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BLOCK PROGRAMMING 

A Valuable Aid to Simulation of Lumped-Parameter Physical Systems 

The analog computer, or differential analyzer, is a 
powerful tool for obtaining dynamic solutions to differ­
ential equations. Generally the equations to be sol­
ved relate to a physical system of particular interest 
to the computer programmer, in which case the pro­
grammer wishes to simulate his physical system by 
means of an electrical network whose defining equa­
tions are analogous (hence the name analog computer) 
to the subject physical system. It is desirable then, 
to arrange the computer mechanization to have a one­
to-one correspondence between the problem board and 
the physical system, so that the programmer ''sees'' 
his system rather than an abstract electrical network. 

The following discussion will illustrate a method of 
programming in which the physical elements are 
treated as blocks rather than as sets of differential 
equations. Certain useful basic building blocks will 
be developed, and methods for combining the basic 
blocks to form any desired physical system (simula­
tion) will be discussed. Simulations generated by the 
methods to be described will have the advantage that 
any or all physical parameters appear as single con­
trols in the computer so that any parameter may be 
changed without affecting any other setting. In addi­
tion, any or all variables appear as computer outputs 
and may be individually monitored. 

A lumped-parameter system, by definition, consists 
of a number of interconnected discrete elements whose 
individual or collective responses to impressed forces 
or stimuli are of analytical interest. The forces and 
responses are related by a mathematical operator. 
Block programming starts with the selection of basic 
definition and rules. 

MATHEMATICAL OPERATOR (0) 

The operator, or combinationof operators, describes 
the functional relationship between quantities . The 
most common operators are the following: 

Summer 

Constant Multiplier (potentiometer, commonly 
referred to as "pot") 

Inverter - -1 Sign Changer 

1 
Integrator - 5 (La Place Transform Notation)· 

Differentiator - s (This operator is never used in 
an analog simulation if it can 
be avoided, as it usually can). 

Variable Multiplier 

Arbitrary Function - f(x) 

Analytical Function Trigonometric, Log, 
Hyperbolic, etc. 

Inverse Operator - (of1 s, ! are inverses 

ELEMENT 

The element is the basic unit of the block representation 
of a system. It has a pair of terminals or nodes, with 
a value associated with each node. It also has a trans­
ference quantitybetween nodes, or "through" the ele­
ment which is functionally related by some operator to 
the node-pair value. The transference quantity may 
also be referred to as the branch transference or trans­
mission. 

The elements required to depict the passive lumped­
parameters of most physical systems are very few in 
number. In particular, five basic elements will suffice 
for many linear electrical, mechanical, and thermal 
systems. These are the Summer, Constant Multiplier, 
Sign Changer, Integrator, and Differentiator. 

BLOCK 

A block is the computer mechanization related to a 
physical element. The input/ output variables of a com­
puter block are voltages and currents, but the operator 
relationship is the same as the simulated element. 

Table I gives examples of single elements and their 
corresponding blocks. Table Ilgives afew commonly 
occurring two-element combinations. Combinations 
of more than two elements can be generated as shown 
in the following examples. Useful tables of more com­
plicated blocks or transfer-function simulations appear 
in many publications. 1 

DRIVING SOURCE 

A driving source is a source of energy or power for a 
network of elements. 

SYSTEM ST ABILITY 

A stable system is one whose responses are bounded 
(finite amplitude limit) for any finite input. An un­
stable system is one whose responses are not bounded. 

NETWORK 

A network is an interconnected set of elements and 
sources. Elements may be joined together at their 
nodes, providing the connected nodes have common 
dimensions and value, and provided the transference 
quantities have common dimensions. 

This discussion concerns elements and networks in 
which the followingtwo rules apply: (Kirchoff's laws) 

1. The algebraic sum of the node values around 
any closed path (loop) in a network is zero. 

2. The algebraic sum of the transmission quan­
tities at any node is zero. 

1 Korn and Huskey, "Computer Handbook", Chapter 2, 
McGraw-Hill, New York, 1962. 
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TABLE I. Single-element Computing Blocks 

PHYSICAL SCHEMATIC MATHEMATICAL 
ELEMENT SYMBOL RELATIONSHIP PROGRAM BLOCK 

Summer l x'==l>--v y = - (Xl + X2) X2 

Constant 
Multiplier 

X~Y (POT) 

Y=KX 

Inverter x----{>--v y = -x 

Integrator x----{]>--v x Y=-
s 

x---0---Y 
Differentiator 

x_£ Y =SX t>-1-y 
-Y 

R (El - E2) 
Resistor E1--¥N--E2 I= 

-I R 

Linear K 
F = K(X1 - x2) 

Spring X1....rr-f'-X2 
-F 

Torsional -*- F = K (6 1 - 62) XI::[>--©-- -Y Spring 
91 92 -X2 

Heat K 
Q = K(T1 - T2) 

Conductor T1~T2 
-a 

Viscous v1 ---3)e-v2 F= B(v1 - v2) 
Damper 

-F 
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PHYSICAL SCHEMATIC 
ELEMENT SYMBOL 

Electrical E1----1 ~E2 
Capacitor -I 

x, :3Je-X2 Viscous 
Damper -F 

Mechanical v, 1~v2 
Mass F 

Tl l~T2 Thermal 
Mass 

Q 

Electrical 
L 

Inductor 
E 1~E2 

-1 

Mechanical V1 j@--V2 Mass -x 

COMPUTER PROGRAM MECHANIZATION 
COMMENTS 

TABLE I (Continued) 

MATHEMATICAL 
RELATIONSHIP 

I 
(El - E2) = sC 

F (X -X )=-1 2 sB 

F (v - v ) = -1 2 sM 

(T -T)=~ 
1 2 sMr 

(El - E2) 
I°= sL 

(vl - v2) 
X= s 

1. Operational amplifiers operate with the junc­
tion at virtually zero potential; the currents 
into the junction through all the input and 
feedback paths must sum to zero; and there 
is asign inversion between the amplifier in­
put and output quantities. 

PROGRAM BLOCK 

v-©--{C>--<x-x > I 2 

x,::::GJ--@-
-Xz S K y 

x,==ffi>--@--x2 S K -Y 

v---©---@--<x1-x2> 

a) assigning a position in the mechanization 
diagram to all necessary variables and 
operators. 

b) accomplishing the necessary intercon­
nections so that each output has its pro­
per inputs. 

c) checkingto seethatallinput/output rela­
tionships in the mechanization are ·satis­
fied. 

2. Any closed-loop ina problem mechanization 
simulating a stable physical system will gen­
erally have an odd number of sign inversions. 

EXAMPLES OF NETWORK PROGRAMMING 

3. In mechanizing an equation, set the highest 
order derivative only on the left of the equals 
sign to obviate the necessity for differen­
tiation. 

4. The mechanization is accomplished by: 

The following examples illustrate some of the tech­
niques used in applying the block programming meth­
ods. Examples are given for linear elements only. 
Non-linearities can be included simply by replacing 
the potentiometer corresponding to the non-linear ele­
ment with a multiplier, function generator, or other 
suitable computing element. Backlash, hysteresis, 
stiction, etc can be included as required. 
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SCHEMATIC 

K 

x, x2 

a·s 

R 

El E2 

-I 

K 

x, x2 

··-i!t·: 
x 1~x2 

y 

R L 
E1~E2 

--I 

YI IC0 :IJ-y2 

F 

x 1~x2 
-v 

L 
E1----1~E2 

-I 

K 
F1.1~F2 

v 
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TABLE II. Two-Element Computing Blocks 

MATHEMATICAL 
RELATIONSHIP 

(Xl - X2) 
Y - K (X1 - X2) 

a·S 

1 

(El - E2) 
I - R (El - E2) 

sC 

(Xl - X2) 
F - K (E1 - E2) 

sB 

(vl - v2) 
F - B (v1 - v2) 

sM 

y 
(Xl - X2) - KY 

a·S 

(E1 - E2) - RI 
I sL 

F 

F 
(vl - v2) - B 

sM 

y 
(X -X)--

y 1 2 a· s 
bs 

I (E - E ) - -
I 

1 2 sC 
sL 

) Kv (F - F - -1 2 s 
v = sM 

y 

x, 
-x 2 

x, 
-x 

2 

PROGRAM BLOCK 

-<x 1-~l 

-Y 

y 

-Y 



MASS - SPRING - DAMPER SYSTEM 

Element - force equations 

Spring Kl: F sl Kl {X1 - O) 

Spring K2: Fs2 K2 (X2 - Xl) 
Initial values at t = 0. 

Forces acting on masses 

Steps to mechanize 

2. Draw blocks for M1, M2 

3. Draw blocks for K1, K2, B 

4. Make input connections to mass blocks to produce x1, -x2, -v1, v2 
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The above mechanization makes each parameter avail­
able as an individual adjustment. The programming 
is easily accomplished by generating the forces im­
posed on the elements and then operating on the forces 
to obtain velocity and displacement. Any or all of the 
initial conditions, x1 (0), X2(0), v1 (O) and v2(0), may 
be zero, or may also be variable. 

Note that the block representing the damper contains 

two summers. The first summer produces (v l - v2), 
and the second summer acts only as a signcfianger. 
The two-amplifier, one-pot combination can be reduced 
to a more simple two-pot combination by connecting 
v1 and v2 through B pots to the m~s~ block inputs. 
The less complex alternate is shown below. This con­
figuration requires fewer amplifiers, but variations 
in M1, M2, or B necessitatetwoorthreeadjustments. 

* Do not connect to -v 1 to get pot setting of B instead 

of ~ . A coefficient pot output cannot be connected 
1 

to another coefficient pot input. This is a practical 
limitation of the computer hardware. 

Rigid Bar Supported on Springs 

I --- B 
---~-----C.G 

. F2R2 - F1R1 + FRF 
8 = sl 

Fl -Kl yl 

F2 -K2 y2 

6 

Rigid bar of mass M, moment of inertia about C. G. of 
I. Assume o small such that() ""Sino. Vertical motion 
only. Y0 is displacement of C.G. 

. F1 +F2 +F 
Yo= sM 

yl YO - R 1 () 

y2 Yo+R20 



r LINEAR T SPRINGI T SPRING 2 lRoTATIONAL--, 
MASS I I I MASS -8 

I I 
I I 

I 
I 

I I 
I 
I 
I 
I 
I 
I 
I 
I 

L ___ J_ ___ .L 

F 

One-Dimensional Heat Transfer 

• . 
o, K1 02 K2 K-THERMAL CONDUCTIVITY 

K=O K=O M-MASS 
M1 C1 M2 C2 M3C3 C-SPECIFIC HEAT 

T1 T2 T3 

r-----r---r---T---r-----, 
I T1 I I -T2 I I T3 

I I 
I I 
Ly1 co> I 
I I 
I I 
I I 
I I 
I • ,. I 
I I -o, I "'2 I 

II THERMAL I THERMAL I THERMAL I THERMAL I THERMAL 
MASS ci~~~CT-1 MASS I COlf~fT- 1 MASS 

L _____ L-----------------
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Electrical R-L-C Networks 

11 
El - E2 

12 11 - 13 Rl 
11 L - -13 t 13 

E2 - E3 
14 13 - 15 R2 

~ ! 
15 

E1 c, C2 R3 

12 
Is 

E3 - E4 
E2 

12 
sL = sc1 

E4 15 R3 E3 
14 

= sc2 

I1 c, E2 C2 E3 - 0 I 

E1 ! L I R 

I2 I3 

El - E2 
11 

E2 - E3 
13 

E3 13 R3 = sc1 = sc2 

12 
E2 

13 = 11 - 12 = sL 
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TWIN-T NETWORK 

Il - 12 
(El - E4) = sC 

1 

E4 = (Il - 12 + 13 + 18) R3 

El = (El - E4) + E4; E2 = E4 - (E4 - E2) 

----1 ,-7 
\ I 

't' 
I 

,.._ I 
\ 1-·r RL 

I 
I 
I 
I 

.----------+-~1a.J 

-U1-I2+I3+Ia> 
R3 

-E4 
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SCALING 

The mechanization diagrams associated with the pre­
ceding examples show the computing element inter­
connections without indicating potentiometer settings, 
amplifier input resistor values, andintegrator capac­
itor values. These are unscaled mechanizations. 
Scaling is required to relate the computer voltages to 
the physical problem variables. 



The analog computer is voltage limited to a practical 
range of operation of ±lOOvolts as a maximum and ±1 
Yolt or zero as a minimum. It is usually not possible 
to numerically equate analog voltages to physical vari­
ables. That is, the magnitude of physical variables 
must be scaled to fall within the useful range of the 
machine. This procedure is called amplitude scaling. 

The analog computer is also limited as to the speed with 
which it will solve a problem. Practical bounds on 
solution time are 100 seconds as a maximum and 100 
milliseconds as a minimum. Events in the physical 
world usually occur in time intervals which fall out­
side these limits. Thus, the simulation of real world 
phenomena with the analog computer is ordinarily 
faster or slower. The procedure for relating computer 
time to physical time is called time scaling. 

Correct scaling is an important factor in reducing sim­
ulation errors. An error analysis of any particular 
program is about as complex as the problem which is 
being solved by the program. Consequently, except 
for unusual cases, an analysis of error is not made. 
An estimate of the accuracy of the program can be 
found from check cases for which the answer is already 
known. Error is reduced by scaling the program so 
that all potentiometer values and amplifier gains are 
reasonable. Frequently, in the process of scaling a 
problem, it will be found that some parts of the model 
are not significant and can be eliminated. Scaling is 
a good check on reasonability. 

Scaling is an art, not a science. A good deal of exper­
ience is required to become proficient. Scaling can be 
done in several ways. The techniques discussed in this 
chapter are those in most prevalent use among analog 
programmers. 

If Xis a physical variable corresponding to computer 
voltage, V, then a scale factor, a, is chosen so that 

V =a· X 

will fall within the practical range of the computer. It 
is good practice to make V as large as possible. If 
tp is physical (rea,l) time corresponding to tc, the com­
puting time, then these two can be related by a scale 
factor, N: 

It follows that 

(1) 

N is chosen so that the problem solution time on the 
analog computer falls within reasonable limits. Prac­
tically, this is accomplished by a choice of Nwhich 
will not result in prohibitive amplifier gains. 

The general procedure for scaling is: 

1. Generate an unscaled program having a math­
ematical structure which agrees with the pro­
blem (model) to be solved. 

2. Identify the location of all voltages corres­
ponding to physical variables. 

3. Associate a scale factor with each of these 
voltages (e.g. Vx = axX). 

4. Label the program with the scaled physical 
variables (i.e. a X) rather than the voltages .• x 

5. Estimate maximum values of the physical 
variables. 

6. Choose the amplitude scale factors andthe 
time scale factor, N, so that all pot settings 
andgains are reasonable. 

In order to accomplish step (4) it is necessary to know 
how input and output scale factors are related for 
various computer elements. 

POTENTIOMETER 

Physical equation: Y = bX 

Scale factors 

Scaled equation 

Program 

V=aXV=aY x x ' y y 
a 

Vy b-1. V 
ax x 

Note that a scale change can be made with a pot. Assum­
ing either ilx or a., has been established previously, 
the other is chosefi so that ba,/av is a reasonable pot 
setting. The pot can beusedsolefyfora scale change. 
In that case b = 1. 

SUMMER 

Physical 
equation: Z 

Scale 
factors 

x + y 

11 



Now, if only one-gain inputs for the summer are used, 
then it must be true that a = a = a and the pro-z x y gram is 

Thus, it is seen that input scale factors must be the 
same for a one-gain summer and that a change of 
scale cannot be made through a summer. However, 
a different input scale factor can be used for a 10-gain 
input. The program for this case is, 

where it must be true that a 
x 

INTEGRATOR 

As with the summer, the input scale factors (except 
for the 10-gain input) must be the same. However, a 
change of scale can be made with an integrator. Both 
amplitude and time scaling can be done. Scaling for 
an integrator is derived below, where C is the value 
of the capacitor in µfd, and R is in megohms. 

Physical 
equation: 

Scale 
factors 

Scaled 
equation: 

Y =JXdtp 

Thus, the integrator gain, 1 
RC' 

1 a 
..:J.. 

RC ax 

and the program is 

12 

must be 

Nt 
p 

(2) 

MULTIPLIER 

Physical 
equation: XY 

Scale 
factors: V 

Scaled 
equation: 

Program: 

x 

z 

a X, V = a Y, V = a Z x y y z z 

lOOa z 
aa x y 

x 
It must be true that 

lOOa z 
a a x y 

1. 

From this requirement it is seen that the relationship 
among the scale factors is the same as that for input and 
output multiplier voltages: 

DIVIDER 

Physical 
equation: 

Scale 
factors 

Scaled 
equation: 

Scale 

x 
y 

factor 
constraint: az 

Program: 

a a 
~ 
100 

z 

• • 



SQl:ARE ROOT 

Physical 
equation: 

Scale 
factors 

Scaled 
equation: 

Scale 

y 

a v = _y __ 
y 10~ 

factor 
constraint: a 10.;a; y 

Program: 

ax x 

10.JV: x 

OxX~oyY 

FUNCTION GENERATOR 

Physical 
equation: y f(x) 

Scale 
factors v = ayY' Vx ax y x 

Scaled v 
equation: v = a f(~) 

y Y a x 

EXAMPLE: 

Mass-spring-damper system 

M 

Physical 
equations: Spring Force, F = KX s 

Damper Force, F 0 

Mass 
Acceleration, 

-4 -5 
M = 1; B = 4 x 10 ; K = 6. 4 x 10 

: (0) = 0, X (O) = . 95 
p 

Estimates: (=~) 
p max 

The unscaled program is: 

-Fo 
M 

!! 
M 

-3 = 8 x 10 ; Xmax. 

-dX 
dtp 

1 

x 

The scaled program is obtained by assigning literal 
scale factors, determiningtheir numerical values, and 
calculating the coefficient potentiometer settings. 

.-------, 
: ~ d2X I 
I N2 dtp2 I 
I .....--.:..'-~ 
: .--:'"----! 
L--- -- ...J 

cB dX 
N2M dtp 

cKX 

N2M 

b dX 
N dtp 

cK 
N2aM 

1 1 
The 2 and N factors appear 

N 
due to the inherent gain of N 
through each integrator, from 
Eq. (1). 

In general, the determination of the numerical values 
involves a trial and error approach. Any convenient 
parameter can be picked for the starting point. If a 
selected value leads to unreasonable potentiometer 
settings or unreasonable amplifier gains, then new 
values may be required. Reasonable pot gains are 
between . 1 and 1. Reasonable amplifier gains are 
between 1 and 20. Amplifier gains should be integer 
values. Non-integer values can be obtained from a 
potentiometer, in combination with gain-of-10 inputs, 
if necessary. 

1. Determination of a. In order to utilize the 
full dynamic range of integrator 2, set 
aX max = 100 (volts). 

a = 100 
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2. Potentiometer 1 setting. 

Pl 
a X(O} 
~ 

. 95 (3) 

3. Determination of ~- At this time, a trial 

value for N may be selected. Analog solution 
times of . 1 to 100 seconds, or computer nat­
ural frequencies from . 1 to 100 radians per 
second are the preferable operating ranges. 
An estimate of the physical time or frequency 
ranges can be used to select a value for N. 

For this example, a value of N = . 01 appears 
reasonable. 

b 
N 

100 (volts 
(dX dt )max. 

p 
(4) 

Looking ahead, note that integrator 2 will 
. . f aN Th . fN .. require a gam o b. e gam o is in-

herent in the integrator from Eq. 1. There­

fore, the ic value for the integrator will be 

~- It is highly desirable that this factor be 

an integer, preferably either 1 or 10. There­
fore, b = 100 will be used. The effect of this 
is to force integrator 1 to utilize something 
less than its full dynamic range, but the effect 
is not serious in this example. As a general 
rule, it is not possible to scale so that all 
amplifiers work over their full range. 

108 d2X 
dt2 p 

-100 

4. Potentiometer 2 setting; 

cK -3 P2 = - 2- = (6. 4 x 10 }c 
N aM 

(5) 

The value of c is chosen to assure that a rea­
sonable value for P2 is obtained and to assure 

that E. is an integer. 
c 

c = 100 will satisfy both conditions. 

P2 = • 64 

5. Potentiometer 3 setting: 

cB 4 P3 = NbM = .0 

This setting for potentiometer 3 is below the 
desired minimum potentiometer setting value 
of . 1. In this example, however, it is not pos­
sible to have a large setting for potentiometer 3. 
This follows from a consideration of the phy­
sical problem. The damper, B, was chosen 
to have a very slight effect on the mass-spring 
system, so it necessarily follows that the 
portion of the analog program related to the 
damper will have only a slight effect. It should 
be noted that abnormally low potentiometer 
settings will frequently arise in simulations of 
systems containing negligibly small elements. 
It should be recognized that the low settings 
stem from the actual system characteristics. 
The programmer, therefore, need not spend 
time in futile attempts to improve the scaling. 

The final program with numerical values is: 

~=10-4 v1 
dtp 

d2X 
2=10-e (Vp2+Vp3) 
dtp 



GEXERAL COMMENTS ON TIME SCALING: 

The following points concerning time scaling are of 
particular importance: 

1. If all integrator gains are simultaneously 
changed by a factor k, the time scale changes 

from N to ~, and all computer frequencies 

increase by k. The amplitude scaling, how­
ever, does not change. All numerical scale 
factors, all potentiometer settings, and all 
computer problem voltages remain the same. 
This property of amplitude invariance under 
time scale change allows the programmer to 
easily speed up or slow down the computer 
solution. 

2. The most convenient way of changing all inte­
grator gains simultaneously is by changing 
the capacitors by a fixed factor. Integrator 
capacitors can be simultaneously changed by 
means of the computer Time Scale control 1. 

3. An event which occurs in a fixed real-time 
interval can occur in several different com­
puter time intervals depending on the choice 
of integrator capacitors, that is, depending 
on the time scale factor. 

4. Events of identical character which occur in 
different real-time intervals can all be made 
to occur in the same computer time interval 
by appropriate time scaling. 
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