(m-X) Zmacs command 177
(m-X) Zmacs command 75. 174
(m-X) Zmail command 67
m-l Zmacs command 50
m- [Zmacs command 50
m- \ Zmacs command 53
m_A Zmacs command 53

(N) 188
Name 112
name 119. 120
name 136
name 113
Name 11
named objects 113
Name Machines and Printers? 229
Names 49
Names 234
Names and Namespaces 113
Namespace Database 116
Namespace object 112
Namespace Object 117
Namespace Object 117
Namespace Object Command 21
Namespaces 113
Namespaces 113
Namespace System 111
Namespace System 111
Namespace System Attributes 112
Namespace System Attributes 112
Namespace System Classes 112
names to objects 113
NBS encryption 67
NE TlJORK 144
Network 115
Network Command 30
Network (N) 188
Network object 112
Networks 113
Networks and the Namespace System 111
NETlJORK X command 115
New Files 168
new mail 64
New Namespace Object 117

275

Index

N

276

User's Guide to Symbolics Computers

o

Request for
Keys with

Documentation
Understanding

Keys
Show Legal

FUNCT ION Key: Selection and
Show

chaos:
Inlt File Form: Setting Find File

FUNCTION
Creating a New Namespace

Editing a Namespace
Host

Namespace
Network

Printer
Site

User
Edit Namespace

Show
Documentation

Globally named
Mapping names to

Notation Conventions for LIsp

c-x
Parts

Display status
Editing the definition

Editing the source code
Display status

Document Examiner LIst
LIst
LIst

Zmacs Commands for Finding Out About the State
Find Table

Oefauh Behavior

Next Page 50
Next Screen 50
[Next] Zmail menu item 66
Nicknames 113
N longs fai led. 44,199
No Function 147
Notation Conventions 231
Notation Conventions 231

March 1985

Notation Conventions for Character Case 234
Notation Conventions for Functions 231
Notation Conventions for LIsp Objects 231
Notation Conventions for Maclisp 235
Notation Conventions for Macro Characters 233
Notation Conventions for Macros and Special

Forms 232
Notation Conventions for Methods and Variables 233
Notation Conventions for Packages and Keyword

Names 234
Notation Conventions for Quoting Characters 233
Notation Conventions for the Character Set 235
Notation Conventions Quick Reference 235
Not Currently Used 147
Notice Command 37
Notification Commands 142
Notifications Command 38
notlfy-local-lIspms function 72
Not to Create New Files 168

o 0
o 141
Object 117
Object 117
object 112
object 112
object 112
object 112
object 112
object 112
Object Command 21
Object Command 38
object record 119
objects 113
objects 113
Objects 231
Obsolete Terms 227
o command 62
of a Command 9
of active processes 185
of a function 48, 158
of a function 48, 158
of areas 185
of Bookmarks 132
of bookmarks 129
of bookmarks display 132
of Buffers 86
of Contents 125
of Converse 70

March 1985

Document Examiner Ust
Ust

Description
Summary

Turning the Command Processor on and
Turning

Display status
Use

Formatted print
Index

Introduction: Index
OVerview

Checking the Status
Reference Description

Summary
Display status

Beginning
End

Quick Summary
Description

Summary
Data Types

OVerview
Status

Example
OVerview
Beginning

End
Identifying callers

Display status
OVerview

Zmacs Commands for Finding Out About the State
Turning the Command Processor

Turning
Inlt File Form: Edit Buffers

Using the
Inlt File Form: m-.

Inlt File Form: Edit Buffers
Inlt File Form: c-m-L

Hints
Checking

Debugger Proceed and Restart
Profile mode

Setting and Saving Zmail
User

HELP
Inlt File Form:

Subject
Completion In

Talking to
Cold boot after logging

Logging
Zmacs Commands for Finding

Usp Facilities for Finding
Zmacs Commands for Finding
Zmacs Commands for Finding
Zmacs Commands for Finding

of Current Candidates 131
of current candidates 127
of EraSing Text 53
of Erasing Text 53
Off 15
off Converse messages 72
of file system display 185
of Fonts in the Documentation 231
of function definitions 180
of Function Keys 139
of Function Keys 139
of Garbage Collection 105
of Hardcopy Devices 109
of Help Functions 88
of Help Functions in Different Contexts 86
of hostat 185
of Une 50
of Une 50
of Mouse Functions 149
of Moving the Cursor 50
of Moving the Cursor 50
of Namespace System Attributes 112
of Peek 185
of registers 200
of Setting Fonts In the Input Editor 79
of the Command Processor 9
of Topic 134
of Topic 134
of variables 177
of window area 185
of Zmacs 47
of Zmacs 86
on and Off 15
on Converse messages 72
on c-X c-B 169
Online Documentation System 119
on m-(L) 169
on m-X 169
on the SQUARE Key 169
on Using the FEP 197
on What the Machine Is Doing 177
&optlonal 231
Options 193
options 170
Options 171
options window 171
or c-? 52
Ordering Buffer Usts 168
or Text Zmall display column heading 57
Other Contexts 85
Other Users 69
out 3
Out 3
Out About Flavors 87
Out About Usp 88
Out About Usp 86
Out About the State of Buffers 86
Out About the State of Zmacs 86

277

Index

278

User's Guide to Symbolics Computers

p

Why Can't I Write
FEP Show Status Command

Gc-status
Set

Finding
Documentation

FEP File System
Show

Show Documentation (an

[Map

Processes
Init File Form: Putting Buffers Into Current

User
Set

Notation Conventions for

Next
Previous

Using a Spare World Load for

Add

Clear
Extra

Dotted
Document Examiner Command
Document Examiner Command

Backward
Forward

Adding a LM FS

Load
What is a Logical

Decoding Macro
Decoding Micro

Overview of
USing

Set sleep time between updates

Converse
Supplying

Cold boot after
sl:

p

March 1985

Out Files When I Have Free Disk Space? 229
Output 217
Output 105
Output Base Command 33
Out Why Your Machine Crashed 214
overview 120. 127
Overview 208
Overview 127
Overview) 122
Overview of Garbage Collection 105
Overview of Peek 185
Overview of the Command Processor 9
Overview of Zmacs 47
over] Zmail menu item 108

(P) 186
Package 168
package 234
Package Command 33
Packages and Keyword Names 234
PAGE 144
Page 50
Page 50
Paging 212
Paging file 209
Paging-file command 201
Paging files 201
Paging-files command 201
paging space 212
Pair 112
pair 227
Pane 133
Pane Actions 133
Paragraph 50
Paragraph 50
Parentheses 232
Partition 212
Parts of a Command 9
Patches Command 26
Path name? 228
PCs 216
PCs 215
P Dired command 108
Peek 185
Peek 185
Peek command 185
Peek Modes 186
Personal default fonts 174
Poking Around In the Usp World 1n
Pop-up Message Window 70
Positional Arguments to a Command 11
Powering down 201
Powering up 1
powering up 1
prefix 234
Prefix character commands 49

p

March 1985

Pretty-printing 180
Previous Page 50
Previous Screen 50
[Previous] Zmall menu item 66
Primary mall file 64
prln1 variable 155
prlnt-dlsk-Iabel function 209

Changing the Defaul1 Printer 175
Defaul1 printer 174
Default printer for screen copies 174

Printer object 112
Printers 113

Why Do You Name Machines and Printers? 229
Printing messages 108

sl: print-login-history function 182
print-notifications function 182

Formatted print of function definitions 180

Hardcopy
Load
Read
Save

print-sends function 73, 182
[Private] 133
Private Document 136
Private Document 136
Private Document 136
Private Document 136
Private document name 136

Document Examiner Private Documents 136
[Private (M)] 133
[Private (R)] 133

Recovery Procedures 43
Debugger Proceed and Restart Options 193

Display status of active processes 185
Processes (P) 186

Logging in Without Processing Your Init File 164
Completion in the Command Processor 14

Customizing the Command Processor 164
Error Handling In the Command Processor 15

Front-end Processor 197
Help in the Command Processor 14

279

Index

Lookup Commands Available in the Document Examiner, Editor, and Command

Overview of the Command
Set Command

Customizing Command
:command-only command

:command-preferred command
:form-only command

:form-preferred command
Setting the Command
Turning the Command
Setting the Command

Setting Command
Show Command

Processor 122
Processor 9
Processor Command 32
Processor Display 166
processor mode 165
processor mode 165
processor mode 165
processor mode 165
Processor Mode 165
Processor on and Off 15
Processor Prompt 165
Processor Special Characters 166
Processor Status Command 35
Process State 6

Commands for Producing Hardcopy 107
Zmail Profile 171

Profile mode 57, 170, 171
Using Zmail Profile Mode 171

[Default] Profile Mode menu item 171
[Exit] Profile Mode menu item 171

280

User's Guide to Symbolics Computers

Q

R

[Reset]

Supdup
Telnet

Write a breakpoint into a
Setting the Command Processor

To:
FEP file

FEP File Comment
Message

Answered message
Badheader message

Deleted message
Filed message

Forwarded message
Last message

Recent message
Redistributed message

Unseen message
Topics

Displaying

Init File Form:

FUNCTION

zwel:
zwel:

Answering

Notation Conventions

Help and

Single
Init File Form: Balanced
Notation Conventions for

[Find
[Private
[Vi'ewer

[Find
Lisp

Sharp-sign introducing

What to Do After

Q

R

March 1985

Profile Mode menu item 171
Profile mode options 170
[Profile] Zmall command 170
[Profile] Zmall menu item 170
program 115
program 115
program 180
Prompt 165
prompt 62
properties 209
Properties 209
properties 57
property 57
property 57
property 57
property 57
property 57
property 57
property 57
property 57
property 57
Pruned From the Documentation Database 121
pruned topics 121
Pruning the documentation database 121
Putting Buffers Into Current Package 168

a 108, 141, 174
qreply function 73
qsend function 72, 160
qsends-off function 72
qsends-on function 72
Qualified name 113
Questions About the FEP and LM FS 229
Questions the System Asks 227
Questions Users Commonly Ask 228
Quick Reference 235
Quick Summary of Mouse Functions 149
Quit 188
Quitting Hostat 183
quotation mark 233
Quotation Marks and Asterisks 168
Quoting Characters 233

(R» 133
(R» 133
(R)] 133
(R)] Document Examiner menu item 123
Reader 227
reader macros 233
Read-eval-print loop 151, 155
Reading a Zmall Message 66
Reading Your Mall 64
Read Private Document 136

Q

R

March 1985

Down
Up

Init File Form: Setting Goal Column for
Sending and

Message
Documentation

Documentation concept
Documentation object

Introduction:
The Debugger:

FUNCTION Key:

Multiple
Notation Conventions Quick

Help facilities

FUNCTION

Kill

Status of

All
Sender

Host status

Keys

Clock
Disk
FEP

Hardware
Lbus

Sequences
Tape hardware

Video

281

Index

readtable variable 180
Real Une 50
Real Une 50
Real Line Commands 168
Receiving Messages and Mall 57
Recent message property 57
reCipients 57, 62
record 119
record 119
record 119
Recovering 43
Recovering From a Stuck Document Examiner 121
Recovering From Errors and Stuck States 43
Recovering From Errors and Stuck States 43
Recovering From Errors and Stuck States 44
Recovering From Stuck States 143
Recovery Procedures 43
Redistributed message property 57
reel tape files 201
Reference 235
Reference DeSCription of Help Functions 88
Reference Material 83
reference material 83
REFRESH 144
REFRESH 141
Regenerate Buffer (m-X) Converse Command 72
Region 53
Register clearing 201
registers 200
Relnl1ializlng Zmacs 48, 158
Rename Commands 29
Rename File Command 29
Renaming FEP Files 212
Replying to Mall 67
Reply mode 67
reply mode 67
reply mode 67
[Reply] Zmail menu l1em 67
report 183
Report Bug Command 31
Reporting a bug 159
RepoSitioning Text In the Document Examiner 134
Reprint messages 73, 182
Request for N longs fai led. 44,199
Reserved for the User 7, 147
Reset button 44. 199
Reset command 44. 199. 201
Reset Commands 29
Reset Network Command 30
[Reset] Profile Mode menu item 171
resetting 201
resetting 201. 213
resetting 201
resetting 201
resetting 201
resetting 201
resetting 201
resetting 201

282

User's Guide to Symbolics Computers

s

Debugger Proceed and
Disk

Block
File

Image
Tape

Carriage

FUNCTION

c-x
Search

Servers
zwel:

Setting and

Hardcopying the
Next

Previous
The

Clear
Defauh printer for

Using the mouse to

Zmail

s

Resetting the FEP 44, 199
&rest 231
Restart Options 193
Restore command 201
restore format 201
restore format 201
restore format 201
restore to disk 201
RestOring a file system 201
RestOring messages to mall buffer 66
RESUME 145
return 49
RETURN completion command 52
RETURN Key 145
Return-keyboard-to-lisp command 201
Root directory 208
Rubout 53, 145
RUBOUT 141
RUBOUT Zmacs character 145
RUBOUT Zmacs command 53
RUBOUT Zmacs command 53
rules 113
Run Bars 6

(S) 187
save-ail-files function 158, 182
Save Commands 30
Save File Buffers Command 30
Save Mail Buffers Command 30
Save Private Document 136
Save World Command 30
[Save] Zmall menu item 67, 171
Saving terminal interactions in file
Saving the Mail File 67
Saving Zmail Options 171
Screen 5, 6
Screen 108
Screen 50
Screen 50
Screen 5
Screen command 201
screen copies 174
SCROLL 134, 145
Scrolling a Zmail Message 66
Scrolling summary window 66
Scrolling with the Mouse 149
scroll the message window 64
SCROLL Zmacs command 50
Search rules 113
Second Mode Une 62
[Select] 133
Select Activity Command 31
Select Candidate Ust 127, 131
SELECT C command 69
Select Commands 30
SELECT 0 119

183

March 1985

s

March 1985

Entering Zmacs with

FUNCTI ON Key:

Message

Backward
Backward Kill

Kill

Disable
Enable

Show Disabled

Notation Conventions for the Character

sl:

Setting the Zmacs Font with

sl:

Inlt File Form:

[Select] Document Examiner menu item. 127
SELECT E 47
SELECT E 47
SELECT HELP 83
SELECT I 189
Selecting messages 66
Selection and Notification Commands 142
SELECT Key 145
SELECT M command 57
SELECT T key 115
Semicolon 233
Send Commands 31
sender 57
Sender reply mode 67
Sending and Receiving Messages and Mail 57
Sending Interactive messages 70

283

Index

Sending message to all Usp Machines at site 72
Sending message to another user 72, 160
Sending Your Mail 62
Send mail 159
Sentence 50
Sentence 53
Sentence 53
Sequences resetting 201
Servers (S) 187
Services Command 20
Services Command 22
Services Command 35
Set 112
Set 235
Set Base Command 31
Set Calendar Clock Command 32
Set Chaos-address command 201
Set Command Processor Command 32
Set Commands 31
Set Default-disk-unlt command 201
set-defauH-hardcopy-devlce function 174
Set Disk-type command 201
Set Display-string command 201
Set Fonts (m-X) 80
Set Input Base Command 33
Set Microcode-name-and-version command 201
Set Monitor-type command 201
Set Output Base Command 33
Set Package Command 33
setq-globally special form 158, 163
setq special form 162
setq-standard-valu8 special form 152
set-screen-hardcopy-devlce function 174
Set Site Command 33
Set sleep time between updates Peek command 185
Set Time Command 33
Setting and Saving Zmail Options 171
Setting Chaosnet address 201
Setting Command Processor Special Characters 166
Setting Default Major Mode 168
Setting disk type 201, 213
Setting Editor Variables in Inlt Files 167

284

User's Guide to Symbolics Computers March 1985

Init File Form: Setting Find File Not to Create New Files 168
Setting Fonts 78
Setting Fonts in the Input Editor 78

Example of Setting Fonts In the Input Editor 79
Setting Fonts In Zmacs 79

Init File Form: Setting Goal Column for Real Line Commands 168
Setting Key Bindings in Init Files 168
Setting Mode Hooks In Init Files 170

Base and Syntax Default Settings for Lisp 54
Setting the Command Processor Mode 165
Setting the Command Processor Prompt 165
Setting the Zmacs Font in the Attribute List 80
Setting the Zmacs Font with Set Fonts (m-X) 80
Set User Id Command 34

Backward Kill Sexp 53
Kill Sexp 53

S-expression 227
Mouse Cursor Shape 149

Sharp-sign introducing reader macros 233
Shift keys 49

Init File Form: Electric Shift Lock in Lisp Mode 170
[Show] 133
Show Command Processor Status Command 35
Show Commands 35
Show Configuration command 200

sl: show-configuration function 200. 224
Show Directory Command 35
Show Directory command 200
Show Disabled Services Command 35
Show Disk-label command 200
Show Documentation (an Overview) 122
Show Documentation Command 35
[Show] Document Examiner menu item 122
Show FEP Directory Command 36
Show File Command 36
Show File command 200
Show Font Command 36
Show GC Status Command 37
Show Herald Command 37
Show Hosts Command 37
Show Legal Notice Command 37
[Show (M)] 133
Show Mail Command 38
[ShoW (M)] Document Examiner menu item. 127
Show Notifications Command 38
Show Object Command 38
Show Overview 127
[Show (R)] 133
[Show (R)] Document Examiner menu item 125
Show Status command 200

FEP Show Status. Command Output 217
Show System Modifications Command 39
Show Users Command 40
Show Version command 200
Shutdown command 201
sl:*cp-biank-line-mode* variable 166
sl:*cp-command-dlspatchers* variable 166
sl:*cp-dlspatch-mode* variable 165

March 1985

:default-font keyword to
:header-font keyword to

Sending message to all Lisp Machines at
Set

Set
FEP

Editing the

Adding a Spare World Load as LMFS File
Delete Horizontal

Extra paging
Swap
Swap

Why Can't I Write Out Files When I Have Free Disk

Init File Form: Fixing White
Inlt File Form: White

HELP
Adding a
Using a

Setting Command Processor
break

defvar-reseHable
defvar -standard

grlndef
login-forms

setq
setq-globally

setq-standard-value
astatus

status
Notation Conventions for Macros and

285

Index

sl:*cp-form-dispatchers* variable 166
sl:*cp-prompt* variable 166
sl:*cp-typeout-default* variable 167
sl :*hardcopy-default-fonts* 174
sl:*hardcopy-default-fonts* 174
si :*hardcopy-default-fonts* variable 174
sl:lnitlal-readtable variable 180
si:install-microcode function 210
sl:*interactive-blndlngs* 152
si:lisp-top-leveI1 function 151
sl:lIsp-top-level function 151
sl:machlne-model function 224
Single quotation mark 233
sl: prefix 234
sl:prlnt-Iogln-hlstory function 182
sl :set-default-hardcopy-device function 174
si :set-screen-hardcopy-device function 174
si:show-configuration function 200, 224
si:*standard-bindings* 152
si:standard-readtable variable 154
site 72
Site Command 33
site-name variable 157
Site object 112
Sites 113
Slash 233
Slashify 233
sleep time between updates Peek command 185
software version 200
Some Utility Functions 158
source code of a function 48, 158
SPACE 52
Space 212
Space 53
space 212
space 201, 209
space 212
Space? 229
SPACE completion command 52
Space for Kill/Yank Commands 168
Space in Lisp Code 169
SPACE Zmacs command 51
Spare World Load as LMFS File Space 212
Spare World Load for Paging 212
Special characters 233
Special Characters 166
special form 180
special form 151
special form 152
special form 180
special form 157. 158. 162, 163
special form 162
special form 158, 163
special form 152
special form 185
special form 184
Special Forms 232
Square brackets 232

286

User's Guide to Symbo/ics Computers

Init File Form: c-m-L on the
status and

si:

si:

Binding

Getting

Process
Zmacs Commands for Finding Ou1 About the
Zmacs Commands for Finding Out About the

FUNCT ION Key: Recovering From Stuck
Introduction: Recovering From Errors and Stuck

Recovering From Errors and Stuck
The Debugger: Recovering From Errors and Stuck

A message
D message

Host
: message
- message

System

Show
Show Command Processor

Show GC
FEP Show

Message

Display
Display
Display

Checking the
Display

Display
Host

Interactive
Double-quote character

Backquote constructing list
Recovering From a

FUNCTI ON Key: Recovering From
Introduction: Recovering From Errors and

Recovering From Errors and
The Debugger: Recovering From Errors and
Binding Standard Variables for Writing Lisp

SQUARE Key 169
sstatus 184
sstatus speCial form 185
standard-bindings 152
Standard Lisp Machine Fonts 75
standard-readtable variable 154
standard-value-let macro 153
standard-value-Iet* macro 153
standard-value-progv macro 154
Standard Variables 151. 152

March 1985

Standard Variables for Writing Lisp Style Command
Loops 153

Start command 201
Start Commands 40
Started 1
Start GC Command 40. 106
Starting up 1
Starting up Zmail 57
Starting Zmacs 47
State 6
State of Buffers 86
State of Zmacs 86
States 143
States 43
States 43
States 44
status 57
status 57
Status 37. 183
status 57
status 57
status 185
status and sstatus 184
Status command 200
Status Command 35
Status Command 37
Status Command Outpu1 217
status letters 57
Status Line 5
status of active processes 185
status of areas 185
status of file system display 185
Status of Hardcopy Devices 109
status of hostat 185
Status of registers 200
status of window area 185
status report 183
status special form 184
streams 101
strings 233
structure 233
S1uck Document Examiner 121
Stuck States 143
Stuck States 43
Stuck States 43
Stuck States 44
Style Command Loops 153
Subject field 62

March 1985

Find Initial

Quick

Scrolling
Zmail
Zmail

Disk drive

Disk

Unbound-function
Find

Load
Base and

FEP file
How LMFS Uses the FEP File
Introduction to the Namespace

Restoring a file
Understanding Networks and the Namespace

Using the Online Documentation
Answering Questions the

Data Types of Namespace
Namespace
Namespace

Compile
Load

Display status of file
Hardcopying From the File

File

Hardcopying From the
[Inspect] In

Show
FEP File

287

Index

Subject or Text Zmail display column heading 57
Substring Candidates 124
Summary of Erasing Text 53
Summary of Help Functions in Different Contexts 86
Summary of Mouse Functions 149
Summary of Moving the Cursor 50
Summary window 64
summary window 66
Summary Window 57
Summary Window Configuration 57
Supdup program 115
Supplying a Command Name 11
Supplying Keywords and Values for a Command 13
Supplying Positional Arguments to a Command 11
support 214
SUSPEND 146
Swap space 201, 209
Swap space 212
switching 201, 213
sy-HELP 83
Symbol 146
symbol 177
Symbol Command 22
Sync-program command 201
Syntax Derault Settings for Lisp 54
sys:*break-bindings* variable 181
sys:halt function 223
Sys: I-ucode; logical directory 210
system 200
System 209
System 111
system 201
System 111
System 119
System Asks 227
System Attribu1es 112
System Attributes 112
System Classes 112
System Command 17
System Command 27
System Conventions and Helpful Hints 227
system display 185
System Editor 108
System (F) 187
System internals 234
System Menu 107
System menu 189
System Modifications Command 39
System OVerview 208
System status 185

288

User's Guide to Symbolics Computers

T

Find

MuHlple reel

Editing
Saving

Obsolete

Description of Erasing
Erasing

Introduction to Erasing
Introduction to Inserting

Summary of Erasing
Zmail Decrypt
Zmall Encrypt
Reposl1ioning

Init File Form: Auto Fill in
Subject or

Setting the Zmacs Font in
Notation Conventions for

Completion in
Customizing

Error Handling in
Help in

T

OVerview of .
Setting
Turning
Setting

Description of Moving
Introduction to Moving

Summary of Moving
Entering the Debugger with

Entering
Entering

Entering
Entering

Changing
Editing

Use of Fonts in
Pruning

Topics Pruned From
Completion in

Documentation display in
HELP in

Introduction to
lookup Commands Available in

Repositioning Text in
lookup Commands Available in

Lookup Commands Available in

March 1985

T306 disk drive 214
TAB Key 146
Table of Contents 125
Talking to Other Users 69
tape files 201
Tape hardware resetting 201
Tape restore to disk 201
Telnet program 115
terminal input 101
terminal interactions in file 183
Terms 227
Test command 201
Text 53
text 145
Text 53
Text 53
Text 53
Text 67
Text 67
Text In the Document Examiner 134
Text Mode 170
Text Zmail display column heading 57
the Attribute Ust 80
the Character Set 235
the Command Processor 14
the Command Processor 164
the Command Processor 15
the Command Processor 14
the Command Processor 9
the Command Processor Mode 165
the Command Processor on and Off 15
the Command Processor Prompt 165
The Console 5
the Cursor 50
the Cursor 50
the Cursor 50
the dbg Function 194
the Debugger 192
the Debugger by Causing an Error 193
The Debugger: Recovering From Errors and Stuck

States 44
the Debugger with m-SUSPEND 194
the Debugger with the dbg Function 194
the Default Printer 175
the definition of a function 48, 158
the Documentation 231
the documentation database 121
the Documentation Database 121
the Document Examiner 133
the Document Examiner 129
the Document Examiner 119, 133
the Document Examiner 119
the Document Examiner 127
the Document Examiner 134
the Document Examiner. Editor, and Command

Processor 122
the Document Examiner and Edl10r 123

T

March 1985

Debugging in
Halting

Hints on Using
Introduction to

Resetting
Questions About
How LMFS Uses

Hardcopylng From
When and How to Use

Example of Setting Fonts In
Setting Fonts In

How
Entering and Leaving

Exiting
How

Communicating with

A Brief Introduction to
Poking Around in

Variables for Examining
Checking on What

Saving
Using the mouse to scroll

Introduction to

Entering Zmacs with
Scrolling with

Using
Using

Updating
Introduction to

Understanding Networks and
Using
Using

Hardcopying
Editing

Init File Form: c-m-L on
Zmacs Commands for Finding Out About
Zmacs Commands for Finding Out About

Checking
Answering Questions

Hardcopying From
Keys Reserved for

Setting
Setting

Date and
Set sleep

Initialize
Set

SELECT
Supplying Positional Arguments

Sending message
Sending message

How
Introduction

How

the FEP 222
the FEP 201
the FEP 197
the FEP 197
the FEP 44. 199
the FEP and LMFS 229
the FEP File System 209
the File System Editor 108
the Garbage Collector 105
the Input Editor 79
the Input Editor 78
the Input Editor Works 101
the Inspector 189
the Inspector 189
the Inspector Works 189
The Keyboard 7
the Lisp Machine 9
The Lisp Top Level 151
the Lisp World 151
the Lisp World 177
the Lisp World 179
the Machine Is Doing 177
the Mail File 67 .
the rnessage window 64
the Motion Commands 51
The Mouse 7
the Mouse 48
the Mouse 149
the mouse to enter Zmacs 48
the mouse to scroll the message window 64
the Namespace Database 116
the Namespace System 111
the Namespace System 111
the Network 115
the Online Documentation System 119
The Screen 5
the Screen 108
the source code of a function 48, 158
the SQUARE Key 169
the State of Buffers 86
the State of Zmacs 86
the Status of Hardcopy Devices 109
the System Asks 227
the System Menu 107
the User 7, 147
the Zmacs Font in the Attribute List 80
the Zmacs Font with Set Fonts (m-X) 80
time 198
time between updates Peek command 185
Time Command 24
Time Command 33
T key 115
to a Command 11
to all Lisp Machines at site 72
to another user 72, 160
to Change Fonts 75
to Converse 69
to Create an Inlt File 164

289

Index

290

User's Guide to Symbolics Computers

Inlt File Form: Setting Find File Not
Tape restore

What
Introduction

Using the mouse
Introduction

Introduction
How

Introduction

Replying
Restoring messages

Introduction
Mapping names

Talking
Beginning of

End of
Documentation

Displaying pruned

Documentation
The Lisp

Using the mouse
:default-font keyword
:header-font keyword

Introduction
Introduction

A Brief Introduction
Introduction
Introduction

When and How
Introduction
Introduction
Introduction
Introduction

Zmail
Documentation topic

Setting disk
LOAD file

MIC file
Interaction with Completion and

Database data
Disk
Data

to Create New Files 168
to disk 201

March 1985

to Do After Reading a Zmall Message 66
to Entering Zmacs 47
to enter Zmacs 48
to Erasing Text 53
To field 62
to Fonts 75
to Get Hardcopy 107
to Inserting Text 53
Token 112
to Mail 67
to mall buffer 66
to Moving the Cursor 50
to objects 113
Tools for Lisp Debugging 189
to Other Users 69
Topic 134
Topic 134
topic name 119, 120
topics 121
Topics Pruned From the Documentation

Database 121
topic type 119, 120
Top Level 151
Top-level loop 151
To: prompt 62
to scroll the message window 64
to si:*hardcopy-default-fonts* 174
to sl:*hardcopy-default-fonts* 174
to the Document Examiner 119
to the FEP 197
to the Lisp World 151
to the Motion Commands 51
to the Namespace System 111
to Use the Garbage Collector 105
to Zmacs Commands 49
to Zmacs Extended Commands 49
to Zmacs Help 51
to Zmacs Keystrokes 49
Triple 112
Turning off Converse messages 72
Turning on Converse messages 72
Turning the Command Processor on and Off 15
Tutorial Introduction 57
type 119, 120
type 201, 213
type (FEP) 209
type (FEP) 208
Typeout Windows 84
Typeout Windows in Zmacs 85
types 112
Types 214
Types of Namespace System Attributes 112

March 1985

u

Deleting and

Multiple Disk

Cold boot after powering
Powering

Starting
Set sleep time between

Looking

Starting
Keys Not Currently

Commonly

Keys Reserved for the
Sending message to another

Set

Talking to Other
Show

Questions
How LMFS

When and How to

Hints on

Some
HELP

u
Unbound-function symbol 177
Undelete Commands 41
Undelete File Command 41
[Undelete] Zmall menu item 66
Undeletlng Zmall Messages 66
Understanding Networks and the Namespace

System 111
Understanding Notation Conventions 231
Units 213
Unseen message property 57
up 1
up 1
up 1
updates Peek command 185
Updating the Namespace Database 116
up Documentation 120
Up Real Une 50
uptime function 183
up Zmall 57
Used 147
Used FEP Commands 200
Use of Fonts in the Documentation 231
User 7. 147
user 72. 160
User Id Command 34
user-Id variable 157
User object 112
User options window 171
User package 234
Users 113
Users 69
Users Command 40
Users Commonly Ask 228
Uses the FEP File System 209
Use the Garbage Collector 105
Using a Spare World Load for Paging 212
Using Converse 70
Using Peek 185
Using the FEP 197
Using the mouse to enter Zmacs 48

291

Index

u

Using the mouse to scroll the message window 64
Using the Network 115
Using the Online Documentation System 119
Using Zmail 57
USing Zmall Profile Mode 171
Utility Functions 182
Utility Functions 158
U Zmacs command 51

292

User's Guide to Symbolics Computers

v
Attribute

Supplying Keywords and

**
*

+
dbg:*debugger-blndlngs*

II sp-crash-list
sl:*cp-blank-Ilne-mode*

sl:*cp-command-dlspatchers*
sl:*cp-form-dlspatchers*

sl:*cp-prompt*
sl:*hardcopy-default-fonts*

sl:lnltlal-readtable
sl:standard-readtable

user-Id
++

+++
/I

logout-lilt
prln1

readtable
sl:*cp-dlspatch-mode*
sl :*cp-typeout-default*

slte-namo
sys:*break-blndlngs*

zwel:*converse-append-p*
zwel:*converse-beep-count*

zwel :*converse-end-exlts*
zwel:*converse-mode*

Converse
Identifying callers of

Interactive
Internal

Notation Conventions for Methods and
Standard

Binding Standard
Setting Editor

FEP
FEP software

Show

Document Examiner

MuHiple Document Examiner

HELP

March 1985

v
value 112
Values for a Command 13
variable 180
variable 179
variable 180
variable 179
variable 179
variable 181
variable 181
variable 166
variable 166
variable 166
variable 166
variable 174
variable 180
variable 154
variable 157
variable 180
variable 180
variable 179
variable 157
variable 155
variable 180
variable 165
variable 167
variable 157
variable 181
variable 173
variable 173
variable 174
variable 172
variables 172
variables 1n
Variables 151, 152
variables 234
Variables 233
Variables 151, 152
Variables for Examining the Usp World 179
Variables for WrHing Usp Style Command Loops
Variables In InH Files 167
version 197
version 200
Version command 200
Vertical-bars 233
Video resetting 201
Viewer 129
[VIewer] 133
[VIewer (M)] 133
[Viewer (R)] 133
viewers 129
Virtual Memory 209
Vnn-debug.flod files 222
V Zmacs command 51

v

153

March 1985

w
Windows

Checking on

Why Can't I Write Out Files

Init File Form: Fixing
Inlt File Form:

Find

Finding Out
Converse Pop-up Message

Document Examiner
Headers

Message
Scrolling summary

Summary
User options

Using the mouse to scroll the message
Zmail Message
Zmail Summary

Display status of
Zmail Message
Zmall Summary

Interaction with Completion and Typeout
Typeout

Interaction
Buffer Contents
Entering Zmacs

Zmacs Commands for Interacting
Entering the Debugger

Keys
Logging in

Entering Zmacs
Setting the Zmacs Font
Entering the Debugger

Communicating
Entering Zmacs

Scrolling
Getting Fancy

Entering Zmacs
Backward

Backward Kill
Forward

Kill
Find Whole

293

Index

w w
(W) 187
Wallpaper file 183
Warm Booling 44, 201
What Are Fonts? 75
what-files-call function 178
What is a Logical Path name? 228
What is a World Load? 228
What is Customizing? 161
What the Machine is Doing 177
What to Do After Reading a Zmail Message 66
When and How to Use the Garbage Collector 105
When I Have Free Disk Space? 229
where-Is function 178
White Space for Kill/Yank Commands 168
White Space in Lisp Code 169
who-calls function 177
Whole Word Candidates 126
Why Can't I Write Out Files When I Have Free Disk

Space? 229
Why Do You Name Machines and Printers? 229
Why Your Machine Crashed 214
Window 70
Window 129
window 67
window 57, 67
window 66
window 64
window 171
window 64
Window 60
Window 57
window area 185
Window Configuration 60
Window Configuration 57
Windows 84
Windows in Zmacs 85
Windows (W) 187
with Completion and Typeout Windows 84
with c-x c-F 55
with ed 48
with Lisp 87
with m-SUSPENO 194
with No Function 147
Without Processing Your Inlt File 164
with SELECT E 47
with Set Fonts (m-X) 80
with the dlg Function 194
with the Lisp Machine 9
with the Mouse 48
with the Mouse 149
with Zmall 67
with zwel:edlt-funcllons 48
Word 50
Word 53
Word 50
Word 53
Word candidates 126

294

User's Guide to Symbo/ics Computers March 1985

x

y

z

How the Input Editor
How the Inspector

A Brief Introduction to the Lisp
Poking Around in the Lisp

Variables for Examining the Lisp
Copy

. Load
Save

What is a
Adding a Spare

Using a Spare

Works 101
Works 189
World 151
World 177
World 179
World Command 19
World command 201
World Command 30
World Load? 228
World Load as LMFS File Space 212
World load disk-saves 182
World Load for Paging 212
World loading 201
World Loads 209
Write a breakpoint into a program 180
Write Buffer (m-X) Converse Command 71
Write Conversation (m-X) Converse Command 71
Write File Zmacs command 55

Why Can't I
Binding Standard Variables for

HELP

Write Ou1 Files When I Have Free Disk Space? 229
Writing Lisp Style Command Loops 153
W Zmacs command 51

x X
NETWORK X command 115

Max10r XT-1140 disk drive 214

Why Do
Customizing

Logging in Without Processing
Editing

Finding Out Why
Reading
Sending

y

Z

You Name Machines and Printers?
Your Environment 161
Your Init File 164
Your Inpu1 101
Your Machine Crashed 214
Your Mail 64
Your Mail 62

Entering Zmacs 47
Hardcopying From Zmacs 107

Introduction to Entering Zmacs 47
Invoking Zmacs 47

229

Lookup Commands Available At a Lisp Listener and in
Zmacs 128

OVerview of Zmacs 47
Reinitializing Zmacs 48. 158

Setting Fonts in Zmacs 79
Starting Zmacs 47

Typeou1 Windows in Zmacs 85
Using the mouse to enter Zmacs 48

Zmacs Commands for Finding Ou1 Abou1 the State of
Zmacs 86

RU80UT Zmacs character 145
c-A Zmacs command 50
c-8 Zmacs command 50
c-O Zmacs command 53

y

z

295

March 1985 Index

c-E Zmacs command 50
c-F Zmacs command 50
c-K Zmacs command 53

c-m-K Zmacs command 53
c-m-RUBOUT Zmacs command 53

c-N Zmacs command 50
c-P Zmacs command 50
C-V Zmacs command 50
c-LJ Zmacs command 53

c-x [Zmacs command 50
c-X 1 Zmacs command 50
c-x B Zmacs command 55

C-X c-F Zmacs command 55
C-X c-O Zmacs command 53
C-X c-w Zmacs command 55

c-x RUBOUT Zmacs command 53
Find File Zmacs command 55

Hardcopy Buffer (m-X) Zmacs command 107
HELP? Zmacs command 51
HELP A Zmacs command 51
HELP C Zmacs command 51
HELP 0 Zmacs command 51
HELP L Zmacs command 51

HELP SPACE Zmacs command 51
HELP U Zmacs command 51
HELP V Zmacs command 51
HELP W Zmacs command 51

List Callers (m-X) Zmacs command 177
List Fonts (m-X) Zmacs command 75, 174

m-[Zmacs command 50
m-l Zmacs command 50
m-< Zmacs command 50
m-> Zmacs command 50
m-A Zmacs command 50
m-B Zmacs command 50
m-O Zmacs command 53
m-F Zmacs command 50
m-K Zmacs command 53

m-RUBOUT Zmacs command 53
m-SCROLL Zmacs command 50

m-V Zmacs command 50
m-\ Zmacs command 53
m-"" Zmacs command 53

RUBOUT Zmacs command 53
SCROLL Zmacs command 50

Write File Zmacs command 55
Introduction to Zmacs Commands 49

Zmacs Commands for Finding Out About Flavors 87
Zmacs Commands for Finding Out About Lisp 86
Zmacs Commands for Finding Out About the State of

Buffers 86
Zmacs Commands for Finding Out About the State of

Zmacs 86
Zmacs Commands for Interacting with Lisp 87
Zmacs Completion 84
Zmacs Customization in Init Files 167

Introduction to Zmacs Extended Commands 49
Zmacs Font Commands 81

296

User's Guide to Symbolics Computers

Setting the
Setting the

Introduction to
Introduction to

Entering
Entering
Entering
Entering

Customizing
Getting Fancy with
Hardcopylng From

Starting up
Using

Decrypt Msg (m-X)
G

[Profile]

Subject or Text

[Delete]
[Hardcopy]

[Maia
[Map over]

[Move1
[Next1

[Previous1
[Profile]
[Reply]
[Save]

[Undelete]
Scrolling a

What to Do After Reading a
Deleting and Undeleting

Encrypting
Fonts In

Moving Around

Setting and Saving

Using

Entering Zmacs with

Entering

Zmacs Font In the Attribute list 80
Zmacs Font with Set Fonts (m-X) 80
Zmacs Help 51
Zmacs Keystrokes 49
Zmacs with ed 48
Zmacs with SELECT E 47
Zmacs with the Mouse 48
Zmacs with zwel:edlt-functlons 48
Zmall 170
Zmall 67
Zmall 108
Zmall 57
Zmall 57
Zmall command 67
Zmall command 64
Zmail command 170
Zmall Command Menu 60
ZmalJ Decrypt Text 67
Zmall display column heading 57
Zmall Encrypt Text 67
Zmall: Get Inbox 64
ZmalJ menu item 66
Zmall menu item 108
Zmail menu item 62
Zmall menu item 108
Zmail menu item 108
Zmall menu item 66
Zmall menu item 66
Zmall menu item 170
Zmail menu l1em 67
Zmail menu item 67.171
Zmail menu item 66
Zmail Message 66
Zmail Message 66
Zmail Messages 66
Zmail Messages 67
ZmalJ Messages 69
Zmall Messages 66
Zmail Message Window 60

March 1985

Zmail Message Window Configuration 60
Zmail Minibuffer 60
Zmail Mode line Information 61
Zmail Options 171
Zmall Profile 171
Zmail Profile Mode 171
Zmall Second Mode line 62
Zmail Summary Window 57
Zmall Summary Window Configuration 57
Zmail Tutorial Introduction 57
zwei:*converse-append-p* variable 173
zwei:*converse-beep-count* variable 173
zwei:*converse-end-exits* variable 174
zwel:*converse-gagged* 72
zwel:*converse-mode* variable 172
zwel:edlt-functlons 48
zwel:edit-functlons function 48
Zwei editor 158
zwei:qsends-off function 72

March 1985

zwel:qsends-on func1ion 72
zwel:save-all-files func110n 158. 182

~ fon1 change Indlca10rs 69

297

Index

