T4 Release 6.0
ey Release Notes

{ i

him e L

symbolics

Release 6.0 Bulletin

Cambridge, Massachusetts

Release 6.0 Bulletin

March 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Copyright © 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.
Font Library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLICS-LISP,
ZETALISP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Home Office
Software Support Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.

Cover design: Schafer/LaCasse

Cover printer: W.E. Andrews Co., Inc.

Text printer: ZBR Publications, Inc.

Printed in the USA.
Printing year and number: 87 86 859876543 21

1

March 1985 Release 6.0 Bulletin

NOTE: To add the included patches to your world, enter them into an editor buffer,
making sure that you specify the correct package for each,save out the file, compile
it, boot a clean world, and load the file before disk-saving.

Problem Description:
Reducing the size of your LMFS
Solution:

Several users have tried to reduce the the size of their LMFS by
deleting one or more file partitions and editing the FSPT to remove
references to these partitions. Other users have tried to simply remove
the names of unwanted partition files from their FSPT. Both of these
methods will leave you with an unuseable LMFS.

Do not delete file partitions from your LMFS or remove entries from your
FSPT. Each LMFS partition contains pointers to all other file

partitions in the LMFS. Deleting a file partition leaves the LMFS in an
inconsistent state.

If you want to reduce the size of your LMFS, you must completely backup
your LMFS, delete the entire existing LMFS including the current FSPT
and initialize a new LMFS using the file system maintenance window.
User files may be restored into this new LMFS from the backup tapes.

Problem Description:
Serial stream handling of XON - XOFF characters
Solution:

A common problem encountered with serial streams is the handling of the
XON/XOFF protocol. The problem arises because the FEP reads all eight
bits of the XON or XOFF character even though you may have specified

a different number of data bits for that stream. You must determine
what eight bit characters are being sent to the LISP machine as the XON
and XOFF characters.

For example, assume that the printer connected to the LISP machine’s
serial port receives seven data bits with no parity. One might assume
that it would send a Control-S (#023) as the XOFF character and

a Control-Q (#021) as the XON character. The FEP, however, may be
receiving #0221 as the XON character and #0223 as the XOFF
character. The difference here is that the in both cases the parity bit

2
Release 6.0 Bulletin March 1985

of each character is set.

The :OUTPUT-XON-CHARACTER and :OUTPUT-XOFF-CHARACTER options of
SI:MAKE-SERIAL-STREAM are used to change to the character that the FEP
will recognize as the XON or XOFF character. Similarly, add the
OUTPUT-XON-CHARACTER and OUTPUT-XOFF-CHARACTER options to the
Interface Options of the printer’s namespace object when connecting

a serial ASCII printer.

Problem Description:

Fep returns the error: "Request for xxx longs failed"

Solution:

This error occurs because the Fep runs out of memory to build data
Sggﬁ.ctures which tell lisp where to find the rest of the world on the

There are two possible solutions:

» Use the FEP’s "Reset Fep" command. This allows the Fep to start over with
allocation of its memory used for parsing and building these data structures.

» Type in the contents of the boot command file by hand. This frees up
memory which would otherwise be used for parsing the boot file.

Problem Description:
Disk-saving the same world twice before cold-booting.
Solution:
Some users have attempted to disk-save the same world twice without
cold-booting between the two disk-saves. The world load produced by the
second disk save cannot be booted. If you want to disk save two

copies of a world, you should disk-save the first copy, cold-boot and
disk save the second copy.

Problem Description:

Bus turn timeout error while using the local tape drive.

3
March 1985 Release 6.0 Bulletin

Solution:

When reading or writing tapes on the local tape drive, you may encounter
the error:

>>Hard tape error: Fep/Command error:1101-16.(Bus turn timeout)

The error is the result of a timing problem between the FEP and the
tape drive.

A way around this bug that usually works is to ¢-N down one frame to the

caller of the function that blew out. Then ¢-m-R to re-evaluate that
call. The operation should succeed this time.

Problem Description:
How BREAK and DBG interact with lexical scoping
Solution:

A major difference in the LISP interpreter between Release 5.2 and 6.0
is that the interpreter is now lexically scoped. In prior releases, the
interpreter was dynamically scoped. To understand the full
ramifications of lexical scoping consult the discussion of lexical

scoping in the documentation.

A common practice used in earlier releases was to evaluate in the
interpreter a form similar to:

(with-open-file (stream “ABT:>Gelsey.Kirkland”) (BREAK Got-It))

In Release 5.2, the variable ’stream’ was dynamically scoped, but in
Release 6.0 the variable is lexically scoped. If you like using dynamic
variables in this way, keep around some ’'meta-variables’ that are
declared ’Special’ for this purpose.

Problem Description:

FEP file locked (cannot be expunged)

Occasionally, you may have trouble deleting and expunging FEP files.

4
Release 6.0 Bulletin March 1985

If their filenames appear twice when using DIRED or (print-disk-label),
and can be marked for deletion but not expunged, do the following:

Solution:
Run the function (si:verify-fep-filesystem)

It will take at least a minute to run, maybe longer. You should now be
able to expunge the FEP directory.

Problem Description:

Sending the :finish message to a serial stream sometimes hangs
in a ’Serial Finish’ state.

Solution:

The following patch solves the problem.

-%¥- Package: SYSTEM-INTERNALS -x-

(DEFUN FEP-CHANNEL-NOT-EMPTY
(CHANNEL &OPTIONAL INCLUDE-CACHE)

(COMMENT
(OR (> (FEP-CHANNEL-N-USED-BYTES CHANNEL) 0)
(AND INCLUDE-CACHE
(> (FEP-CHANNEL-FEP-INTERNAL-CACHE CHANNEL) 0))))

(WHEN (MINUSP (FEP-CHANNEL-FEP-INTERNAL-CACHE CHANNEL))
(SETF (FEP-CHANNEL-FEP-INTERNAL-CACHE CHANNEL) 0))

(NOT
(LOOP WITH START-MICROSECOND-TIME =
(TIME:FIXNUM-MICROSECOND-TIME)
ALWAYS (ZEROP (FEP-CHANNEL-N-USED-BYTES CHANNEL))
ALWAYS (OR (NOT INCLUDE-CACHE)
(ZEROP (FEP-CHANNEL-FEP-INTERNAL-CACHE CHANNEL)))

UNTIL (TIME-ELAPSED-P 10000.
START-MICROSECOND-TIME
(TIME:FIXNUM-MICROSECOND-TIME)))))

5

March 1985 Release 6.0 Bulletin

Problem Description:

(QSEND “foo@bar") works, but (QSEND foo@bar) sends you into the
debugger.

Solution:

The following patch corrects the problem.

-x- Package: ZWEI -x-

(DEFMACRO QSEND (&OPTIONAL DESTINATION MESSAGE)
*(QSEND-MSG *,DESTINATION ’,MESSAGE))

Problem Description:
UNIX ASCII print server does not print carriage returns.
Solution:

Users that installed the ASCII print server on their UNIX systems found
that files from their LISP machines were printed without any carriage
returns. The problem is that neither the LISP machine nor the UNIX
machine is translating from the the LISP machine character set into ASCII.

The following patch allows users to choose whether their hardcopy
streams should translate into ASCII.

-x- Package: LGP -x-)
(DEFVAR *ENABLE-ASCII-TRANSLATION-FOR-HARDCOPYx T *Controls whether
or not we use ASCII translation”)

{DEFUN INVOKE-SERVICE-HARDCOPY-WITH-LGP (NETI:.SERVICE.)

{NET :GET-CONNECTION-FOR-SERVICE NETI:.SERVICE.
:ASCII-TRANSLATION *ENABLE-ASCII-TRANSLATION-FOR-HARDCOPYxX))

Problem Description:

IP/TCP spawns too many "UDP Service" processes.

6
Release 6.0 Bulletin March 1985

Solution:

Some versions of UNIX generate UDP packets with incorrect

checksums. LISP machines with IP/TCP that are on the same network as
these UNIX machines will eventually crash because their IP/TCP software
does not correctly handle this error and generates too many "UDP

Service" processes.

The following patch corrects this problem.

(net:define-server :unix-rwho (:medium :udp :connection icp-conn)
(let ((host (send icp-conn :foreign-host)))
(unless (send host :uninterned-p)
(multiple-value-bind (pkt start end)
(send icp-conn :read-input-buffer t t)
(when pkt

(Tet ((copy (make-array (- end start) :type ’art-string)))
(copy-array-portion pkt start end copy 0 (- end start))
(setf (get (locf xrwho-messagesx) host) copy)))))))

Problem Description:

Local host name is dropped when completing pathnames with wildecard
directory specifications.

Solution:

If you try to complete a pathname that contains a accordian wildeard
directory specification, "**>", and the name of the local host, the host
name will be dropped from the resulting pathname. For example,
Show File my-host:>foo>*.*. *[Complete]

correctly completes the pathname, but

Show File my-host:>foo>**>* * *[Complete]

drops the host name from the resulting pathname

The following patch corrects this problem.

7

March 1985 Release 6.0 Bulletin

(defmethod (local-Imfs-access-mixin :complete-string)
(pathname string options)
(block complete-string
(1etx ((host-name (send fs:host ’:name-as-file-computer))
(newparse
(condition-case (val)
(fs:parse-pathname string net:xlocal-hostx)
(fs:pathname-error
(return-from complete-string
(values
(if (string-search *:" string)
string
(string-append host-name ":" string))
nil)))))
(setq newparse
(send newparse
’> :new-raw-directory
(send (fs:merge-pathnames newparse pathname)
*:raw-directory)))
{condition-case (result flag)
(with-path-vars pathname
{nil1 default-name
default-type default-version)
(send self
*:complete-pathname newparse string options
default-name default-type default-version))
(error (values (if (string-search *:* string)

string
(string-append host-name *:* string))
nil)) ‘
(:no-error
(values
(if (string-equal host-name "UNKNOWN")
result
(string-append host-name ":" result))
flag))))))

8
Release 6.0 Bulletin : March 1985

Problem Description:

SETQing symbol macros sends you into the debugger.

Solution:

Many things that were variables in Release 5.2 are now symbol macros and
require that you use SETF instead of SETQ to set their value.

For example, many of the parameters in the ZWEI package have been

changed from variables to symbol macros. If you wanted to set the value
of zwei:*default-major-mode* you must evaluate the form:

(setf zwei:xdefault-major-modex :fundamental)

i

March 1985

1. Release 6.0:

1.1 Release

Release 6.0 Release Notes

Table of Contents

Introduction and Highlights
6.0 Documentation Changes

1.2 New Microcode in Release 6.0: 319.
1.3 Release 6.0 is Supported Only on 3600-family Machines

2. Changes to

the Lisp Language in Release 6.0

2.1 Recompiling Source Files is Recommended
2.2 Incompatible Changes to Lisp in Release 6.0

221
2.2.2
223
224
225
226
227
228
229

2.2.10
2211
2212
2213
2.2.14
2215
2.2.16

Change of Default Base to Decimal
Syntax and Base Attributes in Source Files
Setting Variables in Init Files Has Changed
Lexical Scoping in Release 6.0
Common Lisp Character Switchover in Release 6.0
Symbols Added to or Removed From global in Release 6.0
apply and funcall No Longer Work for Special Forms
Interpreter Caches Global Variable Declarations
Files Using defwrapper Forms Must Be Recompiled in
Release 6.0
«fixnum-array Option for defstruct is Obsolete
:flonum-array Option for defstruct is Obsclete
make-array No Longer Accepts Obsolete Form
Forms in a Top-level progn Are Top-level to the Compller
Lambda-list Keyword Changes
defmacro Patterns Are Now Made Consistent
alphabetic-case-affects-string-comparison is Now
Obsolete

2.3 New Features in Lisp in Release 6.0

231
23.2
2.3.3
234
235
2.3.6
2.3.7
238
239
2.3.10
231
2.3.12

New Function: change-instance-flavor

New Option to defflavor: :export-instance-variables
New Macro: defwhopper-subst

New Macro: si:define-simple-method-combination
New Option to defstruct: :export

New Special Form: without-floating-underflow-traps
New Function: tand

New Functions: %32-bit-plus and %32-bit-difference
New Keywords to typep

Rational and Complex Numbers

New Transcendental Functions

New Function: conjugate

g

e
BOO(OCD&DCD@ -3 =3I D

DO DO b B
® I

28
28
28
28
28
30
31

31
31
31
32
32
32
32
33
33
33
33
35
35

v

Release 6.0 Release Notes

2.3.13
2.3.14

23.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26

2.3.27

2.3.28
2.3.29
2.3.30

241
2.4.2
243
244
2.45
2.4.6
2.4.7
248
249
2.4.10

2411

4. Changes to

412

March 1985
New Functions for Converting Non-integral Numbers to 36
Integers
New Functions for Converting Numbers to Floating-point 36
Numbers
New Function: location-contents 36
New Facility: Heaps 36
Previously Undocumented Feature: Array Registers 37
New Function: array-column-major-index 37
New Special Forms: letf and letf* 37
New Function: copytree-share 37
New Macro: unwind-protect-case 37
New Function: array-push-portion-extend 37
New Function: string-nconc-portion 38
New Flavor: sys:float-invalid-compare-operation 38
New Error Flavor: sys:read-premature-end-of-symbol 38
New Array Error Flavor: 38
sys:array-wrong-number-of-subscripts
New Stream Handling Error Flavors: sys:stream-closed 38
and sys:network-stream-closed
New Message to Error Flavor fs:directory-not-found 39
New &-Keywords for defmacro 39
New Special Forms for Destructuring 40
2.4 Improvements to Lisp in Release 6.0 40
defflavor Now Accepts the Option :required-init-keywords 40
set-syntax-macro-char Takes an Optional Fourth Argument 40
The Reader Now Accepts Floating-point Infinity 41
si:install-microcode Takes a Second Optional Argument 41
lambda is Now a Special Form , 41
The Interpreter Understands Declarations 42
loop Now Supports Iteration Over Hash Tables or Heaps 42
Zero-dimensional Arrays Are Now Supported 42
array-pop Takes an Optional Second Argument 42
Standard Variable Bindings Now Guarantee Consistent 42
Behavior in Break and Debugging Loops
Break and the Debugger Now Bind readtable to 43
si:standard-readtable
3. New Feature in Release 6.0: Symbolics Common Lisp 45
Zmacs in Release 6.0 47
4.1 Incompatible Changes to Zmacs in Release 6.0 47
411 New loop Indentor 47
Ztop Mode No Longer Supported 47
Save All Files (m-X) Renamed to Save File Buffers (m-X) 47

4.13

v

March 1985 Release 6.0 Release Notes

4.2 Improvements to Zmacs in Release 6.0
4.2.1 Macro Expand Expression All Now Bound to m-sh-M
4.2.2 scroLL and m-SCROLL Now Display Next Screen and Previous
Screen
4.3 New Features in Zmacs in Release 6.0
4.3.1 New Zwei Command: Copy Mouse (C-(m))
4.3.2 Two New Zmacs Commands for Recompiling and Reloading
‘ Patches
4.3.3 Three New Zmacs Commands for Formatting Text
4.3.4 Two New Zmacs Commands for Reverting Buffers

5. Changes to Utilities in Release 6.0

5.1 New Features in Utilities in Release 6.0
5.1.1 Ephemeral-object Garbage Collection in Release 6.0
5.1.2 New Feature in Release 6.0: the Document Examiner
5.2 Improvements to Utilities in Release 6.0
5.2.1 compiler:make-obsolete Now Makes a Flavor or Structure
Obsolete '
5.2.2 Changes to Patch Files
5.2.3 :selective Option for load-patches Has Changed
5.2.4 New Function note-private-patch Adds Private Patch to
Your World
5.2.5 New Function si:map-system-files Operates on a Declared
System
5.2.6 New Function si:set-system-file-properties Operates on a
Declared System

6. Changes to the User Interface in Release 6.0

6.1 Incompatible Changes to the User Interface in Release 6.0
6.1.1 Input Editor Options Now Specified Dynamically
6.1.2 Change to Subforms of with-input-editing
6.1.3 :input-editor Message to Interactive Streams Replaces
:rubout-handler
6.1.4 Variable si:*typeout-default* Replaces
tv:rh-typeout-default
6.1.5 tv:*escape-keys* and tv:*system-keys* Renamed to
:*function-keys* and tv:*select-keys*
6.1.6 Replacing io-buffer-output-function and Binding
tv:kbd-tyi-hook Are Obsolete
6.1.7 :mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang
Messages Obsolete
6.1.8 :item-list Message to Windows is Obsolete
6.1.9 New Language for Specifying Frame Constraints
6.1.10 Change in Optional Argument to read-or-end
6.1.11 Changes to fquery Options

47
47
47

48
49

49
49

51

51
51
52
52
52

52
53
53
53

53

65

55
55
55
55

56
56
56
56
57
57

57
57

vi

Release 6.0 Release Notes March 1985
6.1.12 Changes to prompt-and-read Options 58
6.1.13 Changes to tv:choose-variable-values Variable Types 59
6.1.14 Change to define-prompt-and-read-type Dispatch 59

Functions ,
6.1.15 Audio Wavetable Size Increased From 256 to 1024 Words 60
6.1.16 :clear-eof Message to Windows is Obsolete 60
6.2 New Features in the User Interface in Release 6.0 61
6.2.1 New Feature in Release 6.0: the Command Processor 61
6.2.2 New Feature: Window Graying 61
6.2.3 New Input Editor Commands: PAGE, COMPLETE, c~7 61
6.2.4 New Reading Functions 61
6.2.5 New Message to Input Streams: :input-wait 62
6.2.6 New Message to Streams: :interactive 62
6.2.7 New Message to Interactive Streams: :noise-string-out 63
6.2.8 New Input Editor Help Options 63
6.2.9 New Input Editor Options 63
6.2.10 New Special Forms: tv:with-mouse-and-buttons-grabbed, 63
tv:with-mouse-and-buttons-grabbed-on-sheet
6.2.11 New Message to Windows: :set-font-map-and-vsp 64
6.2.12 New Notification System 64
6.2.13 New Time Functions 65
6.3 Improvements to the User Interface in Release 6.0 66
6.3.1 Improvements to Activity and Window Selection 66
6.3.2 Lisp Listeners and break Loops Catch Trivial Errors in the 66
Input Editor ,
6.3.3 New Type for :start-typeout Message to Interactive Streams: 67
:clear-window
6.3.4 New Optional Argument to :replace-input Message to 67
Interactive Streams
6.3.5 New Optional Arguments to :initial-input Input Editor 67
Option
6.3.6 Improvements to Typeout Windows 67
6.3.7 Improvements to tv:add-function-key 68
6.3.8 New Option for defwindow-resource: :superior 68
6.3.9 Mouse Scaling Now Works on 3600-family Computers 68
6.3.10 sys:%beep Now Works on 3600-family Consoles That 68
Support Digital Audio
6.3.11 Optional Argument :ask Added to zwei:save-all-files 68
7. Changes to Zmail in Release 6.0 69
7.1 Incompatible Changes to Zmail in Release 6.0 69
7.1.1 c-m-Y Has Been Changed to c-% c-Y in Release 6.0 69

7.1.2

zwei:chaos-direct-send-it is Now Obsolete

vii

March 1985

8. Changes to the File System in Release 6.0

8.1 Improvements to the File System in Release 6.0
8.11 New Logical Pathname Translations

9. Changes to Networks in Release 6.0

10.

9.1 Incompatible Changes to Networks in Release 6.0
9.11 define-site-variable No Longer Used
9.2 New Features in Networks in Release 6.0
9.2.1 Overview of Remote Login Capability

Changes to the FEP in Release 6.0

11. Notes and Clarifications for Release 6.0

11.1 Use #])...|1# Instead of #|...I1# to Comment Out Lisp Code
11.2 Clarification of What readline Returns

11.3 Clarification of gc-on Printed Documentation

11.4 Warning Against Deleting LMFS File Partitions

11.5 Serial Stream Handling of Xon - Xoff Characters

Index

Release 6.0 Release Notes

71
71

75

75
75
75
75

77

79

79
79
80
80
80

Vi
Release 6.0 Release Notes March 1985

1
March 1985 Release 6.0 Release Notes

1. Release 6.0: Introduction and Highlights

These notes accompany the release of Release 6.0. They describe changes made
since Release 5.2. The release notes contain brief descriptions of the changes and
pointers to the appropriate sections of the documentation. These notes contain some
recent information that is not reflected in the other documentation. They are the
authoritative source in cases where the documents disagree.

As in previous releases, many minor bugs have been fixed and performance in some
areas has been improved. Only the more important or visible changes are mentioned
here.

Two new features, the Command Processor and the Ddcﬁment Examiner, the online
documentation system, make it possible to read the documentation online. For help
in using these new facilities:

See the section "Communicating with the Lisp Machine" in User’s Guide
"~ to Symbolics Computers.
See the section "Using the Online Documentation System" in User’s Guide
to Symbolics Computers.

Within each section of these release notes, the material is organized into
incompatible changes, new features, and improvements. You can find all the
incompatible changes by reading the first part of each section. A complete list of
changes appears in the Table of Contents. The notes cover the following topics:

Changes to the Lisp Language in Release 6.0
This section describes changes relevant to the Lisp language. The major
changes include the following:

» The default value of base and ibase has been changed from 8 to 10.

» The compiler and the interpreter have both been modified to use lexical
scoping.

 Additions have been made to Symbolics-Lisp to support Common Lisp
character objects in the future.

« Files that use defwrapper forms must be recompiled to work in
Release 6.0. '

» Heaps are now supported. Heaps are data structures in which each
item is ordered by some predicate on its associated key.

New Feature in Release 6.0: Symbolics Common Lisp
Symbolics Common Lisp is available in Release 6.0.

Changes to Zmacs in Release 6.0
This section describes changes in the Zmacs editor.

2
Release 6.0 Release Notes March 1985

Changes to Utilities in Release 6.0
This section describes changes in what any other computer would call the
operating system and utilities. This includes the Debugger, the Inspector,
the garbage collector, and various system keyboard features. The most
important changes are the following:

e The Ephemeral-Object Garbage Collector has been added.

e A new online documentation lookup facility, the Document Examiner, is
available.

Changes to the User Interface in Release 6.0
This section describes changes to the user interface, including the window
system. The most important changes are:

« A new utility program, the Command Processor, has been added.
¢ A new notification system has been installed.

» Window selection has been improved.

Changes to Zmail in Release 6.0
This section describes changes in Zmail, the program for reading and sending
mail.

Changes to the File System in Release 6.0

This section describes changes in the Lisp Machine File System. The most
important change is logical pathname translation.

Changes to Networks in Release 6.0
This section describes changes in network implementation, interface, and
protocols. The most important change is the addition of the remote login
facility.

Changes to the FEP in Release 6.0

This section describes changes in the FEP. Release 6.0 requires one of:
FEP version number 17, 18, 22, or 24.

- Notes and Clarifications for Release 6.0

This section contains explanations and clarifications of items that people
found confusing in previous releases and documentation.

1.1 Release 6.0 Documentation Changes

The documentation for Release 6.0 includes previously published Symbolics Lisp
Machine documentation as well as new documents. The material has been
reorganized by topic and intended use of information. The most obvious changes to
the Release 6.0 documentation are the following:

3
March 1985 Release 6.0 Release Notes

« A new User’s Guide to Symbolics computers is included. This book contains
information that is useful for both new and experienced users of Symbolics
computers.

« Information has been reorganized to place as much related material as possible
within the same book.

e The documentation is packaged in perfect-bound books rather than loose-leaf
binders.

The following table summarizes the new documentation set:

Installation and Site Operations - Book 0
Book 0 includes the Software Installation Guide and information for
managing site operations.

User’s Guide to Symbolics Computers - Book 1
Book 1 presents an introduction to using Symbolics computers and provides
the most commonly needed information about the system.

Reference Guide to Symbolics-Lisp - Book 2
Book 2 provides conceptual and reference material for the Symbolics-Lisp
language, as well as Symbolics Common Lisp.

Text Editing and Processing - Book 3
Book 3 includes the Zmacs, font editor, and hardcopy system documentation.

Program Development Utilities - Book 4
Book 4 presents information that is useful for developing programs on
computers. This includes the Program Development Tools and Techniques,
Maintaining Large Programs, Debugger, Compiler, Inspector, and Peek
documents.

Reference Guide to Streams, Files, and 1/O - Book 5
Book 5 provides information about streams, I/O, the FEP file system, the
Lisp Machine File System (LMFS), and the generic file system

Communicating with Other Users - Book 6
Book 6 provides documentation for the Zmail and Converse utilities.

Programming the User Interface - Book 7
Book 7 describes the window system, scrolling, menus, the digital audio
facility, and the command processor program interface.

Internals, Processes, and Storage Management - Book 8
Book 8 describes the internals of the Symbolics Lisp Machine system and
includes initializations, storage management and garbage collection, and
processes.

Networks - Book 9
Book 9 includes information on networks and peripherals, network protocols,
the namespace system, and the front-end processor (FEP).

4
Release 6.0 Release Notes March 1985

System Index - Book 10
Book 10 contains index entries from all books in the set.

Notes and Bulletins - RN
The last book includes these Release Notes, as well as newsletters and
bulletins.

Release 5.0 to Release 6.0 Documentation Map

The Documentation Map Table below shows how the Release 5.0 documentation has
been reorganized for Release 6.0. Information has been consolidated to place as
much related material as possible within the same book. In many cases, the Release
5.0 document is now a chapter of a Release 6.0 book. In other cases, information
from a Release 5.0 document has been merged into more than one document.

Documentation Map Table

Release 5.0 Title Release 6.0 Title

3600 Serial 1/0 Facility Reference Guide to Streams, Files, and I/O 5
Arrays and Strings Reference Guide to Symbolics-Lisp 2
Compiler Program Development Utilities 4
Conditions Reference Guide to Symbolics-Lisp 2
Converse Communicating With Other Users 6
Debugger Program Development Ultilities 4
Defstruct Reference Guide to Symbolics-Lisp 2
Evaluation Reference Guide to Symbolics-Lisp 2
Files Reference Guide to Stfeams; Files, and I/0 5
Flow of Control Reference Guide to Symboliés—Lisp 2
Font Editor Text Editing and Processing 3
FSedit Reference Guide to Streams, Files, and I/0 5
Functions Reference Guide to Symbolics-Lisp 2

5

March 1985

Hardcopy System
Initializations

Internals

Lisp Language

Lisp Machine Summary
Macros

Maintaining Large
Systems

Miscellaneous Functions

Miscellaneous Useful
Functions

Networks and Peripherals
Networks and Protocols
Notation Conventions

Notes on the 3600 for
LM-2 Users

Objects, Message
Passing, and Flavors

Other Tools

Other Utilities and
Applications

Packages
Primitive Object Types
Procesées

Program Development
Help Facilities

Release 6.0 Release Notes

Text Editing and Processing

Internals, Processes, and Storage Management
Internals, Processes, and Storage Management
Reference Guide to Symbolics-Lisp

User’s Guide to Symbolics Computers
Reference Guide to Symbolics-Lisp

Program Development Utilities

[Merged into related documents.]

[Merged into related documents.]

Networks

Networks

User’s Guide to Symbolics Computers
[Merged into related documents.]

Reference Guide to Symbolics-Lisp

[Merged into related documents.}

[Merged into related documents.]

Reference Guide to Symbolics-Lisp
Reference Guide to Symbolics-Lisp
Internals, Processes, and Storage Management

User’s Guide to Symbolics Computers

D ®® o w

~

@ b N

6

Release 6.0 Release Notes

Program Development
Tools and Techniques

Release 5.0 Release
Notes

Release 5.1
Release Notes

Release 5.2
Release Notes

Scroll Windows
Site Operations

Software Installation
Guide

Storage Management
Streams

Tape

Using the Input Editor

Using the Window
System

Window System
Choice Facilities

Window System
Program Examples

Zmacs

Zmail Concepts and
Techniques

Zmail Tutorial and

vV & wevs

Reference Manual

Program Development Utilities

[Merged into related documents.]
[Merged into related documents.]
[Merged into related documents.]

Programming the User Interface
Installation and Site Operations

Installation and Site Operations

Internals, Processes, and Storage Management

Reference Guide to Streams, Files, and I/O

Installation and Site Operations
Programming the User Interface

Programming the User Interface
Programming the User Interface
Programming the User Interface

Text Editing and Processing

Communicating With Other Users

March 1985

7
March 1985 Release 6.0 Release Notes

1.2 New Microcode in Release 6.0: 319.

Release 6.0 requires microcode 319.

1.3 Release 6.0 is Supported Only on 3600-family Machines

Release 6.0 is supported only on the 3600-family machines. It is not supported on
LM-2s.

8
Release 6.0 Release Notes March 1985

9
March 1985 Release 6.0 Release Notes

2. Changes to the Lisp Language in Release 6.0

21 Recompiling Source Files is Recommended

In general, code compiled in Release 5.0 will work in Release 6.0. However, you are
advised to recompile source files to take advantage of compiler improvements and bug
fixes.

Any files containing defwrapper forms or forms defined with "e must be
recompiled in Release 6.0.

You can maintain separate versions of compiled code in separate systems (a Release
5.0 system and a Release 6.0 system) by using make-system. For further
information: See the section "Making a System" in Program Development Utilities.

2.2 Incompatible Changes to Lisp in Release 6.0

2.21 Change of Default Base to Decimal
The default value of base and ibase has been changed from 8 to 10 for Release 6.0.

2.2.2 Syntax and Base Attributes in Source Files

The editor and compiler now recognize a Syntax attribute in conjunction with the
Base attribute which existed in previous releases. The syntax of a program can be
either Zetalisp or Common-Lisp. The mode line (the -*- line in Lisp source files)
indicates which syntax the source file has.

« If there is a Base attribute, but no Syntax attribute, the syntax is assumed to
be Zetalisp.

« If there is a Syntax: Common-Lisp attribute, and no Base attribute, the base is
assumed to be 10. ,

« If there is neither a Base nor a Syntax attribute, Base is assumed to be the
default base (10) and the syntax is assumed to be Zetalisp. Furthermore, a
warning is issued (upon beginning an editing session on the file) to the effect
that there is neither a Syntax nor a Base attribute. You should edit your
program accordingly. With most programs, the Zmacs command Update
Attribute List (m-X) adds the appropriate attributes to the mode line, following
the above defaults. :

10
Release 6.0 Release Notes March 1985

2.2.3 Setting Variables in Init Files Has Changed

Previously you used setq-globally to set certain variables in your init file, for
instance to change the input and output base. In Release 6.0 the new function
setg-standard-value should be used for setting such interactive variables. For
example:
(login-forms

(setg-standard-value base 8)

(setg-standard-value ibase 8)

(defun bar (x y) (+ x y))

(quux 3))

See the section "Standard Variable Bindings Now Guarantee Consistent Behavior in
Break and Debugging Loops", page 42.

2.2.4 Lexical Scoping in Release 6.0

Lexical scoping has been implemented for both the compiler and the interpreter in
Release 6.0. This means that certain new ways of using variables are supported.
Also, certain usages that formerly worked only in the interpreter now work in the
compiler as well, and vice versa. Zetalisp and Symbolics Common Lisp both use the
same lexically scoped compiler and interpreter.

Both the compiler and the interpreter support the accessing of lexical variables. The
compiler and interpreter also support, in Zetalisp as well as Symbolics Common Lisp,
the Common Lisp lexical function and macro definition special forms, flet, labels,
and macrolet.

For a detailed description of the Release 6.0 implementation of lexical scoping: See
the section "Lexical Scoping” in Reference Guide to Symbolics-Lisp.

This section provides an overview of the changes in Release 6.0 that are related to
the implementation of lexical scoping.

2.24.1 Funargs Supported in Release 6.0

Release 6.0 supports the use of funargs; the term funarg is an acronym for
functional argument. A funarg is a function that is passed as an argument, stored
into a data structure, or otherwise manipulated as data. Normally, functions are
simply called, not manipulated as data. The major feature of the lexical compiler
and interpreter can be described as the support of funargs that refer to free lexical
variables. Funargs that do not refer to free lexical variables also work.

See the section "Funargs and Lexical Closure Allocation" in Reference Guide to
Symbolics-Lisp.

n
March 1985 Release 6.0 Release Notes

2.2.4.2 New Special Forms for Lexical Scoping

Three new special forms have been added to support lexical scoping: flet, labels,
and macrolet. flet and labels are used to define, within their scope, a function.
macrolet is used to define, within its scope, a macro. See the section "flet, labels,
and macrolet Special Forms" in Reference Guide to Symbolics-Lisp.

2.2.4.3 Changes to Macro Expansion
macroexpand, macroexpand-1, and si:*macroexpand-hook* now behave as
documented in the Digital Press Common Lisp manual (CLM).

The meaning of the optional second argument to macroexpand and
macroexpand-1 has changed; the second argument is now a lexical environment,
which can be supplied to specify the lexical environment of the expansions, as
discussed. macroexpand and macroexpand-1 now also accept an optional third
argument, dont-expand-special-forms, which prevents macro expansion of forms
that are both special forms and macros.

Functions used as the value of si:*macroexpand-hook* now require a second
argument, the lexical environment, except when expanding a lambda macro.
Lambda macros do not have a lexically scoped environment. This should cause
problems only if you are using Symbolics Common Lisp and the Interlisp
Compatibility Package at the same time.

Programs should never need to create a lexical environment, however the lexical
environment is usually available as an option (for example, &environment in
defmacro).

2.2.4.4 Changes to evalhook and applyhook
evalhook and applyhook now also take an optional environment argument, as
specified in the CLM.

2.24.5 Changes to Special Forms

Old special forms (forms defined with "e and compiled in previous releases)
must be recompiled. If these forms are recompiled, they are automatically translated
into appropriate calls to si:define-special-form. The compiler inserts calls to eval,
with the appropriate environment, for any arguments that are not "ed. In
many cases, the special form will not work after recompilation; these cases are no
longer supported.

A special form defined this way works only when called from the interpreter. You
cannot use it in code that is to be compiled. It is better to use a macro, unless your
special form is intended to be used only at top level (for example, defvar), not inside
a function.

Note: You can no longer call a special form from compiled code, no matter whether it
is defined with si:define-special-form or with "e, unless you tell the compiler
how to compile it. The old code in the compiler that used to allow you to call special
forms in certain cases has been removed, since it is no longer supported. In all
cases, user-defined special forms should be implemented by macros.

12
Release 6.0 Release Notes March 1985

Support for dynamic closures of special forms has been removed.

2.2.4.6 Changes to Conditions
The sys:funcall-macro condition and its proceed type have been removed.

The sys:invalid-form condition has been removed. All atoms other than symbols
now evaluate to themselves.

The sys:invalid-lambda-list condition has been removed. Invalid lambda lists now
produce ferrors.

The sys:invalid-function condition is signalled but is not proceedable.

2.2.4.7 Miscellaneous Lexical Scoping Changes
sizlexical-closure and global:functional-alist have been removed.

The defmacro lambda-list keyword &list-of is no longer supported.

lambda now is a special form, which evaluates to the lexical closure of the lambda-
expression it represents. Thus,

(sort list (lambda (x y) (fun x y)))
is equivalent to
(sort list #°(lambda (x y) (fun x y)))

2.2.5 Common Lisp Character Switchover in Release 6.0

This section describes the changes to Zetalisp for characters and strings in a future
major release and provides information to aid in converting before then.

2.2.51 Character Objects in Common Lisp

Zetalisp has always used positive integers to represent characters. This makes it
possible to use arithmetic operations such as =, <, +, and 1db to perform various
operations on characters. Common Lisp, on the other hand, has a separate data
type for characters and specialized functions for operations on characters. In
Common Lisp, it is possible to distinguish unambiguously between an integer and a
character; characters print out in #\ notation.

This incompatibility between Zetalisp and Common Lisp affects strings as well as
characters. A string is defined to be a one-dimensional array of characters, so in
Zetalisp aref of a string returns an integer, but in Common Lisp aref of a string
returns a character. '

Eventually Zetalisp will be replaced with Symbolics Common Lisp, an extension of
the standard Common Lisp language that also contains all of the advanced features
of Zetalisp. System programs and most user programs will be written in Symbolics
Common Lisp; old programs will continue to be supported by a Zetalisp compatibility
package. In Release 6.0, Symbolics Common Lisp is present, but the default
language dialect is still Zetalisp. To make it practical for Zetalisp and Symbolics

13
March 1985 Release 6.0 Release Notes

Common Lisp programs to coexist in the same world and call each other freely, it is
necessary for them to use compatible data types. If the two languages used
different representations for characters, they could not coexist conveniently, as
characters and strings are ubiquitous throughout the Lisp Machine system.

For this reason, in a future major release Zetalisp will be changed incompatibly to
use a separate data type for characters, as Common Lisp does. In the remainder of
this discussion the term Old Zetalisp will be used to refer to all Zetalisp releases
before this incompatible change, which use integers to represent characters, and the
term New Zetalisp will be used to refer to all Zetalisp releases following the switch
to character objects. Old Zetalisp includes Release 6. This discussion presents
facilities and techniques that enable you to write programs that will work in both
Old Zetalisp and New Zetalisp, requiring only recompilation to convert between the
two systems. These facilities and techniques resemble Common Lisp, but do not
necessarily enable programs to work without change in Symbolics Common Lisp or
any other Common Lisp implementation.

Some examples of places in the system that will be affected by the transition from
Old Zetalisp to New Zetalisp include:

» Label strings in windows will be arrays of characters.
* Lines in Zwei will be arrays of characters.
» Print-names of symbols will be arrays of characters.

» The :tyi message to a stream will return a character if the stream is a
character stream, or an integer if the stream is a binary stream.

* The :tyo message to a stream must be given a character if the stream is a
character stream, or an integer if the stream is a binary stream.

* The :line-in message to a stream will return an array of characters rather
than an array of integers.

* The :string-out message to a stream must be given a string (an array of
characters) if the stream is a character stream, but must be given a one-
dimensional array of integers if the stream is a binary stream.

» Some old Maclisp programs that depend on the representation of characters as
integers will stop working; New Zetalisp is less compatible with Maclisp than
Old Zetalisp.

New Zetalisp will never be supported on the LM-2.

14
Release 6.0 Release Notes March 1985

Details of Character Objects

A character object is a structured object containing several fields. Accessor functions,
described later, are provided to extract and modify the fields. In an abstract sense
the fields of a character object are:

code The actual character, such as "upper case A".
style A modification of the character such as "italic" or "large”.
bits Control, Meta, Super, and Hyper.

In addition there are some derived fields, whose values depend on the values of the
three fields listed above. For information about derived fields: See the section
"Additional Character Object Enhancements”, page 15. See the section "Device
Fonts", page 16.

Common Lisp calls the style field the font field. Within Symbolics-Lisp, the word
"font" is not used because it has misleading prior associations in Zetalisp.

The precise meaning of the code and style fields may not be clear. Characters that
are recognizably distinct always have different character codes. For example, the
Roman a and the Greek a have two different character codes. The character code,
which specifies the fundamental identity of a character, is modified by a style
specification and by modifier bits from the keyboard. A modification of a character
that leaves it recognizably the same is expressed in the style field and does not
change the character code. For example, the Roman a, the bold a, and the italic @
all have the same character code. The style field also expresses such attributes of a
character as its displayed size and the typeface used, for example, whether it has
serifs.

An operational definition of the difference between the code and style fields is
provided by the char-equal function, which compares character codes but ignores
the style and the bits. char-equal also ignores distinctions of alphabetic case.
Because user-visible character comparisons, such as the Search and Replace
commands in the editor, compare characters with char-equal these commands
ignore differences in character style. In Old-Zetalisp (that is, the previous releases of
Zetalisp before this incompatible change, which use integers to represent characters)
the set/style distinction is not fully implemented, therefore, a and a might be treated
as the same character.

eq is not well defined on character objects. Changing a field of a character object
gives you a "new copy" of the object; it never modifies somebody else’s "copy” of "the
same" character object. In this way character objects are just like integers with
fields accessed by 1db and changed by dpb. Because eq is not well defined on

the eq function. This statement is true of integers as well. Integers can also be
compared with =, but = is only for numbers and does not work for character objects.
Currently on the 3600 family of machines, eq and eql are equivalent for characters,

15
March 1985 Release 6.0 Release Notes

Jjust as they are equivalent for fixnums, but programs should not be written to
depend on this, for two reasons:

» "Extended" character objects could be introduced in the future, standing in the
same relationship to "basic" character objects as bignums do to fixnums.

» eq might not work for characters in other implementations of Common-Lisp-
compatible Lisp dialects.

In Old-Zetalisp characters are represented with integers rather than character
objects, but functions are provided to manipulate integers as if they were characters.
In New-Zetalisp, the same functions will manipulate characters, providing
compatibility.

Additional Character Object Enhancements

New-Zetalisp will contain additional enhancements beyond the reimplementation of
the Old-Zetalisp concept of character with its own data type. (The term Old-Zetalisp
refers to all Zetalisp releases before this incompatible change, which use integers to
represent characters, and the term New-Zetalisp refers to all Zetalisp releases
following the switch to character objects.)

The detailed design of these enhancements has not yet been finalized. The
enhancements include:

* The :character data type name, usable with typep, typecase, and related
functions

» The characterp predicate
» The new concept of character set

» Full implementation of character styles

The code field of a character can be broken down into a character set and an index
into that character set. These are derived fields of a character.

A character set is a set of related characters that are recognizably different from
other characters. Character sets have names and are represented inside the
machine by objects that are instances of a character-set flavor. Examples of
character sets are the standard Symbolics Lisp Machine character set including the
Roman alphabet and other characters, Cyrillic (the Cyrillic alphabet), and Japanese
(comprising a large set of Kanji characters plus two syllabaries or alphabets). Not all
character sets need contain the same number of characters. The indices in the
standard character set range from 0 to 255, whereas the indices in the Kanji
character set range from 0 to about 8000.

The standard Lisp Machine character set is an upward-compatible extension of the

16
Release 6.0 Release Notes March 1985

96 Common Lisp standard characters and the 6 Common Lisp semi-standard
characters. It is almost an upward-compatible extension of ASCII; it uses a single
Newline character and omits the ASCII control characters.

Character styles also have names and are represented inside the machine by objects
(instances of a character-style flavor). Among our existing fonts, Times Roman,
Centuryschoolbook, Jess, and CPTFONT are not different character sets; they are
different styles of the Roman character set. Some styles can be applied to more
than one character set; for example, most character sets can be made boldface. It is
possible to mix styles together; for example, a character can simultaneously be bold,
italic, and 24 points high.

Format-effector characters such as Return, Tab, and Space exist only in the
standard character set, but can be modified by styles that make them geometrically
compatible with other character sets.

When comparing characters, there is no intrinsic ordering between characters in
different character sets. Two characters of different character sets are never equal.
Less-than is not well defined between them. Within a single character set, less-than
is defined so that characters (and strings) can be sorted alphabetically.

In Old-Zetalisp, the concepts of character set and character style are merged into a
single concept: "font". Consequently there are no formal character-set and character-
style objects in Old-Zetalisp, just informal "font numbers". Furthermore, the exact
meaning of these numbers depends on whether the Japanese system is loaded.
Effectively, there is only one character set in Old-Zetalisp, and the "font" number is
a style. However, when the optional Japanese system is loaded there are two
character sets — standard and Kanji — and the "font" number specifies both set
and style. See the section "Support for Nonstandard Character Sets" in Reference
Guide to Symbolics-Lisp. The Old-Zetalisp/New-Zetalisp compatibility facility does not
contain any functions for dealing with character sets and styles. Programs that
depend on this cannot be compatible between the two releases without source
changes.

Several of the functions in the compatibility facility are based on Common Lisp
functions that take an optional argument named "font". In Old-Zetalisp these
functions do not take such an argument, since its meaning would be unclear and in
any case it would change incompatibly in New-Zetalisp. In New-Zetalisp these
functions will probably permit either a character set or a style, or both, to be
specified by optional arguments.

Device Fonts

In Old-Zetalisp, there are two additional derived fields of a character: the device-font
number and the subindex. These two fields are derived from the code and siyle
fields. Together they describe how to portray the character on an output device.
Note: Programs that do output are not normally concerned with these fields; only
programs that implement output devices need to know about them. Device-fonts will

17
March 1985 Release 6.0 Release Notes

not exist in New-Zetalisp. At that time, any program that uses them will have to
be changed.

The device-font number is an integer that selects a device-dependent font; the
subindex then selects a particular character image from that font. There is
potentially a different device-font for each combination of character set, style, and
output device. Each output device (such as a window or an LGP) has a table that
maps device-font numbers into actual device-fonts.

The subindex can be an integer between 0 and 255. A character set can contain
any number of characters; most character sets contain 256 or fewer characters, but
the Kanji character set contains about 8000. A device-font always contains 256
characters, thus a large character set requires several device-fonts to portray all of
the characters in that character set.

char-device-font accesses the device-font field and char-subindex accesses the
subindex field of the specified character.

Two Kinds of Characters in Old-zetalisp

A problem with Old-Zetalisp that you need to be aware of when writing code to deal
with characters is that Old-Zetalisp has two incompatible kinds of characters. (The
term Old-Zetalisp refers to all Zetalisp releases before this incompatible change,
which use integers to represent characters, and the term New-Zetalisp refers to all
Zetalisp releases following the switch to character objects.)

One kind, associated with the %%Kkbd- byte specifiers, is used for characters from
the keyboard. The other kind, associated with the %%ch- byte specifiers, is used for
characters in files, editor buffers, and strings. The keyboard characters may contain
modifier bits, such as Control and Meta; the file characters may contain a device-
font. The same bits in the number are used for both purposes, so in Old-Zetalisp
you cannot have a character with both bits and a font, and furthermore each
character-processing function assumes that it was given a particular type of character
as its argument; it has no way to tell which kind of character the caller intended,
since all characters are just represented as numbers. Most functions assume file
characters. Some functions work on either kind of character, as long as all
arguments are of the same kind, because they treat the bits and device-font
attributes identically. If you are guaranteed to be dealing with characters in the
common intersection of the two kinds, that is, characters whose bits and device-font
attributes are both zero, you do not need to be concerned with these issues.

An example of the way you can get into trouble now is that (alpha-char-p #\c-A)
returns t. Common Lisp specifies that it is supposed to return nil. In Old-Zetalisp,
alpha-char-p expects a file character, so it regards the "control" bit as being a font
number and ignores it. All problems of this type will be fixed by New-Zetalisp, but
in the meantime you need to be aware of them. The function descriptions in
another section say which type of character each function operates on. See the
section "Character and String Functions for Old-zetalisp/New-zetalisp Compatibility”,

page 24.

18
Release 6.0 Release Notes March 1985

2.2.5.2 Oid-zetalisp and New-zetalisp String and Character Compatibility
This section provides compatibility information for strings and characters in Old-
Zetalisp and New-Zetalisp.

Summary of Character and String Compatibility Functions in Release 6.0

The following functions are provided to make it possible to write compatible code
that works in both Old-Zetalisp and New-Zetalisp. (The term Old-Zetalisp refers to
all Zetalisp releases before this incompatible change, which use integers to represent
characters, and the term New-Zetalisp refers to all Zetalisp releases following the
switch to character objects.) Some of these functions have existed in Zetalisp for a
long time, while others have been newly introduced to aid in the conversion. The
names of these functions were chosen to be compatible with Common Lisp, but
these functions are not identical to the Common Lisp functions with similar names.

This section simply summarizes the functions. For more information about these
functions: See the section "Character and String Functions for Old-zetalisp/New-
zetalisp Compatibility”, page 24.

Accessing and modifying fields of characters

char-bits char-bit set-char-bit
char-code code-char make-char
char-device-font char-subindex

Character names

char-name name-char

Predicates on characters

char-standard graphic-char-p
alpha-char-p digit-char-p alphanumericp
upper-case-p lower-case-p both-case-p

Character Conversions

character char-int int-char

char-downcase char-upcase char-flipcase
Digits of Numbers

digit-char-p digit-char

Mouse characters

mouse-char-p char-mouse-button
char-mouse-n-clicks make-mouse-char

ASCII characters

ascii-code char-to-ascii ascii-to-char

19
March 1985 : Release 6.0 Release Notes

Comparison of characters affected by case, style, and bits

char= chars char<
char> charg char2

Comparison of characters ignoring case, style, and bits

char-equal char-not-equal char-lessp
char-greaterp char-not-greaterp char-not-lessp

Comparison of strings affected by case, style, and bits

string= string= string<
string> strings< ~ string2
%strings= string-exact-compare

sys:%string-exact-compare

Comparison of strings ignoring case, style, and bits

string-equal string-not-equal string-lessp
string-greaterp string-not-greaterp string-not-lessp
%string-equal string-compare sys:%string-compare

String searching affected by case, style, and bits

string-search-exact-char string-search-not-exact-char
string-reverse-search-exact-char %string-search-exact-char
string-search-exact string-reverse-search-exact

' string-reverse-search-not-exact-char

String searching ignoring case, style, and bits

string-search-char string-search-not-char
string-reverse-search-char %string-search-char
string-search string-reverse-search

string-reverse-search-not-char
Obsolete Programming Practices Using Characters and Strings

This section documents programming practices that have been used in Zetalisp in
the past and their compatible replacements. The replacements work with integers
in Old-Zetalisp and with character objects in New-Zetalisp. The replacements are as
efficient as the present practices, in both releases, in compiled code.

Use of Integers in Source Code Where Characters Are Desired
Replace 101 with #/A.
Use of Characters in Source Code Where Integers Are Desired

Replace #/A with #.(char-code #/A).

The #. is necessary only in contexts where the #/A was data rather than a form;
char-code will be constant-folded by the compiler when its argument is constant.

‘You could also use char-int, but it never makes sense to get an integer that

20
Release 6.0 Release Notes March 1985

represents more than one field of a character, except when computing hash keys.
The positions of the various fields within the word should never be meaningful to
the outside world.

Use of Symbolics Lisp Machine Characters in Source Code Where ASCII
Characters Are Desired

Replace #/A with #.(ascii-code #/A).

Unfortunately this function cannot be called ascii, because that name is already
taken for a Maclisp-compatible function that returns a symbol. ascii-code returns
an integer, for example (ascii-code #\cr) => #015. The ascii-code function also
recognizes strings and looks up the names of the ASCII "control" characters. Thus
(ascii-code "SOH") = (ascii-code #\y) = 1. (ascii-code #\c-A) = #0101, not 1;
there is no mapping between Lisp Machine control characters and ASCII control
characters.

The functions char-to-ascii and ascii-to-char provide the primitive conversions
needed by ASCII-translating streams. They do not deal with the translation of the
Return character into a CR-LF pair; the caller must handle that. They just
translate #\Return into CR and #\Line into LF. They do not deal with Symbolics
Lisp Machine control characters; the translation of #\c¢-G is the ASCII code for G,
not the ASCII code to ring the bell also known as "control G."

(ascii-to-char (ascii-code "BEL")) is #/x, not #\c-G. The translation from
ASCII to character never produces a Lisp Machine control character; this is
necessary so that these functions can be used to translate file data (as opposed to
keyboard data). Except for CR-LF, char-to-ascii and ascii-to-char are 100 percent
compatible with the ASCII-translating streams.

Use of Numerical Comparisons on Characters

Use of numerical comparisons on characters is the major incompatibility. Rather
than using = to compare characters, you should use one of the following specialized
predicates. If none of them does what you need, use char-code to extract the field
you want to compare, then compare it arithmetically; this should be rare.

chars= char= char<

char> charg char2
char-equal char-not-equal char-lessp
char-greaterp char-not-greaterp char-not-lessp
graphic-char-p alpha-char-p upper-case-p
Tower-case-p digit-char-p alphanumericp

The predicates listed on the first two lines (char=, char=, char<, char>, chars,
and char>) are "exact". The predicates on the third and fourth lines (char-equal,
char-not-equal, char-lessp, char-greaterp, char-not-greaterp, and
char-not-lessp) ignore bits, style, and alphabetic case. The ones that already
existed in Zetalisp in Release 5.0 are compatible.

21
March 1985 Release 6.0 Release Notes

You can also use eql to compare characters. char= and eql are equivalent except
for possible error-checking; char= might complain about arguments that are not
characters. You are allowed to use selectq on characters; currently it uses eq to
compare the characters, which works but is discouraged as poor practice. By the
time eql needs to be used selectq will be fixed to use it.

You can also use selector with char-equal to select on a character, ignoring bits,
style, and case.

Example:

(selector char char-equal
(#/a ...))

Use of Arithmetic Operations on Characters

Use char-code and code-char to convert between characters and integers. There
are also the specialized functions:

digit-char-p char-code code-char
char-bits character char-upcase
char-downcase char-flipcase digit-char
char-bit set-char-bit char-int
int-char

Use of Idb, Idb-test, fogand, kancl bit-test on Characters

For characters, instead of performing logical operations — 1db, ldb-test, logand,
bit-test, and others — on byte fields, you should now use the functions listed below.
If you use these functions, your code will work in both Old-Zetalisp and New-
Zetalisp. To extract the byte field you want to operate on, you should use one of
these specialized functions and predicates:

alphanumericp char-downcase digit-char-p
alpha-char-p char-flipcase graphic-char-p
both-case-p char-int int-char
character char-name lTower-case-p
char-bit char-subindex name-char
char-bits char-upcase set-char-bit
char-code code-char upper-case-p

char-device-font digit-char

For example, you should use (char-bit char :meta) rather than
(Idb-test %%kbd-meta char); likewise, you should use

(setf (char-bit char :meta) t), instead of

(setq char (dpb 1 %%kbd-meta char)).

The functions that already existed in Zetalisp in Release 5.0 (character,
char-downcase, char-flipcase, and char-upcase) are compatible.

The following variables will not exist in New-Zetalisp; therefore, you should avoid
using them.

22

Release 6.0 Release Notes March 1985
%%ch-char %%ch-font ' %%kbd-char
%%kbd-control %%kbd-control-meta %%kbd-hyper
%%kbd-meta %%kbd-mouse %%kbd-mouse-button

%%kbd-mouse-n-clicks %%kbd-super

Use of Mouse Characters

The syntax for mouse characters, such as #\mouse-l-1, will continue to work in
New-Zetalisp.

Old coding practice New coding practice
(1db-test %x%kbd-mouse char) (mouse-char-p char)
(1db %%kbd-mouse-button char) (char-mouse-button char)

(1db %%kbd-mouse-n-clicks char) (char-mouse-n-clicks char)

You can use setf on these fields; there is also a function
(make-mouse-char button n-clicks &optional bits).

It is important to note that n-clicks is 0 if the button was clicked once, 1 if the
button was clicked twice. The button number is 0, 1, or 2 (Left, Middle, Right).

Use of Characters as Array Subscripts

Call char-code first. Note that this may give a large number in New-Zetalisp, or if
the Japanese system is in use in Old-Zetalisp (because of character sets). Characters
in the standard character set have codes less than 256, so things should work
compatibly if only the standard character set is used. In New-Zetalisp, programs
that use characters to index into command dispatch tables will have to be careful
about nonstandard character sets causing out-of-bounds array references. Most
programs with single-character commands, such as the editor, treat all characters in
non-standard character sets as self-inserting.

Distinguishing Characters From Blips

There is no characterp function in Old-Zetalisp, because the chance for confusion
between characters and numbers is too great. Rather than using numberp to test
for characters, as many system and example programs do, use listp to test for blips,
and assume any input that is not a list must be a character. For now, at least, all
blips in system programs are lists. It is possible that instances might sometimes be
used as blips in some future system.

Also, anything that wants to check the data type of a character argument cannot be
source-compatible. In Old-Zetalisp you use (check-arg-type char :fixnum) and in
New-Zetalisp you use (check-arg-type char :character). In Common Lisp you
would use (check-type char character).

23
March 1985 Release 6.0 Release Notes

String Comparison and String Searching Functions

The complete set of case-independent string comparison functions is:

string-equal string-lessp string-greaterp
string-not-greaterp string-not-lessp string-not-equal
string-compare %string-equal sys:%string-compare

The complete set of case-dependent string comparison functions is:

string= string< string>
string< string2 string=
string-exact-compare %strings= sys:%string-exact-compare

For fat strings, the dependency on character style is the same as the dependency on
alphabetic case.

For string searching, the new set of case-dependent search functions is as follows.
Note that none of these exist in Common Lisp, which does string searching with
sequence operations instead.

string-search-exact string-reverse-search-exact
string-search-exact-char string-search-not-exact-char
string-reverse-search-exact-char %string-search-exact-char
string-reverse-search-not-exact-char

Case-dependent versions of the string-search-set and string-trim families are not
provided, because the set normally does not contain alphabetics. Common Lisp
handles this better, using the :test argument to its sequence functions.

Fat Strings

It is impossible to provide complete compatibility here, because of the impending
introduction of character sets and styles. Any program that uses fat strings in Old-
Zetalisp will need some source changes to work in New-Zetalisp. Conversion
instructions will be provided in the future. ’

Making Strings

art-string arrays will continue to be strings. In Old-Zetalisp they are arrays of 8-bit
bytes; in New-Zetalisp they are arrays of characters restricted to have zero bits and
style fields, and a code field in the Standard character set.

Common Lisp Functions Not Included

standard-char-p is not included because the Common Lisp standard characters are
not directly relevant to Zetalisp.
string-char-p is not included because it is part of the Common Lisp type system.

char-font is not included because it is superseded in New-Zetalisp by char-style.
The New-Zetalisp/Symbolics Common Lisp functions char-set, char-style, and

24

Release 6.0 Release Notes

March 1985

char-index are not included because character sets and styles are not implemented

in Old-Zetalisp.

2.2.5.3 Character and String Functions for Old-zetalisp/New-zetalisp Compatibility
The functions listed below have been documented in earlier releases. These
functions are compatible with both Old-Zetalisp and New-Zetalisp.

char-code
char-standard
char-equal
char-lessp
char-upcase
char-downcase
char-flipcase
string-equal
string-lessp
string-compare
%string-equal

string-search-char
string-search-not-char
string-reverse-search-char
string-reverse-search-not-char
string-search
string-reverse-search
%string-search-char
string-search-set
string-search-not-set
string-reverse-search-set
string-reverse-search-not-set

alphabetic-case-affects-string-comparison

226 Symbols Added to or Removed From global in Release 6.0
The following symbols have been added to the global package in Release 6.0:

%32-bit-difference
%32-bit-plus
%find-structure-extent
%string-search-exact-char
%string=

&environment

&whole
read-form-completion-alist

read-form-completion-delimiters

read-form-edit-trivial-errors-p
alpha-char-p
alphanumericp
array-column-major-index
array-push-portion-extend
art-boolean

art-fixnum

ascii-code

ascii-to-char
ascii-to-string

both-case-p

ceiling
change-instance-flavor
char=

char<

25

March 1985

char>

char-bit

char-bits
char-device-font
char-greaterp
char-int
char-mouse-button
char-mouse-n-clicks
char-name
char-not-equal
char-not-greaterp
char-not-lessp
char-subindex
char-to-ascii

char<

char=

char>
choose-gc-parameters
cis

code-char

complex

complexp
conjugate
copytree-share
cosh

cp-off

cp-on
define-cp-command
defvar-resettable
defvar-standard
defwhopper-subst
denominator
desetq

digit-char
digit-char-p
display-notifications
dlet

dlet*

flet

floor _
get-flavor-handler-for
graphic-char-p
imagpart

int-char

labels

letf

Release 6.0 Release Notes

26

Release 6.0 Release Notes

letf*
location-contents
lower-case-p
macrolet

make-char
make-heap
make-mouse-char
mouse-char-p
name-char
note-private-patch
numerator
parse-ferror

phase
process-wait-forever
push-in-area
rational

rationalp
read-and-eval
read-command
read-command-or-form
read-expression
read-for-eval
read-form
read-interactive
read-or-character
readline-no-echo
realpart

round

set-char-bit
setg-standard-value
sinh

stack-let

stack-let*
standard-value-let
standard-value-let*
standard-value-progv
string~

string<

string>
string-exact-compare
string-greaterp
string-nconc-portion
string-not-equal
string-not-greaterp
string-not-lessp
string-reverse-search-exact

March 1985

. 27
March 1985 Release 6.0 Release Notes

string-reverse-search-exact-char
string-reverse-search-not-exact-char
string-search-exact
string-search-exact-char
string-search-not-exact-char
string-to-ascii

string<

string=

string>

tand

tanh

time-elapsed-p

truncate

unwind-protect-case
upper-case-p
with-input-editing-options
with-input-editing-options-if
with-notification-mode
without-floating-underflow-traps

The following symbols have been removed from the global package in Release 6.0:

&dt-atom
&dt-dontcare
&dt-fixnum
&dt-frame
&dt-list
&dt-number
&dt-symbol
&function-cell
functional-alist
zdt

zed

2.2.7 apply and funcall No Longer Work for Special Forms

You can no longer apply or funcall a special form or a macro. In Release 5, you
could apply or funcall a special form, but the results were unpredictable. In
Release 6, doing this signals an error.

2.2.8 Interpreter Caches Global Variable Declarations

The interpreter caches lexical, dynamic, and special information like the compiler
does. If you change the meaning of a variable (for example, declare it special), you
must reinterpret and recompile the defun form.

28
Release 6.0 Release Notes ‘ March 1985

2.29 Files Using defwrapper Forms Must Be Recompiled in Release 6.0

Compiled files that contain defwrapper forms do not work in both Release 5 and
Release 6. You should therefore snapshot (using make-system tools, if necessary)
your existing Release 5 version and recompile a separate Release 6 version.

2.2.10 -fixnum-array Option for defstruct is Obsolete

The :fixnum-array option for defstruct is not supported on the 3600-family
machines.

2.2.11 :flonum-array Option for defstruct is Obsolete

The :flonum-array option for defstruct is not supported on the 3600-family
machines. The option is not needed on the 3600, as its purpose was to enhance
efficiency on the Symbolics LM-2 machine.

2.2.12 make-array No Longer Accepts Obsolete Form
When make-array was originally implemented, it took its arguments in the
following fixed pattern:

(make-array area type dimensions
&optional displaced-to leader
displaced-index-offset
named-structure-symbol)

leader was a combination of the :leader-length and :leader-list options, and the
list was in reverse order.

This form of make-array is obsolete and no longer supported.

2.213 Forms in a Top-level progn Are Top-level to the Compiler

Forms within a top-level progn are treated by the compiler as if they had appeared
at top-level, regardless of whether or not ’compile is specified.

If your code depends on forms not being seen by the compiler, hide the forms by
wrapping (eval (quote...)) around them.

(eval (quote
(progn
(forms)
o))

2.2.14 Lambda-list Keyword Changes

&functional has never worked on the 3600-family machines.

The use of "e and &eval is not recommended. Macros should be used instead
to define special functions.

29
March 1985 Release 6.0 Release Notes

&list-of has been removed from Symbolics-Lisp. Use loop or mapcar instead of
&list-of.

Example 1, using &list-of:

(defmacro send-commands (object
&body &list-of (command . arguments))
‘(let ((o ,object))
. ,(mapcar #’(lambda (com args) ‘(send o ’,com . ,args))
command arguments)))

Using mapcar:

(defmacro send-commands (object &body command.arguments)
(let ((command (mapcar #’car command.arguments))
(arguments (mapcar #’cdr command.arguments))) ;simulate &list-of
‘(let ((o ,object))
. ,(mapcar #’(lambda (com args) ‘(send o ’,com . ,args))
command arguments))))

Using loop:

(defmacro send-commands (object &body command.arguments)
‘(let ((o ,object))
,@(loop for (command . arguments) in command.arguments
collect *(send o ’,command ,@arguments))))

Example 2, using &list-of:

{(defmacro print-let (x &optional &list-of ((vars vals)
’((base 10.)
(xnopoint t))))
‘((lambda (,evars) (print ,x))
,@vals))

Using mapcar:

(defmacro print-let (x &optional (let-vars ’((base 10.)
(xnopoint t))))
*((lambda (,@(mapcar #’car let-vars))
(print ,x))
,@(mapcar ’cadr let-vars)))

Using let:

(defmacro print-let (x &opticnal (let-vars ’((base 10.)
(xnopoint t))))
‘(let ,let-vars
(print ,x)))

See the section "New &-Keywords for defmacro", page 39.

30
Release 6.0 Release Notes March 1985

2.215 defmacro Patterns Are Now Made Consistent

defmacro now destructures all levels of patterns in a consistent way. In the past,
&-keywords were allowed only at the top level of defmacro’s argument pattern.
&-keywords were not allowed inside nested lists, and all arguments in nested lists
were effectively optional. Also, error checking was not done on the matching of
lengths of the pattern and the subform. See the section "New &-Keywords for
defmacro”, page 39.

All levels of the argument pattern now behave uniformly. As a result, &optional,
for example, needs to be inserted into some macros to ensure that they work the
same way that they used to work.

(defmacro foo (x y z) ...) Example 1 has not changed.
(defmacro foe (x y &optional z) ...) Example 2 has not changed.
(defmacro foo ((x y z) &body w) ...) Example 3 is now written as

Example 4 if z was supposed
(defmacro foo ((x y &optional z) &body w) ...) to be optional.

The following is a more complicated example.

(defmacro hairy ((&whole first-form w &key x y z &allow-other-keys)
(&optional a (b ’c) &aux (a-and-b (and a b)))
&body body)
;3 print things during macro expansion
(format t "~&First form is ~S~%4W = ~S§, X = ~§, Y = ~§, Z = ~S~%4"
first-formw x y 2)
(format t "A = ~S, B = ~§, A-and-B = ~5~%" a b a-and-b)
(format t "BODY = ~S~%" body)
;; and expand into nil
nil)

When

(hairy (this-is-w :x this-is-x :z this-is-z :y this-is-y
:something-else ignored)
Q)
body-form-1
body-form-2)

is expanded, it prints

First form is (THIS-IS-W :X THIS-IS-X :Z THIS-IS-Z :Y THIS-IS-Y
:SOMETHING-ELSE IGNORED)

W = THIS-IS-W, X = THIS-IS-X, Y = THIS-IS-Y, Z = THIS-IS-Z

A = NIL, B = C, A-and-B = NIL

BODY = (BODY-FORM-1 BODY-FORM-2)

during expansion and expands into

31
March 1985 Release 6.0 Release Notes

NIL
When

(hairy (this-is-w :z this-is-z)
(this-is-a explicit-b)
body-form-1
body-form-2)
is expanded, it prints

First form is (THIS-IS-W :Z THIS-1S-2Z)

W = THIS-IS-W, X = NIL, Y = NIL, Z = THIS-1S-Z

A = THIS-1S-A, B = EXPLICIT-B, A-and-B = EXPLICIT-B
BODY = (BODY-FORM-1 BODY-FORM-2)

during expansion and expands into
NIL

This behavior exists for all of defmacro’s keywords, except for &environment.

2.2.16 alphabetic-case-affects-string-comparison is Now Obsolete

The variable alphabetic-case-affects-string-comparison is now obsolete. See the
section "Common Lisp Character Switchover in Release 6.0", page 12.

2.3 New Features in Lisp in Release 6.0

231 New Function: change-instance-flavor

change-instance-flavor changes the flavor of an instance to another flavor that
has compatible instance variables.

See the function change-instance-flavor in Reference Guide to Symbolics-Lisp.

2.3.2 New Option to defflavor: :export-instance-variables
The :export-instance-variables option has been added to defflavor.

sexport-instance-variables exports the symbols from the package in which the
flavor is defined. The following example shows the use of
sexport-instance-variables.

(defflavor box
(x-dim y-dim z-dim)
0
:gettable-instance-variables
;; export all the instance variables
sexport-instance-variables)

See the section "Importing and Exporting Symbols" in Reference Guide to
Symbolics-Lisp.

32
Release 6.0 Release Notes March 1985

2.3.3 New Macro: defwhopper-subst

The macro defwhopper-subst has been added. defwhopper-subst defines a
wrapper for the specified message to the specified flavor by combining the use of
defwhopper with the efficiency of defwrapper. The body is expanded in-line in
the combined method, providing improved time efficiency but decreased space
efficiency unless the body is small.

See the macro defwhopper-subst in Reference Guide to Symbolics-Lisp.

2.3.4 New Macro: si:define-simple-method-combination

The macro si:define-simple-method-combination provides a simple means of
defining a method combination with the name combination-type, which must be a
symbol and is usually a keyword, such as :progn or :list.

See the macro si:define-simple-method-combination in Reference Guide to
Symbolics-Lisp.

2.3.5 New Option to defstruct: :export
The :export option has been added to defstruct.

The :export option exports the specified symbols from the package in which the
structure is defined. This option accepts the following as arguments: the names of
slots and the following options: :alterant, :constructor, :copier, :predicate,
ssize-macro, and :size-symbol.

The following example shows the use of :export.

(defstruct (2d-moving-object

(:type :array)
:conc-name
;3 export all accessors and make-2d-moving-object
(:export :accessors :constructor))

mass

X~-pos

y-pos

x-velocity

y-velocity)

See the section "Importing and Exporting Symbols" in Reference Guide to
Symbolics-Lisp.

2.3.6 New Special Form: without-floating-underflow-traps

without-floating-underflow-traps replaces the variable zunderflow, which was
the only way to turn off underflow traps previously. zunderflow worked on the
LM-2, but is not quite correct for the 3600 family. You should use
without-floating-underflow-traps on the 3600 family because it is more
mathematically correct and (when there is an underflow) it is faster.

33
March 1985 Release 6.0 Release Notes

See the special form without-floating-underflow-traps in Reference Guide to
Symbolics-Lisp.

2.3.7 New Function: tand

tand x Function
Returns the tangent of x, where x is expressed in degrees.

For example:

(tand 45) => 1.0
(tand -45.0) => -1.0
(tand 180.0d0) => 0.0d0

2.3.8 New Functions: %32-bit-plus and %32-bit-difference

These two functions are the 32-bit versions of the %24-bit- functions that existed
on the LM-2.

- %32-bit-plus x y Function
Returns the sum of x and y in 32-bit wraparound arithmetic. Both
arguments must be fixnums. The result is a fixnum.

%32-bit-difference x y Function
Returns the difference of x and y in 32-bit wraparound arithmetic. Both
arguments must be fixnums. The result is a fixnum.

- Example:
(+ si:xlargest-fixnumx 1) => 20000000000 ;;a bignum
(%32-bit-plus si:*xlargest-fixnumx 1) => -20000000000 ;;a fixnum
2.3.9 New Keywords to typep
There are four new keywords to typep:

:complex (typep #c(1.3 7.0) :complex) => t
srational (typep 5\3 :rational) => t
:non-complex-number

(typep 4 :non-complex-number) =t

:dlist-or-nil (typep *(a b ¢) :list-or-nil) => t

2.3.10 Rational and Complex Numbers

34
Release 6.0 Release Notes March 1985

2.3.10.1 Rational Numbers

Rational numbers include both ratios and integers. Ratios are represented in terms
of an integer numerator and denominator. The ratio is always "in lowest terms",
meaning that the denominator is as small as possible. If the denominator is 1, the
rational number is represented as an integer. The denominator is always positive;
the sign of the number is carried by the numerator. See the section "Numeric Type
Conversions" in Reference Guide to Symbolics-Lisp.

rational x Function
Converts any noncomplex number to an equivalent rational number. If x is a
floating-point number, rational returns the rational number of least
denominator, which when converted back to the same floating-point precision,
is equal to x.

numerator x Function
If x is a ratio, numerator returns the numerator of x. If x is an integer,
numerator returns x.

denominator x Function
If x is a ratio, denominator returns the denominator of x. If x is an
integer, denominator returns 1.

rationalp x Function
Returns t if x is a ratio. Returns nil if x is an integer. Note that in
Common Lisp, rationalp of an integer returns t.

2.3.10.2 Complex Numbers

A complex number is a pair of noncomplex numbers, representing the real and
imaginary parts of the number. The types of the real and imaginary parts are
always the same. No Symbolics-Lisp complex number has a rational real part and
an imaginary part of integer zero. Such a number is always represented simply by
the rational real part. See the section "Numeric Type Conversions" in Reference
Guide to Symbolics-Lisp.

complex real &optional imag Function
Constructs a complex number from real and imaginary noncomplex parts. If
the types of the real and imaginary parts are different, the coercion rules are
applied to make them the same. If imag is not specified, a zero of the same
type as real is used. If real is an integer or a ratio, and imag is 0, the
result is real.

realpart x Function
If x is a complex number, realpart returns the real part of x. If x is a
noncomplex number, realpart returns x.

35
March 1985 Release 6.0 Release Notes

imagpart x Function
If x is a complex number, imagpart returns the imaginary part of x. If x is
a noncomplex number, imagpart returns a zero of the same type as x.

complexp x Function
Returns t if x is a complex number, otherwise nil.

2.3.11 New Transcendental Functions

The following new transcendental functions have added in Release 6.0.

cis x Function
x must be a noncomplex number. cis could have been defined by:

(defun cis (x)
(complex (cos x) (sin x)))

Mathematically, this is equivalent to e*.

phase x Function
The phase of a number is the angle part of its polar representation as a
complex number. The phase of zero is arbitrarily defined to be zero. phase
could have been defined as:

(defun phase (x)
(atan2 (imagpart x) (realpart x)))

sinh x Function
Returns the hyperbolic sine of x, where x is expressed in radians.

cosh x Function
Returns the hyperbolic cosine of x, where x is expressed in radians.

tanh x Function
Returns the hyperbolic tangent of x, where x is expressed in radians.

2.3.12 New Function: conjugate

conjugate x Function
Returns the complex conjugate of x. The conjugate of a noncomplex number
is itself. conjugate could have been defined by:

(defun conjugate (x)
(complex (realpart x) (- (imagpart x))))

36
Release 6.0 Release Notes i March 1985

2.3.13 New Functions for Converting Non-integral Numbers to Integers

Four new functions for converting non-integral numbers to integers have been added
to Symbolics-Lisp. These functions are specified by Common Lisp, but are also added
to Symbolics-Lisp so that programs written in Symbolics-Lisp can use them. For
information about these new functions:

See the function floor in Reference Guide to Symbolics-Lisp.
See the function ceiling in Reference Guide to Symbolics-Lisp.
See the function round in Reference Guide to Symbolics-Lisp.
See the function truncate in Reference Guide to Symbolics-Lisp.

2.3.14 New Functions for Converting Numbers to Floating-point Numbers

Four new functions for converting numbers to floating-point numbers have been
added to Symbolics-Lisp. These functions are specified by Common Lisp, but are also
added to Symbolics-Lisp so that programs written in Symbolics-Lisp can use them.
For information about these new functions:

See the function sys:ffloor in Reference Guide to Symbolics-Lisp.
See the function sys:fceiling in Reference Guide to Symbolics-Lisp.
See the function sys:fround in Reference Guide to Symbolics-Lisp.
See the function sys:ftruncate in Reference Guide to Symbolics-Lisp.

2.3.15 New Function: location-contents

location-contents replaces the use of car and cdr on locatives. Similarly, although
either of the functions rplaca and rplacd can be used to store an object into the
cell at which a locative points, you should use (setf (location-contents x) y)
instead.

See the function location-contents in Reference Guide to Symbolics-Lisp.

2.3.16 New Facility: Heaps

Heaps have been implemented in Release 6.0. A heap is a data structure in which
each item is ordered by some predicate (for example, less-than) on its associated key.
You can add an item to the heap, delete an item from it, or look at the top item.
The "top" operation is guaranteed to return the first (that is, smallest) item in the
heap. Heaps are useful in maintaining priority queues.

For additional information about heaps:

See the function make-heap in Reference Guide to Symbolics-Lisp.

See the section "Messages to Heaps" in Reference Guide to Symbolics-Lisp.

See the section "Heaps and Loop Iteration" in Reference Guide to
Symbolics-Lisp.

37
March 1985 Release 6.0 Release Notes

23.17 Previously Undocumented Feature: Array Registers

Array registers are now documented. The array register feature makes optimization
possible and convenient. Array registers are documented in the following topics:

See the section "Array Registers" in Reference Guide to Symbolics-Lisp.
See the section "Accessing Multidimensional Arrays as One-dimensional" in
Reference Guide to Symbolics-Lisp.

2.3.18 New Function: array-column-maior-index

The function array-column-major-index takes an array and valid subscripts for
the array and returns a single non-negative integer less than the total size of the .
array that identifies the accessed element in the column-major ordering of the
elements.

See the function array-column-major-index in Reference Guide to Symbolics-Lisp.

2.3.19 New Special Forms: letf and letf*

Two new special forms have been added in Release 6.0: letf and letf*. letf is just
like let, except that it can bind any storage cells rather than just variables. letf* is
Jjust like let*, except that it can bind any storage cells rather than just variables.
For more information:

See the special form letf in Reference Guide to Symbolics-Lisp.
See the special form letf* in Reference Guide to Symbolics-Lisp.
2.3.20 New Function: copytree-share

copytree-share is similar to copytree, except that it also assures that all lists or
tails of lists are optimally shared when equal.

See the function copytree-share in Reference Guide to Symbolics-Lisp.

23.21 New Macro: unwind-protect-case
The macro unwind-protect-case has been added.

See the macro unwind-protect-case in Reference Guide to Symbolics-Lisp.

2.3.22 New Function: array-push-portion-extend

The function array-push?portion-extend copies a portion of one array to the end
of another, updating the fill pointer of the other to reflect the new contents.

See the function array-push-portion-extend in Reference Guide to Symbolics-Lisp.

38
Release 6.0 Release Notes " March 1985

2.3.23 New Function: string-nconc-portion

The function string-nconc-portion adds information onto a string without consing
intermediate substrings. It is like string-nconc except that it takes parts of strings
without consing substrings.

See the function string-nconc-portion in Reference Guide to Symbolics-Lisp.

2.3.24 New Flavor: sys:float-invalid-compare-operation

sys:float-invalid-compare-operation is built on and identical to
sys:float-invalid-operation, except that it does not expect a numeric resulit.

See the flavor sys:float-invalid-compare-operation in Reference Guide to
Symbolics-Lisp.

2.3.25 New Error Flavor: sys:read-premature-end-of-symbol

sys:read-premature-end-of-symbol ' Flaver

This is a new error flavor based on sys:read-error. It can be used for
signalling when some read function finishes reading in the middle of a string
that was supposed to contain a single expression.
Message Value returned
:short-symbol the symbol that was read
soriginal-string the string that it was reading from

when it finished in the middle

An example of the use of sys:read-premature-end-of-symbol is in
zwei:symbol-from-string.

23.26 New Array Error Flavor: sys:array-wrong-number-of-subscripts

sys:array-wrong-number-of-subscripts assumes that the array is correct and that
the user/application caused the error by providing the incorrect number of subscripts.

See the flavor sys:array-wrong-number-of-subscripts in Reference Guide to
Symbolics-Lisp.

2.3.27 New Stream Handling Error Flavors: sys:stream-closed and
sys:network-stream-closed

sys:stream-closed is used when an operation that required a stream to be open
was attempted on a closed stream. See the flavor sys:stream-closed in Reference
Guide to Symbolics-Lisp.

sys:network-stream-closed is a combination of sys:network-error and
sys:stream-closed and is usually used as a base flavor by network implementations
(for example, Chaos and TCP). See the flavor sys:network-stream-closed in
Reference Guide to Symbolics-Lisp.

39
March 1985 Release 6.0 Release Notes

2.3.28 New Message to Error Flavor fs:directory-not-found

Errors of flavor fs:directory-not-found support the :directory-pathname message.
This message, which can be sent to any such error, returns (when possible) a
"pathname as directory" for the actual directory which was not found.

Example:

Assume the directory x:>a>b exists, but has no inferiors. The following produces an
error instance to which :pathname produces

#<LMFS-PATHNAME x:>a>b>c>d>thing.lisp> and :directory-pathname produces
#<LMFS-PATHNAME x:>a>b>c> >.

(open “x:>a>b>c>d>thing.lisp”)

Note: Not all hosts and access media can provide this information, although LMFS
can. When a host does not return this information, :directory-pathname returns
the same as :pathname, whose value is a pathname as directory for the best
approximation known to the identity of the missing directory.

2.3.29 New &-Keywords for defmacro

defmacro has two new &-keywords: &whole and &environment.

&whole &whole is followed by variable, which is bound to the entire
macro-call form or subform. variable is the value that the macro-
expander function receives as its first argument. &whole is
allowed only in the top-level pattern, not in inside patterns.

&environment &environment is followed by variable, which is bound to an
object representing the lexical environment where the macro call is
to be interpreted. This environment might not be the complete
lexical environment. It should be used only with the
macroexpand function for any local macro definitions that the
macrolet construct might have established within that lexical
environment. &environment is allowed only in the top-level
pattern, not in inside patterns. See the section "Lexical
Environment Objects and Arguments" in Reference Guide to
Symbolics-Lisp.

defmacro now accepts these lambda-list keywords, formerly accepted only by defun.
&key and &allow-other-keys.

&Kkey Separates the positional arguments and rest argument from the
~ keyword arguments.
&allow-other-keys

In a lambda-list that accepts keyword arguments, says that
keywords that are not specifically listed after &key are allowed.
They and the corresponding values are ignored, as far as keyword

40
Release 6.0 Release Notes March 1985

arguments are concerned, but they do become part of the rest
argument, if there is one.

See the section "Lambda-list Keyword Changes", page 28. See the section
"defmacro Patterns Are Now Made Consistent"”, page 30.

2.3.30 New Special Forms for Destructuring

Three new special forms for destructuring have been added: desetq, dlet, and
dlet*. ;

desetq lets you assign values to variables through destructuring patterns. dlet
binds variables to values, using destructuring, and evaluates the body forms in the
context of those bindings. dlet* binds variables to values, using destructuring, and
evaluates the body forms in the context of those bindings.

For more information about these special forms:

See the special form desetq in Reference Guide to Symbolics-Lisp.
See the special form dlet in Reference Guide to Symbolics-Lisp.
See the special form dlet* in Reference Guide to Symbolics-Lisp.

For more information about the concept of destructuring in general:
See the section "Destructuring” in Reference Guide to Symbolics-Lisp.

2.4 Improvements to Lisp in Release 6.0

2.4.1 defflavor Now Accepts the Option :required-init-keywords

defflavor now accepts the option :required-init-keywords.
:required-init-keywords Option for defflavor

Specifies keywords that must be supplied. The arguments are keywords. It is an
error to try to make an instance of this flavor or any incorporating it without
specifying these keywords as arguments to make-instance (or to
instantiate-flavor) or as a :default-init-plist option in a component flavor. This
error can often be detected at compile time.

2.4.2 set-syntax-macro-char Takes an Optional Fourth Argument

set-syntax-macro-char takes an optional fourth argument, non-terminating-p. If
non-terminating-p is nil (the default), set-syntax-macro-char makes a normal
macro character. If it is t, set-syntax-macro-char makes a nonterminating macro
character. A nonterminating macro character is a character that acts as a reader
macro if seen between tokens, but if seen inside a token it acts as an ordinary letter
and does not terminate the token.

. 41
March 1985 Release 6.0 Release Notes

Example:

(set-syntax-macro-char #/n ’(lambda (&rest ignore) ’pi) readtable nil)
*(ra) is a list of two elements, ’(arb) is a list of three elements.

(set-syntax-macro-char #/x *(lambda (&rest ignore) ’pi) readtable t)
’(ra) is a list of two elements, ’(arnb) is a list of one element.

2.4.3 The Reader Now Accepts Floating-point Infinity

The reader recognizes IEEE floating-point infinity. The syntax for infinity is as
follows:

* A required plus or minus sign

« The digit "1"

» Any of the Common Lisp exponent mark characters

» The exponent character, which must be an infinity sign: «

For example, +lew,

2.4.4 si:install-microcode Takes a Second Optional Argument

sicinstall-microcode takes a second optional argument: boot-file-to-update. If
boot-file-to-update is not given, the default prompts the user for the pathname of a
boot file to update. If a pathname is given, that pathname is used as the boot file
to update without a question. If the keyword :no-boot-file-update is given, no
update is done and no question is asked.

2.4.5 [ambda is Now a Special Form

lambda lambda-list body... Special Form
Provided, as a convenience, to obviate the need for using the function special
form when the latter is used to name an anonymous (lambda) function.
When lambda is used as a special form, it is treated by the evaluator and
compiler identically to the way it would have been treated if it appeared as
the operand of a function special form. For example, the following two
forms are equivalent:

(my-mapping-function (lambda (x) (+ x 2)) list)

(my-mapping-function (function (lambda (x) (+ x 2))) list)
Note that the form immediately above is usually written as:
(my-mapping-function #’(lambda (x) (+ x 2)) list)

The first form uses lambda as a special form; the latter two do not use the
lambda special form, but rather, use lambda to name an anonymous
function.

42
Release 6.0 Release Notes March 1985

Using lambda as a special form is incompatible with Common Lisp.

2.4.6 The Interpreter Understands Declarations

Declarations are understood by the interpreter as well as the compiler. Formerly,
declarations were meaningful only to the compiler. See the section "Declarations” in
Reference Guide to Symbolics-Lisp.

2.4.7 loop Now Supports lteration Over Hash Tables or Heaps

loop now has iteration paths that support iterating over each entry in a hash table
or a heap.

See the section "loop Iteration Over Hash Tables or Heaps" in Reference Guide to
Symbolics-Lisp.

2.4.8 Zero-dimensional Arrays Are Now Supported

Zero-dimensional arrays are now supported. To create one, supply nil as the
dimensions argument to make-array.

2.4.9 array-pop Takes an Optional Second Argument

array-pop takes an optional second argument:
array-pop array &optional (default nil)
The optional second argument, if supplied, is the value to be returned if the array is

empty. If array-pop is called with one argument and the array is empty, it signals
an error.

See the function array-pop in Reference Guide to Symbolics-Lisp.

2.410 Standard Variable Bindings Now Guarantee Consistent Behavior in Break
and Debugging Loops

There are two new defvar types to define variables that have standard values to
which they revert at warm boot time or in breakpoint loops. For documentation on
them:

See the special form defvar-resettable in User’s Guide to Symbolics
Computers.

See the special form defvar-standard in User’s Guide to Symbolics
Computers.

There are several new functions for dealing with standard variables. For more
information on these functions:

43
March 1985 Release 6.0 Release Notes

See the special form setg-standard-value in User’s Guide to Symbolics
Computers.

See the macro standard-value-let in User’s Guide to Symbolics
Computers.

See the macro standard-value-let* in User’s Guide to Symbolics
Computers.

See the macro standard-value-progv in User’s Guide to Symbolics
Computers.

For a list of the currently defined standard variables, their standard values, and
their valid values: See the section "Standard Variables" in User’s Guide to Symbolics
Computers.

24.11 Break and the Debugger Now Bind readtable to si:standard-readtable

The variable readtable is now bound to the value of the variable
si:standard-readtable in break loops and the Debugger.

See the variable si:standard-readtable in User’s Guide to Symbolics Computers.

44
Release 6.0 Release Notes March 1985

45
March 1985 Release 6.0 Release Notes

3. New Feature in Release 6.0: Symbolics Common
Lisp

Symbolics Common Lisp (SCL) is available in Release 6.0. Symbolics Common Lisp
(SCL) is an enhanced version of Common Lisp that contains all of the useful
features of Zetalisp.

SCL is built on top of the normal Symbolics Lisp Machine system, known as
Zetalisp. SCL enables you to write programs that can be transported between the
3600-family machines and other machines that run Common Lisp implementations.
In a future release Symbolics Common Lisp will become the standard language and
Zetalisp will continue to be supported by means of a compatibility package.

Source files can contain a new Syntax attribute, indicating either Zetalisp or
Symbolics Common Lisp. For further information: See the section "Syntax and
Base Attributes in Source Files", page 9.

See the section "Symbolics Common Lisp" in Reference Guide to Symbolics-Lisp.

46
Release 6.0 Release Notes March 1985

47
March 1985 Release 6.0 Release Notes

4. Changes to Zmacs in Release 6.0

4.1 Incompatible Changes to Zmacs in Release 6.0

411 New loop Indentor

Zwei now indents code within a loop macro in a more attractive way than it did in
the past. The TAB key indents the code while recognizing and dealing appropriately
with loop keyword clauses. This new indentation style is a change in the Zmacs
user interface for writing Lisp code. You might want to know how to turn it off
because it indents new code in a style that is incotsistent with existing code.

To turn off the new loop indentor, include the following flag in your init file:
(SETF ZWEI:xINHIBIT-FANCY-LOOP-INDENTATIONX T)

The initial value for this flag is nil; t reverts to the old-style indentcr.
See the section "Indentation in loop Macros" in Text Editing and Processing.

41.2 Ztop Mode No Longer Supported
Ztop Mode in Zmacs is no longer supported and has been removed from the system.

4.1.3 Save All Files (m-X) Renamed to Save File Buffers (m-X)

The new name Save File Buffers (m~X) more accurately reflects this command’s
action, since it is a request to save the Zmacs buffers that are associated with a file,
and only those buffers. See the section "Saving Buffers” in Text Editing and
Processing.

4.2 Improvements to Zmacs in Release 6.0

4.21 Macro Expand Expression All Now Bound to m-sh-M

m-sh-M is like c-sh-M, Macro Expand Expression, except that it expands as far down
as it can, rather than just expanding the outermost form. See the section "Macro
Expand Expression All" in Text Editing and Processing.

4.2.2 SCRoLL and m-SCROLL Now Display Next Screen and Previous Screen

The sCROLL key displays the next screenful of text, the same as c-V. m-SCROLL
displays the previous screenful of text, the same as m-v.

48
Release 6.0 Release Notes March 1985

4.3 New Features in Zmacs in Release 6.0

4.3.1 New Zwei Command: Copy Mouse (C-(m))

Copy mouse inserts the object on which you click at the cursor position. This
command allows you to build a program or document by selecting things already
appearing on your screen. Position the cursor where you want the object to appear;
hold down the CTRL key and click middle on the object you want to copy: it is
inserted as though you had just typed it. If you change your mind, and want to
remove what you have just inserted, press c-W, and it is removed.

The object to be copied can be a word, a printed representation of a Lisp symbol, a
parenthesized or quoted group of words, a printed representation of a lisp list or
string, or a line. What object is picked up by clicking c-(M) on it is determined by
the same rules as Mouse Mark Thing, or (M) in Lisp Mode. That is:

« Clicking after the last visible character of a line or before the first visible
character of a line copies the whole line.

« Clicking on a word picks up that whole word, including any punctuation. The
following examples illustrate the meaning of "whole word" in this context, and
the convenience of using Copy mouse on the printed representation of LISP
objects:

o "ACME-VMS:SYMBOLICS:[RELS...J*.*;*"
o fs:set-logical-pathname-host

« Clicking on an open or close parenthesis copies the text between that
parenthesis and its matching parenthesis, including both parentheses. For
example, clicking on the first open parenthesis of a LISP form yields the entire
form:

(fs:set-logical-pathname-host "SYS"
:translations
P(("SYS:kx;x . x X" "ACME-LISPM:>Rel-6>Xxx>x_x_x")))

« Similarly, clicking on an open or close square bracket, or angle bracket (that is,
any of the following: [] < >), picks up the text between the delimiters,
including the delimiters. For example, clicking c-(M) on the opening square
bracket yields:

o [RELS...]

« Clicking on an open or close quotation mark (\") copies the whole quoted
string.

» Clicking between words copies all text up to the end of the next word (or
possible symbol printname).

49
March 1985 Release 6.0 Release Notes

Appropriate spaces are put before the inserted object, if needed. See the section
"Mouse Documentation Line in Zmacs" in Text Editing and Processing.

4.3.2 Two New Zmacs Commands for Recompiling and Reloading Patches

Two new Zmacs commands have been added — Recompile Patch (m-X) and Reload
Patch (m—X).

4.3.21 Recompile Patch (m-X)

Recompile Patch (m-X) recompiles an existing patch file. This command is useful
when, for example, an existing patch needs to be edited or a compiled patch file
becomes damaged in some way. Never recompile a patch manually or in any way
other than using the Recompile Patch command. This command ensures that
source and object files are stored where the patch system can find them.

Use Recompile Patch with caution! Recompiling a patch that has already been
loaded by other users can cause divergent world loads.

4.3.2.2 Reload Patch (m-X)
Reload Patch (n-X) reloads an existing patch file. This command makes it easy to
reload a patch file without having to know its pathname.

4.3.3 Three New Zmacs Commands for Formatting Text

The new extended commands Format Region ¢(m-X), Format Buffer (m-X), and
Format File (m-%) display text in a formatted style using environments and
commands that you embed in the text. You can send the formatted text to a
Symbolics LGP-1 printer (no other printer is supported) by giving the command a
numeric argument.

See the section "Zmacs Commands for Formatting Text" in Text Editing and
Processing.

4.3.4 Two New Zmacs Commands for Reverting Buffers

Two new Zmacs commands have been added which are particularly useful when
more than one person works on the same code — Refind File (m-X) and Refind All
Files (m-%). These commands enable you to make sure that you work on the most
up-to-date version, regardless of who updates it, at all times.

For more information about these commands, see the sections:

See the section "Refind File" in Text Editing and Processing.
See the section "Refind All Files" in Text Editing and Processing.

50
Release 6.0 Release Notes March 1985

51
March 1985 Release 6.0 Release Notes

5. Changes to Utilities in Release 6.0

5.1 New Features in Utilities in Release 6.0

5.1.1 Ephemeral-object Garbage Collection in Release 6.0

Ephemeral-object garbage collection has been implemented in Release 6.0
Ephemeral-object garbage collection is a method by which the scavenger agents can
pay special attention to short-lived, or ephemeral, objects. It is effective on any area
having the :gc :ephemeral characteristic as specified by make-area. The
working-storage-area has the ephemeral characteristic by default; since it is the
initial value of default-cons-area, objects created with no area specification are
subject to ephemeral-object garbage collection while it is turned on.

The overall effects are as follows:

« All objects created in ephemeral areas while the ephemeral collector is
operating are considered ephemeral objects.

» The ephemeral-object garbage collector has means of tracking ephemeral
objects, to avoid having to scan all of virtual memory for possible references to
them.

» Garbage collection tends to increase the locality of objects and their references,
so that ephemeral objects and their references are likely to be concentrated on
relatively few pages.

» The above factors combine to dramatically reduce the amount of paging the
garbage collector must do to find and process garbage, compared with the
"dynamic" method, which operates on all of dynamic space rather than just the
ephemeral portion of it. They also mean that when the dynamic
(nonephemeral) objects are eventually garbage-collected, dynamic space contains
less garbage than would otherwise be the case.

Before turning on the ephemeral-object garbage collector for the first time, it is
necessary to run a hardware diagnostic test on your Symbolics Lisp Machine. The
ephemeral-object garbage collector exercises some hardware in the machine that has
not been used in the past. The diagnostic test provided with Release 6.0 indicates
whether or not a problem will occur when the ephemeral-object garbage collector is
turned on. For instructions on running the diagnostic test: See the document
Installation and Site Operations.

_If the diagnostic test succeeds, you can turn on the ephemeral garbage collector. By
default, gc-on or the Start GC command enables the ephemeral collector along with
dynamic-object garbage collection.

52
Release 6.0 Release Notes March 1985

For the newly corrected documentation on gec-on: See the section "Clarification of
gc-on Printed Documentation", page 80.

For a more detailed description of ephemeral-object garbage collection: See the
section "Ephemeral-object Garbage Collection" in Internals, Processes, and Storage
Management.

5.1.2 New Feature in Release 6.0: the Document Examiner

The Document Examiner is a utility for finding and reading documentation on line.
It is available via SELECT D, the System menu, and the command Select Activity
Document Examiner. Some Document Examiner commands are also available in the
editor and in Lisp Listeners and break loops.

For brief information, in the Document Examiner type Help or click left on [Help).
For complete documentation, click middle on [Help] or: See the section "Using the
Online Documentation System" in User’s Guide to Symbolics Computers.

5.2 Improvements to Utilities in Release 6.0

5.2.1 compiler:make-obsolete Now Makes a Flavor or Structure Obsolete

compiler:make-obsolete now takes an optional third argument, the definition-type
of the definition to make obsolete. Formerly, compiler:make-obsolete worked only
on functions. Now it knows how to make flavors and structures obsolete, as well as
functions.

See the special form compiler:make-obsolete in Program Development Utilities.

5.2.2 Changes to Patch Files

In Release 6 patch files are organized differently. Individual patches for each major
version of a system reside in their own subdirectory. The patch directory file resides
in the same directory as the patch files for that version; the system version-directory
file resides in the immediately superior directory. Formerly, all patch files (the
system version-directory file, the patch directory file, and all individual patch files) for
all versions of a system were stored together.

For more information about the organization of patch files in Release 6: See the
section "Organization of Patch Files" in Program Development Utilities.

The file types of the system version-directory file have changed for some hosts since
Release 5. File types in parentheses are supported for compatibility.

53

March 1985 Release 6.0 Release Notes
Host File types of the system version-directory file
Release 6 Release 5
TOPS-20 SYSTEM-DIR PATCH-DIR
UNIX 4.1 sd sd
UNIX 4.2 system-dir (sd) patch-dir (sd)
VMS 3.0 SPD SPD
VMS 4.0 SPD SPD
ITS (SDIR) (PDIR)
LMFS system-dir (patch-dir, directory) patch-dir or directory
Multics system-dir patch-dir

To determine the names of your patch files, use si:patch-system-pathname.
Although it has existed for some time, this function had never been documented.
See the function si:patch-system-pathname in Program Development Utilities.

You need not take any action to accommodate these changes to patch files. Release
6 tries to be compatible with Release 5; the patch facility reverts to the old naming
scheme if it cannot find the patch file by the new scheme. This means that you
should be able to load systems made on Release 5 under Release 6, but not vice
versa.

5.2.3 :selective Option for load-patches Has Changed
The :selective option for load-patches offers a new choice — highest.

For each patch :selective displays the patch comment and then asks you whether
or not to load the patches. The choices are Y, N, P, or H: yes, no, proceed, or
highest. Answering P turns off selective mode for any remaining patches to the
current system. H means highest patch number to load. If you do not specify a
limit, it loads all patches from the present level for a given system.

5.2.4 New Function note-private-patch Adds Private Patch to Your World

note-private-patch, a new function, adds a private patch to the database in your
world and includes the name of the patch in your herald.

See the function note-private-patch in Program Development Utilities.

5.2.5 New Function si:map-system-files Operates on a Declared System

The function si:map-system-files maps a function over each file in the specified
version of the system. See the function si:map-system-files in Program
Development Utilities.

5.26 New Function si:set-system-file-properties Operates on a Declared System

The function si:set-system-file-properties sets the properties of each file in the
specified version of the system. See the function si:set-system-file-properties in
Program Development Utilities.

54 v
Release 6.0 Release Notes March 1985

55
March 1985 Release 6.0 Release Notes

6. Changes to the User Interface in Release 6.0

6.1 Incompatible Changes to the User Interface in Release 6.0

6.1.1 Input Editor Options Now Specified Dynamically

In the past, input editor options were accumulated as arguments to reading
functions and eventually passed to the input editor as the first argument to the
:rubout-handler message. Now you specify input editor options dynamically, using
the special forms with-input-editing-options and with-input-editing-options-if.
You can use these special forms to supply input editor options for high-level functions
like prompt-and-read and fquery.

The optional input-editor-options argument to read, read-or-end,
read-for-top-level, readline, readline-trim, and readline-or-nil is obsolete. The
argument is supported in this release for compatibility.

See the special form with-input-editing-options in Reference Guide to Streams,
Files, and I/0. See the special form with-input-editing-options-if in Reference
Guide to Streams, Files, and I/0.

6.1.2 Change to Subforms of with-input-editing

The input-editor-options and parameters "arguments” to with-input-editing are
obsolete. Input editor options are now specified dynamically: See the special form
with-input-editing-options in Reference Guide to Streams, Files, and I/0. See the
special form with-input-editing-options-if in Reference Guide to Streams, Files,
and I/0. It is no longer necessary to supply parameters, a list of lexically external
variables referred to in the body of the with-input-editing form, because
with-input-editing now converts its body to a lexical closure.

The two remaining "arguments”, both optional, are the stream from which
characters are read and a keyword specifying the activation characters for the input
editor. See the special form with-input-editing in Reference Guide to Streams,
Files, and 1/0.

The input-editor-options and parameters "arguments" are supported in this release
for compatibility.

6.1.3 :input-editor Message to Interactive Streams Replaces :rubout-handler

The :rubout-handler message to interactive streams is obsolete; use the
:input-editor message instead. The :input-editor message does not take an
input-editor-options argument, as the :rubout-handler message did. Input editor
options are now specified dynamically: See the special form
with-input-editing-options in Reference Guide to Streams, Files, and 1/0. See the

56
Release 6.0 Release Notes March 1985

special form with-input-editing-options-if in Reference Guide to Streams, Files,
and 1/0.

The :rubout-handler message is still supported in this release for compatibility.

:input-editor function &rest arguments Message
This is supported by interactive streams such as windows. It is described in
its own section: See the section "The Input Editor Program Interface" in
Reference Guide to Streams, Files, and 1/0.

Most programs should not send this message directly. See the special form
with-input-editing in Reference Guide to Streams, Files, and I/0.

6.1.4 Variable si:*typeout-default* Replaces tv:rh-typeout-defauit

The variable tv:rh-typeout-default has been renamed to si:*typeout-default*, and
its default value has been changed from :insert to :overwrite. This variable
controls the style of typeout (for example, warnings and help messages) performed by
the input editor.

6.1.5 tv:*escape-keys* and tv:*system-keys* Renamed to tv:*function-keys* and
tv:*select-keys*

The variable tv:*escape-keys* has been renamed to tv:*function-keys®*, and the
variable tv:*system-keys* has been renamed to tv:*select-keys*. Instead of
modifying these variables directly, use the function tv:add-function-key to add a
new FUNCTION key, and use the function tv:add-select-key to add a new SELECT
key. '

6.1.6 Replacing io-buffer-output-function and Binding tv:kbd-tyi-hook Are Obsolete

In previous releases, you could change the way the system intercepts special
characters on input to a window by replacing the io-buffer-output-function of the
window’s I/O buffer or by binding the variable tv:kbd-tyi-hook. These techniques
are now obsolete. To change the way the system intercepts special characters, bind
the variable sys:kbd-intercepted-characters.

For more information: See the section "Intercepted Characters" in Programming the
User Interface.

6.1.7 :mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang Messages Obsolete

The :mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang messages to windows are
obsolete. The :mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang methods of
tv:stream-mixin have been removed. Use :any-tyi and :any-tyi-no-hang instead.

57
March 1985 Release 6.0 Release Notes

6.1.8 :item-list Message to Windows is Obsolete

The :item-list message to windows, used to create and display a list of mouse-
sensitive items, is obsolete. It has been replaced by the new function
si:display-item-list.

All interactive streams now support the :item message, whether or not they support
mouse sensitivity. See the section "Interactive Streams and Mouse-sensitive Items”
in Programming the User Interface.

6.1.9 New Language for Specifying Frame Constraints

The language used to specify constraints in constraint frames has been changed.
The new language is more straightforward than the old. A new init option for
tv:basic-constraint-frame, :configurations, replaces the :constraints option.

The :constraints option and the old language are supported in this release for
compatibility. To convert a list that was the argument for the :constraints option
to a list that can be used as the argument for the :configurations option, use the
function tv:back-convert-constraints.

For more information: See the section "Specifying Panes and Constraints” in
Programming the User Interface. :

6.1.10 Change in Optional Argument to read-or-end

The second optional argument to read-or-end was previously an eof-option. It is
now a reading function to be called to read input if a nonwhitespace character is
encountered. The default is read-expression.

6.1.11 Changes to fquery Options

An fquery help function, specified by the :help-function option, now takes one
argument (the stream) instead of three. This change is incompatible.

fquery has a new option, :status, that directs fquery to return the symbol :status
if query-io is a window that becomes deexposed or deselected while fquery is
waiting for single-character input.

shelp-function Specifies a function to be called if the user presses the HELP key.
The default help function simply lists the available choices.
Specifying nil disables special treatment of HELP. If you specify a
help function, it should take one argument, the stream on which
to display the help message. The function can get the list of
available choices from the value of the special variable
format:fquery-choices.

:status This option takes effect only if query-io is a window and :type is
:ityi. If the value is :selected and the window becomes deselected

58
Release 6.0 Release Notes March 1985

while fquery is waiting for input, fquery returns :status. If the
value is :exposed and the window becomes deexposed or
deselected while fquery is waiting for input, fquery returns
:status. If the value is nil, fquery continues to wait for input
when the window is deexposed or deselected. The default is nil.

This option is intended for queries that appear in terﬁporary
windows that might become deexposed or deselected before the
user responds.

See the function fquery in Programming the User Interface.

6.1.12 Changes to prompt-and-read Options

The :number, :number-or-nil, :pathname, :pathname-or-nil, and :host-list
prompt-and-read options have been changed incompatibly. The addition of
keyword arguments has made other options obsolete.

* :number and :number-or-nil now read input as a decimal number by default;
formerly, by default they read input in the base that was the value of ibase.
The :input-radix keyword for these types has been changed to :base, though
szinput-radix is supported in this release for compatibility.

In other words, (prompt-and-read :number) is now the same as
(prompt-and-read ’(:number :base 10.)). To get the former behavior, use
(prompt-and-read ‘:number :base ,ibase)).

 The default version for :pathname and :pathname-or-nil is now nil;
formerly it was :newest. To supply a default version of :newest, use the
:default-version argument for these options.

» thost-list no longer accepts the :chaos-only keyword. It has been replaced by
:host-type. ‘

New keyword arguments have been added for the following options: :date,
:past-date, :date-or-never, :past-date-or-never, :number-or-nil,
:decimal-number, delimited-string, :delimited-string-or-nil, :font-list, shost,
:host-or-local, :pathname-host, :host-list, :keyword-list, :pathname,
:pathname-or-nil, and :pathname-list.

The keyword arguments to :delimited-string, :number, :date, :pathname, and
:host make some other options obsolete. For example, instead of :number-or-nil,
use (:number :or-nil t). The obsolete options are supported in this release for
compatibility. Following is a list of the obsolete options:

Option Makes obsolete
:delimited-string :delimited-string-or-nil

59

March 1985 Release 6.0 Release Notles

snumber snumber-or-nil, :decimal-number,
:decimal-number-or-nil

:date :past-date, :date-or-never, :past-date-or-never

:pathname :pathname-or-nil

:host :host-or-local, :pathname-host

The following options are new: :class, :complete-string, :flavor-name, :font,
:function-spec, :integer, :keyword, :object, :object-list, and :symbol.

See the function prompt-and-read in Programming the User Interface.

6.1.13 Changes to tv:choose-variable-values Variable Types

The :number and :number-or-nil tv:choose-variable-values variable types have
been incompatibly changed. Formerly, values for these variables were read in the
base that was the value of ibase and printed in the base that was the value of
base. Now these types take a :base parameter that specifies the input and output
base. If :base is not specified, the values are read and printed in decimal.

The :number type also takes an :or-nil parameter. If this is not nil, nil is
accepted as a variable value.

The parameters for :number make the :number-or-nil, :decimal-number, and
:decimal-number-or-nil types obsolete. Also, the new type :expression replaces
the obsolete :sexp. The obsolete types are supported in this release for
compatibility.

The following variable types are new: :expression, :eval-form, :integer,
:inverted-boolean, :past-date-or-never, and :time-interval-60ths.

See the section "Predefined tv:choose-variable-values Variable Types” in
Programming the User Interface.

'6.1.14 Change to define-prompt-and-read-type Dispatch Functions

The dispatch functions defined by define-prompt-and-read-type are no longer
called with the same arguments. Formerly the first two arguments were the stream
and a list of input editor options. Now the arguments depend on the first argument
to prompt-and-read. If the first argument to prompt-and-read is just keyword,
the dispatch function is called with no arguments. If the first argument to
prompt-and-read is (keyword . type-args), the arguments to the dispatch function
are the elements of type-args. These are a series of alternating keywords and
values.

The second subform of define-prompt-and-read-type, used to construct the
parameter list of the dispatch function, has changed. Formerly this subform was
just the parameter list of the dispatch function. Now it is nil if no Zype-args are

60
Release 6.0 Release Notes March 1985

allowed, or else a list of &key elements for the dispatch function’s parameter list.
define-prompt-and-read-type inserts &key in the parameter list itself; &key
should not appear in the second subform.

The third subform of define-prompt-and-read-type can now be nil, a format
control string, a list of a format control string and format control args, or a form
to be evaluated. This subform is used to generate input-type in the default prompt,
"Enter input-type: ":

subform input-type
nil "a " followed by the print name of the type keyword.

format control string
Generated by calling format with arguments of t and the control
string when it is time to display the prompt.

list of format control string and args
Generated by calling format with arguments of t, the control
string, and the control args when it is time to display the prompt.
The control args can examine any of the parameters in the
second subform.

form Generated by evaluating the form when it is time to display the
prompt. The form can examine any of the parameters in the
second subform. It should send output to standard-output.

See the special form define-prompt-and-read-type in Programming the User
Interface.

6.1.15 Audio Wavetable Size Increased From 256 to 1024 Words

The size of wavetables has been changed from 256 words to 1024 words for greater
audio fidelity. For details on the use of wavetables: See the section "The Polyphony
Feature" in Programming the User Interface.

6.1.16 :clear-eof Message to Windows is Obsolete

In Release 5.0, the :clear-eof message to windows was renamed to
:clear-rest-of-line, but windows continued to accept the :clear-eof message for
compatibility. In Release 6.0 windows no longer accept :clear-eof.

The :clear-eof message was renamed because it had two different meanings. For
windows, it meant to clear the window from the cursor position to the bottom. For
noninteractive streams, it means to read the EOF indicator, so that data past the
EOF could be read.

61
March 1985 Release 6.0 Release Notes

6.2 New Features in the User Interface in Release 6.0

6.2.1 New Feature in Release 6.0: the Command Processor

The command processor is a utility program that collects arguments on behalf of a
command and then runs that command for you. By default, the command processor
is on in all Lisp Listeners and break loops.

For a description of the command processor and its user interface: See the section
"Communicating with the Lisp Machine" in User’s Guide to Symbolics Computers.

For information on the command processor programming interface, including the
command processor reader and the facility for defining commands: See the section
"The Command Processor Program Interface" in Programming the User Interface.

6.2.2 New Feature: Window Graying

Screens and frames can now gray areas that contain no windows or that contain
windows that are not fully exposed. To gray an area of the screen is to cover it
with a semitransparent texture pattern.

By default, the main screen now covers deexposed inferiors with a stipple pattern
and background areas with a white pattern. You can change these by using the
functions tv:set-screen-deexposed-gray and tv:set-screen-background-gray.
Call these functions with an argument of nil to disable graying entirely. The value
of the variable tv:*gray-arrays®* is a list of variables bound to other graying
specifications that can be used as arguments to these functions.

For more information: See the section "Window Graying" in Programming the User
Interface.

6.2.3 New Input Editor Commands: PAGE, COMPLETE, c-?

Pressing PAGE while in the input editor erases input editor typeout, such as typeout
from the HELP or c-sh-A commands.

In Lisp Listeners and break loops, COMPLETE attempts to complete the current
symbol over the set of possibilities specified by definitions in Zmacs buffers. -7
displays the possible completions of the current symbol.

6.2.4 New Reading Functions

The following reading functions are new:

sys:read-character Reads and returns a single character. This function
displays notifications and help messages and reprompts at
appropriate times. It is used by fquery and the
scharacter option for prompt-and-read.

62
Release 6.0 Release Notes March 1985

readline-no-echo Reads a line of input without echoing the input, and
returns the input as a string, without the terminating
character. This function is used to read passwords and
encryption keys.

read-expression Like read-for-top-level, except that if it encounters a
top-level end-of-file it just beeps and waits for more input.
This function is used by the :expression option for
prompt-and-read.

read-or-character This function is like read-expression, except that if it is
reading from an interactive stream and the user types a
delimiter as the first character or the first character after
only whitespace characters, it returns four values: nil,
:character, the character code of the delimiter, and any
numeric argument to the delimiter.

read-and-eval Calls read-expression to read a form, without
completion. It then evaluates the form and returns the
result.

read-form Like read-expression, except that it assumes that the

returned value will be given immediately to eval. This
function is used by the Lisp command loop and by the
seval-form and :eval-form-or-end options for
prompt-and-read. By default, it offers completion over
definitions in Zmacs buffers, and it catches simple
unbound-variable and undefined-function errors.

For more information, see the description of each function.

6.2.5 New Message to Input Streams: :input-wait

Use :input-wait to wait until input is available from an interactive stream or some
other condition, such as the arrival of a notification, is met. Any stream that can
become the value of terminal-io must support :input-wait.

See the message :input-wait in Reference Guide to Streams, Files, and I1/0.

6.2.6 New Message to Streams: :interactive

sinteractive ; Message
The :interactive message to a stream returns t if the stream is interactive
and nil if it is not. Interactive streams, built on sisinteractive-stream, are
streams designed for interaction with human users. They support input
editing. Use the :interactive message to find out whether a stream
supports the :input-editor message.

63
March 1985 Release 6.0 Release Notes

6.2.7 New Message to Interactive Streams: :noise-string-out

While inside the input editor, a read function can send an interactive stream a
:noise-string-out message to display a string that is not to be treated as input.
See the method (:method si:interactive-stream :noise-string-out) in Reference
Guide to Streams, Files, and I/0.

6.2.8 New Input Editor Help Options

The input editor has four new help options. For details on each of them:

See the option :complete-help in Reference Guide to Streams, Files, and
See the option :paIa/rotial-help in Reference Guide to Streams, Files, and
See the option :ngéed-help in Reference Guide to Streams, Files, and
See the option :bl{ggf.-help in Reference Guide to Streams, Files, and 1/0.

For information on all input editor options: See the section "Input Editor Options"
in Reference Guide to Streams, Files, and I/0.

6.2.9 New Input Editor Options

The input editor has several new options. For information on them:

See the option :input-history-default in Reference Guide to Streams,
Files, and 1/0.

See the option :blip-handler in Reference Guide to Streams, Files, and
I/o.

See the option :editor-command in Reference Guide to Streams, Files,
and I/0.

See the option :input-wait in Reference Guide to Streams, Files, and 1/0.

See the option :input-wait-handler in Reference Guide to Streams, Files,
and I/0.

See the option :suppress-notifications in Reference Guide to Streams,
Files, and 1/0.

See the option :notification-handler in Reference Guide to Streams,
Files, and I/0.

For information on all input editor options: See the section "Input Editor Options"
in Reference Guide to Streams, Files, and 1/0.

6.2.10 New Special Forms: tv:with-mouse-and-buttons-grabbed,
tv:with-mouse-and-buttons-grabbed-on-sheet

tv:with-mouse-and-buttons-grabbed &body body Special Form
" The forms in body are evaluated with the mouse and buttons grabbed.
When the buttons are grabbed, the mouse process does not maintain the

64
Release 6.0 Release Notes March 1985

value of tv:mouse-last-buttons. Instead, the user process can read directly
from the mouse buttons, without losing clicks that the mouse process might
fail to notice. Within the body of this form, you can call the functions
tv:mouse-wait, tviwait-for-mouse-button-down,
tv:wait-for-mouse-button-up, and tv:mouse-buttons.

tv:with-mouse-and-buttons-grabbed-on-sheet (&optional (sheet Special Form
'self)) &body body ’
Like tv:with-mouse-and-buttons-grabbed, except that the mouse is
confined to sheet. During execution the variables tv:mouse-x and
tv:mouse-y are relative to the window’s outside coordinates. The default
value of sheet is self, so if sheet is not supplied, this form needs to appear
inside a method or defun-method of a window flavor.

6.2.11 New Message to Windows: :set-font-map-and-vsp

:set-font-map-and-vsp new-map new-vsp of tv:sheet Method
Changes the font map and vsp of the window.

new-map can be an array of font descriptors or a list of font descriptors, as
with the argument to the :set-font-map message.. However, if the new-map
argument to :set-font-map-and-vsp is nil, the font map is not changed.

new-vsp is an integer representing the new vsp, or nil, meaning not to
change the vsp.

6.2.12 New Notification System

A new notification system has been installed. The undocumented flavors
tv:notification-mixin and tv:pop-up-notification-mixin no longer exist.

A process uses tv:notify to notify the user. A central notification delivery process
tries to give the process associated with the selected window a chance to accept the
notification. The user process can wait for a notification by examining the locative
returned by the :notification-cell message to the selected window. It can receive a
notification by sending the window a :receive-notification message. It can use
sys:display-notification to display a notification. If the user process does not
accept a notification, the notification delivery process usually tries to display the
notification itself, in either a pop-up window or the selected-window. The user
process can use the with-notification-mode special form to determine what the
delivery process does with notifications the user process doesn’t accept.

All notifications since cold booting are displayed in a scroll window obtained by
pressing SELECT N or calling display-notifications. They are also available to the
Show Notifications command.

See the section "Notifications" in Programming the User Interface.

65
March 1985 Release 6.0 Release Notes

6.2.13 New Time Functions

time-elapsed-p increment initial-time &optional (final-time (time)) Function
Returns t if at least increment 60ths of a second have elapsed between
initial-time and final-time. Otherwise, returns nil.

initial-time and final-time should be time values as returned by the time
function. final-time defaults to the result of (time).

Example:

(defun process-sleep (interval &optional (whostate “Sleep”))
(process-wait whostate #’time-elapsed-p interval (time)))

time:parse-universal-time-relative date-spec reference-date-spec Function
&optional (future-p t)
Like time:parse-universal-time, except that date-spec is parsed relative to
reference-date-spec. The returned values are the same as those of
time:parse-universal-time.

date-spec is a string suitable as the first argument to
time:parse-universal-time. reference-date-spec is a universal-time integer or
a string that can be parsed as an unambiguous time. If future-p is nil, an
ambiguous date-spec is interpreted as being in the past relative to
reference-date-spec; otherwise, it is interpreted as being in the future. The
default for future-p is t.

For example:
(time:parse-universal-time-relative "5 pm" “today”)

returns the same value when evaluated anytime today, whether or not the
current time is before or after 5 pm.

time:parse-present-based-universal-time time-being-parsed Function
Like time:parse-universal-time, except that missing components in
time-being-parsed are defaulted to the beginning of the smallest unsupplied
unit of time. The returned values are the same as those of
time:parse-universal-time. time-being-parsed is a string suitable as the
first argument to time:parse-universal-time.

For example, "5 pm" is parsed as 5 pm on the current day, whether the
current time is before or after 5 pm. "Thursday” is parsed as Thursday of
the current week, whether today is Wednesday or Friday. "1 June" is parsed
as June 1 of the current year, whether the date is before or after June 1.

66
Release 6.0 Release Notes March 1985

6.3 Improvements to the User Interface in Release 6.0

6.3.1 Improvements to Activity and Window Selection

A number of bugs in selecting windows and activities have been fixed. These bugs
often manifested themselves in improper or unexpected selection of windows and in
incorrect blinker states.

An activity is a group of windows that the user regards as a single unit. An activity
is designated by a representative window from that activity. Often an activity
consists of a frame and its panes. Typeout windows and their parents also have
some characteristics of activities.

A new flavor, tv:select-relative-mixin, allows a window to participate in its
superior’s activity. tv:pane-mixin also does this, among other things. The
:alias-for-selected-windows message returns the representative window of the
receiver’s activity.

Selecting an activity has been more clearly distinguished from selecting a window
relative to its activity. Selecting a window relative to its activity designates that
window to become the selected window when the activity is selected, but it does not
change the selected activity. Such a window, if a pane, is called the selected-pane of
its frame. Use the :select and :mouse-select messages to a selectable window or
frame to switch activities. Use the :select-relative message to a selectable window
(or the :select-pane message to a frame) to select that window relative to its
activity without changing activities. Use the tv:window-call or
tv:window-mouse-call special form to select a window temporarily, selecting a new
activity if necessary. Use the tviwindow-call-relative special form to select a
window temporarily relative to its activity without changing activities.

When a selectable window receives a :select-relative message and its activity is not

currently selected, it informs its superior by sending the superior an :inferior-select
message. A window that participates in its superior’s activity also sends its superior

an :inferior-select message when it receives a :select message.

For details on selecting activities and windows: See the section "Activities and
Window Selection" in Programming the User Interface.

6.3.2 Lisp Listeners and break Loops Catch Trivial Errors in the Input Editor

In a Lisp Listener or break loop, if you try to evaluate an unbound symbol or a list
whose car is a symbol that is not defined as a function, the Lisp Listener or break
loop now catches the error in the input editor. It offers to use a lookalike symbol in
another package or lets you edit your input to correct it. Formerly such errors
caused entry to the Debugger.

This feature is implemented using the new reading function read-form. To disable
it, you can set the variable *read-form-edit-trivial-errors-p* to nil. See the
function read-form in Programming the User Interface.

67
March 1985 Release 6.0 Release Notes

6.3.3 New Type for :start-typeout Message to Interactive Streams: :clear-window

The type argument to the :start-typeout message to interactive streams has a new
permissible value: :clear-window. This informs the input editor that typeout to
the window will follow, and that the window should be cleared and the typeout
should appear at the top. See the method

(:method si:interactive-stream :start-typeout) in Reference Guide to Streams,
Files, and 1/0. See the variable si:*typeout-default* in Reference Guide to
Streams, Files, and 1/0.

6.3.4 New Optional Argument to :replace-input Message to Interactive Streams

The :replace-input message to interactive streams now takes a third optional
argument, which specifies what action to take when the message is sent while the
input editor buffer is being rescanned. See the method

(:method si:interactive-stream :replace-input) in Reference Guide to Streams,
Files, and I/0.

6.3.5 New Optional Arguments to :initial-input Input Editor Option
The :initial-input input editor option now takes three optional arguments:

e An index into the string at which to start copying the string into the input
buffer

¢ An index into the string at which to stop copying the string into the input
buffer

» An index into the string at which to place the initial cursor position

See the option :initial-input in Reference Guide to Streams, Files, and I/0.

6.3.6 Improvements to Typeout Windows

A new flavor of typeout window, tv:temporary-typeout-window, saves and
restores the bits of its superior window. A new special form,
tv:with-terminal-io-on-typeout-window, executes its body with terminal-io
bound to the typeout window of a window. When this special form is used with a
window that has a temporary typeout window, the program does not have to take
any action to restore the display when the typeout window goes away.

See the flavor tv:temporary-typeout-window in Programming the User Interface.
See the function tv:with-terminal-io-on-typeout-window in Programming the
User Interface.

68
Release 6.0 Release Notes March 1985

6.3.7 Improvements to tv:add-function-key

Characters added to the FUNCTION key via tv:add-select-key are now converted to
uppercase. tv:add-function-key has a new option, :process. The value is a list to
be passed as the first argument to process-run-function when a process is created
in which the function should be applied or the form evaluated. See the function
tv:add-function-key in Programming the User Interface.

6.3.8 New Option for defwindow-resource: :superior

defwindow-resource now takes a :superior option. This is a form to be
evaluated when the resource is allocated to return the superior window of the
desired window. If this is not supplied, the superior is the value of tv:mouse-sheet.
See the special form defwindow-resource in Programming the User Interface.

6.3.9 Mouse Scaling Now Works on 3600-family Computers

You can now scale mouse motion on 3600-family computers, using the variables
tv:mouse-x-scale-array and tv:mouse-y-scale-array. Formerly mouse scaling
worked only on the LM-2. See the section "Scaling Mouse Motion" in Programming
the User Interface.

6.3.10 sys:%beep Now Works on 3600-family Consoles That Support Digital Audio

sys:%beep now works on 3600-family consoles that support the digital audio
facilities. sys:%beep generates tones. The arguments, half-wavelength (in
microseconds) and duration, are compatible with the version of beep that ran on the
Symbolics LM-2 computer. In the following example, a 440 Hz tone is generated for
50 milliseconds.

(sys:%beep (// 1000000. 440. 2) 50000.)

6.3.11 Optional Argument :ask Added to zwei:save-all-files

zwei:save-all-files now accepts the optional argument :ask, which specifies that the
function ask before saving each modified buffer. The default is t, which asks about
each modified buffer; this was the previous behavior.

69
March 1985 Release 6.0 Release Notes

7. Changes to Zmail in Release 6.0

7.1 Incompatible Changes to Zmail in Release 6.0

7.1.1 c-m-Y Has Been Changed to c-X c-Y in Release 6.0

The command to yank the message being replied to into a reply has been changed
from e-m-¥ to e-X c-¥Y. A side effect of this change is that now in editing windows
in mail e-m-¥ yanks minibuffer commands as it does in Zmacs.

For more information about this commmand:

See the section "e-X e-Y Yank Current Message Zmail Command” in
Communicating with Other Users.

See the variable zwei:*prune-headers-after-yanking* in
Communicating with Other Users.

7.1.2 2zwei:chaos-direct-send-it is Now Obsolete

If you have the form

(login-setq zwei:*mail-sending-mode* ’zwei:chaos-direct-send-it) in your Zmail
init file, you should remove it. This value for zwei:*mail-sending-mode* was
useful for sites that did not have a store-and-forward mailer. The presence of the
Symbolics Store-and-Forward Mailer in Release 6 makes it obsolete.

70
Release 6.0 Release Notes March 1985

71
March 1985 Release 6.0 Release Notes

8. Changes to the File System in Release 6.0

8.1 Improvements to the File System in Release 6.0

8.1.1 New Logical Pathname Translations

Logical pathname translation has been redone in Release 6. A summary of the
changes follows:

 Translations are now much simpler, due to a syntax enhancement.
e One logical host can translate to multiple physical hosts.

* A powerful, general heuristic is provided for translating logical pathnames to
VAX/VMS and UNIX filenames. This replaces the special mechanisms used in
Releases 4 and 5 to handle UNIX and VAX/VMS file-name limitations in the
source files.

8.1.1.1 Logical Pathname Wildcard Syntax
Logical pathnames support a wildeard syntax meaning "Match any directory, and any
subdirectory, to any level." For example:

Show Directory SYS:xx;x BFD.x

Here, the Show Directory command lists all font files anywhere in the SYS
hierarchy, to any level.

This corresponds to the >**> syntax for LMFS pathnames, and the [name...] syntax
for VAX/VMS file specifications. See the section "LMFS Pathnames" in Reference
Guide to Streams, Files, and I/0. See the section "VAX/VMS Pathnames" in
Reference Guide to Streams, Files, and 1/0.

This makes it easy to specify logical pathname translations on Lisp Machines and
VAX/VMS. For example: ’

(fs:set-logical-pathname-host *SYS”
:translations *(("SYS:xx;%.x x" "ACME-LISPM:>Rel-6>Xk>%. % x")))

(fs:set-logical-pathname-host "“SYS"
:translations
T(("SYS:xx;x x_x" "ACME-VMS:SYMBOLICS:[REL6...]x.Xx;x"))
:no-translate nil)

For more information about the argument :no-translate: See the section
"Translation Rules", page 72.

It is important to note that wherever a "**;" appears in the logical-host pathname,
there must be a corresponding "wild-inferiors" pathname on the physical-host
pathname.

72
Release 6.0 Release Notes March 1985

UNIX and TOPS-20 do not have a syntax with this meaning. For these hosts, it is
necessary to list explicitly each level of directory to be translated. For example:

(fs:set-logical-pathname-host "SYS"
:translations
T(("SYS:x;%x % x*
“ACME-UNIX://usr//symbolics//rel-6//x//%x.x x*)
("SYS:X;X;x x x*
“ACME-UNIX://usr//symbolics//rel-6//x//x//x % x")
("SYS: XX XX, X X¥

’ ’ »

"ACME-UNIX://usr//symbolics//rel-6//x//Xx//%X//% %x x")
(SYS:X X ;XX % % x¥

"ACME-UNIX://usr//symbolics//rel-6//x//x//x//x[]/*.x_ x"))
:no-translate nil)

8.1.1.2 Splitting Logical Hosts Across Physical Hosts

It is possible to have a logical host translate to more than one physical host. All
that is needed is an explicit specification of the hosts involved, in the translation list
given to fs:set-logical-pathname-host. For example:

(fs:set-logical-pathname-host "SYS"
:translations ’(("SYS:DOC;xx;x. x_x" "ACME-LISPM:>Rel-6>docOxx>x_x x")
("SYS:xx;x % x" "ACMEVAX:SYMBOLICS:[REL6...]*x.x.x"))
:no-translate nil)

Note that it is not necessary to specify the :physical-host argument to
fs:set-logical-pathname-host as long as the host names are specified in the
translation list. If the argument is specified, it serves as a default when parsing
those pathnames.

8.1.1.3 Translation Rules
The logical system host sys comes preloaded with heuristics that eliminate
characters illegal in VAX/VMS file specifications, such as "-".

The heuristics also deal with limitations in the lengths of file specifications on
foreign hosts. For example, some file names can be shortened and contracted
without changing their meanings. Thus, sys:io;pathnm-cometh.lisp may translate to
acmevax:symbolics[rel6.io]Jpthnmemth.lsp on a VAX/VMS physical host.

The system keeps careful track of these changes and does not allow two logical
pathnames to translate to the same thing. On the attempt to translate a second
logical pathname to a physical pathname already found as the result of a logical-
pathname translation, an error is signalled. If the first attempt was due to a
typographical error made by the user, and the second was due to the system
translating a logical pathname, for example in response to the m-. command, the
error is signalled. However, when :no-translate nil is used in the
fs:set-logical-pathname-host form, the system translates all its logical pathnames
when setting the logical system host; then, incorrect translations cannot be entered
by mistake.

73
March 1985 Release 6.0 Release Notes

There also are special translation rules for microcode files, font files, and others,
which retain the special characteristics of these file names.

74
Release 6.0 Release Notes ‘ March 1985

75
March 1985 Release 6.0 Release Notes

9. Changes to Networks in Release 6.0

9.1 Incompatible Changes to Networks in Release 6.0

9.1.1 define-site-variable No Longer‘Used

In Release 6.0 the defvar and add-initialization functions should be used to
define a site variable, rather than the define-site-variable function. For more
information, see the following functions:

defvar
add-initialization

9.2 New Features in Networks in Release 6.0

9.21 Overview of Remote Login Capability

The remote login facilities allow up to three ASCII terminals to be connected directly
via the Symbolics computer’s serial ports. Any number of terminals can be
connected via the network. If a modem is connected to the machine, it is also
possible to dial up the machine from an ASCII terminal or from another Symbolics
computer. Video operations are supported only on ASCII terminals that support
ANSI X3.64 display codes (Ann Arbor Ambassador, Digital Equipment VT100, and so
forth).

Network servers are available for the remote login protocols TELNET, SUPDUP,
TTYLINK, and 3600-LOGIN. TELNET and SUPDUP are standard protocols used
on the Arpanet. TTYLINK is a raw byte-stream. 3600-LOGIN is used only in
communication between two Symbolics computers.

The following programs can be run from terminals connected via a network, a serial
port, or a modem:

« Lisp Listener

« Input editor

» Debugger (not the Window Debugger)
o Command processor

Zmacs, Zmail, and other programs that use the window system or the mouse cannot
be used.

The remote login facility is useful for applications such as the following:
« Examining the status of a physically distant machine, such as a file server.

» Monitoring the status of a long computation from home.
« Simple data-entry or query-and-answer applications.

76
Release 6.0 Release Notes) March 1985

Note that the remote login feature cannot support several programmers on the same
machine, because program-development tools, such as Zmacs, cannot be used
remotely.

For further information on remote login: See the section "Using the Remote Login
Facilities" in Networks.

For information on the new functions dealing with remote login:

See the function neti:ask-terminal-parameters in Networks.
See the function neti:set-terminal-parameters in Networks.
See the function neti:enable-serial-terminal in Networks.
See the function net:remote-login-on in Networks.

77
March 1985 Release 6.0 Release Notes

10. Changes to the FEP in Release 6.0

FEP software is distributed in its own versions, which are separate from Lisp
software releases. Release 6.0 requires any of: FEP version 17, version 18, version
22, or version 24. FEP version 24 is preferred.

78
Release 6.0 Release Notes March 1985

79
March 1985 Release 6.0 Release Notes

11. Notes and Clarifications for Release 6.0

11.1 Use #||...|# Instead of #|...|# to Comment Cut Lisp Code

#1 begins a comment for the Lisp reader. The reader ignores everything until the
next |#, which closes the comment. #| and [# can be on different lines, and
#|...13# pairs can be nested.

Use of #|...1# always works for the Lisp reader. The editor, however, currently
does not understand the reader’s interpretation of #|...|#. Instead, the editor
retains its knowledge of Lisp expressions. Symbols can be named with vertical bars,
so the editor (not the reader) behaves as if #|...|# is the name of a symbol
surrounded by pound signs, instead of a comment.

Now consider #]1...]1#. The reader views this as a comment: the comment
prologue is #|, the comment body is I...]. and the comment epilogue is |#. The
editor, however, interprets this as a pound sign (#), a symbol with a zero length
print name (||), lisp code (...), another symbol with a zero length print name (}1),
and a stray pound sign (#). Therefore, inside a #||...] |#, the editor commands
which operate on Lisp code, such as balancing parentheses and indenting code, work
correctly.

11.2 Clarification of What readline Returns

The documentation for readline states that it returns four values:

 The line as a character string, without the Newline character.

 An eof flag, if eof-option was nil. This is t if the line was terminated because
end-of-file was encountered, or nil if it was terminated because of a RETURN,
LINE, or END character.

» The character that delimited the string.

* Any numeric argument given the delimiter character.

The documentation is incorrect. The correct information is that readline returns
two values, which are the same as the first two previously mentioned, except that if
the line is already at end-of-file, readline returns nil as its first value.

* The line as a character string, without the Newline character, or if already at
end-of-file, nil.

 An eof flag, if eof-option was nil. This is t if the line was terminated because

80
Release 6.0 Release Notes March 1985

end-of-file was encountered, or nil if it was terminated because of a RETURN,
LINE, or END character.

11.3 Clarification of gc-on Printed Documentation

The printed documentation of ge-on is in error regarding the default values of its
options. The online version is correct and is reproduced here:

gc-on &key ephemeral dynamic Function
Turns garbage collection on. It is off by default. The keywords :ephemeral
and :dynamic select the type(s) of garbage collection employed; the defaults
are :ephemeral t and :dynamic t if no options are specified. If either
option is specified, the other defaults to nil; this allows you to turn on one
form of garbage collection and leave the other one off.

11.4 Warning Against Deleting LMFS File Partitions

Several users have tried to reduce the the size of their LMFS by deleting one or
more file partitions and editing the FSPT to remove these partitions. Using this
procedure resulted in an unusable LMFS.

Do not delete file partitions from your LMFS. Each LMFS partition contains
pointers to all other file partitions in the LMFS. Deleting a file partition leaves the
other partitions with pointers to a nonexistent file.

If you want to reduce the size of your LMFS, you must completely backup your
LMFS, delete the entire existing LMFS and create a new one. The user files can
then be restored into this new LMFS from the backup tapes.

11.5 Serial Stream Handling of Xon - Xoff Characters

A common problem encountered with serial streams is the handling of the
XON/XOFF protocol. The FEP reads all eight bits of the XON or XOFF character
even if you have specified a different number of data bits for that stream. You
must determine what eight bit characters are being sent to the Symbolics Lisp
Machine as the XON and XOFF characters.

For example, assume that the printer connected to the Symbolics Lisp Machine’s
serial port receives seven data bits with no parity. You might assume that it would
send a Control-S (#023) as the XOFF character and a Control-Q (#021) as the
XON character. The FEP, however, might be receiving an #0221 as the XON
character and #0223 as the XOFF character. The difference here is that the in
both cases the parity bit of each character is set.

81
March 1985 Release 6.0 Release Notes

The :OUTPUT-XON-CHARACTER and :OUTPUT-XOFF-CHARACTER options of
SI:MAKE-SERIAL-STREAM are used to change the character that the FEP will
recognize as the XON or XOFF character. Similarly, add the OUTPUT-XON-
CHARACTER and OUTPUT-XOFF-CHARACTER options to the Interface Options
of the printer’s namespace object when connecting a serial ASCII printer.

See the section "Parameters for Serial I/O" in Reference Guide to Streams, Files, and
1/0.

82
Release 6.0 Release Notes March 1985

March 1985 Index
Index
Use #{..1# Instead of #{...## to Comment Out Lisp
Code 79
3 3
%32-bit-difference function 33
%32-bit-plus function 33
Addition of 32-bit numbers 33
Subtraction of 32-bit numbers 33

The Reader Now
make-array No Longer
defflavor Now
Splitting Logical Hosts
improvements to
Improvements to tv:
Symbols

Optional Argument :ask
New Function note-private-patch
Warning

Save

Macro Expand Expression

New Special Forms: letf

Changes to evathook and

Use of Characters in Source Code Where Integers
Use of Integers in Source Code Where Characters

Accepts Floating-point Infinity 41

Accepts Obsolete Form 28

Accepts the Option :required-init-keywords 40

Across Physical Hosts 72

Activity and Window Selection 66

add-function-key 68

Added to or Removed From global in Release
6.0 24

Added to zwel:save-all-files 68

Addition of 32-bit numbers 33

Additional Character Object Enhancements 15

Adds Private Patch to Your World 53

Against Deleting LMFS File Partitions 80

All Files (m-X) Renamed to Save File Bufiers
(m-X) 47

All Now Bound t0 m-sh-M 47

&allow-other-keys 39

alphabetic-case-affects-string-comparison is Now
Obsolete 31

and letf* 37

apply and funcall No Longer Work for Special
Forms 27

applyhook 11

applyhook and lexical scoping 11

Are Desired 19

Are Desired 19

Use of Symbolics Lisp Machine Characters in Source Code Where ASCII Characters

defmacro Patterns
Zero-dimensional Arrays

Are Desired 20
Are Now Made Consistent 30
Are Now Supported 42

Replacing io-buffer-output-function and Binding tv:kbd-tyi-hook

Forms in a Top-level progn

array-pop Takes an Optional Second
set-syntax-macro-char Takes an Optional Fourth
si:install-microcode Takes a Second Optional
Optional

Change in Optional

Are Obsolete 56
Are Top-level to the Compiler 28
Argument 42
Argument 40
Argument 41
Argument :ask Added to zweil:save-all-files 68
Argument to read-or-end 57

84

Release 6.0 Release Notes

New Optional

New Optional
Use of
Performing
New

Previously Undocumented Feature:
Use of Characters as

New Function:

New Function:

New Array Error Flavor: sys:

Zero-dimensional

March 1985

Argument to :replace-input Message to Interactive
Streams 67

Arguments to :initial-input Input Editor Option 67

Arithmetic Operations on Characters 21

arithmetic operations on characters in SCL 12

Array Error Flavor:
gys:array-wrong-number-of-subscripts 38

Array Registers 37

Array Subscripts 22

array-column-major-index 37

array-push-portion-extend 37

array-wrong-number-of-subscripts 38

array-pop Takes an Optional Second Argument 42

Arrays Are Now Supported 42

Use of Symbolics Lisp Machine Characters in Source Code Where

Optional Argument
Syntax and Base

ASCIl Characters Are Desired 20
:ask Added to zwel:save-all-files 68
Attributes in Source Files 9

sys:%beep Now Works on 3600-family Consoles That Support Digital

Syntax and

Change of Default
sitem-list method of tv:
c-m-Y Has

sys:

Audio 68
Audio Wavetable Size Increased From 256 to 1024
Words 60 :

Base Attributes in Source Files 9

Base to Decimal 9

basic-mouse-sensitive-items 57

Been Changed to c-X c-Y in Release 6.0 69

%beep Now Works on 3600-family Consoles That
Support Digital Audio 68

Standard Variable Bindings Now Guarantee Consistent

Break and the Debugger Now
Replacing io-buffer-output-function and
Standard Variable

Use of Idb, Idb-test, logand, and
Distinguishing Characters From
Macro Expand Expression All Now

Behavior in Break and Debugging Loops 42
Bind readtable to si:standard-readtable 43
Binding tv:kbd-tyi-hook Are Obsolete 56
Bindings Now Guarantee Consistent Behavior in
Break and Debugging Loops 42
bit-test on Characters 21
Blips 22
Bound to m-sh-M 47

Standard Variable Bindings Now Guarantee Consistent Behavior in

Lisp Listeners and

Format

Two New Zmacs Commands for Reverting
Save All Files (m-X) Renamed to Save File
%%ch-

%%kbd-

Break and Debugging Loops 42

Break and the Debugger Now Bind readtable to
si:standard-readtable 43

break Loops Catch Trivial Errors in the Input
Editor 66

Buffer (m~X) Zmacs command 49

Buffers 49

Buffers (m-X) 47

byte specifiers and file characters 17

byte specifiers and keyboard characters 17

85

March 1985

New Zwei Command: Copy Mouse

c-m-Y Has Been Changed to

c-m-Y Has Been Changed to ¢-X

New Input Editor Commands: PAGE, COMPLETE,
Interpreter

Overview of Remote: Login

_Lisp Listeners and break Loops

New Function:

:selective Option for load-patches Has
Setting Variables in Init Files Has
c-m-Y Has Been

Lambda-list Keyword

Miscellaneous Lexical Scoping

Release 6.0 Documentation

Incompatible

Incompatible

Incompatible

Incompatible

Incompatible
2wel:
Summary of

Old-zetalisp and New-zetalisp String and
Zetalisp and SCL

Additional

Details of

Font numbers and

C

Index

C

(C-(m)) 48

c-m-Y Has Been Changed to c-X c-Y in Release
6.0 69

c-X c-Y in Release 6.0 69

c-Y in Release 6.0 69

c-? 61

Caches Global Variable Declarations 27

Capability 75

Catch Trivial Errors in the Input Editor 66

%%ch- byte specifiers and file characters 17

Change in Optional Argument to read-or-end 57

Change of Default Base to Decimal 9

Change to define-prompt-and-read-type Dispatch
Functions 59

Change to Subforms of with-input-editing 55

change-instance-flavor 31

Changed 53

Changed 10

Changed to c-X c-Y in Release 6.0 69

Changes 28

Changes 12

Changes 2

Changes to Conditions 12

Changes to evalhook and appiyhook 11

Changes to fquery Options 57

Changes to Lisp in Release 6.0 9

Changes to Macro Expansion 11

Changes to Networks in Release 6.0 75

Changes to Networks in Release 6.0 75

Changes to Patch Files 52

Changes to prompt-and-read Options 58

Changes to Special Forms 11

Changes to the FEP in Release 6.0 77

Changes to the File System in Release 6.0 71

Changes to the Lisp Language in Release 6.0 9

Changes to the User Interface in Release 6.0 55

Changes to the User Interface in Release 6.0 55

Changes to tv:choose-variable-values Variable
Types 59

Changes to Utilities in Release 6.0 51

Changes to Zmacs in Release 6.0 47

Changes to Zmacs in Release 6.0 47

Changes to Zmail in Release 6.0 69

Changes to Zmail in Release 6.0 69

chaos-direct-send-it is Now Obsolete 69

Character and String Compatibility Functions in
Release 6.0 18

Character and String Functions for Old-zetalisp/New-
zetalisp Compatibility 24

Character Compatibility 18

character incompatibilities 12

Character Object Enhancements 15

Character Objects 14

character objects 15

Character objects code field 14

Character objects device-font number field 16

Character objects font field 14

86

Release 6.0 Release Notes

Common Lisp

%%ch- byte specifiers and file

Derived fields for

%%kbd- byte specifiers and keyboard

Serial Stream Handling of Xon - Xoft

Use of Arithmetic Operations on

Use of Idb, Idb-test, logand, and bit-test on
Use of Mouse

Use of Numerical Comparisons on

Obsolete Programming Practices Using

Use of Integers in Source Code Where

March 1985

Character Objects in Common Lisp 12
Character objects style field 14
Character objects subindex field 16
Character Switchover in Release 6.0 12
Character codes 14

characters 17

characters 16

characters 17

Characters 80

Characters 21

Characters 21

Characters 22

Characters 20

Characters and Strings 19

Characters Are Desired 19

Use of Symbolics Lisp Machine Characters in Source Code Where ASCII

Use of

Distinguishing

Two Kinds of

Performing arithmetic operations on
Use of Symbolics Lisp Machine

Use of
Displaying

:decimal-number tv:
:decimal-number-or-nil tv:
:eval-form tv:
:expression tv:
:integer tv:
:inverted-boolean tv:
:number tv:
:number-or-nil tv:
:past-date-or-never tv:
sexp tv:
stime-interval-60ths tv:
Changes to tv:

Notes and

Characters Are Desired 20
Characters as Array Subscripts 22
Characters From Blips 22
Characters in Old-zetalisp 17
characters in SCL 12
Characters in Source Code Where ASCIi Characters
Are Desired 20
Characters in Source Code Where Integers Are
Desired 19
characters on output devices 16
Character sets 15
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values variable type 59
choose-variable-values Variable Types 59
cis function 35
Clarification of gc-on Printed Documentation 80
Clarification of What readline Returns 79
Clarifications for Release 6.0 79
:class option for prompt-and-read 58

New Type for :start-typeout Message to Interactive Streams:

Use #|...J# instead of #...# to Comment Out Lisp
Character objects

Use of Integers in Source
Use of Characters in Source
Character

Ephemeral-object Garbage
Simple method

Format Buffer (m-X) Zmacs
Format File (m-X) Zmacs

:clear-window 67
:clear-eof Message to Windows is Obsolete 60
Code 79
code field 14

Use of Symbolics Lisp Machine Characters in Source

Code Where ASCII Characters Are Desired 20
Code Where Characters Are Desired 19
Code Where Integers Are Desired 19
codes 14 .
Collection in Release 6.0 51
combination definition 32
command 49
command 49

:74

March 1985

Format Region (m-X) Zmacs
New Zwei

New Feature in Release 6.0: the
Three New Zmacs

Two New Zmacs

Two New Zmacs

New Input Editor

Use #]...]1# Instead of #|...}# to
Character Objects in

New Feature in Release 6.0: Symbolics

String
Use of Numerical

Index

command 49

Command: Copy Mouse (C-(m)) 48

Command Processor 61

Commands for Formatting Text 49

Commands for Recompiling and Reloading
Patches 49

Commands for Reverting Buffers 49

Commands: PAGE, COMPLETE, c-? 61

Comment Out Lisp Code 79

Common Lisp 12

Common Lisp 45

Common Lisp Character Switchover in Release
6.0 12

Common Lisp Functions Not Included 23

Comparison and String Searching Functions 23

Comparisons on Characters 20

Character and String Functions for Old-zetalisp/New-zetalisp

Old-zetalisp and New-zetalisp String and Character
Summary of Character and String
Forms in a Top-level progn Are Top-level to the

New Input Editor Commands: PAGE,

Rational and

Mouse Scaling Now Works on 3600-family
Changes to
New Function:

defmacro Patterns Are Now Made
Standard Variable Bindings Now Guarantee

sys:%beep Now Works on 3600-family
New Language for Specifying Frame
New Functions for

New Functions for

New Zwei Command:

New Function:

Break and the

Compatibility 24

Compatibility 18

Compatibility Functions in Release 6.0 18

Compiler 28

compiler:-make-obsolete Now Makes a Flavor or
Structure Obsolete 52

COMPLETE, c-? 61

:complete-string option for prompt-and-read 58

Complex Numbers 34

Complex Numbers 33

complex function 34

complexp function 35

Computers 68

Conditions 12

conjugate 35

conjugate function 35

Consistent 30

Consistent Behavior in Break and Debugging
Loops 42

Consoles That Support Digital Audio 68

Constraints 57

Converting Non-integral Numbers to Integers 36

Converting Numbers to Floating-point Numbers 36

Copy Mouse (C-(m)) 48

copytree-share 37

cosh function 35

D

:date option for prompt-and-read 58
:date-or-never option for prompt-and-read 58
Debugger Now Bind readtable to

- si:standard-readtable 43

Standard Variable Bindings Now Guarantee Consistent Behavior in Break and

Change of Default Base to

Debugging Loops 42

Decimal 9

:decimal-number option for prompt-and-read 538

:decimal-number tv:choose-variable-values
variable type 59

:decimal-number-or-nil tv:choose-variable-values
variable type 59

88

Release 6.0 Release Notes

Interpreter Caches Global Variable
The Interpreter Understands
New Function si:map-system-files Operates on a

March 1985

Declarations 27
Declarations 42
Declared System 53

New Function si:set-system-file-properties Operates on a

Change of
:required-init-keywords Option for

New Option to
Change to
New Macro: si:

Simple method combination
New &-Keywords for

:export Option for
fixnum-array Option for
flonum-array Option for

New Option to
New Macro:
New Option for
Files Using

Warning Against

integer

Declared System 53

Default Base to Decimal 9

defflavor 40

defflavor Now Accepts the Option
:required-init-keywords 40

defflavor: :export-instance-variables 31

define-prompt-and-read-type Dispatch Functions 59

define-simple-method-combination 32

define-site-variable No Longer Used 75

definition 32

defmacro 39

defmacro lambda-list keyword &list-of and lexical
scoping 12

defmacro Patterns Are Now Made Consistent 30

defstruct 32

defstruct is Obsolete 28

defstruct is Obsolete 28

defstruct: :export 32

defwhopper-subst 32

defwindow-resource: :superior 68

defwrapper Forms Must Be Recompiled in Release
6.0 28

Deleting LMFS File Partitions 80

:delimited-string option for prompt-and-read 58

:delimited-string-or-nil option for
prompt-and-read 58

denominator 34

denominator function 34

Derived fields for characters 16

Use of Characters in Source Code Where Integers Are

Desired 19

Use of Integers in Source Code Where Characters Are

Desired 19

Use of Symbolics Lisp Machine Characters in Source Code Where ASCIl Characters Are

New Special Forms for
Character objects

Displaying characters on output

Desired 20
Destructuring 30
Destructuring 40
Details of Character Objects 14
device-font number field 16
Device Fonts 16
devices 16

sys:%beep Now Works on 3600-family Consoles That Support

New Message to Error Flavor fs:

Change to define-prompt-and-read-type
SCROLL and m-SCROLL Now
si:

New Feature in Release 6.0: the
Clarification of ge-on Printed
Release 6.0

Release 5.0 to Release 6.0

Digital Audio 68
directory-not-found 39
:directory-pathname message 39
Dispatch Functions 59
Display Next Screen and Previous Screen 47
display-item-list function 57
Displaying characters on output devices 16
Distinguishing Characters From Blips 22
Document Examiner 52
Documentation 80
Documentation Changes 2
Documentation Map 4

89

March 1985 Index

Input Editor Options Now Specified Dynamically 55

E E E

Lisp Listeners and break Loops Catch Trivial Errors in the Input

New Input

New Input

New Optional Arguments to :initial-input Input
New Input

Input

Additional Character Object

New Message to
New Array

New
New Stream Handling

Lisp Listeners and break Loops Catch Trivia
tv:

Changes to

New Feature in Release 6.0: the Document
Macro
Changes to Macro

New Option to defstruct:

New Option to defflavor:
Macro Expand

New

Previously Undocumented
New
New
New
New
New
New
New
New
New

Changes to the
Character objects code

Editor 66

Editor Commands: PAGE, COMPLETE, c-? 61

Editor Help Options 63

Editor Option 67

Editor Options 63

Editor Options Now Specified Dynamically 55

Enhancements 15

&environment 39

&environment Lambda-list Keyword 39

Ephemeral-object Garbage Collection in Release
6.0 51

Error Flavor fs:directory-not-found 39

Error Flavor:
sys:array-wrong-number-of-subscripts 338

Error Flavor: sys:read-premature-end-of-symbol 38

Error Flavors: sys:stream-closed and
sys:network-stream-closed 38

Errors in the Input Editor 66

escape-keys and tv:*system-keys* Renamed to
tv:*function-keys* and tv:*select-keys* 56

&eval 28

:eval-form tv:choose-variable-values variable
type 59

evalhook and applyhook 11

evalhook and lexical scoping 11

Examiner 52

Expand Expression All Now Bound to m-sh-M 47

Expansion 11

:export 32

:export Option for defstruct 32

:export-instance-variables 31

Expression All Now Bound to m-sh-M 47

:expression tv:choose-variable-values variable

type 59

F

Facility: Heaps 36

Fat Strings 23

Feature: Array Registers 37

Feature in Release 6.0: Symbolics Common Lisp 45
Feature in Release 6.0: the Command Processor 61

" Feature in Release 6.0: the Document Examiner 52

Feature: Window Graying 61

Features in Lisp in Release 6.0 31

Features in Networks in Release 6.0 75
Features in the User Interface in Release 6.0 &1
Features in Utilities in Release 6.0 51

Features in Zmacs in Release 6.0 48

FEP 1

FEP in Release 6.0 77

field 14

90

Release 6.0 Release Notes

Character objects font

Character objects style

Character objects subindex

Character objects device-font number
Derived

Save All Files (m-X) Renamed to Save
%%ch- byte specifiers and

Format

Waming Against Deleting LMFS
Changes to the

Improvements to the

Changes to Patch

Syntax and Base Attributes in Source
Save All

Setting Variables in Init

Recompiling Source

sys:read-premature-end-of-symbol
New Message to Error
compiler:-make-obsolete Now Makes a

New Array Error

New

New Error

New Stream Handling Error

New Flavor: sys:
The Reader Now Accepts
New Functions for Converting Numbers to

Character objects

Device

lambda is Now a Special

lambda special

make-array No Longer Accepts Obsolete
tv:with-mouse-and-buttons-grabbed special

March 1985

field 14

field 14

field 16

field 16

fields for characters 16

File Buffers (m-X) 47

file characters 17

File (m-X) Zmacs command 49

File Partitions 80

File System in Release 6.0 71

File System in Release 6.0 71

Files 52

Files 9

Files (m-X) Renamed to Save File Bufiers (m-X) 47

Files Has Changed 10

Files is Recommended 9

Files Using defwrapper Forms Must Be Recompiled
in Release 6.0 28

File System 1

fixnum-array Option for defstruct is Obsolete 28

flavor 38

Flavor fs:directory-not-found 39

Flavor or Structure Obsolete 52

:flavor-name option for prompt-and-read 58

Flavor: sys:array-wrong-number-of-subscripts 38

Flavor: sys:float-invalid-compare-operation 38

Flavor: sys:read-premature-end-of-symbol 38

Flavors: sys:stream-closed and
sys:network-stream-closed 38

float-invalid-compare-operation 38

Floating-point Infinity 41

Floating-point Numbers 36

flonum-array Option for defstruct is Obsolete 28

font field 14

Font numbers and character objects 15

font option for prompt-and-read 58

font-list option for prompt-and-read 58

Fonts 16

Form 41

form 41

Form 28

form 63

tv:with-mouse-and-buttons-grabbed-on-sheet special

New Special

Three New Zmacs Commands for

apply and funcall No Longer Work for Special
Changes to Special

Special

New Special

New Special

New Special
Files Using defwrapper

form 64
Form: without-floating-underflow-traps 32
Format Buffer (m-X) Zmacs command 49
Format File (m-X) Zmacs command 49
Format Region (m-X) Zmacs command 49
Formatting Text 49
Forms 27
Forms 11
forms and lexical scoping 11
Forms for Destructuring 40
Forms for Lexical Scoping 11
Forms in a Top-level progn Are Top-level to the
Compiler 28
Forms: letf and letf* 37
Forms Must Be Recompiled in Release 6.0 28

March 1985

New Special

set-syntax-macro-char Takes an Optional
Changes to

New Language for Specifying

Audio Wavetable Size Increased
Distinguishing Characters

Symbols Added to or Removed

New Message to Error Flavor

apply and

sys:
%32-bit-difference
%32-bit-plus

cis

complex
complexp
conjugate

cosh
denominator
ge-on

imagpart
numerator

phase

rational

rationalp

read
read-for-top-level
read-or-end
readline
readline-or-nil
readline-trim
realpart
si.display-item-list
sinh
si:patch-system-pathname
tand

tanh
time-elapsed-p
time:parse-present-based-universal-time
time:parse-universal-time-relative
New

New

New

New

New

New

New

New
New

New
New

Index

Forms: tv:with-mouse-and-buttons-grabbed,

tv:with-mouse-and-buttons-grabbed-on-sheet 63

Fourth Argument 40

fquery Options 57

Frame Constraints 57

From 256 to 1024 Words 60

From Blips 22

From global in Release 6.0 24
fs:directory-not-found 39
fs:set-logical-pathname-host 71, 72
Funargs Supported in Release 6.0 10
funcall No Longer Work for Special Forms 27
funcall-macro and lexical scoping 12

function 33
function 33
function 35
function 34
function 35
function 35
function 35
function 34
function 80
function 35
function 34
function 35
function 34
function 34
function 55
function 55
function 55
function 55
function 55
function 55
function 34
function 57
function 35
function 52
function 33
function 35
function 65
function 65
function 65

Function: array-column-major-index 37

Function: array-push-portion-extend 37

Function: change-instance-flavor 31

Function: conjugate 35

Function: copytree-share 37

Function: location-contents 36

Function note-private-patch Adds Private Patch to
Your World 53

Function si:map-system-files Operates on a
Declared System 53

Function si:set-system-file-properties Operates on a
Declared System 53

Function: string-nconc-portion 38

Function: tand 33

tv:*escape-keys* and tv:*system-keys* Renamed to tv:

function-keys and tv:*select-keys* 56

92

Release 6.0 Release Notes

global:

Change to define-prompt-and-read-type Dispatch
New Reading

New Time

New Transcendental

String Comparison and String Searching

New

New

New
Character and String

Summary of Character and String Compatibility
Common Lisp

Ephemeral-object
Clarification of

Symbols Added to or Removed From
Interpreter Caches

New Feature: Window
Standard Variable Bindings Now

New Stream

Serial Stream

c-m-Y

:selective Option for load-patches

Setting Variables in Init Files

loop Now Supports lteration Over

loop Now Supports lteration Over Hash Tables or
New Facility:

New Input Editor

Translation

Release 6.0: Introduction and

Logical

Multiple physical

Splitting Logical Hosts Across Physical
Splitting Logical

March 1985

Afunction-spec option for prompt-and-read 58

&functional 28

functional-alist and lexical scoping 12

Functions 59

Functions 61

Functions 65

Functions 35

Functions 23

Functions: %32-bit-plus and %32-bit-difference 33

Functions for Converting Non-integral Numbers to
Integers 36

Functions for Converting Numbers to Floating-point
Numbers 36

Functions for Old-zetalisp/New-zetalisp
Compatibility 24

Functions in Release 6.0 18

Functions Not Included 23

Garbage Collection in Release 6.0 51

ge-on Printed Documentation 80

gc-on function 80

global in Release 6.0 24

Global Variable Declarations 27

global:functional-alist and lexical scoping 12

Graying 61

Guarantee Consistent Behavior in Break and
Debugging Loops 42

H

Handling Error Flavors: sys:stream-closed and
sys:network-stream-closed 38

Handling of Xon - Xoff Characters 80

Has Been Changed to c-X c-Y in Release 6.0 69

Has Changed 53

Has Changed 10

Hash Tables or Heaps 42

Heaps 42

Heaps 36

Help Options 63

heuristics for VAX/VMS 72

Highlights 1

:host option for prompt-and-read 58

:host-list option for prompt-and-read 58

:host-or-local option for prompt-and-read 58

hosts 71

hosts 72

Hosts 72

Hosts Across Physical Hosts 72

March 1985

Common Lisp Functions Not
Zetalisp and SCL character
Zetalisp and SCL string

Audio Wavetable Size
Zweil:*inhibit-fancy-loop
New loop
The Reader Now Accepts Floating-point
Zwei:

Setting Variables in

New Optional Arguments to

Index

imagpart function 35
Improvements to Activity and Window Selection 66
Improvements to Lisp in Release 6.0 40
Improvements to the File System in Release 6.0 71
Improvements to the User Interface in Release
6.0 66
Improvements to tv:add-function-key 68
Improvements to Typeout Windows 67
Improvements to Utilities in Release 6.0 52
Improvements to Zmacs in Release 6.0 47
Included 23
incompatibilities 12
incompatibilities 12
Incompatible Changes to Lisp in Release 6.0 9
Incompatible Changes to Networks in Release
6.0 75
Incompatible Changes to the User Interface in
Release 6.0 55
Incompatible Changes to Zmacs in Release 6.0 47
Incompatible Changes to Zmail in Release 6.0 69
Increased From 256 to 1024 Words 60
indentation 47
Indentor 47
Infinity 41
*inhibit-fancy-loop indentation 47
Init Files Has Changed 10
:initial-input Input Editor Option 67

Lisp Listeners and break Loops Catch Trivial Errors in the

New
New
New Optional Arguments to :initial-input
New

New Message to

New Message to Input Streams:
si:

Use #]..J#

Input Editor 66

Input Editor Commands: PAGE, COMPLETE, c-? 61

Input Editor Help Options 63 ‘

Input Editor Option 67

Input Editor Options 63

Input Editor Options Now Specified Dynamically 55

Input Streams: :input-wait 62

:input-editor Message to Interactive Streams
Replaces :rubout-handler 55

:input-editor message 56

iinput-wait 62

install-microcode Takes a Second Optional
Argument 41

Instead of #..}# to Comment Out Lisp Code 79

:integer option for prompt-and-read 58

:integer tv:choose-variable-values variable type 59

Integer denominator 34

Integer numerator 34

New: Functions for Converting Non-integral Numbers to

Use of Characters in Source Code Where
Use of

New Message tc Streams:

Integers 36

Integers Are Desired 19

Integers in Source Code Where Characters Are
Desired 19

sinteractive 62

New Optional Argument to :replace-input Message to

:input-editor Message to
New Type for :start-typeout Message to
New Message to

Interactive Streams 67
Interactive Streams Replaces :rubout-handier 55
Interactive Streams: :clear-window 67
Interactive Streams: :noise-string-out 63

94

Release 6.0 Release Notes

sitem method of si:

Changes to the User
Improvements to the User
Incompatible Changes to the User
New Features in the User

The
Release 6.0:
sys:
sys:
8ys:

Replacing

lambda
alphabetic-case-affects-string-comparison
zwel:chaos-direct-send-it

:clear-eof Message to Windows
fixnum-array Option for defstruct
flonum-array Option for defstruct
:item-list Message to Windows

Recompiling Source Files

Release 6.0

loop Now Supports

K

Replacing io-buffer-output-function and Binding tv:
%%kbd- byte specifiers and

Keyboard

&environment Lambda-list
&whole Lambda-list
Lambda-list

defmacro lambda-list

New
Two

defmacro
&environment
&whole

K

"~ %%kbd- byte specifiers and keyboard characters 17

March 1985

:interactive message 62

interactive-stream 57

Interface in Release 6.0 55

Interface in Release 6.0 66

Interface in Release 6.0 55

Interface in Release 6.0 61

Interpreter Caches Global Variable Declarations 27

Interpreter Understands Declarations 42

Introduction and Highlights 1

invalid-lambda-list and lexical scoping 12

invalid-form and lexical scoping 12

invalid-function and lexical scoping 12

:inverted-boolean tv.choose-variable-values
variable type 59

io-buffer-output-function and Binding tv:kbd-tyi-
hook Are Obsolete 56

is Now a Special Form 41

is Now Obsolete 31

is Now Obsolete 69

is Obsolete 60

is Obsolete 28

is Obsolete 28

is Obsolete 57

is Recommended 9

is Supported Only on 3600-family Machines 7

:item method of si:interactive-stream 57

sitem-list method of
tv:basic-mouse-sensitive-items 57

:item-list Message to Windows is Obsolete 57

Heration Over Hash Tables or Heaps 42

K

kbd-tyi-hook Are Obsolete 56

&key 39

keyboard characters 17

Keyboard keys 1

keys 1

Keyword 39

Keyword 39

Keyword Changes 28

keyword &list-of and lexical scoping 12
:keyword option for prompt-and-read 58
:keyword-list option for prompt-and-read 58
Keywords to typep 33

Kinds of Characters in Old-zetalisp 17

lambda and lexical scoping 12

lambda is Now a Special Form 41

lambda special form 41

lambda-list keyword &list-of and lexical scoping 12
Lambda-list Keyword 39

Lambda-list Keyword 39

Lambda-list Keyword Changes 28

95

March 1985

Lisp

New

Changes to the Lisp

Use of

Use of Idb,

New Special Forms: letf and
New Special Forms:
applyhook and

defmacro lambda-list keyword &list-of and
evalhook and
global:functional-alist and
lambda and

New Special Forms for
si:lexical-closure and
Special forms and
sys:funcall-macro and
sys:invalid-lambda-list and
sys:invalid-form and
sys:invalid-function and
Miscellaneous

si:

Character Objects in Common

New Feature in Release 6.0: Symbolics Common
Common

Use #{..J# Instead of #{...]# to Comment Out
Common

Improvements to

Incompatible Changes to

New Features in

Changes to the

Use of Symbolics

defmacro lambda-list keyword
Lisp

Warning Against Deleting
:selective Option for
:selective Option for

New Function:
Use of Idb, idb-test,
Splitting

New
:wild-inferiors in

Overview of Remote
make-array No

Ztop Mode No
define-site-variable No
apply and funcall No
New

TAB in

Index

language 1

Language for Specifying Frame Constraints 57

Language in Release 6.0 9

Idb, Idb-test, logand, and bit-test on Characters 21

Idb-test, logand, and bit-test on Characters 21

letf* 37

letf and letf* 37

lexical scoping 11

lexical scoping 12

lexical scoping 11

lexical scoping 12

lexical scoping 12

Lexical Scoping 11

lexical scoping 12

lexical scoping 11

lexical scoping 12

lexical scoping 12

lexical scoping 12

lexical scoping 12

Lexical Scoping Changes 12

Lexical Scoping in Release 6.0 10

lexical-closure and lexical scoping 12

Lisp 12

Lisp 45

Lisp Character Switchover in Release 6.0 12

Lisp Code 79

Lisp Functions Not Included 23

Lisp in Release 6.0 40

Lisp in Release 6.0 9

Lisp in Release 6.0 31

Lisp Language in Release 6.0 9

Lisp Listeners and break Loops Catch Trivial Errors
in the Input Editor 66

Lisp Machine Characters in Source Code Where
ASCIl Characters Are Desired 20

Lisp language 1

&list-of and lexical scoping 12

Listeners and break Loops Catch Trivial Errors in the
Input Editor 66

&list-of 28

LMFS File Partitions 80

load-patches 53

load-patches Has Changed 53

location-contents 36

logand, and bit-test on Characters 21

Logical Hosts Across Physical Hosts 72

Logical Pathname Translation 71

Logical Pathname Translations 71

Logical Pathname Wildcard Syntax 71

logical pathnames 71

Logical hosts 71

Login Capabilty 75

Longer Accepts Obsolete Form 28

Longer Supported 47

Longer Used 75

Longer Work for Special Forms 27

loop Indentor 47 v

joop macro 47

96

Release 6.0 Release Notes

March 1985

loop Now Supports Iteration Over Hash Tables or
Heaps 42

Standard Variable Bindings Now Guarantee Consistent Behavior in Break and Debugging

Lisp Listeners and break

M
Macro Expand Expression All Now Bound to
Save All Files (m-X) Renamed to Save File Buffers
Save All Files
Use of Symbolics Lisp

Release 6.0 is Supported Only on 3600-family
TAB in loop
New

Changes to
New
New

si:
defmacro Patterns Are Now

compiler:
compiler:make-obsolete Now

Release 5.0 to Release 6.0 Documentation
New Function si:

:directory-pathname

:input-editor

:interactive

New

New

New Optional Argument to :replace-input
:input-editor

New Type for :start-typeout
New

New

:clear-eof

:item-list

New

:mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang
Simple

sitem

sitem-list

:set-font-map-and-vsp

New

Ztop
New Zwei Command: Copy
Use of

Loops 42
Loops Catch Trivial Errors in the Input Editor 66

M

m-sh-M 47

(m-X) 47

(m-X) Renamed to Save File Buffers (m-X) 47

Machine Characters in Source Code Where ASCIi
Characters Are Desired 20

Machines 7

macro 47

Macro: defwhopper-subst 32

Macro Expand Expression All Now Bound to
m-sh-M 47

Macro Expansion 11

Macro: unwind-protect-case 37

Macro: si:define-simple-method-combination 32

macroexpand 11

macroexpand-1 11

macroexpand-hook 11

Made Consistent 30

make-array No Longer Accepts Obsolete Form 28

make-obsolete Now Makes a Flavor or Structure
Obsolete 52

Makes a Flavor or Structure Obsolete 52

Making Strings 23

Map 4

map-system-files Operates on a Declared
System 53

message 39

message 56

message 62

Message to Error Flavor fs:directory-not-found 39

Message to Input Streams: :input-wait 62

Message to Interactive Streams 67

Message to Interactive Streams Replaces
:rubout-handler 55

Message to Interactive Streams: :clear-window 67

Message to Interactive Streams:
:noise-string-out 63

Message to Streams: :interactive 62

Message to Windows is Obsolete 60

Message to Windows is Obsolete 57

Message to Windows: :set-font-map-and-vsp 64

Messages Obsolete 56

method combination definition 32

method of si:interactive-stream 57

method of tv:basic-mouse-sensitive-items 57

method of tv:sheet 64

Microcode in Release 6.0: 319. 7

Miscellaneous Lexical Scoping Changes 12

Mode No Longer Supported 47

Mouse (C-(m)) 48

Mouse Characters 22

e7

March 1985

:mouse-or-kbd-tyi and
SCROLL and

Files Using defwrapper Forms
Recompile Patch

Reload Patch

Format Buffer

Format File

Format Region

Index

Mouse Scaling Now Works on 3600-family
Computers 68

:mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang
Messages Obsolete 56

:mouse-or-kbd-tyi-no-hang Messages Obsolete 56

m-SCROLL Now Display Next Screen and Previous
Screen 47

Multiple physical hosts 72

Must Be Recompiled in Release 6.0 28

(m-X) 49

(m-X) 49

(m-X) Zmacs command 49

(m-X) Zmacs command 49

(m-X) Zmacs command 49

N

New Stream Handling Error Flavors: sys:stream-closed and sys:

Changes to
Incompatible Changes to
New Features in

network-stream-closed 38

Networks 1

Networks in Release 6.0 75

Networks in Release 6.0 75

Networks in Release 6.0 75

New Array Error Flavor:
sys:array-wrong-number-of-subscripts 38

New Error Flavor:
sys:read-premature-end-of-symbol 38

New Facility: Heaps 36

New Feature in Release 6.0: Symbolics Common
Lisp 45

New Feature in Release 6.0: the Command
Processor 61

New Feature in Release 6.0: the Document
Examiner 52

New Feature: Window Graying 61

New Features in Lisp in Release 6.0 31

New Features in Networks in Release 6.0 75

New Features in the User Interface in Release
6.0 61

New Features in Utilities in Release 6.0 51

New Features in Zmacs in Release 6.0 48

New Flavor:
sys:float-invalid-compare-operation 38

New Function: array-column-major-index 37

New Function: array-push-portion-extend 37

New Function: change-instance-flavor 31

New Function: conjugate 35

New Function: copytree-share 37

New Function: location-contents 36

New Function note-private-patch Adds Private Patch
to Your World 53

New Function si:map-system-files Operates on a
Declared System 53

New Function si:set-system-file-properties Operates
on a Declared System 53

New Function: string-nconc-portion 38

New Function: tand 33

New Functions: %32-bit-plus and

98
Release 6.0 Release Notes March 1985

%32-bit-difference 33
New Functions for Converting Non-integral Numbers
1o Integers 36
New Functions for Converting Numbers to Floating-
point Numbers 36
New Input Editor Commands: PAGE, COMPLETE, c-?
61
New Input Editor Help Options 63
New Input Editor Options 63
New &-Keywords for defmacro 39
New Keywords to typep 33
New Language for Specifying Frame Constraints 57
New Logical Pathname Translations 71
New loop Indentor 47
New Macro: defwhopper-subst 32
New Macro: unwind-protect-case 37
New Macro:
si:define-simple-method-combination 32
New Message to Error Flavor
fs.directory-not-found 39
New Message to Input Streams: :input-wait 62
New Message to Interactive Streams:
:noise-string-out 63
‘New Message to Streams: :interactive 62
New Message to Windows:
:set-font-map-and-vsp 64
New Microcode in Release 6.0: 319. 7
New Notification System 64
New Option for defwindow-resource: :superior 68
New Option to defflavor:
:export-instance-variables 31
New Option to defstruct: :export 32
New Optional Argument to :replace-input Message
1o Interactive Streams 67
New Optional Arguments to :initial-input Input Editor
Option 67
New Reading Functions 61
New Special Form:
without-floating-underflow-traps 32
New Special Forms for Destructuring 40
New Special Forms for Lexical Scoping 11
New Special Forms: letf and letf* 37
New Special Forms: tv:with-mouse-and-buttons-
grabbed,
tv:with-mouse-and-buttons-grabbed-on-sheet 63
New Stream Handling Error Flavors: sys:stream-
closed and sys:network-stream-closed 38
New Time Functions 65
New Transcendental Functions 35
New Type for :start-typeout Message to Interactive
Streams: :clear-window 67
Three New Zmacs Commands for Formatting Text 49
Two New Zmacs Commands for Recompiling and
Reloading Patches 49
Two New Zmacs Commands for Reverting Buffers 49
New Zwei Command: Copy Mouse (C-(m)) 48
Old-zetalisp and New-zetalisp String and Character Compatibility 18
SCROLL and m-SCROLL Now Display Next Screen and Previous Screen 47

March 1985

make-array

Ztop Mode

define-site-variable

apply and funcall

New Message to interactive Streams:
New Functions for Converting
Common Lisp Functions

New Function

New
lambda is
The Reader
defflavor

Break and the Debugger
Macro Expand Expression All
SCROLL and m-SCROLL
Standard Variable Bindings

defmacro Patterns Are
compiler:make-obsolete
alphabetic-case-affects-string-comparison is
zwei:chaos-direct-send-it is

Input Editor Options

Zero-dimensional Arrays Are

loop

Mouse Scaling
sys:%beep

Character objects device-font

Addition of 32-bit
Complex

New

Rational

Rational and Complex

Subtraction of 32-bit

Font

New Functions for Converting

New Functions for Converting Non-integral
Integer

Use of

Index

No Longer Accepts Obsolete Form 28

No Longer Supported 47

No Longer Used 75

No Longer Work for Special Forms 27

:noise-string-out 63

Non-integral Numbers to Integers 36

Not Included 23

note-private-patch Adds Private Patch to Your
World 53

Notes and Clarifications for Release 6.0 79

Notification System 64

Now a Special Form 41

Now Accepts Floating-point Infinity 41

Now Accepts the Option
required-init-keywords 40

Now Bind readtable to si:standard-readtable 43

Now Bound to m-sh-M 47

Now Display Next Screen and Previous Screen 47

Now Guarantee Consistent Behavior in Break and
Debugging Loops 42

Now Made Consistent 30

Now Makes a Flavor or Structure Obsolete 52

Now Obsolete 31

Now Obsolete 69

Now Specified Dynamically 55

Now Supported 42

Now Supports Iteration Over Hash Tables or
Heaps 42

Now Works on 3600-family Computers 68

Now Works on 3600-family Consoles That Support
Digital Audio 68

number field 16

:number option for prompt-and-read 58

:number tv:choose-variable-values variable
type 59

:number-or-nil option for prompt-and-read 58

:number-or-nil tv:choose-variable-values variable
type 59

numbers 33

Numbers 34

Functions for Converting Numbers to Floating-point
Numbers 36

Numbers 34

Numbers 33

numbers 33

numbers and character objects 15

Numbers to Floating-point Numbers 36

Numbers to Integers 36

numerator 34

numerator function 34

Numerical Comparisons on Characters 20

100

Release 6.0 Release Notes March 1985

(o (o o

Additional Character

Details of Character

Font numbers and character
~ Character

Character

Character

Character

Character

Character

Object Enhancements 15

:object option for prompt-and-read 58
:object-list option for prompt-and-read 58
Objects 14

objects 15

objects code field 14

objects device-font number field 16
objects font field 14

Objects in Common Lisp 12

objects style field 14

objects subindex field 16

:mouse-or-kbd-tyi and :mouse-or-kbd-tyi-no-hang Messages

alphabetic-case-affects-string-comparison is Now
:clear-eof Message to Windows is

Obsolete 56
Obsolete 31
Obsolete 60

compiler:make-obsolete Now Makes a Flavor or Structure

fixnum-array Option for defstruct is
flonum-array Option for defstruct is
:item-list Message to Windows is

Obsolete 52
Obsolete 28
Obsolete 28
Obsolete 57

Replacing io-buffer-output-function and Binding tv:kbd-tyi-hook Are

zwei:chaos-direct-send-it is Now
make-array No Longer Accepts

Character and String Functions for

Two Kinds of Characters in

Release 6.0 is Supported

New Function si:map-system-files

New Function si:set-system-file-properties
Use of Arithmetic

Performing arithmetic

:required-init-keywords
:export

fixnum-array
flonum-array

New

:selective

:selective

«class
:complete-string

date

:date-or-never
:decimal-number
:delimited-string
delimited-string-or-nil
flavor-name

font

font-list
function-spec

:host

:host-list

Obsolete 56

Obsolete 69

Obsolete Form 28

Obsolete Programming. Practices Using Characters
and Strings 19

Old-zetalisp and New-zetalisp String and Character
Compatibility 18

Old-zetalisp/New-zetalisp Compatibility 24

Old-zetalisp 17

Only on 3600-family Machines 7

Operates on a Declared System 53

Operates on a Declared System 53

Operations on Characters 21

operations on characters in SCL 12

New Optional Arguments to :initial-input Input Editor

Option 67
Option for defflavor 40
Option for defstruct 32
Option for defstruct is Obsolete 28
Option for defstruct is Obsolete 28
Option for defwindow-resource: :superior 68
Option for load-patches 53
Option for load-patches Has Changed 53
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read
option for prompt-and-read

EERELBEBREE8S

101

March 1985

:host-or-local

:integer

:keyword

:keyword-list

:number

:number-or-nil

:object

:object-list

:past-date
:past-date-or-never
:pathname
:pathname-host
:pathname-list
:pathname-or-nil

:symbol

defflavor Now Accepts the
New

New

si:install-microcode Takes a Second

Change in
New

New

set-syntax-macro-char Takes an
array-pop Takes an

Changes to fquery

Changes to prompt-and-read

New Input Editor

New Input Editor Help

Input Editor

Use #{...]l# Instead of #|...|# to Comment
Displaying characters on

New Input Editor Commands:
time:
time:

Warning Against Deleting LMFS File

Changes to

Recompile

Reload

New Function note-private-patch Adds Private
si:

Index

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

option for prompt-and-read 58

Option :required-init-keywords 40

Option to defflavor: :export-instance-variables 31

Option to defstruct: :export 32

Optional Argument 41

Optional Argument :ask Added to
zwei:save-all-files 68

Optional Argument to read-or-end 57

Optional Argument to :replace-input Message to
Interactive Streams 67

Optional Arguments to :initial-input Input Editor
Option 67

Optional Fourth Argument 40

Optional Second Argument 42

Options 57

Options 58

Options 63

Options 63

Options Now Specified Dynamically 55

Out Lisp Code 79

output devices 16

Overview of Remote Login Capability 75

P
PAGE, COMPLETE, c-? 61
parse-present-based-universal-time function 65
parse-universal-time-relative function 65
Partitions 80
:past-date option for prompt-and-read 58
:past-date-or-never option for prompt-and-read 58
:past-date-or-never tv:choose-variable-values

variable type 59

Patch Files 52
Patch (m-X) 49
Patch (m-X) 49
Patch to Your World 53
patch-system-pathname function 52

Two New Zmacs Commands for Recompiling and Reloading

Logical
New Logical
Logical

Patches 49
spathname option for prompt-and-read 58
Pathname Translation 71
Pathname Translations 71
Pathname Wiidcard Syntax 71

102

Release 6.0 Release Notes

:wild-inferiors in logical
defmacro

Multiple
Splitting Logical Hosts Across
Obsolete Programming

March 1985

:pathname-host option for prompt-and-read 58

:pathname-list option for prompt-and-read 58

;pathname-or-nil option for prompt-and-read 58

pathnames 71

Patterns Are Now Made Consistent 30

Performing arithmetic operations on characters in
SCL 12

phase function 35

physical hosts 72

Physical Hosts 72

Practices Using Characters and Strings 19

SCROLL and m-SCROLL Now Display Next Screen and

Clarification of ge-on

New Function note-private-patch Adds
New Feature in Release 6.0: the Command
Forms in a Top-level

Obsolete

:class option for
:complete-string option for
:date option for
:date-or-never option for
:decimal-number option for
:delimited-string option for
:delimited-string-or-nil option for
:flavor-name option for
:font option for

font-list option for
“function-spec option for
:host option for

:host-list option for
:host-or-local option for
:integer option for
:keyword option for
:keyword-list option for
:number option for
:number-or-nil option for
:object option for
:object-list option for
:past-date option for
:past-date-or-never option for
:pathname option for
:pathname-host option for
:pathname-list option for
;pathname-or-nil option for
:symbol option for
Changes to

Previous Screen 47
Previously Undocumented Feature: Array

Registers 37
Printed Documentation 80
Private Patch to Your World 53
Processor 61
progn Are Top-level to the Compiler 28
Programming Practices Using Characters and

Strings 19
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read
prompt-and-read 58
prompt-and-read Options 58

AR AR AR AR AR AR AR AR AR AR AR AR R AR R AR AR AR AR R

103
March 1985 Index

Q Q Q

"e 28

R R R
Rational and Complex Numbers 33
rational function 34
Rational Numbers 34
rationalp function 34
Ratios 34
read-for-top-level function 55
Change in Optional Argument to read-or-end 57
read-or-end function 55
New Error Flavor: sys: read-premature-end-of-symbol 38
sys: read-premature-end-of-symbol flavor 38
The Reader Now Accepts Floating-point Infinity 41
read function 55
New Reading Functions 61
Clarification of What readline Returns 79
readline-or-nil function 55
readline function 55
readline-trim function 55
Break and the Debugger Now Bind readtable to si:standard-readtable 43
realpart function 34
Recompiling Source Files is Recommended 9
Recompile Patch (m-X) 49
Files Using defwrapper Forms Must Be Recompiled in Release 6.0 28
Two New Zmacs Commands for Recompiling and Reloading Patches 49
Recompiling Source Files is Recommended 9
Format Region (m-X) Zmacs command 49
Previously Undocumented Feature: Array Registers 37
Release 5.0 to Release 6.0 Documentation Map 4
c-m-Y Has Been Changed to c-X c-Y in Release 6.0 69
Changes to Networks in Release 6.0 75
Changes to the FEP in Release 6.0 77
Changes to the File System in Release 6.0 71
Changes to the Lisp Language in Release 6.0 9
Changes to the User Interface in Release 6.0 55
Changes to Utilities in Release 6.0 51
Changes to Zmacs in Release 6.0 47
Changes o Zmail in Release 6.0 69
Common Lisp Character Switchover in Release 6.0 12
Ephemeral-object Garbage Collection in Release 6.0 51
Files Using defwrapper Forms Must Be Recompiled in
Release 6.0 28
Funargs Supported in Release 6.0 10
Improvements to Lisp in Release 6.0 40
Improvements to the File System in Release 6.0 71
Improvements to the User Interface in Release 6.0 66
Improvements to Utilities in Release 6.0 52
Improvements to Zmacs in Release 6.0 47
Incompatible Changes to Lisp in Release 6.0 9
Incompatible Changes to Networks in Release 6.0 75
Incompatible Changes to the User Interface in Release 6.0 55
Incompatible Changes to Zmacs in Release 6.0 47
Incompatible Changes to Zmail in Release 6.0 69
Lexical Scoping in Release 6.0 10

104

Release 6.0 Release Notes

New Features in Lisp in

New Features in Networks in

New Features in the User Interface in
New Features in Utilities in

New Features In Zmacs in

Notes and Clarifications for

March 1985

Release 6.0 31
Release 6.0 75
Release 6.0 61
Release 6.0 51
Release 6.0 48
Release 6.0 79

Summary of Character and String Compatibility Functions in

Symbols Added to or Removed From global in
New Microcode in

Release 5.0 to

New Feature in
New Feature in
New Feature in

Two New Zmacs Commands for Recompiling and
Overview of

Symbols Added to or

Save All Files (m-X)

tv:*escape-keys* and tv:*system-keys*

New Optional Argument to
:input-editor Message to Interactive Streams
Variable si:*typeout-default*

defflavor Now Accepts the Option
Clarification of What readline

Two New Zmacs Commands for
Variable si:*typeout-default* Replaces tv:

Release 6.0 18

Release 6.0 24

Release 6.0: 319. 7

Release 6.0 Documentation Changes 2

Release 6.0 Documentation Map 4

Release 6.0: Introduction and Highlights 1

Release 6.0 is Supported Only on 3600-family
Machines 7

Release 6.0: Symbolics Common Lisp 45

Release 6.0: the Command Processor 61

Release 6.0: the Document Examiner 52

Reload Patch (m-X) 49

Reloading Patches 49

Remote Login Capability 75

Removed From global in Release 6.0 24

Renamed to Save File Buffers (m-X) 47

Renamed to tv:*function-keys* and
tv:*select-keys* 56

:replace-input Message to Interactive Streams 67

Replaces :rubout-handler 55

Replaces tv:rh-typeout-default 56

Replacing io-buffer-output-function and Binding
tv:kbd-tyi-hook Are Obsolete 56

:required-init-keywords 40

:required-init-keywords Option for defflavor 40

Returns 79

Reverting Buffers 49

rh-typeout-default 56

:input-editor Message to Interactive Streams Replaces

Translation

Save All Files (m-X) Renamed to

Optional Argument :ask Added to zwei:

Mouse

Performing arithmetic operations on characters in
Zetalisp and

Zetalisp and

applyhook and lexical

defmacro lambda-list keyword &list-of and lexical
evalhook and lexical

global:functional-alist and lexical

lambda and lexical

New Special Forms for Lexical
si:lexical-closure and lexical

Special forms and lexical

sys:funcall-macro and lexical

:rubout-handler 55
Rules 72

Save All Files (m-X) Renamed to Save File Buffers
(m-X) 47

Save File Buffers (m-X) 47

save-all-files 68

Scaling Now Works on 3600-family Computers 68

SCL 12

SCL character incompatibilities 12

SCL string incompatibilities 12

scoping 11

scoping 12

scoping 11

scoping 12

scoping 12

Scoping 11

scoping 12

scoping 11

scoping 12

105

March 1985

sys:invalid-lambda-list and lexical
sys:invalid-form and lexical
sys:invalid-function and lexical
Miscellaneous Lexical

Lexical

Index

scoping 12

scoping 12

scoping 12

Scoping Changes 12
Scoping in Release 6.0 10

SCROLL and m-SCROLL Now Display Next Screen and Previous

SCROLL and m-SCROLL Now Display Next

String Comparison and String
array-pop Takes an Optional
si:install-microcode Takes a

Screen 47

Screen and Previous Screen 47

SCROLL and m-SCROLL Now Display Next Screen
and Previous Screen 47

Searching Functions 23

Second Argument 42

Second Optional Argument 41

tv:*escape-keys* and tv:*system-keys* Renamed to tv:*function-keys* and tv:

Improvements to Activity and Window

New Message to Windows:

fs:

New Function si:

Character

:set-font-map-and-vsp method of tv:
Variable

New Macro:
:item method of

New Function

New Function

Break and the Debugger Now Bind readtable to
Audio Wavetable
Use of Symbolics Lisp Machine Characters in

Use of Integers in

Use of Characters in

Syntax and Base Atiributes in

Recompiling

fambda

lambda is Now a
tv:with-mouse-and-buttons-grabbed
tv:with-mouse-and-buttons-grabbed-on-sheet

gelect-keys 56

Selection 66

:selective Option for load-patches 53

:selective Option for load-patches Has Changed 53

Serial Stream Handling of Xon - Xoft Characters 80

:set-font-map-and-vsp 64

:set-font-map-and-vsp method of tv:sheet 64

set-logical-pathname-host 71, 72

set-syntax-macro-char Takes an Optional Fourth
Argument 40

set-system-file-properties Operates on a Declared
System 53

sets 15

Setting Variables in Init Files Has Changed 10

:sexp tv:choose-variable-values variable type 59

sheet 64

si:*macroexpand-hook* 11

si:*typeout-default* Replaces
tv:rh-typeout-default 56

si:define-simple-method-combination 32

si:interactive-stream 57

si:display-item-list function 57

si:install-microcode Takes a Second Optional
Argument " 41

si:lexical-closure and lexical scoping 12

si:map-system-files Operates on a Declared
System 53

Simple method combination definition 32

sinh function 35

si:patch-system-pathname function 52

si:set-system-file-properties Operates on a
Declared System 53

si:standard-readtable 43

Size Increased From 256 to 1024 Words 60

Source Code Where ASCIl Characters Are
Desired 20

Source Code Where Characters Are Desired 19

Source Code Where Integers Are Desired 19

Source Files 9

Source Files is Recommended 9

special fom 41

Special Form 41

special form 63

special form 64

106

Release 6.0 Release Notes

New
apply and funcall No Longer Work for
Changes to

New
New
New
New

Input Editor Options Now
%%ch- byte

%%kbd- byte

New Language for

Break and the Debugger Now Bind readtable to si:
New Type for

New

Serial
New Stream Handling Error Flavors: sys:

March 1985

Special Form: without-floating-underflow-traps 32
Special Forms 27
Special Forms 11
Special forms and lexical scoping 11
Special Forms for Destructuring 40
Special Forms for Lexical Scoping 11
Special Forms: letf and letf* 37
Special Forms: tv:with-mouse-and-buttons-
grabbed,

tv:with-mouse-and-buttons-grabbed-on-sheet 63

Specified Dynamically 55

specifiers and file characters 17

specifiers and keyboard characters 17

Specifying Frame Constraints 57

Splitting Logical Hosts Across Physical Hosts 72

Standard Variable Bindings Now Guarantee
Consistent Behavior in Break and Debugging
Loops 42

standard-readtable 43

:start-typeout Message to Interactive Streams:
:clear-window 67

Stream Handling Error Flavors: sys:stream-ciosed
and sys:network-stream-closed 38

Stream Handling of Xon - Xoff Characters 80

stream-closed and sys:network-stream-closed 38

New Optional Argument to :replace-input Message to Interactive

:input-editor Message to Interactive

New Type for :start-typeout Message to Interactive
New Message to Input

New Message to

New Message to Interactive

Old-zetalisp and New-zetalisp

Summary of Character and
Character and

Zetalisp and SCL
String Comparison and
New Function:

Fat

Making

Streams 67

Streams Replaces :rubout-handier 55

Streams: :clear-window 67

Streams: :input-wait 62

Streams: :interactive 62

Streams: :noise-string-out 63

String and Character Compatibility 18

String Comparison and String Searching
Functions 23

String Compatibility Functions in Release 6.0 18

String Functions for Old-zetalisp/New-zetalisp
Compatibility 24

string incompatibilities 12

String Searching Functions 23

string-nconc-portion 38

Strings 23

Strings 23

Obsolete Programming Practices Using Characters and

compiler:make-obsolete Now Makes a Flavor or
Character objects

Change to

Character objects

Use of Characters as Array

New Option for defwindow-resource:

Strings 19

Structure Obsolete 52

style field 14

Subforms of with-input-editing 55

subindex field 16

Subscripts 22

Subtraction of 32-bit numbers 33

Summary of Character and String Compatibility
Functions in Release 6.0 18

:superior 68

sys:%beep Now Works on 3600-family Consoles That

Zero-dimensional Arrays Are Now
Ztop Mode No Longer

Support Digital Audio 68
Supported 42
Supported 47

107

March 1985

Funargs

Release 6.0 is

loop Now

Common Lisp Character

New Feature in Release 6.0:
Use of

Logical Pathname Wildcard

New Array Error Flavor:
New Flavor:

Index

Supported in Release 6.0 10

Supported Only on 3600-family Machines 7

Supports Heration Over Hash Tables or Heaps 42

Switchover in Release 6.0 12

:symbol option for prompt-and-read 58

Symbolics Common Lisp 45

Symbolics Lisp Machine Characters in Source Code
Where ASCIHl Characters Are Desired 20

Symbols Added to or Removed From global in
Release 6.0 24

Syntax 71

Syntax and Base Attributes in Source Files 9

sys:array-wrong-number-of-subscripts 38

sys:float-invalid-compare-operation 38

New Stream Handling Eror Flavors: sys:stream-closed and

New Error Flavor:
New Stream Handling Error Flavors:

File

sys:network-stream-closed 38
sys:read-premature-end-of-symbol 38
gys:stream-closed and

sys:network-stream-closed 38
sys:%beep Now Works on 3600-family Consoles

That Support Digital Audio 68
sys:funcall-macro and lexical scoping 12
sys:invalid-lambda-list and lexical scoping 12
sys:invalid-form and lexical scoping 12
sys:invalid-function and lexical scoping 12
sys:read-premature-end-of-symbol flavor 38
System 1

New Function si:map-system-files Operates on a Declared

System 53

New Function si:set-system-file-properties Operates on a Declared

New Notification
Changes to the File
Improvements to the File

tv:*escape-keys* and tv:

" loop Now Supports lteration Over Hash
si:install-microcode

set-syntax-macro-char

array-pop
New Function:

Three New Zmacs Commands for Formatting
sys:%beep Now Works on 3600-family Consoles

New

System 53

System 64

System in Release 6.0 71

System in Release 6.0 71

system-keys Renamed to tv:*function-keys* and
tv:*select-keys* 56

T

TAB in loop macro 47

Tables or Heaps 42

Takes a Second Optional Argument 41

Takes an Optional Fourth Argument 40

Takes an Optional Second Argument 42

tand 33

tand function 33

tanh function 35

Text 49

That Support Digital Audio 68

Three New Zmacs Commands for Formatting
Text 49

Time Functions 65

time-elapsed-p function 65

time-interval-60ths tv:choose-variable-values
variable type 59

time:parse-present-based-universal-time
function 65

time:parse-universal-time-relative function 65

108

Release 6.0 Release Notes

Forms in a

Forms in a Top-level progn Are
New

Logical Pathname

New Logical Pathname
Lisp Listeners and break Loops Catch

March 1985

Top-level progn Are Top-level to the Compiler 28
Top-level to the Compiler 28
Transcendental Functions 35
Translation 71
Translation heuristics for VAX/VMS 72
Translation Rules 72
Translations 71
Trivial Errors in the Input Editor 66
tv:*escape-keys* and tv:*system-keys* Renamed
to tv:*function-keys* and
tv:*select-keys* 56

tv:*escape-keys* and tv:*system-keys* Renamed to
tv:*function-keys* and tv:*select-keys* 56
tv:*escape-keys* and tv:*system-keys* Renamed to tv:*function-keys* and

tv:*escape-keys* and

sitem-list method of
:decimal-number
:decimal-number-or-nil
:eval-form

:expression

sinteger

:inverted-boolean

:number

:number-or-nil
spast-date-or-never

:sexp

Atime-interval-60ths

Variable si:*typeout-default* Replaces
:set-font-map-and-vsp method of
New Special Forms:

tv.*select-keys* 56
tv:*system-keys* Renamed to tv:*function-keys*

and tv:*select-keys* 56
tv:basic-mouse-sensitive-items 57
tv:choose-variable-values variable type 59
tv.choose-variable-values variable type 59
tv.choose-variable-values variable type 59
tv:choose-variable-values variable type 59
tv:choose-variable-values variable type 53
tv:choose-variable-values variable type 59
tv.choose-variable-values variable type 59
tv:choose-variable-values variable type 59
tv:choose-variable-values variable type 538
tv:choose-variable-values variable type 59
tv:choose-variable-values variable type 59
tv:rh-typeout-default 56
tvisheet 64
tv:with-mouse-and-buttons-grabbed,

tv:with-mouse-and-buttons-grabbed-on-sheet 63
New Special Forms: tv:with-mouse-and-buttons-grabbed,
tv:with-mouse-and-buttons-grabbed-on-sheet 63

Improvements to
Changes to
Replacing io-buffer-output-function and Binding

tv:add-function-key 68
tv:choose-variable-values Variable Types 59
tv:kbd-tyi-hook Are Obsolete 56

tv:with-mouse-and-buttons-grabbed special
form 63

tv:with-mouse-and-buttons-grabbed-on-sheet
special form 64

Two Kinds of Characters in Old-zetalisp 17

Two New Zmacs Commands for Recompiling and
Reloading Patches 49

Two New Zmacs Commands for Reverting Buffers 49

:decimal-number tv:choose-variable-values variable

type 59
:decimal-number-or-nil tv:choose-variable-values variable
type 59
:eval-form tv:choose-variable-values variable type 59
:expression tv:choose-variable-values variable type 59
:integer tv:choose-variable-values variable type 59
zinverted-boolean tv:choose-variable-values variable
type 59
:number tv:choose-variable-values variable type 59
:number-or-nil tv:choose-variable-values variable type 59

:past-date-or-never tv:choose-variable-values variable

109
March 1985 Index

type 59
:sexp tv:choose-variable-values variable type 59
:time-interval-60ths tv:choose-variable-values variable
type 59
New Type for :start-typeout Message to Interactive
Streams: :clear-window 67
Improvements to Typeout Windows 67
Variable si: *typeout-default* Replaces
tv:rh-typeout-default 56
New Keywords to typep 33
Changes to tvichoose-variable-values Variable Types 59

U U U

The Interpreter Understands Declarations 42
Previously Undocumented Feature: Array Registers 37
New Macro: unwind-protect-case 37
define-site-variable No Longer Used 75
Changes to the User Interface in Release 6.0 55
Improvements to the User Interface in Release 6.0 66
Incompatible Changes to the User interface in Release 6.0 55
New Features in the User Interface in Release 6.0 61
Utilities 1
Changes to Utilities in Release 6.0 51
Improvements to Utilities in Release 6.0 52
New Features in Utilities in Release 6.0 51

v v \'}

Standard Variable Bindings Now Guarantee Consistent
Behavior in Break and Debugging Loops 42
Interpreter Caches Global Variable Declarations 27
Variable si:*typeout-default* Replaces
tv:rh-typeout-default 56
:decimal-number tv:choose-variable-values variable type 59
:decimal-number-or-nil tv:choose-variable-values variable type 59
:eval-form tv.choose-variable-values variable type 59
:expression tv:choose-variable-values variable type 59
:integer tv:choose-variable-values variable type
:inverted-boolean tv.choose-variable-values variable type
:number tv:choose-variable-values variable type
:number-or-nil tv.choose-variable-values variable type
:past-date-or-never tv.choose-variable-values variable type.
:sexp tv:choose-variable-values variable type
time-interval-60ths tv:choose-variable-values variable type
Changes to tv:choose-variable-values Variable Types 59
Setting Variables in Init Files Has Changed 10
Translation heuristics for VAX/VMS 72

BE88BBESB

w w 1 w
Waming Against Deleting LMFS File Partitions 80
Audio Wavetable Size Increased From 256 to 1024
Words 60
Clarification of What readline Retumns 79
Use of Symbolics Lisp Machine Characters in Source Code
Where ASCIl Characters Are Desired 20

110

Release 6.0 Release Notes

Use of Integers in Source Code
Use of Characters in Source Code

Logical Pathname

New Feature:

Improvements to Activity and
Improvements to Typeout
:clear-eof Message to
:item-list Message to

New Message to

Change to Subforms of

tv:

New Special Forms: tv:

March 1985

Where Characters Are Desired 19
Where Integers Are Desired 19
&whole 39

&whole Lambda-list Keyword 39
Wildcard Syntax 71

Wildcards 71

:wild-inferiors in logical pathnames 71
Window Graying 61

Window Selection 66

Windows 67

Windows is Obsolete 60

Windows is Obsolete 57

Windows: :set-font-map-and-vsp 64
with-input-editing 55
with-mouse-and-buttons-grabbed special form 63
with-mouse-and-buttons-grabbed,

tv:with-mouse-and-buttons-grabbed-on-sheet 63
New Special Forms: tv:with-mouse-and-buttons-grabbed, tv:
with-mouse-and-buttons-grabbed-on-sheet 63

tv:

New Special Form:

Audio Wavetable Size Increased From 256 to 1024
apply and funcall No Longer

Mouse Scaling Now

sys:%beep Now

with-mouse-and-buttons-grabbed-on-sheet special
form 64

without-floating-underflow-traps 32

Words 60

Work for Special Forms 27

Works on 3600-family Computers 68

Works on 3600-family Consoles That Support Digital
Audio 68

New Function note-private-patch Adds Private Patch to Your

Serial Stream Handling of Xon -
Serial Stream Handling of

Y

World 63

X

Xoft Characters 80
Xon - Xoff Characters 80

Y

New Function note-private-patch Adds Private Patch to

Format Buffer (m-X)
Format File (m-X)
Format Region (m-X)
Three New

Two New

Two New

Changes to
Improvements to
Incompatible Changes to
New Features in

Your World 53

y 4

Zero-dimensional Arrays Are Now Supported 42

Zetalisp and SCL character incompatibilities 12

Zetalisp and SCL string incompatibilities 12

Zmacs 1 .

Zmacs command 49

Zmacs command 49

Zmacs command 49

Zmacs Commands for Formatting Text 49

Zmacs Commands for Recompiling and Reloading
Patches 49

Zmacs Commands for Reverting Buflers 49

Zmacs in Release 6.0 47

Zmacs in Release 6.0 47

Zmacs in Release 6.0 47

Zmacs in Release 6.0 48

m

March 1985

Changes to
Incompatible Changes to

New
Optional Argument :ask Added to

Index

Zmait 1

Zmail in Release 6.0 69

Zmail in Release 6.0 69

Ztop Mode No Longer Supported 47

Zwei Command: Copy Mouse (C-(m)) 48
zwel:save-all-files 68
zwei:chaos-direct-send-it is Now Obsolete 69
Zwei:*inhibit-fancy-loop indentation 47

