
~
C
:l
C
C -

:XPAND
Jsers Manual

NEW MATERIAL:

EXPAND USERS MANUAL

SECOND EDITION

Copyright (c) 1981

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014

1. Multi-line facility introduced in section 1.

2. Description of "best" path determination modified to
include the multi-line facility. Appears in section 4.

3. PATHS command added to NETMON utility program. See
section 4.

4. Network manager related considerations for SYSGEN, CUP,
PUP, console logging messages, and XRAY. See section 4.

5. Appendix B added; contains network-related console
messages and a brief explanation of how to interpret
the file management error indications for a modern
status (140), i/o bus error (218), and not ready (248)

Product No. T16/8085 Revision BOO
Part No. 82085

June 1981
Printed in U.S.A.

Copyright (c) 1979, 1980, 1981 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, NonStop, AXCESS, DYNABUS, ENCOMPASS, ENFORM, ENSCRIBE, ENVOY,
EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

Preface

PREFACE

This manual describes the GUARDIAN/EXPAND operating system and applies
to both Tandem NonStop Systems and Tandem NonStop II Systems. It
assumes that you, the reader have basic knowledge of your system. The
manual is organized into these sections:

Section 1. Introduction to EXPAND

Section 2. Operator Interface: interactive functions such as
editing remote files, copying files to a remote
system, and running applicati9n programs on remote
systems

Section 3. Programmer Interface: writing application programs
that access remote files.

Section 4. Network Management: security, the NETMON utility
program, and considerations for SYSGEN, CUP, PUP,
and XRAY.

Appendix A. File-Management Error Summary

Appendix B. Network-related console messages and brief explanation
of file management errors for line error diagnosis.

Index

Each section assumes knowledge of the corresponding topic on a single
system. You should know how to edit a file before attempting to edit
a remote file; you should know how to write programs for a NonStop
system before attempting to write programs for a network.

iii

Preface

RELATED DOCUMENTATION

This manual is intended to be used in conjunction with other Tandem
documentation--programming manuals, operating manuals, and so forth.

Additional information about interfacing to an X.2S packet switching
network is in the "AXCESS Data Communications Programming Manual"
under the heading "X.25 Access Method".

Additional information about performing line traces and obtaining line
statistics is in the "AXCESS Data Communications Programming Manual"
under the heading "Communication Utility Program (CUP)".

Additional information about system generation is in your system
operating manual under the heading "I/O System Configuration: Network
Management".

Of these other manuals containing information applicable to EXPAND
users:, some apply only to Tandem NonStop System II computers, some
apply only to original Tandem NonStop System computers, and some apply
to both.

iv

Part
Number

82000
82077
82019
82075

82076

82014
82074

82015
82084
82083
82018
82081

Title

System Description Manual (for Tandem NonStop Systems)
Tandem NonStop II System Description Manual
GUARDIAN Operating Manual (for Tandem NonStop Systems)
GUARDIAN Operating System Operations Manual (for Tandem

NonStop II Systems)
GUARDIAN Operating System Messages Manual (for Tandem

NonStop II Systems)
GUARDIAN Programming Manual (for Tandem NonStop Systems)
GUARDIAN Operating System Programming Manual for Tandem

NonStop II Systems)
General Purpose Procedures Programming Manual
AXCESS Data Communications Programming Manual
ENSCRIBE Programming Manual
ENVOY Programming Manual
Transaction Application Language Reference Manual

INTRODUCTION
Components of EXPAND
Syntactic Conventions

OPERATOR INTERFACE
Network File Access

System Names •.•••
Network File Names
Examples ••••••••••
Default System Name

CONTENTS

Explicit and Implicit RUN Commands
Use of the Default System Name when Running

The WHO Command ••••••••••
Subsystem Considerations

BACKUP and RESTORE
COMINT
EDIT ••••..•••••
PUP •••••••
SYSGEN
SPOOLER

PROGRAMMER INTERFACE •••••••••••••••••
System Names and System Numbers

. ~ ..

Programs

Network File Names (Internal Form)
Process IDs (CRTPIDs) •••••••••.
Conversion between External and Internal File Names

FNAMECOLLAPSE Procedure
FNAMEEXPAND Procedure
FNAMECOMPARE Procedure ••••••

System Procedures •••••••••.••••
CONVERTPROCESSNAME Procedure
CREATEREMOTENAME Procedure •••••
GETPPDENTRY Procedure •••••
GETREMOTECRTPID Procedure
GETSYSTEMNAME Procedure
LOCATESYSTEM Procedure
MONITORNET Procedure
MYSYSTEMNUMBER Procedure
PROCESS INFO Procedure
REMOTEPROCESSORSTATUS Procedure .•••••

Programming Considerations •••••••••
Network File Names (External Form)
MYTERM Procedure--Network Considerations
Command Interpreter Startup Message •••••
Remote Process Creation ••••••••

CPU Defaulting •••••••••••••••••••
Sending the Startup Message

Saving File Names •••••••••••.••
Alternate Key and Partitioned Files

1-1
1-2
1-5

2-1
2-2
2-2
2-2
2-4
2-4
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-8
2-8

3-1
3-2
3-3
3-5
3-7
3-8
3-9

3-13
3-19
3-20
3-21
3-22
3-24
3-25
3-26
3-27
3-28
3-29
3-32
3-33
3-33
3-33
3-34
3-35
3-35
3-36
3-37
3-37

v

NETWORK MANAGEMENT •••.•••••
Best-Path Determination
NETMON Network utility

NETMON Command
EXIT Command •••••
FC Command
BREAK Key ••••••
Control-Y

NETMON Commands
ADD Command .•.•••
BACKUPCPU Command
CPUS Command
DELETE Command
DISPLAY Command
HELP Command
LOGCENTRAL Command
MAPS Command
PATHS Command
PERIOD Command
PROBE Command
SHOW Command
STATS Command
THRESHOLD Command
Messages .••..••
Syntax Summary

Network Security
Overview of Network Security
Global Knowledge of User IDs
Remote Passwords •••••
Disc File Security
Default File Security
Process Access

. , 4-1
4-1
4-4
4-4
4-6
4-6
4-6
4-6
4-7
4-8
4-9

Programmatic Logon (including VERIFYUSER Procedure)

4-10
4-12
4-13
4-15
4-16
4-18
4-23
4-27
4-28
4-30
4-31
4-33
4-34
4-37
4-38
4-38
4-38
4-38
4-41
4-42
4-44
4-45
4-47
4-47
4-48
4-49
4-49
4-50
4-51

Network Management Considerations
SYSGEN
CUP
PUP
Console Logging Messages
EXPAND Line Connection To
XRAY

FILE-MANAGEMENT ERROR LIST

CONSOLE MESSAGES
General Form
Driver Generated Messages
NCP Generated Messages
Network Line-Error Diagnosis

INDEX

Modern Status Error (140)
I/O Bus Error (218)
Not Ready

An X.25 Line

A-I

B-1
B-1
B-2
B-5
B-7
B-7
B-7
B-8

index-l

Contents

LIST OF FIGURES
Figure Page

1-1 A Network of Systems ••••.•...••.••••••••••....••••••.•..•• 1-2
1-2 A Network Containing Only Direct-Connect Line Handlers .••• 1-3
1-3 A System with Direct Connect and X.2S Line Handlers••• 1-4
2-1 Interactive Network Access •.•..•••••....•..••.•.••.••••... 2-1
3-1 Network File Names in Internal Form •••••...•...•••••.••... 3-4
3-2 Allocation'of 34 Bytes for Network File Name ••.•••••••••. 3-33
4-1 Weight Factors Based on Line Speed ••••..•..•.•••.••••••••• 4-3
4-2 Graph of Sample Network Interconnections •••••••••...••••• 4-22

LIST OF TABLES
Table Page

2-1 Valid and Invalid Network File Names ••.••...••..•....••..• 2-4
3-1 Length Restrictions on Network File Names •..•••••••••••••• 3-4
4-1 Line Weights According to Line Speed .•••••...•..••.••••••• 4-2
4-2 Local and Remote Access Codes •.•••.•..•...••••••.•...•..• 4-41

vii

Preface

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual. For distinctiveness, all syntactical
elements appear in a typeface different from that of ordinary text.

Notation

UPPER-CASE
CHARACTERS

lower-case
characters

Brackets []

Braces {}

Comma ,

Arrows

Punctuation

Meaning

Upper-case characters represent keywords and reserved
words. If a keyword is optional, it is enclosed in
brackets. If a keyword can be abbreviated, the part
that can be omitted is enclosed in brackets.

Lower-case characters represent all variable entries
supplied by the user. If an entry is optional,
it is enclosed in brackets.

Brackets enclose all optional syntactic elements.
A vertically-aligned group of items enclosed in
brackets represents a list of selections from which
one, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces represents a list of required elements from
which exactly one must be chosen.

Commas separate elements in parameter lists. If
parameters are omitted from a parameter list, place­
holder commas must be inserted to indicate parameter
position. However, if one or more parameters are
omitted from the end of the list, the separating
commas are not required.

In procedure calls, a parameter that is a reference
and that passes data to the procedure is followed by a
right arrow (-»; a reference parameter to which the
procedure returns data is indicated by a left arrow
«-); a reference parameter capable of both sending
and receiving data is followed by a double arrow
«-». A parameter passed by value has no arrow.

All punctuation and symbols other than those described
above must be entered precisely as shown. If any of
the above punctuation appears enclosed in quotation
marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

ix

SECTION 1

INTRODUCTION

The GUARDIAN/EXPAND operating system links as many as 255
geographically distributed Tandem NonStop or NonStop II System
computer systems to create a network having the same reliability,
capacity to preserve data base integrity, and potential for modular
expansion as a single system.

Features of EXPAND include:

• ease of operation and programming. EXPAND causes a network to
appear to the user or programmer very much like a single system.
Methods of accessing geographically remote devices, disc files and
processes are identical to the corresponding procedures for
accessing local files. If you know how to use the system, then you
already know how to use a network of systems.

• pass-through routing. Systems need not be connected directly to
one another to exchange data; in fact, messages may be passed
through intermediate systems, allowing the number of communication
lines in the network to be minimized.

• multi-line facility. A path can be made up of several lines where:
a line is an actual physical communications wire and a path is the
logical connection between two adjacent nodes in the EXPAND
network. Multi-line increases network perfo~mance and reliability
in the following manner:

Increased network performance. Allows simultaneous transmission
over all lines within a path; thus increasing the overall
bandwidth of the path.

Increased network reliability. Because multiple lines may exist
in a single path, a single line failure will not bring down a
path. Because lines may be distributed between multiple
controllers, a single controller failure will not bring down a
path; however, all controllers in a path must be in the same
controller group--see SYSGEN in the GUARDIAN Operating Manual.
In the event of either a single line or controller failure, the
EXPAND error routine recovers messages in transit and reassigns
the new best path.

1-1

INTRODUCTION

• best-path routing. When multiple paths between systems exist,
EXPAND routes data via the best path. If the status of the
currently used best path changes--for example, following the
failure or recovery of a communication line--message traffic is
automatically rerouted along the new best path.

• modular expandability. Additional systems, up to 255, can be added
to a network without disturbing existing systems.

• upward compatibility of existing application software. Application
programs can be written in such a way that the network is
transparent to them; existing programs require little or no
modification to run on a network.

• X.25 compatibility. Any of the communication links between systems
can be an X.25 public packet-switching network.

• DATA EXCHANGED BETWEEN A and C is "PASSED THROUGH" B .
• IF COMMUNICATION LINK BC SHOULD FAIL, MESSAGE TRAFFIC

BETWEEN A AND C IS AUTOMATICALLY REROUTED
ALONG PATH ABDC.

Figure 1-1. A Network of Systems

COMPONENTS OF EXPAND

EXPAND is an extension of the GUARDIAN operating system. Its
components include the Network Control Process, the End-to-End
Protocol, Network Line Handlers, and a Network Monitor Program.

Network Control Process (NCP) runs in each node of the network. The
NCP functions include:

• establishing intersystem connections

• maintaining network-related system tables, including routing
information

• determining the best path to other systems

• monitoring and logging changes in the status of the network and its
constituent systems.

1-2

INTRODUCTION

End-to-End protocol is a Tandem-defined, packet-switched protocol for
the exchange of data between systems. The End-to-End protocol
guarantees data integrity from sender to receiver regardless of how
many intervening systems are involved in the transfer.

Two network line handlers (Direct Connect and X.2S) manage a
communication path and implement the End-to-End protocol •

• The Direct Connect line handler, which acts as an I/O process,
manages one end of a full-duplex phone line between two systems.

Figure 1-2 shows a network consisting entirely of Direct Connect line
handlers. The path between system A and C is a multi-line connection.
The system not shown could have additional communication paths to
other systems, which would be accessed by sending packets through
system B. Each system has multiple line handlers, but only one NCP.

SYSTEM A

SYSTEM C

SYSTEM B

ANOTHER
SYSTEM

Figure 1-2. A Network Containing Only Direct-Connect Line Handlers

1-3

INTRODUCTION

• the X.2S line handler provides the EXPAND link between systems
connected through an X.2S network. The EXPAND X.2S line handler
manages the X.2S "virtual circuit" running in an X.2S AXCESS
process.

Figure 1-3 shows a system that connects to an X.2S network as well as
to another system via EXPAND. Configuring such a system requires both
EXPAND and AXCESS. The X.2S Access Process manages the physical
communication line; the X.2S line handlers each manage one virtual
circuit.

The establishment of virtual circuits is controlled by the X.2S Access
Process. The Communication Utility Program (CUP) provides the X.2S
Access Process with the network address of the virtual ciruits, and
associates the virtual circuits with the correct line handler. Refer
to the "AXCESS Data Communications Programming Manual" for information
regarding the X.2S Access-Process and CUP.

The Network Monitor (NETMON) utility program provides users, at any
system, with the ability to monitor the current state of the network
in terms of: number of systems connected, number of cpu~s up on each
system, line and path status, message traffic, etc.

1-4

EXPAND (T9007) AXCESS (T9008)

VIRTUAL
....... -- CIRCUITS

"---~ X25 NETWORK

__ ~ ANOTHER
SYSTEM

Figure 1-3. A System with Direct-Connect and X.2S Line Handlers

INTRODUCTION

SYNTACTIC CONVENTIONS

Before proceeding further, certain words used in this manual must be
defined:

network

In this manual, a network consists of two or more Tandem NonStop or
NonStop II Systems connected by communication paths. The paths can be
full-duplex phone lines or X.25 virtual circuits. Each individual
system, also called a node, runs under the GUARDIAN/EXPAND
operating system.

residence of files

A disc file resides on a system if the file is located on a
disc physically connected to that system; a device resides on a system
if it is physically connected to that system; and a process resides on
a system if it is running in a processor module of that system.

Different partitions of a disc file can reside on different systems.
(See "Alternate Key and Partitioned Files" in Section 3.

local, remote, and network files

With respect to any particular system, a local file is a file
that resides on that system; a remote file is a file that
resides on a different system; and a network file describes a
file that can be either local or remote, when it is not necessary to
make that distinction. The concepts of "local" and "remote" are
relative to a particular system.

1-5

SECTION 2

OPERATOR INTERFACE

This section describes the interface between an interactive user and a
network; it assumes that the reader is familiar with the command
interpreter and wishes to perform similar operations on a remote
system, such as

• editing a remote file

• running a program on a remote system

• duplicating a set of files from one system to another

With a few exceptions, any operation performed on a system using the
command interpreter can be performed on any system in a network.

REMOTE SYSTEMS

\SATURN \ NEPTUNE

\ NEPTUNESDATA

Figure 2-1. Interactive Network Access

2-1

OPERATOR INTERFACE TO EXPAND
Network File Access

NETWORK FILE ACCESS

Interactive interface to the system consists of using the command
interpreter, FUP, PUP, the Editor, and other subsystems to access
files. Access to a file is via its symbolic file name.

Access to a file in a network is achieved by qualifying a symbolic
file name with the name of a system. For example, the command

:EDIT \NEWYORK.$SYSTEM.SYSTEM.TEXTFILE

edits the disc file $SYSTEM.SYSTEM.TEXTFILE, located on the system
designated \NEWYORK. Similarly, the command

:RUN \PARIS.MYPROG

runs a program named MYPROG on the default volume and subvolume of
the system designated \PARIS.

Thus, a network file name consists of a local file name preceded by a
system name.

System Names

Each system in a network is known by a system name. A system name
consists of a backslash (\) followed by one to seven alphanumeric
characters. The first character must be alphabetic. Examples of
legal system names are

\DETROIT
\SYS45
\XYX

A file residing on a system in a network is known by its system name,
followed by the usual file name. Thus the disc file
$MARKET.FRED.SALES, which resides on a disc drive connected to
system \DETROIT, is named

\DETROIT.$MARKET.FRED.SALES

Network File Names

Other forms of file names are extended to networks in the same manner.
Examples:

\DETROIT.$TAPE

\XYZ;$PROC

2-2

a device name--in this case, a tape drive
residing on the system \DETROIT

named process

OPERATOR INTERFACE TO EXPAND
Network File Access

The length restrictions on network file names are:

• Device names, including names of disc volumes, can have no more
than six characters.

• Process names can have no more than four characters.

These restrictions are due to the inclusion of a system number in the
internal form of file names.

A network file name has this form:

{

network disc file name}
\system name. network device name

network process name

where

system name

consists of one to seven alphanumeric characters, beginning
with an alphabetic character.

network disc file name

is the same as the usual disc file name, except that the volume
name is a dollar sign ($) followed by no more than six
alphanumeric characters.

network device name

is a dollar sign ($) followed by no more than six alphanumeric
characters.

network process name

is a dollar sign ($) followed by no more than four alphanumeric
characters.

2-3

OPERATOR INTERFACE TO EXPAND
Network File Access

Examples

Table 2-1 shows examples of valid and invalid network file names. In
each case, the file name in the right-hand column would be legal for
local access, but is too long for remote access. This does not
prevent a a system that belongs to a network from having a process
named $SPOOL or a disc drive named $DISCVOL. However, such file names
can only be accessed locally; they cannot be accessed by any remote
process or user.

Table 2-1. Valid and Invalid Network File Names

Type of Name Valid File Name Invalid File Name

disc file $SYSTEM.SYSTEM.TAL $DISCVOL.SUB.YOURFILE

device $LP $PRINTER

process $SPL $SPOOL

Default System Name

Just as the VOLUME command specifies the default volume and subvolume
names, the SYSTEM command designates a default system. The default
system is implicitly appended to the front of every file name. The
SYSTEM command has the form

SYSTEM system name

where

system name

designates the default system. Omitting the system name
designates, as the default, the system on which your command
interpreter is running.

Examples:

:SYSTEM \DETROIT

makes \DETROIT the default system and causes filenames to be expanded
in the network format.

: SYSTEM

removes any default system specification and causes filenames to be
expanded in the local format.

2-4

OPERATOR INTERFACE TO EXPAND
Network File Access

Assuming that the local system is named \LOCAL and that the command
interpreter is running on the local system then:

:SYSTEM \LOCAL
:STOP $ABCDE

would cause an "ILLEGAL FILE NAME" error, even though process $ABCDE
happens to be running locally, because the SYSTEM \LOCAL command
interprets $ABCDE as a network file name, subject to the
four-character length restriction.

However, the commands:

: SYSTEM
:STOP $ABCDE

would correctly interpret $ABCDE as a local process name and the STOP
command would be executed.

Explicit and Implicit RUN Commands

To run programs on a network, you must keep in mind that the program
file must reside on the system where the program is to run. The
program file must also be secured for the appropriate network access;
you as a user must have previously acquired network access rights to
any systems on which you wish to run. Other than that, the explicit
and implicit RUN commands work exactly as they do in a local system.
For example, in the command

: SYSTEM

the local system is the default. The command

:EDIT

runs the Editor on the local system. The command

:RUN MYPROG

runs MYPROG, which is stored on the default volume and subvolume, on
the local system.

To run a program on the system \DETROIT, you would use the command

:RUN \DETROIT.MYPROG

The default volume and subvolume names remain in effect; thus, the
command interpreter runs a program file named MYPROG, assuming that
this file exists on the remote system. Note however, that the local
system remains the default. Thus, if MYPROG references any files
internally, it will try to get them from \LOCAL.filenames unless
another system is explicitly specified.

2-5

OPERATOR INTERFACE TO EXPAND
Network File Access

Implicit run commands work the same way. Just as the command

:EOIT

implicitly runs a program whose object file is named
$SYSTEM. SYSTEM. EDIT, the command

:\DETROIT.EDIT

implicitly runs a program whose object file is
named \DETROIT.$SYSTEM.SYSTEM.EDITi because this file resides on
system \DETROIT, and because programs run where their program files
is located, the Editor runs on \DETROIT.

Running Programs using the Default System Name

Some more illustrations of the use of the SYSTEM command in
conjunction with RUN and implicit RUN commands may be useful. The
command sequence

:SYSTEM \XYZ
:EDIT YOURFILE

runs an Editor in system \XYZ. If the default volume and subvolume
are both DEFLT, then the file being edited
is \XYZ.DEFLT.DEFLT.YOURFILE. The command sequence

:SYSTEM \DETROIT
:RUN MYPROG / IN \XYZ.$MKT.SUB.FNAME, OUT \SYS45.$SPL, CPU 3 /

runs \DETROIT.DEFLT.DEFLT.MYPROG in processor 3 of system \DETROIT.
The IN file is a disc file located on system \XYZ, and the OUT file is
a process named $SPL running on system \SYS45.

THE WHO COMMAND

It is possible to forget what the default system is, and run a program
remotely by mistake. You could type EDIT, for example, meaning to run
the Editor in your own system, forgetting that you had previously
issued a SYSTEM \DETROIT command.

The WHO command helps you remember where you are. Its syntax is
simply

: WHO

The WHO command displays the name of the home terminal (the terminal
on which your command interpreter is running), the name of the command
interpreter, its primary and backup CPUs, and the current default
names.

2-6

OPERATQR INTERFACE TO EXPAND
Network File Access

The WHO command display takes the following form:

HOME TERMINAL: $TERM
COMMAND INTERPRETER: \XYZ.$CI66 PRIMARY CPU: 03 BACKUP CPU: 01
CURRENT VOLUME: $MKT.SUBVOL CURRENT SYSTEM: \DETROIT
USERID: 008,004 USERNAME: ADMIN. BILL SECURITY: AAAA

If the SYSTEM command has not been used to ~pecify a default system
and naming conventions, then the "CURRENT SYSTEM" entry is omitted.
Use the WHO command periodically to make sure you know where you are;
in particular, use the WHO command before performing non-recoverable
operations, such as purging files.

SUBSYSTEM CONSIDERATIONS

With certain exceptions, all Tandem subsystems accept file names in
network form, allowing any operation to be executed on remote files.

This section lists the exceptional operations that cannot be performed
remotely. Also listed here are special considerations to be kept in
mind when operating subsystems in a network environment.

The absence of any particular subsystem from this list implies that
all of its operations are valid in the network environment; a file
name can be supplied in network form anywhere that the subsystem's
command syntax allows a file name.

BACKUP and RESTORE

The BACKUP program must be run in the system where the disc files to
be backed up reside. However, the tape file and list file for BACKUP
can be anywhere in the network. Therefore, to back up a set of files
on the system \REMOTE, use the commands

:SYSTEM \REMOTE
:BACKUP / OUT \LOCAL.$LP / \LOCAL.$TAPE , $MYVOL.FILES.*

The same restriction applies to RESTORE.

COMINT

The commands RELOAD, XBUSUP, YBUSUP, XBUSDOWN, YBUSDOWN, SETTIME and
TIME can only apply to the local system.

Normally, all LOGON, LOGOFF, and process-creation commands are sent to
the CMON process running in the same system as the command
interpreter. For systems in a network, however, process-creation
commands are sent to the CMON process in the system where the new
process is to run, allowing an installation to control remote process
creation. LOGON and LOGOFF commands are still sent to the CMON
process in the command interpreter's system.

2-7

OPERATOR INTERFACE TO EXPAND
Subsystem Considerations

EDIT

To reduce the amount of text that must be sent over the communication
path, you should run the Editor on the same system as the text file to
be edited. For example, with the Editor and its text file residing on
different systems, the command

*LIST "XYZ"

causes every line of text to be sent across the communication path.
with the Editor and the text file on the same system, only the lines
containing "XYZ" need be transmitted. If the text file is large,
running the Editor in the same system as the text file causes a
noticeable improvement in response time.

PUP

PUP commands can refer to only those devices residing on the system
where PUP is running. Therefore, to list the free disc space
on \REMOTE.$SYSTEM, the commands

:SYSTEM \REMOTE
:PUP LISTFREE $SYSTEM

must be issued; you cannot type

:PUP LISTFREE \REMOTE.$SYSTEM

The CONSOLE command can specify a remote device as the operator
console as in the following example:

#CONSOLE \REMOTE.$LP

SYSGEN

The configuration file, list file, and work file can reside anywhere
on the network. However, if the operating system image is to be
placec directly onto disc (rather than tape, as is usually done) the
disc volume specified must reside on the system where SYSGEN will run.

SPOOLER

The supervisor, collectors, and print processes belonging to a
particular spooler must all run in the same system.

A spool system can include remote devices.

An application process can direct its output to a remote spooler, as
with this command:

:RUN MYPROG/ OUT \CHICAGO.$SPL /

2-8

SECTION 3

PROGRAMMER INTERFACE

This section describes how to write application programs that access
remote files. It covers these topics:

• overview of network programming

• network file names and conversion between internal and external
file names

• network-related system procedures

• examples and considerations

It is assumed that the reader already knows how to program the Tandem
NonStop or NonStop II System, and is familiar with concepts such as
file names, CRTPIDS, and the use of the file-management and
process-control procedures. These subjects are discussed in your
system programming manual.

Writing a program that accesses remote files on a network is similar
to writing an application that accesses only local files. A program
need not be aware of whether the files it is accessing are local or
remote unless it specifically needs to test for that condition.

A local program (or application) is understood to be a program that
accesses files only on the system on which it is running. A network
program is a program that has access to files on systems other than
the one on which it is running. As usual, a file can be a disc file,
a peripheral device, or another process.

A local application is written as if the network does not exist. If
your application does not intend to access any remote files but is
going to be run on a system that is part of a network, there are no
special considerations.

3-1

Programmer Interface--System Names and System Numbers

SYSTEM NAMES AND SYSTEM NUMBERS

Each system in a network is assigned a unique name and number. The
system name consists of a backs lash (\) followed by one to seven
alphanumeric characters. A system name qualifies a file name at the
external (i.e., operator) level. For example, the system
name \NEWYORK qualifies a file name passed as the IN parameter to a
command interpreter RUN command:

:TGAL/ IN \NEWYORK.$SYSTEM.REPORT.TEXTFILE , OUT $LP /

Corresponding to the system name is the system number, an integer
between 0 and 254 inclusive. The system number qualifies an internal
file name.

The application process does not need to know about specific system
names and numbers. The FNAMEEXPAND and FNAMECOLLAPSE procedures
perform the conversions automatically.

To gain access to a file, a process passes the file~s symbolic file
name to the OPEN file-management procedure, which returns a file
number that can be passed to other file-management procedures.

Remote files are accessed the same way. To specify a particular
system as well as a file, a file name can optionally include a system
number to identify the system. Such a file name is a network file
name. A file name that does not include a system number is a local
file name.

To access a file on its local system, a process can pass the name of
the fiie in iocal torm (which causes OPEN to assume that the local
system is intended) or in network form, including the system number of
the local system.

To access a file on a remote system, a process must pass a network
file name, with the appropriate system number, to the OPEN procedure.

3-2

Programmer Interface--Network File Names (Internal Form)

NETWORK FILE NAMES (INTERNAL FORM)

A file name in internal form (i.e., a 12-word array suitable for
passing to the OPEN procedure) that is qualified by a system number is
a network file name. Its form is

network file name, INT:12,

where

network file name [0].<0:7>

is an ASCII backslash (\) (octal 134).

network file name [0].<8:15>

is a system number (in octal).

network file name [1: 3]

is a device name or process ID.

network file name [4:7]

is a subvolume name or iqualifier.

network file name [8: 11]

is a disc file name or subqualifier.

NOTE

The device name or process identifier in words [1:3]
does not include the initial dollar sign ($) normally
associated with a device name or process identifier.

Because of the byte taken up by the system number, one less byte is
available for the device name or process identifier. Therefore, the
names of devices that can be accessed remotely consist of no more than
six alphanumeric characters; names of processes that can be accessed
remotely consist of no more than four alphanumeric characters. These
restrictions are summarized in Table 3-1.

3-3

Programmer Interface--Network File Names (Internal Form)

Table 3-1. Length Restrictions on Network File Names

Type of Object Named Local Name Limit Network Name Limit

device (including $ and 7 characters $ and 6 characters
disc volume)

process $ and 5 characters $ and 4 characters

Figure 3-1 shows two examples of network file names in internal form,
assuming that \LA is system number 3.

a disc file: a process:

\LA.$SYSTEM.SUBVOL.DISCFILE \LA.$PROC

0 \ %3 0 \ I %3
------------- -------------

1 S I Y 1 P I R
------------- -------------

2 S I T 2 0 C
------------- -------------

3 E M 3 cpu I pin
------------- -------------

4 S I U 4 I
------------- -------------

5 B I V 5 ______ l ______ 1

6 I 0 I L I 6 I I I

------1------1 1------------- 1
7 7 I I ------------- 1-------------1
8 D I 8 I

------------- -------------
9 S I C 9 I

------------- -------------
10 F I I 10 I

------------- -------------
11 L E 11

--------------- ---------------

Figure 3-1. Network File Names in Internal Form

3-4

,

Programmer Interface--Network File Names (Internal Form)
Process IDs (CRTPIDs)

PROCESS IDs (CRTPIDs)

A process is uniquely identified by its process identifier. The
network forms of process identifier are shown below:

Timestamp Form

For the timestamp form, GUARDIAN assigns the process identifier when
the process is created. The form of this type of process identifier
is

process id, INT:4,

where

process id [0].<0:1>

is 2.

process id [0].<2:7>

is unused.

process id [0].<8:15>

is the system number if the system is part of a network, or 0
otherwise.

process id [1:2]

is the low-order 32 bits of the creation timestamp, or 0 for a
system process.

process id [3].<0:3>

is unused.

process id [3].<4:7>

is the number of the CPU where the process is running.

process id [3].<8:15>

is the pin assigned by GUARDIAN to identify the
process in the CPU.

3-5

Programmer Interface--Network File Names (Internal Form)
Process IDs (CRTPIDs)

Process-name Form

The form of the process-name form of process identifier is

process id, INT:4,

where

process id [0].<0:7>

is an ASCII backslash (\) (octal 134).

process id [0].<8:15>

is the system number (in octal).

process id [1:2]

is the process name.

process id [3].<0:3>

is blank-filled.

process id [3].<4:7>

is the CPU number.

process id [3].<8:15>

is the pin.

The process name, in words 1 and 2, can contain no more than four
alphanumeric characters, the first of which must be alphabetic, and
does not include the initial dollar sign ($) normally associated with
a device name or process identifier.

3-6

Programmer Interface--File-name Conversion

CONVERSION BETWEEN EXTERNAL AND INTERNAL FILE NAMES

Two procedures, FNAMEEXPAND and FNAMECOLLAPSE, perform
internal/external file name conversion. Another procedure,
FNAMECOMPARE, compares names that may be in different forms.

FNAMEEXPAND converts a file name from external form to internal form,
and expands partial file names using the default volume, subvolume and
system. The conversion from external to internal form of a network
file name includes changing the system name to the system number.

FNAMECOLLAPSE converts a file name from internal form to external
form.

Both procedures convert local names to local names, and network names
to network names.

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name can be a logical system
name or a device number while the other reference is a symbolic name.

To be used in a TAL program, these procedures must be declared
EXTERNAL. Like other system procedures, the external declarations can
be specified with the compiler command

?SOURCE $SYSTEM.SYSTEM.EXTDECS(FNAMEEXPAND,FNAMECOLLAPSE,FNAMECOMPARE)

3-7

Programmer Interface--File-name Conversion
FNAMECOLLAPSE Procedure

FNAMECOLLAPSE Procedure

The FNAMECOLLAPSE procedure converts a file name from its internal to
its external form. The system number of a network file name is
converted to the corresponding system name.

The call to the FNAMECOLLAPSE procedure is

FNAMECOLLAPSE (internal name ,
external name)

where

length, INT

contains, on return, the number of bytes in the external name.

internal name, INT:ref:12

is the name to be converted. If this is in local form, it is
converted to external local form; if it is in network form, it
is converted to external network form.

external name, STRING:ref:26 or 34

contains, on return, the external form of the internal name.
If the internal name is a local file name, the external name
contains up to 26 bytes; if a network name is converted, the
external name contains up to 34 bytes.

CONSIDERATIONS. It is the responsibility of the program calling
FNAMECOLLAPSE to pass a valid file name in the internal name. Invalid
file names cause unpredictable results.

If the internal name is in network form and the system number in the
second byte does not correspond to any system in the network,
FNAMECOLLAPSE supplies "???????" as the system name.

EXAMPLES. This procedure would convert the local internal name

$SYSTEM SUBVOL MYFILE

to $SYSTEM.SUBVOL.MYFILE. Where system number 5 is named \SF, and we
use <%5> to denote octal 5 in the second byte, the procedure would
convert the network internal name

\<%5>SYSTEMSUBVOL MYFILE

to the external form \SF.$SYSTEM.SUBVOL.MYFILE.

3-8

Programmer Interface--File-name Conversion
FNAMEEXPAND Procedure

FNAMEEXPAND Procedure

The FNAMEEXPAND procedure expands a partial file name from the
compacted external form to the standard 12-word internal form used by
file-management procedures.

The call to the FNAMEEXPAND procedure is:

where

FNAMEEXPAND (external file name,
internal file name,
default names)

length, INT,

is the length in bytes of the file name in the external file
name. If an invalid file name is specified, zero is returned.

external file name, STRING:ref:34

lis the file name to be expanded. The file name must be in the}
form

[\system name.]

[$volume name.] [subvolume name.] disc file name
$device name delimiter
$logical device number delimiter

where

delimiter

delimiter

can be any character that would not be valid as part of
an external file name, such as a comma, blank, or null
character.

internal file name, INT:ref:12

is an array of 12 words where FNAMEEXPAND returns the expanded
file name. This cannot be the same array as the external file
name.

3-9

Programmer Interface--File-name Conversion
FNAMEEXPAND Procedure

default names, INT:ref:8

is an array of eight words containing the default volume and
subvolume names to be used in file name expansion, where

default names [0:3]

is the default volume name, left-justified in the field.

default names [4:7]

is the default subvolume name, left-justified in the
field.

default names [0:7] corresponds directly to word [1:8] of the
command interpreter startup message. See your GUARDIAN
programming manual for the parameter message format.

FILE NAME EXPANSION BY FNAMEEXPAND. This procedure returns a disc
file name in this form:

file name [0:3] = $default volume name
file name [4:7] = default subvolume name
file name [8:11] = disc file name

blank fill
blank fill
blank fill

It returns "subvolume name.disc file name" in this form:

file name [0:3] = $default volume name blank fill
file name
file name

r4.71
L. ... • • J

[8:11]
= subvolume name
= disc file name

blank fill
blank fill

It returns "$volume name. disc file name" in this form:

file name [0:3] = $volume name
file name [4:7] = default subvolume name
file name [8:11] = disc file name

blank fill
blank fill
blank fill

It returns "$volume name.subvolume na~e.disc file name" in this form:

file name [0:3] = $volume name
file name [4:7] = subvolume name
file name [8:11] = disc file name

3-10

blank fill
blank fill
blank fill

Programmer Interface--File-name Conversion
FNAMEEXPAND Procedure

It returns a device name in this form:

file name [0:11] = $device name blank fill

It returns a logical device number in this form:

file name [0:11] = $logical device number blank fill

EXAMPLE. Using these declarations:

STRING .EXTANAMES[0:24] := "
.Pi ! string pointer.

INT .INFILE[0:11],
.OUTFILE[O:ll],
.DEFAULTS[0:7] := n$VOL1

"SVOL1

FILEA

" ,
n • ,

$SYSTEM.FILEB n ,

the FNAMEEXPAND procedure expands the external file names into a
usable internal form:

.
SCAN EXTANAMES WHILE n n -> @Pi ! skip leading blanks.
@P := FNAMEEXPAND(P, INFILE, DEFAULTS) + @Pi

on the completion of FNAMEEXPAND, INFILE contains

n$VOLl SVOL1 FILEA "
which is suitable for passing to the file-management CREATE, OPEN,
RENAME, and PURGE procedures and to the process-control NEWPROCESS
procedure.

P is incremented by the number of characters in the external file
name.

SCAN P WHILE n " -> @Pi ! skip intermediate blanks.
CALL FNAMEEXPAND(P, OUTFILE, DEFAULTS) i

On the completion, OUTFILE contains

n$SYSTEM SVOL1 FILEB "

3-11

Programmer Interface--File-name Conversion
FNAMEEXPAND Procedure

NETWORK CONSIDERATIONS. If the external file name includes a system
name, FNAMEEXPAND converts the system name to the appropriate system
number.

If the external file name does not include a system name, but a
default system name is part of the DEFAULTS parameter, FNAMEEXPAND
converts the external file name to a network internal file name having
the correct system number.

NETWORK EXAMPLE. Suppose that system \NEWYORK is assigned system
number 4. Then the external file name \NEWYORK.$DATA.SUB.MYFILE is
converted by FNAMEEXPAND to

"\<%4>DATA SUB MYFILE "

where <%4> denotes octal 4 in the second byte.

If the system name does not exist in the network, FNAMEEXPAND supplies
255 as the system number.

3-12

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

FNAMECOMPARE Procedure

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name can be a logical system
name or a device number while the other reference is a symbolic name.
The file names compared must be in the standard 12-word internal
format that is returned by FNAMEEXPAND.

The call to the FNAMECOMPARE procedure is

FNAMECOMPARE (file name 1, file name 2)

where

status, INT,

is a value indicating the outcome of the comparison. Values
for status are:

-1 = (CCL) , indicating that the file names do not refer
to the same file.

o = (CCE) , indicating that the file names refer to the same
file.

+1 = (CCG), indicating that the file names refer to the same
volume name, device name, or process name on the same
system; however, words [4:11] are not the same:
file name 1 [4] <> file name 2 [4] FOR 8.

A value less than negative one is the negative of a
file-management error code. This indicates that the comparison
is not attempted due to this error condition.

That value returned from the program function determines the
condition code setting.

file name 1, INT:ref:12,

is the first file name for the comparison. Each file-name
array can contain either a local file name or a network file
name. Definitions of file names are in your GUARDIAN
programming manual.

file name 2, INT:ref:12,

is the second file name for the comparison.

3-13

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

CONSIDERATIONS. The arrays containing the file names for comparison
are not modified.

Alphabetic characters within qualified process names are not upshifted
before comparison.

If a logical device number format, such as $0076, is used for one file
name, but not the other, the device table of the referenced system is
consulted to determine whether the names are equivalent. This case is
the only time the device table is used. All other comparisons involve
only the examination of the two file names supplied.

Some of the most common negative file-management error codes returned
are:

-13 = an illegal file name specification for either file name is
made.

-14 = the device does not exist. (See note.)

-18 = no such system is defined in this network. (See note.)

-22 = a parameter or buffer is out of bounds.

-250 = all paths to the system are down. (See note.)

NOTE

These negative file-management error codes indicate
that only one of the file names is passed in logical
device number format (requiring a check of the device
table) and the file name represents a device connected
to a remote network node.

In a network node with a system number = 6, execution of the next code
example returns a status of 0 and the condition code (CCE). In a
non-network system, execution of this code returns a status of
negative one and the condition code (CCL).

INT .FNAMEl[0:11],
.FNAME2[0:11],
STATUS;

FNAME1 ~:=~ ["$TERM1", 9 * [" "]];
FNAME2 ~: =~ [%56006, "TERM1 ", 8 * [" "]];
STATUS := FNAMECOMPARE (FNAME1, FNAME2);

3-14

"\", 6, "TERM1"

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

In any system, execution of the next code example returns a status
of +1, and the condition code (CCG).

FNAMEI ~:=~ ["$SERVR iSTART UPDATING"];
FNAME2 ~:=~ ["$SERVR iFINISH UPDATING"];
STATUS := FNAMECOMPARE (FNAMEl, FNAME2);

In any system, execution of the next code example returns a status
of zero and condition code (CCE). (The device name $DATAX is defined
as logical device number 13 at SYSGEN time.)

FN AMEI ~: = ~ [.. $ 0 0 13 ", 9 * [II ..]];
FN AME 2 ~: = ~ [n $ DATAX" , 9 * [" II]];

STATUS := FNAMECOMPARE (FNAMEl, FNAME2);

The FNAMECOMPARE procedure can also verify the specified file
names as in the next code example:

assume all variables and procedures have been
properly defined and initialized elsewhere

also assume LITERAL LEGAL = 0;

IF FNAMEEXPAND (EXTERNAL~NAME, INTERNAL~NAME, DEFAULT~NAMES) THEN
BEGIN
! something reasonable was entered.
IF FNAMECOMPARE (INTERNAL~NAME, INTERNAL~NAME = LEGAL THEN

! it may not exist, but looks okay.
BEGIN

END
ELSE

normal processing.

! the format is not legal.
BEGIN

! error processing.

END;
END;

3-15

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

EXAMPLE OF OPENING IN AND OUT FILES. Consider this procedure, which
reads a startup message, opens the IN file, and returns the file
number of the IN file (for clarity, no error-checking is performed
following calls to system procedures) :

INT PROC OPENAINFILE;
BEGIN
INT • RECABUF [0: 32] : = ["$RECEIVE", 8 * [.. "]] ,

RECAFNUM,
INAFNUM;

open $RECEIVE, get startup message
CALL OPEN(RECABUF, RECAFNUM);
CALL READ(RECAFNUM, RECABUF, 66)
CALL CLOSE(RECAFNUM);

! open the IN file
CALL OPEN(REC ABUF[9] , INAFNUM);
RETURN INAFNUM;
END;

Any process that calls this procedure can communicate with its IN file
without regard for the physical location of the file. Note that any
existing program that reads its startup message and opens its IN and
OUT files in this manner can handle network file names without
modification or recompilation.

EXAMPLE OF NETWORK USE OF FNAMEEXPAND. The next example demonstrates
that the proper use of FNAMEEXPAND makes it unnecessary for an
application program to be aware of the physical location of a file.
The example procedure is called GETAFILENAME. It accepts a file name
from a terminal and expands the file name using the defaults. The
calling program passes to GETAFILENAME the file number of the terminal
to be prompted and the current defaults obtained from the startup
message. GETAFILENAME returns the expanded internal file name in the
parameter FILENAME. GETAFILENAME returns the number of bytes in the
external name read from the terminal, or 0 if the terminal input is
not a legal file name.

The procedure keeps prompting the terminal until at least one nonblank
character is input. For clarity, error detection and recovery are
omitted.

3-16

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

INT PROC GET~FILENAME(TERM~FNUM, DEFAULTS, FILENAME);
INT TERM~FNUM, terminal file number

• DEFAULTS, default volume and subvolume
• FILENAME; internal file name goes here

BEGIN
INT COUNT~READ,

• BUF [0 : 39] ;
number of characters read from terminal
terminal buffer

STRING .BUFS := @BUF ~«~ 1,
.PTR;

WHILE 1 DO
BEGIN

string pointer to BUF
miscellaneous pointer

! Prompt terminal for input until at least one character is read
COUNT~READ : = 0;
WHILE NOT COUNT~READ DO

BEGIN
BUFS ~:=~ "ENTER FILE NAME: ";
CALL WRITEREAD(TERM~FNUM, BUF, 18, 80, COUNT~READ) ;
IF <> THEN CALL ABEND;
END;

insert a scan stopper and FNAMEEXPAND delimiter
BUFS[COUNT~READ] := 0;

! Scan off leading blanks
@PTR := @BUFS;
SCAN PTR WHILE II II -> @PTR;

! If at least one nonblank character was input, call FNAMEEXPAND
! and return; otherwise, loop back to the beginning.
IF NOT $CARRY THEN

RETURN FNAMEEXPAND(PTR, FILENAME, DEFAULTS);
END; ! outer loop

END; ! proc GET~FILENAME

On return, FILENAME contains the expanded internal file name suitable
for passing to the OPEN procedure. The physical location of the file
is entirely transparent to the application program. From its point of
view, the sequence of events surrounding the call to GET~FILENAME is

1. Get the defaults from the startup message.

2. Open the terminal and pass the terminal file number, the defaults,
and a l2-word FILENAME array to GET~FILENAME.

3. Pass the returned FILENAME to the OPEN procedure.

3-17

Programmer Interface--File-name Conversion
FNAMECOMPARE Procedure

The calling program is unaware of whether the defaults, obtained from
the startup message, are in local or network form. FNAMEEXPAND
returns a network file name in FILENAME if either

• the external name, read from the terminal, included a system name,
or

• the defaults included a system number.

However, the calling program passes FILENAME directly to OPEN without
caring whether the file is local or remote.

3-18

Programmer Interface--System Procedures

SYSTEM PROCEDURES

The following summary lists the network-related system procedures by
procedure name and function.

Procedure Function

CONVERTPROCESSNAME converts a process name from local to
network form.

CREATEREMOTENAME supplies a process name that is unique for
a specified system in a network.

GETPPDENTRY returns a particular entry in a specific
system~s Paired Process Directory (PPD).

GETREMOTECRTPID returns the CRTPID, also known as the
process ID, of a remote process whose CPU,
PIN and system number are known.

GETSYSTEMNAME supplies the system name associated with a
system number, and returns the logical
device number of the line handler
controlling the path to a given system.

LOCATESYSTEM provides the system number corresponding to
a system name, and returns the logical
device number of the line handler
controlling the path to a given system.

MONITORNET enables or disables receipt of system
messages concerning the status of
processors in remote systems.

MYSYSTEMNUMBER provides a process with its own system
number.

MYTERM provides a process with the file name of its
"horne" terminal.

PROCESSINFO supplies process status information.

REMOTEPROCESSORSTATUS supplies the status of processor modules in
a particular system in a network.

VERIFYUSER verifies, and optionally logs on, a user
(described in Section 4 of this manual in the
discussion of Programmatic Logon).

Like all other system procedures, these must be declared EXTERNAL to a
TAL program before they can be used. Appropriate EXTERNAL
declarations can be included in a program with the compiler command

?SOURCE $SYSTEM.SYSTEM.EXTDECS(procedure name, •••)

3-19

Programmer Interface--System Procedures
CONVERTPROCESSNAME Procedure

CONVERTPROCESSNAME Procedure

The CONVERTPROCESSNAME procedure converts a process name from local to
network form. The call to CONVERTPROCESSNAME is

CALL CONVERTPROCESSNAME (process name)

where

process name, INT:ref:3,

is a process name beginning with a dollar sign ($); on
return, this buffer contains the internal network form of the
process name: a backslash (\) in the first byte, the calling
process~s system number in the second byte, followed by the
process name.

If the process name does not begin with "$", it is left
unchanged. If it contains more than four characters, the
file management system returns an error 20.

EXAMPLE. An example of the action of CONVERTPROCESSNAME, assuming
that MYSYSTEMNUMBER is 3:

NAME ~:=~ "$PROC";
CALL CONVERTPROCESSNAME(NAME);

On return from the call, "name" contains

o \ I %3

1 P I R

2 o C

3-20

Programmer Interface--System Procedures
CREATEREMOTENAME Procedure

CREATEREMOTENAME Procedure

The CREATEREMOTENAME procedure supplies a process name that is unique
for a specified system in a network. The call to CREATEREMOTENAME is

CALL CREATEREMOTENAME(name, system number)

where

name, INT:ref:3,

returns a system-generated process name that is unique for the
designated system.

system number, INT:value,

specifies the system for which the process name is to be
created.

CONSIDERATIONS. These condition code settings result from use of the
CREATEREMOTENAME procedure:

< (CCL)
= (CCE)

indicates that the remote PPD could not be accessed.
indicates that CREATEREMOTENAME was successful.

A third setting, > (CCG), is not returned.

CREATEREMOTENAME creates a process name in local form, consisting of
"$Z" followed by three digits. A typical name would be "$ZI23".

This name can be passed directly to the NEWPROCESS procedure to create
a remote process having that name. It is unnecessary to append a
system number to the process name, since the physical location of the
program file determines where the new process will run. However, it
is legal to append a system number, as long as the number matches the
system number where the process is to be created.

The creation of a process name does not make an entry in the remote
system's PPD.

EXAMPLE. An example of the use of this procedur~ is:

CALL CREATEREMOTENAME(NAME, SYSANUM);
IF < THEN ••• ! problems

3-21

Programmer Interface--System Procedures
GETPPDENTRY Procedure

GETPPDENTRY Procedure

The GETPPDENTRY procedure returns a particular entry in a specific
system~s Paired Process Directory (PPD). The call to GETPPDENTRY is

CALL GETPPDENTRY(entry number, system number, PPD entry

where

entry number, INT:value,

specifies which PPD entry to return. The first entry is 0,
the second is 1, etc.

system number, INT:value,

specifies the system whose PPD is to be searched for the
desired entry.

PPD entry, INT:ref:9,

returns the nine-word PPD entry specified by the given entry
and system numbers, where

PPD entry [0:2]

is the process name (in local form) 6

PPD entry [3]

is the CPU number and PIN of the primary process (CPU in
high eight bits, PIN in low eight bits).

PPD entry [4]

is the CPU number and PIN of the backup process (CPU in
high eight bits, PIN in low eight bits).

PPD entry [5:8]

is the process identifier of the ancestor, if any.

CONSIDERATIONS. These condition code settings result from use of the
GETPPDENTRY procedure:

< (CCL) indicates that the PPD in the given system could not be
accessed.

= (CCE) indicates that GETPPDENTRY completed successfully.
> (CCG) indicates that there are no more entries in the PPD.

3-22

Programmer Interface--System Procedures
GETPPDENTRY Procedure

If the entry number is not currently being used, GETPPDENTRY returns
CCE, and sets word 0 of PPD entry to O. To check for that condition,
an application could contain this code:

CALL GETPPDENTRY(ENTRY~NUM, SYS~NUM, PPD~ENTRY);
IF < THEN ••• ; ! no more entries
IF = AND PPD~ENTRY THEN ••• ! found an entry
ELSE ••• ! try the next entry number

GETPPDENTRY is related to LOOKUPPROCESSNAME (described in your
GUARDIAN programming manual) in this manner:

When you have the process name and want the PPD entry, use
LOOKUPPROCESSNAME. When you want to pass the entry number, use
GETPPDENTRY (use system number = MYSYSTEMNUMBER to access the local
PPD) •

EXAMPLE. An application that needs to obtain all entries in the PPD
of system 3 could use this code:

INT ENTRY~NUMBER := -1,
SYSTEM~NUMBER := 3,
DONE := 0,
.PPD~ENTRY[0:8];

DO
BEGIN
ENTRY~NUMBER := ENTRY~NUMBER + 1;
CALL GETPPDENTRY(ENTRY~NUMBER, SYSTEM~NUMBER, PPD~ENTRY);
IF = THEN ••• ! do something with "PPD~ENTRY"
ELSE DONE := 1;
END

UNTIL DONE;

3-23

Programmer Interface--System Procedures
GETREMOTECRTPID Procedure

GETREMOTECRTPID Procedure

The GETREMOTECRTPID procedure returns the CRTPID, also known as the
process identifier, of a process whose CPU, PIN and system number are
known. The call to GETREMOTECRTPID is

CALL GETREMOTECRTPID(pid, process id, system number)

where

pid, INT:value,

is the CPU number and PIN of the process whose process
identifier is to be returned.

process id, INT:ref:4,

is an array of four words where GETREMOTECRTPID returns the
process identifier of pid. If the system number specifies a
remote system, the process identifier is in network form; if
the system number specifies the local system, the process
identifier is in local form. Both forms of process identifier
are described in "Process IDs (CRTPIDs)", in this section.

CONSIDERATIONS. These condition code settings result from use of the
GETREMOTECRTPID procedure:

< (CeL) indicates that the GETCRTPID failed because no such process
exists, the remote system could not be accessed, or the
process has an inaccessible name comprising more than four
characters.

= (CCE) indicates that GETREMOTECRTPID was successful.

A third setting, > (CCG), is not returned.

EXAMPLE.

CALL GETREMOTECRTPID (pid, crtpid, SYSANUM);
IF < THEN ••• ! problems

3-24

Programmer Interface--System Procedures
GETSYSTEMNAME Procedure

GETSYSTEMNAME Procedure

The GETSYSTEMNAME procedure supplies the system name associated with a
system number. The call to the GETSYSTEMNAME procedure is

GETSYSTEMNAME (system number, system name)

where

ldev, INT,

is returned one of these values:

• -1, indicating that all paths to the specified system are
down

• 0, indicating that the system is not defined

• a positive integer, indicating the logical device number of
the line handler to the specified system.

system number, INT:value,

is the number of the system whose name is to be returned in
system name, and will be between 0 and 254 inclusive.

system name, INT:ref:4,

contains, on return, the name corresponding to the system
number.

CONSIDERATIONS. If the local system is not part of a network, then

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, NAME);

returns all blanks to NAME. (MYSYSTEMNUMBER provides a process
with its own system number).

EXAMPLE.

LDEV := GETSYSTEMNAME(SYSANUM, SYSANAME);
IF LDEV <= 0 THEN ••• ! error

3-25

Programmer Interface--System Procedures
LOCATESYSTEM Procedure

LOCATESYSTEM Procedure

The LOCATESYSTEM procedure provides the system number corresponding to
a system name, and returns the logical device number of the line
handler controlling the path to a given system. The call to
LOCATESYSTEM is

LOCATESYSTEM system number
, [system name])

where

ldev, INT,

is returned one of these values:

• 1, indicating that all paths to the specified system are
down

• 0, indicating that the system is not defined

• a positive integer, indicating the logical device number of
the line handler to the specified system. In the case of
multi-line, the LDEV returned is that of the path.

system number, INT:ref,

is the system number corresponding to the system name if the
system name is provided. If the system name is not provided,
the caller must provide the system number to be located.

system name, INT:ref:4,

if present, specifies the system to be located, and causes the
corresponding system number to be returned as the system
number.

EXAMPLES.

! locate \NEWYORK, and return its system number
SYS~NAME ~:=~ \NEWYORK;
LDEV := LOCATESYSTEM(SYS~NUM, SYS~NAME):
IF LDEV> a THEN ••. ! success

I ln~~~~ ~v~~~m ~ . ------ -.l.--_ .. ' -
SYS~NUM := 3;
LDEV := LOCATESYSTEM(SYS~NUM);
IF LDEV <= a THEN ••• ! problems

3-26

Programmer Interface--System Procedures
MONITORNET Procedure

MONITORNET Procedure

The MONITORNET procedure enables or disables receipt of system
messages concerning the status of processors in remote systems. The
call to MONITORNET is

CALL MONITORNET(enable)

where

enable, INT,

is either 1, to enable receipt of messages, or 0, to disable
receipt of messages.

CONSIDERATIONS. A process that has enabled MONITORNET receives a
system message via $RECEIVE whenever a change in the status of a
remote processor occurs. The format of this message is:

word [0] = -8
word [1] .<0:7> = system number
word [1] .<8:15> = number of CPUs in the system
word [2] = current processor-status bit mask
word [3] = previous processor-status bit mask

The processor-status bit mask has, in the bit corresponding to the CPU
number, a one to indicate that the processor is up, and a zero to
indicate that the processor is down or does not exist.

MONITORNET provides notification of status changes for remote
processors only. To receive notification of status changes for local
processors, an application process still must call MONITORCPUS.

EXAMPLE.

CALL MONITORNET(1);

3-27

Programmer Interface--System Procedures
MYSYSTEMNUMBER Procedure

MYSYSTEMNUMBER Procedure

The MYSYSTEMNUMBER procedure provides a process with its own system
number. The call to MYSYSTEMNUMBER is

system number := MYSYSTEMNUMBER

where

system number, INT,

returns the caller~s system number.

CONSIDERATIONS. If the caller is running in a system that is not part
of a network, MYSYSTEMNUMBER returns o. Since 0 is a legal system
number, a process which has to determine whether the system it is
running in is part of a network should contain the code

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, name)i

A return of all blanks in the name indicates that the system is not
part of a network.

3-28

Programmer Interface--System Procedures
PROCESS INFO Procedure

PROCESS INFO Procedure

The PROCESSINFO procedure returns process status information. The
call to the PROCESSINFO procedure is:

ICALL)
error :=

PROCESS INFO cpu-pin
, [process id]

where

, [creator accessor id
, [process accessor id
, [pr ior i ty]
, [program file name
, [home terminal]
, [system number]
, [search mode])

error, INT,

is returned one of these values to indicate the outcome of the
call:

o = status for process cpu-pin is returned.

1 = process cpu-pin does not exist. Status for next higher
cpu-pin is returned. process id [3] = cpu-pin is the
process for which status is returned.

2 = process cpu-pin does not exist and no higher cpu-pin
exists.

3 = cpu is down.

4 = cpu does not exist.

5 = the system specified by system number could not be
accessed.

99 = parameter error.

cpu-pin, INT:value,

specifies the process whose status is being requested where:

cpu-pin.<O:7> is the cpu number.

cpu-pin.<8:15> is the pin number.

3-29

Programmer Interface--System Procedures
PROCESS INFO Procedure

process id, INT:ref:4,

if present, is returned the process identifier of the process
whose status is actually being returned. Note that this can be
different from the process whose status was requested via
cpu,pin (see error).

creator accessor id, INT:ref:l,

if present, returns the creator accessor identifier of the
process identifier (see "Network Security" in Section 4 for an
explanation of the creator accessor identifier).

process accessor id, INT:ref:l,

if present, returns the process accessor identifier of the
process identifier (see "Network Security" in Section 4 for an
explanation of the process accessor identifier).

priority, INT,

3-30

if present, returns the execution priority of this process.

program file name, INT:ref:12,

if present, returns the name of the process identifier~s
program file.

home terminal, INT:ref:12,

if present, returns the device name of the process identifier~s
home terminal. If the home terminal resides on the local
system, home terminal is in local form (begins with a dollar
sign ($); otherwise, home terminal is in network form (begins
with a backslash (\)).

system number, INT:value,

if present, specifies the system (in a network) where the
process for which information is to be returned is running. If
this parameter is omitted, the local system is assumed.

search mode, INT:value,

if present, is a bit mask that specifies one or more "search"
conditions. If omitted, zero is used.

Programmer Interface--System Procedures
PROCESSINFO Procedure

CONSIDERATIONS. On the call, the parameters to PROCESSINFO contain
the value(s) for the search condition(s) and the bit fields in search
mode specify the conditions being searched for (1 = condition must be
met; 0 = don~t care) :

• search mode.<O> indicates that the searched process must match
process identifier for three words.

• search mode.<I> indicates that the searched process must match
the creator accessor identifier.

• search mode.<2> indicates that the searched process must match
the process accessor identifier.

• search mode.<3> indicates that the searched process must be equal
to or less than priority.

• search mode.<4> indicates that the searched process must match
program file name.

• search mode.<5> indicates that the searched process must match home
terminal.

If multiple search conditions are specified, then all must be met.

If the system number specifies a remote system, the process identifier
is returned in network form; otherwise, the process identifier is
returned in local form.

If the process~s home terminal is remote, home terminal is returned in
network form; if the home terminal is local, home terminal is in local
form.

EXAMPLE.

! return status for all processes run by me at my terminal.

CAID := PROCESSACCESSID;
CALL MYTERM (HOMETERM);
PIN := 0;
MODE := %42000;
WHILE PROCESS INFO PIN, PID , CAID , PAID , PRI , PROG ,

HOMETERM , , MqDE) < 2 DO
BEGIN

PIN := PID [3] + 1;
END;

3-31

Programmer Interface--System Procedures
REMOTEPROCESSORSTATUS Procedure

REMOTEPROCESSORSTATUS Procedure

The REMOTEPROCESSORSTATUS procedure supplies the status of processor
modules in a particular system in a network. The call to
REMOTEPROCESSORSTATUS is

status := REMOTEPROCESSORSTATUS (system number)

where

status, INT(32),

returns the processor status in this format: The high-order
word contains the number of processors in the remote system.
If the remote system is nonexistent or unavailable, the
high-order word is o.

The low-order word contains a bit mask for processor
availability. If the processor is up, the corresponding bit is
1: if the processor is down or nonexistent, the corresponding
bit is O.

CONSIDERATIONS. The system number for a particular system whose name
is known can be obtained from the LOCATESYSTEM procedure.

The two words of status can be separated by "equivalencing" INT
variables to the high and low-order words. For example, a TAL
procedure that calls REMOTEPROCESSORSTATUS might contain these
declarations:

INT(32) STATUS:
INT NUMApROCESSORS = STATUS: ! high-order word
INT BITAMASK = NUMApROCESSORS + 1: ! low-order word

"Equivalenced" TAL variables are explained fully in the Transaction
Application Language Programming Manual.

The bits in the low-order word are ordered from 0 to 15, from left to
right:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

REMOTEPROCESSORSTATUS can also be used to obtain the status of local
processors, as shown here:

INT(32) MyApROCESSORASTATUS:
MyApROCESSORASTATUS := REMOTEPROCESSORSTATUS(MYSYSTEMNUMBER):

3-32

Programmer Interface--Considerations

PROGRAMMING CONSIDERATIONS

This section presents considerations relating to network programming,
including:

• network file names (external form)

• MYTERM procedure

• command interpreter startup message

• remote process creation

• saving file names

• key-sequenced and partitioned files

Network File Names (External Form)

An application program that handles file names in their external form
needs to allocate 34 bytes to handle a fully qualified network file
name, as shown in Figure 3-2.

\system name • $device or process • subvol • disc file name
I I / \ I I I I I
1 + 7 + 1 + 1 + 6 + 1 + 8 + 1 + 8 = 34

Figure 3-2. Allocation of 34 Bytes for Network File Name

An example of a fully qualified network file name in external form is

\NEWYORK.$ORDERS.PARTS.INVNTRY

MYTERM Procedure--Network Considerations

If the home terminal is local, MYTERM returns the name of the home
terminal in local formi otherwise, MYTERM returns the name of the home
terminal in network form.

Unlike the command interpreter startup message's IN and OUT files, the
name returned by MYTERM is not affected by any SYSTEM command which
the user may have issued. Therefore the command

:SYSTEM \SF

has no effect on MYTERMi if the home terminal is local, the home
terminal name is in local form. However, this command would cause in
IN and OUT files, even if they were local, to be passed to a process
in network form.

3-33

Programmer Interface--Considerations
Command Interpreter Startup Message

Command Interpreter Startup Message

The first task performed by an application process is to open its
$RECEIVE file and read the command interpreter startup message. This
message supplies the application process with the names of its IN
file, its OUT file, and the current defaults. (The startup message is
described in your GUARDIAN programming manual in the discussion of the
command interpreter.)

IN AND OUT FILES. The names of the IN and OUT files are passed in
local or network form, depending on whether each file is local or
remote.

There is one exception to this rule: the name of a local file is
passed in network form if the local system was explicitly specified
(via the SYSTEM command) as the default system, and the file name was
expanded using the default system. For example, suppose that the
local system is \BUFFALO, and that these commands are issued:

:SYSTEM \BUFFALO
:RUN MYPROG / IN MYFILE /

Any SYSTEM system name command causes the command interpreter to
expand all partial file names using the default system. Therefore,
MYFILE is expanded by the command interpreter using the default
system \BUFFALO, and the IN file passed to MYPROG is in network form.

An application process can either ignore or consider the physical
location of its IN and OUT files. If the physical location of a file
is not important, the process simply passes the file name to the OPEN
procedure; if the physical location of the file is important, the
process checks whether the first byte of the file name is a dollar
sign or backslash ($ or \) and acts accordingly.

DEFAULTS. The name of the default system, if one has been explicitly
defined, is passed as part of the default volume name. For example,
following the command interpreter commands

:VOLUME $VOL.SUBVOL
:SYSTEM \LONDON

assuming that \LONDON corresponds to system number 2, words [1:8] of
the startup message sent to any process created by the command
interpreter contain

\<2>VOL SUB VOL

where <2> denotes octal (not ASCII) 2 in the second byte.

3-34

Programmer Interface--Considerations
Command Interpreter Startup Message

The default system is included in the default volume name only if a
system has been explicitly specified via a SYSTEM system name command.
The command

: SYSTEM

causes the default names to be passed in local form, as does the
complete absence of a SYSTEM command.

Observe that the command

:SYSTEM \BUFFALO

causes the default names to be passed in network form regardless of
whether \BUFFALO is the local system.

Remote Process Creation

A process is created in a remote system the same way one is created in
the local system: by passing the program file name to the NEWPROCESS
procedure. There is one basic rule: a process~s program file must
reside on the system in which the process is to run.

If you want to create a remote process in a system that does not
possess a copy of the program file, you must copy the program file to
the remote system.

Assuming that the appropriate program file resides on the remote
system, creating the remote process is accomplished by passing the
program file name to the NEWPROCESS procedure. For example, this code
runs TAL as an unnamed process on system \DETROIT, in CPU 2 at
priority 140:

STRING .PROC"'NAME[0:27] := ["\DETROIT.$SYSTEM.SYSTEM.TAL" , 0];
INT .PROGRAM"'FILE[O:ll],

.PID,
PRI := 140,
CPU := 2,
ERROR;

CALL FNAMEEXPAND(PROC"'NAME, PROGRAM"'FILE, DEFAULTS);
CALL NEWPROCESS(PROGRAM"'FILE, PRI, , CPU, PID, ERROR);
IF ERROR THEN •••

CPU DEFAULTING. The CPU parameter of NEWPROCESS lets you specify
the processor in which the new process is to run. Any remote
processor can be used for process creation.

If the CPU parameter is not specified, the new process runs in a
processor selected from among those processors specified at SYSGEN
time as being available to the network.

3-35

Programmer Interface--Considerations
Remote Process Creation

SENDING THE STARTUP MESSAGE. After a process is created, it must
be sent a startup message. When formatting the startup message, the
creator must take care to convert the IN and OUT file names and the
default names to network form, so the new process can reference its
files correctly.

EXAMPLES. Suppose that the creator wishes to designate itself as the
new process~s IN file. The creator could contain this code:

! first, get my process ID
CALL GETCRTPID(MYPID, MYPROCESSID);
! convert to network form
CALL CONVERTPROCESSNAME(MYPROCESSID);
! move into startup message
STARTUp A MSG[9] ~:=~ MYPROCESSID FOR 4;

Note that if the creator is running as a named process, then
CONVERTPROCESSNAME transforms the local name into network form. If
the creator is running as an unnamed process, then its CRTPID already
specifies the system number (in the second byte) and
CONVERTPROCESSNAME leaves the CRTPID unaltered.

The code in the next example could be used to specify the creator~s
own OUT file as the new process~s OUT file. Assume that OUTFILE
contains the creator~s OUT file name as obtained from its startup
message.

STRING .OUTFILES := @OUTFILE ~«~ 1;

IF OUTFILES = "$" THEN

BEGIN

change it to network form,
using my system number

OUTFILES[7] ~=:~ OUTFILES[6] FOR 7;
OUTFILE := "\n ~«~ 8 + MYSYSTEMNUMBER;
END;

If the first byte of OUTFILE contained a backslash (\) character
(indicating a network file name), or neither a dollar sign ($) nor a
backslash (indicating the CRTPID of an unnamed process), then OUTFILE
would be left unchanged.

Similar code could ensure that the default names are passed correctly.

Other cases--for example, the new process~s OUT file being specified
as a process in some other system--must be handled on an individual
basis. Keep in mind that the new process will assume that file names
in local form are local files. If this would cause incorrect results 1

then the creator must modify the startup message before sending it.

3-36

Saving File Names

Programmer Interface--Considerations
Saving File Names

Programs that save network file names should save the file names in
external form. File names in external form should be converted to
internal form immediately before opening the file. The reason is that
conversion from system name to system number depends on the current
state of the communication path to the remote system: if the path is
down, the system name is converted to system number 255, an illegal
value that causes OPEN to fail.

Alternate-key and Partitioned Files

An alternate-key file can be made to reside on a different system than
the primary file by listing the alternate-key file's location in
network form in the alternate key params array when the primary file
is created, and passing the file name in network form to the CREATE
procedure to create the alternate-key file. Passing a local file name
to CREATE causes an alternate-key file to be created on the same
system as the primary file, not on the default system.

Any file, including an alternate-key file, can be partitioned across
system boundaries. To create a partitioned file having partitions on
different systems, follow the same procedure used to create a
partitioned file, as described in the ENSCRIBE Programming Manual.
The partition params array is used in the same way. However, instead
of supplying the $volume on which a partition is to reside, you must
supply

\system number volume name

where the "$" is omitted from the volume name. Supplying a $volume
name without a system number causes the partition to be created on the
same system as the primary partition, not on the default system.

3-37

SECTION 4

NETWORK MANAGEMENT

This section presents information relevant to the management of a
network. Topics included are:

• best-path determination

• Network Monitor (NETMON) utility program

• network security

• items to consider when using SYSGEN, CUP, PUP and XRAY

BEST-PATH DETERMINATION

Intersystem messages are always sent via the best path between the two
systems. The determination of the "best" path is made by assigning
weight factors based on line speed to the communication lines, and
computing the sum of the weight factors along each possible path.

The multi-line facility allows all lines in a path to be used
simultaneously, thus the effective bandwidth will be the sum of the
bandwidths of all lines in the path; that is, multiple packet messages
are distributed over multiple lines.

In the event of a line failure, the NCP updates its NETMAPS to reflect
the decrease in path bandwidth; likewise reactivation of the line
updates the NETMAPS to refl~ct the increase in bandwidth. In the
event of a controller failure, the NCP updates its NETMAPS to reflect
the decrease in bandwidth for all lines connected to the failed
controller.

Each line has a configured line weight (SYSGEN RECSIZE), as shown in
Table 4-1. The line handlers for the neighbor paths establish the
weight factor value during path initialization and whenever a line
failure or activation occurs. For routing purposes, the neighbor NCPs
agree to use the slower line speed (larger value). The following
equation shows how the weight factor for a mUlti-line path is
determined:

4-1

Network Management--Best-path Determination

path WF = WF conversion factor

WF conv fact WF conv fact WF conv fact
------------- + ------------- + ••• + --------------

linel WF line2 WF line n WF

For example, the weight factor for a multi-line path consisting of
three lines with each line~s speed configured for 4800 baud and weight
factor of 47 is:

path WF = 224000

224000 224000 224000
-------- + -------- + --------

47 47 47

= 224000

4765 + 4765 + 4765

= 224000 = 15.7 = 16

14295

This results in converting the weight factors to line speeds, adding
the line speeds together to get a path speed, and then dividing the
weight factor conversion factor by the path speed to get the path
weight factor (number of seconds required to transmit 224000 bytes).

Table 4-1. Line Weights According to Line Speed

Line Speed Weight Factor

2400 baud 93
4800 baud 47
9600 baud 23
19200 baud 12
50000 baud 5
56000 baud 4
224000 baud 1

The weight factor represents the number of seconds it takes to
transmit 224000 bits of data across a given line. For example, it
takes 47 second~ to transmit 224000 bits across a 4800-baud line.

4-2

Network Management--Best-path Determination

Consider this network:

B

c

A @19.2K @ 19.2K

D

E

Figure 4-1. Weight Factors Based on Line Speed

In Figure 4-1, a message from node A to node D (without multi-line)
would be sent via the path A -> B -> C -> D. The total of the weight
factors along this path (23 + 4 + 12 = 39) is less than the total of
the weight factors along any other path. However, if a multi-line
connection is made between node A and node E, by adding two 4800-baud
lines, its weight factor = 16. Thus, with multi-line, a message from
node A to node D takes the path A -> E -> D. The total weight factor
along this path is (16 + 12 = 28).

Each line~s weight factor is specified via SYSGEN. It is not
necessary to use the values given in the table. If you want to force
message traffic to travel over a slow path (for whatever reason), you
can configure a small weight factor for the line.

For the best-path routing scheme to work, each node must know about
the current status of the network. The Network Control Process in
each node maintains routing tables that enable messages to be routed
correctly. Changes in the status of the network are propagated
throughout the network by the exchange of messages between the NCPs in
neighboring systems.

Suppose, in the example above, that the communication line between B
and C fails. C informs D of the failure; then D informs E, and E
informs A and B. Meanwhile, B informs A and E, A informs E, and E
informs A and D. Each system updates its routing tables as it becomes
aware of the change in network status, allowing all message traffic to
be routed correctly. The same scheme of informing one~s neighbor is
used when a communication line becomes available or a new system is
added to the network.

Network Management--Best-path Determination

In the case of multi-line, the general network routing procedure
remains the same with one exception. A line ready or not ready
condition causes an update to the NETMAPS to reflect the change in
the path weight factor; however, a line down does not necessarily
mean that the path is down (weight factor of infinity). In fact, the
new best path may indeed be the same as the original path.

The method of informing all nodes about routing changes is implemented
in such a way that no system ever becomes confused about where to send
a message; packets are always routed correctly regardless of any
sequence of catastprophes.

NETMON Network utility

The network monitor program NETMON lets one system within a network
act as a center for monitoring the network. The NETMON program
provides:

• logging of changes in network status

• logging of changes in processor status at remote systems

• a display of changes in processor status at remote systems

• a display of network traffic

The command to run NETMON is:

NETMON /{run parameter}, ••• /] [command]

where run parameter takes the form: IN command file, OUT list file,
or NAME [$process name].

4-4

IN command file

specifies a disc file, terminal, or process where NETMON reads
commands. NETMON reads 132-byte records from the command file
until it encounters the end-of-file. Only one command is
permitted per record. If this option is omitted, the horne
terminal is used.

OUT list file

specifies an existing disc file, terminal, or process where
NETMON directs its listing output. If the command file is a
terminal, the list file must be the same terminal. If this
option is omitted, the horne terminal is used.

Network Management--NETMON Network utility
NETMON Command

NAME [$process name]

specifies a symbolic name to be assigned to the new process.
This option is necessary if the BACKUPCPU command is issued.
If the $process name is omitted, the operating system
generates a name for the new process. If this option is
omitted, the process is unnamed.

command

is one or more NETMON commands separated by semicolons. If a
command is included, NETMON executes the command, then
terminates. If the DISPLAY command is embedded in the command
string, the DISPLAY command is terminated by the BREAK key.
Any subsequent commands in the string are then executed before
NETMON terminates.

EXAMPLES. In this example, NETMON starts and prompts for commands:

:NETMON
NETWORK MONITOR - T9007E02 - (OlJULY8l)
>

In the next example, NETMON starts, executes a command to begin
central logging, and terminates:

:NETMON LOGCENTRAL ON
NETWORK MONITOR - T9007E02 - (OlJULY8l)
CENTRAL LOGGING INITIATED

In the next example, NETMON starts, executes a command to display the
processor status of the systems in the network, sends the data to the
printer $LP, and terminates:

:NETMON lOUT $LP/ CPUS
NETWORK MONITOR - T9007E02 - (OlJULY8l)

In the next example, NETMON starts and displays the network traffic
and processor status for selected systems:

:NETMON /NAME/ BACKUPCPU3;ADD ALL;DISPLAY
NETWORK MONITOR - T9007E02 - (OlJULY81)

NETMON then clears the screen and begins the display. The display
continues until the BREAK key is pressed.

Network Management--NETMON Network Utility
EXIT Command

EXIT Command

The EXIT command terminates NETMON. Then, the command interpreter
prompt appears. Control-Y also terminates NETMON.

FC (Fix Command)

The FC command lets you edit or repeat a command line. When this
command executes, it displays the previous command line and prompts
with a period. FC accepts three subcommands:

• I inserts one or more characters

• R replaces one or more characters

• D deletes one or more characters.

FC again displays the command line after the line is edited, and
prompts for another subcommand. FC terminates when it receives only a
carriage return. The "COMINT" (command interpreter) section of your
system operating manual describes the FC command in detail.

EXAMPLE.

:NETMM
FILE ERROR 11
:fc
:NETMM

iO
:NETMOM

rN
:NETMON

(The I command inserts the 0 before the M)

(The R command replaces the M with an N)

(A carriage return terminates the Fe command)
NETWORK MONITOR - T9007D05 - (010CT80)
>

BREAK Key

When the BREAK key is pressed, the currently executing command aborts.
The BREAK key also is the only way to terminate the DISPLAY command.
If no command is executing, the command interpreter resumes control.
The command interpreter~s PAUSE command lets NETMON resume.

Control-Y

Control-Y terminates NETMON, then the command interpreter prompt
appears. The EXIT command also terminates NETMON.

4-6

Network Management--NETMON Commands

NETMON Commands

This subsection describes the commands that let you operate NETMON.
These commands are summarized below and then described in detail.

ADD

BACKUPCPU

CPUS

DELETE

DISPLAY

EXIT

FC

HELP

LOGCENTRAL

PATHS

MAPS

PERIOD

PROBE

SHOW

STATS

THRESHOLD

adds one or more systems in the network to the display
list.

specifies the processor where the NETMON backup process
is run.

displays the status of the processors for all systems
known by the specified system.

deletes one or more systems in the network from the
display list.

shows the network traffic and processor status of the
selected systems.

terminates the NETMON program.

(fix command) edits and reexecutes a command line.

provides command syntax for all NETMON commands.

starts or stops central logging at the local system.

displays the status of a selected path along with the
status of lines within the path.

displays the status of the network as seen from the
selected system.

sets the sample interval time in seconds.

displays the current paths from remote systems to the
selected system.

displays the systems selected with the ADD command.

displays detailed statistics for the selected system.

determines when to blink the rate of packets line in the
display shown with the DISPLAY command.

4-7

Network Management--NETMON Commands
ADD Command

ADD Command

The ADD command adds one or more systems to the list of systems to be
displayed. The form of this command is:

ADD

where

ALL

I ALL }
system [, system, •••]

specifies the first 16 systems in the network because only 16
systems fit on a screen for a display.

system

is specified either as a system name (e.g., \DALLAS) or a
system number (e.g., 3).

EXAMPLE.

ADD \DALLAS,3,\WASH

4-8

Network Management--NETMON Commands
BACKUPCPU Command

BACKUPCPU Command

The BACKUPCPU command specifies the processor where the NETMON backup
process is run. This command is useful when a terminal is constantly
displaying network information; it is not useful when using NETMON
interactively. Moreover, the NAME option must be included when NETMON
is started. The form of the command is:

BACKUPCPU [cpu]

where

cpu

specifies the processor in which to run the backup NETMON
process. If this parameter is omitted, any existing backup
NETMON process will be stopped.

EXAMPLE.

BACKUPCPU 3

4-9

Network Management--NETMON Commands
CPUS Command

CPUS Command

The CPUS command displays the status of the processors in all the
systems that are known by the specified system. The NCP revision
level also is displayed for each system. The form of the command is:

CPUS [system]

where

system

is specified either as a system name (e.g., \DALLAS) or a
system number (e.g., 3). If this option is omitted, the local
system is assumed.

The form of the display is:

SYSTEM
sss system
sss(system)

O<--CPU STATES-->15
nnnn,nnnn,nnnn,nnnn
nnnn,nnnn,nnnn,nnnn
nnnn,nnnn,nnnn,nnnn

NCP LVL
x

sss system x

where

4-10

sss system

is the number and name of one of the systems known to the
selected system. The selected system~s name is enclosed in
parentheses.

nnnn,nnnn,nnnn,nnnn

x

is the status of each processor in a system. 1 indicates the
processor is active; 0 indicates it is inactive. A period
represents a nonexistent processor. NOT CONNECTED means a
known system is not attached to the network currently.

is the level of the network control process (NCP) ~
level for the selected system is shown as a dash.
is used by Tandem personnel.

The NCP
This number

Network Management--NETMON Commands
CPUS Command

EXAMPLE. In this example, system 3, the selected system, has 12
processors that are all active. The system name \TS is enclosed in
parentheses and the NCP level is a dash. System 11 has four
processors, one of which is inactive. System 5 currently is not
attached to the network.

>CPUS 3

NETCPUS AT \TS (003) #PATHS=06 TIME: 4 SEP 1980, 9:34:43

SYSTEM O<--CPU STATES-->lS NCP LVL
2 \CUPRTNO 1111, •••• , •••• , •••• 1
3 (\TS) 1111,1111,1111, ••••
4 \DALLAS Ill. , •••• , •••• , •••• 1
5 \CHICAGO NOT CONNECTED
6 \NEWYORK Ill., •••• , •••• , •••• 3
7 \QA 1111, •••• , •••• , •••• 1
8 \LA 11 •• , •••• , •••• , •••• 1
9 \CORP 1111,1111, •••• , •••• 2

10 \MFG 1111,11 •• , •••• , •••• 1
11 \TORONTO 1110, •••• , •••• , •••• 4

4-11

Network Management--NETMON Commands
DELETE Command

DELETE Command

The DELETE command removes one or more systems from the list of
systems to be displayed. The form of this command is:

DELETE
{ ALL I

system [, system, •••]

where

ALL

specifies all the systems that are currently selected.

system

is specified either as a system name (e.g., \DALLAS) or a
system number (e.g., 3).

EXAMPLE.

DELETE ALL

4-12

DISPLAY Command

Network Management--NETMON Commands
DISPLAY Command

The DISPLAY command starts the display mode of NETMON. This command
is designed to function on a page-mode terminal: the display is
unreadable on other devices. The display shows network traffic and
processor status for the systems specified with the ADD command. The
first numbers of the display are not shown until the first sample
period has passed. The form of the command is simply:

DISPLAY

with no options.

The format of this display is:

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)
ssssssssssssssss

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)
ssssssssssssssss

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)
ssssssssssssssss ssssssssssssssss

where

\systemx(sss)

is the name and number of one of the systems selected for
status and traffic monitoring.

tttt

is the number of packets sent by and through the system during
the sample period.

pppp

is the number of packets that are pass-through traffic. The
tttt(pppp) line blinks whenever the difference between sample
periods reaches the percentage specified with the THRESHOLD
command.

uuuu(qqqq)

represents the weighted averages for the network traffic rate.
uuuu is the average number of packets sent by and through the
system during the sample period. (qqqq) is the number of
packets that are pass-through traffic.

4-13

DISPLAY Command

ssssssssssssssss

is the last reported processor status for the system. Each of
the 16 letters is replaced with 1, 0, or hyphen. 1 represents
an active processor: 0 represents an inactive processor: a
hyphen represents a nonexistent processor. This line blinks
whenever a change in processor status is detected.

EXAMPLE. This example of the network status display is abbreviated.
The actual display has four systems across and four systems down. In
this example, \DALLAS is not currently connected to the network.
Thus, it returns no statistics.

>DISPLAY

NETWORK STATUS DISPLAY AT \TS (003)

4-14

\SAA (000)
2049(0000)

avg 1215(0000)
11--------------

\TS (003)
559(0004)

avg 385(0003)
111111----------

\SAB (001)
34 (0000)

avg 22(0000)
0011------------

\DALLAS (004)

000-------------

TIME: 28 APR 1981, 16:39:23

\CUPRTNO (002)
639(0062)

avg 474(0057)
11111-----------

\QA (007)
1990(0661)

avg 1008(0293)
111-------------

HELP Command

Network Management--NETMON Commands
HELP Command

The HELP command lists the syntax or provides a brief description of
the NETMON commands. The form of the command is:

HELP ALL
command

where

ALL

displays the syntax and describes all NETMON commands. This is
the default.

command

specifies the command for which the syntax and description is
displayed.

EXAMPLE.

>HELP

ADD < system list>
BACKUPCPU [cpu *]
CPUS <system >
DELETE < system list >
DISPLAY
EXIT
FC
HELP [< command name > I ALL]
LOGCENTRAL [ON I OFF]
MAPS [< system >]
PATHS [< system>], [PATH < pathnum >]
PERIOD [< sample interval >]
PROBE [< from system >], [PERIOD < interval >], [SYSTEM < to system >]
SHOW
STATS [< system >]
THRESHOLD [< threshold >]

>HELP MAPS

MAPS [< system >]
Displays the NETMAPS for selected system. Default local system.

4-15

Network Management--NETMON Commands
LOGCENTRAL Command

LOGCENTRAL Command

The LOGCENTRAL command either starts or stops central logging of
network messages on the local system. The form of this command is:

LOGCENTRAL [~J
where

OFF

ON

stops central logging at the local system.

starts central logging at the local system. If you specify
neither ON nor OFF, the name of the system performing the
central logging is displayed.

The network can create a lot of logging information if either a path
or a system fails. Because the operator console usually is a slow
printer, logging this information can tie up allocation of system
resources at the receiving operator process. Disabling log messages
at the local system, through PUP CONSOLE, ENABLE/DISABLE, reduces the
amount of unnecessary traffic queued up at the operator process.

When central logging starts or stops or when the status of any network
processor changes, a message is logged on all of the systems in the
network. For example:

34 { ••• } NET: LOGGING AT SYS sss

indicates that central logging was initiated

35 { ••• } NET: LOCAL LOGGING RESUMED

indicates that central logging was terminated

48 { ••• } NET: SYS sss CPU STATUS ssssssssssssssss

indicates a change in processor status

where

{ . . . }

indicates the position for the date and time.

4-16

sss

is the system number.

ssssssssssssssss

Network Management--NETMON Commands
LOGCENTRAL Command

is the last reported processor status for the specified system.

CONSIDERATIONS. If LOGCENTRAL is on, the NCP s~nds log messages to
the logcentral system; however, no logging occurs to the local
operator process (disc-resident operator log). On the other hand, if
the path to the logcentral system is down, the messages are logged to
the local operator process.

4-17

Network Management--NETMON Commands
MAPS Command

MAPS Command

The MAPS command displays the status of the network as seen from the
selected system. This command provides the ability to look at the
network from any system even though NETMON is running elsewhere. The
form of the command is:

MAPS [system]

where

system

is either a system name or a system number. If this option is
omitted, the local system is assumed.

This command displays as many as six paths per line on devices with
fewer than 132 columns and as many as ten paths per line on devices
with 132 or more columns. If the selected system has more paths than
will fit on one line of the output device, the additional paths are
shown on the next line and a blank line is inserted between systems.
The form of the display is:

NETWORK MONITOR - T9007D05 - (010CT80)

NETMAPS AT <system>(sss) iPATHS=<nn> TIME: <date>,<time>

SYSTEM
sss <systema> ttttt(dd)
sss <systemb> ttttt{dd)
sss <systemc> ttttt(dd)

PATHS
<pn>
<pn>
<pn>

where

NEIGHBOR
• •• •• • •• (sss)
<system> (sss)
<system> (sss)

system (sss)

TIME (DISTANCE) BY PATH
ttttt(dd)* ttttt(dd) ttttt(dd)
ttttt(dd)* ttttt(dd) ttttt(dd)
ttttt(dd) ttttt(dd)* ttttt(dd)

LDEV
xx
xx
xx

STATUS
NOT READY (err)
READY (cpu, pin)
READY (cpu,pin)

ttttt(dd)
ttttt(dd)
ttttt(dd)

is the name and number of the system specified in the MAPS
command.

4-18

nn

Network Management--NETMON Commands
MAPS Command

is the number of communication lines radiating from the
selected system. This number indicates the number of rows and
columns under TIME (DISTANCE) and the number of paths listed at
the bottom of the display.

date, time

is the date and time at which the display was made.

sss <systema>

is the number and name of one in a list of systems in the
network.

ttttt(dd)

pn

is the time(ttttt) and distance (dd) between systems in the
network and the selected system. Each row and column
represents a path that corresponds to the paths listed at the
bottom of the display. For example, the third column in the
first row represents the time and distance required to reach
systema through path 3. An asterisk (*) shows that systema is
connected to the selected system through this p~th; a plus sign
(+) indicates that a connect request is outstanding, but the
connection has not yet been established. A system that cannot
be reached through a path is indicated by 32767(--).

ttttt represents the sum of the line-speed time factors that
are specified for system generation. The smaller numbers
represent faster lines.

dd represents the number of node-to-node paths traveled to
reach systema through a particular end-to-end path.

is the number of a path corresponding to a column under TIME
(DISTANCE) •

system (sss)

is the name and number of the system directly connected to the
selected system.

4-19

L~el:WOr K J.YJanagement--N.t.;'l'MUN commanas
MAPS Command

xx

is the logical device number of the line handler. In the case
of multi-line, it is the logical device number of the path.

(err)

is the file-system error for a path that is not ready. This
error usually is 66 for a device downed by the operator or
modem loss or 248 for a nonresponding remote system. In the
case of a multiline path, if all lines are down, the error
number will be for the fastest line in the path. For a more
detailed description of the error, use the PATHS command.

(cpu,pin)

is the processor and process identification number of the
current primary process of the line handler.

EXAMPLE. This example shows the MAPS command issued for system 3,
which is system \TS. This system has five paths radiating from it.
The last column, filled with 32767(--), indicates one path which is
not ready. The row filled with this number indicates that system 5 is
not available. An asterisk next to the time and distance shows how
many systems are connected through a path to the selected system. By
looking at the time and distance column for a particular path, the
presence of an asterisk indicates which systems are currently
connected through that path. If a system can be reached through more
than one path, the asterisk indicates the shortest route to that
system ..

4-20

>MAPS 3

Network Management--NETMON Commands
MAPS Command

NETWORK MONITOR - T9007D05 - (010CT80)

NETMAPS AT \TS (003) #PATHS=05 TIME:4 SEP 1980, 9:38:59

SYSTEM
2 \CUPRTNO 10(02) 5(01)* 51 (03) 99(03) 32767(--)
4 \DALLAS 28(02)* 33 (03) 74 (04) 122 (05) 32767(--)
5 \CHICAGO 32767(--) 32767(--) 32767(--) 32767(--) 32767(--)
6 \NEWYORK 41(03)* 52 (02) 87 (05) 135 (05) 32767(--)
7 \QA 33(03) 33(03) 23(01)* 117(03) 32767(--)
8 \LA 104(04) 104(04) 140 (04) 94(02)* 32767(--)
9 \CORP 5(01)* 10 (02) 51(03) 99(04) 32767(--)

10 \PARIS 98(02)* 103 (03) 144(04) 192 (05) 32767(--)
11 \TORONTO 28(02)* 33(03) 74 (04) 122 (05) 32767(--)
14 \LONDON 57 (03) 57 (03) 93 (03) 47(01)* 32767(--)
16 \SNMATEO 18(02)* 23 (03) 64 (04) 112(04) 32767(--)

PATHS NEIGHBOR LDEV STATUS
1 \CORP (009) 22 READY (07,007)
2 \CUPRTNO (002) 15 READY (0 6 , 006)
3 \QA (007) 18 READY (05,010)
4 \LONDON (014) 20 READY (04,009)
5 (000) 14 NOT READY (248)

The first column, path 1, has six asterisks: one next to neighboring
system 9 and one each next to systems 4, 6, 10, 11, and 16. Because
systems 4, 10, 11, and 16 are only two hops away from the selected
system, we assume that all are connected to system 9. System 6 can be
connected to any of these systems.

The second column, path 2, has one asterisk next to neighboring system
2. However, systems 6 and 9 are only two hops away from the selected
system; we assume that these systems are connected to system 2.

Figure 4-2 shows that systems 2, 6, 9, and 16 are interconnected; we
can reach any of these systems through either path. The best path
from the selected system to system 6 is path 1. Although the number
of hops is greater by going through path 1, the travel time is less.

The third column, path 3, has only one asterisk to indicate the
neighboring system 7. Because no other system is two hops from the
selected system through this path, we assume that system 7 is not a
through system--that is, we cannot go through it to get to any other
system. Any communication from system 3 over this path to any system
other than system 7 bounces back to system 3.

The fourth column, path 4, has only two asterisks, one next to the
neighboring system 14 and one next to system 8. Because system 8 is
only two hops away from the selected system, we assume that system 8
is connected to system 14. Any communication from system 3 over this

4-21

Network Management--NETMON Commands
MAPS Command

path to any system other than 8 or 14 bounces back to system 3.

From this information emerges a possible graph of this network, shown
in Figure 4-2. This picture of the network shows the numbers used in
SYSGEN to represent the line-speed time factors of the communication
lines between systems. Adding these numbers along a path gives the
result found in the sample MAPS display above.

4-22

10

\PARIS

(23)

6

\ NEW YORK

Figure 4-2. Graph of Sample Network Interconnections

Network Management--NETMON Commands
PATHS Command

The PATHS command displays the status of a selected path and status of
the lines comprising the path. The form of the command is:

PATHS system]
, [PATH pathnum

where

system

is a specific system name (e.g., \DALLAS) or system number
(e.g., 3). Status information for all paths in the system
will be shown. If this parameter is omitted, paths for the
default system are displayed.

PATH pathnum

selects a specific path and displays its status. Omission of
this parameter causes all paths to be displayed for the local
system.

This command displays the status of paths, and the lines comprlslng
each path, relative to a selected system. If no system is specified,
NETMON displays the status of paths relative to the default system.
The form of the display is:

NETWORK MONITOR - T9007E02 - (OlJUL81)

PATHS AT system (sss) # PATHS = nn TIME: date, time

PATH NEIGHBOR LDEV TF PID LINE LDEV STATUS

pathnum systema sss pathdev tt cpu-pin
lineno linedev status
lineno linedev status

where

system (sss)

is the name or number of the system specified in the PATHS
command. The local system is used as the default if no parameters
are supplied with the command.

4-23

Network Management--NETMON Commands
PATHS Command

nn

is the number of internodal connections radiating from the
selected system. This number indicates the number of entries
listed for the PATH column.

date, time

is the date and time at which the display was requested.

pathnum

is the path number for the particular entry displayed.

systema sss

is the name/number of the immediately adjacent system in this path

pathdev

tt

is the logical device number of the path.

is the time or weight factor for the path (depends on the number
of lines per path and the configured line speeds).

cpu-pin

is the number of the processor module where the net line handler
is executing and the number of the process in that processor.

lineno

is the line number in a particular path. It can be one of
several lines in the same path for multi-line.

linedev

is the logical device number of the line.

status

4-24

shows the status of the line in the form of a brief description
and file system error number. For example, an error 66 indicates
that a line downed by the operator caused a not ready condition.

Network Management--NETMON Commands
PATHS Command

The following example shows a network composed of three paths, two of
which contain multiple lines. Because the PATHS command~s optional
parameters are omitted, all paths for the local default system, \TS
(003), are displayed.

>PATHS

PATHS AT \TS (003) # PATHS = 4 TIME: 15 MAR 1981 10:33

PATH NEIGHBOR LDEV TF PID LINE LDEV STATUS

1 \MANGO (001) 10 35 (00,040)
1 11 NOT READY (140)
2 12 READY
3 13 READY

2 \SIBERIA(Oll) 20 5 (06,022)
1 21 READY

3 \MFG (032) 30 -- ---
I 31 NOT READY (248)
2 32 NOT READY (066)

4 ..••.••. (000) 0 -- ---

where

\TS (003)

is the name and number of the system selected, in this example
the default system.

PATHS = 4

is the number of paths connected through this system

PATH 1

connects to neighbor system name/number \MANGO (001) and is
accessed through logical device address LDEV 10. The time or
weight factor, dependent on the number of lines, is TF 35.
The processid PID is (00, 040). This path is composed of three
lines that are accessed through logical device addresses LDEV 11,
12 and 13. Line 1, LDEV 11, is not ready - file management error
140; lines 2 and 3, LDEV 12 and 13 are ready.

4-25

Network Management--NETMON Commands
PATHS Command

PATH 2

connects to system name/number \SIBERIA (011), is ready, and its
status characteristics are similar to those of PATH 1.

PATH 3

connects to system name/number \MFG (032) and is accessed through
LDEV 30. This path is not ready, as indicated by the null entry
in the processid and factor TF --i both line 1 and 2, LDEV 31 and
32, show a not ready status - file management error 248 and 066
respectively.

PATH 4

4-26

this line was not brought up since the last system cold load,
thus it shows null entries for all fields.

Network Management--NETMON Commands
PERIOD Command

PERIOD Command

The PERIOD command sets the sample-interval time (in seconds) used by
the DISPLAY command. The form of the command is:

PERIOD [sample]

where

sample

is the number of seconds over which the sample is taken. The
range for sample is 10 through 600. If this option is
omitted, the current sample period is displayed. Where no
sample period has been specified, NETMON assumes 60 seconds.

CONSIDERATIONS. The sample-interval time occurs only after the
completion of the last DISPLAY command and before the next request for
node statistics is sent. In essence, the sample-interval is only a
minimum time; it can be much longer.

4-27

Network Management--NETMON Commands
PROBE Command

PROBE Command

The PROBE command displays the current paths from one or all of the
remote systems to the selected system. The form of the command is:

PROBE systeml]
, [PERIOD interval]
, [SYSTEM system2]

where

systeml

is either a system name or a system number from which the
probe is made. If this option is omitted, the local system
is assumed.

interval

is the number of seconds to wait between probes. The range
for interval is 1 through 600. The probes continue until the
BREAK key is pressed. If this option is omitted, the probe
is performed once.

system2

is either a system name or a system number to which the probe
is made. If this option is omitted, all systems in the
network are probed.

The format of the display is:

NETPROBES AT \<system> (sss) TIME: date, time

SYSTEM RETURN PATH
sss \systema - \system - \system - \system - \system - * (ttttt)
sss \systemb - \system - \system - \system - \system - * (ttttt)
sss \systemc - \system - \system - \system - \system - * (ttttt)

where

system (sss)

4-28

is the name and number of the system selected in the PROBE
command.

Network Management--NETMON Commands
PROBE Command

time: date, time

is the date and time that the PROBE was requested.

\system - \system

is the list of systems through which the probe is made.

*
is the system selected in the PROBE command.

ttttt

is the round-trip time for the probe in hundredths of a second
("tics") •

EXAMPLES. The first example shows that system 20 (whose name
is \FRANKFT) is only two hops away from \LONDON (system 18).

>PROBE \LONDON, SYSTEM 20
NETPROBES AT \LONDON (018) TIME: 24 FEB 1981, 12:38:25

20 \FRANKFT - \SCHULNG - * (00020)

The next example shows that only two systems, 2 and 7, are connected
directly to the local system, which is \TS (003). Moreover, all
systems except 7 are connected to system 3 through system 2.

> PROBE
NETPROBES AT \TS (003) TIME: 24 FEB 1981, 12:43:52

PROBE TO \SAA ** FAILED 250 **
2 \CUPRTNO - * (00007)
4 \DALLAS - \NEWYORK - \CHICAGO - \MFG - \CORP - \CUPRTNO - * (00053)
5 \CHICAGO - \MFG - \CORP - \CUPRTNO - * (00028)
6 \NEWYORK - \CHICAGO - \MFG - \CORP - \CUPRTNO - * (00039)
7 \QA - * (00005)
9 \CORP - \CUPRTNO - * (00010)

10 \MFG - \CORP - \CUPRTNO - * (00009)

4-29

Network Management--NETMON Commands
SHOW Command

SHOW Command

The SHOW command displays the systems selected with the ADD command.
The form of the command is simply

SHOW

with no options.

4-30

Network Management--NETMON Commands
STATS Command

STATS Command

The STATS command displays detailed statistics that represent the
communication occurring between the specified system and all the
systems in the network. The form of the command is:

STATS [system]

where

system

is either a system name or a system number. If this option is
omitted, the local system is assumed.

The format of the display is:

NETWORK STATISTICS AT \system (sss)

SYSTEM
sss \systema
sss \systemb
sss \systemc

where

system

LINKS (PKTS) SENT
nnnnn(ppppp)
nnnnn(ppppp)
nnnnn(ppppp)

LINKS (PKTS) RCVD
mmmmm(qqqqq)
mmmmm(qqqqq)
mmmmm(qqqqq)

is the system selected in the STATS command.

sss

is the system number.

\systema

is one of the systems that communicates with the selected
system.

nnnnn

is the total number of link requests issued by this system
since the last cold-load; wraps around.

4-31

Network Management--NETMON Commands
STATS Command

(ppppp)

is the total number of packets sent from this system excluding
pass-through packets since the last cold-load; wraps around.

mmmmm

is the total number of link requests received by this system
since the last cold-load; wraps around.

(qqqqq)

is the total number of packets received by this system since
the last cold-load; wraps around.

EXAMPLE. This example shows that only systems 2, 7, and 9 are
communicating with the specified system, \TS (003). Moreover, the
network traffic for system 3 passes through system 2.

>STATS 3
NETWORK STATISTICS AT \TS (003)

SYSTEM LINKS (PKTS) SENT LINKS (PKTS) RCVD
2 \CUPRTNO 469(01133) 102(01132)
4 \DALLAS 0(00000) 0(00000)
5 \CHICAGO 0(00000) 0(00000)
6 \NEWYORK 0(00000) 0(00000)
7 \QA 47(00110) 8(00110)
9 \CORP 6(00165) 54(00114)

10 \MFG O(OOOOO} 0(00000)
13 \HWR2 0(00000) 0(00000)
14 \HWR 0(00000) 0(00000)
15 \HWRI 0(00000) 0(00000)

4-32

Network Management--NETMON Commands
THRESHOLD Command

THRESHOLD Command

The THRESHOLD command determines when to blink the rate of packets
line in the display shown with the DISPLAY command. The THRESHOLD
command checks the rate of packets in each sample period. When the
difference between the previous rate of packets and the current rate
reaches the specified percentage, the rate of packets line blinks for
one sample period. The form of the command is:

THRESHOLD [percentage

where

percentage

is the percentage difference to be met to start blinking the
rate of packets line. If this option is omitted, the current
threshold value is displayed. If no threshold is specified,
NETMON assumes 50 percent.

4-33

Network Management--NETMON Commands
Messages

Messages

BACKUP PROCESS ALREADY EXISTS IN CPU nn
attempted to issue a second BACKUP command

BACKUP PROCESS CREATED IN CPU nn
successful completion of the BACKUP command

CENTRAL LOGGING INITIATED
self-explanatory

CENTRAL LOGGING TERMINATED
self-explanatory

COMMA EXPECTED
self-explanatory

CURRENT CENTRAL LOGGING SYSTEM IS: system (nnn)
response to LOGCENTRAL command without parameters

ILLEGAL CPU NUMBER
backup processor number must be between 0 and 15

ILLEGAL PARAMETER
attempt to use the HELP command for an unknown command

ILLEGAL SYSTEM NUMBER nnn
system numbers must be within the range defined with system
generation (SYSGEN)

INVALID SYSTEM N&~E
system name is unknown, name is too long, backslash is missing,
or name has special characters (e.g., an ampersand)

INVALID SYSTEM NUMBER
system numbers must be within the range defined with system
generation (SYSGEN)

MUST BE A NAMED PROCESS TO RUN NONSTOP
the NAME option in the RUN command must be specified

NCP ERROR nnn
unable to communicate with the Network Control Process (NCP)
because error nnn occured while fetching data for the MAPS
command.

NETMON BACKUP TAKEOVER
occurs when running NonStop

NETTRACE RCVD WAS BAD
improperly formatted trace message received from a remote system

4-34

Network Management--NETMON Commands
Messages

NO CENTRAL LOGGING SYSTEM CURRENTLY ACTIVE
response to LOGCENTRAL command without parameters

NOMEM FOR NCpAREAD
unable to obtain space for a MAPS message

NOMEM FOR NCpAWRITEREAD
unable to obtain space for a PROBE message

NO SYSTEMS AVAILABLE
no paths exist to other systems in the netYork; STATS command
cannot retrieve information

NO SYSTEMS AVAILABLE FOR PROBING
no paths exist to other systems in the network; PROBE command
cannot retrieve information

NO SYSTEMS SELECTED
systems are designated with the ADD command

NO SYSTEMS SELECTED FOR DISPLAY
systems are designated with the ADD command

PERIOD MUST BE BETWEEN 10 & 600 SECONDS
self-explanatory

PROBE TO system ** FAILED nnn **
file error nnn prevents the PROBE command from completing

SYSTEM IS NOT CURRENTLY AVAILABLE
system specified in the MAPS, PROBE, or STATS command is
unavailable

SYNTAX ERROR
self-explanatory

THIS IS THE CENTRAL LOGGING SYSTEM
response to LOGCENTRAL command without parameters

THRESHOLD IS nnn%
response to THRESHOLD command without parameters

THRESHOLD MUST BE BETWEEN 1 AND 100 PERCENT
self-explanatory

TOO MANY PARAMETERS
self-explanatory

TOO MANY SYSTEMS REQUESTED, LIMIT IS 16
attempt to add more systems than can fit on a screen for a
display

UNABLE TO CREATE BACKUP PROCESS IN CPU nn
occurs when running NonStop

4-35

Network Management--NETMON Commands
Messages

UNKNOWN COMMAND
self-explanatory

UNKNOWN KEYWORD
self-explanatory

4-36

Syntax Summary

ADD
{ALL I

system [, system, •••]

BACKUPCPU cpu

CPUS system

DELETE
{

ALL I
system [, system, •••]

DISPLAY

EXIT

FC

HELP
[ALL]

command

LOGCENTRAL [O~~]

MAPS [system]

PATHS [system]
, [PATH pathnum

PERIOD [sample]

PROBE systeml]

SHOW

, [PERIOD interval]
, [SYSTEM system2]

STATS [system]

THRESHOLD [percentage

Network Management--NETMON Commands
Syntax Summary

4-37

Network Management--Network Security

NETWORK SECURITY

This section discusses network security. The reader should already be
familiar with one-system security as described in your system
programming manual.

OVerview

Security in a network is more restrictive than security on a single
system. The security philosophy of the system--that the machine
serves a community of cooperating, intelligent users--does not extend
to a network, in which nothing about the remote-user community can be
controlled or assumed.

Therefore, while the security system on one system allows any
operation that is not specifically prohibited, the security on a
network prohibits any operation that is not specifically allowed.
Prior cooperation between system managers at each node is required
before a user at one system can access another.

A user at system X wishing to access a file (disc file, device, or
process) residing on system Y must satisfy each of these three
requirements:

• the user at system X must also be a user at system Y

• the user must have matching REMOTEPASSWORDS set up at both system X
and system Y

• the user
at Y.

at X must have sufficient capability to access a disc

Each of these three security levels is discussed below.

Global Knowledge of User IDs

Each system user is known to the machine by a user name, such as
ADMIN. BILL, and a user identifier, such as 8,4.

A user has access to files on a remote system only if that user~s name
and ID are known to the remote system.

Thus if ADMIN.BILL, whose user ID is 3,46, wishes to access a file on
a remote system, the remote system must also have a user named
ADMIN.BILL whose user ID is 3,46.

Remote Passwords

Once the user identifiers of network users have been added to each
node, a system of remote passwords is used to specify whether remote
access is permitted.

4-38

Network Management--Network Security
Remote Passwords

Each user ID has associated with it a set of remote passwords. One,
specified with the command

:REMOTEPASSWORD \this system name, remote password

designates the password required for a remote user to access this
system. The others, specified by

:REMOTEPASSWORD \remote system name, access password

define passwords used in your subsequent attempts to access remote
systems; such an attempt is successful if the remote-access password
you associate with the remote system matches the remote-owner password
previously specified by the remote user.

Each type of password consists of as many as eight nonblank
characters. Control characters are allowed, and lowercase characters
are not upshifted.

Consider two systems in a network, named \A and \B. On each system, a
user named ADMIN. BILL with user ID 3,46 has been defined.

At system \A, a user types the commands

:LOGON ADMIN. BILL
:REMOTEPASSWORD \A, shazam

"shazam" is ADMIN.BILL~s remote-owner password. From now on, a user
logged onto a remote system as ADMIN. BILL must specify "shazam" as his
remote-access password to access system \A. For example, a system \B
user enters

:LOGON ADMIN. BILL
:REMOTEPASSWORD \A, shazam

This user now has remote access to \A as ADMIN. BILL, and can now
perform operations such as creating processes and accessing certain
disc files. However, when \B can access \A but \A cannot access \B,
the ability to create processes on \A is not useful. The process is
liable to want to access the horne terminal, which is an attempt to
access \B from \A, which is not permitted. Once passwords for both
directions of access are established, everything works.

A remote password, once defined, remains in effect until modified by a
subsequent REMOTEPASSWORD command. ADMIN. BILL can log off and then
log on again without having to respecify his remote passwords.

ADMIN. BILL, logged on at system \B, does not have quite the same
status on \A as the ADMIN. BILL on \A. ADMIN. BILL on \B is a remote
accessor of \A; consequently, he cannot access disc files on \A that
specify "local access only". The next section explains disc file
security.

4-39

Network Management--Network Security
Remote Passwords

Moreover, ADMIN.BILL on \A still has no access to system \B. For
ADMIN. BILL to gain access to \B, a remote-owner password must be
defined for ADMIN. BILL at \B, and matched by a remote-access password
at \A. For example, at \B:

:LOGON ADMIN. BILL
:REMOTEPASSWORD \B, aardvark

and at \A:

:LOGON ADMIN. BILL
:REMOTEPASSWORD \B, aardvark

Now ADMIN. BILL at \A can access \B.

These considerations apply to remote passwords:

• As in the example above, the absence of a remote-owner password
prevents remote access as that user. Thus, if MARKET.SUE does not
supply a remote-owner password, no remote user with the same user
ID can access MARKET.SUE~s system.

• The command

:REMOTEPASSWORD \<system name>

removes any previously designated password (either for the local
system or a remote one). The command

:REMOTEPASSWORD

removes all remote passwords.

• A remote-access password can be issued before the corresponding
remote-owner password. Remote access becomes legal as soon as both
remote passwords have been defined (provided that they match).

• A remote password can be specified for a remote system even though
that system is not currently known or connected to the user~s
system. After the remote system is placed in the network and the
remote user specifies the correct remote password, access to the
remote system may begin.

• Remote passwords are independent of the regular passwords defined
for each user. In the example above, ADMIN. BILL at either system
could issue the command

:PASSWORD <local password>

to prevent unauthorized individuals from logging on as ADMIN. BILL
on that system.

4-40

Network Management--Network Security
Disc File Security

Disc File Security

For each disc file, the user specifies the access level required to
read, write, execute and purge the file. Access levels are set in one
of two ways:

• by using the FUP SECURE command; for example,

:FUP SECURE MYFILE, "AGO-"

• by using SETMODE function 1, "set disc-file security"; bit fields
in the first parameter 1 specify the read-, write-, execute-, and
purge-access via numbers.

Access levels "A", "G", "0", and "-" imply local access only:

A any local user can have access
G members of the file owner's group
o owner only

super-ID only

Classes of network users "N", "C", and "U" are defined thus:

• A network user (N) is any accessor on any system.

• A community (C) is an "extended group" including any accessor,
anywhere on the network, whose group id matches the owner's group
ide Thus, user 8,4 on system \NEWYORK and user 8,17 on system
\DETROIT are members of the same community.

• A user class (U) is an "extended owner"; it includes any accessor
throughout the network whose user ID matches that of the owner.
Thus, user 8,4 on \NEWYORK and user 8,4 on \DETROIT are members of
the same user class.

A disc file can have any of these levels specified for read-, write-,
execute-, and purge-access, using the numeric value with the SETMODE
procedure or the corresponding letter in the FUP SECURE command. The
levels are summarized in Table 4-2.

Table 4-2. Local and Remote Access Codes

numeric value letter
(SETMODE) (FUP) meaning

0 A any local accessor
1 G any local group member
2 0 owner only

4 N any network accessor, local or remote
5 C any member of owner's community
6 U any member of owner's user class
7 - local super-ID

4-41

Network Management--Network Security
Disc File Security

Except for the super-ID, the numeric values for network access are
found by adding 4 to the corresponding local access levels.

Note that SUPER. SUPER has no special authority to access remote files;
no user, including SUPER.SUPER, can access a remote disc file having
"A" security.

Default File Security

Users can specify their own default file security, which is
automatically assigned to any files that they create.

Default file security is set with the DEFAULT command of the command
interpreter. For example, the commands

:LOGON ADMIN. BILL
:DEFAULT $SYSTEM.MYFILES, "NAOO"
:LOGON ADMIN. BILL

cause any disc files created by ADMIN. BILL to automatically have file
security "NAOO". Note that until his next LOGON command, the user's
old default disc file security remains in effect.

EXAMPLES. The combination of user IDs, remote passwords, and disc
file security lets users tailor network security to their specific
needs. These examples demonstrate some possible ways to implement
network security.

Example 1 (Local and Remote Users): Accessors of a file are
classified as either "local" or remote ii with respect to that file. A
local user is one who is logged on to the system on which the file
resides; a remote user is one logged on to a different system.

A remote accessor of a system can become a local accessor by simply
running a command interpreter in the remote system, and logging on.
For example, if ADMIN. BILL on \A has specified the proper remote
password to gain access to system \B, he can issue the commands

:WAKEUP OFF
:\B.COMINT
:LOGON ADMIN. BILL

He is now logged on as the local ADMIN. BILL on system \B. Thus, he
can access disc files on \B owned by ADMIN.BILL having security "0".
This remote session is terminated with a control-Y or LOGOFF. In the
case of a control-Y, the command interpreter then asks "Are you sure
you want to stop your command interpreter on \B?" Reply YES to awaken
the local command interpreter. In the case of a LOGOFF, the command
interpreter simply responds with "Exiting from CIon system \B."

System \B can prevent a remote user from becoming a local user in a
number of ways. One method is to specify "A" as the "execute"

4-42

Network Management--Network Security
Default File Security

security for $SYSTEM.SYSTEM.COMINT, preventing anyone in any remote
system from running the program file.

Another way to prevent ADMIN.BILL, on \A, from logging on to \B is to
simply give ADMIN. BILL at \B a local password that is unknown to
ADMIN. BILL at \A.

Example 2: Suppose that there are so many systems in the network that
nobody wants to type all the required REMOTEPASSWORD commands, but it
is important to deny network access to certain users.

At each node, establish a user called NET. ACCESS, and issue the
following commands:

:LOGON NET. ACCESS
:PASSWORD local password
:REMOTEPASSWORD \system 1, global password
:REMOTEPASSWORD \system 2, global password

:REMOTEPASSWORD \system n, global password

the global password is the same for all systems and is known only to
the system managers: the local password is different for each system
and is given to those users who are allowed to access the network.

Only those users who know the local password can log on as NET. ACCESS.
The command

:LOGON NET. ACCESS, local password

allows them to access remote files.

Example 3 (Sub-networks): In a large network, it may be desirable to
allow users to access some nodes, but not others. For example, you
might want to allow users on system \SANFRAN to be able to access
systems \LA, \SEATTLE, and \CUPRTNO, but not \NEWYORK and \CHICAGO.

In this case, the idea used in Example 1 can be extended to allow
access to any number of subnets, where a subnet is defined simply as
any collection of individual nodes. A user named NET. WEST is
established at each node of the subnet, and a password scheme such as
the one in Example 2 is used to allow certain users to log on as
NET. WEST.

Subnets implemented in this manner can be allowed to overlap or
include one another. For example, \CHICAGO might be accessible
from \NEWYORK, by logging on as NET. EAST, and from \PHOENIX, by
logging on as NET.MIDWEST. Similarly, each node in the entire network
might have a user NET. GLOBAL, who is allowed to access every other
node.

4-43

Network Management--Network Security
Oefault File Security

Example 4 (Oefining the Capabilities of SUPER. SUPER) : On a single
system, SUPER.SUPER is allowed access to any file. On a network, the
user can define whether the powers of the super-TO are local, global,
or somewhere in-between.

To make SUPER~SUPER a local super-TO only, do not issue a
REMOTEPASSWORO command for SUPER. SUPER at any node. This prevents a
remote super-TO from accessing the node's files.

To make SUPER. SUPER a global super-TO, issue, at each node,
REMOTEPASSWORO commands as in Example 2, so that SUPER. SUPER can
access files on remote systems, and give every SUPER. SUPER the same
password. Now, if a disc file has security "A", "G", "0" or "-", a
remote super-TO can still gain access to the file by running a command
interpreter in the system containing the disc file, and logging on as
the local SUPER. SUPER.

To make SUPER. SUPER an in-between super-TO, issue, at each
node,REMOTEPASSWORO commands as in Example 2, so that SUPER. SUPER can
access files on remote systems. Additionally, issue each SUPER.SUPER
a distinct password. Then, any disc file can be protected from remote
access by giving it "A", "G", "0", or "-" security: a remote
SUPER. SUPER cannot log on as the local one, since the local super-TO's
password is unknown.

Process Access

Several security considerations relate to remote processes:

• with respect to a given system, each process in the network is
either "local" or "remote", according to these rules:

A process is remote if it is running in a remote systeme

A process is remote if its creator is in a remote system.

A process is remote if its creator is remote.

According to the second and third rules, even a process running in
a particular system can be remote with respect to that system.
These rules prevent a user from remotely running a process that
creates another process that accesses a file whose security
specifies "local access only".

• A remote process cannot suspend or activate a local process. A
remote ~rocess cannot stop a local process, unless the local
process s stop mode is 0 ("anyone can stop me").

• A remote process can not put a local process into OEBUG.

It is possibie for a process that is remote with respect to the system
in which it's running to become local. For instance, Example 1,
above, characterized users as either local or remote on the basis of

4-44

Network Management--Network Security
Process Access

where they are logged on. The example also showed how a user in
system \A could become local with respect to \B by running a command
interpreter at \B and logging on.

Consider the command interpreter in \B. Its creator is the user~s
command interpreter in \A; thus, the command interpreter in \B is
remote with respect to \B. But the user~s LOGON command causes that
command interpreter to become local with respect to \B. Thus, if you
allow the possibility of a process somehow making itself local with
respect to the system in which it~s running, the concept of local and
remote users becomes equivalent to the concept of local and remote
processes: a user is local (remote) with respect to a given system if
his command interpreter is local (remote) with respect to that system.

A process that makes itself local with respect to the system in which
it is running is said to "programmatically log on" to that system.

Programmatic Logon (VERIFYUSER Procedure)

Programmatic logon is accomplished by calling the VERIFYUSER
procedure, which verifies a user~s password and optionally allows a
process to programmatically log on (i.e., make the user~s ID its own,
and become local with respect to the system in which it is running).

The call to VERIFYUSER is

CALL VERIFYUSER (user name or id,
logon,
default,
default length)

where

user name or id, INT:ref:12,

is an array containing either the name or user ID of the user
to be verified or logged on, where either

user name or
user name or
user name or

or

user name or
user name or
user name or
user name or

id [0~3] = group name, blank-filled
id [4:7] = user name, blank-filled
id [8:11] = password, blank-filled

id [0] .<0:7> = group ID
id [0] • <8 :15> = user ID
id [1:7] = zeros (ASCII nulls)
id [8: 11] = password, blank-filled

4-45

Network Management--Network Security
Programmatic Logon (VERIFYUSER Procedure)

logon, INT:value,

if present, verifies the user and, if its value is nonzero,
logs on; if it is zero, is does not log on. If this option
is omitted, a value of 0 is understood.

default, INT:ref:18,

if present, is returned information regarding the user
specified in user name or id:

[0: 3] = group name, blank-filled
= user name, blank-filled
= group ID
= user ID
= default volume, blank-filled

default
default
default
default
default
default
default

[4:7]
[8].<0:7>
[8].<8:15>
[9: 12]
[13:16]
[17]

= default subvolume, blank-filled
= default file security, this:

default [17] .<4:6> = read 0 = "A" 4 =
default [17] .<7:9> = write 1 = "G" 5 =
default [17] .<10:12> = execute 2 = "0" 6 =
default [17] .<13:15> = purge 7 = " "

default length, INT,

"N" }
"C")
"U" }

}

is the length, in bytes, of the default array. This number
should always be specified as 36; in the future, new fields
can be added to default, requiring default length to become
larger.

These condition code settings are effected by the VERIFYUSER
procedure:

• < (CCL) indicates that a buffer is out of bounds or an I/O error
occurred on the user-ID file.

• = (CCE) indicates a successful verification and/or logon.

• > (CCG) indicates that there is no such user, or the password is
bad.

CONSIDERATIONS. After a successful logon using this procedure, a
process is considered to be local with respect to the system in which
it is running.

A process that passes a bad password to VERIFYUSER for the third time
is suspended for 60 seconds.

4-46

Network Management--Network Security
Programmatic Logon (VERIFYUSER Procedure)

EXAMPLE.

USER := 3 '«' 8 + 17; user ID 3,17
USER[l] ':=' a & USER[l] FOR 6; all zeros
USER[8] ':=' PASSWORD FOR 8;
LOGON := 1; ! log this user on
CALL VERIFYUSER{ USER, LOGON, DEFAULT, 36);
IF < THEN ! buffer or I/O error
ELSE IF > THEN ••• ! no such user, or bad password
ELSE ! successful

NETWORK MANAGEMENT CONSIDERATIONS

To develop and manipulate an EXPAND network it is necessary to use
several Tandem-supplied programs and subsystems. These programs
include: SYSGEN, CUP, PUP, and XRAY. The following discussion gives a
brief description of each program and points out any special
considerations for their use.

SYSGEN

The System Generation (SYSGEN) program generates an Operating System,
for a given hardware/software configuration. Network management
considerations for running SYSGEN for an EXPAND network include:

• Maximum system number (max systems). This network global SYSGEN
parameter specifies the maximum number of systems in the network
and establishes an upper bounds on the system numbers that will be
recognized. Peculiar results occur if the value of max systems is
not agreed to by all systems in ~ network.

Consider the example of a network composed of \SYSTEMA (90) and
\SYSTEMB (lO). If \SYSTEMA is assigned ~ max systems value of 100
and \SYSTEMB is assigned a max systems value of 10, then \SYSTEMB
will never recognize a connect message sent from \SYSTEMA because
the max systems value for \SYSTEMA does not fall within the bounds
specified for \SYSTEMB.

Thus, even though connected properly in all other respects, the two
systems will never be able to communicate. To resolve the problem,
change the max systems values to be compatible in one or both
systems and run another SYSGEN in the modified system{s).

• Establishing an EXPAND link using an X.25 line. As mentioned in
Section 1 of this manual, it is possible to connect two systems
via EXPAND using an X.25 network. To accomplish this you must
perform the following three steps. First, SYSGEN an X.25 line with
the correct subtype to connect to the specific vendor X.25 network
(such as Telenet, Tyrnnet, Datapac, or Transpac). Next, SYSGEN an
EXPAND line (type NET A X25) as a separate LDEV. After the system is
running, use CUP to ADD the EXPAND line as a subdevice to the X.25
line and to specify the various line parameters. (See CUP in the
AXCESS DATA COMMUNICATIONS PROGRAMMING MANUAL.)

4-47

Network Management--Network Security
Network Management Considerations

• Line weight factor. The RECSIZE parameter contains the value of
the line weight factor (recommended values are given in the SYSGEN
section of the GUARDIAN Operating Manual). However, any value may
be selected. In fact, the network manager may cause the NCP to
select a new "best path" by assigning a RECSIZE value small enough
where a particular path is always selectede

• All lines in a multiline path must be in the same controller group
and run in the same cpu. If lines are distributed across multiple
controllers to increase reliability, performance could be reduced
by a controller ownership switch to the backup cpu. An ownership
switch results if the following conditions are true: a non-EXPAND
line (such as AM3270) connected to this controller group fails with
an error in the range 210-226. Failure of a line in an EXPAND
mUlti-line path, however, does not cause an ownership switch.

CUP

The Communications Utility Program (CUP) allows access to data
communication lines in the EXPAND network environment. Operations
performed by CUP include:

• initiate line traces via the TRACE command

• modify communication line or subdevice characteristics via the
ALTER command

• list the SYSGEN configured communication line handlers via the
LISTLH command

• add communication subdevices to an existing line handler via the
ADD command

• list attributes of a particular line, subdevice, or group of
subdevices via the SHOW command

• display line and subdevice statistics via the STATS command;
optionally resets the statistics

• display a previously generated TRACE output file via the DUMP
command

• display system-related network information via the SHOW command

The CUP TRACE facility now allows the Network Control Process (NCP) as
well as the line handler to be traced. The NCP supplies CUP with the
following information:

• NCP messages sent and received on a network path

• Action and state changes caused by the receipt or transmission of a
message, or an event (internal or external) on both an internodal
path and end-to-end path.

4-48

Network Management--Network Security
Network Management Considerations

The CUP STATS command displays statistical information for the default
line; default established through CUP LINE command. Line statistics
are useful in determining optimal values for configuration parameters:

• "NO BUFFER" indicates the number of times the L2 dedicated buffer
was full. This is not an error, but a warning that the next frame
will be discarded if the buffer is not emptied. If the count is
> 10% of the number of I-frames received, the size of the L2
dedicated buffer should be increased.

• "BUFFER USAGE" maintains a count of line handler usage of IOPOOL.
If the value for BUFFER USAGE approaches the SYSGEN value specified
for the processor, the configured size should be increased.

The CONNECT and CLEAR commands establish and terminate connection to
an X.25-type device. For a detailed description of how to use CUP,
refer to the AXCESS Data Communications Programming Manual.

PUP

The Peripheral Utility Program (PUP) performs various functions
related to the peripheral devices connected to the system. Those
functions related to the EXPAND network include:

• the DOWN command removes a line/path from service. If! is
specified, any current activity on the line is aborted. If! is
not specified, the line is removed from service only if there is
no current activity on the line.

• the UP command places a downed line/path back into service. For
NET A X25 lines, connection to the network must have been made
previously through CUP.

• the LISTDEV command displays configuration characteristics for a
given line/path.

PUP is described in the GUARDIAN Operating System Operations Manual.

Console Logging Messages

Two commands (CUP ALTER MSGON/MSGOFF and PUP CONSOLE ENABLE/DISABLE)
work together to determine the manner in which network-related console
messages are handled:

• the CUP ALTER MSGON/MSGOFF command may selectively enable/disable
network messages (43, 46, 48, and 49); messages (44, 45 and 47) are
always enabled. In the event that these messages are disabled, the
NCP discontinues sending them to the operator process. This
results in no message logging to the disc-resident operator log and
a reduction of traffic queued to the operator process. Remote
logging, however, overrides the CUP ALTER disable. In this case,
the NCP simply sends all messages to the logcentral system.

4-49

Network Management--Network Security
Network Management Considerations

• the PUP CONSOLE ENABLE/DISABLE command enables/disables the
printing of the messages on the local system~s console. A
preliminary scan by the NCP checks whether the CUP ALTER command
has enabled/disabled the messages. If enabled through CUP, they
are sent to the operator process where the PUP CONSOLE
enable/disable message list is checked to determine whether to
print or not print the message at the console. However, if
disabled by CUP, the messages are never sent to the operator
process, thus nullifying the effect of the PUP CONSOLE
enable/disable.

EXPAND Line Connection To An X.25 Line

The following example shows how to bring up an EXPAND line connection
to an X.25 line. It is assumed that the X.25 line ($X25LIN) and the
EXPAND line ($EXPLIN) have previously been defined through SYSGEN.

PUP DOWN ! $X25LIN

CUP

> LINE $X25LIN

> ALTER NETADDR 311041500091

! NETADDR is the X25 network address for this line

> ADD iNETLIN, PROTOCOL NET, TYPE (63,0), RECSIZE 256,
LHLDEV 25, NEXTSYS 3, ADDR 311041500091, PORT 77

RECSIZE is the EXPAND packet size in bytes
LHLDEV is the logical device number for $EXPLIN
NEXTSYS is the system number of the EXPAND node connected

by $EXPLIN
ADDR is the X25 network address of the EXPAND subdevice on

the other end of this virtual circuit
PORT is the X25 port number on the line specified by NETADDR

> EXIT

PUP UP $X25LIN
PUP UP $EXPLIN

CUP

> LINE $X25LIN

> CONNECT iNETLIN

causes the EXPAND line handler to ask the X25 AXCESS method
to place a callout to the address in subdevice iNETLIN

> EXIT

4-50

Network Management--Network Security
Network Management Considerations

XRAY

XRAY is a tool for monitoring the performance of a Tandem system.
XRAY monitors:

• cpu use

• line use

• NCP or line handler process use of system resources

For detailed information on how to use XRAY, refer to the XRAY User's
Manual.

4-51

File-Management Error List

APPENDIX A

FILE-MANAGEMENT ERROR LIST

This appendix lists file-management errors individually by error
number, giving a brief explanation of the meaning of each and a code
for the device type associated with each error. These references
correspond to devices as shown in this table:

Device Type

o
1
2
3
3E
4
5
6
7
7.56
8
9

10
11

Explanation

write to another process~s processAid
operator console ($0)
$RECEIVE
disc
disc with ENSCRIBE file structure
magnetic tape
line printer
terminal: conversational or page mode
data communications line (ENVOY)
auto-call unit
punched-card reader
X.25 access method PTP protocol
data communications line (AXCESS)
data communications line (ENVOY ACP)

A-I

File-Management Error List

Error

CCE

o

CCG

1

2

3

4

5

6

7

8

eCL

10

11

12

13

14

15

(%12)

(%13)

(%14)

(%15)

(%16)

(%17)

16 (%20)

17 (%21)

A-2

FILE-MANAGEMENT ERROR LIST

Description

operation successful

end-of-file

operation not allowed on this type file

failure to open or purge a partition

failure to open an alternate key file

failure to provide sequential buffering

system message received

process not accepting OPEN, CLOSE,
CONTROL, or SETMODE messages

operation successful (examine MCW for
additional status information)

I Device Type

any

3,4,6,8

any

3E

3E

3E

2

o

7.*, 11.*

file or record already exists 3

file not in directory: record not in file 3

file in use 3 - 8

illegal filename specification any

device does not exist 3 - 8

volume specification supplied does not 3
match name of volume on which the file
actually resides

file number has not been opened

paired-open was specified and the file
is not open by the primary process, the
parameters supplied do not match the
parameters supplied when the file was
opened by the primary, or the primary
process is not alive

any

any

Error

18 (%22)
•

19 (%23)

20 (%24)

21 (%25)

22 (%26)

23 (%27)

24 (%30)

25 (%31)

26 (%32)

27 (%33)

28 (%34)

29 (%35)

30 (%36)

31 (%37)

32 (%40)

33 (%41)

File-Management Error List

Description Device Type

the referenced system does not exist; any
no connection made to this system since
the last cold load

no more devices in logical device table 3 - 8

attempted network access by a process any
with a five-character name, or a
seven-character home terminal name

illegal count specified any

application parameter or buffer address any
out of bounds

illegal disc address 3

privileged mode required for this any
operation

AWAITIO or CANCEL attempted on "wait" any
file

AWAITIO or CANCEL attempted on a file any
with no outstanding operations

wait operation attempted when any
outstanding requests pending

number of outstanding no-wait operations any
would exceed that specified at OPEN, or
attempt to open a disc file or $RECEIVE
with maximum number of concurrent
operations greater than 1

missing parameter any

unable to obtain main memory space for a 0,1,3 - 8
link control block

unable to obtain SHORTPOOL space for a any
file system buffer area

unable to obtain main memory space for a any
control block

I/O process is unable to obtain IOPOOL 1,3 - 8
space for an I/O buffer, or count too
large for dedicated I/O buffer

A-3

File-Management Error List

Error Description

40 (%50) operation timed out. AWAITIO did not
complete within the time specified by
its time limit parameter. If a OD time

I limit (completion check) or -1 file
number (any file) was specified, then
the operation is considered incomplete.
Otherwise, the operation is considered
completed.

41 (%51) checksum error on file synchronization
block

42 (%52) attempt to read from unallocated extent

43 (%53) unable to obtain disc space for extent

44 (%54) directory is full

45 (%55) file is full

46 (%56) invalid key specified

A-4

47 (%57) key not consistent with file data

48 (%60) security violation; r_emote password
illegal or does not exist

49 (%61) I access violation

50 (%62) directory error

51 (%63) directory is bad

52 (%64) error in disc free-space table

53 (%65) file system internal error

54 (%66) I/O error in disc free-space table

55 (%67) I/O error in directory

56 (%70) I/O error on volume label

57 (%71) I/O error in file label

58 (%72) disc free-space table is bad

59 (%73) file is bad

60 (%74) volume on which this file resides has
been removed or device has been downed
since the file was opened

Device Type

any

3

3

3

3

3

3E

3E

3

any

3

3

3

3

3

3

3

3

3

3

3 - 8

Error

61 (%75)

62 (%76)

63 (%77)
64 (%100)

65 (%101)

66 (%102)

70 (%106)

71 (%107)

72 (%110)

73 (%111)

74 (%112)

87 (%127)

88 (%130)

89 (%131)

99 (%143)

100 (%144)

101 (%145)

102 (%146)

103 (%147)

110 (%156)

III (%157)

File-Management Error List

Description

no file opens are permitted

volume has been mounted, but mount order
has not been given, file open not
permitted

volume has been mounted and mount is in
progress, file open not permitted

only special requests permitted

device has been downed by operator or
a hard failure occurred on controller

continue file operation

duplicate record

attempt to access unmounted partition

file/record locked

READUPDATE called for $RECEIVE and
number of messages queued exceeds
receive depth; or REPLY called with
an invalid message tag; or REPLY
called and no message is outstanding

waiting on a READ request and did not
get it

a CONTROL READ is pending; new READ
invalid

READ after CONTROL completion came in
too late

attempt to use microcode option that is
not installed

device not ready

no write ring

paper out

disc not ready due to power failure

only break access permitted

operation aborted because of break

Device Type

3

3

3

3

1,3 - 8

0,3

3E

3

3

2

subdevice
10

subdevice
10

subdevice
10

3

3,4,5,6,8

4

5

3

6

6

A-5

File-Management Error List

Error

112 (%160)

Description

READ or WRITEREAD preempted by operator
message

120 (%170) data parity error

121 (%171)

122 (%172)

123 (%173)

124 (%174)

130 (%202)

131 (%203)

132 (%204)

133 (%205)

134 (%206)

135 (%207)

136 (%210)

137 (%211)

140 (%214)

145 (%221)

146 (%222)

147 (%223)

150 (%226)

151 (%227)

152 (%230)

153 (%231)

A-6

data overrun error

request aborted due to possible data
loss caused by a reset of the circuit

sub-device busy

a line reset is in progress

illegal address to disc

write check error from disc

seek incomplete from disc

access not ready on disc

address comparison error on disc

write protect violation with disc

unlt ownershlp error (dual-port dlSC)

controller buffer parity error

modem error (communication link not yet
established, modem failure, momentary
loss of carrier, or disconnection)

card reader--motion check error

card reader--read check error

card reader--invalid Hollerith code read

end-of-tape marker detected

runaway tape detected

unusual end--tape unit went off-line

tape drive power on

Device Type

6

'1,3 - 7

1,3 - 8

6, 9

subdevice
10

subdevice
10

3

3

3

3

3

3

I ~ I .)
I ! 6.*, 7.*,
110.*, 11.*

I 6,7

I
8

8

8

4

4

4

4

Error

154 (%232)

155 (%233)

157 (%235)

160 (%240)

161 (%241)

162 (%242)

163 (%243)

164 (%244)

165 (%245)

166 (%246)

167 (%247)

168 (%250)

File-Management Error List

Description Device Type

BOT detected during backspace files or
backspace records

only nine-track tape permitted

I/O process internal error

request is invalid for line state

4

4

3 - 8

7. *, 11. *
more than seven reads or seven writes 11.*
issued

impossible event occurred for line state 7.*, 11.*

7.*, 11.* opera~ion timed out

EOT received 7.0-7.3,7.8

power at auto-call unit is off

disconnect received

data line is occupied (busy)

RVI received

7.56

7.0-7.1,
11.*

7.56

7.0-7.3

data line is not occupied after setting 7.56
call request

ENQ received 7.0-7.1,
7.3, 7.9

auto-call unit failed to set "present 7.56
next digit"

EOT received on line bid/select

"data set status" is not set after
dialing all digits

NAK received on line bid/select

7.0-7.1,
7.3, 7.8

7.56

7.0-7.1,
7.3, 7.8

auto-call unit failed to clear "present 7.56
next digit" after "digit present" was
set

A-7

File-Management Error List

Error

169 (%251)

170 (%252)

171 (%253)

172 (%254)

173 (%255)

174 (%256)

175 (%257)

176 (%260)

177 (%261)

178 (%262)

179 (%263)

180 (%264)

190 (%276)

191 (%277)

A-8

Description Device Type

WACK received on line bid/select 7.0-7.1,7.3

auto-call unit set "abandon call and 7.56
I retry"

station disabled or station not defined 11.*

no ID sequence received during circuit
assurance mode

invalid MCW entry number on WRITE

no response received or bid/poll/select

reply not proper for protocol

maximum allowable NAKs received

invalid MCW on WRITE

WACK received after select

aborted transmitted frame

incorrect alternating ACK received

command re;ect

poll sequence ended with no responder

text overrun

no address list specified

application buffer is incorrect

control request pending or autopoll
active

unknown device status received

invalid status received from device

device power on

7.0-7.1

11.40

7.*, 10.*,
11.*

7.*, 10.*,
11.*

7 • *, 10. *

11.*

7.2-7.3

11.*

7.0-7.3

11.*

7.3,7.8-7.9

7.*, 10.*,
11.*

7.2-7.3,
7.8-7.9,
11.40

10.*

11.40

6.6-6.10,
10.*

1, 3-9,
10.*, 11.*

5

File-Management Error List

Error

192 (%300)

200 (%310)

201 (%311)

Description

device is being exercised

device is owned by alternate port

the current path to the device is down:
inter-processor bus, not network related

an attempt was made to write to a
non-existent process

NOTE

Errors 210 - 226 cause the line handler to check
whether any other lines are active in the path.
If other lines are active, the defective line is
downed and an error 66 is reported. If no other
lines are active, a processor switch occurs and
retries the operation through the switched port.

210 (%322)

211 (%323)

212 (%324)

213 (%325)

214 (%326)

215 (%327)

216 (%330)

217 (%331)

218 (%332)

219 (%333)

device ownership changed during operation

failure of CPU performing this operation

EIO instruction failure; controller
failure

channel data parity error; controller
or channel failure

channel timeout; controller or channel
failure

I/O attempted to absent memory page

map parity error during this I/O

memory parity error during this I/O

interrupt timeout: controller failure,
channel failure, line disconnect
between controller and modem, or loss
of modem clock

illegal device reconnect ion

Device Type

3-6

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

o

1, 3-9,
10.*, 11.*

any

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*,11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

A-9

File-Management Error List

Error

220 (%334)

. 221 (%335)

222 (%336)

223 (%337)

224 (%340)

225 (%341)

230 (%346)

231 (%347)

240 (%350)

241 (%351)

I 248 (%370)

249 (%371)

250 (%372)

A-I0

Description

protect violation

-" .; , pad ~n v~olatlon

bad channel status from EIO instruction

bad channel status from IIO instruction

controller error

no unit or multiple units assigned to
same unit number

CPU power failed then restored

controller power failed then restored

network line handler error; operation
not started. Controller ownership
switched to brother cpu prior to the
request. Link request to backup;
line handler is not the owner of the
controller.

network protocol errotJ operation not
started. Network Routing Table (NRT)
entry not equal to path Idev; new
line handler pid in NRT--retry.

a line-handler process failed and caused
the controller ownership to be switched
while this request was outstanding. The
file system recovers from this error for
files opened with non-zero sync depth.

a network failure caused the controller
ownership to be switched while this
request was outstanding. The file system
recovers from this error for files opened
with non-zero sync depth.

the referenced system is down; not
currently connected to named system

Device Type

1, 3-9,
10.*, 11.*

I -,1, 3 9,
10.*, 11.*

I

1, 3-9,
10.*,11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*, 11.*

1, 3-9,
10.*,11.*

any

! anv i - ~

I
I any

I

any

any

I

File-Management Error List

Error Description Device Type

251 (%373) a network protocol error occurred any

300-511 errors are reserv~d for process
application-dependent usage

A-II

APPENDIX B

CONSOLE MESSAGES

Appendix B contains a summary of the network-related messages that
the communications i/o process and Network Control Process (NCP) send
to the operator console. This appendix also provides a brief
explanation of how to interpret the file management error indication
for a modem status error (140), i/o bus error (218), and not ready
(248) •

CONSOLE MESSAGES

The general form of a console message is:

msg no.] [timestamp FROM sender system no. sender cpu pin
message

where

msg no.
is a system message number; generated by the system as opposed
to being generated by an application

timestamp
is of the form: hDur:minute day month year

FROM sender system no. sender cpu pin
indicate the system number in the network, processor module,
and processid in which the message originated

message
is a message generated either by an application or the system

B-1

Console Messages

NOTE

Entries for msg no., timestamp, FROM sender system
no., sender cpu, and pin are represented by { ••• }
rather than repeating them for each console message.
The Idev and %ccu entries indicate the logical device
number and controller/unit number of the device
causing the message.

Driver Generated Messages

The communications driver sends five network-related messages (04, 06
through 09) to the operator console:

04 { ••• } LDEV ldev [%ccu] ERROR dev status paraml param2 BEL

B-2

an error occurred on the indicated device and the retry was
unsuccessful. The entry for dev status contains the status
returned by the device controller; param2 contains the file
management error number.

The format of the dev status for the Byte Synchronous
controller is:

WRITE UNIT READ UNIT

.<0> = Power On .<0> = Power On

.<1> = Channel Under run .<1> = Device Overrun

.<2> = Channel Abort .<2> = Channel Abort

.<3> = Channel Parity Error .<3> = unused

.<4> = Auto Poll Termination .. <4> = BCC JjI,...,...,...,...
~"'.L. "".&.

.<5> = Data Set Rdy Termination .<5> = VRC Error

.<6> = Modem Loss .<6> = Modern Loss

.<7> = Byte Cnt Termination .<7> = Byte Cnt Termination

If Modem Loss is detected, dev status.<6> = 1, bits.<8:15>
have the following meanings:

WRITE UNIT READ UNIT

.<8> = unused .<8> = unused

.<9> = unused .<9> = unused

.<10> = unused .<10> = unused

.<11> = unused .<11> = unused

.<12> = Modem Loss .<12> = Modem Loss

.<13> = Carrier status .<13> = Carrier status

.<14> = Clear To Send status .<14> = Clear To Send status

.<15> = Data Set Ready status .<15> = Data Set Ready status

Console Messages

If no Modem Loss is detected, dev status.<6> = 0, bits.<8:15>
have the following meanings:

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

WRITE UNIT

state count

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

READ UNIT

= ETB/ETX sensed
= SOH/STX sensed

state count

The format of the dev status for the Bit Synchronous
controller is:

WRITE UNIT READ UNIT

.<0> = Power On .<0> = 0

.<1> = Channel Underrun .<1> = Channel Under run

.<2> = Channel Abort .<2> = Channel Abort

.<3> = Channel Parity Error .<3> = 0

.<4> = Modem Loss .<4> = Modem Loss

.<5> = 0 .<5> = Read Byte Overrun

.<6> = Transmit Underrun .<6> = Receiver Overrun

.<7> = No Encryption .<7> = No Encryption

AUTOPOLL OPERATION MODEM CONTROL OPERATION

.<0> = 0 .<0> = 0

.<1> = Channel Under run .<1> = 0

.<2> = Channel Abort .<2> = 0

.<3> = Channel Parity Error .<3> = 0

.<4> = Modem Loss .<4> = 0

.<5> = Autopoll Terminated .<5> = 0

.<6> = Transmit Underrun .<6> = DSR, Data Set Rdy Intrpt

.<7> = 0 .<7> = 0

If Modem Loss is detected, dev status.<4> = 1, bits.<8:15>
indicate the modem status for the write and read units, and the
autopoll and modem control operations:

.<8> = DSR*, Data Set Ready (inverted)

.<9> = CD*, Carrier Detect (inverted)

.<10> = CTS*, Clear To Send (inverted)

.<11> = Transmit Overrun

.<12> = RS-422

.<13> = Maintenance mode

.<14> = RTS, Request To Send

.<15> = DTR, Data Terminal Ready

B-3

Console Messages

06

If no Modern Loss is detected, dev status.<4> = 0, bits.<8:15>
have the following meanings:

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

{ . . . }

WRITE UNIT

Ending State
Count

AUTOPOLL OPERATION

= 0
= 0
= 0
= 0
= 0
= 0
= End of Poll-List
= End of Poll

LDEV ldev [%ccu UP

READ UNIT

.<8> = Receiver Error

.<9> = ABC.<O>, Assembled Bit Count

.<10> = ABC.<l>

.<11> = ABC.<2>

.<12> = Receiver Overrun Error

.<13> = Abort/Go-Ahead char detected

.<14> = Receiver End-of-Message
@<15> = 0

MODEM CONTROL OPERATION

.<8> = DSR*, Data Set Rdy (inverted)

.<9> = CD*, Carrier Detect (inverted)

.<10> = CTS*, Clear To Send (inverted)

.<11> = Transmit Overrun

.<12> = RS-422

.<13> = Maintenance mode

.<14> = RTS, Request To Send

.<15> = DTR, Data Terminal Ready

the device has been placed online following a PUP UP command

07 { ••• } LDEV ldev [%ccu] DOWN (BEL)

the device has been placed offline following a PUP DOWN command

08 { •.• } LDEV Idev %ccu STATI stl-fl stl-f2 stl-f3

09 { ••• } LDEV Idev %ccu STAT2 st2-fl st2-f2 st2-f3

B-4

messages 08 and 09 report device statistical information. These
statistics are reported if a line~s error count exceeds its
designated threshold value, or after a line is closed with a
nonzero statistic value. The statistics message fields have the
following meanings:

stl-fl = number of messages sent
stl-f2 = number of messages received
stl-f3 = number of NAKS received
st2-fl = number of BCC errors
st2-f2 = number of format errors
st2-f3 = number of retries

Console Messages

NCP Generated Messages

The Network Control Process (NCP) sends twelve network-related
messages (33 through 35, 43 through 49, 91 and 92) to the operator
console:

NOTE

Message numbers 43, 46, 48 and 49 may be enabled or
disabled by use of the CUP ALTER command.

33 { ••• } LDEV ldev NET: LINE QUALITY iii

indicates that the line handler has reported a change in line
quality (greater than or equal to five percent) to the NCP.

34 { ••• } NET: LOGGING AT SYS iii

indicates the system, other than the local system, that the NCP
sends the console log messages. See NETMON LOGCENTRAL command.

35 { ••• } NET: LOCAL LOGGING RESUMED

indicates that the NCP now sends the console log messages to the
local system. See NETMON LOGCENTRAL command.

43 { ••• } LDEV ldev NET: CONNECTION LOST TO SYS iii (xxx)

this message occurs for three reasons:

xxx = 1, the NCP has found all paths to system iii are
unavailable

(BEL)

xxx = 4, an end-to-end protocol error reported by the line
handler. The NCP attempts reconnect through the same path;
if unsuccessful, a reconnect through an alternate path is
attempted.

xxx = 999, recovery from soft failure; related to path
timing

44 { ••• } LDEV ldev NET: LINE READY
X25:

indicates that the line handler is ready to accept network
requests. For the Direct Connect line handler, line ready occurs
after both line handlers (local and remote) have exchanged reset
sequences. For the X.25 interface, line ready occurs after the
line handler is informed of the establishment of a virtual circuit
or learns of the circuit by querying the X.25 AXCESS process.

B-5

Console Messages

45 { ••• } LDEV ldev NET: LINE NOT READY, ERROR ttt (BEL)
X25:

indicates existence of an error that the line handler cannot
resolve through the normal retry mechanism. The line handler will
not accept subsequent network requests; thus causing the NCP to
attempt a reconnect through an alternate path. The error entry
contains a file management error number that describes the
condition that caused the message.

46 { ••• } LDEV ldev NET: CONNECTED TO SYS ttt

indicates a successful connect exchange with the NCP at remote
system ttt

47 { ••• } LDEV ldev NET: LVL 4 TIMEOUT TO SYS ttt (BEL)

indicates that the line handler failed to receive an end-to-end
response within the configured timeout and retry values

48 { ••• } NET: SYS ttt CPU STATUS pppppppppppppppp (BEL)

indicates a change in processor status at system ttt has occurred.
The p entry indicates the up/down (1/0) state of the processors in
the system; leftmost number is processor 0 and rightmost is
processor 15.

49 { ••• } LDEV ldev NET: ttt NOT RESPONDING (BEL)

indicates that the NCP at the receiving system has not received
a status message from the NCP at system ttt for three time
periods. The NCP looks for an alternate path.

91 { ••• } LDEV Idev NET: DEVICE SUBTYPE I~~ALID

occurs during system initialization time if ldev subtype is not
equal to 0, 1, or 2. EXPAND will not run until the SYSGEN LDEV
subtype is corrected.

92 { ••• } LDEV ldev NET: TOO MANY LINES GEN'D FOR THIS PATH

B-6

occurs during system initialization time if ldev subtype is
specified as one of the following: more than 1 path ldev, more
than 1 path/line, or more than 8 line ldevs. EXPAND will not run
until the SYSGEN configuration is corrected.

Console Messages

NETWORK LINE-ERROR DIAGNOSIS

The following discussion provides a brief explanation of how to
interpret the file management error indication for a modern status
error (140), i/o bus error (218), and not ready (248). It is intended
to aid in the diagnosis of line problems within the network.

Modern Status Error (140)

The Network Line Handler reports modern errors for these reasons:

• Data Set Ready (DSR) not detected within 30 seconds.

• DSR lost.

• Carrier Detect (CD) lost.

• Clear to Send (CTS) lost.

Any of the above conditions cause a modern status error indicated by a
file management error (140) or console message (04). In the case of
the console message, interpretation of the dev status bits depends on
whether a byte synchronous or bit synchronous controller is being
used.

For the Byte Synchronous controller, dev status.<13:15> indicate the
reason for the modern status error.

dev status.<13> = Carrier Detect

dev status.<14> = Clear to Send

dev status.<15> = Data Set Ready

For the Bit Synchronous controller, dev status.<8:10> indicate the
reason for the modem status error.

dev status.<8> = DSR*, Data Set Ready (inverted)

dev status.<9> = CD*, Carrier Detect (inverted)

dev status.<10> = CTS*, Clear To Send (inverted)

I/O Bus Error (218)

The Network Line Handler reports 218 errors when a write interrupt
does not occur within the level-2 time period. This error may
indicate a controller problem but also occurs if the modern is not
generating transmit-clock pulses.

B-7

Console Messages

Not Ready (248)

The Network Line Handler reports error 248 when unable to establish
level-2 communications or when all level-2 retries have been
exhausted. Possible reasons for this error are:

• the other system is down. If an alternate path exists, the state
of the other system can be determined by issuing a NETMON MAPS
command.

• incorrect NEXTSYS parameters. This error occurs only on the
initial connection but should not occur after that.

• garbled or no data in/out. By performing successive CUP STATS
commands (one minute interval) and observing the counts for
U-FRAMEs it can be determined whether data is being transmitted and
received. The BCC error count indicates the presence of garbled
receive data.

B-8

If the CUP STATS commands do not indicate both send and receive
data, place the local modem in analog loopback and observe the
U-FRAME counts again. If both send and receive counts are
incrementing, the local controller and modem are okay. If both
systems check out, check the lines by first using the modem
self-test, then observe the U-FRAME counts with the remote modem in
digital loopback. If all tests indicate data is being transmitted
and received, then a trace at both ends of the line should indicate
the cause of the not ready condition.

ADD command 4-8
Alternate key files 3-37
AXCESS Programming Manual 1-4

BACKUP 2-7
BACKUPCPU command 4-9
Best path 4-1/3
Break 4-6

COMINT 2-7

INDEX

Command interpreter startup message 3-34
Communications Utility Program (CUP) 1-4
Community (of users) 4-41
Components of EXPAND 1-2
Console logging messages 4-49, B-1

Network manager related 4-49
Control Y 4-6
Conversion, file name 3-7
CONVERTPROCESSNAME procedure 3-20
CPUS command 4-10
CREATEREMOTENAME procedure 3-21
CRTPIDs 3-5
CUP considerations

Network manager related 4-48

Default disc file security 4-42
Default system 2-4
DELETE command 4-12
Disc file security 4-41
DISPLAY command 4-13

EDIT 2-7
End-to-end protocol 1-3
EXIT command 4-6
EXPAND line connection to an X.25 line 4-50

FC command 4-6
Features of EXPAND 1-1

Best path routing 1-2
Multi-line facility 1-1

Index-l

INDEX

Pass-through routing 1-1
Upward compatibility 1-2
X.25 compatibility 1-2

File access 2-2
File Management System error list A-I
File names, external 3-33
File names, internal 3-3
File names, network 2-2
File names, saving 3-37
FNAMECOLLAPSE procedure 3-8
FNAMECOMPARE procedure 3-13
FNAMEEXPAND procedure 3-9

network use 3-12

GETPPDENTRY procedure 3-22
GETREMOTECRTPID procedure 3-24
GETSYSTEMNAME procedure 3-25

HELP command 4-15

Line error diagnosis B-7
Line handler 1-3
Line handler, Direct connect 1-3
Line handler, X.25 1-4
LOCATESYSTEM procedure 3-26
LOGCENTRAL command 4-16
Logon, programmatic 4-45

MAPS command 4-18
Messages, NETMON 4-34
MONITORNET procedure 3-27
MYSYSTEMNUMBER procedure 3-28
MYTERM procedure

Network considerations 3=33

NETMON program 1-4, 4-4
ADD command 4-8
BACKUPCPU command 4-9
break 4-6
control Y 4-6
CPUS command 4-10
DELETE command 4-12
DISPLAY command 4-13
EXIT command 4-6
FC command 4-6
HELP command 4-15
LOGCENTRAL command 4-16
MAPS command 4-18
messages 4-34
PATHS command
PERIOD command
PROBE command
SHOW command
STATS command

Index-2

4-23
4-27

4-28
4-30

4-31

syntax summary 4-37
THRESHOLD command 4-33

Network (users) 4-41
Network Control Process 1-2
Network file names 2-2

Partitioned files 3-37
Passwords, remote 4-39
PATHS command 4-23
PERIOD command 4-27
PROBE command 4-28
Procedures, network 3-19
Process access 4-44
Process creation, remote 3-35
Process ID, network 3-5
PROCESSINFO procedure 3-29
Programmatic logon 4-45
Programming

Network considerations 3-33
Programming examples 3-11, 3-14
PUP considerations

Network manager related 4-49
Operator-related 2-8

Remote passwords 4-39
Remote process creation 3-35
REMOTEPASSWORD Command 4-39
REMOTEPROCESSORSTATUS procedure 3-32
RESTORE 2-7
Routing changes 4-3
RUN command 2-5

Security overview 4-38
Security, default disc file 4-42
Security, disc file 4-41
Sending the startup message 3-36
SETMODE (for disc file security) 4-41
SHOW command 4-30
SPOOLER considerations

Operator-related 2-8
STATS command 4-31
Syntax summary, NETMON 4-37
SYSGEN considerations

Network manager related 4-47
System name 2-3, 3-2
System number 3-2

THRESHOLD command 4-33

User class 4-41
User IDs 4-38
Utility programs 1-4

VERIFYUSER procedure 4-45

INDEX

Index-3

INDEX

Weight factors 4-2
WHO command 2-6

X.25 line
EXPAND line connection 4-50

XRAY considerations
Network management related 4-51

Index-4

FOLD ~

FOLD ~

READER'S COMMENTS

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easily
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s): _____________________________ _

FROM:

Name

Company _______________________________ _

Address

City/State ___________________ _ Zip

A written response is requested yes no

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

¥~~@)§~
COMPUTERS

19333 Valleo Parkway
Cupertino, CA U.S.A. 95014
Attn: Technical Communications-Software

STAPLE HERE

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

..c FOLD

..c FOLD

82085 BOO TANDEM COMPUTERS INCORPORATED
1 9333 Valleo Parkway
Cupertino. CA 9501 4

