

symbolics ™

Release 4.0 Release Notes

January 1983

|
|
1
|
|
|
|
'
Cambridge, Massachusetts : ‘

Prepared by Symbolics, Inc.
Wiritten by Jan Walker

This document corresponds to Release 4.0.

The information in this document is subject to change without notice and
should not be construed as a commitment by Symbolics, Inc. Symbolics,
Inc. assumes no responsibility for any errors that may appear in this
document.

Symbolics, Inc. makes no representation that the interconnection of its
products in the manner described herein will not infringe on existing or
future patent rights, nor do the descriptions contained herein imply the
granting of a license to make, use, or sell equipment constructed in
accordance with its description.

Symbolics’ software described in this document is furnished only under
license, and may be used only in accordance with the terms of such license.
Title to, and ownership of, such software shall at all times remain in
Symbolics, Inc.

Symbolics, Inc. assumes no responsibility for the use or reliability of its
software on equipment that is not supplied or maintained by Symbolics, Inc.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
TENEX is a registered trademark of Bolt Beranek and Newman Inc.
UNIX is a trademark of Bell Laboratories, Inc.

VAX and VMS are trademarks of Digital Equipment Corporation.

Copyright © 1983, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed in U.S.A. This document may not be reproduced in whole orin part without the
prior written consent of Symbolics, Inc.

Release 4.0 Release Notes

Table of Contents

1. Introduction and Highlights

1.1 New microcode: 977
1.2 Release numbering announcement
1.3 Notation Conventions

2. Lisp Language and Compiler

2.1 Incompatible changes

211
2.1.2
213
214
2.15
2.1.6
2.1.7
2.18
219
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14
2.1.15
2.1.16
2.1.17
2.1.18

Reimplementation of hash tables

Pathname changes

Validity checking

Case in pathnames

Canonical types in pathnames

Changes in the caller interface to pathnames

Relative pathname support

Character set name changes

Signalling and handling conditions
Changes to fquery options
Locking packages

global and system packages locked against interning new symbols

load signals errors

Name changed: return-list to values

Variable removed: fs:*always-merge-type-and-version*
Variable removed: fs:last-file-opened ‘
lexical-closure removed :

Changes to compiler variables

2.2 New features

221
222
223
224
225
226
227
228
229
2210
2.2.11
2212
2213
2.2.14

January 1983

Lambda-list keyword &key for keyword arguments
New function: readline-trim
New one-armed conditionals: when and unless
Wildcard pathname mapping
New function: prompt-and-read
New message to streams: :string-in
New facility: asynchronous characters
New macros: with-open-file-case, with-open-stream-case
New global stream: debug-io
New stream facility for editor buffers
New type: null
New function: let-globally-if
Reader macro for infix expressions
New arguments to :insert-char, :delete-char, :insert-line, and
:delete-line

Symbolics, Inc.

Page

N DN -

Symbolics, Inc.

Symbolics, Inc.

Release 4.0 Release Notes

2.2.15 New property functions for flavors 37
2.2.16 New keyword: :fill-pointer 37
2.2.17 New variable: compiler:compiler-verbose 38
2.2.18 New special form: undefun-method 38
2.2.19 New defflavor option: :abstract-flavor 38
2.2.20 New functions: fs:enable-capabilities, fs:disable-capabilities 38
2.2.21 New message: :draw-circular-arc 39
2.2.22 New message: :draw-closed-curve 39
2.2.23 New message: :draw-dashed-line 40
2.2.24 New message: :draw-string 41
2.2.25 New function: sys:%slide 41
2.2.26 New function: signum 42
2.2.27 New function: string-capitalize-words 42
2.2.28 New function: parse-number 42
2.2.29 New dump function: sys:dump-forms-to-file 43
2.2.30 New special forms: with-stack-list and with-stack-list* 43
2.2.31 New functions: location-makunbound and location-boundp 44
2.2.32 New optional arguments to string-search 44
2.2.33 New type of method combination: :append 44
2.2.34 New type of method combination: :nconc 45
~2.2.35 New type of method combination: :case 45
2.2.36 evalhook accepts optional apply hook argument 45
2.2.37 New function: record-source-file-name 45
2.2.38 New function: store-conditional 46
2.2.39 Compiler scheme for keeping track of macros 46
2240 New features in defstruct 46
2.2.41 New options for defstruct-define-type 48
2.3 Improvements 48
2.3.1 Prompt provided by yes-or-no-p and y-or-n-p 48
2.3.2 Data types returned by numeric functions 49
2.3.3 ~$ format directive for floating point 49
2.3.4 Warning about redefining functions 49
2.3.5 Stack growth ' 50
2.3.6 Window system: :notice protocol changed 50
2.3.7 Changes in flavor instantiation 50
2.3.8 declare recognized in blocks 50
2.3.9 unwind-protect restrictions removed - 50
2.3.10 defsubst now compiled 51
2.3.11 Warning about obsolete make-array form 51
2.3.12 Compiler no longer expands macros in a different area 51
3. Utilitles 83
3.1 Incompatible changes 53
3.1.1 Change in naming for compiled-code files 53
3.1.2 Password prompting change 53
3.1.3 Package changes 53
3.1.4 Debugger changes 54
3.1.5 eh function renamed to dbg 54
3.1.6 Debugger function names changed 55
3.1.7 New value for rubout-handler 55
Symbolics, Inc. ii January 1983

Release 4.0 Release Notes

318
319
3110
nn
3112

3.2 New features

321
322
323
3.24
325
326
327
328
329
32.10
3211
3212
3213
3214
3215
3.2.16
3217
3.2.18
3.2.19
3.2.20
3221
3222
3223
3224
3225
3226
3227

3.3 Improvements

331
332
333
334
335
336
337
338
339
3.3.10
KXR S
3312
3313

Symbolics, Inc.

56

Rubout handler change for LINE 55
CALL key function removed 55
Finger error changes 55
Conditionalizing on sites 56
Patch directories have new generation retention count
56
Garbage collector improvements 56
Release versions: si:get-release-version 59
Two speeds for cold boot 60
Recommended procedure for copying and saving bands 60
Changes to global package 61
Hardcopy commands available 62
New FED command copies a font 63
Debugger ¢-M command sends mail 63
New Debugger command: c—-m~¥ 63
New Debugger option: dbg:*defer-package-dwim* 63
New overprinting command: NETHORK O 63
New special form: login-forms 63
Addendum to band compressing procedure 64
New flexibility in make-system 64
Field patches 64
Local site systems: :site-system option 65
New keyword to load-patches: :norelease 65
New functions: tv:add-escape-key, tv:add-system-key 65
New variable: tv:*screen-hardcopy-announcement* 66
New function: copyf 66
New function: listf , 67
New function: chaos:print-lgp-queue 67
New variable: chaos:finger-location 67
New functions: chaos:finger-local-lispms, chaos:finger-all-lispms 68
New function: qreply : 68
New function: tv:key-test 68
New meter: sys:%count-extra-pdl-ovs 68
68
Loading patches catches network errors 68
Debugger messages have new formats 69
Change to filename defaulting in renamef 69
Status line changes 69
print-herald shows memory available 69
Appearance of windows, borders, and labels 69
Window label format 70
Contact names for Chaosnet connections 70
Peek changes 70
TERMINAL HOLD-OUTPUT changed 71
Lisp (Edit) removed 71
Rubout handler improvements 71
Arresting most processes: TERMINAL c-A 71
73

4. File System

January 1983

iii

Symbolics, Inc.

Symbolics, Inc.

4.1 Incompatible changes

41.1
4.1.2
413
414

Files being created are invisible to most operations
Wrong byte size error

Directory components have changed

File names cannot contain *

4.2 New features

42.1
422
423
424
4.2.5
426
4.2.7
4238
4.2.9

Relative pathnames

Wildcards extended

New file type for indicating directories
New features in the File System Editor
Dumper takes multiple pathnames
Dumper keyword arguments changed
Backup dumper recovery

Backup dumper interface change
Backup dumper map

4.2.10 Salvager interface changes
4.2.11 Maintenance menu changes

4.3 Improvements

4.3.1
432
433

5. Zmacs

Version management properties
Keyword change: :dont-reap
Removing user properties in FSEdit

5.1 Incompatible changes

5.1.1
512
5.1.3
5.14
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

Zmacs internal reorganization

Commands containing "defun" and "function" renamed
Change to buffer name completion

Change to command name completion

Fundamental major mode is now default

Default value for *default-package* is user

Zmacs command name and key changes

Dired subcommands changed

Word delimiter meaning changed for some characters

5.1.10 Prefix character commands are not case-sensitive
5.2 New features

521
522

New Zmacs commands
New or improved variables

5.3 Improvements

5.3.1
532
5.33
5.34
5.35
5.3.6
537
538
5.39

Improved Zmacs commands

Zmacs displays numeric arguments

Messages during compiling and evaluating

+ flag for buffers

Buffer and file attributes

"Set" commands for file and buffer attributes

Two window mode uses previous buffer

Errors noted in file attribute lists

Motion commands now use zwel:set-centering-fraction

5.3.10 User-defined major modes
5.3.11 File types and major modes

Symbolics, Inc.

iv

Release 4.0 Release Notes

73
73
73
73
74

74
74
75
75
75
76
77
77
77
78
78
78

78
78
78
79

81

81
81
82
82
82
83
83
83
84
84
85

85
85
87

88
88
89
89
90
90
L)
92
92
92
92
93

January 1983

Release 4.0 Release Notes

6. Zmalil

6.1 Incompatible changes

6.1.1
6.1.2
6.1.3
6.14

Recompile Zmail init files that use zwei:search-within-msg
Changes in getting new mail

Changed profile options

Changed command names

6.2 New features

6.2.1
6.2.2
6.2.3
624
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

New editing commands

New conversation commands

New Zmail profile options

New message fields implemented: BCC, FCC, BFCC, Encrypted
Encryption available

Fonts in messages

Internet domain addressing supported

New Zmail facility: zwel:preload-zmail

Adding bug lists to Zmail

6.3 Improvements

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.3
6.3.9
6.3.10

Zmail works with UNIX hosts
Reference commands changed
Background process changed
In-Reply-To fields included
Changes to keyboard interface
Change to Local mail
Reply shows all header lines
Universes reimplemented
Change for ITS users
Case is preserved in filter and universe names

7. Notes and Clarifications

7.1 Clarifications and corrections

7.1.1
7.1.2
7.1.3
7.1.4
7:1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15

Loading files in the background
Loading into packages
Restriction enforced on defun-method
#X reader macro
format directives for date and time
Little-known command: View Mail
Names for definitions: sys:function-parent
Patches to "System"
Removing a defun-method
union and intersection use eq
Package nil in make-system
Clarification for process-wait-with-timeout
Clarification of read errors and the rubout handler
Clarifications for TOPS-20 users
Clarifications for VMS users

7.2 Practical advice

7.2.1
722

January 1983

Garbage collector
Supplying a personal name for Finger

Symbolics, Inc.

95

85
95
95
95
95

96
96
96
97
97
97
98
98
98
99

99

99
100
100
100
100
100
101
101
101
101

103

103
103
103
103
104
104
104
104
105
105
105
105
106
106
106
106

106
106
107

Symbolics, Inc.

Symbolics, Inc. ' Release 4.0 Release Notes
7.2.3 One mouse click or two 107

7.2.4 Metering large computations 108

7.2.5 Only one compiler at a time 108

7.2.6 Adding mouse documentation in Choose Variable Values menus 108

7.2.7 zwel:edit-functions helps with editing jobs 108

7.2.8 Making standalone editor windows 109

7.2.9 Layouts menu item 109

7.2.10 Using char-upcase function 109

7.2.11 Information about temporary consing areas 110

8. Operations and Site Management 111
8.1 Incompatible changes 111

8.1.1 Sys host logical directory changes 111

8.2 New features 111

8.2.1 Installing the print spooler 111

8.2.2 New site options for hardcopy support 112

8.2.3 New site option: :fonts-widths 115

8.2.4 New site option: :supdup-default-path 115

8.2.5 New site option: :chaos-tape-server-hosts 115

8.2.6 New Initialization lists: enable-services, disable-services 116

8.2.7 Controlling servers 116

8.2.8 Enabling services 116

8.2.9 New keyword for :esc-f-arg-alist option 117

8.2.10 New variable: supdup:*chaos-arpa-contact-name* 117

8.2.11 Machine characteristics available to finger server 117

8.3 Improvements 117

8.3.1 System shutdown initialization list 117

8.3.2 Timeouts changed on file jobs 118

8.4 Notes 118

8.4.1 Appending to Lisp Machine file system dump tapes using TOPS-20 tape 118

server

8.4.2 Bug in TOPS-20 Chaosnet NCP 118

Index 119
Symbolics, Inc. vi January 1983

Release 4.0 Release Notes Symbolics, Inc.

1. Introduction and Highlights

These release notes accompany Release 4.0. They describe changes made since System 210. The
changes are organized in the following sections. Within each section, the material is organized in
the following categories, in this order: :

« incompatible changes
o new features
 improvements

Lisp Language and Compiler
This section describes changes relevant to the Lisp language and compiler. The
biggest changes are a new design for signalling and handling conditions and
errors and a new design for pathnames.

Utilities This section describes changes in what any other computer would call the
operating system and utilities. This includes the Debugger, the garbage
collector, network support, and various system keyboard features. The most
important changes are in the Debugger and garbage collector.

File System This section describes changes in the Lisp Machine file system. Most of the
changes involved converting to use the condition signalling system.

Zmacs This section describes changes in the Zmacs editor. The biggest change for this
release was reorganizing its internal data structures. Most of this change is '
visible only to those people writing editor extensions.

Zmail This section describes changes in the Zmail mail system. The most visible
changes involve new terminology in menus and command names.

Notes and Clarifications
This section contains explanations and clarifications of items that people found
confusing in previous releases and in the documentation.

Operations and Site Management
This section describes changes to the site configuration features of the system.
Individuals who are responsible for the software at each site need to review
these carefully.

You can find all the incompatible changes by reading the first part of each section. A complete
list of changes appears in the Table of Contents. '

The most important incompatible changes appear in the following sections:

Section Topic
2.19,p. 17 Signalling and handling conditions
212,p. 7 Pathname changes

3.1.1,p. 53 Change in naming for compiled-code files

As in previous releases, many minor bugs have been fixed and performance in some areas has been
improved. Only the more important or visible changes are mentioned here.

January 1983 1 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

1.1 New microcode: 977

You must run Release 4.0 world loads with a microcode version of at least 977. Do not be
alarmed if the microcode available is several versions newer than this; the microcode might have
been updated after the notes went to press. Do not use a microcode version older than 977
however because the old world loads do not work with the new microcode and the new world
loads do not work with the old microcode. set-current-band prompts you to set the current
microcode as well as the current band, to help you keep consistent versions of the world load and
the microcode. :

1.2 Release numbering announcement

With this release, we are adopting a different procedure for numbering released systems. This is
Release 4.0. Numbers from now on will be sequential, starting from this one.

Periodically we will issue an interim release of patches containing bug fixes and necessary
improvements. Patch releases will also be numbered sequentially. For example, the first patch
release for Release 4.0 would be Release 4.1, and so on.

The herald message now displays the release number; it does not display any system that is an
unmodified part of the release. Thus you no longer see system numbers for System, Zmail,
Microcode, and so on. Systems with unreleased patches and systems that were ot part of the
release (for example, Cube, Print, Macsyma, or user-defined systems) do appear in the herald.

A new function is available for determining the release version and status of any particular
release. See section 3.2.2, p. 59.

1.3 Notation Conventions

The keys, like SHIFT or META, whose tops have black lettering are modifier keys, designed to be
pressed in combination with other keys. They do not themselves transmit characters. Their
combinations are shown hyphenated to remind you to press them at the same time as the
associated key, not before.

The keys, like X or SYSTEM, whose tops have white lettering all transmit a character.
Combinations of these keys are meant to be pressed in sequence, for example, SYSTEM L means to
press the SYSTEM key, release it, and then press the L key.

The CTRL and META key combinations are abbreviated with e~ and m-; the SUPER, HYPER, and
SHIFT keys with s-, h—, and sh~, respectively. For example, the combined keypress METR-X is
pronounced "meta x" and written as "m-X".

Symbolics, Inc. 2 January 1983

Release 4.0 Release Notes Symbolics, Inc.

This document uses the following notation conventions:

Appearance in document Representing

send, chaos:host-up Printed representation of Lisp objects in running text.

RETURN, ABORT, c-F Keyboard keys.

SPACE Space bar.

login Literal type-in.

(make-symbol "foo®) Lisp code examples.

function name argl arg2 Syntax descriptions of definitions.

Undo, Tree Edit Any Command names in Zmacs and Zmail appear with initial letter of

each word capitalized.

Insert File (m~X) Extended command names in Zmacs and Zmail. Use m-¥ to invoke
: one.

[Map Over] Menu items.

(mouse-R) Mouse clicks; L=left, M=middle, R=right.

Mouse commands use notations for menu items and mouse clicks in the following ways:

Square brackets delimit a mouse command; slashes (/) separate the members of a compound
mouse command. The notation indicates which button to click only when that differs from the
standard. For a single menu item, always click left. For example, the following two commands
are exactly the same:

[Previous]

[(mouse-L) Previous]
For a compound command, always click right on each menu item except the last, where you click
left. For example, the following two compound commands are exactly the same:

[Map Over / Move / Hardcopy]
[(mouse-R) Map Over / (mouse-R) Move / (mouse-L) Hardcopy]

For all other cases, the notation shows explicitly which button to click. For example:
[Map Over / (mouse-M) Move]

Some more examples:

» Suppose you are to click right on menu item [Map Over], then click right on menu
item [Move)}, then click left on menu item [Hardcopy]. The notation is:
[Map Over / Move / Hardcopy]

» Suppose you are to click left on menu item [Previous]. The notation is:
[Previous]

« Suppose you are to click right on menu item [Map Over], then click middle on menu
item [Move]. The notation is:
[Map Over / (mouse-M) Move]

» Suppose you are to click right on menu item [Previous]. The notation is:
[(mouse-R) Previous]

January 1983 3 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Symbolics, Inc. 4 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2. Lisp Language and Compiler

2.1 Incompatible changes

2.1.1 Reimplementation of hash tables

All hash tables are now implemented as instances of flavors. As a result, many of the functions
related to hashing can now be replaced with messages. This was done to make it easier to write
generic functions that work with any kind of hash table. The old functions will continue to work
indefinitely.

The new hash table flavors are si:eq-hash-table and si:equal-hash-table. The hash table flavors
accept a set of messages with names that are very similar to the old functions. The new messages
take the same arguments as the functions that they replace (with the exception of the hash table
argument because that is now implicit).

Functions Corresponding Messages
gethash, gethash-equal :get-hash
puthash, puthash-equal :put-hash
remhash, remhash-equal :rem-hash
swaphash, swaphash-equal :swap-hash
maphash, maphash-equal :map-hash
clrhash, clrhash-equal :clear-hash
For example:

Old: (gethash key foo-table)
New: (send foo-table ’:get-hash key)

You can now use make-instance to create an instance of a hash table. In addition, the functions
make-hash-table and make-equal-hash-table are still available. make-instance and these
functions now both accept the same set of init options: '

:area

:growth-factor

:rehash-before-cold (see section 2.1.1.5, p. 6)

ssize
For example:

(setq newcoms (make-hash-table *:size 500.))
(setq newcoms (make-instance ’si:equal-hash-table ’:size 500.))

In addition to the messages that correspond to the previous functions, hash table instances accept
the following messages:

:modify-hash key function &rest other-args to basic-hash-table : Method
This method combines the actions of :get-hash and :put-hash. It lets you both examine
the value for a particular key and change it. It is more efficient because it does the hash
lookup once instead of twice. '

It finds value, the value associated with key, and key-exists-p, which indicates whether the
key was in the table. It then calls function with key, value, key-exists-p, and other-args.
If no value was associated with the key, then value is nil and key-exists-p is nil. It puts
whatever value function returns into the hash table, associating it with key.

January 1983 5 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

(send new-coms ’:modify-hash k foo a b c) =>
(funcall foo k val key-exists-p a b c)

ssize to basic-hash-table Method
Returns the number of entries in the hash table, whether empty or filled. This means the
amount of storage allocated, not the number of hash associations currently stored.

«filled-entries to basic-hash-tablg Method
Returns the number of entries in the hash table that have an associated value. This is
the number of hash associations currently stored.

2.1.1.1 Loop iteration over hash tables
A new iteration path was added to loop to support iterating over every entry in a hash table.
(1oop for x being the hash-elements of new-coms ...)
(1oop for x being the hash-elements of new-coms with-key k ...)
This provides for x to take on the values of successive values of hash table entries. The loop runs
once for every entry of the hash table. x could have the same value more than once, since it is
the key that is unique, not the value.

The with-key phrase is optional. It provides for the variable k to have the hash key for the
particular hash entry value x that you are examining.

2.1.1.2 Arguments to :map-hash

Like the maphash function, :map-hash takes one argument, which is a mapping function. In
addition, :map-hash accepts extra arguments, which are passed on as arguments to the mapping
function.

2.1.1.3 Dumping hash tables to files

You can dump hash tables that are flavor instances to files. Use sys:dump-forms-to-file (see
section 2.2.29, p. 43) or whatever other dump function you need. The hash table flavors have
:fasd-form methods.

2.1.1.4 Low-level internal issues

In previous releases, equal hash tables called sxhash, which returns 0 as the hash value for
objects with data types like array, stack group, or pathname. As a result, hashing such structures
could degenerate to the case of linear search. The new implementation solves this problem by
using a different function (si:equal-hash instead of sxhash) that uses %pointer to define the
hash key for such data types. This means that some of the hash keys in equal hash tables are
based on a virtual memory address. Hash tables that are at all dependent on memory addresses
are rehashed when the garbage collector flips.

Hash tables can now be accessed correctly from multiple processes; the hash table methods take
care of proper locking.

2.1.1.5 Init option: :rehash-before-cold

:rehash-before-cold is an option that causes disk-save to rehash this hash table if its hashing has
been invalidated. (This is part of the before-cold initializations.) Thus every user of the saved
band does not have to waste the overhead of rehashing the first time they use the hash table after
cold-booting.

Symbolics, Inc. 6 January 1983

Release 4.0 Release Notes Symbolics, Inc.

For eq hash tables, the hashing is invalidated whenever garbage collection or band compression
occurs because the hash function is sensitive to addresses of objects and those operations move
objects to different addresses. For equal hash tables, the hash function is not sensitive to
addresses of objects that sxhash knows how to hash but it is sensitive to addresses of other
objects. The hash table remembers whether it contains any such objects.

Normally a hash table is automatically rehashed "on demand" the first time it is-used after the
hashing has become invalidated. This first :get-hash operation is therefore much slower than
normal.

The :rehash-before-cold option should be used on hash tables that are a permanent part of the
system, likely to be saved in a band saved by disk-save, and to be touched by users of that band.
This applies both to hash tables in the Lisp system itself and to hash tables in user-written
subsystems that are saved on disk bands.

2.1.2 Pathname changes

Many changes have been made to the specification, definition, operation, and performance of
pathnames:

» A new mechanism for rationalizing case in pathnames (section 2.1.4, p. 9) to support
writing system-independent code.

» ‘A new canonical type mechanism for pathnames (section 2.1.5, p. 10).
» A new caller interface to pathnames (section 2.1.6, p. 14).

¢ A new mechanism for mapping wildcard pathnames (section 2.2.4, p. 27).

These sections supersede much of the material on pathnames in Lisp Machine Manual, section 22,
p. 376fF. ‘

2.1.3 Validity checking

Pathname code now does more checking of the validity of pathname components. Some previous
code that contained hidden bugs will not work anymore. For creating intermediate pathnames,
use :new-default-pathname instead of :new-pathname (section 2.1.6, p. 14).

Logical pathnames now check to be sure that their directory components have valid translations
defined for them. This check is performed when a :translated-pathname message is sent. (It

provides a proceed-type that allows you to specify a translation for a logical directory that does
not have one.) It no longer just uses the logical directory name (Lisp Machine Manual, p. 388).

2.1.3.1 Merging pathnames from different host types
Most problems with merging Lisp Machine file system pathnames with those of other systems
have been fixed. Some problems remain:

» Length restrictions in pathname components. The canonical type system alleviates this
problem for type components.

o Character set differences in general. For example, you still cannot copy to VMS a file
any of whose components contains a hyphen.

January 1983 7 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

« Case information disappears between UNIX and the Lisp Machine file system (or
between any system that guarantees to maintain case information and one that does
not).

2.1.3.2 Change to representation for nil pathname components

The goal of defaulting pathnames is to produce a pathname with no components that are nil.
Sometimes nil components do occur. In the rare occasions when you do see displays of pathname
strings that contain the character "", it represents a nil component.

You can also type the character 2 (TOP L) to designate a null component in a file spec when that .
is necessary in order to use a default component. For example, suppose you want to supply a new
type to be merged with the default offered by Find File in the editor. The following example
would find the file f:>rloon>tank.for:

Find File: (Default is f:>rloon>tank.lisp)
o for

2.1.3.3 Meaning of :unspecific clarified

In a pathname, a value of :unspecific for a pathname component now means that the component
is meaningless in the pathname syntax of the host. The following table shows the conditions
under which a pathname component can be :unspecific.

Component Conditions for 'unspeclﬁc

Host Never

Device Always :unspecific for logical pathnames and pathnames for Unix, Multxcs and
the Lisp Machine file system.

Directory Never (for currently supported hosts)

Name Never

Type Sometimes :unspecific on ITS (see section 2.1.3.5). Always :unspecific for
UNIX and Multics file specs in which a name component is specified with no
period.

Version Always :unspecific for UNIX and Multics pathnames. Sometimes :unspecific

for ITS (see section 2.1.3.5).

Its use is now limited to these cases.

2.1.3.4 Generic pathname changes

Generic pathnames (as returned by the :generic-pathname message to fs: pathname) now have
nil as the type and version instead of :unspecific. This was done as part of clarifying the
meaning of :unspecific.

fs:*known-types* now contains canonical type symbols rather than type strings. {These are the
types that generic pathnames strip off.) (See Lisp Machine Manual, p. 382).

:bin

<lisp

nil

:qbin

sunspecific

2.1.3.5 ITS pathname merging

Pathnames for ITS have been changed so that it is no longer possible to have two ITS pathnames
with the same meaning that differ in an ignored component. fs:*its-uninteresting-types* still

Symbolics, Inc. 8 January 1983

Release 4.0 Release Notes Symbolics, Inc.

exists; it controls which types are ignored in favor of retaining version numbers. The following
table summarizes the interaction of type and version components for ITS pathnames.

Type Version Result

supplied omitted type is retained, version is :unspecific
omitted supplied type is :unspecific, version is retained
"interesting" supplied type is retained, version is :unspecific
"uninteresting" supplied " type is :unspecific, version is retained

2.1.4 Case in pathnames

The material in this section supersedes the Lisp Machine Manual section on pathname messages,
p. 384. :

The standard messages to pathnames for accessing components have all been changed so that
components are interchangeable between hosts. The new forms and the old forms of the messages
look the same but are compatible only in code that does not depend on the flavor of pathnames.
The purpose of this change is to enable and encourage the writing of host-independent code. -

The components of a pathname (directory, name, type, and so on) have two possible
representations for case, raw (also called native) and interchange. The raw case representation
keeps the case in whatever form is normal for that system (for example, lower case for UNIX,
upper case for TOPS-20). Interchange representation is a format for manipulating pathname
components in a host-independent manner. All pathname defaulting and cross-host translation
functions use the interchange form of pathname messages. L

All of the standard messages to pathnames (for example, :directory, :name) now return pathname
components in interchange case rather than raw case. This was done to minimize disruption to
existing code. The pathname flavors accept a new set of messages that return components in raw
case. '

Interchange case form Raw case form

:device sraw-device
sdirectory sraw-directory
:name sraw-name
stype raw-type

The interchange form of the message specifies the following effect:

Case of component Translated case returned
System default Upper case
Mixed case Mixed case
Opposite to default Lower case

Upper case was chosen as the interchange case because strings like "LISP", representing pathname
components, appear in many programs. Either choice (upper or lower) would have been natural
for some hosts and not for others.

This facility provides more features for dealing with pathname components independent of the
case-sensitivity of file names of different hosts. The following table shows some examples for
different host types.

January 1983 ‘ 9 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Host Message Applied to raw form Returns interchange form
UNIX :name "foo.bar" "FOO"
:name "FOO.BAR" "foo"
:name "Foo.Bar" "Foo"
Lisp Machine :name "foo.bar" "FOO"
file system :name "FOO.BAR" "FOO"
:name "Foo.Bar" "FOO"
TOPS-20 :name "FOO.BAR" "FOO"
:name "foo.bar" "foo"
:name "Foo.Bar" "Foo"

Note that the Lisp Machine file system appears not to follow the interchange case rules. This is
because, for the Lisp Machine file system, case is usually maintained but is not significant ("foo",
"Foo", and "FOO" are all the same). Thus any mixture of cases in a file name satisfies the
"system default” condition and hence returns all upper case for the interchange form.

The following functions and messages now use interchange case.

fs:make-pathname
Four new keyword options, named :raw-directory and so on, specify the
components for the new pathname in raw form.

:new-pathname Four new keyword options, named :raw-directory and so on.

:new-default-pathname
Four keyword options, named :raw-directory and so on.

In addition, new messages are available for manipulating the raw case form of pathname objects.

:new-raw-xxx Four new messages to pathname objects, one for each pathname component

that can be a string:

:new-raw-device

snew-raw-directory

:new-raw-name

:new-raw-type
These have the same kind of function as the :new-xxx messages. See Lisp
Machine Manual, p. 384.

The raw forms of the messages are provided for writing host-specific code or for manipulating
several pathname objects known to be on the same host.

2.1.5 Canonical types in pathnames

A canonical type for a pathname is a symbol that indicates the nature of a file’s contents. When
you need to compare the types of two files, particularly when they could be on different kinds of
hosts, you would compare their canonical types. (fs:*defaunlt-canonical-types* and fs:*canonical-
types-alist®* show the canonical types and the default surface types for various hosts.)

Some terminology:

canonical type A host-independent name for a certain type of file, for example, Lisp compiled
code files or LGP font files. A canonical type is a keyword symbol.

Symbolics, Inc. 10 January 1983

Release 4.0 Release Notes Symbolics, Inc.

file spec What you type when you are prompted to supply a string for the system to
build a pathname object.
surface type The appearance of the type component in a file spec. This is a string in native
' case. ,
default surface type

Each canonical type has as part of its definition a representation for the type
when it has to be used in a string. Default surface type is the string (in
interchange case) that would be used in a string being generated by the system
and shown to the user. (See fs:define-canonical-type, p. 13).

preferred surface type
Some canonical types have several different possible surface representations.
The definition for the type designates one of these as the preferred surface
type. It is a string in interchange case. ("Default surface type" implies
"preferred surface type” when one has been defined.)

Each canonical type has a default surface representation, which can be different from the surface
file type actually appearing in a file spec. :lisp is a canonical type for files containing lisp source
code. For example, on UNIX, the default surface representation of the type for :lisp files is "L".
(Remember, the default surface representation is kept in interchange case.) The surface type in a
file spec containing lisp code is different on different systems, "LISP" for Lisp Machine file
system, "I" for UNIX. You can find out from a pathname object both the canonical type for the
pathname and the surface form of the type for the pathname by using the :canonical-type
message (p. 12).

The following tables illustrate the terminology.

UNIX
Surface type " "lisp" "foo"
Raw tym "l" "lisp" "foo"
Tyw "L" "LISP“ "FOO"
Canonical type :lisp :lisp "FOO"
Original type nil "LISP" "FOO"
Lisp machine
Surface type " "lisp" "foo"
Raw type "l" "lisp" "foo"
Type "L" "LISP“ "FOO"
Canonical type "L" :lisp "FOO"
Original type "L" nil "FOO"

To translate the type field of a pathname from one host to another, determine the canonical type,
using the surface type on the original host. Then find a surface type on the new host for that
canonical type.

Copying operations can preserve the surface type of the file through translations and defaulting
rather than converting it to the surface form for the canonical type. For example:

January 1983 11 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

(multiple-value-bind (ctype otype)
(send p ’:canonical-type)
(send p ®’:new-pathname
*:canonical-type ctype
*:original-type otype
*:name "temp-p®))
2.1.5.1 UNIX and VMS change
This change is mostly compatible with previous releases. The only change is for certain cases on
VMS and UNIX. Previously, VMS and UNIX pathnames used to explicitly transform type strings
so as to fake the behavior of canonical types. This had strange side effects. For example, it used
to be impossible to refer to a UNIX file called foo.lisp because the pathname code would
transform that into foo.l. These problems no longer occur.

2.1.5.2 New messages ;
A number of new messages and methods have been supplied for dealing with canonical file types.

:canonical-type to fs:pathname : Method
The :canonical-type message determines the canonical type of a pathname and a surface
representation for the type. It returns two values:

Value Meaning

canonical type This is either a keyword symbol from the set of known canonical types
or a string (when the type component of the pathname is not a known
canonical type). The string contains the type component from the
pathname, in interchange case.

original type This is nil when the type of the pathname is the same as the preferred
surface type for the canonical type (see fs:define-canonical-type,
p. 13). Otherwise, when the type differs from the preferred or default
surface type, it is the original type in interchange case.

For example, for a UNIX pathname, sending the message :canonical-type to the
following pathnames has these results:

Pathname Results from :canonical-type message

foo.l :lisp nil Preferred surface type
foo.lisp :lisp "LISP" Alternate surface type
foo.L " " Not recognized
foo.LISP "lisp" "lisp" Not recognized

Keep in mind that the :canonical-type message returns the type string in the interchange
case rather than in the raw case.

:new-canonical-type canonical-type &optional original-type to fs:pathname Method
The :new-canonical-type message to a pathname returns a new pathname based on the
old one but with a new canonical type. canonical-type specifies the canonical type for the
new pathname. The surface type of the new pathname is based on the default surface
type of the canonical type, unless the pathname already had the correct type.

When the pathname object receiving the message already has the correct canonical type,
the surface type in the new pathname depends on the presence of original-type. When
original-type is omitted, the new pathname type has the same surface type as the old
pathname. When original-type is supplied, the surface type for the new pathname is

Symbolics, Inc. 12 January 1983

Release 4.0 Release Notes ‘ Symbolics, Inc.

original-type. This assumes that original-type is a valid representation for canonical-type;
if that assumption is not met, the canonical-type prevails and its default surface type is
used.

canonical-type is a symbol for a known type, :unspecific, nil, or a string. Use a string
for canonical-type to make pathnames with types that are not known canonical types.

The following examples assume that a pathname object for the file spec

"vixen:/usr/jwalker /mild.new" is stored in m.
(send m ’:new-canonical-type *:1isp) =)
#CUNIX-PATHNAME “VIXEN: //usr2//jwalker//mild.1">
(send m ®:new-canonical-type ’:1isp "LISP") =>
F#CUNIX-PATHNAME *"VIXEN: //usr2//Jwalker//mild.1isp">
(send m ’:new-canonical-type *:1isp “MSS") =>
#<UNIX-PATHNAME *VIXEN: //usr2//jwalker//mild.1">
(send m ’:new-canonical-type "BAR* "BAR") =)
#CUNIX-PATHNAME *VIXEN: //usr2//jwalker//mild.bar®>
(send m ’:new-canonical-type *:1isp "lisp") =>
#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.1">
(send m °:new-canonical-type ’:1isp nil) =>
#<UNIX-PATHNAME “VIXEN: //usr2//jwalker//mild.1">

fs:define-canonical-type canonical-type default &body specs Special Form
fs:define-canonical-type defines a new canonical type. canonical-type is the symbol for
the new type; default is a string containing the default surface type for any kind of host
not mentioned explicitly. The body contains a list of specs that define the surface types
that indicate the new canonical type for each host. The following example would define
the canonical type :lisp. ‘
(fs:define-canonical-type :1isp "LISP*
((:tops-20 :tenex) "LISP" "LSP")
(:unix "L" "LISP")
(:vms "LSP"))
For systems with more than one possible default surface form, the form that appears first
becomes the preferred form for the type. Always use the interchange case. -

Define new canonical types carefully so that they are valid for all host types. For
example "com-map" would not be valid on VMS because it is both too long and contains
an invalid character. You must define them so that the surface types are unique. - That
is, the same surface type cannot be defined to mean two different canonical types.

Canonical types that specify binary files must specify the byte size for files of the type.
This helps copyf and other system tools determine the correct byte size and character
mode for files. You specify the byte size by attaching a :binary-file-byte-size property
to the canonical type symbol. For example, the system defines the byte size of press files
as follows.

(defprop :press 8. :binary-file-byte#sizé)

fs:find-file-with-type pathname canonical-type : o
fs:find-file&vith-type searches the file system to determine the actual surface form for a
pathname object. Like probef, it returns the truename for pathname. When no file can
be found to correspond to a pathname, it returns nil.

canonical-type applies only when pathname has nil as its type component.

January 1983 13 Symbolics, Inc.

Symbolics, Inc. . Release 4.0 Release Notes

ts:find-file-with-type searches the file system for any matching file with canonical-type.
For example, on a TOPS-20 host, this would look first for ps:<gcw>toolkit.lisp and then
for ps:<gcw>toolkit.lsp:

(fs:find-file-with-type (fs:parse-pathname "sc:<{gcwdtoolkit") *:1isp)

If it finds more than one file, it returns the one with the preferred surface type for
canonical-type (or chooses arbitrarily if none of the files has the preferred surface type).

If pathname already had a type supplied explicitly, that overrides canonical-type. You can
ensure that canonical-type applies by first setting the type explicitly:

(fs:find-file-with-type (send p ’:new-type nil) *:1isp)

System programs that supply a default type for input files (for example, load,
make-system, qc-file) could use this mechanism for finding their input files.

:types-for-canonical-type canonical-type to fs:pathname Method
:types-for-canonical-type is the internal primitive for finding which surface types
correspond to fype. Normally you would not use this directly. See fs:find-file-with-type
to determine what form of a pathname exists in a file system.

2.1.5.3 New options for :new-pathname

:canonical-type and :original-type are new keyword options to the :new-pathname method to
fs:pathname. (See Lisp Machine Manual, p. 385.) These are equivalent to sending the
:new-canonical-type message to the result of the :new-pathname message but they are faster and
more convenient for specifying several components.

In addition, the :type option has been changed to take a symbol argument that is a canonical type
as well as a string in interchange case.

:canonical-type is for host-independent applications; :type is available for when you are dealing
with strings.

2.1.5.4 Correspondence of canonical types and editor modes
fs:*file-type-mode-alist® is an alist that associates canonical types (in the car) with editor major
modes (in the cdr).

((:LISP . :LISP) (:SYSTEM . :LISP) (:TEXT . :TEXT) ...)

See also section 5.3.11, p. 93 for discussion of editor major modes.

2.1.8 Changes in the caller interface to pathnames

This section supersedes most of Lisp Machine Manual, section 22.4, p. 382. It describes changes to
the caller interface for handling file specs that have been supplied by a user.

2.1.6.1 fs:*defaults-are-per-host® replaced

The new cross-host defaulting mechanism replaces the variable fs:*defaults-are-per-host* (Lisp
Machine Manual, p. 381). This variable still exists but no longer affects pathname defaulting or
any other aspect of system operation. The variable will be removed entirely in a future release.

2.1.6.2 fs:merge-pathnames supersedes fs:merge-pathname-defaults

Symbolics, Inc. 14 January 1983

Release 4.0 Release Notes Symbolics, Inc.

fs:merge-pathnames pathname &optional (defaults *default-pathname-defaults®) (default-
version ‘newest)
fs:merge-pathnames supersedes fs:merge-pathname-defaults (Lisp Machine Manual,

p. 382).

New programs should always use fs:merge-pathnames. fs:merge-pathname-defaults still
exists but it tends to violate the rules for the meaning of :unspecific (section 2.1.3.3,
p. 8). It did not use the type from the displayed default, which people found confusing.

More specifically, fs:merge-pathnames does not default types as explained in Lisp
Machine Manual, p. 380. It defaults types the same way that it defaults names.

The following example shows the style now recommended for showing defaults to users.

(setq default (send x ’:new-canonical-type *:1isp))
(format t "Default is ~A~%" default)
(fs:merge-pathnames (readline-trim) default)

2.1.6.3 Changes to values returned by pathname component messages

The messages that return components of a pathname now return somewhat different sets of
values. The differences involve mostly which special symbols can be returned. Any messages that
return strings now return them in interchange case (section 2.1.4, p. 9).

o The :host message returns a host object.

« The :device message returns one of the following:
nil
a string
sunspecific

« The :directory message to a pathname now returns one of the following values:
nil
root
:wild
a list of strings
a list of strings and the following symbols
:wild
:wild-inferiors
:relative
:up .
It never returns a single string (as it used to in previous releases).

o The :name message returns one of the following values:
nil
a string
:wild

« The :type message returns one of the following values:
nil
a string v
:unspecific (for ITS, see p. 8, UNIX, and Multics)
:wild

« The :version message returns one of the following values:

Januafy 1983 15 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

snewest

number

:oldest

aunspecific (for UNIX, Multics, ITS)
:wild

2.1.64 New'message for bullding pathnames: :new-default-pathname

:new-default-pathname &rest oprions to fs:pathname Method
:new-default-pathname returns a new valid pathname based on the one receiving the
message, using the pathname components supplied by options. The components do not
need to be known to be valid on a particular host. The method uses the components "as
suggestions" for building the new pathname; it is free to make substitutions as necessary
to create a valid pathname. It is heuristic, not algorithmic so it does not necessarily yield
valid semantics. The heuristics used, however, seem to produce pathnames that match
what many people expect from cross-host defaulting.

It always produces a pathname with valid syntax but not necessarily valid semantics. For
example when it tries to map between a hierarchical file system and a nonhierarchical file
system, it uses the least significant of the hierarchical components as the directory
component. Sometimes this is not correct but in all cases it is syntactically valid. The
main application for :new-default-pathname is in producing defaults to offer to the user.

Application notes: :new-pathname always does what its arguments specify; it never uses
heuristics. Thus :new-pathname could signal an error in certain cross-host defaulting
situations where :new-default-pathname would not have any problems. In general, user
programs should be using fs:default-pathname, which sends :new-default-pathname as
part of its operation.

2.1.6.5 Change to argument for fs:merge-pathname-detaults

The third argument to fs:merge-pathname-defaults used to be the type component of a
pathname (Lisp Machine Manual, p. 382). It now accepts a canonical type keyword as well as a
string (see section 2.1.5, p. 10.)

By the way, fs:merge-pathname-defaults has been superseded anyhow by fs:merge-pathnames.
See section 2.1.6.2, p. 14. Programs that use fs:merge-pathname-defaults should really be
converted to use fs:merge-pathnames.

2.1.6.6 make-pathname-internal replaced
Previous releases contained an internal function called make-pathname-internal. It has been
removed and replaced with a message.

old: (make-pathname-internal host dev dir nam typ vrs)
New: (send host ’:get-pathname dev dir nam typ vrs)

2.1.6.7 New method: :system-type

:system-type to fs:pathname Method
The :system-type message returns the type of host that the pathname is intended for.
This value is a keyword from the following set:
:éits, :lispm, :multics, :tenex, :tops-20, :unix, :vms, :logical

Symbolics, Inc. 16 January 1983

Release 4.0 Release Notes Symbolics, Inc.

This is the same set as returned by the :system-type message to a host object.

See also fs:default-pathname; it is not likely that you need to use this message directly.

2.1.6.8 New method: :sample-pathname

ssample-pathname to si:pathname-host Method
The :sample-pathname message sent to a host object requests a pathname for receiving
messages. It returns a syntactically valid pathname with this host as the host component.
This replaces the former practice of calling fs:default-pathname with only a host
argument.

2.1.7 Relative pathname support

Relative pathnames are now supported for all host types that allow relative pathnames in their
native syntax. In particular, the Lisp Machine file system now supports relative pathnames
(section 4.2.1, p. 74.)

2.1.8 Character set name changes

The Control-Shift- characters are now encoded differently. c-sh—f is no longer a synonym for
h-c-R; they are now distinct compound keystrokes.

This change is part of a clarification of policy on key naming and key meaning. In addition to
the four modifier keys HYPER, SUPER, CTRL, and METR, the SHIFT key is now a modifier key for
letters when used in combination with one of the other modifiers. As before, the CAPS LOCK key
is not a modifier key and is always ignored in compound keystrokes. Thus typing CTRL and A at
the same time gives c-A; typing CTRL and SHIFT and A at the same time gives c-sh-A. Typing
CTRL and SHIFT and ~ at the same time gives c~7 (not c-sh-~).

The names for compound key strokes always show a letter as capitalized. This does not mean
that you have to use the SHIFT key; use the SHIFT key as a modifier only when "sh-" appears in
the key name. - :

In addition, printing names of characters now have case in them, for example, Roman-I111. (Case
continues to be ignored on input. Some new synonyms for existing characters are now accepted.
In particular, names of the following form have new synonyms.

New : Equivalent to
#\c-sh-B #f\c-shift-B
#\mouse-L #\mouse-L~1

The symbol si:xr-character-names has been removed. The names of the characters are in the
table in SYS: 10; RDDEFS LISP.

2.1.9 Signalling and handling conditions

The mechanisms in the Lisp Machine for signalling and handling conditions have been redesigned.
(The term conditions includes errors.) A new document, Signalling and Handling Conditions,
explains the new procedure in detail. This new document supersedes most of Chapter 26 in the
Lisp Machine Manual. The Debugger has been revised to use the new condition design.

January 1983 17 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.1.9.1 Program compatibility and conversion issues

You have two choices in revising your program to use the new condition signalling. You can use
the style of signalling that is mostly compatible with the old design and make minimum program
changes or you can revise your program to take advantage of the power available from the new
facility. (See the summary in section 2.1.9.2 and read Signalling and Handling Conditions.)

2.1.9.2 Strategies for converting a program to use signalling

In previous systems, error-restart and condition-bind were used for sophisticated error handling.
These functions were the precursors to the new condition system. If your program used these
functions, you need to first understand the new condition handling design and then rethink your
implementation of error handling; no simple conversion strategy is possible.

System functions that used to return a string to indicate an error now signal an error. Some
functions used to either return a string or trap to the Debugger, depending on what arguments
you used. In the cases where they used to return strings, they now return error objects for
compatibility. In the cases where they used to trap, they now signal an error condition.

Any program that is still checking for returned strings as an error flag needs to be revised. See
the information about errorp, p. 19. In general, functions should not be "returning” errors but
rather signalling them.

2.1.9.3 Incompatibility with Debugger

When you enter the Debugger, the variable self is bound to the condition object (because the
error-signalling functions now use flavors). To accéss the value of self in some frame, select that
frame and use the Debugger command m—S. At this time, Debugger evaluation occurs in the
environment of the highest frame. In a future release, this will be changed to evaluate in the
variable environment corresponding to the current frame.

2.1.9.4 Incompatibility with the prévlous design
This section discusses how to use the new design without doing a major overhaul of your

program’s error handling. Some functions work unchanged; some have changed the meaning of a
few arguments. Several functions have the same name but different meaning.

Obsolete or incompatible features that must be changed

This section pertains to the following items:

Symbolics, Inc. 18 January 1983

Release 4.0 Release Notes Symbolics, Inc.

:change-properties (to fs:pathname)
:delete (to fs:pathname)
:rename (to fs:pathname)
cerror

condition-bind

deletef

error-restart

errorp

ferror

fs:all-directories
fs:change-file-properties
fs:directory-list
fs:expunge-directory
fs:file-properties

open, the :error option
renamef

signal
sys:command-level
undeletef

:change-properties, :delete, and :rename
The :change-properties, :delete, and :rename messages to pathnames and streams have been
incompatibly changed. They no longer accept an error-p argument. They always signal an error
rather than returning an error. Define a handler to handle the error.

(condition-case ()

(send fname ®:delete)
(fs:file-not-found nil))

cerror
The function cerror is obsolete. A version of cerror still exists and works compatibly only in
simple cases without conditions or restart features. The following calls are compatible:
(cerror t nil nil ...)
(cerror nil nil nil ...)
All uses of cerror should be replaced by calls to the appropriate error signalling function.
(fsignal might be appropriate in some cases.) -

condition-bind

The syntax of the new condition-bind is the same as that of the old condition-bind. The names
of all the error conditions have changed, however, so all calls to condition-bind must be updated.
All handler functions must be revised to take arguments and return values in the new way.

error-restart
The name error-restart has been recycled. The new syntax is not compatible with the old one.

Any program that uses the old error-restart must be modified to use the new syntax.

errorp : « . ‘
Several functions, including the following, used to take :noerror keywords or error-p arguments.

January 1983 19 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

deletef

fs:all-directories
fs:change-file-properties
fs:directory-list
fs:expunge-directory
fs:file-properties
renamef

undeletef

These allowed the caller to request that a string be returned if an error occurred. These options
still exist but now return an error object instead of a string. The function errorp, which was
introduced in System 210 to help make this conversion easier, now checks for error objects rather
than strings. These options are all obsolete; the modern way to deal with errors is by setting up a
handler.

terror .
The arguments to ferror have changed; the former first argument no longer exists. Calls to
ferror in which the first argument is nil are treated as if they had been converted to the new
syntax. Calls to ferror in which the first argument is a symbol are obsolete and must be ‘
changed.

open, the :error option

The open function now interprets its zerror option differently. This option controls what
happens when any fs:file-operation-failure condition is signalled (see Signalling and Handling
Conditions). The option has three possible values:

Value Meaning

t » Signals the error normally. t is both the default and the recommended value.
nil Returns the condition object.

:reprompt Reprompts the user for another file name and tries open again. This behavior

used to be the default in System 210. There it caused bugs because programs
could not know that the file opened under these conditions was not necessarily
the one that they requested. When you use this option, remember that the
:pathname message sent to the stream finds out what file name was really
opened. ,

t is the recommended value for this option. The others have been provided for compatibility with
previous systems to aid in converting programs.

The alternative to :reprompt is to use zerror t and set up a condition handler for
fs:file-operation-failure that explains the condition and prompts the user.

signal
The syntax of the new signal is similar to that of the old signal but the meaning is different.
All calls must be changed. '

sys:command-level
The sys:command-level catch tag has been removed; use catch-error-restart instead.

Symbolics, Inc. 20 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Old version:
(*catch ’sys:command-level

..)

New version:
(catch-error-restart ((error sys:abort) ...)

..) ‘
The package system now signals an error if it sees the symbol sys:command-level because the sys
package is locked. (See section 2.1.12 on p. 23.) This should make old uses of
sys:command-level very easy to find.

Functions that might require change

Programs containing the following might require some change, depending on the arguments
involved.

time:parse
time:parse-universal-time
chaos:finger

chaos:wholis

Some functions that used to return strings to indicate errors now signal errors normally.
time:parse, time:parse-universal-time, chaos:finger, and chaos:whols are among the affected
functions.

The probef function still returns nil if the file is not found (signals fs:file-not-found). It signals
an error if anything else goes wrong (such as sys:host-not-responding). You can treat various
other errors as if the file were not found by making the handler return nil. For example:
(condition-case ()
(probef path)
(sys:connection-error nil))
By writing this condition-case yourself, you can control precisely which conditions are reflected
as a returned nil value and which should really be treated as an error.

Functions that work the same without change

Programs containing the following should work without change after being recompiled.

check-arg
check-arg-type
catch-error
err

errset

error

The old Maclisp err and errset functions still exist (see the The Lisp Machine Manual, p. 449).
err is officially an obsolete function; it signals its error using ferror. errset just uses
catch-error. We want to discourage you from using errset and catch-error because they can
hide bugs as well as catch expected errors. See also section 3.1.5, p. 54.

The error function continues to try to be compatible with the old Maclisp error function
wherever possible. It is usually possible when the first argument is not a condition name or a
condition object. When it can, the compiler warns about incompatible uses of the error function.

January 1983 21 Symbolics, Inc.

Symbolics, Inc. , Release 4.0 Release Notes

2.1.10 Changes to fquery options

The default for the :list-choices option to fquery has been changed from nil to t. This affected
the functions y-or-n-p and yes-or-no-p in particular (see p. 48).

The :condition option to fquery is now obsolete; in its place is the new option :signal-condition.
Its application is the same as that for :condition. Basically it is a way to intervene and provide
an answer to a query without asking the user.

The default for :signal-condition is nil. When its value is t, the fquery function signals an
fquery condition with proceed type of :choice before prompting the user. Any handler can
invoke the :choice proceed type in order to return a value from fquery. When no handler
handlers the condition, fquery proceeds normally and queries the user.

fquery Flavor
fquery is a simple condition built on condition. It is signalled by the fquery function
when its :signal-condition option is t. The messages examine the arguments given to the
fquery function.

Message Value returned
soptions Returns the first argument to the fquery function.
format-string Returns the second argument to the fquery function (its format
' control string or prompt).
format-args Returns the rest of the arguments to the fquery function (the
arguments to its format control string).

The :choice proceed type is provided. It has one argument, which is a value to be
returned from the call to the fquery function.

The following example answers "yes" to every "Delete this entry?" query occurring inside do-it
that has :signal-condition t:
(condition-bind
((fquery #’(lambda condition)
(and (send condition °*:proceed-type-p *:choice)
(equal (send condition ’:format-string
“Delete this entry?")
- (values ':choice t)))))
(do-it))

2.1.11 Locking packages

package-declare and pkg-create-package now lock the superior package against interning.
pkg-create-package now accepts an optional fourth argument to inhibit locking the superior.
pkg-create-package does not affect the superior’s lock when the superior already has an inferior.

si:pkg-locked package
si:pkg-locked is an accessor for determining whether a package is locked against
interning. It returns t when a package is locked. You can use setf to clear or set the
lock-or use si:with-package-lock to bind it.
(si:pkg-locked {pkg-find-package *global))
T

Symbolics, Inc. 22 January 1983

Release 4.0 Release Notes Symbolics, Inc.

si:with-package-lock pkg lock-value Macro
si:with-package-lock binds the lock for package to lock-value around the body of the
macro.

2.1.12 global and system packages locked against interning new symbols

The global and system packages are now locked against interning new symbols. Attempting to
intern a new symbol in one of these packages results in an error. This change prevents the
problems caused by indiscriminate loading of files into the global package. For example, two
symbols that were supposed to be distinct could become the same. The correct way for a user
program to put a symbol in the global or system package is with globalize.

A new error message warns about attempts to intern any symbols not currently in a locked
package:

sys:foo
>>Error: Attempt to intern FOO in locked package SYSTEM

Using RESUME in the Debugger does permit you to intern the symbol anyhow.

2.1.13 load signals errors

load takes an optional third argument nonexistent-ok. In previous releases, you used this variable
to make load return when a file could not be opened. Now, the argument means that load
returns when fs:file-not-found is signalled. Other kinds of reasons for having the file not found,
such as the host being down or the directory not existing, are signalled as different errors. For
example, load now fails when the host is down even when you specified the nonexistent-ok
argument. :

2.1.14 Name changed: return-list to values

The return-list form to declare and local-declare has been replaced by values.

old: (declare (return-list ...))
New: (declare (values ...))

See Lisp Machine Manual, pp. 151, 201. The old syntax continues to be supported.

2.1.15 Variable removed: fs:*always-merge-type-and-version®

fs:*always-merge-type-and-version®, announced in System 210 Release Notes as an experiment,
has been removed from the system. Its functionality has been replaced by the new behavior of
pathname merging.

2.1.16 Variable removed: fs:last-file-opened

fs:last-file-opened (Lisp Machine Manual, p. 381) has been removed from the system.

January 1983 23 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.1.17 lexical-closure removed

The lexlcal-closnré feature, announced in System 74 Release Notes, has been removed. The
feature was only partially installed and was not documented. New support for lexical closures will
appear with Common Lisp in a future release.

2.1.18 Changes to compiler variables

The compiler uses a set of variables and functions to keep track of which functions have been
defined and which have been referenced. These are the basis for the messages "FOO was defined
but never referenced" that occur during compiling.

The following variables, used for this purpose, have been reimplemented as hash tables instead of
lists:
sys:file-local-declarations

compiler:functions-defined
compiler:functions-referenced

compiler:function-referenced fspec by-whom
This is unchanged. See the Lisp Machine Manual, p. 204.

compiler:function-defined fspec
function-defined tells the compiler that the function fspec has been defined (by putting
it into the hash table in compiler:functions-defined).

compiler:file-declare rhing declaration value
file-declare enters a declaration in the table sys: file-local-declarations for the
remaining extent of the compilation environment.

(compiler:file-declare *foo ’special t)

compiler:file-declaration thing declaration
file-declaration looks up a declaration in the table sys:file-local-declarations. It
returns the declaration when thing is a declaration of type declaration and nil otherwise.

2.2 New features

2.2.1 Lambda-list keyword &key for keyword arguments

Lambda lists now have a facility that supports both positional arguments and keyword arguments.
This supersedes the keyword conventions discussed in the Lisp Machine Manual, p. 23. This
change is upward-compatible; existing compiled code does not need to be recompiled.

Keyword arguments have advantages for long lists of optional arguments where the actual calling
sequences are expected to be "sparse”. Using keywords, you do not have to remember the order
of arguments or the default values for the arguments you are not supplying.

All positional arguments must appear before any keyword arguments in the lambda list. After
&key in the lambda list, all the other arguments are expected to be in keyword form.

Keyword arguments are always optional, regardless of whether the lambda list contains
&optional. Any &optional appearing after the first keyword argument has no effect.

Symbolics, Inc. 24 January 1983

Release 4.0 Release Notes Symbolics, Inc.

&key and &rest are independent. They can both appear and they both use the same arguments
from the argument list. The only rule is that &rest must appear before &key in the lambda list.

The &rest parameter is bound to a list of all the remaining arguments, both keyword symbols
and values. This is just the standard meaning for &rest. For the keywords, the rest of the list is
treated as keyword/value pairs. Each keyword parameter is bound to the value that follows it in
the argument list. The following series of examples shows the main features of &key.

(defun foo (&key ab) ...)
a and b are both keyword parameters. The following example illustrates that the
arguments can appear in either order.

(foo *:b 69 *:a *(some elements))

(defun foo (x &optional y &rest z &key a b) ...)
In this definition, x is a required posmonal argument. y, 2, a, and b are all optional but
y is positional, a and b are keywords, and z is the rest parameter. Any call with one or
morc arguments would be valid here. The first two satisfy the positional parameters; any
others satisfy both the rest parameter and the keyword parameters. For example:

(foo 1 2 *:b °(6 8))

Argument Value
x 1
y 2
z (:b (6 8))
a nil
b 6 8)

(defun foo (&key a b (c working-storage-area)))
a, b, and ¢ are keyword parameters. ¢ has a default value supplied.

(defun foo (&rest z &key a b ¢ &allow-other-keys) ...)
z is rest, and a, b, and ¢ are keyword parameters. &allow-other-keys says that
absolutely any keyword symbols can appear among the arguments. These symbols and
the values that follow them have no effect on the keyword parameters but do become
part of the value of z.

The rest of this section presents the detailed rules for binding keyword arguments to values.

The arguments for the keyword parameters are treated as a list of alternating keyword symbols
and associated values. Each symbol is matched with the keyword parameter names; the matching
keyword parameter is bound to the value which follows the symbol. All the remaining arguments
are treated in this way.

The keyword symbols are compared by means of eq, which means they must be specified in the
correct package (conventionally the keyword package). The keyword symbol for a parameter has
the same print name as the parameter but resides in the keyword package regardless of what
package the parameter name itself resides in. You can specify the keyword symbol explicitly in
the lambda list if you need it in some package other than the keyword package or if you want
the keyword to have a different name from the parameter. You do this by supplying a keyword
and a variable name instead of just the variable name. The following example defines a keyword
srelease to supply a value for the variable il:*stamp-for-release®.

(defun foo (&key ((:release il:*stamp-for-release*) nil)) ...)

Keyword parameters, like any other optional parameter, can have a default-form and a supplied-p

January 1983 25 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

argument. When a keyword parameter remains unbound after all arguments have been processed,
the default-form for the parameter is evaluated and the parameter is bound to its value.

&allow-other-keys is a lambda-list keyword that says to ignore any keyword symbols among the
arguments that do not match any keyword parameter names. The function can access these
symbols and values through a rest parameter. One common application for this is to allow a
function to check only for certain keywords and then to pass its rest parameter to another
function using lexpr-funcall with the expectation that the next function checks for the keywords
that concern it. Passing unknown keywords signals an error unless &allow-other-keys is present.

2.2.2 New function: readline-trim

readline-trim &optional stream eof-option options
readline-trim trims leading and trailing white space from string input. "White space"
means spaces or tabs. It takes the same arguments as the normal readline.
(readline-trim) exciting option RETURN

*exciting option®
(readline-trim)RETURN

The :string-trim and :string-or-nil keywords (in prompt-and-read and in choose-
variable-values menus) use readline-trim.

2.2.3 New one-armed conditionals: when and unless

Two special forms have been added to make code that tests conditions more readable. These can
replace compositions of and and or that implement one-armed condition testing.

when rest body... Macro
The forms in body are evaluated when fest returns non-null. In that case, it returns the
value(s) of the last form evaluated. When fest returns nil, when returns nil.
(when (eq 1 1) (setq a b) "foo") =>
*foo"
(when (eq 1 2) (setqg a b) “foo™)
NIL

When body is empiy, when always returns nil.

>

unless rest body... Macro
The forms in body are evaluated when fest returns nil. It returns the value of the last
form evaluated. When fest returns something other than nil, unless returns nil.
(unless (eq 1 1) (setq a b) “foo") =>
NIL
(unless (eq 1 2) (setq a b) "“foo")
“foo"

>

When body is empty, unless always returns nil.

These definitions are compatible with the current Common Lisp design.

Symbolics; Inc. 26 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.2.4 Wildcard pathname mapping

Release 4.0 has a new facility for wildcard pathnames. As part of this, a new concept was
introduced, that of mapping one wildcard pathname into another. In addition, three new messages
were provided for fs:pathname.

In handling wildcard pathnames, you have to understand what it means to specify wildcards for
both source and destination pathnames. For example, what does it mean to ask to copy *foo®.lisp
to *bar®.lisp? In order to determine what it means, you need these two pathnames, called the
source and target patterns, and a third pathname that is the starting instance. From these three

. ingredients, the system fashions the target pathname:

Source pattern: f:>fied>®01d=.11sp

Target pattern: vx:/usr2/fum/*olders.1
Starting instance: f:>fie>--01dfoo.1isp
Target instance: vx:/usr2/fum/--olderfoo.1

A more abstract description of this terminology:

Source pattern A pathname containing wild components.

Target pattern A pathname containing wild components.

Source instance A pathname that matches the source pattern.

Target instance A pathname specified by applying the common sequences between the source
and target patterns to the source instance.

Two Zmacs commands now accept pairs of wildcard file specs (see section 5.3.1, beginning on
p. 88).

Copy File
Rename File

The components of the target instance are determined component-by-component for all
components except the host. (The host component is always determined literally from the source
and target patterns; it cannot be wild.) The mapping of pathnames is done in the native case of
the target host. The source pattern and source instance are coerced to the target host via the
:new-default-pathname message (p. 16 before the mapping takes place. When the type of the
target pattern is :wild, it uses the canonical type for the target, regardless of the surface form for
the type in the source pattern and instance.

This facility does not offer "true" wildcard mapping of directories. The semantics of wildcard
mapping when hierarchical directories are involved would not be well defined. The directory
component of a target pattern can be either :wild or a literal.

Remember!
In the Lisp Machine file system, * as the directory portion of a file spec specifies a

relative pathname. You must use ** to indicate a wild directory component (see
section 4.2.2, p. 75).

Here are the rules used in constructing a target instance, given the source and target patterns and
a particular source instance. This set of rules is applied separately to each component in the
pathname. In the mapping rules, a * character as the only contents of a component of a file spec
is considered to be the same as the keyword symbol :wild. The rule uses the patterns from the
example above.

January 1983 27 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

1. If the target pattern does not contain *, copy the target pattern component literally to
the target instance.

2. If the target pattern is :wild, copy the source component to the target literally with
no further analysis. The type component is handled somewhat differently — when
source and target hosts are of different system types, it uses the canonical-type
mechanism to translate the type. ‘

3. Find the positions of all * characters in the source and target patterns. Take the
characters intervening between * characters as a literal value. Literal values for the
name component:

Source: old
Target: older

4. Find each literal value from the source pattern in the source instance. Take the
characters intervening between literal values as a matching value for the * from the
source pattern. The matching value could be any number of characters, including
zero. Matching values for the name component:

-- and foo

S. Create the component by assembling the literal and matching values in left to right
order, substituting the matching values where * appears in the target pattern. For the
name component:

--olderfoo

When not enough matching values are available (due to too few * in the source
pattern) use the null string as the matching value. When the source pattern has too
many *, ignore the first extra * and everything following it.

Some examples:

Source pattern Source instance Target pattern Target instance

sreport 6802-report tsummary 6802-summary
Imfs-* Imfs-errors * Infs-errors
1= 1 1= 1

1 Tisp 1 1isp

OoLD-DIR OLD-DIR NEW-PLACE NEW-PLACE

= doc s-extract doc-extract
doc doc doc-extract doc-extract

A set of new messages to fs:pathname manipulate wildcard pathnames.

:pathname-match candidate-pathname &optional (match-host t) to Method
fs:pathname
:pathname-match determines whether candidate-pathname would satisfy the wildcard
pattern of the pathname receiving the message. (The pathname receiving the message is
assumed to be one that would satisfy :wild-p.) It compares corresponding components in
the pattern pathname and candidate-pathname. 1t returns nil when candidate-pathname
does not satisfy the pattern; otherwise it returns something other than nil.

match-host determines whether it requires the host component of the pattern to match as
well. When match-host is nil, it ignores the host component. By default, it does require
that the host component match.

A pattern pathname containing no wild components matches only itself.

Symbolics, Inc. v 28 January 1983

Release 4.0 Release Notes Symbolics, Inc.

stranslate-wild-pathname rarger-pattern-pathname starting-pathname to Method
fs:pathname
stranslate-wild-pathname produces a new pathname based on starting-pathname and the
analogies between the pathname receiving the message and targer-pattern-pathname.

stranslate-wild-pathname examines the correspondences between farger-pattern-pathname
and the pathname receiving the message. It then does whatever is necessary to
starting-pathname to transform it into the target pathname.

It checks to be sure starting-pathname matches the pathname receiving the message and
signals ferror if they do not match. A standard way for generating starting-pathname is
to send :directory-list to the source pattern pathname to generate a set of starting
pathnames.

:wild-p to fs:pathname ‘ ; Method
swild-p is a predicate that determines whether the pathname is syntactically a wildcard
pathname. For file spec strings, this means that the character * appears anywhere in the
value of any component; for pathname objects, it means that a component is :wild or
contains the character *.

Value Meaning
nil No component of the name is syntactically a wildcard.
not nil One or more components of the name are syntactically wild. The

actual value in this case is the symbol for the most significant wild
component: :device, :directory, and so on.

2.2.5 New function: prompt-and-read

prompt-and-read type format-string &rest format-args
prompt-and-read prompts the user, with formar-string and its arguments as the prompt.
It uses format to query-io to produce the prompt; it reads from the query-io stream,
calling the reading function associated with the zype keyword. It returns whatever it
reads.

This is an appropriate function to call for collecting input from the user. Its main
advantages are that it does type checking on the input and takes care of redisplaying the
prompt at appropriate times (for example, after the screen has been refreshed or after a
notification arrives).

(prompt-and-read ’: number 'PIease enter a number: *) =>

Please enter a number: 4

4

(prompt-and-read °:string “Please enter a string: ") =>

Please enter a string: 4 . s

l‘.

It expects to collect input of type type, where type is a keyword. It checks the type of
the input and gives the user an opportunity to correct input of the wrong type. It
handles the following types of input:

Option What terminates input

seval-form Reads a Lisp form. Evaluates it and returns the first value.

January 1983 29 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

seval-form-or-end Reads a Lisp form or just END. Evaluates it and returns the first value
for a form. Returns two values, nil and #\end, for END.

:expression Reads a Lisp expression. (It returns the expression without evaluating
it.)

:number Reads and returns a number, terminated by SPACE or RETURN.

:pathname Reads a pathnaine, merging it with defaults. (See the example below

for supplying the defaults.)

sstring Reads a string terminated by RETURN. It returns the empty string
when the string is empty.

sstring-or-nil Reads a string terminated by RETURN. It trims any leading or trailing
white space. It returns nil when the string is empty.

sstring-trim Reads a string terminated by RETURN. It trims any leading or trailing
white space. It returns the empty string when the string is empty.

The type argument can be a list in which the first argument is the type option and the
rest are keyword/value pairs to serve as arguments to the reading function. In
Release 4.0, only the :pathname type uses this kind of syntax, in order to pass in
pathname defaults for merging.

(prompt-and-read ‘(:pathname :defaults ,my-defaults-alist)

*Enter a name (default is ~A) "
(fs:default-pathname my-defaults-alist))

Streams are permitted to have a handler for :prompt-and-read messages. The
prompt-and-read function first determines whether the query-io stream handles the
:prompt-and-read message. If so, it sends a :prompt-and-read message with its own
arguments on to the stream. The stream returns several values. The first value the
stream returns says whether or not it wants to handle the interaction with the user itself.
It returns nil to indicate that it declines to handle the message, in which case the
prompt-and-read function continues its normal action of prompting the user. When the
first value is not nil, the prompt-and-read function returns the rest of the values to its
caller.

2.2.6 New message to streams: :string-in

:string-in eof string &optional (start 0) end to si:input-stream Method
sstring-in is a stream input operation for reading characters from an input stream into
string, using the substring delimited with start and end. The :string-in message is not
currently available for streams that do input from windows (for example, the keyboard);
this will be changed in a future release.

As usual with strings, start defaults to 0 and end defaults to the length of the string.
The difference between end and start constitutes a character count for this operation.

eof specifies stopping actions.

Symbolics, Inc. 30 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Value Meaning

nil Reading characters into the string stops either when it has transferred
the specified character count or when it reaches end-of-file, whichever
happens first. For strings with a fill pointer, it sets the fill pointer to
point to the location following the last one filled by the read.

not nil If the end-of-file is encountered while trying to transfer a specific
number of characters, it signals sys:end-of-file, with the value of eof
as the report string.

sstring-in returns two values. The first value is one greater than the last location of
string into which it stored a character. The second value is t if it reached end-of-file and
nil if it did not. Using :string-in at the end of a file has the following effect: it returns
0 and t and sets the fill pointer of string to start (if string has a fill pointer).

For example, suppose the file my-host:>george>tiny.text contains "Here is some tiny text.".
(setq string (make-array 100 ’:type ‘art-string °*:fill-pointer 0))

(with-open-file (stream "my-host:>george>tiny.text™)
(send stream ’:string-in nil string))
23

string => "Here is some tiny text."

2.2.7 New facllity: asynchronous characters

Programs can now interpret keyboard input asynchronously, that is, as soon as the character is
typed, even if the program is still processing previous input. A special system process called the
keyboard process calls a user-defined function as soon as the key is pressed. The main process of
the program is left undisturbed. This function runs in parallel with the main program and could
communicate with it. '

Asynchronous character handling is available to any window that includes tv:stream-mixin. The
window has a list that associates keyboard characters with functions. The default list contains
c-ABORT, c—BREAK, c-m—-ABORT, and c-m—BREAK. (See :asynchronous-characters, p. 31.)

The keyboard process checks each character coming in to see if it is defined as an asynchronous
character for the selected window. When it is, the keyboard process calls the associated function
in the context of the keyboard process.

The function that runs as a result of an asynchronous character is running in the keyboard
process. It is called with two arguments, the character and self. It should be very short and
must not do any IO. An error in one of these functions would break the keyboard process and
the keyboard along with it and you would have to warm boot. To avoid any possibility of errors,
you can have the function create a new process with process-run-function and make the new
process handle the real work.

Windows with asynchronous character handling handle the following messages.
:asynchronous-character spec-plist (for tv:stream-mixin) Init Option
Specifies the asynchronous characters for the window. spec-plist is a list of specs, each of

which is a list containing a character name and a function spec. The following default
asynchronous characters are defined for tv:stream-mixin:

January 1983 , 3 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Note&

(:default-init-plist :
:asynchronous-characters °*((#\c-abort kbd-asynchronous intercept-character)
(#\c-m-abort kbd-asynchronous-intercept-character)
(#\c-break kbd-asynchronous-intercept-character)
(#\c-m-break kbd-asynchronous-intercept-character)))

:asynchronous-character-p character to tv:stream-mixin Method
Returns non-null when character is an asynchronous character for this window.

shandle-asynchronous-character character to tv:stream-mixin Method
Finds the function associated with character in the asynchronous characters list. It calls
the function with two arguments, character and self. This is mainly for use by the
Keyboard Process although user processes can use it also.

:add-asynchronous-character character handler to tv:stream-mixin Method
Defines a new asynchronous character for the window. character is the character to be
treated asynchronously and handler is the function to be called (with two arguments). It
checks the types of the arguments.

:remove-asynchronous-character character to tv:stream-mixin ‘ Method
Removes an asynchronous character from the list for the window.

2.2.8 New macros: with-open-file-case, with-open-stream-case

Two new macros provide hybrids of with-open-stream and condition-case. These support error
handling for streams and files. These are similar to with-open-file and with-open-stream except
that they have a set of condition clauses instead of a body. If an error is signalled, the first
argument takes on the condition object as its value. Refer to Signalling and Handling Conditions
for further information.

with-open-file-case (variable pathname . options) &rest clauses Macro
with-open-file-case opens a file, binding the input stream to variable, using the pathname
and options given in the arguments. In the following example, it executes the first clause
when the file is not found. When the file is found without error, it executes the second
clause, which is the real reason for trying to open the file in the first place.
(Q1th-open-f11e-case (x "f:>dla>foo.1isp” ’:direction ’:input)
(fs:file-not-found (send x ’:report error-output))
(:no-error (stream-copy-until-eof x standard-output)))
Any errors other than file-not-found (for example, access violations or an unresponsxve
host) cause an error to be signalled normally.

with-open-stream-case - (variable stream-creation-form) &rtest clauses ' Macro
with-open-stream-case opens a stream and binds it to variable, using :
stream-creation-from to create it. It then executes whichever clause is appropriate, given
the condition that resulted from the attempt to create the stream. Refer to the example
shown for with-open-file-case. :

Symbolics, Inc. 32 January 1983

J

Release 4.0 Release Notes Symbolics, Inc.

2.2.9 New global stream: debugflo

The Debugger uses the new stream debug-io for all of its output and interactions. This stream is
initially a synonym stream for terminal-io. debug-lo replaces eh:error-handler-io, which is now
obsolete.

The previous debugger stream, error-output, is now to be used only for warnings. It does not
handle input operations. You can bind it to an output-only stream.

2.2.10 New stream facility for editor buffers

A new facility is available for doing I/O from streams based on Zmacs buffers.
zwel:open-editor-stream opens a stream to an editor buffer; it is analogous to open for files.
zwel:with-editor-stream opens a bidirectional stream to an editor buffer; it is analogous to
with-open-file for file I/0.

2.2.10.1 New macro: zwel:with-editor-stream

zwei:with-editor-stream (name options) body ... Macro

zwei:with-editor-stream opens a bidirectional stream called name to a buffer, which is
designated in one of the following ways:

an interval

a buffer name

a Zwei window

a pathname
It takes the same keyword options as zwel:open-editor-stream. See the list of options
starting on p. 34.

On exit, it sends a :force-redisplay message to the stream, which causes the editor to-do
any necessary redisplay.

2.2.10.2 New function: zwei:open-editor-stream

zwel:open-editor-stream options
zwel:open-editor-stream is used by zwei:with-editor-stream. You might sometimes
need to call it directly for doing operations that need not be in the scope of a "with"
form (for the same reasons that you would use open instead of with-open-files for file
1/0). For example, you would use this in conjunction with with-open-stream-case for
appropriate error signalling.

It takes the same keyword options as zwel:with-editor-stream. See the list of options
starting on p. 34.

You can send a :force-redisplay message at any time while the stream is open.

2.2.10.3 Keyword options
zwel:with-editor-stream and zwel:open-editor-stream both recognize the same set of keyword
options. Some of the options are mutually exclusive and some are interdependent.

You specify where to find the text by using one of the following keywords, whichever is
appropriate to the situation. The keywords appear here in priority order. When the function

January 1983 33 Symbolics, Inc.

Symbolics, Inc. : Release 4.0 Release Notes

options specify several of these, one from the top of the list overrides one from further down in
the list, regardless of what order the keywords appear in the options list.

sinterval
sbuffer-name
:pathname
:window
sstart

The options refer to an object called a bp. This is a Zwei data structure for representing a
particular position in a buffer.

Option Values and meaning

sbuffer-name The full name of a buffer to use for the stream.
(2wei:with-editor-stream
(foo *:buffer-name (send zwei:*interval* ’:name))
S
The buffer does not need to exist (see :create-p). The following example
creates a Zmacs buffer named temp and opens the stream foo to it.
(Zwei:with-editor-stream (foo "temp”)

.-)

:create-p Specifies what to do when the buffer does not exist. This applies only in

conjunction with :buffer-name or :pathname with :load-p.

Value Meaning

:ask Queries the user before creating the buffer.

serror Signals an error and provides proceed types for creating it or

supplying an alternate.

t Creates the buffer.

:warn Notifies the user that a buffer is being created (the default).
:defaults Specifies the pathname defaults against which a :pathname option would be

merged. These are necessary in case reprompting needs to occur. The default
is nil, meaning to use the default defaults. This option applies only in
conjunction with :pathname.

zend Specifies the conditions for terminating the stream (the "end of file" condition).
Value Meaning
bp Stops when this buffer bp is reached.
zend Stops at the end of the buffer (the default). This applies only
if :start was also a bp. :
:mark Stops when it reaches the mark. This option requires that you
use the :window option as well. ,
:point Stops when it reaches point. This option requires that you use
the :window option as well.
chack-fonts Specifies how to treat font shifts in the buffer.
Value Meaning
nil Ignores font shifts (the default).
t Provides full font support. Encodes font shifts on both input
and output using epsilons, as would go to a file.
sinterval Specifies a Zwei interval to use for the stream.
kill Specifies what to do with the buffer before using it as a stream.

Symbolics, Inc. 34 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Value Meaning
nil No action (the default)
t Deletes all the text currently in the designated part of the
buffer.
zload-p Specifies whether to read the file specified by :pathname into the editor before

using the buffer as a stream. (This is analogous to Find File in Zmacs.) This
works only from within Zmacs.

Value Meaning
nil No action (the default)
t Loads the file into the editor.
sordered-p States whether :start and :end are guaranteed to be in forward order. The
default is nil. This applies only when :start and :end are bps or :point and
smark.
:pathname Specifies a pathname to use for the stream. This can be a pathname object or
any file spec that can be coerced to a pathname by fs:parse-pathname.
sstart Specifies where to start the stream with respect to the buffer contents.
Value Meaning
:append Starts at the end of the buffer. (Same as :end.)
cbeginning Starts at the beginning of the buffer.
bp Starts with this bp.
:end Starts at the end of the buffer (the default). (Same as
:append.)
:mark Starts at the mark, which does not move as a result. This
: requires a Zmacs window.
:point Starts at point, which does not move as a result. This requires
that you use the :window option as well.
:region Starts at point and ends at mark (or vice versa, depending on

the ordering). This requires that you use the :window
option as well. It ignores any :end in this case.

:window Specifies a Zmacs window as the stream source.

with-editor-stream does not currently interlock to prevent simultaneous access to a single buffer
by multiple processes. Neither does anything else. Trying to access the same buffer with several
processes simultaneously is not guaranteed to work.

2.2.11 New type: null

Lisp now recognizes a new type called null. The only value that has this type is nil. For
example, when x is nil:

(typep nil ’null) ==> t
(setq x nil)
(typep x °'null) ==> t

This is compatible with the current Common Lisp design.

January 1983 35 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.2.12 New function: let-globally-if

let-globally-if predicate varlist &body body... Macro
let-globally-if is like let-globally (Lisp Machine Manual, p. 17). It takes a predicate
form as its first argument. It binds the variables only if predicate evaluates to something
other than nil. body is evaluated in either case.

2.2.13 Reader macro for infix expressions

#4¢ is a reader macro that turns infix expression syntax into regular Lisp code. It is intended for
people who like to use traditional arithmetic expressions in Lisp code. It is not intended to be
extensible or to be a full programming language. We do not intend to extend it into one.
(defun my-add (a b) . '
#oa+b?)

The quoting character is backslash. It is necessary for including special symbols (such as -) in
variable names. '

! reads one Lisp expression, which can use this reader-macro inside itself.
#o supports the following syntax:
Delimiters Begin the reader macro with #¢, complete it with o.

‘ #oa+b-co

Escape characters '

Special characters in symbol names must be preceded with backslash (\). You
can escape to normal Lisp in an infix expresswn, precede the Lisp form with
exclamation point (1).

Symbols Start symbols with a letter. They may contain digits and underscore characters.
Any other characters need to be quoted with \.
Operators It accepts the following classes of operators. Arithmetic operator precedence is
like that in FORTRAN and PL/L
Operator Infix Lisp Equivalent
Assignment x:y (setf x y)
Functions f(x,y) ' (f x y) - also works for
defstruct accessors, etc.
Array ref afi,j] (aref a i j)
Unary ops + - not same
Binary ops +-*/~=#£<<>2and or same
Conditional if p then ¢ - ({fpc)
if p then c else a (ifpca)
Grouping: (a, b,¢) (progn a b ¢) - even works for
(1+2)/3

The following example shows matrix multiplication using an infix expression.

Symbolics, Inc. 36 January 1983

Release 4.0 Release Notes Symbolics, Inc.

{defun matrix-multiply (a b)
(let ((n (array-dimension-n 2 a)))
(unless (= n (array-dimension-n 1 b))
(ferror "Matrices ~S and ~S do not have compatible dimensions®) a b)
(let ((dl (array-dimension-n 1 a))
(d2 (array-dimension-n 2 b)))
(let ((c #¢ make\-array(list(dl, d2), !’:type, art\-float)¢))
(dotimes (1 dl)
(dotimes (J d2)
#6 c[1,3] : !'(loop for k below n sum #¢ a[1i,k]*b[k,J] ¢)¢))
c))))

The line containing the infix expression could also have been written like this:
(let ((sum 0))
(dotimes (k n) #¢ sum:sum+af[i,k]*b[k,J] ¢)
#6 c[1,3]:sum ¢)

2.2.14 New arguments to :insert-char, :delete-char, :insert-line, and :delete-line

The window system messages :insert-char, :delete-char, :insert-line, and :delete-line now accept
a second optional argument. It specifies the units as either :character or :pixel. The default is
:character, which gives the coordinates in character widths and line heights for the window.

(The meaning of character widths and line heights is the same as for :set-cursorpos. See
Introduction to Using the Window System.)

2.2.15 New property functions for flavors

si:flavor-default-init-putprop flavor value property
si:flavor-default-init-putprop is just like putprop except that its first argument is either
a flavor structure or the name of a flavor. It puts the property on the default init plist
of the specified flavor.

si:flavor-default-init-get flavor property :
si:flavor-default-init-get is just like get except that its first argument is either a flavor
structure or the name of a flavor. It retrieves the property from the default init plist of
the specified flavor. You can use setf:

(setf (si:flavor-default-init-get f p) x)

si:flavor-default-init-remprop flavor property ;
si:flavor-default-init-remprop is just like remprop except that its first argument is
either a flavor structure or the name of a flavor. It removes the property from the
default init plist of the specified flavor. ‘

2.2.16 New keyword: :fill-pointer

:fill-pointer A keyword for make-array. It causes make-array to give the array a fill
pointer and initializes it to the value following the keyword. Use this instead
of :leader-length or :leader-list when you are using the leader only for a fill
pointer. This keyword is compatible with the current Common Lisp design,
which has no array leaders.

January 1983 37 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.2.17 New variable: complier:compiler-verbose

compiler:compiler-verbose Variable
The compiler displays a message (using standard-output) each time it starts compiling a
function when the value is t. The default value is nil.

2.2.18 New special form: undefun-method

undefun-method function-spec Special Form
undefun-method undoes the effect of defun-method in the same way that undefmethod
undoes the effect of defmethod. (See Lisp Machine Manual, p. 297.) This is a special
form, not a function, so function-spec is not evaluated.

2.2.19 New defflavor option: :abstract-flavor

:abstract-flavor is a new option to defflavor. It declares that the flavor exists only to define a
protocol; it is not intended to be instantiated by itself. Instead, it is intended to have more
specialized flavors mixed in before being instantiated.

Trying to instantiate an abstract flavor signals an error.

:abstract-flavor is an advanced feature that affects paging. It decreases paging and usage of
virtual memory by allowing abstract flavors to have combined methods. Normally, only
instantiated flavors get combined methods, which are little Lisp functions that are automatically
built and compiled by the flavor system to call all of the methods that are being combined to
make the effective method. Sometimes many different instantiated flavors use the same
combination of methods as each other. If this is the case, and the abstract flavor’s combined

~ methods are the same ones that are needed by the instantiated flavors, then all instantiated
flavors can simply share the combined methods of the abstract flavor instead of having to each
make their own. This sharing improves performance because it reduces the working set.

compile-flavor-methods is permitted on an abstract flavor. It is useful for combined methods
that most specializations of that flavor would be able to share. This was one reason for this
change. Without the :abstract-flavor declaration, compile-flavor-methods warned you about
the flavor not being one that could be instantiated.

2.2.20 New functions: fs:enable-capabilities, fs:disable-capabilities

fs:enable-capabilities host &rest capabilities
fs:enable-capabilities is a host-independent mechanism for enabling the privileges
required on a remote host for certain kinds of file or directory manipulation (for example,
creating a new directory).

(fs:enable-capabilities “comet® "bypass®*)

The capabilities argument consists of strings that name the specific capabilities to enable.
The capability names are host-dependent. The defaults are those appropriate to a
particular type of host. For example,

Symbolics, Inc. 38 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Host Defaults
TOPS-20 WHEEL and OPERATOR
VAX/VMS SYSPRV

It returns an alist with elements of the following form:
(capability-name . status)

Each element of the alist is a string naming a capability that you have the right to
enable. sratus is t or nil to indicate whether it is currently enabled.

When the file job needs to open a second connection to a host that has capabilities
enabled, the second connection also has capabilities enabled. When an enabled file job
loses its connection and reconnects, the capabilities are reenabled.

The editor command Enable Host Capabilities provides an alternate interface to this
function (see section 5.2.1.5, p. 86).

fs:disable-capabilities /ost &rest capabilities
fs:disable-capabilities is a host-independent mechanism for disabling the privileges
required on a remote host for certain kinds of file or directory manipulation (for example,
creating a new directory). ‘

The capabilities argument consists of symbols that name the specific capabilities to
disable. The capability names are host-dependent. The defaults are those appropriate to
a particular type of host. It returns an alist with elements of the following form:

(capability-name . status)
capability-name is a string; sratus is t or nil.

The editor command Disable Host Capabilities provides an alternate interface to this
function (see section 5.2.1.5, p. 86). '

2.2.21 New message: :draw-circular-arc

:draw-circular-arc center-x center-y radius start-theta end-theta &optional Method
(alu char-aluf) to tv:graphics-mixin
Draws a circular arc for the circle centered at center-x, center-y with radius radius. It
draws the part of the circle swept counterclockwise from the starting angle to the
finishing angle. The angles are assumed to be in radians and are reduced mod 2pi before
drawing. For example, drawing from pi/4 to -pi/4 draws a "C". The same "C" appears
when you draw from pi/4 to 7pi/4.

For tv:alu-xor, the behavior with respect to points that would fall on the same pixel is
not defined.

2.2.22 New message: :draw-closed-curve

:draw-closed-curve x-array y-array &optional end (alu char-aluf) to Method
tv:graphics-mixin
:draw-closed-curve draws a sequence of connected line segments, using the points in
x-array and y-array as the x and y coordinates for the end-points of the lines. It ensures
that each particular point is drawn only once, which is necessary for producing a

January 1983 39 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

connected line with tv:alu-xor. It plots the points in the arrays until end elements or
until it encounters nil in either of the arrays. The default for end is the length of
x-array. alu specifies how the pixels being drawn combine with those already there. The
default alu is char-aluf for the window. It plots the points in the arrays until end
elements or until it encounters nil in either of the arrays.

:draw-closed-curve is the same as :draw-carve (see Introduction to Using the Window
System) except that it closes the figure by joining the first and last points.

2.2.23 New message: :draw-dashed-line

:draw-dashed-line from-x from-y to-x to-y &optional (alu char-aluf) (dash- Method

spacing 20.) space-literally-p (offset 0) dash-length to
tv:graphics-mixin
:draw-dashed-line draws a dashed line along the line lying between two points. All the
dashes are the same length; all the spaces between the dashes are the same length. (The
spaces, however, need not be the same length as the dashes). The spacing and lengths of
the dashes are controlled by separate arguments.

alu Controls how the pixels being drawn combine with pixels already in the
window. The default is the char-aluf for the window.

dash-spacing Specifies the distance from the beginning of one dash to the beginning
of the next dash. It is expressed in pixels. The default is 20. (The
spacing between dashes is dash-spacing minus dash-length.) This
specifies the "frequency” of the line.

space-literally-p Controls what happens when the distance between the points, given the
specified spacings, would not produce a full-size dash connected to the
endpoint.
The default value, nil, allows the size of dash-spacing to be adjusted
slightly so that the dashes are all of equal size and both endpoints look
the same, as far as dash length goes. In this case, the dash-length is
always exactly half of the dash-spacing; any values for offset and
dash-length are ignored.
The value t means to use dash-spacing exactly, with no adjustment.
The endpoint might or might not have a dash connected to it,
depending on the exact distances involved.

offset Specifies a distance (in pixels) from the starting point (from-x, from-y)
for the beginning of the first dash. This lets you control the "phase" of
the dashed line.

dash-length Specifies the length of the line segments, in pixels. It must be less than
dash-spacing. This lets you control the "duty cycle" of the line.

You can make complex dashing by using :draw-dashed-line many times with
space-literally-p as t. For example:
(progn

(send terminal-io ’:draw-dashed-line 0 0 200. 200. tv:alu-ior 25. t 0 10.)

(send terminal-io ’:draw-dashed-line 0 0 200. 200. tv:alu-ior 25. t 15. 5.))
This gives you alternating long and short dashes. Because the nil value for
space-literally-p changes the spacing, this technique does not work well when
space-literally-p is nil.

Symbolics, Inc. 40 January 1983

Release 4.0 Release Notes ' Symbolics, Inc.

2.2.24 New message: :draw-string

:draw-string string from-x from-y &optional (toward-x (I+ from-x)) Method
(toward-y from-y) (stretch-p nil} (font (sheet-current-
Jont self)) (alu char-aluf) to graphics-mixin
:draw-string draws a character string between two points. It returns the location of the
last character printed.

The string can contain either normal printing characters or art-fat-string characters with
font change codes. The left baseline point of each character lies on the line between the
two points defined by from-x, from-y and toward-x, toward-y. 1t uses the baseline rather
than the upper-left corner to ensure that strings with mixed fonts line up properly.

The string is always written from left to right, starting at the leftmost point, regardless of
whether that is the first point or the second point. When the string is longer than the
line between the points, the full string appears anyhow.

toward-x, toward-y
Controls the direction in which printing takes place. The default
values specify ordinary horizontal output.

(send (tv:window-under-mouse) *:draw-string
*hi there" 600 50)

stretch-p Controls the spacing of the characters. When it is nil (the default),
the characters appear literally, with no change to the spacing.
Otherwise, the distance between the characters is adjusted so that the
string starts and ends as close to the two points as possible.

font Specifies the font to use. The default is the current font for the
window.
alu Controls how the pixels being drawn combine with pixels already in the

window. The default is the char-aluf for the window.

This meésage is useful for placing text at absolute screen positions (as opposed to treating
the window as a stream), for labelling graphs, or for putting text into pictures.

2.2.25 New function: sys:%slide

sys:%slide initial-half-wavelength delta-half-wavelength delta-time duration
sys:%slide is a function for producing sound using the keyboard audio. It is like
sys:%beep but changes the wavelength by delta-half-wavelength every delta-time
microseconds. It can produce ascending or descending tones, depending on the sign of
delta-half-wavelength.
(sys:%slide 0 50 10000 1000000) =>
4950 :

(sys:%s1ide 5000 -50 10000 1000000) =>
50

It returns the final half-wavelength, for use in composite effects.

All of the arguments must be small fixnums. Only delta-half-wavelength can be negative.
When this function is running, it uses the entire processor.

January 1983 41 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.2.26 New function: signum

signum value
signum is a function for determining the sign of its argument.
(signum -2.5) => -1.0
(signum 3.9) => 1.0
(signum 0) => 0
-(signum 59) => 1

The definition is compatible with the current Common Lisp design.

2.2.27 New function: string-capitalize-words

string-capitalize-words string &optional (copy-p)
Transforms string by changing hyphens to spaces and capitalizing each word.
(string-capitalize-words "Lisp-listener®) => *Lisp Listener"
(string-capitalize-words "LISP-LISTENER") => “Lisp Listener"

(string-capitalize-words "1isp--listener®) => "Lisp Listener"
(string-capitalize-words "symbol-processor-3") => "Symbol Processor 3"

copy-p indicates whether to return a copy of the string argument or to modify the
argument itself. The default, t, returns a copy.

2.2.28 New function: parse-number

parse-number string &optional (from 0) (1o nil) (radix nil) (fail-if-not-whole-string nil)

parse-number takes a string and "reads" a number from it. It returns two values: the
number found (or nil) and the character position of the next unparsed character in the
string. It returns nil when the first character that it looks at cannot be part of a
number. The function currently does not handle anything but integers.
(read-from-string is a more general function that uses the Lisp Reader;
prompt-and-read, p. 29 reads a number from the keyboard.)

(parse-number "123 *) => 123 3

(parse-number * '123*) => NIL O

(parse-number "-123") => -123 4

(parse-number ®25.3") => 25 2

(parse-number "$$$123" 3 4) => 1 4

(parse-number *123$$$" 0 nil nil nil) => 123 3

(parse~-number *123$$%" 0 nil nil t) => NIL O

Four optional arguments:
Jrom The character position in the string to start parsing. The default is the
first one, position O.

] The character position past the last one to consider. The default, nil,
means the end of the string.

radix The radix to read the string in. The default, nil, means base 10.

Jail-if-not-whole-string
The default is nil. nil means to read up to the first character that is
not a digit and stop there, returning the result of the parse so far. t
means to stop at the first non-digit and to return nil and O length if
that is not the end of the string.

Symbolics, Inc. 42 ' January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.2.29 New dump function: sys:dump-forms-to-file

sys:dump-forms-to-file file forms-list &optional attribute-list
sys:dump-forms-to-file writes data to a file in binary form. forms-list is a list of Lisp
forms, each of which is dumped in sequence. It dumps the forms, not their results. The
forms are evaluated when you load the file.

For example, suppose & is a variable bound to any Lisp object, such as a list or array.
The following example creates a compiled code file that recreates the variable a with the
same value:

(sys:dump-forms-to-file "f:>foo>aval®
(list ‘(setq a ,a)))

This function is a generalization of the functions compiler:fasd-symbol-value,
compiler:fasd-font, and compiler:fasd-file-symbol-properties (Lisp Machine Manual,
p. 207). (compiler:fasd-file-symbol-properties has been removed from the system.)
For the purposes of understanding what this does, you can consider that it is the same as
the following:
(defun sys:dump-forms-to-file (file forms)
(with-open-file (s file *:direction ’:output)

(dolist (f forms)
(print f s))))

The real definition writes a binary file so it will load faster. It can also dump arrays,
which you cannot write to a Lisp source file. :

attribute-list supplies an optional attribute list for the resulting compiled code file. It has
basically the same result when loading the binary file as the file attribute list does for
qc-file. Its most important application is for controlling the package that the file is
loaded into. :

(sys:dump-forms-to-file “foo" forms-1ist °(:package “user"})

This function makes compiler:fasd-symbol-value obsolete.

old: (compiler:fasd-symbol-value)
New: (sys:dump-forms-to-file ‘((setq ,sym *,val)) ...)

2.2.30 New special forms: with-stack-list and with-stack-list®

The new special forms with-stack-list and with-stack-list* are subprimitives. They cons lists on
the control stack so that when you are finished, the lists are popped off without leaving any
garbage. This is essentially giving you access to the mechanism that &rest arguments use.
Because these are on the control stack, you cannot return the lists that they cons, use rplaca or
rplacd with them, or place references to them in permanent data structures.

with-stack-list (variable &rest list-elements) body Special Form
with-stack-list is used to bind a variable to a list and evaluate some forms in the context
of that binding. It is like let (in that it binds a variable) except that it conses the list on
the stack.

January 1983 43 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

(with-stack-1ist (var elementl element2...elementn)
body)

is like

(let ((var (1ist elementl element2...elementn)))
body)

with-stack-list* (variable &rest list-elements) body Special Form
with-stack-list® uses list® instead of list. See Lisp Machine Manual, p. 57, for a
description of list®.
(with-stack-1ist* (var elementl element2...elementn)
body)
is like
(let ((var (1ist* elementl element2...elementn)))
body)

2.2.31 New functions: location-makunbound and location-boundp

location-makunbound and location-boundp are versions of makunbound and boundp that can
be used on any cell in the Lisp Machine. They take a locative pointer to designate the cell rather
than a symbol. (makunbound is restricted to use with symbols.) The following two calls are
equivalent:

(location-boundp (locf a))

(variable-boundp a)
The following two calls are also equivalent. ‘When a is a special variable, they are the same as
the two calls in the preceding example too.

(1ocation-boundp (value-cell-location ’a))
(boundp ‘a)

2.2.32 New optional arguments to string-search

string-search and string-reverse-search both accept two new optional arguments. These allow
you to specify a substring of the search key. That is, instead of using the whole search key, you
can use part of it. The default is to use the whole search key so this change is completely
upward compatible. The new argument lists are as follows:

string-search key string &optional (from 0) to (key-start 0) key-end
string-reverse-search key string &optional (from 0) to (key-start 0) key-end

2.2.33 New type of method combination: :append

:append is a new type of simple method combination (see the Lisp Machine Manual, p. 307). All
the component methods are called as arguments to append. It expects each of the methods to
return a list; the final result is the result of appending all these lists. No typed methods are
allowed.

Symbolics, Inc. 4 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.2.34 New type of method combination: :nconc

:nconc is a new type of simple method combination (see the Lisp Machine Manual, p. 307). All
the component methods are called as arguments to nconc. It expects each of the methods to
return a list; the final result is the result of concatenating these lists. No typed methods are
allowed.

2.2.35 New type of method combination: :case

:case is a new type of method combination that takes a subsidiary message name. It dispatches
on this message name just as the original message name caused a primary dispatch. This facility
is used in the condition handling system. (See Signalling and Handling Conditions.)
(defmethod (sys:subscript-out-of-bounds :case :proceed :new-subscript)
(&optional (sub (prompt-and-read °®:number
*Subscript to use instead: ")))
*Supply a different subscript®
(values °’:new-subscript sub))

(send obj ’:proceed ®’:new-subscript new-sub)

2.2.36 evalhook accepts optional apply hook argument

The evalhook function now accepts an optional third argument, an apply hook. (See the
explanation of evalhook in the Lisp Machine Manual, p. 466.)

Normally after eval has evaluated the arguments to a function, it calls the function. If an apply
hook exists, however, eval calls the hook with two arguments: the function and its list of
arguments. The values returned by the hook constitute the values for the form. The hook could
use apply on its arguments to do what eval would have done normally. This hook is active for
special forms as well as for real functions.

Whenever either an evalhook or applyhook is called, both hooks are bound off. The evalhook
itself can be nil if only an applyhook is needed.

The applyhook catches only apply operations done by eval. It does not catch apply called in
other parts of the interpreter or apply or funcall operations done by other functions such as
mapcar. In general, such uses of apply can be dealt with by intercepting the call to mapcar,
using the applyhook, and substituting a different first argument. ‘

The argument list is like an &rest argument: it might be stack-allocated but is not guaranteed to
be. Hence you cannot perform side-effects on it and you cannot store it in any place that does
not have the same dynamic extent as the call to the "applyhook”.

2.2.37 New function: record-source-file-name

record-source-file-name function-spec &optional (type 'defun) no-query
record-source-file-name associates the definition of a function with its source files, so
that tools such as Edit Definition (m—.) can find the source file of a function. It also
detects when two different files both try to define the same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro, defstruct,

January 1983 45 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

defflavor, and other such defining special forms. Normally you do not invoke it
explicitly. If you have your own defining macro, however, that does not expand into one
of the above, then you can make its expansion include a record-source-file-name form.

Junction-spec The function spec for the entity being defined.

type The type of entity being defined, with defun as the default. fype can
be any symbol, typically the name of the corresponding special form for
defining the entity. Some standard examples:

defun
defvar
defflavor
defstruct

Both macros and substs are subsumed under the type defun, because
you cannot have a function named x in one file and a macro named x
in another file.

no-query Controls queries about redefinitions. t means to suppress queries about
redefining. The default value of no-query depends on the value of
inhibit-fdefine-warnings. When inhibit-fdefine-warnings is t,
no-query is t; otherwise it is nil. Regardless of the value for no-query,
queries are suppressed when the definition is happening in a patch file.

You cannot specify the source file name with this function. The function is always
associated with the pathname for the file being loaded (fdefine-file-pathname).

2.2.38 New function: store-conditional

store-conditional replaces the function %store-conditional which was the basic locking primitive
(Lisp Machine Manual, p. 178). It accepts only locative arguments. %store-conditional
continues to exist for compatibility as a macro that expands into store-conditional.

store-conditional behaves like %p-store-contents in that it leaves the cdr code and the flag bit
of the location that is being stored into undisturbed.

2.2.39 Compiler scheme for keeping track of macros

The compiler now records, as part of its debugging-info property, which top-level macros were
expanded in the process of compiling it. This information is used by who-calls and similar
functions. Thus you can now use who-calls for macros. who-calls can also find callers of open-
coded functions, such as substitutable functions. Functions compiled in earlier versions of the
system have not recorded this information; hence who-calls will not be able to find them until
those sources have been recompiled. (See also sys:function-parent, p. 104.)

2.2.40 New features in defstruct

defstruct has three new options: :print, :predicate, and :copier. The :print option allows you to
control the printed representation of a structure. The :predicate option causes defstruct to
generate a predicate that recognizes instances of the structure. The :copier option causes
defstruct to generate a function for copying instances of the structure.

Symbolics, Inc. 46 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.2.40.1 :print option
The :print option gives you implementation-independent control over the printed representation of
a structure.
(defstruct (foo :named
(:print "#<{Foo ~S ~8>" (foo-a foo) (Too-b fo0o0)))

foo-a

foo-b)
The :print option takes a format string and its arguments. The arguments are evaluated in an
environment in which the name symbol for the structure is bound to the structure instance being
printed.

People used to use a named-structure-invoke handler to define :print handlers. This is no
longer necessary; the :print option does it for you.

2.2.40.2 :predicate option
The :predicate option causes defstruct to generate a predicate that recognizes instances of the
structure. The first example defines a single-argument function, foo-p, that returns t only for
instances of structure foo. The second example defines a function called is-it-a-foo?.
(defstruct (foo :named :predicate)
foo-a
foo-b)
(defstruct (foo :named (:predicate is-it-a-foo?))
foo-a
foo-b)
The :predicate option has one optional argument, the name for the function being generated.
The default name for the generated function is formed by appending "-p" to the structure name.

The :predicate option is restricted to work only for named types.

2.2.40.3 :copleroption
The :copier option causes defstruct to generate a function for copying instances of the structure.
(defstruct (foo (:type list) :copier) '

foo-a
foo-b)

This example would generate a function named copy-foo, with a definition approximately like this:

(defun copy-foo (x)
(1ist (car x) (cadr x)))

2.2.40.4 General improvements to defstruct
A number of general improvements have been installed.

* You can use alterant macros on structures whose accessors require additional
arguments. Put the additional arguments before the list of slots and values, in the
same order as required by the accessors.

o The :displace option has been removed. Macros defined by defstruct never displace.

o The :make-array option to defstruct lets you control the initialization of arrays
created by defstruct as instances of structures. make-array initializes the array
before the constructor code does. Therefore any initial value supplied via the new
:initial-value keyword for make-array is overwritten in any slots where you gave
defstruct an explicit initialization.

January 1983 47 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.2.41 New options for defstruct-define-type

defstruct-define-type accepts two new options: :predicate and :copler. The :predicate option
specifies how to construct a :predicate option for defstruct. The :copler option specifies how
copy a particular type of structure.

2.2.41.1 :predicate option
The :predicate option specifies how to construct a :predicate option for defstruct.
(:predicate (description name)
‘(defun ,name (x)
(and (frobbozp x)
(eq (frobbozref x 0)
*,(defstruct-description-name)))))

The syntax for the option follows.

(:predicate (description name)
body)

The variable description is bound to the defstruct-description structure maintained for the
structure we are to generate a predicate for. The variable name is bound to the symbol that is to
be defined as a predicate. body is a piece of code that is evaluated to return the defining form
for the predicate.

2.2.41.2 :copieroption
The :copler option specifies how to copy a particular type of structure for situations when it is
necessary to provide a copying function other than the one that defstruct would generate.

(:copier (description name)
‘(fset-carefully ’,name ’copy-frobboz))

The syntax for the option follows.

(:copier (description name)
body)

description is bound to an instance of the defstruct-description structure, name is bound to the
symbol to be defined, and body is some code to evaluate to get the defining form.

2.3 Improvements

2.3.1 Prompt provided by yes-or-no-p and y-or-n-p

The two "yes or no" functions for querying the user now supply a prompt that indicates which
form of answer (single letter or full word plus RETURN) is required. This prompt is appended to
any message that you supply with the function. (See fquery, p. 22.)

(y-or-n-p "More? *) =>
More? (Y or N) Yes.

(yes-or-no-p "Detonate terminal? ") =>
Detonate terminal? (Yes or No) no

Remove any redundant "(Y or N)" style prompting from your functions.

Symbolics, Inc. 48 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.3.2 Data types returned by numeric functions

Transcendental functions, like sin, that return numeric values now return a value that is the same
type as the type of the argument. That is, for small floating number arguments, they return small
floating number values.

2.3.3 ~$ format directive for floating point
~$ is a previously undocumented format directive for floating point values.

The format for using it follows:
~rdig,ldig, field,padchar$
It expects a flonum argument. The modifiers for ~$ are all optional.

rdig The number of digits after the decimal point. The default is 2.

ldig The minimum number of digits before the decimal point. The default is 1. It
pads on the left with leading zeros.

field The full width of the field to print in. The default is the number of characters
in the output. The field is padded to the left with padchar if necessary.

padchar The character for padding the field if the field is wider than the number. The

default is #\space.
The sign character is to be at the beginning of the field, before the padding,
rather than just to the left of the number.

@ The number must always appear signed.

(format t “~&Pi is ~$" (atan 0 -1)) =>

Pi 1s 3.14

(format t *~&Pi is ~8%" (atan 0 -1)) =>

Pi 1s 3.14159265

(format t *~&Pi is ~8,20:8" (atan 0 -1)) =>

Pi is +03.14159265

(format t *~&Pi is ~8,2,208" (atan 0 -1)) =>

Pi is 03.14159265

(format t "~&Pi is ~8,,20,°’xQ%" (atan 0 -1)) =>
Pi is xxxxxxxxx+3.14159265

It uses free format (~@A) for very large values of the argument.

2.3.4 Warning about redefining functions

Lisp Listeners now warn you when you evaluate a form that tries to redefine a function that has
already been defined.

WARNING: Function FOO being redefined
It prompts you about whether to continue with the redefinition. This is designed to prevent you
from damaging your Lisp environment accidentally by redefining a system function. The same

check and warning are now issued when you evaluate a form or buffer in the editor in both file
buffers and nonfile buffers.

January 1983 49 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

2.3.5 Stack growth

When it is necessary to grow the regular stack, it now grows by a reasonably large ratio, set by
dbg:pdl-grow-ratio, instead of just growing by a little bit as it did before.

2.3.6 Window system: :notice protocol changed

The :notice methods are combined with or method-combination. :notice :error returns one of
the following:

nil Go on.
t Do not call methods of more basic flavors; otherwise okay.
a string This window cannot be used for debugger interaction; the string explains

why not.

2.3.7 Changes in flavor instantiation

A small change was made to initializing flavor instances. Now :default-init-plist entries that
initialize instance variables are not added to the init-plist, whereas formerly all :default-init-plist
items that were not overridden were added to the init-plist. Entries in the original init-plist
supplied to make-instance that initialize instance variable remain visible to :init-methods. This
change was made as part of a performance improvement in instantiating a flavor.

One minor change resulted for flavors that put things on the default init plist (where a is an
instance variable):
(:default-init-plist :a *foo)

The following construct in a :init method now returns nil rather than foo. Use the value of a
instead.

(get (locf init-plist) ’:a)

2.3.8 declare recognized in blocks

The compiler now recognizes declare as the first forms in the bodies of the following:

let let®

do do*
do-named do*-named
prog prog*
lambda

Formerly, declare was recognized only as the first forms in the body of a function. This means
that you can now have special declarations that are local to any of these blocks.

2.3.9 unwind-protect restrictlons removed

In the past, unwind-protect has had some restrictions associated with go, return, and multiple .
value returns. These have been removed. unwind-protect now works correctly in all cases.

Symbolics, Inc. 50 January 1983

Release 4.0 Release Notes Symbolics, Inc.

2.3.10 defsubst now compiled

A subst is an open-coded function created by defsubst. defsubst now creates compiled functions,
where they were previously only interpreted. Thus a subst is now faster when invoked as a
function. As a consequence of changes to the implementation of subst, it is now possible to get
new compiler warnings when compiling files containing defsubst. For example, the following
defsubst would not have previously gotten a warning, even though x is free in add-with-x.
(defsubst add-with-x (y) (+ x y))
The current implementation would issue a warning because substs are now implemented with
compiled code objects. (This example would still work if expanded in an environment which
lexically contained x.)

2.3.11 Warning about obsolete make-array form

The compiler now warns about uses of the obsolete form of make-array that does not use
keywords. (See the Lisp Machine Manual, p. 113.) It continues to accept the obsolete form,
however.

2.3.12 Compiler no longer expands macros in a different area

The compiler no longer expands macros in the fasd temporary area. It now puts them into the
area designated by default-cons-area at the time of compilation. This eliminates a source of very
difficult-to-find bugs that occurred only with sophisticated macros.

Use the garbage collector if your macros cons a lot.

January 1983 51 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Symbolics, Inc. 52 January 1983

Release 4.0 Release Notes Symbolics, Inc.

3. Utilitles

3.1 Incompatible changes

3.1.1 Change in naming for compiled-code files

Compiled-code files now have the type QBIN instead of QFASL. You can just rename your
QFASL files to QBIN with no problem; they do not need to be recompiled. The load functions
no longer recognize QFASL types. The actual file types for compiled-code files are host-
dependent of course: ‘

Host type File type for compiled files
ITS » QBIN

Lisp Machine gbin

Multics gbin

TENEX QBIN

TOPS-20 QBIN

UNIX qb

VAX/VMS QBN

This change is not backward-compatible; files compiled in Release 4.0 cannot be loaded into a
Lisp Machine running System 210 or some other vendor’s software. The compiler generates some
new instructions. This is why the file type was changed from QFASL to QBIN.

3.1.2 Password prompting change

The previous means of prompting for a password or user id caused some confusion because it did
not echo the user id. This has been changed. It expects a password and does not echo the
typein. When you need to change the user id as well as give a password, start the typein with
ALTMODE. Type the new user id, followed by RETURN. Then type the password. The user id is
now echoed as you type it; the password does not echo. The dialog would look like the following:
Default user name for host K2 is George
Password (or Altmode to change user id): ALTMODE [New user id]

Enter user name for host K2: JWalker RETURN
Password (Altmode to change user id):

3.1.3 Package changes

Due to internal reorganization, some packages and systems have been renamed, some have been
removed, and new ones have appeared. The following table explains the details.

System 210 Release 4.0

gfasl-rel gone

canon lgp

Ibp gone

as68000 gone

eh dbg (debugger)

none mailer

none print (can be loaded manually)

January 1983 53 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

3.1.4 Debugger changes

See also the new Debugger features in sections 3.2.8, p. 63, 3.2.9, p. 63, and 3.2.10, p. 63;
improvements in section 3.3.2, p. 69.

The Debugger now uses multiple arrow prompts to signal recursive invocations of the Debugger.

The Debugger provides a list of ways to stop or proceed on each error, with each option bound to
one of the SUPER- keys. For example, s-A might bé equivalent to RESUME and s-B to ABORT.
The old Debugger commands ABORT, c-ABORT, and c-2 still operate, using sys:abort instead of
scatch. See details of Debugger command keys in Signalling and Handling Conditions.

c-S now searches from the current frame rather than the top frame. It offers a default when
you enter a blank line. This makes it possible to search through several calls to a given function.
The search command in the window debugger uses the same default.

Backtraces (for example, c-B) now start at the current frame rather than the top frame. A
numeric argument specifies how many frames to print.

m~-< now gets you to the frame that signalled the error, rather than the highest possible frame.
Use c-P to go up through signal, handlers, and so forth, until you get to the call to the
Debugger itself. At that point, c-P reports that you are at the top of the stack; this is where
m-< used to put you.

When a function is being traced, the Debugger now shows you that fact and displays the traced
function as a single frame. This makes it easier to use the Debugger in the presence of traced
functions. ¢-m-N and c-m=P continue to show the internals of what tracing did.

3.1.5 eh function renamed to dbg

dbg is the new name for the function eh. See the Lisp Machine Manual, p. 451. The function
has changed slightly.

o dbg runs in the process itself instead of stopping the process as eh used to.
(dbg p)

e With no argument, it enters the Debugger as if an error had occurred for the current
process. It is not an error; in particular, errset and catch-error do not handle it.
You can include this form in program source code as a means of entering the
Debugger.

(dbg)
This is useful for breakpoints and causes a special compiler warning.

+ With an argument of t (rather than a process, window, or stack group), it finds a
process that has sent an error notification.

» dbg sets up a restart handler for c-Z and ABORT that exits from the dbg function
back to the original process. The message for this restart handler is "Allow process to
continue”.

¢ You can now use c~T, c-R, c-m-R, and other similar Debugger commands when you
enter the Debugger via dbg.

Suppose you are running in process X and you use dbg on some process Y. Process Y is forced
into the Debugger, no matter what it is doing. Technically, it is "interrupted”, similar to how

Symbolics, Inc. 54 January 1983

Release 4.0 Release Notes Symbolics, Inc.

c-BREAK, c-ABORT and c-m-BREAK work. Process Y starts running the Debugger, using the
stream debug-io. debug-io gets the same stream as was bound to terminal-fo in Process X. At
this time, Process X waits in a state called DBG until Process Y leaves the Debugger and so does
not contend for the stream.

3.1.8 Debugger function names changed

The following Debugger functions and variables have been renamed. (See System 210 Release
Notes, p. 18.)

old New

eh-arg dbg:arg

eh-loc dbg:loc

eh-fun dbg:fun

eh-val dbg:val

eh-sg no longer available

eh-frame dbg:*frame*

3.1.7 New value for rubout-handler

The variable rubout-handler indicates the status of rubout handling for input to any process.
(See Lisp Machine Manual, p. 362.) It now has one of three values instead of two:

Value Meaning

nil The process is outside the rubout handler.
read The process is inside the :rubout-handler method.
tyi The process is inside the editing portion of the :tyl method.

This change affects the internals of code that handles RUBOUT; it probably does not affect any
user programs.

3.1.8 Rubout handlerchange for LINE

LINE has been changed from an ordinary input character to an editing character. It now has the
same operation as RETURN when you are typing to something like a Lisp listener.

3.1.9 CALL key function removed

The CALL key no longer arrests the current process and calls a Lisp Listener. It now has no
function. TERMINAL CALL still calls the cold-load stream.

3.1.10 Finger error changes

The functions chaos:finger and chaos:whois no longer return a string when there is an error.
Instead, they signal an appropriate condition. If you want to handle this, the right error flavor to
handle is sys:network-error. (See also Signalling and handling conditions, p. 17.)

January 1983 55 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

3.1.11 Conditionalizing on sites

In previous systems, you could determine the site name at read time with #+ or the status
function. This has been replaced with a more useful site name checking facility that works at run
time. This makes it possible to move compiled code that contains site dependencies from one
place to another and have it still run.

You still use the following to find the list of status keywords for features available at a site.
(status features) :

The following list summarizes the changes to the status features.

« site-name is now a global variable, not a status feature. Its value is the site name
keyword declared in defsite. #+ and #- no longer work for site names.

o One item indicates which Lisp Machine hardware is running. :cadr indicates an LM-2
or an MIT CADR. 3600 is another possibility. You would then conditionalize your
code with things like #+cadr or #-3600.

¢ One item indicates which kind of Lisp Machine software is running. :symbolics
indicates Symbolics software; for example, use #-symbolics.

3.1.12 Patch directories have new generation retention count

Patch file directories are now automatically created with a generation retention count of 2, if they
are part of a file system that supports generation retention count.

3.2 New features

3.2.1 Garbage collector improvements

Release 4.0 contains a number of improvements to the garbage collector, associated with turning it
on before you run out of address space, and not turning it on after it is too late to do any good.
These improvements include queries when you turn on garbage collection too late, notifications
that you had better turn it on soon if you intend to, and automatic shut-off when there might not
be enough space left to run it. See section 7.2.1, p. 106, for a general definition of garbage
collection in the Lisp Machine and strategies for using it.

The garbage collector is stable and reliable. Please report to Symbolics any problems you
encounter that you believe to be associated with garbage collection.

3.2.1.1 Controlling when garbage collection happens

gc-immediately
gc-immediately does nonincremental garbage collection, taking less space and less total
time than an incremental gc, but running continuously in the process calling it, until the
garbage collection is complete. The main advantage of this compared to incremental gc is
that it requires less free space and hence can succeed where an incremental gc would fail
because virtual memory was too full.

You should call this rather than si:full-gc (unless you are compressing a band). The

Symbolics, Inc. 56 January 1983

Release 4.0 Release Notes Symbolics, Inc.

difference is that gc-immediately does not lock out other processes, does not run various
full-gc initializations, and does not affect the static areas.

Suppose garbage collection has already started, that the flip has occurred but not all good
data have been copied out of oldspace. gc-immediately then copies the rest of the good
data but does. not flip again.

gc-status
ge-status prints statistics about the garbage collector. It prints different information
depending on whether the scavenger is running or finished and how full virtual memory
is.

Dynamic (new+copy) space 4,181,235. O01d space 0. Static space 2,590,587,

Free space 8,778,513. Committed guess 8,685,807, putting you 169,438 words past the point
where an incremental garbage collection risks running out of space.

There are 4,335,138 words available before (EC-IMMEDIATELY) might run out of space.
(GC-IMMEDIATELY) takes roughly one hour.

There are 8,778,513 words available if you elect not to garbage collect.

Garbage collector process state: Nonexistent

Scavenging during cons: Off, Idle scavenging: Off

EC Flip Ratio: 1, EC Reclaim Immediately: Off

E6C messages (controlled by SI:GC-REPORT-STREAM) are sent as notifications.

The GC generation count is 2.

si:gc-report-stream Variable
si:gc-report-stream specifies where to put output messages from the garbage collector.
Value Meaning
t Notifies you (default)
nil Discards the output
stream Sends output to the stream
si:gc-area-reclaim-report Variable
si:gc-area-reclaim-report controls reporting on the areas reclaimed.
Value Meaning
nil Does not report anything (default)
t Reports space reclaimed for each area
si:gc-warning-threshold Variable

si:gc-warning-threshold controls the "switch" for turning on GC warnings. When the
storage manager notices that the amount of free space remaining before it would be too
late to garbage collect has reached /imit, it notifies you that you need to turn on the GC.
The default value is 1000000.

si:gc-warning-ratio Variable
si:gc-warning-ratio controls how often you see warnings from the GC (after the
warnings threshold has been passed) before running out of space. Basically, it is as if you
had reset the warning threshold to be fraction times the previous warning threshold. For
example, the default ratio is 0.75. With the default values for si:gc-warning-threshold
and si:gc-warning-ratio, you would see GC warnings with 1000000, 750000, 562500,
421875, and so on words remaining.

January 1983 57 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

si:gc-flip-ratio Variable
si:gc-flip-ratio contains a number that approximately expresses the maximum fraction of
dynamic space that you expect to contain good data (as opposed to garbage). This
applies only after ge-on. It specifies when a flip takes place. When this number times
the amount of committed free space (committed to being used by the GC) is greater than
the amount of free space, then a flip occurs. The default value is 1.

The number can be less than 1. This would cause the GC to wait longer before flipping
at the risk of exhausting virtual memory if a larger fraction of dynamic space contains
good objects than you expected.

See si:gc-flip-minimum-ratio also for a discussion of finer control over the onset of
garbage collection.

si:gc-flip-minimum-ratio Variable
si:gc-flip-minimum-ratio contains a number that specifies when to turn the GC off
because memory is too full to allow copying anything. The default value is nil, which
specifies that this ratio has the same value as si:gc-flip-ratio. Otherwise it should be a
number less than si:gc-flip-ratio.

Putting 0.25 in si:gc-flip-minimum-ratio and 0.5 in si:gc-flip-ratio means that you
believe that less than 0.25 of the dynamic-space objects consed are good data and will
need to be copied by the garbage collection. In spite of this, you want to flip when there
is enough space to copy 0.5 (half) of the objects. Thus one controls how often the GC
flips; the other controls when it should get desperate. This is most useful if you turn on
si:gc-reclaim-immediately-if-necessary, to make it do something useful when it is
desperate. Even without that it is useful if you would rather risk doing a garbage
collection when there might not be enough memory left in preference to turning the GC
off. For example, when the machine is operating unattended and turning off the GC
would be guaranteed to make it exhaust memory.

Choosing good values for this variable is a matter of guesswork and experience with the
particular application.

si:gc-reclaim-immediately Variable
si:gc-reclaim-immediately affects the "await scavenge" state of the garbage collector.
When the value is nil, (the default), the garbage collector is not affected. When the
value is not nil, then gec-reclaim-oldspace occurs as soon as a flip has occurred. This
essentially removes the real-time aspect of the garbage collector, making it more like an
ordinary copying garbage collector.

si:gc-reclaim-immediately-if-necessary Variable
si:gc-reclaim-immediately-if-necessary controls whether the GC starts nonincremental
garbage collection or shuts down. This variable is irrelevant when
si:gc-reclaim-immediately is set because then the GC always reclaims immediately, even
if it does not need to. ' '

The variable controls what happens when not enough free space remains to copy
everything. When the value is nil (the default), it notifies you and turns itself off. For
other values, it tries nonincremental garbage collection and shuts itself off only when it
determines that nonincremental garbage collection is not going to work.

Symbolics, Inc. 58 January 1983

Release 4.0 Release Notes Symbolics, Inc.

It is possible for so little space to remain that even a nonincremental garbage collection
would exhaust virtual memory. The decisions about what would exhaust virtual memory
depend on your prediction of the fraction of dynamic space that contains real
(nongarbage) objects (This is the value of si:gc-flip-minimum-ratio.)

si:set-scavenger-ws ws-size
si:set-scavenger-ws sets the working set size for the garbage collector. The default size
is 64K. The size is expressed in units of pages, where sys:page-size is 256 (1/4 K).
(si:set-scavenger-ws 256.)
80128.
This is the amount of memory that the Scavenger (the asynchronous portion of the
garbage collector) is permitted to use for its paging. The remainder of memory is -
reserved for your program and the system.

si:gc-flip-inhibit-time-until-warning time Variable
si:gc-flip-inhibit-time-until-warning sets the reasonable time window for flipping. If
flipping does not occur successfully during fime, the GC notifies you about the problem.
time is expressed in 60ths of a second. The default is 10 seconds. Flipping cannot occur
when some program is running in an si:inhibit-gc-flips special form. o

si:inhibit-ge-flips Macro
si:inhibit-gc-flips prevents the GC from flipping within the body of the macro.

3.2.1.2 Changes to si:full-gc
sizfull-ge no longer takes an optional argument for reclaiming all of the static areas (System 210
Release Notes, p. 34). The resulting loss of locality had seriously degraded paging performance.

si:full-gc now accepts a keyword argument, :system-release. This feature converts existing parts
of certain areas (notably working-storage-area) from dynamic to static areas. Thus objects in
those areas when full-gc occurs become permanent and are never garbage collected. (Of course
any future objects created in those areas are dynamic and are subject to garbage collection.) This
effectively makes more user free space because fewer data need to be copied on each garbage
collection pass.

(si:full-gc *:system-release t) e
While the initializations for si:full-gc are being run, the variable si:*full-gc-for-system-release*
is bound to the value of the :system-release keyword. ' '

Currently :system-release does the following work:

» Combines equal symbol print names.
» Converts parts of working-storage-area and some regions of other areas to be static. -

3.2.2 Release versions: si:get-release-version

Releases have numbers and status, just as systems do. Symbolics staff assign the release numbers,
using the file SYS: SYS; RELEASE LISP. This file is distributed with new software releases and
loaded by load-patches.

January 1983 59 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

si:get-release-version ‘
si:get-release-version returns three values, the release numbers and the status of the
current world load:
Major version number
Patch version number
Status of the world load as a keyword symbol:
sexperimental
sreleased
:obsolete
sbroken
nil (when status cannot be determined)

For example:

(si:get-release-version) => 4 0 :released

3.2.3 Two speeds for cold boot

The Lisp Machine offers two styles of cold boot. One is faster than the other. The conservative
cold boot process involves copying the entire world load into the virtual memory partition. The
fast boot process copies very little of the world load before completing and then pages the
information into virtual memory from the band as need for it is encountered. The fast process is
now the default.

disk-restore has an optional second argument that specifies which style of cold boot to use. (See
System 210 Release Notes, section 4.4.) The default for the second argument has been changed
from t (for conservative cold boot) to nil (for fast cold boot). Disk saving after the fast boot is
currently very slow; use the slow boot if you intend to use disk-save.

3.2.4 Recommended procedure for copying and saving bands

si:transmit-band, si:receive-band, and si:copy-disk-partition must copy into a target band that
is not active. Do not try to receive a band into the one that the current environment is paging
out of. Do not transmit into a band that someone is using. (It warns you if you try.)

The following steps constitute a full safe procedure for saving virtual memory with disk-save.

1. Cold boot. Slow cold boot is recommended; otherwise saving the band will be very
slow.

2. Use si:disable-services, see section 8.2.8, p. 116. This prevents things like Converse
messages from arriving and corrupting the image for the new band.

3. Log in without loading your init file (so that other users of the band do not use your
init file).

4. Build the environment you want to save, loading your own system and its patches, and
whatever is needed.

5. Use disk-save.

In some cases, you might have to use disk-save into the band that you are running from. This is
not recommended unless absolutely necessary. When you do so, first set the current band to
some other band, just in case some problem occurs and you need to cold boot.

Symbolics, Inc. 60 January 1983

Release 4.0 Release Notes Symbolics, Inc.

3.2.5 Changes to global package

The following symbols have been added to or moved to the global package:

argument-typecase
boundp-in-instance
catch-error-restart
catch-error-restart-if
condition
condition-bind-default
condition-bind-default-if
condition-bind-if
condition-call
condition-call-if
condition-case
condition-case-if
copyf

dbg

debug-io
describe-system (previously si:describe-system)
error-restart-loop
fsignal

gc-immediately
gc-status
ignore-errors
instancep
let-globally-if

listf

location-boundp
location-makunbound
login-forms
make-condition
prompt-and-read
qreply

readline-trim
record-source-file-name
signal-proceed-case
signum
string-capitalize-words
trace-conditions
undefun-method
unless

when ,
with-open-file-case
with-open-stream-case
with-stack-list
with-stack-list*

The following symbols have been removed from the global package.

January 1983 61 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

dplt-print-file
dtp-stack-closure
eh-arg

eh-frame

eh-fun

eh-loc

eh-sg

eh-val
lexical-closure
print-txt-file

3.2.6 Hardcopy commands avallable

All menu items, commands, and functions that refer to printing and hard copy are now supported.
In order for them to actually work, your site must have a properly connected printing device (see
section 8.2.2, p. 112). Some of the commands now available:

[Hardcopy] in the system menu

Hardcopy Buffer (m-X) in the editor

Hardcopy File (m-X) in the editor

Hardcopy Region (m—X) in the editor

[Move / Hardcopy] in Zmail

Dired Print File, P subcommand of Dired in the editor
[filename / Hardcopy] in the file system editor
TERMINAL @, screen copy command

Some sites have more than one printer. One of the printers has been specified as the site default
hardcopy device. You can change the default in your init file to specify the printer that is most
convenient for you. In the system menu, [Hardcopy] allows you to specify a different printer
name; the printer name is mouse sensitive.

You can specify personal default fonts for each device in your init file.
si:*hardcopy-default-fonts* is an association list where each element specifies a device and a set
of keyword/value pairs designating the font. The keywords are :default-font and :header-font
as in-section 8.2.2, p. 112. For example:

(login-forms

(setq si:*hardcopy-default-fonts*
*((*Itasca* :default-font ("Fix" "B" 18.)))))

si:set-default-hardcopy-device name
si:set-default-hardcopy-device specifies the printer to be used for all of the hardcopy
commands except the screen copy command. name is a string specifying the device name.
(The valid list of device names appears in the :hardcopy-devices option in the site file.)

si:set-screen-hardcopy-device name
si:set-screen-hardcopy-device specifies the printer to be used for screen copies (by the
TERMINAL @ command). name is a string specifying the device name. (The valid list of
device names appears in the :hardcopy-devices option in the site file.)

Symbolics, Inc. 62 January 1983

Release 4.0 Release Notes Symbolics, Inc.

3.2.7 New FED command copies a font

FED can now copy an existing font as the first step of making a new font. Use [(mouse-M) Edit
Font]. It is no longer necessary to copy the characters one a time.

3.2.8 Debugger c—M command sends mail

c-M in the Debugger is a new command for sending bug-mail that contains information from
several stack frames. This uses the bug function. It places you in a mail sending context,
initialized with the error message and a partial stack trace. By default it supplies 3 stack frames,
starting with the one that signalled the error. You can supply a different number of stack frames
by using the command with a numeric argument. ‘

You are expected to supply context information explaining what you were doing when the
problem occurred. The stack trace by itself is not adequate information for debugging.

3.2.9 New Debugger command: c—m—-V

c-m-V sets * to the nth returned value, where 7 is its numeric argument. The default value for
the argument is 0. It is meaningful only when you are using trap-on-exit and looking at a frame
that is about to return. '

3.2.10 New Debugger option: dbg:*defer-package-dwim*

When this is nil (the default), the Debugger searches over all packages to find any lookalike
symbols, when errors concerning unbound variables occur.

When the option is not nil, it gives you control over whether or not to search for look-alike
symbols. '

3.2.11 New overprintingcommand: NETWORK O

In their normal mode of operation, TELNET and SUPDUP overprint the first character with the
second when a remote system sends two characters to be output in the same position. A new
command on NETWORK 0 causes SUPDUP and TELNET to first erase a character position that it
is about to write into. The command toggles the overprinting facility.

In SUPDUP, the overprinting toggle must be set to the position you want before you make a
SUPDUP connection; you cannot change it once a connection has been established. NETHORK
HELP shows the position of the toggle (t or nil). The default is t, indicating overprinting.

3.2.12 New special form: login-forms

login-forms body ... : Special Form
login-forms is a new special form for wrapping around a set of forms in your init file. It
evaluates the forms and arranges for them to be undone when you log out. It is intended
to replace login-setq and the other login forms.

login-forms always evaluates the forms, even when it does not know how to undo them.
For forms that it cannot undo, it prints a warning message.

January 1983 63 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

In the following example, login-forms arranges for foo either to become unbound or to
get its old value and for bar either to become undefined or to get its old function
definition. It would warn you about quux being impossible to undo.
(login-forms
(setq foo 3)

(defun bar (x y) (+ x y))
(quux 3))

You can create functions to undo forms that login-forms does not recognize. To undo a
given form, you put a property on the symbol that is the car of the form to undo. For
example, to create a function to undo quux:

(defun (:property quux :undo-function) (form)
‘(undo-quux ,(cadr form)))

The value returned by an undo function is a form to be evaluated at logout time.

3.2.13 Addendum to band compressing procedure

A compressed band runs more slowly initially than a normal band. This is because any hash
tables that depend on virtual addresses (see section 2.1.1.4, p. 6) are rehashed the first time they
are referenced.

You can get around this and make compressed bands that run at normal speed by adding one
additional step to the compressing procedure. After you have used si:compress-band to compress
the band, boot the new band. Then use disk-save, which takes care of all the rehashing that is
necessary. The procedure for compressing and saving a band was described in System 210 Release
Notes.

3.2.14 New flexibility in make-system

make-system has a new feature for finding how out to make a system that has not been defined
already. When the system it is looking for has not been defined already or been set up with
si:set-system-source-file, it looks for system definition information in a file with the following
name:

sys: site; system-name system v
That file should contain si:set-system-source-file. More information appears in Sofrware
Installation Guide.

3.2.15 Field patches

In previous releases, trying to patch one of the distributed systems made it difficult to install a
new release. Release 4.0 has a new facility for declaring which sites can patch a system and
helping to monitor versions to ensure that no changes are lost.

defsystem has a new option :maintaining-sites to specify the list of sites that maintain the
system. Currently this declaration is meaningful only for patchable systems. For example:

(defsystem dla-file-system

(:maintaining-sites :mit)
ves)

Symbolics, Inc. 64 January 1983

Release 4.0 Release Notes Symbolics, Inc.

The default for :maintaining-sites when it is undeclared is the usually local site. When you
attempt to distribute a system with an undeclared maintaining site, you are warned and urged to
supply a maintaining site. When you save a band for distribution, all patchable systems with
undeclared :maintaining-sites are automatically declared to be maintained at the distributing site.

When you attempt to patch a system that is not maintained at your site, you would see a warning
like the following:

System DLA-FILE-SYSTEM is not normally maintained at this site. Patching it
here may result in version skews and make it difficult for your site to
receive subsequent software updates.

Are you sure you really sure you want to patch it? (Yes or No)

3.2.16 Local site systems: :site-system option

Many sites have software packages or patches which should be loaded into all bands at the site.
Sites can now declare to have such a patchable system. The system software attempts to provide
more assistance in maintaining this system. The site system name can be declared using the
:site-system option to defsite. The system should be declared in a file with the following kind of
name:

sys: site; site-name system
If the site system is not loaded into a band, then a warning is printed in the herald to that effect.

M-X Add Patch and related commands provide the site system as the default system if no other
locally maintained systems are appropriate.

3.2.17 New keyword to load-patches: :norelease

:norelease is a new keyword for load-patches. It inhibits the loading of the SYS: SYS;
RELEASE file (explained in Software Installation Guide).

It is useful only when you do not specify particular system names to load-patches. Using an
explicit system name implies :norelease.

Argument Meaning

a system name Never loads SYS: SYS; RELEASE
:norelease Never loads SYS: SYS; RELEASE
neither Always loads SYS: SYS; RELEASE

3.2.18 New functions: tv:add-escape-key, tv:add-system-key

tv:add-escape-key and tv:add-system-key are two new functions for defining escape and system
keys. In previous releases, you used the variables tv:*escape-keys* and tv:*system-keys* for this
purpose. (See Introduction to Using the Window System, pp. 37, 38.) The new functions replace
the use of those variables, which should no longer be modified directly. The new functions ensure
that items being added are sorted correctly in the documentation display.

tv:add-escape-key (char function documentation &rest options)
tv:add-escape-key adds char to the list of keys that can follow the TERMINAL key. The
rest of the arguments are explained in Jntroduction to Using the Window System, p. 37.

January 1983 65 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

tv:add-system-key (char flavor name &optional (create-p t))
tv:add-system-key adds char to the list of keys that can follow the SYSTEM key. The
rest of the arguments are explained in Introduction to Using the Window System, p. 38.

3.2.19 New variable: tv:*screen-hardcopy-announcement®

tv:*screen-hardcopy-announcement* Variable
tv:*screen-hardcopy-announcement* controls how TERMINAL @ notifies you. Some kind
of notification is necessary after a screen hardcopy request'so that you know when the
information for the copy has been collected and it is thus safe to change the screen. The
default value is :beep, which is consistent with System 210. The other possible value is
:flash, which complements the screen when bit collection begins and sets it back to
normal video when it is complete. ’

(login-forms
(setq tv:*screen-hardcopy-announcement®* *:flash))

3.2.20 New function: copyt

copyf from-path to-path &key (characters ':default) (byte-size nil) (copy-creation-date t)
(copy-author nil) (report-stream nil)

copyf is a function for copying one file to another. Copy File in the editor uses this
function.

from-path and to-path are the source and destination pathnames, which can be file specs.
from-path must refer to a unique file; it cannot contain any wild components. copyf
first attempts to open from-path. When that has happened successfully, it parses fo-path
and merges it (using fs:merge-pathnames) against the truename of from-parh and version
of :newest. This has the following result for version numbers.

to-path can contain wild components, which are eliminated after merging the defaults by
means of :translate-wild-pathname (see p. 29).

Source Target Result
>foo>a.b.newest >bar> Retains the version number
>foo>a.b.newest >bar>x Uses version number for file w.b

copyf and renamef treat version number defaulting in the same way.

By default, copyf copies the creation date of the file but not the author. (These defaults
are not optimal but have low overhead, due to a limitation of the file protocol.)

characters It decides whether this is a binary or character transfer according to
" the canonical type of from-path. You do not need to supply this
argument for standard file types. Its possible values:

:default For types that are not known canonical types, it
opens from-path in :default mode. In that case, the
server for the file system containing from-path makes
the character-or-binary decision.

t Specifies that the transfer must be in character mode.
nil Specifies that the transfer must be binary mode (in

this case, you must supply byre-size).

Symbolics, Inc. 66 January 1983

Release 4.0 Release Notes

byte-size

report-stream

Symbolics, Inc.

Specifies the byte size with which both files will be opened for binary
transfers. You must supply byre-size when characters is nil. It
determines the byte size from the file type for from-path. When
Jrom-path is a binary file with a known canonical type, it determines
the byte size from the :binary-file-byte-size property of the type.
When the file does not have a known type, it requests the byte size for
from-path from the file server. When the server for the file system
containing from-path cannot supply the byte size, it assumes that the
byte size is 16.

When report-stream is nil (the default), the copying takes place with
no messages. Otherwise, the value must be a stream for reporting the
start and successful completion of the copying. The completion
message contains the truename of to-path.

3.2.21 New function: listf

listf path &optional (output-stream standard-output)
listf is a function for displaying an abbreviated directory listing. The default for name,
type, and version of path is :wild.

(listf "f:>jwalker>mit-220")

The format of the listing varies with the operating system.

3.2.22 New function: chaos:print-ilgp-queue

chaos:print-lgp-queue

chaos:print-lgp-queue displays the queue of requests for each host that has a Chaosnet
print server running. This function is specific to the Symbolics LGP-1 printer. It does
not report the queues to other kinds of printers.

LGP queue for host Afghan:

For Quinsigamond: Request of 1/02/83 22:49:37 for F:>jek>serial-
io.lisp.11 for Carl W. Hoffman at SCRC-SPANIEL

For Quinsigamond: Request of 1/02/83 22:50:33 for
F:>Network>network.lisp.35 for Car1 W. Hoffman at SCRC-SPANIEL
For Quinsigamond: Request of 1/02/83 22:51:28 for
F:>Network>serial.lisp.1ll for Carl W. Hoffman at SCRC-SPANIEL
LGP queue for host POINTER:

The queue is empty.

3.2.23 New variable: chaos:finger-location

chaos:finger-location

Variable

chaos:finger-location sets the location reported by the finger functions. Its value should
be a string to print as the location part of a finger display. When this variable is nil,
(the default), the system uses the value si:local-finger-location, which is set
automatically by remote file servers. When the variable has a string value, it overrides
the value in si:local-finger-location.

January 1983

67 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

3.2.24 New functions: chaos:finger-local-lispms, chaos:finger-all-lispms

At sites whose host tables are completely internal and do not include Lisp Machines at other sites,
these two functions have the same result.

chaos:finger-local-lispms
Displays a list of who is using each of the Lisp Machines at the current site. (It uses
si:machine-location-alist.) This function replaces the function chaos:finger-all-lms
from previous releases.

chaos:finger-all-lispms
Displays a list of who is using each of the Lisp Machines in the host table. (It uses
si:host-alist.)

3.2.25 New function: qreply

qreply &optional string
Sends a reply to the Converse message received most recently. You can supply a string as
the text of the message or omit it and let qreply prompt for it. It returns a string of the
form "user@host", indicating the recipient of the message.

3.2.26 New function: tv:key-test

tv:key-test allows you to check that your keyboard and mouse hardware are functioning
correctly. It displays a keyboard image and a mouse image. The mouse image tracks the mouse
when mouse tracking is functioning correctly. Holding down a key or button causes the
corresponding key or button on the screen to go into inverse video. The END key returns. This
function is not loaded as part of the world load but is available:

(Toad "sys:window;keytest")
(tv:key-test)

3.2.27 New meter: sys:%count'-extra-pdl-ovs

sys:%count-extra-pdl-ovs is a meter that increments each time the extra pdl area is flushed. Use
read-meter to read it (see Lisp Machine Manual, p. 188).

3.3 Improvements

3.3.1 Loading patches catches network errors

In previous releases, people experienced problems with having load-patches in their init files in
situations where the sys host was not available. Now load-patches is protected by a
catch-error-restart for network errors. This means that your init file can continue executing the
rest of its forms even though it cannot load patches.

Symbolics, Inc. 68 January 1983

Release 4.0 Release Notes Symbolics, Inc.

3.3.2 Debugger messages have new formats

When you first enter the Debugger, it no longer displays a short backtrace of functions. The ¢c-B
and c-L. commands still give backtrace information. In place of the previous backtrace, you now
see a list of proceed and restart commands.

You can request that backtrace information appear when you enter the Debugger. Set the new
variable dbg:*show-backtrace* in your init file.

Values Meaning

nil The Debugger startup message does not include any backtrace information. nil
is the default.

t The Debugger startup message includes a 3-element backtrace, as in System 210

and earlier systems.

The c¢-B command in the Debugger gives a backtrace of the call stack. It now displays the
functions so that function names do not wrap across line boundaries, to make the display more
readable.

3.3.3 Change to filename defaulting in renamef

renamef uses from-path and to-path as source and target pathnames, which can be file specs. It
first attempts to open from-path. When that has happened successfully, it parses ro-parh and
merges it (using fs:merge-pathnames) against the truename of from-path and version of :newest.
This has the following impact on the version number of the target.

Source Targer Result
>foo>a.b.newest >bar> Retains the version number
>foo>a.b.newest >bar>x Uses version number for file w.b

renamef and copyf treat version number defaulting in the same way. This change to renamef
affects Rename File in the editor.

3.3.4 Status line changes

The states that appear in the status line have been revised to be both more specific and more
informative. Many of the changes occurred to the names of the lock states. For example, the
Zmail background process uses "Background Lock".

3.3.5 print-herald shows memory available

print-herald now includes a line that reports on the physical and virtual memory available on the
machine. It reports much the same information as the function room.

3.3.6 Appearance of windows, borders, and labels

All system windows, even ones that are the full screen size, have borders and labels. The system
windows that were most affected are Lisp Listeners and Zmacs frames. The flavor called
tv:full-screen-hack-mixin has been removed from the standard window flavors.

Typeout windows now have a border by default. The border moves down the screen just below

January 1983 69 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

the last line in the typeout window. This change makes typeout windows more distinguishable
from whatever is on the rest of the screen. This change is cosmetic only; it does not require
changes to any programs.

tv:*typeout-window-border-enable* Variable
tv:*typeout-window-border-enable* controls the border. The default value is t, which
enables the border. nil inhibits the border.

As part of the general cosmetic changes, returning to Lisp Top Level now produces a message like
the following instead of just a ®* prompt.

Back to Lisp Top Level in Lisp Listener 1

3.3.7 Window label format

Automatically generated window names now appear in mixed cases with spaces separating the
words. It uses the function string-capitalize-words (section 2.2.27).

3.3.8 Contact names for Chaosnet connections

The contact names for Chaosnet connections are now retained in the connection data structures.
The accessor function is chaos:contact-name.

3.3.9 Peek changes

3.3.9.1 Peek handles ABORT

Peek now handles ABORT more consistently with other programs. It no longer puts you in Help
mode when you abort out of a breakpoint. ABORT at Peek’s top level is now ignored, as it is in
other programs. (It used to bury the peek window.)

3.3.9.2 Peek updates on SPACE
SPACE now commands Peek to update its display immediately instead of waiting for its next time
interval.

3.3.9.3 Peek displays Chaos connection names

Peek now displays the contact names for Chaosnet connections. In the Peek display, the
connection state field is mouse-sensitive. Clicking on the state allows you to close the connection
from Peek. Closing a connection this way requires subsequent mouse confirmation.

3.3.9.4 Peek file system command

[File System] in Peek no longer displays entries for hosts that have no host units to find. Only
"“interesting"” hosts and their host units are displayed. Resetting a host unit now requires mouse
confirmation.

3.3.9.5 Peek server command

[Server] in Peek now shows more information for file server data connections and their associated
processes. File server processes have more meaningful names, which include the name of the host
to which they are connected.

Symbolics, Inc. 70 January 1983

Release 4.0 Release Notes Symbolics, Inc.

3.3.10 TERMINAL HOLD-OUTPUT changed

TERMINAL HOLD-OUTPUT is now more useful in cases where the status line shows the states Sheet
Lock or Hold Output. Now it usually manages either to expose the required window or to enter
the Debugger with the right process. It is more informative about what the problem is and
engages you in a dialog about how to resolve it.

3.3.11 Lisp (Edit) removed

Previous versions of the system had a Create menu item named Lisp (Edit). This was a Lisp
Listener with editing capability. This has been removed from the system menu pending redesign.
Lisp Listeners themselves now have a variety of editing capabilities. (See section 3.3.12, p. 71.)

Although it is not supported, Lisp (Edit) is still available as part of the system for those who care
to experiment. The following code restores the function to the Create menu.

(push *("1isp (edit)" :value zwei:editor-top-level
:documentation
*A read-eval-print loop in separate process with editing capabilities.")
tv:default-window-types-item-1ist)

3.3.12 Rubout handler improvements

The previously experimental editing capability is now on by default. (See System 210 Release
Notes, p. 28, concerning tvirh-on.) Use tv:rh-off to disable this editing. Use e-HELP at top level
to see the editor-compatible commands that are available. This editing capability is present in any
process that uses read, readline, or prompt-and-read. Some improvements:

o c—sh-V (like Describe Variable At Point in the editor) has been added to complement
c-sh-A.

» HELP and c-HELP give help in the same style that the Debugger does. That is, HELP
displays a brief summary and c-HELP displays a detailed help message.

o The kill ring and input rings are now emptied when you log out or save a band.

In the future, this editing capability will be expanded and made completely compatible with the
editor.

3.3.13 Arresting most processes: TERMINAL c—A

Some changes were made to arresting processes. These are to allow experts to intervene in a
runaway machine for purposes of debugging.

» TERMINAL c-A arrests all processes except the one shown in the status line and critical
system processes, like the keyboard and mouse processes. :

» TERMINAL - c-A resumes all processes arrested by TERMINAL c-A.

¢ When a process arrested by TERMINAL c-A shows in the status line, TERMINAL - A
resumes just that process. (Remember TERMINAL 3 W for rotating through processes.)

Arresting is a severe action to take. For example, when the processes that run the Chaosnet are

January 1983 71 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

arrested, your network connections are lost when you leave them stopped for more than 60
seconds. When a process that is holding a lock is arrested, it holds the lock forever, possibly
interfering with subsequent normal work.

Symbolics, Inc. 72 January 1983

Release 4.0 Release Notes Symbolics, Inc.

4. Flle System

This section applies only to the Lisp Machine file system, not to other file systems such as UNIX
and TOPS-20. This material does apply equally to local and remote Lisp Machine file systems.

The Lisp Machine File System has been revised extensively internally to use the new error
signalling system. Most of these changes are not visible to end-users, except as far as the
diagnostic messages are more complete and informative.

The file system software has been reorganized internally for future support of multiple partitions
and drives. Some of this change is visible in menu items and messages that now mention
partitions. No other user-visible changes from the multiple partition redesign have been installed.

4.1 Incompatible changes

4.1.1 Files being created are invisible to most operations

In previous versions, files that were being created were available as soon as they had been opened
for writing. This could cause problems for multiprocess applications where one process would try
to use a file that another was still writing. '

In Release 4.0, when a file version is being created, it is marked with the property
:open-for-writing. This property is removed when the file is successfully closed. While the file
has this property, it is invisible to normal directory operations and to attempts to open or list it.
Directory list operations that specify :deleted can see the file. Files in this state have the "open
for writing" property when you use View Property in the file system editor. Files left in this state
by crashes have to be removed manually by deleting and expunging.

For example, suppose versions 3, 4, and 5 exist, but 5 is open in this state. An attempt to read
:newest would get version 4; an attempt to write :newest would create version 6.

4.1.2 Wrong byte size error

It is not possible to open a file with the "wrong" byte size. If you are going to supply a byte size
when you open a file, it must be the byte size that it was written with. (By default, the Lisp
Machine file system always opens a file using the same byte size as it was written with.) Using
the wrong byte size has always been an error; the file system now diagnoses and signals the error
correctly.

4.1.3 Directory components have changed

The format of directory components in Lisp Machine file system pathnames has changed. This
should not affect any of your programs; programs that depended on the format of directory
components were in error. They should have been using the relevant ":string-for" messages
instead. (See also section 2.1.6.3 on p. 15.)

January 1983 73 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

4.1.4 File names cannot contain ¢

In previous releases, names of files stored in the Lisp Machine file system could contain the
character ®*. That is now longer possible; file names can no longer contain *. This restriction is
necessary because ® is now used consistently to indicate wildcards in pathnames. Quoting
conventions to relax this restriction will be implemented in a future release.

You can no longer access files whose names contain * as a character. A special function allows
you to rename any file or directories whose names contain *.

Imfs:rename-local-file-tool from-path to-path :
lmfs:rename-local-file-tool renames a file in which * appears in one of the pathname
components. This function works locally only; you must run it on the machine in whose
file system the file is stored. That is, it does not rename a file across the network.

Jfrom-path and to-path must be pathnames or strings coercible to pathnames. from-path is
parsed against a default on the local host. ro-path is parsed against from-path as the
default. The version number for t0-path is inherited from the file being renamed. Any
version number appearing in fo-path is ignored.

(Imfs:rename-local-file-tool "D>AUser>*secret-stuff*" "-secret-stuff-")
(Imfs:rename-local-file-tool ">tspecial*.directory.1" *-special-")

4.2 New features

4.2.1 Relative pathnames

The Lisp Machine file system now supports relative pathnames. The syntax and semantics are
identical to their usage in Multics. A relative pathname is relative to whatever defaults it is being
merged with, for example, the displayed defaults in the Zmacs minibuffer. Pathname default
merging follows these rules:

e A name with no leading punctuation adds to the end of the directory portion of the
current defauit.

« A name with one or more leading < replaces directory name levels from the right, one
directory level for each <.

Examples:

Default: >sys>Imfsd>newdxst.lisp
Typein: testdxst.lisp
Merged: >sys>Imfsd>new>testdxst.lisp

Default: >sys>Imfs>newdxst.1lisp
Typein: <test>thing.lisp
Merged: >sys>Imfs>test>thing.lisp

Default: >sys>Imfsdnewdxst.1lisp

Typein: <<test>
Merged: >sys>testd>xst.lisp

Symbolics, Inc. 74 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Default: >sys>Imfsd>newdxst.lisp
Typein: <xst.lisp
Merged: >sys>Imfsdxst.lisp

Default: >sys>Imfsd>newdxst.1lisp
Typein: <<abel>baker>foo.lisp
Merged: >sys>abel>baker>foo.lisp

4.2.2 Wildcards extended

The Lisp Machine file system now supports arbitrary wildcards in pathnames. The wildcard
character is *. In a pathname, * means "zero or more characters”". You cannot use two
consecutive asterisks except as a wildcard directory. You cannot create a directory or file with *
in the name. The following examples are now valid as wildcard pathnames:

*“f:>jwalker>*foo*.1isp"

"local:>*foodnotes.text"”

“f:exd% lisp
Due to the implementation of relative pathnames, *>foo now means "all files named foo in any
directory one level below the merge default”. The syntax "**" was chosen for a directory
component of :wild. Therefore, the following command lists all files with type lisp anywhere at
any level on the host f.

(fs:directory-list "f:®*>% _1isp")

*» is a complete specification of the directory component of a pathname. It has no meaning
except at the beginning of a pathname.

The file system now does more checking for * in invalid contexts.

4.2.3 New file type for indicating directories

The file type "directory" can now be used to specify a directory. This applies for various file
operations, such as View File Properties. You could still create files (rather than directories) that
have "directory" as their type component. The file system takes care of knowing which are files
and which are files that function as directories.

4.2.4 New features in the File System Editor

4.2.4.1 New items on File menu: Load, Edit
The File menu now has two new items, {Load] and [Edit].

4.2.4.2 Directory menu: wildcard deletion

The directory menu now has wildcard deletion. Use [Wildcard Delete], which prompts you with a
default for deleting everything for the line that the menu applies to. It merges what you enter
with the * defaults. It lists the files it intends to delete, asks for confirmation, deletes them
reporting any errors, and updates the display.

4.2.4.3 Homedir on any host

Tree Edit Homedir has a new option on its mouse-R menu. It prompts for a host instead of
using only the "logged-in" host (the one designated during login).

January 1983 75 Symbolics, Inc.

Symbolics, Inc. ‘ Release 4.0 Release Notes

4.2.4.4 Free Records
[(mouse-M) Free Records] creates a directory-by-directory usage report of the file system. It now
prompts you for a file spec for storing the usage report:

Filename for output listing:

4.2.4.5 Retrieving files from backup tapes
More actions are available from [Reload/Retrieve].

« Clicking left retrieves files from a backup tape.

« Clicking middle searches all the binary tape maps at the site for the tape locations of
all backup copies of a file. It prompts for names, which it parses with respect to the
local host unless you provide an explicit host name. All of the files requested must be
from the same host. This applies only to Lisp Machine hosts. It looks at the binary
tape maps on the specified host in the directory >dump-maps.

Enter file pathnames for which to search, separated by commas.
Wildcard names are allowed. The default host is LOCAL-LISPM.
Paths: f:>sys>io>*.lisp, f:>bsg>*.init, f:>1isp>*.q*
Searching for:

F:>sys>io>®.lisp.*

F:>bsg>®.init.*

F:>lisp®)>® . q®.*

F:>LISPM>COLDLD.QFASL.39, created 2/17/82 00:26:58, on tape fscns001
(Backup dump of 2/24/82 13:05:44)

F:>LISPM>COLDUT.QFASL.57, created 2/18/82 19:06:36, on tape fscns001
(Backup dump of 2/24/82 13:05:44)

F:>LISPM>EVAL.QFASL.13, created 2/19/82 04:45:17, on tape fscns001
(Backup dump of 2/24/82 13:05:44)

...erc

----- Scan complete.

The default for all pathname components other than host is :wild, which matches
anything; :newest is meaningless in this context.

4.2.5 Dumper takes multiple pathnames

In previous releases, the dumper prompted for a starting directory. Due to some special case
checking, a file spec of ">foo" used to be interpreted as a directory, resulting in the files
">f00>*.*.*" being dumped. In other cases, the file spec would be interpreted as a (potentially
wild) specification of what to dump. This inconsistency has been removed. The dumper’s file
specs are now always (potentially wild) specifications of what to dump.

The dumper now uses "Pathnames:" as the prompt instead of "Starting Directory:". It now
accepts more than one file spec, with commas as separators: -
Starting Directory: >sys>sys2>,>sysd>backupdprev>*.1isp

The file specs are interpreted as they would be anywhere else in the system. All file specs are
merged with local:**>*.%.* to form the pathname. From the example:

File spec Pathname
>sysdsys2> f:Dsysdsys2 s x =
>sys>backupdprev>*.1isp f:>sys>backupdprev>*. 1lisp.*

In particular, note that you need to supply the trailing directory separator ">" now, whereas you

Symbolics, Inc. 76 January 1983

Release 4.0 Release Notes Symbolics, Inc.

did not need to do that previously. (Previously ">foo" would have been interpreted as a
directory; this was in conflict with the syntax requirements of file specs elsewhere in the system.)
Now,">foo>" is interpreted as a directory component; ">foo" would cause >f00.*.* to be dumped.

4.2.6 Dumper keyword arguments changed
The following changes were made to the keyword arguments in the dumper.

:pathnames is a new keyword. It accepts one or a list of pathnames or strings that are coercible
to pathnames. It coerces these to pathnames, parses them against the local host as a default, and
merges this with local:**>¢.%.%. The result is then used as a list of starting pathnames to dump.

:start-path and :start-node have been changed. They are now equivalent to using :pathnames
with the argument consisting of a list of the argument to the keyword.

:query is a new keyword. Its default is nil for standard operation. With the value t, it causes
the dumper to offer its menu immediately instead of attempting to validate its arguments.

4.2.7 Backup dumper recovery

For an irrecoverable write error on a backup tape, the dumper tries to write an end-of-tape mark.
It then asks for a new tape and redumps the files that are on the bad tape. It notes this in the
dump map.

4.2.8 Backup dumperinterface change

At the end of its pass, the backup dumper used to leave the tape in the tape drive without
rewinding it. Now the dumper’s menu has a new item that lets you specify what to do with the
tape at the end of the pass.

Tape when done: Offline Rewind Leave Query

Offline Puts the tape offline and rewinds it. It declares the dump finished. This is the
default.
Rewind Rewinds the tape at the end of the pass without setting it offline. It declares

the dump finished. This allows you to inspect the tape (using [(mouse-L)
Reload/Retrieve / List Contents).

Leave Leaves the tape positioned at the end without rewinding it or putting it offline.
It declares the dump finished. It allows you to invoke the dumper again to
append to the tape (using Append in that later dumper invocation).

Query ~ Presents the following set of options.
Offline and Rewind, rewind, leave at end, or more files? (0, R, L, or M)

These are the same options and have the same meaning as if you had specified
them originally. The meanings of the options are as follows:

Rewinds the tape and puts it offline.

Just rewinds the tape.

Leaves the tape at the end.

Lets you make another pass, asking you what files to dump in
this pass.

2 WO

You just specify one of these; no default is available here.

January 1983 77 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Using [Abort] terminates the dump normally, as if Leave had been specified,
leaving the tape positioned for appending by a later dumper invocation.

4.2.9 Backup dumper map

When the dumper finishes a tape or finishes a pass, it leaves the dump map consistent and
readable. Now, even if the machine subsequently crashes (before something that declares the
dump finished), the dump map is available and can be read.

4.2.10 Salvager interface changes

The Salvager now offers a menu of options instead of having just a single prompt. The second
option on the menu is a new feature, called Check Records, that verifies the records in each file
and notifies you about any problems.

Some messages have been revised in anticipation of the multiple partition feature.

4.2.11 Maintenance menu changes
The maintenance menu has several new items.

Expunge All FS Expunges each directory in the local file system. It displays a message about
how much space was recovered.

Check Records Verifies the records in each file and notifies you about any problems. (This is
also available from the Salvager.)

Edit FSPT Not to be used. Installed in advance of the multiple partition feature.

4.3 Improvements

4.3.1 Version management properties

The file system has two properties for managing versions of files: :dont-reap and :dont-delete.

Property Meaning

:dont-delete Means not to allow the file to be deleted. Any attempt, whether manual or
automatic, to delete such a file causes an error. Files with this property are
flagged with @ in Dired and FSEdit.

:dont-reap Prevents the automatic directory cleanup tools from deleting a file. That is,
files with this property cannot be deleted by the generation retention count
mechanism, by the directory cleanup tools in Dired, or by Reap File or Clean
Directory in Zmacs. You can delete such files explicitly, manually. Files with
this property are flagged with $ in Dired and FSEdit.

4.3.2 Keyword change: :dont-reap

In previous systems, :dont-reap was a user-extension property. Now this property has been
reimplemented as a standard property in the Lisp Machine file system.

Symbolics, Inc. 78 January 1983

Release 4.0 Release Notes Symbolics, Inc.

4.3.3 Removing user properties in FSEdit

In some previous systems, FSEdit had problems with removing a user property from a file. You
can now always remove a user property by setting its value to a null string.

January 1983 79 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Symbolics, Inc. 80 January 1983

Release 4.0 Release Notes Symbolics, Inc.

5. Zmacs

5.1 Incompatible changes

5.1.1 Zmacs internal reorganization

The internal structure of Zmacs has been redesigned; some internal structures were reimplemented
using flavors. Most changes are not visible to users, except those users who write editor
extensions.

Functions that depend on an up-to-date parse of a Lisp buffer now work more reliably. In
particular, Compile Changed Functions and Edit Changed Functions have been improved. Zmacs
can now notice changes to definitions in the buffer and records when the definitions were last
compiled or evaluated.

5.1.1.1 Incompatible changes
Zwei now implements intervals using flavors. Any editor extensions that used intervals might
need to be converted to use flavor instances. They certainly need to be recompiled.

File buffers now have another tick so that the editor can distinguish the time when the file was
last saved from the time when the file was first read in.

5.1.1.2 New features
Support buffers are a major new feature. These are buffers used by various support functions of
the editor:

» Edit Buffers.

 View File.

o Lists for Edit Definitions, when more than one definition ei:ists.
. Buffers for Dired and List Directory.

» Tags table commands.

« Everything that edits a sequence of definitions, as in List Callers or List Methods.

The lists created by these commands are now saved in support buffers. This means that you can
examine the buffers containing the lists even after you have done some editing.

To avoid proliferation of editor buffers, Zmacs reuses support buffers in most cases.

5.1.1.3 Improvements

Each time you use a command that generates a set of possibilities (for example, Edit Callers and
List Methods), it pushes the set of possibilities onto a stack. The set is popped from the stack
when no more items remain in it. Several new informational messages are associated with this
facility. When the whole possibilities stack is empty and you have nothing more pending it
displays:

No more sets of possibilities

January 1983 81 ' Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Suppose you had been using c-. to move through the set provided by Edit Callers and you then
used Edit Methods to push a new set of possibilities onto the stack. When you finished the set
provided by Edit Methods, you would see a message like the following to notify you that the
empty set had been popped off the stack and the set of possibilities for Edit Callers had been
reinstated.

c-. is now Edit Callers

The position of point in the support buffer indicates the next item for Next Possibility (e-.).
You can select the support buffer and move point manually in order to skip or redo possibilities.
The command now accepts a negative argument to pop a set of possibilities off the stack. An
argument of zero selects the current support buffer of possibilities.

Compile Changed Definitions and related commands now work correctly. They no longer
occasionally miss a definition that has changed or been added, or reprocess functions that have
not changed.

Apropos is faster. It now reports key bindings for commands more quickly.

5.1.2 Commands containing "defun” and "function” renamed

The names of some commands and internal functions were changed to facilitate documentation
and to more closely reflect their purpose. The command names that used to contain the word
"defun" now contain "definition". For example, the former End Of Defun command is now
called End of Definition. Some command names that used to contain the word "function” now
contain the word "definition"”. The internal functions associated with these have also been
renamed accordingly. See the table of changed commands on p. 83.

5.1.3 Change to butfer name completion

In Zmacs, buffer names are long strings that indicate the host and version as well as the file
name. Hence completion is a necessary aid for entering buffer names. Previously, Select Buffer
(c-X B) would take the string you entered and try to complete it to an existing buffer name.
When completion was successful, it would select that buffer. Otherwise it would create a buffer
by that name. This design was for compatibility with EMACS, which formed its buffer names
differently.

Now it no longer creates a new buffer automatically. You have two ways to create a new buffer.

e You can supply a numeric argument to the c—X B command in order to have it create
a new buffer.

o You can enter the buffer name with c-RETURN instead of with RETURN.

5.1.4 Change to command name completion

Command name completion in the case of a single trailing space has been changed. This applies
only to the case where you use RETURN, not to the case where you use ALTMODE to see the
completion followed by RETURN. It now trims the trailing space. This removes the confusion that
occurred when one command name was the same as the initial substring of another, for example,
Source Compare and Source Compare Merge. The following command now completes to Source
Compare instead of to Source Compare Merge:

Symbolics, Inc. 82 January 1983

Release 4.0 Release Notes ' Symbolics, Inc.

m-x so SPACE co SPACE RETURN
The following commands still complete to Source Compare Merge.

m-x so SPACE co SPACE ALTMODE
m-x so SPACE co SPACE END

5.1.5 Fundamental major mode is now default

The default value for major mode in the editor is now Fundamental Mode. The variable that
controls this, for init file purposes, is zwel:*default-major-mode®. The values that this variable
takes have been changed. The new acceptable values are keyword symbols for the names of the
modes. For example,

(login-forms
(setq zwei:*default-major-mode* ':text)
(setq zwei:*default-major-mode* *:1isp))

5.1.6 Default value for *default-package® is user

The default value for zwei:*default-package® is now the user package instead of the package
from the previous buffer. The old behavior can be reinstated by setting this variable to nil. You
can have any package as the default package, simply by specifying it as the value of the variable.
For example, in your lispm init file:

(login-forms
(setq zwei:*default-package® (pkg-find-package "tv*)))

5.1.7 Zmacs command name and key changes

Some Zmacs commands have been renamed according to the following general rules:

¢ "Defun" became "Definition" in most cases and "Region" in a few cases.
» "Q Register" became "Register".
 "Function" became "Definition" where appropriate.

In cases where the command had a standard key binding, the key binding usually stayed the same;
in these cases, you probably will not notice the name changes. A few key bindings were changed;
see the list on page 84.

Previous name New name

Add Patch Buffer Changed Functions Add Patch Changed Definitions Of Buffer
Add Patch Changed Functions Add Patch Changed Definitions
Beginning Of Defun Beginning Of Definition

Compile Buffer Changed Functions =~ Compile Changed Definitions Of Buffer
Compile Changed Functions Compile Changed Definitions

Compile Defun Compile Region

Edit Buffer Changed Functions Edit Changed Definitions Of Buffer
Edit Changed Functions Edit Changed Definitions

End Of Defun End Of Definition

Evaluate Buffer Changed Functions Evaluate Changed Definitions Of Buffer
Evaluate Changed Functions Evaluate Changed Definitions

Evaluate Defun Hack Evaluate Region Hack

January 1983 ; 83 Symbolics, Inc.

Symbolics, Inc.

Evaluate Defun Verbose
Evaluate Defun

List Buffer Changed Functions
List Changed Functions
List Matching Functions
List Q Registers

Macro Expand Sexp
Mark Defun

Point To Q Register

Q Register To Point
Variable Document

Release 4.0 Release Notes

Evaluate Region Verbose
Evaluate Region

List Changed Definitions Of Buffer
List Changed Definitions
List Matching Symbols
List Registers

Macro Expand Expression
Mark Definition

Save Position

Jump To Saved Position
Describe Variable

The following existing commands were assigned to keys or had their key bindings changed.

Compile Changed Definitions of Buffer
Evaluate Changed Definitions of Buffer

Add Patch Changed Definitions of Buffer

Key Command

c-m-sh-E Evaluate Region Verbose
c-sh-C Compile Region

c-sh-E Evaluate Region

e-sh-N Macro Expand Expression

c-¥X J Jump To Saved Position

c-%X 8 Save Position

m—sh-C

m-sh-E

m—¥ Add Patch Changed Definitions
m=X

m—¥% Evaluate And Replace Into Buffer
m-¥ Evaluate Region Hack

m=¥ List Matching Lines

m—X List Matching Symbols

5.1.8 Dired subcommands changed

Several Dired subcommands have been reassigned to keys.

1w Q%
<

5.1.9 Word delimiter meaning changed for some characters

Meaning
Copies the file on the current line.
Renames the file on the current line.

Compares the file on the current line with the newest version.

The following characters have been changed from delimiter syntax to alphabetic syniax in all
modes except Midas Mode.

% § period)
The word motion commands no longer skip over these commands when they are embedded in

words. This makes it easier to edit file names with the word commands.

Symbolics, Inc.

84

January 1983

Release 4.0 Release Notes Symbolics, Inc.

5.1.10 Prefix character commands are not case-sensitive

A plain character following a prefix character command (like e-X) is now converted to upper
case. This enforces the policy that, for example, c-X f is equivalent to c-X F.

5.2 New features

5.2.1 New Zmacs commands

5.2.1.1 Create Link
The Create Link command creates a link to a file. It prompts for the file name to link to in the
minibuffer, using the standard conventions for defaults.

5.2.1.2 Create Directory

The Create Directory command creates a new directory. It prompts for a directory name, using
the standard conventions for defaults. For consistency between hierarchical and nonhierarchical
file systems, you specify the directory to be created as the directory component of a pathname.
That is, you must end the directory name with whatever delimiter or separator is appropriate for
the host. For example: ‘

Host Directory string Result

TOPS-20 <A.B.C> Creates directory C
Multics >udd>Foo>Bar>z> Creates directory z
Lisp Machine >food>bar>b> Creates directory b
UNIX /usr/jek/new/ Creates directory new

Currently, the file servers for VAX/VMS and TOPS-20 can fail to create directories, due to
missing options.

5.2.1.3 Decrypt Buffer

Decrypt Buffer decrypts the contents of an encrypted buffer. It prompts for an encryption key,
which does not echo as you type it. The encryption key given for decrypting must match the one
used for encrypting. This command assumes the NBS encryption algorithm (also used by the
Hermes mail system on various ARPANET hosts). See also section 5.2.1.6, p. 86.

5.2.1.4 Edit Buffers

Edit Buffers is similar to List Buffers (c-X c-B). The buffer listing that is produced by Edit
Buffers is a buffer in its own right. It contains one line for each of the buffers in the editor.
The lines are not currently mouse-sensitive. With the cursor on the line for a buffer, the
following single character commands apply to that buffer.

RUBOUT Undeletes buffer above the cursor.

SPACE Selects that buffer immediately.

D Marks the buffer for deletion (K, ¢~D, e-K are synonyms).

U Undeletes either the buffer on the current line or the buffer on the line above.
S Marks the buffer for saving.

Marks the buffer for setting not modified.
Executes an extended command (same as m-¥X).

x

January 1983 85 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

You can install this command on a key using Set Key or by putting the following into your init
file:
;;:;add to Zmacs c-X comtab, NOT *standard-control-x-comtabs!!
(login-eval
zwei:(set-~comtab-return-undo
*zmacs-control-x-comtabs®
*(#\c-B com-edit-buffers)
)

5.2.1.5 Enable Host Capabilities, Disable Host Capabilities

The commands Enable Host Capabilities and Disable Host Capabilities provide a user interface
from the editor to the new functions fs:enable-capabilities and fs:disable-capabilities (see
section 2.2.20, p. 38).

These commands prompt for a host name. They choose the default host to offer according to the
pathname for the current buffer. With a numeric argument, these commands also prompt for
specific capabilities to enable or disable. The prompt lists any default capabilities for the host.

5.2.1.8 Encrypt Buffer

Encrypt Buffer encrypts the contents of the buffer. It prompts for an encryption key, which does
not echo as you type it. It prompts twice for the key to ensure against typing errors. It uses the
NBS encryption algorithm (also used by the Hermes mail system on various ARPANET hosts).
See also section 5.2.1.3, p. 85.

5.2.1.7 Find File In Fundamental Mode

The command Find File In Fundamental Mode creates a fundamental mode buffer containing the
file. This is useful because Zmacs does not parse the file while reading it in. Thus the names of
the functions in the file do not conflict with those already known to completion in m—. and
similar commands.

You can use Visit File (c-X ¢-V) in a buffer that is not associated with a file to get the same
effect.

This replaces the previous pseudo-file-buffers facility.

5.2.1.8 Macro Expand Expression
Macro Expand Expression uses macroexpand on the current form. That is, it expands only the
top level. This command is now available as c-sh-M.

5.2.1.9 Macro Expand Expression All

Macro Expand Expression All calls macro-expand-all. It fails in some cases because it cannot
distinguish between macros and symbols in clauses in special forms (like do). This will be fixed in
a future release.

5.2.1.10 Source Compare Merge subcommand
Source Compare Merge now has an "I" subcommand. It means to leave both alternatives in the
text, along with the message lines from the source compare (*** MERGE LOSSAGE **%, and the like).

Source Compare Merge has a little-known mouse interface. You can answer the first question by

Symbolics, Inc. 86 Janyary 1983

Release 4.0 Release Notes Symbolics, Inc.

clicking left on the text you want to keep or on the dividing line between them to keep both.
You can answer the second question by clicking Left for "yes" or Middle for "no".

5.2.1.11 View File Properties

View File Properties displays all the properties about a file that are maintained by the file system
on which it resides. These are the properties like creation date and time, author, time of last
access, and so on. For files on a Lisp Machine file system, it displays user-defined properties as
well. ‘

It prompts for a file spec, which it merges with the current default to form the pathname.
Wildcards are not accepted; this must correspond to a unique file or directory name.

5.2.2 New or improved variables

The following variables can be set with Set Variable. In addition, they can be set in init files by
using the internal form of their names. For example, Region Marking Mode is
zwel:*region-marking-mode* internally.

Find File Not Found Is An Error

Value: nil. This variable controls whether trying to find a file that does not

exist is an error. It applies to Find File and Find File In Fundamental Mode.

Value Meaning

nil Trying to find a file that does not exist creates a new file.
Zmacs notifies you in the echo area with the message "(New
file)". This is the default.

not nil Trying to find a file that does not exist is an error.

Find File and Find File in Fundamental Mode now accept a numeric argument
that means the same thing as having Find File Not Found Is An Error set to
nil.

Region Marking Mode
Value: :reverse-video for setting the region to reverse video. The default is
:underline. Reverse-video region display has been improved. It no longer has a
band of white between the lines of the region.

Region Right Margin Mode
Value: t. Causes whatever marks the region (reverse video or underlining) to
extend across unfilled space to the right margin. The default is nil.

One Window Default
zwei:*one-window-default* controls which window remains selected after a
One Window (c-X 1) command when you were using more than one window.
In prior systems, the default would have been :top. The default value in
Release 4.0 is :current. Put the following into your init file to reinstate the
old behavior.
(login-forms
(setq zwei:*one-window-default* *:top))

Possible values:
scurrent
sother
stop
sbottom

January 1983 87 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

This feature operates best when the current layout has no more than two
windows. The value :current is the only one that is always well defined with
more than two windows on the screen.

Check Unbalanced Parentheses When Saving
This variable controls whether Zmacs checks a file for unbalanced parentheses
when you are saving the file. The check is off (nil) by default because it slows
saving down. When it does check a file that you are saving and finds
unbalanced parentheses, it queries you about whether to go ahead and save
anyway. This applies to all major modes based on Llsp, it is ignored for text
modes.

zwei:*indent-new-line-new-line-function* Variable
This variable can contain a function for controlling what happens when you press LINE in
an editor. (Normally it uses the functions bound to RETURN and TAB.) When this
variable is not nil, it treats the value of the variable as a function to be executed in place
of the function bound to RETURN.

zwei:*indent-new-line-indent-function* Variable
This variable can contain a function for controlling what happens when you press LINE in
an editor. (Normally it uses the functions bound to RETURN and TAB.) When this
variable is not nil, it treats the value of the variable as a function to be executed in place
of the function bound to TAB.

5.3 Improvements

5.3.1 improved Zmacs commands

Some Zmacs commands have been extended to take advantage of the wildcard facility. In
particular, Delete File, Copy File, and Rename File now accept wildcard file specs.

Delete File Deletes one or more files. For a wildcard file spec, it lists the files that would
be deleted and requires that you confirm the list. It deletes the files, showing
any errors that occur but continuing rather than halting.

Copy File Copies one or more files to new files. If the source file spec is wild, the target
file spec must also be wild. (See the sections on copyf, p. 66 and wildcard
pathname mapping, p. 27.) For example:

M-X Copy File ;to Zmacs
Copy File from:
scrc:{Imfs>®. 1%sp;0 ; A11 the newest .LISP and .LSP’s
to:

ff:>sys-hold>scrc-sources>old-%.%x. %

SCRC:<LMFS>TEST.LSP.3 is copied into
ff:>sys-hold>scrc-sources>old-test.lisp.3

SCRC:<LMFS>FILES.LISP.147 is copied into
ff:>sys-hold>scrc-sources>old-files.1isp.147

Note that .LSP gets mapped into .lisp because it uses canomcal types when the
type of the target pattern is :wild.

Symbolics, Inc. 88 January 1983

Release 4.0 Release Notes Symbolics, Inc.

The canonical type mechanism determines the byte size and "type" of copy
(Binary, Characters, and so on). For example, a file with a known canonical
type of :press would be copied in 8-bit binary mode. For files that are not
classified as binary files, the source file is opened in its default mode and the
byte size is taken from the file system where it resides. The command uses
copyf internally; see section 3.2.20, p. 66 for rules on determining byte size and
transfer mode.

This command can now copy file authors and creation dates, when the target
operating system supports setting these attributes. This action is not the
default. The following numeric arguments control these aspects of copying.
This command now accepts more numeric arguments for controlling
characteristics of the copying. (Use HELP D for full details.)

Value Meaning

7 Copy creation date and author.

8 - Copy creation date and author, forcing binary copy.

9 Copy creation date and author, forcing character copy.

For hosts that do not support changing file creation dates, you must use this
command with the argument 4, which inhibits copying the creation date.

Edit Changed Definitions
Determines which definitions in any Lisp mode buffer have changed and selects
the first one. It now accepts a numeric argument to control the time point for
determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default)

2 For each buffer, since the buffer was last saved.

3 For each definition in each buffer, since the definition was last
compiled.

Several other commands now accept numeric arguments with similar meanings.
See the on-line help for these commands. v

Edit Changed Definitions of Buffer

List Changed Definitions

List Changed Definitions of Buffer

Rename File Renames one or more files. If the source file spec is wild, the target file spec
must also be wild. (See the section on wildcard pathname mapping, p. 27.)

5.3.2 Zmacs displays numeric arguments

Numeric arguments to commands appear in the echo area when a delay in typing the command -
occurs. With no delay, the argument does not appear.

5.3.3 Messages during compiling and evaluating

When an expression is being compiled or evaluated, the editor displays a message that classifies
what is being compiled. For example, : ‘

Compiling Function FOO
Evaluating Variable BAR
Compiling Flavor MOO

January 1983 89 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

It classifies macros and substs as functions (because all of these go in the function cell of a
symbol).

5.3.4 + flag for buffers

Several commands that show buffers use the + character to mark new files that have not been
saved. In addition, they now use + to mark new buffers, not associated with files, that have text
in them. This is to support people who put text into a new buffer and later want to be reminded
to write that buffer to a file.

5.3.5 Buffer and file attributes

The attributes for buffers are now stored separately from the attributes for the buffer’s pathname.
Previously, attributes were stored as a property of the generic pathname for the buffer so that the
attributes would be independent of version number and as part of the buffer text. Now,
attributes are stored as a property of the generic pathname, as part of the buffer data structure,
and as part of the buffer text. As a result, it is now possible for the various copies to be
different, if that is desirable.

The commands Reparse Attribute List and Update Attribute List help with keeping the
information consistent. Reparse Attribute List copies the attributes from the buffer text into the
generic pathname and the buffer data structure. Update Attribute List copies the attributes from
the buffer data structure to the other locations.

One troublesome attribute is the package attribute. Information about it exists in four places.
The Set Package command asks you which copies of the package information to update, using the
following query:

Set it for the file and attribute list too?

Your answer affects the various versions of the package attribute as follows.

Location "Yes” "No”
Generic pathname changes same
Buffer property changes changes
Buffer text changes same
Current package changes changes

5.3.6 "Set"” commands for flle and buffer attributes

Each of the file attributes now has a set command associated with it. You have two choices
when you want to change an attribute for a file:

« Edit the text of the buffer and then use Reparse Attribute List.

o Use the relevant set command and answer "yes" to its query. The meanings for "yes"
and "no" are the same as for the Set Package command (except that only the Set
Package command affects the current package).

The Set commands use the value of the variable zwei:*set-attribute-updates-list* to determine
whether to query you about updating the file attribute list. The default value for the variable is
:ask.

Symbolics, Inc. 90 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Value Meaning

sask Always asks whether to update the attribute list.
nil Never updates the attribute list.
t Always updates the attribute list.

The following list shows the attributes for files, their associated set commands, and the default
value for the attribute.

Attribute
Backspace
Base

Fonts
Lowercase
Nofill
Package
Patch-File
Tab-Width
Vsp

Set command Default value
Set Backspace nil

Set Base 8

Set Fonts nil

Set Lowercase nil

Set Nofill nil

Set Package user

Set Patch File nil
Set Tab Width 8 characters
Set Vsp 2 pixels

The following table describes some of the attributes.

¢
Backspace

Base

Lowercase

Nofill

January 1983

Backspace controls whether a backspace character in a file displays as the word
"overstrike" with a lozenge around it or performs the backspace. The default is
the lozenge form.

Base specifies the value of ibase that the Lisp reader is to use when reading
forms from the file. Thus, Base controls the ibase used when you evaluate or
compile parts of the buffer. This value does not affect the values of either
base or ibase in the Lisp Listener you get by using BREAK.

Lowercase means that the file being edited is intended to contain lower-case
code. When the Lowercase attribute is nil, whatever the user wants in the
way of case handling prevails. People who want automatic upper-case code
would use the following:

(login-forms
(setg zwei:1isp-mode-hook ’zwei:electric-shift-lock-if-appropriate))

When the Lowercase attribute is anything but nil, the Electric Shift Lock
Mode is never turned on automatically.

When the Nofill attribute is nil, whatever you want in the way of autofilling
behavior prevails. When Nofill is anything else, it means that autofilling is not
appropriate for people who specify the mode of "autofilling if appropriate".
The default is nil.

Use Nofill sparingly. Setting it means that everyone who edits the file has to
be satisfied with Auto Fill Mode being off by default. In most cases, it is more
reasonable to let an individual user’s preferences prevail. It is useful for files
that are not plain text, like mailing.lists, where you need to avoid spurious line
breaks.

People who want to have auto filling available by default should use the
following:

(login-forms
(setq zwei:text-mode-hook ’zwei:auto-fill-if-appropriate))

People who don’t want it never get it by default.

91 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Patch-File Patch-File means that the file contains patches. When a file is classified as
containing patches, fdefine does not warn about functions being redefined
during loading. Classifying something as a patch file also affects Edit
Definition (which prefers files that are not patches) and defvar (which
becomes setq). The default value is nil, meaning that the file does not contain
patches.

Tab-Width Tab-Width specifies how many spaces the editor uses between "tab stops”. The
default is 8 characters.

Vsp Vsp is the vertical spacing (in pixels) between the text lines of an editor
’ window. It specifies the distance between the descenders of one line and the
ascenders of the next. The default value is 2.

5.3.7 Two window mode uses previous buffer

Using Two Windows used to create a new empty buffer (BUFFER-2) for the bottom window,
unless you specified an argument. It now uses the previously selected buffer instead of creatmg
many empty buffers.

5.3.8 Errors noted in file attribute lists

Zmacs warns you when it finds an unknown attribute in a file attribute list. It goes ahead and
uses the unknown attribute in the list. The purpose of the warning is simply to help you detect
misspellings. '

You can define your own new file attributes, with the following form:

(defprop mode t fs:known-file-attribute)
See the file SYS: I0; OPEN LISP for models of defining file attributes.

5.3.9 Motion commands now use zwei:set-centering-fraction

More of the motion commands in the editor now use zwei:set-centering-fraction to determine
how to reposition the window after cursor motion moves you past either the top or the bottom of
the current screen. '

5.3.10 User-defined major modes

In Zmacs, you can define your own major modes (see zwei:defmajor in the code). When you
define the major mode, you can give it a property that indicates what type of major mode it is.
This helps to set up a major mode that is a modification of one of the standard editing types.
What you are telling Zmacs by doing this is how to parse the contents of a file in that major
mode. The current editing types are :lisp and :text.

(defprop lisp-mode :1isp editing-type)

(defprop lil-mode :1isp editing-type)

(defprop text-mode :text editing-type)

(defprop bolio-mode :text editing-type)

(defprop fundamental-mode :text editing-type)

Symbolics, Inc. 92 January 1983

Release 4.0 Release Notes Symbolics, Inc.

5.3.11 File types and major modes

You can control the default major mode associated with a particular file type. For example,
Zmacs sets the major mode to Lisp for files with type "lisp". The repository for this information
is a list called fs:*file-type-mode-alist*. Suppose you wanted to associate the file type "tex" with
text mode:

(push *("tex"® . :text) fs:*file-type-mode-alist®)

The car of an element should be either a canonical type symbol or a string when the type is not
one of the known canonical types.

In addition, suppose you have files that would require Scribe mode, if Zmacs had such a thing.
You can define a correspondence between two major modes, using a new variable called
zwel:*major-mode-translations®. It is an alist of major mode names, expressed as keyword
symbols. For example:

(push *(:scribe . :text) zwei:*major-mode-translations#*)

January 1983 93 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Symbolics, Inc. 94 January 1983

Release 4.0 Release Notes Symbolics, Inc.

6. Zmall

6.1 Incompatible changes

6.1.1 Recompile Zmail init files that use zwel:search-within-msg

Any compiled Zmail init files with filters that reference the macro search-within-msg (produced
by the Search menu item in filter creation) must be recompiled to be used with Release 4.0. If
such a filter appears in one of the alists associated with the [Move] or [Keywords] commands, you
must recompile it before trying to use Zmail, since those filters get invoked to update the mouse
documentation. Use the procedure in the following example:

(compiler:compile-file "oz:<(mine>zmail.1isp® "oz:<{mine>zmail.init")

6.1.2 Changes in getting new mail

The meanings of the mouse clicks to [Get Inbox] have been reassigned.

Command Meaning

[Get Inbox] or G from the keyboard
Gets the new mail (inbox) for the current buffer. It has no effect when a
collection is current.

[(mouse-M) Get Inbox]
Prompts you for an inbox name for the current buffer.

[(mouse-R) Get Inbox]
Calls up a menu of possible buffers to get the new mail for.

6.1.3 Changed profile options

Required Subjects Zmail now requires subjects on outgoing mail by default. You
can also change this by setting the variable
zwei:*require-subjects*.

Value Meaning ,

t Requires a subject and prompts for one before
sending if no subject has been supplied. (A
null string satisfies the requirement.)

nil - Does not supply or require a subject.
:bug Requires a subject for bug reports. ;
:init Supplies an empty Subject: field but does not

require that it be filled in.

6.1.4 Changed command names

Many command names and menu items in Zmail have changed. This was done as part of an
effort to clarify the terminology and concepts in Zmail. The new terms are defined in a new
document, Zmail Concepts and Techniques.

January 1983 95 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

In summary, the essence of the change relates to the following terms:

inbox The file where your mail is delivered, before being processed by Zmail.

buffer Messages associated with a particular mail file.

collection Messages collected from a mail buffer for some purpose (for example, as a
result of filtering).

sequence An umbrella term for referring to both buffers and collections.

All command names and on-line documentation have been revised to be consistent with the
terminology as it is applied in the Zmail document. Please refer to it for details.

In addition to the changes referred to above, the following command names have changed:

Previous name Name in Release 4.0
Delete Referenced Msg Delete Referenced Msgs

6.2 Néw features

6.2.1 New editing commands

Zmail now defines the commands m-< and m-> (Goto Beginning and Goto End) for moving
around in the message pane.

6.2.2 New conversation commands

A conversation is a collection containing all the messages that refer to a particular message and all
the messages that refer to it. One message refers to another when it satisfies one of the following
conditions:

o It has an In-Reply-To: field (except those generated by MM, a message system on
TOPS-20 and TENEX hosts, which cannot be recognized). ’

« It has a References: or Supersedes: field.

o Its text contains at least the Date: and From: fields from the other message, indented
as if it had been yanked in.

Commands that define conversations look in the current sequence (by default). For each message
found, it collects all the messages that it refers to and all the ones that refer to it. When nothing
new can be found, the conversation has been defined.

Due to the fact that it is defined by a chain of references, a conversation could be split if you
deleted and expunged some key message in a chain.

The variable zwel:*reference-default-universe* controls where Zmail looks for the messages.
When the variable is nil, Zmail looks in the current universe. You can set the variable to
zwel:*loaded-files-indirect-universe® to specify searching all mail buffers. ‘

Select Conversation by References ‘
Defines a conversation and selects it as a collection. This command is very
similar to Select References.

Delete Conversation by References

Symbolics, Inc. 96 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Creates a conversation based on the current message and deletes all of those
messages. It always deletes the current message.

6.2.3 New Zmall profile options

Inhibit Background Mail Checks
Values: Yes or No. The default is No. Controls whether Zmail checks for
new mail in the background when the Zmail frame is exposed. With the value
No, it uses the Zmail background process to check for new mail in the default
inbox. The result of this is to keep the file server active even when it is not
really being used. With the value Yes, Zmail inhibits the background mail
checking.

Prune Headers of Yanked Messages
Values: Yes or No. The default is No. Controls whether Zmail removes most
of the header fields from messages yanked into replies. With the value Yes, it
results in a minimal header on the included message. With No, you can always
use ¢-X Y to prune headers from an individual yanked message.

6.2.4 New message fields implemented: BCC, FCC, BFCC, Encrypted

Zmail now recognizes and generates several new message header fields.

BCC For "blind carbon copies”. The field contains recipient names. The recipients
in a BCC field do not appear in the copy of the message that is delivered to
the ordinary recipients; they do appear in the copy that is delivered to BCC
recipients. (All BCC recipients see the names of all BCC recipients.)

BFCC For filing a "blind" copy of a message that is being sent. The recipients of the
message do not see the BFCC field. For example,

BFCC: F:>JHWOMAILDOUTGOING.BABYL
"The file has to exist already; BFCC cannot result in a file being created.

FCC For filing a copy of a message that is being sent. The recipients see the field
in the message. For example,
FCC: F:>JHWOMAIL>OUTGOING.BABYL

The file has to exist already; FCC cannot result in a file being created.
Encrypted For flagging the message as containing encrypted text. Zmail generates this

header field itself when it is sending a message. The value of the field is the
name of the kind of encryption that was used.

Fonts For flagging the message as containing fonts. (This is like the Fonts attribute
: of a file attribute list.) Zmacs generates this header field itself when it is -
sending a message that contains fonts.

6.2.5 Encryption available

Zmail now supports encryption. Commands are available both when you are composing mail and
when you are reading mail. Encrypted messages contain a new header field to indicate that they
contain encrypted text. ‘ '

January 1983 97 ' Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

The command to encrypt a message draft is Encrypt Text. Use it after you have completed the
message draft but before you send it. Zmail prompts for an encryption key that the recipient will
have to provide in order to decrypt the message. It converts the draft to a form that you cannot
read. Decrypt Text is also available for message drafts. Both of these commands appear on the
draft editor menu.

Decrypt Msg displays an encrypted message as plain text, prompting for the encryption key. You
are only viewing the plain text form. Use a numeric argument to store the plain text version in
the mail file.

Text yanked by Forward and Reply prompts for a decryption key rather than yanking unreadable
text.

At this time, the only encryption algorithm supported is the NBS algorithm, used by Hermes.
Further additions are planned.

6.2.6 Fonts in messages

Zmail can now interpret messages that contain fonts. These are the same fonts that the editor
uses in Set Fonts and the editor font commands. The addition to Zmail to make it handle fonts
consisted of adding a Fonts: header field. Reading a message that contains fonts on some
different mail system is somewhat tedious, due to the presence of the “F font change indicators.

6.2.7 Internet domain addressing supported

Zmail understands the Internet RFC822 domain-addressing formats, in case you receive any mail
in the Internet format. '

6.2.8 New Zmail facility: zwei:preload-zmail

You can now specify in your init file a series of actions, related to starting up Zmail, that can run
in the background. In order to use this feature from your lispm init file, you must first enable
Zmail to run in the background. The flag that controls this is
zwei:*hang-background-process-when-deexposed®. This flag is normally t. You must set it to
nil.

An example:

(login-forms
(setg zwei:*hang-background-process-when-deexposed®* nil))
(zwei:preload-zmail *(:load~file *f:>rwk>mail>garbage.babyl®)
*f:>rwk>maild>gubbage.baby1")

This first causes the Zmail init file to be loaded and then loads the two files garbage.babyl and
gubbage.babyl, in turn.
Action specs can take one of two forms:

Argument

string or pathname (Loads the file with that name)
load-file string-or-pathname

:hang-when-deexposed r-or-nil

The string form is simply an abbreviation for :load-file followed by a string.

Symbolics, Inc. 98 January 1983

Release 4.0 Release Notes Symbolics, Inc.

When the function is in your LISPM init file, it first enqueues a command to load your Zmail init
file and then queues any action specification arguments. You can preload your default mail file;
it does not become selected until you use [Get Inbox] or [Select].

The function can appear instead in your Zmail init file. In that case, nothing can happen in the
way of preloading until you first select Zmail and use a command that initiates reading that init
file.

Regardless of where the preload function occurs, it can include a keyword that reinstates the flag
that shuts down the Zmail background when Zmail is not selected. This is the form
'(:hang-when-deexposed). Using this is equivalent to resetting the deexposed action flag to t.

Actions requested in the foreground (such as reading your default mail file) have priority over
preload actions. Preloading does not attempt to reload a file that has already been loaded.

6.2.9 Adding bug lists to Zmail

You can now add a new bug-mail recipient to the list of bug recipients. Two mechanisms are
available.

o Use the new :bug-reports option to defsystem.
(:bug-reports system-name documentation-string)

The documentation-string is the mouse-line documentation for the menu item.
system-name appears on the Zmail menu. For example,

(defsystem print
(:name “print")
:pathname-default "sys: print;*)
:package print)
:patchable)
:not-in-disk-label)
:bug-reports *Print" "Report a bug in the hardcopy facility.")
eed)

o Use this function:

P~ N I~~~

zwei:add-bug-recipient name &optional documentation
zwei:add-bug-recipient adds a new recipient to the menu available from
[(mouse-M) Mail]. Both arguments are strings. name appears in the menu;
documentation appears in the mouse line documentation. This uses the site
option host-for-bug-reports to determine the rest of the address.

6.3 Improvements

6.3.1 Zmail works with UNIX hosts

Zmail is now fully functional with UNIX. Zmail can both read new mail and add the new mail
to the standard UNIX mail file, mbox.

Zmail can also handle BABYL format mail files on UNIX, using the following conventions for
finding files:

January 1983 99 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

inbox file Jusr/user-id/mbox and /usr/spool/mail/user-id
default mail file user-id.bb :

The BABYL mail file format allows status and keyword information to be stored with messages;
the UNIX mail reading programs cannot read BABYL files.

To use user-id.bb as your default mail file, edit the options for the file to specify two files as
inboxes for the BABYL file. For example:

Mail:/usr/jek/mbox,/usr/spool/mail/jek

6.3.2 Reference commands changed

The commands with the word "reference” in their names are now much faster. They were
reimplemented to use hash tables rather than searching. With a numeric argument, the Reference
commands now offer a menu of universes for searching.

6.3.3 Background process changed

The background process now sleeps when the foreground process is running a command or
whenever you are typing in any window. Thus the background process never slows down the
operation of the foreground.

6.3.4 In-Reply-To fields included

The defaults for creating reply messages have been changed so the In-Reply-To fields are now
automatically included. The default can be changed by changing the option Generate In Reply
To Field in the Zmail profile.

6.3.5 Changes to keyboard interface

c-F Moves to the next message containing a specified string (using
zwei:com-zmail-find-string).

F Forwards the current message (using zwei:com-zmail-forward).

L Labels the current message (using zwei:com-zmail-keywords).

0 Moves the current message to a file (using zwei:com-zmail-move).

6.3.6 Change to Local mail

Local mail is a facility for putting a message into a mail file without having to give it any
recipients. (Otherwise, Zmail forces you to provide at least one To: recipient).

[Mail / Local] now uses zwei:fcc-local-mail-template. It initializes the message beixig composed
with an fcc header to the file for the current mail buffer.

The variables *local-mail-header-force* and *local-mail-include-subject* are now obsolete.
The template compatible-local-mail-template is also obsolete. Its function is still available,
however, from [Mail / Local Mail / Compatible Local Mail]. :

Symbolics, Inc. 100 January 1983

Release 4.0 Release Notes Symbolics, Inc.

6.3.7 Reply shows all header lines

The header window in a reply now shows all of the automatically generated header lines, making
the header window larger if necessary.

6.3.8 Universes reimplemented

Universes were generalized and reimplemented using flavors. People with advanced Zmail
extensions might find it necessary to rewrite some of these using the message
zwel:map-over-universe. You can now define arbitrary universes; see SYS: ZMAIL; UNIVERSE LISP
for information.

6.3.9 Change forITS users

Zmail now allows a BABYL file to specify which host to use for gmsgs. The option is called
:gmsgs-host. Thus if you keep your BABYL file on a host that does not have a gmsgs server,
you can still have gmsgs service by specifying an ITS host.

6.3.10 Case is preserved in filter and universe names

Zmail now preserves the case that you type for filter and universe names, instead of converting
them to upper case. Names that have already been defined are not affécted.

This affects only people who are typing lower-case names as symbols. Remember to use the
vertical bars around the name.

January 1983 101 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

Symbolics, Inc. 102 January 1983

Release 4.0 Release Notes Symbolics, Inc.

7. Notes and Clarlfications

7.1 Clarifications and corrections

7.1.1 Loading files in the background

Loading files asynchronously is not guaranteed to work. You cannot load files, particularly patch
files, in a background process and expect the correct results. Some reasons:

» The file could be doing something that maps over all pathnames, expecting that
pathnames would not change while it was running.

o defflavor has no locking at load time. Thus, the flavor data structures can be
damaged if two processes evaluate defflavor simultaneously.

o load-patches can reset and rebuild the site information.

e When a foreground bug occurs while patches are loading, you cannot determine what
system the bug occurred in.

o When you are using a subsystem in the foreground while it is being patched in the
background, unexpected problems could arise.

Making patch files is a difficult process; requiring patches to load asynchronously would make it
significantly harder to create patches.

Besides the fact that it is not guaranteed, asynchronous loading would not be efficient. The main
process and the background process would be competing for resources and you would lose a lot of
time to paging and the scheduler.

7.1.2 Loading into packages

You cannot load a program into a package that has subpackages. This is why you cannot load a
program into global or system; these packages were locked against interning new symbols in
order to keep you from mistakenly trying to load a program into them.

Packages with subpackages should have symbols interned in them intentionally only. This is
because the names are shared among the subpackages. Having symbols interned automatically by
read and load makes things unpredictable. For example, you could never tell whether trying to
intern the same name in two subpackages would produce two different symbols in two different
subpackages or one symbol in the parent package. A program loaded into the parent package
might use the name for a local variable, thereby causing the name to be interned and resulting in
the two subpackages sharing the name.

7.1.3 Restriction enforced on defun-method

In System 210 Release Notes, p. 4, it states that defun-method requires a symbolic function spec
as its argument. This restriction is now true; anyone who was depending on the fact that this
restriction was not enforced in System 210 will have to change their code.

January 1983 103 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

7.1.4 #X reader macro

#X followed by a number reads the number in radix 16 (hexadecimal). For numbers that
contain A through F as "digits", you must also supply a plus sign or a minus sign. Otherwise, the
number would be interpreted as a symbol.

#x+F => 15,

#x10 => 16.

#x+10 => 16.

(setq f "foo")

#xF => "foo" ;F is a symbol

7.1.5 format directives for date and time
format accepts some directives for printing times and dates.

~\date\ Prints its argument as a date and time, assuming the argument is a universal
time. It uses the function print-universal-date.

(format nil "Today is ~\date\" (time:get-universal-time))
=)> "Today is Wednesday the twenty-second of September, 1982; 3:07:05 pm"

~\time\ Prints its argument as a time, assuming the argument is a universal time. It

uses the function print-universal-time.
(format nil "Today is ~\time\® (time:get-universal-time))
Today is 9//22//82 15:08:41

~\datime\ Prints the current time of day. It does not take an argument. It uses the
function print-current-time.
(format nil "Today is ~\datime\")
“Today 1s 9//22//82 15:19:06"

~\time-interval\ Prints the length of a time interval. It uses the function
time:print-interval-or-never.
(setqg a (time:get-universal-time))

oo

(format nil "It is ~\time-interval\ since I set this variable”
(- {(time:get-universal-time) a))
*It is 1 hour 5 minutes 9 seconds since I set this variable"

7.1.6 Little-known command: View Mail

View Mail (m-X) is a command for viewing your inbox file. It uses the standard mail pathname
for your home directory. When no new mail has been delivered recently, it reports "No new
mail". This command uses View File.

7.1.7 Names for definitions: sys:function-parent

When a symbol’s definition is produced as the result of macro expansion of a source definition, so
that the symbol’s definition does not appear textually in the source, the editor cannot find it.
The accessor, constructor, and alterant macros produced by a defstruct are an example of this.
The sys:function-parent declaration can be inserted in the source definition to record the name
of the outer definition of which it is a part.

Symbolics, Inc. 104 January 1983

Release 4.0 Release Notes Symbolics, Inc.

The declaration consists of the following:

(sys:function-parent name type)

name is the name of the outer definition. #ype is its type, which defaults to defun. (This is the
“same type as in record-source-file-name; it is usually the name of the defining special form.)

You can define the type of an entity being defined:

(defprop feature "Feature® si:definition-type-name)
{(defprop defun “Function® si:definition-type-name)

sys:function-parent is a function related to the declaration. It takes a function spec and returns
nil or another function spec. The first function spec’s definition is contained inside the second
function spec’s definition. The second value is the type of definition.

Two examples:

(defsubst foo (x y)
(declare (sys:function-parent bar))

-.)

(defmacro defxxx (name ...)
‘“(local-declare ((sys:function-parent ,name defxxx))
(defmacro ...)
(defmacro ...)
))

7.1.8 Patches to "System"”

Do not attempt to make patches to the system named "System" or to any of the other distributed
systems. Local patches to the system are likely to be lost during the next update distribution. If
you try to patch a distributed system, you receive a warning. See section 3.2.15, page 64 on
making field patches to distributed systems.

7.1.9 Removing a defun-method

When you redefine a defun-method to no longer be a defun-method, you must use
undefun-method for the :defun-method function generated internally by it. Otherwise the
compiler will think that the function is still a defun-method and hence will generate the wrong
code.

7.1.10 union and intersection use eq

The System 210 Release Notes define the functions union and intersection. It did not mention
the fact that these functions use eq for their comparisons. You cannot change the function used
for the comparison.

7.1.11 Package nil in make-system

In make-system, you can declare a package for the system with a :package declaration.
Sometimes you have a module that needs to use the packages specified by the files’ attribute lists
rather than the package declared for the system. You make the files’ package specs override the
general one by putting :package nil in the module’s plist (at the end of the :module declaration).

January 1983 105 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

7.1.12 Clarification for process-wait-with-timeout

The description of process-walt-with-timeout in the Lisp Machine Manual, p. 431, reverses the
sense of the returned value. The following description is correct.

process-wait-with-timeout whostate interval function &rest arguments
This is a primitive for waiting. It applies function to arguments until the function returns
something other than nil or until the interval times out. interval is time in 60ths of a
second. When the process times out, process-wait-with-timeout returns nil. When the
function returns something other than nil within the interval, process-wait-with-timeout
returns t.

7.1.13 Clarification of read errors and the rubout handler

Any error which occurs at read time, as opposed to eval time or compile time, does not take you
into the Debugger. For instance, type "(a b ,c" to a Lisp listener, or "#8$", or a floating point
number with too many digits to the right of the exponent. Any error that occurs in the reader is
trapped by the rubout handler so that you get a chance to edit your input and continue. The
philosophy behind this is that your error is one of syntax and therefore should be obvious from
what is on the screen, so there is no need to go into the Debugger. This explains why you do not
see any restart handlers listed after this kind of error.

7.1.14 Clarifications for TOPS-20 users

The Zmacs command List All Directory Names lists subdirectories as well as top-level directories
for TOPS-20 hosts. This is a result of the TOPS-20 command set. On a Lisp Machine file
system, it lists only top-level directories.

The TOPS-20 file server contains a known bug. Very occasionally when you are writing out a
file, you receive an error message including the phrase "data packet being discarded". Abort the
write operation and start over. In our experience, the bug is not reproducible, which is why it is
"known" and not fixed. Please save any reproducible case.

7.1.15 Clarifications for VMS users

The VMS file server does not support file name completion.

7.2 Practical advice

7.2.1 Garbage collector

The LM-2 garbage collector is a copying incremental garbage collector. It requires space in which
to copy the structures, in addition to any space already in use. A background process called the
Scavenger goes through all the objects in o/d space that are still in use and copies them into copy
space. In the meantime, any new consing is done in new space. When all the structure which is
reachable in old space has been moved into copy space, old space is reclaimed. Later on, when
only enough room remains to copy the maximum amount of data, the fTip occurs; New space and
copy space are changed to old space and new new and copy spaces are started.

Symbolics, Inc. 106 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Until the scavenging process is complete, running with the garbage collector can require up to
twice as much space as running without the garbage collector (depending on how much of old
space was garbage, compared to how much had to be copied). If you have been running without
the garbage collector for a long time, you might not have enough room to successfully run the
garbage collector and collect all the garbage. The garbage collector sends notifications now as
you approach a certain percentage full.

One solution is to turn on the garbage collector sooner, so it is left with enough space to operate.
Another is to use gc-immediately.

Before the first flip, all allocated memory is new space; the Scavenger does not run until after the
first flip.

Further information about improvements to the garbage collector utility appears in section 3.2.1,
p. 56.

7.2.1.1 Strategy for unattended operation with the GC

It is chancy to leave very large compilations that do a lot of consing running unattended. In
previous releases, the GC would sometimes simply halt the machine. Now you can set the
following variables in order to control the assumptions that it makes about the amount of space
needed or available (see section 3.2.1, 56).

si:gc-flip-minimum-ratio
si:gc-flip-ratio
si:gc-reclaim-immediately-if-necessary

Some people find it necessary to have garbage collection working in order to load large systems.
People in these situations who do not want to use incremental garbage collection should be using
si:gc-immediately rather than si:full-gc. si:full-gc does a lot of unnecessary work and disables
multiprocessing, thus causing network connections to be lost. si:full-gc should be used only in
conjunction with the band compressor.

7.2.2 Supplying a personal name for Finger

The TERMINAL F commands show the users logged in on various machines. For time-sharing
machines, the protocol uses a user database to determine the personal names that match the user
names. Currently for hosts that do not run this protocol or for sites that do not have any time-
sharing hosts, users do not have any personal name information available. You can supply a
personal name in your init file in these cases:

(login-forms
(setq fs:user-personal-name-first-name-first "Billy T. Kid"))

7.2.3 One mouse clickor two

Some applications programs use shifted mouse buttons for encoding special commands. These
programs can be adversely affected by the change announced in System 210 Release Notes, section
4.6. That change made SHIFT, CTRL, and HYPER into shift keys for representing mouse double
clicks.

Applications that assign their own meaning to modified mouse clicks should protect themselves by
turning off the double-click meanings for these keys. Bind the value of

January 1983 107 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

tv:*mouse-incrementing-keystates* to nil around any calls to tv:mouse-button-encode. The
system calls tv:mouse-button-encode implicitly in the mouser process. You need to add a
wrapper to :mouse-buttons if you inherit the standard default method.

7.2.4 Metering large computations

Q: I am using METER:TEST and METER:ANALYZE on a computation that runs for about
half an hour and it doesn’t seem to work.

A: The data base for meter:analyze very large and slow; it is impractical to meter anything that
runs for more than a minute or so. Also unless you allocated a gigantic METR partition,
meter:test probably filled up the METR partition in the first few seconds and discarded the rest
of the data.

7.2.5 Only one compiler at a time

As previously announced (System 78 Release Notes, System 210 Release Notes), only one process at
a time can use the compiler. Attempts to invoke the compiler while it is running produce a
message like the following:

[10:29 Compiler in process ZMACS-WINDOWS: waiting for resources.]

This means that you tried to run the compiler in the zmacs-windows process, but some other
process is running in the compiler and is holding the global compiler lock. If you want to do
your compilation, select the process that is using the compiler and either abort it or wait for it to
finish. Your process that produced the error then wakes up and proceeds. Otherwise, you can
give up on the attempt that produced the error by using c-ABORT on that process.

7.2.6 Adding mouse documentation in Choose Variable Values menus

Q: When you use Choose Variable Values (documented in Lisp Machine Choice Facilities) and you
have a variable that can take on any of a small fixed set of values, naturally you use the :choose
keyword as described on p. 15. However, that doesn’t let you add mouse-documentation to the
individual choices. How do you do that?

A: By using :menu-alist instead of :choose. :menu-alist is documented just two items down
from :choose, but you could easily not notice it, which is why this question is asked frequently.

See the function Imfs:fsmaint-fspart-init-menu as a good example of how to use this kind of
menu.

7.2.7 zwei:edit-functions helps with editing jobs

zweizedit-functions spec-list
zwel:edit-functions gives spec-list to the editor in the same way that Edit Callers and
similar editor commands would. It is like ed in that inside the editor process it throws
you back into the editor, whereas from another process it just sends a message to the
editor and selects the editor’s window.

This command is useful when you have collected the names of things that you need to
change, for example, using some program to generate the list. spec-list is a list of
definitions; these are either function specs (if the definitions are functions) or symbols.

Symbolics, Inc. 108 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Zmacs sorts the list into an appropriate order, putting definitions from the same file
together, and creates a support buffer called *Function-Specs-to-Edit-7#. It selects the
editor buffer containing the first definition in the list.

7.2.8 Making standalone editor windows

Q: I want to make an editor window with the following properties:

« Should be standalone (have its own process).

* Need not have the buffer structure of Zmacs.

» Need not even have minibuffers. If I must have one, I want the pop-up style.

» Needs a special comtab. That comtab will have commands that make the window do
something worthwhile.

How do I do this?

A: Start with zwei:standalone-editor-frame. Send it an :edit message to make it edit. It does
not have its own process by default; you can mix process-mixin with it and make that process
send the :edit message if you want it to have its own process.

Two other useful messages:

:set-interval-string
Inserts a string in the editor.

:interval-string Returns a string to the caller when :edit returns.
For providing a special comtab, you can initialize the instance variable zwei:*comtab* by using
the :*comtab* keyword in the init plist.

The user exits from this kind of editor by using END.

7.2.9 Layouts menuitem

The Layouts item in the system menu does not work as you might hope or expect. Pending
redesign, you cannot save any layouts or specifications for layouts in your init file.

7.2.10 Using char-upcase function

The char-upcase and char-downcase functions interpret bits in the %%ch-char and %%ch-font
byte fields as font information rather than as modifier bits. (See Lisp Machine Manual, p. 315.)
This could confuse you if you try to call these functions on fixnums that you yourself interpret as
characters with modifier bits, particularly if you take keyboard input and call these functions.
You should check characters received from tyi to determine whether modifier bits are present;
use char-upcase only when no modifier bits are present.

The current Common Lisp design has character objects, with separate modifier and font
information. The problem cannot be fixed before we adopt Common Lisp because it would cause
compatibility problems.

January 1983 109 Symbolics, Inc.

Symbolics, Inc. " Release 4.0 Release Notes

7.2.11 Information about temporary consing areas

extra-pdl-area contains objects that are pointed to only by the local state of the machine (mainly
the stack buffer). When this area becomes full, it is completely reclaimed and objects in it that
are pointed to by the local state of the machine are copied out, and the pointers are relocated.
The restriction that only the local state of the machine is permitted to point to the extra-pdl area
is enforced in the following way. Any time a pointer that points into the extra-pdl area is stored
into memory, the object it points to is copied out of that area and the pointer is changed to point
to the copy.

The extra-pdl area works only for numbers, because when it copies out objects it cannot
guarantee that they "remain eq to themselves". That is, it cannot guarantee that all pointers to
the object are changed to point to the copy. This could be changed only at an efficiency cost.

The extra-pdl area is used to store those numbers that are not immediate: full-size flonums,
bignums, and rationals.

The lifetime of objects in the extra-pdl area is very short. A stack-group switch necessarily
flushes this area since it stores the entire local state of the machine into memory. Stack group
switches happen at least once a second.

Symbolics, Inc. 110 January 1983

Release 4.0 Release Notes Symbolics, Inc.

8. Operations and Site Management

8.1 Incompatible changes

8.1.1 Sys host logical directory changes

Due to internal reorganization, some logical directories have been renamed, some have been
removed, and new ones have appeared. The following table explains the details. Some of these
directories contain system sources and are required. Others are optional and need to be created
only if you plan to load the corresponding software package.

System 210 Release 4.0

. canon lgp (required)
Ibp none
none doc (required)
none hardcopy (required)
none Imfs-patch (required)
none print (optional, for LGP only)
none interlisp (optional, to be released soon)
none mailer (optional, to be released soon)

8.2 New features

8.2.1 Installing the print spooler

Release 4.0 includes a print spooler for a Symbolics LGP-1 laser printer. The section describes
how to install the spooler software.

This applies only if your LGP-1 is directly connected to an LM-2 at your site. Follow this
procedure only after you have completed the installation of Release 4.0. Add the
:hardcopy-devices site option, and the related site options (see section 8.2.2, p. 112) and update
the site parameters at your site (see the Software Installation Guide) so that all of your LM-2’s
can transmit to the spooler.

The LM-2 that connects to the LGP-1 must include the print spooler in its Lisp environment.
Note that the source files, gbin files, and patch files for the PRINT system are all provided on
the standard Release 4.0 distribution tape. Follow these steps to create the necessary Lisp
environment from a site-configured Release 4.0 band:

1. Cold boot and log in without running your init file.
2. (make-system ’print)

3. (1oad-patches ’print ’:noselective)

4. (disk-save n)

5. (set-current-band n)

(See Software Installation Guide for an explanation of this procedure.)

January 1983 111 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

You can install this band on another machine, even if that machine does not have an LGP-1
connected to it. The print spooler operates only when the LGP-1 is present.

The print spooler starts up automatically when services are enabled (see section 8.2.7, .p. 116).

The print spooler contains the following functions:

print:shut-down-print-spooler
Turns off the spooler if it is running.

print:reset-print-spooler
Turns off the spooler if it is running, and starts up a new one.

print:print-queue
Displays the LGP queue just like chaos:print-lgp-queune but doesn’t use the Chaosnet to
do it.

print:print-log
Prints out a log of interesting server events, most recent first, to aid in debugging.

8.2.2 New site options for hardcopy support

Release 4.0 provides three new site options.

chardcopy-devices
:default-hardcopy-device
:default-screen-hardcopy-device

chardcopy-devices
Specifies the devices at the site. It is a list of device lists. Each device list
contains the name of the printer as a string and a plist of options. The options
specify what the hardware interface is and how spooling is done. Detail on the
options appears on p. 113.

:default-hardcopy-device
Specifies by name the default output device for hardcopy commands. The
name of the default device must appear as one of the entries in the
chardcopy-devices list.

:default-screen-hardcopy-device
Specifies by name the output device for screen copy commands. The name of
this device must appear as one of the entries in the :hardcopy-devices list.

Using these site options requires a properly connected hardcopy device. In Release 4.0, this means
a Symbolics LGP-1 printer, a Versatec, a Xerox Dover printer, or a locally connected serial-port
printer.

Site options for two LGP-1 printers, each connected to a Lisp Machine, might look like this:

Symbolics, Inc. 112 January 1983

Release 4.0 Release Notes

(:hardcopy-devices

Symbolics, Inc.

*(("Winnipesaukee® :format :1gp

:spooler :chaos :host "Pointer®
:contact-name "LGP" :interface :1gp
:spooler-home-directory "pointer:>print-spooler>*)

("Quinsigamond® :format :1gp

:spooler :chaos :host "Afghan"
:contact-name "LGP" :interface :1gp
:spooler-home-directory "afghan:>print-spooler>")))

(:default-hardcopy-device "winnipesaukee™)
(:default-screen-hardcopy-device "winnipesaukee®)

The value of the :hardcdpy-devices option is a list, where each element of the list describes one
hardcopy device. The element starts with the name of the device, followed by keyword/value
pairs that give interface information about the device:

(name keywordl valuel keyword2 value2 ...)

The keywdrds specify what format the device accepts (:format) and how the device is accessed at
the site (:spooler and :interface). :format is required for each device; at least one of :spooler
and :interface must be provided for each device.

Keyword Values
:format Describes the format accepted by the device. The value is a keyword, one of the
following:
Keyword Meaning
:lgp The device accepts Symbolics LGP-1 codes.
:press The device accepts Press file format.
:xgp The device accepts Xerographic Printer (XGP) codes.
ssimple The device is a simple printer, such as a hardcopy computer
terminal or daisy-wheel printer and accepts ASCII characters.
:spooler Describes how to access the spooler that controls the device. This should be used

if some spooler program accepts requests for the device. Do not use this keyword
if the device is accessed-directly; for that use :interface instead. The value is a
keyword, one of the following:

Keyword

s«chaos

seftp

sits-dover

sgould

:file

:ascii-file

January 1983

Meaning

The spooler is connected over the Chaosnet. The :host and
:contact-name options must be provided as well.

The spooler is connected over the Experimental 3-MB Ethernet.
The :host-address option must be provided.

The spooler is specifically the ITS Dover spooler at MIT. The
:file-name option must be provided.

The spooler is for a Gould printer at MIT. The :file-name
option must be provided.

This means that the way to spool the request is to write a file
with the filename specified by the :file-name option. The file is
opened in binary mode with byte-size 8.

This means that the way to spool the request is to write a file

113 Symbolics, Inc.

Symbolics, Inc.

sinterface

shost

:contact-name
chost-address

«file-name

:default-font

sheader-font

Symbolics, Inc.

Release 4.0 Release Notes

with the filename specified by the :file-name option. The file is
opened in character mode.

Describes which host the printer is connected to and how it is connected by

hardware to the LM-2. This keyword applies only when the printer i$ connected

to the LM-2 by hardware and is accessed directly, not by a spooler. The value is

a keyword, one of the following.

:serial The printer is connected over the serial line. In the case of
:interface :serial, all the keyword options to
make-serial-stream are available. They default the same as for
that function, with the following exceptions:

Keyword Default

sbaud 1200. (rather than 300.)
:ascii-characters t
sforce-output nil

Another useful keyword is :xon-xoff-protocol (C-S/C-@). Most
printers are Data terminals so your Lisp Machine needs to be a
Data set. See LM-2 Serial I/0 for more details.

:lgp The printer is a Symbolics LGP-1 connected via a DR-11
interface.

Specifies the name of the chaos host to connect to as a string. This option
applies only under one of the following conditions:

The :spooler keyword with value :chaos
The :interface keyword without the :spooler keyword.

Specifies the contact name as a string to use in opening the Chaos connection.
This option applies only if you used the :spooler keyword with value :chaos.

Specifies the name of the Experimental Ethernet host to connect to as a fixnum.
This option applies only if you used the :spooler keyword with value :ether.

Specifies the name of the file to write as input to the spooler. The value is a file
spec string. This option applies only for the :spooler keyword used with one of
the following values: :its-dover, :gould, :file, or :ascii-file. Sometimes only
part of the file spec string is actually used:

Value Result

:sits-dover The name, type, and version in this pathname are ignored; only
the host, device, and directory are used. .

:gould The type and version are ignored; only the host, device,

directory, and name do. The name is used to form the name
of the file; see the documentation of the Gould spooler.

:file, :ascii-file The entire file name is used. Using a type of :newest here is
likely to be the right thing; otherwise, successive spool requests
would overwrite one another.

Specifies the default font for the device for printing text files. The font is
specified as a list of three elements naming the font, the face, and the size. The
default font can be can be omitted although it is a good idea to specify it in case
the defaults provided are not be available at your site.

Specifies the default font for the page headings when the device is printing text

114 January 1983

Release 4.0 Release Notes Symbolics, Inc.

files. The font is specified as a list of three elements naming the font, the face,
and the size. The header font can be omitted although it is a good idea to
specify it in case the defaults provided are not be available at your site.

:spooler-home-directory :
Specifies the directory for temporary files needed by the print spooler (section
8.2.1, p. 111). Supply a string containing the host name and the directory name.

Example:
(defsite :my-site

(:hardcopy-devices
*((“Fred® :format :1gp :spooler :chaos :host “LM-1"
:contact-name *LGP")

("George" :format :simple :interface :serial
sthost "LM-3" :xon-xoff-protocol t)))

("Itasca™ :format :1gp :interface :1gp
:spooler :chaos :host "cadr9®
:contact-name "LGP"
:default-font ("Fix"™ *"B" 9.)
sheader-font ("1pt® "* 10.))

)

Without :spooler, the device can be accessed only from the LM-2 to which it is directly attached.
In Release 4.0, the print spooler provided handles only the Symbolics LGP-1; it cannot spool files
to serial-line printers. This restriction will be removed in a future release. Another restriction is
that only screen images, not text, can be sent to a Gould spooler.

8.2.3 New site option: :fonts-widths
This option specifies to load the file containing the font width information at this site. Value t
causes the site initialization list to try to load the following fonts file:

sys:press-fonts;fonts widths

Only sites with their own additional LGP fonts would set the value to t. The site font width
information replaces the distributed font width information.

8.2.4 New site option: :supdup-default-path
ssupdup-default-path is a new site option for specifying the default gateway host for supdup and
telnet. Its value is the name of the host.

(:supdup-default-path "MIT-MC")

The gateway host is used only if you try to connect to a site on the Arpanet. the host must
support the Chaosnet’s Arpa Protocol.

8.2.5 New site option: :chaos-tape-server-hosts

All tape-using programs now call tape:default-host to supply a default tape host for
choose-variable-values and other queries. (If you call tape:make-stream without specifying any
host, it does this querying itself.) The default gets set by actually trying to open a tape stream.

January 1983 115 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

The default is initialized at cold or warm boot to "Local" if you have a local tape, or the first
item in the list if not. :

;; Hosts with tape drives running servers for the Remote Tape Protbcol (preference order)
(:chaos-tape-server-hosts *("scrc-pointer® "scrc-tenex"))

8.2.6 New Initialization lists: enable-services, disable-services

Two new initialization lists contain forms for enabling and disabling servers and services.
(Initialization lists are explained in Lisp Machine Manual, p. 490.)

enable-services Initialization list
The forms on enable-services are run by si:enable-services. In addition, they are run
automatically by lisp-reinitialize when a non-server Lisp machine is warm-booted or
cold-booted. ‘

disable-services Initialization list
The forms on disable-services are run by si:disable-services. In addition, they are run
automatically by before-cold when you use disk-save.

8.2.7 Controlling servers

You can now designate which machines at a site are to provide services to othér machines. Server
machines are those Lisp Machines providing services, like file serving, tape serving, or hardcopy
serving, to other Lisp Machines. (The kinds of services are defined by the site options, see
Software Installation Guide.)

:server-lisp-machines is a new site option. Its value is a list of strings, the full names of machines
that are servers.

Server machines do not automatically enable their servers when they are booted. This is to
prevent premature creation of servers before the machine has been completely initialized (just
seconds after being booted) or while someone is updating it (loading patches for example).
Someone or something has to turn on the services:

(si:enable-services)

This can be done manually (after loading patches for example) or as the last thing in the server’s
init file. A note below the herald for the server machine reminds you that services are not
enabled automatically. ‘

All Lisp Machines can provide services. The distinction provided by :server-lisp-machines is that
server machines are ones likely to be subject to continual requests for services whereas nonserver
machines are likely to be asked only infrequently to provide service. The function
si:enable-services runs whenever a nonserver Lisp Machine boots.

8.2.8 Enabling services

Two new functions control when services are available. You would not normally need to invoke
these functions manually; the boot process takes care of the same functionality. Booting enables
services for any machine unless it is a server Lisp Machine (see section 8.2.7, page 116.) Use
these functions instead of chaos:chaos-servers-enabled.

Symbolics, Inc. 116 January 1983

Release 4.0 Release Notes Symbolics, Inc.

si:enable-services
si:enable-services runs the enable-services initialization list (see section 8.2.6, p. 116).

si:disable-services
si:disable-services runs the disable-services initialization list (see section 8.2.6, p. 116).

8.2.9 New keyword for :esc-f-arg-alist option

The :esc-f-arg-alist site option now accepts the keyword :all-lisp-machines. This specifies all of
the Lisp Machines in the host table as opposed to :local-lisp-machines, which specifies only those
at your site. (See also chaos:finger-all-lispms, p. 68.)

8.2.10 New variable: supdup:*chaos-arpa-contact-name*®

supdup:*chaos-arpa-contact-name* Variable
This variable specifies the type of server for a Chaosnet to Arpanet connection. It
defaults to tep. For connecting to a machine that still uses the NCP protocol, change the
value of this variable to arpa. Only the name is different; the TELNET and SUPDUP
protocols are the same.

8.2.11 Machine characteristics available to finger server

The finger server now returns whether a machine has a color monitor or a tape drive. It is not
necessary to edit this information manually into the Imlocs file, if you were doing that previously.

8.3 Improvements

8.3.1 System shutdown Initialization list
When disk-save runs, the following things now happen, in this order.

1. before-cold initializations get run.

2. (logout)

3. system-shutdown initializations get run.

4. The window and process systems are explicitly shut down.

5. The microcoded sys:%disk-save is called, which performs the saving.

The entries on the system-shutdown list should all be for subsystems that are required for almost
anything else to run. Currently there are entries for the Chaosnet NCP, the TIME system, and
the Lisp Machine file system. User programs should add themselves to the before-cold list rather
than to system-shutdown.

This solves the problem that the Chaosnet would get shut down and its area unwired before the
cc symbols were loaded using the Chaosnet, causing the machine to halt if too many page faults
occurred.

January 1983 117 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

8.3.2 Timeouts changedon file jobs

A file job consists of one control connection and a number of data connections. The default
lifetimes of the connections for a file job have been changed:

Control connections 30 minutes (ITS); 2 hours (all others)
First data connection 12 minutes
Additional data connections 3 minutes

- When a control connection times out, you must supply a password the next time you attempt to
-use the host (for hosts that require passwords).

:file-control-life-table is a new site option for specifying timeouts for control connections for
various types of host systems. Its value is a list specifying the interval for each relevant host type.
For example:

(:file-control-1ife-table

*((“"scrc-tenex" 108000.) ;30 minutes.
(:its 108000.) ;30 minutes.
(otherwise 432000.))) ;120 minutes.

Value Meaning of the cadr of the alist
n Timeout interval in 60ths of a second

nil, no entry Control connection never times out

Valid host types:
:éits, :lispm, :multics, :tenex, :tops-20, :unix, :vms

8.4 Notes

8.4.1 Appending to Lisp Machine file system dump tapes using TOPS-20 tape server

Attempting to append to the end of backup tapes when using the TOPS-20 tape server used to
create unreadable tapes. This has been fixed; it now works to append to the ends of dump tapes,
on all systems. :

8.4.2 Bug in TOPS-20 Chaosnet NCP

The following problem has been discovered. Each TOPS-20 site should patch its monitor
accordingly.

The MOVEI T1,177777 at CHART1-1 should be HRRZ T1,CHAACK(CONN). As it
is now, packets with a number greater than 100000 will never get retransmitted. As
soon as one of them gets lost, the connection wedges. Since there is a timeout in
SNPKBT, this also means that the connection will grab all of memory in its attempts
to keep sending over the window size.

Symbolics, Inc. 118 January 1983

Release 4.0 Release Notes Symbolics, Inc.

Index
BCC 97
2 in pathnames 8 before-cold 117
BFCC 97
#X reader macro 104 sbinary-file-byte-size 13
Booting 60
~$ 49 Borders 69
boundp-in-instance 61
&key for keyword arguments 24 Bp 34
Buffer attributes 90
* 74,75 Buffer name completion 82
= 27,75 Buffer streams, editor 33
bug 63
+ flag in Zmacs 90 Bug lists 99
Bug recipients 99
~BA 49 Bug reports 63
Bug-mail 63
abort (in package sys:) 54 Bug-mail recipients 99
:add-asynchronous-character, Method to tv:stream-mixin Byte size error 73
32 '
add-bug-recipient, Function (in package zwei:) 99 c-M 63
add-escape-key, Function (in package tv:) 65 c-m-v 63
add-system-key, Function (in package tv:) 66 CALL key function 55
all-directories (in package fs:) 20 Canon directory 111
&allow-other-keys 26 Canonical types in pathnames 10
%always-merge-type-and-version® (in package fs:) 23 :canonical-type 14
:append 44 :canonical-type, Method to fs:pathname 12
Applyhook 45 scanonical-type, Option to :new-pathuame 14
Apropos editor command 82 scase 45
argument-typecase 61 Case in filter and universe names 101
Arresting processes 71 scatch 54
sascii-file 114 catch-error-restart 61, 68
Asynchronous characters 31 catch-error-restart-if 61
:asynchronous-character, Init Option for tvistream-mixin cerror 19
, 31 change-file-properties (in package fs:) 20
:asynchronous-character-p, Method to tv:stream-mixin :change-properties 19
32 :chaos 113
Attribute lists 92 $chaos-arpa-contact-name® Variable (in package supdup:)
Attribute, unknown 92 117
Attributes, buffer 90 chaos:contact-name 70
Attributes, file 90 chaos:finger 21, 55
- Attributes, package 90 chaos:finger-all-lispms, Function 68
chaos:finger-local-lispms, Function 68
Background process 100 chaos:finger-location, Variable 67
Backtrace information 69 chaos:print-lgp-queue, Function 67
Backtraces 54 chaos:whois 21, 55
Backup dumper interface change 77 char-downcase 109
Backup dumper map 78 char-upcase 109
Backup dumper recovery 77 - Character set name changes 17
Backup tapes 76 : Check Records 78
Band compressing procedure 64 Check Unbalanced Parentheses When Saving 88
Bands, copying 60 :choose 108
basic-hash-table Methods Choose Variable Values 108
«filled-entries 6 Cold boot process 60
:modify-hash § com-zmail-find-string (in package zwei:) 100
;size 6 com-zmail-forward (in package zwei:) 100

January 1983 4 119 Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

com-zmail-keywords (in package zwei:) 100 Debugger command 63
com-zmail-move (in package zwei:) 100 Debugger functions renamed 55
Command name changes 84 Debugger messages 69
Command name completion 83 declare 50
Command names, Zmail 95 Decrypt Buffer 85
command-level (in package sys:) 21 Decrypt Msg 98
compatible-local-mail-template 100 Decrypt Text 98
Compile Changed Definitions editor command 82 Default major mode 93 .
Compile Changed Functions 81 Default surface type 11
Compiled Zmail init files 95 Default value for *default-package* 83
Compiled-code files 53 Default value for major mode 83
Compiler variables - 24 default-cons-area 51
compiler-verbose, Variable (m package compiler:) 38 :default-font 114
compiler:compiler-verbose, Variable 38 sdefault-hardcopy-device 112
compiler:file-declaration, Function 24 :default-init-plist 50
compiler:file-declare, Function 24 sdefault-package® (in package zwei:) 83
compiler:function-defined, Function 24 default-pathname (in package fs:) 17
compiler:functiou-referenced, Function 24 sdefault-screen-hardcopy-device 112
Completion of buffer names 82 sdefaults-are-per-host#® (in package fs:) 14
Completion of command names 83 define-canonical-type, Special Form (in package fs:) 13
Components of pathnames 15 Definition names 104
compress-band (in package si:) 64 defmajor (in package zwei:) 92
Compressed bands 64 defsite Options
stcomtab* 109 ssite-system 65
scomtab® (in package zwei:) 109 defstruct, improvements 47
condition 61 defsubst 51
condition-bind 19 defun-method 103, 105
condition-bind-default 61 :defun-method 105
condition-bind-default-if 61 :delete. 19
condition-bind-if 61 Delete Conversation by References 97
condition-call 61 Delete File 88
condition-call-if 61 :delete-char 37
condition-case 61 :delete-line 37
condition-case-if 61 :deleted 73
Conditionalizing on sites 56 deletef 20
Conditions 17 describe-system 61
Contact names for Chaosnet connections 70 describe-system (in package si:) 61
:contact-name 114 Device selection (hardcopy) 62
contact-name (in package chaos:) 70 Directory components 73
Conversation commands in Zmail 96 Directory file type 75
Copy File 88 Directory menu 75
Copy File editor command 66 directory-list (in package fs:) 20
copy-disk-partition (in package si:) 60 Dired subcommands 84
copyf 61 Disable Host Capabilities 86
copyf, Function 66 disable-capabilities (in package fs:) 86
Copying bands 60 disable-capabilities, Function (in package fs:) 39
%count-extra-pdl-ovs (in package sys:) 68 disable-services, Function (in package siz) 117
Create Directory 85 disable-services, Initialization list 116
Create Link 85 disk-restore 60
Cross-host defaulting mechanism 14 disk-save 60, 117

} Doc logical directory 111
Data packet being discarded, error message 106 Domain-addressing formats 98
~\date\ 104 :dont-delete 78
~\datime\ 104 :dont-reap 78
dbg 54, 61 Double mouse clicks 108
dbg:pdl-grow-ratio 50 dplt-print-file 62
dbg:*show-backtrace* 69 : :draw-circular-arc, Method to tvigraphics-mixin 39
debug-io 33, 61 ‘ sdraw-closed-curve, Method to tvigraphics-mixin 39
Debugger - 33, 54 ; :draw-dashed-line, Method to tv:graphics-mixin 40
Debugger changes 54 sdraw-string, Method to graphics-mixin 41

Symbolics, Inc. 120 January 1983

Release 4.0 Release Notes Symbolics, Inc.

dtp-stack-closure 62 file 113,114
dump-forms-to-file, Function (in package sys:) 43 File sttribute lists, warnings 92
dump-forms-to-file (in package sys:) 6 File attributes 90
Dumper keyword arguments 77 File menu items 75
Dumper prompt 76 File names 74
Dumper, multiple pathnames 76 File system usage report 76

File type, directory 75
Echoing arguments 89 File types and major modes 93
sedit 109 File version management properties 78
Edit Buffers 86 sfile-control-life-table 118
Edit Changed Definitions 89 file-declaration, Function (in package compiler:) 24
Edit Changed Functions 81 file-declare, Function (in package compiler:) 24
[Edit] menu command 75 file-name 114
edit-functions, Function (in package zwei:) 108 file-properties (in package fs:) 20
Editing commands 96 sfile-type-mode-alist® (in package fs:) 14, 93
Editor buffer streams 33 fill-pointer 37
Editor font commands 98 sfilled-entries, Method to basic-hash-table 6
Editor mejor modes 14 Filter names, case - 101
Editor motion commands 92 . Find File In Fundamental Mode editor command - 86
Editor support functions §1) Find File Not Found Is An Error 87
Editor windows 109 find-file-with-type, Function (in package fs:) 13
seftp 113 finger (in package chaos:) 21, 55
eh 54 Finger error changes 55
eh-arg 62 Finger, personal names 107
eh-frame 62 finger-all-lispms, Function (in package chaos:) 68
eh-fun 62 finger-local-lispms, Function (in package chaos:) 68
eh-loc 62 finger-location, Variable (in package chaos:) 67
eh-sg 62 flavor-default-init-get, Function (in package si:) 37
eh-val 62 flavor-default-init-putprop, Function (in package si:)
ch:error-handler-io 33 ‘ 37
Enable Host Capabilities 86 flavor-default-init-remprop, Function (in package si:)
enable-capabilities (in package fs:) 86 37
enable-capabilities Function (in package fs:) 38 Flavors
enable-services, Function (in package siz) 117 fquery 22
enable-services, Initialization list 116 Floating point values 49
Encrypt Buffer 86 Fonts 63, 97
Encrypt Text 98 Fonts in messages 98
Encrypted 97 fonts-widths 115
Encryption 97 :force-redisplay 33
eq 105 :format 113
eq-hash-table (in package siz) 5 format directive 49
equal-hash (in package siz) 6 format directives for date and time 104
equal-hash-table (in package siz) 5 fquery, Flavor 22
Error handling 32 Freerecords 76
error-handler-io (in package eh:) 33 fs:all-directories 20 ‘
Error-handling 18 fs:*always-merge-type-and-version® 23
error-output 33 fs:change-file-properties 20
error-restart 19 ' . fs:default-pathname 17
error-restart-loop 61 fs:*defaults-are-per-host* 14
errorp 20 fs:define-canonical-type, Special Form 13
Escape keys 65 fs:directory-list 20
evalhook 45 fs:disable-capabilities, Function 39
expunge-directory (in package fs:) 20 fs:disable-capabilities 86
extra-pdl-area 110 : fs:enable-capabilities, Function 38

‘ fs:enable-capabilities 86

Fast boot process 60 . fs:expunge-directory 20
FCC 97 fs:file-properties 20
fcc-local-mail-template (in package zwei:) 100 fs:*file-type-mode-alist* 14, 93
FED command 63 fs:find-file-with-type, Function 13
ferror 20 ~ fs:*known-types* 8

January 1983 121 Symbolics, Inc.

Symbolics, Inc.

- fe:last-file-opened 23
fs:make-pathname 10
fs:merge-pathnames, Function 15
fs:merge-pathnames 16
fs:pathname-host 48
fs:pathname-mixin 48
fs:pathname Methods
:canonical-type 12
smew-canonical-type 12
:mew-default-pathname 16
:pathname-match 28
system-type 16
stranslate-wild-pathname 29
stypes-for-canonical-type 14
swild-p 29
FSEdit, removing user propertiesin 79
fsignal 61
fsmaint-fspart-init-menu (in package Imfs:) 108
full-gc (in package si:) 59, 107
sfull-gc-for-system-release® (in package si:) 59
full-screen-hack-mixin (in package tv:) 69
function-defined, Function (in package compiler:) 24
function-parent (in package sys:) 104
function-referenced, Function (in package compiler:) 24
Functions
chaos:finger-all-lispms 68
chaos:finger-local-lispms 68
chaos:print-lgp-queue 67
compiler:file-declaration 24
compiler:file-declare 24
compiler:function-defined 24
compiler:function-referenced 24
copyf 66
fs:disable-capabilities 39
fs:enable-capabilities 38
fs:find-file-with-type 13
fs:merge-pathnames 15
gc-immediately 56
gce-status 57
listf 67
Imfs:rename-local-file-tool 74
parse-number 42
print:print-log 112
print:print-queue 112
print:reset-print-spooler 112
print:shut-down-print-spooler 112
process-wait-with-timeout 106
prompt-and-read 29
qreply 68
readline-trim 26
record-source-file-name 45
si:disable-services 117
si:enable-services 117
si:flavor-default-init-get 37
si:flavor-default-init-putprop 37
si:flavor-default-init-remprop 37
sicget-release-version 60
si:pkg-locked 22
si:set-default-hardcopy-device 62
siset-scavenger-wg 59

-Symbolics, Inc. 122

Release 4.0 Release Notes

si:set-screen-hardcopy-device 62
signum 42
string-capitalize-words 42
string-reverse-search 44
string-search 44
sys:dump-forms-to-file 43
sys:%slide 41

:add-escape-key 65
tv:add-system-key 66
zwei:add-bug-recipient 99
zweitedit-functions 108
zwei:open-editor-stream 33
Fundamental major mode 83
fundefine 105

Garbage collector 56, 106

Gec 106

ge-area-reclaim-report, Variable (in package si:) 57

ge-flip-inhibit-time-until-warning Variable (in package
si) 59

ge-flip-minimum-ratio, Variable (in package siz) 58

ge-flip-ratio, Variable (in package si:) 58

gc-immediately 61

gc-immediately, Function 56

gc-immediately (in package si:) 107

ge-reclaim-immediately, Variable (in package si:) 58

ge-reclaim-immediately-if-necessary, Variable (in package
siz) 58

ge-report-stream, Variable (in package si:) 57

ge-status 61

ge-status, Function 57

gc-warning-ratio, Variable (in package si:) 57

gc-warning-threshold, Varisble (in package siz) 57

Generation retention count 56

Generic pathname changes 8

[Get Inbox] menu command 95, 99

get-release-version, Function (in package si:) 60

Getting new mail 95

global package changes 62

Goto Beginning 96

Goto End 96

sgould 113, 114

graphics-mixin Methods

:draw-string 41

chandle-asynchronous-character, Method to
tvistream-mixin 32

Handling 17, 54

*hang-background-process-when-deexposeds (in package
zweis) 98

Hardcopy commands 62

Hardcopy device selection 62

Hardcopy logical directory 111

Hardcopy options 113

shardcopy-devices 112

Hash tables 5

Header fields 97

Header window, reply 101

sheader-font 115

Hold Output 71

January 1983

Release 4.0 Release Notes Symbolics, Inc.

Homedir 75 lexical-closure 24, 62
Hook srguments 45 sdlgp 113,114
chost 114 Lgp logical directory 111
shost-address 114 Lisp (Edit) 71
host-alist (in package si:) 68 List All Directory Names 106
listf 61
1/0 from editor buffers 33 listf, Function 67
ignore-errors 61 Lmfs-patch logical directory 111
In-Reply-To fields 100 Imfs:fsmaint-fspart-init-menu 108
sindent-new-line-indent-function®, Variable (in package lmfs:rename-local-file-tool, Function 74
zwei:) 88 load 23
sindent-new-line-new-line-function®, Variable (in package [Load] menu command 75
zwei:) 88 :load-file 98
Infix expression reader macro 36 load-patches 59, 65, 68
Infix expressions 36 load-patches, keyword 65
Inhibit Background Mail Checks 97 *loaded-files-indirect-universe® (in package zwei:) 96
inhibit-gc-flips, Macro (in package si:) 59 Loading files in the background 103
Init files, Zmail 95 Loading into packages 103
Init Options Loading patches 68
:asynchronous-character for tv:stream-mixin 31 Local mail 100
szinit-methods 50 Local site systems 65
Init-plist 50 local-finger-location (in package si:) 67
Initialization lists *local-mail-header-force* 100
disable-services 116 $local-mail-include-subject®* 100
enable-services 116 location-boundp 44, 61
Initializing flavor instances 50 location-makunbound 44, 61
zinsert-char 37 Locking packages 22,23
sinsert-line 37 Logical directory changes 111
Installing print spooler 111 Logical pathnames 7
instancep 61 login-forms 61
Intercept characters 31 logiu-forms, Special Form 63
Interchange case in pathnames 9 Loop iteration path over hash tables 6
sinterface 114
Interlisp logical directory 111 m-< 96
Internet domain addressing 98 m-> 96
Interning 23 machine-location-alist (in package si:) 68
Interning symbols 103 Macro Expand Expression 86
intersection - 105 Macro Expand Expression All 86
:zinterval-string 109 Macro expansion 51
ITS issues 101 Macro expansion in compiler process 46
ITS pathname merging 9 macro-expand-all 86
sits-dover 113, 114 Macros
let-globally-if 36
&key 24 i:inhibit-gc-flips 59
Key changes 84 sicwith-package-lock 23
key-test (in package tv:) 68 unless 26
Keyboard 68 when 26
Keyboard interface changes 100 with-open-file-case 32
Keystroke names 17 with-open-stream-case 32
Keyword arguments 24 zwei:with-editor-stream 33
Keyword arguments, dumper 77 Mailer logical directory 111
Keywords Maintenance menu 78
load-patches 65 Major mode default value 83
sknown-types® (in package fs:) 8 Major modes 14, 92
Major modes and file types 93
Labels 69 *major-mode-translations® (in package zwei:) 93
last-file-opened (in package fs:) 23 make-array 37 '
Layouts menu item 109 make-array, obsolete form 51
let-globally-if 61 make-condition 61
let-globally-if, Macro 36 make-instance 50

January 1983 123 Symbolics, Inc.

Symbolics, Inc.

make-pathname (in package fs:) 10
make-pathname-internal 16
make-system 64, 106
:map-hash 6
map-over-universe (in package zwei:) 101
Menu commands
[Edit] 75
[Get Inbox] 95, 99
[Load] 75
[Reload/Retrieve] 76
" [Select] 99
[Wildcard Delete] 75
Menu items, Zmail 9§
:menu-alist 108
merge-pathnames (in package fs:) 16
merge-pathnames, Function (in package fs:) 15
Message fields 97
Message header fields 97
Methods
:add-asynchronous-character to tvistream-mixin 32
:asynchronous-character-p to tv:stream-mixin 32
:canonical-type to fs:pathname 12
sdraw-circular-arc to tv:graphics-mixin 39
:draw-closed-curve to tv:graphics-mixin 39
:draw-dashed-line to tv:graphics-mixin 40
sdraw-string to graphics-mixin 41
:filled-entries to basic-hash-table 6

thandle-asynchronous-character to tv:stream-mixin 32

smodify-hash to basic-hash-table $§
:mew-canonical-type to fs:pathname 12
snew-default-pathname to fs:pathname 16
:pathname-match to fs:pathname 28
sremove-asynchronous-character to tv:stream-mixin
32

:sample-pathname to si:pathname-host 17
ssize to basic-hash-table 6
sstring-in to si:input-stream 30
ssystem-type to fs:pathname 16
stranslate-wild-pathname to fs:pathname 29
stypes-for-canonical-type to fs:pathname |
:wild-p to fs:pathname 29 .

Modifiers 17

:modify-hash, Method to basic-hash-table §

:module 106

Motion commands 92

Mouse clicks 95, 107

Mouse documentation 108

Mouse hardware 68

mouse-button-encode (in package tv:) 108

*mouse-incrementing-keystates® (in package tv:) 108

Native pathname component case 9

mmconc 45

Network errors 68

NETWORK 0 63

network-error (in package sys:) - 55

New messages §

:new-canonical-type, Method to fs:pathname 12
:mew-default-pathname 7, 10
:new-default-pathname, Method to fs:pathname 16

Symbolics, Inc.

Release 4.0 Release Notes

mmew-pathname 10, 14
:mew-pathname Options
scanonical-type 14
soriginal-type 14
mew-raw-xxx 10

Nil pathname components 8
snorelease 65
:motice 50

:notice :error 50
null type 35
Numeric arguments 89

One Window Default 87
One-armed conditionals 26
tone-window-default® (in package zwei:) 87
open-editor-stream, Function (in package zwei:) 33
open-editor-stream (in package zwei:) 33
sopen-for-writing 73
Options
:canonical-type to :new-pathname 14
soriginal-type to :new-pathname 14
:site-system to defsite 65
soriginal-type 14
:original-type, Option to :new-pathname 14
Overprinting command 63

%p-store-contents 46

spackage 106

Package nil in make-system 105
Package attributes 90

Package changes 53

Package locking 23

:package nil 106

package-declare 22

parse (in package time:) 21
parse-number, Function 42
parse-universal-time (in package time:) 21
Password prompting change 53
Patch directories 56

Patches to "System" 105

Patches to local systems 65
Pathname case 9

Pathname changes 7

Pathname component messages 15
Pathname wildcards 75
pathname-host (in package fs:) 48
:pathname-match, Method to fs:pathname 28
pathname-mixin (in package fs:) 48
:pathnames 77

pdl-grow-ratio (in package dbg:) 50
Peek, ABORT 70

Peek, space 70

Peek, Chaos connection names 70
Peek, File System command 70
Peek, Server command 70
pkg-create-package 22

pkg-locked, Function (in package si:) 22
Possibilities 82

Preferred surface type 11

Prefix character commands 85

January 1983

Release 4.0 Release Notes

preload-zmail (in packsge zwei:) 98

:press 113

Print logical directory 111

Print spooler installation 111
print-current-time 104

print-herald 69

print-interval-or-never (in package time:) 104
print-lgp-queue, Function (in package chaos:) - 67
print-log Function (in package print:) 112
print-queue, Function (in package print:) 112
print-txt-file 62

print-universal-date 104
print-universal-time 104

print:print-log Function 112
print:print-queue, Function 112 .
print:reset-print-spooler, Function 112
print:shut-down-print-spooler, Function 112
Printer selection 62

Proceed commands 69

process-mixin 109
process-wait-with-timeout, Function 106
Profile options 95

Profile options, Zmail 97

prompt-and-read 61, 71

prompt-and-read, Function 29

Prune Headers of Yanked Messages 97

QBIN type 53

QFASL type 53

qreply 61

qreply, Function 68
:query 77

Queue of print requests 67

Raw case in pathnames 9

Raw pathname component case 9

read 71

Read errors and the rubout handler 106

read-meter 68

readline 71

readline-trim 61

readline-trim, Function 26

receive-band (in package si:) 60

record-source-file-name 61, 105

record-source-file-name, Function 45

Redefining functions, warning 49

Reentrant, compiler not 108

Reference commands 100

sreference-default-universe®, Variable (in package zwei:)
96

Region Marking Mode 87

Region Right Margin Mode 87

Relative pathnames 17, 74

Release versions 59

[Reload/Retrieve] menu command 76

sremove-asynchronous-character, Method to
tvistream-mixin 32

Removing a defun-method 105

Removing user properties in FSEdit 79

:rename 19

January 1983 125

Symbolics, Inc.

Rename File 89

Rename File editor command 69
rename-local-file-tool, Function (in package Imfs:) 74
renamef 20, 69

Reparse Attribute List 90

Reply header lines 101

Required Subjects 95

reset-print-spooler, Function (in package print:) 112
Restart commands 69

Retrieving files 76

return-list 23

rh-off (in package tv:) 71

rh-on (in package tv:) 71

room 69

Rubout handler improvements 71

Rubout handler, read errors 106

rubout-handler, new value 55

Salvager interface 78

ssample-pathname, Method to si:pathname-host 17

Saving bands 60

sscreen-hardcopy-announcement®, Variable (in package
tv:) 66

search-within-msg 95

search-within-msg (in package zwei:) 95

Select Conversation by References 97

[Select] menu command 99

sserial 114

sserver-lisp-machines 116

Set commands for file and buffer attributes 90

Set Fonts 98

Set Package 90

Set Varigble 87

tset-attribute-updates-list® (in package zwei:) 91

set-centering-fraction (in package zwei:) 92

set-default-hardcopy-device, Function (in package si:)
62

sset-interval-string 109

set-scavenger-ws, Function (in package siz) 59

set-screen-hardcopy-device, Function (in package si:) 62

set-system-source-file (in package si:) 64

Sheet Lock 71

Shifted mouse buttons 107

¢show-backtrace® (in package dbg:) 69

shut-down-print-spooler, Function (in package print:)
112

si:compress-band 64

si:copy-disk-partition 60

i:describe-system 61

si:disable-services, Function 117

sicenable-services, Function 117

siceq-hash-table 5

sicequal-hash 6

i:equal-hash-table 5

si:flavor-default-init-get, Function 37

si:flavor-default-init-putprop, Function 37

si:flavor-default-init-remprop, Function 37

si:full-ge 59, 107

si:*full-gc-for-system-releaset 59

si:gc-area-reclaim-report, Variable 57

Symbolics, Inc.

Symbolics, Inc.

si:gc-flip-inhibit-time-until-warning Varisble 59
si:gc-flip-minimum-ratio, Variable 58
si:gc-flip-ratio, Variable 58
si:gc-immediately 107
si:gc-reclaim-immediately, Variable 58
sisgc-reclaim-immediately-if-necessary, Variable 58
si:gc-report-stream, Variable 57
si:gc-warning-ratio, Varisble 57
sigc-warning-threshold, Variable 57
si:get-release-version, Function 60
sihost-alist 68

sizinhibit-gc-flips, Macro 59
sizlocal-finger-location 67
si:machine-location-alist 68
si:pkg-locked, Function 22
si:receive-band 60
si:set-default-hardcopy-device, Function 62
si:set-scavenger-wg, Function 59
i:set-screen-hardcopy-device, Function 62
si:set-system-source-file 64
sictransmit-band 60
si:with-package-lock, Macro 23
sizinput-stream Methods

sstringin 30

si:pathname-host Methods
:sample-pathname 17

signal 20

signal-proceed-case 61

Signalling 17, 54

Signalling and handling conditions 17
signum 61

signum, Function 42

ssimple 113

ssite-system, Option to defsite 65

ssize, Method to basic-hash-table 6
9%slide, Function (in package sys:) 41
Source Compare Merge 86

Special Forms

fs:define-canonical-type 13
login-forms 63

undefun-method 38

with-stack-list 43

with-stack-list® 44

sspooler 113

sspooler-home-directory 115

Stack growth 50

Standalone editor windows 109
standalone-editor-frame (in package zwei:) 109
sstart-node 77

sstart-path 77
status function change 56

Status line changes 69
" store-conditional 46
%store-conditional 46

Stream input 30

Streams, editor buffer 33
string-capitalize-words 61, 70
string-capitalize-words, Function 42
sstring-in, Method to si:cinput-stream 30
string-reverse-search, Function 44

Symbolics, Inc.

Release 4.0 Release Notes

string-search, Function 44
Subjects in mail 95

Subpackages 103

Subst 51

SUPDUP 63
supdup:*chaos-arpa-contact-name$, Variable 117
Support buffers 81

Surface type in pathnames 11
sys:abort 54

sys:command-level 21
sys:%count-extra-pdl-ovs 68
sys:dump-forms-to-file 6
sys:dump-forms-to-file, Function 43
sys:function-parent 104
sys:network-error 55

sys:%slide, Function 41

System keys 65

System patches 105

System shutdown 117
system-release 59
system-shutdown 117
ssystem-type, Method to fs:pathname 16

TELNET 63

Temporary consing areas 110

TERMINAL c-A 71

TERMINAL F 107

TERMINAL HOLD-OUTPUT 71

TERMINAL Q@ 66

~\time-interval\ 104

time:parse 21

time:parse-universal-time 21

time:print-interval-or-never 104

~\time\ 104

Timeouts changed on file jobs 118

TOPS-20 issue, directory name listing 106

TOPS-20 issue, file server bug 106

trace-conditions 61

stranslate-wild-pathname, Method to fs:pathname 29

transmit-band (in package si:) 60

Tree Edit Homedir 75

tv:add-escape-key, Function 65

tv:add-system-key, Function 66
:full-screen-hack-mixin 69

tvikey-test 68

tv:mouse-button-encode 108

" tv:*mouse-incrementing-keystates® 108

tv:rh-off 71

tv:irh-on 71
tv:tscreen-hardcopy-announcement®, Variable 66
tv:*typeout-window-border-enables, Variable 70
tv:graphics-mixin Methods

sdraw-circular-arc 39

«draw-closed-curve 39

:draw-dashed-line 40

tv:stream-mixin Init Options
sasynchronous-character 31

tv:stream-mixin Methods
:add-asynchronous-character 32
sasynchronous-character-p 32

January 1983

Release 4.0 Release Notes

shandle-asynchronous-character 32
sremove-asynchronous-character 32

Two window mode 92

Type, QBIN 53

Type, QFASL 53

stypeout-window-border-enable®, Variable (in package

tv:) 70
Types, null 35
stypes-for-canonical-type, Method to fs:pathname 14

undefun-method 61
undefun-method, Special Form 38
andeletef 20

anion 105

Universe names, case 101
Universes 101

UNIX issues 12,99

Unknown attribute 92

unless 61

unless, Macro 26

sunspecific 8

Unspecific pathname component 8
unwind-protect 50

Update Attribute List 90

Usage report 76

user package 83

User properties in FSEdit, removing 79
User-defined major modes 92
Using Two Windows 92

Validity checking 7

values 23

Variables

chaos:finger-location 67
compiler:compiler-verbose 38
si:gc-area-reclaim-report 57
si:gc-flip-inhibit-time-until-warning 59
si:gc-flip-minimum-ratio 58
sicgc-flip-ratio 58
si:gc-reclaim-immediately 58
si:gc-reclaim-immediately-if-necessary 58
si:gc-report-stream 57
si:gc-warning-ratio 57
si:gc-warning-threshold 57
supdup:*chaos-arpa-contact-name® 117
tv:¢screen-hardcopy-announcement® 66
tv:*typeout-window-border-enable® 70
zwei:tindent-new-line-indent-function® 88
zweistindent-new-line-new-line-function® 88
zwei:*reference-default-universe® 96
Version management properties 78

View File Properties 87

VMS issue, file name completion 106

VMS issues 12

when 61

when, Macro 26

who-calls 46

whois (in package chaos:) 21, 55
swild 75

January 1983

Symbolics, Inc.

:wild-p, Method to fs:pathname 29
[Wildcard Delete] menu command 75
Wildcard deletion 75

Wildcard file specs 88

Wildcard pathnames 27

Wildcards in pathnames 75

Window label format 70

Windows 69

with-editor-stream, Macro (in package zwei:) 33
with-editor-stream (in package zwei:) 33
with-key 6

with-open-file-case 61
with-open-file-case, Macro 32
with-open-stream-case 61
with-open-stream-case, Macro 32
with-package-lock, Macro (in package sis) 23
with-stack-list 61 .
with-stack-list, Special Form 43
with-stack-list* 61

with-stack-lists, Special Form 44
Wrong byte size error 73

xgp 113

y-or-n-p 48
yes-or-no-p 48

Zmacs command name changes 84

Zmacs internal reorganization 81

Zmacs key changes 84

Zmail bug lists 99

Zmail command names 95

Zmail editing commands 96

Zmail init files, compiled 95

Zmail menu items 95

Zmail profile options 97
zwei:add-bug-recipient, Function 99
zwei:com-zmail-find-string 100
zwei:com-zmail-forward 100
zwei:com-zmail-keywords 100
zwei:com-zmail-move 100

zwei*comtab* 109

zwei:*default-packaget 83

zwei:defmajor 92

zwei:edit-functions, Function 108
zweifcc-local-mail-template 100
zwei:*hang-background-process-when-deexposed® 98
zweistindent-new-line-indent-function® Variable 88
zwei:tindent-uew-line-new-line-function®, Varisble 88
zwei:*loaded-files-indirect-universe*t 96
zwei:*major-mode-translations* 93
zwei:map-over-universe 101
zweis*one-window-default® 87
zwei:open-editor-stream 33
zwei:open-editor-stream, Function 33
zwei:preload-zmail 98
zwei:*reference-default-universe®, Variable 96
zweissearch-within-msg 95
zwei:tset-attribute-updates-list* 91
zweisset-centering-fraction 92

Symbolics, Inc.

Symbolics, Inc. Release 4.0 Release Notes

zwei:standalone-editor-frame 109
zwei:with-editor-stream 33
zwei:with-editor-stream, Macro 33

~$ 49

~\date\ 104
~\datime\ 104
~\time-interval\ 104
~\time\ 104

Symbolics, Inc. 128 January 1983

Symbolics, Inc. Symbolics, Inc.

NOTES

Symbolics, Inc. Symbolics, Inc.

Symbolics, Inc. Symbolics, Inc.

NOTES

Symbolics, Inc. Symbolics, Inc.

Symbolics, Inc. Symbolics, Inc.

NOTES

Symbolics, Inc. Symbolics, Inc.

symbolics ™

Release 4.0 Release Notes
#990095

Design: Schafer/La Casse
Typesetting: Cover — Litho Composition Co.
Printing: Henry Sawyer Co.

