TANBDEM

opduoseqgwesig Iy doisueN

LB
A

o Tandem

& NonStop™ II
System Description
Manual

R
_ —HHHIHIHIHIHI

ilgﬁg

P/N 82077 BOO

TANDEM NonStop II (TM)

SYSTEM DESCRIPTION MANUAL

Second Edition

Tandem Computers Incorporated
19333 vallco Parkway
Cupertino, California 95014

April 1982
Printed in U.S.A.

Summary of Changes in This Revision

This manual is the second edition of the NonStop II System Description
Manual. It includes the following changes to the first edition:

e The instruction set definitions have been updated to reflect the
new memory management algorithm for choosing pages to swap out,
which results in the deletion of the PHYREF table and the FLRU,
SLRU, and UREF instructions, plus microcode changes in the MAPS and
UMPS instructions. Microcode changes in the LCKX, BNDW, XSTR, and
XSTP instructions have also been recorded.

® The introductory description of the processor hardware has been
expanded to include a brief discussion of the memory control unit,
control panel, loadable control store, clock generator, PMI,
and DDT.

® Some of the instruction definitions in Section 3 have been
rewritten for greater clarity, and more information on overflow
conditions has been added.

® Appendixes A and C have been combined into a single appendix (B),
in order to bring the symbol definitions next to the table that
uses the symbols. 014 Appendix B has been renumbered to
Appendix A.

e Minor technical and typographical errors have been corrected.

Copyright (c) 1981, 1982 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, NonStop, AXCESS, DYNABUS, ENABLE, ENCOMPASS, ENFORM, ENSCRIBE,
ENVOY, EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual provides a conceptual and functional description of the
Tandem NonStop II (TM) system, presented as follows:

@ Section 1 summarizes the factors involved in NonStop computer
operation, and tells how this type of operation is achieved
in the Tandem system. This section also stresses the close
interrelationship between the system's hardware and software,
and illustrdtes how these two aspects of the system interact
to make NonStop performance possible.

@ Section 2 describes the principles on which the system hardware
.operates, and shows how the hardware supports NonStop operation.
Specifically, it discusses Such ractors as: hardware system T
structure, fundamental NonStop functions, processor module
organization, program execution from the hardware standpoint,
data formats and number representation, logical memory
organization, the interrupt system, interprocessor buses and
input/output channels, and physical memory mapping.

@ Section 3 defines the instruction set for the Tandem system,
in text form with illustrations.

e Appendixes A and B consist of reference tables pertaining to the
instruction set.

® An index is provided to assist the reader in locating specific
topics in this manual.

This manual was written for potential and present Tandem customers
seeking a functional description of the hardware and instruction set,
for Tandem field analysts and service engineers, and for enrollees

in various courses provided by Tandem.

Before using this manual, one should read Introduction to Tandem
Computer Systems for a more general overview of the system. This
introductory manual explains the basic concepts and purposes behind
the system architecture described in this manual and its counterpart
for Tandem NonStop systems, the NonStop System Description Manual.
Ideally, the reader should also have some working experience with
the Tandem system.

iii

CONTENTS

SECTION 1. INTRODUCING THE TANDEM NonStop II COMPUTER SYSTEM...

Introducing Tandem's NonStop and NonStop II SyStemS..eeeeceecosoel—

Hardware and Software IntegratioON.eccccccescccccsccccsccccccssasnse

SECTION 2. HARDWARE PRINCIPLES OF OPERATION::cccecceoeccoccesceslm

System Structurel.ooooo.o.ooco.ocooo.oooﬂoolo.oooooooolloooooo

Independent Multiple ProCEeSSOrSceeccccscsssssscssasscsscscsscsss
Dual-Bus Data PathS.eeeeccececccecscccacscacscscscssccsascsoscsscssasneelm
Dual-Port Device CONtrollerS.cceccecceccceccsascscssoscssscasccsss
Dual-Ported/Mirrored DiSCSeescsesscscsccsscscsccsssscsossscssss
Multiple POWEYr SOULCESieesssccsccssssssosccsssssssssssosssscsnss
Power Failure RECOVEIrYee:seesvsoecsscssctsccscscssscscsccanoscel=b

1
1
1
2
2-
2
2
2
2
2-

|
U'IU1NNND—‘I—‘

—Other Pailure-Tolerant FeatlUreS « e e oecesoeecsrererorreorseoseedml . _.

Fundamental NonStop OperatiOnSecccecccessceecescesssccsssscasssesl=8
Hardware View of the Operating SysSteMeceeccceccsccccsscscccsassl=8
Primary and Alternate I/0 PathS.cceceeeecceeeeccncencncneese=9
Processor Module CheCKing.eceeceeeoseceeocscssosssscsssssssassad=ll
A NonStop ApplicatioON.ccccccesecesossescscccccssscsescssscssel=ll
Processor Module OrganizatiONececcscscceccccccossssscsasssasessel2=lb
Instruction Processing UnNiteeeceeeesccssccssccsccsssascssassecesasl=l’
MEMOY Y e eoeessoesscsccsscsssscssasscsssscsccscscscscscsasscssscscscsssnselLlT
Input/Output Channel.ccececeeescsscesasscccosssscassccsssssesessl=l8
Interprocessor Bus InterfaCe.eccecccccecscsscscscsccasssssesasel2=20
Other Processor COmMPONENtES.iceeesescccscsscccsosossosssssssscssslmll
Operations and Service ProceSSOr (OSP) ececececccscsccccanssaceseel2=24
How the Hardware Executes ProgramS.ccccccccccccsccscsccsscsssscssls=25
Code and Data SeparatiONeccecccceccccccsscsssssccssccsossscssl2=25
ProCeAUreSecceccessssscscscsssssacscsssosscscssssssssasssassssnsssi=2D
MEMOILY StaACKeeeceeeosossssssccascescsossosososssasssssssscssscceel=26
Register StaCKee:eceeoeesssssssescscccsaascccossscsssssssssssosecld=28

Data FOrmats.......-.o.ooo.o.....o.o-oo.o..0.0.0....00.‘..0..02“29

WordSoooo.o..o.oootocooootoooooooooooovo.oooooo.oooo.o.o.oooz-zg
Bits..o..o'o.o..oooo.o.o-o'toonoooco....oo.ooo..0000000.00002-32

Bytes.ooo..tocoooooooo.oo"-oooo.o.c.....ooo00000000000000002_32

DOUD] EWOLAS e e eeesaccccessssasscscsscssscsssssssssosssnscscsnssacssesscsl=34
QUAArUPleWOrdAS e e eseececcscsoscccscscsssossssosscsscssscssscssecseel=34
Number RepresSentatiONeccccccessccesscscsscessssscscscsccscsscssssecssl2=30
Single WOrAeceeeeeeeecosecscccsoscssossscssessssssassssssoansecssl2=3b
DOUDLEWOrdeeeeseeecssscccososcssscssesssssscsssssscscsessassasssaseesl=37

ByteoctnoooooaooooO-oooooooooco.-o.o..o0000000000.0.0-.-000.2_37

Quadrupleword (Decimal Arithmetic OpPtion)eeceeeeccescececeess2=-38
Floating-~Point and Extended Floating-Point..cc.ccecececcocsceesa2~38
ArithmetiCeeeeeesseseceecsssscssssssssccscssscessssesccsssocessl=39
Program Environment.c.ecececeeccssesccssscsccssscscncssscsssacssssseel2=4l
Code SegdmeNnt .sseccesssscccsorososcssossossasssscscccscocscsssscassel=4ll
Data SegmMeNt et ceeeeescscesssesocscsscossscsscscssssscscsccnsssel=il’
Register StaCKeeeeeveceseesososeceessccsocscscccssassccccescssl=60
Environment RegisStereeecesscecerosscssscasssacsscscscssansssesesl=B63
Procedures and the Memory StaCK...ecoeeessoescsccossccnnsaesl=70
Memory Stack OperatiONe.ccecccsssessscecsessscsssoscsscscsscceeesl=?9
LOGiCaAl MeMOL Y eeeesecssssecccsosscsssssssssssscscscssssssscsscscsel=93
Calling ExXternal ProCedUreS.cseccsccccccccscssacsssscsccccnscesesld=96
System TableS.ceeeersceeeeoceesossecossosessssasscsscscsccscssssssel2=101
Interrupt SyStemMe.eciceceecescsccoosrscsssssassssssoscsssssssssness2—104
INT and MASK RegiSterS.eceececeecscscsscssccscscssssscssccscscsssecsal=104
System Interrupt VeCtOr ceeeseeerssececsssscsscssssccsnssneese2=107
Interrupt StacCk MarKereieeeosesesscceeessossosssssscssccscceesd=107
Interrupt SEegUENCE .. cccecreeccsensosssscssssssssscassssssssss2—110
INterrUPt TYPES ceeeoscecescsrsesssssscscssssssssasscscscssssseesl2=1ld
INterprocessSOr BUSES..ceceeesssecccsocssssccsssscsssssccssssssss2=ll7
Bus Receive Table.eeeeeeececrssececcsasccsnscsensosssssscsssassesd=11l9
SEND INStrUCtiON.ecceeeeeecesecsssssscccenssossscssssasscsssceees2=llD
Bus Transfer SeQUENCE....ccceceesccccsssscoscsssossosnsssssssssel=l2]l
OUTQ, INQ, and PacKetS:.eeceeeecssssscsccsssssssossccssassssssesl2=125
INT and MASK REJIiStErSeceeeeesccescscsesoscscscsscscscsossssncsocesesl=128
InPut/OUtPUt ChanNel.eeeeeeeeeosresocsssccscscscssscscscnsassesee2=130
I/0 CoNtrol Tableeeeeeeeeeeeosocssosssscsssscsecsnsccesssssssese=130
EIO INStrUCtiON e ceeeeescsssssocscsssssassscssccssassnscsceseel2=134
II0 and HITIO INStruUCtiONS.eceseeccsssscssosscssssscsscsccssessl2=135
Input/OutPut SEQUENCE . csseoeccsssssssesssssesssscsssscosssssesd=137
Dual-Port Controllers and Ownershipecseceecceescccscososecoscseess2=139
I/0 Channel InterrUpPtSececeecccceccss cecssesctsscssssssscssses2=142
High-Priority I/0cececececsoocccscssoscossoscsssoassssassssossseel-ld?
MEMOIY ACCESSesesssescecscsosssscsessssssssssossscssssassssssccssl=142
Logical vs. PhySical MemMOIrYeeeeososseecenscosoonssssncssscccesld—142
Memory Table FOIMAtS.ceecesssecscssscssacecsscassscsscsssaccss2—143
MEMOLY MAPS s eeececcsansassssosesscsssssasssosscssessssscsssscssssscssl2=146
Absolute Segment AdAresSSiNgecccscecccccccsscecssscscscsccnseses2=148
Relative Segment AdAressSinNgeeccecececcececssccsssencssssssssssess2—150
Extended Data SegmeNtSecceccesssoecscccccescstsooscscccccsessese2=151
Extended Address INStrUCtiONS.ecceecescccccscscnssnsssssensasl=152
MeMOYY ErrOrSeceeeececececceossssssssossssssssosscsssossassssssesseel=l52

SECTION 30 INSTRUCTION SET..oo-oooocooooovcoooo"oooooo.noooooo3—l

vi

General InNformatioN..ccceceececacecensosossscsscsccscssososssssessed—l
16-Bit ArithmetiCeeeeeeeeeeeececeesoeseccsocaoeseocccnnsonsesnes
32-Bit Signed ArithmetiCiceececeeeeeseceosccscccsccscscnssanasns
16-Bit Signed ArithmetiCeeeeececeeeeceeecccoscscccccsanccsocccescs
Decimal Arithmetic Store and LOad..eeececescecsccscscsssssscanss
Decimal Integer ArithmetiCeceseesecessscssccseosossosscccsocscces
Decimal Arithmetic Scaling and ROUNAiNGeceeceoesseescoscsconsscs
Decimal ArithmeticC CONVErsSionNS.sceceteecceccesscccsosccscssocescs
Floating-Point ArithmetiCeceeescececsccessscossssccosscsseasccnnns
Extended Floating-Point ArithmetiCeesececeesscscecocscsssacsns

[I |
wNno

wwuw(l»wwww
H OO0~ &N

Floating-Point CONVerSiONS.ceeeecsscccerscessssessccesassocssssed—1d
Floating-Point FUNCtiONAlSeeeecccccccccsssosssssssssscsscnsessed—LlT
Register Stack ManipulatioN..ceeceecscescecsscsccssccscccnssssseei—18
Boolean OperatiOnNSeececescccscsscccssssssscsecsssasscsssscsscsasassd—20
Bit Deposit and Shifteeeeeecceseesscsccsccscscscssccssscscsossceces3=24
BYte TeSteeeeessseeosscossscscssssssssoscossassssssssssssssscsscnsccsad—=27
Memory Stack to/from Register StaCK.ecieeeeeocsesesccscscccnssssd=27
Load and Store via Address on Register StaCKeeeeeeeceseoseeoss3=-36
BranChingeeeeeeescsseesesosscecassssssessescscssssnssscscsscssssncccssssd=bl
Moves, Compares, Scans, and Checksum ComputatiOnNS.ceceeseessess3-44
Program Register CONtrOl.eeceeecccsccccsscscosssssccssscssssscessld=dl
Routine Calls and REtUINSceececessssosssscsssssssssssccscscsccssss3—=b2
Interrupt SYSteMesceceesssescsscsesscssssssscoscssosssssscsssscessssssd=Dd
Bus COMMUNICAtiONeeseeeseecccssossssssssssesssssssssssssssssess3—b5
INPUt /OULPUL et et eteeeceensasescecassssccssoacsscsccscssassassssssssd=bb
MiSCRllaANEOUSeseseeososacossssossasssssccscssosscscscsssssssssssesaad=DT
Operating System FUNCEIONS.eeeeseseccocccsssascsssssssasssesscssss3=D8

APPENDIX A. HARDWARE INSTRUCTION LISTS:cescecscsscoccsccscccsssA-l

APPENDIX B. INSTRUCTION SET DEFINITION....'.............'......B_l

vii

I
FHROONOANMEWNDH OO WN -

= C e o ¢ e o o o o o
.

.

I
el el
o> W

Ntohoh}MEOBJhJNEO?Jh)NIOrJFJH}JPJFJH

2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22,
2-23.
2-24,
2-25.
2-26.

2-27.
2-28.
2-29.
2-30.
2-31.
2-32.

viii

LIST OF FIGURES

Stand-Alone COMPULEr .ccececeecscoccsccsssssccssssssassessssel=l
Multiprogramming Environment..ccceeceececceccccccccccnesesel=2
Multiple-Processor Environment...ecesececessssessssssaseesl=3
Network-Based Environment.ccceceecceesssasssssssaccasssssssal=3
Fault-Tolerant Device Management in a NonStop System....l-6
Controller Port LOgiC FailuUr€eceeceecoceocscccscccnncssseel=7
Switching Controller OwnershipPeceecesecosescecscssssssccessl=8
Elements of Hardware System StruCtUr€...cceceecececcceccsscessa=3
Power Distribution in the NonStop II SysSteMeccecescasssss2-4
I/O Data PathSeeeceeeccesccoscsssoscssssccssssscssscnsaseseel—10
Processor Module CheCKingeeceeeseeeessececcccsccsasassssseel=1l2
CPU DOWN MESSAJC e e seseesssssssscssscsssscsascsssasssssssel=l2
NonStop ApplicatiOnN.ececececceeceeecssossossnsssssscsccncessd2=13
Application Takeover by BaCKUP:ceeeeeeesscsocccccaasssse2—14
Input/Output Channel..ccceescesesccaasccsccssssasssscsasesl=l?
Interprocessor Bus InterfacCe....cceceeceeencenccannenssa2=21
Block Diagram of NonStop II Processor Hardwar€.seeeeee..2-23
Code and Data SeparatiON..cscceseesssssscssssscssccsscsseld—2D
Memory Stack OperatiOnN.ccecececcesscecccccsscccnsssssssaaead=27
Register StacKk OperatioON.ccccecesccccccscccccsscocssecess2—28
Data FOIrMAtSecececescsccccssssscscccsnscssscscsscssscsssasascsse2=30
WOrd AdAressSinNgececececsccesscescsescsessacsscsssossssassecss2=31
Byte AdAressinNgecccecescccscssccssscscssesssccssssssseccsasl=33
Doubleword AdAresSsSiNgececcecescsccscssscsssscccsssscnscescsesasl2—35
Quadrupleword Addressingecccscecseccceccsssssccsccsassessld—35
Elements of the Program Environment.ccecececcessscesccccesl—42
Code Segment Addressing RANg€eceecececssssssssseccscccssald—4d3
P Register and I RegiSterececeseecsccscccsscsnsssssscscossesd=4q3
Displacement Field for Code Segment InstructionS........2-44
Addressing in the Code Segmenteccececececssccccsccncssccssl—46
Data Segment Addressing RANGE.c.cescecocssssncsssocnssoccsss2=48
L Register and S Register.cececcececececcscsccccccsocssccsss2—48
Mode and Displacement Field for Memory Reference
INStrUCEiONSeeeececsocvcssocsssccssssscscsssssssnssessl2=50
Memory Reference Instruction Addressing ModeS...e.eeese..2-51
Direct Addressing in the Data SegmenNt.cceccsceccscccesccss2-54
Indirect Addressing in the Data Segment...ccececeecececsecs.2=54
Indirect Byte Addressing in the Data Segment.ccccesscess.2-56
INdeXiNgeessoeeessseossscsosssscsssscsasssssssssssscsscssl=D6
Examples Of IndeXiNgeceeeecccccsecsosssassssssssccacnssesl2=59

LI I A B |
W ~JOYU > WN -

WWWwWwwwww

Register StaCK.ieeseeseeetsseecssessossscsssscscscscssocsnseeesl2=b6l
Example of Register Stack OperatiONe.ccecccecccccsccsssesa2=-61
Action of the Register Pointer.ecececcccscscccscscsasasceesl=62
Naming Registers in the Register StaCKeeceeceeecesoccoaees2—-64
Environment RegiSter eceeecessessscscscsscccssscssasssasseescl2=065
Procedure Entry Point and External Entry Point Tables...2-72
Procedure Call and EXiteeesesssccocccccsosossscssssssosseesl=id
First Entries in Procedure Entry Point Table..eeeceesse.2-74
Execution of PCAL INStrUCtiON.eccecesecccssccsssccscsccssl=76
Execution of EXIT INStruCtiONececcceccccscsssccsssccscseecl=/8
L and S Registers in Procedure CallS.ccecececscsceccesessa=80
L and S Registers in Procedure CallSe.ceeecscccccceaseass2=8l
L-Plus AdAresSing MOA@.:ceeeeacccccsssessssssossssacccccss’2=84
PUSH and POP INStrUCtiONSeececsccecssscccsccsccncsssssssesl=84
Parameter PasSSiNg.eeesecsccecccccsssssscssssssssssssecscssesl=86
Parameter ACCESSeceecsscssasasssssssccscscssssssssssssssesl=86
Value Returned via Register StacKk...ceeeeeeeccecesssessss2-88
Stack Marker ChAQiNeececscececescesasccsossssassssssssccncee2=9l
Subprocedure CallSecceeesccscccascscsssssssassscssscnseeel=92
Example of S-Minus AddressSiNgecececccccccccsacccoscosesssasl=934
LOgiCal MEMOLYeeoessassoscoscasssssscsosccssssscsssscsssseesl=95
System Procedure Call and EXiteeeseeoseoseccsscccssccsssal2=98
SG-Relative Addressing MOA@..cecceeesocssscssscsscccssesa’2=100
Dedicated Memory Locations in System Dat@.eccecesecscseeses2-103
General Interrupt SeQUENCE..cecececcccscsccccccossssesss2—105
INT and MASK ReJIiSterScecccceccccccssscssssasssscsssscasceassl=106
System INterruUpPt VeCtOr cceeeceseescossossscsssssccsscceses2—=108
SIV Entry and Interrupt Stack Marker.....eeeceeceescees...2-109
Interrupt SEUENCEe et eeeeesssosssscsossscsscscscssasseccesed=l1ll
IXIT SEQUENCEeeesssssssscesscessssasssssssssssssseseioisesl=ll3
Processor Module AdAdressSiNgeccccecceccsesossassscssssecscseesld=11l?
Simplified Bus Transfer SEeqUENCE.sccecceccsssccscssccsssas2=118
Formats Associated with Bus TransferS.cecececceccscecesasessa2-120
Bus Transfer Sequence (Send) .ceecececcscsccaccsccssccssesal=1l22
Bus Transfer Sequence (RECEiVEe).eeeesccscccsccscsscssess=123
Incoming Data StOrag@.ececececcsccscscsscsscossccsscsssssesnssl2—125
Sending and Receiving PacKketS.eeeeescescescesscsscsceeasesl2=126
Sending and Receiving PacKketS.seeeceseesssscccnsessenseel=127
Bus Receive Enabling.ceecececcscsescsosscsosssssososssessss=129
I/0 Channel AdAresSSinNg.cccccecccecescccsssssascseasssssses2—13l
Simplified I/0 SEQUENCE.ctseessessessassacsssesscssansessl=132
Formats Associated with Input/OutPute.cecececsceccsescssa2=-133
INPut /OUtPUt SEQUENCE.eeesceesocscssssscosasssssssscasessel—138
Dual-Port AdAresSiNgececcesccesssccsssccssssscossssacsssses2=140
I/0 Controller OWnershiPesecesccescessscscssessoscsocasessssse2—14]
Formats Used in Memory Access OperationS.cceccecceeccesecss.2-144
Immediate Operandeseccccccccccccsssoscssesscsecsssssscscassssesesld=D
Boolean OperatiONS.eseccescsceesssccsacsscecsssssscssssssessd=2]l
Boolean Instructions with Immediate OperandS...ececee...3-23
Deposit Field EXAmMPle.ccscsccsoscsscsscssaassassasesssassd—=24
Arithmetic vs. Logical ShiftSeeeeeescescecosssscncssosessl=26
LWP Instruction AdAressSinNgecceescscsccscscscscssssssesess3—28
LBP Instruction AdAdressSinNgececescececscccscsccscsessssceses3=30
Memory Reference Instruction FOrmate..cceeecssescecscssssss3=31

ix

3-9. Doubleword AdAresSSinNg.iccseescceccssscscccssssasssssssases3d=33
3-10. PUSH and POP INStrUCEiONS.essceccecsscssacccccssssasecsssld=34
3-11. Direct vs. Indirect BranChingeeeeeceseeseesesosssscasssseeld=42
3-12. Branch Forward IndireCtececcececcecesccascsssassssacsasceeed—45
3-13. Directions for Moves, Compares, and SCaANSessccccssessss3-46

LIST OF TABLES

Floating-Point Error TerminationNS.cceceeccecsccccccsess2-40
System Data Segment Table Valu€S..cceeeesesssacscccacesa2=102
Interrupt CONditioNSeeeeeeccacesosossssesssasssscssasceses2=104
Alphabetical List of INStruCtioNSeeecececesccescesscces s A=2
Categorized List of InstruCctionS.ceeeccessccassscsscsess A-8
Binary Coding, Memory Reference InstrucCtioOnS.ceessesessA=-16
Binary Coding, Immediate INStruCtioOnNS..ceecescesecacecsesA=17
Binary Coding, Move/Shift/Call/Extended Instructions....A-18
Binary Coding, Branch InstruCtioOnS.ececsesescscsccecsssssA=19
Binary Coding, Stack InstructionS..ccceecessesosscssscsssA=20
Binary Coding, Decimal Arithmetic Instructions......-...A=-22
Binary Coding, Floating-Point InstrucCtionS.eeececeeceeess A=23
Instruction Set DefinitiON.ceeecescecesceaccesssssssssaseB-l
Definitions of SYMbOlSeceeeseesasssssescsasnsesssossessssseB—27

|
FI)

ww:b'w'tb'ﬁ’%’ll"m'ﬂ’m'mmw
NHWOJO U WNHWN -

SECTION 1

INTRODUCING THE TANDEM NonStop II (TM) COMPUTER SYSTEM

During the recent past, computer systems have evolved from the
massive, unreliable vacuum tube machines of yesteryear to the compact,
dependable systems of today. Early computers were very restrictive
and limited; they required programmers to run their programs in a
stand-alone environment (as shown in Figure 1-1).

B
L

USER
PROGRAM

Figure 1-1. Stand-Alone Computer

These stand-alone programs were written in machine language and
consisted of long lists of numbers. They required painstaking care to
create. In fact, the programmer's responsibility included not only
coding the application but implementing the details of physical
input/output as well. 1In its stand-alone operating environment, a
running program preempted all hardware resources of the entire
machine--but seldom actually used them all.

1-1

Introduction

Eventually, the primitive stand-alone environment gave way to one
where the machine's hardware resources were managed by a
control-oriented software package called an operating system. This
simplified and generalized access to peripheral input/output devices.
Building upon this idea, software designers extended operating systems
to allow several user programs to share the limited processor and

memory resources of the machine in a multiprogramming environment
(Figure 1-2).

USER /ﬁ
PROGRAM

USER
PROGRAM

o2 —-=-pxuxmo Q0
Zm—An<w

USER
PROGRAM

Figure 1-2. Multiprogramming Environment

Further developments led to operating systems that managed programming
environments spread over several processors (Figure 1-3). These
multiple processor configurations offered an additional advantage:
they allowed a customer to increase the overall power of his system
just by adding more processors to it.

Introduction

USER
PROGRAM

USER
PROGRAM

USER
PROGRAM
USER
PROGRAM

OPERATING
SYSTEM

1/0 DEVICES

Figure 1-3. Multiple-Processor Environment

Finally, designers further extended the power of the computer by
joining several groups of processors into networks of systems
connected by long-distance communication lines (Figure 1-4).

This approach to distributed computing power matched the natural
organization of offices and plants found in many businesses and
permitted them to establish and manage geographically-independent
data bases.

NEW YORK

SAN FRANCISCO M

NETWORK

CHICAGO

LOS ANGELES

Figure 1-4. Network-Based Environment

1-3

Introduction

INTRODUCING TANDEM'S NonStop AND NonStop II SYSTEMS

The Tandem NonStop and NonStop II systems incorporate all of the above
technological advances: they are multiprogramming, multiple-processor,
network-oriented systems. But beyond this, Tandem's primary design
goal was to make these computers "NonStop," easily-expandable systems.
Where the overall design required trade-offs between reliability and
other factors, reliability always came first.

At the heart of NonStop operation are three interrelated factors:
fault tolerance, on-line repair, and modular design. FAULT TOLERANCE
implies that the system is able to continue operation even if a

. particular component fails. ON-LINE REPAIR means that field engineers
can repair or replace faulty cpu's, power supplies, input/output
controllers, or buses while the rest of the system continues to
operate. And once an item is repaired, it can be reintegrated into
the system without interrupting the on-line application work in
progress. Both of these features are related to the MODULAR SYSTEM
DESIGN, where system components are constructed to allow flexible
system configuration and simplified maintenance.

The expandability feature that allows customers to incrementally
extend the size and power of their systems also arises from the
system's modular design. This feature lets customers upgrade system
performance just by adding more cpu's, memory, or peripheral devices.
Conventional systems, typically, cannot be easily expanded to add more
cpu capability; as a result, they cannot grow with a customer's
application or evolve to fit a wide range of computing needs.

The NonStop and NonStop II systems perform many different kinds o

- s anmd o .Y ~AF
uy\:x.at..l.uua to make processing easier for their users. AS SCmc oL

their major functions, these systems:

® Prepare program files for execution as processes (running programs)
in a virtual environment.

® Schedule cpu time among multiple processes according to their
assigned priorities and their time of entry into an executable
state.

® Provide the virtual memory function by automatically bringing
absent memory pages in from disc when needed.

® Allow processes to communicate with each other regardless of the
cpu's on which they are running.

® Permit logical, file-oriented access to all physical devices
regardless of the cpu's to which these devices are attached.

® Allocate resources among running processes so that each process
appears to have all resources in the system available to it.

Introduction

HARDWARE AND SOFTWARE INTEGRATION

Ultimately, all of the major functions listed above depend on
fundamental services provided by the basic software for the computer
--the GUARDIAN operating system. Many of these functions are
performed so often, however, that the designers could greatly increase
overall system efficiency by closely integrating various software
operations with those of the hardware components. In fact, certain
critical procedures (originally part of the operating system) have
been partially or entirely reimplemented in the hardware microcode.
Now, these procedures are invoked just by executing a single

hardware instruction.

A good example of how the hardware and software interact to increase
system efficiency is provided by an instruction which queues a process
for execution--the MRL (Merge Ready List) instruction. This
instruction takes a pointer to a system table entry representing a
process, searches a list of similar entries arranged by execution
priority, and merges the entry into the list. If the priority in the
new process entry exceeds that of the currently-executing process, the
instruction notifies the operating system by interrupt. By removing
this function from the software and placing it in the microcode,
system designers have reduced to ONE the number of instruction fetches
needed to do the operation. This, of course, dramatically increased
the speed of the function. As the system software evolved, this type
of hardware/software integration at the instruction set level
increased. This, in turn, both simplified the GUARDIAN software and
made the total computer system much more efficient.

In the NonStop II system, Loadable Control Store (LCS) has been added
for system microcode and diagnostics. This allows Tandem to supply
new versions of the microcode ta customers on tape, to be loaded into
the processors by system utility programs whenever new versions of the
software are installed. Loadable Control Store thus provides a simple
means for Tandem to add further system improvements at the microcode
level.

While hardware/software cooperation is desirable for overall system
efficiency, it is ABSOLUTELY NECESSARY to ensure such NonStop features
as a failure-tolerant input/output system. As an example, consider a
system that includes a device controller with two ports, each
connected to a different cpu. In this system, the ownership of the
device is agreed upon by the controller hardware AND by operating
system software in each cpu. 1In this example, suppose

that the controller is presently being serviced by CPU 1 (Figure 1-5).

Introduction

CPU1 CPU 2

PORT PORT

|

CONTROLLER]’—

DEVICE

Figure 1-5. Fault-Tolerant Device Management in a NonStop System

The importance of joint hardware/software interaction in this system
is underscored by considering what happens when certain kinds of
errors occur. For example, suppose that the logic in Port 1 of the
controller fails (Figure 1-6).

1-6

Introduction

CPU1 CPU 2

PORT

CONTROLLER :]_

]

DEVICE

Figure 1-6. Controller Port Logic Failure

If this hardware failure results in a constant flow of interrupts,
they will be detected by the GUARDIAN software in CPU 1. Now
interrupts are not, of course, abnormal in the system. But when they
occur with too great a frequency as in this case, the operating system
assumes that an abnormal situation exists and executes a hardware
instruction to disable Port 1 of the controller. This completely
stops the flow of interrupts from the faulty port. At this point,
software ownership of the controller may be switched to CPU 2, which
in turn switches hardware controller ownership to the remaining
operational port, and NonStop operation continues (Figure 1-7).

Introduction

CPU 1 CPU 2

PORT PORT

CONTROLLER

DEVICE

Figure 1-7. Switching Controller Ownership

"ty

This kind of jeoint hardware/scoftware cocperaticon is necessary for any
system that must function in a failure-tolerant way--the total burden
of reliability must be carried by both the hardware and software.
Without this mutual support, such a system would be impossible. And
to implement such a system, a fully-unified overall design is required
that carefully integrates the hardware and software with one another.
The Tandem system is based on this kind of design.

SECTION 2

HARDWARE PRINCIPLES OF OPERATION

SYSTEM STRUCTURE

Hardware components of a NonStop system must be designed to allow
continued execution of processes and access to data bases even if a
single component fails. These design goals are illustrated in diagram
1 of Figure 2-1.

From a software point of view, failure tolerance for the user's
process is accomplished by executing a secondary (or "backup") process
in another processor, so programmed to redquire only periodic
checkpoint messages to Kkeep up to date on the current state of the
primary process. Upon any failure of the processor that is exXecuting
the primary process, the backup process can resume execution of the
work from the point of the last valid checkpoint. The backup process,
instead of the primary process, will then be accessing the data base
on disc. As indicated in the diagram, dual data paths are desired in
order to assure communication of the checkpoint messages.

From a hardware point of view, failure tolerance for the user's data
base is accomplished by the use of dual-ported controllers and,
optionally, by maintaining duplicate data on two separate disc volumes
("mirrored" volumes). For mirrored volumes, all data written out to
the user's files is automatically written into both disc volumes.
Thus, whenever data is read from the files, either volume may be
accessed, since they contain identical information. Like the
interprocessor communications, two data paths to the disc volumes are
desirable.

The various hardware features that accomplish these two major goals
work together as an effective total solution. But for illustrative
purposes, each feature is considered as a separate entity in the
following discussions--illustrated by the remaining six diagrams in
Figures 2-1 and 2-2.

It should be noted in considering the following information that,

although the mechanics of instant on-line reconfigurability reside
in the hardware, the control of such actions is a function of the

GUARDIAN operating system.

System Structure

Independent Multiple Processors

The NonStop II system consists of two to sixteen processor modules.

A processor module is sometimes referred to as a central processing
unit, or cpu, for convenience, although in a Tandem system, no one
processor is more "central" than any other. Each processor (cpu)
contains the functions that normally comprise a complete computer
system: instruction processing unit (IPU), memory, and input/output
channel. 1In addition, each module contains logic for a fourth main
function: the interprocessor bus interface through which the
processors communicate with each other. Furthermore, each module is
associated with its own separate power supply. (See diagram 2 in
Figure 2-1.) Therefore, each processor module is capable of operating
independently of, and simultaneously with, all other processor modules
in the system.

This fundamental design feature means that each processor is totally
self-sufficient. An IPU failure, for example, cannot prevent another
processor from functioning, since there are no shared elements, such
as memory. A failing IPU cannot contaminate any memory data outside
of its own module.

Dual-Bus Data Paths

Each processor module is connected to all other processor modules via
redundant high-speed interprocessor buses, each controlled by its

own separate bus controller. See diagram 3 in Figure 2-1. Programs
running in one processor module communicate with programs running in

other processor modules by means of these buses. Each interprocessor
us is fully autonomous, operating independently of (but
simultaneously with) the other bus.

The use of two buses assures that two paths exist between all
processor modules in the system. If one bus fails, all interprocessor
communication is automatically routed over the remaining bus. The use
of bus controllers that are separate and independent of the logic
circuits within the modules assures that no failure of a processor
module will cut off bus transmission.

The interprocessor bus interface in each module is capable of
accepting transmissions from either bus, under control of the
operating system.

Dual-Port Device Controllers

Data is transferred between an input/output device (i.e., disc,
terminal, line printer, etc.) and a processor module by means of an
input/output channel. Each processor module has one i/o channel that
is capable of communicating with up to 256 i/o devices. See diagram 4
in Figure 2-1.

2-2

System Structure

1. GOALS OF A NONSTOP SYSTEM

PROCESSOR 0 PROCESSOR 1

CHECKPOINT
MESSAGES

PRIMARY
PROCESS

hd

/
/ DUPLICATE
/ DISC
VOLUMES

2 INDEPENDENT MULTIPLE PROCESSORS

INTERPROCESSOR BUS

vy y v

IPB INTERFACE IPB INTERFACE
. >
x> 1PU 1PU i)
s zg
22 MEMORY MEMORY s 3
1/0 CHANNEL 170 CHANNEL
110 110

3. DUAL-BUS DATA PATHS

X BUS

— |
B Y BUS |

BUS
CONTROLLERS

IPB INTERFACE iIPBINTERFACE

4. DUAL-PORT DEVICE CONTROLLERS

-

L

[]

1/0 CHANNEL

1/0 CHANNEL

DEVICE
CONTROLLER

O

DEVICE
CONTROLLER

O

5. DUAL-PORTED/MIRRORED DISCS

L

L]
.,

1/0 CHANNEL

1/0 CHANNEL

DiISC
CONTROLLER

f DIsC
CONTROLLER

Figure 2-1.

Elements of Hardware System Structure

2-3

System Structure

6. MULTIPLE POWER SOURCES

BUS _ 2A
CONTROLLER [
PROCESSOR 0 SUPPLY PROCESSOR 1 SUPPLY
conf:os 100A CAPACITY 100A CAPACITY
LLER 72A LOAD 725 LOAD
24
@ > >
w &J g :
7 = Y
504 50A
DEVICE
CONTROLLER
- 10A) \ 10A
DEVICE
CONTROLLER
\— 10A j 10A
DEVICE
CONTROLLER
10A Y 10A
DEVICE
CONTROLLER
104 4 k 104
1/0-ONLY
N POWER I—
SUPPLY 100A CAPACITY
40A LOAD

7. POWER FAILURE RECOVERY

AC

LINE

48V
DC

5V UNINTERRUPTIBLE

IPB INTERFACE

1PU

PROCESSOR
POWER
SUPPLY

12V UNINTERRUPTIBLE J

MEMORY

BATTERY
MODULE
10 A H)

—

5V INTERRUPTIBLE (100A)

1/0 CHANNEL

POWER FAIL WARNING INTERRUPT

Figure 2-2.

Power Distribution in the NonStop II System

System Structure

I/0 devices are interfaced to the i/o channels by dual-port
controllers. Each dual-port controller is connected to the i/o
channels of any two processor modules. Therefore, each i/o device can
be controlled by either of two processor modules. However, in
operation, an i/o device is controlled exclusively by one processor
module until a failure occurs such that the processor module can no
longer communicate with the i/o device. 1If such a failure occurs, the
other processor module takes control of the i/o device.

Dual-Ported/Mirrored Discs

Because discs represent the most critical class of i/o devices, disc
drives can also have dual ports. 1In combination with the dual ports
on the disc controller, various configurations are possible, to meet
any desired degree of failure tolerance. For example, connecting the
dual ports of the controller to separate i/o channels provides for
failure tolerance of the i/o channels. Connecting dual ports of a
disc drive to separate controllers provides for failure tolerance of
the disc controllers. Diagram 5 of Figure 2-1 shows an example of a
fully mirrored, fully dual-ported configuration.

Multiple Power Sources

Power is distributed in the system in such a manner that each dual-
port controller receives power from two sources. If a supply fails,
causing a processor module to become inoperative, the alternate power
supply can assume the full load.

As mentioned previously, there is a power supply associated with each
processor, supplying power to that module. The processor consumes
approximately half the power available from its supply; the remainder
is available to help power the device controllers. 1In some cases, the
power available from these supplies is sufficient to power all the
device controllers; in other cases, a supplementary power supply for
i/o only is necessary.

Diagram 6 in Figure 2-2 shows, in simplified form, the way in which
power is distributed in the NonStop II system in order to achieve
reliable power backup. The current values shown are mostly
illustrative only; device controllers, for example, generally take
much less than the 20 amperes assumed in this figure. Exact values
and the adjustments required to achieve good power distribution are
evaluated for each particular system by Tandem when the system is
configured.

As shown, the two bus controllers require a total of about 4 amperes,

2 amperes each from the supplies associated with processor 0 and
processor 1. (Bus controller power is always taken from the supplies

2-5

System Structure

for these particular cpu's.) The processor modules are assumed to
require 50 amperes each; this depends on memory size and
configuration. The output current capacity of the supplies is 100
amperes each (for the 5-volt interruptible supply, discussed later).
Note that each device controller nominally receives one-half of its
requirements (10 amperes) from each of two different power supplies.
(In actuality, adjustments are made so that the cpu supply provides
somewhat less than half the needed power, and the i/o supply provides
slightly more than half.) Under the assumed conditions, then, each
processor's power supply is loaded to 72 amperes, and the i/o-only
supply is loaded to 40 amperes.

Now assume a failure in the processor 0 power supply. The processor 0
module goes down, but none of the device controllers or bus
controllers is affected. The processor 1 power supply now delivers
the full 4 amperes needed by the bus controllers (increasing its load
to 74 amperes), and the i/o-only power supply delivers the full 20
amperes to each of the uppermost two device controllers (increasing
its load to 60 amperes).

Likewise, if the i/o-only power supply should fail, the load on each
processor's power supply would increase by 20 amperes (to 92), still
within the 100-ampere capacity. Thus any single power supply failure
can be compensated by increased loading on the remaining supplies.
However, the failure of any two supplies cannot always be accommodated
by the remaining ones.

Power Failure Recovery

Diagram 7 in Figure 2-2 illustrates the power failure recovery
features that are incorporated into the internal circuits of each
processor module. Note that memory is powered separately from the
rest of the module, with its own 5-volt and 12-volt supplies; these
are termed uninterruptible supplies, since they are maintained by
battery power if an AC line failure occurs. Battery power then allows
memory to retain its contents for 1.5 hours or more, depending on
memory size and the charge state of the battery.

The interruptible 5-volt supply powers the remainder of the module.

In order to allow the operating system to bring the central processing
unit to an orderly halt, the power supply issues a special signal
(power fail warning interrupt) when AC power is lost for more than 24
milliseconds. This signal gives a minimum of 5 milliseconds warning
(depending on loading of the supply) that the 5-volt supply will be
going down.

The system automatically restarts upon restoration of power, resuming

execution of the processes that were in progress at the time of the
power failure.

2-6

System Structure

Other Failure-Tolerant Features

The ability of the Tandem computer system to provide an environment
where applications can continue to run regardless of a module failure
is due primarily to its unique NonStop features, described above. 1In
addition to those unique features, the Tandem system also incorporates
various other reliability features and certain standard design
features currently found other systems. These include the following:

® The GUARDIAN operating system in each processor module saves the
current operating state of its module in memory when a system-wide
power failure occurs. For system power failures, the operating
system automatically resumes all operations (including application
programs) when power is restored.

e If an uncorrectable error occurs in memory, the operating system
determines if the associated area is critical to system operation.
If it is not, the area is flagged as bad and not used again until
the memory is repaired. (Typically, the memory would be repaired
during system preventive maintenance. However, the associated
processor module could be taken off line to repair the memory,
leaving the remainder of the system operable.) If the area is
critical, the operating system halts execution in its processor.

@ Critical portions of the operating system are main-memory resident;
this assures their availability in the event that a virtual memory
{disc) failure occurs.

® The cooling system for the computer is designed so that if a single
failure occurs, ample cooling is still available.

® Any module in the system (i.e., processor, i/o controller, power
supply, fan, etc.) can be removed from the system and replaced
on-line without stopping operation of other system modules.

® Routing, sequence, and checksum words are generated by the
transmitting processor module and checked by the receiving
processor for every packet of 13 data words transferred over the
interprocessor buses.

@ A parity bit is associated with each 16-bit word transmitted over
the i/o channels.

® An interval timer is provided; the operating system and the File
System use the timers to notify the application program in the
event a data transfer does not complete.

@ Six error correction bits are generated and stored with each 16-bit
word in the semiconductor memory; circuitry is provided to correct
all single-bit errors and detect all double-bit errors.

® The addressing and count information associated with i/o transfers

are kept in the controlling processor module. This prevents a
controller from contaminating more than one processor module

2-7

System Structure

because of a failure of an address or word count register.

@ The File System protects against a failing input/output controller
erroneously writing into memory (in the IOC table, either the
device's count field is set to zero or its write-only bit is set).

@ The memory mapping scheme provides separate system/user maps.
Operating system data areas can be accessed only by operating
system programs; application programs cannot inadvertently destroy
the operating system.

® Two hardware modes of processor operation are provided: privileged
and nonprivileged. Certain critical operations (such as accessing
system tables from application programs or initiating input/output
transfers) can be performed only while in privileged mode.
Typically, only the GUARDIAN operating system runs in privileged
mode; privileged operations are performed on behalf of application
programs through calls to operating system procedures. Application
programs running in nonprivileged mode are prevented from becoming
privileged.

FUNDAMENTAL NonStop OPERATIONS

Hardware View of the Operating System

The GUARDIAN operating system oversees system operation. The
operating system provides the multiprocessing {(concurrent processing
in separate processor mocdules) and multiprogramming (interleaved
processing in one processor module) capabilities, and exercises
control over the NonStop features of the Tandem system. A copy of the
GUARDIAN operating system resides in each processor module (with the
exception of system i/o processes, which only reside where they are
needed) .

The operating system automatically schedules application programs

for execution according to an application-assigned priority, provides
memory manadement functions (automatic overlaying, swapping to disc,
and so on), and gives application programs the capability to start
other programs executing in any processor module from any processor
module.

Four major components of the GUARDIAN operating system that
particularly relate to hardware operation are the Kernel, the Message
System, system processes, and the File System. These are briefly
discussed in the following paragraphs, in order to show the close
interrelationship between the hardware and the software and to provide
an understandable basis for the hardware functions described in this
section of the manual.

Fundamental NonStop Operations

KERNEL. The Kernel provides the capability for multiple processes to
execute in parallel in a single processor module (the term "process"
denotes an executing program). Among the Kernel's functions are
scheduling processes for execution based on a run-time assigned
execution priority and resolving system resource allocation conflicts.

MESSAGE SYSTEM. The Message System is actually part of the Kernel,

but is listed separately here to emphasize its importance. It
provides the means for processes (i.e., running programs) to
communicate with each other. If two communicating processes are
executing in different processor modules, the Message System
automatically routes the communication over an interprocessor bus.
The Message System makes use of both buses and guarantees delivery of
a message even if one bus fails.

SYSTEM PROCESSES. The system processes are running programs that
perform operating system related functions. These functions include
loading programs into memory for execution, supporting virtual memory,
and providing physical control of i/o devices.

FILE SYSTEM. Application processes do not interface directly with the
Kernel, Message System, or system processes. Rather, they make use of
the File System to communicate with other processes and with i/o
devices. The File System provides a single interface between a user
process and the outside world. Other processes and all i/o devices
are accessed as "files" through a single set of system calls.
Processes and i/o devices are referenced by means of preassigned,
symbolic file names. The physical locations of i/o devices and of the
processor modules where processes are executing are transparent to
application programs.

Primary and Alternate I/O Paths

The use of dual-port controllers guarantees that a communication path
exists to each i/o device even if a failure occurs. Each device has a
"primary" path over which communication normally occurs. In addition,
assuming the system is so configured, there exists an "alternate"
path. See Figure 2-3.

If a failure occurs in a primary path, whether by cpu failure or i/o
channel failure, the File System can reroute communication to the
affected i/o device via the alternate path. Figure 2-3 assumes an i/o
channel failure, requiring a switch from the primary device i/o
process to the backup device i/o process.

2-9

Fundamental NonStop Operations

OPERATING
SYSTEM IN J

PROCESSOR 0 /

Proc 1 = USER PROCESS

Proc 2 =PRIMARY DEVICE
HO PROCESS

Proc 3 =BACKUP DEVICE
110 PROCESS

PRIMARY
PATH

\

/

OPERATING
SYSTEM IN
PROCESSOR 1

Proc 3

ALTERNATE
PATH
DUAL-PORT
CONTROLLER
DEVICE

ey
[

gure 2-3.

I1/0 Data Paths

Fundamental NonStop Operations

Once the alternate path is put into use, all subsequent access to the
i/o device is via that path. When the original primary path is
restored, it may either become the alternate path or be restored as
the primary path, depending upon system configuration choices.

The File System enables processes running in the same processor or in
separate and redundant processor modules to communicate with each
other and with any i/o device connected to the system. The hardware
provides at least two paths to each processor module and to each i/o
device. The operating system then guarantees that if at least a
single path is available, communication will occur.

Processor Module Checking

The GUARDIAN operating system provides an additional function.
Concurrent with application program execution, the Message System part
of the GUARDIAN software in each processor module periodically
transmits an "I'M ALIVE" message to all other processor modules in the
system. (See Figure 2-4.) The Message System in each processor
module, in turn, periodically checks for receipt of an "I'M ALIVE"
message from every other processor module.

If the GUARDIAN operating system finds that more than one of these
messages have not been received as expected (see Figure 2-5), it
assumes that the nontransmitting processor module has failed. The
operating system then sends a "CPU DOWN" message to interested system
and application processes in its processor module. (This action
occurs in every operational processor module.)

A NonStop Application

To show how the NonStop II system provides the means for creating a
NonStop application, the following example is given. The example is
illustrated in Figures 2-6 and 2-7.

The NonStop application consists of a "primary" application process
running in processor module 0 (the primary process is designated A)
and its "backup" process running in processor module 1 (the backup
process is designated A'). The coded instructions for A and A' are
identical. With the aid of the GUARDIAN software, each can determine
whether it is the primary or the backup process, then perform its
proper role.

2-11

Fundamental NonStop Operations

CPUO

GUARDIAN
SOFTWARE

I'M ALIVE

I'M ALIVE

CPU 1

GUARDIAN
SOFTWARE

Figure 2-4.

Processor Module Checking

I'M ALIVE

“I'M ALIVE”

MESSAGE NOT
RECEIVED

FROM CPU 1

2-12

Figure 2-5.

CPU Down Message

Fundamental NonStop Operations

I'M ALIVE MESSAGES

GUARDIAN
SOFTWARE

CHECKPOINT MESSAGE

A > A’
s
\\@ iy
d /
@ s
s /
/
/
/
/
/
/
/
TERMINAL

THE PROCESS: A THE PROCESS: A’

(b READ (a record from the terminal) READ (the checkpoint message from A)

READ (arecord from the disc)
WRITE (the updated disc record to A’) Checkpoint
WRITE (the updated record to disc)

WRITE (the result on the terminal)

(@@)@@

Figure 2-6. NonStop Application

Fundamental NonStop Operations

CPUO CPU1

\

o

DOWN

_ I//// o)
)\

TERMINAL

PROCESS A’ ACTION

@ READ (the cpu 0 down message)

@WRITE (to the disc using the last checkpoint message to ensure update of the record)

Then continue with the same program as A.

READ (a record from the terminal)
READ {(a record from the disc)

Except that there is no backup for A" at this time, so no checkpoint message is sent.

Figure 2-7. Application Takeover by Backup

2-14

Fundamental NonStop Operations

The "primary" process, while operable, performs ALL of the
application's work. At critical points during each transaction cycle
(such as prior to altering the contents of a disc file), the primary
process sends a message, via the File System, to its backup process.
These messages contain "checkpointing" information (such as an updated
disc record) and keep the backup process up-to-date on the state of
the application. All such messages are the result of checkpointing
code that the programmer inserts in the application programs.

The "backup" process's responsibility, while the primary is operable,
is to accept and process the checkpointing messages and be ready to
take over the application if the primary process becomes inoperable.

If processor module 0O fails (see Figure 2-7), the GUARDIAN operating
system in processor module 1 sends a "CPU 0 DOWN" message to the
backup process A'. This is the signal for the backup process to take
over the application's work. First, the backup process uses the
latest checkpointing message (e.g., an updated disc record) to
complete the transaction that the primary started just prior to its
failure, leaving the application's data in the same state as if the
primary had completed its last transaction successfully. At that
point, the backup becomes the primary and continues with the
application's work. (Note that there is no "backup" process at this
time, therefore no checkpointing messages are sent).

When processor module 0 is reloaded, the GUARDIAN operating system
sends a "CPU 0 UP" message to the current primary process (formerly
the backup process). The primary process (through use of the GUARDIAN
software) may then start a new backup process running in processor
module 0. The primary also begins sending checkpointing information
to the backup process. The application is now fully fault-tolerant
once again.

PROCESSOR MODULE ORGANIZATION

Instruction Processing Unit

The instruction processing unit (IPU) has three functions: 1) to
execute machine instructions, 2) to provide for the orderly
interruption of a running process, and 3) to transfer data from the
interprocessor buses into memory (this last item is invisible to the
executing process and is handled entirely by the IPU's
microprocessor) .

A program's instructions reside in memory. In order to execute an
instruction, it is first fetched from a location in memory determined
by the address held in an IPU register; the register into which it is
fetched is another IPU register. The instruction is decoded by the
hardware to determine what sequence of microinstructions must be used
to execute the instruction. During execution of the instruction, one
or more memory transfers may occur, the IPU's scratchpad registers may

2-15

Processor Module Organization

be used to hold intermediate computations, and operands may be added
to or deleted from the IPU's Register Stack.

While the current instruction is being executed, the next instruction
in sequence is fetched from memory.

The instruction processing unit's microinstruction cycle time is 100
nanoseconds; microinstructions are 32 bits in length.

An IPU's basic instruction set consists of approximately 230
instructions. These include arithmetic operations (add, subtract,
etc.), logical operations (and, or, exclusive or), bit shift and
deposit, block (multiple-element) moves/compares/scans, procedure call
and exit, interprocessor bus send, and the input/output instructions.
All instructions are 16 bits in length.

Processor modules equipped with the Decimal Arithmetic option have an
additional 14 instructions (six decimal arithmetic instructions are
standard in all processors). These instructions operate on four-word
operands and include add, subtract, multiply, divide, etc. (See
Decimal Arithmetic Option headings in Section 3, "Instruction Set".)
Modules equipped with the Floating Point option have an additional 41
instructions for doubleword and quadrupleword (extended) floating-
point arithmetic and related operations. (See "Floating-Point
Arithmetic" and "Extended Floating-Point Arithmetic" headings in
Section 3.) With these options, a module has a total of approximately
280 instructions.

Two modes of process execution are provided: privileged and
nonprivileged. A process executing in nonprivileged mode is not
permitted to execute the instructions designated as privileged.
Privileged instructions are associated with operations that, if
performed incorrectly or inadvertently, could have an adverse affect
on other processes or the operating system. These "privileged"
operations include: interprocessor bus send, input/output, changes to
map registers, execution of privileged procedures, and access to the
system data segment. Normally, only the GUARDIAN operating system
exXxecutes in privileged mode; application (user) processes execute in
nonprivileged mode. Privileged operations are performed for
nonprivileged processes through calls to operating system procedures.
An attempt by a nonprivileged process to execute a privileged
instruction causes the process to be trapped (interrupted).

The interrupt function provides for the orderly transfer of IPU
control from an executing process to one of several routines in the
operating system called interrupt handlers. This transfer of control
is called an interrupt. Interrupts occur for several reasons. Among
them are: data received over the interprocessor bus, completion of an
i/o transfer, memory error, memory pPage absent, instruction failure
(e.g., attempt by a nonprivileged process to execute a privileged
instruction), and power failure.

2-16

Processor Mocdule Organization

Memory

Data is stored in memory in the form of 16-bit words. The maximum
amount of memory addressable in a NonStop II system is sixteen
megabytes (eight megawords). The maximum memory available for each
processor is two megabytes. All accesses to memory are on word
boundaries, even though the hardware provides element access to bytes,
doublewords, and quadruplewords.

Addressing of processor memory is defined by two terms: logical
addresses, which are relative to the start of code space or data space
used by a single process; and physical addresses, the absolute
addresses that define particular cells in physical memory.

A logical address most commonly consists of 16 bits; 16-bit addresses
are capable of addressing a maximum of 65,536 words, which is defined
as a "segment" of memory. Because a program consists of independently
addressable areas (one or two code segments and one standard data
segment), and each area can consist of 65,536 words, a single process
can access up to 196,608 words (three segments) without using extended
addressing. Extended addressing, which opens up the entire range of
virtual memory, is considered at length under the heading "Memory
Access".

A physical address consists of 23 bits; 23-bit addresses are capable
of referencing any location in physical memory, and thus have a
possible addressing range of sixteen megabytes. The conversion of

the 16-bit logical address to a 23-bit physical address is
accomplished through a mapping scheme. Sixteen maps are provided;
each map consists of 64 entries, and is capable of completely defining
one memory segment. Each map entry can be assigned to point to the
start of a block of 1024 words of memory (called a page of memory).

The sixteen maps provide separate addressing of user code, user data,
system code, system data, i/o buffers, and tables used in the
implementation of the virtual memory addressing scheme. Some map
entries are also used as IPU scratchpad registers and as a map entry
cache to support virtual memory.

Several application processes and parts of the operating system can
reside in memory concurrently. As each process is granted execution
time in the processor, its logical memory space becomes part of the
currently accessible portion of physical memory--that is, the
process's segments become "mapped."

The data path between memory and other processor module functions is
16 bits wide. All data is verified for accuracy when it is read from
memory. SiX error correction bits are appended to each 16-bit word
when it is stored. The use of the six error correction bits in the
semiconductor memory permits the hardware to automatically correct all
single-bit errors and to detect all double-bit errors. The detection
of a memory error (whether correctable or uncorrectable) causes an
interrupt to an operating system interrupt handler, which takes
appropriate action.

2-17

Processor Module Organization

Input/Output Channel

Each processor module has its own i/o channel that is capable of
transferring data between i/o0 devices and memory at full memory speed.
I/O operations, which are controlled by the operating system, are
initiated by setting up an entry in a table in memory and then
executing an EIO instruction. Once initiated, data transfer occurs
concurrently with software process execution. The only time the
software process is affected is when both the i/o channel and the IPU
need to access memory at the same instant. If this occurs, the
process's memory access is momentarily deferred while the i/o data is
transferred between memory and the i/o channel (the action is
invisible to the executing process). When the i/o operation
completes, the currently executing process is interrupted, and control
of the IPU is transferred to an operating system interrupt handler.

Each channel is capable of addressing 256 i/o devices, addressing each
as a separate "subchannel."™ A single i/o operation is capable of
transferring data in blocks of from one to 64k-1 bytes.

The table to control i/o transfers is called the I/O Control Table
(IoC) . Each processor module has its own IOC. (See Figure 2-8.)
The IOC is known to the microcode and maintained by the operating
system. The IOC table contains up to 256 entries, corresponding to
the 256 possible devices (subchannels) on that processor's channel;
each entry contains a buffer address (in one of the i/o buffer
segments) and a count of the number of bytes to be transferred. The
use of the IOC permits an i/o channel to run any number of devices (up
to 256) concurrently while maintaining control on a device-by-device
basis. When the number of bytes indicated in the IOC have been
transferred; the device interrupts the currently executing process.

Data is buffered by each controller so that data is transferred in
bursts through the channel at memory speed (the number of bytes in a
"burst" depends upon the type of controller). Controllers are
designed so that they signal the channel prior to actually emptying
their buffers (during a write operation) or filling their buffers
(during a read operation). This gives the channel ample time to
respond, thereby providing a means to avoid data overrun. All 256
devices can be transferring simultaneously, with "bursts" from one
device being interleaved with "bursts" from others, subject to i/o
data rate configuration limits.

2-18

Processor Module Organization

co MICRO- INITIATE | O
= rrocessor ™
MEMORY
UP TO 256 BUFFERS
10c 7

P‘ 1 .
110 CHANNEL J
\ MICRO- READY TO SEND
PROCESSOR | ™

07D

~D 07U

*~— — — |
— — — —

C

1m0V

\
420w

DEVICE

Figure 2-8.

Input/Output Channel

2-19

Processor Module Organization

Interprocessor Bus Interface

The NonStop II system has two interprocessor buses. Each bus
functions independently of the other, transferring data from one
processor module's memory to another processor module's memory.
Both buses can be in use simultaneously. See Figure 2-9.

Data is transferred over each interprocessor bus at a rate of 13.33
megabytes per second. Each bus is capable of transferring data
among all processor modules concurrently on a packet-multiplexed
basis.

An interprocessor bus transfer involves two processor modules: the
sender module and the receiver module. The transfer is initiated by
the sender when a SEND instruction is executed. The receiver module
checks the incoming packet for correct transmission, and directs the
incoming data to a main memory buffer indicated by a firmware-known,
software-maintained table.

The SEND instruction can transmit blocks of 1 to 64k-1 bytes to a
designated processor module over one of the buses. Data is actually
sent across a bus in "packets" of 16 words (a routing word, a sedquence
word, 13 data words, and a checksum word); each processor module
contains two high-speed 1l6-word buffers (one for each bus) for
receiving the incoming information. These buffers are designated INQ
X (for the X bus) and INQ Y (for the Y bus). Transfers into the
buffers occur simultaneously with IPU microprogram execution; when a
buffer fills, the IPU microprogram is interrupted and a special
microroutine moves the contents of the buffer into memory.

Each processor module's main memory contains a table called the Bus
Receive Table {(BRT). The BRT's are known by the firmware and are
maintained by the operating system. They are used to direct the
incoming bus data to a specified location in a processor module's
memory. Each BRT contains 16 entries (corresponding to the 16
possible processor modules in a system); each entry specifies an
expected packet sequence number, a buffer address where the incoming
data is to be stored, and the number of bytes expected. When the
expected number of bytes has been received, the currently executing
process is interrupted, and the process for which the message is
intended is notified.

2-20

Processor Module Organization

BUS CONTROL

‘DATA’

BUS CONTROL
X Y |Pprocessor
outQ ouTQ NUMBER
— 1
1
IPU /
MICRO-
SEND 10, Y™ b2 5cESSOR
MEMORY

PU

MICRO-INTERRUPT

MICRO-

PROCESSOR \

WHEN BUFFER
FuLL |

MEMORY

PROCESSOR

|
I

I

NUMBER l

A

—_ _—
BUFFER AF)_DRESS .

BRT

N

I
BUFFERS

PROCESSOR 1

PROCESSOR 10

Figure 2-9.

Interprocessor Bus Interface

2-21

Processor Module Organization

Other Processor Components

In addition to the four main processor components just described--
the IPU, memory, i/o channel, and interprocessor bus interface--
each processor in a NonStop II system contains several other
important components. These are discussed briefly in the following
paragraphs. Figure 2-10 illustrates these components, showing
their relationships to each other and to the four major components
already discussed.

CLOCK GENERATOR. The clock generator is the main processor clock.
It provides the synchronization of all hardware functions within the
processor. The clock has a full cycle time of 100 nanoseconds, and
a half-cycle time of 50 nanoseconds. Some clocking functions are
performed on the half-cycle transition of the clock.

LOADABLE CONTROL STORE. The Loadable Control Store (LCS) contains
microinstructions for use by the IPU. Each machine instruction causes
the IPU to execute a specific set of microinstructions to implement
the functions of that machine instruction. The Loadable Control Store
cannot be written to by user programs, but it may be loaded with new
versions of the system microcode and microcode options as they are
purchased from or supplied by Tandem.

CONTROL PANEL. The control panel allows operators and maintenance
personnel to interact directly with each NonStop II processor. The
control panel can be used to reset a processor, cold load a processor,
ready a processor for reload, and give visual indications of a
processor's status. It also can be used to initiate some
micro-diagnostics.

MEMORY CONTROL UNIT. The Memory Control Unit (MCU) provides access to
memory for both the i/o channel and the IPU. The Memory Control Unit
prioritizes memory requests; provides overlapped access, mapping of
logical to physical memory, error control, and error reporting; and
provides semiconductor memory refresh timing capability.

DIAGNOSTIC DATA TRANSCEIVER. The Diagnostic Data Transceiver (DDT)
provides a communication path between a NonStop II processor and the
Operations and Service Processor (0OSP). Connected to the 0OSP through
the Processor Maintenance Interface (PMI), it communicates at two
distinct levels, as directed by the microprogram in the Loadable
Control Store or by a running process. It can accept commands from
the OSP to communicate with the operating system and diagnostics

for operations or fault isolation. It can also report status
conditions of the IPU, Memory Control Unit, i/o channel, and Loadable
Control Store to the OSP.

PROCESSOR MAINTENANCE INTERFACE. The Processor Maintenance Interface
(PMI) provides a common interface point for up to four processors to
communicate with the Operations and Service Processor (0OSP). If there
are more than four processors in the system, additional PMI units are
added, and the PMI's are connected tcgether.

2-22

Processor Module Organization

TO ONE OR MORE

X BUS
2:52‘;23:& —— OTHER PMI’s TO OTHER 4
PROGESSOR | (IF SYSTEM HAS PROCESSOR /|
osp | MORE THAN 4 MODULES Y BUS (
(OSP) PROCESSORS) N)
r-r """ " == _7
| LOADABLE |
cLOCK CONTROL |
| GENERATOR STORE
(LCS) |
| CONTROL
| PANEL |
| l
| 2§g§g§gg§ INTERPROCESSOR f
BUS
| gs&; INTERFACE i
| i
|
PROCESSOR | DIAGNOSTIC |
MAINTENANCE) DATA 110 110
INTERFACE I TRANSCEIVER N “CHANNEL | CONTROLLER
(PMI)* | (DDT) |
l l | | MEMORY I
CONTROL
TO OTHER | UNIT |
PROCESSOR | | o
MODULES |
| | CONTROLLER
| MEMORY |
*ONE PER 4 | |~ .
PROCESSOR | L |
MODULES
| I
| PROCESSOR MODULE (CPU) |
- - 1

Figure 2-10.

Block Diagram of NonStop II Processor Hardware

2-23

Operations and Service Processor (OSP)

The PMI provides switch functions and indicator lights showing
processor and DDT status. 1In addition, it provides signal level
conversion; it connects to the processors through differential
signals, which it passes on to the 0SP. The PMI may be used in a
loopback mode to test the functionality of each processor's DDT.
Finally, the PMI notifies the DDT of the speed at which the local
or remote OSP is operating.

OPERATIONS AND SERVICE PROCESSOR (OSP)

The Operations and Service Processor (OSP) is the control center for
the NonStop II system. Through the OSP, operators and maintenance
personnel can communicate easily and flexibly with many low-level
system functions, including all the essential functions of the control
panel for each processor. Thus it enhances fault detection and
isolation.

The OSP provides both local and remote operations and maintenance
capabilities. As previously described, it is connected to each
processor through the PMI and the DDT.

The OSP subsystem is made up of six components:

Processor--The processor is the central part of the OSP subsystem.
Most of the OSP functions are controlled by the processor. It
provides intelligence and coordination of the subsystem. (The
OSP processor is not to be confused with a processor module,

or cpu.)

Floppy Discs--The floppy discs are used to load the OSP operating
system and diagnostics into the OSP processor. Two floppy discs
are provided for failure tolerance.

Switches and Indicators--The 0OSP switches and indicators provide
access control and OSP functional indications.

OSP Terminal--The OSP terminal, normally a 6520 terminal, provides
an easy, flexible operations and maintenance interface with the OSP
and the NonStop II system. Function keys are provided to allow
fast interaction with the OSP.

Modem--The modem included in the OSP subsystem allows communication
with remote OSP's, remote terminals, and remote NonStop or NonStop
IT systems. Maintenance may be performed from all of these
devices. Operations may be performed from a remote OSP or a remote
6520 terminal.

Hard-Copy Printer--The optional 5508 hard-copy printer is provided
for hard-copy logging of system console activity.

2-24

How the Hardware Executes Programs

HOW THE HARDWARE EXECUTES PROGRAMS

Code and Data Separation

Programs executing as processes in memory are physically separated
into two areas: code segments containing machine instructions and
program constants, and data segments containing program variables.
See Figure 2-11. The code segments of a process can be thought of as
read-only storadge, since no machine instructions can write into them.

Since code segments cannot be modified, they can be shared by a number
of processes. In particular, operating system routines are shared by
all application processes running in a given processor module (i.e.,
only one copy resides in memory).

Procedures

Programs are functionally separated into blocks of machine
instructions called procedures. A procedure, like a program, has its
own "local" data area (in the process's data segment). A procedure
(i.e., the block of instructions that a procedure represents) is
called into execution when a PCAL (procedure call) instruction is
executed. The PCAL instruction saves the caller's environment and
transfers control to the entry point instruction of the procedure.

EIGHT~
ELEMENT
REGISTER

STACK

— S

NON-
MODIFIABLE.
SHARABLE

MODIFIABLE.
MACHINE PRIVATE

INSTRUCTIONS DATA

CODE i AREA
AREA i

|
|
l
!
oy |
ARITHMETIC

OPERATIONS

DATA TRANSFERRED
VIA FILE SYSTEM

Figure 2-11. Code and Data Separation

2-25

How the Hardware Executes Programs

The procedure's instructions are then executed. The last instruction
that a procedure executes is an EXIT instruction. The EXIT
instruction restores the caller's environment and transfers control
back to the caller's next instruction.

A procedure, while it executes, has its own local data area. This
area is allocated for a procedure each time the procedure is called
and is deallocated when the procedure exits (see "Memory Stack"). It
can also access a shared global data area, which is accessible to all
procedures of the process. The global data area and all the memory
used for procedure local data areas are contained in the process's
data segment.

Procedures can be written so that they can receive parameter
information (arguments), perform computations using the parameters,
then return results to the caller. (The machine instructions for
Passing parameters and returning results are generated automatically
by compilers.)

Operating system functions (e.g., File System functions) are performed
by calling procedures that are part of the operating system. A system
procedure is called when an XCAL (external procedure call) instruction
is executed. This is discussed later in this section under the
heading "Calling External Procedures".

Memory Stack

Process segments are organized in main memory as stacks. A stack is a
storage allocation method in which the last item (or block of items)
added is the first item removed--like a stack of dishes. The "local"
areas for procedures are blocks of data items in the memory stack. A
procedure's local data is allocated in the memory stack only while it
executes; after a procedure returns to the point where it was called,
its data area is deallocated and may be used by another procedure
called later. Therefore, the total amount of memory space required by
a program is kept to a minimum.

Figure 2-12 illustrates the memory stack manipulations ("Data Area")
during a sequence of procedure calls ("Code Area"). Sequence number
(1) shows the memory stack when procedure A starts executing. At (2),
a call to procedure C pushes C's parameters onto the stack (3), along
with the link back to A. At (4), C begins to execute, using the stack
for its local variables (5). Then a call to B (6, 7, 8) pushes B's
parameters onto the stack, along with the 1link back to C, and B uses
the stack for its local variables (9). Then, when B completes, it
executes a return (10) back to C, deallocating its local variables,
calling parameters, and return link from the stack. Procedure C, in
turn, runs to completion and executes a return (ll) back to a,
deallocating its unneeded information from the stack. Procedure A
continues its execution (12), with the stack back to the condition it
was in prior to the calls; no unneeded data from these manipulations
remains behind to waste memory.

2-26

How the Hardware Executes

Programs

W

CODE AREA

L3N

<=

»
< .
\\?.\ °
L]
L]
L)
°
*
ouFe
%

k4
3

,
e
AKX
2
%

)
%
™

[s)

C
Q
.%..’
A
2

d
DATA AREA

MEMORY STACK
WHEN A
STARTS
EXECUTING

MEMORY STACK
WHEN C
STARTS

EXECUTING MEMORY STACK

WHEN B
STARTS
EXECUTING
MEMORY STACK
AFTER RETURNING
FROM B

MEMORY STACK
AFTER RETURNING
FROM C

~
~
S
»och\(,ﬁs
\m‘aw%

S eg%
St
»\“«, S

el

[

\

, \
1005 es

35
~
o

)
®
”¥°

€02
o

%
7 %
%& v,

A

0;4\
2
\v3

S

B
oY o
»’\?00 - €5
P.g\he\'

Figure 2-12.

Memory Stack Operation

2-27

How the Hardware Executes Programs

Register Stack

Each instruction processing unit contains a Register Stack consisting
of eight separate registers. Each register stores one 1l6-bit word.
The Register Stack provides a highly efficient means of executing
arithmetic operations; operands are loaded onto the stack, arithmetic
operations are performed, the operands are deleted, and a result is
left on the stack. An add of two 16-bit numbers is illustrated in
Figure 2-13.

The use of the Register Stack is transparent to programmers using
Tandem-supplied languages. The language compilers automatically
generate the machine instructions for efficiently using the Register
Stack. The Transaction Application Language (TAL), however, does
provide the capability of using the Register Stack explicitly.

REGISTER STACK

MEMORY

4
»
o
x

T

Figure 2-13. Register Stack Operation

2-28

Data Formats

DATA FORMATS

The basic unit of information in the NonStop II system is the 16-bit
word. Individual access to and operations on single or multiple bits
(bit fields) in a word, 8-bit bytes, 1l6-bit words, 32-bit doublewords,
and 64-bit quadruplewords are possible. See Figure 2-14.

In this manual, a number surrounded by brackets is used to denote an
individual element (i.e., word, doubleword, byte, or quadrupleword) in
a block of elements:

block [element]

For example, to indicate the fourth element in a word block (beginning
with element 0), the following notation is used:

WORD [3]

Wwhen referencing a block of words (or any elements), the first element
is indicated by the element number that is the lowest numerically; the
last element has the highest element number. The following notation
is used to denote a block of elements:

block [first element:last element]

For example, to indicate the second through twentieth words in a
block, the following notation is used:

WORD [1:19]

Words

The 16-bit word defines the machine instruction length and logical
addressing range for the NonStop II system. The 16-bit word is the
basic addressable unit stored in memory. The first word in each
segment (i.e., code, data) of logical memory is addressed as WORD[O],
the last addressable location is WORD[65,535]. This is shown in
Figure 2-15.

The following instructions are provided for referencing words in
logical memory:

LOAD: Load word into Register Stack from data segment

STOR: Store word from Register Stack into data segment

LWP: Load Word into Register Stack from Program (code segment)

NSTO: Non-destructive Store word from Register Stack into data
segment

ADM: Add word from Register Stack to word in Memory (data
segment)

LDX: Load Index Register from data segment

2-29

Data PFormats

BASIC ADDRESSABLE UNIT IS A WORD

o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

HENEEEEEEEEEEEEN

A WORD CAN CONTAIN

TWO BYTES

0 7 8 15

HEENEEEENEEEEEEN

I T
BYTE O BYTE 1

TWO WORDS FORM A DOUBLEWORD

0 15

lIHJIﬂXLIIIIﬂ::lollllTUJlilLllw‘]

FOUR WORDS FORM A QUADRUPLEWORD (FOR PROCESSOR MODULES WITH DECIMAL ARITHMETIC OPTION)
0 0

(T O I IO

T T T T
worn WORD 1 WORD 2 WORD 3

0

TWO WORDS ARE NEEDED TO FORM A FLOATING-POINT DOUBLEWORD

15 0 7 8 9 10 11 12 13 14 15

(I T DT T Iy IO I I IIITIT]

| | |
SIGN FRACTION (22 BITS} EXPONENT
(9 BITS}

FOUR WORDS ARE NEEDED TO FORM AN EXTENDED FLOATING-POINT QUADRUPLEWORD

EXPONENT
SIGN FRACTION (54 BITS) . (9 BITS)

‘ l |
(TR T TR T T T AT [T

Figure 2-14. Data Formats

2-30

Data

Formats

WORD ADDRESS

[0}

[1]

[2]

(3]

[4]

[5]

(6]

(71

[8]

\/_/\/\/\/'\/\A/
W

[65,533]

[65,534]

[65,535]

<4— FIRST ELEMENT

ASCENDING ADDRESSES

<4——— LAST ELEMENT

Figure 2-15.

Word Addressing

Data Formats

Two instructions operate on blocks of words:

MOVW: Move Words from one memory location to another
COMW: Compare Words in one memory location with another

Bits

The individual bits in a word are numbered from zero (0) through
fifteen (15), from left to right:

111111
WORD: 0 1 23 456789012345
The following notation is used in this manual (and in the TAL
language) to describe bit fields:

WORD.<left bit:right bit>

For example, to indicate a field starting with bit four and extending
through bit 15, the following notation would be used:

WORD.<4:15>
Or to indicate just bit 0 (zero) the following is used:

WORD.<0>

Bytes

The 16-bit word has the capability to store two bytes. The most
significant byte in a word occupies WORD.<0:7> (left half); the least
significant byte occupies WORD.<8:15>. The 16-bit address provides
for element addressing of 65,536 bytes.

In the data segment, byte-addressable locations start at BYTE[O] and
extend through BYTE[65,535]. Two bytes are stored per word;
therefore the first 32,768 words of the data area (WORD[0:32,767])
can store 65,536 bytes. The upper half of the data segment,
WORD[32,768:65,535], is not byte-addressable without the use of
extended addressing.

In the code segment, byte addresses are computed by the hardware
relative to whether the current setting of the P (for Program counter)
Register is in the lower or the upper half of the code segment.
Therefore, the entire code segment (WORD[0:65,535]) is byte-
addressable, as explained in the description of the LBP instruction
in Section 3.

2-32

Data

Formats

BYTE ADDRESS

[i] 7 8 15
{ol 1 WORD (0]
BYTE
(2] {3} WORD [1]
[4] [5) WORD [2]
[61 {7] WORD [3]
[8] [9] WORD [4]
[10] {111 WORD 5]
{12} [13] WORD [6]
NI Nt U S i
\/V\/V\\/\/_/\T
[65,532] [65,533) WORD [32,766]
UPPER LIMIT OF [65,534] [65,535] WORD [32,767]
BYTE ADDRESSING ———»

BYTE ADDRESS TO WORD ADDRESS CONVERSION
0 15

| l I I l 1 | I l T l l J | I]‘] BYTE ADDRESS [0:66,5351.

\
\

ELTTTTTITTTTITTTT] woremomsiomonn

\
\\'—‘— BYTE: 0 = WORD. <0:7>, 1 = WORD. <815>

Figure 2-16. Byte Addressing

2-33

Data Formats

The IPU converts a byte address to a word address and bit field in
that word as shown in Figure 2-16. That is, bit 15 of the byte
address is extracted and used to specify left (0) or right (1) byte;
the remaining 15 bits are logically shifted right by one bit to form
the word address. 1In addressing a byte in the code segment, bit 0
of the word address is copied from bit 0 of the P Register.

The following instructions are provided for referencing bytes in
logical memory:

LDB: Load Byte into Register Stack from data segment
STB: Store Byte from Register Stack into data segment
LBP: Load Byte into Register Stack from Program (code segment)

Four instructions operate on blocks of bytes:

MOVB: Move Bytes from one memory location to another

COMB: Compare Bytes in one memory location with another

SBW: Scan a block of Bytes While a test character is encountered
SBU: Scan a block of Bytes Until a test character is encountered

Doublewords

Two 1l6-bit words can be accessed as a single 32-bit element. The
hardware provides element access to doublewords in the data area (the
software simulates doubleword access of elements in the code area).
Doubleword elements are addressed on word boundaries; therefore
doubleword addressing is permitted in all of the data area.

Two instructions are provided for referencing doublewords in logicail
memory:

LDD: Load Doubleword into Register Stack from data segment
STD: Store Doubleword from Register Stack into data segment

Quadruplewords

Four 16-bit words can be accessed as a single 64-bit element. The
hardware provides element access to quadruplewords in the data segment
(the software simulates quadrupleword access of elements in the code
segment). Quadrupleword elements are addressed on word boundaries;
therefore quadrupleword addressing is permitted in all of the data
segment.

Two instructions are provided for referencing quadruplewords in the
data segment:

QLD: Quadrupleword Load into Register Stack from data segment
QST: Quadrupleword Store from Register Stack into data segment

2-34

Data Formats

A DOUBLEWORD CONSISTS OF ANY TWO CONSECUTIVE MEMORY LOCATIONS

WORD [5]
DOUBLEWORD —_— e — —_— — -
WORD (6]
- - - — — = DOUBLE-

WORD

Figure 2-17. Doubleword Addressing

A QUADRUPLEWORD CONSISTS OF ANY FOUR CONSECUTIVE MEMORY LOCATIONS

WORD [10]

WORD [11]

QUADRUPLEWORD
WORD {12]

WORD [13]

Figure 2-18. Quadrupleword Addressing

2-35

Number Representation

NUMBER REPRESENTATION

The system hardware provides arithmetic on both signed and unsigned
numbers. Signed numbers are characterized by being able to represent
both positive and negative values; unsigned numbers represent only
positive values. Signed numbers are represented in 16 bits (a word),
32 bits (doubleword), or 64 bits (quadrupleword). Representation of
unsigned numbers is restricted to 8- and 1l6-bit quantities.

Positive values are represented in true binary notation. Negative
values are represented in two's-complement notation with the sign bit
of the most significant word set to one (i.e., WORD[0].<0>). The
two's complement of a number is obtained by inverting each bit
position in the number then adding a one. For example, in 16 bits,
the number 2 is represented:

0 000000O0O0COGCOOOOTILILO
and the number -2 is represented:
1111111111111110

The representable range of numbers is determined by the sizes of
operands (i.e., word, doubleword, and quadrupleword).

Single wWord

Single-word operands can represent signed numbers in the range of
-32,768 to +32,767.

and unsigned numbers in the range of
0 to +65,535.

Whether a word operand is treated as a signed or an unsigned value is
determined by the instruction used when a calculation is performed.
Signed arithmetic is indicated by the execution of "integer™"
instructions. The integer instructions are:

IADD: Integer Add

ISUB: 1Integer Subtract

IMPY: Integer Multiply

IDIV: 1Integer Divide

INEG: Integer Negate (two's complement)
ICMP: 1Integer Compare

ADDI: (integer) Add Immediate

CMPI: (integer) Compare Immediate

ADM: (integer) Add to Memory

2-36

Number Representation

Unsigned arithmetic is indicated by the execution of "logical"
instructions. The logical instructions are:

LADD: Logical Add

LSUB: Logical Subtract

ILMPY: Logical Multiply (returns doubleword product)
LDIV: Logical Divide (returns 2-word quotient/remainder)
INEG: Logical Negate (one's complement)

LCMP: Logical Compare

LADI: Logical Add Immediate

Doubleword
Doubleword operands can represent signed numbers in the range of
-2,147,483,648 to +2,147,483,647.

Ten instructions perform integer arithmetic on doubleword operands.
They are:

DADD: Doubleword Add

DSUB: Doubleword Subtract

DMPY: Doubleword Multiply

DDIV: Doubleword Divide

DNEG: Doubleword Negate (two's complement)
DCMP: Doubleword Compare

DTST: Doubleword Test

MOND: (load) Minus One in Doubleword form
ZERD: (load) Zero in Doubleword form
ONED: (load) One in Doubleword form

Byte
Byte operands represent unsigned values in the range of

0 to +255
This, of course, includes the ASCII character set. Byte operands
are treated as the right half of word operands (i.e., WORD.<8:15>)
when arithmetic is performed (the left half of the word is assumed to
be zero).

There is one instruction for testing the class (i.e., ASCII alpha,
ASCII numeric, and ASCII special) of a byte operand. It is:

BTST: Byte Test

2-37

Number Representation

Quadrupleword (Decimal Arithmetic Option)

Quadrupleword operands for decimal arithmetic can represent 19-digit
numbers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

Six instructions perform integer arithmetic on quadrupleword
operands: .

QADD: Quadrupleword Add
QSUB: Quadrupleword Subtract
*QMPY: Quadrupleword Multiply
*QDIV: Quadrupleword Divide
*QONEG: Quadrupleword Negate
*QCMP: Quadrupleword Compare

Three instructions are provided for scaling (i.e, normalizing) and
rounding quadrupleword operands:

QUP: Quadrupleword Scale Up
QDWN: Quadrupleword Scale Down
*QRND: Quadrupleword Round

Nine instructions are provided for converting operands between
quadrupleword and other data formats:

*CQI: Convert Quadrupleword to Singleword Integer

*CQL: Convert Quadrupleword to Singleword Logical

*CQD: Convert Quadrupleword to Doubleword

*CQA: Convert Quadrupleword to ASCII

*CIQ: Convert Singleword Integer to Quadrupleword

*CLQ: Convert Singleword Logical to Quadrupleword

*CDQ: Convert Doubleword to Quadrupleword

*CAQ: Convert ASCII to Quadrupleword

*CAQV: Convert ASCII to Quadrupleword with Initial Value

The asterisk indicates "optional instruction." Quadrupleword
instructions not marked with an asterisk are part of the basic
instruction set.

Floating-Point and Extended Floating-Point

The fraction of the floating-point numbers is always normalized, to be
greater than or equal to 1 and less than 2. The high-order integer
bit is therefore dropped and assumed to have the value of 1. For all
calculations the sign is moved and the bit inserted. The integer plus
22 fraction bits of a floating-point number are equivalent to 6.9
decimal digits; the 55 bits for an extended floating-point number is
equivalent to 16.5 decimal digits. If the value of the number to be
represented is 2zero, the sign is 0, the fraction is 0, and the
exponent is 0.

2-38

Number Representation

The fraction of the floating-point number is a binary number with the
binary point always between the assumed integer bit and the high-order
fraction bit. The exponent part of the number, bits 7 through 15 of
the low-order word (see Figure 2-14), indicates the power of 2
multiplied by 1 + the fraction. This field may contain values from O
to 511. 1In order to express numbers of both large and small absolute
magnitude, the exponent is expressed as an excess-256 value. That is,
256 is added to the actual exponent of the number before it is stored.
The exponent range is therefore actually -256 through +255.

The sign of the floating-point number is explicitly stated in the
high-order bit (i.e., signed magnitude representation). A 0 is
positive and a 1 is negative.

The absolute-value range of floating-point numbers is:

-256 =23 256
+/- 2 to +/- (1 - 2) * 2
-78 77
(approx. +/- 8.62 * 10) (approx. +/- 1.16 * 10)

For extended floating-point numbers, the range is the same; only the
precision is increased:

-256 -55 256
+/= 2 to +/= (L =2) * 2
-78 77
(approx. +/- 8.62 * 10) (approx. +/- 1.16 * 10)

Arithmetic

The result of integer arithmetic (IADD, ISUB, IMPY, DADD, DSUB, DMPY,
QADD, QSUB) must be representable within the number of bits comprising
the operand minus the sign bit (e.g., 15 bits for a word operand, 31
bits for a doubleword operand). 1If the result cannot be represented,
an arithmetic overflow condition occurs, and no part of the results on
the stack can be assumed valid. When an overflow occurs, the hardware
Overflow indicator sets and (if enabled) an interrupt to the operating
system Overflow interrupt handler occurs. An overflow condition also
occurs if a divide operation is attempted with a divisor of zero.

The results obtained from a logical add and subtract (LADD and LSUB)
are identical to that obtained from integer add and subtract except
that logical add and subtract do not set the Overflow indicator. The
16-bit result, the condition code setting, and the Carry indicator
setting are the same. Logical divide (LDIV), however, sets the
Overflow indicator if the quotient cannot be represented in 16 bits.

2-39

Number Representation

In addition to the Overflow indicator, two other hardware indicators

are subject to change as the result of an arithmetic operation. They
are:

® Condition Code (CC)--generally, indicates if the result of a
computation was a negative value, zero, or a positive value.
(The condition code can be tested by one of the branch-on-
condition-code instructions and program execution sequence altered
accordingly.)

® Carry--indicates that a carry out of the high-order bit position
occurred.

For floating-point and extended floating-point arithmetic, the
Overflow indicator is set if the exponent becomes either greater than
+255 (exponent overflow) or less than -256 (exponent underflow) in
trying to represent the normalized result of some operation. If the
divisor in a divide operation is zero, the Overflow indicator is also
set. If any conversion instruction causes a numeric overflow
("illegal conversion"), the Overflow indicator is set and the result
(including Condition Code) is undefined. If the result of some
operation has a zero fraction and nonzero exponent or sign, the value
is forced to zero.

Table 2-1 defines termination conditions for various floating-point
arithmetic errors. (For further explanation of the condition code CC,
refer to the "Environment Register" section later in this manual.)

Table 2-1. Floating-Point Error Terminations

Condition Overflow ccC Result
Exponent Overflow 1 00
Calculated result
Exponent Underflow 1 10 with error
truncated
Divide by Zero 1 01
Illegal Conversion 1 XX Undefined

2-40

Program Environment

PROGRAM ENVIRONMENT

A program executing as a process in a processor module consists of
instruction codes in a CODE SEGMENT in memory that manipulate variable
data in a separate DATA SEGMENT in memory. The IPU's eight-element
REGISTER STACK is used to perform arithmetic operations and memory
indexing. The instruction-to-instruction environment of a program is
maintained in the IPU's ENVIRONMENT REGISTER. Programs themselves are
separated into functional blocks of instructions called PROCEDURES.

These fundamental elements of the program environment are illustrated
in Figure 2-19 and are discussed under separate subheadings below.

Code Segment

Information in a code segment consists of instruction codes and
program constants. Although it is possible to address the code
segments (via extended addressing or the LBP, LWP, or LWUC
instruction), only read access is permitted; a write access attempt
results in an address trap. Therefore the code segments cannot be
modified during execution.

A given process may have two code segments: the User Code segment
(standard for every process), and the User Library Code segment
(optionally requested during compilation or at run time). External
procedure calls allow the process to execute in either segment.

A code segment consists of up to 65,536 16-bit words. Words in a code
segment are numbered consecutively from C[0] (code, element 0) through
c[65,535]. This is illustrated in Figure 2-20.

Two redgisters are associated with code segments. These are described
in the following paragraphs.

P REGISTER. The P (for program) Register is the program counter. It
contains the 16-bit C[0]-relative address of the current instruction
plus one. The contents of the P Register are incremented by one at
the beginning of instruction execution so that, nominally,
instructions are fetched (and executed) from ascending memory
locations. (See top diagram of Figure 2-21.)

When a program branch is taken, a procedure or subprocedure is called,
or an interrupt occurs, the C[0]-relative address of the next
instruction to be executed is placed in the P Register. (See bottom
diagram of Figure 2-21.)

2-41

Program Environment

[_P REGISTER_ | —»

DATA SEGMENT
CODE SEGMENT IN MEMORY
IN MEMORY (MEMORY STACK)

/__J___\ /__J_ﬁﬁ\

cfo] —»

G[0] —»

GLOBAL
DATA
INSTRUCTION
| REGISTER CODES AND
\ CONSTANTS

[~ T LocaL” |
DATA

’

)

DEFINITIONS:

ENV REGISTER \

STACK

S L REGISTER
— S REGISTER

EIGHT-ELEMENT [
REGISTER

T2
i

ENVREGISTER:ENVIRONMENTIO]1 E 2 l 314l5 I 6 I 7 [8] 9I10]11112]13[1

4

]

ENV.<4> LIBRARY MAP (LIB=1) —]
ENV.<5> PRIVILEGED
ENV.<6> DATA MAP (USER=0, SYS=1)

ENV.<7> CODE MAP (USER=0, SYS=1)

ENV.<S> TRAP ENABLE ¢ R

ENV.<8> CARRY =1

ENV.<10> OVERFLOW =1

N

ENV.<11> NEGATIVE OR NUMERIC CONDITION

CONDITION CODE { ENV.<12> ZERO OR ALPHABETIC CONDITION
RP — ENV.<13:15> REGISTER STACK POINTER

| REGISTER: CURRENT INSTRUCTION REGISTER
P REGISTER: PROGRAM COUNTER; ADDRESS OF CURRENT INSTRUCTION + 1 (RELATIVE TO C[0})
C[0}: FIRST ELEMENT IN THE CODE SEGMENT
G[0]: FIRST ELEMENT IN THE DATA SEGMENT
GLOBAL DATA: DATA AREA ACCESSIBLE FROM ANY POINT IN A PROGRAM
LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXECUTING PROCEDURE
SUB-LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXISTING SUBPROCEDURE
L REGISTER: LOCAL DATA POINTER: G[0] RELATIVE ADDRESS OF FIRST ELEMENT IN THE
LOCAL DATA AREA. ALSO INDICATES THE LOCATION IN THE MEMORY
STACK OF THE LINK (i.e., STACK MARKER) BACK TO THE CALLING PROCEDURE
S REGISTER: TOP OF STACK: G[0] RELATIVE ADDRESS OF THE LAST ACTIVE ELEMENT
IN THE MEMORY STACK
REGISTER STACK: EIGHT-ELEMENT REGISTER STACK WHERE ARITHMETIC OPERATIONS ARE
PERFORMED. THREE ELEMENTS CAN ALSO BE USED FOR INDEXING
RP: REGISTER STACK POINTER: INDICATES THE TOP ELEMENT IN THE REGISTER STACK

_/

2-42

Figure 2-19.

Elements of the Program Environment

Program Environment

clo} —

Cc{65,535] —

CODE
SEGMENT

Figure 2-20.

Code Segment Addressing Range

CODE
SEGMENT

clo]

C[0] RELATIVE
ADDRESS OF NEXT
INSTRUCTION TO

BE EXECUTED

|

—’I | REGISTER I

[PREGISTER] —

INITIALLY SET BY OPERATING
SYSTEM TO C[0} RELATIVE
ADDRESS OF FIRST INSTRUCTION
IN PROGRAM

INSTRUCTIONS ARE EXECUTED
IN ASCENDING ORDER UNLESS
A BRANCH INSTRUCTION IS
ENCOUNTERED

l

CURRENT INSTRUCTION
DECODED AND
EXECUTED BY HARDWARE

I REGISTER

P REGISTER
c(1015)

— BUN +5 |} tBRANCH

—® c1016)

+5 — — — —

¢

TTITT
Ll

J ! UNCONDITIONALLY
- — —

—crioz 7

s_\/"/—/

Figure 2-21.

P Register and I Register

Program Environment

I REGISTER. The I (for instruction) Register contains the machine
instruction currently being executed. When the current instruction is
completed, this 1l6-bit register is filled with the instruction in a
code segment pointed to by the current setting of the P Register.

The contents of the P Register are then incremented by one, as
described above.

ADDRESSING. Addresses for branching (and for constants) in a code
segment are calculated relative to the current setting of the P
Register. This is referred to as self-relative addressing.

Instructions that reference a code segment have an eight-bit field for
specifying a relative displacement from the current P Register
setting. The range of the displacement is therefore -128:+127 words.
An example, the BUN instruction, is shown in Figure 2-22.

The location that is addressed by the displacement is referred to as
the directly addressable location. This may be the location
referenced by the instruction (i.e., it may be the branch location or
it may contain the constant) or may itself contain a self-relative
address. If the latter, then the referenced location is a relative
displacement from the directly addressable location. Whether the
direct location is the one referenced by the instruction or contains a
self-relative address, is specified by the indirect bit, <i>, in the
instruction.

The address of the location in a code segment referenced by an
instruction is called "branch”addrs" (branch address). This is the
address placed in the P Register when a program branch is taken:

S TS -8 T =

o

:= branch”addrs;

I :=code [P];

("code" refers to a code segment.)

BUN (BRANCH UNCONDITIONALLY) INSTRUCTION FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t t t t
I 0 0 1 0 0 0 1 DISPLACEMENT

4
~+

i
T

_..
-+

Figure 2-22. Displacement Field for Code Segment Instructions

2-44

Program Environment

and used when fetching a program constant from memory:
A := code [branch®addrs 1;
(A is the top element of the Register Stack.)

The address calculated by adding the displacement to the current P
register setting is referred to as "dir “branch”addrs" (direct branch
address) :

dir"branch”address = P + <displacement>;

If the referenced location is within the range of the displacement
(i.e., P [-128:4+127]) then direct addressing is indicated and the
direct branch address is used as the branch address. If the
referenced location is beyond the range of the displacement, then
indirection is indicated and the referenced location (branch”addrs)
is a relative displacement from the direct branch address.

Direct addressing is specified by the <i> (indirection) bit, I.<0>, of
the instruction ‘equal to "0"; bits I.<8:15> are a two's~-complement
number (bit I.<8> is the sign bit) giving a positive or negative
displacement from the current P Register setting. Therefore

branch®addrs = dir”"branch”addrs;

Indirect addressing is specified by the <i> bit of the instruction
equal to "1l"; bits I.<8:15> are a positive or negative displacement
from the current P Register setting. Therefore

branch™address = dir”"branch”address + code [dir“branch”address];

Verbally, the C[0]-relative direct branch address is first calculated
(a displacement from the current P Register setting). Then the
contents of the direct location (containing a displacement from
itself) is added to the direct branch address. The result is the
cl[0]-relative branch address.

Examples of both direct and indirect addressing are given in Figure
2-23. The "I" in the LWP 9,1 instruction signifies indirect
addressing.

In addition to direct and indirect addressing, an offset value in a
hardware register can be added to the address of the direct or
indirect location before the final address is calculated. This
permits a code segment location to be referenced as an offset from a
base location (this is called indexing). Indexing in a code segment
is discussed in Section 3, "Instruction Set", under the LWP
instruction.

Program Environment

CODE

SEGMENT

W IED

115 —128 = -13

DIRECT / N
4 5 6 7 8 9 10 11 12 13 14 15

0 {
(o 7727707+ A TH [110 [0 [+ [1]

I
SIGN DISPLACEMENT

LWP —13 ¢ [607]

P REGISTER L

CODE
SEGMENT

NN

\

/. /] [3433]

L~

N

INDIRECT
p S
W/V/VAOIOIOIOIWOIOI‘/] _____ LWP 9, 1 ¢ [3727)
m T A]
SIGN DISPLACEMENT PREGISTER -

3728 ¢

r -------- r
L___3731 __J S -304 ¢ [3737]
+ Lﬁ/\-_\
r’--l-“‘l
348

Figure 2-23. Addressing in the Code Segment

2-46

Program Environment

Addressing of byte elements (with indexing) is also permitted in the
code segment, though restricted to only half of the segment (the same
half in which the current P Register setting is located). Byte
addressing is discussed in Section 3 under the LBP (load byte from
program) instruction.

Data Segment

DATA STORAGE AND ACCESS. The data segment contains a program's
temporary storage locations (i.e., variables). Information in this
segment consists of single-element items, multiple-element items
(arrays), and address pointers. Input/output transfers (which are
performed on behalf of application programs by the GUARDIAN File
System) are via arrays in a program's data segment.

Part of the data segment is used for dynamic allocation of storage
when procedures are invoked (see "Procedures"); this area is referred
to as the "memory stack."

The data segment consists of up to 65,536 16-bit words. Addresses in
the data segment start at G[0] (global data, word 0) and progress
consecutively through G[65,535]. See Figure 2-24. The "memory stack"
portion of the data segment is limited to the lower 32,768 words
(i.e., G[0:32,767]).

Data is accessed through use of the memory reference instructions.
Locations in the data segment are addressed either through the address
field in a memory reference instruction (this is called direct
addressing) or through an address pointer in memory (this is called
indirect addressing). Additionally, the memory reference instructions
permit an offset value (in a hardware register) to be added to a
direct or indirect address before a final address is calculated. This
permits one data element to be referenced as an offset from another
data element (this is called indexing). The memory reference
instructions are:

LDX: Load Index register from data segment

NSTO: Non-destructive Store from Register Stack into data segment
LOAD: Load word into Register Stack from data segment

STOR: Store word from Register Stack into data segment

LDB: Load Byte into Register Stack from data segment

STB: Store Byte from Register Stack into data segment

LDD: Load Doubleword into Register Stack from data segment

STD: Store Doubleword from Register Stack into data segment

ADM: Add to Memory

2-47

Program Environment

" SEGMENT

G[65,535]

G [.0] T
-
|

MEMORY
STACK
AREA

DATA l

G[32,767]

Figure 2-24.

Data Segment Addressing Range

G(o]

L REGISTER e

INITIALLY SET BY THE
OPERATING SYSTEM TO
AN ADDRESS JUST ABOVE
THE GLOBAL DATA

p— — \
GLOBAL
DATA
LOCAL
DATA

| S REGISTER] —»

(TOP-OF-STACK)

LA/

DATA ACCESSIBLE

— BY ANY INSTRUCTION

IN THE CODE SEGMENT

DATA KNOWN ONLY TO

— THE CURRENTLY EXECUTING

PROCEDURE

2-48

Figure 2-25.

L Register and S Register

Program Environment

The data segment is logically separated into three areas: global,
local, and sublocal. Each logical area has an addressing base so that
relative addressing can be performed. The logical areas are described
in the following paragraphs and illustrated in Figure 2-25.

® Global Area

Data within the global area is addressable by any instruction in
the program. The addressing base of the global area is defined
as GI[O].

The beginning of the global area coincides with the beginning of
the data segment. Thus, the G[0]-relative address of an item is
its logical address within the data segment. GI[0] is logical
address 0.

e Local Area

Data within the local area is known only to the currently executing
procedure. The local area is defined by the 16-bit I Register.

The L (for local) Register contains the G[0O]-relative address of
the word at the beginning of this area. The addressing base of the
local area is defined as L[O0].

When a procedure is called, a new local area is defined. This
occurs because the address contained in the L Register advances to
point above the current local area (the caller's local area is then
undefined). Conversely, when a procedure exits, the exiting
procedure's local area is deleted (and the preceding local area
redefined) because the address in the L Register recedes back to
its previous setting.

® Top-of-Stack (or Sublocal) Area

Data in the top-of-stack area is known only to the currently
executing procedure. The top-of-stack location is defined by the
16-bit S Register. The S (for stack) Register contains the G[0]-
relative address of the last word currently defined in the memory
stack (this is not to be confused with the last word in the total
area set aside for the memory stack). The addressing base of the
top-of-stack area is defined as S[0].

During execution of a procedure, the address in the S Register
advances as elements are moved from the Register Stack to the top
of the memory stack (PUSHed) and recedes as elements are moved from
the top of the memory stack to the Register Stack (POPed). The
address also advances when procedures and subprocedures are invoked
and recedes when they are exited.

ADDRESSING. Data elements in the data segment are fetched and stored
by the hardware in terms of word addresses, regardless of the type of
operand involved. (The instruction set microcode also provides for

2-49

Program Environment

the addressing of bytes within a word, as described in the sections on
"Direct Addressing" and "Indirect Addressing" that follow.) For
purposes of explanation, "data" refers to a data segment and "address"
refers to the G[0]-relative address of a word referenced by an
instruction. Together, "data" and "address" are used to indicate
access to a location in a data segment referenced by an instruction:

A := data [address];
is a LOAD instruction (A is the top of the Register Stack).

All addressing in the data segment is relative to one of the three
addressing bases: G[0], L[0], or S[0]. 1Instructions that reference
memory data locations contain a 9-bit address field for specifying one
of the three addressing bases and a relative displacement from that
base. Four addressing modes are provided for addressing relative to
these bases. The address indicated by the address field in a memory
reference instruction is referred to as the direct”address. The
addressing modes are: G-relative, L-plus-relative, L-minus-relative,
and S-minus-relative. These are described in the following
paragraphs. Figure 2-26 shows an example of a memory reference
instruction and defines the bit patterns for the four addressing
modes. Figure 2-27 illustrates each of the addressing modes.

LOAD INSTRUCTION FORMAT:

0 1 2 3 4 5 6 / 8 9 10 11 12 i3 i4 i5
——t .

I 1 0 0 0 X MODE AND DISPLACEMENT

-+

——
-t

ADDRESSING MODES:

G-RELATIVE 0 0:255
L-PLUS-RELATIVE 1 0 0:127
SG-RELATIVE 1 1 0 0:63
L-MINUS-RELATIVE 1 1 1 0 0:31
S-MINUS-RELATIVE 1 1 1 1 0:31
MODE DISPLACEMENT

Figure 2-26. Mode and Displacement Field for Memory Reference
Instructions

2-50

Program Environment

DATA
SEGMENT
_ 7 G (0] !BASE
MEMORY REFERENCE :
INSTRUCTION IN CODE SEGMENT: :
7 8 9 10 11 12 13 14 15 :
/ T T N G GLOBAL .
Y G-REL I — — (256 WORDS) DATA :
45/ / 10 L-PLUS-REL .
3 14140 SG-REL :
101010 L-MINUS-REL |——|— .
- 1
RERERE S-MINUS-REL G [258]
T
ADDRESSING MODE AND
DISPLACEMENT FROM BASE
o q 31
| Lwminus PARAMETERS :
™ | (32 WORDS) - — — — 7 :
X - __ _ 7 Lol BASE
LOCAL .
L-PLUS DATA .
"] (128 WORDS) :
o L [127]
AN
/\/\N
/ - TopoF - S[31]
S-MINUS STACK :
I S
(32 WORDS) AREA .
S [0] ! BASE

Figure 2-27. Memory Reference Instruction Addressing Modes

G-Relative Mode

This mode addresses the first 256 locations in the global area
(G[0:255]). The G-relative mode is indicated by bit I.<7> of a
memory reference instruction equal to 0; bits I.<8:15> specify a
positive word displacement from G[0]. That is:

direct”address := I.<8:15>

2-51

Program Environment

® L-Plus-Relative Mode

This mode addresses the first 128 words of a procedure's local data
area (L[0:127]). The L-plus-relative mode is indicated by bits
I.<7:8> of a memory reference instruction equal to 10 (binary);
bits I.<9:15> specify a positive word displacement from the current
L[0}]. The hardware calculates a G[0O]-relative address by adding
I.<9:15> to the contents of the L Register:

direct”address := L + I.<9:15>
® L-Minus-Relative Mode

This mode addresses the 32 words just below and including the word
pointed to by the current L Register setting, L[-31:0] (this area
is used for procedure parameter passing). The L-minus-relative
addressing mode is indicated by bits I1.<7:10> of the memory
reference instruction equal to 1110 (binary); bits I.<11:15> are a
negative word displacement from the current L[0]. The hardware
calculates a G[0O]-relative address by subtracting I.<11:15> from
the contents of the L Register:

direct”address := L - I.<11l:15>
® S-Minus-Relative Mode

This mode addresses the 32 words just below, and including, the
current top-of-stack word (S[-31:0]). (This area is used for a
subprocedure's sublocal data and for temporary storage of the
Register Stack contents by the PUSH and POP instructions). The
S-minus-relative mode is indicated by bits I.<7:10> equal to 1111
(binary); bits I.<11:15> are a negative word displacement from the
current S[0]. The hardware calculates a G[0O]-relative address by
subtracting I.<11:15> from the contents of the S Register:

direct”address := S - I.<11l:15>

An additional addressing mode is provided that accesses the operating
system's data segment from the user environment--the SG-Relative mode
(see "Environment Register" for an explanation of user environment).
This mode addresses the first 64 locations of the operating system's
data segment (SG[0:63]) and is usable only by procedures executing in
privileged mode (e.g., the operating system). The SG-relative
addressing mode is indicated by bits I.<7:9> of a memory reference
instruction equal to 110 (binary). Bits I.<10:15> are a positive word
displacement from SG[0]. (See "Calling External Procedures" for an
explanation of SG-relative addressing.)

2-52

Program Environment

Direct Addressing. If the <i> (indirection) bit, I.<0>, of a memory
reference instruction is a "O", then direct addressing is specified.
The ranges of directly addressable locations in the data segment are:

G[0:255] 256 words G-Relative Mode
L[0:127] 128 words L-Plus—-Relative Mode
L[-31:0] 32 words L-Minus-Relative Mode
s[-31:0] 32 words S-Minus-Relative Mode

With direct addressing, the address of an operand referenced by an
instruction, relative to one of the addressing bases, is specified in
the address field of the memory reference instruction. Therefore,

address := direct”address

and only one memory reference is needed to access the referenced
memory location. Figure 2-28 gives an example of direct addressing.

If a byte operand is referenced, it is in the left half of the
referenced location:

byte := data [address 1.<0:7>

If doubleword operand is referenced, it consists of two words starting
at the referenced location:

doubleword := data [address:address + 1] ! two words.

Quadruplewords cannot be accessed as such by any of these modes. A
quadrupleword must be accessed as some combination of smaller units,
such as two doublewords or four words.

Indirect Addressing. If the <i> (indirection) bit, I.<0>, of a memory
reference instruction is a "1", then indirect addressing is specified.
The range of indirect addressing is G[0:65,535] (i.e., any location in
the data segment).

With indirect addressing, the address of the referenced location,
relative to G[0], is contained in a location that can be addressed
directly (the contents of the direct location are referred to as an
address pointer). Two memory references are needed to access the
referenced location; the first to fetch the address,

address := data [direct”address];

the second to access the operand. Figure 2-29 gives an example.

2-53

Program Environment

9 10 11 12 13 14 15

RN Lo o Lo Lo [7]

DIRECT Y
[

G-RELATIVE DISPLACEMENT
ADDRESSING (% 13)
MODE

G [0] —

-+ G [11] —»

TTITT T T T T

-
A}

ARRARRARANNNNY

b«/”\¢\v

Figure 2-28. Direct Addressing

in the Data Segment

0 7 8 g9 10 11 12 13 14

N

0 G-REL

(S~
N

7,

2%

L-PLUS-REL
o'

N

AS\ A
NIRRT

141 0 SG-REL

\

7
° / 7 1 1 1 0 L-MINUS-REL

o
A
\

1 //%/ 1 1 1 1 S-MINUS-REL

—

IF BIT ZERO {I. < 0 >) OF THE
INSTRUCTION IS A 1", THE
CONTENTS OF THE DIRECTLY
ADDRESSED WORD ARE USED
AS A G{0] RELATIVE ADDRESS
OF ANOTHER WORD IN THE
DATA SEGMENT

20--0mMD~-02 -

8 9 12 13 14

15

Glo] —»

@Wﬂholol?lzl‘lo“bj — G[11] —»

INDIRECT \Y T

G-RELATIVE DISPLACEMENT
ADDRESSING
MODE

G[1037] —»

TTTTTTTTTT

O N B O |

1037

2-54

Figure 2-29. 1Indirect Addressing in the Data Segment

Program Environment

If a byte operand is accessed, the address pointer contains a G[0]-
relative byte address. Bits <0:14> of the address pointer are the
word address of the byte operand, bit <15> of the address pointer
indicates whether the referenced byte is in the left-hand part of the
word, <0:7> or the right-hand part, <8:15>:

byteaddress := data [direct”address];
address := byteaddress.<0:14>;
and the referenced byte is

byte := if byteaddress.<15> then
data [address]1.<8:15> ! right byte.
else
data [address 1.<0:7>; | left byte.

An example is shown in Figure 2-30.

Note that, because a byte address is effectively divided by two (to
provide a word address), and the maximum byte address is 65,535,
addressing of bytes is limited to the lower 32,768 words of a data
segment (the memory stack area).

If a doubleword operand is accessed, the address pointer contains a
G[0]-relative word address:

address := data [direct”address];
and the referenced doubleword is

doubleword := data [address:address + 1]

Indexing. Indexing is used to reference memory locations relative to
a data element in memory. A typical use is when an element in an
array is accessed.

Generally, indexing is done as follows. An initial address is first
calculated as described previously (any addressing mode as well as
direct and indirect addressing is permitted). This initial address is
then used as a base address for indexing. The indexing value,
contained in an index register (referred to as "X"), is added to the
initial address to provide the address of the referenced operand.

This is shown in the upper part of Figure 2-31.

Any one of three registers in the Register Stack (R[5:7]) can be used
as index registers. The register to be used for indexing is specified
in the <x> (index) field, I.<5:6>, that is part of all memory
reference instructions. (Note the instruction format in the lower
part of Figure 2-31l.) The index field corresponds to Register Stack
elements as follows: -

Program Environment

i clo]
INDIRECT, NO INDEX B

L
A% ool o] e]oelololola]1]0] > 12345 G[2]

4 /

T

INDEX G-REL OFFSET

REG ADDRESSING L ———

(NONE) MODE

12345 - 2 = 6172,r = 1

V] aleir2]
I

1 = RIGHT HALF

Figure 2-30. 1Indirect Byte Addressing in the Data Segment

DIRECT, INDEXED

77772727
— | DIRECT ADDRESSj + I INDEX VALUE —l—PEREFERENCED CELLa

INDIRECT, INDEXED

777
—» | DIRECT ADDRESSj —> | INDIRECT ADDRES;I + I INDEX VALUE j — | REFERENCED CELILH
(hlld.

Lokl

INSTRUCTION FORMAT

8 9 10 11 12 13 14 15

CRYATTIITITI I]

INDIR—
ECTION \—-I—/\
INDEX ADDRESSING MODE
REGISTER AND

OFFSET FROM BASE
0=NO INDEXING
1=R5
2=R6
3=R7

Figure 2-31. 1Indexing

Program Environment

I.<5:6> VALUE INDEX REGISTER

0 X = no indexing
1 X = RI[5]
2 X = R[6]
3 X = R[7]

An index register can contain values from -32,768 through +32,767 to
provide direct word and doubleword addressing of any location in the
data area (all addressing is modulo 65,535). The value in an index
register is always treated as an element indexing value. That is, if
a byte instruction is being executed, the contents of an index
register are treated as a byte offset; if a doubleword instruction is
being executed, the contents are treated as a doubleword offset.
Specifically,
® For direct, indexed addressing of word operands,
address := direct”address + X
the contents of the index register, X, are added to the
direct address; and the referenced element (referred to
as "wordx") is
wordx := data [address]
® For indirect, indexed addressing of word operands,
address := data [direct"address] + X
wordx := data [address]
@ For direct, indexed addressing of byte operands,
byteaddress := 2 * direct”address + X
The direct”address (a word address) is multiplied by two to obtain
a byte address. The indexing value (a byte offset) is added to
that. The G[0]-relative address of the referenced byte is
converted to a word address as follows:
address := byteaddress.<0:14>;
And the referenced byte (referred to as "bytex") is
bytex := if byteaddress.<15> then
data [address]1.<8:15> | right byte.

else
data [address]1.<0:7> | left byte.

2-57

Program Environment

® For indirect, indexed addressing of byte operands,
byteaddress := data [direct”address] + X

The address pointer indicated by "data [direct”address 1" contains
a byte address. X, which contains a byte offset, is added to the
byte address. The "address" and "bytex" are then determined as
described above.

@ For direct, indexed doubleword operands,
address := direct”address + 2 * X

That is, the indexing value (a doubleword element index) is
multiplied by two to provide a word index. This value is added to
the initial address (also a word address) to generate a G[0]-
relative word address, and the element referenced (referred to

as "dwordx") is

dwordx := data [address : address + 1] ! two words.
® For indirect, indexed doubleword operands,
address := data [direct”address] + 2 * X

The address pointer indicated by "data [direct”address]" contains
a word address. X, which contains a doubleword offset, is
multiplied by two (to generate a word offset) and added to the
initial address. The "dwordx" is the same as described above.
Figure 2-32 shows examples of word and byte indexing.
Three instructions deal with loading and modifying index register
contents. They are:

LDX: Load an Index register from data segment
LDXI: Load an Index register with Immediate operand
ADXI: Add to an Index register the Immediate operand

An additional instruction is used for branching on the contents of an
index register. It is:

BOX: Branch on Index register less than A (top of register
stack) or increment index register

Program Environment

— —
WORD:
DIRECT, INDEXED Gls)
B] ———
DIRECT
[
INDEX OFFSET
REG
G-RELATIVE REGISTER
ADDRESSING STACK
MODE /\‘\/\/\
5 1
+ — G[17]
12
— R(7] 12 ——}
Glo]
.
INDIRECT, INDEXED
B27Z5n ololololllolﬂol\
INDIRECT N ,Y 332
W\
INDEX l OFFSET o~
REG
G-RELATIVE REGISTER
ADDRESSING STACK
MooE A~
1234
7
R[6] 7 —_— >+
L—' Gl12411
BYTE:
INDIRECT, INDEXED o i Glo)
|1E%1111010 010]0]010111(] D 12345 Gl(2]
INDIRECT 12345
T
INDEX OFFSET Y L\N
REG -7
G-RELATIVE REGISTER 12338 \/_/*
ADDRESSING STACK
MODE TN T
12338 - 2 = 6169,
R=0 77
> "7/ & |cisiesl
> R(7] —7 0= LEFT HALF —
5 4
3 2
1 0 G[6172]
L/__/-v

Figure 2-32. Examples of Indexing

Program Environment

Register Stack

The Register Stack is where arithmetic computations are performed and,
except for the Compare Words and Compare Bytes instructions, where
comparisons are made. The Register Stack consists of eight 16-bit
registers, designated R[0] (Register Stack, element 0) through R[7];
see Figure 2-33. Three elements of the Register Stack, R[5:7], also
double as index registers (see "Indexing").

A typical operation to add two numbers in the Register Stack is as
follows: the operands are first loaded into the Register Stack using
LOAD instructions, an IADD (integer add) instruction is then executed
performing the desired arithmetic, the result then stored back into
memory using a STOR instruction. Grouped together to form a program,
the preceding operation would look 1like this:

LOAD G + 002 ! load data element G[2] onto Register Stack

LOAD G + 003 ! load data element G[3] onto Register Stack

IADD ! integer add

STOR G + 004 ! store the result from the Register Stack into G[4]

The condition of the register stack for each of these instructions is
shown in Figure 2-34.

Usually, elements in the Register Stack are addressed implicitly.
That is, an instruction operates on the top element (or elements)
without specifying the actual register(s) involved. The current top
element of the Register Stack is defined by the Register Stack
Pointer, RP. RP, which is a three-bit field in the Environment
Register (next described), contains the register number, 0:7, of the
top element. The RP setting is incremented when operands are loaded
into the Register Stack:

RP := RP + <size of element> ;
and decremented when arithmetic is performed or results are stored:
RP := RP - <size of element> ;
The empty state of the Register Stack is defined as RP = 7. The full
state is also RP = 7. There is no protection against rolling RP over

from 7 to O.

The operation of the Register Pointer for the above program example is
shown in Figure 2-35.

The elements in the Register Stack are named as to their location
relative to the current top element. The top element is designated

Program Environment

R[0]

R[7]

REGISTER 7
STACK

Figure 2-33.

Register Stack

G[o]
G[1]
G[2]
G{3]
Gl4]

DATA
AREA

11

REGISTER
STACK

N ey

LOAD G+002

LOAD G+003

IADD

STOR G+004

Figure 2-34.

Example of Register Stack Operation

2-61

Program Environment

RP
REGISTER
EMPTY STATE H_/
_R17) <« EMPTY J
RP
VA8 208 0 0 0 | | e) resen
LOAD G+002 5 /Y —R(0] ¢T0P J
RP
ENV
REGISTER
LOAD G+003 - 2) TP)
RP
N /
1ADD 1 ~R[0] ToP J
3 —R[1] UNDEFINED
ﬁT_\
VA 30 0 A 8000700 + | 0] | redisre
STOR G*004 73 —R(0] UNDEFINED _l,_/
6 —R[1] UNDEFINED
A7) < EMPTY J

Figure 2-35.

2-62

Action of the Register Pointer

Program Environment

"A", the second from the top "B", and so on through "H":

RP ! top of Register Stack
RP [-1]
RP [-2]
RP [-3]
RP [-4]
RP [-5]
RP [-6]
RP [-7]

| A T | O | A | B

nTQaHMEHOO WP

Examples of register naming are shown in Figure 2-36.

Environment Register

The 1l6-bit ENV (for Environment) Register maintains the IPU state of
the currently executing process. The individual bits and bit fields
of the ENV Register are continually referenced and updated by the IPU
hardware and firmware. The ENV Register contents are saved (along
with the contents of the P and L Registers) by the firmware as part of
the executing state of a process when a procedure is invoked or when
an interrupt occurs. The firmware restores the ENV Register to its
previous state when the procedure or interrupt finishes.

The format of the ENV Register is shown in Figure 2-37. The following
paragraphs describe the meanings of the bits in this register. (The
four high-order bits are reserved for use as flags by the microcode.)

LIBRARY SPACE BIT. The LS bit (ENV.<4>) works with the CS bit (7) to
define the current code segment. When this bit is a "1", one of the
alternate (or "library") code segments is made current, rather than
one of the standard segments--system code or user code, as selected by
the CS bit. 1In the case of "system" selection by CS, the System Code
Extension is selected as the library segment; in the case of "user"
selection by CS, the user's Library Code segment is selected.

PRIVILEGED MODE BIT. The PRIV bit (ENV.<5>), when a "1", means that
the program is currently executing in privileged mode and is permitted
to perform privileged operations. Privileged operations are
characterized by having the potential to adversely affect the
operating system if misused. Some examples of privileged operations
are: sending data over an interprocessor bus (SEND), initiating
input/output operations (EIO), calling privileged procedures, and
accessing system tables. Normally, only the operating system executes
in privileged mode; privileged operations are performed on behalf of
application programs by the operating system.

Program Environment

= L[_/
C
B
A77777 Rzl - J
H
£ R
: /—L\
G
F
E
D
c J
B

77770 Rle]
H

16-BIT OPERANDS

N~

B QOPERAND 1 (B)
TOP —9 A OPERAND 2 (A)
L~
32-BIT OPERANDS
R W

2 >— OPERAND 1 (DC)

8
TOP —B V7777 2777, >—0PERANDZ(BA)

64-BIT OPERANDS

]
g } OPERAND 1 (HE)

D
; j— OPERAND 2 (DA)
A

TOP —

2-64

Figure 2-36.

Naming Registers in the Register Stack

Program Environment

Nonprivileged programs can perform privileged operations only
indirectly, by calling procedures designated "callable". (Callable
procedures execute in privileged mode, but can be called by
nonprivileged procedures.) When a nonprivileged procedure calls a
callable procedure, its nonprivileged state is restored on return.

Instructions designated privileged can be executed only if the PRIV
bit in the ENV Register is a "1". 1If a nonprivileged program (i.e.,
PRIV = 0) attempts to execute a privileged instruction or call a
privileged procedure, the firmware transfers control to the operating
system Instruction Failure Trap Handler.

LS |PRIVIDS|CS| T KIV]N z RP

ENV.<4> LS (LIBRARY SPACE): 1: LS I }

ENV.<5> PRIV: 0 = NON-PRIVILEGED, 1 - PRIVILEGED

ENV.<6> DS (DATASPACE): 0= USER,1 SYSTEM

ENV.<7> CS (CODE SPACE): 0- USER,1 - SYSTEM

ENV.<8> T (TRAP ENABLE): 0= DISABLE,1 ENABLE

ENV.<9> K (CARRY BIT)

ENV.<10> V (OVERFLOW): 0 - NO OVERFLOW,1 OVERFLOW

ENV.<11:12> CC(CONDITION CODE): 10 - CCL (LESS THAN) \
01 - CCE (EQUAL)
00 CCG (GREATER THAN)

ENV.<13:15> RP (REGISTER STACK POINTER)

Figure 2-37. Environment Register

2-65

Program Environment

DATA SPACE BIT. The DS bit (ENV.<6>) defines the "current" data
segment. This specifies which data area is to be accessed when a data
reference is made. DS, when "0", specifies the user data segment; "1"
specifies the system data segment. (Programs executing in privileged
mode can make explicit system data references regardless of the state
of the DS bit through use of the SG-relative addressing mode.)

CODE SPACE BIT. The CS bit (ENV.<7>), together with the LS bit
(ENV.<4>), defines the "current" code segment. This specifies which
code segment is to be accessed when an instruction or code area
constant is fetched. €S, when "0", specifies the User Code segment
(or user's Library Code Segment if LS is "1"); "1" gpecifies the
System Code segment (or System Code Extension if LS is"1").

TRAP ENABLE BIT. The T bit (ENV.<8>) specifies whether or not control
is to be transferred to the operating system if an arithmetic overflow
occurs or a divide with a divisor of zero is attempted. If T is a "1"
and an arithmetic overflow occurs (V, ENV.<10>, = 1), control is
transferred to the operating system Arithmetic Overflow Interrupt
Handler (see the GUARDIAN Operating System Programming Manual for
possible recovery procedures). If T is a "0", control remains with
the program having the overflow condition.

Generally, the T bit is under control of the operating system.
However, application programs can set T to "0" by means of the SETE
instruction if it is desired to handle arithmetic overflow conditions
locally.

CARRY BIT. The K bit (ENV.<9>), when "1", indicates that a carry out
of the high-order bit position occurred when executing an arithmetic
instruction on a 16-, 32-, or 64-bit operand. The state of the K bit
reflects the last arithmetic type instruction executed. The state of
the K bit is also altered as the result of executing a scan
instruction (SBW or SBU).

Two instructions test the state of the carry bit. They are:

BIC: Branch if carry
BNOC: Branch if no carry

OVERFLOW BIT. The V bit (ENV.<10>), if a "1", indicates that an
overflow condition occurred or a divide (IDIV) with a divisor of zero
was attempted. Overflow is generally associated with arithmetic
operations on 16-, 32-, and 64-bit operands. Overflow also occurs in
a LDIV instruction if the guotient cannot be represented in 16 bits,
or in floating-point arithmetic if the exponent is too large or too

2-66

Program Environment

small (see "Number Representation” earlier in this section).

The state of the V bit is tested by the BNOV (Branch if no overflow)
instruction.

CONDITION CODE BITS. This two-bit field (ENV.<1l:12>) forms the
Condition Code. The Condition Code generally reflects the outcome of
a computation, comparison, bus transfer, or input/output operation.
(The Condition Code is also set by the GUARDIAN File System to reflect
the outcome of File System calls.)
The two bits that form the Condition Code are designated:

N = negative or numeric, ENV.<1ll>, and

Z = zero or alphabetic, ENV.<12>.

The Condition Code has three states. They are:

CCL = less than, ENV.<11:12> = 10 (N.= 1, Z = 0)
CCE = equal to, ENV.<11l:12> = 01 (N =0, Z2 = 1)
CCG = greater than, ENV.<11l:12> .= 00 (N = 0, 2 = 0)

The state of the Condition Code is tested by the following branch
instructions:

BLSS: Branch if CCL BLEQ: Branch if CCL or CCE
BEQL: Branch if CCE BLEG: Branch if CCL or CCG
BGTR: Branch if CCG BGEQ: Branch if CCE of CCG

The Condition Code is set explicitly by the following instructions:

CCL: Set CCL
CCE: Set CCE
CCG: Set CCG

The following paragraphs define the manner of setting the Condition
Code in various cases.

Following a Computation. 1In this case, a hardware "cc (xX)" operation
sets the Condition Code bits as follows:

cc (x):
N := if x < then 1 else 0; ! negative
7 = X = 1

if 0
if 0 then 1 else 0; zero

X is the operand.

2-67

Program Environment

Therefore, for a computation,

CCL: operand < 0
CCE: operand = 0
CCG: operand > 0

Following a computation, the Condition Code reflects the resultant
value in a data area location, the top of the Register Stack, or

in an index register. The location reflected by the Condition Code
depends on the last instruction executed (see Section 3 for
particulars). For example, a simple program to add two numbers and
then store the result affects the Condition Code as follows:

Data in Global Area
G [2] 5
G [3] -5

LOAD G + 002
sets the Condition Code to CCG (5 on the top of the register
stack)

LOAD G + 003
sets the Condition Code to CCL (-5 on the top of the register
stack)

IADD
sets the Condition Code to CCE (0 on the top of the register
stack)

STOR G + 004
does not change the Condition Code

For a Comparison. In this case, a hardware "cc (x:y)" operation
(for signed operands) or a "cc (x':'y)" operation (for unsigned
operands) sets the Condition Code bits as follows:

for a signed comparison, for an unsigned comparison,
CCL: X < y CCL: X 1ot y
CCE: x = vy CCE: X = vy
CCG: x > vy CCG: x '>' y

In the table above, "operandl" refers to the first element loaded
onto the Register Stack (i.e., the second element from the top of the
stack), and "operand2" refers to the top element in the Register
Stack. When two arrays are compared by a COMW or COMB instruction,
"operandl" refers to the element in the destination array, and
"operand2" refers to the element in the source array. The single
quote marks surrounding an operator symbol signify a logical rather
than arithmetic operation; thus ':' and '<' are logical comparison
operations.

2-68

Program Environment

For a Byte Test. 1In this case, a hardware "ccb (X)" operation sets
the Condition Code bits as follows:

ccbh (x):
N := if "0" <= x <= "9" then 1 ! numeric.
else 0 ; ! not numeric.
Z := if "All <= X <= llZII
or
"a" <= x <= "z" then 1 ! alpha.
else 0 ; ! not alpha.

Therefore, for a byte test,

CCL: ASCII numeric
CCE: ASCII alpha
CCG: ASCII special

For byte test, the Condition Code is set according to bits <8:15> of
the operand on the top of the Register Stack when a BTST (Byte Test)
or any "load byte" instruction (LDB, LBP, LBA, LBAS, LBX, LBXX) is
executed. A Condition Code of CCL indicates that an ASCII numerical
character (i.e., "0, 1, ..., 9") is on the top of the register stack.
CCE indicates a lowercase or uppercase ASCII alphabetical character
(i.e., "a, b, «ee, 2" or "A, B, ..., Z"), CCG indicates an ASCII
special character (i.e., not numerical and not alphabetical).

For IPB Communication. For the Condition Code setting result from
interprocessor bus communication, see the interprocessor bus
description elsewhere in this section and see the description of the
SEND instruction in Section 3.

For input/output, see the input/output channel description in this
section and the EIO, II0, and HIIO instructions in Section 3.

REGISTER STACK POINTER BITS. This three-bit field (ENV.<13:15>)
defines the current top element of the Register Stack. The value of
RP is implicitly changed by instructions that operate on values on the
top of the Register Stack. RP is incremented as instructions are
executed to load operands into the Register Stack, decremented when
computations are performed or results stored.

The STRP instruction is used to explicitly set the RP value.

2-69

Program Environment

ENV REGISTER INITIAL SETTINGS. The ENV Register is given the
following setting as a result of a cold load:

%3447

This setting specifies: privileged mode, system data, system code,
traps disabled, no carry, overflow, CCG, and RP = 7.

The ENV Register is given the following setting as a result of an
interrupt:

%3447

This setting specifies: privileged mode, system data, system code,
traps disabled, no carry, overflow, CCG, and RP = 7.

NOTE

The overflow bit is set in the initial ENV on a NonStop II
processor to distinguish it from a NonStop processor, whose
initial ENV setting is %3407.

SETE INSTRUCTION. The SETE instruction is used to alter the ENV
Register contents. ENV.<8:15> can be set to any value desired; the
bits of ENV.<0:7> are either cleared or left unchanged. This prevents
nonprivileged processes from becoming privileged and/or accessing
system data. A similar mechanism is used in the EXIT instruction to
restore the ENV Register contents when a procedure finishes. The
programmer should take care when clearing ENV.<0:7> cn NcnStep II
systems, since it is possible to inadvertently clear the Library Space
(LS) bit, ENV.<4>.

Procedures and the Memory Stack

A procedure is a functional block of instructions that, when called
into execution, performs a specific operation. A procedure can
perform an operation as simple as adding two numbers or as complex as
locating an entry in a data base. A program typically consists of
many procedures.

Several characteristics of procedures are:

® A procedure can be called into execution (invoked) from any point
in a program.

® Procedures are assigned a "callability" attribute. The attribute
specifies whether or not the caller must be executing in privileged
mode and whether or not the called procedure executes in
privileged mode.

2-70

Program Environment

® The caller need not be concerned with its environment or the
environment of the procedure it called, because:

- The caller's environment is automatically saved by the hardware
when a procedure is called and is restored by the hardware when
the called procedure finishes.

- When a procedure is called into execution, it is allocated a
temporary storage area called a local data area. The local data
area is known only to the executing procedure and is logically
separate from other procedures' local data areas.

e Parameters (or arguments) can be passed to a procedure for
evaluation. The parameters can be actual operands or can be
addresses of operands.

® A procedure can return a value (such as the result of a
computation) to its caller.

® A procedure itself can contain one or more subprocedures. A
subprocedure is similar to a procedure in that it is also a
functional block of instructions, called into execution to perform
a specific operation. There are several similarities between
procedures and subprocedures: a subprocedure, like a procedure, is
allocated a temporary (sublocal) storage area while it executes,
parameters can be passed to a subprocedure, and a subprocedure can
return a value to its caller. Some significant differences between
procedures and subprocedures are: different instructions are used
to call a subprocedure than a procedure, a subprocedure has no
"callability" attribute (it executes in the mode of its caller),
and the amount of sublocal storage available to a subprocedure is
significantly less than the amount of local storage available to a
procedure. 1In addition, a subprocedure can be called only by
the procedure that contains it.

A procedure consists of a contiguous block of instruction codes and
program constants in a code segment. All procedures that comprise a
program are in the same code segment, except for any system or user
library procedures called (these are in the System Code segment,
System Code Extension, or User Library code segment). The address of
the first instruction in a procedure is called the "entry point". The
entry points for all procedures in a program are located in a table,
known to the hardware, called the Procedure Entry Point (PEP) table.
The PEP itself is located at the beginning of the code segment. See
Figure 2-38. The External Entry Point Table, also shown in Figure
2-38, is discussed later under the heading "Calling External
Procedures™. This table begins on a page boundary, with entries
consecutively assigned backward toward the end of code, using the
first available space that fits (either on the same page as the end of
code, or on a separate page).

Program Environment

CODE SEGMENT

ciol—s [C R \
C ADDRS OF
ADDRS OF
ADDRS OF
(, ADDRS OF
N
~ ADDRS OF 2

PROCEDURE ENTRY POINT TABLE {(PEP)

al|o (o |v

PROC &

PROC b

PROC ¢

PROC d

PROC 2

UNASSIGNED
ADDRESSES

ADDRS OF xd
ADDRS OF xc
ADDRS OF xb

ADDRS OF xa PAGE BOUNDARY

EXTERNAL ENTRY POINT TABLE(XEP)

UNALLOCATED
SPACE

C[%177777] —~3 END OF CODE SEGMENT

Figure 2-38. Procedure Entry Point and External Entry Point Tables

2-72

Program Environment

Procedures are invoked using the PCAL (Procedure Call) instruction.
During PCAL execution, the caller's environment (specifically, the
address of the instruction following the PCAL and the current ENV and
L Register settings) is saved in a three-word stack marker. The stack
marker is written at the current top of the memory stack. The PCAL
instruction then references the entry in the Procedure Entry Point
table corresponding to the procedure being called. The address in the
PEP entry is placed in the P Register so that the next instruction
executed is the instruction at the entry point of the procedure.

The last instruction that a procedure executes is an EXIT instruction.
The EXIT instruction is used to return control to the caller.
Specifically, the caller's ENV and L Register settings are restored
and the return address (i.e., that of the instruction following the
PCAL) is set into the P Register.

An example of a procedure call and exit is shown in Figure 2-39.

ATTRIBUTES. So that a nonprivileged process cannot execute in
privileged mode and so that execution of privileged operations can be
controlled, every procedure has one of the following attributes:

® Nonprivileged
Procedures having this attribute are callable by any procedure in
the program. They execute in the same mode (i.e., privileged or
nonprivileged) as the caller. This is the attribute typically
given to procedures in an application program.

e Callable
Procedures having this attribute are also callable by any
procedure in the program but execute in privileged mode (i.e.,
PRIV = "1"). The caller's mode is restored when a callable
procedure exits. This attribute is typically assigned only to
operating system procedures. It is used so that a controlled
interface exists between a nonprivileged application program and
the privileged operating system.

® Privileged
Privileged procedures execute in privileged mode and are callable
only by procedures currently executing in privileged mode. An
attempt by a nonprivileged procedure to call a privileged
procedure results in control being transferred to the operating
system Instruction Failure Trap Handler. This attribute should
be used only by the operating system. It is typically used when
an operation, if done improperly, would have an adverse effect on
processor module operation. A nonprivileged application program's
only interface to an operating system privileged procedure is
through a callable procedure.

In the PEP, procedure entry points are grouped according to attribute.

There are three groups: the first is nonprivileged procedures, the
second is callable procedures, and the last is privileged procedures.

2-73

Program Environment

CODE
SEGMENT
— = \ DATA
[| SEGMENT
N |
———b ClHl_ opp B
W
PROC a
TOP-OF-STACK
I AT TIME OF
. CALL TO PROC b ~
: = ~ STACK MARKER
e Pcara P REGISTER V] P USED TO SAVE AND
I e cE 2 - ENV |- RESTORE CALLER'S
L (i.e., PROC a’s)
: ENVIRONMENT
v |
C s]+ cteon
P REGISTER PROC b
EXIT J/
\v\/\/\/ U TN
Figure 2-39. Procedure Call and Exit
PEP TABLE ADDRESS
OF FIRST CALLABLE
/ PROCEDURE
—clol PEP TABLE ADDRESS
_C[1] —— OF FIRST PRIVILEGED
-Cl2) PROCEDURE
ENTRY POINTS OF
— NON-PRIVILEGED
PROCEDURES
~—
ENTRY POINTS OF — PEP
I~ CALLABLE
PROCEDURES

ENTRY POINTS OF
— PRIVILEGED
PROCEDURES

Figure 2-40. First Entries in Procedure Entry Point Table

2-74

Program Environment

The first two words in the PEP Table, C[0:1], describe where the
callable and privileged entry points begin in the PEP. Specifically,
C[0] is the address of the first PEP entry for a callable procedure,
and C[l] is the address of the first PEP entry for a privileged
procedure. See Figure 2-40. These words are used to check whether a
nonprivileged caller is attempting to invoke a privileged procedure.

PCAL INSTRUCTION. The steps involved when a Procedure Call
instruction is executed are described below, with step numbers
referring to the accompanying illustration, Figure 2-41. Note that
before the PCAL executes, the procedure parameters (and the mask word
or words, for procedures with a variable number of parameters) must be
pushed onto the stack.

1. The caller's environment is saved in a three-word stack marker.

data [S+1] := P; !
data [S+2] := ENV; ! stack marker.
data [S+3] := L; !

The stack marker is stored in the top-of-stack location plus one
as indicated by the address in the S Register. The stack marker
contains the following information:

® the current P Register setting (the address of the instruction
following the PCAL)

e the current ENV Register setting

® the current L Register setting {(the beginning of the caller's
local data area).

2. If the calling procedure is not executing in privileged mode, the
"callability" attribute of the procedure being called is checked.

First, the PEP Number field of the PCAL instruction is compared
with the entry in C[0] (the address of the first PEP entry for
callable procedures). If the PEP Number is greater than or equal
to the C[0] entry, then this is a call to a callable or privileged
procedure, so a second check is made: the PEP Number field of the
PCAL instruction is compared with the entry in C[l] (the address
of the first PEP entry for privileged procedures). If the PEP
Number is greater than or equal to the entry in C[1l], then this is
a call to a privileged procedure, so an Instruction Failure trap
occurs and the PCAL instruction aborts. Otherwise, this is a call
to a callable procedure, so the PRIV bit is set.

Program Environment

@

C [PEP]

C (PN}

PROCEDURE CALL (PCAL)

0

15

Llelfel 0l

6 7
1

PEP NUMBER (PN)

] INSTRUCTI

CODE
SEGMENT

"~

®

PEP

[PREGISTER ?;——\

VSN~ —~

e e W a Ve
R
/‘—‘L_\

PCAL PN

PROCEDURE

L/\,\/\,\.

ENV REGISTER| RP |
7
®

)

-
e
e

T [ToP-OF STACK]
L SREGETER >

ON FORMAT

DATA
SEGMENT

TN

CALLER'S
LOCAL
DATA

P

ENV
O[L REGISTER & L
(3
S REGISTER
e Y N

THREE-WORD STACK
MARKER SAVING

CALLER'S EN

VIRONMENT

CALLER'SP

(NEXT INSTRUCTION)

REGISTER

CALLER'S EN

V REGISTER

CALLER'S L

(LAST STACK MARKER]

REGISTER

PRECEDING
STACK
MARKER

).

2-76

Figure 2

_410

Execution of PCAL Instruction

Program Environment

3. The S and L Registers are set with the G[0]-relative address of
the new top-of-stack location (the third word of the stack
marker) .

L := S := S+3;
The new L Register setting defines the base of the local area for
the procedure being called.

4. The new S Register setting is tested for an address within the
memory stack area, G[0:32767]. 1If the value is greater than
32,767, control is transferred to the operating system Stack
Overflow trap (and the PCAL instruction is aborted).

if S '>'" 32767 then stack”overflow trap;

5. The C[0]-relative address of the procedure being called is
obtained from the PEP table entry pointed to by the <PEP number>
field in the PCAL instruction. This address is put in the P
Register so that the next instruction executed will be the first
instruction of the called procedure.

6. Finally, the Register Stack Pointer, RP, is given an initial value
of seven (stack empty).

RP := 7;

Following the PCAL, the instructions comprising the procedure are
executed. The last instruction that a procedure executes is an EXIT
instruction.

EXIT INSTRUCTION. The EXIT instruction uses the three-word stack
marker to restore the caller's environment. The sequence is as
follows, with reference to Figure 2-42.

1. The S Register setting is moved below the local area, the stack
marker, and any parameters to the exiting procedure.

S := L - <S decrement>;
The <S decrement> value is subtracted from the current L register
setting and placed in the S Register. The value of <S decrement>
is three (for the stack marker) plus the number of words of
parameter and mask information passed to the exiting procedure.

2. The P Register is set with the P Register value saved in the stack
marker at L[-2].

P := data [L-2];

The next instruction to be executed will be the one following the
PCAL instruction.

2-77

Program Environment

15

(T e

DATA

s) j INSTRUCTION FORMAT SEGMENT

CODE
SEGMENT
\—\———//V\

PCAL PN @

- P REGISTER ‘ﬁ

@ MARKER —|
— L REGISTER —

p
~—~

EXIT DECS - P REGISTER

(F SREGISTER —e B

+ SDEC @

L-CT}ECE:jA———a- IIIAI IS

THREE WORD STACK MARKER
SAVING CALLER'S
ENVIRONMENT

B N

STACK —

CALLER'S
LocaL
DATA

(% LSW\;{DS]CSI T I KLI gé‘c %Rp %;Q/‘C

_r__/

-

CALLER'SP REGISTER

CALLER'S L REGISTER

CALLER'S ENV REGISTER J» 4——J

O o TR | T < | Tor]] commenrenv casren sernwe

L__r__/
'

A | 1

VAbd T [T ToL] swnasasonc

2-78

Figure 2-42. Execution of EXIT Instruction

Program Environment

3. The ENV Register is restored from a combination of the current ENV
Register setting and the ENV Register value saved in the Register
Stack at L[-1].

The mode (privileged or nonprivileged) and data area are
reestablished to be the lesser of the caller's and the current
settings. This is so that a nonprivileged user cannot exit with
privileged capability. The caller's CS (code space), LS (library
space), T (traps), V (overflow), and K (carry) are reestablished
from L[-1]. 2 and N (Condition Code) are left at their current
settings to reflect the results of the call. RP is left at its
current setting so that a value in the Register Stack can be
returned to the caller.

4, The L Register is restored from the L Register value saved in the
stack marker at L[O0].

L := data [L];

This moves L back to point to the preceding stack marker, thereby
reestablishing the preceding local data area.

The instruction following the PCAL instruction then executes.

Memory Stack Operation

Figures 2-43a and b depict an example of a memory stack operation from
an initial state (i.e., start of process execution) through a call to,
and subsequent return from, a procedure. The purpose of the diagram
is to show the action of the L and S Registers as a procedure
generates its local variables and prepares to call a procedure by
passing parameters, how L and S are set when a procedure is called,
and how L, and S are set when the return is made to the caller.

1. 1Initial State

After the operating system has loaded a program into memory but
before the first instruction of the process executes, the
following initial conditions are present: the process's global
variables are initialized and present, and the L and S Registers
are set to the address of the word just above the global area.
There are no local variables defined at this time.

2. Proc "A" generates its local variables

The first few instructions of a procedure generate the procedure's
local variables. As the local variables are generated, the S
Register setting increases, defining a new upper limit to the
procedure's local area. Note that the L Register setting does not
change.

2-79

Program Environment

1. INITIALLY (PROGRAM STARTS)
Glo]
A closal VY
M\ Data /1/
L REGISTER
| 123 — G[123]
S REGISTER
3. PROC A PUTS PARAMETERS
ON THE STACK IN PREPARATION
TO CALLING B
NS N
\T\ M
L REGISTER G[123]
I 123 I—*
A's
LOCAL
DATA
o= i
P M, Nl
/ P1
1
N S REGISTER P2 G[160]
N 160 I/

2. PROC A GENERATES ITS
LOCAL VARIABLES

~n AN
ad AN
L REGISTER .
G[123]
l 123 |—7
ra
/
7
/
______ 7 A's
I 1 LOCAL
o b= - DATA
7
!
\
N S REGISTER R]
> 167 — G|158]
4. PROC A CALLS PROC B
A% W
\F AV N
F------- R
[NP J

)

é
.

P2

\ STACK
| L REGISTER | maRKeR

.
' 163

G[163]

A []
\ S REGISTER /
e]

Figure 2-43a.

2-80

L and S Registers in Procedure Calls

Program Environment

5. PROC B GENERATES ITS
LOCAL VARIABLES

6. PROC B EXITSBACKTO A

~ ™~
,J./ A n N
7 M\
L REGISTER
4 123 ——] Gi123]
’
s
, A's
/ LOCAL
h DATA
1
1
| S REGISTER
A \ 158 — > Gl158]
P1 ' //
\,
Pz
N
;N
[sTAacK P
L REGISTER MARKER N\ 1
. R \FTTm = -
163 — G{183] | b i
’ I
p
r-—----- a, !
- -L _______ J '
, , B's \
’ LOCAL \
! DATA \
1 \
\ \
\ \
. S REGISTER \
~] \FrT T
217 > G[217] e]""
Calls

Figure 2-43b.

L and S Registers in Procedure

2-81

Program Environment

3.

Proc "A" passes parameters to "B"

In preparation for calling the procedure "B", the parameter words
(two in this example) are placed on the top-of-stack location as
indicated by the S Register setting. The S Register setting is
increased by two to account for the parameters.

"A“ calls IIB"

After the parameters are loaded onto the memory stack, a PCAL
instruction is executed. Execution of the PCAL instruction places
a three-word stack marker at the current S Register setting plus
one (just above the parameters). L and S Registers are given a
new setting; they both point to the third word of the stack
marker. The new L Register setting defines the start of "B's"
local area. At this point, no local variables have been generated
for the procedure "B". (Note that "A's"™ local area, which is
normally addressed relative to the L Register, is no longer
addressable by the L-plus addressing mode.)

Proc "B" generates its local variables

In the same manner as procedure "A" did, procedure "B" generates
its local variables. This increases the S Register setting
accordingly so that the S Register defines the new upper limit to
"B's" local area.

Proc "B" exits back to proc "A"

when procedure "B" completes, an EXIT instruction is executed to
return to "A". Execution of the EXIT instruction moves the L
Register setting back to the beginning of "A's" local area and
moves the S Register setting back to the top-of-stack location
that was in effect before the parameters were loaded on the stack
(this is accomplished by the <S decrement> value in the EXIT
Instruction). Specifically, for the return to the procedure "A",
the EXIT instruction is

EXIT 5

This deletes the three-word stack marker from the top-of-stack
Plus the two parameter words.

GENERATION OF AND ACCESS TO LOCAL DATA. Unlike the global data area,
which exists at all times, the local data area for a procedure exists
only while the procedure is actually executing. The local variables
are generated and initialized by instructions at the start of a
procedure's code. Thus a procedure can be called any number of times
(and in fact can call itself) and each call generates a fresh copy of
the procedure's local data area.

Program Environment

An example of the instructions used to generate the following local
variables will next be considered (referring to Figure 2-44):

INT i, 1 L[1)
j := 5, ! L[2]
.k [0:31]; ! L[3] (pointer to k, which starts at L[4])

These are three local variables declared in a TAL source program: "i"
is a one-word uninitialized variable, "j" is a one-word variable
initialized with the value 5, "k" is an indirectly addressed array
variable consisting of 32 words. The instructions to generate these
variables are:

ADDS +001 ! Add to S

LDI +005 ! Load Immediate

LADR L+004 ! Load Address

PUSH 711 ! PUSH to Memory
1

ADDS +040 Add to S
The ADDS instruction increments the S Register setting by one. This
allocates one word for the variable "i".

The LDI instruction puts the initialization value for "j" (5) on the
top of the Register Stack.

The LADR instruction calculates the G[0]-relative address of the first
word of the indirect array "k" and puts the address on the top of the
Register Stack.

The PUSH instruction performs two functions: 1) it puts both the
initialization value in "j" and the address of the array "k" into L[2]
and L[3] of the process's stack, respectively, and 2) increments the S
Register setting by two to allocate the two words needed for "j" and
the address pointer to "k".

The ADDS instruction increments the S Register setting by 32 (octal
40) . This allocates 32 words for the indirect array "k".

Following the generation of the local variables, the local area for
this example consists of:

L[1] =i

L[2] = j (initialized with a value of 5)
L[3] = an address pointer to the array "k"
L[4:35] = the array "k"

Once allocated, data in the local area is addressed relative to the
current L Register setting using the L-plus addressing mode. As
illustrated, this mode can access local data directly, or can use the
direct address as an address pointer (indexing is also permitted).

The top-of-stack area is addressable implicitly through use of the

PUSH and POP instructions. These are illustrated in Figure 2-45.
The PUSH instruction is used to store the Register Stack contents,

2-83

Program Environment

LOCAL

ACCESS TO A PROCEDURE’S

DATA USING THE

L-PLUS ADDRESSING MODE

L REGISTER

| 123 I—»L[_O]h

DATA
SEGMENT

b

STACK n
MARKER

G[123]

W
J

0 B 5 7 10 13 15] L[Z]
|°§W2 X 1[010[0]010[010}11 L[3] 127 36[127]
v
T L L
DIRECT L-PLUS DISPLACEMENT
ADDRESSING «
MODE
0 e
B
o 11
LBAA « [lefe]olofo]e]]
INDIRECT L-PLUS DISPLACEMENT
ADDRESSING
MODE
Figure 2-44. L-Plus Addressing Mode
ADDING ELEMENTS TO THE
TOP-OF-STACK {S INCREASES) ,-\,\/"\/\,N|
REGISTER STACK (_ T SO 3 — » G [158]
1
PUSH 777; 3 I s{-5]
4 > 4
: z
] S REGISTER 6
7 l
I e] — sl 8 G [166]
DELETING ELEMENTS FROM THE ¢ [1581
TOP-OF-STACK (S DECREASES)
— — ol (2]
7 5
6 - ’/ _/ UNDEFINED
POP 333 7 AFTER "POP”
— — A

Figure 2-45.

PUSH and POP Instructions

Program Environment

usually prior to calling a procedure, on the top of the memory stack.
When a PUSH instruction is executed, the S Register setting is
incremented by the number of words pushed. The POP instruction is
used to restore the Register Stack contents from the top of the memory
stack, then decrement the S Register setting accordingly.

PARAMETER PASSING. Parameters are passed to a procedure in the
top-of-stack area. Naturally, there must be coordination between the
caller and the called when passing parameters. The caller must know
the order in which a procedure expects parameters, and whether a
parameter is to be an actual operand (called a "value" parameter) or
an address pointer (called a "reference" parameter).

Before the caller invokes a procedure, the parameters are prepared in
the Register Stack. The actual operands (for value parameters) and
the addresses of operands (for reference parameters) are loaded into
the Register Stack in the order required by the procedure being
called. The address of a reference parameter is obtained by the
execution of an LADR (load address) instruction. The parameters that
have been prepared in the Register Stack are loaded on the top of the
memory stack by executing a PUSH instruction (which increments the S
Register accordingly).

An example will now be considered to show the instructions used to
prepare the top of the memory stack area for parameter passing. This
example uses the variables declared in the preceding example, and is
illustrated in Figure 2-46. The procedure being called is of the
form:

PROC b (pl,p2);
INT pl,.p2;

Parameter "pl" is a value parameter, therefore the procedure expects
an actual value to be passed. Parameter "p2" is a reference parameter
and, therefore, the procedure expects the G[0]-relative address of a
variable to be passed.

The call being made from procedure "A" is:
CALL b (j,1);
The instructions to pass these two parameters are:
LOAD L +002
LADR L +001
PUSH 711
The LOAD instruction puts the contents of the variable "j" (the value

5) on the top of the Register Stack. (This is the parameter passed as
"pl", a value parameter, to "B".)

2-85

Program Environment

DATA
SEGMENT
L[] G[124]
/ L[2] 5 G[125]
S REGISTER
BEFORE PUSH
L |]
REGISTER /, 7(5 G [159]
STACK ! 124 G[160]
LOAD L+002 0 5 PUSH 711 / EF?E(;ELEST'
LADR L+001 N)
RP AFTER LADR ////};///A) e R
YAl
A
A
A
RP AFTERPUSH 7 L/ /]

Figure 2-46.

Parameter Passing

ACCESS TO A PROCEDURE'S
PARAMETERS USING THE
L-MINUS ADDRESSING MODE

10

(L el

T L]

15
0

|

W/x nan

DIRECT L-MINUS DISPLACEMENT
(FOR VALUE ADDRESSING
PARAMETER) MODE

a's
LOCAL
DATA

7 L L] ——

7

INDIRECT L-MINUS DISPLACEMENT
(FOR REFERENCE ADDRESSING
PARAMETER) MODE

S /ANAL L)
124
- STACK 1
L REGISTER | MARKER -
163 —_—] G[163]
S REGISTER

—.»L. 7

Figure 2-47.

2-86

Parameter Access

Program Environment

The LADR instruction calculates the G[0]-relative address of the
variable "i" and puts the address on the top of the Register Stack.
(This is the parameter passed as "p2", a reference parameter, to "B".)

The PUSH instruction places the two parameters from the Register Stack
on the top of the memory stack and increments the S Register setting
by two.

PARAMETER ACCESS. Parameters are accessed by using the L-minus
addressing mode. This mode provides access to the 32 locations just
below and including the current L Register setting (L[-31:0]).
Subtracting the three words used for the stack marker, this leaves 29
words addressable as parameters. If value parameters are passed, the
parameter location is addressed directly (<i>, indirect, bit of a
memory reference instruction = 0); if reference parameters are passed,
the parameter location is used as an indirect address (<i> bit = 1).
Indexing in either mode is permitted.

Figure 2-47 shows an example of both value and reference parameter
access.

RETURNING A VALUE TO THE CALLER. A procedure can return a value to
its caller via the top of the Register Stack. This, like parameter
passing, requires coordination between the caller and the called.
That is, the calling procedure must know the element size of the
return value (i.e., number of words comprising the wvalue).

The following paragraphs describe an example of a procedure, named
"f", that returns a value, and the instructions used to do so. The
example is illustrated in Figure 2-48.

The procedure is of the form:

INT PROC f (X);
INT x;

BEGIN
RETURN x * x;
END;

This procedure returns the square of a number, "x". The instructions
to return the square of "x" are:

LOAD L -003
LOAD L -003
IMPY

EXIT 4

parameter X is obtained from L-003
load another copy of x

squared result now exists in R[0]
delete stack marker and parameter x

A i

2-87

Program Environment

INSTRUCTIONS IN THE CALLING PROCEDURE

TO EXECUTE THE FOLLOWING STATEMENT:

z:=i+j-f(5)

LOAD L + 001
LOAD L + 002

IADD

LDI 5
PUSH 711
PCAL f

ON RETURN
FROM f

STAR 1

POP 100

ISUB
STOR L +003

LOAD L -003
LOAD L -003

IMPY
EXIT 4

REGISTER
STACK

DATA AREA
KNOWN TO
THE CALLING
PROCEDURE

z

Li1]
L{2]
LI3]

S REGISTER
AFTER EXIT 4

1

S REGISTER
AFTER PUSH

0 25
1 25
0 i+i
1 25
i)

INSTRUCTIONS IN THE PROC §

0 5
1 [
0 25

L J

DATA AREA
KNOWN TO
PROCEDURE f

5

L. MARKER

= STACK -

L[-3]

L{o]

2-88

Figure 2-48.

Value Returned via Register Stack

Program Environment

The first LOAD instruction loads the parameter "xX" onto the top of the
Register Stack. Following the LOAD, the RP setting is O. (The RP
setting is 7 when a procedure begins executing.) The second LOAD
again loads the parameter "x". Following this load, the RP setting

is 1.

The IMPY instruction multiplies the values in the Register Stack,
leaving the result of the multiplication in R[0]. Following this
operation, the RP setting is O.

The EXIT instruction causes a return to the caller, deleting the
parameter and stack marker (1 + 3 = 4), but leaving the squared value
on the top of the stack.
A call is now made to procedure "f", as follows:

z2 := 1+ 3 - £(5);
That is, subtract the square of 5 from the sum of the contents of the
variables "i" and "j" then store the result in the variable "z".
Variables "i", "j", and "z" are local variables at L[1l], L[2], and
L[3] respectively.

The instructions to perform this operation are:

LOAD L +001 ! load "i"
LOAD L +002 i load "j"
IADD [EELE LS ujn
LDI +005 ! load parameter to "f"
PUSH 711 ! push sum and parameter onto memory stack
PCAL ! procedure call to "f"
STAR 1 ! move returned value from R[0] to R[1l]
POP 100 ! bring saved sum back to R[O0]
ISUB ! subtract returned value from "i+j" sum
1

STOR L +003 store result into "z"

The first three instructions calculate the sum of "i" + "j" and leave
the result in R[0]. The LDI +005 instruction loads the parameter to
"f" onto the top of the Register Stack at R[1l].

The PUSH instruction pushes R[0:1] onto the memory stack. Following
the PUSH, the two top-of-memory-stack locations contain:

s[-1]
s{0]

SUm Of "i!! + lljll
5, the parameter to "f"

This clears the register stack for use by the procedure which now is
invoked by the PCAL instruction. On the return from "f", R[0] of the
Register Stack contains the square of 5.

The STAR instruction moves the return value in the R[0] register stack

location to R[1l] in preparation for the subtraction from the sum of
llill + llj".

2-89

Program Environment

The POP 100 instruction brings the sum of "i" + "j" (calculated
previously) into R[0] and sets RP to 1 (to point to the returned
value) .

The ISUB Instruction subtracts the return value of "f" from the sum of
"i" + "j". The STOR instruction stores the result in the variable
"z", and RP becomes 7.

STACK MARKER CHAIN. In examples shown previously, only one procedure
call occurred and, therefore, only one stack marker was generated.
However, in practice, there may be several stack markers (and local
areas) present in a memory stack at once. This occurs when a called
procedure calls another procedure and that procedure calls still
another procedure, etc. The nature of this "chain" of stack markers
and the action of the L and S Registers is such that the returns are
always made in the reverse order of the calls, and the local data
areas are redefined as the returns are made.

Figure 2-49 shows the condition of a memory stack after the following
calls have taken place:

In procedure "a", CALL b;
In procedure "b", CALL c;
In procedure "c", CALL d;
The procedure "d" is currently executing.

Specifically, the L Register, which is given a new (higher) setting
when a procedure is called, and the local data areas, which are
allocated and generated relative to the current L Register setting,
result in a stack of procedure environments that are physically placed
in the chronological order in which the calls were made. (Remember,
when a procedure is called, the stack marker is placed at the current
S Register setting plus one. 1In this manner, a procedure's local data
is always retained when it calls another procedure.) The stack
markers, which contain the environment of the preceding procedure (and
point to the preceding stack marker) restore the preceding
environments in the reverse order of the calls.

SUBPROCEDURES. Subprocedures are invoked using the BSUB (branch to
subprocedure) instruction. Because the BSUB is a branching-type
instruction, the subprocedure entry point is calculated as a
self-relative address. Execution of the BSUB instruction differs from
other branching instructions in that it places a return address on the
top of the memory stack. See Figure 2-50. Note that before the BSUB
exXecutes, the subprocedure parameters must be pushed onto the stack.

2-90

Program Environment

CODE DATA
SEGMENT SEGMENT

/ cloj | | aior
/ GLOBAL
// DATA

PROC | r--[//PCAL b
a | / / Cl201] <~ = - ——— = = — A
' \
1 / N
|
\
1
\
]
i \\
I
} \ L |
L_» \ =™ G[123]
\ 1
\ N7
N !
\
\ ! PROC
\ | a-s
\\ ! LOCAL/
1
PROC =¥, PCAL c \ ! DATA
b C[564] e - \ !
1
|

L 1237/ G163

Fe——m——————

R

'
[
N
o
O
>
r
a
AN

Cl1485] € — — == — = — ~— —— — - — — -

I REGISTER \

Yi

L 163/ G237

[|

|
Y
-

— >

1] \
AY
PROC N
4 - —— - 14
d P REGISTER P 1485
C— 1 Sk Y

i
I
L
r
|
|
!
|
|
!
!

PROC _| % _____.t._
t
L
r
[
t
t
|
|
|
|
|
|

452 |—= L 237 G[452]
PROC
ds
LOCAL
DATA
S REGISTER
- -
523 e G[529)

Figure 2-49. Stack Marker Chain

2-91

Program Environment

DATA
SEGMENT
CODE
BSUB SEGMENT PARAMETERS Pt
[Tosusprocepure | ';; ‘/EST;EG-ETE—R]
SN . o BEFORE BSUE
(2) BSUB + 10 (1) RETURN P <—| SREGISTER |
<—EP REGISTER AFTER BSUB
BEFORE BSUB
\
P REGISTER
AFTER BSUB sue-
PROCEDURE
RSUB 5 \/-/\'\’\//\
/’\\\/\
P1
MEMORY STACK WHILE 4 P2
SUBPROCEDURE EXECUTES P3
Pa /Es REGISTER]\
RETURN P —_——
\
SUBLOCAL DATA \
ADDRESSED S-MINUS
RELATIVE (INCLUDING
PARAMETERS) SUBLOCAL
VARIABLES
CURRENTTOP L | . /
ELEMENT OF —— <«—{ SReGISTER P
MEMORY STACK
RSUB

N~)

BSUB + 10

RSUB 5

[——————y
I P REGISTER I‘

S REGISTER [
\

PARAMETERS

DELETED

RETURN P

I D 3

/
<__,l S REGISTER I d
_—— = \

\
\

\
|

/
/

STACK MUST
BE CUT BACK
POINTING S
AT RETURN P
BEFORE RSUB

/
—L_-__%

LA

2-92

Figure 2-50.

Subprocedure Calls

Program Environment

Specifically, the steps involved when a BSUB instruction is executed
are as follows:

1. The return address (i.e., that of the instruction following the
BSUB) is placed on the top of the memory stack.

S :=8 + 1;
datalS] := P;

2. The self-relative branch address of the subprocedure is put into
the P Register.

P := branch”address:

The last instruction that a subprocedure executes is an RSUB (return
from subprocedure) instruction. The RSUB instruction returns control
to the instruction following the BSUB instruction by putting the
return address, at the current top of memory stack location, into the
P Register:

P :
S

data [S];
S - <S decrement>;

The <S decrement> value is used to move the S Register setting below
the sublocal data area. <S decrement> is at least one, to account for
the one-word return address. :

The sublocal data area consists of a subprocedure's variables and
parameters. It is addressable using the S-minus addressing mode,

shown in Figure 2-51. This provides direct access to the 32 locations
including and below the current S Register setting (i.e., S[-31:0]).

LOGICAL MEMORY

Logical memory (for nonprivileged users using nonextended addressing)
is separated into six segments, each of which is defined by its own
map. These six segments, as shown in Figure 2-52, are:

Map Segment

User Data

System Data

User Code

System Code

User Library Code
System Code Extension

Ui WO

The memory segments defined by the odd-numbered maps (1, 3, 5) contain
the GUARDIAN operating system. Since there is only one operating
system in a processor, this is a permanent assignment of maps. The
memory segments defined by the even-numbered maps (0, 2, 4) contain

Program Environment

Glol | +
NN
A NN
G[1701] ﬁ
L REGISTER L P
ENY
5014 —_— Lio] [L
0 7 8 9 10 11 12 13 14 15
CRAZZZT T T o o]
g ‘
T | | VW
DIRECT S-MINUS DISPLACEMENT
ADDRESSING 1 14) si-12)
MODE
S 005. 1
Rz ool o]
[—
si-5] 1701 —_
I I
INDIRECT S-MINUS DISPLACEMENT S REGISTER
ADDRESSING —
3102 - 1234
MODE siol G13102]
DEFINES TOP OF STACK
LOCATION

2-94

Figure 2-51. Example of S-Minus Addressing

Logical Memory

PROGRAM CODE FOR
OTHER PROCESSES
WAITING TO EXECUTE
]
|/ | | | | \u
DATA CODE LIBRARY
CODE
| | | | | |
I I | | | |
| | | | | |
| |
i |
i |
| |
I |
I |
DATA CODE I I
| |
| |
I |
| |
I I
I |
| | | | | |
1 | | | | |
| | ! ! I !
| | | | | |
| | | | | |
CURRENTLY GUARDIAN
EXECUTING OPERATING
PRO?ESS SYSTEM
1
/ AN /
G[0] clol clo] $G0] clo] clol
USER USER USER SYSTEM SYSTEM SYSTEM
DATA CODE LIBRARY DATA CODE CODE
SEGMENT SEGMENT CODE SEGMENT SEGMENT EXTENSION
(64 KW) (64 KW) SEGMENT (64 KW) (64 KW) SEGMENT
(64 KW) (64 KW)
(MAP 0) (MAP 2) (MAP 4) (MAP 1) (MAP 3) (MAP 5)
0 0 1 0 0 1 11
L | \ | |
ENVIRONMENT
REGISTER LS DS{cs
4 6 7

Figure 2-52. Logical Memory

2-95

Logical Memory

the code and data of the currently executing process. Since many
processes typically exist in a processor (including user application
processes, i/o processes, compiler processes, GUARDIAN processes,
etc.), the actual code and data indicated by these maps switches each
time a different process comes into execution. Every such process
performs its addressing relative to its own G[0] and C[0] bases.

For any single memory-referencing instruction, only one code segment
and one data segment can be used. This selection, from among the six
segments of logical memory, is made by the existing state of three
bits in the Environment Register. As shown in Figure 2-52, the
selection of a data segment is made by the state of the DS bit

(bit 6). 1If DS is a "1l", the System Data segment is accessed by the
instruction; if DS is a "O0", the User Data segment is accessed. The
selection of a code segment is made by the combined states of the

LS and CS bits, as follows:

LS CS
0 0 User Code (Map 2)
0 1 System Code (Map 3)
1 0 User Library Code (Map 4)
1 1 System Code Extension (Map 5)

The User Code and System Code segments defined by Maps 2 and 3 are
referred to as the "standard" code segments, whereas the alternate
code segments defined by Maps 4 and 5 (User Library Code and System
Code ExXtension) are referred to as the "library" code segments. There
is some difference in the way the library segments are used by a user
and by the system, in that the user's library segment contains
procedures that all belong to one program; on the other hand, the
system's code extension segment is simply an extension of the standard
system code segment, altogether containing the many procedures that
make up the GUARDIAN operating system. This code resides in the two
memory segments defined by Maps 3 and 5, which provide a total
capacity of 128k words.

The System Data segment (64k words defined by Map 1) contains various
system values and tables. This space is accessible by all programs,
but only if the DS or PRIV bit in the Environment Register is set.

SG addressing and the location of system tables is discussed under
subsequent headings in the next few pages.

CALLING EXTERNAL PROCEDURES

Procedures in an external code segment can be called and executed as
efficiently as a program's own procedures. The XCAL (external
procedure call) instruction and the SG-relative addressing mode are
two important features that make this possible.

Calling External Procedures

Figure 2-53 illustrates an example of a call from a User Code segment
to a procedure in the System Code segment. (The general method
applies also to any external calls between any of the four code
segments--User Code, User Library Code, System Code, and System Code
Extension.) When the application program calls the external
procedure, an XCAL instruction is executed. This instruction places a
three-word stack marker on the top of the user stack and moves L and S
in the same manner as a PCAL instruction (i.e., defines a new local
area). However, instead of transferring control directly to a
procedure within the segment, control is vectored out of the segment
(via its XEP, External Entry Point Table) into another code segment
(through that segment's PEP, Procedure Entry Point Table). 1In this
example, the System Code Segment's Procedure Entry Point table (PEP)
is used to determine the procedure's starting address, and the CS bit
in the ENV Register is set to "1" so that instructions will be
executed from the System Code segment. The DS bit, however, remains a
"0" so that the user environment (as opposed to the system
environment) is still in effect. The local area for the system
procedure is therefore in the User Data segment. Specifically, the
steps involved when the XCAL instruction is executed are:

1. The caller's environment is stored in a stack marker.

data [S+1l] :=P
data [S+2] := ENV;
data [S+3] := L

2. The C[0]-relative address of the procedure being called is
obtained by a two-step process. First, the XCAL instruction
specifies a location in the caller's External Entry Point Table
(XEP; refer back to Figure 2-38). Then, the XEP entry is used to
locate the desired code segment (bits 0 through 3 of the entry
specify a map number) and Procedure Entry Point address (bits 7
through 15 of the entry specify a PEP number), which in this case
is in the System Code segment's Procedure Entry Point Table. This
address is put in the P Register so that the next instruction
executed will be the first instruction of the system procedure.

3. If the calling procedure is not executing in privileged mode, the
callability attribute of the system procedure being called is
checked.

map := 3; ! system code map, in this case
temp := <PEP number>;
if not PRIV then
if temp >= mem(3,0) then ! call to callable
begin
if temp >= mem(3,1) then ! call to privileged
instruction"failure”trap;
PRIV := 1; ! set privileged mode
end;

P := mem(pepmap,temp) ! get entry point address into P

Calling External Procedures

Cl4075] *—

USER
CODE
J\/\/\/
NN
PROC z
L]
L]
il
CALL READ(..... kL
[————— XCAL 2
L]
L]
-
_ 3
3 ai
> = M7
0
SYSTEM
CODE
22
NON
PRIV B
GROUP
PUTS CPU CALLABLE, (
IN PRIV MODE PRIV -
(CS POINTS GROUP
TO SYSTEM CODE, 42037
DS POINTS TO
USER DATA,
LS POINTS TO
SYSTEM CODE UNCALL
EXTENSION) ABLE,
PRIV
GROUP
42037 —
P REGISTER
PROC READ
EXIT

AFTER EXIT, CS, DS, AND LS

PROCEDURE
ENTRY POINT
TABLE

(PEP)

P REGISTER

EXTERNAL
ENTRY POINT
TABLE (XEP)

cloi

ci22

SYSTEM
- ENTRY POINT
cla1) | TABLE
(SEP)

C (42037}

PROCEDURES EXECUTING
IN PRIVILEGED MODE FROM
THE USER ENVIRONMENT
CAN ACCESS SYSTEM DATA
AS WELL AS USER DATA

USER
DATA

LOCAL
DATA

[—-PARAMETERS
— TOREAD

[___a075 |«

4075 P

ENV

L

READ'S
LOCAL
DATA

SYSTEM
DATA

POINT TO USER CODE, USER DATA,
AND USER LIBRARY, RESPECTIVELY

Glo]

} STACK MARKER

(IN THE CALLER'S ENV,
CS POINTS TO USER CODE,
DS POINTS TO USER DATA,
AND LS POINTS TO USER
LIBRARY}

SGlol

2-98

Figure 2-53.

System Procedure Call and Exit

Calling External Procedures

4. The S and L Registers are set with the G[0]-relative address of
the new top-of-stack location.

L :=8 :=85 + 3;

The new L Register setting defines the base of the local area for
the system procedure being called.

5. The new S Register setting is tested for an address within the
memory stack area, G[0:32767]. 1If the value is greater than
32,767, control is transferred to the operating system Stack
Overflow trap (and the XCAL instruction is aborted).

if S > 32767 then stack”overflow trap;

6. The CS bit of the ENV Register is set to 1 and the LS bit is set
to 0, so that further code area references will be in the System
Code segment (in this example). LS and CS are set based on the
map number in the XEP Table.

7. Finally, the Register Stack Pointer, RP, is given an initial value
of seven (stack empty).

When the system procedure finishes, the usual EXIT instruction is
executed. The CS bit is restored from the stack marker so that the
next instruction is executed from the User Code segment.

If the system procedure must access the System Data segment from the
user environment it is given the attribute "callable" (so that it can
be called by the nonprivileged application program) and executes in
privileged mode. Executing in privileged mode permits the procedure
to make use of the "SG" addressing mode. This addressing mode,
illustrated in Figure 2-54, provides access to the System Data segment
(and, therefore any system tables) even when DS indicates User Data.

The SG-Relative mode for a memory reference instruction allows direct
addressing of the first 64 locations of the operating system's data
segment (SG[0:63]). This mode is indicated by bits I1.<7:9> of the
memory reference instruction equal to 110. Bits I.<10:15> are a
positive word displacement from SG[O0]:

direct”address = I.<10:15>

The data map used for the SG-relative addressing mode is determined
by the function:

datamap:
if I.<7:9> = 6 and PRIV then 1
else DS;

system data map.
current data map.

Indirect addressing and indexing are both permitted with the
SG-relative addressing mode.

2-99

Calling External Procedures

SG1(0]

Lfdd x|

T

DIRECT

110!oool1ool———> sGlal
T T

SG-RELATIVE DISPLACEMENT

ADDRESSING
MODE

LEdA ~ |

110|001l10L]_—‘> SG[13]

T

INDIRECT

/ .

T |
SG-RELATIVE DISPLACEMENT
ADDRESSING

MODE

SG[42176])

SYSTEM
DATA

LA

42176

L

2-100

Figure

2-54., SG-Relative Addressing

Mode

System Tables

Executing in privileged mode while in the user environment also means
that data can be moved, compared, and scanned (with the MOVW, MOVB,
COMW, COMB, SBW, and SBU instructions) between the User Data segment
and the System Data segment. (The File System uses a MOVW instruction
to transfer data between the User Data segment and the System Data
segment.)

SYSTEM TABLES

Some processor-known data assignments within the first two pages of
the System Data segment are listed in Table 2-2. Note that all of
page 1 is assigned to use for the I/0 Control Table. Both pages 0 and
1 of this segment are always located in pages 0 and 1 of physical
memory.

The locations of the major tables discussed at length later in this
section are illustrated in Figure 2-55, and briefly described in the
following paragraphs.

SYSTEM INTERRUPT VECTOR. SG[%1200:%1337] is the System Interrupt
Vector {SIV). This table contains 24 four-word entries; each entry
defines the executing environment for one of the operating system
interrupt handlers (see "Interrupt System").

BUS RECEIVE TABLE. SG[%1400:%1477] is the Bus Receive Table (BRT).
This table contains 16 four-word entries, each of which is assigned to
manage the interprocessor transfers for one processor module. Each
entry describes the number of words expected and the system buffer
location where the data is to be stored (see "Interprocessor Buses").

I/0 CONTROL TABLE. SG[%2000:%3777] is the I/0 Control Table (IOC).
This table contains 256 entries corresponding to the 256 subchannels
that can be connected to an i/o channel. Each entry describes the
number of bytes to be transferred and the system buffer location where
the data transfer takes place (see "Input/Output Channel").

2-101

System Tables

Table 2-2. System Data Segment Table Values

Location Contents
$2 Dummy Priority Value
%3 Current Process Control Block Pointer
$4:%77 Software Values
$100:%101 Ready List Header
%102 Dummy Priority Value
$103:%106 Microsecond Counter
$107:%110 Time List Header
$111:%114 OSP I/0 Control Block
$115:%116 Memory Breakpoint Trap Address
$117 Trace Buffer Base
$120 Trace Buffer Limit
3121 Trace Buffer Pointer
%122 LIGHTS Save Area
%123 Breakpoint Table Base
%124 Breakpoint Table Entry Size
%125 Breakpoint Table Limit
$1153:%1177 Processor Dump Save Area
%$1200:%1337 System Interrupt Vector
$1340:%1357 Currently Mapped Segment Table
$1360:%1377 Interprocessor Bus Error Packet
$1400:%1477 Bus Receive Table
$2000:%3777 Input/Output Control Table

2-102

System

Tables

96 WORDS
(4 WORDS*
24 ENTRIES)

64 WORDS
(4 WORDS*
16 ENTRIES)

1024 WORDS
IF NEEDED
(4 WORDS*

256 ENTRIES)

YV

.

SYSTEM
DATA
SG (0]
SG [%1177]
SG [%1200]
SYSTEM
INTERRUPT |
VECTOR i
(SIV)
SG [%1337]
SG [%1400]
BUS
RECEIVE |
- TABLE T
(BRT)
SG [%1477]
SG [%2000
INPUT/
OUTPUT
L CONTROL #
TABLE
(10c)
SG [%3777]
\/\/V\J

Figure 2-55. Dedicated Memory Locations in System Data

2-103

Interrupt System

INTERRUPT SYSTEM
The interrupt system transfers control to a specific location in the

operating system (called an interrupt handler) upon the occurrence of
any of the conditions listed in Table 2-3.

Table 2-3. 1Interrupt Conditions

Interrupt No. Event
0 Special channel error
1 Uncorrectable memory error
2 Memory access breakpoint
3 Instruction failure
4 Page fault
5 Undefined
6 Undefined
7 OSP (Operations & Service Processor) i/o
8 Power fail
9 Correctable memory error
10 High-priority i/o
11 Interprocessor bus receive completion
12 Undefined
13 Time list
14 Standard i/o
15 Dispatcher
16 Power on
17 Stack overflow
18 Arithmetic overflow or divide by zero
19 Instruction breakpoint
20-23 Undefined

Generally, when an interrupt occurs the interrupted environment is
saved in an interrupt stack marker. An operating system interrupt
handler executes to process the particular interrupt. Then an IXIT
(interrupt exit) instruction is executed to restore the interrupted
environment. See Figure 2-56.

INT and Mask Registers

Three registers are associated with interrupts: two 1l6-bit interrupt
registers and a l6-bit Mask Register. The bit assignments of these
registers are illustrated in Figure 2-57. Only four bits of INTB are
relevant to interrupts; however, these four are the highest-priority
interrupt bits, being examined first at the conclusion of each
instruction. The interrupts represented by the bits of INTA are

2-104

Interrupt System

PROGRAM
EXECUTES

INTERRUPT
HANDLER

PROCESSES

INTERRUPT

PROGRAM
EXECUTES

Figure 2-56. General Interrupt Sedquence

"maskable." That is, the corresponding bits of the Mask Register are
used by the operating system to allow or disallow particular interrupt
types at various critical or noncritical times. Bit 6 of INTA
(arithmetic overflow or divide by zero) is separately masked by the
Trap Enable bit of the Environment Register (ENV.<8>), but is used in
a similar way to enable or disable that interrupt. For all maskable
interrupts, the interrupt condition is ignored if the corresponding
Mask bit is a "O0", and will continue to be deferred until the Mask bit
is set to "1". The checking operation is performed by a logical AND
of the two registers.

Most interrupt types can occur only at the end of an instruction, when
the hardware routinely checks for the presence of "1" bits in the
interrupt registers. However, three interrupt types (power on,
uncorrectable memory error, and page fault) are "preemptive"; that is,
they will interrupt during an executing instruction. Also, certain
long-running instructions (e.g., the Move instructions) may be
interrupted during execution.

If two or more interrupt conditions exist simultaneously in INTA, and
each has its corresponding Mask Register bit set, the interrupt type
with the highest priority (lowest bit number) takes precedence; the
others are deferred until the interrupt handler finishes executing and
exXecutes an IXIT instruction.

Interrupts for stack overflow, instruction failure, and instruction

breakpoint have entries neither in the interrupt registers nor in the
Mask Register; these cause an interrupt whenever they occur, ignoring

2-105

Interrupt System

HALT

OSP HALT

MANUAL RESET

POWER ON

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEM ERROR

MEMORY ACCESS BREAKPOINT

(NOT USED!

DATAPAGE ABSENT

CODE PAGE ABSENT

ARITHMETIC OVERFLOW

QsPi 0O

POWER FAIL

CORRECTABLE MEMORY ERROR

HIGH PRIORITY t O

X BUS RECEIVE COMPLETION

Y BUS RECEIVE COMPLETION

TIME LIST

STANDARD t/O

DISPATCHER

% NON INTERRUPT BITS
USED AS MICROCODE FLAGS

NT8

[[1[5

[T 1]

L]

F
b
>

EEEEEEEEEEEEEEEN

TRAP ENABLE ——J

STACK OVERFLOW oo

INSTRUCTION BREAKPOINT

20 { UNDEFINED

21 | UNDEFINED

22 | UNDEFINED

23 | UNDEFINED

MICROCODE
INTERRUPT SERVICE
ROUTINES
—_— HALT
—_—i | OSP HALT
——————»| MANUAL RESET
— INSTRUCTION
FAILURE
MASK SYSTEM
REGISTER INTERRUPT INTERRUPT
1"AND VECTOR HANDLERS
— 0 0 | SPECIAL CHANNEL ERROR
-
1 > 1 UNCORRECTABLE MEM ERROR
> 2 2 —| MEMORY ACCESS BREAKPOINT
L
3 3 INSTRUCTION FAILURE
-
a a —| PAGE FAULT
- /
> 5 5 | UNDEFINED 0sP 110
4
>~ 6 — 6 | UNDEFINED POWER FAIL
—
7 7 CORRECTABLE MEM ERROR
-
8 —» & HIGH PRIORITY 1 O
-
2 9 BUS RECEIVE COMPLE TION
10 10 TIME LIST
- /
11 1M !
Yo A} STANDARD 'O
/
12 12 | UNDEFINED DISPATCHER
_—
13 13 POWER ON
-
14 14 STACK OVERFLOW
-
15 > 15 ARITHMETIC OVERFLOW
L
L—» 16 INSTRUCTION BREAKPOINT
- 17
18

Figure 2-57.

2-106

INT and MASK Registers

Interrupt System

priority. The hardware-only interrupts (halt, OSP halt, and manual
reset) are serviced entirely within microcode.

As shown in the diagram (Figure 2-57), detected interrupt conditions
are passed to software interrupt handlers through the System Interrupt
Vector, which is discussed next.

System Interrupt Vector

Each interrupt event that is to be serviced by software has a
corresponding entry in the System Interrupt Vector (SIV). The SIV,
which is initialized by the operating system, defines the executing
environment for each of the 17 operating system interrupt handlers.
The SIV, shown in Figure 2-58, begins at system data location %1200
and contains 24 four-word entries (seven are undefined).

Each four-word entry in the System Interrupt Vector contains the
following information:

Li = L Register setting for interrupt handler

Mi = MASK Register setting for interrupt handler

Pi = P Register setting of first instruction in interrupt handler
Vi = Interrupt-related parameter put here by firmware

The following paragraphs further describe the functions of each of
these entries, as illustrated in Figure 2-59.

@ Li: This is the address in the system data area for an interrupt
handler's local storage (stack).

@ Mi: This is a mask value for masking off unwanted interrupts while
an interrupt handler executes. The MASKi value in the SIV entry is
ANDed with the current MASK register setting to derive a new
setting. This permits nesting of interrupts of different types.

@ Pi: This is the system code address of the interrupt handler's
entry point.

e Vi: This is a location where an interrupt-related parameter may be
returned by firmware.

Interrupt Stack Marker

When an interrupt occurs, the interrupted environment is saved in an
interrupt stack marker. The interrupt stack marker is placed at
Li[-4:0] in the interrupt handler's stack; see Figure 2-59. The
interrupt stack marker contains the following information:

2-107

Interrupt System

0 SG[%1200)

INTERRUPT SYSTEM_
NUMBER INTERRUPT
VECTOR

1 SG[%1204]

2 SG[%1210]

3 SG[%1214]

4 SG[%1220]

5 SG[%1224)

6 SG[%1230]

7 SG[%1234]

8 SG[%1240]

9 SG[%1244]

10 SG[%1250]

11 SG[%1254]

12 SG[%1260]

13 SG[%1264]

14 SG{% 1270}

15 SG[%1274]

16 SG|[%1300]

17 SG[%1304]

18 SG[%1310]

19 SG[%1314)

20 SG[%1320]

21 SG[%1324]

22 SG[%1330]

23 SG[%1334]

SN N /\‘7 N T‘/_T /_T'/\‘T/\"W_/\'T‘/\"l_/H/_r/

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEMORY ERROR

MEMORY ACCESS BREAKPOINT

INSTRUCTION FAILURE

PAGE FAULT

UNDEFINED

UNDEFINED

OSP 110

POWER FAIL

CORRECTABLE MEMORY ERROR

HIGH-PRIORITY INPUT/OUTPUT

INTERPROCESSOR BUS RECEIVE COMPLETION

UNDEFINED

TIME LIST

STANDARD INPUT/OUTPUT

DISPATCHER

POWER ON

MEMORY STACK OVERFLOW

ARITHMETIC OVERFLOW OR DIVIDE BY ZERO

INSTRUCTION BREAKPOINT

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

Figure 2-58.

2-108

System Interrupt

Vector

Interrupt System

SYSTEM
INTERRUPT
VECTOR
(SYSTEM
DATA)
SIV TABLE ENTRY SYSTEM
(DEFINES THE INTERRUPT CODE
HANDLER’S ENVIRONMENT)
, _— N~
Li L; ADDRESS OF INTERRUPT STACK
Mi T ' MARKER FOR INTERRUPT HANDLER
o
Vli wi MASK FOR MASKING OFF
OTHER INTERRUPTS
N N p; STARTING ADDRESS OF
Y INTERRUPT HANDLER \
N
N ~ v, PARAMETER RELATED TO
~ INTERRUPT
L—’ | _Jcipd
INTERRUPT STACK MARKER
(SAVES THE INTERRUPTED
ENVIRONMENT)
L g" - INTERRUPTED MASK
= P - INTERRUPTED S
- env]

SGiLl L N INTERRUPTED P (OR P—1) INTERRUPT
[1~ HANDLER
= — \\ INTERRUPTED ENV CODE

_] o INTERRUPTED L
L] RO
R1
INTERRUPT 2
HANDLER
STACK R3
(e.. LOCAL IXIT
STORAGE) Ra
RS
e A
R6
R7 L/\/\/—_/

Figure 2-59. SIV Entry and Interrupt Stack Marker

2-109

Interrupt System

Li[-4] = M, the MASK Register setting at the time of the interrupt
Li[-3] = S, the S Register setting at the time of the interrupt
Li[-2] = P, the P Register setting at the time of the interrupt
Li[-1l] = ENV, the ENV Register setting at the time of the interrupt
Li[0] = L, the L Register setting at the time of the interrupt

In addition, each time an interrupt occurs the current contents of the
Register Stack (RO through R7) are saved in the first eight locations
of local storage (i.e., SG[Li+l] through SG[Li+8]).

Interrupt Sedquence
An interrupt (i is the interrupt number) is defined as:

if INTA.<i> land MASK.<i> then ! an interrupt occurred
begin

Vi := interrupt parameter; if any

1
sysdatal[Li-4] := MASK; !
sysdatal[Li-3] := S; !
sysdatal[Li-2] := P; ! interrupt stack marker
sysdata[Li-1l] := ENV; !
sysdatalLil := L; !
sysdata[Li+1l] := RO !
thru ! saved Register Stack
sysdata[Li+8] := R7 !
ENV := %3447; ! PRIV, DS, CS, V, RP = 7
L := Li;
S := L + 8;
P := Pi;
MASK := MASK LAND Mi;
end;

An example is discussed in the following paragraphs, with reference to
Figures 2-60 and 2-61. (The first 10 steps are shown in Figure 2-60.)

1. An interrupt condition occurs (in this example, a device is
requesting standard i/o servicing).

INTA.<14> := 1;

2. The current instruction completes executing and, since MASK.<14>
is a "1", an interrupt occurs.

if INTA land MASK then ! interrupt.
begin

3. There is no interrupt parameter for a standard i/o interrupt.
4. The interrupted environment (including the current MASK and S

Register settings) is saved in the area pointed to by Li in the
SIV entry for the standard i/o interrupt.

2-110

Interrupt System

(1) STANDARD 1/O INTERRUPT
Ui
INTA REGISTER OccuRs

5 6 7 8 9 10 11y 12

LT]

z—EEEEEEEEiEEEEEEEEJ

—» (8)LAND
(MASK + REGISTER

LD e Jofefe]o]e]

% 177640
INTERRUPTED INTERRUPTED
CODE DATA
(USER OR SYSTEM}

{USER OR SYSTEM]
I S PN

STACK L REGISTER
{2) INSTRUCTION MARKER C e
COMPLETES 3 N
P REGISTER
_—— — — LOCAL
«— [Tiazies” _h DATA
S REGISTER
- T30 T
e~
—_—
_/
—
N
SYSTEM
DATA
(\N\’/
SYSTEM
CODE
e Sy
P REGISTER (71 F L %3131 3 -—1
~ Wi % 177640 SG(% 1270}
- 19) 11 % 1747 3 5 %1747 SIV ENTRY FOR
i STANDARD 110
Li
M
Py
STANDARD /O Vi
INTERRUPT
HANDLER .
ey
IXIT (10)
- M %177777 (4] INTERRUPT STACK
~ S %3670 MARKER PUSHED
ENV REGISTER
[——o——3 P_%12765 L REGISTER
— % __ T ENV %17
D e 7 - % 3131
ENV REGISTER L ";34 6 [—3—
e] A1
R2
(51PRIV MODE =
SYSTEM DATA R4
SYSTEM CODE RS
R6
RY
S REGISTER
INTERRUPT
HANCLER
STACK

Figure 2-60. Interrupt Sequence

2-111

Interrupt System

10.

11.

2-112

sysdata[Li-4] := MASK; !
sysdatalLi-3] := S; !
sysdatal[Li-2] := P; ! interrupt stack marker
sysdata[Li-1] := ENV; !
sysdatal[Lil] 1= L; !
sysdatal[Li+l] := RO !
thru ! saved Register Stack
sysdata[Li+8] := R7 !

The PRIV (privileged mode), DS (data space), and CS (code space)
bits in the ENV Register are set. This defines the interrupt
handler executing environment.

ENV := %3447;
The L and S Registers are set with the address of the interrupt

handler's local data area. This is the value Li in the SIV
entry for the standard i/o interrupt.

-+~

L Li
S L

8;

The P Register is set with the address of the first instruction
in the Standard I/O Interrupt Handler. This is the value Pi in
the SIV entry for standard i/o.

P := Pi;

The Mi value in the SIV entry is ANDed with the current MASK
Register setting to derive a new MASK Register setting.

MASK .= MASK land Mi:

The first instruction of the Standard I/0 Interrupt Handler
exXxecutes.

I := codel[P];

The interrupt handler runs to completion, unless the interrupt
handler's mask allows interrupts or purposely unmasks any or all
interrupts and corresponding interrupts do occur. Finally, an
IXIT instruction is executed to return to the interrupted
process.

The IXIT instruction (see Figure 2-61) restores the interrupted
environment saved in the interrupt stack marker (at L[-4:0]);
that is, the MASK, S, P, ENV, and L Registers are returned to
their pre-interrupt values.

MASK := sysdata [L-4]; 1 (a)
S := sysdata [L-31; ! (b)
P := sysdata [L-2]; ! (c)
ENV := sysdata [L-11; o (d)
L := sysdata {Lji; i (e)

Interrupt System

(12a)

INTERRUPTED
CODE

T

SYSTEM
CODE

]

STANDARD 1O
INTERRUPT
HANDLER

IXIT

DISPATCHER
INTERRUPT
|
INT REGISTER *
Tl o e o oo []
|
MASK REGISTER ‘
1
s DR EREERR RN R
1
~» (12b)
MASK REGISTER
CITTI DI Tl TeloTolo]
1lrlafaapalifaj1lof1|o]lolojo|o
4
INTERRUPTED
DATA
STACK L REGISTER (116}
MARKER -— —
P REGISTER (11¢c)
[%2765] «—rl
S REGISTER (11b)
B P %3670
_J
—
SYSTEM
DATA
e
au INTERRUPT
P REGISTER — T — | M %
-—[C - — | s %3670 STACK
- P__%12765 MARKEF:?EGISTER
ENV_ %17 REGISTE
ENV REGISTER (11d) L %3476 [Zain]
ENV REGISTER
S REGISTER
- N
-~

Figure 2-61.

IXIT Sequence

2-113

Interrupt System

Also the Register Stack (values saved in L+1 through L+8) is
returned to its pre-interrupt condition.

12a. If no interrupt is pending when the IXIT instruction completes,
process execution resumes at the point of interruption.

12b. 1If another interrupt is pending, the interrupt sequence is
repeated from step 1, using the appropriate SIV entry to set up
the interrupt handler's environment.

Interrupt Types

The following paragraphs describe each of the interrupt types.

SPECIAL CHANNEL ERROR (0). This interrupt occurs when the i/o channel
detects types of errors that require software servicing. The error
number is placed in the parameter word. Certain errors have a second
error word giving the subchannel address and command, which is found
in R7 on entry to the interrupt handler.

UNCORRECTABLE MEMORY ERROR (l). This interrupt occurs when a memory
word is accessed by the IPU and contains an error which cannot be
corrected. The parameter contains the logical address of the page at
fault and the six syndrome Dits generated by the error correction
circuitry. These syndrome bits provide information for Tandem service
personnel. The format of the parameter word is:

V1.<0:5> = Jlogical page
Vl.<6:11> = syndrome
V1.<12:15> = map number

The contents of the data word that was in error is found in R7 on
entry to the interrupt handler.

MEMORY ACCESS BREAKPOINT (2). This interrupt occurs when the memory
breakpoint has been armed by the SMBP instruction and the breakpoint
memory address has been accessed in the desired manner. There is no
parameter. No interrupt occurs if the breakpoint was armed by the
Operations and Service Processor (OSP); instead, the processor
performs a system freeze and enters the idle loop.

INSTRUCTION FAILURE (3). This interrupt occurs when an unimplemented
instruction is executed, or when execution of a privileged instruction

2-114

Interrupt System

is attempted by a program which is not in privileged mode, or when an
abnormal condition is detected during the execution of certain
instructions. The parameter for this trap is the current instruction.

PAGE FAULT (4). This interrupt occurs when an attempt is made to
access an absent memory page (i.e., its map entry "absent" bit is set
to 1). The parameter word is:

v4.<0:5> = 1logical page
V4.<12:15> = map number

OSP I/0 COMPLETION (7). The i/o completion interrupt for the
Operations and Service Processor occurs when either a read or a write
operation to the OSP completes. The parameter word indicates the
status, as follows:

0 normal read completion

1 normal write completion
177777 character overrun detected on a read
$177776 write interrupt with negative byte count
%177775 read interrupt with zero or negative byte count

POWER FAIL (8). This interrupt occurs when a processor module power
failure is detected. A minimum of five milliseconds is available for
processing after this interrupt occurs before power is lost. There is
no parameter.

CORRECTABLE MEMORY ERROR (9). This interrupt occurs when a memory
error occurred and can be corrected. The parameter word is of the
same form as that for an uncorrectable memory error.

HIGH-PRIORITY I/O COMPLETION (10). This interrupt occurs when a
device that is connected to the high-priority interrupt poll line
requires servicing. There is no parameter.

INTERPROCESSOR BUS RECEIVE COMPLETION (l1l1). This interrupt occurs
when a transmission is received on either the X-bus or the Y-bus.
The parameter word is of the following form:

v11l.<0> = bus
0 received on X-bus
1l received on Y-bus

2-115

Interrupt System

V1il.<1:7> = gstatus

0 normal completion

1 unexpected packet

2 checksum error

3 misrouted packet

4 "unsequenced" packet

5 sequence error

6 illegal extended buffer address
V11.<8:15> = processor number of sender

In addition, R7 contains the checksum+l computed by the microcode
when a checksum error is detected.

TIME LIST (13). Every 10 milliseconds the microcode detects an
interval clock micro-interrupt and decrements the wait time of the
element at the head of the Time List. If it has gone to zero, control
passes to the Time List Interrupt Handler; otherwise, no action is
taken. There is no parameter.

STANDARD I/0O COMPLETION (l14). This interrupt occurs when a device
that is connected to the standard interrupt poll line requires
servicing. There is no parameter.

DISPATCHER (15). This interrupt cccurs when a DISP cor SNDQ
instruction is executed, or when a PSEM or VSEM instruction is
executed that requires operating system aid. Bit 15 of the parameter
word is set on a DISP, bit 14 is set on a SNDQ, bits 13 and 15 are set
on a PSEM when the semaphore cannot be obtained, and bit 12 is set
when a VSEM instruction must release a blocked process. No part of
the parameter word is ever cleared by the processor. If a Dispatcher
interrupt is pending but the contents of the parameter word are zero,
the interrupt is cleared.

POWER ON (16). This interrupt occurs when power is applied following
a power failure when memory is in a valid state and the maps have been
successfully loaded with no uncorrectable memory errors. The contents
of Loadable Control Store are invalid. There is no parameter for this
interrupt.

STACK OVERFLOW (17). This interrupt occurs when S exceeds 32,767
(i.e., the limit of the memory stack) following the execution of any
instruction which can change the S Register setting-- SETS, PCAL,
XCAL, ADDS, BSUB, or PUSH. There is no parameter.

2-116

Interrupt System

ARITHMETIC OVERFLOW (18). This interrupt occurs when the T (trap
enable) and V (arithmetic overflow) bits in the ENV Register are
simultaneously set to 1. There is no parameter.

INSTRUCTION BREAKPOINT (19). This interrupt occurs when a BPT
instruction is executed, or when an EXIT or DXIT instruction is
executed with ENV.<1l> set to 1 in the stack marker. The parameter is
the instruction which caused the interrupt.

INTERPROCESSOR BUSES

A NonStop II computer system has two interprocessor buses,
designated the X-bus and the Y-bus. Each processor module in the
system is connected to both buses and is capable of communicating
with any processor module (including itself) over either bus. See
Figure 2-62.

With any given interprocessor bus transfer, one processor module is
the source (and initiator), the other is the destination (and
receiver). Before a processor module can receive data over an

X BUS (0)
n
T ‘T - s
Y BUS (1)
0
T T 1
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
MODULE MODULE MODULE e o o MODULE
0 1 2 15

Figure 2-62. Processor Module Addressing

2-117

Interprocessor Buses

interprocessor bus, the operating system first configures an entry in
a table known as the Bus Receive Table (BRT). Each BRT entry
contains, among other things, the address where the incoming data is
to be stored and the number of bytes expected.

To transfer data over a bus (see Figure 2-63), a SEND instruction is
executed in the source processor module. The SEND instruction
specifies the bus to be used for the transfer, the destination
proc¢essor module, the number of bytes to be sent, the source location
in memory of the data to be sent, the sender's processor number, a
timeout value, and a sequence number. While the source processor
module is executing the SEND instruction and sending data over the
bus, the firmware in the destination processor module is storing the
data away according to the appropriate BRT entry (this occurs
concurrently with program execution). When the destination processor
module receives the expected number of bytes (the bus transfer is
complete), a Bus Receive interrupt is posted.

Y

SEND
INSTRUCTION
EXECUTED TO

TRANSMIT DATA

TO THE DESTINA-

TION PROCESSOR

SOFTWARE
PROGRAM EXECUTES
CONCURRENTLY WITH
RECEIPT OF
BUS DATA

|] DATA IS STORED IN
THE SYSTEM DATA
| I AREA POINTED TO

BY THE BUS

RECEIVE TABLE.
SOFTWARE PROGRAM |
IS INTERRUPTED WHEN

TRANSFER COMPLETES. |

INTERRUPT
HANDLER

SOFTWARE ROUTINE
PROCESSES DATA

SOFTWARE

SOFTWARE HARDWARE

SOURCE DESTINATION
PROCESSOR PROCESSOR
MODULE MODULE

Figure 2-63. Simplified Bus Transfer Sedquence

2-118

Interprocessor Buses

Bus Receive Table

The Bus Receive Table (BRT) contains 16 four-word entries, which
correspond to the 16 processor modules possible in a system. The
table begins at location SG[%1400].

Each entry in the BRT (see format in Figure 2-64) contains the address
in the virtual memory where the incoming data is to be stored, a count
of the number of bytes expected, and the expected sequence number.
(Refer to the "Memory Access" discussion for a description of virtual
memory addressing using absolute extended addresses.)

If a processor is to receive data over a designated bus, the
corresponding bit in the interrupt Mask Register must be a "1". These
mask bits, when on, enable both the receipt of data and the interrupt
itself. The bits are:

MASK.<11>
MASK.<12>

X-Bus Receive Enable
Y-Bus Receive Enable

SEND Instruction

The SEND instruction exXpects seven parameter words in the Register
Stack. These are shown in Figure 2-64, and are described as follows.

@ G.<15> gpecifies the bus (0 = X bus, 1 = Y bus) to be used.
e F.<0:15> is the sequence number to be sent.

@ E.<0:7> specifies the sender processor module, and E.<8:15>
specifies the receiving processor module.

® D.<0:15> is a value that is subtracted from 32,768 to derive the
number of 0.8-microsecond units allotted to completing a single
packet (l6-word) transfer. The timeout period is restarted for
each packet transferred. (This parameter is normally zero when
the operating system issues a SEND.)

® C.<0:15> and B.<0:15> form the absolute extended (byte) address of
the buffer containing the data to be transferred.

@ A.<0:15> is an unsigned count of the number of data bytes to be
transferred.

Following execution of the SEND instruction, the condition code is set
to either of two values:

Packet Timeout
Successful

CCL
CCE

2-119

Interprocessor Buses

BUS RECEIVE
TABLE
(SYSTEM DATA)

SG[%1400]/

-
~

m =

» W O O

BRT ENTRY

ABSOLUTE EXTENDED BUFFER ADDRESS

(ADDRESS CONTINUED)

UNSIGNED BYTE COUNT

SEQUENCE NUMBER EXPECTED

0 1

SEND PARAMETERS
IN REGISTER STACK

7 8 12

15

7

b

SEQUENCE NUMBER

RECEIVER CPU

SENDER CPU T

TIMEOUT VALUE

ABSOLUTE EXTENDED BUFFER ADDRESS

(ADDRESS CONTINUED)

BYTE COUNT

2-120

Figure 2-64.

Formats Associated with Bus Transfers

Interprocessor Buses

Specifically, the SEND instruction exXecutes as follows:

1. The hardware checks whether the OUTQ is empty, since it must be
empty when the send begins. If the OUTQ is not empty, the
hardware checks for interrupts and services any that are pending.
Then it checks for a timer overflow. If the timer did not
overflow, it updates the timer and begins step 1 again. If a
timer overflow occurred, indicating that the 0OUTQ did not become
empty within the timeout period, a packet timeout occurs and the
SEND is aborted. Timeout is defined as:

0.8(32768 - D) microseconds

2. 1If data remains to be sent (i.e., count <> 0), it is placed in the
OUTQ (bytes 4 through 29, or 0OUTQ[2:14]). 1If there are fewer than
26 bytes to be transferred, OUTQ[2:14] is padded with zeros. The
sequence number is placed in OUTQ[l] and the routing word in
OUTQ[0]; an odd parity checksum is calculated and placed in
OUTQ[15]. The packet is then sent, and the transfer address and
count parameters are updated. The transfer address is an absolute
extended address, and the count is an unsigned byte count.

3. If no data remains to be sent, the SEND is flagged internally as
"done" and the condition code is set to CCE to indicate a
successful completion.

4. If a packet timeout occurs, the operation is also flagged
internally as "done". However, the condition code is set to CCL
to indicate a packet timeout.

5. The sequence repeats back to step 2.

Bus Transfer Sequence

As previously stated, there must be coordination between the source
processor module and the destination module in regard to the number of
bytes to be transferred. The operating system accomplishes this by
preceding each transfer with a separate transfer (i.e., SEND) of a
predetermined number of bytes of control information. 1In general,
this control information tells the operating system in the destination
module to expect a specified number of bytes over a specified bus. 1In
the following example, illustrated in Figures 2-65a and b, assume that
the initial transfer has taken place. The operating system in the
destination module has configured the appropriate BRT entry for
receiving 400 bytes.

2-121

Interprocessor Buses

TO PROCESSOR

X BUS MODULE 3
(
Y BUS
SYSTEM \ SYSTEM
CODE DATA
G 0
m F ABSOLUTE
SEND - E[7 [3 ADDRESS
S D o 1466
~ cl ------eee--- /
~pl - 1466
A 400
DATA
SOURCE
DATA TO BE -
BUFFER SENT
{400 BYTES)
PROCESSOR
MODULE 1

2-122

Figure 2-65a.

Bus Transfer Sequence (Send)

Interprocessor Buses

FROM PROCESSOR

MODULE 1
X BUS

Y BUS

(2) X BUS RECEIVE ——

MASK REGISTER %%%%“y//,’l

SYSTEM
DATA
IS
~ — & SG[%1254]
INTERRUPT PARAMETER M SIV ENTRY FOR

P

Lofefefefelofoofafo]ofofefoo]s]
I

X BUS COMPLETION

I \

|
|
BUS STATUS CcPU1 |
|
|

............. SG[%1404](2)
r ,,,,,,, 1530 BRT ENTRY FOR
400 X BUS, CPU 1
I 0
SYSTEM

CODE |
| W
|
_ (4) l

I |

l | |
X BUS 400 BYTES
el o | onom
5 FROM CPU 1
”Ac"(‘)%LEER : : : VIA X BUS

| | |

| |

DESTINATION
IXIT 6) | DATA BUFFER

| M INTERRUPT STACK
i MARKER SAVING
L G INTERRUPTED
B — ENVIRONMENT

STACK FOR
X BUS
COMPLETION
INTERRUPT

W PROCESSOR
MODULE 3

Figure 2-65b. Bus Transfer Sequence (Receive)

2-123

Intearprocessor Buses

1.

A SEND instruction is executed in the source processor module
(processor module 1l). The SEND parameters specify:

@ X-Bus to Processor Module 3 (stack register G).
® A sedquence number (ignored in this example) (F).
@ Sender cpu 1 and receiving cpu 3 (E).

® A packet timeout value of 0 (meaning that a timeout occurs if a
single packet transfer takes longer than 26 milliseconds) (D).

® A source buffer location address of 1466, which represents only
the word and byte field values (11l bits of B) of the full
32-bit virtual memory address. (This is an absolute extended
address. For simplicity, the other 21 bits of the address,
representing the segment and page fields, are ignored
throughout this example. Refer to the "Memory Access"
discussion for a description of virtual memory addressing using
absolute extended addresses. Also note that since extended
addresses are byte addresses, transfers on odd byte boundaries
are permitted.)

® A count of 400 bytes to be transmitted (Aa).

The SEND instruction transmits the 400 bytes to processor module 3
via the X-bus, then completes. The parameters are deleted from
the Register Stack and the condition code is set to CCE
(indicating a successful operation).

Meanwhile, processor module 3, which has been previously readied
for this transfer, has MASK.<1ll> set to a "1" to enable receipt of
data over the X-bus and has its BRT entry for processor module 1
configured as follows:

@ The transfer address where the incoming data is to be stored,
starting at byte address 1530.

e The count of the number of bytes expected, 400.
® The initial sequence number.

The data, as received, is stored away as indicated by the BRT
entry. As the data is stored, the transfer address is incremented
accordingly and the count is decremented accordingly.

When the count in the BRT entry reaches zero, 400 bytes have been
received. At this point an interrupt occurs through the SIV
(System Interrupt Vector) for interprocessor bus completion. The
parameter associated with this type of interrupt contains the
processor module number of the source processor module, the bus
flag (0 in this example), and the error (also 0 in this example).

2-124

Interprocessor Buses

5. The interrupt handler code for bus completion now exXecutes.
Because INT.<1l> in the interrupt register is now set, further
data transmissions to this processor module over the X-bus are
rejected. Additionally, the Mi word in the SIV entry for bus
completion masks off further interrupts in the MASK.<1ll:12>
positions.

6. When the IXIT instruction eXecutes, the previous MASK register
setting is restored. Since the interrupt handler has already
reset INT.<1l1l>, processor module 3 is again enabled for receiving
data over the X-bus.

Figure 2-66 shows the relationships of the transfer address, count,
and sedquence number in the BRT entry, and also the incoming data
storage in the transfer location.

OUTQ, INQ, and Packets

The interprocessor buses are significantly faster than memory.
Therefore each processor has a buffered interface to both buses,
consisting of two l6-word output buffers (called OUTQ X and OUTQ Y),
and two l6-word input buffers (called INQ X and INQ Y). See Figures
2-67a and b.

BRT ENTRY TN NN

ADDRESS: | 1530 | 20— ------ 1740 — - 1930

COUNT: 400 190 [— INTERRUPT
SEQUENCE: 0 14 30

- : %))
g) 0

DATA BUFFER

1

START MIDDLE FINISH

Figure 2-66. Incoming Data Storage

2-125

Interprocessor Buses

) Y BUS B
¢ {
A
X BUS)
A T —
]
===/ * ROUTING WORD
| | SEQUENCE #
| - 7 13 WORDS J
I |
CHECKSUM
e SYSTEM e ———
outay DATA ouTa x
c = - —
ADDRESS o |—— e o
COUNT . [_ 26 m
BYTES |
-------- " |
374 % 2 -1 (2)— Y
BYTES |
............ |
-------- 1282 |-—
348 - 26 B @
BYTES |
............ / |
-------- 1306 |
- 4,
322 - 2 (’_)
BYTES |
M
........ 1620]— [oBviEs / 10 BYTES N
- N (18)
10
16 ZEROS
AFTER /f - _/\f\/\/_
COMPLETION 4 | 1630
OF SEND [
PROCESSOR
MODULE 1

2-126

Figure 2-67a.

Sending and Receiving Packets

Interprocessor Buses

X BUS

i Y BUS

ROUTING WORD |
SEQUENCE #

- > S
13 WORDS N |
-

1
|
CHECKSUM S — CHECKED BY _ — —
NG X HARDWARE

10 12 13 14 15

MASK REGISTER <§§1§§3 1 [§§{§§E§§E§§

TABLE ENTRY

! TN~ BUS RECEIVE

- |
o) 1530 ADDRESS

1ST PACKET 400 COUNT
| 26 BYTES

2ND PACKET 374
26 BYTES :
_J ..

[- [T 1556
e

— - — -

26 BYTES |

L
N ™ 3RD PACKET | 348
| -

(4) - .
> 4TH PACKET 322
| 26 BYTES

) 16TH PACKET
+» [ToBTEs | -~ —

0 — INTERRUPT
THROUGH

L~~~ SIV 11

PROCESSOR
MODULE 3

Figure 2-67b. Sending and Receiving Packets

2-127

Interprocessor Buses

Data is transmitted over a bus in the form of l6-word packets. The
SEND instruction fills the output buffer with 26 data bytes (13
words), plus a one-word sequence number, one word for sender and
receiver numbers, and a one-word odd-parity checksum. The instruction
then signals the bus interface hardware that it has a packet ready for
transmission. After the l1l6-word packet is transmitted, execution of
the SEND instruction resumes at the point where it left off. 1If the
last packet of the block contains less than 26 data bytes, the
remaining data bytes are filled in with zeros. The SEND instruction
terminates when the last packet is transmitted.

When either of the INQ X or INQ Y buffers in the destination processor
module is filled and the corresponding MASK register bit is a "1", a
microinterrupt occurs. The action taken by the processor module
during the microinterrupt (which is transparent to the executing
process and to the operating system) is:

e The count in the BRT entry is checked. 1If the count indicates that
data is expected, 26 bytes (or less if the count is less) are read
into memory at the location specified. The transfer address and
count are then updated accordingly.

® The checksum of the packet is checked. 1If the checksum is valid
and the count still exceeds zero, the INQ is marked empty
(permitting further transmissions to take place) and the normal
instruction execution sequence continues.

e If the count is now zero or if any transmission error is detected
(checksum error, incorrect target, sequence error, etc.), the INT
register bit associated with the bus used for the transmission
sets,; and an interrupt occurg. In the case of a transmission

error, the count word is not updated. When a normal receive
completes, the count word will contain zero.

INT and MASK Registers

These registers have a direct bearing on the ability of a processor
module to accept data over an interprocessor bus. As shown in Figure
2-68, data packets from the buses are accepted into INQ X or INQ Y
whenever the data is sent to this module (provided that the INQ is
empty). Once the data is accepted, the corresponding bit in the
Interrupt Register (bit 11 and/or 12 of INTA) is then set. If the
corresponding bit of the Mask Register is also set (i.e., Mask and
INTA bits ANDed together), a Bus Receive interrupt occurs that causes
the IPU to transfer data to memory.

If a source processor module attempts a SEND to a processor module
that is not enabled for receiving data (Mask bit inhibits destination
IPU from emptying its INQ), the source module receives a Packet
Timeout indication.

2-128

Interprocessor

Buses

X BUS

Y BUS

~— INQ Y

\—’ iNQ X

|
|

INTA REGISTER
11 12

0 | O s ceer

.

AND AND

'

R R s
)

~

TO MEMORY

Figure 2-68. Bus Receive Enabling

2-129

Input/Output Channel

INPUT/OUTPUT CHANNEL

Each processor module has a single block-multiplexed input/output
channel through which all input/output takes place. Device-dependent
i/o controllers are attached to the channel, and each controller may
have one or more subchannels. A processor may address up to 256
subchannels. See Figure 2-69. Each controller is connected to two
different processors, and the subchannel numbers that it responds to
need not be the same on both processors. (Dual-port operation is
considered later in this section.)

The first subchannel number for a given controller must be a multiple
of 8, and the remaining subchannels follow in consecutive order.

The operating system performs input/output operations (see Figure
2-70) by first configuring an entry in a system table called the I/O
Control table (IOC). The IOC contains 256 entries, one for each
subchannel that can possibly communicate over the i/o channel. Each
entry contains the address of the data buffer and a count of the
number of bytes to be transferred. Once the entry corresponding to
the device is configured, an EIO (Execute I/O) instruction is executed
to initiate the i/o transfer; the actual data transfer is performed
concurrently with program execution. When the transfer completes, an
interrupt to an operating system interrupt handler takes place. 1In
the interrupt handler, an IIO (Interrogate I/O) instruction or an HIIO
(High-priority Interrogate I/0) instruction is executed to check the
outcome of the operation.

I/0 Control Table

The data to be transferred between memory and a specific unit is
determined by an entry in the I/O Control Table (IOC). As illustrated
earlier (Figure 2-55 and Table 2-2) this table occupies all of the
second page of the System Data segment. It contains a four-word entry
for every possible subchannel which may be connected to a processor
module. See Figure 2-71.

The first word of the the IOC entry specifies the starting address of
the i/o buffer in virtual memory. Bits 6 through 9 specify one of the
maps, and bits 10 through 15 specify the starting logical page number
within the map. It is permissible for i/o buffers to cross map
boundaries.

The second word of the IOC entry specifies the number of bytes

remaining to be transferred. This value is decremented after each
word transfer.

2-130

Input/Output Channel

PROCESSOR
MODULE

DUAL-PORT
CONTROLLER

—

<Z SUBCHANNELS
1 2 3
I

|

4 5 6 7

UP TO 8 UNITS PER CONTROLLER

r

%30

11
3
SUBCHANNELS

|
L

%31 %32 %33 %34 %35 %36 %37

r

%200

It
AL

%201 %202 %203 %204 %205 %206 %207

Figure 2-69. 1I/0 Channel Addressing

2-131

Input/Output Channel

SOFTWARE |

110 TRANSFER
INITIATED
USING AN EIO
INSTRUCTION

SOFTWARE
PROCESS
EXECUTION
CONTINUES

INTERRUPT
HANDLER

CHECKS OUTCOME OF
110 TRANSFER

HARDWARE

1/0 TRANSFER,
DIRECTED BY I0C TABLE,
OCCURS CONCURRENTLY

WITH SOFTWARE
PROCESS EXECUTION

SOFTWARE PROCESS
IS INTERRUPTED
WHEN /O COMPLETES

2-132

Figure 2-70.

Simplified I/0 Sequence

Input/Output

Channel

SUBCHANNEL

- o

N

o s

o

A AR A

~

AN

253

N
a
a

/‘R/_L\/

1/0 CONTROL
TABLE
(SYSTEM DATA)

$G[1024) -
-

-
-

-

Ped
-

$G[2047]

P STATUS l MAP 1 BASE PAGE

BYTE COUNT

PAGE OFFSET WORD

}—

{RESERVED)

P= PROTECT BIT (1=OUTPUT ONLY)

STATUS=TRANSFER STATUS

MAP=MAP NUMBER

BASE PAGE= STARTING PAGE OF BUFFER

BYTE COUNT= NUMBER OF BYTES REMAINING TO BE TRANSFERRED
PAGE OFFSET=PAGE NUMBER RELATIVE TO BASE PAGE FOR

CURRENT WORD TRANSFER
WORD=WORD IN PAGE FOR CURRENT WORD TRANSFER

EIO PARAMETERS IN
REGISTER STACK

PARAMETER INFORMATION

CMD MOD 1 CMD I CXT l SUBCHANNEL

] 3 4 5 6 7 8 15

CMD = COMMAND (A . (4:5>)

0= SENSE

1=WRITE

2= READ

3= CONTROL .
CXT = COMMAND EXTENSION
CMD MOD = COMMAND MODIFIER (A <G:3)) IS
DEVICE DEPENDENT EXCEPT:

0= COLD LOAD IF CMD = 2
%17 = TAKE OWNERSHIP & CLEAR DEVICE IF CMD < >2
%17 = PORT DISABLE IF CMD = 2

DEVICE STATUS RETURNED
IN REGISTER STACK
FROM EIO

3 a4 15

o 1 2
ol 1 l 8 l P l SUBCHANNEL STATUS

CHANNEL STATUS

O = OWNERSHIP (1= OWNED BY OTHER PORT)

L = INTERRUPT PENDING (1= DEVICE IS
SIGNALLING INTERRUPT)

B = BUSY CONTROLLER {=1)

P =PARITY ERROR (=1}

EIO CONDITION CODES:

CCL = CHANNEL ERROR

CCE = OPERATION SUCCESSFUL

CCG = CHANNEL ERROR

STATUS RETURNED IN REGISTER
STACK FROM 110 & HIIO

INTERRUPT CAUSE

ofiiale] I

SUBCHANNEL

CHANNEL STATUS

0 12 3 4 8 15

O & | ARE DESCRIBED ABOVE
A =DATA TRANSFER ABORTED (=1}
P =PARITY ERROR (=1)

110 & HIIO CONDITION CODES:

CCL = CHANNEL ERROR DURING 110
CCE = OPERATION SUCCESSFUL
CCG = CHANNEL ERROR

Figure 2-71.

Formats Associated with Input/Output

2-133

Input/Output Channel

The third word of the IOC entry specifies the current word in the
buffer that needs to be transferred. Since the page offset value
given in bits 0 through 5 is relative to the base page value given in
the first word of the entry, these two values are added together to
derive the actual logical page in memory currently being accessed for
word transfers. This value is incremented after each word transfer.

To prevent erroneous data transfers, the operating system either sets
the second word in IOC entry to zero when transfers are not expected,
or, if the last transfer was outbound, sets the protect bit. If a
device attempts to transfer data and the byte count is zero, the i/o
channel aborts the operation, causing an interrupt to occur. In such
a case, the status returned by the device as a result of an IIO or
HIIO reflects the error.

EIO Instruction

To perform an I/0 operation, the IOC entry for the unit must first be
correctly initialized. An EIO instruction is then executed,
specifying the controller, unit, command, and other parameter
information. These parameters are placed in B and A of the Register
Stack. (See format in Figure 2-71.)

The parameters to the EIO instruction are described as follows:

e The parameter information word in B is a device-dependent parameter
that is sent to the specified device.

@ Command bits A.<0:5> gpecify the operation that the device is to
perform. The CMD bits, A.<4:5>, specify the general type of

command :
0 = sense
1l = write
2 = read
3 = control

The CMD MOD bits, A.<0:3>, modify the command, allowing up to 64
device-dependent commands.

Three configurations of these fields are reserved:

CMD CMD MOD Description

2 0 Perform cold 1load
3 %16 Disable port (kill)
3 317 Take ownership and clear device

@ The CXT bits, A.<6:7>, are available as command extension bits,
specific to each device that requires them.

2-134

Input/Output Channel

® The subchannel field, A.<8:15>, specifies one of 256 subchannels.

The EIOQO instruction replaces the two parameter words by two words
containing the device status, and sets the condition code according to
the outcome of the instruction. The condition code settings are as
follows:

CCL: Channel error (while executing EIO)
CCE: Operation successful
CCG: Channel, controller, or device error

The device status is of the form:

B.<0> = ownership

B.<1> = interrupt pending
B.<2> = busy

B.<3> = parity error
B.<4:15> = subchannel status
A.<0:15> = channel status

The status bits returned in B have the following meanings:

® O <ownership>, B.<0> is a "1" if the device is owned by other port.
No data is transferred.

e I <interrupt pending>, B.<1l> is a "1" if the device is
interrupting. Nc data is transferred.

e B <busy>, B.<2> indicates that the device is already executing an
i/o transfer (this includes seeking on a disc or rewinding on a
magnetic tape). No data is transferred because of this EIO.

® P <parity>, B.<3> indicates (if a "1") that a parity error
occurred.

ITIO0O and HIIO Instructions

Following the successful initiation of an i/o operation by an EIO
instruction, an interrupt occurs when the operation completes. At
this point, an IIO (or HIIO) instruction must be executed to determine
the cause of the interrupt. (IIO is "Interrogate I/O"; HIIO is
"High-Priority Interrogate I/O".) When the IIO or HIIO is executed,
the highest priority device with an interrupt pending returns its
subchannel number, and status pertaining to the interrupt.

2-135

Input/Output Channel

The three status words returned by the execution of an IIO or HIIO
instruction to the Register Stack are of the form:

C.<0:15> = 1interrupt cause
B.<0> = ownership

B.<1> = interrupt pending
B.<2> = aborted

B.<3> = parity error
B.<8:15> = subchannel number
A.<0:15> = channel status

The status bits have the following meanings:

e The interrupt-cause field, C.<0:15>, is related to the particular
subchannel that is interrupting.

e O (ownership), B.<0>, is a "1" if the controller is "owned" by the
alternate port (see the description of "Dual Port Controllers and
Ownership" that follows).

e I (interrupt pending), B.<1>, is a "1" if the device has an
interrupt pending. WNormally this should not be set at this time;
otherwise some problem is indicated.

® A (aborted) B.<2>, is a "1" if the data transfer was aborted.

e P (parity error), B.<3>, is a "1" if a parity error was detected
during the data transfer sequence.

e The subchannel field, B.<8:15>, is the controller and unit number
asgsociated with the interrupt.

e The channel status field, A.<0:15>, defines a possible channel
error and may have the following values:

$000000 No error detected by the channel

2000100 Device Status <0:3> non-zero

2000200 Channel detected a parity error on RIC (Read Interrupt
Command)

$000400 Channel detected a parity error on RIST (Read Interrupt
Status) or RDST (Read Status)

$177777 Instruction timed out waiting for the i/o channel to
become available

Elm—m——o Channel Status = IOBUS Control Field

Following execution of an IIO or an HIIO instruction, the condition
code is set as follows:

CCL: Channel error (while executing the instruction)

CCE: Operation successful
CCG: Channel, controller, or device error

2-136

Input/Output Channel

Input/Output Sedquence

A typical data transfer sequence over the input/output channel is
depicted in Figure 2-72. The sequence is as follows:

1. Instructions in the i/o driver procedure are executed to configure
the IOC entry for the subchannel where the transfer is to
take place. 1In this case, the IOC entry is at SG[%2030] for
subchannel 6.

2. The EIO parameters are loaded onto the Register Stack.

3. An EIO instruction is executed. The parameter information is sent
to subchannel 6.

4. To indicate its outcome, the EIO instruction returns two status
words to the top of the Register Stack and sets the Condition
Code. These are checked by subsequent instructions.

5. Meanwhile, the data transfer takes place. Data is transferred
from subchannel 6 to the location in memory indicated by the IOC
entry for that subchannel. As the data is transferred into
memory, the transfer address and count word in the IOC are updated
accordingly.

6. When the count word in the IOC reaches zero, indicating that the
transfer is completed, the channel signals the controller. The
controller stops transferring and signals the IPU with an
interrupt. The INTA.<14> bit in the interrupt register is set to
"1" to signal interrupt pending. If the corresponding bit in the
MASK register is set, an interrupt through the SIV entry for
Standard I/0 (at SG[696]) occurs. The Mi entry in the SIV
causes any further standard i/o interrupts to be deferred while
the i/o completion interrupt handler is active.

7. The interrupt handler executes an IIO instruction. Executing IIO
signals the highest priority interrupting controller to stop
interrupting and returns three words of status information to the
top of the Register Stack. (Controller priorities are set into
the hardware at installation time, and may be adjusted by Tandem
field service representatives as necessary for load balancing.)
The status words contain the subchannel number of the interrupting
device as well as interrupt cause and channel status information.

8. When the interrupt handler for standard i/o completes, an IXIT
instruction is executed. IXIT restores the previous Mask Register
value (which allows any pending standard i/o interrupt to occur)
and attempts to return control to the interrupted code. Typically
the operating system intervenes at this point and the i/o process
and, later, the user process are notified of the completion of the
original input/output request.

2-137

Input/Output Channel

by T

SYSTEM
CODE
REGISTER
[~ STACK
!
2) PARAM)jm
EIO A c@Eﬂ 6 o
B STATUS
A STATUS - N
|
|
I | 1
|
~— > ¢ | _INT CAUSE '
| 8 6 } - :
| A STATUS
! l
! i
—
1o -
(7 CONTROLLER
STANDARD
10 SYSTEM
INTERRUPT DATA
HANDLER
(T 77,
[} saroto7or Lo SUBCHANNEL
! G[%1270] |t B s
TXIT gy S P =
| Vi SIV ENTRY FOR
s L STANDARD 1/0
AN NP | AIIIIIY COMPLETION

SG[%2030]

L
BASE

6y
INTERRUPT
WHEN
COUNT = 0

COUNT

ADDRESS

e

MASK

S

P

ENV

L

STACK
FOR
STANDARD
(Ko}
INTERRUPT
HANDLER

72

10C ENTRY
FOR SUBCHANNEL 6

INTERRUPT
STACK MARKER

SAVING INTERRUPTED

ENVIRONMENT

wrhsrtedl

H— —

BUFFER
AREA

0

2-138

Figure 2-72.

Input/Output Sequence

Input/Output Channel

Dual-Port Controllers and Ownership

Each controller in the NonStop II computer system is connected to the
input/output channels of two processor modules. This provides
redundant communication paths to i/o devices. As shown in Figure
2-73, this means that a single subchannel has entries in the IOC's of
two processor modules. Note that the ports need not have the same
subchannel address on both channels.

Although each controller has two ports and is fully capable of
communicating through either i/o channel, only one channel is used
during normal operation; the other channel, as far as a particular
controller is concerned, is not used. The i/0 channel through which
communication to a particular controller occurs is said to "own" the
controller. All input/output transfers (i.e., control and data) occur
through the channel owning the controller. This is illustrated in
Figure 2-74.

Each of the two ports in a controller contains a flag bit known as the
"ownership" error bit. The state of these bits determine the channel
from which the controller will accept commands. An operating system
configuration parameter specifies which channel is to be the primary
channel of communication for a particular controller.

The operating system transfers data only through the owned side.

(An attempt to communicate through the unowned side results in the EIO
instruction being rejected with an ownership errorj). If, during the
course of a data transfer, the primary path to the controller (i.e.,
the primary processor module, channel, or port) becomes inoperable,
the operating system generally executes a "take ownership" operation
(of an EIO instruction) over the alternate (backup) channel. (One
exXception: 1in case of a port failure on a multiple-controller device,
the operation is retried using another controller, with no change of
ownership.) The "ownership" bits in the controller switch over to
point to the alternate i/o channel. All subsequent data transfers now
occur through this channel.

Each port also has two "disable" bits that are separate from its
ownership bits. A disable bit, if a "1", prevents a controller from
transmitting information through that port onto an i/o channel. The
disable bit is set by an EIO instruction "set disable" command.
Normally, this is used by the operating system when a controller
performs some unexpected action that could affect the entire channel.
The disable bit is associated with a port, so if the malfunction is in
one port, normal communication with the controller still occurs via
the other port.

2-139

Input/Output Channel

10C

CPU O

1/0 CHANNEL

JUMPER WIRED
WITH SUBCHANNEL
ADDRESSES ON

CPU 0'S I/O CHANNEL

5

CPU 2

DUAL-PORT
CONTROLLER

/__l_—\

JUMPER WIRED WITH
SUBCHANNEL
ADDRESSES ON

CPU 2'S 1/G CHANNEL

SUBCHANNEL NO.

FROM CPU 0 %20 %21 %22

FROM CPU 2: %40 %41 %42

34

DOV
- Qv

%23 %24 %25 %26 %27

%43 %44 %45 %46 %47

1/0 CHANNEL

Figure 2-73.

2-140

Dual-Port Addressing

Input/Output Channel

CPU 0O CPU 2

OWNERSHIP IS TAKEN

BY CUP 0 WHEN AN

EIO WITH “TAKE OWNERSHIP”

IS ISSUED TO THIS CONTROLLER.

OWNERSHIP OWNERSHIP
ERROR BIT ERROR BIT
ALL DATA AND /-—1->Ec:]<--—————-<-l——\ AN EIO TO THE
CONTROL | | “UNOWNED" SIDE
INFORMATION | | IS REJECTED WITH
TRANSFERS N\ _ L O\O N A “DEVICE 1S
OCCUR VIA THE ogue, OWNED BY OTHER
“OWNED" SIDE. PORT PORT PORT" STATUS
TYPICALLY, IF NECESSARY, CPU 2 CAN
OWNERSHIP IS NOT TAKE OWNERSHIP AWAY FROM
CHANGED UNLESS CPU 0 BY ISSUING AN EIO
A FAILURE OCCURS. WITH “TAKE OWNERSHIP" TO

' \!{S CONTROLLER.

SUBCHANNELS

Figure 2-74. 1/0 Controller Ownership

2-141

Input/Output Channel

I/0 Channel Interrupts

A controller signals an interrupt to the IPU when its associated
transfer has completed. A controller also interrupts if it is
necessary to terminate a transfer prematurely.

When simultaneous interrupts occur on an i/o channel, a priority
scheme determines which interrupt is handled first. A subchannel
continues to interrupt until cleared. ©Normally, this clearing is done
via an IIO or HIIO instruction.

High-Priority I/0

Two levels of interrupt are available on an i/o channel: standard i/o
and high-priority i/o. Standard i/o is characterized by controllers
that interrupt through the SIV entry for standard i/o. Likewise,
high-priority i/o is characterized by controllers that interrupt
through the SIV entry for high-priority i/o. Whether a controller
interrupts with standard or high priority is determined by a jumper
connection on a controller.

High-priority i/o is used by applications requiring an ultra-fast
response time (as in some communications environments). The operating
system never masks off the high-priority interrupt position, thereby
ensuring that no matter what is executing in a processor module, a
high-priority interrupt will be recognized instantly.

MEMORY ACCESS

Logical vs. Physical Memory

Physical memory consists of some number of pages of main memory, each
page holding 2048 bytes in specific fixed locations.

Logical memory, on the other hand, is not defined in terms of physical
locations; instead, it is defined in terms of segments. A segment is
a contiguous logical address space rather than a partition of memory.
Thus, for example, if a program occupies 30 pages of a code segment
(which allows for 64 pages), the other 34 pages are not wasted
physical memory--only unused addresses.

2-142

Memory Access

Here is a list of thumbnail definitions for terms that are used in the
following discussions.

Standard Addressing Terms

page: 2048 bytes

logical page number: 0 to 63

logical address: logical page, word, and byte
physical page number: 0 to 8191

physical address:
segment (nonextended):
logical segment:

Extended Addressing Terms

relative segment number:
absolute segment number:
extended address:
extended data segment:

physical page, word, and byte
a 1l- to 64-page logical address space
any segment mapped by Maps 0 thru 5

0 to 8191

0 to 8191

segment, logical page, word, and byte
1 byte to 128 megabytes

Memory Entities
physical memory:
virtual memory:
logical memory:

Up to 8192 pages of main memory
Up to 524288 pages of disc + main memory
Up to 6 logical segments (Maps O thru 5)

In general usage, the term "segment" is usually understood to mean a
nonextended segment--that is, 1 to 64 pages. When referring to an
"extended" data segment, it is usually fully described as such.

Logical memory, the segments mapped by Maps 0 through 5, changes as
different processes come into execution, since new sets of code and
data are mapped by the "user maps." Thus, logical memory forms a
time-variable subset of virtual memory.

Note also that there are four kinds of addresses. For standard
(16-bit) addresses, there are logical and physical addresses. For
extended (32-bit) addresses, there are relative and absolute
addresses.

Memory Table Formats
Figure 2-75 illustrates the formats for the various address word and

table entries. The following paragraphs describe each of these
formats.

2-143

Memory Access

0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
[PAGE l WORD]
10 631 (0 10231
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
[PAGE WORD JBJ
031 (01023 1)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I Al 0 ! SEGMENT PAGE
: PAGE I WORD 8
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A o
SEGMENT 0:8191
PAGE: 0:63
WORD: 0:1023
B BYTE): 0:1
01 2 3 4 5 & 7 8 9 10 11 12 13 14 15
l PHYSICAL PAGE 10 8191 IRIDI;]
R REFERENCE BIT
) DIRTY BIT
A ABSENT BIT
o t 2 3 4 5 &% 7 B 9 10 11 12 13 14 15
I seecnme | AP I TaBLE SrIE
PAGE] STARTING WORD
6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
0 PHYSICAL PAGE R| D] A
3 PHYSICAL PAGE r{o|a
;
.
.
.
.
.
.
31 PHYSICAL PAGE IRTD A
ofo]o SEGMENT PG
. 1lojo SEGMENT PG
-
.
.
.
.
.
.
.
3 o!o[SEGMENT IPG
o 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15

16 BIT ADDRESS
(WORD ACCESS!

16 BIT ADDRESS
(BYTE ACCESS)

32 RIT ADDRESS

MAP ENTRY
PAGE TABLE ENTRY

SEGMENT TaBLE ENTRY

MAP 15
{EXTENDED ADDRESS CACHE!

MAP ENTRY CACHE

CACHE IDENTIFIERS

Figure 2-75.

2-144

Formats Used in

Memory Access Operations

Memory Access

16-BIT ADDRESS. 16-bit addresses are normally used to access both
code and data. Depending on whether the instruction being executed is
a word-addressing instruction or a byte-addressing instruction, a
16-bit address can take one of two forms, as shown in the first two
formats. For word access, the first six bits (0 through 5) specify
the logical page number. Bits 6 through 15 then specify which of the
1024 words on that page is the desired word. For byte access, bit 15
is used to specify a particular byte within a word: 0 for the left
byte and 1 for the right byte. The page field of the address word in
this case is therefore one bit smaller (bits 0 through 4), allowing
only the first 32 pages of a segment to be accessed for byte access
--that is, the first 32768 words of the segment. (For code
addressing, however, both halves of the segment can be accessed, since
the address is taken to be in the same 32 pages as the current setting
of the P Register.)

32-BIT ADDRESS. This is the address format required for accessing
extended data segments. The operating system can also use extended
addressing to agcess any segment in virtual memory, either in absolute
mode or in relative mode. Bit O of the address doubleword is used to
specify the mode: 0 for relative mode {(as in all user applications)
or 1 for absolute mode (restricted to privileged users). Bit 1 is
always 0. Bits 2 through 14 specify one of 8192 segments of virtual
memory; bits 15 through 20 specify the page within the segment; bits
21 through 30 specify the word within the page; and bit 31 specifies
the byte within the word if byte access is required. This format
provides a 30-bit virtual address space (1073 megabytes). Unlike the
16-bit address form, the 32-bit address does not borrow a bit from the
page field to allow a byte specifier; thus all 32-bit addresses are
byte addresses.

MAP ENTRY. The processor uses entries kept in map registers to
convert logical addresses to physical addresses. All words in the
maps are formatted as shown in the map entry/Page Table entry layout
(except in Maps 14 and 15, described below). Bits 0 through 12
specify a physical page number in the range of 0 through 8191.
However, if the Absent bit (bit 15) is a 1, the page is logically
absent, and attempting to access it will cause a page fault interrupt.
Bit 13, the Reference bit, is set to 1 on any access to the page, and
bit 14, the Dirty bit, is set to 1 on any write access to the page.
These two bits are used by the Memory Management software to select
the best pages for overlay when absent pages need to be brought into
physical memory from disc, and to keep track of whether a page that is
being replaced must first be copied to disc (i.e., is a dirty page).
Since maps are loaded from Page Tables, this format also applies to
Page Table entries and entries in the Map Entry Cache (see "Extended
Address Cache Entries" below).

2-145

Memory Access

SEGMENT TABLE ENTRY. Segment Table entries are used to define the
location of a Page Table for a particular segment. (For an
explanation of the Page Tables, see the discussion of "Absolute
Segment Addressing" later in this section.) Page Tables that are
currently not in use (i.e., not "mapped") are located in a memory
pool called MAPPOOL; however, if the table being sought is currently
in a map, the only valid copy of the Page Table is the one in the map.
In the latter case, bits 0 through 4 are used to specify that map
number, and all other bits in the entry can be disregarded. But an
entry of five 1's in this field indicates that the Page Table is not
in a map, and in this case bits 5 through 31 are used to locate the
table within MAPPOOL. Bits 5 through 8 specify which map defines

the location of the desired Page Table; bits 9 through 15 gpecify the
table size in words; bits 16 through 21 specify which entry in the map
defines the physical page number; and bits 22 through 31 specify the
word location on that page at which the Page Table actually starts.

EXTENDED ADDRESS CACHE ENTRIES. The Extended Address Cache (Map 15)
is divided into two halves. The first 32 entries comprise the Map
Entry Cache, and the second 32 entries are used for cache identifiers.
Each entry of the Map Entry Cache is formatted identically to the map
entry described above. The cache identifiers, however, each contain a
13-bit segment number and a single bit that represents the most
significant bit of a page number. These bits are used to determine
that the corresponding entry in the first half (the Map Entry Cache)
is correct for the logical page being addressed.

Memory Maps

The complete set of maps for one processor is a 16 by 64 array of 1024
registers; that is, there are 16 maps, each consisting of 64
individual registers. These map registers define the logical memory
and are used to provide the logical-to-physical address translation on
an access to memory.

Each 64-register map defines a 64k word address space (maximum).
These maps are used as follows:

0 User Data Segment. This map is loaded with the Page Table that
defines the data space of a particular program when that program
is activated. 1If DS is set to 0, all data references will be
into the space defined by this map unless they are via
instructions which use either extended addresses or the SG-
relative addressing mode.

1 System Data Segment. This map defines space for system tables
and stacks and for the interrupt handlers. The space defined by
this map is common to all programs, but it may be accessed only
if DS or PRIV is set. The following fixed tables known to the
processor reside in the first two pages of this space:

2-146

Memory Access

Dummy Priority Value, (=%0) %2
Current Process Control Block (CPCB) %3
Ready List (RLIST) $100:%101
Dummy Priority Value, (=%377) %102
Microsecond Counter (CLOCK) $103:%106
Time List Header (TLIST) $107:%110
OSP I/0 Control Block %$111:%114
Memory Breakpoint Trap Address (BPADDR) %115:%116
Trace Buffer Base (TRBASE) %117
Trace Buffer Limit (TRLIM) %$120
Trace Buffer Pointer (TRACE) 3121
LIGHTS Save Area %122
Breakpoint Table Base (BPBASE) %123
Breakpoint Table Entry Size (BPSIZE) 2124
Breakpoint Table Limit (BPLIM) %125
Processor Dump Save Area $1153:%1177
System Interrupt Vector (SIV) $1200:%1337
Currently Mapped Segments (CMSEG) $1340:%1357
Interprocessor Bus Error Packet $1360:%1377
Bus Receive Table (BRT) $1400:%1477
Input/Output Control Table (IOC) $2000:%3777

System data pages 0 and 1 are always assigned to physical memory
pages 0 and 1; these pages are always mapped. Physical page 2
is used as the power fail map save area. This page need not be
mapped via any map during normal operation.

User Code Segment. All code space references specify the
segment defined by this map if the CS and LS bits in the ENV
Register are 0. In addition, the LWUC instruction always
references this segment regardless of the ENV Register bit
settings. This map is loaded with the Page Table that defines
the code space of a particular program when that program is
activated.

System Code Segment. All code space references (except via the
LWUC instruction) specify the segment defined by this map if the
LS bit in the ENV Register is 0 and the CS bit in the ENV
Register is 1. This space is common to all programs.

User Library Code Segment. All code space references (except
via the LWUC instruction) specify the segment defined by this
map if the LS bit in the ENV Register is 1 and the CS bit in the
ENV Register is 0. This map is loaded with the Page Table that
defines the library code space of a particular program (if such
space exists for the program) when that program is activated.

System Code Extension Segment. All code space references
(except via the LWUC instruction) specify the segment defined by
this map if the LS bit in the ENV Register is 1 and the CS bit
in the ENV Register is 1. This space may be viewed as an
extension to the System Code segment and is common to all
programs.

2-147

Memory Access
6-13 Buffer Space. Buffers for i/o transfers and the Page Tables are
normally mapped into this space.

14 This map is reserved by the system for special purposes, and is
divided into several areas:

Microcode Scratch Registers Entries 0:27
Segment Table (SEG) 28:43
Physical Page Segment Table (PHYSEG) 4451
Physical Page/Logical Page Table (PHYPAGE) 52:59
Extended Address Base (Segment Base) 60:61
Extended Address Limit (Segment Limit) 62:63

15 Extended Address Cache. See Figure 2-75.

Absolute Segment Addressing

Each processor is viewed as having up to 8192 segments of virtual
memory, with each segment having from 1 to 64 pages. This allows a
processor to access up to 536,870,912 words of memory--that is, 64
times its maximum possible physical memory.

Segment numbers may be in the range of 0 through 8191, page numbers in
the range of 0 through 63, and byte-in-page numbers in the range of 0

through 2047. This then gives each processor a virtual address space

of the size: 8192%64*2048 bytes, or 1073 megabytes.

However, such an address requires 30 bits to represent it. To
accommodate this, a 32-bit addressing word is used. An extended
address is a 32-bit value having the following format (see Figure
2-75) :

0 Absolute
1 Not Used (=0)
2:14 Segment
15:20 Logical Page
21:30 Word
31 Byte

The Absolute addressing bit (A) indicates whether the address is to be
a relative address (=0) or is absolute (=1).

The Segment field (2:14) indicates the number of the segment (0:8191)
in which the item is found.

The Page field (15:20) defines the logical page (0:63) within the
segment.

The Word field (21:30) defines the word (0:1023) within the page.

The Byte field {31} defines the byte {0:1) within the word.

2-148

Memory Access

Each segment has an entry in the Segment Table, which contains the
address of the Page Table for the segment. Each segment's Page Table
contains entries which define the physical memory location (if
present) where each page of the segment resides.

Access to memory then occurs as follows. First, the segment number is
used as an index intc the Segment Table to find the address of the
Page Table; second, the page number is added to the address of the
Page Table and this is used to read the physical page number from
memory; finally, the physical page number is used with the word
address to access the desired word in memory.

The Segment Table provides, for each segment, a two word entry
formatted as follows (see Figure (2-75):

0:4 Map Number if Mapped

5:8 Map Number of Page Table

9:15 Table Size
16:21 Page Number } address of Page Table
22:31 Starting wWord within the map

The first Map Number field (0:4) indicates the. number (0:15) of the
map which contains the segment's Page Table if the segment's Page
Table has been loaded into one of the maps, or contains a %37 if the
segment is not currently mapped. (A segment, such as a process' code
space, might be in a map, such as the User Code map, when an extended
address reference was made to it. 1In such a case, the Page Table
entry in the map is accessed rather than the copy of the Page Table in
memory.)

The second Map Number field (5:8) defines the map (0:15) which defines
the address space containing the Page Table for the segment.

The Table Size field (9:15) defines the number of pages (0:64) that
are contained in the segment.

The Page Number and Starting Word fields (16:31) define the address
(within the space mapped by the map defined in bits 5:8) where the
Page Table for the segment is stored.

Each segment's Page Table contains a one-word entry for each page in
the segment. Each of these entries is of the same format as entries
in a map (see Figure 2-75).

Using the above defined data structures, a byte with an absolute
extended address in logical memory is found by the following steps:

1. First, the Page Table is found by indexing into the Segment Table
using the Segment Number field of the address.

2. The Page Number field of the address is used to access the Page
Table to see if the page is in main memory. If the page is not in
main memory, indicated by the Absent bit being set, then a Page
Fault interrupt occurs.

2-149

Memory Access

3. On the other hand, if the page is in main memory, then the
Physical Page field of the Page Table entry is used to select a
physical page of main memory.

4. Finally, the Word and Byte fields of the address specify one of
the 2048 bytes on that page in memory for access.

If a page fault occurs, then the operating system must bring the page
into main memory. The instruction which got the page fault is then
retried.

On any access to a given page, the R bit of the map element for that
page is set to 1 if it is not already set, and if the access is a
write, the D bit is set to 1 as well.

Byte addressing is not handled by the map or the memory, but must be
done by the IPU. On a byte read, the word containing the byte is
read, and then the IPU selects the appropriate byte. On a byte write,
the word containing the byte is read, the byte is changed by the IPU,
and then the word is written back to memory.

Relative Segment Addressing

Although internally the operating system must use absolute segment
numbers, this is never the case for user processes. A relative
segment mechanism is defined which is the default mode of access.

A relative segment address is similar to the absolute segment address,
except that the Segment Number field defines a relative rather than an
absolute segment. The two types of addresses are differentiated by
the A (Absolute) bit in the address, and only privileged programs may
use absolute extended addresses.

The first four relative segment numbers are defined for standard
(register-relative) addressing of code and data--though extended
addresses may also reference these segment numbers. These four
defined segment numbers are:

0 Current Data Segment. The DS bit of ENV selects whether Map 0 or
Map 1 holds the Page Table for the appropriate segment. This
provides access to the same segment that a LOAD G+0 would access.

1 System Data Segment. The PRIV bit of ENV selects whether Map 0 or
Map 1 holds the Page Table for the appropriate segment. This
provides access to the same segment that a LOAD SG+0 would
access.

2 User Code Segment. Map 2 holds the Page Table for the appropriate

segment. This provides access to the same segment that an LWUC
instruction would access.

2-150

Memory Access

3 Current Code Segment. The combination of the LS and CS bits in ENV
defines the map number of the map which holds the Page Table for
the appropriate segment. This provides access to the same segment
that instructions are fetched from or that an LWP instruction would
access.

Extended Data Segments

For the four relative segments previously mentioned, the limitation
exists that the size of a segment is 64 pages (128k bytes), which in
turn puts definite limits on program and data structure sizes.
However, this limit is greatly expanded for access to data in the
fifth relative segment type:

4-n Extended Data Segment. As many absolute segments as necessary
are allocated to accommodate the extended segment size requested
in an ALLOCATESEGMENT procedure call to the operating system.
The segment size is specified as a number of bytes.

This segment is not defined by a map, but is accessed via the Segment
Table and one or more Page Tables. Each process has a segment base
register and a segment limit register maintained by the operating
system. A relative segment number of 4 or higher results in the
address being checked against the limit register,; and then the base
register is added to the logical address to form an absolute extended
address.

To minimize the number of memory accesses to the various tables, two
special applications of Maps 14 and 15 are used. First, the
relocation values for the current process are saved in four map
entries:

Map 14, entries 60:61 Segment Base (base extended address)

Map 14, entries 62:63 Segment Limit (one's complement of the
maximum allowed address)

Second, Map 15 is used as a cache for map entries. After the extended
address has been optionally relocated and bounds~tested, the cache is
examined to see if the appropriate page of the segment has its

Page Table map entry in it. This is done by reading

MAP[15,32+(page mod 32)] and comparing that value with the

high-order word of the extended address. If they are equal, then
MAP[1l5, page mod 32] contains the Page Table map entry needed, and
memory may be accessed via that map entry. On the other hand, if
there is no match, then the entry in the cache must be written back to
the appropriate Page Table (to save the current R, D, and A values),
and the correct entry can then be cached.

The first half of the cache holds Page Table map entries (see Figure
2-75), and the second half of the cache holds entries which identify

2-151

Memory Access

the Page Table map entry that has been cached. This latter entry
consists of the segment number in bits 2 through 14, and the most
significant bit of the page number in bit 15. An entry with the value
$177777 indicates that the corresponding cache entry is empty.

Extended Address Instructions

The NonStop II processor provides a new class of instructions to
access data using extended addresses. These instructions are capable
of accessing memory which is not referenced in any of the maps. An
example of this is the MVBX instruction, which allows bytes to be
moved from one extended address to another. 1In addition, all
interprocessor bus transfers use these addresses, thus opening up the
processor's entire address space for transfers.

The following is a list of extended addressing instructions. These 23
instructions are nonprivileged, and most are supported by TAL language
constructs. (Exceptions are MNDX, XSMX, and CDX.)

ANX AND to Extended Memory

ORX OR to Extended Memory

MNDX Move Words While Not Duplicate
XSMX Compute Checksum Extended

CDX Count Duplicate Words Extended
LBX Load Byte Extended
SBX Store Byte Extended
LWX Load Word Extended
SWX Store Word Extended

LDDX Load Doubleword Extended
SDDX Store Doubleword Extended
LQX Load Quadrupleword Extended
SQX Store Quadrupleword Extended
DFX Deposit Field Extended

MVBX Move Bytes Extended

MBXR Move Bytes Extended, Reverse
MBXX Move Bytes Extended, Checksum
CMBX Compare Bytes Extended

SCs Set Code Segment

LWXX Load Word Extended

SWXX Store Word Extended

LBXX Load Byte Extended

SBXX Store Byte Extended

Memory Errors
Correctable and uncorrectable memory errors are reported to the

processor either as interrupts or as i/o termination conditions. An
uncorrectable error generally indicates that the page should no longer

2-152

Memory Access

be used. A correctable error, on the other hand, may occur because of
either a transient failure or a hard error. A hard error can be
detected by rewriting a page that gets a correctable error and then
seeing if the error occurs again. A privileged instruction, CMRW, is
used by the operating system for this purpose; this instruction holds
off memory accesses by the i/o channel while a word of memory is being
rewritten.

2-153

SECTION 3

INSTRUCTION SET

GENERAL INFORMATION

The instruction set of the NonStop II system, including the decimal
arithmetic and floating-point options, consists of approximately 280
machine instructions. This section provides text descriptions of all
these instructions, with the exception of those reserved for operating
system use. Diagrams are also included showing the action of some of
the more commonly used instructions. To locate the text description
for any instruction, refer to the alphabetical 1listing under
"Instructions” in the general index at the back of this manual.

These descriptions assume familiarity with the information presented
in Section 2. For explanations of terms and concepts mentioned here,
refer to the Index to find the appropriate portions of Section 2.

In addition, Appendixes A and B provide a number of useful reference
tables pertaining to the instruction set.

Instructions in this section are categorized by general function and
discussed under the following headings:

16-Bit Arithmetic

32-Bit Signed Arithmetic

16-Bit Signed Arithmetic (Register Stack Element)

Decimal Arithmetic Store and Load (Standard Instructions)

Decimal Integer Arithmetic (Standard and Optional Instructions)

Decimal Arithmetic Scaling and Rounding (Standard and Optional
Instructions)

Decimal Arithmetic Conversions (Optional Instructions)

Floating-Point Arithmetic (Optional Instructions)

Extended Floating-Point Arithmetic (Optional Instructions)

Floating-Point Conversions (Optional Instructions)

Floating-Point Functionals (Optional Instructions)

Register Stack Manipulation

Boolean Operations

Bit Deposit and Shift

Byte Test

3-1

General Information

Memory Stack to/from Register Stack

Load and Store Via Address on Register Stack
Branching

Moves, Compares, Scans, and Checksum Computations
Program Register Control

Routine Calls and Returns

Interrupt System

Bus Communication

Input/Output

Miscellaneous

Operating System Functions

NOTE

The instruction descriptions in this section state the
conditions under which Overflow is set in the ENV Register.
For details on the setting of the Condition Code and Carry
bits, refer to "Program Environment” in Section 2. Unless
otherwise stated, "stack" refers to the Register Stack.

16-BIT ARITHMETIC (Top of Register Stack)

IADD (000210). 1Integer (signed) Add A to B. A is added to B in
integer form. A and B are then deleted from the stack and the sum is
pushed onto the stack. Overflow is set if the result is greater than
32767 or less than -32768. Condition Code is set.

LADD (000200). Logical (unsigned) Add A to B. A and B are added as
16-bit positive integers. A and B are then deleted from the stack and
the result pushed on. Carry is set if the addition overflows bit O.
Condition Code is set.

ISUB (000211). 1Integer (signed) Subtract A from B. A is subtracted
from B in integer form. A and B are deleted and the difference is

pushed onto the stack. Overflow is set if the result is greater than
32767 or less than -32768. Condition Code is set.

LSUB (000201). Logical (unsigned) Subtract A from B. A is subtracted
from B logically. A and B are then deleted from the stack and the
result pushed on. Carry is set if A is less than or equal to B.
Condition Code is set.

16-Bit Arithmetic

IMPY (000212). 1Integer (signed) Multiply A times B. B is multiplied
by A in integer form. A and B are deleted from the stack and the
result pushed on. Overflow is set if the result is greater than 32767
or less than -32768. Condition Code is set.

LMPY (000202). Logical (unsigned) Multiply A times B. A and B are
multiplied as 1l6-bit positive integers. A and B are then replaced by
the doubleword result, with the least significant half in A. Overflow
is implicitly cleared. Condition Code is set.

IDIV (000213). 1Integer (signed) Divide B by A. B is divided by A in
integer form. A and B are deleted from the stack and the result
pushed on. Overflow is set if the divisor is zero, or if the result
is greater than 32767 or less than -32768. Condition Code is set.

LDIV (000203). Logical (unsigned) Divide CB by A, leaving the
remainder in B. The 32-bit positive integer in C and B is divided by
the 16-bit positive integer in A. The divisor and dividend are
deleted from the stack, the remainder is pushed onto the stack (B),
and the quotient is pushed onto the stack (A). Overflow is set if the
original C is greater than or equal to the original A. Condition Code
is set.

INEG (000214). 1Integer (signed) Negate A. A is converted to its
two's complement form. Overflow is set if the original operand was
-32768. Condition Code is set.

LNEG (000204). Logical (unsigned) Negate A. A is converted to its
two's complement. Carry is set if the original value of A is zero.
Condition Code is set.

ICMP (000215). 1Integer (signed) Compare B with A. B is compared to A
in integer form and the Condition Code set accordingly. A and B are
then deleted from the stack.

LCMP (000205). Logical (unsigned) Compare B with A. B is logically
compared to A and the Condition Code set accordingly. A and B are then
deleted from the stack.

16-Bit Arithmetic

CMPI (00l1---). Compare A with Immediate Operand. The Condition Code
is set as a result of the 16-bit integer comparison of A and the
immediate operand. A is then deleted from the stack. Examples of the
use of immediate operands are shown in Figure 3-1.

ADDI (104---). Add Immediate Operand to A. The immediate operand is
added to A in integer form. Overflow is set if the result is greater
than 32767 or less than -32768. Condition Code is set.

LADI (003---). Logical (unsigned) Add Immediate Operand to A. The
immediate operand is added to A in l6-bit unsigned integer form.
Condition Code is set.

32-BIT SIGNED ARITHMETIC

DADD (000220). Double Add DC to BA. The two doubleword integers
contained in DC and BA are added in doubleword integer form. Both
operands are then deleted, and the doubleword result is pushed onto
the stack. Overflow is set if the result is greater than (2**31)-1 or
less than -(2**31). Carry can be set, and Condition Code is set on
the result.

DSUB ({000221). pDouble Subtract BA frem DC. The doubleword integer
contained in BA is subtracted in doubleword integer form from the
doubleword integer in DC. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31)., Carry can be set, and

Condition Code is set on the result.

DMPY (000222). Double Multiply DC by BA. The doubleword integer
contained in DC is multiplied in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31). Carry can be set, and
Condition Code is set on the result.

DDIV (000223). Double Divide DC by BA. The doubleword integer
contained in DC is divided in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31), or if the divisor (BA)
is zero. Carry can be set, and Condition Code is set on the result.

3-4

16-Bit Arithmetic

INSTRUCTION FORMAT
0 1 4 7 10 13
G
AN 4
&GN// |
BIT IMMEDIATE OPERAND
TWO’S COMPLEMENT INTEGER
EXAMPLES RANGE 1S -256 : +255
CMPI -2 (COMPARE IMMEDIATE -2)
ojo~o0/0t070 14 1|1 111 1 1)1 1 0
v
AN 7/
SIGN BIT
IS EXTENDED
THROUGH {0:7)
IS TREATED AS
/ \ / \
OPERAND 2: 11 111 11§11 1)1 1 111 1 0] 2
LDLI-2 (LOAD LEFT IMMEDIATE -2)
of0/0,/0% 1,014 1|1 1[1 1 1|1 1 0
N /
SIGN BIT IS
EXTENDED
VALUE LOADED INTO A \ THROUGH A.{8:15)
/ N/ N
A1 1 1)1 1 1o o1 11 o1 1|1 o1 1) 257

Figure 3-1.

Immediate Operand

32-Bit Signed Arithmetic

DNEG (000224). Dpouble Negate BA. The doubleword integer contained in
BA is replaced with its two's complement. Overflow is set if the
original operand was -(2**31). Carry can be set, and Condition Code
is set on the result.

DCMP (000225). Double Compare DC with BA. The Condition Code in the
ENV Register is set as a result of the doubleword integer comparison
of DC and BA. Both operands are then deleted from the stack.

DTST (000031). Double Test BA. The Condition Code is set according
to the contents of the doubleword contained in BA.

CDI (000307). Convert Double to Integer. The doubleword integer in
BA is converted to a singleword integer by copying the contents of A
into B and deleting A. Overflow is set if the doubleword quantity is
greater than 32767 or less than -32768.

CID (000327). Convert Integer to Double. The singleword integer in
A is extended to a doubleword quantity on the top of the Register
Stack. A is copied into H, and then A is filled with zeros if A was
positive, or ones if A was negative; the Register Pointer is
incremented to give the result in BA.

MOND (000001). Minus One Double. A doubleword minus one is pushed
onto the top of the Register Stack (BA). Condition Code is set.

ZERD (000002). Zero Double. A doubleword zero is pushed onto the top
of the Register Stack (BA). Condition Code is set.

ONED (000003). One Double. A doubleword of one is pushed onto the
top of the Register Stack (BA). Condition Code is set.

3-6

16-Bit Signed Arithmetic
16-BIT SIGNED ARITHMETIC (Register Stack Element)

NOTE

For binary coding details of the first four instructions
that follow (ADRA, SBRA, ADAR, SBAR), refer to Table A-7 in
Appendix A. For ADXI, refer to Table A-4.

ADRA (00014-). Add Register to A. The contents of the register
pointed to by the Register field of the instruction is added in
integer form to register A. Overflow is set if the result is greater
than 32767 or less than -32768. Carry can be set, and Condition Code
is set on the result.

SBRA (00015-). Subtract Register from A. The contents of the
register pointed to by the Register field of the instruction are
subtracted in integer form from register A. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

ADAR (00016-). Add A to a Register. A is added in signed integer
form to the register pointed to by the Register field of the
instruction. A is deleted from the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

SBAR (00017-). Subtract A from a Register. A is subtracted in signed
integer form from the register pointed to by the Register field of the
instruction. A is deleted from the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

ADXI (104-—~} . —Add -Immediate Operand to an Index Register+ —The——
immediate operand is added in signed integer form to the contents of
the index register specified by the "x" field of the instruction.
Overflow is set if the result is greater than 32767 or less than
-32768. Carry can be set, and Condition Code is set on the result.

Decimal Arithmetic

DECIMAL ARITHMETIC STORE AND LOAD (Standard Instructions)

NOTE

For binary coding details of the following two instructions,
refer to Table A-8 in Appendix A.

0ST (00023-). Quadruple Store. The gquadrupleword operand contained
in EDCB is stored in the effective memory location indicated by A plus
4 times the index value. No indexing occurs for coding 000230. For
code 000231, 000232, or 000233, indexing for the effective address
uses register R[5], R[6], or R[7], respectively. The quadrupleword
operand and A are then deleted from the stack.

QLD (00023-). Quadruple Load. The quadrupleword operand contained in
the effective memory location indicated by A plus 4 times the index
value is fetched. A is deleted, and the fetched quadrupleword is
pushed onto the stack. No indexing occurs for coding 000234. For
code 000235, 000236, or 000237, indexing for the effective address
uses register R[5], R[6], or R[7], respectively. Condition Code is
set on the loaded quadrupleword.

DECTMATI. INTEGER ARITHMETIC (Standard and Optional TInstructionsg)

QADD (000240). Quadruple Add. The two quadrupleword integers
contained in HGFE and DCBA are added in quadrupleword integer form.
Both operands are deleted, and the quadrupleword result is pushed onto
the stack. Overflow is set if the result is greater than (2**63)-1 or
less than -(2**63). Carry can be set, and Condition Code is set on
the result. (This is a standard instruction.)

QSUB (000241). Quadruple Subtract. The quadrupleword integer
contained in DCBA is subtracted in quadruple-length integer form from
the quadrupleword integer in HGFE. Both operands are deleted, and the
quadrupleword result is pushed onto the stack. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Carry can be
set, and Condition Code is set on the result. (This is a standard
instruction.)

Decimal Arithmetic

OMPY (000242). Quadruple Multiply. The quadrupleword integer
contained in HGFE is multiplied in quadrupleword integer form by the
quadrupleword integer in DCBA. Both operands are deleted, and the
quadrupleword result is pushed onto the stack. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Carry can be
set, and Condition Code is set on the result. (This is an optional
instruction.)

QDIV (000243). Quadruple Divide. The quadrupleword integer contained
in HGFE is divided in quadrupleword integer form by the quadrupleword
integer in DCBA. Both operands are deleted, and the quadrupleword
result is pushed onto the stack. Overflow is set if the divisor
(DCBA) is zero. Condition Code is set. (This is an optional
instruction.)

ONEG (000244). Quadruple Negate. The quadrupleword integer contained
is DCBA is replaced with its two's complement. Overflow is set if the
original operand was -(2**63). Condition Code is set on the result.
(This is an optional instruction.)

QCMP (000245). Quadruple Compare. The Condition Code in the
Environment Register is set according to the quadruple integer
comparison of HGFE (operand 1) and DCBA (operand 2). (See Table A-3
for Condition Code settings; the "a" states apply for compares.)
Both operands are then deleted from the stack. (This is an optional
instruction.)

DECIMAL ARITHMETIC SCALING AND ROUNDING (Standard and Optional
Instructions)
NOTE

For binary coding details of the following three instructions,
refer to Table A-8 in Appendix A.

QUP (00025-). Quadruple Scale Up. The operand value in DCBA is
multiplied by a specified power of ten (1, 2, 3, or 4), and the new
value replaces the former contents of DCBA. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Condition
Code is set on the result. (This is a standard instruction.)

Decimal Arithmetic

ODWN (00025-). Quadruple Scale Down. The operand value in DCBA is
divided by a specified power of ten (1, 2, 3, or 4), and the new value
replaces the former contents of DCBA. Condition Code is set, and the
Overflow bit is cleared. (This is a standard instruction.)

QRND (000263). Quadruple Round. Five is added to the operand in DCBA
if the operand is positive (-5 is added if negative), and the result
is divided by 10. The new value replaces the former contents of DCBA.
Condition Code is set, and the Overflow bit is cleared. (This is an
optional instruction.)

DECIMAL ARITHMETIC CONVERSIONS (Optional Instructions)

CQI (000264). Convert Quad to Integer. The four-word value in DCBA
is converted to an integer by extracting the least significant word.
DCBA is deleted, and the integer result is pushed onto the stack.
Overflow is set if the operand was greater than 32767 or less than
-32768.

CQL (000246). Convert Quad to Logical. The four-word value in DCBA
is converted to a logical value by extracting the least significant
word. DCBA is deleted, and the integer result is pushed onto the
stack. Overflow is set if the operand was greater than 65535.

CQD (000247). Convert Quad to Double. The four-word value in DCBA is
converted to a doubleword by extracting the least significant two
words. DCBA is deleted, and the doubleword result is pushed onto the
stack. Overflow is set if the operand was greater than (2**31)-1 or
less than - (2**31).

CQA (000260). Convert Quad to ASCII. The binary-coded quadrupleword
integer in FEDC is converted to a string of ASCII-coded digits
(decimal base), and stores them in the memory space defined by a
starting byte address in B and a byte count in A. If the conversion
results in a truncation of leading digits, overflow is set. Condition
Code is set on the original value.

Decimal Arithmetic

CIQ (000266). Convert Integer to Quad. The singleword integer in A
is extended to a quadrupleword quantity, filling the most significant
three words with zeros if A was positive, or ones if A was negative.
A is deleted, and the quadrupleword result is pushed onto the stack.

CLQ (000267). Convert Logical to Quad. The singleword logical
quantity in A is extended to a quadrupleword quantity, £illing the
most significant three words with zeros. A is deleted, and the
guadrupleword result is pushed onto the stack.

CDQ (000265). Convert Double to Quad. The doubleword integer in BA
is extended to a quadrupleword quantity, £illing the most significant
two words with zeros if B is positive, or ones if B is negative. BA
is deleted, and the quadrupleword result is pushed onto the stack.

CAQ (000262). Convert ASCII to Quad. A string of ASCII-coded digits
in memory, defined by a starting byte address in B and a byte count in
A, is converted to a binary-coded quadrupleword integer. A and B are
deleted, and the quadrupleword result is pushed onto the stack. If a
nondigit ASCII code is encountered, only the preceding digits are
converted, and CCG indicates that only part of the string was
converted; CCE indicates that the entire string was converted.
overflow is set if the result is greater than (2**63)-1 or less than
-(2**63). If overflow is set, the value in DCBA is undefined.

CAQV (000261). Convert ASCII to Quad with Initial Value. A string of
ASCII-coded digits in memory, defined by a starting byte address in F
and a byte count in E, is converted to a binary-coded quadrupleword
integer in DCBA. DCBA contains an initial value (greater than or
equal to zero) which is scaled by 10, providing a high-order value to
which the converted value is added to produce the result in DCBA. 1If
a nondigit ASCII code is encountered, only the preceding digits are
converted, and CCG indicates that only part of the string was
converted; CCE indicates that the entire string was converted.
_Qverflow is set if the result is greater than (2**63)-1 or less than

-(2**63). If overflow is set, the value in DCBA is undefined.

3-11

Floating-Point Arithmetic

FLOATING-POINT ARITHMETIC (Optional Instructions)

NOTE

For the range of floating-point numbers, refer to "Number
Representation" in section 2.

FADD (000270). Floating-Point Add. The floating-point quantities in
DC and BA are added in floating-point form. Both operands are
deleted, and the two-word result is pushed onto the stack. Overflow
is set if the result falls outside the range of floating-point
numbers. Condition Code is set on the result.

FSUB (000271). Floating-Point Subtract. The floating-point quantity
in BA is negated, and then DC and BA are added in floating-point form.
Both operands are deleted, and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of floating-
point numbers. Condition Code is set on the result.

FMPY (000272). Floating-Point Multiply. The floating-point
quantities in DC and BA are multiplied in floating-point form. Both
operands are deleted, and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of floating-
point numbers. Condition Code is set on the result.

FDIV (000273). Floating-Point Divide. The floating-point quantity in
DC is divided in floating-point form by the floating-point quantity in
BA. Both operands are deleted and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FNEG (000274). Floating-Point Negate. The floating-point quantity in
BA (if not zero) is negated. The sign of BA is reversed from positive
to negative or negative to positive, and the Condition Code reflects
the final state of the sign (see Table A-3).

FCMP (000275). Floating-Point Compare. The Condition Code is set
according to the comparison of DC (operand 1) with BA (operand 2).
(See Table A-3 for Condition Code settings; the "a" states apply for
comparisons.) Both coperands are then deleted from the stack.

3-12

Floating-Point Arithmetic
EXTENDED FLOATING-POINT ARITHMETIC (Optional Instructions)

NOTE

For the range of extended floating-point numbers, refer to
"Number Representation" in section 2.

EADD (000300). Extended Add. The extended floating-point quantities
in HGFE and DCBA are added in extended floating-point form. Both
operands are deleted and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of extended
floating-point numbers. Condition Code is set on the result.

ESUB (000301). Extended Subtract. The extended floating-point
quantity in HGFE is negated, and then HGFE and DCBA are added in
extended floating-point form. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition Code
is set on the result.

EMPY (000302). Extended Multiply. The extended floating-point
quantities in HGFE and DCBA are multiplied in extended floating-point
form. Both operands are deleted and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
extended floating-point numbers. Condition Code is set on the result.

EDIV (000303). Extended Divide. The extended floating-point quantity
in HGFE is divided in extended floating-point form by the extended
floating-point quantity in DCBA. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition Code
is set on the result.

ENEG (000304). “Extended Negate. The extended floating—point quantity
in DCBA (if not zero) is negated. The sign of DCBA is reversed from
positive to negative or negative to positive. Overflow is cleared,
and the Condition Code reflects the final state of the sign.

ECMP (000305). Extended Compare. The Condition Code is set according
to the comparison of HGFE (operand 1) with DCBA (operand 2). Both
operands are then deleted from the stack.

3-13

Floating-Point Arithmetic

FLOATING-POINT CONVERSIONS (Optional Instructions)

CEF (000276). Convert Extended to Floating. The four-word floating-
point quantity in DCBA is converted to a two-word floating-point
quantity. DCBA is deleted, and the two-word result is pushed onto the
stack.

CEFR (000277). Convert Extended to Floating, Rounded. The four-word
floating-point quantity in DCBA is converted to a two-word floating-
point quantity. The new quantity is rounded according to the contents
of truncated bit 7 of C. DCBA is deleted, and the two-word result is
pushed onto the stack.

CFI (00031l). Convert Floating to Integer. The floating-point
quantity in BA is converted to a singleword signed integer. A is
deleted, and the singleword result is pushed onto the stack. Overflow
is set if the value of the operand was greater than 32767 or less than
-32768. Condition Code is set on the result.

CFIR (000310). Convert Floating to Integer, Rounded. The floating-
point quantity in BA is converted to a singleword signed integer, with
rounding according to the contents of the most significant fractional
bit. A is deleted, and the singleword result is pushed onto the
stack. Overflow is set if the value of the operand was greater than
32767 or less than -32768. Condition Code is set on the result.

CFD (000312). Convert Floating to Double. The floating-point
quantity in BA is converted to a doubleword signed integer in BA.
Overflow is set if the value of the operand was greater than (2**31)-1
or less than -(2*%*31). Condition Code is set on the result.

CFDR (000313). Convert Floating to Double, Rounded. The floating-
point quantity in BA is converted to a doubleword signed integer in
BA, with rounding according to the contents of the most significant
fractional bit. Overflow is set if the value of the operand was
greater than (2**31)-1 or less than -(2**31). Condition Code is set
on the result.

CED (000314). Convert Extended to Double. The extended floating-
point quantity in DCBA is converted to a doubleword signed integer.

BA is deleted, and the doubleword result is pushed ontoc the stack.
Overflow is set if the value of the operand was greater than (2**31)-1
or less than -(2**31). Condition Code is set on the result.

3-14

Floating-Point Arithmetic

CEDR (000315). cConvert Extended to Double, Rounded. The extended
floating-point quantity in DCBA is converted to a doubleword signed
integer, with rounding according to the contents of the most
significant fractional bit. BA is deleted, and the doubleword result
is pushed onto the stack. Overflow is set if the value of the operand
was greater than (2**31)-1 or less than -(2*%¥*31). Condition Code is
set on the result.

CEI (000337). Convert Extended to Integer. The extended floating-
point quantity in DCBA is converted to a singleword signed integer.
CBA is deleted, and the singleword result is pushed onto the

stack. Overflow is set if the value of the operand was greater than
32767 or less than -32768. Condition Code is set on the result.

CEIR (000316). Convert Extended to Integer, Rounded. The extended
floating-point quantity in DCBA is converted to a singleword signed
quantity, with rounding according to the contents of the most
significant fractional bit. CBA is deleted, and the singleword result
is pushed onto the stack. Overflow is set if the value of the operand
was greater than 32767 or less than -32768. Condition Code is set on
the result.

CFQ (000320). Convert Floating to Quadruple. The floating-point
quantity in BA is converted to a quadrupleword integer in DCBA.
Overflow is set if the value of the operand was greater than (2**63)-1
or less than -(2*%*63). Condition Code is set on the result.

CFQR (000321). cConvert Floating to Quadruple, Rounded. The floating-
point quantity in BA is converted to a quadrupleword integer in DCBA,
with rounding according to the contents of the most significant
fractional bit. Overflow is set if the value of the operand was

on the result.

CEQ (000322). cConvert Extended to Quadruple. The extended floating-
point quantity in DCBA is converted to a quadrupleword integer in
DCBA. Overflow is set if the value of the operand was greater than
(2%¥*63)-1 or less than -(2**63). Condition Code is set on the result.

Floating-Point Arithmetic

CEQR (000323). Convert Extended to Quadruple, Rounded. The extended
floating-point quantity in DCBA is converted to a quadrupleword
integer in DCBA, with rounding according to the contents of the most
significant fractional bit. Overflow is set if the value of the
operand was greater than (2**63)-1 or less than -(2**63). Condition
Code is set on the result.

CFE (000325). Convert Floating to Extended. The floating-point
quantity in BA is converted to an extended floating-point quantity.
BA is deleted, and the four-word result is pushed onto the stack.

CIF (000331). cConvert Integer to Floating. The signed integer in A
is converted to a floating-point quantity. A is deleted, and the
two-word result is pushed onto the stack.

CDF (000306). Convert Double to Floating. The doubleword signed
integer in BA is converted to a floating-point quantity in BA, with
truncation if the result exceeds 23 significant bits.

CDFR (000326). Convert Double to Floating, Rounded. The doubleword
signed integer in BA is converted to a floating-point quantity in BA,
with rounding if the result exceeds 23 significant bits.

CQF (000324). cConvert Quadruple to Floating. The quadrupleword
signed integer in DCBA is converted to a floating-point quantity,
with truncation if the result exceeds 23 significant bits. DCBA is
deleted, and the two-word result is pushed onto the stack.

CQFR (000330). Convert Quadruple to Floating, Rounded. The
quadrupleword signed integer in DCBA is converted to a floating-point
quantity, with rounding if the result exceeds 23 significant bits.
DCBA is deleted, and the two-word result is pushed onto the stack.

CIE (000332). Convert Integer to Extended. The signed integer in A
is converted to an extended floating-point quantity. A is deleted,
and the four-word result is pushed ontc the stack.

3-16

Floating-Point Arithmetic

CDE (000334). Convert Double to Extended. The doubleword signed
integer in BA is converted to an extended floating-point quantity.
BA is deleted, and the four-word result is pushed onto the stack.

CQE (000336). Convert Quadruple to Extended. The quadrupleword
signed integer in DCBA is converted to an extended floating-point
quantity in DCBA, with truncation if the result exceeds 55 significant
bits.

CQER (000335). Convert Quadruple to Extended, Rounded. The
quadrupleword signed integer in DCBA is converted to an extended
floating-point quantity in DCBA, with rounding if the result exceeds
55 significant bits.

FLOATING-POINT FUNCTIONALS (Optional Instructions)

IDX1 (000344). Calculate Index, 1l Dimension. For a one-dimensional
array, IDX1l compares the subscript value in B against lower and upper
bounds in a two-word table in the current code segment starting at the
address specified in A. If the value is in bounds, the element offset
value is computed and is stored in register R[7]. If the subscript is
out of bounds, overflow is set, RI[7] receives the erroneous subscript,
and CCL indicates too low or CCG indicates too high. BA is then
deleted.

IDX2 (000345). Calculate Index, 2 Dimensions. For a two-dimensional
array, IDX2 compares the subscript values in B and C against lower and
upper bounds in a 4-word table in the current code segment starting at
the address in A. If the values are in bounds, the element offset
value is computed and stored in register R[7]. If a subscript is out
of bounds, overflow is set, R[7] receives the erroneous subscript, and
CCL indicates too low or CCG indicates too high. CBA is then deleted.

IDX3 (000346). cCalculate Index, 3 Dimensions. For a three-
dimensional array, IDX3 compares the subscript values in B, C, and D
against lower and upper bounds in a 6-word table in the current code
segment starting at the address in A. If the values are in bounds,
the element offset value is computed and stored in register R[7]. 1If
any subscript is out of bounds, overflow is set, R[7] receives the
erroneous subscript, and CCL indicates too low or CCG indicates too
high. DCBA is then deleted.

Floating-Point Arithmetic

IDXP (000347). cCalculate Index, Code Space. For an n-dimensional
array, IDXP compares the subscript values in n stack registers (B, C,
D, etc.) against lower and upper bounds in a table in the current code
segment (2n words) specified by a starting address in A. (The first
word of the table in memory is the number of dimensions.) If the
values are in bounds, the element offset value is computed and stored
in register R[7]. 1If any subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low or
CCG indicates too high. All stack data used is deleted.

IDXD (000317). cCalculate Index, Data Space. For an n-dimensional
array, IDXD compares the subscript values in n stack registers (B, C,
D, etc.) against lower and upper bounds in a table in the current data
segment (2n words) specified by a starting address in A. (The first
word of the table in memory is the number of dimensions.) If the
values are in bounds, the element offset value is computed and stored
in register R[7]. 1If any subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low or
CCG indicates too high. All stack data used is deleted.

REGISTER STACK MANIPULATION

EXCH (000004). Exchange A and B.
is

interchanged. Condition Code

B8 S I A S~

A and B of the Register Stack are
t

set on the result in A.

DXCH (000005). Double Exchange BA with DC. The doubleword contained
in DC is interchanged with the doubleword contained in BA. Condition
Code is set on the result in BA.

DDUP (000006). Double Duplicate BA in DC. The doubleword in the top
two registers of the stack is duplicated by pushing a copy of it onto
the Register Stack. Condition Code is set.

Register Stack Manipulation

NOTE

For binary coding details of the following three instructions
(STAR, NSAR, LDRA), refer to Table A-7 in Appendix A.

STAR (00011-). Store A in a Register. The A Register contents are
stored in the register pointed to by the Register field of the
instruction. A is then deleted from the stack.

NSAR (00012-). Non-destructive Store A into a Register. The A
Register is stored in the register pointed to by the Register field of
the instruction.

LDRA (00013-). Load A from a Register. The contents of the register
pointed to by the Register field of the instruction are pushed onto
the stack. Condition Code is set.

NOTE

For binary coding details of the following three instructions
(LDI, LDXI, LDLI), refer to Table A-4 in Appendix A.

LDI (100---). Load Immediate Operand into A. The immediate operand
is pushed onto the stack, with the sign bit propagating into the high-
order bits. Condition Code is set.

LDXI (10----). Load Index Register with Immediate Operand. The index
register specified by the "x" field of the instruction is loaded with
the immediate operand, and the sign bit propagates into the high-
order bits. Condition Code is set.

LDLI (005---). Load Left Immediate Operand into bits 0:7 of A. The
immediate operand, shifted left eight places, is loaded into A, with
the sign bits propagating into the low-order bits of A. Condition
Code is set.

Boolean Operations

BOOLEAN OPERATIONS

Figure 3-2 illustrates the fundamental principles of boolean
operations as performed by four of the instructions. Figure 3-3 shows
the equivalent operations as performed on immediate operands.

LAND (000010). TILogical AND A with B. A and B are logically ANDed.
The two words are deleted from the stack and the result pushed on.
Condition Code is set.

LOR (000011). Logical OR A with B. A and B are merged by a logical
inclusive OR. A and B are deleted and the result pushed onto the
stack. Condition Code is set.

XOR (000012). Logical Exclusive OR A with B. The two words in A and
B of the Register Stack are combined by a logical exclusive OR. The
two words are then deleted and the result is pushed onto the stack.
Condition Code is set.

NOT (000013). One's Complement A. The word contained in Register A
of the stack is converted to its one's complement. Condition Code is
set.

3-20

Boolean Operations

LOGICAL AND
LAND v /o 170 1 1] OPERAND 1
0+0=0
0+1=0 2 11 1 0] OPERAND 2
1+40=0
1+1=1 v,/ /10 110 1 o] RESuLT
LOGICAL OR
LOR: v, /o 10 1 1] OPERAND 1
0+0=0
0+1=1 0 111 1 0] OPERAND 2
1+0=1
1+1=1 ZZr 1] 1 1 1] ResuLT
EXCLUSQg;?R iz 0 110 1 1] OPERAND 1
0+0=0
0+1=1 /1o 1/ 1 1 0] OPERAND2
1+40=1
1+1=0 A0 0] 1 0 1] RESULT
ONE’'S COMPLEMENT
NOT: v/ /10 1/ 0 1 1] OPERAND
0=1
1=0 VA1 0/ 1 0 o] RESULT
Figure 3-2. Boolean Operations

3-21

Boolean Operations

NOTE

For binary coding details of the following four instructions
(ORRI, ORLI, ANRI, ANLI), refer to Table A-4 in Appendix A.

ORRI (004---). OR Right Immediate Operand with A. The 8-bit
immediate operand is merged with the A Register by a logical inclusive
OR. The sign bit is not propagated, but is actually part of the
instruction; see Figure 3-3. Condition Code is set.

ORLI (004---). OR Left Immediate Operand with A. The 8-bit immediate
operand is shifted left eight places and merged with A by a logical
inclusive OR. The sign bit is not propagated, but is actually part of
the instruction; see Figure 3-3. Condition Code is set.

ANRI (006---). AND Right Immediate Operand to A. The 8-bit immediate
operand is extended to 16 bits by propagating the sign into the high-
order bits, and the resulting integer is logically ANDed to A; see
Figure 3-3. Condition Code is set.

ANLI (007---). AND Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places, the sign bit is
propagated into the low-order bits. and the resulting integer is
iogically ANDed to A; see Figure 3-3. Condition Code is set.

3-22

Boolean Operations

ORR! (OR RIGHT IMMEDIATE;

VoX 07070017707, 04041 o0l1 0o 1]0 1 1]
/
THE IMMEDIATE IS
TREATED AS: - —
[0Jo o oJo o 0oJo 1 o[1 o 10 1t 1] OPERAND1

ORLI (OR LEFT IMMEDIATE)

Vo070 0% 7070141 o]1 0 110 1 1]
< I 7

THE IMMEDIATE IS
TREATED AS: Ve —
[1Jo 1 o1 0o 11

0] OPERAND 1

0 0/]0o 0 0]0 O

ANRI (AND RIGHT IMMEDIATE)
e 0080704111 ol 1 0 110 1 1]
7
SIGN BIT IS
THE IMMEDIATE IS EXTENDED
TREATED AS: THROUGH (0:7)
/[4 AN
[171 1 11 1 17171 o[1 o 1]0o 1 1] OPERAND 1
ANLI (AND LEFT IMMEDIATE)
PoXo o 0l i /33411 o[1 o 1]0 1 1]
/
SIGN BIT IS
EXTENDED

THROUGH (8:15)

THE IMMEDIATE OPERAND IS
N AN
1 1 11 1 1]1 1 1| OPERAND 1

TREATED AS:

1Jo 1 o[1 0 1]

Figure 3-3. Boolean Instructions with Immediate Operands

Bit Deposit and Shift

BIT DEPOSIT AND SHIFT

DPF (000014). Dpeposit Field in A. This instruction combines the
words contained in registers A and C of the stack as a function of a
mask word contained in register B of the stack. A logical OR
operation is performed on the logical AND of B and C and the logical
AND of not B and A, so that all bits in C corresponding to ones in B
are deposited into corresponding bits in A. The original three words
are deleted from the stack and the result pushed onto the stack.
Condition Code is set. An example of this operation is shown in
Figure 3-4.

INT i: = % 023003
i. (5:10) : = 55
VALUE IN REGISTER STACK DO ABOVE:

0 1 4 7 10 13
c WFo 0700 0o o]0 1 o1 20704067070 VALUE TO BE DEPOSITED: 5
1

B PoXo/070F 0, 1 111 1 11 ©70%07/0//0/] MASK CONTAINING *“1” BITS
IN POSITIONS SUBJECT TO
DEPOSIT: (5:10)

t
A P o700 1 1]0 0 olo 97040i/,1]] OPERAND ACCEPTING DEPOSIT:
: % 023003

RESULTINA [oJo 1 o[o0o o oJo 1 o1 0o o[0o 1 1] <% 020243

Figure 3-4. Deposit Field Example

3-24

Bit Deposit and Shift

LLS (0300--). Logical (unsigned) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left by the count
(modulo %$377) contained in A. A is then deleted from the stack.
However, if Shift Count is not zero, A is shifted left by that number.
Condition Code is set. Figure 3-5 presents a comparison of logical
(unsigned) shifts and arithmetic (signed) shifts.

DLLS (1300--). Double Logical (unsigned) Left Shift. If the Shift
count field is zero, the doubleword contained in CB is shifted left by
the count (modulo %377) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, BA is shifted left by
that number. Condition Code is set.

LRS (0301--). Logical (unsigned) Right Shift. 1If the Shift Count
field is zero, the word contained in B is shifted right by the count
(modulo %377) contained in A. A is then deleted from the stack.
However, if Shift Count is not zero, A is shifted right by that
number. Condition Code is set.

DLRS (1301--). Double Logical (unsigned) Right Shift. 1If the Shift
Count field is zero, the doubleword contained in CB is shifted right
by the count (modulo %377) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, BA is shifted right by
that number. Condition Code is set.

ALS (0302--). Arithmetic (signed) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left preserving the
sign bit by the count (modulo %377) contained in A. A is then deleted
from the stack. However, if Shift Count is not zero, A is shifted
left, preserving the sign bit, by that number. Condition Code is set.

DALS (1302--). Double Arithmetic (signed) Left Shift. If the Shift
Count field is zero, the doubleword contained in CB is shifted left,
preserving the sign bit, by the count (modulo %377) contained in A. A
is then deleted from the stack. However, if Shift Count is not zero,
BA is shifted left, preserving the sign bit, by that number.

Condition Code is set.

Bit Deposit and Shift

LEFT SHIFTS
ALS 3 (ARITHMETIC LEFT SHIFT THREE POSITIONS)

OPERANDINA: [0/ 1 0 1]1 1 0[0 0 O0j1 1 1]0 0 1]
\ /
— ?
1
/ N N\
RESULTINA: o1 1 0j0 0 0[t 1 1Jo o0 10 0 0]
STATE OF SIGN BIT
IS PRESERVED
LLS 3 (LOGICAL LEFT SHIFT THREE POSITIONS)
OPERANDINA: [oT1 0o 111 oJo o of1 1 170 0 1]
/
;————J 0
i
/- AN
RESULTINA: [111 1 o0o/0 0 0/1 t 1[0 0 1/0 0 O}
RIGHT SHIFTS
ARS 7 (ARITHMETIC RIGHT SHIFT SEVEN POSITIONS)
OPERANDINA: [1!11 1 1]0 6 111 1 0/0 0 0{0 0 1]
A - S
e N N
RESULTINA: [1]1 1 111 1 171 1 1[1 0 0f{1 1 1]
SIGN BIT IS PROPAGATED
SEVEN POSITIONS
LRS 7 (LOGICAL RIGHT SHIFT SEVEN POSITIONS)
OPERANDINA: [1]1 1 1J0o 0o 171 1 oJo o o0fo0 0 1]
: /
? v
e N

RESULTINA: fof0 0 0f0 0 o0[1 1 1}/1 0 011

% 056071

% 060710

% 056071

% 160710

% 171601

% 177747

%171601

% 000747

Figure 3-5. Arithmetic vs. Logical Shifts

Bit Deposit and Shift

ARS (0303--). Arithmetic (signed) Right Shift. If the Shift Count
field is zero, the word contained in B is shifted right, propagating
the sign bit, by the count (modulo %377) contained in A. A is then
deleted from the stack. However, if Shift Count is not zero, A is
shifted right, propagating the sign bit, by that number. Condition
Code is set.

DARS (1303--). Double Arithmetic (signed) Right Shift. If the Shift
Count field is zero, the doubleword contained in CB is shifted right,
propagating the sign bit, by the count (modulo %377) contained in A.
A is then deleted from the stack. However, if Shift Count is not
zero, BA is shifted right, propagating the sign bit, by that number.
Condition Code is set.

BYTE TEST

BTST (000007). Byte Test A. The Condition Code is set on the value
of the test byte in bits 8:15 of A; CCL indicates ASCII numeric, CCE
indicates ASCII alphabetic, and CCG indicates special ASCII character.
A is deleted after the test.

MEMORY TO/FROM REGISTER STACK

NOTE

For binary coding details of the first twelve instructions
below (LWP through ADM), refer to Table A-3 in Appendix A.

LWP (-2----). Load Word from Program (Code) Area into A. The
contents of the address which is computed as a function of
displacement (a signed 8-bit wvalue), and optionally indexing and/or
indirection, is pushed onto the Register Stack. Condition Code is set
on the loaded word. Figure 3-6 illustrates the addressing operations
for the LWP instruction.

Memory to/from Register Stack

INDIRECT, INDEXED

GBFol i ToFoAclololol o] o]0]
TN~ N /

INDEX !

REG

DISPLACEMENT

CODE
SEGMENT

REGISTER
STACK

‘——————» R[6]

iz

.—/'/-—‘-’_‘_‘
—~]

LWP 8.1.X

[> -304

.
>+
| 1
Lo
l -304
1—<——
ottty |

C[3433]

C[3439]

C[3728]

C[3737)

Figure 3-6.

LWP Instruction Addressing

Memory to/from Register Stack

LBP (-2-4--). Load Byte from Program (Code) Area into A. The
contents of the P-relative byte address which is computed as a
function of displacement (a signed 8-bit value), and optionally
indexing and/or indirection, is pushed onto the Register Stack. The
high-order byte is set to zero. If the P Register currently indicates
an address in the upper half of the code segment (bit 0 of P = 1),
$100000 is added to the computed address, so that the address will
always be relative to whichever half of the segment P currently
indicates. The Condition Code is set on the value of the loaded byte
in bits 8:15 of A; CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character. Figure 3-7
illustrates the addressing operations for the LBP instruction,
assuming addresses in the first half of the code segment.

LDX (-3----). Load Index Register from Data Space. The index
register specified by the "x" field of the instruction is loaded with
the contents of the effective memory address. Condition Code is set.
Figure 3-8 shows the instruction word format for memory data reference
instructions, such as LDX.

NSTO (-34---). Nondestructive Store from A. The contents of the A
Register are stored into effective address memory location. The
Register Stack is not modified.

LOAD (-40---). Load A from Data Space. The contents of the effective
address memory location are pushed onto the stack. Condition Code is
set.

STOR (-44---). Store A into Data Space. The contents of the A
Register are stored into the effective memory location. A is then
deleted from the stack.

_LDB (-5----). Ioad A with Byte from Data Space. The contents of the __

effective memory location are loaded into bits 8:15 of A. The
Condition Code is set on the value of the loaded byte in bits 8:15 of
A; CCL indicates ASCII numeric, CCE indicates ASCII alphabetic, and
CCG indicates special ASCII character.

STB (-54---). Store Byte from A to Data Space. The contents of the
byte in bits 8:15 of A are stored in the effective memory location.

3-29

Memory to/from Register Stack

CODE
SEGMENT
DIRECT. INDEXED
REGISTER
STACK
177 -2 =88.r=1
‘—>, V7
1 = right half
17
R{7) 17 b—————————» ¢+ =177
2 x 80 = 160
| o |
Lo_2__1
Y
99128 = -29
— 4+
INDEX r A
REG DISPLACEMENT
) /J\ A e
VA< 1" A1 11]sJoloJo[v [v) """ __[___"""" LBP 29.X
7
7
7
P-1 109 - CODE
LBP INDIRECT P REGISTER SEGMENT
VUL 7 0]o]o]o t1[1]ojo] — """ T T iepial
T o~
DISPLA?EMENT o REGISTER e
i 7/
g 764 ’
| y
1 12
> 4
L I 2613
L D
2 776 = 1552
2613
+ /
= Tes]
_awes
Y,
4165 + 2 = 2082, r = 1
1 = right haif
b —
NOTE: THESE EXAMPLES ASSUME ADDRESSES IN THE LOWER

HALF OF THE CODE SEGMENT, i.e, P.<0> =0.IFP.<0> =1,
%100000 IS ADDED TO THE COMPUTED ADDRESS BEFORE THE
BYTE IS FETCHED FROM MEMORY.

C[80}

C[88]

C[108]

C[763)

C[776]

C[2082]

3-30

Figure 3-7. LBP Instruction Addressing

Memory to/from Register

Stack

0 5 6 7 15
_/ N1\ \
! x | MODE AND DISPLACEMENT 1\
! \ MODE
DISPLACEMENT (0:255) G-RELATIVE
0 | DISPLACEMENT (0:127) L-PLUS-RELATIVE

1| 0 | DISPLACEMENT (0:63) SG-RELATIVE
1 | 1|0 |DISPLACEMENT (0:31)] L-MINUS-RELATIVE
711 |1 |DISPLACEMENT (0:31)] S-MINUS-RELATIVE

al=mlal=lo

=NO
INDEXING

REGISTER
STACK

\ R[5] [TNDEX VALUE
R[6] | INDEX VALUE
| 0} = DIRECT

R[7] | INDEX VALUE
= INDIRECT

=|=|olo

=lo| =0

Figure 3-8. Memory Reference Instruction Format

3-31

Memory to/from Register Stack

LDD (-6----). Load Double from Data Space into BA. The doubleword
integer contained in the effective memory location is pushed into the
stack. Condition Code is set. Figure 3-9 illustrates the addressing
methods for doubleword instructions.

STD (-64---). Store Double from BA into Data Space. The contents of
BA are stored in the effective memory location. BA is deleted.

LADR (-7----). Load G-Relative Address of Variable into A. The
G-relative address of the variable is pushed onto the stack.

ADM (-74---). Add A to Variable in Data Space. The A Register is
added in integer form to the contents of the effective memory location
and the Condition Code is set on the sum. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can also be
set. A is then deleted from the stack.

NOTE

For binary coding details of the following six instructions
(PUSH through SBXX), refer to Table A-5 in Appendix A.

PUSH (024nrc). Push Registers to Data Space. This instruction
transfers the contents of a specified number of elements in the
Register Stack to the top of the data stack in memory. The "n" field
of the instruction is the value to which RP will be set following the
instruction; the "r" field specifies the last register stack element
to be pushed; the "c" field is the number of registers minus one that
will be pushed to memory. Following the PUSH instruction, the S
Register points to the last element pushed onto the memory stack. If
the resultant value of S is greater than %77777, a stack overflow trap
occurs. Figure 3-10 illustrates the bit fields and the action of the
PUSH instruction.

POP (1l24nrc). Pop Data Space to Registers. This instruction loads
the Register Stack with the top elements of the data stack (as
indicated by the current S Register setting). The "n" field of the
instruction indicates the value RP will have following the
instruction; the "r" field specifies the last Register Stack element
to be loaded from memory; the "c" field specifies the number of
registers minus one that will be loaded. 1If the resultant value of S
is greater than %77777, a stack overflow trap occurs. Figure 3-10
illustrates the bit fields and the action of the POP instruction.

3-32

Memory to/from Register Stack

Glo]

DIRECT, NO INDEXING

‘%010101\010101010111119 7—%6[71

INDEX

REG DISPLACEMENT
(NONE)
M
G-RELATIVE
ADDRESSING
MODE
G[0]
INDIRECT, INDEXED
9
riSof1[rJofofofofof1]ofo]1] > 247 Gl9)
AN /
T
G-RELATIVE DISPLACEMENT
ADDRESSING REGISTER
MODE STACK
INDEX
REG 247 |
* —
- 17 | 2717 =34 4

P

7 e

|

\]

Figure 3-9. Doubleword Addressing

Memory to/from Register Stack

n r
1 !
Ve ~/ "
PUSH OB INIOINK OO0 111 [1]o]1]1][0]1]
NN Y2
NEW RP LASTREG COUNT-1
R(7] R(5) (6 REGS) DATA
SEGMENT
P]
R{0] 1 e o
2 ~-L_SREGISTER__—>
3 7
4 2
5 3
6 4
N 5
R[7] <— RP AFTER PUSH ~»| sREGISTER }—> 3
AFTER PUSH
N
n r
— V% N
POP Wz %k 2004 11011]1Jof1]1]0]1]
AN I4/\ rgf\ /
NEWRP LAST REG COUNT-1 DATA
R[5] R(5] (6 REGS) SEGMENT
f_—
R[0] 1 _»[_SREGISTER _|—>
2 AFTER POP 1
3 2
4 3
5 4
6 <— RP AFTER POP N e e S
~~L SREGISTER_ \ 5
R[7] BEFORE POP
PSSR e

3-34

Figure 3-10.

PUSH and POP Instructions

Memory to/from Register Stack

LWXX (0254--, 0264--). Load Word Extended, Indexed. The word
contained in a computed extended memory location is loaded onto the
stack, replacing the prior contents of A. The extended memory address
is obtained as follows. The displacement value (0 through 63) in bits
10 through 15 of the instruction word is added to a base value which
is either the current L Register value (coded 0254--) or G[0] (coded
0264--); the data word so indicated is assumed to be the first word of
a two-word extended memory pointer. The index value in A is shifted
left one bit position (multiplication by 2, since this instruction
requires word addressing rather than byte addressing) and is then
added to the extended memory pointer to address the word that is to be
loaded. Condition Code is set.

SWXX (0255--, 0265--). Store Word Extended, Indexed. The word
contained in B is stored into a computed extended memory location.
The extended memory address is obtained as follows. The displacement
value (0 through 63) in bits 10 through 15 of the instruction word is
added to a base-value which is either the current L Register value
(coded 0255--) or G[0] (coded 0265--); the data word so indicated is
assumed to be the first word of a two-word extended memory pointer.
The index value in A is shifted left one bit position (multiplication
by 2, since this instruction requires word addressing rather than byte
addressing) and is then added to the extended memory pointer to
address the location that is to receive the word being stored.

LBXX (0256--, 0266--). Load Byte Extended, Indexed. The byte
contained in a computed extended memory location is loaded onto the
stack, replacing the prior contents of A. The extended memory address
is obtained as follows. The displacement value (0 through 63) in bits
10 through 15 of the instruction word is added to a base value which
is either the current L Register value (coded 0256--) or G[0] (coded
0266--); the data word so indicated is assumed to be the first word of
a two-word extended memory pointer. The index value in A is then
added to the extended memory pointer to address the byte that is to be
loaded. The Condition Code is set on the value of the loaded byte in
bits 8:15 of A; CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character.

SBXX (0257--, 0267--). Store Byte Extended, Indexed. The byte
contained B.<8:15> is stored into a computed extended memory location.
The extended memory address is obtained as follows. The displacement
value (0 through 63) in bits 10 through 15 of the instruction word is
added to a base value which is either the current L Register value
(coded 0257--) or G[0] (coded 0267--); the data word so indicated is
assumed to be the first word of a two-word extended memory pointer.
The index value in A is then added to the extended memory pointer to
address the location that is to receive the byte being stored.

3-35

Load and Store via Address on Register Stack

LOAD AND STORE VIA ADDRESS ON REGISTER STACK

ANS (000034). AND to SG Memory. The word in B is logically ANDed to
a word in the System Data segment that is specified by a 16-bit
address in A. The result remains in the System Data location, and

A and B are deleted from the stack. 1If privileged mode is in effect
when this instruction is executed, A refers to an address in the
System Data segment. Otherwise data segment selection (system or
user) is determined by the DS bit (bit 6) of the ENV Register.
Condition Code is set.

ORS (000035). OR to SG Memory. The word in B is logically ORed to a
word in the System Data segment that is specified by a 16-bit address
in A. The result remains in the System Data location, and A and B are
deleted from the stack. 1If privileged mode is in effect when this
instruction is executed, A refers to an address in the System Data
segment. Otherwise data segment selection (system or user) is
determined by the DS bit (bit 6) of the ENV Register. Condition Code
is set.

ANG (000044). AND to Memory. The word in B is logically ANDed to a
word in the current data segment that is specified by a 16-bit address
in A. The result remains in the data segment location, and A and B
are deleted from the stack. Condition Code is set.

ORG (000045). OR to Memory. The word in B is logically ORed to a
word in the current data segment that is specified by a 16-bit address
in A. The result remains in the data segment location, and A and B
are deleted from the stack. Condition Code is set.

ANX (000046). AND to Extended Memory. The word in C is logically
ANDed to a word in extended memory that is specified by a 32-bit
address in BA. The result remains in the memory location, and A, B,
and C are deleted from the stack. Condition Code is set.

ORX (000047). OR to Extended Memory. The word in C is logically ORed
to a word in extended memory that is specified by a 32-bit address in
BA. The result remains in the memory location, and A, B, and C are
deleted from the stack. Condition Code is set.

3-36

Load and Store via Address on Register Stack

LWUC (000342). Load Word from User Code Space. A word in the user
code segment, specified by a 16-bit address in A, is loaded onto the
stack, replacing the prior contents of A. Condition Code is set.

LWAS (000350). Load Word via A from System. The word contained in
the effective memory location pointed to by the address in A is loaded
onto the stack, replacing the prior contents of A. If privileged mode
is in effect when this instruction is executed, A refers to an address
in the System Data segment. Otherwise data segment selection (system
or user) is determined by the DS bit (bit 6) of the ENV Register.
condition Code is set.

LWA (000360). Load Word via A. The word contained in the effective
memory location pointed to by the address in A is loaded onto the
stack, replacing the prior contents of A. LWA accesses the current
data segment only. Condition Code is set.

SWAS (000351). Store Word via A into System. The word contained in B
is stored into the effective memory location pointed to by the address
in A. Both words are then deleted from the stack. If privileged mode
is in effect when this instruction is executed, A refers to an address
in the System Data segment. Otherwise data segment selection (user or
system) is determined by the DS bit (bit 6) of the ENV Register.

SWA (000361). Store Word via A. The word contained in B is stored
into the effective memory location pointed to by the address in A.
Both words are then deleted from the stack. SWA accesses the current
data segment only.

-

LDAS (000352). Load Double via A from System. The doubleword
contained in the effective memory locations starting at the location
pointed to by the address in A is loaded into BA (after the address in
A is deleted). .If privileged mode is .in effect when this instruction.
is executed, A refers to an address in the System Data segment.
Otherwise data segment selection (user or system) is determined by the
DS bit (bit 6) of the ENV Register. Condition Code is set.

LDA (000362). Load Double via A. The doubleword contained in the
effective memory locations starting at the location pointed to by the
address in A is loaded into BA (after the address in A is deleted).
LDA accesses the current data segment only. Condition Code is set.

3-37

Load and Store via Address on Register Stack

SDAS (000353). Store Double via A into System. The doubleword in CB
is stored into the effective memory locations starting at the location
pointed to by the address in A. CBA is then deleted. 1If privileged
mode is in effect when this instruction is executed, A refers to an
address in the System Data segment. Otherwise data segment selection
(user or system) is determined by the DS bit (bit 6) of the ENV
Register.

SDA (000363). Store Double via A. The doubleword in CB is stored
into the effective memory locations starting at the location pointed
to by the address in A. CBA is then deleted. SDA accesses the
current data segment only.

LBAS (000354). Load Byte via A from System. The byte contained in
the effective memory location pointed to by the byte address in A is
loaded onto the stack, replacing the prior contents of A. If
privileged mode is in effect when this instruction is executed, A
refers to an address in the System Data segment. Otherwise data
segment selection (user or system) is determined by the DS bit (bit 6)
of the ENV Register. The Condition Code is set on the value of the
loaded byte in bits 8:15 of A; CCL indicates ASCII numeric, CCE
indicates ASCII alphabetic, and CCL indicates special ASCII character.

LBA (000364). Load Byte via A. The byte contained in the effective
memory location pointed to by the byte address in A is loaded onto the
stack, replacing the prior contents of A. LBA accesses the current
data segment only. The Condition Code is set on the value of the
loaded byte in bits 8:15 of A; CCL indicates ASCII numeric, CCE
indicates ASCII alphabetic, and CCL indicates special ASCII character.

SBAS (000355). Store Byte via A into System. The byte in B is stored
into the effective memory location pointed to by the byte address in
A. Both B and A are then deleted. 1If privileged mode is in effect
when this instruction is executed, A refers to an address in the
System Data segment. Otherwise data segment selection (user or
system) is determined by the DS bit (bit 6) of the ENV Register.

Load and Store via Address on Register Stack

SBA (000365). Store Byte via A. The byte in B is stored into the
effective memory location pointed to by the byte address in A. Both B
and A are then deleted. SBA accesses the current data segment only.

DFS (000357). Deposit Field into System Data. Using the mask bits
in register B, this instruction deposits the bits in register C into
the location specified by the 1l6-bit address in A. A, B, and C are
then deleted. (See Figure 3-4 and DPF description under "Bit Deposit
and Shift" for further details on this operation.) If privileged mode
is in effect, the destination is in the System Data segment;
otherwise, the destination is in the current data segment. A, B, and
C are then deleted. Condition Code is set.

DFG (000367). Deposit Field in Memory. Using the mask bits in
register B, this instruction deposits the bits in register C into the
location specified by the 16-bit address in A. A, B, and C are then
deleted. (See Fidure 3-4 and DPF description under "Bit Deposit and
Shift" for further details on this operation.) DFG accesses the
current data segment. Condition Code is set.

LBX (000406). Load Byte Extended. The byte in the extended memory
location specified by the 32-bit address in registers B and A is
loaded onto the Register Stack (bits 8 through 15 of A), after the
address in BA is deleted. The left byte is zero. The Condition Code
is set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character.

SBX (000407). Store Byte Extended. The byte in bits 8 through 15 of
C is stored into the extended memory location specified by the 32-bit
address in registers B and A. C, B, and A are then deleted.

LWX (000410). Load Word Extended. _The word in the extended memory
location specified by the 32-bit address in registers B and A is
loaded into register A (after the address in BA is deleted).
Condition Code is set.

SWX (000411l). Store Word Extended. The word in register C is stored
into the extended memory location specified by the 32-bit address in
registers B and A. C, B, and A are then deleted.

3-39

Load and Store via Address on Register Stack

LDDX (000412). Load Doubleword Extended. The doubleword starting at
the extended memory location specified by the 32-bit address in
registers B and A is loaded onto the register stack, replacing the
prior contents of B and A. Condition Code is set.

SDDX (000413). Store Doubleword Extended. The doubleword in
registers D and C is stored into extended memory starting at the
location specified by the 32-bit address in registers B and A. All
four words are then deleted from the Register Stack.

LOX (000414). Load Quadrupleword Extended. The quadrupleword
starting at the extended memory location specified by the 32-bit
address in registers B and A is loaded into registers DCBA of the
Register Stack (after the address in BA is deleted). Condition Code
is set.

SQX (000415). Store Quadrupleword Extended. The quadrupleword in

registers FEDC is stored into extended memory (8 bytes) starting at
the location specified by the 32-bit address in registers B and A.

All six words are then deleted from the Register Stack.

DFX (000416). Deposit Field Extended. Using the mask bits in
register C, this instruction deposits the bits in register D into the
extended memory location specified by the 32-bit address in registers
B and A. All four words are then deleted from the Register Stack.
(See Figure 3-4 and DPF description under "Bit Deposit and Shift" for
further details on this operation.) Condition Code is set.

SCS (000444). ©Set Code Segment. Registers B and A are assumed to
contain a 17-bit byte address. This instruction sets a logical
segment number into the segment number field (bits 0 through 14 of B)
to formulate a complete 32-bit address. Only two values may be set
for this field: 3 (indicating current code segment) if either the CS
or LS bit of the Environment Register contains a one; 2 (indicating
User Code segment) if both of these bits are zero.

LQAS (000445). Load Quadrupleword via A from SG. The quadrupleword
contained in the four memory locations starting at the location
pointed to by the address in A is loaded into DCBA (after the address
in A is deleted). The address in A refers to an address in the Systen
Data segment. Condition Code is set. This is a privileged
instruction.

3-40

Ioad and Store via Address on Register Stack

SQAS (000446). Store Quadrupleword via A to SG. The quadrupleword in
registers EDCB is stored into the four memory locations starting at
the location pointed to by the address in A. The address in A refers
to an address in the System Data segment. All five words are then
deleted from the Register Stack. This is a privileged instruction.

BRANCHING

NOTE

For binary coding details of the following branch instructions,
refer to Table A-6 in Appendix A.

BIC (-100--). Branch if CARRY. If the carry bit (K) in the
Environment Register is set (K = 1), then a direct or indirect branch
is taken (depending on the "i" field of the instruction). If the
condition is not met, then the next instruction is executed. Figure
3-11 compares direct and indirect branching.

BUN (-104--). Branch Unconditionally. A direct or indirect
unconditional branch is taken (depending on the "i" field of the
instruction).

BOX (-1-4--). Branch on X Less Than A and Increment X. If the index
register as specified by the "x" field of the instruction is less than
A, that index register is incremented and a direct or indirect branch
is taken (depending on the "i" field of the instruction). If X is
greater than or equal to A, then A is deleted from the stack and the
next instruction is executed.

BGTR (-11l---). Branch if CC is Greater. If the Condition Code in the
ENV Register is CCG (N = 0, 2 = 0) then a direct or indirect branch is
taken (depending on the "i" field of the instruction). 1If the
condition is not met, then the next instruction is executed.

3-41

Branching

DIRECT

Ly A7 0fo]ojo]1[1]0]1]

DISPLACEMENT

INDIRECT

P77 o ol olo 111]1]11]

DISPLACEMENT
[

CODE
SEGMENT
— TN
T Z_] emancu+1s | clios]
P REGISTER B4
+13 l
>+
[119 J__,/ A cl{119]
P REGISTER
CODE
SEGMENT
\—-/_-'A
—————————————————— BR15, 1 c(320]
P REGISTER
321 /
[207 Cc[336]
,.,/—_‘—‘-
Y Bl
P REGISTER

3-42

Figure 3-11. Direct vs.

Indirect Branching

Branching

BEQL (-12---). Branch if CC is Equal. If the Condition Code in the
ENV Register is CCE (N = 0, Z = 1), then a direct or indirect branch
is taken (depending on the "i" field of the instruction). If the
condition is not met, then the next instruction is executed.

BGEQ (-13---). Branch if CC is Greater or Equal. If the Condition
Code in the ENV Register is CCG or CCE (N = 0) then a direct or
indirect branch is taken (depending on the "i" field of the
instruction). If the condition is not met, then the next instruction
is executed.

BLSS (-14---). Branch if CC is Less. If the Condition Code in the
ENV Register is CCL (N = 1) then a direct or indirect branch is taken
(depending on the "i" field of the instruction). 1If the condition is
not met, then the next instruction is executed.

BAZ (~144--). Branch on A Zero. If the A Register equals zero then a
direct or indirect branch is taken (depending on the "i" field of the
instruction). If the A Register does not equal zero, then the next
instruction is executed. 1In either case, A is deleted from the stack.

BNEQ (-15---). Branch if CC is not equal. If the Condition Code in
the ENV Register is not CCE (Z = 0) then a direct or indirect branch
is taken (depending on the "i" field of the instruction). If the
condition is not met, then the next instruction is executed.

BANZ (-154--). Branch on A Not Zero. 1If the A Register is non-zero
then a direct or indirect branch is taken (depending on the "i" field
of the instruction). If the A Register equals zero, then the next
instruction is executed. 1In either case, A is deleted from the stack.

BLEQ (-16---). Branch if CC is Less or Equal. If the Condition Code
in the ENV Register is CCL or CCE (N = 1 or Z = 1) then a direct or
indirect branch is taken (depending on the "i" field of the
instruction). If the condition is not met, then the next instruction
is executed.

3-43

Branching

BNOV (-164--). Branch if no OVERFLOW. If the overflow bit (V) in the
ENV Register is not set (V = 0), then a direct or indirect branch is
taken (depending on the "i" field of the instruction). 1If the
condition is not met, then the next instruction is executed.

BNOC (-17---). Branch if no CARRY. If the carry bit (K) in the ENV
Register is not set (K = 0), then a direct or indirect branch is taken
(depending on the "i" field of the instruction). If the condition is
not met, then the next instruction is executed.

BFI (000030). Branch Forward Indirect. The instruction expects an
offset from the current P register setting to be contained in A. An
indirect branch is then made through the location specified by P + A.
Figure 3-12 jillustrates the action of the BFI instruction.

MOVES, COMPARES, SCANS, AND CHECKSUM COMPUTATIONS

Figure 3-13 provides a comparison of ascending and descending moves,
compares, and scans, as described in the following paragraphs. Bit 9
of the instruction word specifies ascending (0) or descending (1).
Interrupts can occur between words (or bytes) moved or compared on
each of these instructions.

MNGG (000226). Move Words While Not Duplicate. Register D is assumed
to contain a destination address in the current data segment, and
register C is assumed to contain a source address in the current data
segment. The MNGG instruction moves words from the source to the
destination while the count value in register B is not zero and the
source word is not equal to the word in A. The word in A is always
the previous word moved. The instruction stops on the first duplicate
word or on zero count. After execution, the word in A is deleted, so
that A then contains the count, B contains the source address, and C
contains the destination address.

CDG (000366). Count Duplicate Words. Beginning at the address (in
the current data segment) specified in register C, and for a maxXimum
count of words specified in register B, this instruction counts the
number of duplicate words in the buffer. Register A is incremented on
each duplicate found, and may contain an initial value. After execu-
tion, A contains the original A value plus the number of duplicate
words, B contains a count of the words left in the buffer (zero if
empty), and C contains the address of the first word that did not
match its predecessor (or the word after the last word in the buffer).
The comparison actually starts with the words specified by C and C-1.
This instruction is intended to be used in conjunction with MNGG.

3-44

Moves, Compares, Scans, and Checksum Computations

P REGISTER BFI Cl161]
209

310

REGISTER
STACK

BRANCH

863 LIST
1070

1134

371
P REGISTER

0700 A ST

L ———

———\\\~—‘_//’“

P REGISTER BFI C[161]

310

REGISTER
STACK

BRANCH
863 LIST

[1070

1134

T s

P REGISTER

Figure 3-12. Branch Forward Indirect

3-45

Moves, Compares, Scans, and Checksum Computations

9
bz » Vi v A

MOVESTEP:

0 = LEFT-TO-RIGHT (ASCENDING ADDRESSES)

1 = RIGHT-TO-LEFT (DESCENDING ADDRESSES)

MOVESTEP = 0 (ASCENDING)

>m O

)

REGISTER
STACK

DESTINATION

SOURCE

COUNT

DEST

SOURCE

COUNT
ELEMENTS

3-46

DEST
MOQVESTEP = 1 (DESCENDING)
REGISTER | ——
STACK
___‘______////[———____———,- COUNT
C DESTINATION ELEMENTS
B SOURCE
A COUNT
SOURCE
/\-——_—“\
Figure 3-13. Directions for Moves, Compares, and Scans

Moves, Compares, Scans, and Checksum Computations

NOTE

For binary coding details of the following six move
instructions (MOVW, MOVB, COMW, COMB, SBW, SBU), refer
to Table A-5 in Appendix A.

MOVW (026---). Move Words. This instruction transfers a specified
number of words from one area of memory to another. The instruction
expects A to contain a word count, B to contain the source word
address, and C to contain the destination word address. The source
and destination maps to be used are specified by the "s" and "d"
fields of the instruction and by the DS, CS, LS, and Privileged Bits
of the ENV Register. The "m" field of the instruction (see format
diagram at the top of Figure 3-13) determines whether the source and
destination addresses will be incremented ("m" = 0) or decremented
("m" = 1) after each move. The "n" field of the instruction is the
value to which RP is set upon instruction end. The move is made one
word at a time from the source to the destination. After each word
transfer the addresses are decremented or incremented and A is
decremented. If A is equal to zero the instruction ends; otherwise
the next word is moved. Interrupts can occur after each compare.

MOVB (126---). Move Bytes. This instruction transfers a specified
number of bytes from one area of memory to another. The instruction
expects A to contain a byte count, B to contain the source byte
address, and C to contain the destination byte address. The source
and destination maps to be used are specified by the "s" and "d"
fields of the instruction and by the DS, CS, LS, and Privileged Bits
of the ENV Register. The "m" field of the instruction determines
whether the source and destination addresses will be incremented {("m"
= 0) or decremented ("m" = 1) after each move. The "n" field of the
instruction is the value to which RP is set upon instruction end. The
move is made one byte at a time from the source to the destination.
After each byte transfer the addresses are decremented or incremented
and A is decremented. If A is equal to zero, the instruction ends;
otherwise the next byte is moved. If the source is a code segment and
the P Register currently indicates an address in the upper half of the
code segment (bit 0 of P = 1), %100000 is added to the computed
address, so that the source and destination addresses will always be

relative to whichever half of the segment P currently -indicates«——— —

Interrupts can occur after each compare.

COMW (0262--). Compare Words. This instruction compares one area of
memory with another, a word at a time, until a miscompare occurs or
until a specified number of comparisons have been made. The words
being compared are treated as unsigned quantities. COMW expects A to
contain a word count, B to contain a source word address and C to
contain a destination word address. The source and destination maps to
be used are specified by the "s" and "d" fields of the instruction and

3-47

Moves, Compares, Scans, and Checksum Computations

by the DS, CS, LS, and Privileged bits of the ENV Register. The "m"
field determines whether the source and destination addresses will be
incremented ("m"™ = 0) or decremented ("m" = 1) after each comparison.
The "n" field is the value to which RP will be set upon instruction
termination. The instruction fetches the contents of source and
destination addresses, compares them, increments or decrements the
address by one according to the "m" field, and decrements the word
count in A until either A = 0 or a noncomparison is reached. If
termination is due to a noncomparison, CC indicates the results of the
compare or CCE due to A going to zero. Interrupts can occur after
each compare.

COMB (1262--). Compare Bytes. This instruction compares one area of
memory with another, a byte at a time, until the bytes are not equal
or until a specified number of comparisons have been made. It expects
A to contain a byte count, B to contain a source byte address and C to
contain a destination byte address. The source and destination maps to
be used are specified by the "s" and "d" fields of the instruction and
by the DS, CS, LS, and Privileged bits of the ENV Register. If the
source address is in a code segment, the byte address is taken to be
in the same 64K half of the code space as the current P Register
value. The "m" field determines whether the source and destination
addresses will be incremented ("m" = 0) or decremented ("m" = 1) after
each comparison. The "n" field is the value to which RP will be set
upon instruction termination. The instruction fetches the contents of
source and destination addresses, compares them, increments or
decrements the address by one according to the "m" field, and
decrements the byte count in A until either A = 0 or a noncomparison
is reached. If termination is due toc a noncomparison, CCG indicates
that the byte at C is greater than the byte at B, or CCL indicates
that the byte at C is less than the byte at B; A indicates the number
of bytes left to compare. If termination is due to the count running
out, CCE indicates that all bytes compared exactly, and C and B will
point to the next locations not compared. Interrupts can occur after
each compare.

SBW (1264--). Scan Bytes While. The SBW instruction expects A to
contain a comparison byte in bits 8:15 and B to contain the byte
address of the string to be scanned. The map to be used is determined
by the "s" field of the instruction and by the DS, CS, LS, and
Privileged bits of the ENV Register. The "m" field of the instruction
determines if the source address will be incremented ("m" = 0) or
decremented (<m> = 1) after each comparison. The scan is terminated
when either a null byte is found in the string or a byte in the string
does not match the test byte in A. When null byte termination occurs,
the Carry (K) bit in the ENV Register is set. 1In either termination
case, B points to the byte address that caused termination. RP is set
to the "n" field of the instruction at instruction termination.
Interrupts can occur after each compare.

Moves, Compares, Scans, and Checksum Computations

SBU (l1266--). Scan Bytes Until. The SBU instruction expects A.<8:15>
to contain a test byte and B to contain the byte address of the string
to be scanned. The map to be used is determined by the "s" field of
the instruction and by the DS, CS, LS, and Privileged Bits of the ENV
Register. The "m" field of the instruction determines if the scan
address will be incremented ("m" = 0) or decremented (<m> = 1) after
each comparison. The scan is terminated when either a null byte is
found in the string or the test byte matches a byte in the string.

The Carry (K) bit is set in the ENV Register when null byte
termination occurs. 1In either case, B points to the byte address that
caused the scan to cease. RP is set to the "n" field of the
instruction at termination. Interrupts can occur after each compare.

MNDX (000227). Move Words While Not Duplicate, Extended. FE is
assumed to contain a 32-bit destination address in extended memory,
and DC is assumed to contain a 32-bit source address. The MNDX
instruction moves words from the source to the destination while the
count value in register B is not 2zero and the source word is not equal
to the word in A. The word in A is always the previous word moved.
The instruction stops on the first duplicate word or on zero count.
After execution, the word in A is deleted, so that A then contains the
count, CB contains the source address, and ED contains the destination
address. Interrupts can occur after each compare.

CDX (000356). Count Duplicate Words, Extended. Beginning at the
32-bit address (in extended memory) specified in DC, and for a maximum
count of words specified in B, this instruction counts the number of
duplicate words in the buffer. A is incremented on each duplicate
found, and may contain an initial value. After execution, A contains
the original A value plus the number of duplicate words, B contains a
count of the words left in the buffer (zero if empty), and DC contains
the extended address of the first word that did not match its
predecessor (or the word after the last word in the buffer). The
comparison actually starts with the words specified by DC and DC-2.
Interrupts can occur after each compare. This instruction is intended
to be used in conjunction with MNDX.

MVBX (000417). Move Bytes Extended. This instruction transfers a
specified number of bytes from one area of extended memory to another.
The instruction expects A to contain a byte count, CB to contain a
32-bit source byte address, and ED to contain a 32-bit destination
byte address. The move is made one byte at a time from the source to
the destination. After each byte transfer the addresses are
incremented and A is decremented. If A is equal to zero the
instruction ends; otherwise the next byte is moved. All five words
are deleted from the stack when the instruction ends. Interrupts can
occur after each compare.

3-49

Moves, Compares, Scans, and Checksum Computations

MBXR (000420). Move Bytes Extended, Reverse. This instruction
transfers a specified number of bytes from one area of extended memory
to another, using reverse (decrementing) addresses. The instruction
expects A to contain a byte count, CB to contain a 32-bit source byte
address, and ED to contain a 32-bit destination byte address. The
move is made one byte at a time from the source to the destination.
After each byte transfer the addresses are decremented and A is
decremented. If A is equal to zero the instruction ends; otherwise
the next byte is moved. All five words are deleted from the stack
when the instruction ends. Interrupts can occur after each compare.

MBXX (000421). Move Bytes Extended, and Checksum. This instruction
transfers a specified number of bytes from one area of extended memory
to another, and computes a checksum value after each byte is moved.
The instruction expects A to contain a byte count, CB to contain a
32-bit source byte address, ED to contain a 32-bit destination byte
address, and F to contain the initial checksum value. The move is
made one byte at a time from the source to the destination. After
each byte transfer the addresses are incremented, A is decremented,
and new checksum is entered in F. If A is equal to zero, the
instruction ends; otherwise the next byte is moved. Five words are
deleted from the Register Stack when the instruction ends, leaving the
final checksum value in A. Interrupts can occur after each compare.

CMBX (000422). Compare Bytes Extended. This instruction compares one
area of extended memory with another, a byte at a time, until the
bytes are not equal or until a specified number of comparisons have
been made. It expects A to contain a byte count, CB to contain a
32-bit source byte address and ED to contain a 32-bit destination byte
address. The instruction fetches the contents of the source and
destination addresses, compares them, increments the addresses by one,
and decrements the byte count in A until either A = 0 or a
noncomparison is reached. If termination is due to a noncomparison,
CCG indicates that the byte at ED is greater than the byte at CB, or
CCL indicates that the byte at ED is less than the byte at CB; A
indicates the count of bytes left to compare. If termination is due
to the count running out, CCE indicates that all bytes compared
exactly; ED and CB point to the bytes after the last ones compared,
and A is 0. Interrupts can occur after each compare.

XSMG (000343). Compute Checksum in Current Data. Starting at the
address defined in register B, for a count of words defined in
register A, the XSMG instruction exclusive-ORs each word into register
C. When the count goes to zero, the two top words on the stack are
deleted, leaving the final checksum in register A. The address in B
refers to the current data segment only.

3-50

Moves, Compares, Scans, and Checksum Computations

XSMX (000333). Compute Checksum Extended. Starting at the extended
memory location defined by the 32-bit address in CB, for a count of
words defined in register A, the XSMX instruction exclusive-ORs each
word into register D. When the count goes to zero, the three

top words on the stack are deleted, leaving the final checksum in
register A.

PROGRAM REGISTER CONTROL

SETL (000020). Set L with A. The contents of the I Register, which
points to the current stack marker, are replaced with the contents of
register A. A is then deleted from the Register Stack.

SETS (000021). Set S with A. The contents of the S Register, which
points to the top word of the stack in memory, are replaced with the
contents of register A. A is then deleted from the stack. A Stack
Overflow trap occurs if the result is greater than 32767.

SETE (000022). Set ENV with A. The least significant eight bits of
the Environment Register (ENV) are replaced with the lower eight bits
of the A Register. The most significant eight bits of the Environment
Register are logically ANDed with the upper eight bits of the A
Register. Thus this instruction may only clear the PRIV, DS, CS, and
LS bits of the Environment Register, and may not set them. The
programmer should take care with this instruction on NonStop II
systems, since it is possible to inadvertently clear the Library Space
(LS) bit, ENV.<4>.

SETP (000023). Set P with A. The contents of the Program Counter (P)
are replaced with the contents of the A Register. A is deleted from
the stack, and control is transferred to the new location indicated
by P.

RDE (000024). Read ENV into A. The contents of the Environment
Register (ENV) are pushed onto the Register Stack.

RDP (000025). Read P into A. The contents of the Program Counter (P)
are pushed onto the Register Stack.

Program Register Control

STRP (00010-). Set RP. The register pointer is set to the value in
the Register field of the instruction. For binary coding details, see
Table A-7 in Appendix A.

ADDS (002---). Add Immediate Operand to S. The signed immediate
operand is added to the S register in integer form. If the resultant
S is greater than 32767, then a Stack Overflow trap occurs.

CCL (000015). Set Condition Code to Less. A Condition Code of CCL
(N =1 and Z 0) is set into the ENV Register.

CCE (000016). Set Condition Code to Equal. A Condition Code of CCE
(N =0 and Z 1) is set into the ENV Register.

CCG (000017). Set Condition Code to Greater. A Condition Code of CCG
(N =0 and Z 0) is set into the ENV Register.

ROUTINE CALLS AND RETURNS

PCAL (027---). Procedure Call. Control is transferred to an
instruction specified by an entry in the Procedure Entry Point (PEP)
Table; the specific PEP entry is indicated by the PEP Number field
of the instruction. First, a three word stack marker, consisting of
the current P, ENV, and L, is stored on the top of the current stack.
If the caller is not privileged, the PEP Number is checked against
PEP[0] and PEP[1l] to see if the call is legal. If the call is not
legal, an instruction failure trap occurs. (If the caller is
privileged no checks are made.) L and S are set to S + 3 to point to
the base of a new local data area. The final value of S is then
checked for a value greater than 32767; if it is, a stack overflow
trap occurs. Finally, P is set from the PEP entry and control is
transferred to the procedure.

XCAL (127---). External Procedure Call. The XCAL instruction is used
to invoke procedures that are outside the current code segment.
Control is transferred to an instruction in the external segment by a
three-step sequence: 1) a number in the XEP field of the instruction
refers to an entry in the XEP table of the current code segment; 2)
the XEP entry specifies a PEP entry in one of the other three code
segments that are currently mapped; 3) the PEP entry of the other code
segment specifies a procedure entry point within that segment. See
detailed description in Section 2 under the heading, "Calling External
Procedures".

3-52

Routine Calls and Returns

SCMP (000454). Set Code Map. This instruction is used to establish a
code map number in register A for use by the DPCL instruction (next
described). The instruction determines which code map defines the
currently executing code (by examining the CS and LS bits of ENV) and
loads the code map number into A.<0:3>. The code map number is equal
to (LS*2 + CS + 2). 1In typical usage, succeeding instructions would
pass this value to a procedure which would then issue the DPCL
instruction.

DPCL (000032). Dynamic Procedure Call. Control is transferred to an
instruction specified by an entry in the Procedure Entry Point (PEP)
table; the specific PEP entry is indicated by bits 7:15 of A in the
Register Stack. Bits 0:3 of register A specify the code map to use (2
= User Code, 3 = System Code, 4 = User Library, 5 = System Code
Extension; any other value defaults to 2). First, a three word stack
marker, consisting of the current P, ENV, and L, is stored on the top
of the current stack. If the caller is not privileged, the PEP Number
is checked to see if the call is legal. If the call is not legal, an
Instruction Failure trap occurs. If the caller is privileged, no
checks are made. L and S are set to S + 3 to point to the base of a
new local data area. The final value of S is then checked for a value
greater than 32767; if it is, a stack overflow trap occurs. Next, if
the call is to a callable system procedure, the PRIV bit in the ENV
Register is set. CS is set to 1 if A.<0:3> is 3 or 5; otherwise it is
set to 0. LS is set to 1 if A.<0:3> is 4 or 5; otherwise it is set to
0. Finally, P is set from the PEP entry, transferring control to the
procedure.

EXIT (125---). Exit from Procedure. This instruction is used to
return from a procedure called by a PCAL, XCAL, or DPCL instruction.
EXIT assumes L[-2] to L[0] to contain a standard three-word stack
marker consisting of P, ENV, and L. S is moved below the current
stack marker and any parameters by setting it with the "S decrement"
value subtracted from the current L Register setting. P is set to the
return P value contained in L[-2] of the current stack marker. The
caller's ENV Register value is set as follows: the mode (privileged or
nonprivileged) and data area are reinstated to the lesser of the
caller's and the current settings (e.g., a privileged caller can be
made nonprivileged on the return, but not vice versa); the caller's CS
(code space), LS (library space), T (traps), V (overflow), and K
(carry) are reinstated from L[-1]; Z and N (Condition Code) and RP are
set to those of the current procedure. L is moved back to the
preceding stack marker, thereby reinstating the preceding local data
area, by setting L with the contents of the L[0] of the current stack
marker.

3-53

Routine Calls and Returns

DXIT (000072). DEBUG Exit. This instruction is used to reestablish
the environment present at the time the DEBUG procedure was called.
P, ENV, and L are restored from the stack marker generated by the
DEBUG call, and S is reset to its value at the time of the call to
DEBUG. This is a privileged instruction.

BSUB (-174--). Branch to Subprocedure. S is incremented by one and
the return address (P) is saved in that location. Then a direct or
indirect unconditional branch is taken (depending on the "i" field of
the instruction). For binary coding details, see Table A-6 in
Appendix A.

RSUB (025---). Return from Subroutine. This instruction is used to
return from a subroutine called by a BSUB instruction. The
instruction assumes that the return address is on the top of the
memory stack (indicated by S) and returns control to that address.

S is set to S - "S decrement". "S decrement" may be any number from
0 to 255; however, in order to delete the return address from the
stack, it must be at least 1. For binary coding details, see Table
A-5 in Appendix A.

INTERRUPT SYSTEM

RIR (000063). Reset Interrupt Register. This instruction is used by
the operating system interrupt handlers to reset the appropriate INTA
Register bit after an interrupt has occurred. Some interrupt bits
must be reset (along with the clearing of a MASK bit) in order to
allow further interrupts through that SIV (System Interrupt Vector
Table) entry. The instruction expects A to contain the number of the
bit in the INTA Register that is to be reset. This is a privileged
instruction.

XMSK (000064). Exchange MASK with A. The contents of the MASK

Register are interchanged with the contents of the A Register. This
is a privileged instruction.

IXIT (000071). 1Interrupt Exit. This instruction is used by the
operating system interrupt procedures to return control to the
interrupted process. At the time the interrupt occurred, a stack
marker was generated at the L pointed to by the System Interrupt
Vector Table (SIV) for the specific interrupt. This was a special
five-word marker (see Figure 2-59) that consisted of the MASK, S, P,

3-54

Interrupt System

ENV, and L at the time of the interrupt. This instruction
reestablishes this environment (by loading the five registers with the
values in the stack marker, and loading the Register Stack with the
values in L+1 through L+8) and resumes execution of the interrupted
process. At the time this instruction is executed, the needed values
in L-4 through L+8 must be present and DS must be equal to one.

This is a privileged instruction.

DISP (000073). Dispatch. This instruction sets bit 15 of INTA, and
also sets Vi.<15> in the System Interrupt Vector (SIV) table entry for
the Dispatcher interrupt. If bit 15 of MASK is set, a Dispatcher
interrupt occurs immediately following this instruction (provided
there are no interrupts of higher priority pending). Control is then
transferred to the operating system Dispatcher whose location is
pointed to by the SIV table entry. This is a privileged instruction.

BUS COMMUNICATION

TOTQ (000056). Test Out Queues. This instruction sets CCE if neither
of the two Out Queues is full, or CCG if at least one Out Queue is
full.

SEND (000065). Send Data over Interprocessor Bus. The SEND
instruction expects register A to contain a byte count and registers
CB to contain the absolute extended address of the source buffer.
Register D is the OUTQ Full Timer; the timeout value is computed as:
(32768 - <timeout>) times 0.8 specifies the time in microseconds for
the specified bus to become ready (e.g., <timeout> of 0 = 32768 * 0.8
microseconds). Register E bits 0:7 specify the sender cpu and 8:15
specify the destination cpu. Register F specifies a sequence number,
and register G bit 15 specifies which bus is to be used (0 = X,

1 =yY).

Data in the buffer is transmitted in l6-word packets consisting of 26
data bytes (13 words) plus three words for sequence number, sender and
receiver cpu numbers, and checksum. Packets are transmitted until the
byte count is zero. If the byte count is not a multiple of 26, then
the last packet is padded with zeros to round the number of data bytes
up to 26. Condition Code CCE indicates successful completion, and the
Register Stack is marked empty.

If a timeout condition occurs, a Condition Code of CCL is returned,
and the instruction terminates. The Out Queue is cleared.

SEND is a privileged instruction.

Input/Output

INPUT/OUTPUT

RSW (000026). Read the Switch Register into A. The contents of the
Switch Register are pushed onto the Register Stack. Condition Code is
set.

SSw (000027). Store A into Switch Register. The contents of the A
Register are set in the Register Display and into sysstack[%122].
A is then deleted.

EIO (000060). Execute Input/Output. The EIO instruction expects bits
8:15 of A to contain the subchannel number, bits 0:7 of A to contain a
command to its controller, and 0:15 of B to contain a parameter which
is to be passed to that controller via the channel. The instruction
first checks to see if the channel is available. If not it loops,
waiting for channel availability but testing for other interrupts.
When the channel becomes available, the command and address are sent
to the controller by the channel via the LAC (Load Address and
Command) T-bus command and the parameter is sent to the controller
which is now selected via the LPRM (Load Parameter) T-bus command.
Device status is then read from the controller via the RDST (Read
Device Status) T-bus command. RP is decremented by one, and if there
were no channel errors, device status is placed in A, the controller
is then deselected via the DSEL (Deselect) T-bus command, the
Condition Code is set to CCE and the instruction terminates. If there
was a channel error, the ABTI (Abort Instruction) T-bus command is
issued to the controller, deselecting it and terminating its activity.
The contents of IOD, although probably invalid due to the channel
error, are placed in A for evaluation. The Condition Code is set to
CCL and the instruction terminates. This is a privileged instruction.

II0O (000061l). 1Interrogate I/O. This instruction is used by the
operating system interrupt handler to get the interrupt cause and
interrupt status from a controller and to reset that interrupt. It
first checks to see if the channel is available. If not it loops,
waiting for channel availability but testing for other interrupts.
When the channel is available, first rank 0 and then rank 1 of the i/o
system are polled via the LPOL (Low Poll) T-bus command. The
interrupting controller on the highest rank with the highest priority
is then selected via the SEL (Select) T-bus command. The channel then
loads the controller's interrupt cause into the C register, the
interrupt status into the B register, and the channel status into the
A register. Then the interrupt in the controller is cleared. If
there were no channel errors indicated in A, and if interrupt status
bits 0:3 are equal to zero, then CCE is set, and the instruction
terminates. If there was a channel error then CCL is set, and the
instruction terminates. CCG is set in the event of a device error or
parity error. This is a privileged instruction.

3-56

Input/Output

HIIO (000062). High-Priority Interrogate I/O. This instruction is
used by the operating system's high-priority interrupt handler to get
the interrupt cause and status from a high-priority controller and to
reset the corresponding interrupt. Execution is identical to the IIO
instruction, except that HPOL (high priority polls) TBUS commands are
issued and only controllers with the high-priority interrupt jumper
installed can respond. This is a privileged instruction.

RCHN (000447). Reset I/0 Channel. This instruction is used by the
operating system to control the i/o channel in the event of a
catastrophic error. If register A contains a value greater than or
equal to zero, RCHN resets the i/o channel; if A contains a
negative value, RCHN performs a lockup on the channel. Condition
Code CCE indicates that the reset or lockup was performed, or CCL
indicates that the channel was not available. This is a privileged
instruction.

MISCELLANEOUS

NOP (000000). No Operation.

RCLK (000050). Read Clock. This instruction reads the quadrupleword
microsecond counter (located in the System Data segment), adds the
instantaneous value of the l4-bit hardware microsecond counter to it,
and pushes the result onto the Register Stack. Note that since the
software counter is updated only every 10 microseconds (each time the
hardware counter rolls over), adding the hardware count to it provides
an accurate clock indication at the instant that RCLK is executed.

RCPU (000051). Read CPU Number. This instruction reads this
processor's cpu number from bits 0:7 of INTB and pushes this value
onto the register stack.

BPT (000451). 1Instruction Breakpoint Trap. This instruction,
although necessarily nonprivileged, can be used only by system
software (DEBUG); proper operation requires access to the Environment
Register, which requires privileged capability. The instruction
assumes that DEBUG has inserted the BPT instruction at some user-
specified point in the code, and has saved the instruction that
formerly occupied that location in the Breakpoint Table in the System
Data segment. When the code containing the BPT instruction is
executed, BPT is normally executed twice--once when encountered

Miscellaneous

following the preceding instruction, and once again to resume program
execution at the following instruction. A bit (1) in the Environment
Register is used as a flag to differentiate the two functions.

When BPT is first executed, bit 1 of the Environment Register is zero,
which causes an interrupt to be generated (through SIV 19) to DEBUG.
DEBUG sets ENV bit 1 to one and, after user debugging has been
completed, returns to the interrupted code at the BPT instruction.
This time, BPT first sets ENV bit 1 back to zero, then searches the
Breakpoint Table, locates the saved instruction, loads that
instruction into the Instruction (I) Register, and sets the microcode
entry point for that instruction into the ROMA Register. Thus the
breakpointed instruction gets executed, and execution proceeds
normally to the succeeding instruction.

OPERATING SYSTEM FUNCTIONS

of them privileged, are
system and diagnostic

are not intended for use in
only for completeness.

The following groups of instructions, most
used solely to implement certain operating
functions in firmware. These instructions
any user applications, and are listed here

Resource Management

XADD (000033) XRAY Add

MXON (000040) Mutual Exclusion On

MXFF (000041) Mutual Exclusion Off

SNDQ (000052) Signal a Send Is Queued

SFRZ (000053) System Freeze

DOFS (000057) Disc Record Offset

DLEN (000070) Disc Record Length

HALT (000074) Processor Halt

PSEM (000076) "P" a Semaphore

VSEM (000077) "V" a Semaphore

RPV (000216) Read PROM Version Numbers

WWCS (000400) write LCS

VWCS (000401) vVerify LCS

RWCS (000402) Read LCS

FRST (000405) Firmware Reset

RSMT (000436) Read from Operations and Service Processor (OSP)
WSMT (000437) Write to Operations and Service Processor (OSP)
RIBA (000440) Read INTB and INTA Registers

XSTR (000442) XRAY Start Timer

XSTP (000443) XRAY Stop Timer

BCLD (000452) Bus Cold Load

TPEF (000453) Test Parity Error Freeze Circuits

3-58

Operating System Functions

Memory Management

MAPS
UMPS
RMAP
SMAP
CRAX
RSPT
WSPT
RXBL
SXBL
LCKX
ULKX
CMRW
RMEM
WMEM
SVMP
BNDW

List

DLTE
INSR
MRL
FTL
DTL

(000042)
(000043)
(000066)
(000067)
(000423)
(000424)
(000425)
(000426)
(000427)
(000430)
(000431)
(000432)
(000434)
(000435)
(000441)
(000450)

Management

(000054)
(000055)
(000075)
(000206)
(000207)

Map in a Segment

Unmap a Segment

Read Map

Set Map

Convert Relative to Absolute Extended Address
Read Segment Page Table Entry

Write Segment Page Table Entry

Read Extended Base and Limit

Set Extended Base and Limit

Lock Down Extended Memory

Unlock Extended Memory

Correctable Memory Error Read/Write
Read Memory

Write Memory

Save Map Entries

Bounds Test Words

Delete Element from List

Insert Element into List

Merge onto Ready List

Find Position in Time List
Determine Time Left for Element

Trace and Memory Breakpoint

TRCE
SMBP

(000217)
(000404)

Add Entry to Trace Table
Set Memory Breakpoint

3-59

APPENDIX A

HARDWARE INSTRUCTION LISTS

This appendix provides a number of reference tables pertaining to the
instruction set of the NonStop II system.

The first two tables list all instructions in the instruction set with
their mnemonics and opcodes, first in alphabetical order and then
grouped by type of instruction. The remaining tables provide binary
coding details for most of the instructions, grouped according to the
coding patterns of the fields of the instruction words. (For example,
all memory reference instructions are listed together.) These tables
break down each instruction, bit by bit, into its component parts,
indicate the operands, results, and ENV register bit settings, and
show relationships between similar instructions.

The following tables are included in this appendix:

A-1l. Alphabetical List of Instructions

A-2. Categorized List of Instructions

A-3. Binary Coding, Memory Reference Instructions

A-4. Binary Coding, Immediate Instructions

A-5. Binary Coding, Move/Shift/Call/Extended Instructions
A-6. Binary Coding, Branch Instructions

A-7. Binary Coding, Stack Instructions

A-8. Binary Coding, Decimal Arithmetic Instructions

A-9. Binary Coding, Floating-Point Instructions

A key at the end of each table explains the symbols used.

NOTE

For some instructions, the six-digit opcode notation
used in Tables A-1l and A-2 cannot give complete
information about the opcode. For instance, the
distinctions between QUP and QDWN, ORRI and ORLI,

and LWP and LBP cannot be clearly shown. For complete
information, refer to the entries for these instructions
in Tables A-3 through A-9.

Appendix A: Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions

Mnemonic

Description

Octal
Code

ADAR
ADDI
ADDS
ADM
ADRA
ADXI
ALS
ANG
ANLI
ANRI
ANS
ANX
ARS
BANZ
BAZ
BCLD
BEQL
BFI
BGEQ
BGTR
BIC
BLEQ
BLSS
BNDW
BNEQ
BNOC
BNOV
BOX
BPT
BSUB
BTST
BUN
CAQ
CAQV
CCE
CCG
CCL
CDE
CDF
CDFR
CDG
CDI
CDQ
CDX
CED
CEDR

Add A tO RegiStereceicececccccccsosasossassssancnsnse
Add ImmMediateeseccescessessescssosessacssssssssos
AdA tO St eeeeeccossocecsassscssscssscsscssccssscsees
Add tO MEMOLVeeeesacosccccccss ceececcscsceranas
BAd Register tO A..icccssceccccsnscscsssassscnns
Add to Index Immediate.iceecessecsscscccccessscsnccs
Arithmetic Left Shift.eciieeeeeeesseosscccanescnsns
AND tO MEMOILYecsocececssncsccoscscscsccsosscscnssace
AND Left Immediate.ceceececcceaccscascassscscscnas
AND Right Immediat@eceeceecsscssceccassscsssssacsns
AND tO SG MEMOI Y ececooosvssscsoscssasascsscsssasss
AND to ExXtended MEMOIVee.eeceeceoeseccccccaccccces
Arithmetic Right Shift.cceeeecresesccccssscsnsnse
Branch On A..iceeeesscecacssccscccsscsssscssscocaes
BranCh on A ZerO..ecceccesescecscsssscscsccssssscccca
Bus COld LiOAdeecceecessecscescsccaccssasascsscocss
Branch if EQUal.eeecececesoscsccscsssocssascccsscs
Branch Forward INAireCtecececsescececccscoscocssssnsss
Branch if Greater Oor EQUAl.eeecessesssoscccecccns
Branch if Greater..iecceccesceccecescacscsssssscnns
Branch if Carryeceeececsceecsccasescssssccssscsscnsce
Branch if Less Or EQUAl..seeceeeccsccsscccosonas
BranCh if LSS eeececsectsccccscscoscncsnoscsssssse
Bounds TesSt WOrdS.ceecscoesssececsescanssscsscscss
Branch if Not EQUAl.eceeeecesescccsoscsccassccnas
Branch if NO CArryeeesecsccccescccccccanns ceeves
Branch if NO OVerfloOW.:eeeeseecseseacscsssanssncass
BranCh On Xecesseeosssscocecssssncsssssscasosscsssse
Instruction Breakpoint TraPeceecceccccsssceccssses
Branch to Subprocedure...cecscecccessccscscasase
BYte TeSteveesceecessssssceanassssssscsssscsscscenss
BranCh.eeseesessecessosseesesssssssscssscncossss
Convert ASCII tO QUAd.eeeeeecsccccssvcsssceccnnns
Convert ASCII to Quad with Initial Valu€..eeooo
Condition Code EQUAl tO.ceeececcsscsosscnccanscs
Condition Code Greater thaNe.e.eccececscsssosesccnsce
Condition Code Less thaN.ieceeeeeceeecseccccccnccsns
Convert Doubleword to Extended FloAt.eeeeeeeeces
Convert Doubleword tO FlOoAte.eesececscscceeasoscnscs
Convert Doubleword to Float (Round) ..eecececeeess
Count Duplicate WOrdS.:eeseececcccocccsnsssssases
Convert Doubleword tO Integereceeeceeccececcccascs
Convert Doubleword tO QUad.ecescecsssccccceccnes
Count Duplicate Words Extended..cceeececcsccees
Extended Float to Doubleword...ccececssescscecscs
Extended Float to Doubleword (Round)..ceeeeeeces

00016-
104—--
002---
-74 ===
00014-
104---
0302--
000044
007---
006-~--
000034
000046
0303--
-154--
-144--
000452
-12——~-
000030
-13——-
S [
-10-—-
-16—-—-
-14——--
000450
~15~——
17—
-164--
-1-4e-
000451
-174--
000007
-104--
000262
000261
000016
000017
000015
000334
000306
000326
000366
000307
000265
000356
000314
000315

= = s w0 n

H= sHe

Appendix A:

Hardware Instruction Lists

Table A-1l. Alphabetical List of Instructions (Continued)
CEF Extended Float tO FlOAteceseeccecccceooassasssss 000276 #
CEFR Extended Float to Float (ROUNd) cecceseesesssess 000277 #
CEI Extended Float to Integer.ccccececececeesssesss 000337 #
CEIR Extended Float to Integer (Round)....eceeee.... 000316 #
CEQ Extended Float to Quadrupleworde.cecesceceesssss 000322 #
CEQR Extended Float to Quadrupleword (Round)........ 000323 #
CFD Floating to Doubleword.ceeeeeceecsscesscessecesss 000312 #
CFDR Floating to Doubleword (ROUNA) eeceeseeeceecesss 000313 #
CFE Floating to Extended Float.ceceescscsceccesaesss 000325 ¢
CFI Floating tO INteger.e.ceesescsccscscccsssscsasss 000311 #
CFIR Floating to Integer (ROUNA) ceeeescsseseacssesess 000310 #
CFQ Floating to Quadrupleword..cceeesseccessscasosas 000320 #
CFQR Floating to Quadrupleword (Round)...eeeceeeeec... 000321 #
CID Convert Integer to Doubleword....ecceceeeeeeees. 000327
CIE Convert Integer to Extended Float.sseeeceeeeesss 000332 #
CIF Convert Integer to Floating....cceceecececsseeess 000331 #%
CIQ Convert Integer tO QUad..cceecccccccsssasssocas 000266 S
CLQ Convert Logical tO QUad.eeetececessssceeencecass 000267 S
CMBX Compare Bytes Extended...cceseeceecsscsscaseesss 000422
CMPI Compare Immediateeseececcssccsccsccsssscscccsces 00le—-
CMRW Correctable Memory Error Read/Writ€...eeeee.... 000432 *
COMB Compare ByteS.seeecsesossssoscssccsssssossssccsssse 1262~
COMW Compare WOrdS.eeeesesecscscsccscacoscscssosssanssse 0262——
CQA Convert Quad tO ASCIT:.cccccococcscsssscccsasss 000260 §
CQD Convert Quad to Doubleword..ceceescesesccecesecass 000247 $
CQE Convert Quad to Extended..ceeeececeeeeceeassess 000336 #
CQER Convert Quad to Extended (Round)..eccceeceecee... 000335 #
CQF Convert Quad to Floating....ceeeeeeecceeccessss 000324 #
CQFR Convert Quad to Floating (Round)...cseeseessess 000330 #
CQ1I Convert Quad tO INteger.ceeessscssssssssceseasss 000264 S
CQL Convert Quad to LOgiCaAl.eeessesscccccccecscesnsas 000246 S
CRAX Convert Relative to Absolute Extended.......... 000423 *
DADD Double AddQ..ceeececeeesssossssccssssacsscasssss 000220
DALS Double Arithmetic Left Shift.eeeeeessececsscesss 1302--
DARS Double Arithmetic Right Shift.ececeeeeeceececeess 1303-=
DCMP Double COmMPArCesccccecscscassassssasssseccscssssss 000225
DDIV Double Divide.ieeeeeseeccsscoscsseanssseansssssss 000223
DDUP Double DUpPlicCate.cecccecesescsccssccssssssssessnes 000006
DFG Deposit Field in MemOLY.seeesssceccssoccesscassss 000367
DFS Deposit Field in SysteM.ceseesceccsccceccceessas 000357
DFX Deposit Field in Extended MemOrYeseeeceeecesasssas 000416
DISP DispatCh.ceeeeecesssceccsossnssossssasasssasseaces 000073 *
DLEN Disc Record Lengthe...eeeeeeecesesssscsseasessassss 000070 @
DLLS Double Logical Left Shift..ecececseccacccenssss 1300--
DLRS Double Logical Right Shifte.ecceececcecesosocsnsess 1301--
DLTE Delete from Linked LiStececsecsececscsscacsaeaess 000054 *
DMPY Double MUltipPlyeeeeocecsssessssscssssacnssassass 000222
DNEG DOUDle NEGAtEeceeeeeeetasssssssssscssssceessses 000224
DOFS DisCc ReCOrd OffSetecececcccccccasscssscecsssscsss 000057 @

Appendix A:

Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
DPCL Dynamic Procedure Call.esseescescessescesseassss 000032
DPF Deposit Fieldeeeeeeeeeecosescosssssncsseanssnsses 000014
DSUB Double SuUbtract.ceeeessescecssccosocscasssssssses 000221
DTL Determine Time Left for Element...ceeceeeceeecss. 000207 *
DTST DOUD]1E TeSteeeeeeeeeeeessssososssssonssssasssesass 000031
DXCH Double EXChaANg@.:ceeeeesscsssssssssscaceasessssss 000005
DXIT DEBUG EXitoeeeecoseesssscsscsosssssssssssssssssss 000072 *
EADD Extended Floating-Point Add...sceeecceoesceesss 000300 #
ECMP Extended Floating-Point COmpPar€..ceecescecessssss 000305 #
EDIV Extended Floating-Point Divide...eeeeeeseeesess 000303 #
EIO EXECUte I/0ceceasecccscssssccssscssssccscesssss 000060 *
EMPY Extended Floating-Point Multiply.eeeeceececesces 000302 #
ENEG Extended Floating-Point Negat€.e.eeseeeesassea. 000304 #
ESUB Extended Floating-Point SubtraCte.eceecesscesss.. 000301 #
EXCH EXChAnNge.eeeeesoececsssecsssesasssssosssnsssssess 000004
EXIT EXit ProCcedUre.ecececececcsssssssscscosssssssosscones 125———
FADD Floating-Point Add...ceeececessceossanessssesss 000270 #
FCMP Floating-Point COMPAre€...eceeesesessnsecsecssssss 000275 #%
FDIV Floating-Point Divide.cicseeeescssesascssssesss 000273 #
FMPY Floating-Point MUltiplye.ececeeceascssesasaeses 000272 %
FNEG Floating-Point Negat@.eesceseeesesasescesseassas 000274 #
FRST Firmware ReSE@L.eceescecsecseccsssssssccasssssses 000405 *
FSUB Floating-Point SubtraCt..ciccecececceceesceaesss 000271 #
FTL Find Position in Time LiStecsccsseccccccsssessas 000206 *
HALT Processor Halteeeeesoooeeassssasessnssanssassas 000074 =*
HIIO High-Priority Interrogate I/Oceeececcccsecee-ss 000062 *
IADD Integer Add..ccceeeessssssscscscnncasssssasssss 000210
ICMP Inteder COMPAre:.:s:seccasceasacceaacansscnsaasana . 000215
IDIV Integer Divide..seeceseccccccoccssasssssssaeses 000213
IDX1 Calculate Index, 1 DimensiON..eccececscessessss 000344 4
IDX2 Calculate IndeX, 2 DimensiON..ceceseccceesscess 000345 ¢
IDX3 Calculate Index, 3 DimensioN...cceceecscececssses. 000346 #
IDXD Calculate Index, Bounds in Data Spac€.......... 000317 #
IDXP Calculate Index, Bounds in Code Space.......... 000347 ¢
I1I0 Interrogate I/Oceeeccesecsscssessccsncnessasssss 000061 *
IMPY Integer MUltipPlyeesescescscsesssssoscssecsssssoass 000212
INEG Integer Negat@.sesceeesssscscsscssscssosssssecssss 000214
INSR Insert Element into Linked List...cceceeceeec.. 000055 *
ISUB Integer SUDtraCtececeecescescessssssassassasssss 000211
IXIT InterrupPt EXiteeeeeeooecosssocoscsssesssccesssess 000071 *
LADD LOGicCal AdQ..eeseccesccssessasssescasccssessess 000200
LADI Logical Add Immediate.sceecesssssccccssssssssse 003——-
LADR Load AdAreSSeccecessssssssscssssssssssassssssnas =—1———m
LAND LOGiCAl AND:.vsseescceossscosasssossssssssanssas 000010
LBA Load Byte Via Aceeeesesccscossscsssssossnasesas 000364
LBAS Load Byte via A from SySteMecccecesossscessssses 000354
LBP Load Byte from Programe.ccecececececcecescccscccscsss =—2-4--
LBX Load Byte ExXtended...seeeeescscscacacssacsssssss 000406
LBXX Load Byte Extended, Indexed......eseceeeeseesss 0256--,
0266--

Appendix A: Hardware Instruction Lists

Table A-1l. Alphabetical List of Instructions (Continued)
LCKX Lock Down Extended MemOrY..eeeeeescess esessssss 000430 =+
LCMP Logical COMPAr€..ceccscccees ceeesesnes ceenees .. 000205
LDA Load Double Via Aceeessssssocosssssososaacssscas 000362
LDAS Load Double via A from SySteMeceeececoososccsssse 000352
LDB Load BYtCeeeeeoocsosesososcsocsonss ceesssessee cees =Hm—eno
LDD Load Double..... ces s s eseeccccss st sssssssssana e -6-———-
LDDX Load Double Extended...eciececeecsssascnccsassss 000412
LDI Load Immediateeeeeeecescsssscoscsosssoscsocsssasse 100——-
LDIV Logical DivVideieseeeeeceeeeoscnsesssssasssssassse 000203
LDLI Load Left Immediate...cceeeeeees. sesssececsassss 005---
LDRA Load Register tO A.eeeeccccccccccossscssssssssss 00013-
LDX Load Xeeeooo ceseccaccss e e s cccesessssssseasesancen -3———-
LDXI Load X Immediatececesccceccns crsecacsan cecsees 10-——-
LLS Logical Left Shift.ceeecececccesososososscssssasas 0300--
LMPY LOgical MUltipPlYeeeoseocccoscceasosssssssssasss 000202
LNEG Logical Negat@.cesesosocscssseccsscsacacscas 000204
LOAD 17 Y- T ceeecseses mhe—m—e
LOR LOJIiCal OReccecosssssossocnsosssassascsccasss eeeses. 000011
LQAS Load Quadrupleword via A from SGeeeeeeeeeeassess 000445 =
LOX Load Quadrupleword Extended...ccesececees ceessees 000414
LRS Logical Right Shift..eeeeeececcccccceccssss eeee. 0301--
LSUB Logical Subtracte.cceceeceeeees cecscsccsesssssses 000201
LWA Load Word via Aceeeesesosscases cesssessecccassss 000360
LWAS Load Word via A from SySteMeeecesssecesseceesass 000350
LWP Load Word from Programeccecsseccececcscscscccssccsssss —2————
LWUC Load Word from User Code SPaACe.escecsscesessessss 000342
LWX Load Word ExXtended..cceceecscceccscscessssnsssses 000410
LWXX Load Word Extended, IndexXxed..cceeeecssssssseses 0254-—,
0264--
MAPS Map In @ SegmenNteecececeesaasossesssssssssseceassss 000042 *
MBXR Move Bytes Extended, Reverse........ ceessssesass 000420
MBXX Move Bytes Extended, ChecksUm..ecceecseesseesss 000421
MNDX Move Words while Not Duplicate, Extended....... 000227
MNGG Move Words while Not Duplicat€..ccceesseceesesss. 000226
MOND Minus One DoUble...ceeeceeceeascsscscsscnsseecss 000001
MOVB MOVE ByteS.cececeeereccccssnsccsonnsns crecececanees 126——-
MOVW MOVE WOIrdSeeeeeesesssscsoscsccsscssnnccse cecesccees 026-——-
MRL Merge onto Ready LiSt.ececeeececscsssccsscesscasss 000075 *
MVBX Move Bytes Extended...c.eceeees ceessscssccessass 000417
MXFF Mutual EXclusion Off.ceceeesosccccscssnssseoeses 000041 =*
MXON Mutual EXClUSIiON ONecccessocssssssssscscseessss 000040 *
NOP NO OperatiON.iceccccseccssscesssssccssssnsssssssss 000000
NOT NOtoeeeooeeoooeoecsoonoosescsscsosoosossasssnosscscsosscsoocass 000013
NSAR Non-Destructive Store A in a Register.......... 00012-
NSTO Non-Destructive StOre..e.ccceececcecceceecse cesceccees =34-—-
ONED One DOUDlE.iceeeeseeeeasassassssssssecaasssanssss 000003
ORG OR tO MEMOILY e e eeeassoosacosssssacnssseassssscsaass 000045
ORLI OR Left Immediate..eeeees ceessssseseccscssasesress 0044-—-
ORRI OR Right ITmmediate..sececececccccccccocassnssss 004-—-
ORS OR tO SG MEMOIYeseeosoosescasscsscsssssssnsssss 000035

Appendix A: Hardware Instruction Lists

Table A-1.

Alphabetical List of Instructions (Continued)

ORX
PCAL
POP
PSEM
PUSH
QADD
QCMP
QODIV
QDWN
QLD
QMPY
QNEG
QRND
QST
QSUB
QUP
RCHN
RCLK
RCPU
RDE
RDP
RIBA
RIR
RMAP
RMEM
RPV
RSMT

RQD!T!

[w P gy

RSUB
RSW
RWCS
RXBL
SBA
SBAR
SBAS
SBRA
SBU
SBW
SBX
SBXX

SCMP
SCS

Sba

SDAS
SDDX
SEND
SETE
SETL
SETP

OR to Extended MemMOIYeecceceoeecceessonsssnecsasns
Procedure Calleseeeececcscesssscscsessncasanasss
Pop from StacCKeeeeeeeeeeeccees cesecccscssssasnas
"P" A SEemMAPNOrE.eccsecccccccsscscscosscanssennss
Push tO StaACKesieeeeevoosoososscscscssscscconnnnsas
QUAD AQd e e e eecescesvsescssosassossssssssesssssnsascs
QUAd COMPALCesceccssssssssasssosssssssasssasecscss
QUAd DiVidCeeseeeeeeeesscecscccscscasscssasccsansce
QuUAd SCAle DOWNeeosessesnsesssssscssscsssscsssssscs
QUAA LOoAA . e ceeeasosssssccccscssscosscsscoasscccsss
QUAA MULtiPlYeecoeessassssonseocsssasansnsccnscsnss
Quad Negatl.ceeeeeeeeeeesssceccoccccsessssssssss
QUAd ROUNA .t eseecvcosscsscsoscscscascssscscsccscses
QUAA StOr@eeeeecscssssesccasosasssssssssssssssscs
Quad SubtraCteeceececeececsscsaseessassssssscsscocases
QUAd SCAle UP:veecececcsssssssssssssssssssccscs
Reset I/O Channel..ceeeoccccscss cececscccsssnes
Read ClOCKeeeeeeeoeoooessssssssscsnscssasnsases
Read Processor Number...c.ceececssececccssnnansne
Read E RegisSterececeeececesesecsccscescsssscnscns
Read P REGIStEr et eeeteeeccccscocooccsossnccasnee
Read INTA and INTB RegiSt@rSeciceessccecssccces
Reset InterrupPt.eccececcececcececsccscccscscnconcnsnsae
REAA MAPeeeesooessacsssosssssssosssssssscasscsscs
Read MEMOL Y eeeeeeeorssrsaccsssssssccssnsncssascnes
Read PROM Version NUMbErS..ceseesecccssscesnsnes
Read from Operations and Service ProcessOr.....
Read Segment Page Table Entry..ceeecececvoecans
Return from SubproceduUre...ccccececsssecesscnes
Read SwitChesS.ceeeeeeseceesssssssccosscocnoscnes
REAA LCSeeeteessssssosasossssssscssscsosscsnsssenss
Read Extended Base and Limit.ccicceceeecnnccanas
Store Byte Via BAcieeeersccsssscscsccsssesssncnscse
Subtract A from a Registereceeeeeeeccoscccccass
Store Byte via A into SysSteMeecciceccccccssascnsse
Subtract Register from A..eceeececccccsscccsscs
Scan Bytes Untilececeecceccsccasssesccssascsanse
Scan Bytes While..ceieeeeeeeeesseeccsconoocnnasssns
Store Byte Extended...cceeeeecccscscsccsscssssancse
Store Byte Extended, Indexed.eceeeesceccccccens

Set Code MaAP:ecceceeececsecansssssoscensossossacscsas
Set Code Segment.cceececeessssssesscsscsnsocnes
Store Double via A.ceericeeessseecsessscsssencns
Store Double via A into SySteMecsececesscccasss
Store Double Extended..ccccesesccccsccsnsscenas
SeNAeeeeeeeessssccsnosasssasssssnsccsssoscsnssssocss
Set ENV RegisSterecceeesceccecsssassscnscsssssssansa
Set L RegisSterececeecssccesscsesssessssscssassceca
Set P RegiSter.eceecececcseascascsonssscsscssssnsse

000047
027---
124—--
000076
024---
000240
000245
000243
00025-
00023-
000242
000244

- 000263

00023-
000241
00025~
000447
000050
000051
000024
000025
000440
000063
000066
000434
000216
000436
000424
025---
000026
000402
000426
000365
00017-
000355
00015-
1266--
1264--
000407
0257--
0267--
000454
000444
000363
000353
000413
000065
000022
000020
000023

-\

* % % ¥ Ok %k %

Appendix A: Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
SETS Set S REJISterieeescescecsscsssescessesacsssssss 000021
SFRZ System FreezZe.ceeeceececcecnes seeesccsssssscesss 000053 *
SMAP SEt MAPeesseessssessssosssssssssssscsssscssssses 000067 *
SMBP Set Memory Breakpoint..... ceeessccsscsssscessss 000404 =*
SNDQ Signal a Send Is QuUeUEd.cccceceeceeesasssssssss 000052 *
SQAS Store Quadrupleword via A tO SGeceeeessecesssss 000446 *
SQOX Store Quadrupleword Extended...c.eeceesesceasssss. 000415
SSwW Set SWitCheS:cieeeeesseceosacscsnsssssnssseasnassss 000027
STAR Store A in REgIStErecesececcceccccscessssssssssas 00011-
STB StOre Byt@ieseeesseeessccsssscccsssasssssssssss —54—ae
STD Store DOUble.sieeeeeeesssssocasossosscsscsssasse =—04——
STOR StOr@eceeeseceosscsesosscossssscnssssccssnseacsssse —4d——
STRP SEt RP:iveveesesscscssassssasssseacosssssssssassssssa~ 00010-
SVMP Save Map ENntrieS.ceceeccecscescssescecssessessssss 000441 *
SWA Store WOrd via Aceiecececosccscecssssenssasssssssas 000361
SWAS Store Word via A into SysteMeceeeceeceeecceecesssas 000351
SWX Store Word Extended.cceeceeecsoscassssssssssasass 000411
SWXX Store -Word Extended, IndeXed...cecsecessscecssssss 0255--

0265--

SXBL Set Extended Base and LiMiteececsocosceccasssses 000427 *
TOTQ TeSt OUTQceececseesscsssccscscscnssssssssssssssss 000056 @
TPEF Test Parity Error Freeze CircuitSe.seeeceecsecee... 000453 *
TRCE Add an Entry to the Trace Table...ceceeeceeee.. 000217 *
ULKX Unlock Extended MEMOrYeseeeosessesssscesssasesss 000431 *
UMPS Unmap a SegmeNt.ceeecscccscssccccccacssssssssssss 000043 *
VSEM "U" 4 SeMAPhOrE€.cecescssccsscssscsscsscssesssss 000077 *
VWCS Verify IiCSeeeeeescoosasssssssssssacesscnssssssss 000401 *
WMEM Write tO MeMOrY.eeseeesosecsssssccssecsssssessss 000435 *
WSMT Write to Operations and Service Processor...... 000437 *
WSPT Write Segment Page Table Entrye.eceecececececesssss 000425 *
WWCS Write tO LiCSeeeeeessscsssscassssscnssseassssseass 000400 *
XADD XRAY AdQ.cceeereessesoenscsncsssasscsssossessses 000033 *
XCAL External Calleceesccessccesacscocssssoassssocnnsse 127———
XMSK EXchange MasSK..eeeoeeoeescoscsesssesssssscsssssnss 000064 *
XOR EXClUSIiVe OReeeeesosossssssscssscscnsssssassssss 000012
XSMG Checksum BlOCK:ceeeeosossescacssassesssessseasssss 000343
XSMX Checksum Block Extended..cceeececccccessessasess 000333
XSTP XRAY StOP TiMereeeeeecesccaseosocsscssessessses 000443 *
XSTR XRAY Start Timereeeeeecsecesesscscccccsoasnssseascsss 000442 *
ZERD ZerO DOUDlEieeeeecsccaosonsavsossssnssssascnecsnesas 000002

The one-character symbols immediately to the right of the

instruction opcodes have the following meanings:

* indicates a privileged instruction.

Q indicates an instruction designated for

operating system use only.
$ indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction.

Appendix A: Hardware Instruction Lists

Table A-2. Categorized List of Instructions

16-Bit Arithmetic (Top of Register Stack)
IADD Integer Add.eeececeeecssssscsecassssssssssanasss
LADD Logical Add.eecececceececsossossncsssnsnsscscnsns
ISUB Integer SubtraCt.ceceececeescscsesssscsccccnas
LSUB Logical SubtraCt.eceeeeesecscosecsscesncnssnnca
IMPY Integer MUltipPlyeeecoeocsoeccssssscsscscnsosas
LMPY Logical MultipPlVeeeeeceoooascscscecsssssassocsnscs
IDIV Integer Divide..eeeseesscecesssssssssosnssanss
LDIV Logical DivVide.eeeeeeeeesosoncssosssssccccscsnsse
INEG Integer Negate.iieceeeeeeeoootscosccscscsccccancs
LNEG Logical Nedgat@..eeeeeseeesseescsascscscosscnnss
ICMP Integer COMPArCeceecsocoscscscsccsossasossssscaascs
LCMP LOogical COMPAr .seesssscsscassccccssscccsssssss
CMP1I Integer Compare Immediat@.cececeessscescsccecs
ADDI Integer Add Immediate..cececececccscccccsnssasnas
LADI Logical Add Immediate..ceeeecesccccceaccanses

32-Bit Signed Arithmetic
CDI Convert Double tO Integer.eceeeeeereccsssscccs
CID Convert Integer to DOUblE.cceeseececceccncensca
DADD DOuble Add..ceeeecceteecsccscccnsccccsscscasnsse
DSUB Double SubtraCt.cecceceeecesscecccccececcensns
DMPY Double MULltiPlYeeooosoaoeoesasasosossocsnssancas
DDIV Double Divideeiieeececcecssscesssccccsscncnecse
DNEG Double Negat@.eeeeeeeoeeeesooosceeccsssscnnaccs
DCMP Double COMPAre.e.ecessseesscesscssscsnssscnscasncs
DTST DOUDlEe TeSt.ececeesosssscessncsssscassasssncas
MOND (Load) Minus One Double. cicccsccccse
ZERD (Load) Zero DOUDle.iceieeeeeeeccccocnconssacsa
ONED (Load) One DOUblE..ieeeeceeccccocccscessnssanas

16-Bit Signed Arithmetic (Register Stack Element)
ADRA Add Register tO Acceecesescsssscesssssssssesnsca
SBRA Subtract Register from A...ccececccscsesscnns
ADAR Add A tO RegiSterecesesecesscecscsssssansoccnsns
SBAR Subtract A from Register..cccecececscccocsonas
ADXI Add to Index Immediat@.ceececcecsssssscnsosncs

Decimal Arithmetic Load and Store
QLD Quadruple LOAd .. ceeeeeccscesossccscssscsnccsscccs
QST Quadruple StOrE.icicecersescscscscscsssssssssessnss

Decimal Integer Arithmetic
QADD Quadruple Add...ceeeeecccscsccssscoconscssesncs
QSUB Quadruple Subtract.ceceeescseccccscecccssansce
QMPY Quadruple MUltiplyeececeecsccececsccsasseassanss
QDIV Quadruple Divide.ccieeeececescecssccccncacanes
QNEG Quadruple Negat@eeesesoseessassssssssscsccccs
QCMP QuUadruple COMPArCeceseesssssssscsscascsnsccccs

000210
000200
000211
000201
000212
000202
000213
000203
000214
000204
000215
000205
001---
104---
003---

000307
000327
000220
000221
000222
000223
000224
000225
000031
000001
000002
000003

00014-
00015-
00016-
00017-
104---

00023-
00023-

000240
000241
000242
000243
000244
000245

N -

Appendix A:

Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)
Decimal Arithmetic Scaling and Rounding
QUP Quadruple Scale UPeeessccsssssssassscssssosss 00025-
QDWN Quadruple Scale DOWNeeessessesosssssssssessss 00025-
QRND Quadruple ROUNA:.sesseccccececccssssasssssssss 000263 §
Decimal Arithmetic Conversions
CQI Convert Quad to Integer.ecceecececesssssseaecssss 000264
CQL Convert Quad to LOgiCaleseseeoccsnsssceeecsasss 000246 §
CQD Convert Quad to DOUDblE.cecececeseceasensaesaass 000247 $
CQA Convert Quad tO ASCITceceeeccssaccscascseseses 000260 S
CIQ Convert Integer tO QUad.seeeecevssssssssceeaaes 000266 S
CLQ Convert Logical to QUad.esceseeccessssasseeaeaes 000267 $
CDQ Convert Double tO QUAA.ccceeecceeceneeaasssss 000265 S
CAQ Convert ASCII tO QUAGeteeeceoscssessssonsseasss 000262 S
CAQV Convert ASCII to Quad with Initial Value..... 000261 S
Floating-Point Arithmetic
FADD Floating-Point Add...cceeeeeeccssccecceececessss 000270 #
FSUB Floating-Point Subtract.cceeeeecccecceasseses 000271 #
FMPY Floating-Point MUltiplyeeeececsscscccceeesesss 000272 #
FDIV Floating-Point Divid@.eseceeescsceessceasssaseaes 000273 #
FNEG Floating-Point Negate..eeceeeeeeecceeceesaeaeess 000274 ¢
FCMP Floating-Point COMPAre.ccceccescecssescceseasseas 000275 #
Extended Floating-Point Arithmetic
EADD Extended Floating-Point Add..ccceesesessssss. 000300 #
ESUB Extended Floating-Point Subtract.ceeeeececece.. 000301 #
EMPY Extended Floating-Point MultiplYeeeeeoeeesesss 000302 #
EDIV Extended Floating-Point Dividee.eeceeceeeseseees 000303 #
ENEG Extended Floating-Point Negateé...e.c.ceeeeeee... 000304 ¢
ECMP Extended Floating-Point Compar€.............. 000305 #
Floating-Point Canversions
CEF Convert Extended to Floating...eececesessesss 000276 #
CEFR Convert Extended to Floating, Rounded........ 000277 #
CFI Convert Floating to Integer....eeceeceeessesss 000311 #
CFIR Convert Floating to Integer, Rounded......... 000310 #
CFD Convert Floating to Double.scscecsccceaceeeesss 000312 ¢
CFDR Convert Floating to Double, Rounded....ee.... 000313 #
CED Convert Extended to Double..ceeeccesccceeceses 000314 #
CEDR Convert Extended to Double, Rounded.......... 000315 #
CEI Convert Extended to Integer....ceceeeeeese... 000337 ¢
CEIR Convert Extended to Integer, Rounded......... 000316 #
CFQ Convert Floating to Quad..cecesesssceccsececees 000320 #
CFQR Convert Floating to Quad, Rounded...cceee.... 000321 #
CEQ Convert Extended to QuUad.ccececscsssscesessss 000322 #%
CEQR Convert Extended to Quad, Rounded.....ceeee.. 000323 #

Appendix A:

Hardware

Instruction Lists

Table A-2. Categorized List of Instructions (Continued)
CFE Convert Floating to Extended....cceeeeesessss 000325 #
CIF Convert Integer to Floating...eceeeeeesesesss 000331 #
CDF Convert Double to FloatinNg.eeeeseeeeescesssss 000306 #
CDFR Convert Double to Floating, Rounded.......... 000326 #
CQF Convert Quad to Floating.eeeeesssccesseeessss 000324 #
CQFR Convert Quad to Floating, Rounded...eeees.... 000330 #
CIE Convert Integer to Extended....cceeceessesssss 000332 #
CDE Convert Double to Extended...ceeseececessessss 000334 #
CQE Convert Quad to Extended...ceeeeceseceseeseass 000336 #
CQER Convert Quad to Extended, Rounded......c..... 000335 #
Floating-Point Functionals
IDX1 Calculate Index, 1 DimensioON...c.ecessssecsceeaes 000344 4
IDX2 Calculate IndexX, 2 DimensionNS...csseeeesees... 000345 #
IDX3 Calculate Index, 3 DimensionNS..ceecsecececescsss 000346 #
IDXP Calculate Index, Bounds in Code Space........ 000347 ¢
IDXD Calculate Index, Bounds in Data Space........ 000317 #
Register Stack Manipulation
EXCH Exchange A With B.ceeeooeeoesosssssaseccececeess 000004
DXCH Double EXChANge..:ccccececsssnssssscesaaassss 000005
DDUP Double DUPliCate.seesceccsssscsscscassssssass 000006
STAR Store A in a Register...ceeeeeceeccesceaccesss 00011-
NSAR Non-Destructive Store A in a Register........ 00012-
LDRA Load A from a Register.eceeeeessssccnaacceasas 00013~
LDI Load Immediate..eceeeseeesscensccssscsssscssss 100——
LDXI Load Index Immediate.cccceeessescssssssccscnsse 10-——-
LDLT Load Left Immediate.cececececssssosssccsccsnse 005——=
Boolean Operations
LAND LOgicCal AND:eceeesesssssssesascsssasossssssssss 000010
LOR LOJiCAl OR:ceecscesosocsssscsssssccassasssass 000011
XOR EXClUSIVE OR:eeeccscccessssanossssssssscssess 000012
NOT NOT:eeoeoosasaosasssossssassssssssssssssssssssss 000013
ORRI OR Right Immediate..cccccececesccocssccccecss 004——-
ORLI OR Left Immediate.cceceeceeeecscceccssasscnnsnes 0044-—-
ANRI AND Right Immediate..cccceseeccecsssscccecesss 006——-
ANLI AND Left Immediat@.ccecececcccccssscscscscses 007=—=
Bit Shift and Deposit
DPF Deposit Fieldeeceessscesssscessssssassacssasas 000014
LLS Logical Left Shifteeceeceseecesscccsesscensanss 0300--
DLLS Double Logical Left Shift.ec.ceeeeccscceseacss 1300--
LRS Logical Right Shift.eceeeeceecessessssccscsssss 0301--
DLRS Double Logical Right Shift...cceesceeecsoeceaas 1301-—-
ALS Arithmetic Left Shift...cececeeesescsssancacas 0302--
DALS Double Arithmetic Left Shift..eceeeeeececeeceees 1302--
ARS Arithmetic Right Shift..cceeeeeeececasacesses 0303--
DARS Double Arithmetic Right Shift......cccceceeee 1303--

Appendix A: Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Byte Test
BTST BYte TeSteeeeeessecccososcosancsssossssscsns 000007
Memory Stack to/from Register Stack

LWP Load Word from Programecsscescssscscscscsscscsss —2-——m
LBP Load Byte from Program.ccecceccsccessccescsss —2-4--
PUSH Push Registers tO MEMOIrYeeeeeeveeeccecsnscoces 024-—-
POP Pop MemOory tO RegisSterSecececescsccsssoscscses L124——-
LWXX Load Word Extended, IndexXed..seceececccssasees 0254-—,

0264--
SWXX Store Word Extended, IndeXed.eesevecececencess 0255--,

0265~--
LBXX Load Byte Extended, Indexed..eeecscecesscseses 0256--,

0266--
SBXX Store Byte Extended, Indexed...eceeecessssesas 0257--,

0267--
LDX L0Ad TNAeXeeeosoossosoososscssssssscssssssscssess —3——=m—
NSTO Non-Destructive StOr€..cececsccccscesssccsscss —34——-
LOAD L1oad WOrdeeeeeeoossossscesssscscoscscasssansoss —&om—m
STOR StOre WOrdeeeeesooasssssssscsscscssnsonasanses —44——o
LDB 102d BYtE@ueeeseseseassossosssascsssseascsanssncssee —DH———m
STB StOre BytCiseeoscecesssscscasscssssssccccscsses —54——o
LDD Load DOUDle.ieeeceeeossecessssssscccnnsssssas —Dm——m
STD Store DOUDleiceeessssssoenssssssscassossacsse —bd——

LADR Load Address Of Variableo.................... _7—""‘—
ADM Add to Memory................-...........-... _74___

Load and Store via Address on Register Stack
ANS AND tO SG MEMOIYececeeeecesoscccsccnsssasscass 000034
ORS OR tO SG MEMOIYeeeeecceossasssasssssssssascss 000035
ANG AND to Current Dat@.cececsesscecscssssssassoss 000044
ORG OR to Current DAt@csccecececsscssssssacecassss 000045
ANX AND to Extended MEMOIrV.seeecscccccsassaasecoass 000046
ORX OR to Extended MEMOIY eceeeeesssossssssssseases 000047
LWUC Load Word from User Code Segment............. 000342
LWAS Load Word via A from SySteMeesceescsceesssecss 000350
LWA Load WOrd via Accecceseesscsssscscsccecsssssess 000360
SWAS Store Word via A into SysteMecceeececeeseess. 000351
SWA Store WOrd via Aceecesccescsssseacssseasssssssss 000361
LDAS Load Double via A from SysteMe.ceeececeeeess. 000352
LDA Load Double Via Aceeeessscosscssocsssscssssssss 000362
SDAS Store Double via A into SystéM..c..cceeeeee... 000353
SDA Store Double Via Accceeeeccsccscecsscseasssesss 000363
LBAS Load Byte via A from SySteMecesescccecessseses 000354
LBA Load BYte Vi@ Acceesscccscsssssssscacecsssssss 000364
SBAS Store Byte via A into SysteMecececcececsceceesss 000355
SBA Store Byte Via Aceeeecesccssssssccsscscsaassss 000365
DFS Deposit Field into System Data..ccecceeeeeees. 000357
DFG Deposit Field in Current Dat@.scecesccecessssss 000367

Appendix A:

Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)
LBX Load Byte Extended...ccceeceescsssassccoceaseassss 000406
SBX Store Byte ExXtended..seeecesccescsscaccecnsesas 000407
LWX Load Word Extended..ceceeceeccccssssscscccasssas 000410
SwWX Store Word Extended.seeecececcsssessescncsssssss 000411
LDDX Load Doubleword Extended...ceececcecssscessss 000412
SDDX Store Doubleword Extended..ceeeessceeccecessss 000413
LOX Load Quadrupleword Extended..cceeececccecasa. 000414
SQOX Store Quadrupleword Extended.ceeeseeeecceeee. 000415
DFX Deposit Field Extended....eeccesesasseceecsecsss 000416
SCS Set Code Segment.ccceecsscsessccssssseceseeesss 000444
LQAS Load Quadrupleword via A from SGe.e.eeeesseeess 000445
SQAS Store Quadrupleword via A tO SGeceeeecossssss 000446

Branching
BIC Branch if Carryecececececececcessocscsssccscscee —10——-
BUN Branch Unconditionally..cccecececssssssscceaee —104—-
BOX Branch on IndeX..eeeeeeeceecsecccscssssscnsses =l—bdee
BGTR Branch if CC Greater.cccecececeesccccssasssassnse =1lla—
BEQL Branch if CC BEQUAl.ciceecteasccsscoscccscscsssees =1l2-——
BGEQ Branch if CC Greater or EQual...cceeeseeascaes =13——-=
BLSS Branch if CC LeSScececeeeccccascsocccsccsssnnnes =l1ld——
BAZ Branch if A ZerOccececeesccscccceasscccascccaes —1l44—--
BNEQ Branch if CC NOot EQUal.eceeeecseecsccsssencsee =15—m=
BANZ Branch if A NOt Z€rOe.eeeseeeosssocsssceccnes —154—-
BLEQ Branch if CC Less or Equal.scceceesccceceeasess =16——=
BNOV Branch if no OverfloW.:eeeeseeoossscesssosseses —164——
BNOC Branch if nNo Carryececeeececssesecssasesaases =17——-
BFI Branch Forward Indirect..........-........... 000030

Moves, Compares, and Scans
MNGG Move Words While Not Duplicate....cesseeess.. 000226
CDG Count Duplicate WOrdS..ceeceeessccescscecesssses 000366
MOVW MOVE WOrdASsesescescecasssnssssscsssssssscsssse 0206-—=
MOVB MOVE BYyteS.ceeeeeoecessssccsssosocccosnssssssnss 126———
COMW Compare WOrdSeeseesessesscscsscscscssscssssssses 0262--—
COMB Compare ByteS.ceeeeesssessssssosessscnsssonss 1262—-
SBW Scan Bytes While..eeeeeeeseessccescocenssoees 1264——
SBU Scan Bytes Untile.cceeceecececcsccscsnsoccecnocsnss 1266—-
MNDX Move Words While Not Duplicate, Extended..... 000227
CDX Count Duplicate Words Extended...ceeeeeeeecese. 000356
MVBX Move Bytes Extended...cccecececccccsssccsssses 000417
MBXR Move Bytes Extended ReVErSE€.cceseceesssecessss 000420
MBXX Move Bytes Extended, and Checksum..eeeeeeec... 000421
CMBX Compare Bytes Extended...ceeseecccsecsssscess 000422

Program Register Control
SETL Set L RegiSterececececescccscscseccsssoccssseaesass 000020
SETS Set S RegisSter.icecesececcsccssssccsssncssacneass 000021
SETE Set ENV RegiSter.cecsceccsssoscssccnssanesass 000022
SETP Set P REeGiSter.ecceeeesassccssscssaceceancensasas 000023

A-12

Appendix A: Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

RDE Read E RegiStereecececsscscessccscesssccasansssscae
RDP Read P RegiStereeeecessstceesssassasscscccsocsnss
STRP Set Register POointereccecececcoscsvccoscescsccnssnse
ADDS Add tO S RegisSterececesscscscascoccssscsscsasccsnscs
CCL Set CC LeSSeceeesssssssssosssssasscssossssnssosssasae
CCE Set CC EBUAl.eseoeeeocscsocscsoscscssssssscsss
CCG Set CC Greatereececscecccccscsescscssssscssasscnsa

Routine Calls/Returns _
PCAL Procedure Call.ececeececosscescessascosssansscs
XCAL External Procedure Call.ceeceececccccscscsocnscs
SCMP Set COdEe MAPeeeceeesscscoscsosscsscscacsososossssaes
DPCL Dynamic Procedure Call...cceeceeccecsccssanssns
EXIT ExXit from ProCcedUre.cccececesccscoccssssscoccscs
DXIT DEBUG EXiteeeeseoooccacoscscosossssasscnscacscscs
BSUB Branch to Subprocedure....eceeeececcccccccces
RSUB Return from Subprocedure..ccecececceccccscsssse

Checksum Computation
XSMG Compute Checksum in Current Dat@.ceecescccceces
XSMX Compute Checksum Extended ..ecececccccscccsscs

Interrupt System
RIR Reset INT REGiSt@recececscccsscscscsosscccanocsscaes
XMSK Exchange MASK Register.cccceeceeccecceecccccnns
IXIT Exit from Interrupt Handlel.eeeecoossceacscsces
DISP DispatCh..eceececeeceeecscececccnsccoscsasssssscssss
RIBA Read INTA and INTB RegiSterSeeeccecccceccccccoas

Bus Communication
TOTQ Test Out Queues ® & & & 5 & & 5 0 " s 0 O OSSP S e s e e
SEND Send Packet. ® © & & 0 & O 0 & O O O P O S O T B S OO O PSS e e Ve o

Input/Output
RSW Read Switch RegisSter.ceiieeeccecccccccccscces
SSW Set Switch Registereeececececesescscscssoscccces
EIO Execute I/0ccciccccceccccocccscssscssscnnccnces
II0 Interrogate I/Occeecececcccccocccccccsccsacnss
HIIO High-Priority Interrogate I/Occcccccccccccces
RCHN Reset I/0 Channel..ceececesescsssscsccccncssss

Miscellaneous Nonprivileged
NOP NO OperatioOneececececeecscsssssocessssscssannccss
RCLK Read ClOCK:ieeeeeeseesssaeoasssessasscnsasosnss
RCPU Read Processor NUmMber....cceececececcconscnscss
BPT Instruction Breakpoint TraPeccececccccecscccces

000024
000025
00010-
002---
000015
000016
000017

027---
127---
000454
000032
125---
000072
-174--
025---

000343
000333

000063
000064
000071
000073
000440

000056
000065

000026
000027
000060
000061
000062
000447

000000
000050
000051
000451

* % % ¥

*

% % ¥ *

Appendix A: Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Resource Management
XADD XRAY Addceeeceseecesosesoccasoecassosnancssnnns
MXON Mutual EXCluSion ONecececccccccccscsccsccscnsnsns
MXFF Mutual Exclusion Off...ccccceecceccnccecccnnns
SNDQ Signal a Send Is Queued.ccsecccccscasscsccces
SFRZ SyStem FreeZ€.iieescssccsssosssscsssssscssnonsss
DOFS DisC RecOord OffSet.ecescecsccecsceccsccascnnnna
DLEN Disc Record Length.eeeeeeeeeeeeececcssscncnnsns
HALT ProcessOr Halteeeeeooeseecoosooscsossscncssonsses

PSEM "P" a SemaphoOre...ccceececceccsscsacsssscccnns
VSEM "V" a SemaphOr@..cesecessescscscscscscossacasssnas
RPV Read PROM Version NumbersS..c.eceeeeceescecsccss

WWCS Write LCS.iceeossscsstscsssasssscscssscssnsssssnsa
VWCS Verify LCSeesteeeeesossesssssossssssscscnassss
RWCS ReAd LCS:.cteeesscsosrsescssassssnsscassssssscsnsa
FRST Firmware ReSet.eicescoessscscssscssssancsscsas
RSMT Read from Operations and Service Processor...
WSMT Write to Operations and Service ProCesSSOr....
XSTR XRAY Start TiMereeeceecesccscscsccsscosssesssssccccs
XSTP XRAY StOP TiMer eeeeeeecsssssscssssscsssssscaes
BCLD BUus COld LOAd.ecceeeeesccesnscsasnssascsssccnas
TPEF Test Parity Error Freeze CirCuitSececsscsccee

Memory Manadement
MAPS Map In a SegmenNteccecescecsrsescascascscsccsonsas
UMPS Unmap a SegmenNtececececeecosccccososcssscncasncs
RMAP ReaGd MaAPesessssscccesosasosssssssssssascncnccscs
SMAP Set MAD:.::czecccczccaccccsrescsenccensnscnanns
CRAX Convert Relative to Absolute Extended........
RSPT Read Segment Page Table Entry.cececcesccececssscs
WSPT Write Segment Page Table Entryeeeeeceeccccccos
RXBL Read Extended Base and Limite..eccecececcecccees
SXBL Set Extended Base and Limit..c.cccccceccccscss
LCKX Lock Down Extended MemMOILY.eeeceeoecccscccssssce
ULKX Unlock Extended MemMOILY.eeeessceessssssssccsnes
CMRW Correctable Memory Error Read/Writ€...eeeeees
RMEM Read MEMOIrY:.ceececccoscocsoscecascsossssssnncsoscsss
WMEM WEite MeMOILYeeeeeeececronscccasscssacscnncnsnes
SVMP Save Map EntriesS.ececeeeeeeeecceccccscccssnnas
BNDW Bounds Test WOrdS.ecececescessessccccnsenscsssssas

List Management
DLTE Delete Element from LiSteeececcscsscecesccses
INSR Insert Element into LiStescececcsocccoscscnes

MRL Merge onto Ready LiSteeeeececcceceossacssssans
FTL Find Position in Time LiSt.eeccecccceccncccses
DTL Determine Time Left for Element.ceeeececcccses

000033
000040
000041
000052
000053
000057
000070
000074
000076
000077
000216
000400
000401
000402
000405
000436
000437
000442
000443
000452
000453

000042
000043
000066
000067
000423
000424
000425
000426
000427
000430
000431
000432
000434
000435
000441
000450

000054
000055
000075
000206
000207

* % % ok k F ¥ % ¥ ¥ H % ¥ XD ¥ ¥ ¥ * %

¥ % % %k % ok o % % o % ¥ O * ¥ *

* % % * *

A-14

Appendix A: Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Trace and Breakpoints
TRCE Add Entry to TraCe Table ® ® 5 & & & 5 & O & 0 0 0 O 08 0 s e 000217 *
SMBP Set Memory Breakpoint. * & & 0 0 & 5 0 5 O O 0 0 0 S e 0 0O 0o 000404 *

The one-character symbols immediately to the right of the
instruction opcodes have the following meanings:

indicates a privileged instruction.
indicates an instruction designated for
operating system use only..
indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction.

H= - ™ *

A-15

Appendix A:

Hardware Instruction Lists

Table A-3. Binary Coding, Memory Reference Instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkce
I 2 0 X X 0 +/- - P > LWP a
I 2 0 X X | 1 +/- = P > | LBP b
I 3 0 X X -<—— G,L,SG,S | ————— LDX a
I 4 0 X X <«~———— | G,L,5G6,S | —m8 LOAD a
I 5 0 X X -+ G,L,SG,S | —mm LDB b
I 6 0 X X - G,LISG'S —_— LDD a
I 6 1 Xx X |\|<«~————}| G,L,S6,S | ————> | STD
I 7 0 X X -+ G,L,SG,S | —mmm LADR
I 7 1 X X -~ | G,L,SG,S | —— ADM vk a
P+ o« e . 0:177
P- 1 . e e . .« . 0:177
G+ o . . e e e e 0:377
L+ 1 0 . e e e « e e 0:177
SG 1 1 0 « e . . e e 0:77
L- 1 1 1 o . . e e 0:37
S- 1 1 1 1 . . . e e 0:37
+/- (0/1) implies two's-complement notation; the sign is extended

QaHEEr o

o«

through bit 0 at execution.

v = Overflow
k = Carry
c¢c = Condition Codes:

(result < 0) or (oprl
(result = 0) or (oprl
(result > 0) or (oprl

(ASCII numeric)
(ASCII alpha)
(ASCII special)

{channel error or timeout)

(no error)
(unusual condition)

opr2)
opr2)
opr2)

I (0/1) indicates direct or indirect address.

Note:

oprl is first

item pushed on
stack; opr2 is
second.

A-16

Appendix A: Hardware Instruction Lists

Table A-4. Binary Coding, Immediate Instructions

0 1 2 3 4 5 o 7 8 9 10 11 12 13 14 15 vkece
1 0 0 +/- <— | OPERAND | ——» | LDI a
1 0 0 X X | +/- <~—— | OPERAND | ——— | LDXI a
0 0 1 +/- <— | OPERAND | ———» | CMPI a
0 0 2 +/- <— | OPERAND |—— ,» | ADDS a
0 0 3 +/- <— | OPERAND |—— » | LADI k a
0 0 4 0 - OPERAND —_— ORRI a
0 0 4 1l OPERAND _— ORLI a
1 0 4 +/- -~ OPERAND _— ADDI vk a
1 0 1 X X | +/- <—— | OPERAND | ——— | ADXI vk a
0 0 5 +/- - OPERAND ——— | LDLI a
0 0 6 +/- <— | OPERAND |————» | ANRI a
0 0 7 +/- <«— | OPERAND |——» | ANLI a

+/- (0/1) implies two's-complement notation; the sign is extended
through bit 0 at execution.

I (0/1) indicates direct or indirect address.

vkcec: see Table A-3 footnote.

aA-17

Appendix A: Hardware Instruction Lists
Table A-5. Binary Coding, Move/Shift/Call/Extended Instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkce
0 2 4 N LAST COUNT-1 PUSH
i 2 4 N LAST COUNT-1 POP
0 2 5 0 - SDEC e —— RSUB
1 2 5 0 B — SDEC E —— EXIT
0 2 5/6 4 DISPLACEMENT LWXX a
0 2 5/6 5 DISPLACEMENT SWXX
0 2 5/6 6 DISPLACEMENT LBXX b
0 2 5/6 7 DISPLACEMENT SBXX
0 2 6 0 0 RL S 8 D RP MOVW
0 2 6 0 1 RL S S D RP COMW a
1 2 6 0 0 RL S 8 D RP MOVB
1 2 6 0 1RL S S D RP COMB a
1 2 6 1 0 RL S 8 D RP SBW k
1 2 6 1 1RL S S8 D RP SBU k
0 2 7 - PEP —_— PCAL
1 2 7 - PEP ——— XCAL
0 3 0 0 -— SHIFT COUNT — LLS a
1 3 0 0 -<— SHIFT COUNT —» DLLS a
0 3 0 1 -— SHIFT COUNT — LRS a
1 3 0 1 -— SHIFT COUNT — DLRS a
0 3 0 2 ~<— SHIFT COUNT — ALS a
1 3 0 2 - SHIFT COUNT — DALS a
0 3 0 3 -— SHIFT COUNT ~— ARS a
1 3 0 3 -<— SHIFT COUNT — DARS a
RL (0/l) left-to-right (increasing addresses)

r

SS (source

ight-to-left (decreasing addresses)

map) :

00 Current Data
01 System Data (Current Data if nonprivileged user)

10 Cu
11 Us

D (desti

rrent Code
er Code

nation map), data only

0 Current Data
1 System Data (Current Data if Nonprivileged User)

PEP

SDEC

vkece: see

Procedure Entry Point Table

stack S decrement

Table A-3 footnote.

A-18

Appendix A:

Hardware Instruction Lists

Table A-6. Binary Coding, Branch Instructions

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 vkcc
I 1 0 0 +/- P ——> | BIC

I 1 0 4 +/- P _— BUN

I 1 0 X 4 +/- 2 —— » | BOX

I 1 1 0 +/- P _— BGTR

I 1 2 0 +/- P —— BEQL

T 1 3 0 +/- P _— BGEQ

I 1 4 0 +/- P ———— | BLSS

I 1 4 4 +/- P — > | BAZ

I 1 5 0 +/- P —————» | BNEQ

I 1 5 4 +/- P —— | BANZ

I 1 6 0 +/- P ———» | BLEQ

I 1 6 4 +/- P ———> | BNOV

I 1 7 0 +/- P ——— > | BNOC

I 1 7 4 +/- P —— | BSUB

+/- (0/1) implies two's-complement notation; the sign is extended

through bit 0 at execution.

I (0/1) indicates direct or indirect address.

Note:

vkece:

since the Program Counter register holds the address of the
next instruction, a branch-self instruction (Branch *)

would be coded: BUN P-1.

see Table A-3 footnote.

A-19

Appendix A: Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 - STACK OPERAND CODE —_
7:15> vkecce <7:15> vkece

0 0 o0 NOP 0 5 1 *RCPU
0 0 1 MOND a 0 5 2 *SNDQ
0 0 2 ZERD a 0 5 3 *SFRZ
0O 0 3 ONED a 0 5 4 *DLTE
0 0 4 EXCH a 0 5 5 *INSR
0 0 5 DXCH a 0 5 6 @TOoTQ !
0 0 6 DDUP a 0 5 7 @DOFS c
0o 0 7 BTST b 0 6 0 *EIO c
0o 1 0 LAND a 0 6 1 *I10 e
0 1 1 LOR a 0 6 2 *HIIO
0 1 2 X0OR a 0 6 3 *RIR
0 1 3 NOT a 0 6 4 *XMSK
0 1 4 DPF a 0 6 5 *SEND !
0 1 5 CCL a 0 6 6 *RMAP
0 1 6 CCE a 0 6 7 *SMAP
0o 1 7 CCG a 0 7 0 @DLEN
0 2 0 SETL 0 7 1 *IXIT
0 2 1 SETS 0 7 2 #*pXiT
0 2 2 SETE 1yl 0 7 3 *pISP
0 2 3 SETP 0 7 4 *HALT
0 2 4 RDE 0 7 5 *MRL
0 2 5 RDP 0 7 6 *PSEM
0 2 6 RSW a 0 7 7 *VSEM
0o 2 7 SSW 1 0 reg STRP
0 3 0 BFI 1 1 reg STAR
0 3 1 DTST a 1l 2 reg NSAR
0 3 2 DPCL 1l 3 reg LDRA a
0 3 3 *XADD 1 4 reg ADRA vk a
0 3 4 ANS a 1 5 reg SBRA vk
0 3 5 ORS a 1l 6 reg ADAR vk
0 4 0 *MXON 1 7 reg SBAR vk a
0 4 1 *MXFF 2 0 O LADD k a
0 4 2 *MAPS 2 0 1 LSUB k a
0 4 3 *ygMPS 2 0 2 LMPY v=0a
0 4 4 ANG a 2 0 3 LDIV v a
0 4 5 ORG a 2 0 4 LNEG k a
0 4 6 ANX a 2 0 5 LCMP a
0 4 7 ORX a 2 0 6 *PTL
0 5 0 RCLK 2 0 7 *pTL

A-20

Appendix A:

Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions (Continued)
0 1 2 3 5 7 8 9 10 11 12 13 14 15
0 0 0 - STACK OPERAND CODE —

<7:15> vkce <7:15> vkece
2 1 0 IADD vk a 4 0 5 *FRST

2 1 1 ISUB vk a 4 0 6 LBX b
2 1 2 IMPY v a 4 0 7 SBX

2 1 3 IDIV v a 4 1 O LWX a
2 1 4 INEG vk a 4 1 1 SWX

2 1 5 ICMP a 4 1 2 LDDX a
2 1 6 *RPV 4 1 3 SDDX

2 1 7 *TRCE 4 1 4 LOX a
2 2 0 DADD vk a 4 1 5 SOX

2 2 1 DSUB vk a 4 1 6 DFX a
2 2 2 DMPY vk a 4 1 7 MVBX

2 2 3 DDIV vk a 4 2 0 MBXR

2 2 4 DNEG vk a 4 2 1 MBXX

2 2 5 DCMP a 4 2 2 CMBX !
2 2 6 MNGG ! 4 2 3 *CRAX

2 2 7 MNDX ! 4 2 4 *RSPT !

3 3 3 XSMX 4 2 5 *WSPT

3 4 2 LWUC a 4 2 6 *RXBL

3 4 3 XSMG, 4 2 7 *SXBL

3 5 0 LWAS a 4 3 0 *LCKX !
3 5 1 SWAS 4 3 1 *ULKX !
3 5 2 LDAS a 4 3 2 *CMRW !
3 5 3 SDAS 4 3 4 *RMEM a
3 5 4 LBAS b 4 3 5 *WMEM

3 5 5 SBAS 4 3 6 *RSMT

3 5 6 CDX 4 3 7 *WSMT

3 5 7 DFS a 4 4 0 *RIBA

3 6 O LWA a 4 4 1 *SyMP

3 6 1 SWA 4 4 2 *XSTR

3 6 2 LDA a 4 4 3 *XSTP

3 6 3 SDA 4 4 4 SCs

3 6 4 LBA b 4 4 5 *LQAS a
3 6 5 SBA 4 4 6 *SQAS

3 6 6 CDG 4 4 7 *RCHN !
3 6 7 DFG a 4 5 0 *BNDW !
4 0 0 *WWCS ! 4 5 1 BPT

4 0 1 *VWCS ! 4 5 2 *BCLD

4 0 2 *RWCS 4 5 3 *TPEF

4 0 4 *SMBP 4 5 4 SCMP

A-21

Appendix A: Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions (Continued)

* indicates a privileged instruction.
@ indicates an instruction designated for operating
system use only.

vkcc: see Table A-3 footnote.

! = special vkcc meanings; see instruction definitions
in Table B-1.

Table A-8. Binary Coding, Decimal Arithmetic Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 ~— STACK OPERAND CODE —

!

| 1

<7:15> vkee <7:15> vkcc
2 3 0 +osT 2 5 0 +Qup v a
2 3 1 +0ST x5 2 5 1 +QDWN v=0

2 3 2 4QS8ST X6 2 5, 2 +QuP(2) v a
2 3 3 +QsT x7 2 5 3 +QDWN(2) v=0a
2 3 4 +QLD a 2 5 4 +QuP(3) Vv a
2 3 5 4+QLD x5 a 2 5 5 +QDWN(3) v=0a
2 3 o6 +QLD x6 a 2 5 6 +QUP(4) v a
2 3 7 +QLD x7 a 2 5 7 +QDWN(4) v=0a
2 4 0 +0ADD vk a 2 6 0 coa v a
2 4 1 +QSuUB vk a 2 6 1 cCAQV v o1
2 4 2 QMPY v a 2 6 2 CAQ v !
2 4 3 0QDIV v a 2 6 3 ORND v=0a
2 4 4 OQONEG vk a 2 6 4 cCorI v

2 4 5 QCmMP a 2 6 5 cDpQ

2 4 6 COL v 2 6 6 CIQ

2 4 7 CQD v 2 6 7 CLQ

+ indicates an instruction that is standard in all
processors (not part of decimal option).

CCE if entire string is ASCII digits, CCG if not.

vkcc: see Table A-3 footnote.

A-22

Appendix A: Hardware Instruction Lists

Table A-9. Binary Coding, Floating-Point Instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 <«— STACK OPERAND CODE —

T
l 1

<7:15> vkcc <7:15> vkee

2 7 0 FADD v a 3 1 6 CEIR a
2 7 1 FSUB v a 3 1 7 1IDXD a
2 7 2 FMPY v a 3 2 0 CFQ a
2 7 3 FDIV v a 3 2 1 CFOR a
2 7 4 FNEG a 3 2 2 CEQ a
2 7 5 FCMP a 3 2 3 CEQR a
2 7 6 CEF a 3 2 4 CoF a
2 7 1 CEFR a 3 2 5 CFE a
3 0 0 EADD v a 3 2 6 CDFR a
3 0 1 ESUB v a 3 2 7 4CID a
3 0 2 EMPY v a 3 3 0 CQFR a
3 0 3 EDIV v a 3 3 1 CIF a
3 0 4 ENEG a 3 3 2 CIE a
3 0 5 ECMP a 3 3 4 (CDE a
3 0 6 CDF a 3 3 5 CQER a
3 0 7 +CDI a 3 3 6 CQE a
3 1 0 CFIR a 3 3 7 CEI a
3 1 1 CFI a 3 4 4 1DpX1 a
3 1 2 CFD a 3 4 5 1IDX2 a
3 1 3 CFDR a 3 4 6 IDX3 a
3 1 4 CED a 3 4 7 IDXP a
3 1 5 CEDR a

+ indicates an instruction that is standard in all
processors (not part of floating-point option).

vkece: see Table A-3 footnote.

APPENDIX B

INSTRUCTION SET DEFINITION

This appendix consists of a table (B-1l) giving brief definitions of
all the instructions in the NonStop II instruction set,

opcode order.

of the register stack.

in numeric
A TAL-like notation is used for the definitions.

This table is a specification of the instruction microcode, and is
provided for those interested in microcode details such as the use

Table B-2 is a key to the symbols used in the instruction definitions.

Table B-1l. 1Instruction Set Definition

OO OO0 OCOOO OO
OO OO0 OCOOOC OO

Note: The one-character symbols immediately to the
right of the instruction opcodes have the following
meanings:

* indicates a privileged instruction.
@ indicates an instruction designated for
operating system use only.
$ indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction.
op(x) indicates that an operation similar to that
performed by the instruction “op” should be
done using the value(s) “x”.

0 0 0 QO [NOP |no operation

0 0 0 1 |MOND|minus one double RP:=RP+2; cc(B:=A:=-1)

0 0O 0 2 [ZERD|zero double RP:=RP+2; cc(B:=A:=0)

0 0 0 3 |ONED|one double RP:=RP+2; B:=0; cc(A:=1)
0 0 0 4 |EXCH|exchange A:=:B; cc(A)

0 0 0 5 |DXCH|double exchange BA:=:CD; cc(Ba)

0 0 O 6 |DDUP|double duplicate RP:=RP+2; cc (BA:=DC)

0 0 0O 7 |BTST|byte test ccb(A.<8:15>); RP:=RP-1
0 0 1 O |[LAND|logical AND cc(B:=B&A); RP:=RP-1

0 0 1 1 |LOR {logical OR cc(B:=B|A); RP:=RP-1

Appendix B: 1Instruction Set Definition

Table B-1l. 1Instruction Set Definition (Continued)

00 0 0 1 2 [XOR |exclusive OR cc(B:=B xor A); RP:=RP-1

00 0 O 1 3 |NOT |logical NOT cc(A:= " A)

00 0 O 1 4 |DPF |deposit field cc{C:=(C&B | A&™B));
RP:=RP-2

00 0 0 1 5 |CCL |[cond. code less Z:=0; N:=1

00 0 0 1 6 |CCE |cond. code equal Z:=1; N:=0

00 0 0 1 7 |CCG |cond. code greater|Z:=N:=0

00 0 0 2 0 |SETL|set L register L:=A; RP:=RP-1

00 0 0 2 1 |SETS|set S register S:=A; RP:=RP-1

00 0O 0 2 2 |SETE|set ENV register ENV.<0:7>:=ENV.<0:7>&A.<0:7>;
ENV.<8:15>:=A.<8:15>

00 0 0 2 3 |SETP|set P register P:=A; RP:=RP-1

00 0 O 2 4 |RDE |[read ENV register |[RP:=RP+1l; A:=ENV

00 0 O 2 5 |RDP |read P register RP:=RP+1; A:=P

00 0O O 2 6 |RSW |read switches RP:=RP+1l; cc(A:=SWITCHES)

00 0 0 2 7 |SSW |set switches sysstack[$122] :=LIGHTS:=A;
RP:=RP-1

00 0O 0 3 0 |BFI |branch forward P:=P+A+code [P+A] ;

indirect RP:=RP-1
00 0 O 1 |DTST|double test cc (BA)
00 0 0 3 2 |DPCL|dynamic procedure |stack[S+1:S+3]:=(P,ENV,L);
call m:=A.<0:3>; t:=A.<7:15>;

if m<2 or m>5 then m:=2;
if © PRIV then
{if t>=mem[m,0] then
{if t>=mem[m,1]
then priv trap;
PRIV:=1
}}
L:=5:=5+3;
! LS:=(m=-2) .<14>:
' CS:=m.<15>;
P:=code[t]; RP:=7

00 0O 0 3 3* XADD|XRAY add if (t:=xmem[BA])<>0 then
D=value to add to {a:=%40000" (t+C) "0;
counter xmem[a:za+3] :=xmem[a:a+3]+D;
C=offset to cntr if D<0 and xmem[a:a+1l]1<0
BA=extended addr then xmem[a:a+3]:=0};
of XRAY ptr RP:=RP-4
00 . 0 0 3 4 |ANS |AND to SG memory cc(dest (A) :=dest (A) & B):
RP:=RP-2
00 0 0 3 5 |ORS |OR to SG memory cc(dest(n) :=dest(A) | B);
RP:=RP-2
00 0 0 3 6 **x* yndefined ***
00 0 0 3 7 *** undefined ***
00 0 0 4 O0*|MXON|[mutual exclusion chkp (stack[(L-20) max 0]);
on chkp(stack [S+A.<8:15>]);
A=<0:7> code size |if A.<0:7>
<8:15>stack size|{then chkp(code[P+A.<0:7>]);
stack [L+1] : =MASK;
MASK:=MASK & %177640;
RP:=RP-1
00 0 0 4 1*|/MXFF|mutual exclusion MASK:=stack [L+1]

off

Table B-1.

Appendix B:

Instruction Set Definition

Instruction Set Definition (Continued)

2%

3%

3%

MAPS

UMPS

ANG
ORG
ANX
ORX
RCLK
RCPU
SNDQ

SFRZ

map in a segment
B=segment number
A=map number

unmap a segment
A=map number

AND to memory
OR to memory

AND to extended
memory

OR to extended
memory

read clock

read processor #
signal that a SEND
is queued

system freeze

if CMSEG[A]<>B then
{if CMSEGI[A]<>-1
then UMPS(A);
j:=B*2;
for i:=32 to
$min(64,32+SEG[3j].<9:15>)
do
{if MAP[15,1].<0:14>=B then
{mem[SEG[§].<5:8>,
SEG[j+1]+i-32+
MAP[15,i].<15>*32]
:= t := MAP[15,i-32];
MAP[15,i]:=-1}};
i:=0;
while i<SEG[j].<9:15> do
{mapP{a,il:=
mem[SEG[j].<5:8>,
SEG[j+1]1+i];
i = i+l};
while i <= 63 do
{MAP[A,i):=1; i:=i+1};
SEG[J].<0:4> := A;
CMSEG[A] := B;

RP:=RP-2;

11! Note

the page table must be

in memory

j:= SEG[CMSEG[A]*2].<9:15>;

m:= SEG[CMSEG[A]*2].<5:8>

p:= SEG[CMSEG[A]*2+1];

for i := 0 to j-1 do
{mem[m,p+i]:=t:=MAP[A,i];

SEG[CMSEG[A]1%*2] .<0:4>:=%37;

CMSEG([A] := -1;

RP:=RP-1

111 Note 1!!!

the page table must be

in memory

cc (stack [A] :=stack[A] & B);

RP:=RP-2

cc(stack[A] :=stack{A]

RP:=RP-2

cc(xmem[BA] :=xmem[BA] & C);

RP:=RP-3

cc (xmem[BA] :=xmem[BA]

RP:=RP-3

RP:=RP+4;

DCBA:=sysstack[%103:%3106]+

microsecond counter

RP:=RP+1; A:=processor #

set dispatcher interrupt:

sysstack[$1277).<14>:=1

assert system freeze; halt

| BY;:

| ©;

Appendix B:

Instruction Set Definition

Table B-1. 1Instruction Set Definition (Continued)
0 0 5 4*/DLTE|delete an element |if sysstack[A] <> 0 then
from a doubly {if sysstack[sysstack[a]+1]
linked, circular <> A or
list sysstack [sysstack [A+1]]
<> A
then Instruction Failure;
f:=sysstack[A];
A=element address b:=sysstack [A+1l];
sysstack[b]l:=f;
sysstack [£+1] :=b;
sysstack [A] :=0;
sysstack [A+1]:=0;
RP:=RP-1
111 Note 11!
all memory locations accessed
must be present
0 0 5 O5*| INSR|insert an element |if A=0 or
into a doubly sysstack [sysstack [B] +1]
linked, circular <> B or
list sysstack [sysstack [B+1]]
<> B
B=list header then Instruction Failure;
A=list element f:=sysstack[B];
sysstack [B] : =A;
sysstack [A]:=f;
sysstack [A+1] : =B;
sysstack [f+1] :=A;
RP:=RP-2
11! Note 11!
all memory locations accessed
must be present
0 0 5 6@|TOTQ|test OUTQ's N:=0; Z:=1;
if either 0OUTQ full then Z:=0
0 0 5 7@|DOFS|disc record offset|if A'>='512 or
A=record number (A:=xmem[stack [L+2:3]-A%*2])
on return, A holds '>='gtack [L+4]
offset into then {P:=stack[L+5]; RP:=7};
buffer of record)
0 0 6 O0* EIO |execute i/o ioselect (A.subchannel) ;
iocontrol (A.command,B) ;
B:='device status';
cc(A:='channel status')
0 0 6 1*[ITIO |interrogate i/o RP:=RP+3;
C:='interrupt cause';
B:='interrupt status';
cc (A:='channel status');:
0 0 6 2*|HIIO high-priority RP:=RP+3;
interrogate i/o C:='high-priority interrupt
cause';
B:='high-priority interrupt
status';
cc (A:="'channel status');
0 0 6 3* RIR [reset interrupt 'clear interrupt' A.<12:15>
register RP:=RP-1
0 0 6 4*|XMSK|exchange mask MASK:=:A

Appendix B: 1Instruction Set Definition

Table B~1l. 1Instruction Set Definition (Continued)

o o

o o

o

0 0 6 5*%|SEND|send do
{@o until OUTQEMPTY or
G=<15> bus .8(32768-D) microsec;
F=sequence # if OUTQEMPTY then
E=<0:7> sender {if a<>0 then
cpu # {bus:=G.<15>
<8:15> receiver receiver:=E.<8:15>;
cpu # ouTQ[bus,0] :=E;
D=0UTQ full timer oUTQ[bus, 1] :=F;
CB=buffer address for i:=4 to 29 do
A=byte count {if &2 <> 0 then

{bog[bus, il :=bxmem[CB] ;
A:=A-1; CB:=CB+1}
else boq[bus,i]:=0};
ouTQ[bus,15] :=(-1) xor
ouUTQ [bus, 0]
... OUTQ[bus,14];
D:=0;
if (F:=F+1)=0 then
{done:=true; N:=0; 7:=1};
else
idone:=true; N:=0; Z:=1

{ else
done:=true; N:=1; Z:=0;
OUTQEMPTY :=true

r
} until done;
RP:=RP-7
111 Note !!!
xmem[CB:CB+A*2-1] must be
in memory

0 0 6 6* RMAP|read map A:=MAP[A.<12:15>,A.<0:5>];
0 0O 6 7*|SMAP|set map MAP[A.<12:15>,A.<0:5>] :=B;
RP:=RP-2
0 0 7 O@|DLEN|disc record length|if (A:=DOFS(A+1)-DOFS(A)) < O
A=record number then {P:=stack[L+5]; RP:=7}
0 0 7 1*|IXIT|interrupt exit (MASK,S,P,ENV,L)
:=sysstack[L-4:L];
R[0:7] :=sysstack [L+1:L+8]
11!l Note !11!
sysstack [L-4:L+8] must be
present
DS must be 1
0 0 7 2*|DXIT|DEBUG exit S:=L-3;
(P,ENV,L) :=stack [L-2:L] ;
if ENV.<0>
then Instruction Breakpoint
0 0 7 3*|DISP|dispatch set dispatcher interrupt;
sysstack[$1277] .<15>:=1
0 0 7 4*|HALT|processor halt halt
0 0 7 O5*|MRL |merge onto ready t := sysstack([%101];
list while sysstack[t+2].<8:15> <
A=PCB address sysstack [A+2] .<8:15>

do t:=sysstack[t+l];

if sysstack[CPCB+2].<8:15> <
1 sysstack [A+2] .<8:15>

then DISP;

insert A after t; RP:=RP-1

Appendix B:

Instruction Set Definition

Table B-1. Instruction Set Definition (Continued)
00 0O O 7 6* PSEM|"P" a semaphore sysstack [A+2] :=sysstack [A+2]
CB=wait time if < then
A=semaphore addr {set dispatcher interrupt;
sysstack[$1277] :=
sysstack[$1277] | 5}
else {C:=1;
sysstack[A+3]:=CPCB};
RP :=RP-2
11! Note 1!}
sysstack must be resident
00 0 0O 7 7%|VSEM|"V" a semaphore sysstack[A+2]:=S{sstack[A+2]
+1;
A=semaphore addr if <= then
{set dispatcher interrupt;
sysstack[$1277].<12>:=1}
else sysstack([A+3]:=0;
RP:=RP-1
11! Note !!!
sysstack must be resident
00 0 1 O reg|STRP|set RP RP:=reg
00 0 1 1 reg|STAR|store A in reg R[reg]:=A; RP:=RP-1
00 0O 1 2 reg|NSAR|non-destructive R[reg] :=A
store A in reg
00 0 1 3 reg|LDRA[load register to A|{RP:=RP+1l; cc(A:=R[reg])
00 0 1 4 reg|ADRA|add register to A |ccn(A:=A+R[reg])
00 0 1 5 reg|SBRA|subtract register |ccn(A:=A-R[reg])
from A
00 0 1 6 reg|ADAR|add A to register |[ccn(R[reg]:=R[regl+A);
RP:=RP-1
00 0 1 7 reg|SBAR|subtract A from cen(R[reg] :=R[reg]-A);
register RP:=RP-1
00 0 2 0 0 |LADD|logical add ccl(B:=B+A); RP:=RP-1
00 0 2 0 1 |LSUB|logical subtract ccl(B:=B-A); RP:=RP-1
00 0 2 0 2 |LMPY|logical multiply [cc(BA:=B”*”A); V:=0
00 0 2 0 3 |LDIV|logical divide V:=(C">="A);
(C,B):=(CB “mod” A,CB"/“A);
cc(B); RP:=RP-1
00 0 2 0 4 |LNEG|logical negate ccl(A:==A)
00 0 2 0 5 |LCMP|logical compare cc(B“:“A); RP:=RP-2
00 0 2 0 6*FTL (find position in RP:=RP+1; BA:=CB;
time list C:=sysstack[%107];
while C<>%107 do
BA=time value {BA:=BA-sysstack [C+2:C+3];
if < then done;
C:=sysstack[C]}
11! Note !1!!
sysstack must be resident
00 0 2 0 7*|DTL |delete from time a:=A; t:=sysstack[%107];
list RP:=RP+1;
A=element address |BA:=sysstack([t+2:t+3];
while a <> t do
{t:=sysstack[t];
BA:=BA+sysstack [t+2:t+3]}
1! Note !!!}
sysstack must be resident
00 O 2 1 0 |IADD|integer add ccn(B:=B+A); RP:=RP-1
00 0 2 1 1 |1SUB|integer subtract cen(B:=B-A); RP:=RP-1
00 0 2 1 2 |[IMPY|integer multiply V:="(-32768<=B*A<=32767) ;
cc(B:=B*A); RP:=RP-1
00 0 2 1 3 |IDIV|integer divide V:i="(-32768<=B/A<=32767);
cc(B:=B/A); RP:=RP-1
00 0 2 1 4 |INEG| integer negate ccn (A:=-A)
00 0 2 1 5 |ICMP|integer compare cc(B:A); RP:=RP-2

Appendix B:

Table B-1l. 1Instruction Set Definition (Continued)
00 0 2 1 6*|RPV [read PROM version |RP:=RP+5; N:=0; Z:=1;
numbers CBA:=cs prom numbers
D:=ept prom numbers
E:=i/o channel prom number
if i/o channel not available
then {N:=1; z:=0}
006 0 2 1 7*|TRCE|ladd an entry to if TRBASE"<“TRLIM then
the trace table {sysstack [TRACE: TRACE+4] : =
EDCBA=entry EDCBA;
TRACE :=TRACE+5;
if TRACE”>“TRLIM
then TRACE:=TRBASE};
RP:=RP-5
00 0 2 2 0 |pADD|double add ccn{DC:=DC+BA) ; RP:=RP-2
00 0 2 2 1 |DSUB{double subtract cen (DC:=DC-BA); RP:=RP-2
00 0 2 2 2 |DMPY|double multiply ccen (DC:=DC*BA) ; RP:=RP-2
00 0 2 2 3 {DDIV|double divide cen(DC:=DC/BA); V:= BA=0;
RP:=RP-2
00 0 2 2 4 |DNEG|double negate ccn (BA:=-BA)
00 0 2 2 5 |DCMP|double compare cc(DC:BA); RP:=RP-4
00 0 2 2 6 |MNGG|move words while
not duplicate while cc(B)<>"=" and
stack [Cl<>A do
D=destination {a:=stack[D] :=stack[C];
C=source D:=D+1;
B=count C:=C+1;
A=value<>to value B:=B—l};
of source RP:=RP-1
0¢ 0 2 2 7 MNDXimove words while
not duplicate while cc(B)<>"=" and
xmem[DC]<>A do
FE=destination {A:=xmem[FE] : =xmem[DC] ;
DC=source FE:=FE+2;
B=count DC:=DC+2;
A=value<>to value B:=B-1};
of source RP:=RP-1
00 0 2 3 0xx|QST |quad store adr:=(if I=%230 then 0
else R[I.<14:15>+4])*4+A;
stack[adr:adr+3] :=EDCB;
RP:=RP-5
00 0 2 3 4xx|(QLD (quad load adr:=(if I=%234 then O
else R[I.<14:15>+4]1)*4+A;
RP:=RP+3;
cc(DCBA:=stack[adr:adr+3])
00 0 2 4 0 [QADD|quad add ccn (HGFE : =HGFE + DCBA) ;
RP:=RP-4
00 0 2 4 1 [QSUB|quad subtract cen (HGFE:=HGFE - DCBA) ;
RP:=RP-4
00 0 2 4 2$|QMPY|quad multiply Ve=if
-2*%*63<=HGFE*DCBA<=2%%§3-1
then 0 else 1;
HGFE:=HGFE * DCBA;
cc (HGFE) ;
RP:=RP-4
00 0 2 4 3$|0opIViquad divide V:=if DCBA=0 then 1 else 0;
HGFE:=HGFE / DCBA;
cc (HGFE) ;
RP:=RP-4
00 0 2 4 A4$|QNEG|(quad negate DCBA:=-DCBA;
ccn (DCBA)
00 0 2 4 5$|0CMP|quad compare cc (HGFE:DCBA)

Instruction Set Definition

Appendix B:

Instruction Set Definition

Table B-1.

Instruction Set Definition (Continued)

00 o

00 O

6

7$

2 5 nn0

2 5 nnl

2 6

2 6

0s

18

28

33

43

CQoL

Cop

QuP

QDWN

CQA

CAQV

CAQ

QORND

CQI

convert quad to
logical

convert quad to
double

quad scale up

quad scale down

convert quad to
ASCII

convert ASCII to

quad with initial

value

convert ASCII to
quad

quad round

convert quad to
integer

Ve:=if 0 <= DCBA <=2*%*16-1
then 0 else 1;
D:=A;
RP:=RP-3
V:=if -2%*31 <=DCBA<= 2**%3]1-1
then 0 else 1;
DC:=BA;
RP:=RP-2
DCBA:=DBCA*
10%* (I,<13:14>+1);
Vei=if -2**53<=DCBA<=2*%*§3-1
then 0 else 1;
cc (DCBA)
DCBA :=DBCA/
10**(I.<13:14>+1);
V:=0; cc(DCBA);
cc (FEDC) ;
B:=B+A;
while A<>0 do
[B:=B-1;
bytedest (B) :=
%60+abs (FEDC) mod 10;
FEDC:=FEDC/10;
A:=A—1}
V:=if FEDC=0 then 0 else 1;
RP:=RP-6
V:=0;
N:=1;
while E<>0 and V=0 and N=1 do
{ceb (t:=bytedest (F));
if N=1 then
{DCBA:=DCBA*10 + t&%l7;
V:=if DCBA<=2%*63-1
then 0 else 1;
F:=F+l;,
Li=pE=L]ff
cc(E) !cce if entire string
tis ASCII digits.
lccg if not.
tNote: initial value (DCBA)
! should be positive.
RP:=RP+4;
DCBA:=0;
V:=0;
N:=1;
w?ile E<>0 and V=0 and N=1 do
cecb(t:=bytedest (F));
if N=1 then
{DCBA:=DCBA*10 + t&3%17;
V:=if DCBA<=2*%*63-~-1
then 0 else 1;
F:=F+1;
E:=E-1}]
cc(E) lcce if entire string
lis ASCII digits.
tccg if not.
DCBA:=(if DCBA<O0 then DCBA-5
else DCBA+5) / 10;
V:=0;
cc (DCBA)
:=if -2**15 <=DCBA<=
then 0 else 1;
D:=A; RP:=RP-3;

2%%]5-1

Table B-1.

Appendix B:

Instruction Set Definition (Continued)

00 0 2 6 6%|CIQ

00 0 2 6 7%|CLQ

00 0 2 7 O0#|FADD

00 0 2 7 1#|FSuB

convert double to
quad

convert integer to
quad

convert logical to
quad

floating add
DC:=DC+BA

floating subtract
DC:=DC-BA

(t,u) :=BA;
s:=if B<0
then %177777 else 0;
RP:=RP+2;
DCBA:=(s,s,t,u)
t:=A;
s:=if A<O
then %177777 else 0;
RP:=RP+3;
DCBA:=(s,s,s,t)
t:=A;RP:=RP+3;
DCBA:=(0,0,0,t)
tl:=exponent (C) ;
t2:=exponent (A);
if BA<>0 and DC<>0
and abs(tl-t2)<24 then
signl:=D.<0>;
sign2:=B.<0>;
D.<0>:=B.<0>:=
exponent (C) :=0
exponent (A) :=0
s:=tl-t2;
if s>=0 then
BA:=BA">>"s;
else
{DC:=DC">>"-5;
DC:=:BA;
tl:=t2}
if signl=sign2 then
{pc:=bpc”+“Ba;
if carry then
{pc:=pC*>>"1;
tl:=tl+1;
D.<0>:=1}}
else
{pC:=DC”-"Ba;
if not carry then
{DC:=—DC;
signl:="signl}
if DC=0 then
tl:=signl:=0
else
while D.<0>=0 do
{DC:=DC*<<”1;
tl:=t1-1}}
DC:=DC”"+°%400;
if carry then
tl:=tl+1;
if tl.<6>=1 then
call overflow;
D.<0>:=signl;
exponent(C):=tl}
else

if DC=0 or tl-t2<=-24 then

DC:=BA;
cc(DC); RP:=RP-2
if BA<>0 then

B.<0>:="B.<0>;
goto FADD

Instruction Set Definition

Appendix B:

Table B-1.

Instruction Set Definition

Instruction Set Definition (Continued)

0 2 7 2%
0 2 7 3%
0 2 7 4%
0 2 7 5%
0 2 7 ¢o#

FMPY

FDIV

FNEG

FCMP

CEF

floating multiply
DC:=DC*BA

floating divide
DC:=DC/BA

floating negate
BA:=-BA

floating compare
DC:Ba

convert extended
to floating

if DC=0 or BA=0 then
DC:=0
else
{t1:=exponent(C) ;
t2:=exponent(a);
exp:=t1+t2-255;
sign:=D.<0> xor B.<0>;
D.<0>:=B.<0>:=1;
exponent (C) :=0;
exponent (B) :=0;
DCBA:=DC“*“BA;
norm(DC) ;
DC:=DC”+”%400;
if carry then
exp:=exp+l;
if exp.<6>=1 then
call overflow;
D.<0>:=sign;
exponent (C) :=exp}
cc (DC); RP:=RP-2
if BA=0 then
call overflow;
if DC<>0 then
{t1l:=exponent(C);
t2:=exponent () ;
exp:=t1-t2+256;
sign:=D.<0> xor B.<0>;
D.<0>:=B.<0>:=1;
exponent (C) :=0
exponent (&) :=0
DC:=DC”/“BA;
norm(DC) ;
DC:=DC”+°%400;
if carry then
exp:=exp+l;
if exp.<6>=1 then
call overflow;
D.<0>:=sign;
exponent (C) :=exp}
cc(DC); RP:=RP-2
if BA<>0 then
B.<0>:="B.<0>;
cc(BA)
if D.<0> <> B.<0> then
cc(D:B)
else
{sign:=D.<0>;
D.<0>:=B.<0>:=0;
tl:=exponent (C) ;
t2:=exponent (a) ;
if tl<>t2 then
if sign=0 then
cc(tl:t2)
else cc(t2:tl)
else
if sign=0 then
cc (DC:BA)
else cc(BA:DC)}
RP:=RP-4
exponent (C) :=exponent (A) ;
RP:=RP-2

~e we

Table B-1l.

Appendix B:

Instruction Set Definition (Continued)

00 0 2

3

7 7%

0 1%

CEFR

EADD

ESUB

convert extended
to floating with

rounding

extended add
HGFE : =HGFE+DCBA

extended subtract
HGFE : =HGFE~DCBA

sign:=D.<0>; D.<0>:=1;
exp:=exponent (A) ;
DC:=DC”+°%400;
if carry then
exp:=exp+l;
if exp.<6> then V:=1}
D.<0>:=sign;
exponent (C) :=exp;
RP :=RP-2
tl:=exponent (E);
t2:=exponent (a) ;
if DCBA<>0 and HGFE<>0
and abs(tl-t2)<56 then
signl:=H.<0>;
sign2:=D.<0>;
H.<0>:=D.<0>:=1;
exponent (E) :=0;
exponent (A) :=0;
s:=tl-t2;
if s>=0 then
DCBA:=DCBA">>"s;
else
{HGFE:=HGFE”>>"-s;
HGFE:=:DCBA;
tl:=t2}
if signl=sign2 then
{HGFE :=HGFE”+"DCBA;
if carry then
{HGFE:=HGFE“>>"1;
tl:=t1l+1;
H.<0>:=l}}
else
{HGFE :=HGFE”-"DCBA;
if not carry then
{HGFE :=-HGFE;
signl:="signl}
if HGFE=0 then
tl:=signl:=0
else
while H.<0>=0 do
{HGFE:=HGFE"<<"1;
tl:=t1l-1}}
HGFE :=HGFE”"+°%400;
if carry then

tl:=tl+l;
if tl.<6>=1 then
call overflow;
H.<0>:=signl;
exponent (E) :=t1}
else
if HGFE=0 or tl-t2<=-56
then HGFE:=DCBA;
cc (HGFE); RP:=RP-4
if DCBA<>0 then
D.<0>:="D.<0>;

goto EADD

Instruction Set Definition

Appendix B:

Instruction Set Definition (Continued)

Instruction Set Definition

0 3 0 2%
0 3 0 3%
0 3 0 4%
0 3 0 5%
0 3 0 6%

EMPY

EDIV

ENEG

ECMP

CDF

extended multiply
HGFE : =HGFE*DCBA

extended divide
HGFE :=HGFE/DCBA

extended negate
DCBA :=-DCBA

extended compare
HGFE :DCBA

convert double
to floating

if HGFE=0 or DCBA=0 then
HGFE:=0
else
{t1:=exponent(E);
t2:=exponent (3) ;
exp:=tl+t2-255;
sign:=H.<0> xor D.<0>;
H.<0>:=D,.<0>:=1;
exponent (E) :=0;
exponent (A) :=0;
HGFE :=HGFE” *“DCBA;
norm (HGFE) ;
HGFE:=HGFE”“+°%400;
if carry then
exp:=exp+l;
if exp.<6>=1 then
call overflow;
H.<0>:=sign;
exponent(E):=exp}
cc (HGFE) ; RP:=RP-4
if DCBA=0 then
call overflow;
if HGFE<>0 then
{tl:=exponent (E);
t2:=exponent (A) ;
exp:=tl-t2+256;
sign:=H.<0> xor D.<0>;
H.<0>:=D.<0>:=1;
exponent (E) :=0;
exponent (A) :=0;
HGFE:=HGFE”/“DCBA;
norm (HGFE) ;
HGFE:=HGFE”“+°%400;
if carry then
exp:=exp+l;
if exp.<6>=1 then
call overflow;
H.<0>:=sign;
exponent (E) :=exp}
cc (HGFE) ; RP:=RP-4
if DCBA<>0 then
D.<0>:="D.<0>;
cc (DCBA)
if H.<0> <> D.<0> then
cc{H:D)
else
sign:=H.<0>;
H.<0>:=D.<0>:=0;
tl:=exponent (E);
t2:=exponent (A) ;
if tl<>t2 then
if sign=0 then
cc(tl:t2)
else cc(t2:tl)
else
if sign=0 then
cc (HGFE : DCBA)
else cc(DCBA:HGFE) }
sign:=B.<0>; exp:=31+256;
if sign=1 then BA:=-BA;
if BA<>0 then
{norm(BA);
exponent (A) :=exp;
B.<0>:=sign

B-12

Appendix B: Instruction Set Definition

Table B-1l. Instruction Set Definition (Continued)

0 3 0 7 |cpI |convert double to |if B+A.<0> <> 0 then V:=1;

integer B:=A; RP:=RP-1
0 3 1 O#|CFIR|convert floating t:=15+256-exponent (A) ;
to integer with sign:=B.<0>;
rounding if -2%%15 <= BA <= 2**15-1

then {B.<0>:=1;
BA:=BA">>"t;
BA:=BA“+7%100000;
if sign=1 then B:=-B
else if B.<0>=1 then
V:=l}
else V:=1;
cc(B); RP:=RP-1
0 3 1 1#|CFI |convert floating t:=15+256-exponent (A) ;
to integer sign:=B.<0>;
if -2*%*15 <= BA <= 2**15-1
then {B.<0>:=1;
BA:=BA">>"t;
if sign=1 then B:=-B}
else V:=1;
cc(B); RP:=RP-1
0 3 1 2#|CFD |convert floating t:=31+256-exponent (A);
to double sign:=B.<0>;
if -2*%*31 <= BA <= 2%%3]-1
then {B.<0>:=1;
exponent (A) :=0;
BA:=BA">>"t;
if sign=1 then

BA:=-BA}
else V:=1;
cc (BA)
0 3 1 3%#|CFDRiconvert floating t:=31+256-exponent (A) ;
to double with sign:=B.<0>;
rounding if -2*%*3]1 <= BA <= 2*%*31-1

then {B.<0>:=1;
exponent (A) :=0;
BAs:=BAs >>"t;
BAs:=BAs“+°%$100000;
if sign=1 then

BA:=-BA
else if B.<0>=1 then
V:=1}
else V:=1;
cc(BA)
0 3 1 4#|CED |convert extended t:=31+256-exponent (A) ;
to double sign:=D.<0>;

if -2*%*3] <= DCBA <= 2**3]1-1
then {D.<0>:=l;
DC:=DC”">>"t;
if sign=1 then
DC:=-DC}
else V:=1;
cc(DC); RP:=RP-2

B-13

Appendix B:

Table B-1.

Instruction Set Definition (Continued)

Instruction Set Definition

CEDR

CEIR

IDXD

CFQ

convert extended
to double with
rounding

convert extended
to integer with
rounding

calculate index
offset and test
indices for
bounds violation

(bounds table
in data space)

convert floating
to quad

t:=31+256-exponent (A) ;
sign:=D.<0>;
if -2*%*¥3] <= DCBA <= 2%*%31-1
then {D.<0>:=1;
DCB:=(DCB”“>>"t)
“+7%100000;
if sign=1 then
DC:=-DC
else if D.<0>=1 then
V:=l}
else V:=1;
cc(DC); RP:=RP-2
t:=15+256-exponent (A) ;
sign:=D.<0>;
if -2**15 <= DCBA <= 2*%15-1
then {D.<0>:=1;
DC:=(DC”“>>"t)
“+°%100000;
if sign=1 then D:=-D
else if D.<0>=1 then
V:=l}
else V:=1;
cc(D); RP:=RP-3
t:=stack[a];
bc:=t.<0>; t.<0>:=0;
indv:=0; psize:=1;
=45
while t>0 do
{lower:=stack([s:=s+1];
upper :=stack [s:=s+1];
if B<lower and be=0 then
Vi=l; t 70;
cc(-1); R{7]:=B}
if B>upper and bc=0 then
V:=1; t =0;
cc(l); RI[7]:=B}
size:=upper-lower+l;
B:=B-lower;
indv:=indv+psize*B;
psize:=psize*size;
RP:=RP-1; t:=t-1}
if v=0 then
[R[7]:=indv;
cc(R[7])
RP:=RP-1
t:=63+256-exponent (A) ;
sign:=B.<0>; RP:=RP+2;
if -2**%63 <= DC <= 2*¥*63-1
then {D.<0>;=1;
exponent (C) :=0;
B:=A:=0;
DCBA:=DCBA”>>"t;
if sign=1 then
DCBA:=-DCBA}
else V:=1;

cc (DCBA)

Table B-1.

Appendix B:

Instruction Set Definition (Continued)

0

0

0 3

2

14

24

3¢

4%

5%

6#

CFQR

CEQ

CEQR

CQF

CFE

CDFR

CID

convert floating
to quad with
rounding

convert extended
to quad

convert extended
to quad with
rounding

convert quad
to floating

convert floating
to extended

convert double
to floating with
rounding

convert integer
to double

t:=63+256-exponent (A);
sign:=B.<0>; RP:=RP+2;
if -2**63 <= DC <= 2**63-1
then {D.<0>:=1;
exponent (C) :=0;
B:=A:=s5:=0;
DCBAs:=(DCBAs”>>"t)
“+7%100000;
if sign=1 then
DCBA:=-DCBA}
else V:=1;
cc (DCBA)
t:=63+256-exponent (A);
sign:=D.<0>;

if -2*%*63 <= DCBA <= 2**§3-1

then {D.<O>:=l;
exponent (A} :=0;
DCBA:=DCBA">>"t;
if sign=1 then
DCBA:=-DCBA}
else V:=1;
cc (DCBA)
t:=63+256-exponent (A) ;
sign:=D.<0>;

if -2**63 <= DCBA <= 2**63-1

then {D.<0>:=l;
exponent (A) :=0;
s:=0;
DCBAs:=(DCBAs“>>"t)
“+7%100000;
if sign=1 then
DCBA :=-DCBA}
else V:=1;
cc (DCBA)
sign:=D.<0>; exp:=63+256;
if sign=1 then
DCBA:=~DCBA;
if DCBA<>0 then
{norm(DCBA);
exponent (C) :=exp;
D.<0>:=sign
RP:=RP-2
G:=exponent (A
exponent (A) :=
H:=0;
RP:=RP+2
sign:=B.<0>; exp:=31+256;
if sign=1 then
BA:=-BA;
if BA<>0 then
{norm(BA);
BA:=BA"+7%400;
if carry then
exp:=exp+l;
exponent (A) :=exp;
B.<0>:=sign
H:=A; A := A>>15; RP:=RP+1

):
0;

Instruction Set Definition

Appendix B:

Table B-1l.

Instruction Set Definition

Instruction Set Definition (Continued)

[&]

W

w

o#

1#

2%

5%

6%

CQFR

CIF

CIE

XSMX

CQER

CQE

convert quad
to floating with
rounding

convert integer
to floating

convert integer
to extended

checksum extended
block

D=initial checksum
CB=block address
A=count

convert double

to extended

convert quad
to extended with
rounding

convert quad
to extended

sign:=D.<0>; exp:=63+256;
if sign=1 then
DCBA:=-DCBA;
if DCBA<>0 then
{norm(DCBA);
DC:=DC” +°%400;
if carry then
exp:=exp+l;
exponent (C) :=exp;
D.<0>:=sign
RP:=RP-2
sign:=A.<0>; exp:=15+256;
if sign=1 then A:=-A;
if A<>0 then
{norm(a);
H:=exp;
A.<0>:=sign}
else H:=0;
RP:=RP+1
sign:=A.<0>; exp:=15+256;
if sign=1 then A:=-A;
H:=G:=0;
if A<>0 then
{norm(A);
F:=exp;
A.<0>:=sign}
else F:=0;
RP:=RP+3
while A<>0 do
D:=D xor xmem[CB];
A:=A-1;
CB:=CB+2};
RP:=RP-3
sign:=B.<0>; exp:=31+256;
if sign=1 then BA:=-BA;
H:=0;
if BA<>0 then
{norm(BA) ;
G:=exp;
B.<0>:=sign}
else G:=0;
RP:=RP+2
sign:=D.<0>; exp:=63+256;
if sign=1 then
DCBA:=-DCBA;
if DCBA<>0 then
norm (DCBA) ;
DCBA:=DCBA“+°%400;
if carry then
exp:=exp+l;
exponent (A) ;=exp;
D.<0>:=sign}
sign:=D.<0>; exp:=63+256;
if sign=1 then i
DCBA:=-DCBA;
if DCBA<>0 then
{norm(DCBA);
exponent (A) :=exXp;
D.<0>:=sign}

B-16

Appendix B:

offset and test
index bounds
for 2 dimensions

(bounds table
in code space)

Table B-1. 1Instruction Set Definition (Continued)
00 0 3 3 7#|CEI |convert extended t:=15+256-exponent (A) ;
to integer sign:=D.<0>;
if -2%*]15 <= DCBA <= 2*%*15-1
then {D.<0>:=1;
D:=D">>"t;
if sign=1 then D:=-D}
else V:=1;
cc(D); RP:=RP-3
00 0 3 4 0 *%x% yndefined ***
00 0 3 4 1 *** yndefined ***
00 0O 3 4 2 |LWUC|load word from cc(A:=mem[2,A])
user code space
00 0O 3 4 3 |XSMGichecksum block while A<>0 do
{c:=c xor stack[B];
C=initial checksum A:=A-1;
B=block address B:=B+1};
A=count RP:=RP-2
00 0 3 4 4#|IDXl|calculate index lower :=code[A] ;
offset and test upper :=code [A+1] ;
index bounds if B<lower then
for 1 dimension {V:=l; cc(-1);
R[7]:=B}
(bounds table if B>upper then
in code space) {v:=1; cc(l);
R[7] :=B}
if v=0 then
{R[7]:=B—lower;
cc(R[7])}
RP:=RP-2
00 0 3 4 5#|IDX2|calculate index lower :=code[A] ;

upper :=code [A+1] ;

if B<lower then
{ve=1; cc(-1);
R[7]:=B}

if B>upper then
{vi=1; cc(l);
R[7] :=B

s:=upper-lower+l;

B:=B-lower;

lower :=code [A+2] ;

upper :=code [A+3] ;

if C<lower then
{V:=l; cc(-1);
R[7]:=C}

if C>upper then
{V:=1; cc(ly;
R[7]:=C}

if V=0 then
{R[?]:=(C—lower)*s+B;
cc(R[71)}

RP:=RP-3

Instruction Set Definition

Appendix B:

Instruction Set Definition

Table B-1. 1Instruction Set Definition (Continued)
00 0 3 4 6#|1IDX3|calculate index indv:=0; psize:=1;
offset and test for i=1 to 3 by 1 do
index bounds {1ower:=code[A};
for 3 dimensions upper :=code [A:=A+1];
if B<lower then
(bounds table {v:=1;
in code space) cc(-1); R[7]:=B}
if B>upper then
{V:=l;
cc(l); R[71:=B}
size:=upper-lower+1l;
B:=B-lower;
indv:=indv+psize*B;
psize:=psize*size;
B:=A+1;
RP:=RP—1}
if v=0 then
{R[7] :=indv;
cc(R[71)}
RP:=RP-1
00 0 3 4 7%#|1DXP|calculate index t:=code[A];
offset and test bc:=t.<0>; t.<0>:=0;
indices for indv:=0; psize:=1;
bounds violation s:=A;
while t>0 do
(bounds table lower :=code[s:=s+1];
in code space) upper:=code[s:=s+1];
if B<lower and bc=0 then
{V:=l; t:=0;
cc(-1); R[7]:=B}
if B>upper and bc=0 then
{V:=l; t:=0;
cc(l); R[7]:=B}
size:=upper-lower+l;
B:=B-lower;
indv:=indv+psize*B:
psize:=psize*size;
RP:=RP-1; t:=t-1}
if V=0 then
{R[7]:=indv;
cc(R[7]) }
RP:=RP-1
00 0 3 5 0 |LWAS|load SG word via Alcc(A:=dest(a))
00 0 3 5 1 |SwAS|stor SG word via Aldest(A) :=B; RP:=RP-2
00 0 3 5 2 |LpAS|load SG double RP:=RP+1;
via a cc(BA:=dest (B:B+1))
00 O 3 S5 3 |sDAS|store SG double dest (A:A+1l) :=CB;
via A RP:=RP-3;
00 0 3 5 4 |LBAS|load SG byte via Ajccb(A:=bytedest(a))
00 0 3 5 5 |SBAS|store SG byte bytedest (A) :=B;
via A RP:=RP-2
00 0 3 5 6 |CDX [count duplicate while B<>0 and
words extended xmem [DC] =xmem[DC-2] do
DC=buffer address {A:=A+l;
B=buffer size B:=B-1;
A=duplicate count DC:=DC+2}
00 0 3 5 7 |DPS |deposit field in cc({dest (A) :=(dest(A) & “B)
SG memory (C & B));
RP:=RP-3
00 0 3 6 0 |LWA |[load word via A cc({A:=stack[A])
00 0 3 6 1 |SWA ;store word via A stack[A] :=B; RP:=RP-2
00 0 3 6 2 !LDA |locad double via A [RP:=RP+1;
cc(BA:=stack[B:B+1])

Appendix B: 1Instruction Set Definition

Table B-1l. Instruction Set Definition (Continued)

00 O 3 6 3 |SDA |store double via A|stack[A:A+l]:=CB;
RP:=RP-3;
00 0 3 6 4 |LBA [load byte via A ccb (A:=bytedest (A))
00 0 3 6 5 |SBA |store byte via A bytedest (A) :=B;
RP:=RP-2
00 0O 3 6 6 |CDG |count duplicate while B<>0 and
words stack[C]=stack[C-1] do
C=buffer address {A:=A+l;
B=buffer size B:=B-1;

A=duplicate count C:=C+1}
00 0 3 6 7 |DFG |deposit field in cc(stack[A]:=(stack[A] & 7B)

memory | (¢ & B));
RP:=RP-3
00 0 3 7 o0
. *%** yndefined ***
00 o0 3 7 17
00 0 4 0 O*|WWCS|write WCS while A>0 do
D=WCS address {wcs (D] :=mem{C,B] "mem[C,B+1]
C=buffer map “mem[C,B+2].<0:3>;
B=buffer address if (A:=A-1)=0
then goto done;
A=ucode word count|{ D:=D+1;B:=B+2;
WCS[D] :=mem[C,B].<8:15>
“mem{C,B+1]
“mem[C,B+2].<0:11>;
}D:=D+l; B:=B+3; A:=A-1;
done: N:=0; Z:=1; RP:=RP-4
I1! Note 1!1!!
all memory referenced must be
present
00 0 4 0 1*|VWCS|verify WCS N:=0;Z:=1;
D=WCS address while Z and A>0 do
C=buffer map {if wcs[Dp]<>mem[C,B]
B=buffer address “mem[C,B+1]
A=ucode word count “mem[C,B+2].<0:3>
then {N:=1;Z:=0{;

if N or (A:=A-1)=0
then goto done;
D:=D+1;B:=B+2;
if wcs[D]<>mem[C,B].<8:15>
“mem[C,B+1]
“mem{C,B+2].<0:11>
then }N:=l;Z:=0}
}else :=D+1;B:=B+3;A:=A-1};
’
done: RP:=RP-4
{11 Note I!!
all memory referenced must be
present
bus packets may not be
received correctly while a
VWCS is executing

Appendix B:

Instruction Set Definition

Table B-1l.

Instruction Set Definition (Continued)

00 0 4 O

(=]
o

o O OO OO O0
[N oYoNoYe o)l

o
o

o

(>N ejoNoleNee] (=]

o

o

[N SN N N N

-y

>

o

N PHRHOO O

—

o)

2%

B WN O g »
*

wn

(23]

RWCS

SMBP

FRST
LBX
SBX
LWX
SWX
LDDX
SDDX
LOX

SQX

DFX

MVBX

MBXR

MBXX

read WCS

D=WCS address
C=buffer map
B=buffer address
A=ucode word count

set memory brkpt
B.<0>=read flag
.<1>=execute flag
.<2>=write flag
.<9:15>=high-
order addr
A=low-order addr

firmware reset

load byte extended
store byte extnd.
load word extended
store word extnd.
load double extnd.
store dbl. extnd.
1oad quad extended

store quad
extended
deposit field
extended

move bytes
extended
ED=destination
address
CB=source address
A=byte count
move bytes
extended reverse
ED=destination
address
CB=source address
A=byte count
move bytes extnd.
and checksum
F=initial xsum
ED=destination
address
CB=source address
A=byte count

while A>0 do
{mem([C,B]"mem[C,B+1]
“mem[C,B+2].<0:3>:=WCS[D] ;
if (A:=A-1)=0 then
then goto done;
D:=D+1;B:=B+2;
mem[C,B] .<8:15>"mem[C,B+1]"
mem[C,B+2] .<0:11>:=WCS[D];
D:=D+1;B:=B+3;A:=A-1};

done: RP:=RP-4

11! Note !!!
all memory referenced must be
present

*** yndefined ***
breakpointmode:=B.<0:2>;
breakpointaddress:=

B.<9:15>"A;
BPADDR:=BA; RP:=RP-2;

111 Note !!!
the address is a physical
memory address
any and all combinations of
access flags may be set
BA=0D will disable the trap
reset and stop instruction
execution
ccbh (B:=bxmem[BA]) ; RP:=RP-1
bxmem[BA] :=C; RP:=RP-3
cc (B:=xmem[BA]) ; RP:=RP-1
xmem[BA] :=C; RP:=RP-3
cc (BA:=xmem [BA:BA+3])
xmem[BA :BA+3] :=DC; RP:=RP-4
RP:=RP+2:

cc {DCBA:=xmem [DC:DC+7])
xmem [BA:BA+7] :=FEDC;
RP:=RP-6

cc(xmem[BA] :=(xmem[BA] &
¢ | (D&C)));
RP:=RP-4;
while A<>0 do
{bxmem[ED] :=bxmem[CB] ;
ED:=ED+1;
CB:=CB+1;
A:=A-1;};
RP:=RP-5;
while A<>0 do
{bxmem[ED] :=bxmem[CB] ;
ED:=ED-1;
CB:=CB-1;
A:=a-1;};
RP:=RP-5;
while A<>0 do
?bxmem[ED]:=t:=bxmem[CB];
F:=F xor t:
ED:=ED+1;
CB:=CB+1;
A:=A-1;};
RP:=RP-5

B-20

Appendix B:

Table B-1l. 1Instruction Set Definition (Continued)
00 0 4 2 |CMBX|compare bytes N:=0; Z:=1;
extended while 2 and A<>0 do
ED=destination {ce (bxmem [ED] :bxmem[CB]) ;
address if Z then
CB=source address {A:=A-1;ED:=ED+1;
A=byte count CB:=CB+1;}};
: RP:=RP-5
00 0 4 3* |CRAX |convert rel. to if B.<0:14>=0 then
abs. ext. address {B.<0:14>:=CMSEG[DS] }
else if B.<0:14><=2 then
{B.<0:14>:=CMSEG[B.<0:14>1}
else if B.<0:14>=3 then
{B.<0:14>:=CMSEG [cmap] }
else if B.<0>=0 then
{BA:=BA+segment base};
B.<0>:=1;
00 0 4 4* |RSPT|read segment page |xa:=CRAX(BA):;
table entry p:=xa.<15:20>;
BA=ext. address s:=Xa.<2:14>;
K:=0;
if MAP[15,p mod 32+32]
= 8"p.<10> then
{B:=MAP[15,p mod 321}
else
{if SEG[s*2].<0>=0 then
B:=MAP[SEG[s*2].<0:4>,p]
else
{if p<SEG[s*2].<9:15> then
B:=mem[SEG[s*2].<5:8>,
SEG[s*2+1]+p}
else {B:=1; K:=l}}1;
RP:=RP-1
00 0 4 5% |WSPT|write segment page|xa:=CRAX(BA);
table entry p:=xa.<15:20>;
C=entry S:=Xa.<2:14>;
BA=ext. address if MAP[15,p mod 32+32]
= s"p.<10> then
{MAP[15,p mod 32]:=C}
else
{if SEG[s*2].<0>=0 then
MAP[SEG[s*2] .<0:4>,p]:=C
else
mem[SEG[s*2].<5:8>,
SEG[s*2+1]+p] :=C};
RP:=RP-3;
00 0 4 6* |RXBL|read extended base|RP:=RP+4;
and limit DCBA:=MAP[14,60:63]
00 0 4 7* | SXBL|set extended base |MAP[14,60:63]:=DCBA;
and limit RP :=RP-4
00 0 4 0* |[LCKX|lock down extended|m:=RSPT(BA);
memory p:=m.<0:12>;
D.<0>=lock only if|if m.<15>=0 and (D.<0>=0
already locked or PHYSEG[p]<0) then
C=lock count {if pHYSEG[p] < O
BA=ext. address then
{PHYSEG{p]:=PHYSEG[p]—C;
K :=0
else
{PHYSEG[p] :=-C;
K := 1}
Z:=1; N:=0}
else {2:=0; N:=1};
RP:=RP-4

Instruction Set Definition

Appendix B:

Instruction Set Definition

Table B-1l. 1Instruction Set Definition (Continued)
00 0 4 3 1*|ULKX|unlock extended m:=RSPT(xa:=CRAX (BA)) ;
memory p:=m.<0:12>;
D=map entry mask if m.<15>=0 and
C=unlock count {x:=PHYSEG[p]+C)<=0 then
BA=ext. address if x<>0 then PHYSEG[p]:=x
else B
{PHYSEG[p] :=xa.<2:14>;
WSPT(BA, m&D)};
cecz (%)}
else {Z:=0; N:=l};
RP:=RP-4
00 0 4 3 2*|CMRW|CME read/write N:=0;Z:=1;
B.<0:3>=map if I/0 locked out then
a=word address [mem[B.<0:3>,a]
:=mem[B.<0:3>,A];
free I/0 channel;
if CME interrupt then Z:=0}
else {N:=l; Z:=0$;
RP:=RP-2
600 0 4 3 3 *%*% yndefined ***
00 0 4 3 4*|RMEM|read mem cc(B:=mem[B.<0:3>,A]);
RP:=RP-1
00 0 4 3 5* WMEM|write mem mem[B.<0:3>,A] :=C; RP:=RP-3
00 0O 4 3 6* RSMT|read from OSP enable read from OSP
00 0 4 3 7*|WSMT|write to OSP write first character to OSP
00 0 4 4 0*|RIBA|read INTB and INTA|RP:=RP+2;
registers B:=INTB; A:=INTA
00 0O 4 4 1*|SVMP|save map entries m:=word:=0;
while word<%2000 do
{memory[2,word]:=
MAP[m.<12:15>,m.<0:5>]
m:=m+%2000;
if alu carry then m:=m+1l;
word:=word+1l
00 0O 4 4 2* XSTR|XRAY start timer if (t:=xmem[BA])<>0 then
p=disablc flag la:-240000" (£+C) "0
C=offset to cntr if xmem{aj<>D then
BA=extended addr {xmem[a] :=xmem[a]+1;
of XRAY ptr i a:=a+2;
if (a+7).<0:5> <> a.<0:5>
then
Instruction Failure;
xmem[a:a+7] :=xmem[a:a+7]
-sysstack{$103:%3106]
-microsecond counter}};
RP:=RP-4
00 0 4 4 3*|XSTP|XRAY stop timer if (t:=xmem[BA])<>0 then
D=disable flag {a:=240000" (t+C)"0;
C=offset to cntr if xmem[a]<>D then
BA=extended addr [xmem[a] :=xmem[a]l-1;
of XRAY ptr as=a+2;
if (a+7).<0:5> <> a.<0:5>
then
Instruction Failure;
xmem[a:za+7] :=xmem[a:a+7]
+sysstack[%103:%106]
+microsecond counter}};
RP:=RP-4
00 0 4 4 4 |SCS |set code segment if ENV.CS=1 or ENV.LS=1
BA=byte address in|then B.<0:14>:=3
current code else B.<0:14>:=2;
00 0O 4 4 5% LOAS|load SG quad via A|RP:=RP+3;
cc{DCBA:=sysstack[A:A+3])

Appendix B:

Table B-1l. 1Instruction Set Definition (Continued)
00 0 4 6* | SQAS|store SG quad via |sysstack[A:A+3] :=EDCB;
A RP:=RP-5
00 0 4 7* |RCHN|reset I/0 channel if i/o channel available then
if A>=0
then channel ioreset
else channel lockup
at %0777;
N:=0; Z:=1}
else {N:=1; z:=0};
RP:=RP-1
00 0 4 0* |BNDW|bounds test words |if A “>° L then
cc(C:=1)
else
if B=0 or (C“<="L-A and
C=word address in C+B-1°<="L-A and C”<="C+B-1)
stack or (C”>”“L+350 and
B=buffer size in C“<="C+B-1 and
words (C+B-1) .<0:5> <
A=number of words SEG[CMSEG[0]*2].<9:15>)
of parameters then cc(C:=0)
and stack marker |else cc(C:=1);
RP:=RP-2
00 0 4 1 |BPT |instruction if ENV.<1> = 0
breakpoint trap then interrupt via SIV #19
ENV.<1> := 0;
i:=BPBASE;
do
{if sysstack [i]=CMSEG [cmap]
and sysstack[i+1]=P-1
then {I:=sysstack[i+2];
roma:=EPT[I]};
i:=i+BPSIZE}
until i “>“ BPLIM;
Instruction failure
00 0 4 2* | BCLD|bus cold load simulate a bus cold load
from the panel
00 0 4 3% |TPEF|test parity error [RP:=RP+1;
freeze circuits A := if IPU error then 1
else if MCB error then 2
else if CCD error then 3
else O
00 0 4 4 |SCMP|set code map if A.<0:3>=0
then A.<0:3>:=cmap
00 0 4 5
. *%* yndefined ***
00 0 7 7
00 1 - - |CMPI|compare immediate |cc(A:imm); RP:=RP-1;
00 2 - - |ADDS|add to S S:=S+imm
00 3 - - |LADI|logical add ccl(A:=A"+"imm)
immediate
00 4 0-- - {ORRI|OR right immediatel|cc(A:=A|I.<8:15>)
00 4 4-- - {ORLI|OR left immediate jcc(A:=A|(I.<8:15>"<<”8))
00 5 - - |LDLI|load left RP:=RP+1;
immediate cc(A:=imm rotate 8)
00 6 - -~ [ANRI |AND right cc (A:=A&imm)
immediate
o0 7 - - |ANLI|AND left immediate|cc(A:=A&(imm rotate 8))
10 0 - - |LDI |[load immediate RP:=RP+1; cc{A:=imm)
1 0 Oxx - - |LDXI|load x immediate cc(X:=imm)
10 4 - - |ADDI|add immediate ccn (A:=A+imm)
1 0 4xx - - |ADXI|add x immediate ccn (X:=X+imm)
I1 0 0== - |BIC |branch if carry if K then branch

Instruction Set Definition

Appendix B:

Instruction Set Definition

Table B-1l. 1Instruction Set Definition (Continued)
I1 10--- - IBGTR|branch if greater |if ~(N|Z) then branch
I1 2 0--- - |BEQL|{branch if equal if 2z then branch
I 1 30--- - |BGEQ|branch if greater |if ~ N then branch
or equal
I 1 4 0-- - - |BLSS|branch if less if N then branch
I 1 5 0~- - - |BNEQ|branch if not if © Z then branch
equal
I1l 6 0--- - |BLEQ|branch if less or |if N|Z then branch
equal
I1 7 0-- - - |BNOC|branch no carry if ¥ K then branch
I 1 0 4-- - - [BUN |branch branch
unconditional .
I 1 0xx4-- - - |BOX |branch on X if X<A then {X:=X+1; branch}
else RP:=RP-1
I1 4 4-- - - |BAZ |branch on A zero if A=0 then branch; RP:=RP-1
I1 5 4-- - - [BANZ|branch on A if A<>0 then branch;
nonzero RP:=RP-1
I1 6 4-- - - [BNOV|branch if no if ~ V then branch
overflow
I1 7 4-- - - |BSUB|{branch to stack[S:=S+1]:=P; branch
subroutine
I 2 0xx0-- - =~ |[LWP |load word from RP:=RP+1;
program cc(A:=code[branchadr+X])
I 2 0xx4-- - - |LBP |load byte from RP:=RP+1;
program adr:=(if indirect then
code[dba] else 0)
+dba“<<“1+X;
A:=codeladr.<0:14>
' +(dba&%100000)].
<8%adr.<15>:8*%adr.<15>+7>;
ccb(a)
02 4 n r c |PUSH|push to stack stack [S+1:S+c+1]
:=R[(r-c)mod 8:r];
I RP:=n; S:=S+c+l
12 4 n r c |poP lpop from stack Rl (r-c)mod 8:r]
:=gtack[S-c:5];
RP:=n; S:=S-c-1
02 5 0-- - - |RSUB|return from P:=stack[S];
subroutine S:=5-1.<8:15>
12 5 0--~ -~ |EXIT|exit procedure (S,P,ENV,L) :=(
L-I1.<8:15>,
stack [L-2],
(t:=stack[L-1]) &ENV&%173000
stack [L-1]1&%4740
ENV&%37, stack|[L]);
if t.<0>
then Instruction Breakpoint
02 5 4 - - |LWXX[load word extended|cc(A:=xmem[A<<l+xbase])
02 6 4 - - indexed
02 5 5 - - |SWXX|store word extnded|xmem[A<<l+xbase] :=B;
02 6 5 - - indexed RP:=RP-2
02 5 6 - =~ |LBXX|load byte extended|ccb(A:=bxmem[A+xbasel])
02 6 6 - - indexed
02 5 7 - - |SBXX|store byte extnded|bxmem[A+xbase]:=B;
02 6 7 - - indexed RP:=RP-2
12 5 4-- - - *** yndefined ***
0 2 6 00mssd n |MOVW|move words while A>0 do
{dest (C) :=source(B) ;
A:=A-1; B:=B+movestep;
C:=C+movestep};
RP:=n

Table B-1.

Appendix B:

Instruction Set Definition (Continued)

o o

02mssd

00mssd

02mssd

40mssd

42mssd

4 -

COMW

MOVB

COMB

SBW

SBU

PCAL

XCAL

LLS
LRS
ALS

ARS

compare words

move bytes

compare bytes

scan bytes while

scan bytes until

procedure call

external call

logical left shift

logical right
shift
arithmetic left
shift

arithmetic right

shift

N:=0; Z:=1;
while Z and A>0 do
{cc(dest(C)”:“source(B));
if 2 then
{A:=A—l; B:=B+movestep;
C:=C+movestepl}};
:=n
while A>0 do

{bytedest (C) :=bytesource (B) ;

A:=A-1; B:=B+povestep;
C:=C+movestep;;
RP:=n
N:=0; Z:=1;
while 2 and A>0 do
{cc (bytedest(C) :
bytesource (B));
if 7 then
{a:=A-1; B:=B+movestep;
C:=C+movestep}};
RP:=n
while bytesource(B)<>0 and
bytesource (B)=A do
B:=B+movestep
K:=bytesource(B)=0; RP:=n
while bytesource(B)<>0 and
bytesource (B) <>A do
B:=B+movestep
K:=bytesource(B)=0; RP:=n
stack [S+1:8+3] :=(P,ENV,L);
t:=1.<7:15>;
if ~ PRIV then
{if t>=code[0] then
{if t>=codell]
then priv trap;
PRIV:=1}};
L:=S:=S+3;
P:=codet]; RP:=7
if CMSEG[CMAP] =
priv trap;
stack[S+1:8+3] :=(P,ENV,L);
i :=SEG[CMSEG [CMAP] *2]
.<9:15>*%2000-1;
m:=((code[i-I.<7:15>].<0:3>
-2) mod 4)+2;
t:=code[i-I1.<7:15>].<7:15>;
if © PRIV then
{if t>=mem[m,0] then
{if t>=mem[m, 1]
then priv trap;
PRIV:=1}};
L:=S:=8+3;
LS:=(m-2)/2;
CS:=m.<15>;
P:=code(t]; RP:=7
computeshiftcount;
cc(A:=A"<<"shiftcount)
computeshiftcount;
cc(A:=A">>"ghiftcount)
computeshiftcount;
cc(A:=A<<shiftcount)
computeshiftcount;
cc(A:=A>>shiftcount)
*** yndefined ***

-1 then

Instruction Set Definition

Appendix B:

Instruction Set Definition

Table B-1l. 1Instruction Set Definition (Continued)

13 0 O DLLS |double logical |computeshiftcount;

left shift cc (BA:=BA“<<“shiftcount)
13 0 1 DLRS |double logical computeshiftcount;

right shift cc (BA:=BA“>>"shiftcount)
13 0 2 DALS |double arithmetic |computeshiftcount;

left shift cc (BA:=BA<<shiftcount)
13 0 3 DARS |double arithmetic |computeshiftcount;

right shift cc (BA:=BA>>shiftcount)
13 0 4-- *** yndefined ***
I 3 0xx - LDX |load X cc(X:=word)
I 3 4xx - NSTO|[nondestructive wordx:=A

store
I 4 0Oxx - LOAD| load RP:=RP+1; cc(A:=wordx)
I 4 4xx - STOR|store wordx:=A; RP:=RP-1
I 5 0xx ~ LDB |load byte RP:=RP+1; ccb(A:=bytex)
I 5 4xx - STB |store byte bytex:=A.<8:15>; RP:=RP-1
I 6 0xx - LDD |load double RP:=RP+2; cc(BA:=dwordx)
I 6 4xx - STD |store double dwordx :=BA; RP:=RP-2
I 7 Oxx - LADR|load address RP:=RP+1l; A:=address+X
I 7 4xx - ADM |add to memory cen (wordx :=wordx+A); RP:=RP-1

Appendix B: Instruction Set

Table B-2. Definitions of Symbols

Definition

X&y= bitwise "and" of x and y

x|y= bitwise "or" of x and y

X XOor y= bitwise "exclusive or" of x and y

X mod y= x modulo y

= x= bitwise "complement" of x

x<<n= X arithmetically shifted left n bits

x>>n= x arithmetically shifted right n bits

x“<<’n= X logically shifted left n bits

x“>>"n= x logically shifted right n bits

X rotate n= x7<<’n + x.<0:n-1>

X:y= if x<y then -1 else if x=y then 0 else 1

x“ < y= comparison of x and y as 16-bit unsigned numbers
X" y= if x“<’y then -1 else if x=y then 0 else 1

X max y= if x>y then x else y

X:=31y= exchange x and y

x"y= concatenate x and y

A= R[RP]

address= if indirect then mem[memmap, dir.adr.] else dir.adr.
B= R[RP-1]

BA.<0:31>= B.<0:15>"A.<0:15>
bing[bus,la]= INQ[bus, la.<0:14>].byteflag
bog[bus,la]= oUTQ{ bus, la.<0:14>].byteflag

BPADDR= sysstack[%115:%116]

BPBASE= sysstack[%123]

BPLIM= sysstack[%125]

BPSIZE= sysstack[%124]

branch= P:=branch address

branch address= if indirect then ccdeldbal + dba else dba
BRT= sysstack[%1400:31777 1

bxmem[xaddr]= the byte at xaddr
byteaddress= if indirect then mem[memmap,dir.adr.]+X else 2*dir.adr.+X
bytedest[la]= mem[destmap,la.<0:14>].byteflag
byteflag= <8*1a.<15>:8*1a.<15>+7>
bytesource[la 1= mem[srcmap, la.<0:14>+
(I.<10:11>=2)*p,<0>*%100000].byteflag

bytex= mem[memmap, byteaddress.<0:14>].byteflag

C= R[RP-2]

CB.<0:31>= C.<0:15>"B.<0:15>

cc(x)= Z:=(x=0); N:=(x<0)

CCb(X)= Z:=(I|AII<=X<=IIZII) or (lla“(__.x(:"z“); N:'=(|'0|x<=x<=ll9u)
CCE= N:=0; Z:=1

CCG= N:=0; Z:=0

CCL= N:=1; Z:=0

ccl(x)= cc(x); K:=adder carry

cen(x)= ccl(x); V:=adder overflow

chkp(x)= if memory location "x" is absent then Page Fault
CLOCK= sysstack[%103:%106]

cmap= LS*2+CS+2

CMSEG= sysstack[%1340:%31357]

code[la 1= mem[cmap, la]
computeshiftcount= if I1.<10:15>=0 then {shiftcount:=A.<8:15>;
RP:=RP-1} else shiftcount:=I.<10:15>

CPCB= sysstack[%3]

Cs= ENV.<7>

ccz(x)= Z:=(x=0); N:=0;

D= R[RP-3]

dba= P+I1.<9:15>-128*1.<8>

DC.<0:31>= D.<0:15>"C.<0:15>
DCBA.<0:63>= D.<0:15>"C.<0:15>"B.<0:15>"A.<0:15>

Appendix B: 1Instruction Set Definition

Table B-2. Definitions of Symbols (Continued)

dest[la 1= mem[destmap, la]

destmap= if I.<12>&PRIV then 1 else DS
dir.adr.= if I.<7>=0 then I.<8:15> “global variable”
else (0:255)
if I.<8>=0 then L+I1.<9:15> “local variable”
else (0:127)
if I.<9>=0 then I.<10:15> “system global”
else (0:63)
if 1.<10>=0 then L-I.<ll:15> “procedure parameter”
else (0:31)
8-1.<11:15>; “subroutine parameter”
(0:31)
DS= ENV.<6>
dwordx= mem[memmap, address+2*X:address+2*X+1]
E= R[RP-4]

ED.<0:31>= E.<0:15>"D.<0:15>

ENV.<0:15>= environment register

EPT= entry point table for instruction decoding
extended address= segment " page " word " byte

F= R[RP-5]

FE.<0:31>= F.<0:15>"E.<0:15>

G= R[RP-6]

H= R[RP-7]

HGFE.<0:63>= H.<0:15>"G.<0:15>"F.<0:15>"E.<0:15>
1.<0:15>= instruction register

imm= . 1.<8:15>-256*1.<7>

indirect= I1.<0>

INQ[0:1,0:15].<0:15>= interprocessor bus in queues
INTA.<0:15>= interrupt register A
INTB.<0:15>= interrupt register B

I0C= sysstack[%2000:%3777]

K= ENV.<9>

L.<0:15>= local data pointer=location of current stack marker
LIGHTS.<0:15>= switch register output

LS= ENV.<4>

MAP[0:15,0:63].<0:15>= memory map
MASK.<0:15>= interrupt mask register
mem[m,a]= MEMORY[MAP[m,a.<0:5>].<0:12>, a.<6:15>]

memmap= if I.<7:9>=6 and PRIV then 1 else DS
MEMORY[0:8191,0:1023].<0:15>= physical memory

movestep= if I.<9> then -1 else 1

N= ENV.<11>

ouTQ[0:1,0:15].<0:15>= interprocessor bus out queues
P.<0:15>= program counter=l+location of current instruction
PHYPAGE= mem{ %16, %150000:%167777]

PHYSEG= mem[%16, %130000:%147777]

PRIV= ENV.<5>

PRIV TRAP= cause an instruction failure interrupt

RLIST= sysstack[$100:%101]

roma= program counter for instruction microprocessor
RP= ENV.<13:15>

Appendix B: Instruction Set Definition

Table B-2. Definitions of Symbols (Continued)

5.<0:15>= stack pointer=location of last word of stack
SD= IPU scratch pad register. When the IPU is in the idle
loop, it will indicate the reason:
$000000 HALT instruction
%000014 bus cold load sequence error
$000040 manual reset
$000053 SFRZ instruction
$000100 DDT halt interrupt
%000115 OSP memory access breakpoint
$£000200 halt interrupt
£000377 bus cold load checksum error
$001000 i/o channel timeout on a cold load
$001154 memory dump completed
£002000 power-on interrupt with invalid memory
$177772 illegal cold load switch setting
$177773 i/o channel timeout on a tape dump
%177774 error during memory dump to tape
$177775 interrupt during memory dump to
interprocessor bus
$177776 uncorrectable memory error during map
recovery following a power-on
$177777 spurious interrupt
SEG= mem[14, %70000:%127777]

segment base= MAP[14, 60:61]
segment limit= MAP[14, 62:63]

SIV= sysstack[$1200:%1337]
source[la]= mem[srcmap, la]
srcmap= if I.<10> then {if I.<11> then 2 else cmap}

else if I.<11>&PRIV then 1 else DS
stack[la] = mem[DS, la]
SWITCHES.<0:15>= switch register input
sysstack[la]J= mem[1, la]

T= ENV.<8>

TLIST= sysstack[%107:%110]

TRACE= sysstack[%121]

TRBASE= sysstack[%117]

TRLIM= sysstack[%120]

UcC= ENV.<0>

V= ENV.<10>

words= mem|[memmap, address]

wordx= mem[memmap, address+X |

X= if I1.<5:6>=0 then 0 else R[I.<5:6>+4]
xaddr.<0:31>= a 32-bit extended address

xhase= stack[L*I.<5>+I1.<10:15> : L*I.<5>+I1.<10:15>+1]

xmem[xaddr]= the word located at xaddr

7= ENV.<12>

INDEX

A Register 2-63
Absent bit 2-145
Absolute segment 2-143
address 2-148
number 2-143
Address
extended 2-17, 2-143
formats 2-143
logical 2-17, 2-143
physical 2-17, 2-143
Addressable memory size 2-17
Addressing
16-bit address 2-145
32-bit address 2-145
absolute segment 2-143, 2-148
byte 2-32, 3-29
byte, extended 2-148
byte, indirect 2-55
code segment 2-43, 2-44
code, direct 2-45
code, indirect 2-45
data segment 2-47
data, direct 2-47, 2-53
data, indirect 2-47, 2-53
displacement 2-44
doubleword 2-34, 3-33
G-relative mode 2-50
i/o channel 2-130
indexed 2-55
L-minus-relative mode 2-50, 2-87
L-plus-relative mode 2-50, 2-83
LBP instruction 3-29
LWP instruction 3-27
map entry 2-145
modes, data segment 2-50
offset 2-45, 2-57
quadrupleword 2-34
relative segment 2-150
S-minus-relative mode 2-50, 2-93
SG-relative mode 2-52, 2-99

Index-1

IND

Alt
Ari

ASC

EX

table entry formats

word 2-29

word, indirect 2-53
ernate i/o path 2-9

2-143

thmetic overflow 2-39,
interrupt 2-105, 2-117
interrupt handler 2-39,

II characters 2-37

B Register 2-63
kup process 2-1, 2-11,

Bac
Bat

Bit deposit instructions
Bit numbering convention
lean operations 3-20

Boo
Bra

Bre

BSU

Buf

Bus

Bus
Byt

tery power 2-6

nching instructions
table Aa-19
akpoint

2-

40' 2"66'

2-66

2-

15

3-24
2-32

3-4

instruction, interrupt
memory access, interrupt

B instruction 3-54
execution 2-90

fers

bus receive (INQ X,
i/o 2-130, 2-148
i/o controller 2-18

communication 2-117
controllers 2-2
instructions 3-55
interface; interproce
transfer sequence 2-

Receive Table (BRT)
e

addressing 2-32, 2-55,

data 2-32
number range 2-37

test instruction 2-69,

C Register 2-63

Cac

Cal
Cal
Cal
Cal

Car
CcC

CCE
CCG
CCL

he

extended address 2-146,
map entry 2-151

1 instructions, table
lability 2-70, 2-75,

1

2—

INQ Y)

20,

2-

3-

2-

117
2-114

2-20,

2-170,

2-125

2-2, 2-20

2-121

148, 3-29

27

151

A-18

2-

lable procedures 2-65,

ling procedures 2-75

external 2-96

ry (K) bit 2-40, 2-66

2-40, 2-67
2-67, 3-52
2-67, 3-52
2-67, 3-52

97
2-

Central processing unit (cpu)

Ind

ex-2

73

2-2

2-101,

2-118,

3-2

2-119

Checkpointing 2-1, 2-15
Checksum computation instructions 3-50

Checksum word, in SEND packet 2-20, 2-128

Clock generator 2-22
Code and data separation 2-25
Code segment 2-17, 2-25, 2-41, 2-96
Code Space (CS) bit 2-66, 2-96
Compare instructions 3-44
table A-18
Condition Code (CC) 2-40, 2-67
following a computation 2-67
for a byte test or byte load 2-69
for a comparison 2-68
for input/output 2-135, 2-136, 3-56
for IPB communication 2-121, 3-55
Constants, program 2-41, 2-45
Ccontrol panel 2-22
Controllers, bus 2-2
Controllers, i/o device 2-130
buffering 2-18
dual-port 1-5, 2-5, 2-139
ownership of 1-5, 2-139
Correctable memory error 2-17, 2-152
interrupt 2-115
CPU 2-2
CS bit 2-66, 2-96
Current Code segment 2-151
Current Data segment 2-150
Cycle time
clock 2-22
microinstruction 2-16

D Register 2-63
Data formats 2-29

Data segment 2-17, 2-25, 2-41, 2-47, 2-96

global area 2-49

local area 2-49

top-of-stack (sublocal) area 2-49
Data segment, extended 2-143, 2-151
Data Space (DS) bit 2-66, 2-96
DDT 2-22
Decimal arithmetic instructions 3-8

conversions 3-10

integer arithmetic 3-8

scaling and rounding 3-9

store and load 3-8

table A-22
Device controllers 2-130

buffering 2-18

dual-port 1-5, 2-5, 2-139

ownership of 1-5, 2-139
Diagnostic Data Transceiver (DDT) 2-22
Direct addressing

code segment 2-45

INDEX

Index-3

INDEX

data segment 2-47, 2-53
Direction for moves, compares, scans 3-44
Directly addressable location 2-44
Dirty bit 2-145
Disc drives, dual-port 2-5
Dispatcher interrupt 2-116
Displacement, in code addressing 2-44
Division by zero 2-39, 2-40
Doubleword
accessing 2-34
addressing, diagram 3-33
data format 2-34
number range 2-37
DS bit 2-66, 2-96
Dual-bus data paths 2-2
Dual-port device controllers 1-5, 2-5, 2-139
Dual-port disc drives 2-5

E Register 2-63
EIO instruction 2-18, 3-56
execution 2-134
Environment
program 2-41
Register (ENV) 2-41, 2-63, 2-70
saving during interrupt 2-107
saving during procedure call 2-71, 2-75, 2-97
Errors, memory 2-17, 2-152
interrupts for 2-114, 2-115
EXIT instruction 2-26, 2-73, 2-82, 2-99, 3-53
execution 2-77
Expandability 1-4
Exponent overflow 2-40
Exponent underflow 2-40
Extended address 2-17, 2-143
cache 2-146, 2-151
instructions 2-152, A-18
Extended data segment 2-143, 2-151
Extended floating-point instructions 3-13
Extended floating-point number range 2-39
External Entry Point (XEP) Table 2-71, 2-97
External procedures, calling 2-96

F Register 2-63
Fault tolerance 1-4, 2-1
File System 2-8, 2-9
Floating-point arithmetic errors 2-40
Floating-point instructions 3-12
arithmetic 3-12
conversions 3-14
extended arithmetic 3-13
functionals 3-17
table A-23
Floating-point number ranges 2-39

Index-4

INDEX

G Register 2-63

G-relative addressing mode 2-51
Global data area 2-26, 2-49
GUARDIAN operating system 1-5

H Register 2-63
Halt interrupt 2-107
Hardware and software integration 1-5
Hardware instructions 3-1

reference tables A-1l, B-1
Hardware-only interrupts 2-107
High-priority i/o 2-142

completion interrupt 2-115
HIIO instruction 3-57

execution 2-135

I Register 2-43, 2-44, 2-51
I'm alive messages 2-11
I/0 buffers 2-130, 2-148
I/0 channel 2-2, 2-18, 2-130
addressing 2-130
interrupts 2-142
I/0 completion interrupt 2-116
I/0 Control (IOC) Table 2-18, 2-101, 2-130
I/0 controllers 2-130
buffering 2-18
dual-port 1-5, 2-5, 2-1395
ownership of 1-5, 2-139
I/0 paths, primary and alternate 2-9
I/0 sedquence 2-137
II0 instruction 3-56
execution 2-135
Illegal arithmetic conversion 2-40
Immediate instructions
diagrams 3-5, 3-23

table A-17
Index registers 2-55
Indexing

code segment 2-45, 3-27, 3-29
data segment 2-47, 2-55
Indirect addressing
byte operands 2-55
code segment 2-45
data segment 2-47, 2-53
Input/output
channel 2-2, 2-18, 2-130
machine instructions 3-56
sequence 2-137
INQ X buffer 2-20, 2-125
INQ Y buffer 2-20, 2-125
Instruction breakpoint interrupt 2-105, 2-117
Instruction categories
16-bit arithmetic (top of Reg. Stack) 3-2
16-bit signed arithmetic (stack element) 3-7

Index-5

INDEX

32-bit signed arithmetic 3-4

bit deposit and shift 3-24

boolean operations 3-20

branching 3-41

bus communication 3-55

byte test 3-27

decimal arithmetic conversions 3-10

decimal arithmetic scaling & rounding 3-9

decimal arithmetic store and load 3-8

decimal integer arithmetic 3-8

extended floating-point arithmetic 3-13

floating-point arithmetic 3-12

floating-point conversions 3-14

floating-point functionals 3-17

input /output 3-56

interrupt system 3-54

load/store via address on Reg. Stack 3-36

memory to/from Register Stack 3-27

miscellaneous 3-57

moves, compares, scans, and checksums 3-44

operating system functions 3-58

program register control 3-51

Register Stack manipulation 3-18

routine calls and returns 3-52
Instruction failure interrupt 2-105, 2-114
Instruction failure trap 2-65
Instruction processing unit (IPU) 2-2, 2-15
Instruction register 2-43, 2-44, 2-51
Instruction set definition table A-1
Instructions 2-15, 3-1, A-1l, B-1

- rnNNT £
ADAR \UCUJ.U—) 3—7

ADDI (104---) 3-4
ADDS (002---) 3-52
ADM (-74---) 3-32
ADRA (00014-) 3-7
ADXI (104---) 3-7
ALS (0302--) 3-25
ANG (000044) 3-3
ANLI (007---) 3-22
ANRI (006---) 3-22
ANS (000034) 3-36
ANX (000046) 3-36
ARS (0303--) 3-27
BANZ (-154--) 3-43
BAZ (-144--) 3-43
BCLD (000452) 3-58
BEQL (-12---) 3-43
BFI (000030) 3-44
BGEQ (-13---) 3-43
BGTR (-11---) 3-41
BIC (-100--) 3-41
BLEQ (-16---) 3-43
BLSS (-14---) 3-43
BNDW (000450) 3-59

Index-6

BNEQ
BNOC
BNOV
BOX
BPT
BSUB
BTST
BUN
CAQ
CAQV
CCE
CCG
CCL
CDE
CDF
CDFR
CDG
CDI
CDQ
CDX
CED
CEDR
CEF
CEFR
CEI
CEIR
CEQ
CEQR
CFD
CFDR
CFE
CFI
CFIR
CFQ
CFQR
CID
CIE
CIF
CIQ
CLQ
CMBX
CMPI
CMRW
COMB
COMW
CQA
CQD
CQE
CQER
CQF
CQFR
CQI
CQL
CRAX

(=15---)
(=17---)
(-164--)
(-1-4--)
(000451)
(-174--)
(000007)
(-104--)
(000262)
(000261)
(000016)
(000017)
(000015)
(000334)
(000306)
(000326)
(000366)
(000307)
(000265)
(000356)
(000314)
(000315)
(000276)
(000277)
(000337)
(000316)
(000322)
(000323)
(000312)
(000313)
(000325)
(000311)
(000310)
(000320)
(000321)
(000327)
(000332)
(000331)
(000266)
(000267)
(000422)
(001-—-)
(000432)
(1262--)
(0262--)
(000260)
(000247)
(000336)
(000335)
(000324)
(000330)
(000264)
(000246)
(000423)

3-43
3-44
3-44
3-41
3-57
2-90
3-27
3-41
3-11
3-11
3-52
3-52
3-52
3-17
3-16
3-16
3-44
3-6

3-11
3-49
3-14
3-15
3-14
3-14
3-15
3-15
3-15
3-16
3-14
3-14
3-16
3-14
3-14
3-15
3-15
3-6

3-16
3-16
3-11
3-11
3-50
3-4

3-59
3-48
3-47
3-10
3-10
3-17
3-17
3-16
3-16
3-10
3-10
3-59

3-54

INDEX

Index-7

INDEX

DADD
DALS
DARS
DCMP
DDIV
DDUP
DFG

DFS

DFX

DISP
DLEN
DLLS
DLRS
DLTE
DMPY
DNEG
DOFS
DPCL
DPF

DSUB
DTL

DTST
DXCH
DXIT
EADD
ECMP
EDIV
EIO

EMPY
ENEG
ESUB
EXCH
EXIT
FADD
FCMP
FDIV
FMPY
FNEG
FRST
FSUB
FTL

HALT
HIIO
IADD
ICMP
IDIV
IDX1
IDX2
IDX3
IDXD
IDXP
IIO

IMPY
INEG

Index-8

(000220)
(1302--)
(1303--)
(000225)
(000223)
(000006)
(000367)
(000357)
(000416)
(000073)
(000070)
(1300--)
(1301--)
(000054)
(000222)
(000224)
(000057)
(000032)
(000014)
(000221)
(000207)
(000031)
(000005)
(000072)
(000300)
(000305)
(000303)
(000060)
(000302)
(000304)
(000301)
(000004)
(125---)
(000270)
(000275)
(000273)
(000272)
(000274)
(000405)
(000271)
(000206)
(000074)
(000062)
(000210)
(000215)
(000213)
(000344)
(000345)
(000346)
(000317)
(000347)
(000061)
(000212)
(000214)

[T I I I |
~N

wwwwtluwww
W H & OVN N

1 [|
U YO DN UTOTO
> W 00

O

1
w0

WWWwWwWwwwwwww
1

2-18, 2-130, 2-134

2-26, 2-73, 2-77,

2-130, 2-135, 3-57

I
N

3-56

(]
-

2—135'

W DWW W W W W ww
i
WWHEHFFEHFRFWW

s 3-56

2-82,

2-99,

3-53

INSR
ISUB
IXIT
LADD
LADI
LADR
LAND
LBA
LBAS
LBP
LBX
LBXX
LCKX
LCMP
LDA
LDAS
LDB
LDD
LDDX
LDI
LDIV
LDLI
LDRA
LDX
LDXI
LLS
LMPY
LNEG
LOAD
LOR
LQAS
LOX
LRS
LSUB
LWA
LWAS
LWP
LwucC
LWX
LwWxXX
MAPS
MBXR
MBXX
MNDX
MNGG
MOND
MOVB
MOVW
MRL
MVBX
MXFF
MXON
NOP
NOT

(000055)
(000211)
(000071)
(000200)
(003---)
(=7-===)
(000010)
(000364)
(000354)
(-2-4--)
(000406)
(0256--)
(000430)
(000205)
(000362)
(000352)
(=5----)
(=6—---)
(000412)
(100~--)
(000203)
(005---)
(00013-)
(=3----)
(10----)
(0300--)
(000202)
(000204)
(-40---)
(000011)
(000445)
(000414)
(0301--)
(000201)
(000360)
(000350)
(-2----)
(000342)
(000410)
(0254--)
(000042)
(000420)
(000421)
(000227)
(000226)
(000001)
(126---)
(026---)
(000075)
(000417)
(000041)
(000040)
(000000)
(000013)

O

'_I
[\]
-

wWwwwdww
U
DWW NEHDNDU

3-38

3-59

3-54

INDEX

Index-9

INDEX

NSAR
NSTO
ONED
ORG
ORLI
ORRI
ORS
ORX
PCAL
POP
PSEM
PUSH
QADD
QCMP
QDIV
QDWN
QLD
QMPY
QNEG
QRND
QST
QSUB
QUP
RCHN
RCLK
RCPU
RDE
RDP
RIBA
RIR
RMAP
RMEM
RPV
RSMT
RSPT
RSUB
RSW
RWCS
RXBL
SBA
SBAR
SBAS
SBRA
SBU
SBW
SBX
SBXX
SCMP
scs
SDA
SDAS
SDDX
SEND
SETE

Index-10

(00012-)
(-34---)
(000003)
(000045)
(004---)
(004---)
(000035)
(000047)
(027-==)
(124nrc)
(000076)
(024nrc)
(000240)
(000245)
(000243)
(00025-)
(00023-)
(000242)
(000244)
(000263)
(00023-)
(000241)
(00025-)
(000447)
(000050)
(000051)
(000024)
(000025)
(000440)

(000063)
1000066)

\Vv Vv

(000434)
(000216)
(000436)
(000424)
(025---)
(000026)
(000402)
(000426)
(000365)
(00017-)
(000355)
(00015-)
(1266--)
(1264--)
(000407)
(0257--)
(000454)
(000444)
(000363)
(000353)
(000413)
(000065)
(000022)

3-19
3-29
3-6
3-36
3-22
3-22
3-36
3-36
2-25,
2-83,
3-58
2-83,

(LU
(o)
o

~l

~J

|
(54}
~

tlpwwwwwww(;ouwwwwww
UTUTUT U1 010 00 00 = O O 0 \O 0
- o

3-58
3-54
2-59
3-59
3-58
3-58
3-59
2-93,
3-56
3-58
3-59
3-39
3-7
3-38
3-7
3-49
3-48
3-39
3-35
3-53
3-40
3-38
3-38
3-40
2-20,
3-51

2-73'
3-32

3-32

3-54

2-119,

2-82,

3-55

3-52

SETL (000020) 3-51
SETP (000023) 3-51
SETS (000021) 3-51
SFRZ (000053) 3-58
SMAP (000067) 3-59
SMBP (000404) 3-59
SNDQ (000052) 3-58
SQAS (000446) 3-41
SOX (000415) 3-40
SSW (000027) 3-56
STAR (00011-) 3-19
STB (-=54---) 3-29
STD (-64---) 3-32
STOR (-44---) 3-29
STRP (00010-) 3-52
SVMP (000441) 3-59
SWA (000361) 3-37
SwAS (000351) 3-37
SWX (000411) 3-39
SWXX (0255--) 3-35
SXBL (000427) 3-59
TOTQ (000056) 3-55
TPEF (000453) 3-58
TRCE (000217) 3-59
ULKX (000431) 3-59
UMPS (000043) 3-59
VSEM (000077) 3-58
VWCS (000401) 3-58
WMEM (000435) 3-59
WSMT (000437) 3-58
WSPT (000425) 3-59
WWCS (000400) 3-58
XADD (000033) 3-58
XCAL (l127---) 2-97, 3-52
XMSK (000064) 3-54
XOR (000012) 3-20
XSMG (000343) 3-50
XSMX (000333) 3-51
XSTP (000443) 3-58
XSTR (000442) 3-58
ZERD (000002) 3-6

INTA Register 2-104

INTB Register 2-104

Interprocessor bus 2-2, 2-117
communication 2-117
controllers 2-2
interface 2-2, 2-20
receive interrupt 2-115

Interrupt handlers 2-16, 2-107,

Interrupt stack marker 2-104,

Interrupt types 2-104, 2-114

arithmetic overflow (18)
correctable memory error (9)
dispatcher

(15)

2-116

2-117

INDEX

Index-11

INDEX

halt 2-107
hardware-only 2-107
high-priority i/o completion (10) 2-115
instruction breakpoint (19) 2-117
instruction failure (3) 2-114
interprocessor bus receive (11) 2-115
manual reset 2-107
memory access breakpoint (2) 2-114
OSP halt 2-107
OSP i/o completion (7) 2-115
page fault (4) 2-115
power fail (8) 2-115
power on (1l6) 2-116
special channel error (0) 2-114
stack overflow (17) 2-116
standard i/o completion (14) 2-116
time list (13) 2-116
uncorrectable memory error (1) 2-114
Interruptible instructions 2-105
Interrupts 2-16, 2-104
i/o channel 2-142
machine instructions for 3-54
maskable 2-105
preemptive 2-105
priority 2-105
sequence 2-110
IPU 2-2, 2-15
IXIT instruction 3-54
execution 2-112

¥ (Carry) bit 2-40, 2-66
Kernel 2-9
L. Register 2-48, 2-52, 2-75, 2-79, 2-99
L-minus-relative addressing mode 2-52
L-plus-relative addressing mode 2-52, 2-83
Library segments 2-96
Library Space (LS) bit 2-63, 2-70, 2-96
Load instructions
decimal arithmetic 3-8
from register 3-19
onto Register Stack 3-27, 3-29, 3-32, 3-35
via address on Register Stack 3-36
Loadable Control Store (LCS) 1-5, 2-22, 2-116
Local data area, memory stack 2-26, 2-49, 2-82
Local variables 2-79, 2-82, 2-90
Logical address 2-17, 2-143
Logical instructions 2-37, 2-39, 3-2, 3-10
Logical memory 2-93, 2-142
Logical page 2-143
number 2-143
Logical segment 2-143
LS bit 2-63, 2-70, 2-96

Index-12

Machine instructions 3-1
reference tables a-1, B-1
Manual reset interrupt 2-107
Map 2-17, 2-93, 2-146
Map entry 2-145
Map Entry Cache 2-146, 2-151
MASK Register 2-104
Mask word, for parameter passing 2-75
Maskable interrupts 2-105
Memory 2-2, 2-17
absolute segment 2-143, 2-148
access to 2-18
addressable 2-17
code segment 2-17, 2-25, 2-41, 2-96
Current Code segment 2-151
Current Data segment 2-150

data segment 2-17, 2-25, 2-41, 2-47, 2-96

errors 2-17, 2-114, 2-115, 2-152
extended address 2-17, 2-143
Extended Address Cache 2-146, 2-151
extended data segment 2-143, 2-151
logical 2-93, 2-142

logical address 2-17, 2-143
logical page 2-143

logical segment 2-93, 2-143

map 2-17, 2-93, 2-146

map entry 2-145

Map Entry Cache 2-146, 2-151
nonextended segment 2-143

page 2-17, 2-143

Page Table 2-146, 2-149

physical 2-142

physical address 2-143

physical page 2-143

relative segment 2-143, 2-150
segment 2-143

Segment Table 2-146, 2-149

size 2-17

stack 2-26, 2-47, 2-52, 2-79

System Code Extension segment 2-93, 2-147

System Code segment 2-93, 2-147
System Data segment 2-93, 2-146, 2-150
User Code segment 2-93, 2-147, 2-150
User Data segment 2-93, 2-146
User Library Code segment 2-93, 2-147
virtual 1-4, 2-143

Memory access breakpoint interrupt 2-114

Memory Control Unit 2-22

Memory reference instructions 2-47, 2-50
diagram 3-31
table A-16

Memory stack 2-23, 2-44, 2-52
operation 2-79 ,

Memory to/from Register Stack 3-27

INDEX

Index-13

INDEX

Merge Ready List (MRL) instruction 1-5,
Message System 2-9, 2-11
Microinstructions 2-15, 2-22

cycle time 2-16
Mirrored disc volume 2-1, 2-5
Miscellaneous instructions 3-57
Modem, of 0SSP 2-24
Modular system design 1-4
Move instructions 3-44

table A-18
Multiple-processor environment 1-2
Multiprogramming environment 1-2

Naming registers in the Register Stack
Network-based environment 1-3
Nonextended segment 2-143
Nonprivileged mode 2-8, 2-16, 2-65, 2-7
Nonprivileged procedure 2-73
NonStop application 2-11
NonStop operation 1-4, 1-5
Notation

bit 2-32

element 2-29

2-60

9

instruction set definition table A-27

two's-complement binary 2-36
Number range
byte 2-37
doubleword 2-37
extended floating-point 2-39
floating-point 2-39
guadrupleword 2-38
word 2-36
Number representations 2-36

Offset, in addressing 2-45, 2-57
On-line repair 1-4
Opcodes, instruction A-1, B-1
Operating system functions
machine instructions for 3-58
Operations and Service Processor (0OSP)
halt interrupt 2-107
i/o completion interrupt 2-115
Optional machine instructions 2-16
decimal 3-8
floating-point 3-12
OSP 2-24 :
OUTQ X buffer 2-125
OUTQ Y buffer 2-125
Overflow, arithmetic 2-39, 2-40, 2-66,
interrupt 2-105, 2-117
interrupt handler 2-39
Overflow, exponent 2-40
Overflow, stack, interrupt 2-11i6
Ownership of i/o controllers 1-5, 2-139

Index-14

2-24

2-170,

3-2

INDEX

P Register 2-41, 3-29
Packet 2-20, 2-125
timeout 2-128
Page 2-17, 2-143
fault interrupt 2-105, 2-115, 2-145, 2-150
number, logical 2-143
number, physical 2-143
Page Table 2-146, 2-149
Parameter
access, memory stack 2-87
passing, memory stack 2-26, 2-79, 2-85
reference 2-85
value 2-85
PCAL instruction 2-25, 2-73, 2-82, 3-52
execution 2-75
PEP Number 2-75
PEP Table 2-71, 2-97
Physical address 2-17, 2-143
Physical memory 2-142
Physical page 2-143
number 2-143
PMI 2-22
POP instruction 3-32
execution 2-83
Power
distribution 2-5
fail interrupt 2-115
failure recovery 2-6
on interrupt 2-105, 2-116
supplies 2-5
Preemptive interrupts 2-102
Primary i/o path 2-9
Primary process 2-1, 2-11, 2-15
PRIV bit 2-63, 2-96
Privileged mode 2-8, 2-16, 2-63, 2-70, 2-79, 2-96, 2-101
Privileged procedure 2-73
Procedure 2-25, 2-41, 2-70
Procedure attributes
callable 2-73
nonprivileged 2-73
privileged 2-73
Procedure calling 2-75
external 2-96
system 2-97
Procedure Entry Point (PEP) Table 2-71, 2-97
Process 1-4, 2-9
backup 2-1, 2-11, 2-15
primary 2-1, 2-11, 2-15
Processes, system 2-9
Processor halt interrupt 2-107
Processor Maintenance Interface (PMI) 2-22
Processor module 2-2
checking 2-11
components 2-15

Index-15

INDEX

Processor, of OSP 2-24
Program constants 2-41, 2-45
Program counter 2-41
Program execution environment 2-41
Program register control instructions 3-51
PUSH instruction 3-32

execution 2-83

Quadrupleword
accessing 2-34
data format 2-34
number range 2-38

Reference bit 2-145
Reference parameter 2-85
Reference tables
hardware instruction lists A-1
instruction set definition B-1
Register Stack 2-28, 2-41, 2-60, 3-2

machine instructions 3-2, 3-18, 3-27, 3-36

naming registers in 2-60
operation 2-60
Pointer (RP) 2-60, 2-69
saving during interrupt 2-110
Registers
A through H (Register Stack) 2-28, 2-41,
Environment (ENV) 2-41, 2-63

I 2-44
INTA 2-104
INTB 2-104
L 2-75
MASK 2-104
P 2-41
S 2-75

Relative segment 2-143
address 2-150
number 2-143
Returning a value 2-87
Routine calls and returns 3-52
Routing word, in SEND packet 2-20, 2-128
RP 2-60, 2-69
RSUB instruction 3-54
execution 2-93

S Register 2-48, 2-52, 2-75, 2-79, 2-99
S-minus-relative addressing mode 2-52
Saving environment

during interrupt 2-107

during procedure call 2-71, 2-75, 2-97
Scan instructions 3-44

table A-18
Segment 2-17, 2-143

absolute 2-143, 2-148

base 2-151

Index-~-16

2-60,

3-2

code 2-17, 2-25, 2-41, 2-96
Current Code 2-151
Current Data 2-150
data 2-17, 2-25, 2-41, 2-47, 2-96
extended data 2-143, 2-151
i/o buffer 2-148
limit 2-151
logical 2-143
number, logical 2-143
number, physical 2-143
relative 2-143, 2-150
System Code 2-93, 2-147
System Code Extension 2-93, 2-147
System Data 2-93, 2-146, 2-150
User Code 2-93, 2-147, 2-150
User Data 2-93, 2-146
User Library Code 2-93, 2-147
Segment Table 2-146, 2-149
Self-relative addressing 2-44
SEND instruction 2-20, 2-118, 3-55
execution 2-119
Sequence word, in SEND packet 2-20, 2-128
SG-relative addressing mode 2-52, 2-99
Shift instructions 3-24
table A-18
Signed integer arithmetic
16-bit 3-2, 3-7
32-bit 3-4
Signed numbers 2-36, 2-37
Single-word data 2-29
Single-word number range 2-36
SIV Table 2-107
Special channel error interrupt 2-114
Stack
instructions 3-2, 3-18, 3-27, A-20
marker 2-75
marker chain 2-90
marker, interrupt 2-104, 2-107
memory 2-26, 2-47, 2-52
memory, operation of 2-79
overflow interrupt 2-105, 2-116
register 2-28, 2-41, 2-60
register, operation of 2-60
Standard i/o completion interrupt 2-116
Store instructions
decimal arithmetic 3-8
from Register Stack 3-29, 3-32, 3-35
into register 3-19
via address on Register Stack 3-36
Subchannel 2-18, 2-130
Sublocal data area, memory stack 2-49, 2-93
Subprocedure 2-71, 2-90
System Code Extension segment 2-93, 2-147
System Code segment 2-93, 2-147

INDEX

Index-17

INDEX

System Data segment 2-93, 2-96, 2-146, 2-150
contents 2-101

System Interrupt Vector (SIV) Table 2-101, 2-107

System procedures, calling 2-97

System processes 2-9

System tables 2-101

Time

clock cycle 2-22

microinstruction cycle 2-16
Time list interrupt 2-116
Top-of-stack (sublocal) area,

in data segment 2-49, 2-84, 2-93
Transfer memory to/from Register Stack 3-27
Trap Enable (T) bit 2-66, 2-105

Uncorrectable memory error 2-17, 2-152
interrupt 2-105, 2-114

Underflow, exponent 2-40

Unsigned integer arithmetic 3-2

Unsigned numbers 2-36, 2-37

User Code segment 2-93, 2-147, 2-150

User Data segment 2-93, 2-146

User Library Code segment 2-93, 2-147

V (arithmetic overflow) bit 2-39, 2-40, 2-66, 2-70
Value parameter 2-85
Virtual memory 1-4, 2-143

Word
addressing 2-29, 2-53
data 2-29
number range 2-36

X-bus 2-117

XCAL instruction 2-26, 3-52
execution 2-96

XEP Table 2-71, 2-97

Y-bus 2-117

Zero divide condition 2-39, 2-40, 2-105

Index-18

<« FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES
R
L |
BUSINESS REPLY MAIL —
FIRST CLASS PERMITNO.482 CUPERTINO. CA, US.A. e —
POSTAGE WILL BE PAID BY ADDRESSEE e ——
EEEESE——
.|
[r—
.]
EE——
COMPUTERS N
EEE—
.]

19333 Vallco Parkway
Cupertino, CA U.S.A. 95014

Attn: Technical Communications—Software

-« FOLD

STAPLE HERE

FOLD »»

FOLD >

READER’'S COMMENTS

Tandem welcomes your feedback on the quality and usetulness of its publications. Please indicat
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easil
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s):

FROM:

Name

Company

Address

City/State Zip

A written response is requested yes no

82077 BOO TANDEM COMPUTERS INCORPORATED
19333 Valico Parkway
Cupertino, CA 95014

