Release 5.0 Release Notes
995050

March 1984

This document corresponds to Release 5.0.
This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
UNIX is a trademark of Bell Laboratories, inc.

VAX, TOPS-20, and VMS are trademarks of Digital Equipment Corporation.
TENEX is a registered trademark of Bolt Beranek and Newman Inc.

Copyright © 1984, Symbolics, Inc. of Cambridge, Massachusetts.

All rights reserved. Printed in USA.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 8584 987654321

RN Release 5.0 Release Notes i
Symbolics, Inc. March 1984

Table of Contents

Page
1. Release 5.0: Introduction and Highlights 1
1.1 New Microcode in Release 5.0: 270 on 3600, 998 on LM-2 3
2. Changes to the Lisp Language and Compiler in Release 5.0 5
2.1 Incompatible Changes to Lisp in Release 5.0 5
2.1.1 Changes to login 5
2.1.2 Changes to Packages 6
2.1.3 Symbols in global and keyword packages with the same 7
names
2.1.4 Symbols moved to or from global package 9
2.1.5 Keyword Symbols Are Self-evaluating 13
2.1.6 Functions moved from the si package to global: 13
deallocate-whole-resource, map-resource
2.1.7 New special forms catch and throw replace *catch and 14
*throw
2.1.8 Nonkeyword form of make-array is obsolete 16
2.1.9 string-length uses same coercion rules as string 16
2.1.10 Change in type of array returned by string-append 16
2.1.11 Changes to Readtable, Reader, and Printer for Common Lisp 16
2.1.12 Changes to make-syn-stream 20
2.1.13 format directives “@T and “@* replace "X and "G 21
2.1.14 Changes to format:ochar 21
2.1.15 Incompatible Changes to the Input Editor (Rubout Handler) 21
2.1.16 Changes to open 24
2.1.17 Changes to renamef and copyf 26
2.1.18 Changes to Host Determination in Pathnames 30
2.1.19 Meaning of argument changed for fs:parse-pathname 32
2.1.20 Arguments changed for fs:user-homedir and 34
fs:init-file-pathname
2.1.21 Init File Pathnames Standardized 34
2.1.22 :init canonical pathname type removed 35
2.1.23 Changes to Logical Pathnames 35
2.1.24 fs:make-logical-pathname-host replaces 37
fs:add-logical-pathname-host
2.1.25 Previously undocumented function: 38
fs:set-logical-pathname-host
2.1.26 load-file-list obsolete 39
2.1.27 Change in arguments to print-herald 39

2.1.28 Change in arguments to unadvise 39

i

RN Release 5.0 Release Notes

2.1.29
2.1.30

Symbolics, Inc. March 1984

Window System Changes Associated with Mouse Input
:clear-screen, :clear-eol, and :clear-eof messages to
windows renamed

2.2 New Features in Lisp in Release 5.0

221
2.2.2
223
224

225
226
2.2.7
228
229
2.2.10
2211
2.2.12
2.2.13
2214
2215
2:2.16

2217
2.2.18
2.2.19
2.2.20
2221
2.2.22

2.2.23
2.2.24
2.2.25
2.2.26
2.2.27
2.2.28
2.2.29
2.2.30
2.231
2.2.32

New function: eql
New special form: defconstant
New special forms: block and tagbody
New special forms: multiple-value-call and
multiple-value-progl
3600 Supports Ieee Single- and Double-precision Floating Point
New function: mod
New functions: byte, byte-size, byte-position
New Metering Tools for the 3600
New Meters for the LM-2
New special form: define-symbol-macro
New function: undefflavor
New option for defflavor: :required-init-keywords
New option for defflavor: :mixture
New format directives: “+» and ~«
New special form: format:defformat
New Features Associated with the Input Editor (Rubout
Handler)
New macro: sys:with-open-file-search
New condition flavor: fs:multiple-file-not-found
New condition flavor: fs:rename-across-hosts
New variable: fs:*remember-passwords*
New function: si:patch-loaded-p
New functions: si:make-process-queue,
si:process-enqueue, si:process-dequeue,
si:process-queue-locker, si:reset-process-queue
New function: applyhook
New variable: gc-on
New initialization list: :after-full-gc
New variable: dbg:*debug-io-override*
New message to conditions: :special-command-p
New macro: tv:with-mouse-grabbed-on-sheet
New variable: tv:cold-load-stream-old-selected-window
New flavor: tv:margin-space-mixin
New font: fonts:cptfonti
New Choose-variable-values Keywords

[

2.3 Improvements to Lisp in Release 5.0
2.3.1 Previously undocumented special form: destructuring-bind

23.2
2.3.3
2.3.4

Invisible blocks in progs and dos

Previously undocumented function: clear-resource
Multidimensional Arrays on the 3600 Remember Actual
Dimensions

RE&RR RS

48
49
50

52
53
53
53
54
55
56
57

69
69
70
70
70
71

72
73
73
74
74
74
74
74
75
76
77
77
78
78
78

RN Release 5.0 Release Notes

i

Symbolics, Inc. March 1984

235
2.3.6

2.3.7
238

2.3.9
2.3.10

231
23.12
2.3.13
2.3.14
2.3.15

2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
2.3.22

2.3.23
2.3.24
2.3.256
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31

2.3.32
2.3.33
2.3.34
2.3.35

2.3.36
2.3.37

2.3.38
2.3.39

New options for make-plane: :initial-dimensions,
:zinitial-origins
New optional arguments to string-upcase and
string-downcase
Previously undocumented function: string-compare
3600 select-methods handle :operation-handled-p and
:send-if-handles
Compiler Performs Style Checking on All Forms
sys:dump-forms-to-file always puts package attribute into
binary file
Previously undocumented macro: swapf
Compiler now warns about implicit progns in loops
Some Methods Can Use Combination Type as Method Type
Previously undocumented reader macro: #| and j#
New function to be called by reader macros:
si:read-recursive
New optional arguments to read-from-string
Changes to prompt-and-read
Previously Undocumented Feature: Coroutine Streams
format -\ directives can have package prefixes
Wildcard Directory Mapping Available
Previously undocumented function: describe-system
Improvements to make-system: error-restart, selective
transformations
Second argument to si:install-microcode now optional
Change in argument to process-wait-with-timeout
New option for si:sb-on: :mouse (3600 only)
New format for trace output
Recursion in Bound and Default Handlers Eliminated
:proceed methods can now return nil
New clause for condition-call: :no-error
New message to arithmetic errors: :operands
Change in Debugger special command for
fs:directory-not-found
New optional argument to ge-immediately
New optional arguments to print-notifications
:draw-filled-in-circle uses same algorithm as :draw-circle

29

Previously undocumented variables: sys:mouse-x-scale-array 100

and sys:mouse-y-scale-array (LM-2 only)

New optional argument to tv:mouse-wait

New flavors: tv:truncatable-lines-mixin,
struncating-lines-mixin

New variable: tv:*mouse-modifying-keystates*

Shifted Mouse Clicks Can Now Be Used for Editor

Commands

101
102

102
103

iv RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

2.3.40 Previously undocumented functions:
:add-to-system-menu-programs-column,

tv:add-to-system-menu-create-menu

2.3.41 Argument to :menu type menu items can be a menu or a
form

2.3.42 Clicking Middle Edits Current String in Choose-variable-
values Windows

2.3.43 tv:scroll-maintain-list init function can take arguments

3. Changes to Networks in Release 5.0

3.1 Incompatible Changes to Networks in Release 5.0
3.L1 Network Namespace System
3.12 chaos:stream, chaos:close, and chaos:finish renamed
3.1.3 neti:reset, neti:enable, and neti:disable replace
chaos:reset, chaos:enable, and chaos:disable
3.1.4 Changes to chaos:open-stream
3.1.5 chaos:send-unc-pkt automatically returns the packet to the
free pool
3.2 New Features in Networks in Release 5.0
3.2.1 New function: chaos:conn-finished-p
3.2.2 Changes to VMS Chaosnet
3.2.3 Changes to Serial I/O: Parity Recovery and Xon/Xoff
Character Setting
3.2.4 Hdle Serial 'O on the 3600
3.2.5 Interface to the Vadic Modem

4. Changes to Utilities in Release 5.0

4.1 Incompatible Changes to Utilities in Release 5.0

4.1.1 Default Font Format Now Bfd

4.1.2 Changes to Font Editor File Commands

4.1.3 Changes to FUNCTION C, FUNCTION M, and FUNCTION @
4.2 New Features in Utilities in Release 5.0

4.2.1 New feature: Flavor Examiner (SELECT X)

4.2.2 New terminal program (SELECT T)

4.2.3 Show Hardcopy Status (m-%) replaces chaos:print-lgp-queue
4.3 Improvements to Utilities in Release 5.0

4.3.1 Font Editor and Inspector use ESCARPE to evaluate forms

4.3.2 Debugger c-M creates a process

4.3.3 m-SUSPEND selects frame with break read function for

Debugger
4.3.4 END and c-END swapped in Converse
4.3.5 Changes to Converse Notifications

5. Changes to the File System in Release 5.0

103

105
105

105

107

107
107
107
107

108
108

108
109
109
109

110
m

‘13

113
113
13
113
114
114
114
115
116
116
116
116

116
1u7

19

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

5.1 Incompatible Changes to the File System in Release 5.0
5.1.1 New Default LMFS Translation Table for Sys Hosts
5.1.2 LMFS Dumper Supports Accordion Wildcards

5.2 New Features in the File System in Release 5.0
5.2.1 LMFS Now Supports Directory Links
5.2.2 LMFS Accordion Wildcards
5.2.3 Dumper Restarting and Append-to-tape Default

6. Changes to Zmacs in Release 5.0

6.1 Incompatible Changes to Zmacs in Release 5.0
6.1.1 Both default pathnames for Source Compare (m-X) now use
:newest version
6.1.2 Changes to Add Patch Changed Definitions (m-X) and Add
Patch Changed Definitions of Buffer (m-X)
6.1.3 Set Package (m-X) offers to create a package
6.1.4 Change in numeric arguments to Copy File (m-X)
6.2 New Features in Zmacs in Release 5.0
6.2.1 New Zmacs command: Resume Patch (m-X)
6.2.2 New Zmacs command: Start Private Patch (m-X)
6.2.3 New Zmacs command: Source Compare Newest Definition
(m—X)
6.2.4 New Buffer-history Mechanism in Zmacs
6.2.5 New Zwei command: Comment Out Region (c-X c-;)
6.2.6 New Zwei command: Find Files in Tag Table (m-X)
6.2.7 New Zwei commands: Lowercase Code in [Region/Buffer]
(m-%), Uppercase Code in [Region/Buffer] (m-X)
6.2.8 New canonical file type: :mss
6.3 Improvements to Zmacs in Release 5.0
6.3.1 Default File Name Changed for Commands in Dired Buffer
6.3.2 Major-mode-setting Commands Now Query About Updating
File Attribute List
6.3.3 Change in Zmacs command Modified Two Windows (c-X 4)
6.3.4 Internal changes to macros zwei:defmajor and
zwei:defminor

7. Changes to Zmail in Release 5.0

7.1 Incompatible Changes to Zmail in Release 5.0
7.1.1 Zmail Init File Pathnames Standardized
7.1.2 Babyl files with summary-window-format other than t or
" nil need to be edited
7.1.3 Ramifications of Host Colon Change for Babyl Files
7.2 New Features in Zmail in Release 5.0
7.2.1 Sorting by Conversations Available
7.2.2 New [map Over] Menu Item: [reply]
7.2.3 New [map Over] Menu Item: [select Conversation]

119
119
19
120
120
120
121

123

123
123

123

123
124
124
124
124
124

125
125
125
125

126
126
126
126

127
127

129

129
129

130
130
130
130

vi RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

7.3 Improvements to Zmail in Release 5.0
7.3.1 Previously undocumented commands: Delete Conversation By
References (m-X), Append Conversation By References (m-X)
7.3.2 Rfc822 Domain Addressing Supported

8. Changes to the FEP in Release 5.0

8.1 FEP Version 14: New Features
8.1.1 FEP Supports Hdle Serial /O
8.2 FEP Version 15: Incompatible Changes
8.2.1 h-c-upper-left stops execution of Lisp
8.2.2 si:halt replaces sys:%halt
8.2.3 >Configuration.fep Files Are Now Called >Boot.boot
8.2.4 New Defaults for FEP Commands
8.2.5 Disk Format Command Asks Different Question
8.3 FEP Version 15: New Features
8.3.1 Loading Sync Programs
8.4 FEP Version 15: Improvements
8.4.1 Show Configuration Command Displays More Information
8.4.2 Memory Board Not Needed in Lbus Slot 0
8.5 FEP Version 16: New Features
8.5.1 New FEP Commands: Add Disk-type and Clear Disk-types
8.6 FEP Version 16: Improvements
8.6.1 Unplugging Lemo Cables Should Not Halt the FEP
8.6.2 Continue Command Sends an All-keys-up Character to Lisp
8.6.3 More Information Available on Causes of Crashes
8.7 FEP Version 17: Improvements
8.7.1 Show Status Command Displays More Useful Information
8.8 FEP Version 18: Improvements
8.8.1 h-c-upper-left waits for Lisp to stop itself

9. Release 5.0: Notes and Clarifications

9.1 Clarifications and Corrections for Release 5.0

9.1.1 What happens when you cold boot

9.1.2 sort predicate should return nil for equal elements

9.1.3 store not supported on the 3600

9.14 Using copy-array-portion on the same array

9.1.5 bitblt width from the destination array

9.1.6 Inspecting hash arrays of eq hash tables not permitted

9.1.7 Known problem: char-upcase and char-downcase
undefined for modified characters

9.1.8 How to use the sys:function-parent declaration

9.19 Use record-source-file-name instead of (remprop symbol
’:source-file-name)

9.110 Use cdr with locatives returned by locf

9.111 rplaca can be used with stack lists

130
130

130

133

133
133
133
133
133
134
134
134
135
135
135

- 135

136
136
136
137
137
137
137
140
140
140
140

143

143
143
144
145
145
145
145
145

145
147

148
148

RN Release 5.0 Release Notes

vii
Symbolics, Inc. March 1984
9.1.12 FUNCTION 2 W displays current process name in status line 148
9.1.13 Known problem with si:gc-reclaim-immediately 148
9.1.14 tv:set-default-font not supported 149
9.1.15 Avoid Errors in the Mouse Process 149
9.1.16 nil not a valid menu item 149
10. Release 5.0: Operations and Site Management 151
10.1 Notes on Operations in Release 5.0 151
10.1.1 Backup Tape Reliability 151
10.1.2 Site Configuration for Dialnet 151

Index

RN Release 5.0 Release Notes 1
Symbolics, Inc. March 1984

1. Release 5.0: Introduction and Highlights

These notes accompany the release of Release 5.0. They describe changes made
since Release 4.5. The changes are organized in the following sections. Within each
section, the material is organized into incompatible changes, new features, and
improvements.

Changes to the Lisp Language and Compiler in Release 5.0
This section describes changes relevant to the Lisp language and
compiler. The biggest changes are these:

« Packages have completely changed for compatibility with
Common Lisp. The keyword package is now separate from
user, and it does not inherit from global. Files compiled in
earlier systems will not work in Release 5.0 and should be
recompiled. ‘

« The procedure for logging in has changed as a result of a
new network namespace system.

» The rubout handler has been renamed to the input editor
and has been extensively changed.

o The readtable, reader, printer, and open have changed for
compatibility with Common Lisp.

« The 3600 now supports IEEE-standard single- and double-
precision floating point numbers.

« Several window system flavors and methods related to mouse
input have been changed.

« Logical pathnames and translations have changed.
« Init file pathnames have been standardized.

« The first colon in a pathname now always delimits the host.

Changes to Networks in Release 5.0
This section describes changes in network implementation,
interface, and protocols. The biggest change is the introduction of
a network namespace system.

Changes to Utilities in Release 5.0
This section describes changes in what any other computer would
call the operating system and utilities. This includes the

2 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Debugger, the garbage collector, network support, and various
system keyboard features. The most important changes are:

» Changes in the location of some keyboard keys on the 3600.

* A new system for yanking input in Zwei and the input
editor.

* A new terminal program that incorporates Telnet and
Supdup.

* A new utility, the Flavor Examiner, for finding information
about flavors and methods.

* A new carry tape system.

Changes to the File System in Release 5.0
This section describes changes in the Lisp Machine file system.
The major change is the introduction of accordion wildcards.

Changes to Zmacs in Release 5.0 ,
This section describes changes in the Zmacs editor. The biggest
change is the new yank system. See the document Using the
Input Editor.

Changes to Zmail in Release 5.0
This section describes changes in the Zmail mail reading and

sending program.

Changes to the FEP in Release 5.0
This section describes changes in the FEP. Release 5.0 requires
FEP version number 17 or higher.

Release 5.0: Notes and Clarifications
This section contains explanations and clarifications of items that
people found confusing in previous releases and documentation.

Release 5.0: Operations and Site Management
This section describes changes to the system and site
configuration features of the system. These changes are
important to the people who are responsible for the software at
each site.

You can find all the incompatible changes by reading the first part of each section.
A complete list of changes appears in the Table of Contents.

As in previous releases, many minor bugs have been fixed and performance in some
areas has been improved. Only the more important or visible changes are mentioned
here. |

RN Release 5.0 Release Notes 3
Symbolics, Inc. March 1984

11 New Microcode in Release 5.0: 270 on 3600, 998 on LM-2

Release 5.0 world loads must be run with microcode version 270 on the 3600 and
version 998 on the LM-2. The old world loads do not work with the new microcode,
and the new world loads do not work with the old microcode.

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 5
Symbolics, Inc. March 1984

2. Changes to the Lisp Language and Compiler in
Release 5.0

2.1 Incompatible Changes to Lisp in Release 5.0

2.1.1 Changes to login

The login function has changed for Release 5 for compatibility with the new
network naming scheme. The arguments are different. If you type a user-name
argument that isn’t the name of a known user in the network namespace, you are
asked whether to supply a specific host to log into this time. Before login finishes,
you are also prompted to add a user object to the network database using
tv:edit-namespace-object.

login user-name &key host (load-init-file t) Function
Note that although you enter the same user id for user-name as in previous
releases, the user object that contains it now also contains the name of the
host where your mail and init files reside. Therefore, you seldom need to
supply a host argument to login. See the section "Network Database".

user-name is the name of a user. host is a particular host computer. If the
value of load-init-file is t, as it is by default, the user’s init file is loaded. If
the value of load-init-file is nil the init file is not loaded.

You can log in as a registered user by not specifying a host, or you can log in
to a specific host as a user on that host, not registered in the Lisp ! Machine
namespace database.

If host requires passwords for logging in, you are asked for a password.
When logging in to a TOPS-20 host, typing an asterisk before your password
enables any special capabilities you may be authorized to use.

If anyone is logged into the machine already, login logs that user out before
logging in user-name. See the function logout. login also runs the
login-initialization-list. See the section "System Initialization Lists".

When login loads an init file, it looks for a file whose name depends on the
host. See the section "Init File Naming Conventions". Init files should be
written using login-forms so that logout can undo them. Usually, however,
you cold boot the machine before logging in, to remove any traces of the
previous user.

login returns t.

A typical use of login now looks like this: -
(login ’djones)

6 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

If you supply an unknown user id and don’t specify :host, you are given an
opportunity to specify a particular host for the current login session, and to
add the user object thus created to the network database (accomplished via
tv:edit-namespace-object) for subsequent logins. You can instead select
the Retry option, which is useful when the namespace server did not respond
to your initial login request.

2.1.2 Changes to Packages

Packages have completely changed for Release 5.0. Formerly, packages were
arranged in a hierarchy of superpackages and subpackages. This hierarchy no longer
exists. Instead, symbols within a package are divided into internal and external
symbols. One package can inherit the external symbols of another by using the
second package. A package can also import or export symbols.

An important result of this reorganization is that the keyword package is no longer
the same as user, and it does not inherit from global or any other packages.

Thus, foo in the user package is no longer the same symbol as :foo, and foo in
the global package is no longer the same symbol as :foo. The fonts package also
no longer inherits from global.

You must change any symbols in your programs that are now in the wrong package.
In particular, you must add package prefixes (colons) to symbols that are in the
global or user package but should be in keyword, and you must remove package
prefixes from symbols that are in keyword but should be in global or user.

You might have difficulty making these corrections because the editor currently
signals an error when it parses a file in Lisp Mode that contains some symbols in
the wrong package. To edit this kind of file, use Find File in Fundamental Mode
(m=¥).

All programs compiled in earlier systems should be recompiled in Release 5.0. The
package information in code compiled in earlier systems is no longer valid. Unless
your programs use symbol names that depend on the old package hierarchy, you
should not have to rewrite programs to work in Release 5.0. Some functions and
special forms have changed, but most changes are upward compatible.

Font files from previous releases load in Release 5.0, giving several warnings. You
should then use the Font Editor to write files of type BFD. See the section
"Default Font Format Now Bfd".

The Lisp Machine Manual chapter "Packages” has been rewritten. It describes both
general changes to the package system and new functions, special forms, and
condition flavors not documented here. See the document Packages.

RN Release 5.0 Release Notes 7
Symbolics, Inc. March 1984

2.1.21 New special form: defpackage
The special form defpackage replaces package-declare. package-declare still
exists for compatibility with earlier systems.

See the special form defpackage.

21.2.2 New function: make-package
The function make-package replaces pkg-create-package. pkg-create-package
still exists for compatibility with earlier systems.

See the function make-package.

2.1.2.3 intern, intern-local, intern-soft, and intern-local-soft return two values
The functions intern, intern-local, intern-soft, and intern-local-soft return two
values instead of three. The second value is different but upward compatible.

See the function intern. See the function intern-local. See the function
intern-soft. See the function intern-local-soft.

2.1.2.4 Optional argument to mapatoms-all and where-is eliminated

mapatoms-all and where-is no longer take an optional argument defaulting to the
global package. They now always process all packages that are not invisible. The
function package-used-by-list can help if you need to process only the subset of all
packages that use some particular package.

See the function mapatoms-all. See the function where-is. See the function
package-used-by-list.

2.1.3 Symbols in global and keyword packages with the same names

Before Release 5.0 the keyword package inherited from global. Symbols in the
global and keyword packages with the same names were the same symbols. In
Release 5.0 the keyword package does not inherit from global, and symbols in these
packages with the same names are different symbols. Following is a partial list of
symbols in the keyword package with the same names as symbols in global.

Along with each symbol is the reason for its existence. Some other symbols that
have the same names exist in both packages, but for these you would nearly always
. use the symbol in global.

Symbol Use

sand Method combination type
:append Method combination type
sarray defstruct type, data type
:array-leader defstruct type

:ass0cC Choose-variable-values item type

s:atom Data type

8 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
:base File attribute
:beep Message to windows
:bitblt Message to windows
:byte-size open option
:cadr #+ feature
:character Data type
:close Message to streams
«closure Data type
:compile make-system option
:cond trace option
:defun-method Function spec type
:delete Message to pathnames (et al.)
:describe Message to objects
:documentation Property for defvar documentation
sequal Message to (some) pathnames
seval-when defstruct option
sexport defpackage option
fill-pointer make-array option
fix Data type
fixnum Data type
float Data type
flonum Data type
font Internal; data type name is font
sfuncall Menu item type; constraint frames
:function trace option
:get Message to objects with property lists
:get-handler-for Message to objects
:getl Message to objects with property lists
sibase Obsolete file attribute
:import defpackage option
:lambda-macro Function spec type
list Method combination type; defstruct type
:list* defstruct type
:make-array ~ defstruct option
:named-structure-symbol make-array option
:ncone Method combination type
:null Data type
sopen Message to pathnames
‘or Method combination type
totherwise For :case method combination;
use otherwise with selectq
:package File attribute
:plist Message to objects with property lists
:print Message to streams
:progn Method combination type

:prompt-and-read

Message to streams

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

sputprop Message to objects with property lists

:random Not a valid data type, but can be returned by
one-argument typep

:read Message to streams

:readline fquery type

remprop Message to objects with property lists

:rubout-handler Message to streams

:shadow defpackage option

:shadowing-import defpackage option

:step trace option

sstring-trim prompt-and-read type

ssymbol Data type

sstring Data type

styi Message to streams

styipeek Message to streams

:tyo Message to streams

sunbound-function Internal to who-calls

(not the special argument to it)

214 Symbols moved to or from global package
The following symbols were added to global:

block

byte

byte-position

byte-size
deallocate-whole-resource
defconstant
define-symbol-macro
defpackage
do-all-symbols
do-external-symbols
do-local-symbols
do-symbols

eql

export

find-all-symbols

import

keywordp

make-package
map-resource

mod

multiple-value-progl
package-external-symbols
package-shadowing-symbols
package-use-list

10 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

package-used-by-list
pkg-add-relative-name
pkg-delete-relative-name
pkg-keyword-package
read-delimited-string
readline-or-nil
shadow
shadowing-import
tagbody

undefflavor

unexport
unuse-package
use-package
with-input-editing

The following symbols were added to global on the 3600 only:

%%arg-desc-quoted
%%arg-desc-rest-arg
% %q-fixnum
%%q-flonum
%%q-high-type
dfloat

The following symbols were removed from global:

8

°p

bignum
def-open-coded
include

locative
open-code
page-table-area
pkg-contained-in
pkg-debug-copy
pkg-is-loaded-p
pkg-load
pkg-refname-alist
pkg-super-package
plane-ar-n
plane-as-n
process-class
screen-xgp-hardcopy
sg-area
sg-return-unsafe
small-flonum

RN Release 5.0 Release Notes

1

Symbolics, Inc. March 1984

source-file-name
supdup

telnet

unbind
with-resource

The following LM-2-specific symbols were removed from global on the 3600 only:

%%arg-desc-evaled-rest
%%arg-desc-fef-bind-hair
%%arg-desc-fef-quote-hair
%%arg-desc-quoted-rest
%%q-flag-bit
%%q-high-half
%%q-low-half
%24-bit-difference
%24-bit-plus
%24-bit-times
%activate-open-call-block
%allocate-and-initialize
%allocate-and-initialize-array
%arg-desc-evaled-rest
%arg-desc-fef-bind-hair
%arg-desc-fef-quote-hair
%arg-desc-quoted-rest
%assure-pdl-room
%divide-double
%float-double

%mar-high

%mar-low
%microcode-version-number
%multiply-fractions
%open-call-block
%p-deposit-field
%p-deposit-field-offset
%p-flag-bit

%p-mask-field
%p-mask-field-offset
%p-store-flag-bit
%remainder-double
%structure-boxed-size
%unibus-read
%unibus-write
%xbus-read

%xbus-write

*dif

*plus

12

RN Release 5.0 Release Notes

*quo

*times

*unwind-stack

ap-3

ar-3

art-32b

art-error

art-float

art-fps-float

art-half-fix

art-reg-pdl
art-special-pdl
art-stack-group-head
as-3

catch-all

cdr-error

clear-mar
dtp-array-header
dtp-array-pointer
dtp-entity
dtp-fef-pointer

dtp-free

dtp-header
dtp-instance-header
dtp-instance-variable-pointer
dtp-select-method
dtp-small-flonum
dtp-stack-group
dtp-symbol-header
dtp-trap

dtp-u-entry
enable-trapping

entity

entityp

fasd-update-file
fasl-append

fasload

font-next-plane
font-rasters-per-word
font-words-per-char
get-list-pointer-into-array
get-list-pointer-into-struct
get-locative-pointer-into-array
macro-compiled-program
mar-break

mar-mode

Symbolics, Inc.

March 1984

RN Release 5.0 Release Notes 13
Symbolics, Inc. March 1984

number-gc-on
print-error-mode
g-data-types

qc-file

qc-file-load
read-meter
return-next-value
set-current-band
set-current-microload
set-error-mode
set-mar
set-memory-size
small-float
small-floatp
swap-sv-of-sg-that-calls-me
swap-sv-on-call-out
trapping-enabled-p
write-meter

xstore

The following 3600-specific symbols were removed from global on the LM-2 only:

compiled-function-area
constants-area
control-tables
page-table-area
pname-area
property-list-area
stack-area

symbol-area
wired-control-tables

21.5 Keyword Symbols Are Self-evaluating

Keyword symbols now evaluate to themselves. You no longer have to quote them.
The compiler takes account of this self-evaluation to produce efficient compiled code.

21.6 Functions moved from the si package to global: deallocate-whole-resource,
map-resource

The functions si:deallocate-whole-resource and si:map-resource are now in the
global package. These functions were previously undocumented.

deallocate-whole-resource resource-name Function
- Deallocate all allocated objects of the resource specified by resource-name,
returning them to the free-object list of the resource. You should use this
function with caution. It marks all allocated objects as free, even if they are

14 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

still in use. If you call deallocate-whole-resource when objects are still in
use, future calls to allocate-resource might allocate those same objects for
another purpose.

map-resource resource-name function &rest args Function
Calls function once for every object in the resource specified by resource-name.
function is called with the following arguments:

» The object

« t if the object is in use, or nil if it is free
* resource-name

« Any additional arguments specified by args

2.1.7 New special forms catch and throw replace *catch and *throw

The new special forms catch and throw are recommended for making nonlocal
exits. *catch and *throw are supported for compatibility with earlier releases.

catch and throw differ from *catch and *throw mainly in the returned values:
catch returns multiple values from its last body form when it exits normally, and
throw causes catch and *catch to return multiple values that result from its
second subform. You can use catch with *throw and *catch with throw
(although this is not recommended). If control exits normally, the returned values
depend on whether catch or *catch is used. If control exits abnormally, the
returned values depend on whether throw or *throw is used.

The old Maclisp catch and throw macros are no longer supported on the LM-2.
They were never supported on the 3600.

catch tag body... Special Form
catch is used with throw for nonlocal exits. catch first evaluates tag to
obtain an object that is the "tag" of the catch. Then the body forms are
evaluated in sequence, and catch returns the (possibly multiple) values of the
last form in the body.

However, a throw or *throw form might be evaluated during the evaluation
of one of the forms in body. In that case, if the throw "tag" is eq to the
catch "tag" and if this catch is the innermost catch with that tag, the
evaluation of the body is immediately aborted, and catch returns values
specified by the throw or *throw form.

If the catch exits abnormally because of a throw form, it returns the
(possibly multiple) values that result from evaluating throw’s second subform.
If the catch exits abnormally because of a *throw form, it returns two
values: the first is the result of evaluating *throw’s second subform, and
the second is the result of evaluating *throw’s first subform (the tag thrown
to). '

RN Release 5.0 Release Notes 15
Symbolics, Inc. March 1984

On the LM-2 only, *throw and *unwind-stack cause the catch to return
two additional values. If *throw is used, the third and fourth values are nil.
If *unwind-stack is used, the third and fourth values are the third and
fourth arguments to *unwind-stack (the active-frame-count and the action).

(catch ’foo form) catches a (throw *foo form) but not a
(throw ’bar form). It is an error if throw is done when no suitable catch
exists.

The scope of the fags is dynamic. That is, the throw does not have to be
lemcally within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

On the LM-2 only, the values t and nil for fag are special: A catch whose
tag is one of these values catches throws to any tag. These are for internal
use only: unwind-protect uses t, and catch-all uses nil. The only
difference between t and nil is in the error checking; t implies that after a
"cleanup handler” is executed, control will be thrown again to the same tag.
Thus, it is an error if a specific catch for this tag does not exist higher up
the stack. With nil, the error check is not done.

Example:

(catch ’negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(throw ’negative x))
(t (f x)))))
y))

which returns a list of f of each element of y if they are all positive,
otherwise the first negative member of y.

throw tag form Special Form
throw is used with catch to make nonlocal exits. It first evaluates tag to
obtain an object that is the "tag" of the throw. It next evaluates form and
saves the (possibly multiple) values. It then finds the innermost catch or
*catch whose "tag" is eq to the "tag" that results from evaluating tag. It
causes the catch or *catch to abort the evaluation of its body forms and to
return all values that result from evaluating form. In the process, dynamic
variable bindings are undone back to the point of the catch, and any
unwind-protect cleanup forms are executed. An error is signalled if no
suitable catch is found. -

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

On the 3600, the value of tag cannot be the symbol
sys:unwind-protect-tag; that is reserved for internal use. On the LM-2,

16 AN Release 5.0 Release Notes
Symbolics, Inc. March 1984

the values t, nil, and 0 for tag are reserved for internal use. At present you
cannot use t and nil for tag on the 3600; this will be changed in a future
release.

2.1.8 Nonkeyword form of make-array is obsolete

The nonkeyword form of make-array documented on page 113 of the Lisp Machine
Manual is obsolete. All programs should use the form that takes keyword
arguments in addition to the array dimensions.

See the function make-array.

2.1.9 string-length uses same coercion rules as string

string-length now uses the same rules as string in interpreting its argument as a
string. In particular, it is an error for the argument to be a floating-point number,
and string-length can now be used for an instance that handles the
:string-for-printing message.

string-length string Function
string-length returns the number of characters in string. This function
uses the same coercion rules as string in interpreting sfring as a string.
string-length returns the array-active-length if string is a string, or the
array-active-length of the pname if string is a symbol.

2.1.10 Change in type of array returned by string-append

Previously, when the first argument to string-append was an array, the result was
an array of the same type. Now the result is an array of the same type as the
argument with the greatest number of bits per element.

string-append &rest strings Function
Any number of strings are copied and concatenated into a single string.
With a single argument, string-append simply copies it. The result is an
array of the same type as the argument with the greatest number of bits per
element. For example, if the arguments are arrays of type art-string and
art-fat-string, an array of type art-fat-string is returned. string-append
can be used to copy and concatenate any type of one-dimensional array.
Example:

(string-append #/! "foo* #/1) => "lfool”

2.1.11 Changes to Readtable, Reader, and Printer for Common Lisp

Changes have been made to the readtable, reader, and printer in preparation for the
introduction of Common Lisp, which is not available in Release 5.0.

RN Release 5.0 Release Notes

17

Symbolics, Inc.

March 1984

2.1.11.1 Reader Accepts Common Lisp Floating Point Exponents
The reader now accepts all exponent characters in Common Lisp.

- Following is a summary of floating-point exponent characters and the way numbers
containing them are read on the 3600 and LM-2.

Character 3600 LM-2

Borb single-precision flonum

Dord double-precision flonum

Eore depends on value of depends on value of
cl:*read-default-float-format* cl:*read-default-float-format*

Forf single-precision ﬂonum

Lorl double-precision flonum

Sors single-precision small-flonum

21.11.2 New variable: cl:*read-default-float-format*

cl:*read-default-float-format*
Controls how floating-point numbers with no exponent or an exponent
preceded by "E" or "e" are read. Following is a summary of the way possible
values cause these numbers to be read on the 3600 and LM-2:

Variable

Value 3600 LM-2
cl:single-float single-precision flonum
cl:double-float double-precision flonum
cl:short-float single-precision small-flonum
cl:long-float double-precision flonum

The default value is cl:single-float.

2.1.11.3 New descriptions: si:bitscale, si:digitscale, si:non-terminating-macro
Three syntax descriptions for characters have been added. si:bitscale and
si:digitscale describe "left shift" operations on integers.

si:non-terminating-macro describes a character that can be a macro character or a
symbol constituent. You can use set-syntax-from—descnptlon to set the syntax of
characters to these descriptions.

18 RN Release 5.0 Release Notes
Symboilics, Inc. March 1984
set-syntax-from-description char description &optional readtable Function

Sets the syntax of char in readtable to be that described by the symbol
description. The following descriptions are defined in the standard readtable:

si:alphabetic
si:break

si:whitespace

si:single

si:slash
si:verticalbar

si:doublequote
si:macro

siscirclecross

si:bitscale

si:digitscale

An ordinary character such as "A".

A token separator such as "(". (Obviously left parenthesis
has other properties besides being a break.)

A token separator that can be ignored, such as " .

A self-delimiting single-character symbol. The initial
readtable does not contain any of these.

The character quoter. In the initial readtable this is "/".

The symbol print-name quoter. In the initial readtable
this is "[".
The string quoter. In the initial readtable this is “”.

A macro character. Do not use this; use
set-syntax-macro-char.

The octal escape for special characters. In the initial
readtable this is "e".

A character that causes the fixnum to its left to be
doubled the number of times indicated by the fixnum to its
right. In the initial readtable this is "_". See the section
"What the Reader Accepts”.

A character that causes the fixnum to its left to be
multiplied by ibase the number of times indicated by the
fixnum to its right. In the initial readtable this is """.
See the section "What the Reader Accepts”.

si:non-terminating-macro

A macro character that is not a token separator. This is a
macro character if seen alone but is just a symbol
constituent inside a symbol. You can use it as a character
of a symbol other than the first without slashing it. (3
would be one of these if it were not built into the reader.)

These symbols will probably be moved to the standard keyword package at
some point. readtable defaults to the current readtable.

21.11.4 New reader macro: #B
#Brational reads rational (an integer or a ratio) in binary (radix 2). Examples:

#B1101 <=> 13.
#B1100\100 <=> 3

RN Release 5.0 Release Notes 19
Symbolics, Inc. March 1984

2.1.11.5 New reader macro: #:

#:name reads name as an uninterned symbol. It always creates a new symbol.
Like all package prefixes, #: can be followed by any expression. Example:

#:(a b ¢).

2.1.11.6 Printing Uninterned Symbols
By default, uninterned symbols print with a #: prefix. You can make them print
without a prefix by evaluating (setf (si:pttbl-uninterned-prefix readtable) ").

21.11.7 #/ and #\ now identical

The reader macros #/ and #\ are now identical. You can use either to read a
printing character (such as #\A) or the name of a nonprinting character (such as
#/¢-X). Unless you are using Common Lisp, #/ and #\ continue to return integers
to represent characters.

The editor, however, still distinguishes between these two syntaxes. #/ prevents
the editor from treating the character immediately following as a special character;
#\ does not. Thus, to include an open parenthesis character in your program, use
3/(, not #\(.

See the section "Sharp-sign Abbreviations".

2.1.11.8 Reading and Printing Character Objects

For Common Lisp only, the reader macros #/ and #\ can create character objects,
and a double-quoted string can create a string of characters, depending on a property
of the readtable. Regardless of this, character objects print with a #\ prefix.

21.11.9 Ratios read in current ibase and print in current base

Two integers separated by \ are read as a ratio of the integers. Ratios are now read
in the base that is the value of ibase and printed in the base that is the value of
base, not in decimal.

21.11.10 New Rules for Reading Ambiguous Tokens

Some tokens could be read as either symbols or integers in a base larger than 10.
The variables si:*read-extended-ibase-unsigned-number* and
si:*read-extended-ibase-signed-number* determine how these tokens are read.

si:*read-extended-ibase-unsigned-number* Variable
Controls how a token that could be a number or a symbol, and does not
start with a + or - sign, is interpreted when ibase is greater than ten.

nil It is never a number.

t It is always a number.

:sharpsign It is a symbol at top level, but a number after #X or
#nR.

ssingle It is a symbol except immediately after #X or #nR.

20 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

The default value is :single.

si:*read-extended-ibase-signed-number* Variable
Controls how a token that could be a number or a symbol, and starts with a
+ or - sign, is interpreted when ibase is greater than ten.

nil It is never a number.

t It is always a number.

:sharpsign It is a symbol at top level, but a number after #X or
#nR.

:single It is a symbol except immediately after #X or #nR.

The default value is :sharpsign.

Some tokens could be read as either integers or floating-point numbers. Such tokens
are always read as integers. Thus, 1e0 is an integer if the value of ibase is at least
15. But 1.0e0 is always read as a floating-point number because of the decimal
point.

2.1.12 Changes to make-syn-stream

The argument to make-syn-stream can now be a symbol or a locative.
make-syn-stream returns an uninterned symbol.

make-syn-stream symbol Function
make-syn-stream creates and returns a "synonym stream" (syn for short).
symbol can be either a symbol or a locative.

If symbol is a symbol, the synonym stream is actually an uninterned symbol
named #:symbol-syn-stream. This generated symbol has a property that
declares it to be a legitimate stream. This symbol is the value of symbol’s
si:syn-stream property, and its function definition is forwarded to the value
cell of symbol using a dtp-external-value-cell-pointer. Any operations sent
to this stream are redirected to the stream that is the value of symbol.

If symbol is a locative, the synonym stream is an uninterned symbol named
#:syn-stream. This generated symbol has a property that declares it to be
a legitimate stream. The function definition of this symbol is forwarded to
the cell designated by symbol. Any operations sent to this stream are
redirected to the stream that is the contents of the cell to which symbol
points.

RN Release 5.0 Release Notes 2
Symbolics, Inc. March 1984

2.1.13 format directives “@T and “@?* replace "X and "G

A new format directive, “@T, replaces X, and the new directive “@* replaces “G.
For the time being "X and “G still work as in previous releases, but in a future
release they will become number-formatting directives for compatibility with Common
Lisp. ;

“@T outputs a space. "n@T outputs n spaces.

“n@* "goes to" the nth argument (0 is the first). “@* or “0@* goes back to the first
argument in args. Directives after a "n@* will take sequential arguments after the
one gone to. When within a ~{ construct, the "goto" is relative to the list of
arguments being processed by the iteration. This is an "absolute goto"; for a
"relative goto", see ~*.

2.1.14 Changes to format:ochar

The :sail style keyword for format:ochar has been replaced by :brief, which has
slightly different consequences.

format:ochar character &optional style top-explain minwidth Function
&rest options
format:ochar outputs character in one of three styles, selected by the style
argument. minwidth and options control padding as usual.

If style is :read, nil, or not specified, then the character is printed using #/
or #\ so that it could be read back in.

If style is :editor, then the output is in the style of the string "Meta-
Rubout”.

If style is :brief, a somewhat more abbreviated style is used in which "c-",
"m-", and the like, are used to represent "Control" and "Meta", and shorter
names for characters are also used when possible. See the section "The
Character Set".

top-explain is useful with the :editor and :brief styles. It says that any
character which has to be typed using the Symbol key should be followed by
an explanation of how to type it. For example: "a (Symbol-shift-A)".

2.1.15 Incompatible Changes to the Input Editor (Rubout Handler)

The input editor, formerly called the rubout handler, has been extensively
redesigned. This section describes only the incompatible changes for Release 5.0.
For new features: See the section "New Features Associated with the Input Editor
(Rubout Handler)".

22 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.1.151 Changes to Input Editor User Interface

The history mechanism of the input editor has changed. Each stream that uses the
input editor now maintains an infinite-length input history. A global kill history is
maintained, shared with other streams that use the input editor and with Zwei-
based editors. Commands for yanking input from these histories have changed.

The histories are now emptied before cold booting or disk saving, not when logging
out. See the document Using the Input Editor.

Formerly, when you yanked previous input to the input editor, that input was
displayed without the final character. You could reevaluate a previous form by
yanking it and then typing the final character.

Now the reader uses activation characters. The input editor displays yanked input
fully. You can edit the input if you wish and "activate" it by pressing END from
anywhere within the input you are editing. If you want to put an activation
character into the input, "quote" it using c-@.

readline and the Converse pop-up window also use activation. You can press
RETURN anywhere within a line to activate it for readline. You can press END
anywhere within a Converse pop-up reply to send the reply.

21.15.2 Changes to input editor options :do-not-echo, :pass-through, :prompt,
‘reprompt
:do-not-echo now implies that the character arguments are activation characters.

:do-not-echo charl char? ... Option
The characters charl, char2, and so on, are interpreted as activation
characters. The comparison is done with =, not char-equal, so that the
control and meta bits are not masked off. The characters are not inserted
into the input buffer and are not interpreted as input editor commands.
When one of these characters is typed, the final :tyi value returned is the
character, not a blip.

This option exists only for compatibility with earlier releases. New programs
should use the :activation option.

:pass-through is now allowed only for characters with no modifier bits set.

:pass-through charl char2 ... Option
The characters charl, char2, and so on are not to be treated as special by
the input editor. This option is used to pass format effectors (such as HELP
or CLEAR-INPUT) through to the reading function instead of interpreting them
as input editor commands. :pass-through is allowed only for characters with
no modifier bits set, that is, for character codes 0 through 377 (octal). For
characters that have modifier bits set and must be visible to the reading
function, use :do-not-echo or :activation.

The second argument to the :prompt and :reprompt functions is now a keyword
instead of a character.

RN Release 5.0 Release Notes 23
Symbolics, Inc. March 1984

sprompt function-or-string Option
If function-or-string is a function and it is time for the user to be prompted,
function-or-string is called with two arguments. The first is a stream it may
print on; the second is a keyword that indicates the origin of the function

call:

Keyword Function called from

sprompt :rubout-handler method of tv:stream-mixin
srestore srestore-rubout-handler-buffer method of

sstream-mixin

sinsert, :overwrite, :temporary
:finish-typeout method of tv:stream-mixin

:refresh Body of the input editor

If function-or-string is a string and it is time for the user to be prompted,
function-or-string is displayed as a prompt.

The difference between :prompt and :reprompt is that the latter does not
call the prompt function or display the string when the input editor is first
entered, but only when the input is redisplayed (for example, after a screen
clear). If both options are specified, :reprompt overrides :prompt except
when the input editor is first entered.

:reprompt function-or-string Option
Like :prompt but calls function-or-string (if it is a function) or displays
function-or-string (if it is a string) only when the input is redisplayed (for
example, after a screen clear), not when the input editor is first entered. If
both :prompt and :reprompt are specified, :reprompt overrides :prompt
except when the input editor is first entered.

2.1.15.3 New error flavors: sys:parse-error and sys:parse-ferror
The input editor no longer catches all flavors of error. It now catches only errors
built on the flavors sys:parse-error and sys:parse-ferror.

sys:parse-error Flavor
This flavor is built on error and is the type of error caught by the input
editor. This flavor accepts the init keyword :correct-input. If the value is
t, which is the default, the input editor prints "Type RUBOUT to correct your
input" and does not erase the message until a non-self-inserting character is
typed. If the value is nil, no message is printed, and any typeout from the
read function is erased immediately after the next character is typed. Syntax
errors signalled by read functions should be built on top of this flavor.

24 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

sys:parse-ferror Flavor
This flavor is built on sys:parse-error and ferror. It accepts the init
keywords :format-string and :format-args as well as :correct-input. This
flavor exists for read functions that do not have a special flavor of error
defined for them.

2.1.15.4 New function: sys:parse-ferror

sys:parse-ferror format-string &rest format-args Function
Signals an error of flavor sys:parse-ferror. format-string and format-args
are passed as the :format-string and :format-args init options to the error
object.

See the flavor sys:parse-ferror.

21.16 Changes to open

2.1.161 Changes to open option :direction

:direction :probe replaces :direction nil. New permissible values are
:probe-directory and :probe-link. Various misspelled values such as :in that used
to work for some file hosts are no longer supported for consistency.

:direction Option
The :direction option allows the following values:
:input The file is being opened for input. This is the default.
soutput The file is being opened for output.
:probe A "probe" opening; no data are to be transferred, and the

file is being opened only to gain access to or change its
properties. Returns the truename of the object at the end
of a link or chain of links. (probef is usually preferable to
an explicit probe opening.)

sprobe-link The same as :probe except that links are not chased.
Returns the truename of the object named, even if it is a
link.

sprobe-directory The pathname is being opened to find out about the
existence of its directory component. Otherwise, the
semantics are the same as :probe. If the directory is not
found, a file lookup error is signalled.

:probe-link The same as :probe except that links are not chased.

Returns the truename of the object named, even if it is a
link.

RN Release 5.0 Release Notes 25
Symbolics, Inc. March 1984

2.1.16.2 New open option: :estimated-length

sestimated-length Option
The value of the :estimated-length option may be nil (the default), which
means there is no estimated length, or a number of bytes indicating the
estimated length of a file to be written. Some file systems use this to
optimize disk allocation.

2.1.16.3 New open options: :if-exists and :if-does-not-exist

sif-exists determines what happens if the specified file already exists;
:if-does-not-exist determines what happens if it does not exist. The ability to
append files has been added.

sif-exists : Option
Specifies the action to be taken if the :direction is :output and a file of the
specified name already exists. If the direction is :input or :probe (or any of
the :probe-like directions), this argument is ignored.

The following values are allowed:

serror Signals an error. This is the default when the version
component of the filename is not :newest.

:new-version Creates a new file with the same file name but a larger
version number. This is the default when the version
component of the filename is :newest. File systems
without version numbers may choose to implement this by
effectively treating it as supersede.

:rename Renames the existing file to some other name, and then
creates a new file with the specified name. On most file
systems, this renaming happens at the time of a successful
close.

:rename-and-delete
Renames the existing file to some other name and then
deletes it (but doesn’t expunge it, on those systems that
distinguish deletion from expunging). Then creates a new
file with the specified name. On most file systems, this
renaming happens at the time of a successful close.

soverwrite The existing file is used, and output operations on the
stream destructively modify the file. The file pointer is
initially positioned at the beginning of the file; however,
the file is not truncated back to length zero when it is
opened.

struncate The existing file is used, and output operations on the
stream destructively modify the file. The file pointer is
initially positioned at the beginning of the file; at that

26 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

time, the file is truncated to length zero, and disk storage
occupied by it is freed.

:append The existing file is used, and output operations on the
stream destructively modify the file. The file pointer is
initially positioned at the current end of the file.

:supersede Supersedes the existing file. If possible, the file system
does not destroy the old file until the new stream is closed,
against the possibility that the stream will be closed in
"abort" mode. This differs from :new-version in that
:supersede creates a new file with the same name as the
old one, rather than a file name with a higher version
number.

nil Does not create a file or even a stream. Instead, simply
returns nil to indicate failure.

:zif-does-not-exist Option
Specifies the action to be taken if the file does not already exist. The
following values are allowed:

serror Signals an error. This is the default if the :direction is
:input, :probe, or any of the :probe-like modes, or if the
:sif-exists argument is :overwrite, :truncate, or :append.

:create Creates an empty file with the specified name, and then
proceeds as if it had already existed. This is the default if
the :direction is :output and the :if-exists argument is
anything but :overwrite, :truncate, or :append.

nil Does not create a file or even a stream. Instead, simply
returns nil to indicate failure.

21.17 Changes to renamef and copyf

The following changes have been made to renamef and copyf:

» renamef now returns three values: the target pathname, the truename of
the source pathname, and the truename of the target pathname. The
srename messages to streams and pathnames return the second and third of
these values.

 For renamef and copyf, the target pathname defaults against the link-opaque
truename of the source pathname.

« The copyf option :copy-author now defaults to t.

* A new copyf option, :create-directories, determines whether or not copyf
tries to create a directory for the copy target.

RN Release 5.0 Release Notes 27
Symbolics, Inc. March 1984

renamef file new-name &optional (errorp t) Function
renamef is a function for renaming one file to another. The Rename File
(mn-X) command in the editor uses this function.

file can be a pathname, a string, or a stream that is open to a file. The
specified file is renamed to new-name (a pathname or string). If errorp is t,
when an error occurs it is signalled as a Lisp error. If error-p is nil and an
error occurs, the error object is returned; otherwise the three values described
below are returned.

file must refer to a unique file; it cannot contain any wild components.
new-name can contain wild components, which are eliminated after merging
the defaults by means of :translate-wild-pathname. renamef first
attempts to open file. When that has happened successfully, it parses
new-name and merges it (using fs:merge-pathnames) against the
link-opaque truename of file and version of :newest. This has the following
result for version numbers.

Source Target Result
>foo>a.b.newest >har> Retains the version number
>foo>a.b.newest >har>x Makes a new version of >bar>x.b

The defaults for new-name come from the link-opaque truename of file. For
systems without links, this is indistinguishable from the truename.
Otherwise, the link-opaque truename depends on whether file contains an
:oldest or :newest version. If it does not and if it is fully defaulted, with no
wild components, the pathname is its own link-opaque truename. If a
pathname x contains an :oldest or :newest version, the link-opaque
truename is the pathname of the file or link that corresponds to x, with the
version number filled in. For example, renaming the LMFS file >a>p1.1isp to
>b> results in >b>p1.1isp, with the version of >a>p1.1isp.newest inherited.
This is so whether >a>p1.lisp.newest is a real file, a link, or a rename-
through link.

renamef returns three values:

1. The pathname produced by merging and defaulting new-name. This is
the attempted result of the renaming.

2. The pathname of the object that was actually renamed. This might
not be the same as file. For example, file might have an :oldest or
:newest version, or LMFS rename-through links might be involved.
This pathname never has an :oldest or :newest version.

3. The actual pathname that resulted from the renaming. This might
not be the same as new-name. For example, new-name might have an
:oldest or :newest version, or LMFS create-through links might be
involved.

28 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
The :rename message to streams and pathnames returns the second and
third of these values.
Examples:
This example is as simple as possible. Using LMFS, on host johnny, with no
links involved:
(renamef *johnny:>a>foo.lisp” *bar®) =>
#<CLMFS-PATHNAME * johnny:>adbar.lisp*>
#<LMFS-PATHNAME " johnny:>a>foo.1isp.17">
#<LMFS-PATHNAME * johnny:>a>bar.lisp.1">
This example is as complex as possible. Using LMFS, on host eddie, with
links
>abel>moe.lisp.4 => >baker>larry.lisp (rename-through) (latest)
>baker>larry.lisp.4 =>
>charlie>sam.1isp.19 (not rename- or create-through) (latest)
>david>jerry.lisp.5 => >earl1>ted.lisp (create-through) (latest)
(renamef "eddie:>abel>moe.lisp.4* "eddie:>david>jerry”) =>
#<LMFS-PATHNAME "eddie:>david>jerry.lisp*>
#<LMFS-PATHNAME "eddie:>baker>larry.lisp.4>
#<LMFS-PATHNAME "eddie:>earl1>ted.lisp.1">
copyf from-path to-path &key (characters :default) (byte-size nil) Function

(copy-creation-date t) (copy-author t)

(report-stream mil) (create-directories ’:query)
copyf is a function for copying one file to another. Copy File (m-X) in the
editor uses this function.

from-path and to-path are the source and destination pathnames, which can
be file specs. from-path must refer to a unique file; it cannot contain any
wild components. fo-path can contain wild components, which are eliminated
after merging the defaults by means of :translate-wild-pathname. copyf
first attempts to open from-path. When that has happened successfully, it
parses fo-path and merges it (using fs:merge-pathnames) against the
link-opaque truename of from-path and version of :newest. This has the
following result for version numbers.

Source ' Target Result
>foo>a.b.newest >har> Retains the version number
>foo>a.b.newest Shar>x Makes a new version of >bar>x.b

The defaults for fo-path come from the link-opaque truename of from-path.
For systems without links, this is indistinguishable from the truename.
Otherwise, the link-opaque truename depends on whether from-path contains
an :oldest or :newest version. If it does not and if it is fully defaulted, with
no wild components, the pathname is its own link-opaque truename. If a
pathname x contains an :oldest or :newest version, the link-opaque

RN Release 5.0 Release Notes

29

Symbolics, Inc. March 1984

truename is the pathname of the file or link that corresponds to x, with the
version number filled in. For example, copying the LMFS file >a>p1.1isp to
>b> results in >b>p1.1isp, with the version of >a>p1.1isp.newest inherited.
This is so whether >a>p1.1isp.newest is a real file, a link, or a rename-

through link.

By default, copyf copies the creation date and author of the file.
Following is a description of the other options:

copyf decides whether this is a binary
or character transfer according to the
canonical type of from-path. You do not
need to supply this argument for
standard file types. For types that are
not known canonical types, it opens
from-path in :default mode. In that
case, the server for the file system
containing from-path makes the
character-or-binary decision.

Specifies that the transfer must be in
character mode.

Specifies that the transfer must be
binary mode (in this case, you must
supply byte-size if using a byte size other
than 16).

Specifies the byte size with which both files will be obened

for binary transfers. You must supply :byte-size when
:characters is nil and the byte size is other than 16.
Otherwise, copyf determines the byte size from the file
type for from-path. When from-path is a binary file with a
known canonical type, it determines the byte size from the
:binary-file-byte-size property of the type. When the file
does not have a known type, it requests the byte size for
from-path from the file server. When the server for the
file system containing from-path cannot supply the byte
size, it assumes that the byte size is 16.

When :report-stream is nil (the default), the copying

-takes place with no messages. Otherwise, the value must
be a stream for reporting the start and successful
completion of the copying. The completion message
contains the truename of fo-path.

scharacters Possible values:
:default
t
nil
sbyte-size
:report-stream
:create-directories

Determines whether directories should be created, if

30 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

needed, for the target of the copy. Permissible values are

as follows:

t Try to create the target directory of the
copy and all superiors. Report directory
creation to standard-output.

nil Do not try to create directories. If the
directory does not exist, handle this
condition like any other error.

:query If the directory does not exist, ask
whether or not to create it. This is the
default.

21.18 Changes to Host Determination in Pathnames

An important incompatible change has been made in the way the pathname system
determines the host for a pathname being parsed. The first colon in a string to be
parsed as a pathname now always delimits the host. You can "quote" embedded
colons that are not intended to delimit the host by inserting a colon at the
beginning of the string.

An upwardly compatible change has been made as well. From either a 3600 or an
LM-2, you can now use the syntax "hostfFEPn" to refer to a FEP file system on a
remote 3600. host is the name of the host, and n is the disk unit number.

Following are the rules for host determination in a pathname.

Two important operations of the pathname system are parsing and merging.
Parsing is the conversion of a string, which might have been typed by the user
when asked to supply the name of a file, into a pathname object. This involves
finding out for which host the pathname is intended, using the file name syntax
conventions of that host to parse the string into the standard pathname
components, and constructing such a pathname. Merging is the operation which
takes a pathname with missing components and supplies values for those
components from a set of defaults.

Since each kind of file system has its own character string representation of names
of its files, there has to be a different parser for each of these representations,
capable of examining such a character string and determining the value of each
component. The parsers, therefore, all work differently. How does the parsing
operation know which parser to use? It determines for which host the pathname is
intended, and uses the appropriate parser. A filename character string may specify
a host explicitly, by having the name of the host, followed by a colon, at the
beginning of the string, or it may assume a default, if there is no host name
followed by a colon at the beginning of the string.

Here is how the pathname system determines for which host a pathname being
parsed is intended. The first colon in a pathname being parsed always delimits the

RN Release 5.0 Release Notes ‘ 3
Symbolics, Inc. March 1984

host name. You can also enter pathname strings that are for a specific host and do
not contain any host name. In that case, a default host is used. Normally, the
identity of the default host is displayed to the user entering a pathname. See the
section "Defaults and Merging".

However, it is possible to have pathnames that have colons in them that do not
designate hosts, such as filenames constructed from clock times, and the like. Some
systems use the colon character to delimit devices. This creates a problem in parsing
such pathnames. See the function fs:parse-pathname. The standard Lisp
Machine user interface does not use such pathnames, but they may be used by
particular programs, especially programs that deal with files whose format is defined
by a foreign operating system.

The rule for parsing file names containing colons is, again, that any string used
before a colon is unconditionally interpreted as a file computer. If the string cannot
be interpreted as a host, an error is signalled.

If you must type one of these peculiar pathnames that have embedded colons not
meaning hosts, you omit the host and place a colon at the beginning of the string.
This "null host" tells the parser that it should not look further for a colon, but
instead assume the host from the defaults. Examples:

o SS:<FOO>BAR refers to a host named "SS". :SS:<FOO>BAR refers to no
explicit host; if parsed relative to a TOPS-20 default, "SS" probably refers to a
device.

o 09:25:14.data refers to a host named "09". :09:25:14.data refers to no explicit
host.

o AI: COMMON; GEE WHIZ refers to a host named "AI".

o AI: ARC: USERSI; FOO BAR refers to a host named "AI". "ARC" is the
name of a device in the ITS operating system.

o EE:PS:<COMMON>GEE.WHIZ.5 specifies host EE (TOPS-20).

* PS:<COMMON>GEE.WHIZ.5 specifies a host named PS, which is almost
certainly not what is intended! The user probably intended the "PS" device o
some TOPS-20 host. :

e :PS:<COMMON>GEE.WHIZ.5, assuming that the default host is some
TOPS-20, specifies a device named "PS" on that host.

There are a handful of "pseudo-" host names, which are recognized as host names
even though they are not actually the names of hosts. They are "local", "FEP",
"FEPn", and "hostifFEPn".

"local” This pseudo-host name always refers to the local file system

32 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

(LMFS) of the machine that you are using. It does not matter
whether or not a local file system actually exists on that machine;
an attempt will be made to reference it. "Local" is always
equivalent to the name of the local host.

"FEP" (3600 only) This pseudo-host name always refers to a FEP (Front-
End Processor) file system on the machine you are using,
specifically, the one on the disk unit from which the system was
booted.

"FEPn" (3600 only) This pseudo name always refers to a FEP file system
on the machine you are using. The single digit n specifies the
disk unit number; there is a separate FEP file system on each
drive. This can access the boot unit, or any other disk unit,
when multiple units are present.

"hostfFEPn" host must be a valid host name. This pseudo-host name refers to
a FEP file system on a remote 3600. This may be used from
LM-2’s, as well as 3600’s, to reference FEP file systems of remote
3600’s. The syntax "hostIFEP" is not acceptable: you may not
access the "boot unit” of a remote 3600 in this fashion. You must
know the disk unit number. The disk unit number of a host
having only one disk unit is 0.

If the string to be parsed does not specify a host explicitly, the parser assumes that
some particular host is the one in question, and it uses the parser for that host’s file
system. The optional arguments passed to the parsing function
(fs:parse-pathname) tell it which host to assume.

2.1.19 Meaning of argument changed for fs:parse-pathname

The meaning of the second, with-respect-to argument to fs:parse-pathname has
changed. with-respect-to specifies a host against which to parse the first argument,
thing. Formerly, if thing contained a host name and with-respect-to was not nil, an
error was signalled when the two hosts were not the same. When they were the
same, the host name was removed from thing before it was parsed. Now this is
true only if thing is a Maclisp-style list.

Now, if thing is a string and with-respect-to is not nil, thing is taken as a true
string for the host specified by with-respect-to. Host names are not removed from
thing before it is parsed, and thing is parsed against the host specified by
with-respect-to. Thus, when with-respect-to is not nil, thing should not contain host
names.

This change was made necessary by the change in host naming conventions. See
the section "Changes to Host Determination in Pathnames".

RN Release 5.0 Release Notes 33
Symbolics, Inc. March 1984

fs:parse-pathname thing &optional with-respect-to (defaults Function
fs:*default-pathname-defaults®)
This turns thing, which can be a pathname, a string, a symbol, or a Maclisp-
style name list, into a pathname. Most functions that are advertised to take
a pathname argument call fs:parse-pathname on it so that they will accept
anything that can be turned into a pathname (most, however, do it
indirectly, by calling fs:merge-pathnames).

This function does not do defaulting, even though it has an argument named
defaults; it only does parsing. The with-respect-to and defaults arguments are
there because in order to parse a string into a pathname, it is necessary to
know what host it is for so that it can be parsed with the file name syntax
peculiar to that host.

If with-respect-to is supplied, it should be a host or a string to be parsed as
the name of a host. If thing is a string or symbol, it is then parsed as a
true string for that host; host names specified as part of thing are not
removed. Thus, when with-respect-to is not nil, thing should not contain a
host name.

If with-respect-to is not supplied or is nil, any host name inside thing is
parsed and used as the host. If with-respect-to is nil and no host is specified
as part of thing, the host is taken from defaults.

Examples, using a LMFS host named Q:

(fs:parse-pathname "a:>b.c* "q") => #<LMFS-PATHNAME "Q:a:>b.c"> ;(wrong)
(fs:parse-pathname “q:>b.c” "g") => #<LNFS-PATHNAME "Q:q:>b.c”> ;(wrong)
(fs:parse-pathname "q:>b.c”) => #CLWFS-PATHNAME "Q:>b.c*> '
(fs:parse-pathname *>b.c* "q") => #<KLMFS-PATHNAME "Q:>b.c">

Note that this causes correct parsing of a TOPS-20 pathname when thing
contains a device but no host and when with-respect-to is not nil. (Warning:
If thing contains a device but no host and if with-respect-to is nil or not
supplied, the device is interpreted as a host.) In the following example, X is
a TOPS-20 host and A is a device:

(fs:parse-pathname "a:c.d” *x") => #<TOPS20-PATHNAME “X:A:C.D">
(fs:parse-pathname "a:c.d") => Error: "a" is not a known file
server host.

In the same TOPS-20 example, if with-respect-to is nil and the host is to
taken from defaults, the pathname string must be preceded by a colon to be
parsed correctly:

(fs:parse-pathname “:a:c.d” nil *x:") => #<TOPS20-PATHNAME "X:A:C.D">

(fs:parse-pathname "a:c.d” nil "x:") => Error: "a" is not a known file
server host.

If thing is a list, with-respect-to is specified, and thing contains a host name,
an error is signalled if the hosts from with-respect-to and thing are not the
same.

34 RN Release 5.0 Release Notes .
Symbolics, Inc. March 1984

2.1.20 Arguments changed for fs:user-homedir and fs:init-file-pathname

The second, optional argument to fs:user-homedir has been removed.
fs:init-file-pathname now has two optional arguments: the canonical type of the
init file, and the host.

fs:user-homedir &optional (kost fs:user-login-machine) Function
Returns the pathname of the logged-in user’s home directory on host, which
defaults to the host the user logged in to. For a registered user (one who
logged in without using the :host argument to login), the host is the user’s
home-host attribute. Home directory is a somewhat system-dependent
concept, but from the point of view of the Lisp Machine it is the directory
where the user keeps personal files such as init files and mail. This function
returns a pathname without any name, type, or version component (those
components are all nil).

fs:init-file-pathname program-name &optional (canonical-type nil) Function
(host fs:user-login-machine)

Returns the pathname of the logged-in user’s init file for the program
program-name, on the host, which defaults to the host the user logged in to.
Programs that load init files containing user customizations call this function
to find where to look for the file, so that they need not know the separate
init file name conventions of each host operating system. The program-name
"LISPM" is used by the login function. canonical-type is the canonical type
of the init file. It should be nil when the returned pathname is being
passed to load so that load can look for a file of the apprgpriate type.

2.1.21 Init File Pathnames Standardized

The names of init files have been standardized, and init files are now of canonical
type :lisp for source files and :bin and :qbin for compiled files. You must change
the names of your init files for Release 5.0.)

Init files are of canonical type :lisp for source files and :bin or :qbin for compiled
files. For hosts that support long file names, the init file name consists of
program-name with "-INIT" appended. Thus, the standard file name for a lispm init
file is LISPM-INIT; for a Zmail init file, it is ZMAIL-INIT. Hosts that do not
support long file names have conventions peculiar to each system.

Following are the names of lispm init source files on some hosts:

Host system File name
LMFS/TOPS-20 LISPM-INIT.LISP
UNIX lispm-init.1

VMS LISPMINI.LSP

RN Release 5.0 Release Notes 35
Symbolics, Inc. March 1984

Multics lispm-init.lisp

ITS If user has own directory: LISPM >. If user does not have own
directory: USER LISPM.

2.1.22 :init canonical pathname type removed

The :init canonical type has been removed. Init files are now of canonical type
:lisp for source files and :bin and :qbin for compiled files.

2.1.23 Changes to Logical Pathnames

2.1.23.1 Logical Pathname Name, Type, and Version Now Separated by Periods
The name, type, and version of logical pathnames are now separated by periods.
Spaces are accepted on input for compatibility.

21.23.2 New Default Representations for Newest and Oldest Logical Pathname
Versions

The default representation in a logical pathname for the :newest version is the

string "NEWEST". The default representation for the :oldest version is the string

"OLDEST". On input, ">" is accepted for :newest and "<" for :oldest for

compatibility.

2.1.23.3 Logical Pathnames Now Hierarchical
Logical pathnames can now have hierarchical directories. Each directory level is
separated by a semicolon.

2.1.23.4 Changes to Logical Pathname Translations

The procedure for translating logical to physical pathnames has changed to conform
to the rules for wildcard pathname matching. Logical directory names in translation
lists should now be terminated by semicolons (though fs:set-logical-pathname-host
accepts logical directory names without semicolons).

This section explains the format of the "translations" list of logical pathnames and
the rules for translating a logical pathname to a physical pathname.

Each element of the list (one translation) specifies two wildcard pathnames, the first
on the logical host and the second on the physical. In the Lisp form (in the file
sys:site;host.translations) that specifies this form, they are given as strings to be
parsed against these respective hosts. As they are parsed, they are merged with a
pathname of wild name, wild type, and wild version.

Following is an example of a translations list:

36 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

(("L-BIN; ">Imach>fas1>")
(“L-COMPILER;" ">sys>1-compiler>”)
(“L-SYS;" ">Imach>”)

("L-x;* “>Imach>*>")
(“LMFS-PATCH;* *>sys>Imfs>patch>¥)
("x;" ">sys>%x>¥))))

Note that logical directory names should be followed by semicolons (though
fs:set-logical-pathname-host accepts names without semicolons).

The method of translating a logical pathname consists of matching it against each
first element of each translation, in succession. The order in the list is thus very
important. At the first match, the translated pathname is produced by sending the
:translate-wild-pathname message to the logical pathname with the first element
of the translation as the source pattern and the second element of the translation as
the target pattern. See the section "Wildcard Pathname Mapping”. See the section
"Wildcard Directory Mapping".

Note that it is possible to have a translation that matches "everything else", as in
the example below. In the presence of such a translation, it is impossible to have an
undefined translation.

Back-translation is performed by searching the second elements of the translations
list, and translating in the other direction.

A special version of wild pathname translation, called "reversible wild pathname
translation”, is used. The difference between regular wild pathname translation and
reversible translation is in the treatment of a target wildcard pattern consisting
solely of *. In regular translation, a target pattern of :wild causes the source
component to be copied verbatim. This is a useful user-interface feature, but it
causes dropping of information and resultant noninvertibility of the transformation.
In reversible mapping, this feature is not present. Logical pathname translation and
back-translation is done in this mode.

Example:

Source Source Target
Type pattern instance pattern Result
Regular foo* foolish * foolish
Reversible foo* foolish * ~ lish
Either * bar foo-* foo-bar

Note that the inverse translation of foo-bar to bar cannot be accomplished under
regular translation.

RN Release 5.0 Release Notes 37
Symbolics, Inc. March 1984

2.1.23.5 Flavor fs:undefined-logical-pathname-transiation replaces

fs:undefined-logical-pathname-directory
fs:undefined-logical-pathname-translation is a new condition flavor signalled
when a logical pathname is referenced but has no translation to a physical
pathname. It replaces fs:undefined-logical-pathname-directory.

fs:undefined-logical-pathname-translation Flavor
A logical pathname was referenced but is not defined. The
:logical-pathname message returns the logical pathname. This flavor has a
:define-directory proceed type, which prompts for a physical pathname
whose directory component is the translation of the logical directory on the
given host.

2.1.24 fs:make-logical-pathname-host replaces fs:add-logical-pathname-host

The function fs:add-logical-pathname-host is obsolete, though currently supported
for compatibility. You should now use fs:make-logical-pathname-host to define a
logical pathname host. This function loads the file sys:sitejhost-name.translations,
which should contain a single form: a call to fs:set-logical-pathname-host.

fs:make-logical-pathname-host host-name Function
Defines host-name, which should be a string or symbol, to be the name of a
logical pathname host. host-name should not conflict with the name of any
existing host, logical or physical.

This function loads the file sys:site;host-name.translations. This file should
contain a single form: a call to fs:set-logical-pathname-host. The file is
always loaded into the file-system package. See the function
fs:set-logical-pathname-host.

fs:make-logical-pathname-host not only loads this file but also arranges for
the same file to be reloaded in the future. load-patches checks the
translations file for each logical host that is defined in the current world; if
any file has been changed it is reloaded. load-patches does this if and only
if no specific systems are specified in its arguments.

fs:make-logical-pathname-host alters the
logical-pathnames-translation-files system so that it contains the
translations files for all logical hosts defined in the current world.
load-patches loads updated translations files by calling make-system on this
system.

When a world load is taken to a new site, the translation file for each logical
host that is defined in the current world is reloaded from the new site’s
sys:site; directory. This changes all logical pathnames to map into the new
set of physical pathnames defined by the new site.

An fs:make-logical-pathname-host form often appears in the file

38 RN Release 5.0 Release Notes
‘ Symbolics, inc. March 1984

sys:site;system-name.system. make-system looks for this file when given the
name of an unknown system. In addition to a call to
fs:make-logical-pathname-host, this file should contain a call to
si:set-system-source-file, which specifies the logical pathname of the file
containing the defsystem form.

Example:
Following are the contents of the file sys:site;cube.system:
333 -%- Mode: LISP; Package: USER -x-

(fs:make-1logical-pathname-host “cube®)
(si:set-system-source-file "cube* “cube: cube; cubpkg®)

21.25 Previously undocumented function: fs:set-logical-pathname-host

fs:set-logical-pathname-host creates a logical host and defines translations from
logical directories on that host to physical directories on a physical host. A call to
this function is the only form in the file sys:site;logical-host.translations, which is
loaded by fs:make-logical-pathname-host.

fs:set-logical-pathname-host logical-host &key physical-host Function
: translations no-translate

fs:set-logical-pathname-host creates a logical host named logical-host if it
does not already exist. It then establishes translations of logical directories on
logical-host to physical directories on physical-host. translations is a
"translations” list of two-element lists of strings representing associated logical
directories (source patterns) and physical directories (target patterns). For
the format of the lists and the translation rules: See the section "Logical
Pathname Translation".

Logical directory names should be terminated by semicolons, but
fs:set-logical-pathname-host accepts names without semicolons. Host
names can appear in the strings in the translations list, but each logical host
in a string must refer to the same host as logical-host, and each physical
host in a string must refer to the same host as physical-host. If the physical
pathname is on a TOPS-20 or VMS device, you must include the host name
(either explicitly or implicitly, with an initial colon) so that the device is not
taken to be the host.

If no-translate is nil or unsupplied, the translation of every interned logical
pathname is checked. Properties are copied from the old physical pathname
to the the new one, and logical pathnames that now have no corresponding
physical pathnames are uninterned. If no-translate is not nil this mapping is
suppressed, and some physical pathnames might not get the properties of the
logical pathname. The consequences of this are unknown.

A call to fs:set-logical-pathname-host is usually the only form in the file

RN Release 5.0 Release Notes 39
Symbolics, Inc. March 1984

sys:site;logical-host.translations. This file is loaded by
fs:make-logical-pathname-host (always in the file-system package), which
also arranges for it to be reloaded in the future. load-patches checks this
file for all logical hosts in the current world and reloads the file if it has

changed.

Example:

Following is the contents of the file sys:site;cube.translations:
533 -%- Mode: LISP; Package: FILE-SYSTEM -x-

(set-logical-pathname-host "cube”
’:physical-host “pointer”
’:translations ’*(("cube;" ">cube>")))

2.1.26 load-file-list obsolete
The function load-file-list is obsolete. Use make-system instead.

2.1.27 Change in arguménts to print-herald

print-herald no longer accepts an optional argument of the stream for display;
display now always goes to standard-output. Instead, it accepts two keyword
arguments: :as-if-band is used by disk-save, and :verbose controls the display of
system version numbers.

print-herald &key as-if-band verbose Function
Prints out the herald message to standard-output. The herald message is
what the machine prints when it is cold booted. It shows you the name of
the FEP file or partition for the current world load, any comment added to
the herald, a measure of the physical memory and swapping space available,
the versions of the systems that are running, the site name, and the
machine’s own host name.

:as-if-band is used by disk-save to supply the name of the FEP file or
partition of the saved world. :verbose controls the system version
information displayed: if t, the version numbers of all systems are displayed;
if nil, the version numbers of only those systems that differ from the release
are displayed.

2.1.28 Change in arguments to unadvise

The three subforms of unadvise are now independent. If function is nil but class
or position is not, unadvise removes only the specified classes or positions of advice
for all functions.

40 v RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

unadvise &optional function class position Special Form
Removes pieces of advice. None of its subforms are evaluated. function and
class have the same meaning as they do in the function advise. position
specifies which piece of advice to remove. It can be the numeric index (0
means the first one) or it can be the name of the piece of advice.

unadvise can remove more than one piece of advice if some of its arguments
are missing or nil. The arguments function, class, and position all act
independently. A missing value or nil means all possibilities for that aspect
of advice. For example, the following form removes all :before, :after, and
saround advice named negative-arg-check on the factorial function.

(unadvise factorial’nil negative-arg-check)

In this example unadvise removes all :around advice on all functions in all
positions with all names.

(unadvise nil :around)

In this example unadvise removes all classes of advice named
my-personal-advice on all functions.

(unadvise nil nil my-personal-advice)

(unadvise) removes all advice on all functions, since function, class, and
position take on all possible values.

21.29 Window System Changes Associated with Mouse Input

2.1.29.1 Flavors tv:any-tyi-mixin and tv:list-tyi-mixin obsolete

The flavors tv:any-tyi-mixin and tv:list-tyi-mixin are obsolete. The :tyi and
:tyi-no-hang methods of tv:stream-mixin have been renamed to :any-tyi and
:any-tyi-no-hang. The :tyi, :tyi-no-hang, :list-tyi, :mouse-or-kbd-tyi, and
:mouse-or-kbd-tyi-no-hang methods of tv:any-tyi-mixin and tv:list-tyi-mixin
have been moved to tv:stream-mixin. The tv:any-tyi-mixin and tv:list-tyi-mixin
flavors still exist for compatibility, but they have no effect.

21.29.2 Changes to :tyi, :tyi-no-hang, :list-tyi, :mouse-or-kbd-tyi, and
‘mouse-or-kbd-tyi-no-hang methods of tv:stream-mixin
The :tyi method of tv:stream-mixin has been renamed to :any-tyi, and
styi-no-hang has been renamed to :any-tyi-no-hang. The behavior of :any-tyi is
somewhat more complex because of interactions with the input editor. If you want
to receive input that might be integers (character codes) or blips (such as mouse
clicks or activation blips), you should send these messages instead of :tyi and
styi-no-hang. The :tyi and :tyi-no-hang methods now always discard blips;
previously they did so only if tv:any-tyi-mixin was a component of the window
flavor. You can send these messages if you want to receive only keyboard input. If
you want to receive only blips, send the :list-tyi message.

The :mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang methods are of use to
Zwei but probably not to any other programs.

RN Release 5.0 Release Notes 41
Symbolics, Inc. March 1984 '

sany-tyi &optional eof-action of tv:stream-mixin : Method
Read and return the next character of input from the window, waiting if
there is none. Where the character comes from depends on the value of the
variable rubout-handler. Following is a summary of actions for each
possible value of rubout-handler:

nil If the input buffer contains unscanned input, take the
next character from there. Otherwise, take the next
character from the window’s I/O buffer.

sread If the input buffer contains unscanned input, take the
next character from there. Otherwise, if an activation blip
or character is present, return that. Otherwise, enter the
input editor.

styi Take the next character from the window’s I'O buffer.

If eof-action is nil, an error is signalled when an end-of-file is encountered.
Otherwise, the method returns nil when an end-of-file is encountered.

:any-tyi-no-hang &optional eof-action of tv:stream-mixin Method
Check the window’s /O buffer and return the next character if it is
immediately available. If no characters are immediately available, return nil.
It is an error to call this method from inside the input editor (that is, if the
value of rubout-handler is not nil). eof-action is ignored. This is used by
programs that continuously do something until a key is typed, then look at
the key and decide what to do next.

styi &optional eof-action of tv:stream-mixin Method
If called from outside the input editor, this is the same as :any-tyi, except
that only integers and nil can be returned. Blips are discarded, unless the
first element of the blip is :mouse-button and the second element is
#\mouse-r-1; in this case, the method pops up a system menu. If called
from inside the input editor with :full-rubout specified and if an activation
blip is read when the input buffer is empty, the method causes control to be
returned from the input editor. ‘

styi-no-hang &optional eof-action of tv:stream-mixin Method
This is like :any-tyi-no-hang, except that only integers and nil can be
returned. Blips are discarded, unless the first element of the blip is
:mouse-button and the second element is #\mouse-r-1; in this case, the
method pops up a system menu.

slist-tyi of tv:stream-mixin Method
This is like :any-tyi except that it only returns blips and never returns
integers. If it encounters any integers in the input stream, it discards them
entirely (they are removed from the I/O buffer and the program never sees
them). :

42 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

:mouse-or-kbd-tyi of tv:stream-mixin Method
This is like :any-tyi, except that it returns two values, and it discards all
blips but those whose first element is the symbol :mouse. In this case it
returns the third element of the blip and the blip itself. Otherwise, if it sees
an integer or nil, it returns that as both returned values. Blips whose first
element is :mouse are produced by the user’s clicking on the mouse while
inside the editor. This method is used only by Zwei.

:mouse-or-kbd-tyi-no-hang of tv:stream-mixin Method
This is like :any-tyi-no-hang, except that it returns two values, and it
discards all blips but those whose first element is the symbol :mouse. In
this case it returns the third element of the blip and the blip itself.
Otherwise, if it sees an integer or nil, it returns that as both returned
values. Blips whose first element is :mouse are produced by the user’s
clicking on the mouse while inside the editor. This method is used only by
Zwei.

2.1.29.3 Flavors tv:list-mouse-buttons-mixin and tv:kbd-mouse-buttons-mixin
obsolete

The flavors tv:list-mouse-buttons-mixin and tv:kbd-mouse-buttons-mixin are

obsolete. The facilities they provided for interpreting mouse clicks have been

incorporated into the :mouse-click method of tv:essential-mouse. The flavors still

exist for compatibility, but they have no effect.

2.1.29.4 Changes to :mouse-click method of tv:essential-mouse

The :mouse-click method of tv:essential-mouse now always sends blips to any
window with an I/O buffer. The blips are of the form previously provided by
tv:list-mouse-buttons-mixin. When the click is #\mouse-r-1, this method no
longer pops up a system menu.

This change allows programs to receive blips from any windows, including Lisp
Listeners, without having to define special flavors of window.

:mouse-click buttons x y of tv:essential-mouse Method
This method is called by the :mouse-buttons method of
tv:essential-mouse, which is called by the default mouse handler when
mouse buttons are pushed. buttons is an encoded integer representing the
buttons pushed; use reader macros like #\mouse-r-1 to handle these integers
in your program. x and y represent the position of the mouse at the time of
the click, in the window’s outside coordinates.

If the click is #\mouse-r-2, the :mouse-buttons method pops up a system
menu. Otherwise, if the window has an I/O buffer, :mouse-click sends it a
blip of the form (:mouse-button buttons window x y). In addition, if the
click is #\mouse-l-1, the window is selected.

:mouse-click methods are combined using :or combination, so the

RN Release 5.0 Release Notes ; 43
Symbolics, Inc. March 1984

:mouse-click method of tv:essential-mouse runs only if no earlier method
handles the message (and all earlier methods return nil).

The following example illustrates the use of the :any-tyi message to receive both
mouse and keyboard input to windows. It is a simple drawing program whose

~ command loop accepts single keystroke or mouse click commands. This program does
not require any special flavor of window in order to run. It runs using any window
that can become the value of terminal-io.

(defun draw-help ()

(send terminal-io ’:clear-window)

(format t "Click the left mouse button to draw a square.~@
Click the middle mouse button to draw a circle.~@
Click the right mouse button to draw a triangle.~@
Type REFRESH to clear the screen.~@
Type END to exit.~@
Type HELP for documentation.~%"))

(defun draw ()
(draw-help)
(loop for command = (send terminal-io ’:any-tyi)
do (cond ((fixp command)
(selectq command
(#\refresh (send terminal-io ’:clear-window))
(#\end (return))
(#\help (draw-help))
(t (beep))))
({eq (car command) ’:mouse-button)
(destructuring-bind (click nil x y) (cdr command)
(selectq click
(#\mouse-1-1 (send terminal-io ’:draw-rectangle 20 20 x y))
(#\mouse-m-1 (send terminal-io ’:draw-circle x y 10))
(#\mouse-r-1 (send terminal-io ’:draw-triangle
Xy (- x 10) (+y 20) (+ x 10) (+y 20)))
(t (beep)))))
(t (beep)))))

21.29.5 Flavor tv:preemptable-read-any-tyi-mixin obsolete

The flavor tv:preemptable-read-any-tyi-mixin is obsolete. It has been replaced by
the :preemptable input editor option. The flavor still exists for compatibility, but it
has no effect. The :preemptable-read message is supported by tv:stream-mixin
for compatibility.

spreemptable foken Option
A blip in the input stream causes control to be returned from the input
editor immediately. Two values are returned: the blip and foken, which is
usually a keyword symbol. Any unscanned input typed before the blip
remains in the input buffer, available to the next read operation from the
stream.

44 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.1.30 :clear-screen, :clear-eol, and :clear-eof messages to windows renamed

The following messages to windows have been renamed:

« :clear-screen is now :clear-window
« :clear-eol is now :clear-rest-of-line

« :clear-eof is now :clear-rest-of-window

In Release 5.0, windoWs continue to accept the old messages for compatibility. The
cold-load stream does not accept the new messages.

In a future release, :clear-eof will become a no-op so that the meaning of this
message will be compatible with that for noninteractive streams. The cold-load
stream will accept the new messages.

The :clear-eof message was renamed because it had two different meanings. For
windows, it meant to clear the window from the cursor position to the bottom. For
noninteractive streams, it meant to read the EOF indicator, so that data past the
EOF could be read. The other two messages were renamed to be consistent with
modern naming conventions.

:clear-window of tv:sheet Method
Erase the whole window and move the cursor position to the upper left
corner of the window.

:clear-rest-of-line of tv:sheet Method
Erase from the current cursor position to the end of the current line; that is,
erase a rectangle horizontally from the cursor position to the inside right edge
of the window, and vertically from the cursor position to one line-height
below the cursor position.

:clear-rest-of-window of tv:sheet Method
Erase from the current cursor position to the bottom of the window. In
more detail, first do a :clear-rest-of-line, and then clear all of the window
past the current line.

2.2 New Features in Lisp in Release 5.0

2.2.1 New function: eql

eqlx y Function
eql returns t if is arguments are eq, or if they are numbers of the same
type with the same value, or (in Common Lisp) if they are character objects
that represent the same character. The predicate = compares the values of

RN Release 5.0 Release Notes 45
Symbolics, Inc. March 1984

two numbers even if the numbers are of different types. Use equal or
string-equal to compare the characters of two strings.

Examples:

(eql ’a ’a)
(eql 3 3)
(eql 3 3.0)
(eql 3.0 3.0)
(eql #/a #/a)
(eql (cons ’a ’b) (cons ’'a ’b)) => nil
(eql "foo" "FOO") => nil

>
>
>

t
t
nil
>t
>t
b

-« 0 u

The following expressions might return either t or nil:

(eql *(a . b) *(a . b))
(eql “foo” “foo")

In Zetalisp:

(eql 1.0s0 1.0d0) => nil
(eql 0.0 -0.0) => nil

2.2.2 New special form: defconstant
The special form defconstant is used to declare a named constant.

defconstant variable initial-value [documentation] Special Form
defconstant declares the use of a named constant in a program.
initial-value is evaluated and variable set to the result. The value of
variable is then fixed. It is an error if variable has any special bindings at
the time the defconstant form is executed. Once a special variable has been
declared constant by defconstant, any further assignment to or binding of
that variable is an error.

The compiler is free to build assumptions about the value of the variable into
programs being compiled. If the compiler does replace references to the name
of the constant by the value of the constant in code to be compiled, the
compiler takes care that such "copies” appear to be eql to the object that is
the actual value of the constant. For example, the compiler may freely make
copies of numbers, but it exercises care when the value is a list.

In Zetalisp, defconstant and defconst are essentially the same if the value
is other than a number, a character, or an interned symbol. However, if the
variable being declared already has a value, defconst freely changes the
value, whereas defconstant queries before changing the value (unless the
defconstant form is in a patch file). defconstant assumes that changing
the value is dangerous because the old value might have been incorporated
into compiled code, which would be out of date if the value changed.

In general, you should use defconstant to declare constants whose value is a

46 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

number, character, or interned symbol and is guaranteed not to change. An
example is ». The compiler can optimize expressions that contain references
to these constants. If the value is another type of Lisp object or if it might
change, you should use defconst instead.

documentation, if provided, should be a string. It is accessible to the
documentation function.

2.2.3 New special forms: block and tagbody

block is a primitive special form used with return-from for premature exit from a
piece of code. tagbody is a primitive special form used with go for unstructured
transfer of control. prog, do, and their variants are effectively constructed out of
let, block, and tagbody forms.

block name form... Special Form
block evaluates each form in sequence and normally returns the (possibly
multiple) values of the last form. However, (return-from name value) or
one of its variants (a return or return-list form) might be evaluated during
the evaluation of some form. In that case, the (possibly multiple) values that
result from evaluating value are immediately returned from the innermost
block that has the same name and that lexically contains the return-from
form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside
the block itself (or inside a block that that block lexically contains), not inside
a function called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you
can use return-from to exit from them. These blocks are named nil unless
you specify a name explicitly.

For example, the following two forms are equivalent:

(cond ((predicate x)
(do-one-thing))
(t
(format t “The value of X is ~S~%" x)
(do-the-other-thing)
(do-something-else-to0)))

(block deal-with-x
{(when (predicate x)

(return-from deal-with-x (do-one-thing)))
(format t “The value of X is ~S~%" x)
(do-the-other-thing)
(do-something-else-too))

RN Release 5.0 Release Notes 47
Symbolics, Inc. March 1984

tagbody tag-or-statement... Special Form
The body of a tagbody form is a series of tags or statements. A tag is a
symbol; a statement is a list. tagbody processes each element of the body in
sequence. It ignores fags and evaluates statements, discarding the results. If
it reaches the end of the body, it returns nil.

If a (go tag) form is evaluated during evaluation of a statement, tagbody
searches its body and the bodies of any tagbody forms that lexically contain
it. Control is transferred to the innermost tag that is eq to the tag in the
go form. Processing continues with the next fag or statement that follows
the tag to which control is transferred.

The scope of the fags is lexical. That is, the go form must be inside the
tagbody construct itself (or inside a tagbody form that that tagbody
lexically contains), not inside a function called from the tagbody.

do, prog, and their variants use implicit tagbody constructs. You can
provide tags within their bodies and use go forms to transfer control to the

tags.
For example, the following two forms are equivalent:
(dotimes (i n) (print i))

(let ((i 0))
(when (plusp n)
(tagbody
loop
(print i)
(setq i (1+ i))
(when (< i n) (go loop)))))

224 New special forms: multiple-value-call and multiple-value-prog1

multiple-value-call and multiple-value-progl are new special forms for returning
multiple values. multiple-value-call evaluates forms and uses the (possibly
multiple) values as arguments to a function. multiple-value-progl is like progl
except that it can return multiple values from its first form.

multiple-value-call function body ... - Special Form
multiple-value-call first evaluates function to obtain a function. It then
evaluates all the forms in body, gathering together all the values of the forms
(not just one value from each). It gives these values as arguments to the
function and returns whatever the function returns.

For example, suppose the function frob returns the first two elements of a
list of numbers:

(multiple-value-call #°+ (frob *(1 2 3)) (frob *(4 5 6)))
<=>(+1245)=>12.

(L—’é’dgjwn g{‘f“@ % {i&fﬂﬁmwi‘s*““)

N N,
(vale eo {(_ o S e, - fvg)i Conelod™ S pen s S0 2 J>

48 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

multiple-value-progl first-form body... Special Form
multiple-value-progl is like progl, except that if its first form returns
multiple values, multiple-value-progl returns those values.

2.2.5 3600 Supports leee Single- and Double-precision Floating Point

The 3600 supports IEEE-standard single-precision and double-precision floating-point
numbers. Single-precision floating-point numbers have a precision of 24 bits, or
about 7 decimal digits. Their range is from 1.1754944e-38 to 3.4028235e38. Double-
precision floating-point numbers have a precision of 53 bits, or about 16 decimal
digits. Their range is from 2.2250738585072014d-308 to 1.7976931348623157d308.

Number objects exist that are outside the upper and lower limits of the ranges for
single and double precision. Larger than the largest number is +le= (or +1d= for
doubles). Smaller than the smallest number is -le= (or -1d= for doubles). Smaller
than the smallest normalized positive number but larger than zero are the
"denormalized" numbers. Some floating-point objects are Not-a-Number (NaN); they
are the result of (/ 0.0 0.0) (with trapping disabled) and like operations.

IEEE numbers are symmetric about zero, so the negative of every representable
number is also a representable number (on the 3600 only). Zeros are signed in
IEEE format, but +0.0 and -0.0 act the same arithmetically. For example:

(= +0.0 -0.0) => t
(plusp 0.0) => nil
(plusp -0.0) => nil
(zerop -0.0) =>t
(eq 0.0 -0.0) => nil

See the IEEE standard: Microprocessor Standards Committee, IEEE Computer
Society, "A Proposed Standard for Binary Floating-Point Arithmetic: Draft 8.0 of
IEEE Task P754," Computer, March 1981, pp. 51-62.

Some related functions have been added or extended. The mathematical functions,
such as sin and log, have been modified to accept both single- and double-precision
arguments.

2.2.5.1 float returns a single-precision number
float always coerces its argument to a single-precision floating-point number, even if
the argument is a double-precision number.

float x Function
Converts any kind of number to a flonum on the LM-2 and to a single-
precision floating-point number on the 3600. Note that, on the 3600, float
reduces a double-precision argument to single precision.

RN Release 5.0 Release Notes 49
Symbolics, Inc. March 1984

2.2.5.2 New function: dfloat
dfloat converts its argument to a double-precision floating-point number.

dfloat x Function
(3600 only) Converts any kind of number to a double-precision floating-point
number.

2.2.5.3 New data types: :single-float and :double-float

On the 3600, an object of type :single-float is a single-precision floating-point
number. An object of type :double-float is a double-precision floating-point number.
The :float data type is the union of these two types.

See the function typep.

2.2.5.4 floatp returns t for any floating-point number
floatp returns t if its argument is either a single-precision or a double-precision
floating-point number.

floatp arg Function
floatp returns t if its argument is a floating-point number, that is, a flonum
or a small flonum on the LM-2 or a single- or double-precision floating-point
number on the 3600. Otherwise it returns nil.

2.2.5.5 New functions: sys:single-float-p, sys:double-float-p
sys:single-float-p and sys:double-float-p are predicates to distinguish between
single- and double-precision floating-point numbers.

sys:single-float-p arg Function
(3600 only) Returns t if arg is a single-precision floating-point number,
otherwise nil.

sys:double-float-p arg Function
(3600 only) Returns t if arg is a double-precision floating-point number,
otherwise nil.

2.2.6 New function: mod

mod x y Function
The same as remainder, except that the returned value has the sign of the
second argument instead of the first. When there is no remainder, the
returned value is 0.

Examples:

(mod -3 2)
(mod 3 -2) => -1
(mod -3 -2) => -1
(mod 4 -2) =

t
v
-t

Ll
v
o

50 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.2.7 New functions: byte, byte-size, byte-position

byte creates a byte specifier; byte-size extracts the size field of a byte specifier;
byte-position extracts the position field of a byte specifier.

byte size position Function
Creates a byte specifier for a byte size bits wide, position bits from the right-
hand (least-significant) end of the word.

Example:
(1db (byte 3 4) #012345) => 6

byte-size byte-specifier Function
Extracts the size field of byte-specifier. You can use setf on this form:

(setg a (byte 3 4))
(setf (byte-size a) 2)
(byte-size a) => 2

byte-position byte-specifier Function
Extracts the position field of byte-specifier. You can use setf on this form:
(setq a (byte 3 4))
(setf (byte-position a) 2)
(byte-position a) => 2

2.2.8 New Metering Tools for the 3600
A new set of program counter (PC) metering tools is available on the 3600.

Program counter (PC) metering is a tool to allow the user to determine where time
is being spent in a given program.

PC metering essentially produces a histogram. At regular intervals, the Front End
Processor (FEP) causes the main processor to task switch to special microcode. This
microcode looks up the macro PC that contains the virtual address of the
macroinstruction that the processor is currently executing. If this virtual address
falls outside the monitored range, the microcode increments a count of the number
of PCs that missed the monitored range. If the address is within the monitored
range, the microcode subtracts the bottom of the monitored range from the PC,
leaving a word offset. It then divides the word offset by the number of words per
bucket and uses that as an index into the monitor array. Next, it increments that
indexed element of the monitor array. This can only measure statistically where the
macro PC is pointing; for the results to be valid, a relatively large number of samples
per bucket must be available. FEP version 13 samples at about 170 samples per
second, so the PC monitoring with that version is probably valid only for sessions
that take longer than five to ten seconds.

You specify some range of the program to be monitored. The range is specified by
lower and upper bounding addresses, and compiled functions that lie between those

RN Release 5.0 Release Notes 51
Symbolics, Inc. March 1984

addresses are monitored. The range is divided into some number of buckets. The
relative amount of time that the program spends executing in each bucket is
measured.

The parameters you specify are the range of addresses to be monitored, the number
of buckets, and an array with one word for each bucket.

Some of the metering functions deal with compiled functions. In this context a
compiled function is either a compiled code object or an art-16b array, into which
escape functions (small, internal operations used by the microcode) compile.

meter:make-pc-array size Function
Makes a PC array with size number of buckets. This storage is wired, so
you probably do not want this to be more than about 64. pages, or
(* 64. sys:page-size) words.

meter:monitor-all-functions Function
Changes the microcode parameters so that the monitor array refers to every
possible function in the Lisp world at the time of the execution of
meter:monitor-all-functions. This usually causes many functions to map
into a single bucket, and is therefore useful in obtaining a first estimate of
which functions are using a significant portion of the execution time.

meter:expand-range start-bucket &optional (end-bucket start-bucket) Function
Changes the microcode parameters so that the entire monitor array refers
only to the functions previously contained within the range specified by
start-bucket and end-bucket. start-bucket and end-bucket are inclusive bounds.

meter:report &optional function-list Function
Prints a summary of the data collected into the monitor array. You should
not have to supply the function-list argument.

meter:start-monitor &optional (clear t) Function
Enables collection of PC data. If clear is not nil, the contents of the monitor
array are cleared. If clear is nil, the array is not modified, so that the new
samples are simply added to the old.

meter:stop-monitor Function
Disables further collection of PC data.

meter:print-functions-in-bucket bucket Function
Prints all the compiled functions that map into the specified bucker.

meter:list-functions-in-bucket bucket Function
Returns a list of all the compiled functions that map into the specified ducket.

52 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

meter:range-of-bucket bucket Function
Returns the virtual address range that maps into the specified ducket.

meter:with-monitoring clear body... Macro
Enables monitoring around the execution of body. If clear is not nil, clears
the monitor array first. See the function meter:start-monitor.

meter:map-over-functions-in-bucket bucket function &rest args Function
Calls function for every compiled function in the specified bucket. The first
argument to function should be the compiled function, and any remaining
arguments are args.

meter:function-range function Function
Returns two values, the buckets that contain the first and last instructions of
function.

meter:function-name-with-escapes object Function

If object is a compiled function, returns the function spec of the compiled
function. Otherwise, returns nil.

2.2.9 New Meters for the LM-2

Five new microcode meters have been added for the LM-2.

sys:%tv-clock-counter Meter
Counts down every 60th of a second. When it reaches zero it resets from
the sys:%tv-clock-rate meter and causes a sequence break if enabled.

sys:%count-disk-page-read-operations-in-transporter Meter
The number of page faults that went to the disk in the transporter (part of
the garbage collector).

sys:%count-disk-page-read-operations-in-scavenger Meter
The number of page faults that went to the disk in the scavenger (part of
the garbage collector).

sys:%transporter-run-time Meter
The number of microseconds spent in the transporter (part of the garbage
collector).

sys:%scavenger-run-time Meter

The number of microseconds spent in the scavenger (part of the garbage
collector).

RN Release 5.0 Release Notes 53
Symbolics, Inc. March 1984

2.2.10 New special form: define-symbol-macro

A symbol macro translates a symbol into a substitute form. When the Lisp
evaluator is given a symbol, it checks whether the symbol has been defined as a
symbol macro. If so, it evaluates the symbol’s replacement form instead of the
symbol itself. Use define-symbol-macro to define a symbol macro.

define-symbol-macro name form Special Form
This special form defines a symbol macro. name is a symbol to be defined as
a symbol macro. form is a Lisp form to be substituted for the symbol when
the symbol is evaluated. A symbol macro is more like a subst than a macro:
form is the form to be substituted for the symbol, not a form whose
evaluation results in the substitute form.

A symbol defined as a symbol macro cannot be used in the context of a
variable. You cannot use setq on it, and you cannot bind it. You can use
setf on it: setf substitutes the replacement form, which should access
something, and expands into the appropriate update function. Example:

(define-symbol-macro foo (+ 3 bar))
(setq bar 2)
foo => 5

Here is a more complex example. Suppose you want to define some new
instance variables and methods for a flavor. You want to test the methods
using existing instances of the flavor. For testing purposes, you might use
hash tables to simulate the instance variables, using one hash table per
instance variable with the instance as the key. You could then implement an
instance variable x as a symbol macro:

(defvar x-hash-table (make-hash-table))
(define-symbol-macro x (send x-hash-table ’:get-hash self))

To simulate setting a new value for X, you could use (setf x value), which
would expand into (send x-hash-table ’:put-hash self value).
2.2.11 New function: undefflavor

undefflavor reverses the effect of a defflavor.

undefflavor flavor-name Function
Removes the flavor named by flavor-name.
2.2.12 New option for defflavor: :required-init-keywords

:required-init-keywords declares that some init keywords must be specified when
making an instance of a flavor.

54 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

:required-init-keywords Option
The arguments are keywords. It is an error to try to make an instance of
this flavor or any incorporating it without specifying these keywords as
arguments to make-instance (or instantiate-flavor) or a
:default-init-plist option in a component flavor. This error can often be
detected at compile time.

2.2.13 New option for defflavor: :mixture

:mixture lets you define a family of flavors and use init options to select the
member of the family to instantiate.

:mixture Option
Defines a family of related flavors. When make-instance (or
instantiate-flavor) is called, it uses keywords in the init-plist to decide
which flavor of the family to instantiate. Thus, init options can be used to
select the flavor as well as instance-variable values.

The ancestral flavor is the one that includes the :mixture option in its
defflavor. The flavors in the family are automatically constructed by mixing
various mixins with the ancestral flavor. The names for the family members
are chosen automatically. The name of such an automatically constructed
flavor is a concatenation of the names of its components, separated by
hyphens; however, obvious redundancies are removed heuristically.

defflavor of the ancestral flavor also defines the automatically constructed
flavors. compile-flavor-methods of the ancestral flavor also compiles
combined methods of the automatically constructed flavors.

The :mixture option has the following form:

(:mixture spec spec ...)

Each spec is processed independently, and all the resulting mixins are mixed
together. A spec may be any of the following:

(keyword mixin)
Add mixin if the value of keyword is t; add nothing if nil.

(keyword (value mixin) (value mixin) ...)
Look up the value of keyword in this alist and add the specified mixin.

(keyword mixin subspec subspec ...)

(keyword (value mixin subspec subspec ...) ...)
Subspecs take on the same forms as specs. Subspecs are processed
only when the specified keyword has the specified value. Use them
when there are interdependencies among keywords.

RN Release 5.0 Release Notes 55
Symbolics, Inc. March 1984

A mixin is one of the following:

symbol The name of a flavor to be mixed in

nil No flavor needs to be mixed in if the keyword takes on
this value

string This value is illegal: Signal an error with the string as the
message

make-instahce and instantiate-flavor check that the keywords are given
with legal values.

Example:

(defflavor cereal-stream (...) (stream)

(:init-keywords :characters :direction
:ascii :hang-up-when-close)
(:mixture (:characters
(t nil (:direction
(:in buffered-line-input-stream)
(:out buffered-output-character-stream))
(:ascii ascii-translating-character-stream))
(nil nil (:direction (:in buffered-input-stream)
(:out buffered-output-stream))
(:ascii "Ascii translation is not
meaningful for binary streams”)))
(:hang-up-when-close hang-up-when-close-mixin)))

Note the need for an :init-keywords declaration for any keywords that are
used only in the :mixture declaration.

In this declaration, any kind of stream may have a :hang-up-when-close
option. The :characters option does not itself add any mixins (hence the
nil), but the processing of the :direction option depends on whether it is
used with a character stream or a binary stream. The :ascii option is
allowed only for character streams, and we specify an error message if it is
used with a binary stream. If :ascii had not been mentioned in the
scharacters nil case, the keyword would have been ignored by
make-instance on the assumption that an :init method was going to do

something with it.
S b mfao I N ;,' A \O (-3 \

- K *-zf_

2.214 New format directives: “» and "«
“atext”« is useful for indenting text.

“atext”« indents text at the cursor position that is current at the time of the “». A
"+ must be terminated with a “«. ~“» and ~“« can be nested like “["] and “<”>. This
directive is especially useful in making error messages indent properly.

56 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Example:

(format t "~&Error: ~a~A~e¢® *File not found
for FOO.LISP.1")

prints

Error: File not found
for FOO.LISP.1

"« terminates a “». It is undefined elsewhere.

2.2.15 New special form: format:defformat

format:defformat defines a new format directive. The function associated with
the directive should send its output to the value of format:*format-output®*.
Directives that were written in the old style and that send their output to
standard-output still work, but you should begin to convert them to the new form.

format:defformat directive (arg-type) arglist body ... Special Form
Defines a new format directive.

directive is a symbol that names the directive. If directive is longer than one
character, it must be enclosed in backslashes in calls to format:

(format t "~\fool\" ...)
directive is usually in the format package; if it is in another package, the
user must specify the package in calls to format:

(format t “~\foo:bar\” ...)
format:defformat defines a function to be called when format is called

using directive. body is the body of the function definition. arg-type is a
keyword that determines the arguments to be passed to the function as

arglist:

:no-arg The directive uses no arguments. The function is passed
one argument, a list of parameters to the directive. The
value returned by the function is ignored.

:one-arg The directive uses one argument. The function is passed
two arguments: the argument associated with the
directive and a list of parameters to the directive. The
value returned by the function is ignored.

:multi-arg The directive uses a variable number of arguments. The

function is passed two arguments. The first is a list of the
first argument associated with the directive and all the
remaining arguments to format. The second is a list of
parameters to the directive. The function should cdr
down the list of arguments, using as many as it wants,
and return the tail of the list so that the remaining
arguments can be given to other directives.

RN Release 5.0 Release Notes 57
Symbolics, Inc. March 1984

The function can examine the values of format:colon-flag and
format:atsign-flag. If format:colon-flag is not nil, the directive was given
a : modifier. If format:atsign-flag is not nil, the directive was given a

© modifier.

The function should send its output to the stream that is the value of
format:*format-output®.

Here is an example of a format directive that takes one argument and prints
a number in base 7:

(format:defformat format:base-7 (:one-arg) (argument parameters)
parameters ;ignored
(let ((base 7))
(princ argument format:xformat-outputx)))

Now:
(format nil *> ~\base-7\ <" 8) => “> 11 ("

2216 New Features Associated with the Input Editor (Rubout Handler)

This section describes new features in the input editor and reading functions. For
incompatible changes: See the section "Incompatible Changes to the Input Editor
(Rubout Handler)". :

2.2.16.1 New input editor options: :no-input-save, :activation, :command,
ipreemptable

The :no-input-save option causes the input editor not to save the scanned contents

of the buffer on the input history.

:no-input-save Option
The input editor does not save the scanned contents of the input buffer on
the input history when returning from the reading function. This is
intended for use by functions such as fquery that use the input editor to
ask simple questions whose responses are not worth saving. yes-or-no-p
uses :no-input-save by default.

:activation allows a reading function (like read or readline) to recognize activation
characters.

sactivation function &rest arguments Option
For each character typed, the input editor invokes function with the
character as the first argument and arguments as the remaining arguments.
If the function returns nil, the input editor processes the character as it
normally would. Otherwise, the cursor is moved to the end of the input
buffer, a rescan of the input is forced (if one is pending), and the blip
(:activation character numeric-arg) is returned by the final sending of the
:any-tyi message to the stream. Activation characters are not inserted into

58 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

the input buffer, nor are they echoed by the input editor. It is the
responsibility of the reading function to do any echoing. For instance,
readline, not the input editor, types a Newline at the end of the input
buffer when RETURN, END, or LINE is pressed.

:command allows céntrol to be returned from the input editor on reading special
characters.

sccommand function &rest arguments Option
This option is used to implement nonediting single-keystroke commands. For
each character typed, the input editor invokes function with the character as
the first argument and arguments as the remaining arguments. If the
function returns nil, the input editor processes the character as it normally
would. Otherwise, control is returned from the input editor immediately.
Two values are returned: a blip of the form (:command character
numeric-arg) and the keyword :command. Any unscanned input typed
before the command character remains in the input buffer, available to the
next read operation from the stream.

:preemptable allows control to be returned from the input editor on reading blips.

:preemptable foken Option
A blip in the input stream causes control to be returned from the input
editor immediately. Two values are returned: the blip and token, which is
usually a keyword symbol. Any unscanned input typed before the blip
remains in the input buffer, available to the next read operation from the
stream.

This example illustrates the use of the :command, :preemptable, and :prompt
input editor options. It is a simple command loop that reads different kinds of
commands - typed Lisp expressions, single-keystroke commands, and mouse clicks.
The Lisp expressions are read using the si:read-or-end function. You can provide
four kinds of input:

Input Action

END Exit the command loop

Lisp form Print form on next line

Mouse click Display type of click and mouse coordinates

Single-key command
Display keystroke

The predicate for detecting a single-keystroke command simply checks for the Super
bit. In a more complex program, it might look up the character in a command
table. ‘

RN Release 5.0 Release Notes 59
Symbolics, Inc. March 1984

(defun command-char-p (c) (1db-test %%kbd-super c))

(defun command-toop ()
{loop
do (multiple-value-bind (value flag)
(si:read:or-end standard-input nil *((:command command-char-p)
(:preemptable :blip)
(:prompt “Command loop input: ")))
(selectq flag
(:end
(format t "Done")
(return t))
(:blip
(selectq (car value)
(:mouse-button
(destructuring-bind (click nil x y) (cdr value)
(format t “~C click at ~D, ~D" click x y)))
(otherwise (format t *Random blip -- ~S" value))))
(:command
(format t "Execute ~:C command” (second value)))
{otherwise
(format t "~&Value is ~S" value))))))

2.2.16.2 New macro: with-input-editing
with-input-editing defines a context in which a reading function can be called
using the input editor.

with-input-editing (stream-var input-editor-options parameters Macro
_ keyword) body...
This macro provides a convenient way of invoking the input editor for use by
a reading function. It establishes a context in which input editing should be
provided. Use this macro instead of sending a :rubout-handier message
directly.

All the "arguments” are optional. stream-var is a variable bound to the
stream from which characters are read; if stream-var is not provided or is nil,
standard-input is used. input-editor-options, if provided and not nil, should
evaluate to a list of options suitable for the first argument to the
srubout-handler message.

keyword determines the activation characters for the input editor:

Value Activation characters

nil None

send-activation #\end

:line-activation #\end, #\return, and #\line

60 RN Release 5.0 Refease Notes
Symbolics, Inc. March 1984

sline #\end, #\return, and #\line. In addition, a Newline is
echoed after the reading function returns.

The macro defines an internal function with body as its body and
(stream-var . parameters) as its argument list. When the function containing
the with-input-editing form is called from outside the input editor, the
stream is sent a :rubout-handler message if it handles it. The arguments
to the :rubout-handler message are the list of input-editor-options, including
any activation option determined by keyword; the internal function; and any
arguments to the internal function. If the function containing the
with-input-editing form is called from inside the input editor or if the
stream does not handle the :rubout-handler message, the internal function
is called instead.

parameters must be nil or a list of arguments and local variables that are
defined outside the scope of the with-input-editing form but referenced
within it. If a lexically external variable x is referenced within body but does
not appear in the parameters list, the compiler issues the warning, "Lexical
scoping not implemented for the variable x."

The following example defines a reading function.

(defun read-number
(&optional (stream standard-input) input-editor-options
input-radix or-nil)
(with-input-editing (stream input-editor-options (input-radix or-nil)
:1ine)
(loop with number
with ibase = (or input-radix ibase)
for string = (readline-or-nil stream)
do (cond ((not string)
(if or-nil (return nil)))
((numberp (setq number (ignore-errors
(read-from-string string))))
(return number))
(t (sys:parse-ferror
"A~:[~; decimal~] number~:[~;, or <Return> for none,~] ~
is required”
(= ibase 10.) or-nil))))))

2.216.3 New function: read-delimited-string
read-delimited-string allows reading from a stream until a delimiter character is
encountered.

read-delimited-string &optional (delimiters #\end) Function
(stream standard-input) (eof nil)
(input-editor-options nil) &rest
(make-array-args *(100. :type art-string))
delimiter is either a character or a list of characters. Characters are read

RN Release 5.0 Release Notes 61
Symbolics, Inc. March 1984

from stream until one of the delimiter characters is encountered. The
characters read up to the delimiter are returned as a string. This function
may be invoked from inside or outside the input editor. If invoked from
outside the input editor, the delimiter characters are set up as activation
characters. The eof argument is treated the same way as the eof argument
to the :tyi message to noninteractive streams. input-editor-options are passed
on as the first argument to the :rubout-handler message, after having an
:activation entry prepended. make-array-args are arguments to be passed
to make-array when constructing the string to return.

read-delimited-string returns four values:

 The string
« An eof flag, if the eof parameter was nil
o The character that delimited the string

« Any numeric argument given the delimiter character

This function is used by readline, qsend, and the :delimited-string option
for prompt-and-read.

Examples:

The following reads characters until END is typed and returns a string at least
200. characters long with a leader-length of 3:

(read-delimited-string #\end standard-input nil nil 200. :leader-length 3)

C‘“‘Ca&—e‘w”o-ne,[TR > S PO " N et STRmEorst e npad” At md 2y @ loe_
The following is the same as (readline), except that it does not echo artrs = b<

Newline after the string is activated: l‘f{g)

(read-delimited-string *(#\return #\line #\end)) Bt

< 2 =& >

A simple word parser:
{read-delimited-string *(#\space #/, #/. #/?))

For a more complex example of a sentence parser that uses
read-delimited-string: See the section "Examples of Use of the Input Editor".

2.2.16.4 New optional argument to read
A list of input editor options can now be passed to read as an optxonal argument.

read &optional (stream standard-input) eof-option Function
input-editor-options
read reads in the printed representation of a Lisp object from stream, builds
a corresponding Lisp object, and returns the object. For details: See the
section "Input Functions".

(This function can take its arguments in the other order, for Maclisp
compatibility only.)

62 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.2.16.5 New function: si:read-or-end

read-or-end &optional (stream standard-input) eof-option Function
input-editor-options

This function is like read, except that if it is reading from an interactive
stream and the user presses END as the first character or the first character
after only whitespace characters, it returns two values, nil and :end. If it
encounters any nonwhitespace characters, END has the same meaning as for
read. eof-option has the same meaning as for other reading functions.
input-editor-options are passed to the input editor if the stream supports it.

The :expression-or-end and :eval-form-or-end options for
prompt-and-read invoke si:read-or-end.

2.2.16.6 readline and readline-trim return additional values
readline and readline-trim now return four values: a string; an eof flag; the
delimiter that terminated the string; and any numeric argument given the delimiter.

readline &optional (stream standard-input) eof-option , Function
input-editor-options
readline reads in a line of text. If called from inside the input editor or if
reading from a stream that does not support the input editor, the line is
terminated by a Newline character. If the stream supports the input editor
and readline is called from outside the input editor, the line is terminated
by RETURN, LINE, or END.

This function is usually used to get a line of input from the user. If stream
supports the input editor, readline calls read-delimited-string, and
input-editor-options is passed as the list of options to the input editor.

readline returns four values:

 The line as a character string, without the Newline character.

» An eof flag, if eof-option was mil. This is t if the line was terminated
because end-of-file was encountered, or nil if it was terminated because
of a RETURN, LINE, or END character.

 The character that delimited the string.

¢ Any numeric argument given the delimiter character.
See the function read-delimited-string.

readline-trim &optional (stream standard-input) eof-option Function
input-editor-options
readline-trim trims leading and trailing whitespace from string input.
"Whitespace” means spaces, tabs, or newlines. It takes the same arguments
as the normal readline and returns the same four values.

RN Release 5.0 Release Notes 63
Symbolics, Inc. March 1984

Examples:

(readline-trim) exciting option RETURN =>
*exciting option”

NIL

141

NIL

(readline-trim)RETURN =>

NIL
141
NIL

The :string-trim option for prompt-and-read and
tv:choose-variable-values uses readline-trim.

2.2.16.7 New function: readline-or-nil
readline-or-nil returns a string trimmed of white space, or else nil if the string is
empty.

readline-or-nil &optional (stream standard-input) eof-option Function
input-editor-options
Like readline-trim, except that it returns a first value of nil instead of the
empty string if the input string is empty.

The :string-or-nil option for prompt-and-read and the :string-or-nil
choose-variable-values keyword use readline-or-nil.

See the function readline-trim.

2.2.16.8 New methods of tv:stream-mixin: :start-typeout, :finish-typeout,
:rescanning-p, :force-rescan, :replace-input, :read-bp

Six new methods have been added to tv:stream-mixin for communication between

the input editor and sophisticated reading functions that offer typeout and

completion. The methods are :start-typeout, :finish-typeout, :rescanning-p,

:force-rescan, :replace-input, and :read-bp.

sstart-typeout type &optional spacing of tv:stream-mixin Method
Informs the input editor that typeout to the window will follow. The word
"typeout"” is used in the name of this message because this is very similar to
typeout in the editor, even though typeout windows are not actually used.
type can be one of the following keywords:

Keyword Action
zinsert - Typeout is inserted before the current input, as is done

with notifications or input editor documentation.

:overwrite Like :insert, but the next time :insert or :overwrite
: typeout is performed, this typeout is overwritten.

64 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

:append Typeout appears after the current input, which remains
visible before the typeout. This is the style used by
break.

stemporary Typeout appears after the current input and is erased
after the user types a character.

spacing can be one of the following keywords:

Keyword Action
:none No spacing before typeout.
:fresh-line Typeout begins at the beginning of a line.

:blank-line A blank line precedes typeout.
If spacing is not specified, a default that depends on type is computed.

finish-typeout &optional spacing erase? of tv:stream-mixin Method
Completes typeout to the window and causes the input buffer to be
refreshed. In the case of :temporary typeout, the erase? parameter is used
to indicate whether or not the typeout overwrote part of the current input
by wrapping around the screen. It is the responsibility of the program doing
the typeout to keep track of how much is output.

spacing can be one of the following keywords:

Keyword Action

:none No spacing before typeout.

:fresh-line Typeout begins at the beginning of a line.
sblank-line A blank line precedes typeout.

If spacing is not specified, a default that depends on the {ype argument to
the :start-typeout method is computed.

:rescanning-p of tv:stream-mixin Method
This message can be sent by a read function that uses the input editor to
determine whether the next character returned by :tyi will come from the
input buffer or from the keyboard. If t is returned, the input is being
rescanned and the next character will come from the input buffer. If nil is
returned, the next character will come from the keyboard.

:force-rescan of tv:stream-mixin Method
This message can be sent by a read function that uses the input editor to
force a rescan of the current input. Before this message is sent, usually
some global state has changed and the contents of the input buffer are
interpreted differently.

RN Release 5.0 Release Notes 65
Symbolics, Inc. March 1984

:replace-input n-chars string &optional (begin 0) end of Method
tv:stream-mixin

This message can be sent by a read function that uses the input editor to
provide completion of the current input. n-chars is the number of characters
to be removed from the end of the input buffer and erased from the screen.
The substring of string determined by begin and end is then displayed on the
screen. The scan pointer is left after the string, and a rescan does not take
place. If a rescan takes place at some later time, the characters in string will
be seen as input.

:read-bp of tv:stream-mixin Method
Returns the value of the scan pointer. This is for the benefit of read
functions that might want to return a pointer into the input buffer when
signalling an error of type sys:parse-error.

2.2.16.9 New variable: tv:rh-typeout-default »
tv:rh-typeout-default controls the style of typeout performed by the input editor.

tv:rh-typeout-default Variable
Controls the style of typeout performed by the input editor. Permissible
values are the keywords acceptable as the fype argument to the
:start-typeout method of tv:stream-mixin. These are :insert, soverwrite,
:append, and :temporary. The default value is :insert.

2.2.16.10 Using the Input Editor: Examples

This series of examples shows several different ways of using the input editor,
gradually increasing in complexity. The examples are also available in the file
sys: examples; interaction.lisp.

We refer to functions whose names begin with "read" as "reading functions" or
readers", since they read individual characters and construct a Lisp object as a
returned value. Examples of readers the Lisp system provides are read, readline,
and read-delimited-string. read returns Lisp objects of many types. readline
and read-delimited-string return strings.

read-two-lines-1 reads two lines of input from the console. You type each line in
its own editing context. After you enter the first line by pressing RETURN, LINE, or
END, you can no longer rub out or otherwise edit any of the characters in the first
line. You can type and edit only the second line at that point.

(defun read-two-1lines-1 () (list (readline) (readline)))

read-two-lines-2 lets you edit both lines in a single context by using the

with-input-editing macro. Even after entering the first line you can edit it. For

example, the m-< input editor command moves the cursor to the first character of

the first line. read-two-lines-2 also adds a stream parameter so that you can read

from different streams without having to bind standard-input. You can also use
“this function for reading from noninteractive streams, such as file streams.

66 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

(defun read-two-lines-2 (&optional (stream standard-input))
(with-input-editing (stream) (list (readline stream) (readline stream))))

read-two-lines-3 demonstrates the use of the :prompt input editor option and the
:end-activation option for with-input-editing. When you invoke this function on
an interactive stream you receive a prompt. This prompt is redisplayed if typeout to
the stream occurs. This might happen if you press HELP or the window receives a
notification.

The :end-activation option defines #\end as an activation character. This lets
you activate previous input to read-two-lines-3, after yanking and editing it, by
pressing END. The :prompt and :end-activation options have no effect on the

behavior of the function for noninteractive streams.

(defun read-two-lines-3 (&optional (stream standard-input))
(with-input-editing (stream *((:prompt “Type two lines: ")) () :end-activation)
(list (readline stream) (readline stream))))

read-n-lines-1 is like read-two-lines except that you specify the number of lines to
be read using the n-lines argument. This example illustrates passing a parameter
into the body of the with-input-editing form.
(defun read-n-lines-1 (n-lines &optional (stream standard-input))
(with-input-editing (stream ’((:prompt “Type some lines: *)) (n-lines) :end-activation)
(loop repeat n-lines collect (readline stream))))

read-n-lines-2 shows a different way of passing the n-lines parameter into the
with-input-editing body. It uses a prompt function instead of a string to generate
the prompt, and it passes the n-lines parameter to that function.

(defvar xn-linesx)

(defun read-n-lines-prompt (stream ignore)
(format stream "Type ~R line~:P:~%* xn-linesx))

(defun read-n-lines-2 (*n-linesx &optional (stream standard-input))
(with-input-editing (stream ’((:prompt read-n-lines-prompt)) () :end-activation)
(loop repeat *n-linesx collect (readline stream))))

Next is an example of a simple sentence parser. It builds a list of strings and
symbols that represent the words and punctuation marks of the sentence. A
sentence may be any number of lines long. It is delimited by a period or a question
mark. Words are delimited by a space, newline, or punctuation mark. This is also
an example of a reading function written entirely in terms of :tyi as the primitive
input operation.

RN Release 5.0 Release Notos 67
Symbolics, Inc. March 1984

(defun read-sentence-1 (&optional (stream standard-input))
(with-input-editing (stream *((:prompt “Type a sentence: “)))
(1oop named sentence
with sentence = nil
for word = (make-array 20. ’:type art-string *:fill-pointer 0)
do (loop for char = (send stream ’:tyi)
do (cond ((memg char ’(#\space #\return #/. #/? #/,))
(if (not (equal word ""))
(push word sentence))
(selectq char
((#\space #\return)
(return))
(#\.
(push ’:period sentence)
(return-from sentence (nreverse sentence)))
(#\?
(push ’:question-mark sentence)
(return-from sentence (nreverse sentence)))))
(t (array-push-extend word char)))))))

Following is a different sentence parser that calls read-delimited-string to
accumulate characters into a string. It uses the :end-activation option for
with-input-editing so that previous input to read-sentence-2 can be yanked,
edited, and activated using the END key. When it detects incorrect uses of
punctuation, it calls sys:parse-ferror to signal an error caught by the input editor.

68 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

(defun read-sentence-2 (&optional (stream standard-input))

(with-input-editing (stream *((:prompt “Type a sentence: *)) () :end-activation)

(Toop with sentence = nil
do (multiple-value-bind (word nil delimiter)

(read-delimited-string *(#\space #\return #/. #/? #/, #/: #/;) stream)

(if (not (equal word “"))
(push word sentence))
(cond ((memq delimiter ’(#\space #\return)))
((null sentence)
(if (eq delimiter #\end)
(return nil)
(sys:parse-ferror
“The punctuation mark /*~C/" occurred at the ~
beginning of the sentence.”
delimiter)))
((symbolp (car sentence))
(sys:parse-ferror
“The punctuation mark /“~C/* was typed after a ~e~.*
delimiter (car sentence)))
(t (selectq delimiter
(#/,
(push *:comma sentence))
(#/:
(push *:colon sentence))
(#7;
(push ’:semicolon sentence))
(#7.
(push ’:period sentence)
(return (nreverse sentence)))
(#/7
(push ’:question-mark sentence)
(return (nreverse sentence))))))))))

Sometimes an error in parsing is detected not by the function that invokes the input
editor, but by some function that it calls. In the next example, read-time invokes
time:parse-universal-time to do its parsing. If we did not use the
condition-case form in read-time, we would enter the Debugger when
time:parse-universal-time encountered incorrect input. The condition-case form
encapsulates the original error in one of flavor sys:parse-ferror so that the input
editor catches it. Alternately, we could define time:parse-error to be a subflavor of
Sys:parse-error.

RN Release 5.0 Release Notes 69
Symbolics, Inc. March 1984

(defun read-time (&optional (stream standard-input) input-editor-options)
(with-input-editing (stream input-editor-options () :line)
(let ((string (readline-or-nil stream)))
(when string
(condition-case (error)
(time:parse-universal-time string)
(time:parse-error
(sys:parse-ferror “~A* error)))))))

2.217 New macro: sys:with-open-file-search

sys:with-open-file-search is like with-open-file, but it searches for a file with one
of the types in a list of file types. load uses this to search first for a binary file and
then for a source file.

sys:with-open-file-search (stream-variable Macro
(operation defaults auto-retry)
(¢ype-list-function pathname . type-list-args) .
open-options) body...
sys:with-open-file-search performs a with-open-file, searching for a file
with one of the types in a list of file types. load uses this macro when not
given a specific file type to search first for a binary file and then for a source
file.

The body is evaluated with stream-variable bound to a stream that reads or
writes the file. open-options are alternating keywords and values to be passed
to open.

type-list-function should be a function whose first argument is pathname and
whose remaining arguments are type-list-args. The function should return
two values: a list of file types to be searched, in order of preference, and a
base pathname to be merged with the types and defaults in searching for the
file. defaults can be a pathname or a defaults alist; if omitted, the defaults
come from fs:*default-pathname-defaults®*. The macro uses
fs:merge-pathname-defaults for merging.

If no file is found with any of the types in the list of types,
fs:multiple-file-not-found is signalled. operation is the name of the
operation that failed; usually this is the name of the function that contains
the sys:with-open-file-search form. If auto-retry is not nil and the
condition is not handled, the user is prompted for a new pathname.

2.2.18 New condition flavor: fs:multiple-file-not-found

fs:multiple-file-not-found is signalled when none of a number of possible files is
found. This condition is signalled by sys:with-open-file-search when it fails to find
any file.

70 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

fs:multiple-file-not-found Flavor
None of a number of possible files was found. This flavor is built on
fs:file-lookup-error. It is signalled when load is not given a specific file
type but cannot find either a source or a binary file to load.

The flavor allows three init keywords of its own. These are also the names
of messages that return the following:

:operation The operation that failed
:pathname The pathname given to the operation
:pathnames A list of pathnames that were sought unsuccessfully

The condition has a :new-pathname proceed type to prompt for a new
pathname.

2.2.19 New condition flavor: fs:rename-across-hosts

fs:rename-across-hosts Flavor
The hosts of the initial and target pathnames are not the same. This flavor
is built on fs:rename-failure.

2220 New variable: fs:*remember-passwords*

fs:*remember-passwords*, if not nil, causes the first password for each file access
path to be remembered and suppresses prompting for passwords when the same
person uses that access path again.

fs:*remember-passwords* Variable
If not nil, causes the first password for each file access path to be
remembered. This suppresses prompting for passwords on subsequent
attempts by the same user to use that access path. The default value is nil.

Note that if you set this variable in an init file, your first login password,
typed before the init file is loaded, is not remembered.

Caution: Remembered passwords are accessible. Even after you log out the
remembered password for each access path is accessible. If password security
is important, you probably should not set this variable to a non-nil value.

2.2.21 New function: si:patch-loaded-p

si:patch-loaded-p is a predicate that tells whether the loaded version of a system is
at or past a specified patch level.

si:patch-loaded-p major-version minor-version Function
&optional (system “"System”)
A predicate that tells whether the loaded version of system is past (or at) the
specified patch level. Returns t if:

RN Release 5.0 Release Notes 71
Symbolics, Inc. March 1984

« the major version loaded is major-version and the minor version loaded
is greater than or equal to minor-version

« the major version loaded is greater than major-version

Otherwise, the function returns nil.

2.2.22 New functions: si:make-process-queue, si:process-enqueue,
si:process-dequeue, si:process-queue-locker, si:reset-process-queue

A process queue is a new facility for round-robin locking. Each process that requests
a lock via a queue enters itself on the queue if the lock is not free. Processes are
given a chance to seize the lock in the order in which they request it.

si:make-process-queue name size Function
Makes and returns a queue for processes requesting a lock. name is an
external name for the queue and is used only in printing the queue. size is
the size of the queue. This is the maximum number of processes that will
be guaranteed to lock the queue in exact requesting order.

si:process-enqueue queue &optional queue-value (whostate "Lock") Function
Locks queue. queue-value is an object to enter on the queue; if queue-value
is nil or unsupplied, the object is the current process. If queue is empty,
seizes the lock immediately by inserting queue-value on the queue and
returning. If queue is not full but other processes are on the queue waiting
for the lock to be free, inserts queue-value at the end of the queue, waits for
the lock to be free, and then seizes the lock by returning. If queue is full,
waits until queue is not full and tries again to seize the lock. whostate is
displayed in the status line while waiting to seize the lock. Signals an error
if queue-value has already seized the lock.

si:process-dequeue queue &optional queue-value (error-p t) Function
Unlocks queue. queue-value is an object on the queue. If queue-value is nil
or unsupplied, it is the current process; if not nil, it should be the same as
the queue-value given to the matching call to si:process-enqueue. If
queue-value has the lock, unlocks the lock by removing queue-value from
queue and giving the next process on the queue a chance to seize the lock.
If queue-value does not have the lock and error-p is not nil, signals an error.

si:process-queue-locker queue Function
Returns the queue-value for the process that holds the lock on queue, or nil
if the lock is free.

si:reset-process-queue queue Function
Unlocks queue and removes all processes on the queue.

72) RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.2.23 New function: applyhook

applyhook provides a hook into apply, much as evalhook provides a hook into
eval. It is useful for printing debugging information about apply operations.

applyhook Variable
When the value of this variable is not nil and eval calls apply, applyhook
is bound to nil and the function that was its value is applied to two
arguments: the function that eval gave to apply and the list of arguments
to that function. The value it returns is returned from the evaluator.

applyhook function args evalhook applyhook Function
function is applied to args with evalhook lambda-bound to the function
evalhook and with applyhook lambda-bound to the function applyhook.
Like the evalhook function, this bypasses the first place where the relevant
hook would normally be triggered. Either of the last two arguments can be
nil.

The function evalhook now takes an optional third argument, an applyhook
function to be called by eval after eval has evaluated the arguments to a function.

evalhook form evalhook &optional applyhook Function
evalhook is a function that helps exploit the evalhook feature. The form
is evaluated with evalhook lambda-bound to the function evalhook. The
checking of evalhook is bypassed in the evaluation of form itself, but not in
any subsidiary evaluations, for instance of arguments in the form. This is
like a "one-instruction proceed" in a machine-language debugger.

Example:
;3 This function evaluates a form while printing debugging
;3 information.
(defun hook (x)
(terpri)
(evalhook x ’hook-function))

;; Notice how this function calls evalhook to evaluate the
;3 form £, so as to hook the subforms.
(defun hook-function (f)
(let ((v (evalhook f *hook-function)))
(format t “form: ~s~%value: ~s~%* f v)
v))

;; This isn’t a very good program, since if f returns multiple
;; values, it will not work.

The following output might be seen from (hook ’(cons (car ’(a . b)) ’¢)):

RN Release 5.0 Release. Notes 73

Symbolics, Inc. March 1984

2224

gec-on

2225

form: (quote (a . b))
value: (a . b)

form: (car (quote (a . b)))
value: a

form: (quote c)

value: ¢

(a . ¢c)

Normally after eval has evaluated the arguments to a function, it calls the
function. If applyhook exists, however, eval calls the hook with two
arguments: the function and its list of arguments. The values returned by
the hook constitute the values for the form. The hook could use apply on
its arguments to do what eval would have done normally. This hook is
active for special forms as well as for real functions.

Whenever either an evalhook or applyhook is called, both hooks are bound
off. The evalhook itself can be nil if only an applyhook is needed.

applyhook catches only apply operations done by eval. It does not catch
apply called in other parts of the interpreter or apply or funcall operations
done by other functions such as mapecar. In general, such uses of apply
can be dealt with by intercepting the call to mapcar, using the applyhook,
and substituting a different first argument.

The argument list is like an &rest argument: it might be stack-allocated but
is not guaranteed to be. Hence you cannot perform side-effects on it and you
cannot store it in any place that does not have the same dynamic extent as
the call to applyhook.

New variable: gc-on

: Variable
The value of this variable is t when the garbage collector is turned on and
nil when it is turned off. gc-on is useful in finding out whether the garbage
collector has turned itself off (as it does when not enough free space remains
to be able to complete a copying garbage collection).

New initialization list: :after-full-gc

si:full-gec runs the :after-full-ge initialization list after it collects all the garbage. It
runs the previously undocumented :full-ge initialization list before it collects the

garbage. ;
See the section "System Initialization Lists".

74 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.2.26 New variable: dbg:*debug-io-override*

dbg:*debug-io-override* can be used to direct the Debugger to a stream other
than that designated by debug-io. This is useful mainly in complex debugging
using the cold-load stream.

dbg:*debug-io-override* Variable
If the value of this variable is nil (the default), the Debugger uses the
stream that is the value of debug-io. But if the value of
dbg:*debug-io-override* is not nil, the Debugger uses the stream that is
the value of this variable instead. This variable should always be set (using
setq), not bound, so all processes and stack groups can see it.

2.2.27 New message to conditions: :special-command-p

You can send the :special-command-p message to a condition object to determine
whether a command is one of the Debugger special commands for that object.

:special-command-p command-type of condition Method
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

2228 New macro: tv:with-mouse-grabbed-on-sheet

tv:with-mouse-grabbed-on-sheet grabs the mouse and confines it to a window.
This is usually preferable to using tv:with-mouse-grabbed.

tv:with-mouse-grabbed-on-sheet (sheet) body... Macro
Evaluates dody with the mouse grabbed and confined to sheet. During
execution the variables tv:imouse-x and tv:mouse-y are relative to the
window’s outside coordinates. The default value of sheet is self.

2.2.29 New variable: tv:cold-load-stream-old-selected-window

This variable tells you which window was selected at the time you entered the cold
load stream.

tv:cold-load-stream-old-selected-window Variable
At a cold-load stream break, the value of this variable is the value of
tv:selected-window at the time you entered the cold-load stream.

2.2.30 New flavor: tv:margin-space-mixin

tv:margin-space-mixin lets you leave some blank space in the margins of a
window. You can use the :space init option and the :space and °set-space
messages to determine the amount of blank space to be left.

RN Release 5.0 Release Notes 75
Symbolics, Inc. March 1984

tv:margin-space-mixin Flavor
This flavor provides a margin item that just leaves some blank space. It
might be useful if you're using scroll bars, and you want to leave a little
white space between the scroll bar and the inside of the window.

:space (for tv:margin-space-mixin) Init Option
Initializes the amount of blank space in the margins of the window. Possible
values:
nil No space
t One pixel blank in each of the four margins
n n pixels of space in each of the four margins (n is an

integer)

(left top right bottom)
left pixels blank in the left margin, top pixels blank in the
top margin, and so on (values are integers)

:space of tv:margin-space-mixin Method
Returns a list of four elements, (left top right bottom). These are integers
representing the number of pixels of blank space in the four margins of the
window.

:set-space new-space of tv:margin-space-mixin Method
Specifies the amount of blank space to be left in the margins of the window.
Possible values of new-space:

nil No space
One pixel blank in each of the four margins

n n pixels of space in each of the four margins (n is an
integer)

(left top right bottom)
left pixels blank in the left margin, top pixels blank in the
top margin, and so on (values are integers)

2231 New font: fonts:cptfonti

A new tv font, fonts:cptfonti, is available. This is a fixed-width italic font of the
same width and shape as fonts:cptfont, the default screen font. It is most useful
for italicizing running text along with fonts:cptfont.

76 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.2.32 New Choose-variable-values Keywords

The following choose-variable-values keywords are new in Release 5.0 or were
previously undocumented: :choose-multiple, :string-or-nil, :decimal-number,
:decimal-number-or-nil, :date-or-never, :past-date, :time-interval-or-never,
:pathname, :pathname-or-nil, :pathname-list, :host, :host-list, :pathname-host,
:keyword-list, and :font-list.

Keyword Action

:choose-multiple values-list print-function
This type takes arguments like :assoc but permits the user to
choose more than one element in the values-list. The variable is
set to a list of all the values chosen.

sstring-or-nil This value is a string or nil if the user just presses RETURN, LINE,
or END.

:decimal-numberThis value is a decimal number, read and printed in radix 10.

:decimal-number-or-nil
This value is a decimal number, read and printed in radix 10, or
nil if the user just presses RETURN, LINE, or END.

:date-or-never This value is a universal date-time or nil if the user types
"never". An ambiguous date is interpreted as being in the future.

:past-date The value is a universal date-time. An ambiguous date is
interpreted as being in the past.

stime-interval-or-never
The value is an integer representing the number of seconds in a
time interval, or nil if the user types "never". The interval is
read and printed as either "never" or alternating numbers and
units of time; the units can include seconds, minutes, hours, days,
weeks, or years.

spathname The value is a pathname, represented as a string. The pathname
read is merged with the defaults in
fs:*default-pathname-defaults* and has a default version of
:newest.

spathname-or-nil The value is a pathname, represented as a string, or nil if the
user just presses RETURN, LINE, or END. The pathname read is
merged with the defaults in fs:*default-pathname-defaults* and
has a default version of :newest.

:pathname-list The value is a list of pathnames, read as a series of pathnames
separated by commas and optional spaces, and merged with the
defaults in fs:*default-pathname-defaults*. The default version
is :newest. The list is printed as a series of pathnames separated
by commas and spaces.

RN Release 5.0 Release Notes 77
Symbolics, Inc. March 1984

shost The value is a network host, read and printed as the name of the
host.
shost-list The value is a list of network hosts, read as a series of host

names separated by commas or spaces, and printed as a series of
host names separated by commas and spaces.

spathname-host The value is a pathname host, read and printed as the name of
the host. The name can be "local", "sys", or the name of another
logical host as well as the name of a physical host.

tkeyword-list The value is a list of symbols in the keyword package, read as a
series of symbol names separated by commas or spaces, and
printed as a series of symbol names separated by spaces. Symbol
names are read and printed without package prefixes (that is, not
preceded by colons).

sfont-list The value is a list of fonts, read as a series of font names
separated by commas or spaces, and printed as a series of font
names separated by commas and spaces. Font names are read
and printed without package prefixes (that is, not preceded by
fonts:).

23 Improvements to Lisp in Release 5.0

2.3.1 Previously undocumented special form: destructuring-bind

destructuring-bind variable-pattern data body ... Special Form
destructuring-bind binds variables to values, using defmacro’s
destructuring facilities, and evaluates the body forms in the context of those
bindings.

First data is evaluated. If variable-pattern is a symbcel, it is bound to the
result of evaluating data. If variable-pattern is a t the result of
evaluating data should be a tree of the same shap.. ““he trees are
disassembled, and each variable that is a component <. —ariable-pattern is
bound to the value that is the corresponding element of the tree that results
from evaluating data. If not enough values are supplied, the remaining
variables are bound to nil. If too many values are supplied, the excess values
are ignored. Finally, the body forms are evaluated sequentially, the old values
of the variables are restored, and the result of the last body form is returned.

As with the pattern in a defmacro form, variable-pattern actually resembles
the lambda-list of a function; it can have &-keywords. See the section
"Advanced Features of defmacro”.

Example:

78 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

(destructuring-bind (a (b) &optional (c °d))
*((x y) (2))
(values a b c))

returns (x y), z, and d.

2.3.2 Invisible blocks in progs and dos

You can now make a block invisible to returns in any kind of prog or do form by
including immediately within it the form (declare (invisible-block t)). This
feature is intended for macro expansions, not for user code.

See the special form do-named.

2.3.3 Previously undocumented function: clear-resource

clear-resource causes allocate-resource to ignore existing objects in the resource
and make new objects when called.

clear-resource resource-name Function
Forget all of the objects being remembered by the resource specified by
resource-name. Future calls to allocate-resource create new objects. This
function is useful if something about the resource has been changed
incompatibly, such that the old objects are no longer usable. If an object of
the resource is in use when clear-resource is called, an error is signalled
when that object is deallocated.

2.3.4 Multidimensional Arrays on the 3600 Remember Actual Dimensions

Arrays of more than one dimension on the 3600 now store their dimensions. This
allows multidimensional indirect arrays to have conformal indirection. A new
make-array option, :displaced-conformally, has been added. The window system
now uses conformal indirect arrays for screen arrays.

Multidimensional arrays on the 3600 remember their actual dimensions, separately
from the magic numbers by which to multiply the subscripts before adding them
together to get the index into the array.

As a result of this, multidimensional indirect arrays on the 3600 can have conformal
indirection. If A is indirected to B, and they do not have the same width, then
normally the part of B that is shared with A does not have the same shape as A. If
conformal indirection is used, then it does have the same shape and there are gaps
between the rows of A. For example:

(setq b (make-array *(10. 20.)))
(setq a (make-array ’(3 5) ’:displaced-to b ’:displaced-index-offset 12.))

Now:
(aref a 1 0) = (aref b 3 1) and (aref a1 1) = (aref b 6 1).

In contrast:

RN Release 5.0 Release Notes 79
Symbolics, Inc. March 1984

(setq a (make-array ’(3 5) ’:displaced-to b
*:displaced-index-offset 12.
*:displaced-conformally t))

(aref a 1 0) = (aref b 3 1) still, but (arefa 1 1) = (aref b 3 2). Each row of A
corresponds to part of a row of B, always starting at the same column (2).

A graphic illustration:
(setq a (make-array ’(6 20.))
b (make-array *(3 5) ’:displaced-to a ’:displaced-index-offset 22.)
c (make-array ’(3 5) ’:displaced-to a ’:displaced-index-offset 22.
*:displaced-conformally t))

Normal case Conformal case
0 19 0 19
L R L L P + L D +
0| aaaaaaaaaaaaaaaaaaaal 0 jaaaaaaaaaaaaaaaaaaaal
|aaBBBBBBBBBBBBBBBaaa) laaCCCCCaaaaaaaaaaaaal
| aaaaaaaaaaaaaaaaaaaal |aaCCCCCaaaaaaaaaaaaa|
| aaaaaaaaaaaaaaaaaaaal |aaCCCCCaaaaaaaaaaaaal
| aaaaaaaaaaaaaaaaaaaal |aaaaaaaaaaaaaaaaaaaal
5|aaaaaaaaaaaaaaaaaaaal 5|aaaaaaaaaaaaaaaaaaaal
L e L R + LA L L R L L R L L T +

Arrays are stored in column-major order, so the units in which the index-offset is
measured should be read first from left to right and then from top to bottom.

The meariing of adjust-array-size for conformal indirect arrays is undefined.

The window system now uses conformal indirect arrays for its screen arrays. This
means that on the 3600 the bit-array in which a window saves its bits when it is
not visible no longer has to be the full width of the screen; now it is just the width
of the window, rounded up to the next multiple of 32 bits. On the LM-2, screen
arrays and bit-save arrays are still the full width of the screen.

Some associated internal changes for both the 3600 and the LM-2:

* The locations-per-line instance variable changes when expose and deexpose
happen

* The arguments to the :create-screen-array message to screens have changed

» The :adjust-screen-array message to sheets replaces the
:redirect-screen-array message to screens

» New message to screens: :inferior-screen-array-adjusted

Screen arrays no longer use multileve! indirection; the screen array of a nonscreen
sheet always indirects either to a bit-save array or to the screen array of its screen.
The screen array of a screen is always a displaced array to the hardware screen

buffer.

80 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.3.5 New options for make-plane: :initial-dimensions, :initial-origins

make-plane has two new keyword options: :initial-dimensions and
:zinitial-origins.

make-plane rank &rest options Function
Creates and returns a plane. rank is the number of dimensions. options is a
list of alternating keyword symbols and values. The allowed keywords are:

:stype The array type symbol (for example, art-1b) specifying the type of the
array out of which the plane is made.

:default-value
The default component value.

:extension
The amount by which to extend the plane. See the section "Planes".
:zinitial-dimensions
A list of dimensions for the initial creation of the plane. You might
want to use this option to create a plane whose first dimension is a
multiple of 32, so you can use bitblt on it. Default: the result
returned by (make-list renk ’:initial-value 1).
:zinitial-origins
A list of origins for the initial creation of the plane. Default: the
result returned by (make-list rank ’:initial-value 0).

Example:
(make-plane 2 ’:type ’art-4b ’:default-value 3)
creates a two-dimensional plane of type art-4b, with default value 3.

2.3.6 New optional arguments to string-upcase and string-downcase

string-upcase and string-downcase now take three optional arguments: a
starting index and limit for changing case in substrings, and an indicator of whether
the string should be copied or modified directly.

string-upcase string &optional (from 0) to (copy-p t) Function
If copy-p is not nil, returns a copy of string, with lowercase alphabetic
characters replaced by the corresponding uppercase characters. If copy-p is
nil, uppercases characters in string itself and then returns the modified
string. from is the index in string at which to begin uppercasing characters.
If to is supplied, it is used in place of (array-active-length string) as the
index one greater than the last character to be uppercased.

string-downcase string &optional (from 0) to (copy-p t) Function
If copy-p is not nil, returns a copy of string, with uppercase alphabetic

RN Release 5.0 Release Notes 81
Symbolics, Inc. March 1984

characters replaced by the corresponding lowercase characters. If copy-p is
nil, lowercases characters in string itself and then returns the modified
string. from is the index in string at which to begin lowercasing characters.
If to is supplied, it is used in place of (array-active-length string) as the
index one greater than the last character to be lowercased.

23.7 Previously undocumented function: string-compare

string-compare compares two strings using dictionary order and returns a number
that depends on whether or not the strings are equal.

string-compare stringl string2 &optional (idxI 0) (idx2 0) lim1 lim2 Function
Compares the characters of stringl starting at idxl and ending just below
lim1 with the characters of string2 starting at idx2 and ending just below
lim2. The comparison is in alphabetical order. liml and lim2 default to the
lengths of the strings. string-compare returns:

* a positive number if stringl > string2
« zero if stringl = string2
* a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

string-compare uses the same rules as string in coercing stringl and
string2 into strings.

2.3.8 3600 select-methods handle :operation-handled-p and :send-if-handles .

Select-methods on the 3600 now handle the :operation-handled-p and
:send-if-handles messages. Methods for these messages are generated automatically
when the defselect form is evaluated.

See the special form defselect. See the message :operation-handled-p. See the
message :send-if-handles.

23.9 Compiler Performs Style Checking on All Forms

The compiler no longer fails to perform style checking on the results of macro
expansions and optimizations.

The compiler performs style checking on all forms. Style checking is implemented by
the compiler:style-checker property on a symbol; the value of the property is
called on all forms whose car is that symbol, except those immediately enclosed in
inhibit-style-warnings.

82 AN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.3.10 sys:dump-forms-to-file always puts package attribute into binary file

sys:dump-forms-to-file always puts a package attribute into the binary file it
writes. If you do not specify the atfribute-list argument, or if attribute-list does not
contain a :package attribute, the function uses the user package. This is to
ensure that package prefixes on symbols are always interpreted when they are
loaded as they were intended when the file was dumped.

2.3.11 Previously undocumented macro: swapf

swapf exchanges the value of one generalized variable with that of another.

swapf a b Macro
Exchanges the value of one generalized variable with that of another. a and
b are access-forms suitable for setf. The returned value is not defined. All
the caveats that apply to incf apply to swapf as well: Forms within a and &
may be evaluated more than once. Examples:

{swapf a b)
==> (setf a (progl b (setf b a)))
==> (setq a (progl b (setq b a)))

(swapf (car (foo)) (car (bar)))
==)> (setf (car (foo)) (progl (car (bar)) (setf (car (bar)) (car (f00)))))
==)> (rplaca (foo) (progl (car (bar)) (rplaca (bar) (car (fo00)))))

Note that in the second example the functions foo and bar are called twice.

2.3.12 Compiler now warns about implicit progns in loops

An expression in a loop clause can be a single form or a series of forms that
constitute an implicit progn. When an implicit progn appears, it is often an error
caused by omitting a do. Because this error is so frequent, the intentional use of
implicit progns in most clauses is considered obsolete and dangerous. If you intend
to use a progn, use an explicit one. To help you detect implicit progns, the
compiler now issues a warning whenever it encounters one in a context where it is
likely to be a mistake.

Consider the following example:

(defun frob (1list)
(loop for thing in list
collect (string thing)
(format t “~&~A* thing)))

The returned value is a list of nils, one for each element of list. The author most
likely intended to return a list of the elements of list, coerced to strings, but omitted
a do before the (format ...) form. When this definition is compiled, the compiler
issues this warning:

RN Release 5.0 Release Notes 83
Symbolics, Inc. March 1984

For function FROB:
The use of multiple forms with an implicit PROGN in this context is
considered obsolete, but is still supported for the time being.
If you did not intend to use multiple forms here, you probably
omitted a DO. If the use of multiple forms was intentional, put a
PROGN in your code.
The offending clause -- LIST (STRING THING) (FORMAT T *~&~A" THING)

23.13 Some Methods Can Use Combination Type as Method Type

Methods used with combination types that formerly allowed only untyped methods
can now use the combination type as the method type.

Methods used with :progn, :append, :nconc, :and, :or, :list, :inverse-list, and
:pass-on combination types can use the combination type as the method type. This
is useful in documenting how the method is used.

In the following example, (:method foo :or :find-frabjous-frob) could have been

defined as (:method foo :find-frabjous-frob). The only difference is one of style:
Using :or as the method type makes it clear that the methods are combined using

sor combination.

(defflavor foo (frobl) (bar)
(:method-combination (:or :base-flavor-last :find-frabjous-frob)))

(defmethod (foo :or :find-frabjous-frob) (type)
(dolist (frob frobl)
(when (send frob ’:frabjous-p type)
(return frob))))
23.14 Previously undocumented reader macro: #| and |#
#| begins a comment for the Lisp reader, and [# ends one.

#| begins a comment for the Lisp reader. The reader ignores everything until the
next [#, which closes the comment. Note that if the # is inside a comment that
begins with a semicolon, it is not ignored; it closes the comment that began with the
preceding #|. #| and |# can be on different lines, and #|..}# pairs can be nested.

23.15 New function to be called by reader macros: si:read-recursive

Reader macros that call a read function should now call si:read-recursive instead
of read.

sicread-recursive stream Function
si:read-recursive should be called by reader macros that need to call a
function to read. It is important to call this function instead of read in
macros that are written in Zetalisp but used by the Common Lisp readtable.
In particular, this function must be called by macros used in conjunction with
the Common Lisp #n= and #n# syntaxes.

84 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

stream is the stream from which to read. This function may be called only
from inside a read.

For example, this is the reader macro called when the reader sees a quote ():

si:(defun xr-quote-macro (list-so-far stream)
list-so-far ;hot used
(values (list-in-area read-area
*quote (read-recursive stream))
*1ist))

2.3.16 New optional arguments to read-from-string

read-from-string now takes two new optional arguments for specifying a substring.
These are indices for the first character to be read and the character after the last
one to be read.

read-from-string string &optional (eof-option ’si:no-eof-option) Function
(start 0) end
The characters of string are given successively to the reader, and the Lisp
object built by the reader is returned. Macro characters and so on will all
take effect. If string has a fill-pointer it controls how much can be read.

eof-option is what to return if the end of the string is reached, as with other
reading functions. start is the index in the string of the first character to be
read. end, if given, is used instead of (array-active-length string) as the
integer that is one greater than the index of the last character to be read.

read-from-string returns two values: The first is the object read and the
second is the index of the first character in the string not read. If the
entire string was read, this is the length of the string.
Example:

(read-from-string "(a b ¢)*) => (a b c) and 7

2.3.17 Changes to prompt-and-read

Changes have been made to many prompt-and-read options.

o New options: :character, :date, :time-interval-or-never,
:expression-or-end, :pathname-or-nil, :string-list, :delimited-string,
:delimited-string-or-nil, :host, :host-list, :pathname-host, :keyword-list,
sfont-list.

» When options accept a single line of text as input, the line can be terminated
by RETURN, LINE, or END. These are activation characters, so they can be typed
anywhere in the line.

 The :number option accepts keyword-value pairs that determine the base in
which the number is read and whether or not nil can be returned.

RN Release 5.0 Release Notes 85
Symbolics, Inc. March 1984

 The ~pathname optlon accepts a :default-version keyword. If not specified,
the default version is :newest.

prompt-and-read fype &optional format-string &rest format-args Function
prompt-and-read prompts the user, with format-string and its arguments as
the prompt. It uses format to query-io to produce the prompt; it reads
from the query-io stream, calling the reading function associated with the
type keyword. If format-string is not specified, it generates a prompt
appropriate to fype. The type argument can be a list in which the first
element is the type keyword and the rest are keyword/value pairs to serve as
arguments to the reading function. prompt-and-read returns whatever the
reading function returns.

This is an appropriate function to call for collecting input from the user. Its
main advantages are that it does type checking on the input the user types
and that it takes care of redisplaying the prompt at appropriate times (for
example, after the screen has been refreshed or after a notification arrives).

(prompt-and-read ’:number “Please enter a number: *) =>
Please enter a number: 4

4

(prompt-and-read *:string "Please enter a string: ") =>
Please enter a string: 4

"4"

It expects to collect input of type zype, where type is a keyword. It handles
the following types of input:

Option Action

seval-form Reads a Lisp form. Evaluates it and returns the first
value. Asks for confirmation of nonconstant values. The
Debugger uses this to prompt for a form to evaluate.

seval-form-or-end
Reads a Lisp form or just END. Evaluates it and returns
the first value for a form. Returns two values, nil and
tend, for END. Asks for confirmation of nonconstant
values. The Debugger uses this to prompt for a form to
evaluate.

:expression Reads a Lisp expi-ession. (It returns the expression
without evaluating it.)

sexpression-or-end
Reads a Lisp expression or just END. It returns the
expression without evaluating it. If the user just presses
END, it returns two values, nil and :end.

:character Reads and returns a character. The returned value is a
character code (an integer).

86

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

(:number :input-radix radix :or-nil or-nil-value)
Reads and returns a number, terminated by RETURN, LINE,
or END. If :input-radix is specified, the number is read in
radix radix; otherwise, it is read in the current ibase. If
sor-nil is specified with a value of t, it returns nil if the
user just presses RETURN, LINE, or END.

:number-or-nil The same as (:number :or-nil t).
:decimal-numberThe same as (:number :input-radix 10.).

:decimal-number-or-nil
The same as (:number :input-radix 10. :or-nil t).

(:date :past-p past-p-value :never-p never-p-value)
Reads and returns a date, terminated by RETURN, LINE, or
END. The returned date is a universal-time integer of the
form returned by time:parse-universal-time. If :past-p
is specified with a value of t, an ambiguous date is
interpreted as being in the past; otherwise, it is interpreted
as being in the future. If :never-p is specified with a
value of t, it returns nil if the user types "never".

:past-date The same as (:date :past-p t).
:date-or-never The same as (:date :mever-p t).

:past-date-or-never
The same as (:date :past-p t :never-p t).

stime-interval-or-never
Reads a time interval, terminated by RETURN, LINE, or END.
The interval must be either ™never" or alternating
numbers and units of time; the units can include seconds,
minutes, hours, days, weeks, or years. It returns nil if
the user types "never". Otherwise, it returns an integer
representing the number of seconds in the time interval.

Example:
{prompt-and-read ’:time-interval-or-never)

Enter a time interval, or "never”: 1 day 2 hrs 13 min =>
94380.

(:pathname :default defaults :default-version version)
Reads a pathname, terminated by RETURN, LINE, or END,
merging it with defaults. If :default is not specified, the
defaults are the value of fs:*default-pathname-defaults®.
If :default is specified, its value should be suitable as the
second argument to fs:merge-pathnames: a pathname, a
pathname string, or an alist of hosts and pathnames of
the sort that is the value of

RN Release 5.0 Release Notes 87
Symbolics, Inc. March 1984

fs:*default-pathname-defaults®. If :default-version is
not specified, the default version is :newest. If
:default-version is specified, its value should be an integer
or keyword suitable as the third argument to
fs:merge-pathnames. It returns the merged pathname.

Example:

(prompt-and-read ‘(:pathname :default ,my-defaults-alist)
“Enter a name (default is ~A) *
(fs:default-pathname my-defaults-alist))

(:pathname-or-nil :default defaults :default-version version)
Like :pathname, except that the returned value depends
on what the user types:

User types Returned value

A string Merged pathname
RETURN or LINE only Default pathname
END only nil

:pathname-list Reads a series of pathnames, separated by commas and
terminated by RETURN, LINE, or END. Merges the
pathnames with the defaults in
fs:*default-pathname-defaults* and with a default
version of :newest. It returns a list of the merged
pathnames.

sstring Reads a string terminated by RETURN, LINE, or END. It
returns the empty string when the string is empty.

sstring-or-nil Reads a string terminated by RETURN, LINE, or END. It
trims any leading or trailing white space. It returns nil
when the string is empty.

sstring-trim Reads a string terminated by RETURN, LINE, or END. It
trims any leading or trailing white space. It returns the
empty string when the string is empty.

:string-list Reads a series of strings separated by commas and
terminated by RETURN, LINE, or END. It returns a list of
the strings.

(:delimited-string :delimiter (delimiter-1 delimiter-2 ...) :buffer-size size)
Reads characters until one of the delimiters is typed. The
delimiters are set up as activation characters. If no
delimiters are specified, the default is #\end. If
:buffer-size is specified, an initial buffer of size size
characters is allocated; otherwise, the initial size is 100.
characters. It returns the empty string when the string is

empty.

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

(:delimited-string-or-nil :delimiter (delimiter-1 delimiter-2...) :buffer-size
size)
Like :delimited-string, except that it returns nil when
the string is empty.

(:host :default default)
Reads the name of a network host, terminated by RETURN, ‘
LINE, or END. If :default is specified, it should be the
name of a host as a symbol or string. If :default is
specified and the user just presses RETURN, LINE, or END, it
returns the host specified by :default. Otherwise, it
returns the host whose name the user types.

(:host-list :chaos-only chaos-only)
Reads a series of names of network hosts, separated by
spaces or commas, and terminated by RETURN, LINE, or END.
If :chaos-only is not nil, each host must have a Chaos
address. It returns a list of the hosts whose names the

user types.

(:pathname-host :default default)
Reads the name of a pathname host, terminated by
RETURN, LINE, or END. The name can be "local", "sys", or
the name of another logical host as well as the name of a
physical host. If :default is specified, it should be the
name of a pathname host as a string. If :default is
specified and the user just presses RETURN, LINE, or END, it
returns the host specified by :default. Otherwise, it
returns the host whose name the user types.

tkeyword-list Reads a series of names of symbols to be interned in the
keyword package, separated by spaces or commas, and
terminated by RETURN, LINE, or END. The symbol names
should not have package prefixes (that is, they should not
be preceded by colons). It returns a list of keyword
symbols whose names the user types.

font-list Reads a series of names of fonts, separated by spaces or
commas, and terminated by RETURN, LINE, or END. The
font names should not have package prefixes (that is, they
should not be preceded by fonts:), and they must be
names of known fonts. It returns a list of fonts whose
names the: user types.

Streams are permitted to have a handler for :prompt-and-read messages.
The prompt-and-read function first determines whether the query-io
stream handles the :prompt-and-read message. If so, it sends a
:prompt-and-read message with its own arguments on to the stream. The
stream returns several values. The first value the stream returns says

RN Release 5.0 Release Notes 89
Symbolics, Inc. March 1984

whether or not it wants to handle the interaction with the user itself. It
returns nil to indicate that it declines to handle the message, in which case
the prompt-and-read function continues its normal action of prompting the
user. When the first value is not nil, the prompt-and-read function
returns the rest of the values to its caller.

2.3.18 Previously Undocumented Feature: Coroutine Streams

Coroutine streams are a means of using output from one function as input to
another, and vice versa. Functions are provided that construct two coroutine
streams, each associated with a separate stack group but sharing a common /O
buffer.

Functions that produce data as output (output functions) are written in terms of
:tyo and other output operations. Functions that receive data as input (input
functions) are written in terms of :tyi and other input operations. Output functions
operate on output streams, which handle the :tyo message. Input functions operate
on input streams, which handle the :tyi message. Sometimes it is desirable to view
an output function as an input stream, or an input function as an output stream.
You can do this with coroutine streams.

Here is a simplified explanation of how coroutine streams work. A coroutine input
stream can be built out of an output function. Whenever that stream receives a
:tyi message, it invokes the output function in a separate stack group so that the
function can produce the data that the :tyi message returns. A coroutine output
stream can be built out of an input function; it works in the opposite fashion.
Whenever the output stream receives a :tyo message, it invokes the input function
in a separate stack group so that the function can receive the data transmitted by
the :tyo message. It is also possible to connect functions that do both input and
output, by using bidirectional coroutine streams. Since you can use coroutine
streams to connect two functions, they are the logical inverse of
stream-copy-until-eof, a function used to connect two streams.

To create a coroutine stream, use one of three functions. If you want to make an
input stream from an output function, use si:make-coroutine-input-stream. If
you want to make an output stream to an input function, use
si:make-coroutine-output-stream. If you want to make a bidirectional stream for
a function that does both input and output, use
si:make-coroutine-bidirectional-stream.

Following is an example using a coroutine input stream:

(setq input-stream
(si:make-coroutine-input-stream
#°(lambda (stream) (print-disk-label 0 stream))))
(send input-stream ’:line-in) - a
“"1645 free, 260499//262144 used (99%)"

90 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Following is an example using a coroutine output stream: o
(setq output-stream ,f‘_xw

(si:make-coroutine-output-stream e
#’(lambda (stream) (setq x (read stream))))) “°

(send output-stream ’:string-out “(a b c)”) O
(send output-stream ’:force-output)

x »+ (ABC)

Coroutine streams are implemented as buffered character streams. Each function
that makes a coroutine stream actually creates two streams and one new stack
group. One stream is associated with the new stack group and the other stream
with the stack group that is current when the stream-making function is called. If
you use si:make-coroutine-input-stream or si:make-coroutine-output-stream,
one stream is an input stream and the other is an output stream; they share a
common buffer. If you use si:make-coroutine-bidirectional-stream, both streams
are bidirectional; the input buffer of each stream is the output buffer of the other.

With si:make-coroutine-input-stream, the output function runs in the new stack
group. With si:make-coroutine-output-stream, the input function runs in the
new stack group. With bidirectional streams, the function that does input or output
runs in the new stack group.

In the case of si:make-coroutine-input-stream, for example, you typically send
:tyi messages to the input stream that si:make-coroutine-input-stream returns.
The input stream is associated with the new stack group. When the input stream
receives a :tyi message, the new stack group is resumed, and the output function
runs in that stack group. The output function typically sends :tyo messages to the
output stream associated with the stack group from which
si:make-coroutine-input-stream was called. When the output stream receives a
styo message, the associated stack group is resumed. The data transmitted to the
output stream become input to :tyi via the buffer that the two streams share.
si:make-coroutine-output-stream and si:make-coroutine-bidirectional-stream
work in analogous fashion.

In addition to :tyi and :tyo, coroutine streams support other standard input and
output operations, such as :line-in and :string-out. Actually, the
:next-input-buffer method of the input stream and the :send-output-buffer
method of the output stream resume the new stack group, not the receipt of :tyi
and :tyo messages. Because the streams are buffered, you must send a
:force-output message to an output stream to cause the new stack group to be
resumed.

The instantiable flavors of coroutine streams are si:coroutine-input-stream,
si:coroutine-output-stream, and si:coroutine-bidirectional-stream.

RN Release 5.0 Release Notes a1
Symbolics, Inc. March 1984

Do not confuse coroutine streams with pipes. Coroutine streams are used for
intraprocess communication; pipes are used for interprocess communication. The
Lisp Machine does not currently support pipes.

si:make-coroutine-input-stream function &rest arguments Function
Creates two coroutine streams, an input stream and an output stream, with
a shared buffer. si:make-coroutine-input-stream returns the input
stream. The input stream is associated with a new stack group and the
output stream with the stack group that is current when
si:make-coroutine-input-stream is called. :tyi messages to the input
stream cause the new stack group to be resumed and function to be called
from that stack group. The first argument to function is the output stream;
any additional arguments come from arguments. function should send :tyo
messages to the output stream. These messages resume the stack group in
which si:make-coroutine-input-stream was called. In this way, output
from function becomes input to the caller of
si:make-coroutine-input-stream through the shared buffer.

si:make-coroutine-output-stream function &rest arguments Function
Creates two coroutine streams, an output stream and an input stream, with
a shared buffer. si:make-coroutine-output-stream returns the output
stream. The output stream is associated with a new stack group and the
input stream with the stack group that is current when
si:make-coroutine-output-stream is called. :tyo messages to the output
stream cause the new stack group to be resumed and function to be called
from that stack group. The first argument to function is the input stream;
any additional arguments come from arguments. function should send :tyi
messages to the input stream. These messages resume the stack group in
which si:make-coroutine-output-stream was called. In this way, output
from the caller of si:make-coroutine-output-stream becomes input to
function through the shared buffer.

si:make-coroutine-bidirectional-stream function &rest arguments Function
Creates two bidirectional coroutine streams. The input buffer of each stream
is the output buffer of the other. One stream is associated with a new stack
group and the other with the stack group that is current when
si:make-coroutine-bidirectional-stream is called.
si:make-coroutine-bidirectional-stream returns the stream associated
with the new stack group. -

:tyi and :tyo messages to the stream associated with the new stack group
cause that stack group to be resumed and function to be called from that
stack group. The first argument to function is the stream associated with
the stack group from which si:make-coroutine-bidirectional-stream was
called. Any additional arguments come from arguments. function should
send :tyi or :tyo messages to the stream that is its first argument. These

92 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

messages resume the stack group in which
si:make-coroutine-output-stream was called. In this way function and the
caller of si:make-coroutine-bidirectional-stream communicate through the
shared buffers; output from one function becomes input to the other.

si:coroutine-input-stream Flavor
Coroutine input stream. Defines a :next-input-buffer method. Use this to
construct an input stream from a function written in terms of output
operations.

si:coroutine-output-stream Flavor
Coroutine output stream. Defines :new-output-buffer and
:send-output-buffer methods. Use this to construct an output stream to a
function written in terms of input operations.

si:coroutine-bidirectional-stream Flavor
Bidirectional coroutine stream. Defines :next-input-buffer,
:new-output-buffer, and :send-output-buffer methods. Use this to
construct a bidirectional stream to a function written in terms of input and
output operations.

23.19 format "\ directives can have package prefixes

Format directives enclosed in backslashes can now have package prefixes. If they
have none, they refer to symbols in the format package.

See the special form format:defformat.

2.3.20 Wildcard Directory Mapping Available

True wildcard mapping of directories is now supported. This facility is used by
functions that copy and rename files. It allows you to copy or rename entire
subtrees.

The rules for mapping directory components between two wildeard pathnames and a
starting instance are parallel to the rules for single names. Directory level
components play roughly the roles of characters in the name-translating algorithm.
See the section "Wildcard Pathname Mapping”.

Consider a directory component as a sequence of directory level components. The
levels are separated by level delimiters (> in LMFS). Example: in the pathname
>foo>bar>*>mumble*>x>**>y>a.b.3; the directory level components are foo, bar, *,
mumble*, x, **, and y. The source and target patterns, as well as the starting
instance, are considered as sequences of directory level components, and are matched
and translated level by level.

For this purpose, each directory level component may be classified as one of three
types:

RN Release 5.0 Release Notes 93
Symbolics, Inc. March 1984

Type Directory representation
constant String containing no *’s
wild-inferiors ** in LMFS, ... in VMS
must-match * or string containing at least one * (but not the string

representing wild-inferiors)

The matching and mapping of constant and wild-inferiors levels proceeds in a
manner identical to the matching and mapping of constant substrings and *’s for
single names. See the section "Wildcard Pathname Mapping”. Constant directory
level components act as constant substrings in that algorithm, and wild-inferiors
levels as *’s. That is, wild-inferiors level components match and, on the target side,
carry, zero to any number of constant directory level components.

Examples:

Source pattern: >Sys>Xx>x. x.newest

Target pattern: >old-systems>release-5>X¥x>% X X

Starting instance: >sys>Imfs>patchd> Imfs-33.patch-dir.66

Target instance: >old-systems>release-5>Imfs>patch> Imfs-33.patch-dir.66
Source pattern: >a>bdeoxx>ddedxxkd>x.y . X

Target pattern: SEOUDKKOIMIKIOWDI X XX

Starting instance: sa>b>eop>qrddedf grx.y.1

Target instance: >t Wwp>grm>F>gdwdx.y. 1

Must-match components are matched with exactly one directory level component,
which must be present. They are mapped according to the string-mapping rules in
the name-translating algorithm. See the section "Wildcard Pathname Mapping”.

Example:

Source pattern: >adb>e>foox>d>¥>*. X, %

Target pattern: >X>xbar>y>xmand>x. . X
Starting instance: >a>b>c>foolish>d>yowda.lisp.1
Target instance: >x>1ishbar>y>yowman>a.lisp.1

You may intersperse constants, must-matches, and wild-inferiors directory level
components, as long as the sequence of wildcard types is the same in both patterns.

Example:

Source pattern: >a>x>c>xx>x. 1isp.x
Target pattern: >hsgd>subd>new-¥>q>XX>% X X
Starting instance: >a>bb>c>d>ed>pl.1isp.6

94 . RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Target instance: >bsg>sub>new-bb>q>d>e>p1.1isp.6

2.3.21 Previously undocumented function: describe-system
describe-system is a useful function for finding information about a system.

describe-system system-name &key (show-files t) Function
(show-transformations t)

Displays useful information about the system named system-name. This
includes the name of the system source file, the system package default if
any, and component systems. For a patchable system, describe-system
displays the system version and status, a typical patch file name, the sites
maintaining the system, and, if the user wants, a listing of patches. If
:show-files is t, it displays the history of the files in the system. Other
possible values are nil (do not show file history) and :ask (ask the user). If
:show-transformations is t, it displays the transformations required to
make the system. Other possible values are nil (do not display
transformations) and :ask (ask the user).

23.22 Improvements to make-system: error-restart, selective transformations

make-system now has an error-restart that reinvokes the make-system itself. It
probes for files that have changed since the make-system was started.

make-system also has a new possible answer, "S" (selective), to its request for
confirmation of the list of transformations to be performed. If the user answers "S",
make-system proceeds as if the :selective option had been specified, asking for
confirmation of each individual transformation.

See the function make-system.

23.23 Second argument to si:install-microcode now optional

The second argument to si:install-microcode, to-file-or-version, is now optional.
This argument defaults to a file on FEP:> and rarely needs to be supplied.

sizinstall-microcode from-file-or-version &optional to-file-or-version Function
(3600 only) Installs microcode from a system file into a file in the FEP file
system.

from-file-or-version is a microcode version number (in decimal). The file
resides in the logical directory sys:l-ucode;.

to-file-or-version rarely needs to be supplied. It defaults to a file on FEP:>
(the root directory of the boot disk) whose name is based on the microcode
name and version. If supplied, to-file-or-version is either a pathname (string)
of a file on FEP:>, or an integer n, which stands for the file TMC5-
MIC.MIC.n on FEP:>. '

RN Release 5.0 Release Notes

95

Symbolics, Inc. March 1984

2.3.24 Change in argument to process-wait-with-timeout

The interval argument to

process-wait-with-timeout can now be nil. If so,

process-wait-with-timeout waits indefinitely for the application of function to
arguments to return soniething other than nil.

process-wait-with-timeout whostate time function &rest args Function

This is a primitive

for waiting. It applies function to arguments until the

function returns something other than nil or until the interval times out.
interval is a time in 60ths of a second. When the process times out,
process-wait-with-timeout returns nil. When the function returns
something other than nil within the interval, process-wait-with-timeout

returns t.

If interval is nil, process-wait-with-timeout waits indefinitely for the
application of function to arguments to return something other than nil.
This behavior is the same as that of process-wait.

2.3.25 New option for si:

The :mouse option for si

sb-on: :mouse (3600 only)
:sb-on on the 3600 causes sequence breaks when the

mouse moves. This option is on by default.

si:sb-on &optional when

Function

si:sb-on controls what events cause a sequence break, that is, when
rescheduling occurs. The following keywords are names of events that can
cause a sequence break.

sclock

<mouse

sunibus

This event happens periodically based on a clock. The
default period is one second. For the 3600, the period is
the value of the variable si:sequence-break-interval, an
integer representing the number of microseconds in the
period (default 1000000.). For the LM-2, see the meter
sys:%tv-clock-rate. This event is enabled by default.

(3600 only) A sequence break happens whenever the disk
hardware/firmware decides to wake up the wired disk
system. This might occur with every disk I/O operation or
after several have been completed. This event is always
enabled; you cannot turn it off. However, these sequence
breaks do not cause rescheduling.

(3600 only) Happens when the mouse moves. Sixty times
per second it tests the variable tv:mouse-wakeup, which
is set by the FEP. Causes a sequence break if the value is
not nil. This event is enabled by default.

(LM-2 only) Happens when a character is received from
the keyboard. Actually, a sequence break happens

96

RN Release 5.0 Release Notes

23.26

Symbolics, Inc. March 1984

whenever input is received from any UNIBUS channel that
has a flag bit set. This event is disabled by default.

:keyboard (LM-2 only) Same as sunibus.

:chaos (LM-2 only) Happens when a packet is received from the
Chaosnet, or transmission of a packet to the Chaosnet is
completed. This event is disabled by default.

Since the keyboard and Chaosnet are heavily buffered, there is no particular
advantage to enabling the :keyboard and :chaos events, unless the :clock
event is disabled.

With no argument, si:sb-on returns a list of keywords for the currently
enabled events.

With an argument, the set of enabled events is changed. The argument can
be a keyword, a list of keywords, nil (which disables sequence breaks entirely
since it is the empty list), or a number that is the internal mask, not
documented here.

New format for trace output

The default format for trace output has changed.

Example of the old style:
(1 ENTER FACT (4.))

(2 ENTER FACT (3.))
(3 ENTER FACT (2.))
(4 ENTER FACT (1.))
(5 ENTER FACT (0.))
(5 EXIT FACT 1.)
(4 EXIT FACT 1.)
(3 EXIT FACT 2.)
(2 EXIT FACT 6.)

(1 EXIT FACT 24.)

Example of the new style:

1
|

|
|
|
|
|
|
|
1

Enter FACT 4.

2 Enter FACT 3.
3 Enter FACT 2.
| & Enter FACT 1.
! 5 Enter FACT 0.
| 5 Exit FACT 1.
| & Exit FACT 1.
3 Exit FACT 2.

2 Exit FACT 6.

Exit FACT 24.

You can use the variables si:*trace-columns-per-level®, si:*trace-bar-p®,
si:*trace-bar-rate*, and si:*trace-old-style® to control the format of trace output.

RN Release 5.0 Release Notes 97
Symbolics, Inc. March 1984

si:*trace-columns-per-level* Variable
For trace output, controls the number of columns of indentation that are
added for each level of function call. The value must be an integer. The
default is 2.

si:*trace-bar-p* Variable
For trace output, controls whether columns of vertical bars are printed. If
the value is not nil, they are printed; otherwise, spaces are printed instead of
the vertical bars. The default is t (print the bars).

si:*trace-bar-rate* Variable
When si:*trace-bar-p* is not nil, columns of vertical bars are printed in
trace output for every n levels of function call, where n is the value. The
value must be an integer. The default is 2.

si:*trace-old-style* Variable
If not nil, the old, Maclisp-compatible form of printing trace output is used.
The default is nil (use the new style).

2.3.27 Recursion in Bound and Default Handlers Eliminated

Condition handlers bound by condition-bind, condition-bind-default, and related
special forms no longer cause infinite recursion when they signal the same condition
they are handling.

While a bound or default handler is executing, that handler and all handlers inside it
are removed from the list of bound or default handlers. This is to prevent infinite
recursion when a handler signals the same condition that it is handling, as in the
following simplistic example:
(condition-bind ((error ’(lambda (x) (ferror “foo"))))
(ferror "foo"))

If you want recursion, the handler should bind its own condition.

2.3.28 :proceed methods can now return nil
It is no longer an error for a :proceed method to return nil as its first value.

A :proceed method can return a first value of mil if it declines to proceed from the
condition. If a nil returned by a :proceed method becomes the return value for a
condition-bind handler, this signifies that the handler has declined to handle the
condition, and the condition continues to be signalled. When the :proceed message
was sent by the Debugger, the Debugger prints a message saying that the condition
was not proceeded, and it returns to its command level. This might be used by an
interactive :proceed method that gives the user the opportunity either to proceed or
to abort; if the user aborts, the method returns nil. Returning nil from a
sproceed method should not be used as a substitute for detecting earlier (such as

98 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

when the condition object is created) that the proceed type is inappropriate for that
condition.

2.3.29 New clause for condition-call: :no-error

condition-call and condition-call-if, like condition-case, can now take a
:no-error clause as the final clause.

As a special case, predicate-m (the last one) can be the special symbol :no-error. If
form is evaluated and no error is signalled during the evaluation, condition-case
executes the :no-error clause instead of returning the values returned by form.
The variables vars are bound to the values produced by form, in the style of
multiple-value-bind, so that they can be accessed by the body of the :no-error
case. Any extra variables are bound to nil.

23.30 New message to arithmetic errors: :operands

All arithmetic errors (built on sys:arithmetic-error) now handle the :operands
message. On the 3600, this returns a list of the operands in the operation that
caused the error. On the LM-2, this message nearly always returns nil.

See the flavor sys:arithmetic-error.

2.3.31 Change in Debugger special command for fs:directory-not-found

The condition flavor fs:directory-not-found now has two Debugger special
commands: :create-directory, to create only the lowest level of directory, and
:create-directories-recursively, to create any missing superiors as well.

fs:directory-not-found Flavor
The directory of the file was not found or does not exist. This means that
the containing directory was not found. If you are trying to open a directory,
and the actual directory you are trying to open is not found,
fs:file-not-found is signalled. This flavor is built on fs:file-lookup-error.

This flavor has tw’okDebugger special commands: :create-directory, to
create only the lowest level of directory, and
:create-directories-recursively, to create any missing superiors as well.

23.32 New optional argument to gc-immediately

gc-immediately now takes an optional argument, nil by default. If it is not nil,
gc-immediately does garbage collection without querying, regardless of how much
space is left.

ge-immediately &optional no-query Function
gc-immediately does nonincremental garbage collection, taking less space
and less total time than an incremental ge, but running continuously in the

RN Release 5.0 Release Notes 99
Symbolics, Inc. March 1984

process calling it, until the garbage collection is complete. The main
advantage of this compared to incremental ge is that it requires less free
space and hence can succeed where an incremental gc would fail because
virtual memory was too full.

If no-query is not nil, ge-immediately commences garbage collection without
asking any questions, regardless of how much space is available.

You should call this rather than si:full-ge (unless you are compressing a
band). The difference is that ge-immediately does not lock out other
processes, does not run various full-ge initializations, and does not affect the
static areas.

Suppose garbage collection has already started, that the ﬂip« has occurred but
not all good data have been copied out of old space. ge-immediately then
copies the rest of the good data but does not flip again.

2.3.33 New optional argumehts to print-notifications

print-notifications now takes optional arguments that allow you to print only part
of the notification history.

print-notifications &optional (from 0) Function
(to (1- (length tv:notification-history)))
Reprints any notifications that have been received. The difference between
notifications and sends is that sends come from other users, while
notifications are asynchronous messages from the Lisp Machine system itself.
If from or to is specified, prints only part of the notifications list.

Example: (print-notifications 0 4) prints the five most recent notifications.

2.3.34 :draw-filled-in-circle uses same algorithm as :draw-circle

Previously, the :draw-filled-in-circle method of tv:graphics-mixin used a different
algorithm from that of the :draw-circle method. This algorithm was slower and
sometimes resulted in inaccurate displays when the two methods were used together.
:draw-filled-in-circle now uses the same algorithm as :draw-circle.

:draw-circle center-x center-y radius &optional alu of Method
tv:graphics-mixin
Draw the outline of a circle specified by its center and radius.
«draw-filled-in-circle center-x center-y radius &optional alu of Method
tv:graphics-mixin

Draw a filled-in circle specified by its center and radius.

100 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.3.35 Previously undocumented variables: sys:mouse-x-scale-array and
sys:mouse-y-scale-array (LM-2 only)

sys:mouse-x-scale-array and sys:mouse-y-scale-array are variables on the LM-2
whose values are arrays used in mouse scaling. These arrays determine the relation
between motion of the mouse on the table and motion of the mouse cursor on the
screen. That relation can vary with the speed of the mouse. You can use these
variables to speed up or slow down the motion of the mouse cursor caused by
corresponding motion of the mouse.

sys:mouse-x-scale-array Variable
(LM-2 only) The value of this variable is an array that, along with the array
that is the value of sys:mouse-y-scale-array, can be used to control mouse
scaling. These arrays determine the relation between the rates of motion of
the mouse on the table and the mouse cursor on the screen. This relation
can be nonlinear and can vary with the speed of the mouse. For example,
fast mouse motion can move the cursor a distance that is proportionally
greater than slow mouse motion.

Scaling is computed as follows. The even-numbered elements of
sys:mouse-x-scale-array are compared with the value of
sys:mouse-x-speed, and the even-numbered elements of
sys:mouse-y-scale-array are compared with the value of
sys:mouse-y-speed. sys:mouse-x-speed and sys:mouse-y-speed are the
x- and y-components of the mouse speed on the table, typically in units of
hundredths of an inch per second.

For each array, the first even array element that is greater than the mouse
speed causes its corresponding odd-numbered array element to be multiplied
by the mouse motion on the table and then divided by 1024 (decimal). The
result is the mouse motion on the screen. Appropriate care is taken to save
the fractions for the next computation.

The default array setup code is as follows:

;; Set the X scale to 2/3 and the Y scale to 3/5.
;3 Disable speed-dependent scaling.

(aset #037777777 sys:mouse-x-scale-array 0)

(aset (/7 (1sh 2 10.) 3) sys:mouse-x-scale-array 1)
(aset #037777777 sys:mouse-y-scale-array 0)

(aset (// (1sh 3 10.) 5) sys:mouse-y-scale-array 1)

The following code provides for simple scaling of motion for the Hawley
mouse. The microcode knows specially about each array. You may store into
each array, but you may not replace it with a new array or use
adjust-array-size on it.

RN Release 5.0 Release Notes 101
Symbolics, Inc. March 1984

;33 Aids to trying speed-dependent scaling
;3 Specs are scale-factor speed-break
;3; No attempt to treat X and Y differently
;3; Args of (1 80. 2) seem to be about right for the Hawley mouse
(defun mouse-speed-hack (&rest specs)
(loop for (scale speed) on specs by ’cddr
for i from 0 by 2
do (aset (or speed #037777777) sys:mouse-x-scale-array i)
(aset (or speed #037777777) sys:mouse-y-scale-array i)
(aset (// (fix (x 2 scale 1024.)) 3)
sys:mouse-x-scale-array (1+ i))
(aset (// (fix (x 3 scale 1024.)) 5)
sys:mouse-y-scale-array (1+ i))))

(defun hawley-mouse-hack ()
(mouse-speed-hack 1 80. 2))

The corresponding variables tv:mouse-x-scale-array and
tv:mouse-y-scale-array exist on the 3600, but in this release they have no
effect.

sys:mouse-y-scale-array Variable
(LM-2 only) The value of this variable is an array that, along with the array
that is the value of sys:mouse-x-scale-array, can be used to control mouse
scaling. See the variable sys:mouse-x-scale-array.

2.3.36 New optional argument to tv:mouse-wait

tv:mouse-wait now takes another optional argument, a string to be displayed in the
status line while waiting for the status of the mouse to change.

tv:mouse-wait &optional (old-mouse-x tv:mouse-x) Function

(old-mouse-y tv:mouse-y)

(old-mouse-buttons tv:mouse-last-buttons)

(whostate "Mouse™)
This function waits for any of the variables tv:mouse-x, tv:mouse-y, or
tv:mouse-last-buttons to become different from the values passed as
arguments. While waiting, whostate is displayed in the status line. To avoid
timing errors, your program should examine the values of the variables, use
them, and then pass in the values that it examined as arguments to
tv:mouse-wait when it is done using the values and wants to wait for them
to change again. It is important to do things in this order, or else you might
fail to wake up if one of the variables changed while you were using the old
values and before you called tv:mouse-wait.

102 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

2.3.37 New flavors: tv:truncatable-lines-mixin, tv:truncating-lines-mixin

tv:truncatable-lines-mixin causes text to be truncated at the right edge of the
window, but only if the window’s "truncate line out” flag is set.
tv:truncating-lines-mixin initializes this flag to on so that truncation actually
happens. These flavors replace the obsolete flavor tv:line-truncating-mixin, which,
despite its name, did not initialize the "truncate line out" flag to on. You can use
the new messages :truncate-line-out and :set-truncate-line-out to read and set
this flag. The flavor tv:truncating-window is now built on
tvitruncating-lines-mixin.

tv:truncatable-lines-mixin Flavor
If you mix in this flavor and the window’s truncate line out flag is on,
typeout does not wrap around when lines are too long. That is, when the
cursor is near the right-hand edge of the window and an attempt is made to
type out a character, the character is not typed out; text is truncated at the
edge of the window. When the truncate line out flag is turned off, this
flavor has no effect.

tv:truncating-lines-mixin ‘ Flavor
When this flavor is mixed in, lines of output that are too long to fit inside
the window do not wrap around but are truncated at the edge of the
window. This flavor is built on tv:truncatable-lines-mixin. It initializes
the window’s truncate line out flag to be on.

tv:truncating-window Flavor
This flavor is built on tv:window with tv:truncating-lines-mixin mixed in.
If you instantiate a window of this flavor, it will be like regular windows of
flavor tv:window except that lines will be truncated instead of wrapping
around.

struncate-line-out of tv:sheet Method
Returns t if the window’s truncate line out flag is set, or nil if it is not.

sset-truncate-line-out new-value of tv:sheet Method
Sets the value of the window’s truncate line out flag. If new-value is t the
flag is turned on; if nil, it is turned off.

2.3.38 New variable: tv:*mouse-modifying-keystates*

In previous releases you could use the variables tv:mouse-double-click-time and
tv:*mouse-incrementing-keystates® to replace double clicks with shifted clicks.

Now mouse characters — characters with the %%kbd-mouse bit set to 1 — can be
modified with the modifier keys CONTROL, METR, SUPER, and HYPER, just as keyboard
characters can. Which of these keys modify mouse characters depends on the value
of the variable tv:*mouse-modifying-keystates®.

RN Release 5.0 Release Notes 103
Symbolics, Inc. March 1984

You can use login-forms in an init file to set the variables
tv:mouse-double-click-time, tv:*mouse-incrementing-keystates®, and
tv:*mouse-modifying-keystates* and customize the behavior of the mouse.

tv:mouse-double-click-time Variable
The maximum period of time (in microseconds) between mouse clicks for
which the clicks are interpreted as a double click instead of two single clicks.
Default: 200000 (decimal). If you set this to nil, disabling double clicking
entirely, mouse response time improves slightly.

tv:*mouse-incrementing-keystates*® Variable
A list of names of keys, acceptable to tv:key-state. If one or more of these
keys are pressed, single mouse clicks are interpreted as double clicks.
Default: (:shift).

tv:*mouse-modifying-keystates* Variable
A list of names of keys, acceptable to tv:key-state. If one or more of these
keys are pressed, sets the corresponding modifier bits in the mouse character.
Default: (:control :meta :super :hyper). If a key appears as an element
of both this list and the list that is the value of
tv:*mouse-incrementing-keystates®, the modifier bit is set and the click is
interpreted as a double click.

2.3.39 Shifted Mouse Clicks Can Now Be Used for Editor Commands

Mouse characters can now be modified with modifier keys. See the variable
tv:*mouse-modifying-keystates®. The editor considers each modified mouse click
to be a separate command. You can bind commands to particular modified mouse
clicks. You can also use Install Mouse Macro (m-X) with modified mouse clicks to
increase the number of mouse macros available.

You can put a form in an init file to install a Zwei command on a modified mouse
click. Note that in the following example, the mouse click marks the paragraph that
surrounds point, not the paragraph under the mouse cursor:
(login-forms ‘
zwei:(set-comtab

xstandard-comtabx ;in standard command table

* (#\Hyper-Mouse-L com-mark-paragraph)

))

2.3.40 Previously undocumented functions:
tv:add-to-system-menu-programs-column, tv:add-to-system-menu-create-menu

tv:add-to-system-menu-programs-column lets you add an entry to the Programs
column of the system menu. tv:add-to-system-menu-create-menu lets you add
an entry to the menu that appears when you click on [Create] in the system menu
or in the Edit Screen menu.

104 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

tv:add-to-system-menu-programs-column name form Function
documentation &optional after

Adds a program to the Programs column of the system menu. name is a
string, the name to appear in the menu. form is a form to evaluate, in its
own process, when the program is selected; often this is a call to
tv:select-or-create-window-of-flavor. documentation is mouse
documentation for the menu item. after determines the position of the new
program name in the Programs column:

nil Bottom of the column

t Top of the column

string After the program named string that is now in the menu
Example:

(tv:add-to-system-menu-programs-column
"Hardcopy” ’(press:hardcopy-via-menus nil t)
"Print files on the hardcopy printer”)

tv:add-to-system-menu-create-menu name flavor documentation Function
&optional after v

Adds an entry to the menu that appears when you click on [Create] in the
system menu or in the Edit Screen menu. name is a string, the name of
the menu item. flavor, a flavor name, is the flavor of window that is created
when the menu item is selected. documentation is mouse documentation for
the menu item. after determines where in the [Create] menu the item
should appear:

nil Bottom of the menu

t Top of the menu

string After the item named string that is now in the menu
Example:

(tv:add-to-system-menu-create-menu
*Concept Editor” ’crl:concept-editor
"Edit the representation of a concept in the CRL system”)

tv:select-or-create-window-of-flavor find-flavor &optional Function
(create-flavor find-flavor)
Selects the most recently selected window of flavor find-flavor. If no window
of that flavor exists, makes a window of flavor create-flavor and selects it.

RN Release 5.0 Release Notes 105
Symbolics, Inc. March 1984

2.3.41 Argument to :menu type menu items can be a menu or a form

The "argument” to :menu type menu items — the specifier for the submenu — can
now be a menu or a form. Previously it could be a menu or a symbol.

2.3.42 Clicking Middle Edits Current String in Choose-variable-values Windows

In a choose-variable-values window, clicking middle on a string that is displayed as a
value now lets you edit that string.

2.3.43 tv:scroll-maintain-list init function can take arguments

Previously, the init function specified as an argument to tv:scroll-maintain-list was
itself called with no arguments. Now you can use an optional &rest argument to
tv:scroll-maintain-list to specify arguments to be passed to the init function at
redisplay time.

tv:scroll-maintain-list init-fun item-fun &optional per-element-fun Function
stepper-fun compact-p pre-proc-fun &rest
init-args
Constructs and returns a list item that updates itself when the scroll window
is asked to redisplay. Takes the following arguments:

init-fun The init function that will be called at redisplay time to
provide a representation of the set of objects to be
displayed.

init-args Arguments to be passed to init-fun when called at
redisplay time. -

item-fun The item function, to be applied to each object of yours to

produce a display item.

per-element-fun A function to be put in the list item plist of the list item
as the :function function.

stepper-fun The function that is called on the set of objects and all
"rest"s of the set. It is expected to return three values:
the next element, the "rest" of the set, and t if it has
returned the last element of the set. If not given,
stepper-fun defaults to tv:scroll-maintain-list-stepper, a
function that handles ordinary lists.

compact-p An optional flag that causes tv:scroll-maintain-list to
copy the list it builds at each redisplay into a special area
for such lists, in order to optimize paging performance.
The list so constructed will be stored in compact (that is,
cdr-coded) form.

pre-proc-fun A function to be put in the list item plist of the list item

106 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

as the :pre-process-function function. If not given,
pre-proc-fun defaults to
tv:scroll-maintain-list-update-function.

Following is a simple example:

(tv:scroll-maintain-list #’(lambda (instance) ;The init function
(send instance ’:value-list))
#’(lambda (value) ;The item function

(tv:scroll-parse-item
*(:string ,(format nil "~S" value))))
nil nil nil nil
self) ;Argument to init function

RN Release 5.0 Release Notes 107
Symbolics, Inc. March 1984

3. Changes to Networks in Release 5.0

3.1 Incompatible Changes to Networks in Release 5.0

3.1.1 Network Namespace System

Release 5.0 implements a new network database. This database is a collection of
objects known to networks, such as hosts, users, networks, printers, sites, and
classes of objects. Objects of different classes can have the same names. To
eliminate naming conflicts when different sites are linked by long-distance networks,
the database is divided into namespaces, or mappings of names of objects to objects.

The database is maintained by database servers. A namespace editor exists to add
objects to the database or change their properties. The user interface to the editor
is the function tv:edit-namespace-object. The system also includes means of
defining protocols and media, and defining and invoking network services.

For more information on the changes to networks in Release 5.0: See the section
"Network Database". See the section "The Lisp Machine Generic Network System".
See the section "Interfacing to the Network System".

3.1.2 chaos:stream, chaos:close, and chaos:finish renamed
The following functions have been renamed in the Chaosnet implementation.

All the known places in the system that use these have been updated. The old
function names are still shadowed in the chaos: package in order to cause undefined
function errors during compilation instead of calling an incompatible function.

Old name New name
chaos:stream chaos:make-stream
chaos:close chaos:close-conn
chaos:finish chaos:finish-conn

3.1.3 netiireset, neti:enable, and neti:disable replace chaos:reset, chaos:enable, and
chaos:disable

The functions chaos:reset and chaos:enable have been replaced with neti:reset
and neti:enable, which reset and enable the entire network system. If you call
neti:reset and then want to turn the network back on, you must now call
neti:enable to do so. Formerly, chaos:reset turned the network back on after
resetting it. ’

108 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

chaos:disable has been replaced by neti:disable.

neti:reset Function
Resets the local networks. Disables and then resets the interfaces. After
using neti:reset you must call neti:enable if you want to turn the network
back on. :

neti:enable Function
Enables the local networks and interfaces.

neti:disable Function
Disables the local networks and interfaces. If you want to reset the local
networks and interfaces and then turn them back on, you should call
neti:reset and then neti:enable.

3.1.4 Changes to chaos:open-stream

In general, applications should use the service mechanism instead of Chaos-specific
routines. See the section "The Lisp Machine Generic Network System”.

The function chaos:open-stream accepts nil as the host argument to mean issue a
listen for the contact name (as opposed to a request at a specific host). The stream
that is returned is still in the RFC Received state. The following messages can be
sent to the stream:

:foreign-host Returns the host object of the host requesting the connection.
saccept Accepts the connection.

:reject &optional reason
Rejects the connection with reason.

3.1.5 chaos:send-unc-pkt automatically returns the packet to the free pool

chaos:send-unc-pkt does an implicit chaos:return-pkt, which returns the packet
to the free pool at the appropriate time. The user is not allowed to reuse this
packet. This is an incompatible change.

The documentation for chaos:send-pkt in the Chaosnet document failed to mention
that chaos:send-pkt automatically returns the packet via chaos:return-pkt. The
code for this function remains unchanged; this is a clarification.

3.2 New Features in Networks in Release 5.0

RN Release 5.0 Release Notes 109
Symbolics, Inc. March 1984

3.21 New function: chaos:conn-finished-p

chaos:conn-finished-p conn Function
A predicate that returns something other than nil if all data that have been
output have been received and acknowledged by the foreign side of the
connection.

3.2.2 Changes to VMS Chaosnet
The following changes have been made to VMS Chaosnet:

« The NCP writes the CHNCP.GSF global section, which contains the
connection database. The SHOWNCP utility displays the data in
CHNCP.GSF.

e An NCP internal routing table server allows routing tables to be examined
dynamically.

e The FILE server now supports pathname completion and directory creation.

e When transferring binary files to a VMS host, the files are written in the
following way: If the file is a "QFASL" file, it is written as an RMS sequential
file with variable-length records whose maximum size is 2048 bytes. Note that
only the last record can be less than 2048 bytes long. If is not a "QFASL"
file, it is written as an RMS sequential file with fixed-length, 512-byte records.
A "QFASL" file is any file that has to remember its length in bytes exactly;
some examples are Lisp Machine .BIN and .QBN files. An example of a
non-"QFASL" binary file is a VMS executable file (.EXE).

« CFTP now supports GET and SEND /BINARY=byte-size. It also supports the
GET/VAR feature. This tells CFTP, when transferring binary files, to write
RMS sequential files with variable-length records whose maximum size is 2048
bytes. Note that only the last record can be less than 2048 bytes long.
Without /VAR, CFTP writes RMS sequential files with fixed-length, 512-byte
records. :

o A TELNET user exists. You can invoke it with the DCL "TELNET" foreign
command.

3.2.3 Changes to Serial I/0: Parity Recovery and Xon/Xoff Character Setting

Two features, serial parity recovery and XON/XOFF character setting, have been
added to serial I’O. The new parameters (at either initialization or :put) are:

:input-error-character
The value is a character to be substituted for any input character
in which a parity error is detected. This is independent of the

"o RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

:check-parity-errors flag. If the value is nil (the default), the
character is left alone.

:output-xoff-character
The value is a character that is used to control flow of data from
the Lisp Machine to the external device. It is used to suspend
the flow of data when the :xon-xoff-protocol parameter is set.
The default is #0023.

soutput-xon-character
The value is a character that is used to control flow of data from
the Lisp Machine to the external device. It is used to resume the
flow of data when the :xon-xoff-protocol parameter is set. The
default is #0021.

sinput-xoff-character
(3600 only) The value is a character that is used to control flow of
data from the external device to the Lisp Machine. It is sent by
the Lisp Machine to suspend the flow of data when the
:generate-xon-xoff flag is set. The default is #0023.

:input-xon-character
(3600 only) The value is a character that is used to control flow of
data from the external device to the Lisp Machine. It is sent by
the Lisp Machine to resume the flow of data when the
:generate-xon-xoff flag is set. The default is #0021.

3.2.4 Hdic Serial I/0 on the 3600

In Release 5.0, the 3600 supports synchronous serial I/O using HDLC-like bitstuffing
protocols. The CCITT-16 CRC polynomial is used.

This facility requires that the 3600 be running with FEP version 14 or later. Also,
some older 3600s might require that a special adapter cable be connected to serial
port 1.

An HDLC stream is a stream of flavor si:serial-hdlc-stream. Use the function
si:make-serial-stream to make one of these streams. HDLC streams accept
:read-frame and :write-frame messages.

si:serial-hdlc-stream Flavor
An HDLC serial 'O stream. This flavor is built on si:serial-binary-stream
and si:serial-hdlc-mixin.

si:make-serial-stream &rest options Function
This function initializes the serial I/O facility and returns the serial /O
stream.

The options argument is an alternating list of keyword symbols naming
parameters, and initial values for those parameters. This lets you initialize

RN Release 5.0 Release Notes 111
Symbolics, Inc. March 1984

parameters when you start using the serial IO stream. You can change
most of them later with the :put operation.

make-serial-stream, which accesses a serial line, causes the accessing
process to wait if all ports are in use. The command e-n-SUSPEND allows you
to invoke a restart handler to close a line that you believe has been left open
by mistake.

For documentation of parameters for serial 'O on the 3600: See the section
"Parameters: 3600 Serial I/O".

:read-frame string &optional (start 0) end of si:serial-hdle-mixin Method
Reads an HDLC frame into string. Returns the length actually read.

swrite-frame string &optional (start 0) end of si:serial-hdlc-mixin Method
Writes string as an HDLC frame. This method never calls process-wait
and can be used in a simple process. If insufficient buffers are available, it
returns a form that evaluates to t when buffers become available.

3.2.5 Interface to the Vadic Modem

This is the low-level interface to the Vadic modem. To open a connection with the
Vadic modem do:

(si:make-serial-stream *:flavor ’si:modem ’:phone-number
number-to-dial other-serial-options)

The system uses the autodialer to dial the given number and return a serial stream
if it succeeds. If it fails, it signals an error based on si:modem-error.

112 " RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 113
Symbolics, Inc. March 1984

4. Changes to Utilities in Release 5.0

4.1 Incompatible Changes to Utilities in Release 5.0

4.1.1 Default Font Format Now Bfd

The Font Editor now reads and writes BFD format fonts by default. These fonts
are stored in files of type BFD, as are the system TV and LGP-1 fonts. You can
still read and write font files of other types, such as BIN files on the 3600 and
QBIN files on the LM-2. See the section "Changes to Font Editor File Commands”.

4.1.2 Changes to Font Editor File Commands

Pressing R in FED translates into "read any font file". Pressing W translates into
"write any font file". FED determines what kind of file to read or write based on
the (canonical) type of the pathname you type. The default type is BFD. Clicking
left on [Read File] is equivalent to pressing R, and clicking left on [Write File] is
equivalent to pressing W.

The file type defaults from the (canonical) type of the pathname presented as the
default. For example, if you type foo.bfd, you read or write a BFD file, whereas if
you type foo.bin, you read or write a BIN file. FED complains if you supply a file
type that is not a valid font file type for the machine you are using.

Clicking right on [Read File] or [Write File] gives you a menu of file types to use as
the default and the prompt. Holding down the CTRL key while pressing R or W or
while clicking left on [Read File] or [Write File] makes the default type BFD.
Holding down the META key while using one of these commands makes the default
type BIN on the 3600 and @BIN on the LM-2.

41.3 Changes to FUNCTION C, FUNCTION M, and FUNCTION Q

FUNCTION C, FUNCTION M, and FUNCTION @ have been changed to provide easier and
more consistent control over which windows they affect. The operation of these
keystrokes is as follows:

FUNCTION C Controls the black-on-white state of the entire screen.
Arguments:
None Toggle
0 Black-on-white
1 -White-on-black

FUNCTION c-C Controls the black-on-white state of the selected window.
Arguments:

114 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

None Toggle
0 Same state as main screen’s
1 Opposite of state of main screen

FUNCTION m—C Controls the black-on-white state of the mouse documentation
line. Arguments:

None Toggle

0 Same state as main screen’s

1 Opposite of state of main screen
FUNCTION M Controls global MORE processing. Arguments:

None Toggle

0 Turn off MORE processing

1 Turn on MORE processing

FUNCTION c-M Controls MORE processing for the selected window. Arguments:
same as those for FUNCTION M.

FUNCTION @ Hardcopies the entire screen on the default screen hardcopy
device. Arguments: none.

FUNCTION c-@ Hardcopies the selected window on the default screen hardcopy
device. Arguments: none.

FUNCTION m-Q Hardcopies the entire screen, without the status line and mouse
documentation line, on the default screen hardcopy device.
Arguments: none.

4.2 New Features in Utilities in Release 5.0

4.21 New feature: Flavor Examiner (SELECT X)

The Flavor Examiner is available via SELECT X or the system menu. This is strictly
an interim program; it is supported fully in Release 5 but will eventually be
incorporated into the Inspector.

Use the HELP command to learn how to use this new feature.

4.2.2 New terminal program (SELECT T)

The new terminal program incorporates the functions of the former Telnet and
Supdup programs. It is available via SELECT T. Because it uses the generic network
system, it allows access (in the presence of appropriate gateways) via autodialers to
dialups, as well as direct Chaosnet and TCP through a gateway.

RN Release 5.0 Release Notes 15
Symbolics, Inc. March 1984

The prompt is still Connect to host:. To this you simply type the name of any host.
(For information on naming of hosts, setting up host databases, declaring host
addresses, and supported login services: See the section "Network Database". See
‘the section "The Lisp Machine Generic Network System".)

The network system picks the best login service supported by the host and the
optimum route to it. You can no longer specify a particular gateway and special
contact name or port using ¢ and /. Such control arguments and new higher-level
ones (such as a particular protocol to use, rather than the default) will be added to
the terminal program when the system includes a command processor.

Once connected, you can give commands by pressing NETWORK followed by another
- character. The following commands are available:

NETWORK A Send an ATTN (in Telnet, a new Telnet "Interrupt Process")
NETWORK D Disconnect

NETWORK L Log out of remote host and break the connection

NETWORK @ Disconnect and deselect this window (Quit)

NETWORK M Toggle MORE processing

You can issue more complicated commands using the extended command, NETWORK X.
This command would use a command processor; in the interim (Release 5.0), this
command uses the choose-variable-values facility. With NETWORK X you can change
the following:

« the escape character
» whether characters overstrike or erase
« whether MORE processing is enabled

« in the case of Telnet, whether Imlac terminal codes are interpreted in host
output

These were all formerly single-letter commands. A facility also exists for logging host
output to a wallpaper file.

You can no longer press NETUORK at the Connect to host: prompt to issue a
command before connecting. A command processor will fill this role in a future
release.

4.2.3 Show Hardcopy Status (m-X) replaces chaos:print-igp-queue

The Zwei command Show Hardcopy Status (m-X) replaces chaos:print-lgp-queue as
the means of viewing the print queue.

116 _ RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

The command prompts for the name of a printer. You can specify the queue of a
particular printer by typing the name of the printer, or you can see the queues for
all printers by pressing RETURN.

4.3 Improvements to Utilities in Release 5.0

4.3.1 Font Editor and Inspector use ESCAPE to evaluate forms

The Font Editor (FED) and the Inspector now use the ESCAPE key (on the 3600)
and the ALTMODE key (on the LM-2) to evalute a Lisp form. Previously, those
programs used the QUOTE key for this function. QUOTE is still accepted for
compatibility on the LM-2; this key does not exist on the 3600.

4.3.2 Debugger c-M creates a process

The ¢-M command in the Debugger has been changed to create a new process.
While you are editing the message, you use FUNCTION S to switch back to the
Debugger, use its commands to investigate the state of the Lisp environment, and
then switch back to the mail process to continue editing the message.

4.3.3 m-SUSPEND selects frame with break read function for Debugger

The behavior of m-SUSPEND in break loops has changed. The break read function
now intercepts m-SUSPEND itself. When you press m-SUSPEND to enter the Debugger
at the beginning of a line in a break loop, the current frame in the Debugger is now
the frame that contains the break read function. The difference between
n—-SUSPEND and c-m-SUSPEND is that when you use m-SUSPEND at the beginning of a
line, you enter the Debugger with a current frame that is closer to the frame that
contains break’s caller. This eliminates irrelevant stack frames when, for example,
you press c—SUSPEND to interrupt a program and then decide to enter the Debugger.
This behavior is likely to change in a future release.

4.3.4 END and c-END swapped in Converse

When using the Converse facility prior to Release 5.0, pressing END sent a message
and exited the Converse window; pressing c-END just sent a message, without leaving
Converse. Now the reverse is true by default. Pressing END just sends the message,
and pressing ¢-END sends the message and exits from the window.

The new variable zwei:*converse-end-exits* controls the behavior of END and
c-END in Converse. If its value is nil, END sends and remains in Converse, and c~END
sends and exits. If its value is not nil, c~END sends and remains in Converse, and
END sends and exits. The default value is nil.

RN Release 5.0 Release Notes 17
Symbolics, Inc. March 1984

4.3.5 Changes to Converse Notifications

Converse beeps as soon as a message comes in, and if it is supposed to notify the
user, it does so without waiting for the main Converse process to wake up. In pop-
up mode, when the main Converse process is busy, an incoming message causes
Converse to beep but not to display the message. This is necessary since only one
message at a time should pop up. While the pop-up window is exposed, an incoming
message causes Converse to beep. When the pop-up window is deexposed it is
reexposed immediately with the new message in it.

If the main Converse window is exposed, a new message is never shown via
notification or a pop-up window. If the main Converse window is exposed but its
process is busy (typically, when it is in the Debugger or in an editor command and
waiting for typein), Converse beeps but does not display the message. You can
display the message with print-sends or by clearing the Converse process. You can
usually clear the Converse process by pressing ABORT.

118 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 119
Symbolics, Inc. March 1984

5. Changes to the File System in Release 5.0

5.1 Incompatible Changes to the File System in Release 5.0

5.1.1 New Default LMFS Translation Table for Sys Hosts

The default LMFS translation table for the SYS host has been changed to conform
to the new rules for translating logical to physical pathnames. See the section
"Changes to Logical Pathname Translations".

Following is the new default translation table:
*(("FONTS; TV;" “>sys>tv-fonts>")
(*FONTS; LGP-1;* “>sys>1gp-1-fonts>*)
("LMFS-PATCH;" *>sys>Imfs>patch>”)
("x;" ">sysd>x>"))

Note that logical directory names are followed by semicolons. Note also that
translation tables for file systems other than LMFS might need translations for
other logical directories as well. For example, because VMS file names cannot
contain hyphens, a translation table for a VMS host might need to include specific
translations for logical directories whose names contain hyphens, such as PRESS-
FONTS;, L-SYS;, L-UCODE;, and L-FEP;.

Conversion tools exist to convert Release 4 to Release 5 site files. These tools take
care of the translations for the SYS host. See the document Software Installation
Guide. Users defining other logical hosts must convert the translation files on their
own. See the function fs:make-logical-pathname-host.

51.2 LMFS Dumper Supports Accordion Wildcards

The LMFS dumper supports the new accordion wildcards. This is an incompatible
change in its behavior.

Old Behavior: Previously, the dumper implicitly (and sometimes gratuitously)
recursed over all subdirectories, with the wild name *.*.*, of what you asked it to
dump. It did this recursion because there was no way to tell it not to. In addition,
this recursion was necessary for file system backup.

New Behavior: The dumper no longer recurses over all subdirectories, regardless of
the top-level spec. Now, specify exactly those files you wish to dump using wildcards.
Wildcards are powerful enough to say exactly what you mean, subsuming all
previously possible cases, and allowing for many new ones. If you want recursion,
express it via "accordion” wildcards (**).

The default pathname to be dumped has thus been changed from >*.*.* to
>**5>* « * which is what the previous one was trying to say. If you give the new
dumper >*.*.*, it now dumps exactly that, which is to say files directly in the root
directory, and not files in any inferiors.

120 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

For example, >**>** * specifies all files in the file system, and >lmach>**>* * newest
gets all of the newest files in >lmach or any of its subdirectories.

Note that there is no operational change if you use the default of the backup
dumper, namely, dump the whole file system. It just looks different on the menu.

The dumper lists directories as it goes down encountering them. It is sufficiently
clever to avoid simply expanding the wildcard, thereby listing the whole file system
at one time. It has its own implementation of :wild-inferiors expansion.

5.2 New Features in the File System in Release 5.0

5.21 LMFS Now Supports Directory Links

LMFS now supports directory links. A directory link is a link that acts like a
directory and points to a directory or another directory link. Directory links must
have the type "directory" and the file version 1 in order to be recognized as such. It
is impossible to create directory links and directories with conflicting names. It
follows that the target of a directory link must be of type "directory” and version 1,
although null string type and null version are accepted to mean this, as well.

The maximum length of link-chasing at any level is 10. Full circular-link checking
has also been implemented at the file level; it was not previously present. There is
no such thing as multilevel circularity.

Example:

>abel>foo.bar is a file.
>baker>david.directory.1 is a link to >abel.directory.1
Opening >baker>david>foo.bar in fact opens >abel>foo.bar.

Directory links are not marked as such in any way, and are not treated as such
unless a directory of that name is being sought. Thus, the setting of link
transparencies on a directory link has no effect on its behavior as a directory link.

5.2.2 LMFS Accordion Wildcards

It is now possible to specify wild directories of any arbitrary subtree. The string **
appearing in a LMFS pathname means "any number of intervening levels of
directory, including none". This is a form of wildeard, and it creates a wild
pathname, which may be used anyplace wild pathnames are used. ** may appear
one or many times in the directory component of a filespec, although multiple
occurences might be prohibitively expensive. Usually ** is the last directory level; the
further away from the last it is, the more expensive it gets.

Note that a directory component of >** means every directory in the file system.
:wild-inferiors represents ** in LMFS directory components. It is no longer

RN Release 5.0 Release Notes 121
Symbolics, Inc. March 1984

possible to create, from a string, a LMFS pathname with a directory component of
swild. Although such pathnames still work, pathnames with directory components
of (:wild-inferiors) ought to be functionally indistinguishable. Directory
components of :wild print as though they were (:wild-inferiors).

Pathname What it means
>**>* lisp All the newest lisp files on the whole file system.

s**5*5cacret>* * * All files in subdirectories (but not top-level directories) named
"secret".

>lmach>**>*.* newest
All the newest files in >lmach and all its subdirectories.

5.2.3 Dumper Restarting and Append-to-tape Default

The LMFS dumper allows you to restart a dump from a given point. The option
"restart pathname”, when not empty, specifies a pathname that will be compared
with the pathname of any file to be dumped or directory to be listed, and processing
will be suppressed if the pathname of the object is considered "less" than the restart
pathname. This comparison is similar to that done by fs:pathname-lessp. All of
the dumper’s processing is strictly ordered by this predicate.

The LMFS dumper also does not attempt to read tapes before writing on them
unless either: '

1. It intends to append to that tape, and is at the beginning of the tape.

2. The new site attribute :validate-lmfs-dump-tapes, whose default is nil, is set
to something other than nil. The default disabling of this attribute avoids
attempts to read blank tape and potentially unbounded tape reading on some
TOPS-20s. However, enabling the attribute offers more protection against
accidental overwriting of backup tapes.

‘In Release 5.0, the default for "append to tape" has been changed to "no" if you are
running on the 3600. This is because hardware limitations make it impossible to
append to a cartridge tape. Of course, you can dump a 3600 file system to a
non-3600 remote noncartridge tape server and append. '

122 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 123
Symbolics, Inc. March 1984

6. Changes to Zmacs in Release 5.0

6.1 Incompatible Changes to Zmacs in Release 5.0

6.1.1 Both default pathnames for Source Compare (m-X) now use :newest version

Source Compare (m-%) has been changed. The default pathname for the first
argument now uses the :newest version instead of the :oldest. The default for the
second argument continues to use :newest. The change was made because :oldest
is usually not the right thing; also, the asymmetry of the two defaults, as well as
the fact that :oldest is rarely used, caused unexpected behavior.

6.1.2 Changes to Add Patch Changed Definitions (m-X) and Add Patch Changed
Definitions of Buffer (m-X)

Formerly, these commands queried for each definition to be patched if given a
numeric argument, but by default they patched everything without asking. This
default behavior was incorrect, because the commands patched things that had been
patched before, and they made patches for definitions in the patch buffer itself.

The commands no longer look at their numeric arguments. Add Patch Changed
Definitions (m-%) queries for each buffer that contains a definition that might need
to be patched; answering N skips the rest of that buffer.

Both commands query for each definition to be patched:

Y patches it
N skips it
| patches it and any additional definitions in the same buffer

without asking any more questions

If there are more buffers containing definitions to be patched, the commands ask
questions again when they get to the next buffer.

A definition that has not been changed since it was patched is not considered a

candidate for patching again, even though it has been changed since the file was
read in. Note that patching any region of text lying entirely within a definition

(with Add Patch (m-X)) counts as patching that definition.

6.1.3 Set Package (m-X) offers to create a package

Set Package (m-X) used to insist that the package must already exist, although
related commands (such as Find File (e-X ¢-F) and Reparse Attribute List (n—X))

- offered to create a package for you. Set Package (m-X) has been changed so that it
queries you about whether to create a package that doesn’t exist.

124 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

6.1.4 Change in numeric arguments to Copy File (m-Xx)
The numeric arguments to Copy File (m-X) have been reorganized.

The numeric argument controls copying of attributes. With no numeric argument,
creation date and author are copied, and the mode (binary or character) of copy is
determined by the file being copied. To force mode, or to suppress author or
creation date copying, supply a numeric argument created by adding the values
corresponding to the descriptions below. For example, e-12 m-X Copy File suppresses
author and creation date copying.

Force copy in 16-bit binary mode
Force copy in character (text) mode
Suppress copy of author

@ B N -

Suppress copy of creation date

6.2 New Features in Zmacs in Release 5.0

6.21 New Zmacs command: Resume Patch (m-X)

Resume Patch (m-X) is a new Zmacs command that allows you to go back to a patch
that you were not able to finish in the same session in which you started it.

6.22 New Zmacs command: Start Private Patch (m-X)

Start Private Patch (m-%) is similar to Start Patch (n-%), but it does not have
anything to do with the world of systems, major and minor version numbers, and
official patch directories. Instead of prompting for a system, Start Private Patch
prompts for a file name. You can use Add Patch (m-X), Finish Patch (m-X), and
Abort Patch (m-X). When you finish the patch it is written out to the specified file.

This command allows you to make a private patch file that you can load, try out,
and share with other users before you install a change as a numbered patch that all
users automatically get.

6.23 New Zmacs command: Source Compare Newest Definition (m-X)

Source Compare Newest Definition (m-X) compares the current definition (the
definition that surrounds point) with the newest version in the normal source file for
this definition, regardless of patch files.

RN Release 5.0 Release Notes 125
Symbolics, Inc. March 1984

6.2.4 New Buffer-history Mechanism in Zmacs

A new feature keeps the history list of previous buffers independently for each
window.

When you create a new window, it takes its history list initially from the global
history list. From then on, as you switch from buffer to buffer within that window,
the history of those changes is kept on the list for that window. This affects
particularly Select Previous Buffer (c-m-L) and the default for Select Buffer (c-x B).

The global history list still exists and is used for sorting in List Buffers (c-X c-B).
Its ordering has not changed; it is maintained exactly as it used to be.

With two windows on the screen, you now have single-key access to four buffers
instead of three. This can be helpful when you are working on two buffers at a
time, each with its own need for switching to refer to another buffer.

6.25 New Zwei command: Comment Out Region (c-X c-;)

Comment Out Region (c-X c-;) comments out each of the lines in the region.
When the region ends at the beginning of a line, it does not comment out that line.
If any part of the line is part of the region, it does comment out that line.

A numeric argument inverts the meaning of the command, taking the comment
indicators away from any commented-out lines in the region. When any part of the
line is part of the region, it removes commenting from around that line. This
assumes that any comment starting in column 1 is fair game. It stops when it
encounters a line that does not begin the way a comment would, even if more lines
that have been commented out remain in the region. It does keep the remainder of
the region in this case, so that you can resume.

This works correctly for the different comment indicators for different major modes.

6.2.6 New Zwei command: Find Files in Tag Table (m-X)

Find Files in Tag Table (m-X) preloads every file in the selected tag table into the
editor. Like Tags Search (m-X), it prompts for a tag table if one doesn’t exist.

The prompting allows for specification of a system or all buffers as the tag table or
for reading a .TAGS file.

6.2.7 New Zwei commands: Lowercase Code in [Region/Buffer] (m-X), Uppercase
Code in [Region/Buffer] (m-X)

Four new Zwei commands allow you to change the case of code in a buffer or region:

« Uppercase Code in Buffer (m-X)

« Uppercase Code in Region (m-X)

126 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

* Lowercase Code in Buffer (n-%)

» Lowercase Code in Region (m~-X)

These commands allow you to change a program that is typed in Electric Shift Lock
Mode into one that is typed entirely in lowercase text, and vice versa. Only code is
changed; comments, strings, or quoted characters are not affected. The commands

work only where the entire file is typed in the same mode.

Like other Buffer commands, Uppercase Code in Buffer (n-X) and Lowercase Code in
Buffer (m-X) query for a buffer name (the default is the current buffer) before
operating on that buffer.

Like other Region commands, Uppercase Code in Region (m-X) and Lowercase Code
in Region (m-X) operate on the region if there is one; otherwise they operate on the
current definition.

The Uppercase commands put into uppercase all code in the associated area. They
have the same effect as retyping that code using Electric Shift Lock Mode.

The Lowercase commands put into lowercase all code in the associated area. They
have the same effect as retyping that code without using Electric Shift Lock Mode.

6.2.8 New canonical file type: :mss

The canonical file type :mss has been added for Scribe manuscript files. The editor
treats these files like files of canonical type stext.

6.3 Improvements to Zmacs in Release 5.0

6.3.1 ' Default File Name Changed for Commands in Dired Buffer

In Dired, if you execute an editor command that accepts a file name as an
argument, the default is the file name that appears on the line of the Dired buffer
containing point.

This change makes it easier to operate on the file selected in Dired. For example,
moving point to some line in Dired and doing Source Compare (m-X) causes the
Source Compare command (m-X) to default to that file name.

6.3.2 Major-mode-setting Commands Now Query About Updating File Attribute List

Major-mode-setting commands such as Lisp Mode (m-%) now give the standard query
about updating the file attribute list: "Set it for the file and attribute list, too?"
(This is like the query for Set Package (m-%) and other attribute-setting commands.)

Programmers who call the zwei:com-mode-mode function directly (to get their own
newly created buffer into the correct mode, for example) should bind
zwei:*set-attribute-updates-list* to nil around the call to suppress the query.

RN Release 5.0 Release Notes 127
Symbolics, Inc. March 1984

6.33 JChange in Zmacs command Modified Two Windows (c-X 4)

When two windows are being displayed, invoking the Zmacs command Modified Two
Windows by typing c-X 4 J r is equivalent to invoking the Jump to Saved Position
(e=% J r) command in the other window. When only one window is displayed,
Zmacs goes into two-window mode, with the current buffer in one of the windows,
and then jumps to the saved position in the other window. '

6.3.4 Internal changes to macros zwei:defmajor and zwei:defminor

The Major and Minor mode system in the editor has been reimplemented using
Flavors. For simple applications, the changes that were made are compatible with
Release 4.

128 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 129
Symbolics, Inc. March 1984

7. Changes to Zmail in Release 5.0

7.1 Incompatible Changes to Zmail in Release 5.0

714 Zmail Init File Pathnames Standardized

The names of Zmail init files have been standardized, and init files are now of
canonical type :lisp for source files and :bin and :gbin for compiled files. You must
change the name of your init file for Release 5.0.

For hosts that support long file names, the standard Zmail init file name is ZMAIL-
INIT. Hosts that do not support long file names have conventions peculiar to each
system.

Following are the names of Zmail init source files on some hosts:

Host system File name

LMFS/TOPS-20 ZMAIL-INIT.LISP

UNIX zmail-init.1

VMS ZMAILINIL.LSP

ITS If user has own directory: ZMAIL >. If user does not have own

directory: USER ZMAIL.

7.1.2 Babyl files with summary-window-format other than t or nil need to be edited

Any Babyl files with a Babyl file option of summary-window-format other than t
or nil must be edited. Previously, Babyl file options were written in the user
package, which was also where keywords resided. Now that the keyword package
is separate from user, other keyword values (such as :subject and :calendar)
require a colon prefix.

71.3 Ramifications of Host Colon Change for Babyl Files

The line MAIL: HOST-<USER>MESSAGE.TXT;1, which older versions of Zmail
might have put in a Babyl file, doesn’t work anymore, because it is parsed with
HOST: interpreted as a device.

You can edit this using Zmail Babyl file options.

The essence of the new scheme is that Babyl files pointing to hosts other than that
on which they reside can reside only on Lisp Machines or ITS’s, for those are the
only systems that natively support HOST: as designating hosts.

130 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

7.2 New Features in Zmail in Release 5.0

7.21 Sorting by Conversations Available

Sorting by conversations is available from the [Sort] command. Use [Sort (R)] to get
a menu, then click on [Conversations]. As a result, messages that reference one
another within the current sequence are grouped together.

7.2.2 New [map Over] Menu item: [reply]

[Reply] is a new item in the menu that results from [Map Over (R)]. Clicking on
this item replies to all messages in the sequence. A line identifying each message is
inserted into the reply’s In-reply-to field. When composing the reply, yanking (using
c-m-Y) yanks all messages into the reply.

7.23 New [map Over] Menu ltem: [select Conversation])

[Select Conversation] is a new item in the menu that results from [Map Over (R)].
You can also perform this operation by Select All Conversations By References (m-X);
this is implemented by zwei:com-zmail-select-all-conversations-by-references.

[Map Over / Select Conversation] (or its extended command counterpart) selects
messages that a message in the sequence refers to, or that refer to a message in the
sequence, recursively. It is equivalent to appending together all sequences that
result from Select Conversation By References (m-%) for each message in the current
sequence. An argument gives a menu of universes to search. The universe defaults
to loaded files.

7.3 Improvements to Zmail in Release 5.0

7.3.1 Previously undocumented commands: Delete Conversation By References
(m-x), Append Conversation By References (m-X)

Delete Conversation By References (m-X) deletes messages that this message refers
to, or that refer to this message, recursively. With an argument, it provides a menu
of universes to search. The universe defaults to loaded files.

Append Conversation By References (m—X) appends messages that this message refers
to, or that refer to this message, recursively. With an argument, it provides a menu
of universes to search. The universe defaults to loaded files.

7.3.2 Rfc822 Domain Addressing Supported »

Zmail now understands and, when appropriate, generates RFC822 domain
addressing, used by the Arpanet.

RN Release 5.0 Release Notes 131
Symbolics, Inc. March 1984

Zmail now recognizes Resent (-to, -by, -date, -comments) header fields in addition to
Redistributed (-to, -by, -date, -comments) fields.

132 RN Release 5.0 Release Notes
' Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 133
Symbolics, Inc. March 1984

8. Changes to the FEP in Release 5.0

This chapter describes changes to the FEP software that are concurrent with
Release 5.0. FEP software is distributed in its own versions, which are separate
from Lisp software releases. Release 5.0 requires FEP version 17 or higher. This
chapter describes changes to FEP versions 14 through 17 for which Lisp support
exists in Release 5.0. It also describes one change for FEP version 18 for which Lisp
support does not exist in Release 5.0. Unless otherwise indicated, each change in
any FEP version applies to later versions as well.

8.1 FEP Version 14: New Features

8.1.1 FEP Supports Hdic Serial /O

FEP version 14 contains support for synchronous serial IO using HDLC-like
bitstuffing protocols. HDLC serial /O is available only in Release 5.0 and later
releases. See the section "Hdle Serial I/O on the 3600".

8.2 FEP Version 15: Incompatible Changes

8.21 h-c-upper-left stops execution of Lisp

As of FEP version 15, if you cannot obtain a Lisp Listener window or if no Lisp
Listener is responding to keyboard input, you must press h-c-upper-left instead of
c-upper-left to get to the FEP from Lisp. In earlier FEP versions, either
c-upper-left or h-c-upper-left gets to the FEP from Lisp. (upper-left is the key in
the upper left corner of the keyboard. It corresponds to LOCAL on old keyboards and
FUNCTION on new keyboards.)

However, calling sizhalt is a better way to stop Lisp than pressing h-c-upper-left
because h-c-upper-left could interrupt disk I/O operations. This can render
directories unusable, making all the files in the directories inaccessible until Symbolics
personnel recover them.

See the section "Summary of Boot and Halt Operations™.

8.2.2 si:halt replaces sys:%halt

On the 3600, sihalt, not sys:%halt, is now the preferred way to stop execution of
Lisp.

sizhalt Function
On the 3600, sishalt stops execution of Lisp and gives control to the FEP.
This function stops Lisp without the danger of interrupting disk I/O
operations. The function sys:%halt should no longer be used.

134 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Interrupting a disk write can cause a fatal ECC error later, because the
contents of the disk block are incomplete. This can render directories and
other files inaccessible. This is a particular problem when halting the
machine while using LMFS.

8.2.3)Configuration.fep Files Are Now Called yBoot.boot

As of FEP version 15, you should rename >Configuration.fep files to >Boot.boot. The
file type .fep is now reserved for files that the user should never modify.

8.2.4 New Defaults for FEP Commands

In FEP version 15, the default file name for each of the FEP commands Boot, Show
File, Load Microcode, Load World, and Load Sync-Program is the last file name typed
to that command.

The initial default for both the Boot command and the Show File command is now
>Boot.boot, not >Configuration.fep. Show File uses and sets the same default string
that Boot does. This lets you use Show File to look for an appropriate configuration
file and then simply type Boot to cold boot using that file.

The Boot command and Show File command share the default, so that
Show File >magic.boot
causes Boot’s default now to be >magic.boot and vice versa.

When the machine is powered up or the FEP is reset, the defaults are initialized as
follows:

Boot/Show File >Boot.boot

Load Microcode >Microcodel.mic v
Load World >Worldl.load
Load Sync-Program >Syne.syne

8.2.5 Disk Format Command Asks Different Question

When you type the Disk Format command, you are asked a series of questions. One
of the questions used to be "To cylinder", which expected an exclusive upper bound
as the answer. As of FEP version 15, Disk Format asks "Through cylinder”,
expecting an inclusive upper bound as the answer. ,

RN Release 5.0 Release Notes 135
Symbolics, Inc. March 1984

8.3 FEP Version 15: New Features

8.31 Loading Sync Programs

As of FEP version 15, files of type .sync contain sync programs for the monitor. A
new FEP command, Load Sync-Program file-name, loads the specified file (of type
.sync) into the sync program memory of the I/O board and causes the screen to
clear. This is used for machines with monitors that require different sync programs
than the one that is preprogrammed into the FEP.

8.4 FEP Version 15: Improvements

8.4.1 Show Configuration Command Displays More Information

Show Configuration has changed considerably in FEP version 15. It still displays the
hardware configuration, but in considerably more detail, telling you part numbers,
serial numbers, revisions, manufacture dates and other information peculiar to
various parts of the machine (for example, the Ethernet address on the IO paddle
card).

Here is an example of what Show Configuration displays:

NanoFEP (P.N. 170018) S.N. 311, manufactured on 83-8-11
Machine serial number 0.
Manufactured as rev 1, functions as rev 1, ECO level 0

Datapath (P.N. .170032) S.N. 1192, manufactured on 83-9-9
Manufactured as rev 3, functions as rev 3, ECO level 0

Sequencer (P.N. 170042) S.N. 186, manufactured on 83-4-1
Manufactured as rev 4, functions as rev 4, ECO level 0

Memory Control (P.N. 170052) S.N. 1200, manufactured on 83-9-16
Manufactured as rev 5, functions as rev 5, ECO level 0

Front End (P.N. 170062) S.N. 2040, manufactured on 83-8-19
Manufactured as rev 5, functions as rev 5, ECO level 0

512K Memory (P.N. 170002) S.N. 515, manufactured on 83-9-20
Manufactured as rev 2, functions as rev 2, ECO level 0
LBUS slot 0 (octal base address 0)

512K Memory (P.N. 170002) S.N. 589, manufactured on 83-10-14
Manufactured as rev 2, functions as rev 2, ECO level 0
LBUS slot 1 (octal base address 2000000)

I0 (P.N. 170082) S.N. 176, manufactured on 83-3-25
Manufactured as rev 2, functions as rev 2, ECO level 0
LBUS slot 8 (octal base address 20000000)

FEP Paddle Card (P.N. 170066) S.N. 287, manufactured on 83-7-16
Manufactured as rev 1, functions as rev 1, ECO level 0

I0 Paddle Card (P.N. 170086) S.N. 358, manufactured on 83-9-20
Ethernet address: 08-00-05-01-30-08
Manufactured as rev 1, functions as rev 1, ECO level 0

136 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

8.42 Memory Board Not Needed in Lbus Slot 0

As of FEP version 15 and Release 5.0, it is possible to run Lisp and use the FEP
commands Disk Format and Disk Restore without a memory board in LBUS slot 0.
You must be running microcode version 238 or higher. This change allows for a 32-
bit color display.

8.5 FEP Version 16: New Features

8.5.1 New FEP Commands: Add Disk-type and Clear Disk-types
FEP version 16 contains the new commands Add Disk-type and Clear Disk-types.

Add Disk-type lets you declare an arbitrary disk type to the FEP. You can declare
up to four disk types before you have to give the Clear Disk-types command. Add
Disk-Type is needed only to format and restore disks. It is not needed for normal
operation of any validly formatted disk with a FEP file system.

Add Disk-type has the following arguments, for which it prompts with the argument
names in parentheses:

name The textual name by which this disk type is known
cylinders The number of cylinders supported by the drive
heads The number of heads on the drive

sectors The number of sectors

gapl The length of "gapl"

gap2 The length of "gap2"

gap3 The leng'th of "gap3"

fast 0 for slower disks, 1 for faster disks

These numbers require careful computation and involve some restrictions of the 3600
hardware. The calculation should be done by Symbolics personnel.

Example:

Add Disk-type (name) M2284 (cylinders) 823 (heads) 10
(sectors) 16 (gap1) 27 (gap2) 31 (gap3) 52 (fast) 0

Clear Disk-types clears all disk types declared with the Add Disk-type command.

RN Release 5.0 Release Notes 137
Symbolics, Inc. March 1984

8.6 FEP Version 16: Improvements

8.6.1 Unplugging Lemo Cables Should Not Halt the FEP

As of FEP Version 16, you should not have to reset the FEP after unplugging the
lemo cables from either end. If you find that you must still reset the FEP, please
let us know.

Sometimes what appears to be a FEP problem when unplugging lemo cables might
be a console problem. You might have to power cycle the console rather than
resetting the FEP.

8.6.2 Continue Command Sends an All-keys-up Character to Lisp

As of FEP version 16, the Continue command now sends an all-keys-up character to
Lisp. Thus, if you press h-c-upper-left and then type Continue, Lisp gets the all-
keys-up code and knows that HYPER and CONTROL are up.

The Return-keyboard-to-lisp command also sends an all-keys-up code.

8.6.3 More Information Available on Causes of Crashes

In addition to the information it displays in earlier versions, the Show Status
command in FEP version 16 prints a section called "3600 program counters". This
section can be useful in diagnosing why your machine crashed. It contains the
following information:

Macro PC The address of the current instruction of compiled Lisp code.
This is prefaced with either (Odd) or (Even) since there are two
instructions per word.

Next micro PC (NPC)
Usually CPC+1, calculated for pipelining. This item is not
displayed in FEP version 17 and later versions.

Current micro PC (CPC)
The address of the current microinstruction.

Old PCs (OPC) The addresses of the 16 most recently executed microinstructions.
OPC+0 was executed most recently, OPC+17 least recently.

Use the function dbg:decode-micro-pc to decode the microcode PCs printed by the
FEP command Show Status.

dbg:decode-micro-pc pc &optional (name sys:%microcode-version) Function
(version
(sys:microcode-version-number sys:%microcode-version))
(3600 only) dbg:decode-micro-pc is useful for investigating why a machine
crashed. It decodes the octal microinstruction addresses printed by the FEP

138

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

command Show Status. To use this function you should first write down the
Show Status output. You can then either warm boot the machine using the
Start command or call dbg:decode-micro-pc on another machine.

pc is an address in the microcode, taken from the CPC or OPC information
printed by the Show Status command. Show Status prints these numbers in
octal; if your default radix is decimal, precede pc by #0. Normally the
number in the Show Status output with the arrow (») pointing to it is the
relevant number, but it can sometimes be useful to try decoding all of the
numbers to get additional clues.

name and version are optional; they specify the version of the microcode that
was running at the time of the crash. You can omit these arguments if you
call dbg:decode-micro-pc while using the machine that crashed and while
running the same microcode version as at the time of the crash. You can
also omit these arguments if you call this function from another machine
that has a software and hardware configuration that is identical to that of
the machine that crashed. To find the microcode version name and number
that a machine is running, use (print-herald :verbose t) or take the name
and version number of the microcode file in the machine’s boot file (normally
fep0:>Boot.boot). Microcode version numbers are decimal; include a period at
the end of the number if your default radix is octal.

Example:
(dbg:decode-micro-pc #044552 *"tmc5-mic® 253.)

dbg:decode-micro-pc prints information that depends on the
microinstruction:

Microinstruction Information printed

Halt instruction The reason it halts the machine. An
example is "error in the error handler”.
These reasons are constant strings in
the microcode source program and do not
represent any dynamic analysis of the
state of the machine.

Signaller of a Lisp error The internal form of the error message.
This is not the same form of error
message you would ever see otherwise;
normally Lisp software translates these
messages into conditions and signals
them, and the conditions define more
readable error messages. This is useful
mainly in decoding OPCs earlier than
the one with the arrow, when the
machine halted because of "error in the
error handler". '

RN Release 5.0 Release Notes 139
Symbolics, Inc. March 1984

Handler for a macroinstruction in compiled Lisp code
The name of that macroinstruction. A
halt here might be caused by running a
world together with an incompatible
microcode, such as a microcode from an
earlier release, that does not implement
an instruction used by that world.

If all else fails, the function offers to load the microcode symbol table (from
the sys:l-ucode; directory) and then prints the symbolic name of the
microinstruction. Loading the microcode symbol table takes a few minutes.
Microinstruction symbolic names can sometimes be clues to help in figuring
out what the machine was doing at the time it crashed.

Two types of symbolic names exist: those with and without parentheses.

If the name includes parentheses, it is a list of the name of a microcode
routine and the path through that routine to reach the microinstruction in
question. Beware of a pitfalll These names are not unique; the same
microinstruction can be reached by multiple paths from different microcode
routines. For example, a microinstruction named (FTN-AR-1 3) might also be
part of the microcode for the CAR instruction; you cannot assume too much
from the name if it contains parentheses. It is only a clue.

If a symbolic name is just a symbol and has no parentheses, it is unique and
names the first microinstruction of a microcode routine.

Beware of assuming too much. If the reason Lisp stopped itself is not
"microcode halted", the information that dbg:decode-micro-pc prints is not
likely to be helpful, though it might be useful to people who understand the
hardware.

To decode the macrocode PC printed by the FEP command Show Status, warm boot
or go to another machine running identical software and call the function
%find-structure-header on the number printed by the FEP. This is an octal
number; use #o if necessary. It should return a compiled-function object, which is
the function that was executing at the time. To find the exact place in the function
that was executing, note the different between the number printed by the FEP and
the address in the printed representation of the compiled-function object. You can
use %pointer-difference to compute this difference. Multiply this by 2, and add 1
if the FEP said the PC was odd (not even). The result is the instruction number of
the current instruction; disassemble the compiled function to see it.

Example:

140 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Fep>Show status

3600 program counters:
Macro PC/ (0dd)1244531

Fep>Start
(%find-structure-header #01244531)
#<DTP-COMPILED-FUNCTION EQUAL 1244530>
(%pointer-difference #01244531 x)
1
(1+ (x x 2))
3
(disassemble *xx)
0 ENTRY: 2 REQUIRED, 0 OPTIONAL
1 PUSH-LOCAL FP|0 ;A

2 PUSH-LOCAL FP|1 ;B
3 BUILTIN EQL STACK

se e

Instruction 3 (EQL) is the one that halted.

8.7 FEP Version 17: Improvements

8.7.1 Show Status Command Displays More Useful Informatiqp
As of FEP version 17, the Show Status command prints more useful information.

The "Sequencer status line”, which was confusing and difficult to interpret, has been
split into two lines, "Sequencer error status” and "Sequencer miscellaneous status”.
The former contains only conditions that can stop the machine; it no longer contains
reported errors that are not in fact errors. The miscellaneous status line contains
the sequencer status bits that may be of occasional interest but are not reasons the
machine stopped. For the names of the status bits printed in these two lines: See
the section "FEP Show Status Command Output".

The confusing and uninformative "MC status” line has been removed.

8.8 FEP Version 18: Improvements

8.8.1 h-c-upper-left waits for Lisp to stop itself

With FEP version 18 and a future release, pressing h—-c-upper-left does not
immediately stop Lisp. Instead, the FEP asks Lisp to stop itself cleanly. If Lisp
does stop itself, the FEP prints the message "Lisp stopped itself." If Lisp does not
stop itself after about three seconds, the FEP prints, "Waiting for Lisp to stop

RN Release 5.0 Release Notes 141
Symbolics, Inc. March 1984

itself...” If after another three seconds Lisp does not stop itself, the FEP forcibly
stops Lisp and prints, "Halting execution of Lisp."

The Lisp support for this change is not installed in Release 5.0. This means that if
you have FEP version 18 and Release 5.0, Lisp never stops itself after you press
h-c-upper-left. The FEP waits three seconds, prints "Waiting for Lisp to stop
itself...", waits another three seconds, then forcibly stops Lisp and prints, "Halting
execution of Lisp."

The purpose of this change is to reduce the chance of halting the 3600 during a disk
write, which might cause ECC errors. Although the Lisp support for the change is
not in Release 5.0, the FEP’s delay of about six seconds before halting Lisp reduces
(but does not eliminate) the risk of stopping Lisp at a dangerous time. The
preferred way of stopping Lisp is still to call sichalt; use h-c-upper-left only if no
Lisp Listener is responding.

142 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 143
Symbolics, Inc. March 1984

9. Release 5.0: Notes and Clarifications

9.1 Clarifications and Corrections for Release 5.0

9.1.1 What happens when you cold boot

Because of the new network system, the procedure the Lisp Machine follows when
cold booting has changed. While this does not normally require a different response
from you, the process states in the status line are visibly different. This section
briefly describes what the machine is doing. For background information: See the
section "Network Database". See the section "The Lisp Machine Generic Network
System".

The Lisp Machine first needs to determine the current time. Previously, the site file
contained a list of hosts on the local network that were time servers. That list no
longer exists. Instead, the machine issues a Chaosnet broadcast request (BRD) for
the time. While the machine is waiting for the network, the status line displays a
process state of "BRD Wait". Any host on the local network can answer this
request. This means that in normal operation, if your site has more than one Lisp
Machine, it is not necessary to enter the time by hand. However, if no host
responds after a short time, the machine asks you to enter the time manually.

Special world loads for distribution no longer exist. A world load produced at one
site can be loaded onto a machine at another site and automatically reconfigures
itself for the new site. To do this, the machine must find out when booted whether
the site has changed. It does this by asking the other machines on the local
network, using a Chaosnet broadcast request. The status line again displays a
process state of "BRD Wait". If the site has changed, or if no one answers this
"Who am I?" query, the machine might ask you whether the site has changed. For
information on what to do in this case: See the document Software Installation
Guide.

Information in the network namespace database is cached in a world load and
timestamped. However, namespace information might have changed since the world
load was made. To find out about these changes, the machine connects to the
namespace server machine. The status line now displays a process state of "Connect
host". The machine tells the server the timestamp it previously knew for the local
namespace. If the world load was saved recently, nothing has changed and the
server responds immediately that the timestamp is still current. If some objects in
the namespace have changed, the server provides the new timestamp for the local
namespace and the names of the changed objects.

Your machine marks as valid any object that the server does not say has changed.
The old information on the objects that did change still has the old timestamp.
When the system needs to access that information, it discovers that the timestamp

144 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

no longer matches the timestamp of the local namespace. It then asks the
namespace server for the information associated with the current timestamp. While
the machine checks the names of old objects, the status line displays a process state
of "Net In". For information on the protocol used for this incremental update: See
the section "Network Database".

Your machine gets most of the lists of hosts and other network namespace objects
that were formerly stored explicitly in the site file by doing a pattern-matching
lookup using net:find-objects-from-property-list. This information includes, for
example, the set of hosts at the local site that can provide store and forward mail
service, the set of hardcopy printers at the local site, and the hosts that can spool
files to a specific local hardcopy printer. The lists of objects resulting from these
lookups are cached in a world load. If the machine does not have a cached list
matching the result of a given property list query, or if the incremental update while
booting reveals that the cached list is old, the system connects to the namespace
server to get the latest list when it is needed.

To avoid the inconvenience of this connection the first time you need to send mail or
hardcopy a file, the machine maintains a list of frequently asked questions. After
the machine gets the incremental update while booting, a background process called
Get Common Property Lists starts. It connects to the namespace server and caches
the latest version of these commonly used sets of objects. If the world load is
relatively new, this process runs for only a few seconds. The process runs at a lower
priority than the Lisp Listener process to avoid interfering with your work.

Booting takes longer with an old world load than a new one because many aspects of
the network database have changed. If you have an old world load and find that it
takes a long time to boot or that it pages for a long time after booting (while
running the Get Common Property Lists process), you might disk-save the world to
make a new world load. The new world load caches information with the new
namespace timestamp and therefore does not take so long to boot.

A world load that comes from another site takes longer to boot for the same reason:
It has no cached information about the local namespace. This is why the
installation procedure for new world loads includes booting and disk-saving them.

9.1.2 sort predicate should return nil for equal elements

The predicate for sort should return nil if its arguments are equal. For example, to
sort in the opposite direction from <, use >, not >. This is because the quicksort
algorithm used to sort arrays and cdr-coded lists becomes very much slower when
the predicate returns non-nil for equal elements while sorting many of them.

See the function sort.

RN Release 5.0 Release Notes 145
Symbolics, Inc. March 1984

9.1.3 store not supported on the 3600

store is not supported on the 3600. store existed only for some large programs
written in Maclisp, most of which now use more recent array referencing. store
would require the saving of state in processes, which would slow down all processes.
Use aref and aset (or setf) instead.

See the section "Change in Array Referencing”.

9.1.4 Using copy-array-portion on the same array

It is safe to use copy-array-portion to copy from and to the same array only when
the from-index is not less than the to-index, or when the "from" and "to" portions of
the array do not overlap.

See the function copy-array-portion.

9.1.5 bitbit width from the destination array

The width argument to bitblt is in units of elements of the destination array. This
is important if the source and destination arrays are of different types.

See the function bitblt.

9.1.6 Inspecting hash arrays of eq hash tables not permitted

You cannot inspect the hash array of an eq hash table. Trying to do so is likely to
signal an error. _

9.1.7 Known problem: char-upcase and char-downcase undefined for modified
characters

char-upcase and char-downcase preserve font information. Because font
information and control characters use the same character bits, the results of
char-upcase and char-downcase are undefined for characters with modifier bits
(CONTROL, META, SUPER, and HYPER).

See the function char-upcase. See the function char-downcase.

9.1.8 How to use the sys:function-parent declaration

The Release 4.0 Release Notes documented the use of the sys:function-parent
declaration when a definition results from the macro expansion of a source definition.
Following is a more comprehensive explanation:

A definition is a Lisp expression that appears in a source program file and has a
name by which a user would like to refer to it. Definitions come in a variety of
types. The main point of definition types is that two definitions with the same
name and different types can exist simultaneously, but two definitions with the same"

146 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

name and the same type redefine each other when evaluated. Some examples of
definition type symbols and special forms that define such definitions are:

Type symbol Type name in English Special form names

defun function defun, defmacro, defmethod
defvar variable defvar, defconst, defconstant
defflavor flavor defflavor '
defstruct structure defstruct

Things to note: More than one special form can define a given kind of definition.
The name of the most representative special form is typically chosen as the type
symbol. This symbol typically has a si:definition-type-name property of a string
that acts as a prettier form of the name for people to read.
record-source-file-name and related functions take a name and a type symbol as
arguments. The editor understands certain definition-making special forms, and
knows how to parse them to get out the name and the type. This mechanism has
not yet been made user-extensible. Currently the editor assumes that any top-level
form it does not know about that starts with "(def" must be defining a function (a
definition of type defun) and assumes that the cadr of that form is the name of the
function. Heuristics appropriate for defun are applied to this name if it is a list. In
general, a definition whose name is not a symbol and whose type is not defun does
not work properly. This will be fixed in a future release.

The declaration sys:function-parent is of interest to users. The function with the
same name is probably not of interest to users; it is part of the mechanism by which
the Zmacs command Edit Definition (m-.) figures out what file to look in.

Example:

We have functions called "frobulators” that are stored on the property list of symbols
and require some special bindings wrapped around their bodies. Frobulator
definitions are not considered function definitions, because the name of the
frobulator does not become defined as a Lisp function. Indeed, we could have a
frobulator named list and Lisp’s list function would continue to work. Instead we
make a new definition type.

(defmacro define-frobulator (name arg-list &body body)
‘(progn ’compile

(add-to-1ist-of-known-frobulators ’,name)

(record-source-file-name *,name ’define-frobulator)

(defun (:property ,name frobulator) (self ,earg-list)
(declare (sys:function-parent ,name define-frobulator))
(let (,(make-frobulator-bindings name arg-list))

»@body))))

(defprop define;frobulator “Frobulator® si:definition-type-name)

Here we would tell the editor how to parse define-frobulator if its parser were

RN Release 5.0 Release Notes 147
Symbolics, Inc. March 1984

user-extensible. Because it is not, we rely on its heuristics to make m-. work
adequately for frobulators.

Next we define a frobulator. This is not an interesting definition, for we do not
actually know what the word "frobulate" means. We could always recast this
example as a symbolic differentiator: We would define the + frobulator to return a
list of + and the frobulations of the arguments, the * frobulator to return sums of
products of factors and derivatives of factors, and so forth.

(define-frobulator list ()
(frobulate-any-number-of-args self))

In define-frobulator, we call record-source-file-name so that when a file
containing frobulator definitions is loaded, we will know what file those definitions
came from. Inside the function that is generated, we include a function-parent
declaration because no definition of that function is apparent in any source file. The
system will take care of doing

(record-source-file-name ’(:property list frobulator) defun), as it always does
when a function definition is loaded. Suppose an error occurs in a frobulator
function — in the list example above, we might try to call
frobulate-any-number-of-args, which is not defined — and we use the Debugger
c-E command to edit the source. This will be trying to edit

(:property list frobulator), the function in which we were executing. The
definition that defines this function does not have that name; rather, it is named
list and has type define-frobulator. The sys:function-parent declaration enables
the editor to know that fact.

If your definition-making special form and your definition type symbol do not have
the same name, you should define the special form’s zwei:definition-function-spec
property to be the definition type symbol. This helps the editor parse such special
forms.

For another example, more complicated but real, use mexp or the Zmacs command
Macro Expand Expression (e-sh-M) to look at the macro expansion of:

(defstruct (foo :conc-name) one two)

The macro sys:defsubst-with-parent that it calls is just defsubst with a
sys:function-parent declaration inside. It exists only because of a bug in an old
implementation of defsubst that made doing it the straightforward way not work.

9.1.9 Use record-source-file-name instead of (remprop symbol ’:source-file-name)

When redefining functions, some users try to avoid redefinition warnings and queries
by using the form (remprop symbol ’:source-file-name). The preferred way to do
this is to use the form (record-source-file-name function-spec *defun t). The
former method causes the system to forget both the original definition and other
definitions for the same symbol (as a variable, flavor, structure, and so forth).
record-source-file-name lets the system know that the function is defined in two
places, and it avoids redefinition warnings and queries.

148 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Of course, if you are redefining something other than a function, use the appropriate
definition type symbol instead of defun as the second argument to
record-source-file-name. For example, if you are redefining a flavor, use
defflavor as the second argument.

9.1.10 Use cdr with locatives returned by loct

When using loef to return a locative, you should use edr rather than car to access
the contents of the cell to which the locative points. This is because
(locf (cdr list)) returns the list itself instead of a locative.

Example:

(car (locf (cdr *(a b))))
(cdr (locf (cdr ’(a b))))

;wrong

>a
> (b) ;right

9.1.11 rplaca can be used with stack lists

The Release 4.0 Release Notes, section 2.2.30, page 43, stated that rplaca could not
be used on stack lists. This is incorrect; you can use rplaca with stack lists, but
not rplacd.

See the special form with-stack-list. See the special form with-stack-list*.

9.1.12 FUNCTION 2 W displays current process name in status line

Typing FUNCTION 2 W changes the status line so that it displays the name of the
process instead of displaying the name of the user. This also freezes the status line
on that process; normally the status line switches to displaying a different process
whenever the window selection mechanism tells it to.

If you see an unexpected state in the status line, you can use FUNCTION 2 U to find
out what process is in that state (it might be that you are not talking to the process
you think you should be.) .

FUNCTION 1 U returns the status line to normal.

9.1.13 Known problem with si:gc-reclaim-immediately

The 3600 has a known bug in the garbage collector stimulated by turning on
si:ge-reclaim-immediately. The typical manifestation is the following error
message:
>>Trap: The first argument given to SYS:INTERNAL-=, NIL, was not a number.
While in the function SI:SCAVENGE-REGION « SI:%GC-SCAVENGE ¢ SI:SCAVENGE-ALL

This bug will be fixed in a future release. In the meantime, avoid setting
si:ge-reclaim-immediately to anything other than nil. You might be able to set
si:gc-reclaim-immediately to t if you also set inhibit-idle-scavenging-flag to t.
You must set inhibit-idle-scavenging-flag afier calling gc-on and must reset it
after warm booting.

RN Release 5.0 Release Notes 149
Symbolics, Inc. March 1984

9.1.14 tv:set-default-font not supported

The undocumented function tv:set-default-font is not supported and should not be
used. The purpose of this function is to change the default font used by the system
from fonts:cptfont to something else. However, this change requires changes in
window geometry, and many programs are not prepared to handle the new
geometry. Calling tv:set-default-font is likely to break these programs. This
problem will be addressed in a future release.

9.1.15 Avoid Errors in the Mouse Process

It is not a good idea to perform lengthy or error-prone calculations in the mouse
process. An error in the mouse process might make it necessary to reset that
process. If you have a complex calculation to perform in a :mouse-click method,
use process-run-function to spin off a new process for the calculation, or send a
blip to the window’s process and perform the calculation there.

9.1.16 nil not a valid menu item

nil is not a valid menu item. If an item list contains nil, it is removed from the
list. A menu with no choices at all appears as a small blank menu.

You might be tempted to specify nil as a menu item in a form like
(tv:menu-choose ’(t nil)). But this causes a menu with only one choice, t, to
appear. Instead, you should specify a form like

(tv:menu-choose ’(("Yes" . t) ("No" . nil))). This presents a menu with two
choices: "Yes", which returns t, and "No", which returns nil. You could also specify
(tv:menu-choose *(("T” . t) ("NIL" , nil))). See the document Window System
Choice Facilities.

150

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

RN Release 5.0 Release Notes 151
Symbolics, Inc. March 1984

10. Release 5.0: Operations and Site Management

10.1 Notes on Operations in Release 5.0

10.1.1 Backup Tape Reliability

To ensure the reliability of backup tapes, it is important to use cartridge tapes of
adequate density and to compare the contents of backup tapes with the contents of
the original files.

Cartridge tape used on the 3600 should be certified at a minimum of 10000 BPI.
Some customers have been using lower density tapes and producing unreliable
backups. You can order tapes through your local Symbolics sales office.

It is important to keep the tape heads clean when reading and writing tapes. The
heads should be cleaned after every two hours of new cartridge tape use and after
every 8 hours of old tape use. "Old tape" is tape that has been written or read
more than two hours. Inmac offers a cleaning kit called the "Clean Cycle Kit,
Quarter Inch Cartridge Head Cleaner", P/N 7148. The Inmac telephone number is
(408) 727-1970.

After writing a backup, press SELECT F, click left on [Reload/Retrieve], and click left
on the "Compare" operation in the choose-variable-values window. The "Compare"
operation provides a bit-by-bit comparison of the backup tape to the original file. If
it reveals discrepancies, you should take a consolidated dump. A consolidated dump
dumps all files saved after a specified date. To take a consolidated dump: Click left
on [Complete Dump], click left on the "Consolidated” dump type in the choose-
variable-values window, and specify the date in the "Consolidate from" field to be the
date of your last successful dump.

See the section "Reloading and Retrieving”.

10.1.2 Site Configuration for Dialnet

This is the basic information on how to cbnﬁgure your site for Dialnet. It allows
the generic network system access to the Vadic autodialer.

Configuring a site:

You should define a network named "DIAL" of type DIAL. This network represents
the international dial network. Addresses on this network are the telephone
numbers, relative to your site, of the host in question. This means that they should
contain any prefixes or area codes that are necessary to dial that number. Add
addresses on this network to any hosts you wish to access via telephone.

You must also define what services each host supports. The basic system supports
only the LOGIN service. Add the service triple "LOGIN DIAL TTY-LOGIN" to any
hosts which support login over dialup lines.

152 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

To allow a 3600 or LM-2 to use an autodialing modem with the general network
system you must describe its connection with a PERIPHERAL option. For each
autodial modem add a peripheral entry of type MODEM which specifies the modem
model and the serial port to which it is connected. For example:

MODEM MODEL VA3451 UNIT 3

RN Release 5.0 Release Notes 153
Symbolics, Inc. March 1984

Index

#

#1 and #\ now identical 19
#:symbol-syn-stream 20
#:syn-stream 20

New reader macro: #B 18 ~
#B reader macro 18

#/ and #\ now identical 19
Previously undocumented reader macro: # and # 83

Use record-source-file-name instead of (remprop symbol
':source-file-name) 147

* *
** accordion wildcard specification 120

fep file type 134

/BINARY 109
VAR 109

0 0 0

Memory Board Not Needed in Lbus Slot 0 136

FEP Version 14: New Features 133
FEP Version 15: Improvements 135
FEP Version 15: Incompatible Changes 133
FEP Version 15: New Features 135
FEP Version 16: Improvements 137
FEP Version 16: New Features 136
FEP Version 17: Improvements 140
FEP Version 18: Improvements 140

154 ' RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

FUNCTION 2 U displays current process name in status
. line 148
New Microcode in Release 5.0: 270 on 3600, 998 on LM-2 3

3 3 3
Hdic Serial IO on the 3600 110
New Metering Tools for the 3600 50
store not supported on the 3600 145
New option for si:sb-on: :mouse (3600 only) 95
Multidimensional Arrays on the 3600 Remember Actual Dimensions 78
3600 select-methods handie :operation-handled-p
and :send-if-handles 81
3600 Supports leee Single- and Double-precision
Floating Point 48 ’
New Microcode in Release 5.0: 270 on 3600, 998 on LM-2 3

4 4 4

Change in Zmacs command Modified Two Windows (c-X
4) 127
Modified Two Windows (c~X 4) Zmacs command 127

5 5 5
: Changes to Networks in Release 5.0 107
Changes to the FEP in Release 5.0 133
Changes to the File System in Release 5.0 119
Changes to the Lisp Language and Compiler in Release
50 5 '
Changes to Utilities in Release 5.0 113
Changes to Zmacs in Release 5.0 123
Changes fo Zmail in Release 5.0 129
Clarifications and Corrections for Release 5.0 143
Improvements to Lisp in Release 5.0 77
improvements to Utilities in Release 5.0 116
Improvements to Zmacs in Release 5.0 126
Improvements to Zmail in Release 5.0 130
Incompatible Changes to Lisp in Release 50 5
Incompatible Changes to Networks in Release 5.0 107
Incompatible Changes to the File System in Release 5.0 119
Incompatible Changes to Utilities in Release 5.0 113
Incompatible Changes to Zmacs in Release 5.0 123
Incompatible Changes to Zmail in Release 5.0 129
New Features in Lisp in Release 5.0 44
New Features in Networks in Release 5.0 108
New Features in the File System in Release 5.0 120
New Features in Utilities in Release 5.0 114
New Features in Zmacs in Release 5.0 124
New Features in Zmail in Release 5.0 130
Notes on Operations in Release 5.0 151
New Microcode in Release 5.0: 270 on 3600, 998 on LM-2 3
Release 5.0: Infroduction and Highlights 1
Release 5.0: Notes and Clarifications 143
Release 6.0: Operations and Site Management 151

RN Release 5.0 Release Notes

155

Symbolics, Inc. March 1984

9

9

New Microcode in Release 5.0: 270 on 3600, 998 on LM-2 3

<

{ oldest version specifier 35

>
) newest version specifier
yConfiguration.fep Files Are Now Called)Boot.boot 134
»Boot.boot files 134
YConfiguration.fep files 134

35

yConfiguration.fep Files Are Now Called

yBootboot 134

A

NETWORK A command 114

Compiler now wams about implicit progns in loops 82
Major-mode-setting Commands Now Query About Updating File Attribute List 126

Absolute goto 21

Reader Accepts Common Lisp Floating Point Exponents 17
** accordion wildcard specification 120

Accordion wildcards 1
LMFS Accordion Wildcards 120
LMFS Dumper Supports Accordion Wildcards 119
Activation character 65

Activation characters 22, 57

:activation option 57

New input editor options: :no-input-save, :activation, :command, :preemptable 57

Multidimensional Arrays on the 3600 Remember Actual Dimensions 78

New FEP Commands: Add Disk-type and Clear Disk-types 136
Add Disk-type FEP command 136
Changes to Add Patch Changed Definitions (m-X) and Add Patch
Changed Definitions of Buffer (m-X) 123
Add Patch Changed Definitions (m-X) Zmacs

command 123

Changes to Add Patch Changed Definitions (m-X) and
Add Patch Changed Definitions of Buffer

(m-X) 123

Add Patch Changed Definitions of Buffer (m-X) Zmacs

command 123
fs:make-logical-pathname-host replaces fs: add-logical-pathname-host
fs: add-logical-pathname-host

37
function 37

Previously undocumented functions: tv:add-to-system-menu-programs-column, tv:
add-to-system-menu-create-menu 103
tv: add-to-system-menu-create-menu function 104

tv: add-to-system-menu-programs-column

function 104

Previously undocumented functions: tv: add-to-system-menu-programs-column,
tv:add-to-system-menu-create-menu 103

. Adding prompt 65
readline and readline-trim return additional values 62
RFC822 domain addressing 130
Rfc822 Domain Addressing Supported 130

156

RN Release 5.0 Release Notes

New initialization list:
:draw-filled-in-circle uses same
Select

Compiler Performs Style Checking on
Continue Command Sends an
Deallocating

Optimizing disk

sl

sys:dump-forms-to-file
New Rules for Reading
floatp retums t for

Flavors tv:
tv:

Dumper Restarting and
New function:

YConfiguration.fep Files
Keyword Symbols
Meaning of

New optional
Optional

Change in

New optional

Second

New optional

Hook

tv:scroll-maintain-list init function can take

Change in numeric
Change in

New optional

New optional

New optional

Change in

New message to

sys:

bitblt width from the destination

Using copy-array-portion on the same
Change in type of

Inspecting hash

Multidimensional

Disk Format Command

Symbolics, Inc. March 1984

:adjust-screen-array message to sheets 79

after-full-gc 73

algorithm as :draw-circle 99

All Conversations By References (m-X) Zmail
command 130

All Forms 81

All-keys-up Character to Lisp 137

allocated objects of a resource 13

allocation 25

alphabetic syntax description 18

ALTMODE key 116

always puts package attribute into binary file 82

Ambiguous Tokens 19

any floating-point number 49

:any-tyi method of tv:stream-mixin 41, 42

any-tyi-mixin and tv:list-tyl-mixin obsolete 40

any-tyi-mixin flavor 40

:any-tyi-no-hang method of tv:stream-mixin 41

Append Conversation By References (m-X) Zmail
command 130

:append value of open option for :if-exists 25

Append-to-tape Default 121

applyhook 72

applyhook function 72

applyhook variable 72

Are Now Called YBoot.boot 134

Are Self-evaluating 13

argument changed for fs:parse-pathname 32

Argument to :menu type menu items can be a menu
oraform 105

argument to gc-immediately 98

argument to mapatoms-all and where-is
eliminated 7

argument to process-wait-with-timeout 95

argument to read 61

argument to sh:install-microcode now optional 94

argument to tv:mouse-wait 101

arguments 73

arguments 105

Arguments changed for fs:user-homedir and
fs:init-file-pathname 34

arguments to Copy File (m-X) 124

arguments fo print-herald 39

arguments to print-notifications 99

arguments to read-from-string 84

arguments to string-upcase and
string-downcase 80

arguments to unadvise 39

arithmetic errors: :operands 98

arithmetic-error flavor 98

array 145

armay 145

array retumed by string-append 16

arrays of eq hash tables not permitted 145

Arrays on the 3600 Remember Actual
Dimensions 78

:as-if-band option for print-herald 39

Asks Different Question 134

RN Release 5.0 Release Notes

157

Symbolics, Inc. March 1984

Window System Changes
New Features

:validate-Imfs-dump-tapes site
sys:dump-forms-to-file always puts package

Associated with Mouse Input 40

Associated with the Input Editor (Rubout
Handler) 57

attribute 121

attribute into binary file 82

Major-mode-setting Commands Now Query About Updating File

Copying file

Vadic
chaos:send-unc-pkt
Sorting by Conversations
Wildcard Directory Mapping
More Information

Select Buffer (c-X
summary-window-format
Ramifications of Host Colon Change for

Comparing
Ratios read in current ibase and print in current
Default Font Format Now

Read rational number in

Attribute List 126
attributes 124
autodialer 151
automatically returns the packet to the free pool 108
Available 130
Available 92
Available on Causes of Crashes 137
Avoid Errors in the Mouse Process 149

B

B exponent identifier 17
B) Zmacs command 126
Babyl file option 129
Babyl Files 129

Babyl files with summary-window-format other than
t or nil need to be edited 129

Back-translation 35

Backup Tape Reliability

backup tapes 151

base 19

Bd 113

bin canonical type 34

binary 18

151

sys:dump-forms-to-file always puts package attribute into

Characters with modifier
si:
New descriptions: si:

Receiving
New special forms:

Invisible
Memory
What happens when you cold

Recursion in

Chaosnet sequence
Clock sequence
Disk sequence
Keyboard sequence
Mouse sequence

m-SUSPEND selects frame with

break read function for Debugger

binary file 82
Binary left shift 17
bitblt function 145
bitbit width from the destination array
bits 145
bitscale 17
bitscale, si:digitscale,
si:non-terminating-macro
Blips 41
blips 40
block and tagbody 46
block special form 46
blocks in progs and dos 78
Board Not Needed in Lbus Slot 0
boot 143
Boot FEP command 134
Both default pathnames for Source Compare (m-X)
now use :newest version 123
Bound and Default Handlers Eliminated 97
Bound handlers 97
break 95
break 95
break 95
break 95
break 95
Break loops

145

17

136

116
116

158

RN Release 5.0 Release Notes

si:

Change case of

Default File Name Changed for Commands in Dired
Select Previous

Select

Symbolics, Inc. March 1984

break syntax description 18

buffer 125

Bufer 126

Buffer (c-m-L) Zmacs command 125
Buffer (c-X B) Zmacs command 125

Changes to Add Patch Changed Definitions (m-X) and Add Patch Changed Definitions of

Add Patch Changed Definitions of
Lowercase Code in

Uppercase Code in

New

Streams sharing common

List

Create a

Extract size field of a

New functions:

New functions: byte, byte-size,

New functions: byte,
Extract position field of a

C

FUNCTION

Changes to FUNCTION

New Zwei command: Comment Out Region {c-X
Comment Out Region (c-X

List Buffers (c-X

FUNCTION

END and
Debugger

Select Previous Bufler

FUNCTION

Change in Zmacs command Modified Two Windows
Modified Two Windows

Select Buffer

New Zwei command: Comment Out Region
Comment Out Region

List Buffers

Jump to Saved Position

Unplugging Lemo

»Configuration.fep Files Are Now

New function to be

Argument to :menu type menu items
placa

format "\ directives

Shifted Mouse Clicks

:proceed methods

tv:scroll-maintain-list init function

Some Methods

New

dinit

C

Buffer (m-X) 123
Buffer (m-X) Zmacs command 123
Bufler (m-X) Zwei command 125
Bufier (m-X) Zwei command 125
Bufler-history Mechanism in Zmacs 125
buffers 89
Buflers (c-X c-B) Zmacs command 125
byte function 50
byte specifier 50
byte specifier 50
byte, byte-size, byte-position 50
byte-position 50
byte-position function 50
byte-size function 50
:byte-size option for copyt 28
byte-size, byte-position 50
byte-specifier 50

C command 113

C, FUNCTION M, and FUNCTION @ 113
c-3) 125

c-3) Zwei command 125

c-B) Zmacs command 125

c-C command 113

c-END Converse command 116

c-END swapped in Converse 116

c-M creates a process 116

c-M Debugger command 116

(c-m-L) Zmacs command 125
c-m-SUSPEND command 116

c-Q command 113

(c-X 4) 127

(c-X 4) Zmacs command 127

{c-X B) Zmacs command 125

(c-X c-3) 125

(c-X c-3) Zwel command 125

(c-X c-B) Zmacs command 125

(c-X J) Zmacs command 127

Cables Should Not Halt the FEP 137
Called)Boot.boot 134

called by reader macros: sl:read-recursive 83
can be a menu or a form 105

can be used with stack lists 148

can have package prefixes 92

Can Now Be Used for Editor Commands 103
can now retum nil 97

can take arguments 105

Can Use Combination Type as Method Type 83
canonical file type: :mss 126
canonical pathname type removed 35

RN Release 5.0 Release Notes

159

Symbolics, Inc. March 1984

:bin

disp

«gbin

Change

Change

New special forms catch and throw replace
New special forms

More Information Available on
Use

Ramifications of Host Colon

Changes to Add Patch
Add Patch

canonical type 34

canonical type 34

canonical type 34

Carry tape system 1

case of buffer 1256

case of region 125

*catch and *throw 14

catch and throw replace *catch and *throw 14

catch special fom 14

Causes of Crashes 137

cdr with locatives returned by loct 148

CFTP 1089

Change case of buffer 125

Change case of region 125

Change for Babyl Files 129

Change in argument to
process-walt-with-timeout 95

Change in arguments to print-herald 39

Change in arguments to unadvise 39

Change in Debugger special command for
fs:directory-not-found 98

Change in numeric arguments to Copy File
(m-X) 124

Change in type of array returned by
string-append 16

Change in Zmacs command Modified Two Windows
(c-X &) 127

Changed Definitions (m-X) and Add Patch Changed
Definitions of Buffer (m-X) 123

Changed Definitions (m-X) Zmacs command 123

Changes to Add Patch Changed Definitions (m-X) and Add Patch

Add Patch

Default File Name
Meaning of argument
Arguments

FEP Version 15: Incompatible
Window System

Changed Definitions of Buffer (m-X) 123

Changed Definitions of Buffer (m-X) Zmacs
command 123

Changed for Commands in Dired Buffer 126

changed for fs:parse-pathname 32

changed for fs:user-homedir and
fs:init-file-pathname 34

Changes 133

Changes Associated with Mouse Input 40

Changes to :mouse-click method of
tviessential-mouse 42

Changes to :tyi, :tyi-no-hang, :list-tyi, :mouse-or-
kbd-tyi, and :mouse-or-kbd-tyi-no-harig
methods of tv:stream-mixin 40

Changes to Add Patch Changed Definitions (m-X) and
Add Patch Changed Definitions of Buffer
m-X) 123

Changes 1o chaos:open-stream 108

Changes to Converse Notifications 117

Changes to Font Editor File Commands 113

Changes to format:ochar 21

Changes to FUNCTION C, FUNCTION M, and
FUNCTION Q@ 113

Changes to Host Determination in Pathnames 30

Changes to input editor options :do-not-echo, :pass-
through, :prompt, :reprompt 22

Changes to Input Editor User Interface 22

160 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Incompatible Changes to Lisp in Release 5.0 5
Changes to Logical Pathname Translations 35
Changes to Logical Pathnames 35
Changes to login 5
Intemal changes to macros zwei:defmajor and
zwel:defminor 127
Changes to make-syn-stream 20
Changes to Networks in Release 5.0 107
Incompatible Changes to Networks in Release 5.0 107
Changes to open 24
Changes to open option :direction 24
Changes to Packages 6
Changes to prompt-and-read 84
Changes to Readtable, Reader, and Printer for
Common Lisp 16
Changes to renamef and copyf 26
Changes to Serial 1/0: Parity Recovery and Xon/Xoff
Character Setting 109
Changes to the FEP in Release 5.0 133
Changes to the File System in Release 5.0 119
Incompatible Changes to the File System in Release 5.0 119
Incompatible Changes to the Input Editor (Rubout Handler) 21
Changes to the Lisp Language and Compiler in
Release 5.0 5
Changes to Utilities in Release 5.0 113
Incompatible Changes to Utilities in Release 5.0 113
Changes to VMS Chaosnet 109
Changes to Zmacs In Release 5.0 123
Incompatible Changes to Zmacs In Release 5.0 123
Changes to Zmail in Release 5.0 129
Incompatible Changes to Zmail in Release 5.0 129
:chaos event 95
:chaos option for si:sb-on 95
chaos:close function 107
chaos:stream, chaos:close, and chaos:finish renamed 107
chaos:close-conn function 107
New function: chaos:conn-finishedp 109
chaos:conn-finished-p function 109
neti:reset, neti:enable, and neti:disable replace chaos:reset, chaos:enable, and
chaos:disable 107
chaos:disable function 107
chaos:enable function 107
neticreset, neti:enable, and neti:disable replace chaos:reset,
chaos:enable, and chaos:disable 107
chaos:finish function 107 :
chaos:stream, chaos:close, and chaos:finish renamed 107
chaos:finish-conn function 107
chaos:make-stream function 107
Changes to chaos:open-stream 108
chaos:open-stream function 108
Show Hardcopy Status (m-X) replaces chaos:print-igp-queue 115
chaos:print-lpg-queue function 115
chaos:reset function 107
neti:reset, neti:enable, and neti:disable replace chaos:reset, chaos:enable, and
chaos:disable 107
chaos:return-pkt function 108
chaos:send-pkt function 108
chaos:send-unc-pkt automatically retums the packet

RN Release 5.0 Release Notes

161

Symbolics, Inc. March 1984

Changes to VMS

Known problem: char-upcase and

Known problem:

Activation

Escape

Macro

Reading and Printing

Changes to Serial 1/0: Parity Recovery and Xon/Xoff

Continue Command Sends an All-keys-up
Activation
Floating-point exponent

1o the free pool 108
chaos:send-unc-pkt function 108
chaos:stream function 107
chaos:stream, chaos:close, and chaos:finish

renamed 107
Chaosnet 109
Chaosnet sequence break 95
char-downcase function 145
char-downcase undefined for modified

characters 145
char-upcase and char-downcase undefined for

modified characters 145
char-upcase function 145
character 65
character 114
character 17 -
Character Objects 19
:character option for prompt-and-read 85
Character output 21
Character quoter 17
Character Setting 108
Character syntax descriptions 17
Character to Lisp 137
characters 22, 57
characters 17

Known problem: char-upcase and char-downcase undefined for modified

Mouse
Octal escape for special

Circular-link

Compiler Performs Style

New

Clicking Middle Edits Current String in
si:

New variable:

Release 5.0: Notes and

New
New FEP Commands: Add Disk-type and

:clear-screen, :clear-eol, and

:clear-screen,

Previously undocumented function:

characters 145
characters 102
characters 17
«characters option for copyf 28
Characters with modifier bits 145
checking 120
Checking on All Forms 81
CHNCP.GSF global section 109
Choose-variable-values Keywords 76
Choose-variable-values Windows 105
circlecross syntax description 18
Circular-link checking 120
cl:*read-default-fioat-format* 17
cl:*read-default-float-format* variable 17
cl:double-float format 17
cl:long-float format 17
cl:short-float format 17
cl:single-float format 17
Clarifications 143
Clarifications and Corrections for Release 5.0 143
clause for condition-call: :no-error 98
Clear Disk-types 136
Clear Disk-types FEP command 136
:clear-eof messages to windows renamed 44
:clear-eof method of tv:sheet 44
:clear-eol method of tvisheet 44
:clear-eol, and :clear-eof messages to windows
renamed 44
clear-resource 78
clear-resource function 78
:clear-rest-of-line method of tv:sheet 44
sclear-rest-of-window method of tv:sheet 44

162

RN Release 5.0 Release Notes

Receiving mouse
Modified mouse
Shifted Mouse

chaos:

chaos:stream, chaos:
chaos:

Lowercase

Uppercase

Lowercase

Uppercase

Imlac terminal
string-length uses same
What happens when you
New variable: tv:

tv:

Ramifications of Host
zwel:

Some Methods Can Use
Add Disk-type FEP
Add Patch Changed Definitions (m-X) Zmacs

Append Conversation By References (m-X) Zmalil
Boot FEP

c-END Converse

c-M Debugger

c-m-SUSPEND

Clear Disk-types FEP

Comment Out Region (c-X c-3) Zwei
Continue FEP

Copy File (m-X) Zmacs

Delete Conversation By References (m-X) Zmail
Disk Format FEP

END Converse

Find Files in Tag Table (m-X)) Zwei
FUCTION m-Q

FUNCTION C

FUNCTION c-C

FUNCTION c-Q

FUNCTION M

FUNCTION m-C

FUNCTION Q

FUNCTION W

h-c-upper-left

Jump to Saved Position (c-X J) Zmacs
List Buffers (c-X c-B) Zmacs

Load Microcode FEP

Load Sync-program FEP

Symbolics, Inc. March 1984

:clear-screen method of tv:sheet 44

:clear-screen, :clear-eol, and :clear-eof messages
to windows renamed 44

:clear-window method of tv:sheet 44

Clicking Middle Edits Current String in Choose-
variable-values Windows 105

clicks 40

clicks as editor commands 103

Clicks Can Now Be Used for Editor Commands 103

wclock event 95

:clock option for si:sb-on 85

Clock sequence break 95

close function 107

close, and chaos:finish renamed 107

close-conn function 107

Code in Buffer (m-X) Zwei command 125

Code in Buffer (m-X) Zwei command 125

Code in Region (m-X) Zwei command 125

Code in Region (mn-X) Zwei command 125

codes 114

coercion rules as string 16

cold boot 143

cold-load-stream-old-selected-window 74

cold-load-stream-old-selected-window variable 74

Colon Change for Babyl Files 129

com-zmail-select-all-conversations-by-references
function 130

Combination Type as Method Type 83

command 136

command 123

Add Patch Changed Definitions of Buffer (m-X) Zmacs

command 123
command 130
command 134
command 116
command 116
command 116
command 136
command 125
command 137
command 28, 124
command 130
command 134
command 116
command 125
command 113
command 113
command 113
command 113
command . 113
command 113
command 113
command 148
command 133, 140
command 127
command 125
command 134
command 134, 135

RN Release 5.0 Release Notes 163
Symbolics, Inc. March 1984

Load World FEP command 134
Lowercase Code in Buffer (m-X) Zwei command 125
Lowercase Code in Region (m-X) Zwei command 125
m-SUSPEND command 116
Major-mode-setting command 126
Modified Two Windows (c-X 4) Zmacs command 127
NETWORK A command 114
NETWORK B command 114
NETWORK L command 114
NETWORK M command 114
NETWORK Q@ command 114
NETWORK X command 114
R Fed command 113
Resume Patch (m-X) Zmacs command 124
Return-keyboard-to-lisp FEP command 137
Select All Conversations By References (m-X) Zmail command 130
Select Buffer (c-X B) Zmacs command 125
Select Conversation By References (m-X) Zmail command 130
Select Previous Buffer (c-m-L) Zmacs command 125
i SELECT T command 114
SELECT X command 114
Set Package (m-X) Zmacs command 123
Show Configuration FEP command 135
Show File FEP command 134
Show Hardcopy Status (m-X) Zwei command 115
Show Status FEP command 137, 140
Source Compare (m-X) Zwei command 123
Source Compare Newest Definition (m-X) Zmacs command 124
Start Private Patch (m-X) Zmacs command 124
Uppercase Code in Buffer (m-X) Zwei command 125
Uppercase Code in Region (m-X) Zwei command 125
M Fed command 113
Disk Format Command Asks Different Question 134
Show Configuration Command Displays More Information 135
Show Status Command Displays More Useful Information 140
Change in Debugger special command for fs:directory-not-found 98
Change in Zmacs command Modified Two Windows (c-X 4) 127
scommand option 58
Continue Command Sends an All-keys-up Character to
Lisp 137
New input editor options: :no-input-save, :activation,
:command, :preemptable 57
New Zwei command: Comment Out Region (c-X c-;) 126
New Zwei command: Find Files in Tag Table (m-X) 125
New Zmacs command: Resume Patch (m-X) 124
New Zmacs command: Source Compare Newest Definition
m-X) 124
New Zmacs command: Start Private Patch (m-X) 124
Changes to Font Editor File Commands 113
Modified mouse clicks as editor commands 103
NETWORK commands 114
New Defautts for FEP Commands 134
Shifted Mouse Clicks Can Now Be Used for Editor Commands 103
Default File Name Changed for Commands in Dired Buffer 126
Major-mode-setting Commands Now Query About Updating File Attribute
List 126
New FEP Commands: Add Disk-type and Clear
Disk-types 136

164

RN Release 5.0 Release Notes

New Zwei command:

Streams sharing

Changes to Readtable, Reader, and Printer for
Reader Accepts

Get

Both defauit pathnames for Source
Source

New Zmacs command: Source

. Source

Changes to the Lisp Language and

Pathname

String

:special-command-p method of
New

New

New clause for

New message to
Show

Show

Site

New function: chaos:
chaos:

String
Delete

Returning

Append
Delete

Select

Symbolics, Inc. March 1984

Comment Out Region (c-X c-;) 125

Comment Out Region (c-X c-3) Zwei
command 125

Comments for Lisp reader 83

common buffers 89

Common Lisp 1

Common Lisp 16

Common Lisp Floating Point Exponents 17

Common Lisp readtable 83

Common Property Lists process 143

Communication between programs and input
editor 63

Compare (m-X) now use :newest version 123

Compare (m-X) Zwei command 123

Compare Newest Definition (n-X) 124

Compare Newest Definition (m-X) Zmacs
command 124

Comparing backup tapes 151

Compiler 1

Compiler in Release 5.0 5

Compiler now warns about implicit progns in
loops 82

Compiler Performs Style Checking on All Forms 81

compiler:style-checker property 81

Complement mouse documentation line 113

Complement screen 113

Complement window 113

completion on VMS 109

concatenation 16

condition 74

condition flavor: fs:multiple-file-not-found 69

condition flavor: fs:rename-across-hosts 70

condition-bind special form 97

condition-call special form 98

condition-call-if special form 98

condition-call: :no-error 98

condition-case special form 98

conditions: :special-command-p 74

Configuration Command Displays More
Information 135

Configuration FEP command 135

Configuration for Dialnet 151

conn-finishedp 109

conn-finished-p function 109

construction 65

contents of window 44

Continue Command Sends an All-keys-up Character
to Lisp 137

Continue FEP. command 137

control from input editor 57

CONTROL key 102

Controlling typeout style 65

Conversation By References (m-X) Zmail
command 130

Conversation By References (m-X) Zmail
command 130

Conversation By References (m-X) Zmalil
command 130

RN Release 5.0 Release Notes

165

Symbolics, Inc. March 1984

Sorting by
Select All

New [map Over] Menu ltem: [select
[Select

END and c-END swapped in

~ c-END

END

Changes to
zwei:

Change in numeric arguments to

Using

:byte-size option for
:characters option for
:create-directories option for
:report-stream option for
Changes to renamef and

Previously Undocumented Feature:
si:
si:
sl

Clarifications and
sys:
sys:

Program
Displaying program
Current micro PC

New font: fonts:
More Information Available on Causes of

Set Package (m-X) offers to

Debugger ¢-M

Directory
Ratios read in current ibase and print in
Ratios read in

FUNCTION 2 U displays
Clicking Middle Edits

Conversations Available 130

Conversations By References (m-X) Zmail
command 130

Conversation] 130

Conversation] Map Over menu item 130

Converse 116

Converse command 116

Converse command 116

Converse facility 116

Converse Notifications 117

converse-end-exits variable 116

Convert number to single-precision floating-point 48

Convert number to small flonum 48

Converting numbers to double-precision
floating-point 49

Copy File (m-X) 124

Copy File (n-X) Zmacs command 28, 124

copy-array-contents function 145

copy-array-contents-and-leader function 145

copy-array-portion function 145

copy-array-portion on the same array 145

copyt 28

copyf 28

copyt 28

copyf 28

copyf 26

copyf function 28

Copying file attributes 124

Copying files 28

Coroutine Streams 89

coroutine-bidirectional-stream flavor 92

coroutine-input-stream flavor 92

coroutine-output-stream flavor 92

:correct-input 23, 24

Corrections for Release 5.0 143

%count-disk-page-read-operations-in-scavenger
meter 52

%count-disk-page-read-operations-in-transporter

- meter 52

counter (PC) metering 50

counters information 137

(CPC) status information 137

cptfonti 75

Crashes 137

Create a byte specifier 50

create a package 123

Create new logical host 37

:create value of open option :if-does-not-exist 25

«create-directories option for copyf 28

:create-screen-array message to screens 79

creates a process 116

Creating logical host 38

creation on VMS 109

current base 19

current ibase and print in current base 19

Current micro PC (CPC) status information 137

current process name in status line 148

Current String in Choose-variable-values

166

RN Release 5.0 Release Notes

Mouse

NETWORK

New
Network
New variable:

Functions moved from the si package to global:
New variable: dbg:

D

Symbolics, Inc. March 1984

Windows 105
cursor speed 100

D command 114

D exponent identifier 17

data types: :single-float and :double-float 49
database 107

:date option for prompt-and-read 85
:date-or-never option for prompt-and-read 85
dbg:*debug-io-override* 74
dbg:*debug-lo-override® variable 74
dbg:decode-micro-pc function 137
deallocate-whole-resource function 13
deallocate-whole-resource, map-resource 13
Deallocating allocated objects of a resource 13
debug-io-override 74

debug-io-override variable 74

.m-SUSPEND selects frame with break read function for

c-M
Change in

How to use the sys:function-parent
sys:function-parent

Dumper Restarting and Append-to-tape

Recursion in Bound and
New
Both

New

Font Editor file type
New
New special form:

:mixture option for
:required-init-keywords option for
New option for

New option for

New special form: format:
format:

New special form:

Debugger 116

Debugger c-M creates a process 116

Debugger command 116

Debugger special command for
fs:directory-not-found 98

:decimal-number option for prompt-and-read 85

:decimal-number-or-nil option for
prompt-and-read 85

declaration 145

declaration 145

decode-micro-pc function 137

Default 121

Default File Name Changed for Commands in Dired
Bufler 126

Default Font Format Now Bid 113

Default handlers 97

Default Handlers Eliminated 97

Default LMFS Translation Table for Sys Hosts 119

default pathnames for Source Compare (m-X) now
use :newest version 123

Default Representations for Newest and Oldest
Logical Pathname Versions 35

«default-value option to make-plane 80

defaults 113

Defaults for FEP Commands 134

defconstant 45

defconstant special form 45

defflavor 54

defflavor 54

defflavor: :mixture 54

deffiavor: :required-init-keywords 53

defformat 56

defformat special form 56

define-symbol-macro 53

define-symbol-macro special fom 53

Defining a format directive 56

Defining family of flavors 54

Definition 145

RN Release 5.0 Release Notes

167

Symbolics, Inc. March 1984

New Zmacs command: Source Compare Newest
Source Compare Newest

Changes to Add Patch Changed
Add Patch Changed

Definition (m-X) 124

Definition (m-X) Zmacs command 124

Definition types 145

Definitions (m-X) and Add Patch Changed Definitions
of Bufier (m-X) 123

Definitions (m-X) Zmacs command 123

Changes to Add Patch Changed Definitions (m-X) and Add Patch Changed

Add Patch Changed
Internal changes to macros zwel:
zwel:

zwel:
New special form:

sys:

Previously undocumented function:

si:alphabetic syntax
si:break syntax
si:circlecross syntax
si:doublequote syntax
si:macro syntax
si:single syntax
si:slash syntax
si:verticalbar syntax
si:whitespace syntax
Character syntax
New

bitbit width from the
Previously undocumented special form:

Changes to Host
New function:

International
Site Configuration for

Disk Format Command Asks
New descriptions: si:bitscale, si:

Definitions of Buffer (m-X) - 123
Definitions of Buffer (m-X) Zmacs command 123
defmajor and zwel:defminor 127
defmajor macro 127

Internal changes to macros zwel:defmajor and zwei:

defminor 127
defminor macro 127
defpackage 7

defpackage special form 7

defsubst-with-parent macro 145

Delete contents of window 44

Delete Conversation By References (m-X) Zmail
command 130

Delete to end of line 44

Delete to end of window 44

:delimited-string option for prompt-and-read 85

«delimited-string-or-nil option for
prompt-and-read 85

«delimiter option for prompt-and-read 85

describe-system 94

describe-system function 94

description 18

description 18

description 18

description 18

description 18

description 18

description 18

description 18

description 18

descriptions 17

descriptions: si:bitscale, si:digitscale,
si:non-terminating-macro 17

destination array 145

destructuring-bind 77

destructuring-bind special form 77

Determination in Pathnames 30

dfioat 49

dfioat function 49

dial network 151

DIAL network type 151

Diatnet 151

Different Question 134

digitscale, si:non-terminating-macro 17

Muttidimensional Arrays on the 3600 Remember Actual

:input value of open option

:output value of open option

:probe value of open option
:probe-directory value of open option
:probe-link value of open option

Dimensions 78
«direction 24
«direction 24
«direction 24
«direction 24
«direction 24

168 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
Changes to open option «direction 24
«direction option 24
Defining a format directive 56
“« format directive 55
‘> format directive 55
“@* format directive 21
“@T format directive 21
"G format directive 21
"X format directive 21
format "\ directives can have package prefixes 92
format directives “@T and “@* replace "X and "G 21
New format directives: “» and "« 55
Home directory 34
Directory creation on VMS 109
LMFS Now. Supports Directory Links 120
Wildcard Directory Mapping Avallable 92
Change in Debugger special command for fs: directory-not-found 98
fs: directory-not-found flavor 98
Dired 126
Default File Name Changed for Commands in Dired Buffer 126
neti:reset, neti:enable, and neti:disable replace chaos:reset, chaos:enable, and chaos:
disable 107
chaos: disable function 107
neti: disable function 107, 108
neti:reset, neti:enable, and neti: disable replace chaos:reset, chaos:enable, and
chaos:disable 107
Optimizing disk allocation 25
Disk Format Command Asks Different Question 134
Disk Format FEP command 134
:disk option for si:sb-on 95
Disk sequence break 95
New FEP Commands: Add Disk-type and Clear Disk-types 136
Add Disk-type FEP command 136
New FEP Commands: Add Disk-type and Clear Disk-types 136
Clear Disk-types FEP command 136

* FUNCTION 2 W
Show Configuration Command
Show Status Command

Changes to input editor options

Complement mouse

RFC822

Rfc822

Invisible blocks in progs and

New data types: :single-fioat and

cl:

New functions: sys:single-float-p, sys:

sys:
|IEEE-standard
3600 Supports leee Single- and
Converting numbers to
si:
:draw-filled-in-circle uses same algorithm as

:displaced-conformally option for make-array 78

Display process name 148

Displaying program counters information 137

displays current process name in status line 148

Displays More Information 135

Displays More Useful Information 140

:do-not-echo option 22

:do-not-echo, :pass-through, :prompt,
reprompt 22

documentation line 113

domain addressing 130

Domain Addressing Supported 130

dos 78

:double-float 49

double-float format 17

double-floatp 49

double-float-p function 49

double-precision 48

Double-precision Fioating Point 48

double-precision floating-point 49

doublequote syntax description 18

:draw-circle 99

:draw-circle method of tv:graphics-mixin 99

RN Release 5.0 Release Notes

169

Symbolics, Inc. March 1984

sys:
LMFS
LMFS

tv:

«draw-filled-in-circle method of
tv:graphics-mixin 99

«draw-filled-in-circle uses same algorithm as
«draw-circle 99

dump-forms-to-file always puts package attribute
into binary file 82

dumper 121

Dumper Restarting and Append-to-tape Default 121

Dumper Supports Accordion Wildcards 119

E exponent identifier 17
edit-namespace-object function 107

Baby! files with summary-window-format other than t or nil need to be

Communication between programs and input
Input

Namespace

Reading function to use input

Returning control from input

Incompatible Changes to the Input

New Features Associated with the Input
Font

Modified mouse clicks as

Shifted Mouse Clicks Can Now Be Used for
Changes to Font

Font

[Read File) Font

[Write File] Font

Changes to input

New input

Changes to Input
Using the Input
Clicking Middle

sort predicate should return nil for equal

Optional argument to mapatoms-all and where-is
Recursion in Bound and Defauit Handlers

chaos:

neti:

edited 129

editor 63

editor 1

editor 107

editor 59

editor 57

Editor (Rubout Handler) 21

Editor (Rubout Handler) 57

Editor and Inspector use ESCAPE to evaluate
forms 116

editor commands 103

Editor Commands 103

Editor File Commands 113

Editor file type defaults 113

Editor menu item 113

Editor menu item - 113

editor options :do-not-echo, :pass-through,
iprompt, :reprompt 22

editor options: :no-input-save, :activation,
:command, :preemptable 57

:editor output format style 21

Editor User Interface 22

Editor: Examples 65

Edits Current String in Choose-variable-values
Windows 105

elements 144

eliminated 7

Eliminated 97

enable function 107

enable function 107, 108

neti:reset, neti:enable, and neti:disable replace chaos:reset, chaos:

neti:reset, neti:

Error

Delete to
Erase to
Delete to
Erase to
Inspecting hash arrays of

enable, and chaos:disable 107
enable, and neti:disable replace chaos:reset,
chaos:enable, and chaos:disable 107
Enabled events 95
encapsulation 65
END and c-END swapped in Converse 116
END Converse command 116
end of line 44
end of line 44
end of window 44
end of window 44
eq hash tables not permitted 145

170 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

New function: eql 44
eql function 44
sort predicate should retumn nil for equal elements 144
Erase 1o end of line 44
Erase to end of window 44
Erase window 44
Error encapsulation 65
New error flavors: sys:parse-error and
sys:parse-ferror 23
serror value ol open option :if-does-not-exist 25
serror value of open option for :if-exists 25
Improvements t0 make-system: error-restamnt, selective transformations 94
Syntax errors in read functions 23
Avoid Errors in the Mouse Process 149
New message to arithmetic errors: :operands S8
Escape character 114
Octal escape for special characters 17
Font Editor and Inspector use ESCAPE to evaluate forms 116
:mouse-click method of tv: = essential-mouse 42
Changes to :mouse-click method of tv: essential-mouse 42
New open option: :estimated-length 25
:estimated-length option 25
:eval-form option for prompt-and-read 85
:eval-form-or-end option for prompt-and-read 85
evalhook function 72, 73
Evaluate a Lisp form 116
Font Editor and Inspector use ESCAPE to evaluate forms 116
:chaos event 95
:clock event 95
:keyboard event 95
Enabled events 95
Flavor Examiner 1
New feature: Flavor Examiner (SELECT X) 114
Using the Input Editor: Examples 65
h-c-upper-left stops execution of Lisp 133
meter: expand-range function 51
Floating-point exponent characters 17
exponent identifier 17
exponent identifier 17
exponent identifier 17
exponent identifier 17
exponent identifier 17
exponent identifier 17
t Exponents 17
:expression option for prompt-and-read 85
:expression-or-end option for prompt-and-read 85
:extension option to make-plane 80
External symbols 6
Extract position field of a byte-specifier 50
Extract size field of a byte specifier 50

NHre-rnmMmoOo

Reader Accepts Common Lisp Floating Poi

3

RN Release 5.0 Release Notes

171

Symbolics, Inc. March 1984
Converse
Defining
Previously Undocumented

New
FEP Version 14: New
FEP Version 15: New
FEP Version 16: New
New

New
New
New
New
New
New

R

W

Unplugging Lemo Cables Should Not Halt the
Add Disk-type

Boot

Clear Disk-types
Continue

Disk Format

Load Microcode

Load Sync-program
Load World
Return-keyboard-to-lisp
Show Configuration
Show File

Show Status

New Defaults for

New

Changes to the

Extract size

Extract position
Redistributed- header
Resent- header

Init

Logging host output to
Rename

F exponent identifier 17

facility 116

family of flavors 54

Feature: Coroutine Streams 89

feature: Flavor Examiner (SELECT X)

Features 133

Features 135

Features 136

Features Associated with the Input Editor (Rubout
Handler) 57

114

Features in Lisp in Release 5.0 44

Features in Networks in Release 5.0
Features in the File System in Release 5.0
Features in Utilities in Release 5.0
Features in Zmacs in Release 5.0
Features in Zmail in Release 5.0

13
113

Fed command
Fed command
FEP 1

FEP 137
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP command
FEP Commands

136
134

137, 140
134

108

120
114
124

130

FEP Commands: Add Disk-type and Clear

Disk-types
FEP in Release 5.0

136
133

FEP Supports Hdlc Serial 110

FEP Version 14:
FEP Version 15:
FEP Version 15:
FEP Version 15:
FEP Version 16:
FEP Version 16:
FEP Version 17:
FEP Version 18:

New Features
Improvements

Incompatible Changes

New Features
Improvements
New Features
Improvements
Improvements

field of a byte specifier 50
field of a byte-specifier 50

fields 130
fields 130
fle 34
fle 114
file 27

133

133
135
133
135
137
136
140
140

sys:dump-forms-to-file always puts package attribute into binary

Change in numeric arguments to Copy
Copy

fle 82
File (m-X) 124

File (m-X) Zmacs command 28, 124
Major-mode-setting Commands Now Query About Updating

172

RN Release 5.0 Release Notes

Copying

Changes to Font Editor
Show

Default

Probe
summary-window-format Babyl
Init

Zmail Init

Changes to the
Incompatible Changes to the
New Features in the
[Reload/Retrieve]

fep

Font Editor

New canonical

YBoot.boot
>Configuration.fep

Copying

Ramifications of Host Colon Change for Babyl
YConfiguration.fep

New Zwei command: Find
Find

Babyl

[Read
[Write
New Zwei command:

net:

chaos:

chaos:stream, chaos:close, and chaos:
chaos:

New methods of tv:stream-mixin: :start-typeout,

fs:directory-not-found
fs:multiple-file-not-found
fs:rename-across-hosts
fs:undefined-logical-pathname-translation
Remove
si:coroutine-bidirectional-stream
si:coroutine-input-stream
si:coroutine-output-stream
si:modem

si:modem-error
si:serial-hdic-stream
sys:arithmetic-error
sys:parse-efror

sys:parse-ferror

tv:any-tyl-mixin
tv:kbd-mouse-buttons-mixin
tv:list-mouse-buttons-mixin

Symbolics, Inc. March 1984

File Attribute List 126

file attributes 124

File Commands 113

File FEP command 134

File Name Changed for Commands in Dired
Buffer 126

File opened for input 24

File opened for output 24

file opening 24

file option 129

File Pathnames Standardized 34

File Pathnames Standardized 129

File System 1

File System in Release 5.0 119

File System in Release 5.0 119

File System in Release 5.0 120

File System Maintenance menu item 151

file type 134

file type defaults 113

file type: :mss 126

fles 134

files 134

fles 28

Files 129

Files Are Now Called)Boot.boot 134

Files in Tag Table (m-X) 126

Files in Tag Table (m-X)) Zwei command 125

files with summary-window-format other than t or
nil need to be edited 129

File] Font Editor menu item 113

File) Font Editor menu item 113

Find Files in Tag Table (m-X) 125

Find Files in Tag Table (m-X)) Zwei command

find-objects-from-property-list function 143

finish function 107

finish renamed 107

finish-conn function 107

finish-typeout method of tv:stream-mixin 64

Ainish-typeout, :rescanning-p, :force-rescan,
sreplace-input, :read-bp 63

Fixed-width italic font 75

flavor 98

flavor 70

flavor 70

flavor 37

flavor 53

flavor 92

flavor 92

flavor 92

flavor 111

flavor 111

flavor 110

flavor 98

flavor 23

flavor 24

flavor 40

flavor 42

flavor 42

125

RN Release 5.0 Release Notes

173

Symbolics, Inc. March 1984

tv:list-tyl-mixin
tv:margin-space-mixin
tv:preemptable-read-any-tyi-mixin
tv:truncatable-lines-mixin
tv:truncating-lines-mixin
tv:truncating-window

New feature:

New condition
New condition
New

Defining family of

New ermor
New

3600 Supports leee Single- and Double-precision
Reader Accepts Common Lisp

Convert number to single-precision
Converting numbers to double-precision

floatp retumns t for any

Convert number to small
Small

Fixed-width italic
Changes to

[Read File)

[Write File)

Default

New

New font:

flavor 40

flavor 75

flavor 43

flavor 102

flavor 102

flavor 102

Flavor Examiner 1

Flavor Examiner (SELECT X) 114

Flavor fs:undefined-logical-pathname-transiation
replaces
fs:undefined-logical-pathname-directory 37

Flavor tv:preemptable-read-any-tyi-mixin
obsolete 43

flavor: fs:muttiple-file-not-found 69

flavor: fs:rename-across-hosts 70

flavor: tv:margin-space-mixin 74

flavors 54

Flavors tv:any-tyi-mixin and tv:list-tyi-mixin
obsolete 40

Flavors tv:list-mouse-buttons-mixin and tv:kbd-
mouse-buttons-mixin obsolete 42

flavors: sys:parse-error and sys:parse-ferror 23

flavors: tv:truncatable-lines-mixin,
tvitruncating-lines-mixin 102

float function 48

float retumns a single-precision number 48

Floating Point 48

Floating Point Exponents 17

Floating point numbers 1

flioating-point 48

floating-point 49

Floating-point exponent characters 17

floating-point number 49

Floating-point numbers 48, 49

floatp function 49

floatp returns t for any fioating-point number 49

Flonum 49

flonum 48

flonum - 49

font 75

Font Editor and Inspector use ESCAPE to evaluate
forms 116

Font Editor File Commands 113

Font Editor file type defaults 113

Font Editor menu item 113

Font Editor menu item 113

Font Format Now Bid 113

font-list option for prompt-and-read 85

font: fonts:cptfonti 75

fonts package 6

fonts:cptfonti 75

force-rescan method of tv:stream-mixin 64

New methods of tv:stream-mixin: :start-typeout, :finish-typeout, :rescanning-p,

Aforce-rescan, :replace-input, :read-bp 63
Forgetting objects remembered by a resource 78

Argument to :menu type menu items can be a menu or a

block special

form 105
form 46

174

RN Release 5.0 Release Notes

catch special
condition-bind special
condition-call special
condition-call-if special
condition-case special
defconstant special
define-symbol-macro special
defpackage special
destructuring-bind special
Evaluate a Lisp
format:defformat special
multtiple-value-call special
multiple-value-prog1 special
store special

tagbody special

throw special

trace special

unadvise special
with-stack-list special
with-stack-list* special
Nonkeyword

New special

New special

New special

Previously undocumented special
New special
cl:double-float
cl:long-float

cl:short-float
cl:single-float

Disk

Defining a

‘e

"o

-@*

-@T

G

X

New

Disk

New

Default Font
seditor output
:read output
:sail output

format:

New special form:
Changes to

Compiler Performs Style Checking on Ali
Font Editor and Inspector use ESCAPE to evaluate

Symbolics, Inc. March 1984

form 14
form 97
form 98
fom 98
form 98
form 45
form 53
form 7
fom 77
form 116
form 66
form 47
form 48
form 145
form 47
form 15
form 96
form 40
form 148
form 148

form of make-array is obsolete 16
form: defconstant 45
form: define-symbol-macro 53
form: defpackage 7
form: destructuring-bind 77
form: format:.defformat 56
format 17
format 17
format 17
format 17
Format Command Asks Different Question 134
format directive
format directive
format directive
format directive
format directive
format directive
format directive
format directives “@T and “@* replace "X and
G 2
format directives: "» and "« 55
Format FEP command 134
format for trace output 96
Format Now Bid 113
format style 21
format style 21
format style 21
format "\ directives can have package prefixes 92
format-args 24
format-output variable 56
Jormat-string 24
format:*format-output* variable 56
format:defformat 56
format:defformat special form 56
format:ochar 21
format:ochar function 21
Forms 81
forms 116

NRRNGae

RN Release 5.0 Release Notes

175

Symbolics, Inc. March 1984

New special

New special
New special

m-SUSPEND selects

forms catch and throw replace *catch and
*throw 14

forms: block and tagbody 46

forms: multiple-value-call and
multiple-value-progt 47

frame with break read function for Debugger 116

chaos:send-unc-pkt automatically returns the packet to the

New variable:
fs:make-logical-pathname-host replaces
Change in Debugger special command for

Arguments changed for fs:user-homedir and

New condition flavor:
Meaning of argument changed for
New condition flavor:

Previously undocumented function:

free pool 108
fs:*remember-passwords* 70
fs:*remember-passwords* variable 70
fs:add-logical-pathname-host 37
fs:add-logical-pathname-host function 37
fs:directory-not-found 98
fs:directory-not-found flavor S8
fs:init-file-pathname 34
fs:init-file-pathname function 34
fs:make-logical-pathname-host function 37
fs:make-logical-pathname-host replaces

fs:add-logical-pathname-host 37
fs:multiple-file-not-found 69 '
fs:multiple-file-not-found flavor 70
fs:parse-pathname 32
fs:parse-pathname function 33
fs:rename-across-hosts 70
fs:rename-across-hosts flavor 70
fs:set-logical-pathname-host 38
fs:set-logical-pathname-host function 38

Flavor fs:undefined-logical-pathname-transiation replaces

Flavor

Arguments changed for

s

applyhook

bitbit

byte

byte-position
byte-size
chaos:close
chaos:close-conn
chaos:conn-finished-p
chaos:disable
chaos:enable
chaos:finish
chaos:finish-conn
chaos:make-stream
chaos:open-stream
chaos:print-ipg-queue
chaos:reset
chaos:retum-pkt
chaos:send-pkt
chaos:send-unc-pkt
chaos:stream
char-downcase

fs:undefined-logical-pathname-directory 37
fs:undefined-logical-pathname-translation
flavor 37
fs:undefined-logical-pathname-translation replaces
fs:undefined-logical-pathname-directory 37
fs:user-homedir and fs:init-file-pathname 34
fs:user-homedir function 34
FUCTION m-Q command 113
full-ge function 73
function 72
function 145
function 50
function 50
function 50
function 107
function 107
function 109
function 107
function 107
function 107
function 107
function 107
function 108
function 115
function 107
function 108
function 108
function 108
function 107
function 145

176

RN Release 5.0 Release Notes

char-upcase

clear-resource
copy-array-contents
copy-array-contents-and-leader
copy-array-portion

copyf

dbg:decode-micro-pc
deallocate-whole-resource
describe-system

dfioat

fs:add-logical-pathname-host
fs:init-file-pathname
fs:make-logical-pathname-host
fs:parse-pathname
fs:set-logical-pathname-host
fs:user-homedir
gc-immediately

intern

intern-local

intern-local-soft

intern-soft

load-file-list

login

make-array

make-package

make-plane

make-syn-stream
map-resource

mapatoms-all
meter:expand-range
meter:function-name-with-escapes
meter:function-range
meter:list-functions-in-bucket
meter:make-pc-array
meter:map-over-functions-in-bucket
meter:monitor-all-functions
meter:print-functions-in-bucket
meter:range-of-bucket
meter:report
meter:start-monitor
meter:stop-monitor

mod
net:find-objects-from-property-list
neti:disabie

neti:enable

neti:reset

package-used-by-list
pkg-create-package
print-herald

print-notifications
process-wait-with-timeout
prompt-and-read

read

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

145
78

145
145
145

137
13

49
72,73

B2IRLARPINERBVFNGINNVGRBRARENES

Symbolics, Inc.

March 1984

RN Release 5.0 Release Notes 177
Symbolics, Inc. March 1984

read-delimited-string function 60
read-from-string function 84
read-or-end function 62
readline function 62
readline-or-nil function 63
v readline-trim function 62
record-source-file-name function 147
remprop function 147
renamef function 27
tplaca function 148
placd function 148
set-syntax-from-description function 18
si:full-ge function 73
si:halt function 133
si:install-microcode function 94
si:make-coroutine-bidirectional-stream function 91
si:make-coroutine-input-stream function 91
si:make-coroutine-output-stream function i
si:make-process-queue function 71
si:make-serial-stream function 110, 111
si:patch-loaded-p function 70
si:process-dequeue functon 71
si:process-enqueue function 71
si:process-queue-locker function 71
si:read-recursive function 83
si:reset-process-queue function 71
si:sb-on function 95
sort function 144
string function 16
string-append function 16
string-compare function 81
string-downcase functon 80
string-length function 16
string-upcase function 80
sys:%halt function 133
sys:double-float-p function 49
sys:parse-ferror function 24
sys:single-float-p function 49
tv:add-to-system-menu-create-menu function 104
tv:add-to-system-menu-programs-column function 104
tv:edit-namespace-object function 107
tv:menu-choose function 149
tv:mouse-wait function 101
tv:scroll-maintain-list function 105
tv:select-or-create-window-of-flavor function 104
tv:set-defauit-font function 149
undefflavor function 53
where-is function 7
zwei:.com-zmail-select-all-conversations-by-references
function 130
FUNCTION 2 W displays current process name in
status line 148
FUNCTION C command 113
Changes to FUNCTION C, FUNCTION M, and FUNCTION Q 113
FUNCTION c-C command 113
FUNCTION c-Q command 113
tv:scroll-maintain-list init function can take arguments 105
m-SUSPEND selects frame with break read function for Debugger 116

178

RN Release 5.0 Release Notes

Changes to FUNCTION C,

Changes to FUNCTION C, FUNCTION M, and
New

Reading

meter:

How to use the sys:
sys:

meter:

New

New

Previously undocumented
Previously undocumented
New

New

Previously undocumented
New

New

New

New

New

New

Previously undocumented
New

New

Redefining

Syntax errors in read

New
New

New
Previously undocumented

New optional argument 1o
New variable:

Known problem with si:
si:

Symbols in

G

Symbolics, Inc. March 1984

FUNCTION key 133

FUNCTION M command 113

FUNCTION M, and FUNCTION Q@ 113

FUNCTION m-C command 113

FUNCTION @ 113

FUNCTION @ command 113

function to be called by reader macros:
si:read-recursive 83

function to use input editor 59

FUNCTION W command 148

function-name-with-escapes function 52

function-parent declaration 145

function-parent declaration 145

function-range function 52

function: applyhook 72

function: chaos:conn-finished-p 109

function: clear-resource 78

function: describe-system 94

function: dfloat 49

function: eql 44

function: fs:set-logical-pathname-host 38

function: make-package 7

function: mod 49

function: read-delimited-string 60

function: readline-or-nil 63

function: si:patch-loadedp 70

function: si:read-or-end 62

function: string-compare 81

function: sys:parse-ferror 24

function: undefflavor 53

functions 147

functions 23

Functions moved from the 8i package to global:
deallocate-whole-resource,
map-resource 13

functions: byte, byte-size, byte-position 50

functions: si:make-process-queue, si:process-
enqueue, si:process-dequeue, si:process-
queue-locker, si:reset-process-queue 71

functions: sys:single-float-p, sys:double-floatp 49

functions: tv:add-to-system-menu-programs-
column,
tv:add-to-system-menu-create-menu 103

G

gc-immediately 98

gc-immediately function 98

geon 73

ge-on variable 73

ge-reclaim-immediately 148

gc-reclaim-immediately variable 148

GET 109

Get Common Property Lists process 143

global and keyword packages with the same
names 7

Global history 125

Global kill history 22

RN Release 5.0 Release Notes

179

Symbolics, Inc. March 1984

Symbols moved to or from

CHNCP.GSF
Functions moved from the sl package to

Absolute
:draw-circle method of tv:
:draw-filled-in-circle method of tv:

si:halt replaces sys:

sk

sys:

sk

Unplugging Lemo Cables Should Not
3600 select-methods

Rubout
Incompatible Changes to the input Editor (Rubout

Bound

Defautt

Recursion in Bound and Default
What

Show

Show

Inspecting

Inspecting hash arrays of eq
format "\ directives can
FEP Supports

Redistributed-

Resent-

Logical Pathnames Now
Release 5.0: Introduction and
Global

Global kill

Input

Create new logical
Creating logical
Ramifications of

Changes to

Logging
New Default LMFS Translation Table for Sys

global package 1, 6

global package 9

global package symbols 9

global section 109

global: deallocate-whole-resource,
map-resource 13

goto 21

graphics-mixin 99

graphics-mixin 99

h-c-upper-left command 133, 140

h-c-upper-left stops execution of Lisp 133

h-c-upper-left waits for Lisp to stop itself 140

%halt 133

halt function 133

%halt function 133

halt replaces sys:%halt 133

Halt the FEP 137

handle :operation-handled-p and
:send-if-handles 81

handler 1, 22

Handler) 21

New Features Associated with the Input Editor (Rubout

Handler) 57

handlers 97

handlers 97

Handlers Eliminated 97

happens when you cold boot 143

Hardcopy 113 _

Hardcopy Status (m-X) replaces
chaos:print-igp-queue 115

Hardcopy Status (m~X) Zwei command 115

hash arrays of eq hash tables not permitted 145

hash tables not permitted 145

have package prefixes 92

Hdlc Serial /10 133

Hdlc Serial I/0 on the 3600 110

header fields 130

header fields 130

Hierarchical 35

Highlights 1

history 125

history 22

history 22

Home directory 34

Hook arguments 73

host 37

host 38

Host Colon Change for Babyl Files 129

Host Determination in Pathnames 30

shost option for prompt-and-read 85

host output to file 114

shost-list option for prompt-and-read 85

Hosts 119

How to use the sys:function-parent
declaration 145

180 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

HYPER key 102

FEP Supports Hdic Serial
Hdic Serial
:input-error-character serial
:input-xoff-character serial
:input-xon-character serial
;output-xoff-character serial
:output-xon-character serial
Changes to Serial

Ratios read in current
#!1 and #\ now

B exponent

D exponent

E exponent

F exponent

L exponent

S exponent

3600 Supports

:create value of open option
:error value of open option

New open options: :if-exists and
nil value of open option

:append value of open option for

:error value of open option for

:new-version value of open option for
soverwrite value of open option for

:rename value of open option for
:rename-and-delete value of open option for
:supersede value of open option for
‘truncate value of open option for

New .open options:

Compiler now wams about
FEP Version 15:
FEP Version 16:
FEP Version 17:
FEP Version 18:

FEP Version 15:

110 133

1/0 on the 3600 110

1/0 parameter 109

1/O parameter 109

I1/0 parameter 109

110 parameter 109

1/0 parameter 109

1/0: Parity Recovery and Xon/Xoft Character
Setting 109

ibase and print in current base 19

identical 19

identifier 17

identifier 17

identifier 17

identifier 17

identifier 17

identifier 17

leee Single- and Double-precision Floating Point 48

IEEE-standard double-precision 48

IEEE-standard single-precision 48

:if-does-not-exist 25

:if-does-not-exist 25

:if-does-not-exist 25

:if-does-not-exist 25

:if-does-not-exist option 26

:if-does-not-exist option for open 25

iif-exists 25

:if-exists 25

:if-exists 25

:if-exists 25

:if-exists 25

:if-exists 25

:if-exists 25

:H-exists 25

:if-exists and :if-does-not-exist 25

sif-exists option 25

sif-exists option for open 25

Imlac terminal codes 114

implicit progns in loops 82

Improvements 135

Improvements 137

Improvements 140

Improvements 140

improvements to Lisp in Release 5.0 77

Improvements to make-system: error-restart,
selective transformations 94

Improvements to Utilities in Release 5.0 116

Improvements to Zmacs in Release 5.0 126

Improvements to Zmall in Release 5.0 130

Incompatible Changes 133

Incompatible Changes to Lisp in Release 5.0 5

Incompatible Changes to Networks in Release
5.0 107

Incompatible Changes to the File System in Release

RN Release 5.0 Release Notes 181
Symbolics, Inc. March 1984
50 119 .
Incompatible Changes to the Input Editor (Rubout
Handler) 21

Current micro PC (CPC) status

Displaying program counters

Macro PC status

Old PCs (OPC) status

Show Configuration Command Displays More
Show Status Command Displays More Useful
More

Zmail

tv:scroll-maintain-tist

:space

Arguments changed for fs:user-homedir and fs:
fs:

New options for make-plane:
New options for make-plane: :initial-dimensions,

New

File opened for

Mouse

Window System Changes Associated with Mouse
Yanking previous

Communication between programs and
Reading function to use

Returning control from

Incompatible Changes to the

New Features Associated with the
Changes to

New
Changes to
Using the
Prompting for

Yanking

Font Editor and

si:

Second argument to si:

Use record-source-file-name

Changes to Input Editor User

Incompatible Changes to Utilities in Release 5.0 113

Incompatible Changes to Zmacs in Release 5.0 123

Incompatible Changes to Zmail in Release 5.0 129

information 137

information 137

information 137

information 137

Information 135

information 140

Information Available on Causes of Crashes 137

inhibit-idle-scavenging-flag variable 148

:init canonical pathname type removed 35

Init file 34

Init File Pathnames Standardized 34

Init File Pathnames Standardized 129

init function can take arguments 105

init option for tv:margin-space-mixin 75

init-file-pathname 34

init-file-pathname function 34

sinitial-dimensions option to make-plane 80

:Initial-dimensions, :initlial-origins 80

:initial-origins 80

:sinitial-origins option to make-plane 80

initialization list: :after-full-gc 73

input 24

input 42

Input 40

input 22

Input editor 1

input editor 63

input editor 59

input editor 57

Input Editor (Rubout Handler) 21

Input Editor (Rubout Handler) 57

input editor options :do-not-echo, :pass-through,
sprompt, :reprompt 22

input editor options: :no-input-save, :activation,
:command, :preemptable 57

Input Editor User Interface 22

Input Editor: Examples 65

input from user 85

input history 22

input in Zwei 1

:input value of open option :direction 24

:input-error-character serial /0 parameter 109

sinput-xoff-character serial 1/O parameter 109

:input-xon-character serial /0 parameter 109

Inspecting hash arrays of eq hash tables not
permitted 145

Inspector use ESCAPE to evaluate forms 116

install-microcode function 94

install-microcode now optional 94

instead of (remprop symbol
*:source-file-name) 147

Interface 22

182 ' RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

Interface to the Vadic Modem 111

intern function 7

intern, intern-local, intem-soft, and intern-local-
soft return two values 7

intern-local function 7

intern, intern-local, intern-soft, and intern-local-soft retumn

two values 7

intern-local-soft function 7

intern, intern-local, intern-soft, and intern-local-soft return two values 7
intemn-soft function 7
intern, intern-local, intern-soft, and intern-local-soft return two

values 7

Internal changes to macros zwei:defmajor and
zwei:defminor 127

Internal symbols 6

International dial network 151

Release 5.0: Introduction and Highlights 1
Invisible blocks in progs and dos 78
Nonkeyword form of make-array s obsolete 16
, Fixed-width Htalic font 75
New [map Over] Menu ftem: [reply] 130
New [map Over] Menu Item: [select Conversation] 130
Argument to :menu type menu items can be a menu or a form 105
ms 34
h-c-upper-left waits for Lisp to stop itself 140

J J J

Jump to Saved Position (c-X J) Zmacs command 127
Jump to Saved Position (c-X J) Zmacs
command 127

K K K

tv: kbd-mouse-buttons-mixin flavor 42
Flavors tv:list-mouse-buttons-mixin and tv: kbd-mouse-buttons-mixin obsolete 42
ALTMODE key 116
CONTROL key 102
FUNCTION key 133
HYPER key 102
LOCAL key 133
META key 102
QUOTE key 116
SUPER key 102
skeyboard event 95
Keyboard keys 1
:keyboard option for si:shb-on 95
Keyboard sequence break 95
Keyboard keys 1
keyword package 1, 6
keyword package symbols 7
Symbols in global and keyword packages with the same names 7
Keyword Symbols Are Self-evaluating 13
:keyword-list option for prompt-and-read 85
New Choose-variable-values Keywords 76
Global kil history 22
Known problem with

RN Release 5.0 Release Notes

183

Symbolics, Inc. March 1984

NETWORK

Lisp

Changes to the Lisp

Memory Board Not Needed in
Trim

Binary

Unplugging

Patch

Complement mouse documentation
Delete to end of

Erase to end of

si:gc-reclaim-immediately 148
Known problem: char-upcase and char-downcase
undefined for modified characters 145

L command 114

L exponent identifier 17

language 1

Language and Compiler in Release 5.0 5
Lbus Siot 0 136

leading and trailing white space 62

left shift 17

Lemo Cables Should Not Halt the FEP 137
level 70

line 113

line 44

line 44

FUNCTION 2 U displays current process name in status

Truncating
LMFS Now Supports Directory

line 148
lines 102
Links 120

Changes to Readtable, Reader, and Printer for Common

Common

Lisp 16
Lisp 1

Continue Command Sends an All-keys-up Character to

h-c-upper-feft stops execution of

Reader Accepts Common
Evaluate a

Improvements to
Incompatible Changes to
New Features in

Changes to the
Comments for

Common
h-c-upper-left waits for

Lisp 137
Lisp 133
:lisp canonical type 34
Lisp Floating Point Exponents 17
Lisp form 116
Lisp in Release 5.0 77
Lisp in Release 5.0 5
Lisp in Release 5.0 44
Lisp language 1
Lisp Language’and Compiler in Release 5.0 5
Lisp reader 83
Lisp readtable 83
Lisp to stop itself 140

Major-mode-setting Commands Now Query About Updating File Attribute

meter:
Flavors tv:

tv:
Changes to :tyi, :tyi-no-hang,

tv:

Flavors tv:any-tyi-mixin and tv:

New initialization

rplaca can be used with stack

Stack

Get Common Property

New Meters for the

New Microcode in Release 5.0: 270 on 3600, 998 on

List 126

List Buffers (c-X c¢-B) Zmacs command 125

list-functions-in-bucket function 51

list-mouse-buttons-mixin and tv:kbd-mouse-buttons-
mixin obsolete 42 '

list-mouse-buttons-mixin flavor 42

dist-tyi method of tv:stream-mixin 41

:dist-tyi, :mouse-or-kbd-tyl, and :mouse-or-kbd-tyi-no-
hang methods of tv:stream-mixin 40

list-tyi-mixin flavor 40

list-tyl-mixin obsolete 40

list: :after-full-gc 73

lists 148

lists 148

Lists process 143

LM-2 62

LM-2 3

Previously undocumented variables: sys:mouse-x-scale-array and sys:mouse-y-scale-array

184 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
(LM-2 only) 100
LMFS 34
LMFS Accordion Wildcards 120
LMFS dumper 121
LMFS Dumper Supports Accordion Wildcards 119
LMFS Now Supports Directory Links 120
New Default LMFS Translation Table for Sys Hosts 119
Load Microcode FEP command 134
Load Sync-program FEP command 134, 135
Load World FEP command 134
load-file-list function 39
load-file-list obsolete 393
Loading Sync Programs 135
LOCAL key 133
Use edr with locatives returned by locf 148
Use cdr with locatives returned by locf 148
loct macro 148
Lock queue 71
Round-robin locking 71
Logging host output to file 114
Loggingin 1,5
Create new logical host 37
Creating logical host 38
Logical Pathname Name, Type, and Version Now
Separated by Periods 35
Changes to Logical Pathname Translations 35
New Default Representations for Newest and Oldest Logical Pathname Versions 35
Changes to Logical Pathnames 35
Logical Pathnames Now Hierarchical 35
Changesto login 5
login function 5
cl: long-float format 17
loop macro 82
Break loops 116
Compiler now wamns about implicit progns in loops 82
Lowercase Code in Buffer (m-X) Zwei command 125
Lowercase Code in Region (m-X) Zwei
command 125
M M M
FUNCTION M command 113
NETWORK M command 114
Changes to FUNCTION C, FUNCTION M, and FUNCTION Q@ 113
FUNCTION m-C command 113
FUCTION m-Q command {13

Change in numeric arguments to Copy File

m-SUSPEND command 116

m-SUSPEND selects frame with break read function for
Debugger 116

(m-X) 124

Changes to Add Patch Changed Definitions {(m-X) and Add Patch Changed Definitions of Buffer

New Zmacs command: Resume Patch

(m-X) 123
(m-X) 124

New Zmacs command: Source Compare Newest Definition

New Zmacs command: Start Private Patch
New Zwei command: Find Files in Tag Table
Changes to Add Patch Changed Definitions

m-X) 124
m-X) 124
(m-X) 125
(m-X) and Add Patch Changed Definitions of Buffer

RN Release 5.0 Release Notes 185
Symbolics, Inc. March 1984
(m-X) 123
Both defauft pathnames for Source Compare (m-X) now use :newest version 123
Set Package (m-X) offers o create a package 123
Show Hardcopy Status (m-X) replaces chaos:print-igp-queue 115
Add Patch Changed Definitions (m-X) Zmacs command 123
Add Patch Changed Definitions of Buffer (m-X) Zmacs command 123
Copy File (m-X) Zmacs command 28, 124
Resume Patch (m-X) Zmacs command 124
Set Package (m-X) Zmacs command 123
Source Compare Newest Definition (m-X) Zmacs command 124
Start Private Patch (m-X) Zmacs command 124
Append Conversation By References (m-X) Zmail command 130
Delete Conversation By References (m-X) Zmail command 130
Select All Conversations By References (m-X) Zmail command 130
Select Conversation By References (m-X) Zmail command 130
Lowercase Code in Buffer (m-X) Zwei command 125
Lowercase Code in Region (m-X) Zwei command 125
Show Hardcopy Status (m-X) Zwei command 115
Source Compare (m-X) Zwei command 123
Uppercase Code in Buffer (m-X) Zwei command 125
Uppercase Code in Region (m-X) Zwei command 125
Find Files in Tag Table (m-X)}) Zwei command 125
#B reader macro 18
loct macro 148
loop macro 82
meter:with-monitoring macro 52
package-declare macro 7
swapf macro 82
sys:defsubst-with-parent macro 145
sys:with-open-file-search macro 69
tv:with-mouse-grabbed-on-sheet macro 74
with-input-editing macro 59
zwei:defmajor macro 127
zwei:defminor macro 127
Macro character 17
Macro PC status information 137
si: macro syntax description 18
New reader macro: #8 18
Previously undocumented reader macro: # and # 83
Previously undocumented macro: swapf 82
New macro: sys:with-open-file-search 69
New macro: tv:with-mouse-grabbed-on-sheet 74
New macro: with-input-editing 59
Internal changes to macros zwei:defmajor and zwei:defminor 127

New function to be called by reader
[Reload/Retrieve] File System

:displaced-conformally option for

Nonkeyword form of
si:
si:
si:
fs:
fs:

macros: si:read-recursive 83

Maintenance menu item

151

Major and Minor mode system 127
Major-mode-setting command 126
Major-mode-setting Commands Now Query About
Updating File Attribute List 126
make-arrtay 78
make-array function 16
make-array is obsolete 16
make-coroutine-bidirectional-stream function 91
make-coroutine-input-stream function 91
make-coroutine-output-stream function 91
make-logical-pathname-host function 37
make-logical-pathname-host replaces

186

RN Release 5.0 Release Notes

New function:

meter:

:default-value option to
:extension option to
:initial-dimensions option to
:initial-origins option to
type option to

New options for

si:
New functions: si:

si:
chaos:
Changes to

Improvements to

Release 5.0: Operations and Site
[Reply}

[Select Conversation]

New

New

meter:

Symbolics, Inc.

fs:add-logical-pathname-host 37

make-package 7

make-package function 7

make-pc-array function 51

make-plane 80

make-plane 80

make-plane 80

make-plane 80

make-plane 80

make-plane function 80

make-plane: :initial-dimensions,
:initial-origins 80

make-process-queue function 71

make-process-queue, si:process-enqueue,
si:process-dequeue, si:process-queue-
locker, sl:reset-process-queue 71

make-serial-stream function 110, 111

make-stream function 107

make-syn-stream 20

make-syn-stream function 20

make-system: error-restart, selective
transformations 94

Management 151

Map Over menu item 130

Map Over menu item 130

[map Over} Menu Item: [reply] 130

[map Over] Menu tem: [select Conversation] 130

map-over-functions-in-bucket function 52

Functions moved from the sl package to global: deallocate-whole-resource,

Optional argument to

Wildcard Directory
:set-space method of tv:
:space init option for tv;
:space method of tv:
New flavor: tv:

tv:

New Buffer-history

nil not a valid

[Read File] Font Editor

[Reload/Retrieve] File System Maintenance

[Reply] Map Over

[Select Conversation] Map Over

[Sort] Zmail

{Write File] Font Editor

New [map Over]

New [map Over]

Argument o :menu type

Argument to :menu type menu items can be a
Argument to

tv:
New

map-resource 13

map-resource function 14

mapatoms-all and where-is eliminated 7

mapatoms-all function 7

Mapping Available 92

margin-space-mixin 75

margin-space-mixin 75

margin-space-mixin 75

margin-space-mixin 74

margin-space-mixin flavor 75

Meaning of argument changed for
fs:parse-pathname 32

Mechanism in Zmacs 125

Memory Board Not Needed in Lbus Slot 0 136

menu item 149

menu item 113

menu item 151

menu item 130

menu item 130

menu item 130

menu item 113

Menu ttem: [reply] 130

Menu tem: [select Conversation) 130

menu items can be a menu or a form 105

menu or a form 105

:menu type menu items can be a menu or a
form . 105

menu-choose function 149

message to arithmetic errors: :operands 98

March 1984

RN Release 5.0 Release Notes

187

Symbolics, Inc. March 1984

New

:rename

:create-screen-array
:redirect-screen-array
:adjust-screen-array

:rename

:prompt-and-read

:clear-screen, :clear-eol, and :clear-eof

message to conditions: :special-command-p 74
message to pathnames 27

message to screens 79

message to screens 79

message to sheets 79

message 10 streams 27

messages to streams 85

messages to windows renamed 44

META key 102

sys:%count-disk-page-read-operations-in-scavenger

meter 52

sys:%count-disk-page-read-operations-in-transporter

sys:%scavenger-run-time
sys:%transporter-run-time
sys:%tv-clock-counter

Program counter (PC)
New

New

:mouse-click
:special-command-p
:read-frame
:write-frame
:mouse-click
Changes to :mouse-click
«draw-circle
:draw-filled-in-circle
:set-space

:space

:clear-eof

:clear-eol
:clear-rest-of-line
:clear-rest-of-window
:clear-screen
:clear-window
:set-truncate-fine-out
truncate-line-out
:any-tyi
:any-tyi-no-hang
Afinish-typeout
force-rescan

dist-tyi
:mouse-or-kbd-tyi
:mouse-or-kbd-tyi-no-hang
:read-bp

meter 52
meter 52
meter 52
meter 52 :
meter:expand-range function 5
meter:function-name-with-escapes function 52
meter:function-range function 52
meter:list-functions-in-bucket function 51
meter:make-pc-array function 51
meter:map-over-functions-in-bucket function 52
meter:monitor-all-functions function 51
meter:print-functions-in-bucket function 51
meter:range-of-bucket function 52
meter:report function 51
meter:start-monitor function 51
meter:stop-monitor function 51
meter:with-monitoring macro 52
metering 50
Metering Tools for the 3600 50
Meters for the LM-2 52
method 149
method of condition 74
method of si:serial-hdlc-mixin 111
method of si:serial-hdlc-mixin 111
method of tviessential-mouse 42
method of tviessential-mouse 42
method of tv:graphics-mixin 99
method of tv:graphics-mixin 99
method of tv:margin-space-mixin 75
method of tv:margin-space-mixin 75
method of tv:sheet
method of tv:sheet
method of tv:sheet
method of tv:sheet
method of tv:sheet
method of tv:sheet
method of tv:isheet 102
method of tv:sheet 102
method of tv:stream-mixin 41, 42
method of tv:stream-mixin 41
method of tv:stream-mixin 64
method of tv:stream-mixin 64
method of tv:stream-mixin 41
method of tv:stream-mixin 42
method of tv:stream-mixin 42
method of tv:stream-mixin 65

EERERR

188

RN Release 5.0 Release Notes

:replace-input

:rescanning-p

:start-typeout

"yl

tyi-no-hang

Some Methods Can Use Combination Type as
Removing

;proceed

Some

Changes to :tyi, :tyi-no-hang, :list-tyi,
New
Current
Load
New
Clicking
Major and
New option for defflavor:
New function:
Major and Minor
Interface to the Vadic

Symbolics, Inc. March 1984

method of tv:stream-mixin

method of tv:stream-mixin

method of tv:stream-mixin

method of tv:stream-mixin

method of tv:stream-mixin

Method Type 83

methods 53

methods can now return nil 97

Methods Can Use Combination Type as Method
Type 83

22328

:mouse-or-kbd-tyi, and :mouse-or-kbd-tyi-no-hang

methods of tv:stream-mixin 40

methods of tv:stream-mixin: :start-typeout, finish-
typeout, rescanning-p, :force-rescan,
:replace-input, :read-bp 63

micro PC (CPC) status information 137

Microcode FEP command 134

Microcode in Release 5.0: 270 on 3600, 998 on
LM-2 3

Middle Edits Current String in Choose-variable-values
Windows 105

Minor mode system 127

:mixture 54

:mixture option 54

:mixture option for defflavor 54

mod 49

mod function 49

mode system 127

Modem 11§

modem flavor 111

modem-error flavor 111

Known problem: char-upcase and char-downcase undefined for

Change in Zmacs command

Characters with
v meter:
Show Configuration Command Displays

Show Status Command Displays
New option for si:sh-on:

Receiving
Modified
Shifted
Complement

Window System Changes Associated with

Avoid Errors in the

modified characters 145

Modified mouse clicks as editor commands 103

Modified Two Windows (c-X 4) 127

Modified Two Windows (c-X 4) Zmacs
command 127

modifier bits 145

monitor-all-functions function 51

More Information 135

More Information Available on Causes of
Crashes 137

MORE processing 113, 114

More Useful Information 140

:mouse (3600 only) 95

Mouse characters 102

mouse clicks 40

mouse clicks as editor commands 103

Mouse Clicks Can Now Be Used for Editor
Commands 103

Mouse cursor speed 100

mouse documentation line 113

Mouse input 42

Mouse Input 40

:mouse option for si:sh-on 95

Mouse Process 149

Mouse sequence break 95

:mouse symbol 42

RN Release 5.0 Release Notes

189

Symbolics, Inc. March 1984

Changes to
tv:
tv:

New variable: tv:

tv:

Changes to :tyi, :tyi-no-hang, :list-tyi,

:mouse-click method 149
:mouse-click method of tv:essential-mouse 42
:mouse-click method of tv:essential-mouse 42
mouse-double-click-time variable 103
mouse-incrementing-keystates variable 103
mouse-modifying-keystates 102
mouse-modifying-keystates variable 103
:mouse-or-kbd-tyi method of tv:stream-mixin 42
:mouse-or-kbd-tyi, and :mouse-or-kbd-tyi-no-hang
methods of tv:stream-mixin 40
:mouse-or-kbd-tyi-no-hang method of
tv:stream-mixin 42

Changes to yi, :tyi-no-hang, :list-tyi, :mouse-or-kbd-tyi, and

New optional argument to tv:
’ tv:
Previously undocumented variables: sys:

sys:

:mouse-or-kbd-tyi-no-hang methods of
tv:stream-mixin 40 '

mouse-wait 101

mouse-walt function 10t

mouse-x-scale-array and sys:mouse-y-scale-array
(LM-2 only) 100

mouse-x-scale-array variable 100

Previously undocumented variables: sys:mouse-x-scale-array and sys:

sys:
Functions

Symbols
New canonical file type:

New condition flavor: fs:
fs:
New special forms:

New special forms: multiple-value-call and

Display process

Default File

FUNCTION 2 W displays current process
Logical Pathname

mouse-y-scale-array (LM-2 only) 100
mouse-y-scale-array variable 10t
moved from the si package to global: deallocate-
whole-resource, map-resource 13
moved to or from global package 9
‘mss 126
Multidimensional Arrays on the 3600 Remember
Actual Dimensions 78
multiple-file-not-found 69
multiple-file-not-found flavor 70
multiple-value-call and multiple-value-progl 47
multiple-value-call special form 47
muttiple-value-progl 47
multiple-value-prog1 special form 48

N
name - 148
Name Changed for Commands in Dired Buffer 126
name in status line 148
Name, Type, and Version Now Separated by
Periods 35

Symbols in global and keyword packages with the same

Network

Network

names 7
namespace 143
Namespace editor 107
namespace system 1, 107
NCP 109

Baby! files with summary-window-format other than t or nil

Memory Board Not

neti:reset, neti:enable, and

neticreset,

need to be edited 129
Needed in Lbus Slot 0 136
net:find-objects-from-property-list function 143
neti:disable function 107, 108
neti:disable replace chaos:reset, chaos:enable,
and chaos:disable 107
neti:enabie function 107, 108
neti:enable, and neti:disable replace chaos:reset,

190

RN Release 5.0 Release Notes

International dial

DIAL

Changes to
Incompatible Changes to
New Features in

FEP Version 14:
FEP Version 15:
FEP Version 16:

Symbolics, Inc. March 1984

chaos:enable, and chaos:disable 107
neti:reset function 107, 108
netireset, neti:enable, and neti:disable replace

chaos:reset, chaos:enable, and

chaos:disable 107
network 151
NETWORK A command 114
NETWORK commands 114
NETWORK D command 114
Network database 107
NETWORK L command 114
NETWORK M command 114
Network namespace 143
Network namespace system
NETWORK Q@ command 114

1, 107

network type 151

NETWORK X command 114
Networks 1

Networks in Release 5.0 107

Networks in Release 5.0 107

Networks in Release 5.0 108

New Bufler-history Mechanism in Zmacs 125

New canonical file type: :mss 126

New Choose-variable-values Keywords 76

New clause for condition-call: :no-error 98

New condition flavor: fs:multiple-file-not-found 69

New condition flavor: fs:rename-across-hosts 70

New data types: :single-float and :double-float 49

New Default LMFS Translation Table for Sys
Hosts 119

New Default Representations for Newest and Oldest
Logical Pathname Versions 35

New Defaults for FEP Commands 134

New descriptions: si:bitscale, si:digitscale,
si:non-terminating-macro 17

New error flavors: sys:parse-error and
sys:parse-ferror 23

New feature: Flavor Examiner (SELECT X) 114

New Features 133

New Features 135

New Features 136

New Features Associated with the Input Editor
(Rubout Handler) 57

New Features in Lisp in Release 5.0 44

New Features in Networks in Release 5.0 108

New Features in the File System in Release
50 120

New Features in Utilities in Release 5.0 114

New Features in Zmacs in Release 5.0 124

New Features in Zmail in Release 5.0 130

New FEP Commands: Add Disk-type and Clear
Disk-types 136

New flavor: tv:margin-space-mixin 74

New flavors: tv:itruncatable-lines-mixin,
tv:itruncating-lines-mixin 102

New font: fonts:cptfonti 75

New format directives: "> and "« 55

New format for trace output 96

RN Release 5.0 Release Notes

191

Symbolics, Inc. March 1984

Create

New function to be called by reader macros:
si:read-recursive 83

New function: applyhook 72

New function: chaos:conn-finished-p 109

New function: dfloat 49

New function: eql 44

New function: make-package 7

New function: mod 49

New function: read-delimited-string 60

New function: readline-or-nil 63

New function: si:patch-loadedp 70

New function: si:read-or-end 62

New function: sys:parse-ferror 24

New function: undefflavor 53

New functions: byte, byte-size, byte-position 50

New functions: si:make-process-queue, si:process-
enqueue, si:process-dequeue, Si:process-
queue-locker, si:reset-process-queue 71

New functions: sys:single-float-p,
sys:double-float-p 49

New initialization list: :after-full-gc¢ 73

New input editor options: :no-input-save,
:activation, :command, :preemptable 57

new logical host 37

New macro: sys:with-open-file-search 69

New macro: tv:with-mouse-grabbed-on-sheet 74

New macro: with-input-editing 59

New message to arithmetic errors: :operands 98

New message to conditions:
:special-command-p 74

New Metering Tools for the 3600 50

New Meters for the LM-2 52

New methods of tv:stream-mixin: :start-typeout,
finish-typeout, :rescanning-p, :force-
rescan, :replace-input, :read-bp 63

New Microcode in Release 5.0: 270 on 3600, 998 on
LM-2 3

New open option: :estimated-length 25

New open options: :if-exists and
:if-does-not-exist 25

New option for defflavor: :mixture 54

New option for defflavor:
:required-init-keywords 53

New option for si:sb-on: :mouse (3600 only) 95

New optional argument to gc-immediately 98

New optional argument to read 61

New optional argument to tv:mouse-wait 101

New optional arguments to print-notifications 99

New optional arguments to read-from-string 84

New optional arguments to string-upcase and
string-downcase 80

New options for make-plane: :initial-dimensions,
:initial-origins 80

New reader macro: #B 18

New Rules for Reading Ambiguous Tokens 19

New special form: defconstant 45

New special form: define-symbol-macro 53

New special form: defpackage 7

192 RN Release 5.0 Release Notes
Symbolics, Inc. Karch 1984

New special form: format:defformat 56
New special forms catch and throw replace *catch
and *throw 14
New special forms: block and tagbody 46
New special forms: multiple-value-cail and
multiple-value-progt 47
New terminal program (SELECT T) 114
New variable: cl:*read-default-float-format* 17
New variable: dbg:*debug-io-override* 74
New variable: fs:*remember-passwords* 70
New variable: gc-on 73
New variable:
tv:*mouse-modifying-keystates* 102
New variable:
tv:cold-load-stream-old-selected-window 74
New variable: tv:rh-typeout-default 65
| New Zmacs command: Resume Patch (m-X) 124
New Zmacs command: Source Compare Newest
| Definition (m-X) 124
| New Zmacs command: Start Private Patch
(m-X) 124
New Zwei command: Comment Out Region (c-X c-3)
125
New Zwei command: Find Files in Tag Table
m-X) 125
| New [map Over] Menu item: [reply] 130
New [map Over] Menu ltem: [select
Conversation] 130
:new-version valus of open option for :if-exists 25
New Default Representations for Newest and Oldest Logical Pathname Versions 35
New Zmacs command: Source Compare - Newest Definition (m-X) 124
Source Compare Newest Definition (m-X) Zmacs command 124
Both default pathnames for Source Compare (m-X) now use
:newest version 123
Y newest version specifier 35
sproceed methods can now retum nil 97
sort predicate should return nil for equal elements 144
Baby! files with summary-window-format other than t or
nil need to be edited 129
nil not a valid menu item 149
nil value of open option :if-does-not-exist 25
New clause for condition-call: no-error 98
J :no-input-save option 57
; New input editor options: :no-input- , :activation, :command,
! preemptable 57
‘ New descriptions: si:bitscale, si:digitscale, si: non-terminating-macro 17
| Nonkeyword form of make-array is obsolete 16
nil not a valid menu item 148
Unplugging Lemo Cables Should Not Halt the FEP 137
Memory Board Not Needed in Lbus Slot 0 136
Inspecting hash arrays of eq hash tables not permitted = 145
tv:set-default-font not supported 149
store not supported on the 3600 145
Release 5.0: Notes and Clarifications 143
Notes on Operations in Release 5.0 151
Changes to Converse Notifications 117
Reprints notifications 99
Shifted Mouse Clicks Can Now. Be Used for Editor Commands 103

RN Release 5.0 Release Notes

193

Symbolics, Inc. March 1984

Default Font Format

YConfiguration.fep Files Are

Logical Pathnames

#/ and #\

Second argument to si:install-microcode
Major-mode-setting Commands

:proceed methods can

Logical Pathname Name, Type, and Version
LMFS

Both default pathnames for Source Compare (m-X)
Compiler

float returns a single-precision

floatp returns t for any floating-point

: Read rational

Convert
Convert

Floating point
Floating-point
Converting
Change in

Reading and Printing Character

Deallocating allocated

Forgetting

Flavor tv:preemptable-read-any-tyi-mixin
Flavors tv:any-tyi-mixin and tv:list-tyi-mixin

Now Bid 113

Now Called)Boot.boot 134

Now Hierarchical 35

now identical 19

now optional 94

Now Query About Updating File Attribute List 126
now retum nil 97

Now Separated by Periods 35

Now Supports Directory Links 120

now use :newest version 123

now warmns about implicit progns in loops 82
number 48

number 49

number in binary 18

:number option for prompt-and-read 85
number to single-precision floating-point 48
number to small flonum 48

:number-or-nil option for prompt-and-read 85
numbers 1

numbers 48, 49

numbers to double-precision floating-point 49
numeric arguments to Copy File (n-X) 124

o o

Objects 19

objects of a resource 13

objects remembered by a resource 78
obsolete 43

obsolete 40

Flavors tv:list-mouse-buttons-mixin and tv:kbd-mouse-buttons-mixin

load-file-list

Nonkeyword form of make-array is
Changes to format:

format:

Set Package (m-X)
New Default Representations for Newest and

¢
New option for si:sb-on: :mouse (3600

obsolete 42
obsolete 39
obsolete 16
ochar 21
ochar function 21
Octal escape for special characters 17
offers to create a package 123
Old PCs (OPC) status information 137
Oldest Logical Pathname Versions 35
oldest version specifier 35
only) 95

Previously undocumented variables: sys:mouse-x-scale-array and sys:mouse-y-scale-array (LM-2

Old PCs
:if-does-not-exist option for
:if-exists option for
Changes to

sinput value of

:output value of

:probe value of
:probe-directory value of
:probe-link value of
Changes to

:create value of

serror value of

nil value of

:append value of

only) 100
(OPC) status information 137
open 25
open 25
open 24
open option :direction 24
open option :direction 24
open option :direction 24
open option :direction 24
open option :direction 24
open option :direction 24
open option :if-does-not-exist 25
open option :if-does-not-exist 25
open option :if-does-not-exist 25
open option for :if-exists 25

194

RN Release 5.0 Release Notes

:error value of

:new-version value of
:overwrite value of

:rename value of
:rename-and-delete value of
:supersede value of
truncate value of

New

New

Changes to chaos:
chaos:

File

File

Probe file

New message to arithmetic errors:
3600 select-methods handle
Release 5.0:

Notes on

:activation

:command

:direction

:do-not-echo
:estimated-length
:if-does-not-exist

:if-exists

:mixture

:no-input-save

:pass-through

:preemptable

sprompt

sreprompt
:required-init-keywords
summary-window-format Baby! file
:input value of open

:output value of open

:probe value of open
:probe-directory value of open
:probe-link value of open

Changes 1o open

:create value of open
:error value of open

nil value of open

:append value of open
serror value of open
:new-version value of open
:overwrite value of open
:rename value of open
:rename-and-delete value of open
:supersede value of open
druncate value of open
:byte-size

:characters
:create-directories
:report-stream

:mixture

Symbolics, Inc. March 1984

open option for :if-exists 25
open option for :if-exists 25
open option for :if-exists 25
open option for :if-exists 25
open option for :if-exists 25
open option for :if-exists 25
open option for :if-exists 25
open option: :estimated-length 25
open options 24, 25
open options: :if-exists and :if-does-not-exist 25
open-stream 108
open-stream function 108
opened for input 24
opened for output 24
opening 24

Opening pathname 24
:operands 98
:operation-handled-p and :send-if-handles 81
Operations and Site Management 151
Operations in Release 5.0 151
Optimizing disk allocation 25
option 57

option 58

option 24

option 22

option 25

option 26

option 25

option 54

option 57

option 22

option 43, 58

option 23

option 23

option 54

option 129

option :direction 24
option :direction 24
option :direction 24
option :direction 24
option :direction 24
option :direction 24
option :if-does-not-exist 25
option :if-does-not-exist 25
option :if-does-not-exist 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for :if-exists 25
option for copyt 28

option for copyt 28

option for copytf 28

option for copyt 28

option for defflavor 54

RN Release 5.0 Release Notes

195

Symbolics, Inc. March 1984

:required-init-keywords
New
New
:displaced-conformally
:if-does-not-exist
:if-exists
:as-if-band
:wverbose
:character
«date
:date-or-never
:decimal-number
:decimal-number-or-nil
:delimited-string
:delimited-string-or-nil
«delimiter
:eval-form
:eval-form-or-end
:expression
:expression-or-end
font-list
:host
shost-list
-keyword-list
:number
:number-or-nil
:past-date
:past-date-or-never
:pathname
:pathname-host
;pathname-list
. :pathname-or-nil
:string
:string-list
:string-or-nil
:string-trim
time-interval-or-never
:chaos
:clock
«disk
:keyboard
:mouse
:unibus
New
:space init
:default-value
:extension
:initial-dimensions
:initial-origins
type

New ope
Second argument to si:install-microcode now
New

New
New
New

option for defflavor 54
option for defflavor: :mixture 54
option for defflavor: :required-init-keywords 53
option for make-array 78
option for open 25
option for open 25
option for print-herald 39
option for print-herald 39
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for si:sb-on 95
option for si:sb-on 95
option for si:sb-on 95
option for si:sb-on 95
option for si:sb-on 95
option for si:sb-on 95
option for si:sb-on: :mouse (3600 only) 95
option for tv:margin-space-mixin 75
option to make-plane 80
option to make-plane 80
option to make-plane 80
option to make-plane 80
option to make-plane 80
option: :estimated-length 25
optional 94
optional argument to ge-immediately 98
Optional argument to mapatoms-all and where-is
eliminated 7
optional argument to read 61
optional argument to tv:mouse-wait 101
optional arguments to print-notifications 99

B R R R R R G R R R R R R R R R ERERRERER

196

RN Release 5.0 Release Notes

New
New

open
Changes to input editor

New

New open
New input editor

Baby! files with summary-window-format
New Zwei command: Comment

Comment

Character

File opened for

New format for trace

seditor

:read

:sall

Logging host

New [map
New [map

fonts

global

keyword

Set Package (m-X) offers to create a
Symbols moved to or from global
user

Set

Set

sys:dump-forms-to-file always puts
format "\ directives can have
global

keyword

Functions moved from the si

Changes to

Symbols in global and keyword
chaos:send-unc-pkt automatically returns the
:input-error-character serial 1/0
:input-xoff-character serial 1/0
:input-xon-character serial I/O
:output-xoff-character serial 1/0
:output-xon-character serial 1/0

Stream

Symbolics, Inc. March 1984

optional arguments to read-from-string 84

optional arguments to string-upcase and
string-downcase 80

options 24, 25

options :do-not-echo, :pass-through, :prompt,
wreprompt 22

options for make-plane: :initial-dimensions,
sinitial-origins 80

options: :if-exists and :if-does-not-exist 25

options: :no-input-save, :activation, :command,
sppreemptable 57

other than t or nil need to be edited 129

Out Region (c-X c-3) 125

Out Region (c-X c-3;) Zwei command 125

output 21

output 24

output 96

output format style

output format style

output format style

Output space 2t

output to file 114

soutput value of open option :direction 24

soutput-xoff-character serial /0 parameter 109

:output-xon-character serial 1/0 parameter 109

Overstrike 114

soverwrite value of open option for :if-exists 25

Over] Menu ttem: [reply] 130

Over] Menu tem: [select Conversation] 130

nNen

[}

package

package

package

package

package

package 1, 6

Package (m-X) offers to create a package 123

Package (m-X) Zmacs command 123

package attribute into binary file 82

package prefixes 92

package symbols 9

package symbols 7

package to global: deallocate-whole-resource,
map-resource - 13

package-declare macro 7

package-used-by-list function 7

Packages 1

Packages 6

packages with the same names 7

packet to the free pool 108

parameter 109

parameter 109

parameter 109

parameter 109

parameter 109

— b —

.6
, 6
23

©

_parameter 65

RN Release 5.0 Release Notes

197

Symbolics, Inc. March 1984

Changes to Serial I/0:

New error flavors: sys:

sys:

New error flavors: sys:parse-error and sys:
New function: sys:

sys:

sys:
Meaning of argument changed for fs:
fs:

Changes to input editor options :do-not-echo,
Suppress prompting for

New Zmacs command: Resume
New Zmacs command: Start Private
Resume

Start Private

Changes to Add

Add

Parity Recovery and Xon/Xoff Character Setting 108

parse-error and sys:parse-ferror 23

parse-error flavor 23

parse-ferror 23

parse-ferror 24

parse-ferror flavor 24

parse-ferror function 24

parse-pathname 32

parse-pathname function 33

Parsing pathnames 33

spass-through option 22

:pass-through, :prompt, :reprompt 22

passwords 70

spast-date option for prompt-and-read 85

:past-date-or-never option for prompt-and-read 85

Patch (m-X) 124

Patch (m~X) 124

Patch (m-X) Zmacs command 124

Patch (m-X) Zmacs command 124

Patch Changed Definitions (m-X) and Add Patch
Changed Definitions of Buffer (m-X) 123

Patch Changed Definitions (m-X) Zmacs
command 123

Changes to Add Patch Changed Definitions (m-X) and Add

Add

New function: si:
si:

Opening
Source
Target

Logical

Reversible wild
wild

Changes to Logical
Physical

sinit canonical

Patch Changed Definitions of Buffer (m-X) 123

Patch Changed Definitions of Buffer (m~X) Zmacs
command 123

Patch level 70

patch-loadedp 70

patch-loadedp function 70

Patches 123

pathname 24

pathname 26

pathname 26

Pathname completion on VMS 109

Pathname Name, Type, and Version Now Separated
by Periods 35

:pathname option for prompt-and-read 85

pathname translation 35

pathname translation 35

Pathname Translations 35

pathname translations 35

pathname type removed 35

New Default Representations for Newest and Oldest Logical

‘rename message to

Changes to Host Determination in
Changes to Logical

Parsing

Both default

Logical
Init File
Zmalil Init File

Pathname Versions 35
‘pathname-host option for prompt-and-read 85
:pathname-list option for prompt-and-read 85
:pathname-or-nil option for prompt-and-read 85
Pathnames 1
pathnames 27
Pathnames 30
Pathnames 35
pathnames 33
pathnames for Source Compare (m-X) now use
newest version 123
Pathnames Now Hierarchical 35
Pathnames Standardized 34
Pathnames Standardized 129

198

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

Current micro PC (CPC) status information 137
Macro PC status information 137
Program counter (PC) metering 50
Old PCs (OPC) status information 137
Compiler Performs Style Checking on All Forms 81
Logical Pathname Name, Type, and Version Now Separated by
Periods 35
Inspecting hash arrays of eq hash tables not permitted 145
Physical pathname translations 35
pkg-create-package function 7
3600 Supports leee Single- and Double-precision Floating
Point 48
Reader Accepts Common Lisp Floating Point Exponents 17
Floating point numbers 1
chaos:send-unc-pkt automatically retums the packet to the free
pool 108
Jump to Saved Position (c-X J) Zmacs command 127
Extract position field of a byte-specifier 50
sort predicate should retun nil for equal elements 144
New input editor options: :no-input-save, :activation, :command,
:preemptable 57
:preemptable option 43, 58
tv: preemptable-read-any-tyi-mixin flavor 43
Flavor tv: preemptable-read-any-tyi-mixin obsolete 43
. format "\ directives can have package prefixes 92
Select Previous Buffer (c-m-L) Zmacs command 125
Yanking previous input 22
Previously Undocumented Feature: Coroutine
Streams 89
Previously undocumented function:
clear-resource 78
Previously undocumented function:
describe-system 94
Previously undocumented function:
fs:set-logical-pathname-host 38
Previously undocumented function:
string-compare 81
Previously undocumented functions: tv:add-to-system-
menu-programs-column,
tv:add-to-system-menu-create-menu 103
Previously undocumented macro: swapf 82
Previously undocumented reader macro: # and
83
Previously undocumented special form:
destructuring-bind 77
Previously undocumented variables: sys:mouse-x-
scale-array and sys:mouse-y-scale-array
(LM-2 only) 100
Ratios read in current ibase and print in current base 19
Print queue 115
meter: print-functions-in-bucket function 51
:as-if-band option for print-herald 39
:verbose option for print-herald 39
Change in arguments to print-herald 39
print-herald function 39
Show Hardcopy Status (m-X) replaces chaos: print-lgp-queue 115
chaos: print-lpg-queue function 115
Symbol print-name quoter 17

RN Release 5.0 Release Notes

199

Symbolics, Inc. March 1984

New optional arguments to

Changes to Readtable, Reader, and
Reading and

New Zmacs command: Start
Start

Known
Known

Avoid Errors in the Mouse
Debugger c-M creates a

Get Common Property Lists
Display

FUNCTION 2 U displays current
sk

print-notifications 99

print-notifications function 99

Printer for Common Lisp 16

Printing Character Objects 19

Printing Uninterned Symbols 19

Private Patch (m-X) 124

Private Patch (m-X) Zmacs command 124

Probe file opening 24

sprobe value of open option :direction 24

:probe-directory value of open option
«direction 24

:probe-link value of open option :direction 24

problem with si:gc-reclaim-immediately 148

problem: char-upcase and char-downcase undefined
for modified characters 145 »

sproceed methods can now return nil 97

Process 149

process 116

process 143

process name 148

process name in status line 148

process-dequeue function 71

New functions: si:make-process-queue, si:process-enqueue, si:

sk
New functions: si:make-process-queue, si:

process-dequeue, si:process-queue-locker,
si:reset-process-queue 71
process-enqueue function 71
process-enqueue, si:process-dequeue, si:process-
queue-locker, si:reset-process-queue 71
process-queue-tocker function 71

New functions: si:make-process-queue, si:process-enqueue, si:process-dequeue, si:

~ Change in argument to

MORE

Compiler now warns about implicit
Terminal

New terminal

Displaying

Loading Sync
Communication between
Invisible blocks in
Adding

process-queue-locker,
si:reset-process-queue 71
process-wait-with-timeout 95
process-walt-with-timeout function 95
processing 113, 114
progns in loops 82
program 1
program (SELECT T) 114
Program counter (PC) metering 50
program counters information 137
Programs 135
programs and input editor 63
progs and dos 78
prompt 65
:prompt option 23

Changes to input editor options :do-not-echo, :pass-through,

:character option for

:date option for

:date-or-never option for
:decimal-number option for
:decimal-number-or-nil option for
:delimited-string option for
:delimited-string-or-nil option for
:delimiter option for

:eval-form option for
:eval-form-or-end option for
:expression option for

prompt, :reprompt 22
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read

SRARRRRRERR

200

RN Release 5.0 Release Notes

:expression-or-end option for
Afont-list option for

:host option for

:host-list option for
:keyword-list option for
:number option for
:number-or-nil option for
:past-date option for
:past-date-or-never option for
:pathname option for
:pathname-host option for
spathname-list option for
:pathname-or-nil option for
:string option for

:string-list option for
:string-or-nil option for
:string-trim option for
time-interval-or-never option for
Changes to

Suppress
compiler:style-checker

Get Common
sys:dump-forms-to-file always

- prompt-and-read

Symbolics, inc. March 1984

prompt-and-read

prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read function 85
:prompt-and-read messages to streams 85
Prompting for input from user 85

prompting for passwords 70

property 81

Property Lists process 143

puts package attribute into binary file 82

RERRERRRRRRRRRRRRRR

Q

Changes to FUNCTION C, FUNCTION M, and FUNCTION

FUNCTION
NETWORK

Major-mode-setting Commands Now
Disk Format Command Asks Different
Lock

Print

Unlock

Character
String
Symbol print-name

meter:
Read

New optional argument to

m-SUSPEND selects frame with break

a 13
Q command 113
Q command 114
:gbin canonical type 34
Query About Updating File Atiribute List 126
Question 134
queue 71
queue 115
queue 71
QUOTE key 116
quoter 17
quoter 17
quoter 17

R Fed command 113

Ramifications of Host Colon Change for Baby!
Files 129

range-of-bucket function 52

rational number in binary 18

Ratios read in current ibase and print in current
base 19

read 61

[Read File] Font Editor menu item 113

read function 61

read function for Debugger 116

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

Syntax errors in
Ratios

read functions 23

read in current Ibase and print in current base 19
sread output format style 21

Read rational number in binary 18

New methods of tv:stream-mixin: :start-typeout, :finish-typeout, :rescanning-p, :force-rescan, :replace-

New variable: el:
cl:
New function:

New optional arguments to
New function: si:

New function to be called by reader macros: si:
si:
Comments for Lisp

#B

New

Previously undocumented
New function to be called by
Changes to Readtable,

New Rules for

New function:

readline and
Common Lisp
Changes to

Use

Changes to Serial 1/0: Parity

Append Conversation By
Delete Conversation By
Select All Conversations By
Select Conversation By

input,
cread-bp 63
:read-bp method of tv:stream-mixin 65 -
read-default-float-format 17
read-default-float-format® variable 17
read-delimited-string 60
read-delimited-string function 60
read-extended-ibase-signed-number variable 20
read-extended-ibase-unsigned-number
variable 19
:read-frame method of si:serial-hdlc-mixin 111
read-from-string 84
read-from-string function 84
read-or-end 62
read-or-end function 62
read-recursive 83
read-recursive function 83

reader 83
Reader Accepts Common Lisp Floating Point
Exponents 17

reader macro 18

reader macro: #8 18

reader macro: # and # 83

reader macros: si:read-recursive 83

Reader, and Printer for Common Lisp 16

Reading Ambiguous Tokens 19

Reading and Printing Character Objects 19

Reading from streams 65 ‘

Reading function to use input editor 59

readline and readline-trim return additional
values 62

readilne function 62

readline-or-nil 63

readline-or-nil function 63

readline-trim function 62

readline-trim retum additional values 62

readtable 83

Readtable, Reader, and Printer for Common Lisp 16

Receiving blips 40

Receiving mouse clicks 40

record-source-file-name function 147

record-source-file-name instead of (remprop
symbol ':source-file-name) 147

Recovery and Xon/Xoft Character Setting 109

Recursion in Bound and Default Handlers
Eliminated 97

Redefining functions 147

:redirect-screen-array message to screens 79

Redistributed- header fields 130

References (m-X) Zmail command 130

References (m-X) Zmail command 130

References (m-X) Zmail command 130

References (m-X) Zmail command 130

202

RN Release 5.0 Release Notes

Change case of

New Zwei command: Comment Out
Comment Out

Lowercase Code in

Uppercase Code in

Changes to Networks in

Changes to the FEP in

Changes to the File System in
Changes to the Lisp Language and Compiler in
Changes to Utilities in

Changes to Zmacs in

Changes to Zmail in

Clarifications and Corrections for
Improvements to Lisp in
Improvements to Utilities in
Improvements to Zmacs in
Improvements to Zmail in
Incompatible Changes to Lisp in
Incompatible Changes to Networks in
Incompatible Changes to the File System in
Incompatible Changes to Utilities in
Incompatible Changes to Zmacs in
Incompatible Changes to Zmail in
New Features in Lisp in

New Features in Networks in

New Features in the File System in
New Features in Utilities in

New Features in Zmacs in

New Features in Zmail in

Notes on Operations in

New Microcode in

Backup Tape

Multidimensional Arrays on the 3600
New variable: fs:

fs:

Forgetting objects

:init canonical pathname type

Use record-source-file-name instead of

New condition flavor: fs:
fs:

Symbolics, Inc. March 1984

region 125

Region (c-X c-;) 126

Region (c-X c-;) Zwei command 125

Region (m-X) Zwei command 125

Region (m-X) Zwel command 125

Release 5.0 107

Release 5.0 133

Release 5.0 119

Release 50 5

Release 5.0 113

Release 5.0 123

Release 5.0 129

Release 5.0 143

Release 5.0 77

Release 5.0 116

Release 5.0 126

Release 5.0 130

Release 5.0 5

Release 5.0 107

Release 5.0 119

Release 5.0 113

Release 5.0 123

Release 5.0 129

Release 5.0 44

Release 5.0 108

Release 5.0 120

Release 5.0 114

Release 5.0 124

Release 5.0 130

Release 5.0 151

Release 5.0: 270 on 3600, 998 on LM-2 3

Release 5.0: Introduction and Highlights 1

Release 5.0: Notes and Clarifications 143

Release 5.0: Operations and Site Management 151

Reliability 151

[Reload/Retrieve] File System Maintenance menu
item 151

Remember Actual Dimensions 78

remember-passwords 70

remember-passwords variable 70

remembered by a resource 78

Remove flavor 53

removed 35

Removing methods 53

remprop function 147

(remprop symbol ':source-file-name) 147

Rename file 27

:rename message to pathnames 27

rename message to streams 27

:rename value of open option for :if-exists 25

rename-across-hosts 70

rename-across-hosts flavor 70

:rename-and-delete value of open option for
if-exists 25

:clear-screen, :clear-eol, and :clear-eof messages to windows

chaos:stream, chaos:close, and chaos:finish
Changes to

renamed 44
renamed 107
renamef and copyf 26

RN Release 5.0 Release Notes

203

Symbolics, Inc. March 1984

New special forms catch and throw
neti:reset, neti:enable, and neti:disable

format directives “@T and “@*

renamef function 27

replace *catch and *throw 14

replace chaos:reset, chaos:enable, and
chaos:disable 107

replace "X and "G 21

sreplace-input method of tv:stream-mixin 65

New methods of tv:stream-mixin: :start-typeout, :finish-typeout, :rescanning-p, :force-rescan,

Show Hardcopy Status (m-X)
fs:make-logical-pathname-host
Flavor fs:undefined-logical-pathname-translation

si:halt
New [map Over] Menu ltem:

meter:

New Default

:replace-input, :read-bp 63
replaces chaos:print-igp-queue 115
replaces fs:add-logical-pathname-host 37
replaces ;
fs:undefined-logical-pathname-directory 37
replaces sys:%halt 133
[reply] 130
[Reply] Map Over menu item
report function 51
wreport-stream option for copyt 28
Representations for Newest and Oldest Logical
Pathname Versions 35
Reprints notifications 99

130

Changes to input editor options :do-not-echo, :pass-through, :prompt,

New option for defflavor:

wreprompt 22
:reprompt option 23
:required-init-keywords 53
:required-init-keywords option 54
:required-init-keywords option for defflavor 54
rrescanning-p method of tv:stream-mixin 64

New methods of tv:stream-mixin: :start-typeout, :finish-typeout,

chaos:
neti:

:rescanning-p, force-rescan, :replace-input,

:read-bp 63
Resent- header fields 130
reset function 107
reset function 107, 108

neti:reset, neti:enable, and neti:disable replace chaos:

neti:

reset, chaos:enable, and chaos:disable

reset, neti:enable, and neti:disable replace
chaos:reset, chaos:enable, and
chaos:disable 107

107

New functions: si:make-process-queue, si:process-enqueue, si:process-dequeue, si:process-queue-

si:

Deallocating allocated objects of a
Forgetting objects remembered by a
Dumper

New Zmacs command:

readline and readline-trim
:proceed methods can now
sort predicate should

locker, si:
reset-process-queue 71
reset-process-queue function 71
resource 13
resource 78
Restarting and Append-to-tape Default 121
Resume Patch (m-X) 124
Resume Patch (m-X) Zmacs command
retum additional values 62
retum nil 97
return nil for equal elements

124

144

intern, intern-local, intern-soft, and intern-local-soft

chaos:
Use cdr with locatives

Change in type of array
float

return two values 7
Return-keyboard-to-lisp FEP command
return-pkt function 108
retumed by loct 148
retumed by string-append 16
Returning control from input editor 57
returns a single-precision number 48

137

204 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
floatp returns t for any floating-point number 49
chaos:send-unc-pkt automatically returns the packet to the free pool 108
Reversible wild pathname translation 35
RFC822 domain addressing 130
Rfc822 Domain Addressing Supported 130
New variable: tv: rh-typeout-default 65
tv: rh-typeout-default variable 65
Round-robin locking 71
mplaca can be used with stack lists 148
rplaca function 148
rplacd function 148
Rubout handler 1, 22
incompatible Changes to the Input Editor (Rubout Handler) 21
New Features Associated with the Input Editor (Rubout Handler) 57
string-length uses same coercion rules as string 16
New Rules for Reading Ambiguous Tokens 19
S S S

:draw-filled-in-circle uses

Using copy-array-portion on the
string-length uses

Symbols in global and keyword packages with the
Jump to

:chaos option for si:

sclock option for si:

:disk option for si:

skeyboard option for si:

:mouse option for si:

:unibus option for si:

si:

New option for si:

sys:
Complement

:create-screen-array message to
redirect-screen-array message 1o
tv:

tv:

CHNCP.GSF global

New [map Over] Menu lem:

New terminal program

New feature: Flavor Examiner
3600

S exponent identifier 17

:sail output format style 21

same algorithm as :draw-circle 99

same array 145

same coercion rules as string 16

same names 7

Saved Position (c~-X J) Zmacs command 127

sb-on 95

sbon 95

sb-on S5

sbon 95

sb-on 95

sh-on 95

sb-on function 95

sb-on: :mouse (3600 only) 95

%scavenger-run-time meter 52

screen 113

screens 79

screens 79

scroll-maintain-list function 105

scroll-maintain-list init function can take
arguments 105

Second argument to si:install-microcode now
optional 94

section 109

Select All Conversations By References (m-X) Zmail
command 130

Select Buffer (c-X B) Zmacs command 125

Select Conversation By References (m-X) Zmail
command 130

{select Conversation] 130

[Select Conversation] Map Over menu item 130

Select Previous Buffer (c-m-1.) Zmacs
command 125

SELECT T command 114

(SELECT T) 114

SELECT X command 114

(SELECT X) 114

select-methods handle :operation-handled-p and

RN Release 5.0 Release Notes

205

Symbolics, Inc. March 1984
tv:
Improvements to make-system: error-restart,
m-SUSPEND

Keyword Symbols Are

:send-f-handles 81
select-or-create-window-of-flavor function 104
selective transformations 94
selects frame with break read function for

Debugger 116
Self-evaluating 13
SEND 109

3600 select-methods handle :operation-handled-p and

chaos:
chaos:

chaos:

Continue Command
Logical Pathname Name, Type, and Version Now
Token

Chaosnet

Clock

Disk

Keyboard

Mouse

FEP Supports Hdic
Hdlc
:input-error-character
:input-xoff-character
:input-xon-character
:output-xoff-character
:output-xon-character
Changes to

:read-frame method of si:
:write-frame method of si:
si:

zwel:

tv:

tv:

Previously undocumented function: fs:
fs:

:send-if-handles 81

send-pkt function 108

send-unc-pkt automatically retumns the packet to the
free pool 108

send-unc-pkt function 108

Sends an All-keys-up Character to Lisp 137

Separated by Periods 35

separators 17

sequence break 95

sequence break 95

sequence break 95

sequence break 85

sequence break 95

Serial 1O 133

Serial /O on the 3600 110

serial 1/0 parameter 109

serial I/O parameter 109

serial 1/0 parameter 109

serial /0O parameter 109

serial 1/0 parameter 109

Serial 1/0: Parity Recovery and Xon/Xoff Character
Setting 109

serial-hdlc-mixin 111

serial-hdlc-mixin 111

serial-hdic-stream flavor 110

Set Package (m-X) offers to create a package 123

Set Package (m-X) Zmacs command 123

set-attribute-updates-list variable 126

set-default-font function 149

set-default-font not supported 149

set-logical-pathname-host 38

set-logical-pathname-host function 38

:set-space method of tv:margin-space-mixin 75

set-syntax-from-description function 18

:set-truncate-line-out method of tv:sheet 102

Changes to Serial 1/0: Parity Recovery and Xon/Xoff Character

Streams

:clear-eof method of tv:

:clear-eol method of tv:
:clear-rest-of-line method of tv:
:clear-rest-of-window method of tv:
:clear-screen method of tv:
:clear-window method of tv:
:set-truncate-line-out method of tv:
struncate-line-out method of tv:
:adjust-screen-array message to
Binary left

Setting 109
sharing common buffers 89
sheet 44
sheet 44
sheet 44
sheet 44
sheet 44
sheet 44
sheet 102
sheet 102
sheets 79
shift 17
Shifted Mouse Clicks Can Now Be Used for Editor
Commands 103

206 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984

cl: shont-float format 17
Unplugging Lemo Cables Should Not Hait the FEP 137
sort predicate should retumn nil for equal elements 144
Show Configuration Command Displays More
Information 135
Show Configuration FEP command 135
Show File FEP command 134
Show Hardcopy Status (m-X) replaces
chaos:print-igp-queue 115
Show Hardcopy Status (m-X) Zwei command 115
Show Status Command Displays More Useful
Information 140
Show Status FEP command 137, 140
Functions moved from the sl package to global: deallocate-whole-resource,
map-resource 13
sl:*read-extended-ibase-signed-number*
variable 20
si:*read-extended-ibase-unsigned-number*
variable 19
si:*trace-bar-p* variable 97
si:*trace-bar-rate* variable 97
si:*trace-columns-per-level* variable 97
si:*trace-old-style* variable 97
si:alphabetic syntax description 18
si:bitscale 17
New descriptions: si:bitscale, si:digitscale,
sl:non-terminating-macro 17
sl:break syntax description 18
si:circlecross syntax description 18
si:coroutine-bidirectional-stream flavor 92
si:coroutine-input-stream flavor 92
si:coroutine-output-stream flavor 92
New descriptions: si:bitscale, si:digitscale, si:non-terminating-macro 17
si:doublequote syntax description 18
si:full-ge function 73
Known problem with si:gc-reclaim-immediately 148
si:gc-reclaim-immediately variable 148
si:halt function 133
si:halt replaces sys:%halt 133
si:install-microcode function 94
Second argument to si:install-microcode now optional 94
si:macro syntax description 18
si:make-coroutine-bidirectional-stream
function 91
si:make-coroutine-input-stream function 91
si:make-coroutine-output-stream function 91
si:make-process-queue function 71
New functions: si:make-process-queue, si:process-enqueue,
si:process-dequeue, si:process-queue-
locker, si:reset-process-queue 71
si:make-serial-stream function 110, 111
si:modem flavor 111
sl:modem-error flavor 111
New descriptions: si:bitscale, si:digitscale, si:non-terminating-macro 17
New function: si:patch-loadedp 70
si:patch-loaded-p function 70
si:process-dequeue function 71
New functions: si:make-process-queue, si:process-enqueue,

RN Release 5.0 Release Notes

207

Symbolics, Inc. March 1984

New functions: si:make-process-queue,

si:process-dequeue, si:process-queue-
locker, si:reset-process-queue 71
si:process-enqueue function 71
si:process-enqueue, si:process-dequeue,
sl:process-queue-locker,
sl:reset-process-queue 71
sl:process-queue-locker function 71

New functions: si:make-process-queue, si:process-enqueue, si:process-dequeue,

New function:
New function to be called by reader macros:

sl:process-queue-locker,

si:reset-process-queue 71
si:read-or-end 62 .
si:read-recursive 83
si:read-recursive function 83

New functions: si:make-process-queue, si:process-enqueue, si:process-dequeue,

:chaos option for
:clock option for
:disk option for
:keyboard option for
:mouse option for
:unibus option for

New option for
:read-frame method of
:write-frame method of

sk:
3600 Supports leee

New data types:
cl:

sys:

New functions: sys:
IEEE-standard

Convert number to

fioat retums a
:validate-Imfs-dump-tapes

Release 5.0: Operations and
Extract

sk

Memory Board Not Needed in Lbus

Convert number to

Both default pathnames for

si:process-queue-locker,
si:reset-process-queue 71

si:reset-process-queue function 71

si:sb-on 95

sh:sb-on 95

si:sb-on 95

si:sbon 95

sl:sb-on 95

si:sb-on 95

si:sb-on function 95

si:sb-on: :mouse (3600 only) 95

si:serial-hdic-mixin 111

si:serial-hdlc-mixin 111

si:serial-hdlc-stream flavor 110

si:single syntax description 18

si:slash syntax description 18

si:verticalbar syntax description 18

sl:whitespace syntax description 18

single syntax description 18

Single- and Double-precision Floating Point 48

Single-character symbol 18

:single-float and :double-float 49

single-float format 17

single-float-p function 49

single-fioat-p, sys:double-float-p 49

single-precision 48

single-precision floating-point 48

single-precision number 48

site attribute 121

Site Configuration for Dialnet 151

Site Management 151

size field of a byte specifier 50

slash syntax description 18

Slot 0 136

Small flonum 49

small flonum 48

Some Methods Can Use Combination Type as
Method Type 83

sort function 144

sont predicate should return nil for equal
elements 144

Sorting by Conversations Available 130

[Sort] Zmail menu item 130

Source Compare (m-X) now use :newest

RN Release 5.0 Release Notes

New Zmacs command:

Symbolics, Inc. March 1984

version 123
Source Compare (m-X) Zwei command 123
Source Compare Newest Definition {(m-X) 124
Source Compare Newest Definition (m-X) Zmacs
command 124
Source pathname 26

Use record-source-file-name instead of (remprop symbol *

Output
Trim leading and trailing white

Octal escape for
Change in Debugger
block

catch
condition-bind
condition-call
condition-call-if
condition-case
defconstant
define-symbol-macro
defpackage
destructuring-bind
format:defformat
multiple-value-call
multiple-value-prog1
store

tagbody

throw

trace

unadvise
with-stack-list
with-stack-list*

New

New

New

Previously undocumented
New

New

New
New

New message to conditions:

** accordion wildcard

¢ oldest version

y newest version

Create a byte

Extract size field of a byte
Mouse cursor

rplaca can be used with
Init File Pathnames
Zmalil Init File Pathnames
New Zmacs command:

:source-file-name) 147

space 21

space 62

:space init option for tv:margin-space-mixin 75

:space method of tv:margin-space-mixin 75

special characters 17

special command for fs:directory-not-found 98

special form 46

special form 14

special form 97

special form 98

special form 98

special form 98

special fom 45

special form 53

special form 7

special form 77

special form 56

special form 47

special form 48

special form 145

special form 47

special form 15

special form 96

special form 40

special form 148

special form 148

special form: defconstant 45

special form: define-symbol-macro 53

special form: defpackage 7

special form: destructuring-bind 77

special form: format:defformat 56

special forms catch and throw replace *catch and
*throw 14

special forms: block and tagbody 46

special forms: multiple-value-call and
multiple-value-progl 47

:special-commandp 74 (

:special-command-p method of condition 74

specification 120

specifier 35

specifier 35

specifier 50

specifier 50

speed 100

Stack lists 148

stack lists 148

Standardized 34

Standardized 129

Start Private Patch (m-X) 124

Start Private Patch (m-X) Zmacs command 124

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

meter:
New methods of tv:stream-mixin:

Show Hardcopy
Show Hardcopy
Show

Show

Current micro PC (CPC)

Macro PC

Oid PCs (OPC)

FUNCTION 2 W displays current process name in
h-c-upper-left waits for Lisp to

meter:

h-c-upper-left

Synonym
chaos:

chaos:

:any-tyi method of tv:
:any-tyi-no-hang method of tv:
sfinish-typeout method of tv:
:force-rescan method of tv:
:list-tyi method of tv:
:mouse-or-kbd-tyi method of tv:
:mouse-or-kbd-tyi-no-hang method of tv:
:read-bp method of tv:
:replace-input method of tv:
:rescanning-p method of tv:
:start-typeout method of tv:

:tyi method of tv:

tyi-no-hang method of tv:

start-monitor function 51

sstart-typeout method of tv:stream-mixin 63

:start-typeout, finish-typeout, :rescanning-p,
force-rescan, :replace-input, :read-bp 63

Status (m-X) replaces chaos:print-igp-queue 115

Status (m-X) Zwei command 115

Status Command Displays More Usetful
Information 140

Status FEP command

status information 137

status information 137

sfatus information 137

status line 148

stop itseff 140

stop-monitor function 51

stops execution of Lisp 133

store not supported on the 3600 145

store special form 145

stream 20

stream function 107

Stream parameter 65

stream, chaos:close, and chaos:finish
renamed 107

stream-mixin 41, 42

stream-mixin 41

stream-mixin 64

stream-mixin 64

stream-mixin 41

stream-mixin 42

stream-mixin 42

stream-mixin 65

stream-mixin 65

stream-mixin 64

stream-mixin 63

stream-mixin 41

stream-mixin 41

137, 140

Changes to :tyi, :tyi-no-hang, :list-tyl, :mouse-or-kbd-tyi, and :mouse-or-kbd-tyi-no-hang methods of

New methods of tv:

sprompt-and-read messages to

:rename message to

Previously Undocumented Feature: Coroutine
Reading from

string-length uses same coercion rules as

Clicking Middle Edits Current

Change in type of array returned by

Previously undocumented function:

tv:

stream-mixin 40

stream-mixin: :start-typeout, finish-typeout,
:rescanning-p, :force-rescan, :replace-input,
: 63

streams 85

streams 27

Streams 89

streams 65

Streams sharing common buffers 89

string 16

String concatenation 16

String construction 65

string function 16

String in Choose-variable-values Windows 105

sstring option for prompt-and-read 85

String quoter 17

string-append 16

string-append function 16

string-compare 81

string-compare function 81

210

RN Release 5.0 Release Notes

New optional arguments to string-upcase and

New optional arguments to

seditor output format
sread output format
:sall output format
Controlling typeout
Compiler Performs
compiler:

Babyl files with

Rfc822 Domain Addressing
tv:set-default-font not
store not

LMFS Dumper

LMFS Now

FEP

3600

Previously undocumented macro:

END and c-END

:mouse

Single-character

Use record-source-file-name instead of (remprop

#:

External

global package
Internal

keyword package
Printing Uninterned
Uninterned
Keyword

#:
Loading
Load

si:alphabetic
si:break

Symbolics, Inc. March 1984

string-downcase 80

string-downcase function 80

string-length function 16

string-length uses same coercion rules as
string 16

:string-list option for prompt-and-read 85

:string-or-nil option for prompt-and-read 85

:string-trim option for prompt-and-read 85

string-upcase and string-downcase 80

string-upcase function 80

style 21

style 21

style 21

style 65

Style Checking on All Forms 81

style-checker property 81

Submenu 105

Subpackages 6

summary-window-format Babyl file option 129

summary-window-format other than t or nil need
to be edited 129

Supdup 1

SUPER key 102

Superpackages 6

:supersede value of open option for :if-exists 25

Supported 130

supported 149

supported on the 3600 145

Supports Accordion Wildcards 119

Supports Directory Links 120

Supports Hdic Serial /0 133

Supports leece Single- and Double-precision Floating

Point 48
Suppress prompting for passwords 70
swapf 82
swapf macro 82
swapped in Converse 116
symbol 42
symbol 18

symbol ’:source-file-name) 147

Symbol print-name quoter 17

symbol-syn-stream 20

symbols 6

symbols 9

symbols 6

symbols 7

Symbols 19

symbols 19

Symbols Are Self-evaluating 13

Symbols in global and keyword packages with the
same names 7

Symbols moved to or from global package 9

syn-stream 20

Sync Programs 135

Sync-program FEP command

Synonym stream 20

syntax description 18

syntax description 18

134, 135

RN Release 5.0 Release Notes

Symbolics, Inc. March 1984

si:circlecross
si:doublequote
si:macro
sk:single
si:slash
si:verticalbar

sl:whitespace
Character

New Default LMFS Translation Table for

si:halt replaces

New functions: sys:single-float-p,

How to use the
Previously undocumented variables:

syntax description 18

syntax description 18

syntax description 18

syntax description 18

syntax description 18

syntax description 18

syntax description 18

syntax descriptions 17

Syntax errors in read functions 23

Sys Hosts 119

sys:%count-disk-page-read-operations-in-
scavenger meter 52

sys:%count-disk-page-read-operations-in-
transporter meter 52

sys:%halt 133

sys:%halt function 133

sys:%scavenger-run-time meter 52

sys:%transporter-run-time meter 52

sys:%tv-clock-counter meter 52

sys:arithmetic-error flavor 98

sys:defsubst-with-parent macro 145

sys:double-floatp 49

sys:double-float-p function 49

sys:dump-forms-to-file always puts package
attribute into binary file 82

sys:function-parent declaration 145

sys:function-parent declaration 145

sys:mouse-x-scale-array and sys:mouse-y-scale-
array (LM-2 only) 100

sys:mouse-x-scale-array variable 100

Previously undocumented variables: sys:mouse-x-scale-array and

New error flavors:

New error flavors: sys:parse-error and
New function:

New functions:
New macro:

Carry tape

File

Major and Minor mode

Network namespace

Window

Changes to the File
Incompatible Changes to the File
New Features in the File
[Reload/Retrieve] File

sys:mouse-y-scale-array (LM-2 only) 100
sys:mouse-y-scale-array variable 101
sys:parse-error and sys:parse-ferror 23
sys:parse-error flavor 23
sys:parse-ferror 23
sys:parse-ferror 24
sys:parse-ferror flavor 24
sys:parse-ferror function 24
sys:single-float-p function 49
sys:single-float-p, sys:double-float-p 49
sys:with-open-file-search 69
sys:with-open-file-search macro 69
system 1
System 1
system 127
system 1, 107
System Changes Associated with Mouse Input 40
System in Release 5.0 119
System in Release 5.0 119
System in Release 5.0 120
System Maintenance menu item 151

212 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
SELECT T command 114
floatp retums t for any floating-point number 49

Babyl files with summary-window-format other than
New terminal program (SELECT

New Zwei command: Find Files in Tag

Find Files in Tag

New Default LMFS Translation

Inspecting hash arrays of eq hash

New Zwei command: Find Files in

Find Files in

New special forms: block and

tv:scroll-maintain-list init function can
Backup

Carmy
Comparing backup

Imlac

New
Babyl files with summary-window-format other

t or nil need fo be edited 129

T 114

Table (m-X) 125

Table (m~-X)) Zwei command 125
Table for Sys Hosts 119

tables not permitted 145

Tag Table (m-X) 125

Tag Table (m-X)) Zwei command 125
tagbody 46

tagbody special form 47

take arguments 105

Tape Reliability 151

tape system 1

tapes 151

Target pathname 26

Telnet 1

terminal codes 114

Terminal program 1

terminal program (SELECT T) 114
than t or nil need fo be edited 129

New special forms catch and throw replace *catch and

New special forms catch and

New Rules for Reading Ambiguous
New Metering

New format for

sk
sl:
sl
si:
Trim leading and

*throw 14
throw replace *catch and *throw 14
throw special form 15
time-interval-or-never option for
prompt-and-read 85
Token separators 17
Tokens 19
Tools for the 3600 50
TOPS-20 34
trace output 96
trace special form 96
frace-bar-p variable 97
trace-bar-rate variable 97
trace-columns-per-level variable 97
frace-old-style variable 97
trailing white space 62

improvements {0 make-system: error-restart, selective

Reversible wild pathname
Wwild pathname

New Default LMFS

Changes to Logical Pathname
Physical pathname

8Yy8:

tv:
New flavors: tv:

New flavors: tv:truncatable-lines-mixin, tv:
tv:
tv:

transformations 94
translation 35
translation 35
Translation Table for Sys Hosts 119
Translations 35
translations 35
%transporter-run-time meter 52
Trim teading and trailing white space 62
truncatable-lines-mixin flavor 102
truncatable-lines-mixin,
tvtruncating-lines-mixin 102
Aruncate value of open option for :if-exists 25
druncate-line-out method of tv:sheet 102
Truncating lines 102
truncating-lines-mixin 102
truncating-lines-mixin flavor 102
truncating-window flavor 102

RN Release 5.0 Release Notes

213

Symbolics, Inc. March 1984

sys:
New variable:

%tv-clock-counter meter 52
tv:*mouse-incrementing-keystates® variable 103
tv:*mouse-modifying-keystates* 102
tv:*mouse-modifying-keystates* variable 103

Previously undocumented functions: tv:add-to-system-menu-programs-column,

Previously undocumented functions:
Flavors

New variable:

:mouse-click method of

Changes to :mouse-click method of
:draw-circle method of
:draw-filled-in-circle method of

Flavors tv:list-mouse-buttons-mixin and
Flavors

Flavors tv:any-tyi-mixin and
:set-space method of
:space init option for

:space method of

New flavor:

New optional argument to

Flavor
New variable:

:clear-eof method of

:clear-eol method of
:clear-rest-of-line method of
:clear-rest-of-window method ot
:clear-screen method of
:clear-window method of
:set-truncate-line-out method of
truncate-line-out method of
:any-tyl method of
:any-tyi-no-hang method of
finish-typeout method of

tv:add-to-system-menu-create-menu 103
tv:add-to-system-menu-create-menu function 104
tv:add-to-system-menu-programs-column

function 104
tv:add-to-system-menu-programs-column,

tv:add-to-system-menu-create-menu 103
tv:any-tyi-mixin and tv:list-tyi-mixin obsolete 40
tv:any-tyi-mixin flavor 40
tv:cold-load-stream-old-selected-window 74
tv:cold-load-stream-old-selected-window

variable 74
tv:edit-namespace-object function 107
tv:essential-mouse 42
tv:essential-mouse 42
tv:graphics-mixin 99
tv:graphics-mixin 99
tv:kbd-mouse-buttons-mixin flavor 42
tv:kbd-mouse-buttons-mixin obsolete 42
tv:list-mouse-buttons-mixin and tv:kbd-mouse-

buttons-mixin obsolete 42 ‘
tv:list-mouse-buttons-mixin flavor 42
tv:list-tyi-mixin flavor 40
tv:list-tyi-mixin obsolete 40
tv:margin-space-mixin 75
tv:margin-space-mixin 75
tv:margin-space-mixin 75
tv:margin-space-mixin 74
tv:margin-space-mixin flavor 75
tv:menu-choose function 149
tv:mouse-double-click-time variable 103
tv:mouse-wait 101
tv:mouse-walit function 101
tv:preemptable-read-any-tyi-mixin flavor 43
tv:preemptable-read-any-tyi-mixin obsolete 43
tv:rh-typeout-default 65
tv:rh-typeout-default variable 65
tv:scroll-maintain-list function 105
tv:scroll-maintain-list init function can take

arguments 105
tv:select-or-create-window-of-flavor function 104
tv:set-default-font function 149
tv:set-default-font not supported 149
tvisheet 44
tv:sheet 44
tv:isheet 44
tvisheet 44
tvisheet 44
tvisheet 44
tvisheet 102
tvisheet 102
tv:stream-mixin 41, 42
tv:stream-mixin 41
tv:stream-mixin 64

214

RN Release 5.0 Release Notes

force-rescan method of

:list-tyi method of

:mouse-or-kbd-tyi method of
:mouse-or-kbd-tyi-no-hang method of
:read-bp method of

sreplace-input method of
:rescanning-p method of
:start-typeout method of

Ayl method of

tyi-no-hang method of

Changes 10 :tyi, :tyi-no-hang, :list-

New methods of

New flavors:

New flavors: tv:truncatable-lines-mixin,

New macro:

Symbolics, Inc. March 1984

tv:stream-mixin 64
tv:stream-mixin 41
tv:stream-mixin 42
tv:stream-mixin 42
tv:stream-mixin 65
tv:stream-mixin 65
tv:stream-mixin 64
tv:stream-mixin 63
tv:stream-mixin 41
tv:stream-mixin 41

, :mouse-or-kbd-tyl, and :mouse-or-kbd-tyl-no-hang methods of

tv:stream-mixin 40

tv:stream-mixin: :start-typeout, :finish-typeout,
:rescanning-p, :force-rescan, :replace-input,
: 63

tv:truncatable-lines-mixin flavor 102
tvitruncatable-lines-mixin,
tvitruncating-lines-mixin 102
tv:itruncating-lines-mixin 102
tv:truncating-lines-mixin flavor 102
tv:truncating-window flavor 102
tv:with-mouse-grabbed-on-sheet 74
tv:with-mouse-grabbed-on-sheet macro 74

intern, intern-local, intern-soft, and intern-local-soft return

Change in Zmacs command Modified

two values 7
Two Windows (c-X &) 127

Modified Two Windows (c-X 4) Zmacs command 127
tyi method of tv:stream-mixin 41
Changes to Ayl, :tyi-no-hang, :list-tyi, :mouse-or-kbd-tyi, and
:mouse-or-kbd-tyi-no-hang methods of
tv:stream-mixin 40
dyi-no-hang method of tv:stream-mixin 41
Changes to :tyi, Ayl-no-hang, :list-tyl, :mouse-or-kbd-tyi, and
:mouse-or-kbd-tyi-no-hang methods of
tv:stream-mixin 40
fep fle type 134
:bin canonical type 34
:lisp canonical type 34
:qbin canonical type 34
DIAL network pe 151

Some Methods Can Use Combination
Font Editor file

Argument to :menu

Change in

:init canonical pathname
Logical Pathname Name,
New canonical file
Controlling

* Definition

New data

ty
Some Methods Can Use Combination Type as Method

Type 83
Type as Method Type 83
type defaults 113
type menu items can be a menu or a form 105
type of array returned by string-append 16
type option to make-plane 80
type removed 35
Type, and Version Now Separated by Periods 35
type: :mss 126
typeout style 65
types 145
types: :single-float and :double-float 49

RN Release 5.0 Release Notes

215

Symbolics, Inc. March 1984

Change in arguments to
New function:

‘Known problem: char-upcase and thar-downcase

unadvise 39

unadvise special form 40
undefflavor 53

undefflavor function 53

undefined for modified characters 145

Flavor fs:undefined-logical-pathname-translation replaces fs:

fe:
Flavor fs:

Previously
Previously
Previously
Previously

Previously
Previously

Previously
Previously
Previously
Previously

Printing

Major-mode-setting Commands Now Query About

Shifted Mouse Clicks Can Now Be
mplaca can be

Show Status Command Displays More
Prompting for input from

Changes to Input Editor

Arguments changed for fs:
fs:

:draw-filled-in-circle
string-length

Changes to
Improvements to
Incompatible Changes to
New Features in

undefined-logical-pathname-directory 37
undefined-logical-pathname-translation flavor 37
undefined-logical-pathname-translation replaces

fs:undefined-logical-pathname-directory 37
Undocumented Feature: Coroutine Streams 89
undocumented function: clear-resource 78
undocumented function: describe-system 94
undocumented function:

fs:set-logical-pathname-host 38
undocumented function: string-compare 81
undocumented functions: tv:add-to-system-menu-

programs-column,

tv:add-to-system-menu-create-menu 103
undocumented macro: swapf 82
undocumented reader macro: # and # 83
undocumented special form: destructuring-bind 77
undocumented variables: sys:mouse-x-scale-array

and sys:mouse-y-scale-array (LM-2

only) 100
:unibus option for si:sb-on 95
Uninterned symbols 19
Unintemed Symbols 19
UNIX 34
Unlock queue 71
Unplugging Lemo Cables Should Not Halt the

FEP 137
Updating File Attribute List 126
Uppercase Code in Buffer (m-X) Zwei command 125
Uppercase Code in Region (m-X) Zwei

command 125
Used for Editor Commands 103
used with stack lists 148
Useful Information 140
user 85
User Interface 22
user package 1,6 ‘
user-homedir and fs:init-file-pathname 34
user-homedir function 34
uses same algorithm as. :draw-circle 99
uses same coercion rules as string 16
Utilities 1
Utilities in Release 5.0 113
Utilities in Release 6.0 116
Utilities in Release 5.0 113
Utilities in Release 5.0 114

RN Release 5.0 Release Notes

216
Symbolics, Inc. March 1984
Vv Vv
Vadic autodialer 151
Interface to thé Vadic Modem 111
nil nota valid menu item 149
:validate-imfs-dump-tapes site atiribute 121
dnput value of open option :direction 24
output value of open option :direction 24
:probe value of open option :direction 24
:probe-directory value of open option :direction 24
:probe-link value of open option :direction 24
ccreate value of open option :if-does-not-exist 25
:error value of open option :if-does-not-exist 25
nil value of open option :if-does-not-exist 25
:append value of open option for :if-exists ~ 25
werror value of open option for :if-exists 25
:new-version value of open option for :if-exists 25
:overwrite value of open option for :if-exists 25
:rename value of open option for :if-exists 25
:rename-and-delete value of open option for :if-exists 25
:supersede vaiue of open option for :if-exists 25
truncate value of open option for :if-exists 25

intern, intemn-local, intern-soft, and intern-local-soft return two

readline and readline-trim retum additional

applyhook

cl:*read-default-fioat-format*
dbg:*debug-io-override*
format:*format-output*
fs:*remember-passwords*

ge-on

inhibit-idle-scavenging-flag
sl:*read-extended-ibase-signed-number*
sl:*read-extended-ibase-unsigned-number*
si:*trace-bar-p*

si:*trace-bar-rate*
si:*trace-columns-per-level*
si:*trace-old-style*
sl:gc-reclaim-immediately
sys:mouse-x-scale-array
sys:mouse-y-scale-array
tv:*mouse-incrementing-keystates*
tv:*mouse-modifying-keystates*
tv:cold-load-stream-old-selected-window
tv:mouse-double-click-time
tv:rh-typeout-default
zwei:*converse-end-exits*
Zwei:*set-attribute-updates-list*

New

New

New

New

| New
| New

| New
‘ Previously undocumented

values 7

values 62

variable 72

variable 17

variable 74

variable 56

variable 70

variable 73

variable 148

variable 20

variable 19

variable 97

variable 97

variable 97

variable 97

variable 148

variable 100

variable 101

variable 103

variable 103

variable 74

variable 103

variable 65

variable 116

variable 126

variable: cl:*read-default-float-format* 17

variable: dbg:*debug-io-override* 74

variable: fs:*remember-passwords* 70

variable: gcon 73

variable: tv:*mouse-modifying-keystates* 102

variable:
tv:cold-load-stream-old-selected-window 74

variable: tv:rh-typeout-default 65

variables: sys:mouse-x-scale-array and sys:mouse-
y-scale-array (LM-2 only) 100

sverbose option for print-herald 39

RN Release 5.0 Release Notes

217

Symbolics, Inc. March 1984

Both default pathnames for Source Compare (m-X) now use :newest

FEP
FEP
FEP
FEP
FEP
FEP
FEP
FEP
Logical Pathname Name, Type, and
¢ oldest
) newest

version 123

Version 14: New Features 133
Version 15: Improvements 135
Version 15: Incompatible Changes 133
Version 15: New Features 135
Version 16: improvements 137
Version 16: New Features 136
Version 17: Improvements 140
Version 18: Improvements 140
Version Now Separated by Periods 35
version specifier 35

version specifier 35

New Default Representations for Newest and Oldest Logical Pathname

si:

Directory creation on
Pathname completion on
Changes to

FUNCTION
FUNCTION 2

h-c-upper-left
Compiler now

What happens
Optional argument to mapatoms-all and

Trim leading and trailing
si:
bitbit

Reversible

** accordion

Accordion

LMFS Accordion

LMFS Dumper Supports Accordion
Complement

Delete contents of

Delete to end of

Erase

Erase to end of

W

Versions 35
verticalbar syntax description 18
VMS 34
VMS 109
VMS 109
VMS Chaosnet 109

w
U command 148
W displays current process name in status line 148
W Fed command 113
waits for Lisp to stop itself 140
warns about implicit progns in loops 82
What happens when you cold boot 143
when you cold boot 143
where-is eliminated 7
where-is function 7
white space 62
whitespace syntax description 18
width from the destination array 145
Wild pathname translation 35
wild pathname translation 35
:wwild-inferiors 120
Wildcard Directory Mapping Available 92
wildcard specification 120
wildcards 1
Wildcards 120
Wildcards 119
window 113
window 44
window 44
window 44
window 44)
Window System Changes Associated with Mouse
Input 40

Clicking Middle Edits Current String in Choose-variable-values

Change in Zmacs command Modified Two
Modified Two

Windows 105
Windows (c-X 4) 127
Windows (c-X 4) Zmacs command 127

:clear-screen, :clear-eol, and :clear-eof messages to

New macro:

windows renamed 44
with-input-editing 59
with-input-editing macro 59

218 RN Release 5.0 Release Notes
Symbolics, Inc. March 1984
meter: with-monitoring macro 52
New macro: tv: with-mouse-grabbed-on-sheet 74
tv: with-mouse-grabbed-on-sheet macro 74
New macro: sys: with-open-file-search 69
sys: with-open-file-search macro 69
with-stack-list special form 148
with-stack-list* special form 148
Load World FEP command 134
[Write File] Font Editor menu item 113
swrite-frame method of si:serial-hdlc-mixin 111
NETWORK X command 114
SELECT X command 114
New feature: Flavor Examiner (SELECT X) 114
Changes to Serial I/O: Parity Recovery and Xon/Xoff Character Setting 109
Yanking input in Zwei 1
Yanking previous input 22
What happens when you cold boot 143
Zmacs 1
New Bufter-history Mechanism in Zmacs 125

Add Patch Changed Definitions (m-X)

Add Patch Changed Definitions of Buffer (m-X)
Copy File (m-X)

Jump to Saved Position (c-X J)

List Buffers (c-X c-B)

Modified Two Windows (c-X 4)

Resume Patch (m-X)

Select Buffer (c-X B)

Select Previous Buffer (c-m-L)

Set Package (m-X)-

Source Compare Newest Definition (m-X)
Start Private Patch (m-X)
Change in

New
New

New

Changes to
Improvements to
Incompatible Changes to
New Features in

Append Conversation By References {m-X)
Delete Conversation By References (m-X)
Select All Conversations By References (m-X)
Select Conversation By References (m-X)
Changes to

Improvements to

Zmacs command 123

Zmacs command 123

Zmacs command 28, 124

Zmacs command 127

Zmacs command 125

Zmacs command 127

Zmacs command 124

Zmacs command 125

Zmacs command 125

Zmacs command 123

Zmacs command 124

Zmacs command 124

Zmacs command Modified Two Windows (c-X
4) 127

Zmacs command: Resume Patch (m-X) 124

Zmacs command: Source Compare Newest Definition
(m-X) 124

Zmacs command: Start Private Patch (m-X) 124

Zmacs in Release 5.0 123

Zmacs in Release 5.0 126

Zmacs in Release 5.0 123

Zmacs in Release 5.0 124

Zmail 1

Zmalil command 130

Zmail command 130

Zmail command 130

Zmail command 130

Zmall in Release 5.0 129

Zmall in Release 5.0 130

