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Generators and Modifiers

The synthesizer has two kinds of processing elements:
generators and modifiers. An additional type of element, termed
a delay unit, is optional.

Generators produce sine, square, and sawtooth waves,
pulse trains, and equal-amplitude sum-of-cosines (band-limited
pulse trains); apply linear and exponential envelopes; perform
frequency modulation; can automatically sweep frequency
linearly; read data from computer memory; and write data into
computer memory or to digital-to-analog converters. Up to 256
generators can be active at one time.

Modifiers simulate a resonance or antiresonance; perform
amplitude modulation, four-quadrant multiplication, mixing,
clipping, and memory (sample and hold) functions; can generate
uniform noise; and pass data to and from the optional delay
units. Up to 128 modifiers can be active at the same time.

Delay units have two uses: as delay lines for signals;
and to hold precomputed tables, such as time-domain waveforms.
Up to 32 delay units can be active at the same time.

Passes and Ticks; Sum Memory

The processing performed on a per-sample basis comprises
one pass. A pass is a series of ticks, of three types: processing
ticks, overhead ticks, and update ticks. Processing ticks perform
the calculations corresponding to generators and modifiers, and
update ticks permit performance of commands to load new parameters.
Within a pass, all processing ticks are performed first, then all
overhead ticks, then all update ticks. A tick of any type takes
195 nsec. The number of processing ticks per pass is the maximum
of: the number of generators used; twice the number of modifiers
used. For delay units, divide the number of processing ticks minus
six by four to get the number of delay memory cycles possible per
pass. The number of delay units that can be used is this number
less however many delay memory cycles the computer may make during
the processing ticks. There are eight overhead ticks per pass.

The number of update ticks per pass should be chosen according to
the number of processing and overhead ticks to give the desired
overall sample rate.



Information is passed among generators and modifiers
through a scratchpad area called sum memory, which is divided into
four 64-word quadrants. In one quadrant, sums are accumulated
~of generator outputs during a given pass; another quadrant holds
the accumulated generator sums from the previous pass. The other
two quadrants act likewise for modifier outputs. Any generator
or modifier can read data from either previous-pass quadrant, and
any modifier can read from the current-pass modifier quadrant also.

Computer Interface

Information is passed to and from the computer in two ways:
I/0 instructions, and direct memory access. With the delay
memory option, a low-bandwidth bidirectional 20-bit path permits
read- and write—accesses by the computer.

Computer I/O instructions perform general control, status
sensing, and diagnostic functions. The direct memory access path
is provided for data transfer in real time. There are three types
of such data transfer: commands (to the device), read data (per
sample) (to the device), and write data (per sample) (from the
device). Each of these three has its own word count (WC) and
core address (CA) registers in the device; they are set up by
I/0 instructions. Commands are always 32 bits; read data may be
either 16 or 32 bits, giving a choice between packed data and full
precision (the left 20 bits are significant in 32-bit mode; in
16-bit mode, the left 16-bit data item precedes the right one);
write data is the left 20 of 32 bits. The device has buffering
for 28 commands, 4 read-data items, and 1 write-data item.

The synthesizer can be conditioned to interrupt the computer
in various circumstances. One class of them can be termed data \
errors: arithmetic overflow during processing, and command overrun.
Command overrun occurs when a Linger command is performed which
specifies a pass at least 1, but no more than 4096, before the
current pass. The other class of interrupt conditions relates to
direct memory access. Separate indications are provided for read
data, write data, and command WCs being exhausted, and also for
underrun conditions. Command underrun occurs when on an update
tick there is no command to be performed (normally when there is
no update activity due, a Linger command is being performed). The
read data and write data underrun states occur when the device must
stop its clock momentarlly to wait for memory access; this means the
device is not operating in real time.



PDP-10 INTERFACE

The computer interface specifications are discussed here in
terms of the implementation for the PDP-10 computer. Direct memory
access refers to 32-bit data and commands right-justified in 36-bit
words. The synthesizer uses a group of four contiguous device codes
(beginning with one which is divisible by four), referred to below
as A, B, C, and D. Codes A, B, and C are used by the basic
synthesizer; code D is used for the Delay Memory option. Two
priority interrupt channels are employed; channel B for command
word count exhausted, and channel A for all other interrupt causes.

CONO-A 18 bits: sets overall status, diagnostic readback address
CONO-B 18 bits: sets miscellaneous status
DATAO-A 32 bits: sends command to be performed
DATAO-B 36 bits: sets CA (core address) or WC (word count) for
commands, read data, write data
DATAO-C 20 bits: (only when running) for diagnostic purposes,
sets write-buffer data from bits 4-23
DATAO-D 36 bits: writes bits 0-19 into Delay Memory location
designated by the ones' complement of bits
20-35. Data overwritten is saved to be read
by DATAI-D.
CONI-A 20 bits: reads overall conditions
CONI-B 16 bits: reads cause of interrupt
DATAI-A 20 bits: (only when not running) diagnostic readback
DATAI-D 20 bits: reads Delay Memory data saved when overwritten by
most recent DATAO-D.
reads state of TZA flag into bit 25. TZA is
cleared by DATAO-D and set shortly thereafter
when the overwritten data is available to be
read by DATAI-D. Between the DATAO-D and the
setting of TZA no DATAO should be given to
the synthesizer.

CONI-D



18 19 20 21 22 23 24 25 31 32 33 35

CC: 00 no effect
01 stop clock
10 start clock
11 cause one tick

T: 0 no effect
1 reset tick counter to beginning of pass (if stopped,
and processing ticks permitted)
A: 0 set interrupt channel A from PIA
1 no effect
B: 0 set interrupt channel B from PIA
1 no effect

NN: 00 no effect
01 permit processing ticks
10 inhibit processing ticks (all ticks update)
' Note: To ensure that all ticks update,
after this CONO is given the clock must
be run at least eight ticks.
11 (reserved)
DDDDDDD: diagnostic readback address, specifies internal
data to be read by DATAI-A.
0 no effect
1l reset (also caused by the PDP-10 I/O Bus Reset)
Principal effects: stops clock; inhibits
processing ticks (all ticks update); resets ME,
PE, NX errors; disables stop and interrupt on
AAA causes, CE, WE, and RE; indicates 16-bit
read data; sets WC exhausted for commands, read
data, and write data; marks empty the buffers
for commands, read data and write data; sets PIA
channels A and B to 0. Does not reset the tick
counter, pass counter, or CONI-B information.

R:



28 29 30 31 32 33 35
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00 no effect
01 reset ME error
10 reset PE, NX errors
1ll reset ME, PE, NX errors
(for error descriptions see CONI-A below)
(decoded with AAA)

BB:

00AAA
10AAA
01AAA
11aAA

disable stop on cause AAA
enable stop on cause AAA
disable interrupt on cause AAA
enable interrupt on cause AAA

AAA: 001 command overrun: Linger command being

00110
10110
01110
11110
01000
11000
00111
10111
01111
11111

performed specifies pass number less
than current pass count (but difference
less than 4,096 passes).
010 modifier mixer overflow
011 modifier multiplier overflow
100 modifier add to sum overflow
101 generator add to sum overflow
disable interrupt on write data WC exhausted
enable interrupt on write data WC exhausted
disable interrupt on read data WC exhausted
enable interrupt on read data WC exhausted
disable interrupt on command WC exhausted
enable interrupt on command WC exhausted
indicate 16-bit read data
indicate 32-bit read data
(reserved)
(reserved)



CONI~-A :AR:BR:IR:CE:WE:RE:ME:PE:NX: R:NH:CU:WU:RU: PIA-A : PIA-B :

AR: interrupt desired on channel A (regardless of PIA)
BR: interrupt desired on channel B (regardless of PIA)
IR: interrupt desired (by 11AAA cause, ME, PE, NX, WE, RE,
CE, regardless of PIA). The actual interrupt request
will not occur before the interrupt-desired indication.
The clock must be running for an interrupt request to
be presented.
parity error detected in delay memory
parity error during direct memory access
non-existent memory addressed by direct memory
access (PE and NX errors suppress further memory
access and DATAO-A functions until reset by reset
‘or CONO-B)
R: clock running (not stopped)
NH: not held (like R but also off while clock stopped
for memory access)
WU: set by write data underrun; cleared by this CONI
RU: set by read data underrun; cleared by this CONI
CU: set by command underrun; cleared by this CONI
WE: write data WC exhausted
RE: read data WC exhausted
CE: command WC exhausted
PIA-A: Priority Interrupt Assignment, channel A
PIA-B: Priority Interrupt Assignment, channel B



DATAO-B

20 21 22 23 24 25 26 27 35

Il: command overrun
I2: modifier mixer overflow: T...T = (2 * modifier #) + 7

I3: modifier multiplier overflow: T...T = (2 * modifier #)
+ 5 or 6
I4: modifier add to sum overflow: T...T = (2 * modifier #)

+ 9
I5: generator add to sum overflow: T...T = generator # +9
Note: Il...I5 only come on if the associated
condition occurs and interrupt is enabled on
it (11aAa). If Il...I5 are all off TTTTTTTTT
is indeterminate. Il...I5 and LC are cleared
by this CONI.

LC: (lost cause) After the interrupt cause encoded in
this word occurred, but before this word was read by
the computer, another of these interrupt causes
occurred.

TTTTTTTTT: tick number when cause occurred (nine bits
needed to allow for pipelining)

UuuUU: 0000 no effect
0001 set write data CA
0010 set read data CA
0011 set command CA
0101 set write data WC
0110 set read data WC
0111 set command WC
others: (reserved)
A...A (24 bits): core address (if CA)
two's complement of word count (if WC)
Note: A WC becomes not exhausted as soon as it is written
into, thereby permitting memory cycles, so a CA should
be written before the corresponding WC.



GENERATORS

Parameters

Associated with each generator are the following quantities:

GO (20 bits) alpha =~ oscillator frequency sweep rate
GJ (28 bits) omega -- oscillator frequency
GK (20 bits) theta =-- oscillator angle

GN (11 bits) number of cosines to be summed

GM (4 bits) binary scale of cosine or sum of cosines

GP (20 bits) delta -- decay rate

GQ (24 bits) phi -- decay exponent

GL (12 bits) asymptote

GSUM (6 bits) sum memory address into which output is added

GFM (7 bits) sum memory address from which frequency modulation
data is taken
GFM = QAAAAAA
Q: 0 generator-last-pass quadrant
1 modifier-last-pass quadrant
AAAAAA: sum address within quadrant

GMODE (10 bits) generator mode
GMODE = RRRREESSSS

Run Mode
osc. run? env, run? add to sum?
RRRR:0000 inactive no no no
0001 pause no no no
1111 running A yes yes, sticky yes
1110 running B yes ves, free; yes
triggers subseq.
on overflow
1001 wait ves no no
1101 running C yes ves, free; yes
stops and
triggers subseq.
on overflow
0111 read data from computer no yes yes
0011 write data to computer no no no
0010 write data to DAC no no no

(address in GO)



The envelope side of the generator can be sticky, which means
that rather than overflow it will stay at the last value it attained
before it would have overflowed; or it can be free, in which case it
wraps around.

Transitions between run modes can be accomplished in various

ways.
1)
2)

3)

4)
5)

A command can output a new GMODE.

A MISC command can specify "clear all pause bits", which
will cause any generator in run mode 0001 to change to
mode 1111.

A MISC command can specify "clear all wait bits", which
will cause any generator in run mode 1001 to change to
mode 1111. '

If the envelope side of a generator in run mode 1101
overflows, that generator goes to run mode 1001.

A generator in run mode 1001 will go to run mode 1101 if
on the same pass the preceding generator (the one
whose generator number is one less) caused a
trigger (was in run mode 1110 or 1101 and envelope
overflowed) .

Envelope Mode

2%*(~Q)
2%*(-Q)

Oscillator Mode

Ssss: 0100
0001
0010
0011
0000
1000

Processing

sum of cosines
sawtooth
square

pulse train
sin (K)

sin (J + £m)

Calculations performed for a generator, governed by its
mode, proceed as detailed below.

1) The word in sum memory addressed by GFM is read (20 bits);
the sum is formed of it and the high-order 20 bits of
GJ (call the result TempO).

2) If the oscillator side is running, GO, right-adjusted with
sign extended, is added into GJ.



3)

4
5)

6)

7)

8)

9)

10)
11)

12)

13)

14)

If the oscillator mode is 1000, TempO0 is taken; otherwise GK.
Call the 20-bit result TemplE, and its high-order 13 bits
Templ.

If the oscillator side is running, Temp0 is added into GK.

If the run mode is 0011, the word in sum memory addressed by GFM
is sent to the CPU as the next write-data item; if the run
mode is 0010, it is sent to the DAC addressed by the low-order
4 bits of GO.

In oscillator modes other than 0000 and 1000, Templ is multiplied
by GN. Call the low-order 12 bits of the product, with two bits
equal to 01 appended to the right, the 1l4-bit result Temp2.

In oscillator modes 0000 and 1000, Temp2 is the high-order 13
bits of TemplE, with a bit equal to 1 appended to the right.

If the oscillator mode is 0000 or 1000, pi/2 is taken (the binary
number 010...0); otherwise Templ. Call the result Temp3.

In floating point, the product csc (Temp3) * sin (Temp2) is
formed; then converted to fixed point with a scale factor
of 2*%¥*(~GM). Call the result (13 bits) Temp4.

The result of the oscillator side (13 bits, call it Temp5) is
then determined according to the oscillator mode.
SSSS: 0100 Temp4
0001 Templ (but 0 when Templ is 1000000000000) ,
0010 -1/2 (on a scale from -1 to +1) if Templ is negative,
else +1/2
0011 +1/2 if overflow occurred in step 1) or 4) above;
else 0.
0000 Temp4
1000 Temp4

The high-order 12 bits of GQ are taken (call this Temp6).

If the envelope side is running, GP right-adjusted, sign
extended, is added into GQ (overflow dealt with according
to the run mode). (The overflow condition is GQ changing
sign such that the high-order bit of the resultant GQ equals
the sign bit of GP.)

If the envelope mode is 10 or 11, 2**(-Temp6) is looked up;
otherwise Temp6 is taken. Call the resulting 12 bits Temp?7.
Scaling is such that if Temp6 is 0, then 2**(-Temp6) is
111 111 111 101 binary; if Temp6 is 000 100 000 000 binary,
then 2**(-Temp6) is 011 111 111 110.

If the envelope mode is 01 or 11, Temp7 is added to GL; else
it is subtracted from GL. This creates Temp8, the result
of the envelope side.

Temp5 is multiplied by Temp8. If the run mode specifies adding
into sum memory, the high-order 19 bits of the rounded product,
right-adjusted with sign extended, are added into the sum
memory location designated by GSUM; except that in run mode
0111, the product is added to the next read-data item from the
CPU and the sum replaces the contents of the sum memory
location addressed.

-10-



Parameters

MO
M1
Lo
Ll

MIN
MRM

MSUM

(30
(30
(20
(20

(8
(8

MODIFIERS

Each modifier has the following numeric parameters.

bits)
bits)
bits)
bits)

bits)
bits)

coefficient

other coefficient
running term

other running term

address in sum memory where modifier reads "A" data
address in sum memory where modifier reads "B" data

MIN, MRM = QQAAAAAA

00 generator-last-pass quadrant
01 modifier-last-pass quadrant
10 modifier-this-pass quadrant
11 (reserved)

AAAAAA: sum address within gquadrant

(7 bits) result address in sum memory

R:

MSUM =

RAAAAAA

add to sum
replace sum

AAAAAA: sum address in modifier-this-pass quadrant

=11~



MMODE (9 bits) modifier mode
MMODE = MMMMMAABB

AA: scale of second multiplication
BB: scale of first multiplication
For fraction multiplications:

00: x 1
0l: x 2
10 x 4
11: x 8
For integer multiplications:
00: x 1/4
01: x 1/2
10 x 1
11: =x 2

A multiplication involving parameter Ml will be the first
multiplication; one involving MO will be the second.

MMMMM: function
00000: inactive
00010: wuniform noise
00011: triggered uniform noise
00100: 1latch
00110: threshold
00111: invoke delay unit

01000: two poles
01001: two poles, MO variable
01011l: two poles, Ml variable
01100: +two zeros
01101: two zeros, MO variable
01111l: two zeros, Ml variable

10000: integer mixing
10001: one pole
10100: mixing

10110: one zero

11000: four-quadrant multiplication
11001: amplitude modulation

11010: maximum

11011: minimum

11100: signum

11101: =zero-crossing pulser

others: (reserved)

-12~-



Processing

Computations performed by a modifier depend entirely on
its mode. In the descriptions below, A is the 20-bit sum memory
word addressed by MIN; B is the word addressed by MRM; when MO
or Ml is used, its high-order 20 bits are taken, but when a
quantity is added to MO or M1l it is added right-justified, with
sign extended; S is the 20~bit result that is added into the sum
memory location addressed by MSUM. DM is the 20-bit word read
from or sent to a delay unit. Multiplications are 20 bits x 20
bits, signed, and the product (unless otherwise noted) is the
high-order 20 bits, rounded.

00000: inactive. S := 0

10000: integer mixing. S := A*MO + B*M1 (integer multiply, low=-order
20 bits of product used; overflow ignored)

10100: mixing. S := A*MO + B*MI1l
00100: latch (sample and hold). S := L1l; If B*M1 is not 0, L1 := A

11100: signum. If A*MO is less than B*M1l, then S := -1 (integer);
if A*MO0 equals B*M1, then S := 0;
if A*MO0 is greater than B*Ml, then S := 1 (integer)

11101: =zero-crossing pulser. TempO := B*MO; Templ := L1*M1;
if Templ is not 0 and either Temp0 is 0 or TempO*Templ is
negative then S := -epsilon, else S := 0; L1 := TempO
(The term =-epsilon is a binary number with all bits set.)
11011: minimum. S := min (A*MO, B*M1l)

11010: maximum. S := max (A*M0, B*M1)

11001: amplitude modulation. S := L1*M1l; L1 := A * ((B+1)/2)
(The term ((B+1l)/2) interprets B as a signed two's-complement
fraction ranging in value from -1 to +l-epsilon.)

11000: four-quadrant multiplication. S := L1*Ml; L1 := A*B

-13-



10001:
10110:
01000:
01001:

01011:

01100:
01101:

01111:

00010:

00011:

00110:

00111:

one pole. S := L1*M1l + B*L0O; L1 := S
one zero. S := L1*M1 + LO*MO; I0 := Ll1; L1 := A

two poles. S := L1*Ml + LO*MO + A; LO := L1; L1 := S
two poles, MO variable. S := L1*M1 + LO*MO + A;

LO := Ll; L1 := S; MO := MO + B

two poles, Ml variable. S := L1*M1 + LO*MO + A;

LO :=Ll; L1 ¢:= S; Ml := Ml + B

two zeros. S := L1*M1 + LO*MO + A; LO := L1; L1 := A
two zeros, MO variable. S := L1*M1 + LO*MO + A;

LO := Ll1; L1 := A; MO := MO + B

two zeros, Ml variable. S := L1*M1 + LO*MO + A;

IO := L1; L1 := A; ML := M1 + B

uniform noise. S := LO + L1*MO (integer multiply, low-order
20 bits of product used; overflow ignored); L1 := S

triggered uniform noise. S := L0 + L1*MO (integer multiply,
low-order 20 bits of product used; overflow ignored) ;

if B*M1l (integer multiply, low-order 20 bits of product
used; overflow ignored) is not 0, L1 := S

threshold. If A*MO0 + LO is less than 0, then S :=
if A*MO + LO is equal to or greater than 0, then S

invoke delay unit.

Unit # := MRM (low-order 5 bits);

S := LO + L1*M0; LO := DM; TempO := A + DM*M1;
L1 := TempO; DM := TempO

0

Il ~e

B*M1

Timing Considerations

The following relationships apply to references to the

modifier-this-pass quadrant of sum memory.

1) Modifier number M writes into sum memory (read-add-write of

replace) on tick number 2*M + 7.

2) Modifier number M reads word B on tick number 2*M.,
3) Modifier number M reads word A on tick number 2*M in the

following modes: integer mixing; mixing; signum; minimum;
maximum; amplitude modulation; four-quadrant multiplication;
threshold.

4) Modifier number M reads word A on tick number 2*M + 6 in the

following modes: 1latch; one zero; two poles, two zeros
(all six modes); invoke delay unit.

-14-



DELAY UNITS

A common pool of addressable memory, which may comprise up
to 65,536 20-bit words, is available for use by the delay units.
By programming, each active delay unit is assigned its own contiguous
area of the memory.

Quantities

Each delay unit has the following numeric parameters.

P mode (4 bits). The mode is interpreted as follows:
mode: 0000 inactive
1000 delay 1line
1010 table look=-up
1011 table look-up, argument rounded
others: (reserved)

Z unit length (16 bits) or binary scale factor (4 bits).
In delay line mode, Z gives 1 less than the total number of
locations in delay memory used by this delay unit, i.e. the
index of the last delay memory address for this unit. 1In
table look-up modes, the low-order four bits of Z specify
the number of binary places that the argument is shifted to
the right before it is used to address the memory; if
rounding is specified, the address after shifting is
incremented by 1 if the most-significant bit shifted out
was a 1.

Y index (16 bits). In delay line mode, this is the running
index on the memory area for the unit.

X base address (16 bits). The base address is the lowest-numbered
delay memory location used by this unit.

Processing

In inactive mode, delay memory is not modified and the unit
returns indeterminate results. Delay units not accommodated due
to the number of ticks in a pass act as if in the inactive mode.
If the number of processing ticks is 4*n + m where m is 1, 2, or 3,
delay unit number n should be put in the inactive mode.

In delay line mode, a 20-bit data word is received from
the modifier that calls for the delay unit, and another 20-bit
word is sent to it. The word received is put into the next slot
in the delay line. It will be retrieved and sent back to the
modifier Z+3 passes later.

In table look-up mode, the 20-bit data word received
from the modifier is shifted to the right Z bits, bringing in zeros,
and the right 16 bits of the result are used to address the memory
area assigned to the unit. The 20-bit word in the addressed memory
location is returned to the modifier three passes later.

-15-



COMMANDS

All commands have 32 bits. Generally the left 20 bits are data,
the next 4 or 5 bits identify the kind of parameter, and the last 8 or 7
bits address the generator or modifier affected. If more than one data
field is packed in the 20 bits, disable bits will be provided to
facilitate loading a subset of the fields. In a few cases, a bit is
also provided in the data area to clear (put to zero) a related parameter
in the same generator or modifier.

4 23 24 28 29 30 31 32 33 34 35
: (20) data : 0 0 0 0 0O: RR : xX X: W: P: S:
MISCmm e e e e e e e e e e e e e e ———————_———————
RR: 00 no effect
01 1load DX from data
10 load TTL buffer A from left 16 bits of data
11 1load TTL buffer B from left 16 bits of data;
set analog output filters from right 4 bits of data:
0lxx Mode O
00nn Mode 1, frequency £f0, f1l, £2, or £3 according
to nn
1xxx no change
W: 1if 1, clear all wait bits
P: 1if 1, clear all pause bits
S: if 1, stop clock
4 19 20 23 24 28 29 30 31 35
s (16) data :(4)data: 0 0 0 O 1: U U: (5) unit # :

DLY X, Y, Z
Uu: 00 X 16 bits base address; clear Y
01 Y 16 bits one's complement of index
10 Z,P 16 bits delay unit size minus 1, or scale (low
4 bits of 16); 4 bits mode
11 (unused)

4 23 24 28 29 30 31 32 33 35

TT: 00 no effect
10 Linger: process no further commands until pass counter
equals data
11 clear pass counter, then Linger as for 10
01 set pass counter from data

=16~



4 23 24 , 28 29 30 31 32 33 35

# TICKS
Q: 0 designate highest-numbered processing tick per pas
(should not exceed 255) '
1 designate next-to-highest-numbered tick (processing
plus overhead plus update) per pass
4 23 24 26 27 28 35
GQ : (20) data : 0 0 1l: E: (8) gen # :
E: 0 Q right-adjusted, sign extended
1 Q left-adjusted, low bits from left of DX; clear DX
4 23 24 26 27 28 35
GJ (20) data : 0 1 O0: E: (8) gen # :
E: 0 J right-adjusted, sign extended
1 J left-adjusted, low bits from left of DX; clear DX
4 23 24 27 28 35
GP : (20) data : 0 1 1 O: (8) gen # :
4 56 8 9 19 20 23 24 27 28 35
GN, :N:M:x x x: (1l1) GN :(4) gM : 0 1 1 1: (8) gen # :
GM = e e e e e
N: if 1, disable loading GN
M: if 1, disable loading GM
4 56 17 18 23 24 27 28 35
GL, :L:S: (12) GL : (6) GSuM : 1 0 O O: (8) gen # :
G UM == == e e e e e e e e e
L: if 1, disable loading GL
S: if 1, disable loading GSUM
4 23 24 27 28 35
GK : (20) data : 1 0 0 1: (8) gen # :

-17-



4 56 7 16 17 23 24 27 28 35

tM:F:C: (10) GMODE :(7) GFM: 1 0 1 O: (8) gen # :

GFM M: if 1, disable loading GMODE
F: if 1, disable loading GFM
C: 1if 1, clear GK

4 23 24 27 28 35
GO : (20) data :1 0.1 1: (8) gen # :
4 23 24 26 27 28 29 35
MM (20) data : 1 1 0:V V: (7) mod # :

‘'VV: 00 MO right-adjusted, sign extended
01 M1 right-adjusted, sign extended
10 MO left-adjusted, low bits from left of DX; clear DX
11 Ml left-adjusted, low bits from left of DX; clear DX

4 23 24 27 28 29 35
ML : (20) data :1 1 1 O0: N: (7) mod # :
N: 0 LO
1 Ll
456 7 8 le 17 23 24 28 29 35
tM:S:C:H: (9) MMODE :(7)MSsUM: 1 1 1 1 O: (7) mod # :
MMODE,

MSUM M: if 1, disable loading MMMMM bits of MMODE
S: if 1, disable loading MSUM
C: if 1, clear 1O
H: if 1, disable loading AABB bits of MMODE

4 56 7 8 15 16 23 24 28 29 35
:R:I:C:x: (8) MRM : (8) MIN : 1 1 1 1 1: (7) mod # :
MRM,
MIN R: if 1, disable loading MRM

I: if 1, disable loading MIN
C: if 1, clear L1

-18-



SYSTEMS CONCEPTS DIGITAL SYNTHESIZER ANALOG OUTPUT SPECIFICATION

The signal path for one analog output involves the following sections:
Channel selection logic (addressing)
Digital hold register
Digital to analog converter
Sample-and-hold
Program-controlled filter
Buffer amplifier.

Each section is specified at 25 degrees C as follows.
Channel selection logic: 4 bits (1 of 16)
Digital hold register: 14 bits

Digital to analog converter: 14 bits
Linearity: 0.005%

Sample-and-hold: full power bandwidth 0 to 40 kHz

Filter: two modes
Mode 0: l-pole RC at 200 kHz
Mode 1l: 8-pole Butterworth, 4 programmable
frequencies subject to the relationships £0=A,
f1=A+B, £f£2=A+C, £3=A+B+C; full power bandwidth
0 to 18.5 kHz max.

Buffer amplifier: output +/- 5 V max., unbalanced
Output current: 4 mA max.
Short circuit protection: to ground only
Full power bandwidth: 0 to 18.5 kHz for 10 V swing
Output source impedance: 100 ohms
Output connector: BNC jack

The following are overall figures with Mode 0 filtering:
Gain error: 2.5%
Offset error: 20 mv
Noise at sampling rate and its harmonics: 10 mV max. (RMS)

Other noise 10 Hz to 50 kHz: 1 mV max. (RMS)
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SYSTEMS CONCEPTS

DIGITAL SIGNAL SYNTHESIZER

The Systems Concepts Digital Synthesizer is a computer-driven
real-time device which creates signals such as represent the
sounds of music and speech. It eliminates the former problems
of analog synthesizers, such as drift, poor tracking between
units, inaccuracy, and inflexibility. It adds the benefits of
control from a general-purpose computer, with'which sound can
be composed, edited, and remembered or recalled in real time -
or at any slower rate, and it matches the computer in rapid
flexibility. o | !

Basic elements of the Digital Synthesizer are generators and
modifiers. Generators are controlled sources of signals, and
modifiers are controlled signal processors.

Each generator can provide any of the following waveforms: ,
sine, sum of cosines (equal amplitude harmdnics), square, saw-
tooth, or impulse train; perfdrms frequency modulation if de-

sired; and automatically can apply any of the following enve~'
lopes: 1linear rising or falliﬁg, exponential growth or decay,
or asymptotic rise or fall. | |

Each modifier can do any one of the following: simulate a pole
'or pole pair (resonator), simulate a zero or pair of zeros,
scale an input, mix two inputs, perform amplitude modulation

or ring modulation (four-quadrant multiplication), or generate
uniform noise. Basic nonlinear operations are also provided.
Arbitrarily complex filtering (low pass, high pass, band pass,
band stop) can be accomplished by cascading pole pairs and
zeros.

TELEPHONE: 415-433-5400 ~ TWX: 910-372-6062
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System architecture permits sums to be formed of the outputs

of any number of generators or modifiers. The output of any
generator br modifiér,_or the sum of several such outputs,

can then be used as the data input or modulation input to any
modifier, or as the: frequency modulation input to any generator.

An optional Delay Memory attachment permits'any modifier to
act as a delay unit or as an all-pass'reVerberator.‘

The number of generators‘and modifiers available at any instant
depends on the sample rate at which the synthesizer is operated.

‘\Sample Rate | Generators Available Modifiers Available
50 KHz 96 - 48
30 KHz ' 160 : 80
20 KHz 240 ’ 120
18.75 KHz or less _ 256 128

Output can be sent either to four high-resolution digital-to-
analog converters, or back to the controlling computer for
further processing or storage. Complete test‘and diagnosﬁic
features are built in. Interfacing can be proVided»for any.
positive~logic TTL or DTL computer. "
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The Systems Concepts Digital Synthesizer

Introduction

This is a discussion of the Systems Concepts Digitai Synthesizer
from three viewpoints. First, the functional characteristics of
the original design are reviewed. Then follows a surVéy of the
facilities and techniques used in the engineering, manufacture, and
checkout of the Synthesizer. Last, the performance of the finished
unit is compared to the design goals and some comments are offered
on the important issue of long-term reliability.

Functional Characteristics

From the start, the Synthesizer was designed with sufficient word
’lengths, computing power, and flexibility of interconnection to
serve the needs of serious research and composition efforts. The
following techniques of synthesis and processing are possible, and
may in fact be in progress simultaneously: additive; subtractive;
modulation; delay/reverberation; table look-up; DMA (direct memory
access). Each of these techniques has proved its worth in software
synthesis and should be supported by a comprehensive hardware

synthesizer.

Additive Synthesis: The Synthesizer has 256 processing elements
named generators. Each generator has an oscillator side and an

envelope side; their instantaneous product is the output of the
generator. The envelope side has the conventional angle, frequency,
and sine look-up hardware, as well as the facility to bypass the
sine function to produce sawtooth, square, and pulse-train wave
forms. In addition, there is an fm input from other elements of the
Synthesizer, and each generator also has a frequency sweep parameter
built in to provide a linear rate of change in frequency. Each
oscillator also can perform the Winham-Steiglitz sum-of-cosines
algorithm to produce a band-limited pulse train. On the envelope
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side, each generator can create a linearly rising or falling envelope
or one showing exponential growth or decay, upward or downward,
around an arbitrary asymptote. A trigger feature permits a series of
generators to have their envelope sides chained together, producing
more complex envelope forms without the need for computer interven-
tion. The product of oscillator and envelope is added into one of 64
locations in sum memory. Each generator can specify which location

its output goes to; when several generators designate the same
location, it performs the addition which is the basis of the additive
synthesis technique. Word sizes in the generators differ according
to function. The looked-up sine value, for instance, in accordance
with perceptual tests, has twelve fraction bits, four exponent bits,
and a sign bit. The frequency, by contrast, has 28 bits, so that it
can be augmented slowly by the frequency-sweep term.

Subtractive Synthesis: There are 128 processing elements called
modifiers. Among other possibilities, each modifier can be condi-
tioned to act as a resonator (pole pair) or antiresonator (zero
pair). More complex filtering operations can be implemented by
cascading or paralleling modifiers. Each modifier has separate
parameters indicating where in sum memory to find its input data,
and where in sum memory to add its output data. A second input from
sum memory can be used to sweep either of the filter coefficients.
Possible excitation sources for filtering include one or more
generators, perhaps in sum-of-cosines mode; or a modifier in uniform

noise (similar to white noise) mode.

Modulation: Frequency modulation, as mentioned above, is available
with every generator. Amplitude modulation and four-quadrant
multiplication (corresponding to the analog process of ring modula-
tion) are modes to which any modifier can.be configured. Other mddes
include basic nonlinear operations such as minimum, maximum, sample
and hold, threshold detect, and zero-crossing pulser. Since each

of the 128 modifiers can be set to its own mode, depending on the
needs of a particular piece the Synthesizer may be arranged to have

as many as 128 resonators, for instance, or in another case as many
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as 128 ring modulators. Data paths in the modifiers are 20 bits

wide, including the multiplier.

Delay and Reverberation: The Synthesizer has provision for 64K
‘words (K=1,024), 20 bits wide, of delay memory. This is accessed

by 32 delay units, which in turn communicate with the other elements

of the Synthesizer through modifiers in delay mode. Each modifier
in delay mode specifies which delay unit it deals with, and each
delay unit specifies the area it uses in delay memory. Each combin-
ation of a modifier and a delay unit can perform not only the delay
line function, but also various reverberation processes including
the all-pass configuration of Schroeder. As with all parameters in
the Synthesizer, those governing the reverberation characteristics

can be altered by computer control during the progress of a piece.

Table Look-Up: Each of the 32 delay units can use delay memory for
table look-up purposes instead of as a delay line. This feature can
be used for stored waveforms or envelopes; and also to look up

mathematical functions, such as square root, which may be needed for

certain synthesis and signal-processing algorithms.

DMA: As it runs, the Synthesizer can take data streams, each com-
prising a 20-bit word per sample, direct from computer memory, and
likewise can put data streams into memory. This can be used to
advantage 1in several ways. A piece which exceeds the capacity of
the Synthesizer can be run in several passes; -the Synthesizer can
merge signals it creates with sounds generated elsewhere; it can be
used to process signals from another soﬁrce, such as natural sounds,

possibly returning the results to the computer for further use.

'Speed: Based on an analysis of increasing performance versus
increasing cost, the following was established as a design goal:
In 780 nanoseconds, the Synthesizer should do the processing for

four generators, two modifiers, and one delay unit.
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Development

Engineering of the Synthesizer made heavy use of computer-aided
design techniques developed on the Systems Concepts in-house
computing facility. All schematic drawings for the system were
done by machine, and machine-checked for consistency. For the
printed-circuit logic boards, computer programs did the parts
placement, resulting in assembly drawings; and then laid out the
complete wiring of each card. Results were full-size artwork and

a paper tape to run the numeric-controlled drill making the printed
circuit boards. For those portions of the Synthesizer on Wire-
Wrap panels, the computer system produced data files for fully
automatic machine wrapping: this avoids a significant source of
error and ensures the best possible workmanship. As another part of
the design automation process, various items of metalwork--brackets,
chassis, etc.--were designed}with the aid of computer programs which

created paper tapes to run the actual metalworking machines.

Checkout too made heavy use of the computer. A PDP-10 system was
used to operate the Synthesizer, with the help of various assembly,
editing, and debugging programs. Interactive routines were developed
to send various strings of commands to the Synthesizer and to observe
the results in real time in both analog and digital domains. Instru-
mentation used in checkout included a l6-channel logic analyzer and
an audio-frequency spectrum analyzer, both of which proved to be of"
great value. One more tool of great importance in checkout was
provided by the diagnostic hardware in the Synthesizer and the
diagnostic software which employs it. More than 10% of the hardware
in the Synthesizer is strictly for diagnostic purposes: it permits

a computer program to check the calculations performed by the
Synthesizer at each step of the processing, thereby pinpointing

any failure. In support of this hardware, some 50,000 words of

diagnostic software have been written.

Following checkout the unit, comprising approximately 2,500 inte-

grated circuits, met all design goals.
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Reliability and Maintainability

Long-term reliability and maintainability must be considered at all
stages in the development of a system. JIn this Synthesizer, these
issues have been addressed by techniques including conservative
design, careful workmanship, extensive diagnostic features, and
comprehensive hardware documentation. Based on our experience with
these techniques in similar products, we expect the Syﬁthesizer to
compare favorably in terms of reliability with other devices of
similar complexity. One measure of reliability is voltage margin:
before shipment, margins on the 5-volt supplies exceeded 10.4 volts,
with all elements of the Synthesizer being exercised at full speed.
This gives substantial protection against failure due to environmen-

tal change and aging over the life of the unit.
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A General-Purpose Digital Synthesizer

Peter R. Samson

Systems Concepts, Inc., San Francisco, California

The development of digital music synthesis has been
handicapped by its severe computational requirements.

A large digital synthesizer has been developed to meet
these requirements and to perform synthesis of complex
musical sounds in real time. Its architecture provides
a large number of building blocks for digital synthesis
and processing, and means for rapid and complete control
of their interconnections.

0. INTRODUCTION

Over the past twenty years, digital music synthesis == usually performed
on large general-purpose computer systems with the aid of complex
programs =-- has given us not only a variety of musically significant
compositions, but also several fundamental and elegant techniques for
sound synthesis and a tool of unparalleled flexibility for psycho-
acoustic research.

Digital synthesis offers numerous advantages over analog techniques.
Every processing element can be controlled precisely, instantaneously,
and repeatably. Digital processing, with its inherent accuracy and
stability, can perform the tasks of current analog modules with
substantially less noise and distortion, and introduces many new sonic
resources, such as time-varying timbre and reverberation.

This work has been held back, however, by the sheer volume of compu-
tation required to digitally synthesize sounds of musical interest,

and especially for complexes of such sounds. A time scale of 100 --
meaning 100 seconds of computational effort for each 1 second of sound
-~ is not uncommon. This is despite the use of powerful computers, and
numerous simplifying assumptions and restrictions in the software. This
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time scale effectively precludes interactive experimentation and
composition, and imposes a severe economic handicap on the otherwise
attractive methods of digital synthesis.

It has recently become feasible to develop digital synthesis hardware,
operated as a peripheral device in a computer system, which can regain
the time factor of 100 or more. This article describes one such digital
synthesizer, designed to meet the computational needs of composers,
psychoacousticians, and musical researchers.

This synthesizer is viewed as general-purpose, not only because its
design encompasses the currently favored synthesis techniques, but also
because it offers basic computational building blocks which can be
interconnected, under program control, to perform at high speed new

- synthesis techniques as they are developed.

Its architecture and performance specifications, in essentially their
present form, were first presented informally at the Computer Music
Conference at Michigan State University in 1974. The prototype unit was
installed at the Stanford University Center for Computer Research in
Music and Acoustics in October of 1977, and has since been in service
there around the clock.

1. GENERAL DESCRIPTION

A block diagram of the synthesizer is shown in Fig. 1. There are six
major functional blocks: the computer interface, the generators, the
modifiers, the delay units, sum memory, and the digital-to-analog
converters (DACs). The computer interface provides bidirectional
communication with both the Input/Output Bus and the Memory Bus of the
host computer; it also contains a first-in-first-out buffer (FIFO) to
minimize delays in processing which might otherwise arise due to the
comparatively slow speed of the computer memory. The generators and
modifiers perform the actual computations for signal synthesis and
processing, described in detail below. The delay units provide bulk
storage for use as delay lines or stored function tables. Up to 16
DACs can be provided: these include appropriate deglitching and
computer-selectable low-pass filters. :

Associated with each processing element is a set of parameters. Each
parameter can be categorized as either dynamic or static. The dynamic
parameters are those whose values change every sample: the phase angle
of an oscillator, for instance. The static parameters are not changed
on a per-sample basis, though the term "static" is a relative one: they
may be changed by computer command hundreds or thousand of times per
second. Static parameters may be further subdivided into coefficients
(numeric quantities comparable to knob settings), sum memory addresses
(describing the interconnection of processing elements), and modes
(which select the specific function performed by a processing element).

To produce the final output data comprising one sample of audio (for
however many DACs are in use), certain calculations must be performed
for each active generator, modifier, and delay unit. These calculations



comprise one pass, which in the hardware is a series of 195-nanosecond
ticks. The number of ticks in a pass can be programmed for a given
composition, depending on the desired sample rate and the maximum number
of processing elements to be active at one time.

2. SUM MEMORY

The interconnections between generators and modifiers are accomplished
through the sum memory. Sum memory is divided into four quadrants,
designated SA, SB, SC, and SD in Fig. 2. SA accumulates sums of
generator outputs during a given pass (sample period); SB holds the
totals of generator outputs from the previous pass; quadrant SC
accumulates sums of modifier outputs during a pass; and SD holds the
totals of modifier outputs from the previous pass. Each of the 256
generators has a parameter denoting which of 64 locations in gquadrant SA
the generator output is added into; and another parameter denoting
which of 128 locations in sum memory (quadrants SB and SD) it takes its
frequency modulation input from. Similarly, each of the 128 modifiers
has a parameter indicating which of the 64 locations in quadrant SC its
output is added into; and two other parameters indicating where in sum
memory (quadrants SB and SD) its two inputs are to be found. This
four-quadrant organization not only meets the severe bandwidth
requirements of the sum memory (an average of five read or write
accesses every 195 nanoseconds), but also provides a significant
programming benefit: the signal flow from one processing element (or-
from a group of them added up) to another element does not put any
restriction on the sequencing of the elements involved. For example,
the output of generator number 2 can be used as the frequency modulation
input to generator number 1, even though number 2 is performed by the
hardware after number 1. Additional features are provided whereby the
user can direct a modifier to take its input from quadrant SC, and to
put its output into SC by replacement rather than addition. These
features can be used to reduce the number of sum memory locations used
in a configuration with cascaded modifiers, at the cost of requiring
proper ordering of the modifiers involved.

3. GENERATORS

Most of the signal synthesis operations are performed by the generators.
Fig. 3 shows the structure of each generator; to the user it appears
as if the entire block is replicated 256 times, though this is in fact
accomplished with one set of computational hardware time-multiplexed
among 256 sets of data. Each generator has an oscillator portion, an
envelope portion, and a multiplier which multiplies the oscillator
result with the envelope result to produce the final output of the
generator.

3.1. Oscillators

Each oscillator can produce any one of four standard waveforms -- sine,
sawtooth, square, or pulse train -- or any one of a family of band-
limited "buzz" waveforms. These last are sums of the first harmonics
at equal amplitude, according to the sum-of-cosines relation noted



by Winham and Steiglitz (1):

cos kt + cos 2kt + ... + cos Nkt + 1/2
_ 1 sin L(2N+1) (kt/2)]
-2 "sin (kt/2)

These waveforms are useful as harmonic-rich sources for subtractive
synthesis. As N increases, the waveshape approaches that of the pulse
train, but with no energy at frequencies beyond the Nth harmonic. By
proper control of N, components above half the sampling rate can be
avoided, thereby preventing the (usually) undesired nonharmonic aliases
of those components. The sawtooth, square, and pulse train waves are
intended primarily for use as control signals fed into further
processing elements. Additionally, a binary scale factor M has effect
on the sine and sum-of-cosines waves. Not only the choice of waveshape,
but also the number of harmonics N and scale factor M can be spec1f1ed
independently for each of the 256 oscillators.

Basic to the oscillator are the frequency register J and the angle
register K. In each sample period, for each active oscillator, the
contents of J are added into K. The angle K is then taken as an
unsigned fraction of a cycle (MSB = 180 degrees), and applied to the
sine and "buzz" calculation sections. While only the high-order 13 bits
of the angle are used to calculate the sine, a full 20 bits of angle is
maintained and accumulated, giving frequency resolution to approximately
0.02 Hz (at 20 kHz sampling rate). This is necessary for proper control
of beats and similar musical phenomena.

A special generator mode is provided in which angle accumulation is
bypassed, and the sine is taken of the sum of J (normally the frequency)
and the input from sum memory (normally used for FM). This permits a
generator to be used for computation of the sine or cosine of a term in
sum memory.

In addition to the frequency and angle, each oscillator has a sweep rate
register W. Its contents are added to the frequency in J once each
sample period, thereby linearly sweeping the frequency of the
oscillator. Over an extended time period, such an effect is heard as a
glissando. Over a shorter time period, so that it is not perceived
explicitly, this effect contributes significantly to the interest and
character of sounds made by additive synthesis. The frequency register
is 28 bits long, with the sweep rate added into the low-order 10 bits.,
This provides increasing and decreasing sweep rates from about 1.5
Hz/sec to about 780,000 Hz/sec in magnitude (at 20 kHz sampling rate).

Also added into the angle register for each sample is the FM (frequency
modulation) term from sum memory. The FM synthesis method of Chowning
(2) can be implemented with any two generators, the output of one
passing through any of 64 sum memory locations to the FM input of the
other. Alternatively, though, that sum memory location can accumulate
the sum of several generator outputs, or of one or more modifier
outputs, for more complex FM synthesis techniques. Also several
generators can take their FM input from the same sum memory location.



3.2. Envelopes

The envelope portion of each generator has a running term Q and an
increment P. These are analogous to the angle and frequency parameters
of the oscillator side, but more bits are provided in P to accommodate
the case of an envelope changing steadily over a period of time
substantially longer than the period of a typical waveform. No
modulation or rate sweep provisions are included for envelopes, since
these operations can be performed by modifiers.

Normally, the envelope increment is added into the running term at each
sample period. Certain generator modes are provided, however, in which
the addition is suppressed if it would result in overflow (going from a
very large value to one near zero, or vice versa). In these modes the

envelope "pins" or "sticks" when it reaches a maximum or minimum value.

The mode of the generator determines whether the running term is taken
directly as a linear envelope, or its exponential is taken. The data
chosen by this decision is then, according to the generator mode, either
added to or subtracted from an asymptote, L -- a static parameter of the
generator -- to produce the final instantaneous value of the envelope.

The oscillator value and the envelope value are multiplied to yield the
value actually output by the generator. This result is added into sum
memory at the location denoted by the sum address parameter for the
generator.

3.3. Special Generator Modes

Any generator can be put into Pause mode or Wait mode. In either of
these modes, the addition of the final result to sum memory is not
performed and the oscillator angle is not updated. In Pause mode,
updating of the envelope running term is also suppressed. Simple means
are provided in the interface to enable all generators in Pause mode, or
all those in Wait mode, to be put into normal running mode at the same
instant. Also a trigger facility enables one generator to go from
running to Pause mode when its envelope overflows or sticks, and
simultaneously to signal another generator to go from Pause to running
mode. By this means, with proper choice of asymptotes, a segmented
envelope can be applied to a waveform without computer intervention;
the cost is one generator per segment.

Finally, three generator modes are included which do not actually
generate signals but are used to pass data between sum memory and
computer memory, or from sum memory to the DACs. These are: Read Data
mode -- computer memory to sum memory; Write Data mode -- sum memory to
computer memory; and DAC mode -- sum memory to DAC. The source sum
memory address is given by the generator FM address parameter; the
destination sum memory address by the sum address parameter; and the
DAC number by W, which in normal modes is the oscillator sweep rate.
Computer memory addresses are provided by the computer interface.



4. MODIFIERS

The modifiers are the second major class of processing elements in the
synthesizer. They are most often used to take signals generated by
other elements and modify them, such as by filtering, or to combine
them, such as by mixing or modulation. Modifiers can also be used as
sources of signals, including pseudo-random data (white noise).

Like the generators, the modifiers are in fact implemented by
time-multiplexing one set of computational data paths among many sets of
data comprising the static and dynamic parameters of each modifier. In
the case of the modifiers, this multiplexing can be up to 128-fold. The
modifier data paths, shown in simplified form in Fig. 4, are suffic-
iently general to enable each modifier to perform any of a variety of
algorithms, depending on its mode parameter.

Certain characteristics are shared by all modifier modes. A modifier
can perform at most two multiplications; these take two signed 20-bit
factors and produce a signed 20-bit product (either integer or
fraction). Associated with each multiplication operation for a given
modifier is a two-bit binary scale factor: for fractional products this
imposes a further scaling by 1, 2, 4, or 8; for integer products by
174, 1/2, 1, or 2.

Each modifier can take at most two inputs from sum memory, and yields
one output; the output either can be added into a sum memory location
or can replace its contents. Each modifier can have up to two
coefficients (static 20-bit numeric parameters, A and B) and up to two
runnlng terms (dynamic 20-bit numeric parameters, Y and Z). The word
size of 20 bits was chosen after analysis of roundoff noise in cascaded
filter applications.

4,1, Modifier Modes

Mixing: The two inputs are multiplied (fraction or integer) by the two
coefficients, respectively; the scaled products are added to form
the result. ’

Modulation: The two inputs are multiplied together, either as signed
fractions (four-quadrant multiplication) or with one signed and the
other unsigned (amplitude modulation). The product is then
multiplied by a coefficient and scaled to give the result.

Two Poles: One input, two coefficients, and two running terms are used
to implement the recurrence formula:

out (nt) = in(nt) + A out((n-1)t) + B out((n-2)t)

where in(nt) is the input for sample n and out(nt) the corresponding
output, and A and B are the coefficients. Additionally, either
coefficient may be ramped by the other modifier input to sweep the
filter frequency. To accommodate sweep rates that are useful in



practice, each coefficient has a 10-bit low-order extension. (In
such uses, the coefficients are in fact 30-bit dynamic parameters.)
The ramp term from sum memory is aligned so its low-order 10 bits
are added into the extension and its high-order 10 bits are added
into the low 10 bits of the 20-bit coefficient. The sign bit of the
ramp term is extended into the high-order bits of the coefficient.

Two Zeros: The recurrence formula performed is:
out(nt) = in(nt) + A in((n-1)t) + B in((n-2)t).

Like Two Poles, this mode has the option of sweeping either
coefficient.

One Pole, One Zero: These implement respectively the formulas:

]

out (nt) A in(nt) + B out((n-1)t); and

out (nt) A in((n=-1)t) + B in((n=-2)t).

Maximum, Minimum: The two inputs are multiplied by the two coef-
ficients, respectively; the algebraically greater product in
the case of Maximum, or the lesser one in the case of Minimum, is
taken as the output. Rectification and clipping are particular
cases of these operations.

Zero-Crossing Pulser: A running term is used to retain the previous
value of the input, i.e. its value during the previous sample
period. This is compared to the present input. If the previous
sample value was not zero, and the sample has either become zero or
changed sign, a non-zero output is produced; otherwise the output
is zero.

Signum: Each input is multiplied by the corresponding coefficient and
the products are compared. The output of the modifier is -1, 0, or
+1 according to whether the first product is less than, equal to, or
greater than the second product. Hard clipping is one case of this
mode.

Latch: The data at the signal input is passed unchanged to the output
so long as the control input signal is nonzero. When the control
input signal is zero, the previous output is repeated. This is
equivalent to the analog track-and-~-hold operation.

Threshold: If the control input is below the value specified by one
coefficient, the output is zero. Otherwise the output is the
product of the other input and the other coefficient.

Uniform Noise: A digital equivalent to white noise is generated by the
linear congruential method discussed by Knuth (3). The spectral
characteristics of the output are actually dependent on the
coefficients and initial value of the running term; while these are



usually chosen for white noise, they can be altered to introduce
coloration. A related mode is Triggered Uniform Noise, which holds
a given pseudo-random value for successive samples as long as the
control input signal is zero.

Invoke Delay Unit: This mode permits use of the delay memory for table
look-up, delay line, comb filter, or reverberator purposes. These
operations are discussed further below.

While each of these modes provides a useful function in itself, they can
also be taken as building blocks to be assembled into more complex
functions. A number of modifiers in Two Poles and Two Zeros modes, for
instance, can be cascaded or paralleled to perform filtering or
equalization as needed. The particular modes that have been implemented
were chosen to accomplish the most common operations using the smallest
number of modifiers, and to provide a variety of basic linear and
non-linear operations ==- including stored functions and waveform lookup
-— which can be combined to form complex or non-standard configurations.
(Should a particular configuration become widely used, it may be made
more convenient and more economical of resources by adding new modifier
modes. This need be done only once, due to the time-multiplexed nature
of the modifiers, to provide up to 128 of the new processing elements.)

5. DELAY UNITS

The third computational element in the synthesizer is that for the delay
units. This can be time-multiplexed up to 32 ways. Each of the 32
resulting delay units has its own range of addresses in delay memory,
which comprises up to 64K (65,536) 20-bit words of storage. The size
and location of each delay unit's portion of delay memory are parameters
of each delay unit and may be varied at will. It is permissible, and
often useful, to have more than one delay unit using the same area of
delay memory. Each active delay unit is connected to the other elements
of the synthesizer by means of a modifier in Invoke Delay Unit mode.
Which delay unit is coupled to a given modifier is indicated by a
parameter of the modifier,.

Each delay unit has a mode, which may be one of the following:

Inactive: Does not affect delay memory; returns indeterminate
results.

Table Look-up: The input from the modifier is shifted and the
result is used to address a location in the delay unit's area of
delay memory. The amount of shift is a parameter of the delay
unit. The word in the addressed location of delay memory is
returned unchanged to the modifier. A related mode performs
rounding of the shifted number as it is used to address delay
memory .

Delay Line: The area of delay memory used by the given delay unit
is treated as a delay line with one word per sample period. The
input from the modifier is put into the beginning of the delay



line, and the output from the end of the delay is returned to
the modifier.

The modifier in Invoke Delay Line mode performs the following
calculations:

g(mt) = A g((n-1)t) + g((n-p-1)t),
out (nt) = in(nt) + B g((n=-p)t)

where p is the length of the delay line in samples. Depending on the
values of a and b, these computations accomplish the following:

- straight delay (A =
- echo (A # 0,
- comb filter (A =0,
- all-pass reverberation

oow

)
)

oo

0);
B = ;
B # ;

(-A B # 0).

This is similar to the algorithm of Schroeder (4) but produces the same
result with two multiplications rather than three.

6. COMPUTER INTERFACE

Specific hardware in the synthesizer connects with the host computer to
perform the following functions:

Control and sensing of synthesizer status by computer;

Transfer of sampled data between synthesizer and computer memory;

Transfer of commands from computer memory to synthesizer and
execution of the commands;

Diagnostic operations.

To minimize the burden on the computer, most data transfers to or from
the synthesizer are performed by direct memory access. The computer has
only to indicate to the synthesizer, by control functions, the size and
location in memory of a data area, for instance, and the synthesizer
will read successive data words from this area as it needs them. The
synthesizer can be conditioned to interrupt the computer when it has
exhausted one data area and needs another. Such memory areas are of
three types: per-sample data from the synthesizer, per-sample data to
the synthesizer, and commands to the synthesizer.

6.1l. Read Data and Write Data

Write data from the synthesizer comes from sum memory through a
generator in Write Data mode; if more than one generator is in this
mode, then data will be interleaved when written into memory. Per-
sample data to the synthesizer is put into sum memory by means of a
generator in Read Data mode. More than one generator can be in this
mode if the data in memory is properly interleaved. With the Write Data



and Read Data modes, the synthesizer can be used to advantage even for a
piece that exceeds its capacity. For instance, 500 generators in
parallel or 250 second-order filter sections in series can be performed
in just two passes. The first pass would perform half the processing,
writing its intermediate results into computer memory as it goes. The
second pass would read the intermediate data from memory and perform the
remaining processing. (Depending on the length of the piece and the
amount of available memory, the computer may need to use a disk or other
mass storage device as an extension of the memory.) Similarly, the
synthesizer can process digitized sound from other sources, natural or
synthetic; and material created by the synthesizer can be passed on
without degradation to other digital processing or recording equipment.

6.2, Commands

While a great many uses of the synthesizer do not require the Read Data
and Write Data features, essentially all make use of the command stream.
Each command is 32 bits. Nearly all commands have the meaning "Set
parameter X of generator (or modifier or delay unit) N to value V." The
parameters to be changed can be modes, running terms, static
computational values, or configuration parameters such as sum memory
addresses. Also provided is the Linger command, which means "Wait until
the end of sample period N, before executing more commands." The
commands to be performed at a given instant will appear grouped together
in the command stream, preceded by a Linger to denote when they should
be performed. The synthesizer contains a 28-command buffer so that the
commands of a group can be performed without delays due to computer
memory contention or bandwidth limitations.

There are also commands to set parameters applying to the synthesizer as
a whole, including the number of processing elements in use, the sample
period, the breakpoint frequency of the analog low-pass filters
following the DACs, and two lé6-bit digital output buffers which can be
used to control external apparatus in synchronism with the musical
synthesis.

6.3. Diagnostic Functions

More than 10% of the 2,500 integrated circuits in the synthesizer are
provided strictly for diagnostic purposes. They allow the host computer
to set parameters in the synthesizer, step the synthesizer slowly
through its computations, and read back the status of intermediate or
final results at any point in the generators, modifiers, delay uits, or
computer interface. To work in conjunction with this, a static
diagnostic program was written, comprising approximately 70,000 36-bit
words of assembly=-language code for the PDP-10 computer. Additional
dynamic diagnostic programs were also written, employing the Write Data
feature, to check for various interactions when the synthesizer is run
at full speed.

-10-



7. CONCLUSIONS

In the first fifteen months since its use began, this synthesizer
has been employed productively by approximately 100 musicians and
researchers, with a wide variety of musical styles and research
objectives.

This experience having verified the architecture of the synthesizer, a
second unit is under construction. It will be fully compatible with the
first, with one significant enhancement: analog-to-digital conversion
capability will be built in. '

In the past, work in digital synthesis has centered on the development
and understanding of each basic synthesis technique: additive,
subtractive, modulation, waveshaping, reverberation, and so on; and the
time factor worked against the creation of large or complex pieces. Now
the means are at hand for musicians who can use all of these techniques,
singly and in combination, to develop compositions of increased scope
and richness.
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SYSTEMS CONCEPTS

Digital Synthesizer .
Programming Specification Nov. 24, 1974

Generators and Modifiers

The device has two kinds of processing elements:
generators and modifiers. An additional tvpe of element, termed
a delay unit, is optional. Generators produce sine, square,
and sawtooth waves, pulse trains, equal-amplitude sum-of=-cosines:
(band-limited pulse trains); apply linear and exponential
envelopes; perform frequency modulation; can automatically
sweep frequency linearly; read data from computer memory; and -
write data into computer memory or digital-to-analog converters,
Up to 256 generators can he active at one time.

Modifiers simulate a resonance or antiresonance; perform
amplitude modulation, four-quadrant multiplication, mixing,
clipping, and memory (sample and hold) functions; can generate
uniform noise; and pass data to and from the optional delay
units. Up to 128 modifiers can be active at the same time.

Information is passed among generators and modifiers
through a scratchpad area called sum memory. There are 64 sum
memory locations which can be used to accumulate sums of generator
outputs, and another 64 for sums of modifier outputs. Any generator
or modifier can read any of the 128 sum memoryvy locations.

Delay units have two uses: as delay lines for signals,
and to hold precomputed tables, such as time-domain waveforms. Up
to 32 delay units can he active at the same time,

Passes and Ticks

. The processing performed on a per-sample basis comprises
‘one pass. A pass is a series of ticks, of two types: processing
ticks and update ticks. Processing ticks perform the calculations
corresponding to generators and modifiers, and update ticks permit
loading of new parameters. Within a pass, all processing ticks
are performed first, then all update ticks. A tick of eithertype
takes 195 nsec. The number of processing ticks is nine more than
the maximum of: the number of generators used; twice the number
of modifiers used. The number of update ticks should be chosen
according to the number of proce551ng ticks to give the desired
overall sample rate.



GEMNERIC INTERFACE

The computer interface is discussed here in terms of general
16- and 32-bit input and output operations. Implementation of these
functions on a specific computer is covered elsevhere.

Summarz

CONO 16 bits: sets overall status, diagnostic readback address
DATAO-A 32 bits: (only when not running) performs command

DATAO-B 32 bits: sets CA or WC for commands, read data, write data
CONI~A 16 bhits: reads overall conditions

CONI-B 16 bits: reads cause of interrupt

DATAI 16 bits: (only when not running) diagnostic readback

CONO T CC : R: EE : DB . JAA : ~ DDDDDD s
CC: 00 no effect
N1 stop
10 start

11 cause one tick
R: 0 no effect
1 reset tick counter to beginning of pass (if stopped)
EE: 00 no effect
01 disable interrupts
10 enable 1nterrupts
11 master reset '
(This controls an overall interrupt-enable bit, independent
of the bits which enable or disable interrupt due to specific
causes., It is ANDed with then, provmdlng a global way to
_ prevent interrupts.)
BB: (decoded with AAA)
0OAAA disable stop on cause AAA
10AAA enable stop on cause AAA
N1AAA disable interrupt on cause AAA
11AAA enable interrupt on cause AAA
AAA: 00l command overrun ,
010 modifier mixer overflow
N1l modifier multiplier overflow
100N modifier add to sum overflow
101 generator add to sum overflow
00110 disable interrupt on write data WC exhausted
10110 enable interrupt on write data WC exhausted
01110 disable interrupt on read data WC exhausted
10110 enable interrupt on read data WC exhausted
01000 disable interrupt on command WC exhausted
11000 enable interrupt on command WC exhausted
00111l indicate 1l6-bit read data
10111 indicate 32-bhit read data
0111l indicate l6-=bit write data
11111 indicate 32-bit write data
DDDDDD: diagnostic readback address, specifies internal
data to be read by DATAI.

1



Computer Interface

Information is passed to and from the comnuter in two ways:
I/0 instructions, and direct memory access. Both methods deal
with data words which may be either 16 or 32 bits. With the delay
merory option, a low-bandwidth bidirectional 2n-bhit path permits
read- and write-accesses by the computer.

Computer I/0 instructions perform general control, status
sensing, and diagnostic functions. The direct memory access path
is provided for data transfer in real time. There are three tvypes
of such data transfer: commands (to the device), read data (one
datum per sample) (to the device), and write data (one datum per
sample) (from the device). Each of these three has its own word
count (WC) and core address (CA) registers in the device; they
are set up by I/0 instructions, Commands are always 32 bits;
read data and write data may each be either 16 or 32 bhits, giving
a choice between packed data and full precision (20 bits are
significant in 32~bit mode). The device has buffering for 28
commands, 4 read data items, and 1 write data item.,

The device can be conditioned to interrupt the computer
in various circumstances. One class of them can be termed data
errors: arithmetic overflow during processing, and command overrun
(more updates specified to be performed on a pass than update
ticks provided). The other class of interrupt conditions relates
to the three WCs. Separate indications are provided for each one
being exhausted, and also for underrun conditions: a WC being
exhausted AND more data needed (commands or read data) or .
available (write data).



CONI-A tIR:s1L: XRXHKKK TR ST RITOUIR PR Ch e

IR: 1nterrupt desired (by 1l1AAA cause, WU, RU,
CU, WE, RE, CE, regardless of CONO EF)

IE: 1nterrupt enabled (by CONO EF)
(IR AND IE is interrupt request)

R: running (not stopped)

WU: write data underrun

RU: read data underrun

CU: command underrun

WE: write data WC exhausted

RE: read data WC exhausted

. CE: command VIC exhausted

.o

CONI-B I1:10:13:T4:157 %:1C: Y

Il: command overrun

I2: modifier mixer overflow

I3: modifier multiplier overflow

I4: modifier add to sum overflow

I5: generator add to sum overflow

" LC: (lost cause) After the interrupt cause encoded in

this word occurred, but before this word was read by
the computer, another of these interrupt causes
occurred.,

TTTTTTTTT: tick number when cause occurred (nine bits
needed to allow for pipelining)

" DATAO-B T XXXXXXXXX T UUU 5 A.esA 3

- UuUu: 000 no effect

N0l set write data CA
010 set read data CA
011 set command CA
100 (reserved)
101 set write data WC
110 set read data WC
111 set command WC

A...A (20 bits): core address (if CA)

; 2's complement of word count (if WC)

: \
N\



Paramete

GENERATORS

rs -

Associated with each generator are the’following cquantities:

GO (20 bits) alpha -- oscillator frequency sweep rate

GJ (28 bits) omega -- oscillator frequency

GK (20 bits) theta - oscillator angle

GN (11 bits) number of cosines to be summed

GM (4 b

its) binary scale of cosine or sum of cosines

GP (20.bits)‘delta - decay_rate _

GO (24 bits) phi -~ decay exponent

GL (12 bits) asymptote

GSUM (6

bits) sum memory address into which output is added

i

GI'M (7 bits) sum memory address from whlch frequency modulation

data is taken

GIMODE (8 bits) generator mode
GMODE = RRREESS
Run Mode
osc. run?- env, run? add to sum?

RRR: 000 inactive no no no

001 pause no no no

010 running yes yes, sticky ves

011l running ves - yves, free; ves

’ triggers subsedq.

100 wait yves no - no

101 running yes ves, free; yes

stops and

, triggers subseq. ‘ N

110 read data from computer ' yves

"111 write data to computer or DAC no

The envelope side of the generator can be sticky, which means

that rather than overflow it will stay at the last value it attained

before i

t would have overflowed; or it can be free, in which case it

wraps around.



Transitions between run modes can bhe accomplished in various

ways . C .

1) A command can output a new GMODE.,

2) A MISC command can specify "clear all pause bits", which
will cause any generator in run mode 001 to change to
mode 010,

3) A MISC command can specifv "clear all wait bhits", which

: will cause any generator in run mode 100 to change to
mode 010.

4) If the envelope side of a generator in run mode 1Nl
overflows, that generator goes to run mode 100,

5) A generator in run mode 100 will go to run mode 101 if
on the same pass the second preceding generator
(the one whose generator number is two less) caused
a trigger (was in run mode 01l or 10l and envelope
overflowed) .

Envelope Mode

EE: 00 L + Q
0l L -0
10 L + 2*%*(~Q)
11 L = 2**(-Q)

Oscillator Mode

§S: 000 sum of cosines
001 square
010 sawtooth
011 pulse train
100 cos (K)
101 cos (J + fm)

Processing

, Calculations performed for a generator, as governed by the
run mode, proceed as detailed bhelow.

1) The word in sum memory addressed by GFM is read (20 bits):;
the sum is formed of it and the high-order ?0 bits of
GJ (call the result Temp0).

2y If the oscillator side is running, GO, right-adjusted with
sign extended, is added into GJ. .

3) If the oscillator mode is 101, Temp0 is taken; otherwise GK.
Call the 20=-bit result TemplE, and its h1gh-order ‘12 bits
Tenmpl.

4) If the oscillator side is running, Temp0 is added into GK.



5) If the run mode is 111, TemplE is sent to the CPU as write
data if OGN is negative, else to the DAC addressed by GN.

6) Templ is multiplied by GN. Call the low-order 12 bits of
the product Temp2, ‘ :

7) If the oscillator mode is 100 or 101, pi/2 is taken; otherwise
Templ. Call the result Temp3.

8) In floating point, the product csc (Temp3) * sin (Temp?) is
formed; then converted to fixed point with a scale factor
of 2**(-GM); then 2**(-GM) is subtracted, Call the result
(12 bits) Tempd.

9) The result of the oscillator side (12 hits, call it Tempb) is
then determined according to the oscillator mode.
SS: NN0 Temp4d
001l -1/2 (on a scale from =1 to +l1) if Templ is negative,
else +1/2
010 Templ
N1l +1/2 if overflow occurred in step 1) or 4) above,
else 0.
100 Temp4d o S . :
101 Temp4 ' j

lO)’ZThe,high—order 12 bits of GQ are taken (call this Temp6).

11) If the envelope side is running, GP right-adjusted, sign
extended, is added into GO (overflow dealt w1th accordlng
to the run mode) .

12) If the envelope mode is 10 or 11, 2**(~Temph) is looked up;
otherwise Temp6 is taken. Call the resulting 12 bits Temp7.

13) 1If thebenvelope mode is 00 or 10, Temp7 is added to GL; else
it is subtracted from GL. This creates Temp8, the result
of the envelope side.

14) Temp5 is multiplied by Temp8. If the run mode specifies adding
into sum menory, the high-order 18 bits of the rounded product
are added into the sum memory locatlon designated by GS™M;
except in run mode 110, the product is added to read data
from the CPU and the sum replaces the contents of the sum
memory location addressed.



MODIFILERS

Parameters

MM

MO (30
M1 (30

| LO (20
LL (20
MIN (8
MRM (8
1S

Each modifier has the following numeric parameters.,

bits) coefficient |

bits) other coefficient

bits) running term

bits) other running term

bits) address in sum memory where modifier reads "A" data

bits) address in sum memory where modifier reads "B" data

UM (7 bits) address 1n sum memory into whlch modlfler result is

added

ODE (9 bits) modifier mode

scale of first multiplication

MMODE = MMMMMAABB

Al

BB: scale of second multlpllcatlon
00: x 1
0l: x 2
10: x 4
1ll1: x 8

MMMMM: function
00000: inactive
00001: mixing
00010: latch
N00ll: =zero-crossing pulser
00100: amplitude modulation
00101: four-quadrant multiplication
00110: minimum
001ll: maximum
01000: .two poles N
01001: two poles, MO variable
N1010: two poles, Ml variable
0101l: (reserved)
01100: two zeros :
0110l: two zeros, MO variable
01110: two zeros, Ml variable
01111 (reserved)
10000 uniform noise (free run)
10001 uniform noise (when 1nput nonzero)
10010, 1001l (reserved)
10100 use delay unit

10101-11111 (reserved)



Processing

Computations performed by a modifier depend entirely on
its mode. In the descriptions below, A is the 20-bit sum memory
word addressed by MIN; B is the word addressed by MRM; when M0
or Ml is used, its high-order 20 bits are taken, but when a
quantity is added to MO or Ml it is added right-justified, with
sign extended; S is the result that is added into the sum memory
location addressed by MSUM. Multiplications are 20 bits x 20
bits, signed, and the product (unless otherwise noted) is the
high-order 20 bits, rounded.

M MMM

00000: inactive. S :=10

0000l: mixing, S := A*M0O + B*ﬁl
00010: latch (sample and hdld). S := Ll; 1If B*Ml is not 0, Ll
0N0ll: zero-crossing pulser. TempN := B*M); Templ := Ll*Ml;
S := - epsilon if Temp0*Templ is negative, else S := N;
L1 := Temp0 : '
00100: amplitude modulation, 'S := L1*Ml; L1 := A * ((B¥l)/2)
00101l: four-quadrant multiplication. S := L1*Ml; Ll = A*B
00110: minimum: § := min (A*MO, B*M1) |
0011l: maximum, S := max (A*M0, B*Ml)

01000: two poles. S := LO*M1l 4+ L1*M0O + A; LO := Ll; L1

e= S
01001l: two poles, M0 variable. S := LO*ML + L1*M0 + A;
LO :=ILl; L1l :=S; M) := MO + B
.01010: two poles, M1l variable. S := LO*Ml + L1*M0 + A;
LO = TLl; L1 ¢=8; ML ¢= ML + B
010ll: (reserved)
. Lo : \
01100 two zeros. S := LO*M1 + L1*MO0 + A; IO := Ll; L1 := A.

01101 two zeros, MO variable., S := LO*Ml + TL1*MO 4+ A;
L0 := Ll1; L1 := A; MO = MO + B

01110 two zeros, Ml variable. S := LO*ML + L1*M0 + A;
LO := L1; Ll t= A; Ml := M1 + B

01111 (reserved)



10000 uniform noise. S := L0 + IL1*M0 (integer multiply, low-order
20 bits of product used; overflow ignored); Ll := S

10001 triggered uniform noise., S := L0 + L1*M0 (integer multiply,

low=-order 20 bits of product used; overflow ignored):;
if B*M1l is not 0, L1 := S

10010, 10011 (reserved)

10100 Invoke delay unit.
Unit # := RM (low-order 5 bits); ,
t= L0O + L1*M0; ILO := DM; Temp0 := A + DM*M1;
Ll := Temp0; DM := Templ

10111...11111 (reserved)



DELAY UNITS

A common pool of addressable memory, which may comprise up
to 65,536 20-bit words, is available for use by the Delay Units.,
By programming, each active delay unit is ass1qned its own contiguous
area of the memory.

Quantities

Each delay unit has the following numeric parameters.

X Dbase address (16 bits) and mode (4 bhits).. The base address is
the lowest-numbered location used by thlS unit, The mode
is interpreted as follows:

mode: 0000 delay line
0001 (unused)
N010  table look=-up
001l table look-up, argument rounded
N100..,.1111 (reserved)

%2 unit length (16 bits) or binary scale factor (4 bits). 1In
delay line mode, 7 gives the total number of locations
in the delay line, .i.e. the number of samples delay the
unit comprises. In table look-up modes, the low-order
four bits of 7 specify the number of binary places that
the argument is shifted to the rlght hefore it is used.
to address the memorj.

Y index (16 bits). In delay line rnode, this is the running
index on the memory area for the unit.

Processing

In delay line mode, a 20-bit data word is received from
the modifier that calls for the delay unit, and another 20-hit
wvord is sent to it. The word received is put into the next slot
in the delay line. It will be retrieved and sent back to the
modifier 243 passes later. ;

In table look-up mode, the 20-bhit data word received
from the modifier is shifted to the right 7 bits and then used to
address the memory area assagned to the unit. The 20-bit word in
the addressed memory location is returned to the modifier three
passes later.



COMMANDS

All commands are 32 bits. Generally the left 20 bits are data,
the next 4 or 5 bits identify the kind of parameter, and the last 8 or 7
bits address the generator or modifier affected. If more than one data
field is packed in the 20 bits, disable bits will be provided to
facilitate loading a subset of the fields. In a few cases, a bit is
also provided in the data area to clear (set to zero) a related parameter
in the same generator or modifier.,

MmO 70y data T U () med s

VV: 00 MO right-adjusted, sign extended
01 M1 right-adjusted, sign extended
10 MO0 left-adjusted, low bits from D¥; clear DX
11 M1 left-adjusted, low bits from DX; clear DX

ML 3 (70) data sL T L niN:_ (7) mod ¥+
N: 0 L0
1 1l
GO (20) data :t0 0 l:B: (3) gen ¥ :
E: 0 Q right-adjusted, sign extended
1 O 'left-adjusted, low bits from DX; clear DX
GP (20) data tN 1 1 0 (8) gen # :
GT (20) data t0 L 0O:F: (8) gen :

E: N J right-adjusted, sign extended
1l J left-adjusted, low bhits from D¥X; clear DX

GM, :N:M:x x x: (1l1) GN :(4) cM :0 1 1 1: (8) gen #

N:. if 1, disable loading GN
M: if 1, disable loading GM

*e

GL, :L:S: (12) €I : (6) GSUM L N N N (8) gen ¥

: if 1, disable loading CGL
: if 1, disable loading GSUM

GK .: (20) data sl 0N L: (8) gen #_




:M:5:Csx: (9) MNMODE :(7) MoUM:L 1 L L Nz (7) mod ¥
moDE,
MSUM . M: if 1, disabhle loading MMODE
S: if 1, disable loading MSUM
C: if 1, clear L0

sTX:C:x: (8) MRM : (8) MInm 1L 1 1L 1 1: (7) mod #

R: if 1, disable loading MRM
I: if 1, disable loading MIN
C: if 1, clear Il

tM:F:C:x x:(8) GMODLE: (7) r'm 10 10: (8) gen #
GMODE,
GFM

if 1, disable loading GMODE
if 1, disable loading GFM

M
F
C if 1, clear K

v % o0

GO (20) data sl 0 L 1 (8) gen #

se

(20) data - eN 00 0 0:x XsR ReW:P:S:
MISC ‘ '
‘ RR: 00 no effect
01 load DX from data
1n load TTL buffer 0 from data
1l load TTL buffer 1 from data
W: if 1, clear all wait bits
P: if 1, clear all pause bits
S: if 1, stop

: ; (20) data ' t0 001 Niéx xX:T T:X X X:
TIMER '

TT: 00 no effect
10 process no further commands until pass counter equals data
11 clear pass counter, then wait as for 0l
01 set pass counter from data

: (20) data NN 0 1L lex x:0:0:%x X X
# TICKS

Q: 0 set number of processing ticks per pass
1 set total number of ticks (processing plus update) per pass

: (l6) data s (4d)data:0 N N N 1:U Uz (5)unat =:
pLY X, ¥, 2
UU: 00 X 16 bits base address, 4 bits mode; clear Y
01l Y 16 bits index
10 2 16 bits delay unit sxre, or scale (low 4 bits of 16)
11 (unused)
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TAKE * CARE

HAZARDOUS VOLTAGES EXIST WITHIN THE POWER CONTROL ENCLOSURE
AND AT THE TERMINALS OF THE POWER SUPPLIES, TAKE APPROPRIATE
PRECAUTIONS WHEN WORKING NEARBY,

NEVER INSERT OR REMOVE PRINTED-CIRCUIT CARDS OR PDP-10 cABLES
WHEN POWER IS ON., FIRST MAKE SURE THAT THE FANS ARE FULLY
STOPPED.

To TURN POWER ON OR OFF, USE ONLY THE LocAL-OFF-REMOTE sWITCH;
DO NOT USE THE CIRCUIT BREAKER OR OTHER POWER LINE CONTROL.

Do NOT INSERT, REMOVE, OR CHANGE CARDS OR CABLES UNNECESSARILY,

WHEN INSERTING OR REMOVING A CARD, APPLY PRESSURE EQUALLY TO
BOTH OF ITS EJECTORS. DO NOT USE EXCESSIVE FORCE,

FOR PREVENTIVE MAINTENANCE, PERIODICALLY MAKE SURE THAT COOLING
AIR IS ENTERING THE CABINET AT THE BOTTOM AND THAT ALL SEVEN
FANS ARE RUNNING WHEN POWER IS ON.
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Introduction

The Systems.Concepts Digital Synthesizer is a large special-purpose
digital processor that generates and modifies data streams that
represent sounds and features of sounds like those found in music and
speech. To accomplish its high computation rate, it operates séveral
computational elements simultaneously and its data paths are
extensively pipelined.

The synthesizer is a PDP-10 computer peripheral, with both I/0 bus and
direct memory access connections for a PDP-10 system. Its behavior
and interface characteristics, as seen by the user, are described in
the Systems Concepts Digital Synthesizer Programming Specification; an
understanding of that document is assumed in the remainder of this
manual. Familiarity is also assumed with the Systems Concepts Engin-
eering Drawing Conventions.

An abbreviated notation is ﬁsed in this manual for devices that are
functionally equivalent to those in the 7400 series: for instance,
'HO04 means 74H04 or equivalent. Thé terms .LT., .LE., .NE., .GE.,
.GT. mean respectively less than, less than or equal to, not equal to,
greater than or equal to, greater than. -

Drawings

The engineering drawings for the Synthesizer include schematic
drawings and a parts-placement drawing for each type of printed-
circuit card, and logic drawings for the wire-wrap panels and cable
connection rack. For each type of card, the card drawing gives a set
of generic names for the signals on any card of the type; and an
accompanying table relates each generic name to the specific name

of each signal on each card of the type. In the generic names, the
term (M) is used for the base bit number in a four-bit slice; for
example, the generic name FG(M) would correspond to FGO on the most
significant card of the typé3 to FG4 on the next card, and so on.



The following drawing numbers are used for the Synthesizer:

1110, 111l0M, Il1l1ll1l.0, 1111M, 1112.0, 1112M, 1113.0, 1113M, 1114.0,
1114M, 1115.0, 1115M, 1116.0, 1116M, 1117.0, 1117M, 1118.0, 11l18M,
1119.0, 1119M, 1120.0, 1120M, 1121.0, 1121M, 1122.0, 1122M, 1123.0,
1123M; 1160, 1161, 1162, 1163, 1164; 1171, 1172, 1173, 1175, 117e6,
1177, 1179, 1180, 1181, 1182, 1184, 1185, 1187, 1188, 1190, 1191,

1193, 1194, 1195, 1197.

In this manual, a reference to drawing number 1191 (for example) is

abbreviated to #1191.

Packaging

The Synthesizer is housed in a single free~-standing cabinet. It
contains the following, from top to bottom: five power supplies;
three wire-wrap panels; two printed-circuit-card chassis, with
backpanels designated YBACK (upper) and ZBACK (lower); seven coolihg
fans; a cable connection rack; and the power control enclosure.



The five power supplies and their uses are as follows:

Model No. Voltage (s) Rated Current Use
LGS-EE-5 - +5 V 110.0 A YBACK, ZBACK
LXS-D-5 +5 V 27.5 A : Wire-wrap Panels
LXS-A-5 -5V 4.0 A Delay Memory,

DEC Bus Interfaces
LXS-A-12 +12 V 2.7 A Delay Memory
LXD-C-152 +,-15 Vv 2.5 A each Analog Outputs

Each supply has an overvoltage protector.

The three wire-wrap panels hold ICs (integrated circuits), and a few
discrete components, that comprise the once-only logic of the
Synthesizer. The panels are numbered 1, 2, and 3, from the top.

The card chassis hold the printed-circuit cards of several types .
that are replicated in the system. A typical card has the hardware

. dealing with successive stages of a four-bit-wide slice of a data
path. A data path wider than four bits is processed by a group of
cards of the same type; for instance, five cards will be grouped
together to process a 20-bit-wide section of the Synthesizer.

Viewing the backpanels from their wiring side, card slots are numbered
from left to right: Y¥1-¥39 on YBACK, Z1-Z39 on ZBACK (but some slots
are not used). In a group of cards of the same type, the leftmost one
processes the most significant bits of the data. The cards in the
system are tabulated below.



Card Name v Dwg # Short Name Slots

Dual Analog Odfput 1110 ALOG Yl-4, 21-4
Miscellaneous-A 1118 MISCA Y8-11

Sum Memory - 1117 SUM Y12-16
Miscellaneous~B 1119 MISCB Y17-19
Modifier-A 1114 FILTA Y20-24
Modifier-B 1115 FILTB Y25-29
Delay Memory Data 1120 DMD Y30-34
Delay Memory 1121 DMEM Y35-38
Generator-C 1113 ~ GENC z26-8
Multiplier 1116 MULT 29-13, 222-26
Generator-B 1112 GENB 214-16
Generator-A 1111 GENA 217-21
36-bit Interface 1123 TENI 227-35
Generic Interface 1122 INTF Z36-39

On a card, each IC is designated with a U number. Viewing a card’‘in
the orientation in which it is plugged in, Ul is at the top next to
the edge connector and U2 is beneath it. Counting continues first
downward by row, then outward by column. Positions without signal

wiring are not counted.

The cable connection rack (#1160 through $#1164) provides sockets for
the I/0 bus, memory bus, memory port multiplexer cable, and the
outputs of the TTL output registers. The upper connector row is
designated A and the lower B; slots are numbered 13 through 32, from
left to right. ’

In the power control enclosure are the power control board,
Local-Off-Remote switch, circuit breaker, and relays that control
‘'sequencing of the power supplies.



Controls and Indicators

Since the Synthesizer is designed for checkout by computer, there are
very few manual controls and indicators. The only indicator is a red
LED, on the power cdntrol board, which is lit when AC power is applied
to that board. It is not visible unless the louvered cover of the
power control enclosure has been removed. Hoﬁever, the sound of the
fans is a clear indication that the power supplies are also on. On
the power control panel are the main circuit breaker and, to turn the
Synthesizer on and off, the Local-Off-Remote switch.

In location 3A33 is a package containing seven on-off switches.

- Switches 3-7 give the base device address of the Synthesizer on the
I/0 bus, and correspond respectively to I0S3-7 in the PDP-10 I/O
structure. Switch 1 can be used to prevent the Synthesizer from
writing into PDP-10 memory.

Signal Names

Data signals generally have names composed as follows:
a) One letter indicating the general area involved:
A analog
clocking
diagnostics
modifiers ("filters")
generators
" generic interface
phases of clock
delay units ("reverb")
sum memory
PDP-10 interface ("ten")
U unused, provided for possible future additions

B 0 WY H Q™M OO0

b) One or two letters arbitrarily chosen to distinguish
-busses in a,general area;

c) A decimal number for bit position (0=most significant)
in a bus, or for a decoded value of a field (0=all
bits off).



A control signal is usually named by appending, to the name of the bus
it controls, a letter to designate the signal's function. For
instance, the clock to the FE register (bits FE0-19) is called FEC.
Some of the more common functions are: C -- clock; E =-- enable;

G -- gate (of a latch); R -- reset; S -- select (ALU mode select or
multiplexer input select). A control signal with several functions
may be named instead for its derivation.

Names ending in -A, -B, etc., but otherwise alike, denote signals

that are logically equivalent but physically distinct, as for loading
purposes. Names on the drawings ending in -1, -2, etc. represent
signals which are logically equivalent butrgenerated on different
printed circuit boards. In this manual, however, a notation such as
BUS0~19 means the 20 bits BUSO through BUS19. A number within a
signal name, surrounded by letters, either denotes the time state of a
quantity used at different stages of a pipeline or denotes a quadrant

of sum memory.

s

XHI and XGND are forms of HI and GND brought onto printed-circuit cards
from the backpanels through signal pins. The versions of HI for the
wire-wrap panels and for XHI (named YHI for YBACK and ZHI for ZBACK)
are generated by a resistor package shown on #1171.



Clocking

Clock generation for the Synthesizer, shown on #1171, has a
30,769,230-hertz crystal, whose output is divided by 6. A 10-pF
capacitor in series 'with the crystal trims the oscillator to the
specified frequency. Outputs of the frequency divider (three Schottky
J-K flip-flops) go through delay lines and AND gates to form the basic
clock pulses shown in Fig. 1. Each 195-nsec tick (also called a time
state) has three equally-spaced clock pulses termed phases A, B, and
C; there is also a pulse roughly halfway through the time state
(between phases A and B) called phase H. The corresponding signals
are CA, CB, CC, and CH. Each pulse is nominally 45 nsec wide. The
trailing edge of phase C marks the end of each time state. #1171 also
shows the formation of several special-purpose clocks which occur more
than once per time state: SAC and CU, which occur on phases A, B, and
C; and CHC, occurring on phases H and C.

The basic clock pulses are buffered for distribution throughout tﬁe
Synthesizer by gating shown on #1172. The signals for the various
phases take on the names PHA, PHB, PHC, and PHH. These are
conditioned by the clock enable flip-flops, CEAB (for phases A, H, and
B) and CEC (for phase C). Ungated clocks designated PHAU, PHBU, and
PHCU are also created for the PDP-10 interface and delay memory
control, which must run even when other activity in the Synthesizer is

stopped.



The clock-enable state depends on the CRUN flip-flop, which is direct-
set by the clock-start CONO-A; it is direct-cleared by master reset,
the clock-stop CONO-A, or performance of the clock-stop command; and
it is clocked off by occurrence of a l0AAA cause enabled by CONO-B.
CRUN is ORed with the clock-one-tick CONO-A and the result is ANDed
with terms indicating that the clock is not held for read or write
data direct memory access (underrun conditions), to produce CRUNA;
this is clocked into CEAB, which in turn is clocked into CEC.

Various clock counting functions are shown on #1173. The time state
pipeline, on the MISCA cards, appears on sheet 2 of $#1118. Fig. 2
shows the relationship of the principal signals involved. CTKO0-9
counts the ticks of a pass. Its count is compared against two
registers loaded by commands: CTP0-9, denoting total processing ticks,
and CTT0-9, denoting total ticks per pass. The EPAS flip-flop is on
for the last tick of a pass: it is direct-set by the reset-tick-
counter CONO-A; held direct-cleared in the "all ticks update" state;
clocked on when CTKO0-9 equals CTT0-9; and clocked off at the end of
the tick when it is on. Among its effects, EPAS conditions the CTK0-9
counter to parallel-enter zero at the end of the tick.



Generator and modifier calculations each require 9 steps of
pipelining; the first is tick A for a given generator or modifier;
then follow its-ticksAO through 7. Tick A is preparatory; during

it various sum memory addresses are determined. Numeric processing
does not start until-tick 0. At any point in the generator data
paths, data for successive generators is processed on successive
ticks. In the modifier data paths, there are two ticks in a row for
each modifier. For instance, if CPOB0-7 equals 2, it is tick 2 for
for generator 0, tick 1 for generator 1, tick 0 for generator 2, tick
A for generator 3; tick 2 for modifier 0, and tick 0 for modifier 1.

- The time-state pipeline consists of the CPABO-7 counter and the
CPnB0-7 shift registers. The CPnBm busses are used to address RAMs
holding data for each generator or modifier, where n denotes the tick
during which the RAM is referenced. CPABO-7 during the processing
ticks of a pass counts the same as CTK2-9; CPOBO-7 during processing
tick n has the value CPABO-7 had in tick n-1; CPlB0-7 has that value
in tick n+l; and so on. During the interface ticks (also called '
update ticks) all the CPnBm.terms are parallel-loaded with the
generator number or modifier number of the next command to be
performed (the interface address, IA0-7). CTRA is turned on at the
beginning of a pass, when CTK0-9 is reset; it is turned off when
CTKO0-9 equals CTP0-9, to flag the end of the processing ticks. CTRA
is on during a valid tick A for some generator and modifier.
Similarly, CTRO through CTR7 are on during valid processing ticks 0
through 7. CTRA and CTRO-7 are held off in "all ticks update" mode.
Flip-flop ITR is on when "real" (i.e. processing) ticks are in
progress anywhere in the pipeline; it is off during update ticks.

The signal OT, meaning odd tick, is on for tick A of a pass (CPABn = 0),
off for tick 0 (CPOBn = 0), and so on. Similarly, OP means odd pass;
it changes state at the same time that CTRA comes on.
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Generator Data Raths

Fig. 3 is a block diagram of the generator data paths. Data
processing for a generator, tick by tick, proceeds as follows.

Tick 0 -- Oscillator side: On phase A, the 'LS195A registers holding
GOAO-7 on PC cards clock in CP0BO-7. This addresses the ,
256-bit RAMs holding GO0-19 (GENA) and GJI0-27 (MISCB, GENA)
(called GJ in the Programming Specification). On phase B,
the fm term from sum memory is clocked into 93H72s forming
GRAO-19 (SUM). On phase C, GJI0-27 is latched in the 'LS157
multiplexers forming GJ0-27 (MISCB, GENA).

Tick 1 -- Oscillator side: During phase A, GO0-19 with sign extended
is added to GJ0-27 by a fast adder, using 'S181 ALUs and
'S182 carry generators, to form GAZ0-27 (MISCB, GENA). The
phase A clock writes this sum into GJI. At the same time,
the ripple adder GAO-19 (GENA), using '283s, forms the sdﬁ
of GJO0-19 and GRAO-19, which is clocked by phase A into the
'LS175s GWA0-19 (GENA). The 256-bit RAMs comprising GKO0-19
(GENA) and GNO-10 (GENC) are addressed by CP1B0-7, buffered
by 'LS04 inverters. On phase B, GK0-15 is latched into the
'LS157 multiplexers GXA0-19 (GENA). On phase C, the high-
speed adder GB0-19 (GENA) (similar in structure to GAZ)
develops the sum of GWA0-19 and GXA0-19. (Due to the
polarities of the signals involved, the adder is actually
configured to subtract the ones' complement of GXA, with a
borrow, from GWA.) The phase C clock pulse writes GB0-19
into GK0-19, and clocks the 'LS298 register GXB0-12 (GENB,
$1179) from either GXA0-12 or GWAO-12, according to the
generator mode (the GXB1l2 selection is done by an 'H51 gate),.
Also on phase C, GN0-10 is clocked into the 'l175s GXC0-10
(GENC) . '

-11-



Tick 2 -=- Oscillator side: GXB0-12 is combined with GXC0-10 in a

Tick

3 -

modified Wallace tree (MULT, #1179) to form the low-order 13
bits of the expression GXB * (2 * GXC + 1) + GXC. (This has
the effect of multiplying GXB by 2 * GXC + 1 if GXB and the
product are both assumed to have an implied bit 13 equal to
l.) The 'LS298 register GX0-12 (GENB, #1179) is clocked on
phase C from either the product or GXB0-12, depending on the
generator mode. GWB0-12 ('LS175s on GENB) is clocked from
GXB0-12 on phase C also.

 0scillator side: The sine of GX and the cosecant of GWB are

looked up in ROM. The assumed low-order 1l-bit in each case
results in two simplifications: (1) GX0 and GWBO need not
be looked up, but are saved to govern whether the looked-up
value will be negated; (2) GX1 and GWB1l need not be looked
up, but merely cause ones'-complementing of GX2-12 or
GWB2-12 respectively, if set. The ones'-complementing of
GX2-12 is done by 'LS86s (GENB). For GWB2-12, 'H87s (GENB)
are used in order to subs;ituée all-ones (whose cosecant is
approximately 1), except in sum-of-cosines mode. The sines
and cosecants are stored in floating-point form in 512x4
PROMs on the MISCA cards. The low two bits of each address
are decoded to select one of four banks of PROMs; the
remaining nine bits address the PROMs through 'H04 buffers.
The PROM outputs are clocked into registers on phase C as

follows:
Sine Exponent, Fraction Cosecant Exponent, Fraction
PROM Output GGEO-3, GGF0-11 GFEO-3, GFF0-1l1l

Register GYC0-3, GYDO-1l1l GYA0-3, GYBO-1l1

Exponent registers are on GENC, and fraction registers'on
GENB. Also on phase C, GWB0-1ll is clocked into GWCO0-1ll; and
the RAM GM0-3 (MILCB, addressed by CP3B0O-7 through 'LS04
inverters) is clocked into GYEO0O-3 (GENC).

-]12—~



Tick 3 --

Tick 4 --

Tick 4 --

Envelope side: Phase A clocks CP3B0-7 into the 'LS195As
serQing as address registers for the RAMs GP0-19 (GENA) and
GQ0-23 (MISCB, GENA). During phase C, GQ0-23 is latched
into the .!LS157s comprising GVA0-23 (MISCB, GENA); the end
of phase C clocks GVAO-13 into GVB0-13 (#1179, MISCB).

Oscillator side: GYB0-1ll is multiplied by GYDO-1l1l and the
high-order 12 bits of the product are clocked on phase C
into the 93H72s comprising GYP0-3 and GY4-11 (GENB) (GYQ3,
clocked at the same time, is a late output from the Wallace
tree which is added to GYP0-3 during tick 5 to correct the
product). - The exponents GYA0-3 and GYCO-3 are added
together with scale factor GYEO-3 and the results clocked on
phase C into the 'LS175 termed GYGO-3 (#1179). GWCO-1ll is

~clocked on phase C into GWDO0-1l1l (GENB).

Envelope side: GVB0-13 is treated as a negative exponent of
2, with a binary point between GVB3 and GBV4. The field
GVB4-13 addresses the PROM GHO-11 (MISCA), the bits GVB4-12
addressing the PROMs directly and bit GVB13 in true and
ones'-complement forms enabling one or the other bank of
PROMs. Then GHO-1l1l is run through 'LS153 multiplexers
(GENC) , configured to shift right 0, 1, 2, or 3 places
according to the value of GVB2-3. (If GVBO-1 = 11, the
'LS153s are disabled, producing zeros.) The result (GIMO-11l)
goes into 9309 multiplexers (GENC)that can shift right 0, 4,
or 8 places (according to GVBO-1l) or substitute GVBO-1ll if
in linear mode. This result, GINO-1l1l, is available in both
polarities; on phase C, one or the other polarity is clocked
into the GT register ('LS298s on GENC) according to the
envelope mode.

-13-



Tick 5 -- Oscillator side: GYO0-11, the fraction part of the floating
point product, is shifted right 0 to 15 places by two banks
of 'LS153s (GENB) according to the value of GYGO-3, the expo-
nent part; the result is GIB0-1l1l (not named in the schematic
drawing).. A term GWEO-1l1l is derived by 'LS86s and '283s
(GENB) as follows: GWEO-10 is GWD1l-11l, two's-complemented

if GWDO is 1; GWELl is 0. Then GUO-11, the result of the
envelope side (except for the sign, which is handled by con-
trol logic), is selected by 'LS153 multiplekers (GENB) . It
is either.GIB0-11 (sine or sum-of-cosines mode), GWEO-1ll
(sawtooth mode), an overflow bit from the GA and GB adders
(pulse-train mode), or 4000 octal (square-wave mode). On
phase C this result is clocked into GZA0-11 (93H72s on GENB).

Tick 5 -- Envelope side: The RAM GLO-11 (GENC), addressed by CP5B0-7
through 'LS04 inverters, is added to GTO0-11l. A carry is
injected in the low-order position if the ones'-complemented
version of GIN was taken in tick 4, thereby accomplishing a
two's~complement negate. ‘The sum GEO-11l (GENC) is formed by
a ripple-carry adder of '283s; it is clocked on phase C into
GZB0-11 (93H72s on GENC).

Tick 6 -- The unsigned quantities G2ZA0-11 and GZB0-1l1l are multiplied
(MULT, #1179) and the high-order 18 bits of the product are
clocked on phase C into G20-17 (93H72s on #1179); again, one
late bit, G2C3, is clocked at the same time to be added in
later.

Tick 7 -- G2C3 is added to Gz0-3 by a '283 to form the correct
high-order product bits G2S0-3. During clock phase CCB
(see Fig. 1) the contents of the sum memory location to be _
augmented are latched into the 'LS157s GRB0-19 (SUM). _On
the FILTA cards, G2S0-3 and GZ4-1l1 are ones'~-complemented by
'LLsS86s if the result should be negative, then added (sign
extended) by '283s to GRB0-19, with a carry in if necessary
to cémplete a two's complement. The sum, GF0-19, is
returned to sum memory where it is written on phase C.
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Modifications in certain generator run-modes: If the oscillator side
is not funning, write pulses are not given to the GJI and GK
memories. If the envelope side is not running, write pulses
are not given to the GQ memory. If a generator is not to
add to suﬁ memory, the sum memory write pulse is not given.
If a generator is reading data from PDP-10 memory, the data
read appear in GRB instead of the contents of the sum memory
word being augmented. If a generator is feeding a DAC,
GRAO-19 is clocked into AP0-19 ('175s on SUM) at the end of
phase B, tick 1; and AP0O-13 is clocked into the proper DAC
hold register at the end of phase A, tick 2. If a generator
is writing data into PDP-10 memory, GRA0-19 is clocked into
IWB0-19 (SUM) on phase B of tick 1.

Command execution: During interface ticks, all CPnB0-7 hold the
generator number from the command, clocked in on the ‘
previous phase C. Address registers (such as for GO and GQ)
are clocked from CPnB0-7 on phase A. Data to be written
comes direct from the generic interface into memories GO,
GN, GM, GP, and GL. To write GJI or GQ, data from the
interface is introduced by 'LS257 3-state multiplexers
instead of the GO or GP RAMs (which are disabled), and the
GAZ or GC adder is put in the mode where it passes the "A"
input through to the output. To write GK: GWA is held
reset during interface ticks; during phase B, the GK memory
is disabled. 'LS257s are enabled to place interface data on
the GK lines; GK is latched into GXA at the end of phase B.

All commands cause memories to be written on phase C.

-15-



Generator Control

The generator run mode, GRMD0-3, is stored in RAMs on a MISCB card,
addressed by GRMDAO-7 on #1175. GRMDAn (93H72s) is clocked from
CPABn on phase H and from CP4Bn on phase C. The mode for a generator
is read on the second half of the generator's tick A, and clocked
on phase C into GRMDOB0-3 ('S175 on #1175). The mode bits go through
a pipeline of 'LS174s through GRMDSBn; on phase H of tick 5 these
bits are written back into GRMDn. Along the way the mode may have
been altered by IRP (clear all pause bits), IRW (clear all wait
bits), GCOD (envelop overflow), or GT (trigger from previous
generator). The GRMDn write pulse, GRMDW, also occurs by command
(IIM50).

The other mode bits, corresponding to bits I7-12 of the command data,
are shown on #1177, GUSO-1 select the waveform; GXS selects the
output of GX; GXBS selects the signal input to GX; GTS selects .
whether the envelope is added or subtracted from the asymptote; and
GINVBE chooses between linear and exponential envelope modes. Each
RAM is addressed by the time state in which it is used.

Straightforward gating (#1176, #1177), based on the mode bits and the
time state, creates the enables, write pulses, clocks, and selects
required for the processing described in "Generator Data Paths" above.
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Modifier Data Paths

Fig. 4 is a block diagram of data paths for the modifiers. The

constituents, and the boards they appear on, are as follows:

FL0O-19:

FE0-19:
FEEO-19:
FNO-19:

FG0-19:
FV0-19:
FW0-19:
FUIO0-29:

FU0-29:
FAD0-29:
FQIO0-19:
FP0-19:
FQ0-19

FXa0-19:
FXB0-19:

256-word RAM holding the LO and L1 terms, written
from the FLI bus (FILTA)

93H72s, clocked from FL0-19 (FILTA)

93H72s, clocked from FL0-19 (FILTA)

'LS670s, written from FE0-19; addressing
accomplishes a 3-stage delay advanced every other
tick (FILTB)

'S175s, clocked from sum memory (FILTA)

93H72s, clocked from sum memory (FILTA)

'LS157s, latched from sum memory (FILTA)

256-word RAM holding the MO0 and M1 terms, written
from FA adder; 3-stated with 'LS258 multiplexérs
from generic interface (MISCB, FILTA)

'Ls157s, latched from FUI0-29 (MISCB, FILTA)

fast adder ('S1l81ls and 'S182s); adds FU0-29 and
FG0-19, sign extended (MISCB, FILTA)

'LS175s clocked from FUIO-19 (FILTA)

'S257s 3-stated with 'S258s (not named on
schematic); inputs are: FEE0-19; R0-19 (from
delay memory); FG0-19; sum memory (FILTA)

9309 multiplexers (not named on schematic); inputs
are: FQI0-19; FV0-19; 0, -FV0, FV1-18; 0 (FILTA)

93H72s clocked from FP0-19 (FILTA)

93H72s clocked from FQ0-19 (FILTA)
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FXP, FXH, FXJ:
FX0-19:
FK0-19:
FT0-19:
FB0-19:

FJ0-19:

intermediate stages of FX multiplier (see below) (FILTB)

93H72s, final product of FXA and FXB (FILTB)

'LS175s clocked from FX0-19 (FILTB)

‘LS157s, can provide: 0, FK0-19, or FNO-19 (FILTB)

ripple-carry adder of '283s; adds FT0-19 and FX0-19
(FILTB) .

'LS175s clocked from FB0-19 (FILTB)

comparators indicating FJ .GT. FK, FJ = FK, FJ .LT. FK (FILTB, #1182)

FRO-19:

FC0-19:

FY0-19:

FD0-19:

FZ0-19:

FF0-19:
FLIO0-19:

'LS258s 3-stated together; inputs are: FKO0-19;
FJ0-19; FF0-19; FD0O-19 (FILTB)

fast adder ('S1l8ls, 'S182) adding FR0-19 and FW0-19
(FILTB)

'LS157s; inputs are: FJ0-19; FC0-19 (FILTB)

'LS175s clocked from FY0-19 (FILTB)

9309s; inputs are: FJ0-19; FC0-19; FK0-19; FWO0-19
(FILTB) '

'LS175s clocked from FZ0-19 (FILTB)

'1LS257s 3-stated together; inputs are: FD0-19, FF0-19,
I0-19 (FILTB); FEO-iQ, R0-19 (from delay memory) |
(FILTA)

Fd
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The processing steps are listed in order below for each of the
modifier modes. "The notation "1lA", for instance, means phase A of a
modifier's tick l. The FX multiplier is discussed in a separate

section below.

Two Poles, Two Zeros (possibly MO or Ml variable)

OH: Ll to FE, FEE

0B: Ml to FU if M1l variable

0C: FEE to FXA; LO to FEE; Ml to FXB; sum(MRM) to FG

l1H: FE to LO

1B: MO to FU if MO variable

1C: FEE to FXaA; MO to FXB; FA to MO if MO0 variable, or
FA to M1l if Ml variable

4C: FX (L1 * M1l) to FK

5C: FX (LO * MO) + FK to FJ

6A: sum(MIN) to FW

6C: FJ + FW to FD; FW to FF

7B: sum(MSUM) to FW

7C: FD to L1 if two poles, or FF to L1 if two zeros;
FW + FD to sum(MSUM)

Mixing, Integer Mixing

OB: if MIN is in modifier-this-pass quadrant, sum(MIN)
to FG

0C: sum(MRM) to FXA; Ml to FXB

1A: if MIN is not in modifier-this-pass quadrant, sum(MIN)
to FG

1C: FG to FXA; MO to FXB

4C: FX (B * Ml) to FK

5C: FX (A * MO) + FK to FJ

6C: FJ to FD

7B: sum(MSUM) to FW

7C: FW + FD to sum(MSUM)
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Amplitude Modulation, Four-Quadrant Multiplication

OH: . L1 to FEE

OB: if MIN is in modifier-this-pass quadrant, sum(MIN)
to FG

0C: FEE to FXA; Ml to FXB; sum(MRM) to FV

1A: if MIN is not in modifier-this-pass quadrant, sum(MIN)
to FG '

1C: FG to FXA; if four-quadrant multiplication, FV to
FXB; if amplitude modulation, 0 to FXB0O, -FV0 to
FXB1l, FV1-18 to FXB2-19

4C: FX (L1 * Ml) to FK

5: FX (B * A) to FJ

6C: FK to FF; FJ to FD

7B: sum(MSUM) to FW

7C: FD to Ll; FW + FF to sum(MSUM)

Minimum, Maximum .

OB: if MIN is in modifier-this-pass quadrant, sum(MIN) to
FG }

0C: sum(MRM) to FXA; Ml to FXB

1A: if MIN is not in modifier-this-pass quadrant, sum(MIN)
to FG

1C: FG to FXA; MO to FXB

4C: FX (B * M1) to FK

5C: FX (A * MO) to FJ

6C: FK to FF; FJ to FD

7B: sum(MSUM) to FW

7C: FD or FF (depending on mode and comparison FJ:FK) +
FW to sum(MSUM)
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Zero~-Crossing Pulser

OH:
ocC:
1C:
4C:
5C:
6C:
7B:
7C:

. L1 to FEE

FEE to FXA; Ml to FXB; sum(MRM) to FG

FG to FXA;M0 to FXB

FX (L1 * M1l) to FK

FX (B * M0) to FJ

all-ones to FD; FJ to FF

sum (MSUM) to FW

FF to L1; FW + FD + (0 if FK is not 0 and if either
FJ is 0 or FK * FJ is negative; else 1) to sum(MSUM)

Invoke Delay Unit

Latch

OH:
0C:
1H:
1C:
4C:
5C:
6A:
6C:
7B:
C:

L0 to FE

R (delay memory) to LO, FXA; FE to FN; M1l to FXB
L1 to FEE

FEE to FXA; MO to FXB

FX (R * Ml) to FK

FX (L1 * MO) + FN (LO) to FJ

sum (MIN) to FW

FW + FK to FF, delay hemory; FJ to FD

sum(MSUMf to FW

FF to L1; FW + FD to sum(MSUM)

L1 to FE

FE to FN; sum(MRM) to FXA; Ml to FXB

0 to FXB

FX (B * Ml) to FK

FX (0) + FN (L1) to FJ

sum (MIN) to FW

FW to FF; FJ to FD

sum (MSUM) to FW

FF to Ll if FK is not 0; FW + FD to sum(MSUM)
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Uniform Noise, Triggered Uniform Noise

One Pole

One Zero

OH:

0C:
1H:
1cC:
4C:
5C:
6C:
7B:
7C:

L0 to FE

FE to FN; sum(MRM) to FXA; M1l to FXB

L1 to FEE

FEE to FXA; MO to FXB

FX (B * Ml1) to FK

FX (L1 * MO) + FN (LO) to FJ

FJ to FD

sum (MSUM) to FW

FD to L1 if FK is not 0, or not in triggered mode;
FW + FD to sum(MSUM)

L1 to FEE

FEE to FXA; LO to FEE; Ml to FXB; sum(MRM) to FV
FEE to FXaA; FV to FXB

FX (L1 * Ml) to FK

FX (LO * B) + FK to FJ

FJ to FD

sum (MSUM) to FW

FW + FD to sum(MSUM)

Ll to FE, FEE

FEE to FXA; LO to FEE; Ml to FXB
FE to LO

FEE to FXA; MO to FXB

FX (L1 * M1) to FK

FX (LO * MO) + FK to FJ

sum (MIN) to FW

FJ to FD; FW to FF

sum (MSUM) to FW

FF to Ll; FW + FD to sum(MSUM)
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Signum

Threshold

Inactive

if MIN is in modifier-this-pass quadrant, sum(MIN)
to FG

sum(MRM) to FXA; M1l to FXB

if MIN is not in modifier-this-pass quadrant, sum(MIN)
to FG

FG to FXA; MO to FXB

FX (B * Ml) to FK

FX (A * MO) to FJ

0 to FF; all-ones to FD if FJ .LT. FK

sum (MSUM) to FW .

if FJ .GE. FK, FF to FR; if FJ .LT. FK, FD to FR;
FW + FR + (1 if FJ .GT. FK, else 0) to sum(MSUM)

L0 to FE

if MIN is in modifier-this-pass quadrant, sum(MIN) to
FG

FE to FN; sum(MRM) to FXA; Ml to FXB

if MIN is not in modifier-this-pass quadrant, sum(MIN)
to FG |

FG to FXA; MO to FXB

FX (B * Ml) to FK

FX (A * MO) + FN (LO) to FJ

if FJ .GE. 0, FK to FF; if FJ .LT. 0, 0 to FF

sum(MSUM) to FW

FW + FF to sum(MSUM)

0 to FF
sum (MSUM) to FW
FW + FF to sum(MSUM)
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Modifier Control

The modifier mode FMD0-4 is stored in 256xl1 RAMs (MISCB, #1180), all
addressed by CPABn. These mode bits are clocked through a pipeline
FMDnBm (a 'l75 and--a '174 on #1180). These are decoded by PROMs (on
#1180 and #1181), addressed by FMDOBn for ticks 0 and 1 and by FMD6Bn
for ticks 6 and 7. PROM outputs and their meanings are as follows:

FXMOP: multiply in fraction mode

FIM1V: 2 poles or 2 zeros, M1l variable

FIMOV: 2 poles or 2 zeros, MO variable

FGCA: clock FG on phase B of even tick or phase A of odd tick
FGCB: clock FG on phase C of even tick |

FLA7P: off if addressing LO in first half of tick 1
FLWCA: write FL in second half of tick 0

FLWHA: write FL in first half of tick 1

FEECC: clock FEE on phase C of tick 0

FEECH: clock FEE on phase H of tick 1

FPRSA: select delay memory to FXA on tick 0

FPGSA: select FG to FXA on tick 1

FPSGEO: select FG or sum memory to FXA on tick 0
FPSGEl: select FG or sum memory to FXA on tick 1

FQSOA: select FV or FV shifted (A.M.) to FXB on tick 1
FQS1A: select 0 or FV shifted to FXB on tick 1
FRKS: select FK to FR on tick 6

FYJS: select FJ to FD on tick 6

FYEA: clear FF on tick 6

FRFSA: select FF to FR on tick 7 if FK .GT. FJ
FRFSB: select FF to FR on tick 7 if FK .LE. FJ
FRFSC: select FF to FR on tick 7

F2S0: select FC or FW to FF on tick 6

F2S1: select FW or FK to FF on tick 6

FMDCP: signum mode

FFRA: clear FF on tick 6 if FJ is negative
FZCP: zero-crossing pulser mode

FLWCB: write FL on phase C of ‘tick 7
FLWCC:  write FL on phase C of tick 7 if FK .NE. 0
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The FX multiplier scaling bits FXM1P and FXM2P come from RAMs on
#1181. Two pairs of RAMs are 3-stated together, being enabled on
alternate passes for the two successive multiplies of one modifier.
Both enables are asserted when writing data into the RAMs. The bits
are pipelined on #1182 to correspond to the data pipeline on the
FILTB cards as previously described.

The PROM outputs, and in some cases mode bits taken directly, are
combined with clock pulses as needed (see #1180, #1181) to implement
the processing described in "Modifier Data Paths".

Multipliers

There are four multipliers in the Synthesizer: GX, GY, GZ, and FX.
Each is implemented in the form of a Wallace tree of four-bit
slices. Because of the time required by a large tree, in the larger
multipliers a pipeline is employed: partial products are formed,
on one tick and added together on the next tick.

Partial products are formed with 8875A and 8875B ICs and added by
'283 adders. In a few cases carries are added together by 'H1l83s.
Various portions of the four trees are allocated among the ten MULT
cards, with a few remaining portions on the wire-wrap panels.

GX: this multiplier yields the low-order 13 bits of the product.

The low-order 12 bits are generated by the Wallace tree, and the
high-order bit by XORing the proper bits of the operands and carries
out of the tree. As noted above, GX is modified to perform a function
slightly different from simple multiplication.

GY, GZ: these are straightforward unsigned multipliers. The high-
order part of the product is taken, but the low-order part of the
tree is preseht to compute the proper carries into the high bits.
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FX: this is the largest multiplier. It multiplies two 20-bit
two's-complement numbers for a 39-bit two's-complement product.

The signed result is generated in the Wallace-tree structure with

the aid of three special types of PROM. One type takes in two four-
bit numbers and préduces the high-order four bits of their product,
assuming that one of the operands is signed, in two's-complement form;
the second type is similar but assumes both operands are signed.

These are used in place of 8875As when the high-order four bits of
either multiplier operand are involved. Corresponding PROMs for the
low product bits are normal 8875Bs since the low bits are the same
whether the multiply is signed or unsigned. The third special PROM
type is used for sign extension, being added into a four-bit slice of
the product,vwith its inputs coming from the high-order output bits

of all sigﬁed—multiply PROMs in less significant slices. The 20-bit
result FX0-19 can be selected from eight different positions in the
39-bit product. This is determined by mode bits FXM0-2, which control
three successive stages of 'LS298s: FXG and FXH; FXJ; FX. The FXG
and FXH partial products are added by '283s named FXI. Successive
ticks in FX pérform the following: 0 -- operands are clocked into FXA
and FXB; 1 -- partial products are clocked into FXG and FXH, selecting
between integer and fraction multiplication; 2 -- FXI is clocked into
FXJ, selecting zero or two uhits of shift; 3 =-- FXJ is clocked into FX,
selecting zero or one unit of shift.

Sum Memory

Sum memory is composed of 80 16x4 RAMs, organized in four quadrants
named S0, S1, S2, and S3. Each quadrant is 64 words by 20 bits.
Generator outputs are added in S0 and S1; modifier outputs in S2 and
S3. On one pass, S0 will be "this pass" and S1 "last pass"; on the
next pass, the functions will be exchanged. S2 and S3 alternate
similarly. During a single tick, a quadrant may have as many as three
separate read accesses or one read-pause-write access. These are
interleaved as shown in Fig. 5. Two classes of modifier modes are
distinguished: "mod-mix" modes which use the "A" operand early in
their processing, and "pole-0" modes which use it later.
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Sum memory activity is based on the cléck phases PHA, PHB, and PHC.
While a reference is occurring in each quadrant during a 65-nsec
clock phase, the six-bit address in each quadrant is being generated
for the next phase. On each phase, the addresses are clocked into
'S175s and 'S1l74s (center of #1184) producing S0A0-5, S1lAl-5, S2Al-5,
and S3Al-5. The inputs, SnAmI, are created on the four MISCA cards
(left of sheet 2, #1184) by 'S153 multiplexers. The multiplexer
selects, SnAS0O-1, are based only on clock phases, OP, and OT. They
are generated by gating on #1184 and by 'S5ls on two SUM cards.

Data inputs to the sum address multiplexers are as follows: FRM2-7,
RAMs (on a MISCA) addressed by CPOBn, holding modifier "B" addresses;
GFM1-6, 93H72s on #1184, clocked every phase C from GFMIl-6, RAMs (on
another MISCA) addressed by CPABn; FIN2-7, '175s on #1185 clocked
every phase C from RAMs addressed on alternate ticks by CPABn and
CP4Bn; and SUMAO-5, which is GSUMO-5 for quadrants 0 and 1 and FSUM1-6
for quadrants 2 and 3. GSUMn and FSUMn come from 'S161 counters .on
#1185; during processing ticks these counters are parallel-loaded on
each clock phase from GSUMIn and FSUMIn, RAMs on MISCA cards
addressed by CP6Bn through 'HO04 inverters. Of the six address bits
for a quadrant, the low-order four directly address the sum memory
RAMs in the quadrant and the high-order two bits are decoded by

'S51s on various SUM cards to form the enables SnEm, where n is the
quadrant and m denotes one of four banks of RAMs which are 3-stated
together.

The high-order bits FRM0-1, GFM0O, and FINO-l1l come from the RAMs as do
the low-order bits, but instead of addressing sum memory they are used
to control multiplexers which route sum memory outputs to the
generators and modifiers. There are three sets of multiplexers, all
on the SUM cards: SA0-19 (not labelled on the drawing), the generator
fm input, formed by pairs of 'S257s; SB0-19 (not labelled), the
generator sum term, formed by an 'S257 from quadrants 0 and 1 and an
'S258 from IRB0-29 in the ceneric interface for DMA read data; and
Sco-19, thekmodifier input, two 'S258s from sum memory.
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The signals that control these multiplexers are generated on #1184.
SA23E, true when fm is coming from the modifier side of sum memory, is
simply a buffered version of GFM0; SAlS to select quadrant 1 (as
opposed to 0) and SA3S to select quadrant 3 (as opposed to 2) are

just copies of OP. SBSE enables SB0-19 from sum memory, and SBIE
enables it from the interface; these are opposite sides of a flip-flop
('S175 in 3E8) clocked from CHRP which indicates that the upcoming
generator is in read-data mode. SB1lS, selecting quadrant 1 rather
than 0, is -OP buffered. The multiplexer controls for SC0-19 involve
OP and two signals, CSS0-1, coming from #1172, which sequence through
the various phases of even and odd ticks. The CSSn address an 'S153
multiplexer to select SCSP0-1 from the high-order bits of FIN, FRM,

or FSUM. The SCSPn are combined in gating and clocked into flip-flops
on every clock phase to form SCOlE (enable from generator side),

SC23E (enable from modifier side), and SC3S (quadrant 3 as opposed

to 2). SClsS, selecting quadrant 1 as opposed to 0, is OP buffered.

r

Resetting sum memory is governed by flip-flop SR on #1184. 1Its D
input is SRI (#1173), arranged so that SR will set after the first
interface tick of a pass and will clear by processing tick 6. SR is
ANDed with OPD (OP delayed -- see Fig.2) and its complement to give
SRO0 (reset even quadrants) and SRl (reset odd quadrants). These are
ANDed with CU (clock on phases A, B, and C) by 'S5ls on SUM cards,
to assert chip enables and write pulses for all RAMs in the
appropriate quadrants. While SR is asserted, the GSUMn and FSUMn
'S161 counters on #1185 are conditioned to count on every clock phase,
disabling the parallel entry. When they have counted through 16
states (less than 6 ticks), sum memory has been reset.

Normal writing into sum memory is controlled by the write grant
signals SnWG (#1184). For the modifier quadrants these are the AND
of OT, CTR7, and OP or -OP. The generator write grants do not involve
OT but include a generator mode bit which governs adding to sum

memory.
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Delay Memory

The DMEM cards (#1121) use 4096-bit dynamic MOS RAMs. Each card has

a 21x4 array of RAMs comprising 16K 20-bit words plus parity.
Addresses, write eﬂable, column strobe, and chip enable are buffered
by '128s and series-terminated with 33-ohm resistors. There are six
address lines, time-multiplexed to give row address and column address
in sequence. Input data, RTO0-19 and RTP (parity), are buffered in
'LS174s clocked on the high-going transition of RMCOL. Output data
goes through 'LS365 buffers, enabled by RMDSn, which gate data from
the proper DMEM card onto the 3-state bus RR0-20. Parity is generated
(RTP) and checked (RR20) with 9348s on INTF cards ($#1122). The row
strobes RS0-3 determine which row of chips on the DMEM card actually
perform a given cycle. RSn on board m is the AND of the board select
RMBSm and the row select RMRSn.

Control signals for the DMEM cards are generated on #1188. There are
three types of cycles: normal (i.e. delay unit), refresh, and PDP-10
access, associated with the control signals RMNY, RMRY, and RMTY
respectively. Each such signal is true during the four ticks of a
cycle of the proper type. An 'LS195A shift register, clocked on phase
C, counts the four ticks of a cycle: RMCO is true in the first tick;
RMCO and RMC1l in the second; RMC0-2 for the third; RMCO-3 all true

for the fourth. Another 'LS195A, clocked on the leading edge of

phase C, provides the timing signals which after gating are used on
the DMEM cards: RMRAS (row strobe), RMCAS (column strobe), and RMWPP
(write pulse). An 'H74 clocks in RMRAS on phase A to create the RMCOL
signal. Priority arbitration for the next cycle is done by gating

at the input of the 'LS175 which generates RMTY, RMNY, and RMRY. A
PDP-10 access has the highest priority and its request line goes

right to RMTY. If there is no PDP-10 request, a request for a normal-:
cycle (RQP) on a processing tick (CTRA) turns on RMNY. Failing both
those conditions, a refresh request (RMRQ) sets RMRY.‘
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The cycle-type flags are only clocked on ticks in which RMI is true,
indicating a cycle is about to end or none is in progress. This
signal also resets the 'LS195As. The normal cycle request RQP is an
'LS109 conditioned by clock enables to permit only one normal cycle
per gated clock tick. (Most of the DMEM control logic runs on ungated
clocks, since refresh and PDP-10 cycles must be permitted and normal
cycles completed once begun, even if the clock is stopped.) RQP is
held off by RQO, which is overflow from the counter RQ0-4 ('LS16ls).
The RQOn counter is reset at the beginning of each pass and counts the
32 delay units. Its trickle enable, RQET, is asserted during the
third tick of a normal cycle. The refresh request flip-flop RMRQ
('Ls109) is set by RMRT, trickle carry out of a 7-bit counter
('Lsl6ls), which counts out and requests a refresh cycle approximately
every 24 microseconds. The RMRQ flip-flop provides one level of
buffering for RMRT so that a second refresh request can be timed out
while one is pending. A refresh address counter RMRO-5 ('LSl6ls) is
advanced at the end of each refresh cycle. It runs through all 62
states to ensure that all‘row and column addresses in the dynamic RAMs
are refreshed in turn. The 16-bit delay memory address RV0-15 is
treated as follows: RV0-3 are latched in an 'LS157 as RMAO-3. Then
RMAO-1 are decoded by an 'LS139 to form the board selects RMDSn and
RMBSn (through an 'LS158 to make them row strobe pulses, all on for
refresh cycles). RMA2-3 are decoded by another 'LS139 section to form
the row selects RMRSn. A set of 'LS153 multiplexers form the six
address bits RMA4-9 sent to the RAMS directly; these select either
RV4-9 for the row address, RV10-1l5 for the column address, or RMRO-5
for both in refresh cycles.
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Delay Memory Data

The DMD cards (#1120) contain the delay unit data paths other than
the delay memory itself. The general organization is shown in Fig. 6.
There are seven 32-word memories (one word per delay unit): RAO0-19,
RBO-19, RCO-19, RDO-19, RX0-19, RY0-19, RZ0O-19. The RA, RB, RC, and
RD memories are used for interfacing to the modifiers. On even
passes, modifiers write into RB and read from RD while delay memory is
being read into RC and written from RA. On odd passes RA and RB
exchahge functions as do RC and RD. The memories are addressed
through '157 multiplexers (#1187) selected by OP. The address of the
memory sending data to the modifiers is FRM3-7 (discussed above); for
the memory receiving data from the modifiers, RG0-4, which is FRM3-7
delayed by 'LS670s; for the memory sending data to delay memory,
RQ0-4, the delay unit counter; for the memory reading data from delay
memory, RKO-4 (an 'LS174 on #1188), a delayed version of RQ0-4.

RX, RY, and RZ are addressed by RS0-4 (RS0-3 are buffered by 'HO4s

on the DMD cards) which is generated by multiplexers (a 9309 and ran
'LS158) on #1187. The multiplexer inputs are: RQ0-4, the delay unit
counter; and IC7-11, command bits from the generic interface, which
is selected during update ticks. RX0-1l5 has the base address in
delay memory; RY0-15 (in delay line mode) has the index into delay
memory; R2Z0-15 has the limit in delay line mode, RZ12-15 has the
scale factor in table look-up mode; RX16-19 has the mode; RX16-19

and RY16-19 are unused.

For PDP-10 cycles, data to be written is selected at the RT
multiplexers by RTS, and the address is selected at the RV
multiplexers by RVS; both selects are simply copies of RMTY (#1187).
At the end of the cycle, RLC clocks the RR bus into RL0-19, which can
be read by the PDP-10 interface.
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For normal cycles in delay-line mode, the information to be written
is taken from RA or RB by the RABO-19 multiplexers ('LS157s on DMD)
and goes through RT. The address is generated by '283 adders which
add the outputs of the RX and RY RAMs. At the same time, RY is
incremented by 1 ('283s) and the result clocked into RWO0-15 ('LS175s).
The unincremented RY is also being compared to RZ by '85s. On phase
C of the third tick, RY is written (by RYW) from the RUO-15
multiplexers ('LS158s, outputs not labelled): either the incremented
value (RW) or zero will be written, deéending on RUE which will be
asserted (to enable RW) unless RY = RZ., The RUE gating is on #1187.
On phase C of the fourth tick, RC or RD is written (RCW or RDW, gated
from RCDW on #1188) from RR0-19.

For normal cycles in table look-up mode, the base address RX is
taken as before, but the RY RAMs are disabled (RYEA and RYEB held
false) and the 'LS253 RY multiplexers are enabled (RYEC true)
(gating from the mode on #1187). The RO and RY multiplexers are-
selected by the scale factor RZ12-15 to apply 0 to 15 units of
shift to RAB. A low-order bit, RY1l6, is generated on #1187; if it
is 1 and the rounding mode is specified, RVICl6 is asserted to
inject a carry into the '283s adding RX and RY. Writing of RC or

RD is as above.

The RI0-19 lines, from 'LS157 multiplexers on the FILTB cards,

carry both data from the modifiers to be written in RA or RB and

data from the interface to be written in RX, RY, or RZ. The selection
is governed by RIS (#1181), which is a copy of ITR. RI0~-19 appear
directly on the data inputs to RX and RZ and, through the RU ‘
multiplexers, to RY. RI is the input to the RE0-19 register, 'LS17S5s
on DMD clocked on phase C, which in turn is written into RA or RB

(by RAW or RBW, gated on #1187 with FPRD, to indicate that the current

modifier is in delay mode).
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Generic Interface

The principal feature of the generic interface, shown in block
diagram form in Fig.7, is the 32x32 FIFO, designated IF0-31, compriéed
of 64-bit RAMs on ‘the INTF cards. This holds up to 28 commands and
4 read-data items. Commands come out of IF into the 'l75 registers
I0-19 and ICO0-11l; read data go to the 'LS175s forming IRB0-19 (on .
the SUM cards). Input to the FIFO is from the 1l6-bit register IMO-15
('LS175s on INTF). The FIFO can be addressed from four different
counters: IFIC0-5 for command input; IFOC0-5 for command output;
IFIQ0-2 for data input; IF0Q0-2 for data output. Each counter is
advanced at the conclusion of the relevant type of cycle. The
high-order bits do not actually address the FIFO but are used to
distinguish full and empty conditions: if all input and output
counter bits agree, the buffer is empty; if all but the high-order
bits agree, the buffer is full. The data counters go from 0 to 3; the
command counters from 4 to 31 decimal. All are formed of 'LSlé6ls
on #1190. On a given tick, the FIFO can do either a 32-bit output
cycle or a 16-bit input cycle, according to the following priority
scheme:
A -- On processing ticks:
Al -- If possible, FIFO to IRB
A2 -- Else if possible, IM to FIFO (left half, then
right half)
B =-- On update ticks:
Bl -- If possible, FIFO to I and IC
B2 -- Else if possible, IM to FIFO (left half, then
right half)

Here "if possible" means if the source has data and the destination

has room to accept data of that type.

Flip-flop IMBF ('109 on #1190) is set when the PDP-10 interface
puts information into IM, and cleared on a right-half IM-to-FIFO
cycle. Similarly, IRBF is set by a FIFO-to-IRB cycle and cleared
when the generator calculator takes the data from IRB.
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The priority scheme
lengthy manner with
develops IFCNF, "IF
IFQNF ("IF data not

is implemented in a straightforward though

a comparator, gates, and one PROM. The comparator

commands not full". The PROM generates
full") and IFQAV ("IF data space available");
the difference is that in packed data mode (determined by TP7),
there must be two data slots free in the FIFO before initiating

a data read. In such a case IFQAV is more cautious than IFQNF. The

combinational logic develops IIL, which calls for a Bl cycle, and

IRBCA, which calls for Al.

Final outputs are IFASO-1, which are the

selects on the FIFO address multiplexers IFA0-4 (a '157 and a 9309

on #1190).

IFASO

= = O O

IFAS] Address Type of cycle
0 IFIQl-2 : data to FIFO
1 IFOQl-2 FIFO to IRB
0 IFICl-5 command to FIFO
1 IFOC1-5 FIFO to I, IC :

The type of information in IM is encoded by IMT0-2, which are set
up by the PDP-10 interface.

IMTO0-2

000
001
0lo
011
100
101
110
111

Data in IM

packed data right half
packed data left half
unpacked data right half
unpacked data left half
(invalid)

(invalid)

command right half
command left half

For writing packed data into the FIFO, an 'LS157 on DMD introduces
0 in the low-order bits if IMT1 is false.
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Command decoding is shown on #1191. TIILD (a '109 on #1190), true
when a command is present in I and IC, and -ITR are used to enable
'LS138 decoders whose outputs (of the form IIMn) identify the various
commands. Various commands have effect within the generic interface:
IIMO2 and IIMO3 are gated (#1190) to form ITAC and ITBC, which clock
TTL buffers A and B, respectively -- 'LS157s on INTF -- whose outputs
are followed by 7437 buffer gates. The register IX0-15 ('298s on
INTF) is clocked by IXC (from an 'HS1 on #1190) either due to IIMOLl
or on the tick after an IIM1l, IIM2, or IIM6 with IC3 true; in the
latter case, zeros are loaded into IX, corresponding to the "clear
DX" function of certain commands. IIM21 loads IP0-19 ('LS163
counters, IP0-15 on INTF cards and IPl16-19 shown in #ll90),ythe

pass counter. The counter is enabled by EPAS.

The commands to clear all wait bits and to clear all pause bits
use flip-flops IRW and IRP ('H74s on #1190). Each is set by PHBM
(phase B of an update tick when performing a "miscellaneous" ,
command, generated on #1191) if the appropriate command bit is
set in IC. They are clocked off at the end of the next pass's

real (processing) ticks.

For the case of a linger command, I0-19 is always being compared
to IP0-19 ('283s'performing subtraction followed by gates to
indicate a zero result). ISOK (meaning linger satisfied) is
generated (on #1190) if the pass count is at least equal to the
command data and does not exceed it by 4,696 or more; ISU
(underrun) is true if ISOK is true and the numbers are not exactly
equal. The IIM23 version of linger clears the pass counter first
(signal IPR on #1190); repeated clearing is inhibited by the IPRD
flip-flop which remains set ﬁntil the linger is finished. This
condition contributes to the term IILF (#1190) which indicates that
a new command can be loaded into I and IC. The intermediate term
IIMW (#1190) is true when a linger command is present and the pass

counter is valid (not being reset).
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The interface address, IA0-7, is the generator or modifier number
of the next command to be performed. If it is a generator number,
it contains all 8 bits; a modifier number occupies the left 7

bits with the rightmost bit distinguishing LO from L1 or MO from
Ml. The address ﬁﬁst be available the tick before the command is
executed, so that it can be loaded into the clock pipeline.
Therefore the IA multiplexers ('LS257s and }L8258S on #1190) have
four possible sources: two (generator or modifier number) from

IF, to load the address into the CPnBm at the same time the command
is loaded into I and IC; and two from IC, similarly, for a command
previously loaded into I and IC but not yet performed. The enables
and selects IAEA, IAEB, IASA, and IASB perform this function.

Data being written to computer memory is put in IWB0-19 ('LS298s on
SUM cards) by the generator calculator, which at that time sets
IWBF ('109 on #1190). The PDP-10 interface clears IWBF at the end
of a DMA write cycle. .

PDP-10 Interface

Data paths for the PDP-10 interface are on the nine TENI cards. The
low-order six cards, termed "full", have both data and memory address
logic; the high-order three cards, termed "partial", have data but
not address logic. A block diagram is given in Fig. 8.

The DEC-level I/O and memory busses are received and converted to
TTL by 75110 differential line receivers, biased to VREF (about
-1.5 volts). The memory data, being in pulse form, is "caught"

by 9314 latches to form TD0-35. Parity of each four-bit slice is
generated on the TENI card by 'LS86s; the results are then combined
to form TDEP by a 9348 on #1193.
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The busses are driven by 75110s followed by 2N4258 transistors. 1In
keeping with PDP-10 practice, the I/O bus lines are driven to ground,
and the memory lines toward -5 volts with a 100-ohm parallel
termination to ground. Data to memory bus bits 4-23 comes direct from
IWB0-19; zeros are written for the other bits. The parity bit, IWBP,
is formed by 9348s on #1184. The I/0 bus bits 16-35 are driven from
the lines TTT16-35, coming from 'LS153 multiplexers that select one
of four sources: DO0-19, the diagnostic bus; RL0-19, the delay memory
output register; various bits for CONI-A; and the TCC register
(slightly scrambled), for CONI-B. I/O bus bits 0-15 are not driven.
The received I/O bus appears on the output of 'LS157 multiplexers as
TRO-35 (the other multiplexer input is currently unused); this is
clocked, in the case of DATAO, into the 'LS175s THO0-35. Data passes
from the PDP-10 interface to the generic interface (IM register)
through 'LS257s on the INTF card. These select between left half
(bits 4-19) and right half (bits 20-35) of either TH (DATAO data) or
TD (data read from PDP-10 memory). THO-35 also go to the delay units
for PDP-10 references to delay memory.

On the full TENI cards is a 16x24 memory called TCIO0-23. It is
addressed by TAAO-3 (a '157 on #1195). Six words of this memory are
actually used, as follows:

Address Contents

write data CA
read data CA
command CA
write data WC
read data WC
command WC

SN oW -
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TCI0-23 is clocked into two different_registers, both comprised of
'LS175s on the TENI cards: TAl4-35, which is the data actually

put on the address lines of the PDP-10 memory bus; and an unlabelled
register whose output is incremented by 1 in a set of '283s to form
TC0-23. Associated with each WC is a flip-flop ('LS109) on #1195:
TWE for write data, TRE for read data, TCE for commands. These are
the "exhausted" flags for the three types of DMA; they are directly

set by the master reset function.

When a DATAO-B is performed, THO-3 (the high-order four bits of the
DATAO data) are selected onto TAA0-3, and TH1l2-35 are selected for
the data input to the TCI RAMs (selection is by 'LS158s on TENI). The
select signal, TAWW, comes from an 'H30 on #1195 and indicates not
only that a DATAO is occurring but also that no memory cycle is in
progress. It is used to turn off the proper "exhausted" flag, as
selected by TAAS1-3, a phase C clock pulse decoded from TAAO0-3 by

an 'LS138.

r

TAW, the write pulse to the TCI RAMs, occurs on phase C ('HO0OO0 on
$1195) . | |

Addressing of a memory cycle proceeds through four successive ticks,
indicated by one of the following in succession being true: TMG,
TMGD, TMGDD, TMG3D. On the first tick, the appropriate CA word is
addressed in TCI; phase C clocks it into TA to drive the PDP-10
memory address lines, and also into the other register to be
incremented. On phase C of the second tick, the incremented CA is
written back into TCI. On the third tick, the relevant WC is clocked
into the unnamed register; on the fourth tick the incremented WC is
written back into TCI and, if a carry comes out of the incrementer,

the proper "exhausted"™ flag is set.
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Control of the actual memory cycle is Shown on #1193. Threeb'LSlO
gates create cycle requests TRY, TWY, and TCY (read data, write data,
and commands) according to the "exhausted" flags and buffer-register
or FIFO full or available flags. When a memory cycle is not in
progress any request forms TMQ, which is clocked into an 'LS174 (on
#1195) and comes out as TMY. This is turn becomes TMG ("memory go")
if no cycle or DATAO is in progress. TMG is clocked into TMB ("memory
busy") to indicate a cycle in progress. At the same time, TWQ is
clocked into TMW if a write cycle is requested. TMB asserts TMRQ,
the memory port multiplexer request. The acknowledgement TACKN
asserts TAE, enabling the driving of the memory address lines, and
also, after a 50-nsec delay (SNG82), putting up TREQCYC to indicate a
memory cycle request. The memory responds with TMAA (address
acknowledge) which resets the TD latches if in a read cycle, and is
latched as TMA which turns off TMRQ. TREQCYC was turned off by TMAA
and is held off by the absence of TMRQ. On a write cycle, the fqll
of TMAA initiates an 85-nsec delay (SNG82) during which TWE is on

to enable driving the data bits of the memory bus. When the delay
expires, TMDS sets TMD which is resynchronized as TMDD. TMDD causes
TMF which clears TMB to end the cycle.

A read cycle proceeds as above through the address acknowledge

pulse. Then TDR clears the pulse-catcher TD0-35 and TMA then enables
TD for input (TDE). The read restart pulse TRDRS eventually clocks
on TMD, turning off TDE. If there is no parity error, -TDEP and
TMDD then finish the cycle. If a parity error occurs, the memory
control stays in a busy state with TMPE on until the problem is
acknowledged by a CONO-B to reset it. Such a CONO sets TMC

("memory continue") which permits the cycle to finish, asserting
TMER to reset the error flip-flop. To detect nonexistent memory, a
counter ('LS163s) counts about 50 microsec after the start of a

cycle and then asserts TMXO, which, if the memory is still busy, sets
TMXE. This state is also gotten past by a CONO-B which sets TMC.
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The I/O bus interface begins with the device address comparator, a
9324 on #1194, which asserts TS if the high-order five IOS bits
(TRS3-7) agree with five bits set by switches TSS3-7. TS and either
DATAI or CONI create TTE which enables the bus drivers on the TENI
cards. TS is ANDea with DATAO-CLR to give the clock TDOC. The
low-order IOS bits, TRS8-9, are used to decode TSA (device code A
selected) and TSB (for device code B), and are clocked by TDOC into
a '175 to emerge as TMDOR and -TMDOA. CONO-A, CONI-B and DATAOs are
synchronized in an 'LS175. In the case of a DATAO, the TMDO flip-
flop is set and remains set until the function of the particular
DATAO has been performed. 1Its K .term comes from an 'LS20 whose four
inputs correspond to completion of the four DATAOs:

IWBG DATAO-C
RTD DATAO-D
TMDOW ; DATAO-A
TAWW DATAO-B

CONO-A, indicated by the unsynchronized clock TCOCA, sets TIAO-2 and
TIB0-2 ('LS174s on #1195) according to the CONO data; these are the
PIA numbers. It also clocks the diagnostic address from TR25-31 into
IDAO-5 and IDS (a '174 and a '175 on #1194). The synchronized version
TCOCADA clocks IRH ('LS109) which is on in "all ticks update” mode.

CONO~-B uses bits TR32-35 to address two 9334 addressable latches,
writing bit TR31l into the addressed cell. The latched outputs,
TP0-15, are the BB.AAA conditions of the programming specification.

The master reset signals MR and TR have three causes: I0OB RESET,
called TMR; power-on reset, POR; and the reset bit of CONO-A.
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The TCC register is read by CONI-B. This is formed mostly of ‘LS175s
on INTF cards; but bit TCC5, the lost cause bit, is an 'LS109 on
#1195. The register is clocked from TJ0-4 and CTK1-8. The CTK lines
are the current time state; the TJ lines, generated on #1191,
represent in order the I1-5 bits of CONI-B. TCC is clocked by TCCC
each phase C until a bit appears in it which is masked on by an 0laaa
CONO-B bit (TP9-13). Such a condition asserts TCCF (#1195), which
suppresses TCCC. If on a subsequent tick a TJn masked on by TP9-13
occurs, ITJ (#1191) will be true and TCCS5 will be turned on. TCCS is
cleared by TCIBR which comes from CONI-B (#1194).

The interrupt request lines TIOBPIl-7 come from a 9334 addressable
latch on #1195. Twice per tick a bit in the latch is strobed in;

on the first half of the tick from TIA (interrupt request, channel
A), and on the second half from TIB; address is TIA0-2 or TIBO-2
respectively. The interrupt requests are formed from the various
interrupt conditions and the mask bits, TP6 and TP8-14. All requests
are reset by the master reset function, and by any DATAO, CONO-A

or CONO-B..

Analog Outputs

Each ALOG card contains two independent analog output channels. All
channels share the same clock (phase A) and data inputs (AP0-13),
differing only in their SEL signals. These are the enables AE0-15
decoded from GOl1l6-19 by 9301ls on #1175, including the GD term
indicating a generator in DAC mode.

A 1l4-bit register, shown on the ALOG schematic (#1110) as DO-13
('LS174s), holds the current DAC input. The SAMP flip-flop ('LS109)
is true when the sampling switch is in the sample state and false when
it is in the hold state. A counter ('LS109 and 'LS163) times the '
duration of the hold state.
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The DAC has a built-in op amp which converts the current switch
outputs to a low-impedance voltage source. R35, combined with _
internal feedback and offset resistors, adjusts the DAC output range
to + or - 1.5V. This is applied to a sample-and-hold circuit whose
output, SIG, drives the filter chain or final output amplifier. The
sampled DAC value is stored in Cl4, which is buffered by Ul0 to drive
SIG. Q5 acts as a switch which, when closed, allows Cl4 to charge to
the DAC voltage through R3 and R39.

‘About 260 nsec before the DAC register is updated, the SAMP éignal

goes high (false), cutting off Ql and allowing Q2 to turn on. This
turns on Q3 which applies =15V to the gate of Q5 through CR3 and

CR4, thereby cutting off Q5. Approximately 6 microsec later, after the
DAC output has settled to its new value, SAMP falls, allowing +15V to
be applied to the cathode of CR4, permitting Q5 to turn on. Some of -
the switching voltage is transferred to Cl4 because of the capacitance
of Q5. Cl1l3 couples a pulse of opposite polarity and approximate%y the
same amplitude into Cl4 to minimize this effect.

An 'LS175 holds FE (filter enable) and FAO-1 (which determine filter
frequency). FE drives a DGl54 FET switch which selects filtered or
unfiltered output; FAO-1 operate other switches which program the
UAF31 active filters. The filter configuration is 6-pole Butterworth,
with breakpoints as follows:

FAO-1 freg

4.5 kHz
9.0 kHz
13.5 kHz
18.0 kHz

w N +# O

The FE and FA 'LS175 is loaded at the same time, with the same data
for all channels, by AFC (#1175) which derives from IIMO3.

-42-



Diagnostic Readback

The high-order 6 bits of the diagnostic address, IDAO-5, are decoded
by 'LS138s on #1197, to form diagnostic enables DE00-63 (numbered

in octal). Each enable goes to a group of up to five 'LS257s (or
'LS258s) whose outputs form the 3-state diagnostic bus D0-19. The
low-order address bit IDS is buffered to perform the selection on
all the diagnostic multiplexers. Contents of the several addresses
are tabulated below.
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Left Column: Diagnostic Address (in octal)
Right Columns: 20-bit Diagnostic Word (bit numbers in decimal), X=undefined bit

0 TTTO-19

1 TC4-23

2 X X X X X X TIOBPIO-1 X X TIOBPI2-3 X X TIOBPI4-5 TTT12-13 TIOBPI6 X
3XXXXXXXXXXXXXXZX X TCO-3

4 TD16-35

5 TH16-35

6 X X X X TDO-15

7 X X X X THO-15

10 TA4-23

12 X XXX XXXXXXXXXX X X TAO=-3 -
13 X X X X IWBP X X X TMRQ TMPXCLR X X TREQCYC TMW X X X X X X
14 IX0-15 X X X X

15 TCCO-4 TCC6-16 X X X X

16 II16-19 ICO-11 X X X X

17 IMO-15 X X X X

20 IP0-15 X X X X

21 II0-15 X X X X

22 ITBO-15 X X X X

23 ITAO-15 X X X X

24 GTO-11 X X X X X X X X

25 GLO-11 X X X X X X X X

26 GzA0-11 X X X X X X X X

27 GZBO-11 X X X X X X X X
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30
31
32
33
34
35
36
37
40
41
42
43
44

.46

47
50
51
52
53
54
55
56
57
60
61
62

GXCO0-10 X X X X X X X X X
GYAO-3 GYCO-3 GYEO-3 X X X X X X X X
X X X X GY4-11 FRM4-7 GSUM2-5

‘X GX1-11 FRMO-3 X X GSUMO-1

GYB0-11 CP4B0 CPS5B0O CP6B0 CP7B0O CP4B2 CP5B2 CP6B2 CP7B2
GYDO-11] CP4Bl CP5B1 CP6B1 CP7Bl CP4B3 CP5B3 CP6B3 CP7B3
GWD0-11 FSUM3-6 GFMI3-6

GUO-11 X FSUM0-2 X GFMIO-2 )

GXB0-11 CP4B4 CP5B4 CP6B4 CP7B4 CP4B6 CP5B6 CP6B6 CP7B6
GWBO-11 CP4B5 CP5B5 CP6B5 CP7B5 CP4B7 CP5B7 CP6B7 CP7B7
GVB2-12 X X X X X X X X X ‘

GJ0-7 GVAD-3 X X X X X X X X

GAZ0-7 GCO-3 X X X X X X X X

GMO-3 GRMDO-3 FMD0-3 X X X X X X X X

X XFUO-9 X X X X X XXX

FEO-19

FEEO-19

FXA0-19

FXB0-19

FWwO0-19

FG0-19

FUl0-29

FQI0-19

Fv0-19 .
-GRMDOB0-3 -GRMD1B0-3 -GRMD3B0-3 -GRMD5B0-3 GRMD6BO-1 GRMD7B0-1
FNO-19 ~



Q-

63 TPO-15 X X X X
64 FF0-19

65 FD0O-19

66 FJO-19

67 FKO-19

70 FXJ0-19
71 FX0-19

72 FXH0-19
73 FXH20-23 FXG6-7 FXG10-11 FXG14-15 FXG18-19 FXG21-23 FXH24 FXG3 X X X
74 AP0-19

76 SO0B0-19
77 S1B0-19
100 S2B0-19
101 S3B0-19
102 GRAO-19
103 IWBO-19
104 GRB0O-19
105 -IRB0-19
106 GWA0-19
107 GB0-19
110 GXA0-19
111 GKO0-19
112 Gva4-23
113 GJ8-27
114 GAZ8-27
115 GC4-23
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116
117
120
121
122
123
124
125
126
127

130

131

132
133
- 134

135
136
137
140
141
142
143
144
145
146
147

GP0-19

GO0-19

SOA0-5 S1A0-5 SCS0-1 SA23E SR OPD GFM0-2

S2A0~5 S3A0-5 X X X X GFM3-6

GXB12 GWB12 -CSUM0-5 IA0-3 X CPP CTR1F CTR4F CTRO CTRA ITR OT

FINO-7 IA4-7 CTRO-7

CPABO-7 X X CTKO-9

CTP0-9 CTTO0-9

FXM1P FXM2P FMD4 FMD6B0 IRP IRW IMBF IWBF IP16-19 IFIQl-2 IFICO-5
FMD6B1-4 IIL IILD -IFAS]1 -IFASO X X IFIQO IFOQ0-2 IFOCO0-5

Gz0-17 GZC3 GICN

GWBO GWCO GEC GUF GY0-3 GVBO-1 GVB1l3 GX0 GJOD GRAOD FLIDFEA X X X X GYQ3
RMRY RMNY RMTY RMCO RPO-1 RMC2 RGO-4 RPE RQO FPRD RQO-4 '

RMRAS RMCAS RMWPP RMCl RP2-3 RMC3 RK0O-4 RMRT RMRQ RMRO-5

IDAO-3 GXS GXBS GUSO-1 X X X X GRMDAO-3 TIA0-2 RY20

IDA4-5 X IDS GX12 X X X X X GINVBE GTS GRMDA4~7 TIB0-2 X

IMT0-2 TMW TMB TMC TMD TMDD T2ZA X TCC5 X TMDO TMDOA TMDOR TDOCD TMGD TMGDD TMG3D TMXO
X X X X -TMY TAAIO-1 X TDOCDD TCOCAD TCOCADD X IRH TCE TRE TWE GTT GTA GCOD GCOG
RE0-19

RT0-19

RO-19

RV0-15 X X X X

RX0-19

-RW0~19

RY0-15 X X X X

RZ0-19
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Figure 4. Modifier Data Paths
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Figure 5. Sum Memory References
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Figure 6. Delay Unit Data Paths
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Figure 7. Generic Interface Data Paths
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Figure 8. PDP-10 Interface Data Paths
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