
BLOCK PROGRAMMING
FOR

PHYSICAL SYSTEMS

BYSTRON C i&[±):> DONNER

CORPORATION

Prepared by:

Maxwell C. Gilliland, Ph.D.
COMPUTER RESEARCH, INC.

and

Edward M. Billinghurst

Chief Engineer - Analog Computers
SYSTRON-DONNER CORPORATION

Additional copies of this handbook may be obtained from:

Marketing Department
Analog Computers
SYSTRON-DONNER CORPORATION
888 Galindo Street
Concord, California 94520 U. s. A.

C1966 Bystron-Donner Corporation

BLOCK PROGRAMMING

A Valuable Aid to Simulation of Lumped-Parameter Physical Systems

The analog computer, or differential analyzer, is a
powerful tool for obtaining dynamic solutions to differ­
ential equations. Generally the equations to be sol­
ved relate to a physical system of particular interest
to the computer programmer, in which case the pro­
grammer wishes to simulate his physical system by
means of an electrical network whose defining equa­
tions are analogous (hence the name analog computer)
to the subject physical system. It is desirable then,
to arrange the computer mechanization to have a one­
to-one correspondence between the problem board and
the physical system, so that the programmer ''sees''
his system rather than an abstract electrical network.

The following discussion will illustrate a method of
programming in which the physical elements are
treated as blocks rather than as sets of differential
equations. Certain useful basic building blocks will
be developed, and methods for combining the basic
blocks to form any desired physical system (simula­
tion) will be discussed. Simulations generated by the
methods to be described will have the advantage that
any or all physical parameters appear as single con­
trols in the computer so that any parameter may be
changed without affecting any other setting. In addi­
tion, any or all variables appear as computer outputs
and may be individually monitored.

A lumped-parameter system, by definition, consists
of a number of interconnected discrete elements whose
individual or collective responses to impressed forces
or stimuli are of analytical interest. The forces and
responses are related by a mathematical operator.
Block programming starts with the selection of basic
definition and rules.

MATHEMATICAL OPERATOR (0)

The operator, or combinationof operators, describes
the functional relationship between quantities . The
most common operators are the following:

Summer

Constant Multiplier (potentiometer, commonly
referred to as "pot")

Inverter - -1 Sign Changer

1
Integrator - 5 (La Place Transform Notation)·

Differentiator - s (This operator is never used in
an analog simulation if it can
be avoided, as it usually can).

Variable Multiplier

Arbitrary Function - f(x)

Analytical Function Trigonometric, Log,
Hyperbolic, etc.

Inverse Operator - (of1 s, ! are inverses

ELEMENT

The element is the basic unit of the block representation
of a system. It has a pair of terminals or nodes, with
a value associated with each node. It also has a trans­
ference quantitybetween nodes, or "through" the ele­
ment which is functionally related by some operator to
the node-pair value. The transference quantity may
also be referred to as the branch transference or trans­
mission.

The elements required to depict the passive lumped­
parameters of most physical systems are very few in
number. In particular, five basic elements will suffice
for many linear electrical, mechanical, and thermal
systems. These are the Summer, Constant Multiplier,
Sign Changer, Integrator, and Differentiator.

BLOCK

A block is the computer mechanization related to a
physical element. The input/ output variables of a com­
puter block are voltages and currents, but the operator
relationship is the same as the simulated element.

Table I gives examples of single elements and their
corresponding blocks. Table Ilgives afew commonly
occurring two-element combinations. Combinations
of more than two elements can be generated as shown
in the following examples. Useful tables of more com­
plicated blocks or transfer-function simulations appear
in many publications. 1

DRIVING SOURCE

A driving source is a source of energy or power for a
network of elements.

SYSTEM ST ABILITY

A stable system is one whose responses are bounded
(finite amplitude limit) for any finite input. An un­
stable system is one whose responses are not bounded.

NETWORK

A network is an interconnected set of elements and
sources. Elements may be joined together at their
nodes, providing the connected nodes have common
dimensions and value, and provided the transference
quantities have common dimensions.

This discussion concerns elements and networks in
which the followingtwo rules apply: (Kirchoff's laws)

1. The algebraic sum of the node values around
any closed path (loop) in a network is zero.

2. The algebraic sum of the transmission quan­
tities at any node is zero.

1 Korn and Huskey, "Computer Handbook", Chapter 2,
McGraw-Hill, New York, 1962.

1

TABLE I. Single-element Computing Blocks

PHYSICAL SCHEMATIC MATHEMATICAL
ELEMENT SYMBOL RELATIONSHIP PROGRAM BLOCK

Summer l x'==l>--v y = - (Xl + X2) X2

Constant
Multiplier

X~Y (POT)

Y=KX

Inverter x----{>--v y = -x

Integrator x----{]>--v x Y=-
s

x---0---Y
Differentiator

x_£ Y =SX t>-1-y
-Y

R (El - E2)
Resistor E1--¥N--E2 I=

-I R

Linear K
F = K(X1 - x2)

Spring X1....rr-f'-X2
-F

Torsional -*- F = K (6 1 - 62) XI::[>--©-- -Y Spring
91 92 -X2

Heat K
Q = K(T1 - T2)

Conductor T1~T2
-a

Viscous v1 ---3)e-v2 F= B(v1 - v2)
Damper

-F

2

PHYSICAL SCHEMATIC
ELEMENT SYMBOL

Electrical E1----1 ~E2
Capacitor -I

x, :3Je-X2 Viscous
Damper -F

Mechanical v, 1~v2
Mass F

Tl l~T2 Thermal
Mass

Q

Electrical
L

Inductor
E 1~E2

-1

Mechanical V1 j@--V2 Mass -x

COMPUTER PROGRAM MECHANIZATION
COMMENTS

TABLE I (Continued)

MATHEMATICAL
RELATIONSHIP

I
(El - E2) = sC

F (X -X)=-1 2 sB

F (v - v) = -1 2 sM

(T -T)=~
1 2 sMr

(El - E2)
I°= sL

(vl - v2)
X= s

1. Operational amplifiers operate with the junc­
tion at virtually zero potential; the currents
into the junction through all the input and
feedback paths must sum to zero; and there
is asign inversion between the amplifier in­
put and output quantities.

PROGRAM BLOCK

v-©--{C>--<x-x > I 2

x,::::GJ--@-
-Xz S K y

x,==ffi>--@--x2 S K -Y

v---©---@--<x1-x2>

a) assigning a position in the mechanization
diagram to all necessary variables and
operators.

b) accomplishing the necessary intercon­
nections so that each output has its pro­
per inputs.

c) checkingto seethatallinput/output rela­
tionships in the mechanization are ·satis­
fied.

2. Any closed-loop ina problem mechanization
simulating a stable physical system will gen­
erally have an odd number of sign inversions.

EXAMPLES OF NETWORK PROGRAMMING

3. In mechanizing an equation, set the highest
order derivative only on the left of the equals
sign to obviate the necessity for differen­
tiation.

4. The mechanization is accomplished by:

The following examples illustrate some of the tech­
niques used in applying the block programming meth­
ods. Examples are given for linear elements only.
Non-linearities can be included simply by replacing
the potentiometer corresponding to the non-linear ele­
ment with a multiplier, function generator, or other
suitable computing element. Backlash, hysteresis,
stiction, etc can be included as required.

3

SCHEMATIC

K

x, x2

a·s

R

El E2

-I

K

x, x2

··-i!t·:
x 1~x2

y

R L
E1~E2

--I

YI IC0 :IJ-y2

F

x 1~x2
-v

L
E1----1~E2

-I

K
F1.1~F2

v

4

TABLE II. Two-Element Computing Blocks

MATHEMATICAL
RELATIONSHIP

(Xl - X2)
Y - K (X1 - X2)

a·S

1

(El - E2)
I - R (El - E2)

sC

(Xl - X2)
F - K (E1 - E2)

sB

(vl - v2)
F - B (v1 - v2)

sM

y
(Xl - X2) - KY

a·S

(E1 - E2) - RI
I sL

F

F
(vl - v2) - B

sM

y
(X -X)--

y 1 2 a· s
bs

I (E - E) - -
I

1 2 sC
sL

) Kv (F - F - -1 2 s
v = sM

y

x,
-x 2

x,
-x

2

PROGRAM BLOCK

-<x 1-~l

-Y

y

-Y

MASS - SPRING - DAMPER SYSTEM

Element - force equations

Spring Kl: F sl Kl {X1 - O)

Spring K2: Fs2 K2 (X2 - Xl)
Initial values at t = 0.

Forces acting on masses

Steps to mechanize

2. Draw blocks for M1, M2

3. Draw blocks for K1, K2, B

4. Make input connections to mass blocks to produce x1, -x2, -v1, v2

5

The above mechanization makes each parameter avail­
able as an individual adjustment. The programming
is easily accomplished by generating the forces im­
posed on the elements and then operating on the forces
to obtain velocity and displacement. Any or all of the
initial conditions, x1 (0), X2(0), v1 (O) and v2(0), may
be zero, or may also be variable.

Note that the block representing the damper contains

two summers. The first summer produces (v l - v2),
and the second summer acts only as a signcfianger.
The two-amplifier, one-pot combination can be reduced
to a more simple two-pot combination by connecting
v1 and v2 through B pots to the m~s~ block inputs.
The less complex alternate is shown below. This con­
figuration requires fewer amplifiers, but variations
in M1, M2, or B necessitatetwoorthreeadjustments.

* Do not connect to -v 1 to get pot setting of B instead

of ~ . A coefficient pot output cannot be connected
1

to another coefficient pot input. This is a practical
limitation of the computer hardware.

Rigid Bar Supported on Springs

I --- B
---~-----C.G

. F2R2 - F1R1 + FRF
8 = sl

Fl -Kl yl

F2 -K2 y2

6

Rigid bar of mass M, moment of inertia about C. G. of
I. Assume o small such that() ""Sino. Vertical motion
only. Y0 is displacement of C.G.

. F1 +F2 +F
Yo= sM

yl YO - R 1 ()

y2 Yo+R20

r LINEAR T SPRINGI T SPRING 2 lRoTATIONAL--,
MASS I I I MASS -8

I I
I I

I
I

I I
I
I
I
I
I
I
I
I

L ___ J_ ___ .L

F

One-Dimensional Heat Transfer

• .
o, K1 02 K2 K-THERMAL CONDUCTIVITY

K=O K=O M-MASS
M1 C1 M2 C2 M3C3 C-SPECIFIC HEAT

T1 T2 T3

r-----r---r---T---r-----,
I T1 I I -T2 I I T3

I I
I I
Ly1 co> I
I I
I I
I I
I I
I • ,. I
I I -o, I "'2 I

II THERMAL I THERMAL I THERMAL I THERMAL I THERMAL
MASS ci~~~CT-1 MASS I COlf~fT- 1 MASS

L _____ L-----------------
7

Electrical R-L-C Networks

11
El - E2

12 11 - 13 Rl
11 L - -13 t 13

E2 - E3
14 13 - 15 R2

~ !
15

E1 c, C2 R3

12
Is

E3 - E4
E2

12
sL = sc1

E4 15 R3 E3
14

= sc2

I1 c, E2 C2 E3 - 0 I

E1 ! L I R

I2 I3

El - E2
11

E2 - E3
13

E3 13 R3 = sc1 = sc2

12
E2

13 = 11 - 12 = sL

8

TWIN-T NETWORK

Il - 12
(El - E4) = sC

1

E4 = (Il - 12 + 13 + 18) R3

El = (El - E4) + E4; E2 = E4 - (E4 - E2)

----1 ,-7
\ I

't'
I

,.._ I
\ 1-·r RL

I
I
I
I

.----------+-~1a.J

-U1-I2+I3+Ia>
R3

-E4

9

10

SCALING

The mechanization diagrams associated with the pre­
ceding examples show the computing element inter­
connections without indicating potentiometer settings,
amplifier input resistor values, andintegrator capac­
itor values. These are unscaled mechanizations.
Scaling is required to relate the computer voltages to
the physical problem variables.

The analog computer is voltage limited to a practical
range of operation of ±lOOvolts as a maximum and ±1
Yolt or zero as a minimum. It is usually not possible
to numerically equate analog voltages to physical vari­
ables. That is, the magnitude of physical variables
must be scaled to fall within the useful range of the
machine. This procedure is called amplitude scaling.

The analog computer is also limited as to the speed with
which it will solve a problem. Practical bounds on
solution time are 100 seconds as a maximum and 100
milliseconds as a minimum. Events in the physical
world usually occur in time intervals which fall out­
side these limits. Thus, the simulation of real world
phenomena with the analog computer is ordinarily
faster or slower. The procedure for relating computer
time to physical time is called time scaling.

Correct scaling is an important factor in reducing sim­
ulation errors. An error analysis of any particular
program is about as complex as the problem which is
being solved by the program. Consequently, except
for unusual cases, an analysis of error is not made.
An estimate of the accuracy of the program can be
found from check cases for which the answer is already
known. Error is reduced by scaling the program so
that all potentiometer values and amplifier gains are
reasonable. Frequently, in the process of scaling a
problem, it will be found that some parts of the model
are not significant and can be eliminated. Scaling is
a good check on reasonability.

Scaling is an art, not a science. A good deal of exper­
ience is required to become proficient. Scaling can be
done in several ways. The techniques discussed in this
chapter are those in most prevalent use among analog
programmers.

If Xis a physical variable corresponding to computer
voltage, V, then a scale factor, a, is chosen so that

V =a· X

will fall within the practical range of the computer. It
is good practice to make V as large as possible. If
tp is physical (rea,l) time corresponding to tc, the com­
puting time, then these two can be related by a scale
factor, N:

It follows that

(1)

N is chosen so that the problem solution time on the
analog computer falls within reasonable limits. Prac­
tically, this is accomplished by a choice of Nwhich
will not result in prohibitive amplifier gains.

The general procedure for scaling is:

1. Generate an unscaled program having a math­
ematical structure which agrees with the pro­
blem (model) to be solved.

2. Identify the location of all voltages corres­
ponding to physical variables.

3. Associate a scale factor with each of these
voltages (e.g. Vx = axX).

4. Label the program with the scaled physical
variables (i.e. a X) rather than the voltages .• x

5. Estimate maximum values of the physical
variables.

6. Choose the amplitude scale factors andthe
time scale factor, N, so that all pot settings
andgains are reasonable.

In order to accomplish step (4) it is necessary to know
how input and output scale factors are related for
various computer elements.

POTENTIOMETER

Physical equation: Y = bX

Scale factors

Scaled equation

Program

V=aXV=aY x x ' y y
a

Vy b-1. V
ax x

Note that a scale change can be made with a pot. Assum­
ing either ilx or a., has been established previously,
the other is chosefi so that ba,/av is a reasonable pot
setting. The pot can beusedsolefyfora scale change.
In that case b = 1.

SUMMER

Physical
equation: Z

Scale
factors

x + y

11

Now, if only one-gain inputs for the summer are used,
then it must be true that a = a = a and the pro-z x y gram is

Thus, it is seen that input scale factors must be the
same for a one-gain summer and that a change of
scale cannot be made through a summer. However,
a different input scale factor can be used for a 10-gain
input. The program for this case is,

where it must be true that a
x

INTEGRATOR

As with the summer, the input scale factors (except
for the 10-gain input) must be the same. However, a
change of scale can be made with an integrator. Both
amplitude and time scaling can be done. Scaling for
an integrator is derived below, where C is the value
of the capacitor in µfd, and R is in megohms.

Physical
equation:

Scale
factors

Scaled
equation:

Y =JXdtp

Thus, the integrator gain, 1
RC'

1 a
..:J..

RC ax

and the program is

12

must be

Nt
p

(2)

MULTIPLIER

Physical
equation: XY

Scale
factors: V

Scaled
equation:

Program:

x

z

a X, V = a Y, V = a Z x y y z z

lOOa z
aa x y

x
It must be true that

lOOa z
a a x y

1.

From this requirement it is seen that the relationship
among the scale factors is the same as that for input and
output multiplier voltages:

DIVIDER

Physical
equation:

Scale
factors

Scaled
equation:

Scale

x
y

factor
constraint: az

Program:

a a
~
100

z

• •

SQl:ARE ROOT

Physical
equation:

Scale
factors

Scaled
equation:

Scale

y

a v = _y __
y 10~

factor
constraint: a 10.;a; y

Program:

ax x

10.JV: x

OxX~oyY

FUNCTION GENERATOR

Physical
equation: y f(x)

Scale
factors v = ayY' Vx ax y x

Scaled v
equation: v = a f(~)

y Y a x

EXAMPLE:

Mass-spring-damper system

M

Physical
equations: Spring Force, F = KX s

Damper Force, F 0

Mass
Acceleration,

-4 -5
M = 1; B = 4 x 10 ; K = 6. 4 x 10

: (0) = 0, X (O) = . 95
p

Estimates: (=~)
p max

The unscaled program is:

-Fo
M

!!
M

-3 = 8 x 10 ; Xmax.

-dX
dtp

1

x

The scaled program is obtained by assigning literal
scale factors, determiningtheir numerical values, and
calculating the coefficient potentiometer settings.

.-------,
: ~ d2X I
I N2 dtp2 I
I--.:..'-~
: .--:'"----!
L--- -- ...J

cB dX
N2M dtp

cKX

N2M

b dX
N dtp

cK
N2aM

1 1
The 2 and N factors appear

N
due to the inherent gain of N
through each integrator, from
Eq. (1).

In general, the determination of the numerical values
involves a trial and error approach. Any convenient
parameter can be picked for the starting point. If a
selected value leads to unreasonable potentiometer
settings or unreasonable amplifier gains, then new
values may be required. Reasonable pot gains are
between . 1 and 1. Reasonable amplifier gains are
between 1 and 20. Amplifier gains should be integer
values. Non-integer values can be obtained from a
potentiometer, in combination with gain-of-10 inputs,
if necessary.

1. Determination of a. In order to utilize the
full dynamic range of integrator 2, set
aX max = 100 (volts).

a = 100

13

14

2. Potentiometer 1 setting.

Pl
a X(O}
~

. 95 (3)

3. Determination of ~- At this time, a trial

value for N may be selected. Analog solution
times of . 1 to 100 seconds, or computer nat­
ural frequencies from . 1 to 100 radians per
second are the preferable operating ranges.
An estimate of the physical time or frequency
ranges can be used to select a value for N.

For this example, a value of N = . 01 appears
reasonable.

b
N

100 (volts
(dX dt)max.

p
(4)

Looking ahead, note that integrator 2 will
. . f aN Th . fN .. require a gam o b. e gam o is in-

herent in the integrator from Eq. 1. There­

fore, the ic value for the integrator will be

~- It is highly desirable that this factor be

an integer, preferably either 1 or 10. There­
fore, b = 100 will be used. The effect of this
is to force integrator 1 to utilize something
less than its full dynamic range, but the effect
is not serious in this example. As a general
rule, it is not possible to scale so that all
amplifiers work over their full range.

108 d2X
dt2 p

-100

4. Potentiometer 2 setting;

cK -3 P2 = - 2- = (6. 4 x 10 }c
N aM

(5)

The value of c is chosen to assure that a rea­
sonable value for P2 is obtained and to assure

that E. is an integer.
c

c = 100 will satisfy both conditions.

P2 = • 64

5. Potentiometer 3 setting:

cB 4 P3 = NbM = .0

This setting for potentiometer 3 is below the
desired minimum potentiometer setting value
of . 1. In this example, however, it is not pos­
sible to have a large setting for potentiometer 3.
This follows from a consideration of the phy­
sical problem. The damper, B, was chosen
to have a very slight effect on the mass-spring
system, so it necessarily follows that the
portion of the analog program related to the
damper will have only a slight effect. It should
be noted that abnormally low potentiometer
settings will frequently arise in simulations of
systems containing negligibly small elements.
It should be recognized that the low settings
stem from the actual system characteristics.
The programmer, therefore, need not spend
time in futile attempts to improve the scaling.

The final program with numerical values is:

~=10-4 v1
dtp

d2X
2=10-e (Vp2+Vp3)
dtp

GEXERAL COMMENTS ON TIME SCALING:

The following points concerning time scaling are of
particular importance:

1. If all integrator gains are simultaneously
changed by a factor k, the time scale changes

from N to ~, and all computer frequencies

increase by k. The amplitude scaling, how­
ever, does not change. All numerical scale
factors, all potentiometer settings, and all
computer problem voltages remain the same.
This property of amplitude invariance under
time scale change allows the programmer to
easily speed up or slow down the computer
solution.

2. The most convenient way of changing all inte­
grator gains simultaneously is by changing
the capacitors by a fixed factor. Integrator
capacitors can be simultaneously changed by
means of the computer Time Scale control 1.

3. An event which occurs in a fixed real-time
interval can occur in several different com­
puter time intervals depending on the choice
of integrator capacitors, that is, depending
on the time scale factor.

4. Events of identical character which occur in
different real-time intervals can all be made
to occur in the same computer time interval
by appropriate time scaling.

Bibliography of Selected References:

Jackson, A. S., Analog Computation, McGraw-Hill Book Co.,
New York, 1960

Johnson, C. L., Analog Computer Techniques, 2nd edition, McGraw­
Hill Book Co., New York, 1963.

Karplus, W. J., Analog Simulation, McGraw-Hill Book Co.,
New York, 1958.

Korn, G. A., and T. M. Korn, Electronic Analog and Hybrid Computers,
McGraw-Hill Book Co., New York, 1964.

1 On the SD 10/20 and SD 40/80 analog computers, a master Time Scale switch is a standard feature. This per­
mits fast and convenient switching of capacitors that are patched -- up to 1000:1 time scale (x 10, x 100, x 1000,
depending on patch panel connections).

15

