
1mm 1 n111111111111111111 1111111

! .

Introduction to
Transaction
Monitoring Facility
(TMF)

Tandem Nonstop™

INTRODUCTION TO
THE TRANSACTION MONITORING FACILITY {TMF)

Product No. 8063 AOO
Part No. 82063

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014

October 1980
Printed in U.S.A.

Copyright © 1980 by Tandem Computers Incorporated

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated: Tandem, NonStop, AXCESS, DYNABUS, ENCOMPASS,
ENFORM, ENSCRIBE, ENVOY, EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

First printing December 1980
Second printing February 1981

PREFACE

ENCOMPASS-Tandem's Distributed Data Management System-contains five products:
ENSCRIBE, ENFORM, DDL, PATHWAY, and the Transaction Monitoring Facility (TMF). This
publication describes TMF. The purpose of the publication is to introduce TMF concepts and to pro­
vide preliminary information for users planning to install TMF.

The information in this publication is organized to allow you to make a simple transition from learn­
ing about TMF to understanding the principles related to installing and using TMF. It contains five
sections:

1. Overview
2. Concepts
3. TMF Operations
4. TMF Feature Description
5. Using TMF

This publication is written for system managers, application programmers, and Tandem analysts.
Depending on your specific job, it is suggested that the publication be used as follows.

• All users should read the Overview section for a general explanation of TMF features, the prob­
lems that it solves, and its relationship to the features provided by the GUARDIAN operating
system.

• Users interested in background detail for concepts related to TMF such as transactions,
database consistency, and concurrency should read the Concepts section.

• All users should read the TMF Operations section to understand how TMF uses transactions to
maintain database consistency.

• Individuals responsible for installing and controlling TMF (system managers) should read the
TMF Feature Description section to understand the relationship between the TMF system pro­
cesses that they will be responsible for configuring and the TMF features.

iii

Preface

• All users should read the Using TMF section for information related to configuring TMF, pro­
gramming in a system with TMF, and operational characteristics of TMF. This section contains
planning information that is intended to highlight the major tasks involved in configuring and
using TMF.

This publication is intended for planning purposes. Detailed reference information for using TMF is
contained in the TMF Users Guide that will be available with the release of TMF.

See the following publications for information describing the ENFORM, DDL, PATHWAY, and
ENSCRIBE components of ENCOMPASS.

• ENFORM reference manual.

• DDL Data Definition Language Programming manual.

• PATHWAY Reference manual.

• ENSCRIBE Data Base Record Manager Programming manual.

iv

CONTENTS

SECTION 1-0VERVIEW ... 1-1
The GUARDIAN Operating System and ENCOMPASS .. 1-1
Introducing TMF ... 1-2

TMF Feature Summmary .. 1-4
Audit Trails ... 1-4
Transaction Backout ... 1-5
Transaction Concurrency Control .. 1-5
Online Dump .. 1-6
Rollf orward .. 1-6

Database Consistency and Failures .. 1-7
TMF System Requirements .. 1-7
Summary of User Responsibilities ... 1-8

Application Programmers ... 1-8
System Managers ... 1-8
Operators ... 1-8

SECTION 2-CONCEPTS .. 2-1
Databases ... 2-1

Database Consistency .. 2-2
Transactions .. 2-3
Distributed Database Systems ... 2-4
Data Sharing and Transaction Concurrency ... 2-5

Transaction Commit ... 2-7

SECTION 3-TMF OPERA TIO NS ... 3-1
Transaction Identification ... 3-2
Transactions and Processes ... 3-2

Transmitting a TRANSID Between Processes .. 3-4
Transmitting a TRANSID Over the Network .. 3-4

Preventing Transaction Interaction ... 3-5
Transaction Commit ... 3-6

Two-Phase Commit ... 3-6

v

Contents

SECTION 4-TMF FEATURE DESCRIPTION ... 4-1
Audit Trails ... 4-1

Monitor Audit Trail .. 4-2
Auditprocess Audit Trails ... 4-3
Dumping Audit Trails .. 4-3

Transaction Backout ... 4-4
Initiating Transaction Backout ... 4-4
What Happens During Transaction Backout ... 4-4
Backout for Network Distributed Transactions ... 4-5

Online Dump .. 4-6
TMF Catalog .. 4-6
TMF Catalog Process ... 4-7
TMFCOM DUMP FILES Command .. 4-7
Tape Labelling for TMF ... 4-8

Rollf orward .. 4-8

SECTION 5-USING TMF ... 5-1
System Management Responsibilities ... 5-1

Using SYSGEN To Configure TMF ... 5-2
Using the TMFCOM Utility To Configure TMF ... 5-5

Configuration Considerations ... 5-6
Using the TMFCOM Utility to Operate TMF ... 5-6
Using FUP to Designate Audited Files .. 5-9

Application Programming ... 5-9
Screen COBOL .. 5-9
TAL .. 5-10
COBOL and FORTRAN ... 5-12
Record Locking ... 5-12
When Locks are Released-TMF and ENSCRIBE ... 5-13
Avoiding Deadlock .. 5-13
Transaction Design Guidelines for PATHWAY ... 5-15

Long Transactions .. 5-16
Context-Saving Transactions .. 5-17
Multiple Short Transactions ... 5-18

NonStop Design Considerations for PATHWAY ... 5-18
Summary of Design Considerations for PATHWAY ... 5-19

vi

Contents

LIST OF FIGURES

Relationship of GUARDIAN to ENCOMPASS .. 1-2
Audit Trails ... 1-4
Transaction Backout ... 1-5
Transaction Concurrency Control .. 1-6
Online Dump .. 1-7
Rollf orward .. 1-8

Stock Files .. 2-2
Distributed Database Processing ... 2-4
Concurrent vs. Sequential Processing ... 2-5
Transaction Concurrency Lost Update Problem .. 2-6

TMF Operations .. 3-1
Relationship Between TCP and Server Processes ... 3-3
Distributed Transaction-Transmittal ... 3-4
Phase 1 of Two-Phase Commit .. 3-6
Phase 1-Completion or Failure ... 3-7
Phase 2 of Two-Phase Commit .. 3-7

Auditprocesses and Audit Trails .. 4-3
Network Backout Before Commit ... 4-5
Network Backout During Phase 1 of Two-Phase Commit ... 4-5

TMF System Generation ... 5-2
Audit Buffers ... 5-3
$RECEIVE Queuing Servers .. 5-11
A voiding Deadlock .. 5-14

vii

SECTION 1

OVERVIEW

The Transaction Monitoring Facility (TMF) is a product provided by Tandem as part of its ENCOM­
p ASS Distributed Data Management System. The purpose of TMF is to simplify the task of main­
taining database "consistency". But, what is "consistency" and why is it important? One way to
think about it is to first view consistency as part of a larger problem that you encounter every day.
The problem - maintaining database integrity-is to ensure that facts about your business or pro­
fession, represented by items in a database, reflect your business or profession correctly.

Clearly, maintaining database integrity is not simple. But TMF simplifies one related concern: that
is, when you design a database, you establish criteria for the relationships between items in the
database; for example, an account balance equals its credits minus its debits. When the database
satisfies the criteria, it is consistent. And for your database processing applications to work cor­
rectly, they must be able to view their input from the database as consistent regardless of the
changes made to the database.

THE GUARDIAN OPERATING SYSTEM AND ENCOMPASS

Figure 1-1 illustrates the relationship of the GUARDIAN operating system to TMF and two other
ENCOMPASS products, ENSCRIBE and PATHWAY.

BEGIN Transaction

Change Record 1
Change Record 2
Insert Record 3

END Transaction

Files

Figure 1-1. Relationship of GUARDIAN to ENCOMPASS

1-1

Introduction to TMF -Overview

There are several important concepts in Figure 1-1:

• PATHWAY provides a simplified terminal-oriented interface for transaction design and control.

• TMF maintains consistency for the databases changed by the transactions.

• ENSCRIBE provides the file management required to access and change the databases.

• GUARDIAN provides a reliable environment to ensure that PATHWAY, TMF, and ENSCRIBE
operations proceed regardless of single component failures.

The key concept in Figure 1-1 is the "transaction" as a multi-step operation that changes the
database. The changes transform the database from one consistent state to a new consistent state,
but generally make it inconsistent at points during the transformation. For example, a transaction
that is part of a banking application balances an account by a withdrawal operation and a credit
operation. The state of the database will be inconsistent after the withdrawal but before the credit;
it violates the criteria for balancing accounts.

To maintain consistency then, TMF ensures that all of the changes that a transaction attempts to
make are permanent or that none of the changes are permanent. In either case, the effect on the
database is that its consistency is preserved; it will not reflect the results of any partial transac­
tions.

The start of a transaction is identified by the BEGIN-TRANSACTION verb. The END­
TRANSACTION verb is used to indicate that the transaction is complete and its changes to the
database should be "committed". Committed simply means that the transaction's changes are per­
manent; they will not be undone by TMF. If a transaction is aborted for any reason before END­
TRANSACTION or before its changes are committed, TMF will back out the changes; i.e., restore
the database to its initial state. The transaction can then be restarted from the beginning.

INTRODUCING TMF

The GUARDIAN operating system provides several features to maintain integrity: continuous
availability, file structural integrity, storage media protection, data sharing protection, and
application-level NonStop programming. All of these features help to ensure that changes to the
database occur successfully in spite of single component failures.

1-2

Introduction to TMF - Overview

Now, with the addition of TMF, the Tandem philosophy of failure protection has been extended to
solve the specific problem of maintaining database consistency if: (1) a transaction fails (is aborted)
before its changes are committed and (2) a total system failure (one not recoverable by normal
NonStop mechanisms) occurs while transactions are changing files affected by the failure.

With TMF, application programmers do not have to be concerned with the following problems:

• Concurrency ... several transactions are applying changes to the database at the same time, but
if a programmer follows record locking rules imposed by TMF, he can think of his transaction as
the only activity in the system.

• Failure ... all of a transaction's changes occur successfully or none of them occur. Once a transac­
tion ends and commits, its changes persist in the database despite any subsequent failure. In a
PATHWAY environment, not having to worry about single component failures eliminates the
need to program NonStop servers.

• Location ... TMF will maintain consistency across all nodes of a network distributed database
regardless of where the transaction changing the database originates or how it is geographically
distributed.

Note that TMF ensures the consistency of the database in terms of the transactions that change it.
However, whether or not the database is a correct model of the application world depends on other
factors, such as the correctness of application logic, the transaction definition, and the input data.
For example, there is no good way of verifying that an input value of 12 gross of pencils is wrong if
only 11 gross were received. Each of these factors should be taken into consideration when design­
ing the applications and database.

1-3

Introduction to TMF - Overview

TM F Feature Summary

Database consistency is maintained by TMF system-level code that provides five features: (1) Audit
Trails, (2) Transaction Backout, (3) Transaction Concurrency Control, (4) Online Dump, and (5)
Rollforward recovery from total system failures. The features are briefly described in this section.
For more detail, see the TMF Operations and TMF Description sections of this publication.

AUDIT TRAILS. Audit trails are groups of files that TMF uses to record information about a tran­
saction's changes to a database (Figure 1-2). Information in the audit trails includes status informa­
tion about a transaction such as whether it completed successfully, and before and after images of
all records changed by a transaction. The before images are copies of the database records before
the transaction changed them; they are used to back out an aborted transaction. The after images
are copies of the changed records; they are used to restore the database to a consistent state in the
event of a total system failure. Audit records for a transaction are written to the audit trail disc
before the transaction commits.

If the database is distributed over nodes of a network, separate audit trails are maintained on each
node. Before and after images of changes to a database file on a node are written to an audit trail on
the same node.

1-4

BEGIN Transaction

Change Record 1
Change Record 2
Insert Record 3

END Transaction

BEFORE
Images

Audit
Trails

Figure 1-2. Audit Trails

Database
Files

AFTER
Images

_J

0
a:
I-
z
0
()

>-
()
z
LU
a:
a:
::::>
()
z
0
()

z
0
;::::
()
<(
Cf)

z
$,

Introduction to TMF - Overview

TRANSACTION BACKOUT. Transaction backout removes the effects of an aborted transaction
(Figure 1-3) from the database by using the before images in the audit trails to undo all of the trans­
action's changes. If the transaction affects data distributed over a network, backout occurs in­
dependently at each network node. Essentially the result of backing out a transaction is the same as
if the transaction's changes had never occurred anywhere.

Transaction
Aborts!

Audit
Trails

Figure 1-3. Transaction Backout

Writes
BEFORE Images

to Database

Database
Files

TRANSACTION CONCURRENCY CONTROL. TMF concurrency control (Figure 1-4) ensures that
all changes made to a database during a transaction's processing are not visible to other concurrent
transactions until the transaction's changes are committed. Concurrency control depends on a
record locking mechanism, enforced by TMF, that ensures that all records modified, deleted, or in­
serted by a transaction are locked until the transaction commits.

#1 Records Locked
for Transaction 1

BEGIN Transaction Until it is

Change R1
Committed

Change R2
Insert R3

END Transaction

#2

BEGIN Transaction

Change R1 Database
Change R2 Files

END Transaction

Figure 1-4. Transaction Concurrency Control

1-5

Introduction to TMF - Overview

ONLINE DUMP. Online dump is used to copy selected portions of a database (Figure 1-5) to tape,
preserving them for future use in the event that they need to be recovered after a total system
failure. Online dump can be run while the database is being updated.

User Runs
Online Dump

Database
Files

Figure 1-5. Online Dump

Specified Files
Are Copied
to Tape

ROLLFORWARD. Rollforward is used to recover (to the most recent consistent state) files that
were open and being changed by transactions when a total system failure occurred (Figure 1-6).

1-6

User runs
Rolf forward

Audit
Trails

Figure 1-6. Rollforward

Database files are
recovered f ram
Dump Tapes and
Audit Trails

Database
Files

Introduction to TMF -Overview

DATABASE CONSISTENCY AND FAILURES

TMF will maintain the consistency of transaction input from the database regardless of the follow­
ing types of failures or problems.

1. Single component failures that may cause a transaction to be aborted, but are non-critical
events because the fault-tolerant features of GUARDIAN enable processing to continue in
other components. An example of a failure in this category is failure of the cpu where the trans­
action is processing.

2. The transaction is voluntarily aborted by the application.

3. Total system failures caused by:

• Any two hardware failures in the same data path.

• Power failure (blackout or possibly brownout).

• Human error.

For aborted transactions, the audit trails are used to back out the transactions by writing the
before images of all records changed by the transaction back to the database. In a system with
PATHWAY, the aborted transactions are automatically restarted.

Audit trails are not affected by single component failures because the system processes that write
and maintain them are N onStop and they are on mirrored disc volumes. (A mirrored volume is a
pair of physically independent devices that are accessed as a single volume and managed by the
same input/output process.)

For total system failures, the Online Dump tapes and the audit trails are used to restore the
database to a consistent state. This occurs as follows:

• The database files affected by the failure are restored from the Online Dump tapes.

• The after images of all transactions that committed since the time of the last Online Dumps for
the files open at the time of the failure are written to the files from the audit trails. The after im­
ages of transactions that aborted or were incomplete at the time of the failure are not applied to
the database.

TMF SYSTEM REQUIREMENTS

Using TMF requires the following system and hardware components.

• The T/16 GUARDIAN operating system with ENSCRIBE.
• Sufficient disc space for the audit trails.
• Sufficient tapes and tape drives for dumping the database files.

1-7

Introduction to TMF - Overview

SUMMARY OF USER RESPONSIBILITES

Three groups of users are affected by TMF: application programmers, system managers, and
operators. Their responsibilities are briefly described below and in more detail in the Using TMF
section of this publication.

Application Programmers. TMF can be used by TAL, COBOL, FORTRAN and PATHWAY pro­
grammers. Programmers have to decide how to design their applications to use transactions; iden­
tify the beginning and end of each transaction; and lock any data that will be changed by their
database processing servers.

System Managers. System managers are responsible for ensuring that the system facilities re­
quired to support TMF are adequate. Their responsibilities include:

• Determining and specifying which files in a database should be audited by TMF.

• Using SYSGEN and the TMFCOM utility (a new utility provided by TMF) to configure TMF and
to specify the characteristics of the audit trails used by TMF. Characteristics that can be con­
trolled by the user include: the number of audit trails, the amount of disc space allocated to
them, and their location.

• Determining how often Online Dump should be used.

• Using TMFCOM to control TMF.

Operators. Operators are responsible for:

• Running Online Dump and mounting the tapes that it requires.

• Starting Rollforward after a total system failure.

• Mounting the tapes required during Rollforward.

1-8

SECTION 2

CONCEPTS

This publication has no glossary and unique terms are generally defined as they are introduced.
However, some concepts related to TMF are essential to your understanding of the information
presented in the following sections and are described in detail here. They are:

• Databases and database consistency.

• Transactions.

• Distributed database systems.

• Data sharing and transaction concurrency.

DATABASES

The general definition of a database is

"Stored information that is: (1) subject to concurrent multiple user access and updates
and (2) viewed by application programs as a model of the real world."

Within this general definition, two items related to TMF are important:

1. Stored information is data in a set of related disc files that your applications are concerned
with.

2. The state of the real world represented by the database is continuously changing, but each
transaction must get consistent input from the database regardless of the changes.

2-1

Introduction to TMF - Concepts

Database Consistency

Figure 2-1 illustrates the stock files and the relationships between them for a distributorship
(an organization that receives parts from suppliers and resells them to customers) database.
Each part in the PARTS file is supplied by one or more suppliers.

PARTS

02 PARTNUM - -
* 02 PARTNAME

02 INVENTORY
02 LOCATION
02 PRICE

• •> One to Many Link

•• • Many to One Link

* * primary key
* alternate key

FROM SUP SUPPLIER

* * 02 PRIMARY - -* * 02 SUPPNUM
-- - -03 PARTNUM * 02 SUPPNAME

03 SUPPNUM·- 02 ADDR
02 PARTCOST 03 ADDRESS

03 CITY
03 STATE

Figure 2-1. Stock Fi!es

Your design criteria for relationships between the files can be expressed as assertions about the
data they contain. When the assertions are satisfied, the database is consistent. For example, in the
stock files:

• Every record in the FROMSUP file uniquely identifies a record in the PARTS file.

• Every record in the FROMSUP file uniquely identifies a record in the SUPPLIER file.

• Every record in FROMSUP indicates who currently supplies a particular part.

• The alternate key file correctly indexes the primary file on the alternate key field SUPPN AME.

These assertions must be true for the distributorship database to be useful. If a transaction deletes
a supplier record from the SUPPLIER file, it must also delete every record occurrence of the same
supplier from the FROMSUP file. But, if the transaction making the deletions is aborted before
completion and the changes are not backed out1 the distributorship database wiii he inconsistent,
Other transactions using the files might see relationships that are not true. This is the kind of prob­
lem that TMF is designed to prevent by backing out partial transactions.

2-2

Introduction to TMF- Concepts

TRANSACTIONS

Applications commonly make a series of changes to a database while transforming it from one con­
sistent state to another. During the transformation, some of the intermediate database states will
fail to satisfy one or more consistency assertions. For example, a banking application withdraws
money from one account and deposits it in another by updating two records. The state of the
database will be inconsistent after the withdrawal operation but before the deposit; it violates an
assertion about balancing accounts.

Conceptually and practically, it is useful to have a way of identifying the series of changes that
transform the state of a database. This leads to the idea of a transaction as "a group of changes to a
database that transform it from one consistent state to another, but generally leave the database in
an inconsistent state during the changes." Transactions are bounded-they have a beginning and
an end- and they are manipulated by TMF as units.

Transactions should be distinguished from the applications that define the sequence of operations
in a transaction. With TMF, application systems identify the start of transaction execution by
issuing begin transaction statements and terminate transaction execution with end transaction
statements. The begin and end transaction statements identify the transaction as an active unit and
the transaction either modifies the state of the database or it fails, is backed out and has no effect on
the database.

The concept of a transaction is the key to how TMF provides all of the features discussed in the
Overview section. Once a transaction is identified, TMF uses its changes as a unit of recovery for
backout and total system failure.

Note that your application may view the transaction as a logical unit of work; for example, entering
the order header along with all of the detail items in a purchase order. However, TMF treats the
transaction as a physical unit of recovery. When you design your applications, you have to consider
this difference. Basically this means deciding if logical units such as purchase orders will be sub­
divided into a number of smaller recovery units or kept together in one large recovery unit. See the
Using TMF chapter of this publication for a more detailed description of transaction design.

2-3

Introduction to TMF - Concepts

DISTRIBUTED DATABASE SYSTEMS

Distribution refers to the location of a database or to the location of processing affecting a database.
A "locally distributed" database resides on more than one disc volume within a single Tandem
system. A "network distributed" database resides on more than one node of an EXP AND network
where a "node" is a Tandem system. Nodes may be geographically dispersed. "Network distributed
transactions" are transactions that change parts of a network distributed database. Figure 2-2 il­
lustrates distribution (local and network) on a Tandem system.

\NY

Figure 2-2. Distributed Database Processing

Network
Controller

The "home node" is the node where the transaction begins. TMF operations take place at each node
where the distributed database resides, regardless of where the transaction changing the database
was begun. Audit trails are local to each node and all TMF operations related to transaction backout
and Rollforward recovery occur at the individual nodes.

The TMF features that maintain consistency for distributed databases are transparent to applica­
tion programmers.

2-4

Introduction to TMF - Concepts

DATA SHARING AND TRANSACTION CONCURRENCY

The definition of a database included the idea that a database is designed to be used by different ap­
plication programs. The definition implies that an important characteristic of a database is that its
contents are shared: different application programs will attempt to use the same entities in the
database.

Sharing data does lead to some problems that potentially affect the consistency of the database.
Specifically there is a difference between sequential execution of transactions and concurrent ex­
ecution of transactions, and the difference affects database consistency.

If transactions run one at a time in some sequential order determined by the system, each transac­
tion sees a consistent database state that reflects the results of the last completed transaction.
However, sequential processing is generally impractical in a shared environment and transactions
usually run concurrently: several different transactions are attempting to read and/or change the
same database at the same time (Figure 2-3).

T1

T2

Sequential

Credit
$100

BALANCE
$250

T1

Credit $100

BALANCE
$200

BALANCE
$250

Figure 2-3. Concurrent Vs. Sequential Transactions

T2

Debit $50

Concurrent

2-5

Introduction to TMF - Overview

Since a transaction causes a database to become temporarily inconsistent, it is important to have a
mechanism that screens the changes made by a transaction from other concurrent transactions un­
til all changes have been committed. Otherwise the consistency of the database could be affected by
the interaction between transactions and may lead to the following types of problems:

• Two transactions read and change the value of some entity and concurrent execution causes the
value to be incremented only once. For example, in the banking application, suppose that the
account initially had a $200 balance and one transaction attempts to credit $100 and another at­
tempts to debit $50. If the transactions run sequentially, the balance will be $250. If the transac­
tions run concurrently, they: might both update the balance to give a balance of $300 or $150
depending on which transaction did the last update to the database (Figure 2-4); one of the up­
dates would be lost.

• If transactions can read output from transactions that are still liable to backout, they see
database states that could not be observed in a non-concurrent system. For example, if a trans­
action attempts to read two accounts, Al and A2-one being debited, one being credited by
another transaction-it may see a situation where money has disappeared: Al debited but A2
not yet credited.

T1
---JJ\.""' BALANCE

Reads BALANCE of $200 ---,...,,/, $200 ,~-- Reads BALANCE of $200 I
-- !!ii!

NEWBAL = $200 + $100

l BALANCE
Writes N EWBAL of $300 J-----y·'~' $300

BALANCE
$150

I
NEWBAL - $200 - $50 t

Write NEWBAL of $150 i!Jj

Figure 2-4. Transaction Concurrency-Lost Update Problem

TMF's concurrency control mechanism prevents the preceding problems by: (1) ensuring that all
records changed by a transaction are locked and (2) holding the locks until the transaction ends and
is committed. TMF's concurrency control prevents transaction dependency. A transaction can be
backed out individually without affecting other concurrent transactions.

With TMF then, concurrent execution of transactions is equivalent (in terms of database consis­
tency) to sequential execution.

2-6

Introduction to TMF - Concepts

TRANSACTION COMMIT. The term "commit" refers to the point in time when a transaction's
changes are permanent. To summarize, think of it as follows: before changes are committed, they
can be rewritten by the transaction or backed out by TMF; after changes are committed, they can­
not be backed out, but can be recovered by TMF in the case of total system failure; and finally, TMF
prevents transactions from seeing uncommitted changes produced by other concurrent transac­
tions.

2-7

SECTION 3

TMF OPERATIONS

In the Concepts section, the transaction was described as the key to the TMF operations that main­
tain database consistency. This section will expand that idea by tracing the history of a transaction
through a system with TMF (Figure 3-1) and show how:

• A transaction is originated and identified as an active recoverable unit.

• Transaction identifiers are transmitted between processes that cooperate to do the work of the
transaction.

• TMF prevents transaction interaction that could result in transaction dependency by enforcing
record locking rules.

• A transaction is committed.

The programming-related information in this section generally applies to systems with
PATHWAY; it assumes a terminal (i.e. a Screen Cobol program executing on behalf of a terminal) is­
suing the BEGIN-TRANSACTION and END-TRANSACTION verbs that define a transaction. For
information on using TMF outside a PATHWAY environment, see the Using TMF section of this
publication.

BEGIN-TRANSACTION

Modify
Database

END-TRANSACTION

Figure 3-1. TM F Operations

- Transaction
Started

- Server Processes
Change Database

TMF
- Verifies and Hold Locks

- Builds Audit Trails

TMF

- Verifies Audit Trails
are Complete

- Releases Locks

3-1

Introduction to TMF -TMF Operations

Conceptually, Figure 3-1 illustrates that a transaction's changes occur in three stages.

Stage 1

Stage 2

Stage 3

the Screen Cobol program issues BEGIN-TRANSACTIONand a new transaction is
created.

in this stage, the transaction modifies the database by reading, changing, deleting, and
inserting records. During this stage, a transaction can rewrite any records that it
changed. Concurrently, TMF is building an audit trail of all records inserted, deleted,
and changed by the transaction and ensuring that all records are locked.

the Screen Cobol program issues END-TRANSACTION to indicate that its changes
should be permanent. TMF will:

ensure that the audit trail is complete for the transaction's changes; all changes to
all files are in the audit trail so that they can be used to recover the transaction
after a total system failure.
release the transaction's locks.

TRANSACTION IDENTIFICATION

In a Tandem system with TMF, a transaction is a uniquely-identified entity known to the system.
Each transaction is distinguished from other transactions by a transaction identifier (TRANSID).

A PATHWAY programmer identifies the beginning of a transaction with the BEGIN­
TRANSACTION verb in the PROCEDURE division of his Screen Cobol program. When this verb is
executed, a new TRANSID is originated; the terminal is switched to transaction mode; and the new
TRANSID is associated with the terminal.

TRANSACTIONS AND PROCESSES

To understand transactions, it is useful to relate them to the idea of a process in a Tandem system.
A process is the unique executing entity that is created when someone runs object code from a pro­
gram file. More generally, a process can be thought of as a running program. Each time a user re­
quests program execution, a process is created and, internally, each process consists of:

• An unmodifiable code area that contains machine instructions.

• A separate private data area called a stack.

• An entry in a system table called the Process Control Block (PCB) that uniquely names the pro­
cess to the system by its cpu number combined with its process identification number.

3-2

Introduction to TMF -TMF operations

The execution of a transaction can involve several processes and the PCB has been expanded to in­
clude space for the identity of the transaction that is currently active in the process: the current
process TRANSID. The current process TRANSID uniquely identifies the active transaction for an
active user process in the system.

After a Screen Cobol program has initiated a new TRANSID by issuing BEGIN-TRANSACTION,
two types of processes generally cooperate to accomplish the changes required by the transaction:
the Terminal Control Process (TCP) and server processes (Figure 3-2). The processes communicate
using messages. And to ensure that all the work for a transaction is identified with a specific
TRANSID the TRANSID is attached to all messages sent by the processes. The TRANSID is copied
into the PCB of the receiving process; it then becomes the current process TRANSID for the pro­
cess.

'~ G

Server
Class A

'
Server

1",ty~ Class B
1'~10 -----

< ~

- All work by Server A
Identified with TRANS/0 1

- All Work by Server B
Identified with TRANS/02

Database
Files

Figure 3-2. Relationship Between TCP and Server Processes

Each TCP interacts with one or more terminals to support the overall processing flow of each ter­
minal by handling messages from several terminals concurrently and sending them to the ap­
propriate server process. One transaction can result in a multi-step update that requires several
servers. Each server involved in the transaction is then identifed with the TRANSID of the Screen
Cobol program that issued BEGIN-TRANSACTION.

3-3

Introduction to TMF -TMF Operations

Each server process implements a specific application function involved in changing the database.
The server picks up the request message from the TCP by reading a file called $RECEIVE and then
typically satisfies the request by performing some database operation. All locks obtained by the
server will be owned by the TRANSID. This allows multiple servers to do work for the same
TRANSID. After satisfying the request, the server replies with a message indicating the disposi­
tion of the request.

Transmitting a Transid Between Processes

When a server reads $RECEIVE to pick up the request message, it automatically acquires the iden­
tity of the current process TRANSID passed in the message. The acquisition of the current process
TRANSID is transparent to the server; it is handled by the file system.

Transmitting The Transid Over The Network

A current process TRANSID is transmitted over the network when either of the following occurs:

• 1/0 on a disc file that resides on a remote node.
• Interprocess 1/0 to a server running on a remote node.

When a transaction is transmitted to a remote node, it is begun on that node. All work done for the
transaction on the remote nodes will be identified with the TRANSID originated on the home node
of the transaction.

To enable the transaction to commit or abort on all nodes, a TMF system process (called the Tran­
saction Monitor Process) on each participating node records: the nodes that sent it a transac­
tion -its source node(s)- and any nodes that it sends a transaction to- the destination nodes for
the transaction (Figure 3-3).

3-4

Records
Source Node 1

Records
Destination

Node4

Figure 3-3. Distributed Transaction-Transmittal

Records
Source
Node 1

Records
Source
Node2

Introduction to TMF -TMF Operations

PREVENTING TRANSACTION INTERACTION

When you write server processes that change a database, you must follow a record locking
discipline that TMF imposes to prevent transaction interaction. The discipline prevents transac­
tions from reading uncommitted changes of other concurrent transactions.

The discipline consists of the following rules:

1. A transaction must lock all records that it updates. Specifically, this means that before a server
process can successfully change or delete an existing record, it must previously have locked the
record. Otherwise, the attempt to make the change or deletion will fail. Locks can be acquired
on a record-by-record basis or for an entire file at a time. All locks are associated with the cur­
rent TRANSID of the process at the time that it issues the lock request. Since lock owners are
identified by their TRANSID, different processes that do work for transaction can lock records
in one process and change them in another.

2. For records deleted by a transaction, TMF sets a new type of lock called a "key lock" that effec­
tively prevents any other transaction from inserting a record at the key value of the deleted
record for the duration of the transaction that deleted the record. All locks are held until the
transaction completes.

3. TMF locks all new records inserted by a transaction and holds the locks until the transaction
ends.

4. At the discretion of the programmer, all records read and not changed, but used by a transac­
tion in producing its output should be locked. Following this rule guarantees that all reads are
repeatable.

Rules 1-3 are enforced by TMF; rule 4 is not enforced.

3-5

Introduction to TMF -TMF Operations

TRANSACTION COMMIT

PATHWAY programmers identify the end of a transaction with the END-TRANSACTION verb in
their Screen Cobol program.

When END-TRANSACTION is executed, TMF uses a mechanism called Two-Phase Commit to en­
sure that the changes are permanent (recoverable in the event of a total system failure) before
releasing the record locks held for the transaction. If the transaction is network distributed, TMF
ensures that all of its changes can be committed at all nodes touched by the transaction.

Two-Phase Commit

Two-phase commit for a locally distributed transaction is:

Phase 1 ... phase 1 forces all before and after images associated with the TRANSID being com­
mitted, to be written to the audit trails. When a transaction reaches this state, a
"transaction commit record" is written to the audit trail. The transaction commit
record indicates that the committed transaction's changes are permanent and can be
recovered after a total system failure.

Phase 2 ... phase 2 is the releasing of all locks associated with the TRANSID.

For network distributed transactions, the same two phase-commit mechanism is followed with the
addition of communication between the nodes to ensure that all nodes involved in the transaction
are able to commit the transaction.

During phase 1 for a network-distributed transaction, a TMF system process (the Terminal Monitor
Process) on the home node for the transaction sends a message to each destination node par­
ticipating in the transaction. The message requests the destination nodes to perform phase 1 of the
commit (Figure 3-4).

Figure 3-4. Phase 1 of Two Phase Commit

3-6

Introduction to TMF -TMF Operations

If any of the other nodes cannot be reached or reply that they cannot commit the transaction, trans­
action commit fails and the transaction is eventually backed out on all nodes. If the participating
nodes all reply affirmatively, TMF writes a "transaction commit" record in the home node's audit
trail and the transaction will then be recovered in the event of a total system failure. Successful
completion of phase 1 requires communication between all nodes participating in a network
distributed transaction. Figure 3-5 illustrates completion or failure of phase 1.

Abort
Transaction
and Release

Locks

--------;..-~ Path Down!

Successful
Phase 1

Failure
Phase 1

Figure 3-5. Phase 1 of Two-Phase Commit-Completion or Failure

Abort
Transaction
and Release

Locks

During phase 2, the Terminal Monitor Process on the home node sends a message instructing the
destination nodes to release all locks held for the TRANSID . Once this message is sent and re­
ceived, no further communication between nodes is necessary; locks are released independently at
each node (Figure 3-6). If a participating node cannot be reached during phase 2, locks are released
on all reachable nodes. When communication is restored to the unreachable node, the locks will be
released and the records will be made available to other transactions.

Figure 3-6. Phase 2 of Two-Phase Commit

3-7

SECTION 4

TMF DESCRIPTION

TMF solves several problems involved in maintaining the consistency of a database including:

• Maintaining images of the database changes (audit trails) caused by a transaction. If the transac­
tion is network distributed, the audit trails are maintained on each node where the changes
occu_r.

• Using the audit trails to back out failed transactions.

• Allowing selected portions of a database to be dumped to tape while normal processing con­
tinues against the database.

• Recovering a database or some portion of a database affected by a total system failure to a con­
sistent state.

To solve these problems, several features-Audit Trails, Transaction Backout, Online Dump, and
Rollforward-are provided by TMF. Each of these features is implemented by TMF system pro­
cesses and a system with TMF can be viewed as having three interrelated aspects: (1) database and
audit files, (2) TMF system processes, and (3) dump files. The rest of this section describes the TMF
features and their relationship to the TMF proceses that implement them. The purpose of this sec­
tion is provide enough detail about the processes to enable you to understand how to configure and
control them through use of System Generation and the TMFCOM utility.

AUDIT TRAILS

An audit trail is a group of files that TMF uses to record information about a transaction's status
and its changes to a database. Every transaction operation on a database file that the user
designates as an "audited database file" is recorded on an audit trail. In this context, an "audited
database file" is a file ~hat is explicitly designated by the user as audited.

Audit trails have two parts:

1. A monitor audit trail containing transaction status information.

2. Auditprocess audit trails containing before and after images of records in the audited database
files and transaction status information.

4-1

TMF Description

Monitor Audit Trails

One monitor audit trail has to be configured for every node in a network. The monitor audit
trail contains timestamped records about the following events:

• Commit of a TRANSID on its home node.

• Abort of a TRANSID on its home node.

• The receipt of a distributed TRANSID from its source node; in this case the source node is
recorded.

• Transmittal of a TRANSID to a remote node; in this case the destination node is recorded.

• Completion of phase 1 of the two-phase commit for a transaction that is outside its home node.

• The release of locks for a TRANSID on a destination node.

• Abort of a transaction on a destination node.

To configure the Monitor Audit trail, you must specify a primary file sequence and optionally an
alternate file sequence. The alternate file sequence is a copy of the primary sequence. A sequence is
a named group of files that is created by TMF as it builds the Monitor Audit trail. The sequence of
files used for the monitor audit trail is specified by using the TMFCOM utility. TMFCOM allows you
to designate the file extent sizes and generic file name of the primary and optional alternate
monitor audit file sequence. The generic filename is specified as volume.subvolume.xx; for example
$AUDIT .MONITOR.AA. The generic filename is used by TMF to create the files used in the
monitor audit trail by appending, as required, a 6-digit sequence number to the generic filename
each time a new file in the sequence is created; for example $AUDIT.MONITOR.AA000001,
$AUDIT .MONITOR.AA000002. New files are created as old ones are filled.

A TMF system process called the Transaction Monitor Process (TMP) creates the files in the
Monitor Audit Trail. The TMP is a system process pair defined by the user during system genera­
tion as a pseudo-logical device. One TMP has to be defined for each system using TMF on a network.
Basically, it performs the following functions:

• Records the source node for transactions coming into the system.

• Records the destination nodes for transactions leaving the system.

• Writes the TRANSID abort record in the Monitor Audit Trail.

• Participates in the initial transmittal of a network distributed TRANSID.

• Creates new files, as needed, in the audit trail sequence.

• Purges old files in the audit trail sequence.

• Controls transaction backout.

Another nv'fF system process called the TMFMONITOR process writes transaction commit records
to the Monitor Audit trail. The TMFMONITOR is specified during system generation as a system
process that runs at a reserved PIN in each processor.

4-2

TMF Description

Auditprocess Audit Trails

Auditprocess audit trails are created and purged by the TMP and written by TMF Auditprocesses;
each Auditprocess writes blocks of before and after images to its Auditprocess audit trail.

You define Auditprocesses during system generation as logical devices and there must be one
Auditprocess for each disc controller group that contains audited discs. A disc controller group com­
prises those I/0 controllers whose ownership must switch together. Each defined Auditprocess
writes the Auditprocess audit trail for all volumes belonging to its particular disc controller group.

The sequence of files used for the Auditprocess audit trail is specified in the same manner as the
files for the Monitor Audit trail with one important difference-multiple Auditprocess audit trails
can be defined per system.

Depending on performance and disc utilization requirements that you establish, several Audit­
processes can write to the same Auditprocess audit trail or each Auditprocess can write to its own
Auditprocess audit trail (Figure 4-1). The relationship of the Auditprocesses to their audit trails is
specified through the TMFCOM utility.

Controller
Group A

Audit
Trail

Dumping Audit Trails

Controller
Group B

OR

Controller
Group A

Aud if
Trail

Figure 4-1. Auditprocesses and Audit Trails

Controller
Group B

Audit
Trail

Audit trail are required for Rollforward recovery and transaction backout. Eventually, the amount
of space required for audit trails could exceed the disc space available for them. Because changes to
audited files cannot be made if there is no space for their audit trails, it is necessary to ensure that
the audit trails are dumped periodically before the disc files fill.

4-3

TMF Description

Dumping involves copying some of the files in the audit trail sequence to tape -which will result in
the space they occupy being freed-and saving the tapes for possible use in Rollforward recovery.
If a file in the sequence contains before and after images for an active transaction (one that has not
committed or aborted), it cannot be copied to tape. A TMF process called Auditdump is involved in
dumping the audit trails. Auditdump can be configured to function automatically as audit files are
filled or it can be run manually, by the operator, using the TMFCOM DUMP AUDITTRAIL com­
mand. Duplicate copies of the audit trail dump tapes can be made simultaneously.

TRANSACTION BACKOUT

Transaction Backout uses the before images in the audit trails to undo the effects of an aborted
transaction. TMF's ability to back out transactions, without affecting database consistency,
depends on three factors: (1) the concurrency control mechanism that prevents transaction interac­
tion, (2) the two-phase commit mechanism, and (3) audit trails. These mechanisms were discussed, in
detail, in previous parts of this publication. This section describes how backout is initiated and the
TMF system processes involved in transaction backout.

Initiating Transaction Backout

A transaction is backed out when it aborts. Specifically, this means that before the transaction com­
mit record was written to the Monitor Audit trail, something happened-either because of a deci­
sion by the application program, a component failure, or operator intervention-that stopped the
transaction from committing. Since the effect of backout is the same as if the transaction had never
started, an application program can recover by restarting the transaction from the beginning: a con­
trast to the normal NonStop technique of having the backup process take over from the point of
failure and complete processing of the transaction.

A transaction is backed out for the following reasons:

• A PATHWAY Screen Cobol program issues the RESTART-TRANSACTION or ABORT­
TRANSACTION verbs. RESTART-TRANSACTION starts the transaction from the BEGIN­
TRANSACTION verb and ABORT-TRANSACTION terminates the transaction without re­
starting it. This is a voluntary decision on the part of the application and TMF provides
equivalent mechanisms for non-PATHWAY users.

• The PATHWAY Screen Cobol program is suspended or aborted due to errors or specific
PA TH COM commands.

• The cpu of a PATHWAY server that is doing work for a transaction fails. The transaction will be
aborted and the TCP will restart the transaction automatically.

• The TCP primary process that started the transaction is deleted. The transaction's change will
be aborted and the backup TCP process will restart the transaction. If there is no backup pro­
cess, the transaction will be aborted but not restarted.

• The user enters a TMFCOM command to abort the transaction.

• Network communication is lost between participating nodes of a network distributed transac­
tion before the transaction is committed. This situation is described in more detail in the follow­
ing subsection.

What Happens During Transaction Backout

During transaction backout, a TMF process called the Backout Process writes the before images,
saved on the Auditprocess audit trails, back to the files that were affected by the failed transaction.
After the files are restored, the locks for the TRANSID will be released.

4-4

TMF Description

Backout For Network Distributed Transactions

For a network distributed transaction, loss of communication between participating nodes can
result in transaction backout. The situations where this can occur are:

1. A loss of communication between destination and source nodes occurs before the transaction
has committed. The nodes affected by the communications loss will each abort and back out the
transaction (releasing its locks) and it will eventually be aborted and backed out on all other
nodes involved in the transaction (Figure 4-2).

Transaction
Aborts

\Path
Down!

Transaction
Aborts

Figure 4-2. Network Backout Before Changes are Committed

2. END-TRANSACTION has been issued on the home node and phase 1 of the Two-Phase Commit
fails either because of a path down to a participating node or a participating node replying that
it cannot commit the transaction. The transaction will be aborted and backed out on all nodes
participating in the transaction (Figure 4-3).

Aborts Because
of Failure of

Phase 1

Down!

Because of
Path Down

Figure 4-3. Network Backout During Phase 1 of Two Phase Commit

4-5

TMF Description

ONLINE DUMP

The Online Dump feature allows users to copy audited database files to tape. Information about
each copied file is maintained in the TMF catalog. The function of Online Dump is to preserve copies
of audited database files as protection against total system failure; each online dump of a file pro­
vides an image of the file that can be used by TMF's Rollforward feature to reconstruct the file.

Online Dump can be used to copy files that are open and changing; it is not necesssary to.stop trans­
action processing against a file while copying it.

Online Dump is an operation that involves several components:

• The TMF catalog contains the control information related to
various dumps to tape.

• The TMF Catalog Process a TMF process that provides access to the
catalog.

• The TMFCOM DUMP FILES command user command that starts Online Dump.

TMF Catalog

The TMF Catalog is a set of disc files. The files are on the same mirrored disc volume as the TMP
control files and they contain two types of control information related to Online Dump:

1. A dump directory containing a history of the files that were dumped to tape and when they
were copied. This includes:

4-6

• The names of the tape drives used to dump the files.

• A timestamp and unique serial number for the dump.

• The generation number of the dump. Since there can be different dumps of the same file, the
generation number identifies each distinct version.

• The copy number of the dump. Multiple copies can be made for each generation and the copy
number identifies each distinct copy of a particular version.

• The generic name and sequence number of the Auditprocess audit trails in use at the time of
the Online Dump.

• The sequence number of the Monitor audit trail in use.

• Serial numbers that associate a tape reel with a particular dump.

• Additional information related to dumping audit trails and the TMF Catalog itself onto tape.

TMF Description

2. A tape directory that contains all known tape reel identifiers and their current status: scratch,
known bad, or assigned to a particular dump serial number.

TMF's Rollforward recovery uses information in the catalog to determine the tapes needed for its
operations.

TM F Catalog Process

The TMF Catalog process is a NonStop server process, executed during backup, that writes the in­
formation, related to Online Dump, to the TMF Catalog in a failsafe manner. One TMF Catalog pro­
cess must be configured, during system generation, for each system that uses TMF.

TMFCOM DUMP FILES Command

You start Online Dump by issuing the DUMP FILES command and indicating which audited files
are to be dumped. After the command is issued, the following steps take place:

1. The generic name and sequence number of the Auditprocess audit trail associated with the
specified audited files are entered into the TMF catalog.

2. The sequence number of the current Monitor audit trail file is entered into the TMF catalog.

3. An online dump mark is written to the Auditprocess audit trail for each audited file opened by
online dump. Because Online Dump writes to the Auditprocess audit trails, they must be con­
figured (as discussed previously in this section) before the audited files can be backed up.

4. A serial number in the catalog, for the dump, is associated with a specific tape label.

5. The operator is prompted to mount a specific tape reel on a specific tape drive.

6. The operator either mounts the specified reel or replies that he is mounting another reel and
specifies its identifier.

7. The label information for the reel is written to the TMF catalog.

8. The audited files are copied to the tape with labels describing the file.

9. A marker is written to the TMF catalog indicating that the dump was successful. Without this
indication, the assumption is that the information on the tape is bad and will not be used during
Rollforward.

4-7

TMF Description

Tape Labelling for TMF

Because Rollforward recovery of the database depends on the data contained on the Online Dump
and Auditdump tapes, TMF has extended GUARDIAN tape handling by supporting labelled tapes
and allowing you to specify an operator interaction unit.

The labelled tapes are defined according to the ANSI X3.27-1978 "American National Standards
Magnetic Tape Labels and File Structure for Information Interchange". Using the labelled tapes
protects the data on the tape from overwriting, thus ensuring the availability of their contents for
Rollforward recovery. Only audited files can be copied to labelled tapes.

The operator interaction unit enables you specify a central location for tape control, consolidating
the function by making it the responsibility of the operator. All requests for tape mounting will be
sent to this unit.

ROLLFORWARD

Rollforward is used after:

• A total system failure ... to recover a database to its most recent consistent state prior to the
failure.

• An audited file or volume is affected by a disc media failure ... to recover the data on the affected
files.

Rollforward involves the following steps:

1. There has been a total system failure and the operator issues the TMFCOM command START
TMF.

2. The TMFCOM utility replies to the TMFCOM command by informing the operator that there
has been a failure; no audited files affected by the failure can be opened until they have been
recovered.

3. The user issues the TMFCOM command RECOVER FILES (optionally specifying a subset of
the files to be recovered).

4. TMF prompts the operator to mount the tape reels required for recovery of the files. Once the
tape reels are mounted, Rollforward uses the Online Dump tapes and the audit trails to recover
the files to a consistent state. The database files are first restored from the Online Dump tapes.
After the files are restored, transactions that committed before the failure will be included in
the recovery by having their after images written to the restored files.

5. As each file is recovered, a message indicating its status is displayed and that file can then be
opened. The results of all transactions that changed the file and committed prior to the failure
will be in the recovered file. This includes transactions that completed and sent a positive
response to the user and transactions that committed but the response was not received before
the failure.

4-8

SECTION 5

USING TMF - CONSIDERATIONS

Detailed information for the topics in this section can be found in the TMF Reference Manual that
will be available with the release of TMF. The information in this section is intended for planning
purposes only and covers:

• System management responsibilities and guidelines related to configuring and operating TMF
in a system.

• Application programming rules and guidelines for systems with TMF.

SYSTEM MANAGEMENT RESPONSIBILITIES

System management involves:

• Using SYSGEN to configure TMF for your installation.

• Using the TMFCOM utility to configure TMF.

• Using the TMFCOM utility to operate TMF.

• Using FUP to designate audited database files.

5-1

Introduction to TMF - Using TMF

Using SYSGEN To Configure TMF

The steps involved in using SYSGEN for TMF are illustrated in Figure 5-1.

5-2

Step 1 ~--------~CONFIGURE AUDITED VOLUMES

Step 2 ..,_ _______,..CONFIGURE AUDIT PROCESSES

Step 3 ~--------~CONFIGURE TRANSACTION MONITOR
PROCESSES FOR EACH SYSTEM USING
TMF

Step 4 ~--------~CONFIGURE THE TMFMONITOR FOR
EACH PROCESSOR

Step 5 ..,_-------~CONFIGURE THE TMF CATALOG PROCESS
FOR EACH SYSTEM USING TMF

Figure 5-1. TM F Sys'tem Generation

Introduction to TMF - Using TMF

STEP 1. Decide which disc volumes will contain audited database files. Once you've made this
decision, specify the number of pages of physical memory to be allocated for the audit buffer pools
in the I/0 configuration entry for each disc. Before and after images of all changes to the database
files are written, by the Discprocesses for the audited volumes, to the audit buffers (Figure 5-2).
Phase 1 of the Two Phase Commit forces the records in the audit buffers to be written to the audit
trail. The size of the buffer pools is specified using the parameter audit buffer pool size: a new
parameter in the disc configuration entry. The disc can contain audited database files only if this
parameter is nonzero.

I
I
I
I
I
I
I
I

I I
l__)
Database

Files
L_ __

LJ
Database

Files

Controller Group

---1
I
I
I
I
I
I
I

_____ _J

Figure 5-2. Audit Buffers

Audit Trail

5-3

Introduction to TMF-Using TMF

STEP 2. Configure Auditprocesses as logical devices. This involves:

• Using the standard SYSGEN I/O device format to specify one Auditprocess for each disc con­
troller group that contains audited volumes. The Auditprocess will write the Audit trails for the
files on the volumes belonging to that controller group. The Using TMFCOM to Configure TMF
part of this section describes how to specify audit trails and relate them to the Auditprocesses
configured during system generation.

• Declaring the Auditprocess in the system process entries in the processor section of the
primary and backup cpus.

• Declaring a controller group that contains the Auditprocess controller and the primary con­
troller of the audited disc volumes. The Auditprocess controller is a dummy controller; its only
purpose is to associate the Auditprocess with the Discprocess of the audit volumes.

Each Auditprocess that you configure removes one word-addressable page from system data space.
Additionally, a number of pages equivalent to the audit buffer pool size per audited disc are re­
moved from physical memory.

The TMFCOM command ADD AUDITTRAIL is used to relate an Auditprocess to a specific Audit
trail. This command is discussed in the next part of this publication.

STEP 3. Use the standard SYSGEN I/O device format to configure one Transaction Monitor Pro­
cess (TMP) for each system that uses TMF and add its process number to the processor information
section of the primary and backup cpus.

The configuration parameter, specified in the device entry, will be the logical device number of the
disc volume where the TMP keeps its control information.

STEP 4. Declare the TMFMONITOR in the system processor entries for each processor in your
system.

STEP 5. Use the standard SYSGEN I/O device format to configure one TMF Catalog Process for
each system that uses TMF and add its process number to the processor section of the primary and
backup cpus.

5-4

Introduction to TMF-Using TMF

Using the TMFCOM Utility to Configure TMF

You use configuration commands to create, alter, and determine the status of objects such as Audit
trails or Auditdump processes that TMF requires or uses in its operations. Table 5-1 summarizes
the functions of the TMFCOM configuration commands.

Command

ADD AUDITTRAIL

INFO AUDITTRAIL
ADD AUDITDUMP

DELETE AUDITDUMP
INFO AUDITDUMP
ALTER AUDITDUMP

ALTER BACKOUT
INFO BACKOUT

I ALTER TMF

I
I INITIALIZE TMF

INFO TMF

INITIALIZE CATALOG
ALTER CATALOG
INFO CATALOG

Table 5-1. TMFCOM Configuration Commands

Function

Create Audit trails and relate them to SYSGEN-configured
Auditprocesses.
Display configuration and status information for Audittrails.
Specify Auditdump process(es) that will be created when TMF
is started. Auditdump processes will automatically dump Audit
trails to tape as they fill. If Auditdump is not configured with
this command, it must be run manually.
Delete Auditdump process(es).
Display status information for Auditdump process(es).
Allows operator to specify tape drives and reels to be used for
Auditdump.
Modify the cpu location and priority of the Backout process.
Display the current cpu location and priority of the Backout pro­
cess.
Specify the terminal or process to use as operator interaction
unit. Al! TMF requests for tape mounting assistance will be I
sent to this unit. I
Purge the TMF configuration files prior to reinitializing TMF.
Provides a complete listing of the current audit subsystem con­
figuration.
Configure attributes of TMF catalog.
Modify attributes of TMF catalog.
Display current configuration of TMF catalog.

5-5

Introduction to TMF - Using TMF

CONFIGURATION CONSIDERATIONS. The following are some preliminary guidelines related
to configuring TMF.

• ADD A UDITTRAIL allows you to define the set of files that form an audit trail and specify the
Auditprocess(es) that write to the audit trail. The files are identified by their generic
filename-volume.subvolume.xx. The volume specified in the generic filename must be a mir­
rored volume. It is recommended that this volume: (1) should not belong to the same controller
group as the Auditprocess(es) that write to it and (2) should not contain any audited database
files. That is, audited database files should be on a different disc from their audit trails.

• ADD AUDITTRAIL allows you to define the the number of extents occupied by each file in the
sequence. The total amount of space you require on the audit trail disc is dependent on the trans­
action update rate which determines: how quickly the audit disc will fill and how often Audit­
dump needs to be run (either automatically or manually). As a rough approximation, you can use
the following formula to determine how the transaction update rate affects the amount of audit
trail disc space.

(

1.3 x number of bytes inserted/hour) number of bytes
+ 1.3 x number of bytes deleted/hour = written to audit
+ 2.3 x number of bytes modified/hour files per hour

inserted/hour number of records inserted per hour x size of records

where deleted/hour number of records deleted per hour x size of records

modified/hour number of records modified per hour x size of records

For example, 60 transactions do a total of 1000 inserts,1000 deletes, and 1000 modifications per hour
to a file containing 50 byte records. The number of bytes written to the audit trail in one hour will
be approximately (1.3 x (2 x 50000)) + (2.3 x 50000) = 245,0000 bytes.

If you plan to dump the audit trail disc every four hours, a total of 980,000 bytes or 478 pages would
be required on the disc. Assuming that the audit trail sequence is spread over 6 files, each file can be
configured to occupy 79 (478/6) pages or extent sizes of 5 primary (79/16) and 5 secondary.

Using the TMFCOM Utility to Operate TMF

You use TMFCOM operational commands to control and run TMF after it has been configured.
There are four types of operational commands:

1. Controlling TMF.
2. Controlling the TMF catalog.
3. Manually Controlling Transactions.
4. Dumping and recovering the database.

5-6

Introduction to TMF-Using TMF

Table 5-2 summarizes the TMFCOM operational commands.

Table 5-2. TMFCOM Operational Commands (Part 1 of 2)

Command

START TMF

STOP TMF
STATUS TMF
STOP CATALOG
START CATALOG

Function

Controlling TMF-Commands

Start TMF before transactions can write or lock audited database
files.
Stop TMF on a system without active transactions (see note).
Indicates the current state of the TMF Audit subsystem.
Prevent access to TM F catalog (see note).
Used only after STOP catalog to start automatic operation of
Online dumps and AUDITDUMPS.

Note: The database can be recovered (by Rollforward) to a point in time immediately after
a STOP TMF command if there are archived copies of the Auditdumps and Online Dumps,
available. This may be necessary if the online database and the online audit media have
been destroyed and are unavailable for normal Rollforward recovery. To recover to a STOP
TMF point, first issue STOP CATALOG and then copy the following to tape:

• The Monitor Audit trail.

• The Auditprocess Audit trails.

After stopping TMF, dump a copy of the TMF Catalog using the DUMP CATALOG com­
mand. If the preceding tapes and the on!ine dump tapes have been stored in a safe place
and are availabie, Rollforward can use them to iecovei the database.

Controlling TMF-Commands

Display the status of the TMF catalog.
Display the current status of the Audit trail.

STATUS CATALOG
STATUS AUDITTRAIL
NEXT AUDITTRAIL Close the current Audit trail file and open the next one in the

sequence.
STATUS AUDITDUM P
CONTROL AUDITDUMP

ADD DUMPS I INFO DUMPS

Display the status of an Auditdump process.
Modify the status of an Auditdump process.

Controlling the TMF Catalog-Commands

Add a dump(s) to the dump directory of the TMF catalog.
Displays dumps recorded in the TMF Catalog.

!__~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---

5-7

Introduction to TMF-Using TMF

Table 5-2. TMFCOM Operational Commands (Part 2 of 2)

DELETE DUMPS

ALTER DUMPS
ADD TAPES
INFO TAPES

DELETE TAPES

ALTER TAPES

RECOVER CATALOG

DUMP CATALOG

Purges tape files or file sets from the dump directory of the
TMF Catalog.
Modify the TMF catalog entry for a dump.
Add tape reel(s) to tape directory of TMF catalog.
Displays reels of tape recorded in the tape directory of the
TMF Catalog.
Deletes tape reel(s) from the tape directory of the TMF
catalog.
Change current status of a tape record in tape directory of
TM F catalog.
Restore TMF catalog from a tape dump produced by using
DUMP CATALOG.
Dump the TMF catalog to a tape volume and record the dump
in the catalog.

Dumping and Recovering the Database-Commands

DUMP FILES
DUMP AUDITTRAIL
RECOVER Fl LES

END TRANSACTION
ABORT TRANSACTION

STATUS TRANSACTION

5-8

Starts Online Dump.
Dumps specified audit trails from disc totape.
Starts Rollforward.

Manual Transaction Control Commands

Forces a committed transaction's records to be unlocked.
Backs out an uncommitted transaction andunlocks its
records.
Display the TRANSID and status oftransactions.

Introduction to TMF - Using TMF

Using FUP to Designate Audited Database Files

Your SYSGEN configuration specified the disc volumes that could contain audited database files.
Specific files on the volumes can be designated as audited when they are first created using FUP
CREATE or by using FUP ALTER for existing files. A [NO]AUDIT parameter has been added to
CREATE and ALTER to support TMF. FUP ALTER can also be used to change the status of a file
from audited to non-audited.

APPLICATION PROGRAMMING

This section:

• Summarizes the functions of the procedures and verbs provided to allow Screen Cobol, T AL,
COBOL, and FORTRAN programmers to use TMF.

• Describes the record locking rules that programmers follow to write server processes.

• Discusses how to a void deadlock.

• Presents some preliminary guidelines for designing transactions in a PATHWAY environment.

Screen Cobol

The Screen Cobol verbs that enable PATHWAY applications to use TMF are:

• BEGIN-TRANSACTION

• END-TRANSACTION

~ ABORT-TRANSACTION

• RESTART-TRANSACTION

BEGIN-TRANSACTION ... identifies the beginning of a sequence of operations that will be treated
as a single transaction. When this verb is executed: the terminal enters transaction mode, TMF
starts a new transaction, and the new TRANSID is assigned to the terminal. If the transaction is
aborted for any reason -with the exception of the Screen Cobol program issuing ABORT­
TRANSACTION - its changes will be backed out by TMF and restarted at the BEGIN­
TRANSACTION point with a new TRANSID.

ABORT-TRANSACTION ... is used to abort the transaction. TMF will back out all database
modifications made by the transaction and the transaction will not be restarted.

END-TRANSACTION ... identifies the end of the transaction and indicates that the transaction's
database changes should be committed. After END-TRANSACTION is executed, the transaction
cannot undo any of its changes and the terminal is switched out of transaction mode.

RESTART-TRANSACTION ... is used to indicate the transaction has failed and that it should be
backed out and restarted at the BEGIN-TRANSACTION point with the same TRANSID.

5-9

Introduction to TMF-Using TMF

TAL Procedures

T AL programmers use TMF by calling the following procedures:

• BEGINTRANSACTION

• ENDTRANSACTION

• ABORTTRANSACTION

• RESUMETRANSACTION

• ACTIV ATERECEIVETRANSID

• GETTRANSID

BEGINTRANSACTION ... causes a new TRANSID to be created by TMF. The new TRANSID
becomes the current process TRANS ID for the process that called BEGINTRANSACTION. An op­
tional reference parameter tag can be specified with this call. TMF will return the tag of the new
TRANS ID to this parameter.

ENDTRANSACTION ... causes the changes associated with the current process TRANSID to be
committed.

ABORTTRANSACTION ... causes the changes associated with the current process TRANSID to be
aborted and backed out. The programmer can restart the transaction at the BEGINTRANSAC­
TION call under a new TRANSID.

RESUMETRANSACTION ... is used by programmers coding multi-threaded requester processes
Oike the TCP). This procedure is called with the transaction tag returned from the BEGINTRANS­
ACTION call. The TRANSID identified by the tag becomes the current process TRANSID for the
process calling RESUMETRANSACTION.

5-10

Introduction to TMF-Using TMF

ACTIV ATERECEIVETRANSID ... is used by programmers coding $RECEIVE queuing servers:
that is, servers that queue messages from several requesters concurrently before replying (Figure
5-3).

CALL WRITEREAD;

request

request

request

reply

reply

reply

D ,_______,,.
queued by (B)

D
the requests are processed

replies by (B) (not necessarily
in the order received)

CALL READUPDATE;
CALL LASTRECEIVE (,n);

CALL ACTIVATERECEIVETRANSID(,n)
fill the request

CALL REPLY(,,, n);

Figure 5-3. $RECEIVE Queuing Servers

The server identifies the requester associated with the message by obtaining its message tag
through a call to the GUARDIAN LASTRECEIVE procedure and indicates which message it is
responding to by including the message tag when it replies to the message. Since $RECEIVE
queuing servers could be doing database operations for several requesters concurrently, they need
to acquire the current process TRANSID dynamically. That is, whenever they do some operations
for a request message, they need to assume its TRANSID for the duration of the operations and
then acquire the TRANSID of the next message. A call to ACTIV ATERECEIVETRANSID after a
call to LASTRECEIVE allows the server to specify that the TRANSID of the message identified by
message tag should be current for the process.

GETTRANSID ... is used to obtain the current process TRANSID of the calling process.

5-11

Introduction to TMF-Using TMF

COBOL and FORTRAN

COBOL and FORTRAN programmers can use the ENTER T AL verb and CALL statement to use
the TAL TMF procedures. However, because of the single-threaded nature of most COBOL and
FORTRAN I/O, it is not recommended that you write modules that have more than one transaction
outstanding at any given time. That is, avoid writing multi-threaded requesters and servers.

Record Locking

The TMF Operations section described the record locking rules that TMF enforces to prevent
transaction interaction. The following is a summary of the rules you follow to write a transaction.

1. Lock all records that are updated or deleted by the transaction. Locks can be acquired for an en­
tire file (LOCKFILE) or on a record-by-record basis.

For example, in COBOL:

READ EMP-MASTER WITH LOCK KEY IS EMP-NO-KEY OF EMP-REC.
IF EMP-FIELDS OF EMP-REC = SA VED-EMP-FIELDS OF EUPDATE-MSG PERFORM
970-REWRITE-EMP

970-REWRITE-EMP.
REWRITE EMP-REC WITH UNLOCK.

TMF will verify that the record is locked and reject the REWRITE if the record has not been
locked. The locks will be held until the transaction either aborts and is backed out, or commits. If
a transaction issues LOCKFILE, modifies records while it holds the lock granted by
LOCKFILE, and then issues UNLOCKFILE prior to issuing END-TRANSACTION, the file lock
will be held until the transaction commits. Alternatively, a transaction could issue
UNLOCKFILE when it does not own the file lock but does own record locks that were acquired
individually. In this case, only the locks for records not updated by the transaction will be re­
leased prior to transaction commit.

2. Lock records that are read and used by the transaction in producing its output, but not
changed. Following this rule guarantees that the transaction's reads are repeatable.

For example:

READ EMP-MASTER WITH LOCK KEY IS EMP-NO-KEY OF EMP-REC.
IF EMP-FIELDS OF EMP-REC = SAVED-EMP-FIELDS OF EUPDATE-MSG

ELSE
UNLOCKRECORD EMP-MASTER

In this example, the lock will be released if the record is not modified.

5-12

Introduction to TMF-Using TMF

When Locks are Released-TMF and ENSCRIBE

Table 5-3 shows the difference between transaction mode record locking (locks identified by
TRANSID) and record locking for ENSCRIBE (locks identified by processid and openid).

Table 5-3. Lock Release TMF and ENSCRIBE

ENSCRIBE

TMF

record

at unlock
or close

at unlock
or endtrans

Notes:

unlock

close
endtrans

Avoiding Dead:ock

unmodified

file

at unlock
or close

at unlock
or endtrans

record

at unlock
or close

at
endtrans

modified

file

at unlock
or close

at
endtrans

- When UNLOCKRECORD or UNLOCKFILE, as ap­
propriate, is called.

- When closing the file in which the objects are locked.
- When ENDTRANSACTON completes or an aborted

transaction is backed out.

The following is an example of a sequence of record locking operations that results in a deadlock
situation:

• Transaction 1 locks record A.

• Transaction 2 locks record B.

• Transaction 1 attempts to lock record Band has to wait.

• Transaction 2 attempts to lock record A and has to wait.

Neither transaction can proceed and the situation is a deadlock.

There is no way of detecting if a transaction becomes involved in a deadlock. However, the follow­
ing situations can be detected:

• A +,.!:lnc:!u•tinn ic: i:attPmnt.inO' tn T'Pi:an nT' ln"k ~ T'Pl'nT'n t.h~t. i~ ~ lT'P~nv lnl'kPn_
~~ V.._'°".&.&V&.4''-"V.A.'-'.&.a. .&.- _,.,,..,.._..,..,..,.t'"'..,...,..,o .,_ ..,..,.. __,.., """""'....,...,..,, - ..,_.....,.....,....,._ ..,.,... _.,._. _ ___ .)__,._._._,.

• A transaction's read or lock request is waiting too long before completion.

5-13

Introduction to TMF - Using TMF

Each of these situations is explained below and illustrated in Figure 5-4. If either of these situations
occurs, you can assume (although it may not be true) that the transaction is in a deadlock and code it
to abort. The locks held for the transaction will be released, avoiding the possibility of it par­
ticipating in or prolonging a deadlock.

I/0 REQUEST WAITING TOO LONG. In default locking mode, TAL programmers can determine if
a request has waited too long before completion. In this mode, a process will be suspended when it
attempts to access a locked record. To avoid deadlock, open the file using no-wait I/0 and specify a
time limit < > 0 in the call to AWAITIO. If AWAITIO returns GUARDIAN error 40 (in­
dicating timeout), the transaction may be in a deadlock situation.

COBOL programmers can open files using the new WITH TIME LIMITS parameter. WITH TIME
LIMITS indicates that further I/0 requests will be timed by specifying a value in the TIME LIMITS
parameter of the request. If the I/O request times out, GUARDIAN error 40 will be returned to the
request.

FORTRAN programmers can open files with the TIMED specifier and use the TIMEOUT specifier
in their I/O requests to specify a timeout value. If the I/O request times out, GUARDIAN error 40
will be returned to the request.

1/0
Request

5-14

COBOL

WITH
TIME LIMITS

FORTRAN

TIMEOUT

GUARDIAN
SETMODE

Default
Locking Mode

GUARDIAN
SETMODE

Alternate

Locking Mode

Figure 5-4. Avoiding Deadlock

Request

Timed
Out

! Abort!

Record

Already
Locked

Introduction to TMF- Using TMF

RECORD ALREADY LOCKED. T AL programmers can determine if a record is already locked by
using the GUARDIAN SETMODE procedure to select alternate locking mode. In this mode, file er­
ror 73 will be returned to the request when it attempts to access a locked record.

Transaction Design Guidelines For PATHWAY

This section presents some preliminary guidelines for designing PATHWAY applications that use
TMF. Basically transaction design involves the following primary questions. What is the logical unit
of work that you want to accomplish within an application (e.g. order entry or account balancing)
and how can it be divided into a number of transactions that can be recovered by TMF? Factors that
influence the answers to these questions are:

• Concurrency how long will record locks be held for a transaction?

• Performance how much extra disk I/0, server activity, and TCP paging is involved in the
choice of one design over another?

• Consistency how large is the unit of recovery for each transaction and is it adequate for the
a pplica ti on?

Transactions can be divided into two categories.

1. Simple Single Screen Transactions ... all the data required by the transaction can be entered
by the operator into one screen. This type of transaction is straightforward and the preceding
questions do not apply.

2. Multi-Screen Transactions ... several screens are required to accumulate the data for the
transaction. There are three possible types of multi-screen transactions: (1) long transactions,
(2) context-saving transactions, and (3) multiple short transactions. Each of these types is des­
cribed in the following pages along with some of their possible advantages and disadvantages.

5-15

Introduction to TMF - Using TMF

LONG TRANSACTIONS. A typical sequence of Screen Cobol actions for a long transaction is il­
lustrated below.

TRANSACTION

STATE

SCREEN
1

Operator
action

I SCR;EEN I

Operator
action

SCOBOL Program Actions

ACCEPT screen

BEGIN-TRANSACTION

SEND

ACCEPT screen

SEND

END-TRANSACTION

Advantages: Failure at any point in transaction state will cause all updates to audited files to be
backed out.

Disadvantages: Resources may be locked for an indeterminate amount of time.

5-16

Introduction to TMF-Using TMF

CONTEXT-SAVING TRANSACTIONS. A typical sequence of Screen Cobol actions for context-
saving transactions is illustrated below.

l
I SCTNI

Operator
action

t
i SCrN1

Operator
action

i

SCOBOL Program Actions

ACCEPT screen

(Save screen information
in context)

ACCEPT screen

(Save screen information
in context)

ACCEPT screen

TRANSACTION
STATE

I SCR3EEN I
BEGIN-TRANSACTION
SEND

Advantages:

SEND
END-TRANSACTION

• Failure at any point in transaction state will cause all updates to audited files to
be backed out.

• No operator action is required while resources are locked.

Disadvantages: Overuse of context could be a performance consideration.

• Increased TCP paging.

• Possibility of additional database access.

• Context stored in temporary disc files - implies more disc I/0, and more server
activity.

Note: The new SCOBOL CHECKPOINT verb can be used to establish a restart point during the
context gathering portion of the transaction.

5-17

Introduction to TMF-Using TMF

MULTIPLE SHORT TRANSACTIONS. A typical sequence of Screen Cobol actions for multiple
short transactions is illustrated below.

! SCOBOL Program Actions

ACCEPT screen
TRANSACTION

'SCrN i BEGIN-TRANSACTION

STATE
SEND
END-TRANSACTION

Operator
action

t ACCEPT screen
TRANSACTION I SCTN I BEGIN-TRANSACTION

STATE SEND

Operator END-TRANSACTION

action
t ACCEPT screen

TRANSACTION I SCR3EEN I BEGIN-TRANSACTION

STATE SEND
END-TRANSACTION

Advantages: • Context use kept to a minimum.

• No operator action is required while resources are locked

Disadvantages: • A logical transaction is possibly separated into several physical transactions.

• Backout of an entire logical transaction must be handled programmatically.

• Other transactions might view the database as inconsistent. This, also, must be
handled programmatically.

Nonstop Design Considerations for PATHWAY

In PATHWAY, properly written servers can be divided into three categories. These categories
determine whether or not the server should be be NonStop.

1. Servers that access the database in read-only mode. Since all requests to servers of this type
are retryable, they should not be NonStop.

2. Servers that update audited files. Because the transaction is a unit of recovery, this type of
server should not be NonStop.

3. Servers that update unaudited files. There is no unit of recovery for servers of this type and
they should be NonStop.

5-18

Introduction to TMF- Using TMF

Summary of Design Considerations for PATHWAY

The following is a brief summary of the considerations that you follow to design PATHWAY ap­
plications that use TMF.

• Determine which database files are to be audited files.

• Determine the appropriate transaction design strategy for the application using the guidelines
presented in the preceding part of this section. Decide where to put the BEGIN­
TRANSACTION and END-TRANSACTION statements.

• Modularize the servers so that any server that updates audited files does not update unaudited
files.

• Code the server to follow the TMF record locking rules.

5-19

ABORT-TRANSACTION 5-9
ABORTTRANSACTION 5-10
ACTIV ATERECEIVETRANSID 5-11
Allocating Audit Disc Space 5-6
Application Programming 5-9/19
Assertions

for consistency 2-2
Audit Trails

auditprocess audit trail creation 4-3
description 4-1/4
monitor audit trail contents 4-2

Auditdump Process 4-4
Audited Files

definition 4-2
identifying through use of FUP 5-9

Auditprocess Audit Trails
contents 4-3
copying to tape 4-3
relationship to Auditprocesses 4-3
specifying file sequence 4-3

Auditprocesses 4-3
Automatically Dumping Audit Trails 4-3
A voiding Deadlock 5-13/14

BEGIN-TRANSACTION 5-9
Beginning a transaction on a remote node 3-4
BEGINTRANSACTION 5-10

COBOL Programming 5-12

INDEX

Committing a Transaction by issuing END-TRANSACTION 3-36
Comm uni ca ti on

between TCP and servers 3-3/4
Communications Loss

during transaction backout effects 4-6
Concepts

data sharing and transaction concurrency
effect on database consistency 2-5

Index-1

Index

lost update problem 2-6
TMF concurrency control 2-5

database consistency
definition 2-2

databases 2-1
distributed database systems 2-4
transaction commit 2-7
transactions

as a unit of recovery 2-3
as a unit of work 2-3
definition 2-3

Concurrency
see transaction concurrency

Configuration Considerations 5-6
Configuring TMF

during system generation 5-2/4
using the TMFCOM utility 5-4/8

Consistency
general definition 2-2

Copying Audit Trails To Tape 4-3
Current Process TRANSID 3-4

Database integrity
relationship to consistency 1-1

Databases
general definition 2-1

Deadlock
description 5-13/14
how to a void 5-13/14

Description of TMF 4-1/8
Designating Audited Files 5-9
Designing Transactions

see transaction design
Destination Node

definition 3-4
Distributed Databases

consistency 2-4
DUMP FILES Command 4-7
Dumping Audit Trails 4-3

ENCOMPASS
concepts 1-2
relationship to GUARDIAN 1-1/2

END-TRANSACTION 5-9
ENDTRANSACTION 5-10

FORTRAN Programming 5-12
FUP

use in designating audited files 5-9

Home node
definition 2-4

1/0 Request
timeout 5-14

Identifying a Transaction 3-2

Index-2

Labelled Tapes 4-9
Locally distributed database 2-4
Lost Update Problem 2-6

Monitor Audit Trails
contents 4-2
copying to tape 4-3
creation 4-2
maintained by TMP 4-2
specifying the file sequence 4-2

Network Backout 4-5
Network Distributed Database 2-4
Network transmittal

of a TRANSID 3-4
No-wait I/O 5-14
N onStop Considerations

for PATHWAY servers 5-18

Online Dump description 4-7/8
DUMP FILES command 4-8
overview 1-6
relationship to TMF catalog 4-6/7
relationship to TMF catalog process 4-6/7

Operator Interaction Unit
specification 5-5
use 4-8

Overview of TMF 1-1/8

Preventing Transaction Interaction
record locking rules 3-5

Processes
transmitting a current process TRANS!D

between processes 3-3
Protocol

for record locking 3-5

Record Locking
protocol for TMF 3-5
rules for TMF 5-12

RECOVER FILES Command
use 4-8

Releasing Locks
during two-phase commit 3-6
TMF vs. ENSCRIBE Lock Release 5-13

Requirements for TMF
disc space 1-8
ENSCRIBE 1-8
tapes and tape drives 1-8

RESTART-TRANSACTION 5-9
RESUMETRANS.A.CTION 5,10
Rollforward

overview 1-6

Index

Index-3

Index

RECOVER FILES command 4-8
sequence of events 4-8
use 4-8

Screen Cobol Verbs
ABORT-TRANSACTION 5-9
BEGIN-TRANSACTION 5-9
END-TRANSACTION 5-9
RESTART-TRANSACTION 5-9

Source Node
definition 3-4

System Generation
of audited volumes 5-3
of the A uditprocesses 5-4
of the TMF catalog process 5-4
of the TMFMONITOR monitor process 5-4
of the transaction monitor process 5-4
steps 5-2

System Management Responsibilities 5-1/9

T AL Procedures
ABORTTRANSACTION 5-10
ACTIVATERECEIVETRANSID 5-11
BEGINTRANSACTION 5-10
ENDTRANSACTION 5-10
RESUMETRANSACTION 5-10

Tape Labelling 4-8
TCP 3-3/4
TCP/Server Interaction 3-3/4
Terminal Monitor Process

in network transmittal 3-4
Timeout 5-14
TIMEOUT

parameter for COBOL 5-14/
TMF Catalog

contents 4-6
use 4-6

TMF Catalog Process
use 4-7

TMF Feature Summary
Audit trails 1-4
Online Dump 1-6
Rollforward 1-6
Transaction Backout 1-5
Transaction Concurrency Control 1-5

TMF Operations 3-1/7
TMF System Requirements 1-7
TMFCOM Utility

use in
configuring TMF 5-5
operating TMF 5-6/8

Transaction
concepts 2-3
definition 1-2
design guidelines

Index-4

for PATHWAY 5-15/19
effect on database consistency 1-2
example 1-2

Transaction Backout
overview 1-5

Transaction Backout Description
for network distributed transactions 4-5
Initiating Transaction Backout

causes for 4-4
what happens during' transaction backout 4-4, 4-5

Transaction Commit
by issuing END-TRANSACTION 3-6
definition 2-7

Transaction Concurrency 2-5
Transaction Concurrency Control

overview 1-5
Transaction Design

factors 5-15
N onStop Considerations

for PATHWAY 5-19
summary of considerations 5-19
types of transactions

context-saving transactions 5-17
long transactions 5-16
multiple short transactions 5-18

Transaction Design Guidelines
for PATHWAY 5-15/19

Transaction Identification
BEGIN-TRANSACTION verb

for PATHWAY 3-2
TRANS ID

identification 3-2
initiation by Screen Cobol Program 3-2

transmittal
between processes 3-3
over a network 3-3

Transmitting a TRANSID
between TCP and servers 3-4
over a network 3-4

Two-Phase Commit
description 3-6
failure 3-6 /7
for locally distributed transactions 3-6
for network distributed transactions 3-6
phase 1 3-6

User Responsibilities - Summary
application programmers 1-8
operators 1-8
system managers 1-8

Using TMF-Considerations 5-1/19

WITH TIME LIMITS
verb for COBOL 5-14/

$RECEIVE Queuing 5-11

Index-5

FOLD ,.....

FOLD~

READER'S COMMENTS

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easily
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s): _____________________________ _

FROM:

Name

Company

Address ---------------------------------

City/State ------------------- Zip --------

A written response is iequested yes no

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

¥~~@)§~
COMPUTERS

19333 Vallco Parkway
Cupertino, CA U.S.A. 95014
Attn: Technical Communications-Software

STAPLE HERE

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-C FOLD

--C FOLD

8063 AOO
82063

TANDEM COMPUTERS INCORPORATED
1 9333 Vallco Parkway
Cupertino, CA 950 1 4

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

