
INSPECT USERS MANUAL

Beta Release

TANDEM COMPUTERS INCORPORATED
19333 Vallco Parkway

Cupertino, California 95014

Part No. 82315 Preliminary August 1982
. Printed in U.S.A.

Copyright (c) 1982 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks or servicemarks of Tandem Computers
Incorporated: Tandem, Nonstop, AXCESS, DYNABUS, ENABLE, ENCOMPASS,
ENFORM, ENSCRIBE, ENVISION, ENVOY, EXCHANGE, EXPAND, GUARDIAN,
PATHWAY, TGAL, TRANSFER, XRAY.

INFOSAT is a trademark in which both Tandem and American Satellite
have rights.

PREFACE

This book documents the features of INSPECT, one of Tandem's program
development tools.

INSPECT is.an optional program. It provides interactive debugging in
both ~ource level and machine level modes. It is used for debugging
user processes running under the GUARDIAN operating system. INSPECT
is also used for deb~gging terminal-programs running in the PATHWAY
environment.

·Intended users are system and application programmers.

The organization of this book is as follows:

o Section 1 Introduction provides a product overview.

o Section 2 Running INSPECT describes the methods of invoking INSPECT
and brie~ly describes session features.

o Section 3 INSPECT Commands describes in alphabetic order the
high-level commands and summarizes the low-level commands.

o Section 4 COBOL and SCREEN COBOL Dependencies gives
language=specif ic information for COBOL and SCREEN COBOL users of
INSPECT.

o Section ~ FORTRAN Dependencies gives language-specific information
for FORTRAN users of INSPECT.

o Section ~ TAL Dependencies gives language-specific information for
TAL users of INSPECT.

o Section 1 INSPECT Operations.describes the system dependencies to
provide INSPECT support. (Section to be added.)

o Appendix A Basic Commands describes the basic commands that are
included in INSPECT support.

o Appendix B Language Operators lists the operators for each
language. (Section to be added.)

iii

PREF AC

o Appendix C INSPECT Error Messages lists the user error messages ar
the messages related to system operation. (Section to be added.)

o Appendix D Sample Session. (Section to be added.)

o Appendix E Syntax Summary.

Prereguisites

This book assumes user knowledge of at least one of these languages:
COBOL, FORTRAN, or TAL.

Familiarity with writing, compiling, and running programs in the
Tandem environment is essential. The following manuals should be
available.

o Introduction to Tandem Nonstop Computer Systems

o COBOL Programming Manual

o FORTRAN 77 Reference Manual

o PATHWAY Programming Manual
•

o PATHWAY Operating Manual

o Transaction Application Language Reference Manual

0 EDIT Manual

o GUARDIAN Operating System Command Language and Utilities Manual

In addition, these manuals can be·helpful.

o Tandem Nonstop II System Description Manual

o Tandem Nonstop System Description Manual

o BINDER Users Manual

o CROSSREFERENCE Users Manual

j

CONTENTS

SECTION 1. INTRODUCTION •• .
Supported Languages •••••••• . •••• 1-1

•••• 1-1
·The Environment ••••••••
Distributed Debugging.
Modes and Features ••

High-Level Mode.
Low-Level Mode ••••

. • 1-1 .1-3 . ••• 1-3 . • •••••••••••••• 1-3 . •• 1-4

SECTION 2. RUNNING INSPECT.......................... •••••••• .2-1
The INSPECT MONITOR Process......................... • •••••••••• 2-2
Debugging Programs as GUARDIAN Processes. • ••••••••••••••••••••• 2-2

Compiler Directives.............................. •••••• • •• 2-2
BINDER Options••• •• 2-3
Command Interpre·ter Options...................... • ••••••• 2-3

Debugging Programs under a PATHWAY TCP. ••••••••••• •••••• • •• 2-4
SCREEN COBOL Compiler Directive...... ••••••• .2-4
PATHCOM Commands............................... ••••• .2-4
Inspecting Servers. ••• ••••• •••••••••••• • ••••••••• 2-6
The INSPECT Process. ••••••••••••••••••••••••••••• ••••• .2-6

Concepts ••••••••••• •••••••••• 2-6
Hold State ••• .2-6
Name Scope •••••••••

Identifying Code Locations ••
Identifying Data Locations ••

. •••••• 2-7
• •••••••••••••••••••••• 2-8 . ••• 2-10

• •• 2-10
.2-11

The INSPECT Session ••••••••••••••••
Setting Breakpoints.
Break Occurrence ••••••••

.
Displaying Memory •••••••••••••••••••••••••••••••

INSPECT Functions and High-Level Commands ••
Using the Break Key •••

Program Status •••••••••
.

Command Entry •••••••••••••••••••••••••••••••••
Stopping INSPECT••••••••••••••••••••••••••••••••••
SET INSPECT Command Command Interpreter.
RUN Command •••

.
•••••••••• 2-12

• •••••••••• 2-13
• •••••••••• 2-14 • •

.2-16

.2-17
• • • • • • • • • • • • • • 2-17

•• 2-17
.2-18

••• 2-19

SECTION 3. INSPECT COMMANDS. .3-1
Symbolic References ••••
Recursion and.Scope ••
ATTRIB Command ••••••
BREAK Command •••

. • •••••••••••••••• 3-3
••••••••••••• 3-5 . • ••••••• 3-6 • • • e • • • • • • • • • • • • • • ••• 3-8

v

CLEAR Command •••••••••

CONTENTS

••••••••••• 3-13
•••••••••••• 3-14 COMMENT Command •••••••••••••••••••••

DEFINE Command ••••••••••••••••••••••••
DISPLAY Command •••••••••••••••••

. • ••••••••• 3-15 •• ~3-17
FILES Command •••••• . •••••• 3-26
HIGH Command ••
HOLD Command.
IF Command •••

. ••••.•••••• 3-28
• • • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • • • • • .3-29

LOW Command ••
MODIFY Command ••••••••••••••••••

. • • • , •••••• 3-31
• •••••••• 3-32

• •••••••..••••• 3-36 . . . PAUSE Command ••
PROGRAM Command ••••••
RADIX Command ••••
RESUME Command •••••

• • ..3-39 . • •• 3-40
• • • • 0 • • • • • •••••• 3-423-44

SAVE Command ••• . . •• 3-46
SCOPE Command.
STEP Command ••••••••• ..3-48

•• 3-50
•• 3-52 STOP Command ••

TERM Command.
TIME Command ••
TRACE Command.

. • • • • • • • • • • • • • • 0 •••••• 3-53 ..3-54
.3-55

SECTION 4. COBOL and SCREEN COBOL DEPENDENCIES •• • ••• 4-1
Code References •••••• • ·• •••••• 4-1
·scope •••••••••••••• 4-2

• ••••••••••.••••••• 4- 2 Breakpoint Locations •••••
Code Location (CODELOC) Syntax. • ••• 4-3

Data References. 4-4
Data Location (DATALOC) Syntax ••
Subsripts •••••

. ••••• • ••• 4-5
• ••• 4-5

Expressions •••••••••••••
Numeric Expressions ••

Display Format Specifiers.

. • • • • •••••••••••••••• 4-6
• • • • • • • • • • • • • • • • • • •• 4-6 . • 4-6

SECTION 5. FORTRAN DEPENDENCIES ••
Code Locations •••••• . .
Data locations ••
Expressions •••••

.
. • • • • • e • • • • • 5-1

. 5-1 • 5-3
••• 5-4

SECTION 6. TAL LANGUAGE DEPENDENCIES............ • •••••••••• 6-1
Code Locations.... •••••••••••••••••••••• •• • •••••••••• 6-1
Data Locations....... •••••••••••• •••••• ••••• • •• 6-2
Express ions •••.••••••••••• 6-4
Usage ••• ·• •••••••••••••••••• 6-4
NEWPROCESS Procedure. ••• •••••••• •••• • ••• 6-4

APPENDIX A. BASIC COMMANDS.... ••••••• •••••• ••••••••• • •• A-1
File Name Expansion...... • •••••••••••••••••••••••••••••• A-1

Expand Disc File Names....................... ••••••••• • •• A-1
Process and Device Names.. •• • ••••••••••• A-2
ENV Command •••••••• ~ • A-2
EXIT Command. • A-2
FC Command..... •••• •• •• •••• .A-3
HELP Command •• ••••• A-3

vi

LOG Command ••••••••••••••••••• .

CONTENTS

. •• A-4
•• A-5 OBEY Command ••••••

OUT Command •••••••••• •••••• •••••••• ••••••• A-6
SYSTEM Command ••
VOLUME Command.

. ••••••••••••••••••••••••••••••• A-7 . •••• A-7

~PPENDIX E. SYNTAX SUMMARY FOR SESSION COMMANDS ••••••••••••••••••• E-1

vii

CONTENTS

SYNTAX CONVENTIONS IN THIS MANUAL ---
The following is a summary of the characters and symbols used in the
syntax notation in this manual. For distinctiveness, all syntactic
elements appear in a typeface different from that of ordinary text.

Notation

UPPER-CASE
CHARACTERS

lower-case

Brackets []

Braces {}

Vertical
Bars

Ellipses •••

Punctuation

Meaning

Upper-case characters represenc keywords and reserved
words. If a keyword is optional, it is enclosed in ·
brackets. If a keyword can be abbreviated, the part
that can be omitted is enclosed in brackets.

Lower-case characters characters represent all
variable entries supplied by the user.

Brackets enclose all optional syntactic elements. A
group of items enclosed in brackets represents a list
of selections from which to choose one or none. The
list may be vertically- or horizontally-aligned.

Braces enclose a list of required items· from which to
choose only one. The list may be vertically- or
horizontally-alignede

A vertical bar separates members of a horizontal list
of selections. These lists usually contain a small
number of simple elements.

When an ellipsis immediately follows a.n item, that
item can be repeated any number of times. of brackets
or braces, When an ellipsis immediately follows a list
enclosed in brackets or braces, that list can be
repeated any number of times.

All punctuation and symbols other than those described
above must be entered precisely as shown. If any of
the above punctuation appears enclosed in quotation
marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

viii

SECTION 1

INTRODUCTION

INSPECT is a symbolic debugger. It allows you to control. running
processes and SCREEN COBOL programs, to examine memory and modify data
values -- all with commands that use your source language. Both the
Nonstop and Nonstop II systems support INSPECT; INSPECT recognizes the
same source language commands for either system.

Besides the source language commands, INSPECT supports machine level
commands to give you maximum debugging flexibility.

SUPPORTED LANGUAGES

INSPECT can control programs written in COBOL, FORTRAN, TAL, and
SCREEN COBOL, or in combinations of those languages. The command
structure is the same for all supported languages, yet the command
elements -- symbolic names and operators -- are expressed in the same
syntax as the source language.

THE ENVIRONMENT

Once INSPECT has been lpstalled on a system, INSPECT handles debugging
through a system monitor and a cpu monitor. An INSPECT process is
associated with a terminal and can control more than one process or
program.

In the Command Interpreter environment, the $IMON process monitors cpu
activity, creates the cpu monitor process $DMON as required, and
cr 1eates INSPECT processes. $IMON creates an INSPECT process whenever
a debugging event for a process or program in INSPECT-debugging mode
ocicurs. Figure 1-1 shows the INSPECT environment.

l=l

' '·

INTRODUCTION

------------------------~---

Figure 1-1. The INSPECT Environment Under the Command Interpreter

In the PATHWAY environment, the TCP process communicates with $IMON
and the INSPECT process associated with a logical-terminal program.
For convenience, it can be desirable to use separate terminals to
enter commands for SCREEN COBOL programs and server processes. Figure
1-2 shows the PATHWAY-INSPECT environment.·

---------------------~---------.--------~~;~_......_,~ .. ----...-----~~.----------

Figure 1-2. The INSPECT Environment Under PATHWAY

1-2

INTRODUCTION

DISTRIBUTED DEBUGGING

A single INSPECT process can contiol or query all the processes
in.valved in an application. The application can be distributed across
an EXPAND network.

MODES AND FEATURES ---
INSPECT has two modes: high-level mode for source-language debugging,
and low-level mode for machine-language debugging. You can use either
one or both modes in a single session.

Besides display, modify, break, and trace functions, both modes
provide basic utilities such as HELP, FC, LOG, /OUT listfile/ for all
commands, and OBEY.

High-Level Mode

To use all the features of INSPECT's high-level mode, you must have
symbol tables included in the output of compilation.

Special features of high level INSPECT are:

o identifying code and data locations using source language
expressions

o stepping through execution

o automatic or user-controlled creation of process environment
image in a disc save file

o examining the created save file

o d.efining names for command strings

o extended break conditions and actions

o formatted displays

Some features, such as program stepping, don't need program
symbol information. These can be used by any program.

1-3

INTRODUCTION

Low-Level Mode

Low-level mode allows operations that are not possible in high-level
mode, like displaying and modifying registers. Low-level mode does
not use symbol tables and is available at any time from high-level
mode in COBOL, FORTRAN, and TAL. Low-level mode is not available in
SCOBOL.

Its use is similar to the GUARDIAN debug facility DEBUG. Therefore,
you must understand the system hardware registers and addressing modes
to use low-level INSPECT. If symbol tables exist, you can use
high-level commands instead of compile~ listings for the information
you need.

LOW LEVEL -- COMI-iANDS AND FEATURES. In general, the DEBUG commands
are availabie in low-level INSPECT with some extensions. The commands
and syntax are as for Nonstop II DEBUG. The LOW command description
in Section 3 includes a summary of low-level commands. If you need
additional information, refer to the DEBUG Reference Manual~ for your
system.

1-4

SECTION 2

RUNNING INSPECT

Requirements for running INSPECT are:

o INSPECT installed on the same system as the home terminal of the
process to be debugged

o User read access to the object .file of the process or SCREEN
COBOL program to be debugged~ The program can be running on
another system as long as it is accessible across the network.
The INSPECT process is created on the local node.

o INSPECT installed on the system where the process or SCREEN COBOL
program to be debugged is executing.

Each process has an INSPECT attribute that specifies whether its
debugging is to be handled by DEBUG or by INSPECT.

Assuming that INSPECT is available, the steps to start INSPECT
debugging depend on the environment of the user's program. In
general, when a process starts other processes, the descendants
inherit the INSPECT attribute of the parent.

1. If the user specifies INSPECT as the debugger for a Command
Interpreter, any processes started by that Command Interpreter
automatically have INSPECT as the default debugger.

2. If PATHMON of a PATHWAY system has INSPECT specified as the.
debugger, server processes under PATHMON automatically have
INSPECT as the debugger. INSPECT is the only debugger that can
be specified for requester processes.

This section provides an overview of the options for those
environments.

2-1

RUNNING INSPECT

THE INSPECT MONITOR PROCESS

If INSPECT is installed on a system, one system process monitors
INSPECT requests. A quick way to tell whether INSPECT is installed on
your system is to query the status of the INSPECT monitor ($IMON):

STATUS $IMON

The Command Interpreter displays the status line for the terminal and
the program name i.f INSPECT is installed. Otherwise, the display
informs you that $IMON. doesn't exist on that system.

DEBUGGING PROGRAMS AS GUARDIAN PROCESSES

Since DEBUG is the GUARDIAN default debugger, INSPECT must be
explicitly chosen for debugging. Three levels of choice are
available1 choosing INSPECT_ at any level is sufficient. (The decision
is the logical OR.) Essentially, the INSPECT attribute is selected
for the program file or for the run environment. The options are:

1. the default for the logon session

2. the RUN option for each process (which can override the session
default)

3. the object-file default for the program.

Options 1 and 2 are available regardless of the compiler version used
to compile the program. Option 3 is available only with compilers
compatible with operating system releases starting with:

o Nonstop Release EOS

o Nonstop II Release A04

Compiler Directives

COBOL, FORTRAN, and TAL provide these compiler directives to specify
object file debugging characteristics:

1. ?[NO] INSPECT chooses whether INSPECT or DEBUG is the
default debugger for an object file.

2. ?[NO]SAVEABEND chooses whether a save file for the
process environment is created on abnormai termination1
SAVEABEND

2-2

RUNNING INSPECT

3. ?[NOJSYMBOLS chooses whether a symbol table is included
in the object file for high-level symbolic debugging.

Re!fet: to your language reference manual for details.

Bl:NDER Options

After compilation, the BINDER process can be used in command-driven
moide to specify INSPECT for an object file. These SET command options
allow respecification of the compiler directives:

1. INSPECT ON I OFF

2. SAVEABEND ON I OFF

3. SYMBOLS ON I OFF

No,te that the BINDER cannot include a symbol table after compile time.
The SYMBOLS option can be useful to cause BINDER to delete symbol
tables that are no longer needed. Using SYMBOLS, the tables still
exist in the original object files since BINDER copies the input files
to build a new target file. (To delete symbol tables without copying
the original file, the BINDER STRIP command can be used.) Refer to
the BINDER Users Manual for more information.

Command Interpreter Options

Regardless of an object file's characteristics, INSPECT can be
selected at run time for the process. These Command Interpreter
facilities are available:

1. :SET INSPECT ON I OFF I SAVEABEND specifies whether· INSPECT
is the default debugger for all programs started by the Command
Interpreter. SAVEABEND implies that INSPECT ON is selected.
SET INSPECT is effective until respecified or until logo££. At
logoff, the default DEBUG is always in effect.

2. :RUN[D] program-name I INSPECT ON I OFF I SAVEABEND I selects
INSPECT as the debugger for that process. .sAVEABEND implies
that INSPECT ON is selected.

3. :DEBUG places the identified process in debug mode •.
INSPECT must have been previously specified either in the object
file or by another Command Interpreter command

Note that the INSPECT attribute is inherited by descendant processes.
For example, if the SET INSPECT ON option was specified and a PATHMON
is started under that Command Interpreter, INSPECT ON is in effect for
pr~ograms started by PATHMON.

2-3

RUNNING INSPECT

The GUARDIAN O~erating System Command Language and Utilities Manual
contains more information on Command Interpreter commands.

A process will inherit the INSPECT/SAVEABEND attribute only if the
user has read access to the program file from which th4~ process is
created.

DEBUGGING PROGRAMS UNDER A PATHWAY TCP

To use INSPECT in the PATHWAY environment, a TCP must be identified
for debugging the requester programs in addition to selecting INSPECT
as th~ debugger for the server processes.

It is convenient to enter INSPECT commands at a a different terminal
from the TCP's home terminal, so PATHCOM accepts an optional terminal
name for INSPECT. The default terminal for command entry is the TCP's
home terminal.

INSPECT can simultaneously control both requesters and servers.
Servers can have the INSPECT attribute set for the object _file either
by the compiler or the BINDER. (See the preceding information in this
section.)

SCREEN COBOL Compiler Directive

SCREEN COBOL includes one compiler directive for INSPECT.

?[NO]SYMBOLS specifies whether a symbol table for high-level
INSPECT symbolic debugging should be included in the program's object
files. Refer to the descriptions of the compiler directives in the
PATHWAY Programming Manual. (Since neither save files· or the DEBUG
program can be used for SCREEN COBOL programs, the INSPECT and
SAVEABEND compiler directives for oth~r languages have no meaning.)

PATHCOM Commands

PATHCOM commands that identify TCPs, servers, and terminals for
INSPECT communication are:

1. = SET TCP INSPECT ON [, inspect-terminal-name] I OFF

2. = SET SERVER DEBUG ON OFF

3. = SET TERM INSPECT ON [, inspect-terminal-name] I OFF

4. = INSPECT logical-terminal-name [, inspect-terminal-name]

2-4

RUNNING INSPECT

where inspect-tetminal-name can be other than the TCP's home terminal.
('11he PATHMON terminal is one example.) The commands shown set the TCP
characteristics when the TCP is first added. The characteristics can
be· respecified by ALTER commands. Refer to the PATHWAY Operating
Manual for more information.

Inspecting Servers

PA.THWAY serve~s have a combination of attributes because:

o they are started by PATHMON, and

o they are produced from COBOL, FORTRAN, and TAL source code.

Therefore, the means of specifying INSPECT debugging for servers
includes all the following:

o compiler directives (INSPECT, SAVEABEND, and SYMBOLS)

o BINDER commands (SET INSPECT I SAVEABEND I SYMBOLS)

o inheriting the INSPECT attribute from PATHMON (Command
Interpreter RUN I INSPECT ON I OFF I SAVEABEND I)

o PATHCOM command (SET SERVER DEBUG ON I OFF)

The SET SERVER DEBUG ON command causes INSPECT or DEBUG to receive
control when the server is started. (Note that SET SERVER only
results in INSPECT as the debugger if INSPECT was specified in the
pr·ogram file, or if PATHMON was run with INSPECT ON.)

The INSPECT Process

Unlike DEBUG, INSPECT runs as a separate process. The INSPECT process
is created automatically when a debug event occurs in a process which
has the INSPECT attribute on. The INSPECT process is created with the
sa:me home terminal as the process being debugged. A single INSPECT
process is created for all processes being debugged with a given home
terminal.

Alternatively, an INSPECT process can be run directly from the Command
Interpreter. This is typically done to allow analysis of a "save
file" created by SAVEABEND or the the INSPECT SAVE command. See .the
SAVE and PROGRAM command descriptions in Section 3 of this manual. An
ex.ample of this use of INSPECT is:

:INSPECT PR ZZBI0317

2-5

RUNNING INSPECT

CONCEPTS

INSPECT's interpretation of your commands relies on th·ese concepts:
the execution state of the process or SCREEN COBOL program being
debugged and the name scope for command symbols.

The Hold State -----
Although this discussion concentrates on the hold state, there are
three execution states:

1. run state - instructions are executing

2. hold state - execution is suspended

3. stop state - execution has ended, normally or abnormally.

Many INSPECT commands require the hold state. For example,. INSPECT
can only modify data if execution is suspended for a time.

If INSPECT mode is on for a process, INSPECT receives control and
suspends execution for any of these conditions:

o :RUND command; INSPECT receives control before process execution
begins

o :DEBUG entered· while for a process started by the Command
Interpreter. This is the "forced hold". INSPECT displays its
header and the current execution status. Then, INSPECT prompts
the terminal for commands. (The process identifier on the DEBUG
command is required if the Command Interpreter should suspend a
process other than the la~t one started.)

o =INSPECT entered while a TCP program thread (that is, a SCREEN
COBOL program) is running. This results in a "forced hold" that
suspends the program as described above.

o An illegal operation occurs during execution, and no ARMTRAP
routine exists. This results in a "trap hold". INSPECT displays
its header and a status line that describes the location and type
of trap. Then, INSPECT prompts for commands.

2-6

RUNNING INSPECT

o A CALL DEBUG statement in the source code causes entry to
debugging mode. INSPECT displays a header that states the hold
is for a call and gives the program location of the call. This
facility does not exist for SCOBOL.

o A breakpoint was set for either normal tetmination (STOP) o~
abnormal termination (ABEND) • The INSPECT header states whether
the hold was for a STOP or ABEND and the program location at
termination.

o A breakpoint was set for execution of a code 1ocation or for
access of a data location. The INSPECT header states that the
hold is for a BREAK command and displays the breakpoint
description as it was entered.

For users. who are familiar with DEBUG, INSPECT holds processes for all
the conditions that caused the hold state under DEBUG.

Name Scope

When a command refers to a name, or symbol, the resulting action
depends on the execution state of the procedure that declared the
name. This is the name scope of the symbol. Scope equivalents in
different languages--are:

o program unit in COBOL or SCREEN COBOL

,o program unit (program or subprogram) or common data block in
FORTRAN

,o procedure or common data block in TAL.

For simplicity, this discussion includes TAL procedures in references
to "program unit". Relative to the program's execution, the scope of
an:y program unit is one of:

10 the current scope - the program unit that is currently executing

10 an active scope - any program unit that was called but not yet
exited. (It has a local entry on the data stack.) An active
scope need not be the current scope.

10 an inactive scope - any program unit that does not have a current
call in effect.

INSPECT executes only display-type commands for inactive scopes. Note
that you can set breakpoints for inactive scopes.

2-7

RUNNING INSPECT

IDENTIFYING CODE LOCATIONS. The general form for code location ,..--
expressions is:

[tprog-unit •] f name [OF qual-name] l
[• name 1 j l qual-name

[{ + I - } integer [code-pnit]] •••

where

tprog-unit indicates the name of a program unit

name is a language-dependent item that is a valid iden.tifier
such as an entry-point name, label, or statement number

qual-name is a language-dependent item. It either qualifies
name (as in COBOL and SCREEN COBOL OF section-name) or it is
qualified by name as in TAL, where name can be a suprocedure
and fiual-name--caii be a label. Refer to the language sections
in t is manual for additional information.

code-unit is a source level construct. It is one of:

STATEMENT
VERB
INSTRUCTION

STATEMENTS
VERBS
INSTRUCTIONS

s
v
I

Scope References. tprog-unit identifies a scope. If the code
location is in the current scope, this expression element is optional.
Oth~rwise, the scope· reference must be explicit. Examples are:

fscopename - base of program unit scope-name.

tscopename.label - location of label in the program unit.

fscopename.entryname - location of entry point entryname.

tscopename.scopename - location of the primary entry point.

Code Units in Expressions. COBOL and SCREEN COBOL terms are the basis
'OTtQe STATEMENT and VERB units. The FORTRAN and TAL equivalents of
STATEMENT or VERB is the statement.

In COBOL, FORTRAN, and TAL, the INSTRUCTION is a machine-language
instruction, which occupies one word. In SCOBOL, the INSTRUCTION unit
is one byte.

2-8

RUNNING INSPECT

INIDENTIFYING DATA LOCATIONS. Data location expressions refer to any
data obJect in memory. Read-only arrays have the same rules as other
data objects.

The COBOL general form for data location is:

name [{ OF }] qualifier-name ••• [index]

-----------------------------~--------------------------------~----~--

Example:

FIELD OF SUBREC OF REC (X, Y, Z)

The FORTRAN general form for data location is:

qualifier-name [subscript] [A name [subscript]] •••

Example:

REC (x) A SUBREC (y) A FIELD (z)

The TAL general form for data location is:

--~----~~~

qualifier-name [subscript] [• name [~ubscript]] •••

--~-----~-

Example:

REC [X] • SUBREC [Y J • FIELD [Z]

THE INSPECT SESSION

When INSPECT gets control the f~rst time, it displays this header.

INSPECT - SYMBOLIC DEBUGGER - T9623AOO - (19JUL82) SYSTEM \YOURS
INSPECT P=001174, E=000207

The P and E values are the current values for the P-register and the
E-register, respectively. The reason for the hold is indicated on
this line if the hold was not for initial hold. For example, a CALL
DEBUG statement results in this display:

2-9

RUNNING INSPECT

INSPECT P=001174, E=000207 - CALL -

The program status line is displayed next.

099,07,043 QUEENOBJ IQUEENSCO + 6 QUEENSCS[S6]

Status line information is:

1 *G99,07,043* asterisks indicate the current scope;
"099,07,043" is the system and cpu,pin.

2 QUEENOBJ the object filename; if the process was
named, $pname is displayed instead (for
example: $QN2) •

3 #QUEENSCO + 6 the current scope and offset; QUEENSCO
is a program unit name in this example.
"6" is the offset into the code block.
In COBOL, FORTRAN, and TAL the offset
is in words; in SCOBOL, it is in bytes.

4- QUEENSCS (56] the name of the source file that yi.elded
the scope and the source line equivalent
to the scope off set; this field is only
displayed if symbol tables exist for the
scope.

The first prompt is the next line displayed. The prompt depends on
whether high or low-level command mode is the default for the current
scope. (On initial hold, the current scope is the MAIN code unit.)
The default mode is high level if symbol tables exist; otherwise, it's
low level. ·

The prompts are:

o hyphen "--" for high-level command mode

-QUEENOBJ- or -$NAMEX-

o underscore " " for low-level command mode

_ QUEENOBJ_ or _$NAMEX _

The program id, if included in the prompt, identifies the current
program. For COBOL, FORTRAN, and TAL named processes, the program id
is the process name; otherwise, the program id is the disc file name.

Setting Breakpoints

Often, the first commands issued when a program enters the hold state
are to set breakpoints at certain locations in the code area. On
Nonstop II systems, you can also set a single data area breakpoint.

2-10

RUNNING INSPECT

Breakpoints can refer to active or inactive scopes.

EX:AMPLES OF BREAKPOINTS. Using the code location scheme previously
discussed-,-the following are examples of. BREAK commands.

1) BREAK #attemptdisplay + 2 ~RBS IF display-try > 10 .

This BREAK command sets a breakpoint in COBOL program unit
ATTEMPTDISPLAY at an offset equivalent to the second verb. The
break occurs only if the named variable exceeds 10 in value.

2) BREAK #solve + 3 INSTRUCTIONS

This shows a high-level command for a TAL procedure compiled
without symbol tables. The breakpoint is three words beyond the
beginning of the procedure code.

STATEMENTS is the default unit for code location offsets in
high-level mode.

BREAKPOINTS IN LOW-LEVEL. Low-level INSPECT is like DEBUG1 however,
INSPECT recognizes program-unit names in commands. Labels and
secondary entry-point names are not recognized. No units can be
specified1 instruction words are the assumed unit$. For example, the
following command sets is the low-level equivalent of example 2 aboveQ

B #solve + 3

Break Occurrence ---------
Whenever the conditions specified on-BREAK commands occur, INSPECT
holds the program's execution and notifies you that the break has
occurred. The ~allowing example shows a display:

-QUEENOBJ-B f SOLVE + 3 I
-QUEENOBJ-R
INSPECT P=001224, E=OOOOOO
099,07,043 QUEENOBJ
QUEENOBJ

-BREAKPOINT- f SOLVE + 3 I
f SOLVE + 3

Then, you can enter commands to analyze the program's status. A
RESUME command lets program execution continue.

In the precedi~g example, INSPECT was·in high-level mode when the
breakpoint was set. (Note the prompt contains hyphen characters.)
Since procedure SOLVE did not have a symbol table, the prompt at the
break shows the low-level command mode as indicated by underscore
characters.

2-11

RUNNING INSPECT

Displaying Memory

Commonly, displays of code and data memory locations are useful.
INSPECT includes extensive display options. For arrays and records,
these options are especially helpful.

Examples of DISPLAY commands

1) Assume a FORTRAN declaration "integer a (10,20)":

DISPLAY a(2) FORMAT 4Il0
DISPLAY a(l,l) FOR 5 WORDS IN OCTAL
DISPLAY (a(l,l) +a (2,2))

2) Assume this CCdOL fragment:
01 B.

2-12

05 C PIC X(lO).
05 D PIC 99 COMP.

DISPLAY c OF b
DISPLAY b WHOLE
DISPLAY d PIC "99v9"

RUNNING INSPECT

INSPECT FUNCTIONS AND HIGH-LEVEL COMMANDS

INSPECT functions are primarily for program control and memory
displays. An important means of program control is setting
breakpoints. The following tables give brief descriptions of INSPECT
high-level commands related to the major functions. Section 3
describes each command alphabetically.

The commands that control execution in high-level mode include those
for breakpoints, program state, and for establishing the program unit
for analysis1 they are listed in Table 2-1. Tables 2-2 and 2-3 list
the commands for memory display and miscellaneous commands for
programmer convenience.

BREAK B

CLEAR c

HOLD H

PAUSE

PROGRAM. PR

RESUME R

SCOPE

STEP ST

STOP

TRACE T

Table 2-1. Execution Control Commands

set a breakpoint

cancel a breakpoint

suspend a program

suspend INSPECT temporarily

set the current program in a multi-program
debugging session

activate a suspended program

set the current program unit

run a small part of the program code1 if
followed by a carriage return, the step repeats

stop a program

list the call history of program units

--·-------------------~-----~--------------------~-------------~-------

2-13

RUNNING INSPECT

Table 2-2. Memory Display Commands

DISPLAY D look at data

MODIFY M change data

ATTRIB AT describe symbol characteristics

SAVE save the state of a program

FILES F look at file status

TIME display timestamps for source, object, or save
files

RADIX set a default base for numeric conversion

Table 2-3. Convenience Commands

COMMENT inserts comments for listings

DEFINE DEF define a command or command list

ENV shows environment set~ings

EXIT stops INSPECT

FC edits or reissues previous command

HELP displays command information

IF conditional command

HIGH switches INSPECT from low to high-level mode

LOG records session

LOW switches INSPECT from high to low-level mode

OBEY names command file

OUT directs output to listf ile

--->

2-14

RUNNING INSPECT

--~~--

TERM switch INSPECT's home terminal

In a PATHWAY environment, the TERM command is particularly useful,
since INSPECT operates in conversational mode. TERM switches the home
terminal of the INSPECT process to a named terminal.

USING THE BREAK KEY --- -- --
This discussion applies to processes that do not intercept the break
event when the break key is pressed.

Ordinarily, INSPECT repeatedly prompts you for commands. INSPECT
suspends prompting under one of three conditions:

1. if you press the break key, in which case INSPECT passes
control to the Command Interpreter and regains control when you
enter the Command Interpreter PAUSE command

2. if the process under INSPECT's control is in the run state

3. if you enter the INSPECT PAUSE command.

When INSPECT has suspended prompting, it monitors the break key. If
you then press the break key, INSPECT reports the status line and
pr 1ompts you for another command. If the process under INSPECT' s
control is in the run state, the status line will show either an
execution location within the process or "SYSTEM CODE" followed by a
number (meaning that your user code has invoked system code and not
yet regained control). You can then use the HOLD command to put your
process into the hold state.

While a process under INSPECT's control is in the run state, INSPECT
responds to the break key without placing the process into the hold
state. When the break key is pressed, INSPECT displays its header
and a single prompt. You can enter CR or a command in response to the
pr•ompt. The process is not in the hOI'd state, so command entry may
not give the desired results.

INSPECT responds to the break signal only after it has displayed at
least one prompt for the session. Entering

:DEBUG

is one way to manually cause the prompt to occur. (RUND causes the
pr•ompt before execution begins.) Then, after a RESUME command
reactivates the process, INSPECT can respond continually to the break
key (if the inspected process does not intercept the break event.)

2-15

RUNNING INSPECT

Program Status

The status line displayed shows the code location that was executing
at the time of the display. If the process is still running, a
DISPLAY command entered may show values that do not correspond to the
status line display.

Command Entry

If other commands are to be entered after pressing the break key,
enter a HOLD command at the prompt. Remember, INSPECT won't suspend
the program for break key entry alone. The PR command following the
HOLD shows the process state.

STOPPING INSPECT

The INSPECT process stops when you enter either the EXIT command or
CTL/Y. If any processes or SCREEN COBOL programs are still under
INSPECT's control, they continue running. If any program was in the
hold state, it remains suspended. You should use a PR command prior
to exiting INSPECT to verify that all programs are in an acceptable
state. If a process is left suspended, use either the Command
Interpreter STOP or ACTIVATE command for the process. After an
ACTIVATE, a subsequent Command Interpreter DEBUG command starts a new
INSPECT process.

2-16

RUNNING INSPECT

SE:T INSPECT COMMAND -- COMMAND INTERPRETER -- -
The INSPECT debugging environment is enabled or disabled by the
Command Interpreter SET INSPECT command.

---~------------~----~--

SET INSPECT { ON I OFF I SAVEABEND }

where

OFF

ON

disables the INSPECT environment and causes DEBUG to prompt
for input when a program enters the hold state.

enables the INSPECT environment and causes INSPECT to prompt
for input when a program enters the hold state.

SAVEABEND

enables the INSPECT environment, cause~ INSPECT to prompt
for input, and automatically creates a save file if the
program terminates abnormally.

The Command Interpreter debugging environment determines the default
debugging environment fo~ all processes started by the Command
Interpreter. You can override this default by using the INSPECT run
option on the RUN command. The program file can override the default
by means of its INSPECT attribute.

The debugging environment of the Command Interpreter remains in effect
until a subsequent SET INSPECT command; that is, the effect of a SET
INSPECT ON I SAVEABEND command lasts until entry of a SET INSPECT OFF
or until entry of a LOGOFF command. Note that another LOGON without
an intervening LOGOFF does not change the effect of the SET INSPECT
command. · ·

Thie INSPECT SAVEABEND command is the same as the INSPECT ON command
exicept that a save file is automatically created if the program
terminates abnormally. The save file can then be examined to
determine the state of the program when it terminated.

"S:ET INSPECT" command is currently entered as •INSPECT param".
This is to change prior to October Release of GUARDIAN.

2-17

RUNNING INSPECT

RUN Command

The debugging environment for a process being started can be set by an
optional parameter in the Command Interpreter RUN command. The
debugging environment set by this.command is in effect only for the
process being started.

RUN[D] I [INSPECT { ON I OFF I SAVEABEND }] I

where

INSPECT OFF

disables the INSPECT environment and causes DEBUG to prompt
for input when the program enters the hold state.

INSPECT ON

enables the INSPECT environment and causes INSPECT to prompt
for input when the program enters the hold state.

INSPECT SAVEABEND

enables the INSPECT environment, causes INSPECT to prompt
for input, and automatically creates a save file if the
program terminates abnormally.

The INSPECT ON or INSPECT SAVEABEND option sets the INSPECT
environment and the INSPECT OFF option sets the DEBUG environment.
The selected option sets the debugging environment only for the
process being started and overrides the environment in effect at the
home terminal.

The INSPECT SAVEABEND option is the same as the INSPECT ON option
except that a save file is automatically created if the program
terminates abnormally. The s~ve file can then be examined to
determine the state of the program when it terminated.

2-18

SECTION 3

INSPECT COMMANDS

This section describes in detail the commands that can be used in
high-level mode. Low-level commands are summarized in the description
of the LOW command.

Following the command summary in Table 3-1 is the generalized syntax
for symbolic references •. Sections 4 through 6 describe specifics for
your source language.

INSPECT provides basic utility commands in both high and low levels.
Appendix A gives the syntax of the utility commands. The uti.lity
commands are listed here and summarized in Table 3-1.

ENV
EXIT

Command

ATTRIB

BREAK

CLEAR

COMMENT

FC
HELP

LOG
OBEY

OUT
SYSTEM

VOLUME

Table 3-1. Summary of High-Level Conunands

Description

displays the internal characteristics of code
or data items

specifies program locations for breaks in
execution

cancels breakpoints set by BREAK

enters comments to appear' in listings

--->

3-1

INSPECT COMMANDS

3'."92

DEFINE

DISPLAY

ENV

EXIT

FC

FILES

HELP

HIGH

HOLD

IF

LOG

LOW

MODIFY

OBEY

OUT

PAUSE

PROGRAM

RADIX

RESUME

SAVE

SCOPE

gives a name to a text s~ring to be used as
a macro or as a parameter

specifies storage items to be displayed

displays the current settings of INSPECT
environment commands

stops the INSPECT process

edits or repeats a command line

displays status of the debugged program's open
files

displays INSPECT commands and syntax

reenters high-level command mode from low-level
mode

suspends execution of one or more processes
or programs

sets conditions for command execution

records session activity

enters low-level command mode

specifies changes to data values .
directs INSPECT to read commands from a file

names the file for output listings

suppresses INSPECT prompts

for multi-process debugging, specifies the
program scope for_ following commands

specifies a default numeric base for command
input or displays

continues execution of a held program

dumps data and status information of a process
to a disc file

sets the scope for following commands

--->

INSPECT COMMANDS

--~---------------~----~--

STEP

STOP

SYSTEM

TERM

TIME

TRACE

VOLUME

executes the program in increments

terminates process or program being debugged

sets the default system for expansion of disc
file names

names a different home terminal for INSPECT,
usually different from the debugged program's
home terminal

displays the timestamp of a source file, an
object file, or a save file

displays caller history (stack) for the current
program location

sets the default volume and subvolume for
expansion of disc file names

------------~----------------------~--------~-----------------~----~~-

SY.MBOLIC REFERENCES

Code and data references are entered as COBOL, FORTRAN, or TAL
elements, depending on the source language of the scope containing the
element. The command descriptions in this section do not give each
possible syntax for these elements.

Instead, language dependent elements are referred to as such in the
command descriptions. The sections for each language that follow this
section describe language-specific information. The elements are:

10 codeloc - expressions that specify a location in the code area

10 dataloc - expressions that specify a location in the data area

10 ex2ression -. numeric expressions

10 condition - conditional expressions

3-3

INSPECT COMMANDS

ATTRIB Command

The ATTRIB command displays the internal characteristics of one or
more code or data locations.

[t scopename 1 [1 I scopename l J]
AT[TRIB] [codeloc] [, codeloc • • •

[dataloc] [dataloc

where

scope name

identifies a scope as specified under the SCOPE command.

codeloc

is a language-dependent identifier for a code element.
codeloc can be the name of a program or procedure, a primary
or secondary entry point, or a label.

dataloc

is a language-dependent identifier for a data element.
Elementary and group items are valid.

The default display is the attributes for all code and data
items for the current scope.

~------------~----------------------~----------------------·-----------

The ATTRIB command can be used for active and inactive scopes.

Examples. Examples 1 through 5 show displays from a COBOL program
unit named ATTEMPTDISPLAY. Assume that it was not the current scope.

1) COMMENT Set.the scope explicitly for following commands.
SCOPE IATTEMPTDISPLAY
ATTRIB attempt

ATTEMPT: VARIABLE
TYPE=CHAR, ELEMENT LEN= 8 BITS, UNIT SIZE=l6 ELEMENTS
'L'+ 96S+64
PARENT=DISPLAY-TRY, CHILD=ATTEMPT-ROW

2) AT attemptdisplay
ATTEMPTDISPLAY: BLOCK NAME

3) AT attempt-row
ATTEMPT-ROW: VARIABLE
TYPE=NUM UNSIGN, ELEMENT LEN= 8 BITS, UNIT SIZE = 2 ELEMENTS

3-4

INSPECT COMMANDS

'L'+96S +· 64
[8]
PARENT=ATTEMPT

1 dimension info

4) AT'l'RIB assemble-display
ASSEMBLE-DISPLAY: LABEL
OFFSET= 82 BYTES

5) COMMENT cobol-queens-solution is a scope name
COMMENT for the main program unit
ATTRIB tcobol-queens-solution

COBOL-QUEENS-SOLUTION: PROC
LOCALS = 5 WORDS
MAIN, ENTRY OFFSET = 6

6) AT guardian-err
GUARDIAN-ERR: VARIABLE
TYPE=BIN UNSIGN, ELEMENT LEN=l6 BITS, UNIT SIZE = 1 ELEMENTS
'G'+3I

7) COMMENT tsolutiondisplay is a TAL subprocedure
ATTRIB tsolutiondisplay

solutiondisplay: PROC
LOCALS = 5 WORDS
MAIN, ENTRY OFFSET = 6 ·

PARAMETER 1: COUNTER(REF)
PARAMETER 2: SOLUTION(REF)

The following examples show displays resulting from a FORTRAN program
named PRICE. Assume it is a Nonstop program and that it is the
current scope.

8) AT fprice
PRICE: PROC
NonStop,LOCALS=8 WORDS
MAIN,ENTRY OFFSET=43

9) AT gross
GROSS: VARIABLE
TYPE+REAL, ELEMENT LEN=32 BITS, UNIT SIZE=l ELEMENTS
'L'+%11 +O

10) AT term
TERM: NAMED CONST
TYPE+BIN, ELEMENT LEN=16 BITS, UNIT SIZE=l ELEMENTS
VALUE= 4

11) AT 10
10: LA~EL
OFFSET=92 BYTES

12) AT fprice.40
40: LABEL
OFFSET=530 BYTES

3-5

INSPECT COMMANDS

BREAK Command

The BREAK command specifies conditions for INSPECT to temporarily
suspend execution of the process or SCREEN COBOL program.

On Nonstop II Systems any executable instruction or data item in your
segments is a valid breakpoint, and each user of a process can set
breakpoints without affecting other users of that process.

On Nonstop systems executable code instructions are the only valid
breakpoints, and any breakpoint set by any user of a process is set
for all users of that process.

Process-termination breaks are also available. Termination breaks are
not available for SCREEN COBOL programs, however.

INSPECT displays the list of currently defined breakpoints when it
receives a BREAK command without parameters.

The time at which you enter a BREAK command will be termed BREAK
definition time and the time at which INSPECT responds to the process
(or SCREEN COBOL program) reaching the executable instruction or
selected data item and determines what is then to be done will be
termed BREAK time.

BREAK OPTIONS. Conditional breaks, prompt suppression, and Nonstop
backup testing are breakpoint options. Although you can specify the
options in any order, the options are not independent of one another.
The information following the command syntax describes the option
interdependencies.

DATA BREAKPOINT -- NONSTOP II. A single data breakpoint is available
for each inspected process.--Oata breakpoints are not allowed from
SCREEN COBOL programs. Subprogram and subprocedure lo1cations (L+ and
S-) are valid breakpoints; however, the break becomes invalid on the
first exit from the scope. (INSPECT does not delete the breakpoint for
you. You must use the CLEAR command.)

[

!
[EVERY integer 1 1

[codeloc
[READ) I

[TEMP [integer 1 1 1
B [REAK] [dataloc [IF condition 1 . . . 1 , . . .

[ABEND [THEN action 1 1
[STOP [PAUSE 1 1
[[BACKUP 1 1

--->

3-6

INSPECT COMMANDS

--·--
where

codeloc

is a language-dependent code location expression: codeloc
must be the location of an executable instruction in the
user's code. Inactive scopes are valid.

dataloc

is a language-dependent data location expression on Nonstop
II Systems: dataloc must be the exact word to be monitored
in the user's data segment: a single data breakpoint can be
active at any time. Data breakpoints are invalid for SCREEN
COBOL programs.

READ

specifies that a break should occur on both read access·and
write access to a data item. Code breakpoints cannot have
write access. The defaul~ for data is write access only.

ABEND

causes a break when a call to ABEND occurs: not available
for SCREEN COBOL programs.

STOP

causes a break when a call to STOP occurs (whether
programmatically or not):' not available for SCREEN COBOL
programs.

EVERY integer

specifies an integer number of times the breakpoint must
execute before INSPECT holds execution: the maximum value of
integer is 2**31-1: see BREAK COMMAND OPTIONS below for
order of processing.

IF condition

specifies that the break occurs only if condition is
logically true: condition is a language dependent element:
see BREAK COMMAND OPTIONS below for order of processing.

TEMP [integer J

specifies that INSPECT is to delete the brea~point after it

--->

--~-------

3-7

INSPECT COMMANDS

is reached integer times whether the break occurs or not: a
CLEAR command overrides TEMP: the default for intege~ is 11
see BREAK COMMAND OPTIONS below for order of processing.

THEN action

specifies that actio~ is to occur automatically whenever the
break occurs1 action is one of:

• command string • containing INSPECT or user commands
separated by semicolons

text-name for a command string which was previously defined1
see the DEFINE command for creating definitions.

If the last command of action is a RESUME command, no
prompting occurs at the break. See BREAK COMMAND OPTIONS
below for order of processing.

PAUSE

suppresses the breakpoint report and prompting if this break
occurs. See Break Command Options below for order of
processing.

BACKUP

specifies the breakpoint is for the backup process of a
Nonstop process pair.

EXAMPLES. These are simple examples for setting breakpoints.

1) Setting code breakpoints is illustrated by the following COBOL
code fragment and the BREAK commands.

3-8

SECT SECTION.
PARA-1.

MOVE A TO B MOVE C TO D.
PARA-2.

DISPLAY B.
ADD A TO B.

BREAK ISECT.para-1 + 1 V
SCOPE tSECT
BREAK para-2 + 1 s
BREAK para-2 IF a greater b
B

#SECT PARA-1 + 1 V
iSECT PARA-2 + 1 S

INSPECT COMMANDS

#SECT para-2 IF A GREATER B

2) This example shows a way to set variable xyz to 15 every time a
break at location A+4026 I occurs. (I in the expression specifies
word instructions. If the expression contains no unit, INSPECT
assumes statements.) Assume that the source code was TAL, so the
expression in the MODIFY command is in TAL syntax.

BREAK a+4026. I THEN •M xyz:=lSJ RESUME"

3) The same effect is accomplished by the following sequence.

DEFINE-action= ·M xyz :• 151 RESUME"
BREAK a+4026 I THEN action

P:R~IMARY ENTRY POINTS. You should specify the primary ent~y point
rather than the base of a procedure as a breakpoint. It is possible
to destroy initialization data if a breakpoint is placed at the base
of a procedure.

COMMENT this example specifies the primary entry point
B [fproc.] proc

COMMENT the next example specifies.a label or alternate ep
B [iproc.] procl

COMMENT
B f proc

CAREFUL - this is the procedure base

BREAK COMMAND OPTIONS.
Theciptions, except BACKUP, control INSPECT's processing at each BREAK
time (execution of the breakpoint). BACKUP applies only to the
placement of the breakpoint.

To use the break options in combination, you can specify them in any
order at BREAK definition time. They are always tested in the
following order at BREAK time:

EVERY

IF

TEMP

THEN

If EVERY is present, its counter is checked. If the
proper count has not been reached, the remaining options
are ignored.

If IF is present, its condition is evaluated. If the
condition is false, the remaining options are ignored.

If TEMP is present, its counter is checked. If the proper
count has been reached, the breakpoint is cleared but
option processing continues.

If THEN is present, its action is perfor~ed.

3-9

INSPECT COMMANDS

EVERY and IF.
The EVERY option can provide control of breakpoints within loops. IF
further controls the breakpoint. (You can use either option alone.)

Suppose a loop malfunctioned on the 42nd iteration. You can set a
breakpoint specifying EVERY 42. Then, the break does not occur until
the 42nd iteration.

SECT-1 SECTION.
PARA-1.

MOVE A TO B MOVE C TO D.
PERFORM LOOK-LOOP.

COMMENT set the breakpoint at the top of the loop
BREAK para-1 + 3 V EVERY 42 IF c < 1000

Note that the IF option is evaluated only if the EVERY condition is
satisfied. Whether the break occurs at iteration 42 depends on the
value of c. If C is not less than 1000, the process continues to
execute without issuing a prompt to the home terminal. INSPECT still
checks the break conditions again at iteration 84.

IF Scope. Any data references in a BREAK command inhe.rit the scope in
effect at BREAK definition time unless the command explicitly
specifies a different scope.

On the other hand, any data references in an expression within the IF
option that are not scope-qualified inherit the scope in effect at
BREAK time.

In other words if you use RUND to start a FORTRAN (main) program, then
set a breakpoint within one of that program's subroutines, if you do
not qualify the names mentioned in an IF option on the BREAK command
they will implicitly have the scope of the main program. E:ven if the
names exist within both scopes, they will not refer to the same
storage locations in data space.

TEMP. Normally, a breakpoint remains in effect until you explicitly
delete it via the CLEAR command.

TEMP is useful for setting a breakpoint for a single occurrence.
Either TEMP 1 or TEMP gives this effect.

3-10

INSPECT COMMANDS

Consider also the breakpoint described above for EVERY and IF. If the
breakpoint had both the EVERY 42 and the TEMP 2 options set, INSPECT
can automatically delete the breakpoint for you.

1) COMMENT delete at iteration 84 (break 2)
BREAK para-1 + 3 V TEMP 2 EVERY 42

2) COMMENT delete at iteration 84
COMMENT only if c was < 1000 both times
BREAK para-1 + 3 V EVERY 42 TEMP 2 IF c < 1000.

THEN. This option sets the required action to be taken when the
breakpoint occurs and the evaluation of the break options reaches the
THEN.

One use of THEN is for predefined patching of data. The patch action
can be given-a'S a command string on the THEN option or as the
text-name of a define string. Define strings CAN include other
text-names to invoke other define strings.

NOTE

1. Numeric literals in a THEN option are evaluated when the
breakpoint occurs and are interpreted using the radix
current at BREAK ~time. All other numeric literals in a BREAK
statement are evaluated at BREAK definition time, when the
BREAK command is issued, using the radix current at that
time.

2. You cannot patch your code area in an INSPECT session. This
applies also to TAL 'P-relative' arrays. The BINDER MODIFY
command allows code changes without recompilation. Refer to
the BINDER manual for running BINDER via :BIND.

Si:nce RESUME can be the last command in the command string, a known
problem can be corrected without further intervention after entering
thie BREAK command. Note that if a defined text name invokes other
te:Kt names, any RESUME that occurs within the nested invocations ends
thie break. Refer to the DEFINE command for more information.

PAUSE. This option is useful when debugging multiple processes. It
allows completion of terminal i/o prior to INSPECT's prompting when a
break occurs. INSPECT does not report the breakpoint even though the
process is in the hold state.

In any case, after INSPECT writes all queued break mes.sages, the
process associated with the last message is the_ current process.

BAf:KUP. Use BACKUP to test Nonstop_ process pairs. This option
sp 1ecifies

3-11

INSPECT COMMANDS

that the breakpoint is only for the backup process. Enter a STOP
command for the primary to force backup execution.

Changing BREAK Options. .Change breakpoint options by reentering the
BREAK command with new options. No prior CLEAR is neede·a.

3-12

INSPECT COMMANDS

CL,EAR Command

CL,EAR cancels one or more breakpoints that are in effect for the
current program or process only.

CL,EAR with no parameters cancels only the current breakpoint if more
than one breakpoint is in the list of defined breakpoints.

[codeloc 1
[dataloc 1

C'[LEAR] [I STOP

[, codeloc] I
1 , . . .

[ABEND]
[1
[* 1

where

codeloc

is a language-dependent expression resulting in the same
code location as on a BREAK command

dataloc

is a language-dependent expression resulting in the same
data location as on a BREAK command

STOP

cancels the breakpoi.nt at CALL STOP

ABEND

cancels the breakpoint at CALL ABEND

*
cancels all breakpoints for the current process or program

--·---------------------------~------------------------------------~~~-

INSPECT does not notify you that the cancel occurred. (Using the
BREAK command with no parameters to display breakpoints verifies that
the cancel occurred.)

3-13

INSPECT COMMANDS

COMMENT Command

Use COMMENT to enter descriptive _text to appear in the output listing.

COMMENT [text]

where

text

is a string of characters.

If COMMENT is entered on a multi-command line, the COMMENT must be the
last command on the line.

3-14

INSPECT COMMANDS

DEFINE Command -------
Use the DEFINE command to:

o enter and name a text string for use in the current INSPECT session

o display all names defined for the session

o delete a single definition

Defined names are allowed wherever INSPECT expects a command name.

DEFINE strings can contain any INSPECT commands (except DEFINE and FC)
separated by semcolons. Strings can contain other defined names.

DEF[INE] [text-name = [•string"]]
[, text-name = ["string" 1 1 •••

where

text-name

is the alphanumeric name of the "strin~"1 the first
character of the name must be alphabet1c1 the maximum name
length is 31 characters1 text-name cannot be the name of an
INSPECT command (that is, you cannot redefine INSP.ECT
commands)

Omitting text-name results in a display of all defines.

"string"

is the text string to associate with text-name; the string
must be enclosed in quotation marks; "string" is a list of
INSPECT commands separated by semicolons. DEFINE and FC are
not allowed. text-names are allowed within string.

If "string" is omitted, text-name is deleted from the list
of defines.

USING DEFINE STRINGS WITH THE BREAK COMMAND. text-name of a current
DE:FINE string is a valid response to an INSPECT prompt. It is also
valid to supply text-name as the action for the THEN option of the
BREAK command. When the associated break occurs, INSPECT interprets
th1~ commands defined by "string". If "string" includes a RESUME
command, INSPECT does ~ot prompt for input. Refer to the description

3-15

INSPECT COMMANDS

of the BREAK command's THEN option for additional information.

If an error occurs during processing of a DEFINE string, INSPECT
displays an error message.

Examples.
1) COMMENT create multiple defines in a single entry

COMMENT
DEFINE qr="d q for 2", pfg=•d p,f,g fmt (2i3, fS.3).
pfg1qr

25 9 0.303
Q= 37 44

2) COMMENT the IF command is useful in definitions
DEFINE oldval="IF x < 99 THEN D('X hack '),X"
DEF xset="D('X being set to 99'):M X=99"
DEF xhack="oldval1xset•
COMMENT entering xhack
COMMENT causes execution of oldval and xset
COMMENT
xhack

X hack X=SO
X being set to 99

D x
X=99

3) COMMENT display the defines in Example 2
COMMENT assume there are no other defines
COMMENT

3-16

DEFINE
OLDVAL= "D('X HACK ') ,X"
XSET= "D('X BEING SET TO 99')1M X=99"
XHACK= "OLDVAL1XSET"
COMMENT delete xhack
COMMENT
DEF xhack =
COMMENT verify deletion by displaying defines
DEF
XSET= "D('X BEING SET TO 99')1M X=99"
COMMENT delete xset
COMMENT
DEF xset =

COMMENT INSPECT displays only the prompt

INSPECT COMMANDS

Dl:SPLAY Command

Dl:SPLAY allows inspection of the data or code in user areas. In a
si.ngle command, all display items must be in a single language.

On Nonstop II Systems, you can display user library routines if you·
have read access to the code file.

DISPLAY command options provide flexibility in displaying records and
at·rays. For example, you can specify a group size for displaying a
fi.eld. You can also request formatting of data (al? allowed by the
source language).

Co1de display is available if the source langauage is COBOL, FORTRAN,
or TAL. (SCREEN COBOL pseudo code cannot be displayed.)

DI'SPLAY FORMATS. You can use any of these formats for a single i tern
or a list of items:

o default data display, which includes (for each element in a record
or group item) the variable name, an equal sign, and the value
enclosed in quotation marks

o record or group item displayed without breaks for separate elements
-- the WHOLE option

o data values displayed without element names, equal sign, or
enclosing quotation marks the PLAIN option

o code displayed in ICODE

o items displayed in groups1 groups can correspond to storage units,
that is, bytes, words, doublewords, or quadwords

o items displayed in one or more of these modes
based numerics, or icode mnemonics

ASCII character,

o items formatted for display using PICTUREs or FORMATTER formats

o expressions evaluated and the results displayed.

3-17

INSPECT COMMANDS

D[ISPLAY] item [, item] ••• [formatlist]

where

item

is a code or data specifier or an expression

3-18

1
codeloc }

[spacelist]
dataloc [WHOLE] [PLAIN]

"string"
text-name
(expression)

where

codeloc

is a language-dependent expression specifying ·a code
location in the user's area1 in SCREEN COBOL codeloc
is invalid.

dataloc [WHOLE] [PLAIN]

dataloc is a language-dependent expression
specifying a data location in the user's area1 the
default display is the name of item, an equal sign,
and the value1 if item is an array or g.roup item,
its elements are displayed individually with their
names1 except for scalars, values are displayed
enclosed in quotation marks.

WHOLE causes display of all elements of an array or
group item as a single string of contiguous
characters.

PLAIN suppresses the display of all names associated
with item, the equal sign(s), and the enclosing
quotation marks.

"string"

is a string of characters to be displayed.

text-name

is a text-name defined in a DEFINE command.

--->

INSPECT COMMANDS

-----------------------------~-~---------~--------------------~-------

(expression)

is a sequence of variables, operators, and
constants. expression must be in the syntax of the
source language for the current scope; limitations
are noted in the language sections. expression
cannot contain function calls.

,spacelist

is the number of groups to display and the storage
unit of each group if item is code or data. The
default for spacelist depends on the declaration of
dataloc; it is 1 word for code.

The FOR keyword identifies a spacelist of the
follOWI'ng syntax:

FOR [integer *] unit-list

integer * specifies the number of multiples of
unit-list. The default is one.

unit-list has the form

{ unit }
{ (unit [, unit] • • •) }

unit is [integer] ! W[ORD] [S] I
B[YTE] [S]
D[OOBLE] [S]
Q [UAD] (S]

spacelist is invalid for SCREEN COBOL.

The default unit is determined by the declaration
of the item in the current scope. For example, if
an item is declared as a character, the unit default
is bytes.

--->

--·--
3-19

INSPECT COMMANDS

3-20

formatlist

is a FORMATTER format, a PICTURE, or a character mode;
INSPECT pairs the elements in formatlist with the item list
elements; rules for reusing formats for list elements are
as defined for the source language; the syntax of
formatlist is

[IN base •••
[{ FORMAT } formatter-format
[{ FMT }
[PIC •mask-format• [, •mask-format•

where

base

]
]
]

] . . .]

is the display mode; if more than one bas1~ occurs,
INSPECT displays each item in each specified base;
bases are: -- --

B[INARY]
D[ECIMAL]
O[CTAL]
H[EX]

A [SCII]
I CODE

ASCII character display has unprintable characters
represented by question marks (?)

!CODE code display as assembler instruction
mnemonics

"mask-format"

9, z, or v FORMATTER M conversion descriptors;
"mask-format" must be the last parameter in the
command line

formatter-format

any FORMATTER conversion descriptor; it must be the
last parameter in the command line

INSPECT COMMANDS

COBOL DISPLAY. ·Assume that a COBOL program unit contains the
'l01llow1ng partial structure within an FD clause. Display commands can
be entered as shown.

01 address-record.
05 off ice-number
05 off ice-address

PIC X99.
PIC X(45).

DISPLAY off ice-number of address-record
DISPLAY address-record PLAIN
DISPLAY off ice-number PIC "99999"

3-21

INSPECT COMMANDS

FORTRAN DISPLAY. Assume the array declaration

INTEGER A (10,20)

Th~ following examples display contents of A.

DISPLAY A (2) FMT 4I10
DISPLAY A (1,1) FOR 5 WORDS IN OCTAL
DISPLAY (A(l,1) + A (2,2))

TAL DISPLAY.
Irreplyxlength

D tscope.replyAlength

WHOLE AND PLAIN OPTIONS. These examples show displays of a record, a
scalar-;--and a string. The only options in these examples are PLAIN
and WHOLE. As shown, PLAI~ and WHOLE can be used together.

DISPLAY rec, num, str
REC(DATE="082282", AMOUNT="000405"), NUM=l.S,
STR="calculate income for date"

D rec WHOLE
REC="082282000405"

D str PLAIN
calculate income for date

D rec WHOLE PLAIN
082282000405

USING THE <spacelist> OPTION. The spacelist option allows display in
the physfcal order of storage. The general forms of ~pacelist are:

o POR [n *] m [unit] - displays ~ groups of m units

o FOR [n *] (m [unit] [, mn [unit]] • • •) - displays n
records, each record contains a group of ~ units, followed-by a

group of .!!!!!. units.

3-22

INSPECT COMMANDS

The following examples, which show different spacelist forms, are
based on these assumptions:

1) S is "ABCDEFGH"
2) ARR is an integer array of eight words
3) ARR's current contents are O, 1, O, 2, 0, 3, O, 4.

Then, the following commands produce the indicated results.

D s
S="ABCDEFGH"

D s FOR 4 * 2
S="AB" "CD" "EF" "GH"

D s FOR 2 * 3
S="ABC" "DEF"

D arr FOR 4 DOUBLES
ARR=l 2 3 4

D arr FOR 8 BYTES IN ASCII
ARR=?O?O?O?l?0?0?0?2

(r~SPECT substitutes ?number for unprintable ASCII characters, where
"number" is the byte value in decimal.)

D s FOR 2*(3b,lb),arr FOR(ld,ld,ld)
S:=" ABC" "D" "EFG" "H", ARR=l 2 3

FO:RMATTED DISPLAYS. INSPECT formats data according to the -rules
established for COBOL PICs and FORTRAN FORMATS. The Tandem FORMATTER
is used for FORTRAN FORMATS and can be called from TAL code. INSPECT
follows the format rules of FORTRAN and the FORMATTER when formats
must be repeated.

Formatted displays are limited to one screen (24 lines) and to 1024
bytes of data. Exceeding these limits results in error conditions.

The following examples require the same assumptions that were
idientified for "Examples - Grouping Data" above.

D 1arr FOR 12 BYTES IN OCTAL
A:RR=OOO 000 000 001 000 000 000 002 000 000 000 003

DilSPLAY arr FOR 3 WORDS IN HEX
A:RR=OOOO 0001 0000

DU~PLAY s IN OCTAL ASCII
S=lOl 102 103 104 105 106 107 108 "ABCDEFGH"

3-23

INSPECT COMMANDS

D arr FMT (8I2) .
0 1 0 2 0 3 0 4

Darr PIC •zz9•,•zz99•
0 01 0 02 0 03 0 04

Ref er to the FORMATTER documentation in the GUARDIAN Operating System
Programming Manual.

PIC conversion string special characters are supported by the
FORMATTER M-type format, i.e. z, 9, V, and ".".

If the DISPLAY command does not specify a format, INSPECT selects a
format which is compatible with the item's declaration. Refer to the
description of the RADIX command for INSPECT's selection of radix for
output.

CODE DISPLAY. The ICODE keyword requests display of code· words as if
they were assembler instructions. INSPECT treats the code block as a
word array. Depending on the format of your command, INSPECT does
bounds checking for the request and returns an error if limits are
outside the current code block.

The following examples show two ways to display code in procedure
MAIN.

D tmain + 30 I FOR 8 IN ICODE
D tmain IN ICODE

INSPECT does not display SCREEN COBOL code locations.

STRING DISPLAY. The DISPLAY command is a valid THEN action on a BREAK
command. This is one use of INSPECT's string display feature. The
following is an example.

BREAK ABEND THEN •DISPLAY 'program abend',error•

STRUCTURED DATA DISPLAY. If the item being displayed is not an
element-level item, (i.e, a TAL struct or substruct, a FORTRAN record,
or a COBOL group item), the item name and its components are
displayed. Components follow the group name and are indented to
denote inclusion. The following is an example.

Given a COBOL definition:

01 PERSON-NAME.
03 LAST-N PICTURE X(20).
03 REST PICTURE X(20).

D person-name
PERSON-NAME=

3-24

LAST-N= "SATTERWHITE
REST= "PHILLIP F.

H

n

INSPECT COMMANDS

AlU~AY DISPLAY. Items declared as·arrays will be displayed using the
su.bscr1pt range specified in the command or, if none is specified,
then displayed in their entirety.

A singly-dimensioned item is displayed as a row of values, the name
indicating the beginning subscript value. The following is an
ex.ample.

Given a COBOL definition:

01 PERSON-NAME.
03 LAST-N.

05 LAST-CHAR PICTURE X OCCURS 20 TIMES.
03 REST. -

05 FIRST-CHAR PICTURE X OCCURS 20 TIMES.

D person-name
PERSON-NAME=

LAST-N=
LAST-CHAR[l]= "SATTERWHITE

REST=
FIRST-CHAR[l]= "PHILLIP F.

n

n

3-25

INSPECT COMMANDS

FILES Command

Use the FILES command to query status for files opened by the current
process.

Use the syntax of only one language on a single FILES command. You
can query files opened by scopes written in different source ~anguages
by entering:

o FILES *

o FILES with no parameters.

These forms of the command query all files o.pened by the process.

FILES is invalid for SCREEN COBOL programs.

F [ILES] [{ file-list } [F 1 [DETAIL 1 1
[{ * } - 1

where

3-26

file-list

*

F

identifies one or more open files1 all names in the list
must agree with the source language of the current scope1
each element of file-list is one of:

COBOL
FORTRAN

TAL

- FD name
- expression that evaluates to

a logical unit number
- expression that evaluates to

a file number

indicates all files

indicates that the file-list follows FORTRAN naming
conventions1 unless F is entered, INSPECT assumes a GUARDIAN
file name1 valid only with ~ or file-list

DETAIL

requests listing of the maximum available information for

--->

INSPECT COMMANDS

the queried files; valid only with ~ or file-list

The default file status listing includes the following information:

For all files - physical file name
- error number for last file error

If DETAIL is specified, the information displayed is similar to the
FUP INFO, DETAIL display.

Examples.
1) Either of the following command forms queries all files.

FILES
F * DETAIL

2) COBOL code block, enter the command in this syntax

FILES name-file , address-file , receive-file DETAIL

Detail applies to all three files in file-list.

3) The following examples show file-list syntax for FORTRAN
expressions. In the first example, nout is a file name.

FILES nout
FILES 1,3,S

3-27

INSPECT COMMANDS.

HIGH Command

The HIGH command is entered while in low-level command mode to enter
high-level commands.

When a break occurs, INSPECT selects its mode according to whether
symbol tables exist for the current scope. If low-level mode is
selected, you can use any high-level commands· as long .as no symbols
other than procedure names ar~ entered. ·

During a high-level break, you can enter low-level mode to do register
manipulations, for example. Refer also to the description of the LOW
command.

If INSPECT is already in high-level mode, the HIGH command is ignoreda

HIGH

The HIGH command must be the last command on a line.

3-28

INSPECT COMMANDS

HOLD Command

The HOLD command suspends a process or a SCREEN COBOL program until a
RE:SUME command is entered.

If any system routines are running on behalf of code to be held, the
suspension occurs only after the system code completes and returns to
the inspected code. Therefore, when suspending a list of processes
(01r programs) , the order of suspensions can be different from the
order specified.

Prompting does not begin again until all suspensions are accomplished.

H(OLD] [process-id [, process-id
[logical-term-name
[*

where

process-id

specifies a named or unnamed I object-filename

[\system • J t cpu, pin
$pname

logic~l-term-name

] . . .]
1
]

process1

d
specifies a SCREEN COBOL program

*

it is one of:

suspends all processes and programs under INSPECT's control

HOLD with no parameter suspends the current process or program.

CURRENT PROGRAM CONSIDERATIONS. A hold results in a process or
program becoming the "current program". In the case of multiple
suspensions, the last one suspended becomes the current program.
(Status displays show the current program name enclosed in asterisks.)

3-29

INSPECT COMMANDS

Example. The INSPECT prompt identifies the current program.
Therefore, the prompt changes when the current program changes.

TESTB-PR
PROGRAM ID NAME
·004, 01, 044 $Pl9

004,03,078 TESTB
TESTB-HOLD $pl9

004,01,044 $Pl9

STATE OBJECT: SOURCE
RUN BLOCK+l35I: SRCFILE[210]
RUN PUTA+l04I.: TSTBSRC [302]

HOLD LOOKUP+4I: SRCFILE[l997]
COMMENT
COMMENT
COMMENT
COMMENT

hold causes $Pl9 to be the current process
it remains in the hold state until a resume command

-$Pl9-RESUME $pl9 AT
004,01,044 $Pl9

3-30

lookup+9I
RUN LOOKUP+9I: SRCFILE[l998.3]

INSPECT COMMANDS

IF Command

The IF command specifies conditional command execution.

---~--

IF condition THEN command

where

condition

is an expression in language-dependent syntax; condition
must be true for INSPECT to perform the given action.

command

is an INSPECT command; DEFINE and FC are not valid; command
can be a user-defined text-name.

Example. A primary use of IF is defining a string for conditional
execution.

DE:FINE abcheck="IF a>lOO THEN D'a exceeds 100' ,z1R•
BREAK tax-section THEN •abcheck"
REiSUME

004~03,078 PROGB RUN PUTA+l04I: TSTBSRC[302]
"A EXCEEDS 100", ~=12
"A EXCEEDS 100"~ Z=l3

COJMMENT abcheck ends with a RESUMEJ so execution continues

3-31

INSPECT COMMANDS

LOW Command

The LOW command changes INSPECT's mode from high-level command entry
to machine-level debugging. The HIGH .. command causes entry to
high-level mode. (The ~ow command is invalid for SCREEN COBOL
programs.)

INSPECT's low-level support includes DEBUG commands and additional
commands that are not currently available in DEBUG.

INSPECT selects its mode at each break depending on whether symbol
tables exist for the current scope.

LOW

The LOW command must be the last command on a line.

EXAMPLE. This example assumes that a named process, SRVPROC, is the
current process. During a break, low level mode is requested to
display a stack trace. Note both the differences in the displays and
the change in prompt from high to low level.

-SRVPROC-LOW
SRVPROC B tsolveAproc

-SRVPROC-R
INSPECT P=001221, E=000017 -BREAKPOINT- iSOLVEAPROC iSOI,VE +0
099,02,014 SRVPROC

SRVPROC T
000115: 001217 000007 000105 iSOLVE"'PROC + 31
COMMENT trace output to listfile1 no display

SRVPROC T / OUT listf ile /
COMMENT - return to high level mode.

SRVPROC HIGH
=sRVPROC-TRACE
COMMENT
COMMENT high level trace gives source file name and line I
LANG #PROCEDURE + OFFSET: SOURCE

#SOLVE"'PROC + 0:
TAL tSOLVOBJ + 25: SOLVSRC [57]

3-32

INSPECT COMMANDS

The following list shows the correspondence of INSPECT low-level
commands to high-level commands and to DEBUG commands.

High-level commands can be abbreviated to match the low-level commands
(except for STOP).

L,ow-Level Low Level High Level DEBUG
Command Meaning Command 0Eeration

A ASCII display same
B set breakpoint B[REAK] similar
BM set data breakpoint B[REAK] same (II)
c clear breakpoint C[LEAR] same
CM clear data breakpoint C [LEAR] same (II)
D display D [!SPLAY] similar
ENV display environ option ENV
EXIT stop INSPECT EXIT
F file status query F[ILES] similar
FC edit or repeat command FC same (II)
HELP display commands HELP
HIGH return to high-level
HOLD HOLD
I ICODE display DISPLAY code
LOG log LOG
M modify M.[ODIFY] similar
O[BEY] obey O[BEY]
OUT set output file OUT
p pause P[AUSE] same
R resume R[ESUME] same
s stop STOP same
SYSTEM set default system SYSTEM
T trace T[RACE] similar
v set view segment same
VOLUME set default volume VOLUME
? query segment same (II)
= display expression DISPLAY similar

SYNTAX OF LOW-LEVEL COMMANDS. Low-level INSPECT command syntax is
based on the syntax of Nonstop II DEBUG commands. However, INSPECT
allows symbo~ic references to procedure names in break commands, as in

B tprocname + nnnn

where nnnn is the off set in wo·rds from Erocname. No other symbolic
reference'S-can be used.

HE.LP in low-level mode lists the command names and the syntax.

3-33

INSPECT COMMANDS

EXPRESSION SYNTAX FOR LOW-LEVEL COMMANDS. INSPECT's low-level
expression syntax rs--based on that of Nonstop II DEBUG. The syntax is
given here since it applies to all INSPECT· users whether Nonstop or
Nonstop II. (The Nonstop DEBUG expression syntax is slightly
diferent.)

value [{ arithmetic-operator value } •••]

where

3-34

arithmetic-operator

is one of (in order of precedence):

value

* unsigned multiply
I unsigned divide
<< left shift
>> right shift
+ unsigned add

unsigned subtract

has one of these forms:

(expression)
I ASCII-char ASCII-char
tcode-block-name
tdata-block-name
number [• number]
register

number default is positive octal integer1 ~mber
must be:

[+ - 1 [i 1 integer

+ is unary plus (positive integer)1
unary + is optional

is unary minus (negative integer)
I indicates a decimal number1 integer is octal

if # is not used

register is one of:

s RO R4 RA RE
p Rl RS RB RF
E R2 R6 RC ~G
L R3 R7 RD RH

INSPECT COMMANDS

US:ING LOW-LEVEL INSPECT. Following are notations of differences
be!tween DEBUG and low-level ·INSPECT. Also included are some facts
about INSPECT that can cause surprises.

Default Radix. The high-level radix default is decimal. Low-level
de,fault is octal. Be aware of the change if switching between low and
high levels.

Co1de Offset Units. The low-level default for code units is word
Tiistructions. However, the high-level.default is STATEMENTS. In
high-level mode, neglecting to specify INSTRUCTIONS on a command can
result in a procedure-bounds error.

• Command. INSPECT supports additional bases as follows:

- decimal
A - ASCII
B - binary
I - !CODE

C - code space (proc + off set)
UC - user code space (proc + off set)
UL - user library (proc + off set)
E - E-register (flags, RP setting)

Default Volume and Subvolume. Both in high and low levels, the
default volume and subvolume are from the logon defaults. This is the
case even if a Command Interpreter :VOLUME command is in effect.

Nonstop II Use. INSPECT does not support the DEBUG ALL parameter when
setting breakpoints.

INSPECT does not support display to a device or file.

D 0,200,$DEV
D /OUT out-file/ 0,200

DEBUG command (invalid in INSPECT)
INSPECT equivalent

3-35

INSPECT COMMANDS

MODIFY Command

The MODIFY command specifies changes to user data locations while the
process is in the hold state. You can either specify the changes in
the command line or as responses to INSPECT's prompts.

M[ODIFYJ dataloc [WHOLE J t ;= J [change [, change J •••]

where

3-36

dataloc

is a language-dependent expression identifying the· data
location(s) to be changed1 dataloc must describe a
contiguous area large enough to hold the change list.
dataloc cannot be a read-only array or register.

WHOLE

causes INSPECT to treat the location as a string of
contiguous characters, even if dataloc refers to
a record or group item1 not valid for SCREEN COBOL

change

is the replacement value for the contents of dataloc1
change must fit into dataloc1 change is language-dependent
and as the following syntax:

[integer c·[OPIES]] expression

where

integer C[OPIES]

is the number of times to repeat the value resulting from
the following expression.

expression

is a language-dependent expression that fits into
dataloc; INSPECT converts the data to the type required
by the destination fields.

INSPECT COMMANDS

Pr·ompting Sequence. INSPECT prompts for input if the command does not
Tiiclude replacement values or if the area specified ~y dataloc is
larger than_ the replacement values.

INSPECT displays each element of the data item with its name and
current value. Respond by entering the new v·alue or a comma "," to
retain the current value.

If the WHOLE option is in effect, INSPECT assumes the entire
mo1dification is received at once. No prompting occurs.

Prompting continues u~til a carriage return indicates no further
mo1difications or until the last field of dataloc is displayed.

NOTE

INSPECT does not prompt for input if the MODIFY command is in:

o an OBEY file
0 a DEFINE string
o a command line with more than one command.

Example.a.
1) MODIFY tcobm.comp in-rec of infile (station, address) =

•12 West 32 Street•
DISPLAY modarea PLAIN

814 12 West 32 Street

2) MODIFY a=5
MODIFY s="Falcon•
MODIFY k(1:5,3) := 4,7,9,15,22
MODIFY k (1 : S, 4) :• 5 COPIES 0
DISPLAY (a, s, k [1 : S, 3 : 4])

A=5, S="Falcon"
K[l:3]=4 7 9 15 22
K (1: 4] =O 0 0 0 0

3-37

INSPECT COMMANDS

3) M arr(6:11)
COMMENT INSPECT prompts
COMMENT the display is
COMMENT

ARR(6)=49 := ,
ARR (7) =50 : = 37
ARR(8)=51 := er

D arr(6:8)
ARR(6:~)=49 37 51

for replace~ent values
"location=value := n

4) COMMENT
COMMENT
COMMENT
COMMENT

Assume a TAL proc contains this declaration:
int arr [0:2] = 'p' := [123, 124, 125]J

M arr[0:2]

3-38

the following command produces an error
because P-relative arrays can't be changed
:= 000, 000, 000

INSPECT COMMANDS

PA~USE Command ---
Like the PAUSE option of the BREAK·command, the PAUSE command
suppresses prompting.

PAUSE

IN'SPECT begins prompting after a PAUSE if the process is running and

o the break key is pressed. This assumes the inspected program
does not take break.

o the process or program under INSPECT's control hits a breakpoint,
trap, or other debug-event which awakens INSPECT.

3-39

INSPECT COMMANDS

PROGRAM Command

If debugging more than· a single process or SCREEN COBOL program, use
PR to establish the "current program" for the following commands. The
PROGRAM command also initiates analysis of save files.

PR[OGRAMJ [process-id] [, QUIET]
1 [logical-term-name

[save-file-name 1

where

3-40

process-id

is one of:

l [\system.] { cpu, pin J }
{ $pname

object-file-name

logical-term-name

is a PATHCOM identifier for a SCREEN COBOL program

save-file-name

specifies that INSPECT should retrieve the named disc file,
which contains a save file created by an INSPECT SAVE
command or a SAVEABEND option. -save-file-name is:

save-file-name [CODE code-file-name]
[LIB lib-file-name]

where

CODE code-file-name can be different from the one
that was used when the save file was created.

LIB lib-file-name overrides the user library file in use
when the save file was created.

Omitting the process identifier displays the status of all
processes under INSPECT's control.

QUIET

suppresses display of the status line.

INSPECT COMMANDS

If only one process or program is under control of INSPECT, that one
is always the curre~t program.

INSPECT displays the status for the named process or program, unless
suppressed by the QUIET option.

EXAMPLES.
-xxxx-PR

PROGRAM ID
004,01,044

004,03,078

NAME
$Pl9
TES TB

STATE OBJECT: SOURCE
RUN BLOCK+l35I: SRCFILE[210]
HOLD PUTA+l04I: TSTBSRC[302]

The asterisks enclose the process identifier of the current machine
instruction.

SAVE FILE TIMESTAMPS. When INSPECT retrieves a save file for
analySIS; warning messages giving timestamp information can occur.

Each object file in the system contains a creation time stamp. When
the INSPECT SAVE command creates a save file, it includes this
timestamp. If you use the PROGRAM command to fetch a save file, and
the recorded timestamp in the save file does not match the timestamp
on the corresponding program file on disc, you get a warning message
because the program file may have been modified.

Possible reasons for this discrepancy in timestamps are:

1. If operating across network nodes, the timestamps for each system
can show a slight deviation.

2. If the object file corresponding to the save file has been
recompiled since the save-file creation, the timestamp for the
recompilation is shown.

3. On Nonstop II Systems, the warning message can occur if a
us.er-library file accessed by the save file has been mod if fed since
the save file was written.

For easier debugging, it can be useful to recompile abnormally
terminating program code if symbol tables are not in the object file.

INSPECT COMMANDS

RADIX Command

The RADIX command changes the default base for integer displays from
decimal to octal or hexadecimal. This default controls the output
from DISPLAY commands unless a different option is selected for
DISPLAY. The RADIX default also controls display of values from a
TRACE command. (Low-level input or output is not affe 1cted by the
RADIX default.)

Optionally, you can change the default for input.

RADIX"{ 8 I 10 I 16 } [INPUT 1

where

8

sets the default base to octal for numerics

10

sets the default base to decimal for numerics

16

sets the default base to hexadecimal for numerics

INPUT

specifies that all unprefixed numeric input data is treated
as the selected base until another RADIX INPUT command is
entered.

~--~------------~----·-----------

INSPECT recognizes the following prefixes to specify numerics in a
base other than the default for input:

%
%B
%.D
%H

octal
binary
decimal
hexadecimal

%2107
%b0101100
%d98765
%h908adbf

No default is available for binary numbers.

3-42

Exam8le.
1) . OMMENT default is to be octal displays

RADIX 8
DISPLAY rA8

A= %3252
COMMENT
COMMENT display the values of two doublewords
D rAa for 2d

%65240152 %32440000
COMMENT
COMMENT enter binary only with prefix %B
MODIFY dataAblock = %b0111
D dataAblock

dataAblock= %7
COMMENT
COMMENT revert to decimal default
RADIX 10
COMMENT

INSPECT COMMANDS

COMMENT explicit base change leaves default unchanged
MODIFY dataAblock := %ha4
DISPLAY dataAblock

dataAblock= 164

INSPECT COMMANDS

RESUME Command

The RESUME command continues the execution of a held process or SCREEN
COBOL program. If more than one hold is in effect, you should specify
a parameter on the RESUME command.

SCREEN COBOL programs cannot be resumed after a BREAK ABEND or BREAK
STOP.

R[ESUME] [process-id [AT codeloc [·, RP integer]]]
[logical-term-name 1
[* 1

where

process-id

is one of:

1
[\system.] { cpu, pin } }

{ $pname }
object-file-name

The cpufein is required if more than one unnamed copy of
object- ile-name is running on the home terminal.

logical-term-name

identifies a SCREEN COBOL program

AT codeloc

caution -- specifies that code execution is to resume at a
location other than the next sequential one; codeloc is a
language-dependendent expression that results in the address
of an executable instruction within the current scope; using
AT requires that you ensure the register pointer (RP) field
01" the E-register is correct when execution resumes

AT is invalid for SCREEN COBOL.

RP integer

caution -- specifies the value for the RP field of the
E-register (to be used with AT codeloc); this subparameter
requires machine-level understanding

--->
-~--,----------------

3-44

INSPECT COMMANDS

*

RP is invalid for SCREEN COBOL.

causes all programs currently in the hold state to continue
execution from their current locations.

Omitting process identifiers continues execution of the current
program if it is suspended.

3-45

INSPECT COMMANDS

SAVE Command

The SAVE command dumps the data and status information of the current
process. SAVE can only be issued for a process that is already in.the
hold or stop state. INSPECT writes the environment to a disc file
that can be examined during this or a subsequent INSPECT session.

Nonstop II System process extended segments are included in the save
file.

You initiate analysis of the save file by entering a PR command with
the save file name. You can use any high .or low-level commands that
display code and data values (save file contents). However, commands
that assume the running state are unavailable when working with a save
file. For example, BREAK is not allowed. The commands you can use
with save files are listed below in table 3-2.

If you are examining the save file during an INSPECT session, the STOP
command closes the save file. A PR command CAN be used to select a
different program for INSPECT control.

If you are examining the save file as the only program in the INSPECT.
session, STOP closes the file but does not end the session. In this
case, you must enter the EXIT command or a <CTRL>-Y.

SAVE is not valid for SCREEN COBOL programs.

SAVE file-name

where

file-name

3-46

names the disc file to be created for the dump of the
process environment

INSPECT COMMANDS

Table 3-2. INSPECT Commands Applied to Save Files

--
INSPECT allows these commands for analyzing save files.
Also allowed are the basic commands in Appendix A.

ATTRIB
DEFINE
DISPLAY
FILES

HIGH
IF
LOW.
PAUSE

PROGRAM
RADIX
SCOPE
STOP

TERM
TRACE
TIME

The following commands assume the process run state1
INSPECT issues an error message if they are attempted.

BREAK
CLEAR

EX1\MPLE.

HOLD
MODIFY

RESUME
SAVE

STEP

1) Assume process $NAMEX is already in the hold state
$NAMEX HIGH

=$NAMEX-SAVE savenmx
-$NAMEX-PR namestat
099,01,029 NAMEX HOLD #PROCANAME + 80
-$NAMEX-COMMENT displ·ay the current programs
-$NAMEX-PR

099,01,029 NAMEX HOLD #PROCANAME + 80
099,01,029 NAMEX HOLD #PROCANAME + 80
-$NAMEX-COMMENT the first status line is the process
-$NAMEX-COMMENT the second status line is the save file . . .
-$NAMEX-COMMENT switch back to inspect the process
-$NAMEX-PR $NAMEX
-$NAMEX-RESUME

2) This example assumes a previously created save file for $NAMEX.
:RUN INSPECT
INSPECT - SYMBOLIC DEBUGGER - (19JUL82) SYSTEM \ANY
--COMMENT zzsal630 is the name assigned by INSPECT
--COMMENT when an save file was created in response
--COMMENT to a SAVEABEND request on RUN or in object file
--PR zzsal630
-$NAMEX-

• • •
-$NAMEX-COMMENT STOP closes the save file, INSPECT continues
-$NAMEX-STOP
--EXIT

3-47

INSPECT COMMANDS

SCOPE Command

Use the SCOPE command to change the scope for subsequent commands. If
no name is given, the current scope is displayed.

SCOPE [#procedure [([+ I - 1 integer) 1]
[tiG]
[If GLOBAL]
[data-block 1

where

tprocedure

is one of:

COBOL or SCREEN COBOL program-name
FORTRAN-PROGRAM name, SUBROUTINE name, or FUNCTION name
TAL PROC name or BLOCK name (except P-relative arrays)

([+ I -] integer)

specifies an activation of a recursive call.
inteler is a signed integer constant up to 2**15-1 in
abso ute value.

ttG or If GLOBAL

is the implicitly named TAL global-data block

data-block

is the name of a FORTRAN or TAL data block in the current
process

A procedure name is sufficient to identify the scope if:

o the procedure is not recursive; that is, the procedure does not
directly or indirectly call itself

o the procedure is recursive but the referenced element (such as a
label or data) is not used in recursive calls.

However, to examine an element as it exists during a particular
activation, specify the scope using the (integer) option. You can
count from either direction using these conventions:

3-48

INSPECT COMMANDS

Activation 1 is the least recent activation, that is, the oldest
chronologicaly. Positive values count from the base of the stack
toiward the top.

Activation -1 is the next most recent, that is, the youngest
chronologically. N~gative values count from the top of the stack
toward the base.

The ·default is the most recent activation (the current scope). Its
activation is number is o.

3-49

INSPECT COMMANDS

STEP Command

Use the STEP command to execute a part of the program1 the step can be
as small as a single machine instruction. After the step, INSPECT
accepts a carriage return as a request to execute another step of the
same size.

If an interruption occurs while INSPECT is stepping, you must enter
another STEP command to continue stepping through the program. For
example, if a breakpoint wi th:i.n the step range causes a program hold,
INSPECT does not remember the previous STEP command.

ST [EP] [integer] [unit]

where

3-50

integer

specifies the number of units to execute before ~he next
hold1 the default is one.

unit

is a unit of code for the step1 it is one of:

l STATEMENT[S]
VERB [S]
INSTRUCTION[S]

where

STATEMENT[S] or S

is the default unit1 the source language equivalent is:

sentence COBOL, SCREEN COBOL
statement - FORTRAN, TAL

VERB[S] or V

is a COBOL or SCREEN COBOL statement.

INSTRUCTION[S] or I

is a machine instruction for compiled la'ngu.ages 1 it is
one pseudo-operation for SCREEN COBOL.

INSPECT COMMANDS

These are INSPECT's rules for program stepping:

o a unit of code consists of the code from the beginning of one unit
up to, but not including, the beginning of the next unit.

o with~n a single code block, units are counted in logical order of
execution. Therefore, a branch to a label causes the branch target
to be counted as the next unit.

o called code is stepped over1 that is, the next unit after the call
is next in physical sequence. For example in COBOL, starting at a
PERFORM statement, stepping one statement will advance you through
the entire perform range to the statement below the PERFORM
statement.

CO:BOL EXAMPLE. The difference between sentence and statement for
CO:SOL code is shown·in this example.

MOVE A-B TO REC-ANY
. :DIVIDE DUCAT (REC-ANY) BY C GIVING ANSWER

SET A-B UP BY 1.

COMMENT step ends at the SET statement
ST:EP 2 VERBS

EXil\MPLE.
As:sume process $NAMEX is running 1 <break> key is pressed.
In this example, source code line numbers are not displayed
be~cause no symbol tables are available.

003,09,051 $NAMEX
$NAMEX HOLD

-$l~AMEX-HIGH
=$NAMEX-RADIX 8
-$NAMEX-STEP 25 I
INSPECT P=017617, E=000313
003,09,051 $NAMEX
-$NAMEX-STEP 25 I
INSPECT P=Ol7661, E=000317
003,09,051 $NAMEX
-$NAMEX-STEP 25 I
INSPECT P=024043, E=000221
003,09,051 $NAMEX

RUN #WRITE~MSG + 262

(STEP)

(STEP)

(STEP)

3-51

INSPECT COMMANDS

STOP Command

Us~ the STOP command to terminate a Command Interpreter process
that is under INSPECT's control. If the INSPECT process was initiated
by a Command Interpreter RUN command (:INSPECT •••) then INSPECT
continues running until an EXIT command or a <CTRL>-Y is entered. If
INSPECT was initiated due to a debug event, then the INSPECT process
runs until all processes under the control of INSPECT (including the
one which incurred the debug event) terminate or until an EXIT command
or a <CTRL>-Y is entered.

SCREEN COBOL programs are stopped from PATHCOM: STOP is invalid for
SCOBOL programs.

For save files, the STOP command terminates the analysis of the save
file. The save program is deleted from the set of programs currently
under INSPECT's control.

-----~--

STOP [process-id]

where

process-id

is the process identifier: usually, it is the same one
displayed in the INSPECT prompt. process-id is one of:

{ [\system.] { cpu, pin } }
{ { $pname } }

See also the HOLD, PROGRAM, and RESUME commands.

The default process is the current program.

--~----·-----------

EXAMPLES.
1) $UT HIGH

3-52

=$UT-COMMENT hit break key or pause to start seco:nd process
-$UT-<break>
:RUND object /NAME $UT2/
-$UT-PAUSE

-$UT2-COMMENT stop $UT2 gives prompt for remaining $UT
-$UT2-STOP
-$UT- COMMENT pause or hit break key to start another process

INSPECT COMMANDS

TE:RM Command

The TERM command names the home terminal for INSPECT; INSPECT switches
to1 the named terminal for prompting. The debugged process continues
to, have its original home terminal.

--
TERM terminal-name

where

terminal-name

identifies a terminal for INSPECT's home terminal; it must
be on the same system as INSPECT

--~-------

3-53

INSPECT COMMANDS

TIME Command

The TIME command displays the timestamp for a file. You must have
read access to the file. File types and the type of. timestamp are:

o object file -- creation timestamp if created in a BINDER session
(via :BIND Command Interpreter command)1 otherwise, it is the
compilation timestamp

o code block or data block -- compile time

o save file -- the last modification or creation time of the program
file from which the saved process was loaded.

--
TIME [object-file-name]

[I code-block-name]
[I data-block-name]
[save-file-name]

where

3-54

object-file-name

is a disc file name of an object file

code-block-name

specifies a code block in the current program

COBOL - program unit name
FORTRAN - program or subprogram name
TAL - procedure name

data-block-name

specifies a data block in the current program

FORTRAN - COMMON
TAL - BLOCK

save-file-name

is the disc file name for a dump created for an INSPECT SAVE
command

The default is the object-file creati~n of the current program.

INSPECT COMMANDS

TRACE Command -------
The TRACE command displays the call history for the current program
location. Calls are.displayed sequentially from the most recent to
the oldest.

Symbolic information for the caller is displayed only if the caller is
in the user code or user library area. TAL subprocedure calls are not
displayed.

11' [RACE] [integer 1 [REG [ISTERS] 1
[ARG[UMENTS]]

where

integer

. . .

specifies the maximum number of procedure calls to be listed
beginning with the current location: by default, all
outstanding calls are displayed

REGISTERS

requests listing of E and L registers and P values: ignored
for SCREEN COBOL programs

ARGUMENTS

requests listing of formal parameter names and values for
each call

Examples

1) T REGISTERS
LANG #PROCEDURE +OFFSET: SOURCE (REGISTERS)

TAL #TALPROC +238I: SRCTW0[20451.906] (L=%2047,RP=7,CCL,T,K)
FTN #FTNMAIN +726I: SRCONE[66] (L=%603,RP=7,CCG,K,V)

2) COMMENT no argments or registers are included
T
LANG #PROCEDURE +OFFSET: SOURCE

#SYSTEM CODE 28743
#SYSTEM CODE 27316
#SYSTEM CODE 27517

CBL #ATTEMPTDISPLAY + 80: QUEENSCS[l .• 4]
#SOLVE + 73:

CBL #QUEENSCO + 25: QUEENSCS[57]

3-55

INSPECT COMMANDS

The E register values are listed in the following mnemonics:

CCE condition code equal
CCG condition-code greater
CCL condition code less
T trap
K carry
V overflow

Numbers are displayed in decimal, unless octal or hexadecimal was
requested by a RADIX command. Octal or hexadecimal numbers have the %
or %H pr~fix, respectively.

If ARGUMENTS is specified, the formal parameter names and the value
for each parameter are listed.

Register values, if requested, are listed first. Argument values, if
requested, are then listed.

3-56

SECTION 4

COBOL and SCREEN COBOL Dependencies

This section describes the language-dependent elements of INSPECT
commands for COBOL and SCREEN COBOL. These language dependencies
include:

o code and data location references

o arithmetic and conditional expressions

o format specifications for displays

COBOL and SCREEN COBOL have common syntax rules, and this section
treats them together. Differences are .. noted where they occur.

Forming location identifiers for code and data is similar to the COBOL
qualification of names. These location identifiers are called codeloc
and dataloc in the command syntax descriptions in Section 3. Forming
expressions and formats is also similar to the rules defined for the
COBOL or SCREEN COBOL language.

CODE REFERENCES

In high-level mode, INSPECT recognizes symbolic code references, if
symbol tables exist. (In either mode, INSPECT interprets program-unit
names.) Using the codeloc syntax, you can refer to all levels of
code, from the name of the program down to to a particular machine
intruction in a program unit. Common uses of codeloc are to:

o set and clear breakpoints

o display code or code attributes

An infrequent use of codeloc is to specify a point to resume execution
aeter a break. (Caution - this use requires GUARDIAN operating system
knowledge.)

4-1

COBOL and SCREEN COBOL Dependencies

These are the commands that usually contain code references:

ATTRIB BREAK CLEAR DISPLAY

Examples of codeloc in commands follow this discussion •. Note that you
cannot use code references.on the MODIFY command. (The BINDER
program's MODIFY command does accept code references.)

Scope

In COBOL an~ SCREEN COBOL, scope is equivalent to a program unit.

The scope for any identifier is the program unit that contains that
name. A program can contain a single program unit or be composed of
multiple code and data blocks. If a program unit has a LINKAGE­
SECTION, identifiers common to a caller and a called p.rogram unit are
included in both scopes. Ref er to your compiler manual fot· more
information.

Section 2 discussed name scope rules expected by INSPECT.

Breakpoint Locations.

INSPECT allows you to set breaks in the Procedure Division of COBOL
and SCREEN COBOL program units by specifying:

o the unqualified name of a program unit, a section, or a
paragraph1 this causes a break at the beginning of the unit,
section, or paragraph

o the name and an offset within a program unit, section, or
paragraph1 offsets are given as a number-of sentences, verbs
(statements), or instruction words.

Inactive SCREEN COBOL programs can have only one break set1 that break
must be at the beginning of the program.

4-2

COBOL and SCREEN COBOL Dependencies

Cc>de Location (CODELOC) Syntax

In both high- and low-level modes, INSPECT allows you to specify code
locations by means of expressions. A cod~loc must include scope-name
qualification if outside the current scope. INSPECT assumes a name is
in the current scope if the scope is not explicitly stated.

Nalme qualification rules are similar in COBOL and SCREEN COBOL.

[tprog-unit •] name [OF qualifier-name] •••

[{ + I - } integer [code-unit]] •••

where

tprog-unit

explicitly identifies the scope of ~ (the program-unit in
which name is defined). prog-unit is the source code name
of the COBOL or SCREEN COBOL program unit1 fprog-unit must
be specified if the code location is not in the current
scope.

name

is a COBOL or SCREEN COBOL program-unit name, section name,
or paragraph name.

OF qualifier-name

is a qualifier that contains name or the previous
qualifier-name1 it can be a section name.

+ I - integer

is the count of. code-units backward (-) or forward (+) from
~ that determines the offset of the code location.

code-unit

is the language element used to specify the off set of the
code location from ~7 it is one of:

STATEMENT
VERB
INSTRUCTION

STATEMENTS
VERBS
INSTRUCTIONS

s
v
I

--->
-------------------------------------~-------------------------------.a--

4-3

COBOL and SCREEN COBOL Dependencies

where

STATEMENT[S] or S

indicates COBOL or SCREEN COBOL sentences

VERB[S] or V

indicates COBOL or SCREEN COBOL statements

INSTRUCTION[S] or I

COBOL - indicates word instructions (machine qode)

SCREEN COBOL - indicates a byte

Default code-unit is STATEMENT.

For a COBOL program named COBMAIN with a section named COST-DATA
containing paragraphs named ADDRESSES and DATES, examples of code
location expressions are:

Implicit Reference

COBMAIN
COST-DATA
DATES
ADDRESSES OF COST-DATA
ADDRESSES + 2 VERBS

DATA REFERENCES

Explicit Reference

iCOBMAIN.COBMAIN
iCOBMAIN.COST-DATA
iCOBMAIN.DATES
ICOBMAIN .ADDRESS:ES OF COST-DATA
ICOBMAIN.ADDRESSES + 2 VERBS

Each data location referenced in a COBOL or SCREEN COBOL procedure can
be any data item defined in the program unit. The locations can be
anywhere in the Data Division of a currently active scope. SCREEN
COBOL screen section items cannot be displayed.

Data can be displayed or modified. You can display the contents of
the location or the characteristics of the contents. Characteristics
include data type, number of elements, and length of element. For
records, you can determine the family relationships of different
elements.

COBOL-compiled processes running on a Nonstop II System can also set
and clear a single breakpoint in the da±a area. Since INSPECT only
monitors the first word of the data location at a breakpoint, you must
specify the exact word location desired for the breakpoint. (Data

4-4

COBOL and SCREEN COBOL Dependencies

breakpoints are not available to either SCREEN COBOL programs or to
COBOL programs in a Nonstop system.)

Subscripts are used to refer to a specific item or range of items in a
ta.ble.

Da.ta Location (DATALOC) Syntax

The syntax of the data location expression in COBOL and SCREEN. COBOL
is shown here.

--~-------------------~----~~-

name [OF qualifier] •••

(} sub-item [, sub-item] ••• {) }]
·c· l { "1" l 1

where

name

is any COBO~ or SCREEN COBO~ identifier that is a data·item
defined in the source program.

qualifier

makes name unique.

sub-item

is ~ numeric expres~ion that evaluates to a subscript, or
two numeric expressions that are separated by a colon (:)
and that evaluate to a subscript range.

A data location expression cannot include mnemonic names. A very
complex condition might not be fully represented; an error message is
displayed when this type of condition is referenced. An index item is
interpreted as having its internal value. ·

4-5

COBOL and SCREEN COBOL Dependencies

Subscripts

Subscripting in a data location expression is the same as ~subscripting
in COBOL and SCREEN COBOL. For example, the following DDL structure
requires three subscripts when referencing an occurrence of the dat~
item SUBFIELD:

RECORD REC.
03 SUBREC OCCURS •••

05 FIELD OCCURS •••
07 SUBFIELD OCCURS ...

If the name is fully qualified, an implicit reference would be entered
as follows:

SUBFIELD OF FIELD OF SOBREC OF REC (X, Y, Z)

The equivalent explicit reference is entered as follows:

iCOBPROC.SUBFIELD OF FIELD OF SUBREC OF REC (X, Y, Z)

In each of these examples, the subscripts x, Y, and z refer to SUBREC,
FIELD, and SUBFIELD respectively.

EXPRESSIONS

INSPECT interpret~ arithmetic and conditional expressions according to
COBOL and SCREEN COBOL syntax rules. Refer to the appropri.ate
language manual for details of the rules. For your convenience, a
summary of operators for all languages is given in Appendix B.

Numeric Expressions

Where expression or condition is part of 'the syntax, a numeric
expression or a conditional expression, respectively, is required.
Expressions are formed according to COBOL and SCREEN COBOL rules for
syntax. In SCREEN COBOL, exponentiation is not valid.

INDEX items can only be used as indexes.

DISPLAY FORMAT SPECIFIERS

INSPECT allows PIC mask-formats to specify the display of data. The
mask-formats are a sub~et of those defined for the COBOL language.

4-6

SECTION 5

FORTRAN Language Dependencies

Included in this section are rules for forming code and data location
expressions for INSPECT commands.

Numeric and conditional expressions for INSPECT commands follow the
established FORTRAN syntax. FORMATTER formats are also as expected
(for the DISPLAY command) •

co:oE LOCATIONS'

Symbolic code locations in FORTRAN can be names of program units or
statement numbers. The location expressions can evaluate to an offset
of statements or machine instructions from the procedure name or
statement number. The syntax of the code location expression in
FORTRAN is:

--!--
[f prog-uni t •] name [{ + I - } . integer [code-unit]] •••

where

fprog-upit

is a program or subprogram

name

is a subprogram, or statement number

+ I - integer

is the count of code-units backward (-) or forward (+) from
name that determines the off set of the code location

--->

5-1

FORTRAN Language Dependencies

code-unit

is the language element used to specify the off set of the
code location from ~; it is one of:

STATEMENT
VERB
INSTRUCTION

where

STATEMENTS
VERBS
INSTRUCTIONS

STATEMENT[S] or S

s
v
I

indicates a number of FORTRAN statements

VERB[S] or V

indicates a number of FORTRAN statements (same meaning
as STATEMENT)

INSTRUCTION[S] or I

.indicates a number of machine instructions in the
FORTRAN procedure.

The default code-unit is s (FORTRAN statements).

For a FORTRAN subroutine named FTNSUB with a statement number of 23,
examples of code location expressions are as follows:

#FTNSUB.FTNSUB
#FTNSUB.23
iFTNSUB.23 - 1 I <--- minus 1 instruction
#FTNSUB.23 - I <--- minus 1 instruction
#FTNSUB.23 + 4 STATEMENTS + 2 INSTRUC~IONS

5-2

FORTRAN Language Dependencies

DA~A LOCATIONS

Expressions for data locations are based on the source language
declarations. The syntax is:

[tprog-unit •] name [subscript J [A name [subscript]] •••

where

prog-unit

is a FORTRAN program or subprogram

name

is any data object (including code location names);
qualifying names precede the qualified names;

subscript

is a numeric expression that evaluates to a subscript, or
two numeric expressions that ·are separated by a colon (:)
and that evaluate to a subscript range.

Subscripting in a data location expression is the same as subscripting
in FORTRAN. 'For example, the following DDL structure requires three
subscripts when referencing an occurrence of the data item SUBFIELD:

RECORD REC.
03 SUBREC OCCURS •••

05 FIELD OCCURS •••
07 SUBFIELD OCCURS . . .

If the name is fully qualified, an expression with implicitly stated
scope is as follows:

The equivalent expression with explicit scope is:

5-3

FORTRAN Language Dependencies

FORTRAN multi-dimensional arrays are specified according to FORTRAN
syntax, with the most significant subscript appearing :first.

DIMENSION A(l0,20)
COMMENT display first and last elements of A
D A(l,l), A(l0,20)

EXPRESSIONS

INSPECT-allows the TAL-type REAL(64) conc;tants in the :syntax for
FORTRAN scopes. That is, the L instead of D precedes the exponent.

5-4

SECTION 6

TAL Language Dependencies

Code locations in a TAL procedure can be the procedure name, a
subprocedure name, or a label name. Offsets from the base of the
procedure can be given in macine instructions or in statements. The
syntax of the code location expression is:

[iproc •] name [• namel] [{ + I - } -int [code-unit]]

where

tproc

is a procedure name

name

is a procedure name, subprocedure name, or label

namel

is a subprocedu~e label

+ I - integer

specifies an activation of the scope; refer to the SCOPE
command for INSPECT's interpretation

code-unit

is the language element used to specify the off set of the
code location from the procedure base1 it is one of:

s
I
v

STATEMENT
INSTRUCTION

.VERB

STATEMENTS
INSTRUCTIONS
VERBS

--->

6-1

TAL Language Dependencies

where

STATEMENT[S] or S

is determined by statement beginners. This is the
default unit.

INSTRUCTION[S] or I

indicates machine instructions (words)

VERB [S] o-r V

the same as STATEMENT

Use caution in specifying the procedure base as a breakpoint; this can
result in destruction of data.

For a TAL procedure named TALPROC that contains label TAL-LABEL and
subprocedure TALSUB, which in turn contains label TAL-SUBLABEL,
examples of code location expressions are:

#TALPROC
TALSUB
#TALPROC.TALSUB
#TALPROC.TALSUB + 5 INSTRUCTIONS
TALASUBLABEL
TALSUB.TALASUBLABEL
#TALPROC.TALSUB.TALASUBLABEL
TALALABEL
#TALAPROC.TALALABEL

DATA LOCATION EXPRESSION

Interpretation

iTALPROC.TALPROC
iTALPROC.TALSUB

iTALPROC. TAL ASUBLABEI.
#TALPROC.TALSUB.TALASUBLABEL

#TALPROC.TALALABEL

A data location expression references a data object in memory. This
type of expression is identified as the dataloc parameter in INSPECT
commands.

The data location referenced in a TAL procedure is any data object
that is defined in the procedure. Subscripts are used to reference a
specific item or range of items in an array. The syntax of the data
location expression in TAL format is:

6-2

TAL Language Dependencies

name [{ (
[{ n c· J sub-item t .~. J i

(t .~. } sub-item t [.
[

where

name) • • •
·1·

name

is any TAL identifier that is a data object defined in the
source program.

sub-item

is a numeric expression that evaluates to a subscript, or
two numeric expressions that are separated by a colon (:)
and that evaluate to a range of subscripts.

An index register defined by the USE statement cannot be specified as
a data object. An identifier described by a DEFINE declaration is not
automatically expanded; however, the defined text is displayed when
the identifier is specified in the ATTRIB command. Variable and
argument values in a subprocedure can be accessed only if the sub­
procedure is active and if the stack pointer has not been modified by
the subprocedure or by any subprocedure called by that subprocedure.

Subscripting in a data· location expression is the same as subscripting
in TAL. For example, the following DDL structure requires three
subsc~ipts when referencing an occurrence of the data item FIELD:

RECORD REC.
03 SUBREC OCCURS •••

05 FIELD OCCURS •••
07 SUBFIELD OCCURS . . .

If the name is fully qualified, an implicit reference would be entered
as follows:

REC.SUBREC[X].FIELD[Y].SUBFIELD[Z]

The equivalent explicit referenc~ is entered as follows:

iTALPROC.REC.SUBREC[X].FIELD[Y].SUBFIELD[Z]

6-3

TAL Language Dependencies

EXPRESSIONS

INSPECT allows FORTRAN REAL(64) constants in commands referring to TAL
scopes; that is, the D precedes the exponent. (It also allows TAL's
REAL(64) syntax in FORTRAN scopes.)

Expressions of the IF ••• THEN ••• ELSE form are not allowed; that is,
you cannot use "M x := IF Y>S THEN 12 ELSE 24".

Hexadecimal doubleword and fixed constants must end with %D and %F,
respectively. (This avoids confusion in INSPECT's interpretation
since D and F are also hexadecimal digits.) INSPECT does not allow
all delimiters possible in the TAL language.

Integer constants do not need the trailing D or F.

USAGE

The STEP command requires caution if CASE and FOR loops are in the
path. The CASE illustrates the need for caution. Following the step
for the CASE statement beginner, INSPECT steps through the OTHERWISE,
then one of the cases. Steps through the cases continue until exit
from the CASE code.

NEWPROCESS PROCEDURE

A process can be started by a call to the NEWPROCESS procedure. The
debugging environment for a process started in this manner is the
debugging environment of the caller of NEWPROCESS.

6-4

APPENDIX A

BASIC COMMANDS

INSPECT supports basic commands and automatic file name expansion in
both high- and low-level modes. This Appendix describes the commands
in alphabetic order.

ENV
EXIT

FC
HELP

File Name Expansion

LOG
OBEY

OUT
SYSTEM

VOLUME

INSPECT assumes that file names supplied for input and output follow
GUARDIAN naming conventions. Defaults are supplied by the Command
Interpreter when INSPECT is started.

File names are assigned to all disc files and devices. Running
processes can be named at your discretion. Refer to the GUARDIAN
Operating System Programming Manual for details.

EXPANDED DISC FILE NAMES. Disc files of any type are identified, and
located, vra--the expanded file name. File name expansion assumes the
following:

\system name

$volume name

subvolume name

disc file name

identifies a system within a network

identifies a physical disc pack
mounted on a disc drive

identifies a group of related
files defined by the user

identifies a single file in the subvolume

A fully expande~ disc file name has the form:

\system-name.$volume-name.subvolume-name.disc-file-name

If only a partial file name is supplied as a command parameter, the
file name is exp~nded into the full four-part file name for internal

A-1

BASIC COMMANDS

representation.

To guarantee correct file name expansion, at least the disc-file-name
must be supplied.

PROCESS AND DEVICE NAMES. Each process and each device, such as a
tape drive or printer, is identified in a similar manner. For
example:

\YOUR.$TAPE1

might specify a particular tape drive on system \YOUR; when operations
are already on that system, only $TAPE1 is required.

ENV Command

The ENV command displays the current settings of program environment
parameters. In addition to the GUARDIAN ENV options, INSPECT displays
the RADIX defaults for input and output. The command with no
parameters displays the settings for all ENV options.

[LOG]
ENV [RADIX]

[SYSTEM]
[VOLUME]

EXIT Command

The EXIT command stops the INSPECT process for the home terminal.
Debugged processes are not stopped.

EXIT

Entering <CTL>-Y also stops INSPECT immediately.

Since debugged programs are not stopped, you should ensure that no
program is left suspended when EXIT is issued. (Use either :ACTIVATE
or :STOP for a suspended process.)

A-2

BASIC COMMANDS

FC Command

The FC command operates the same as the Command Interpreter FC. It
allows editing and repetition of the last command line.

--~---~~--

FC

When this command executes, it displays the pr-evious command line up
to 132 characters and prompts for editing input with a period (.).

HELP Command

The HELP command displays INSPECT commands and syntax depending on
whether the current mode is high- or low-level. For low-level
INSPECT, this is useful to determine differences between INSPECT and
DEBUG commands.

HELP [command-name]
[•<• param ">" 1

where

command-name

is a valid command name for the current INSPECT mode (high
or low); if no command-name occurs, INSPECT displays the
names of all commands valid for the current mode

par am

is a command parameter

A-3

BASIC COMMANDS

LOG Command

The LOG command records the session input and output on a permanent
file.

LOG { TO file-name }
{ STOP }

where

file-name

identifies a file to receive the copy of commands and
output; if the file does not exist, a disc file is created
with file-name

Logging is initiated when the command specifies a file name. If
logging is already in progress, the previous log file is closed and
logging begins on the new file. If file-name is the same as the
previous log file, the LOG command is ignored and logging continues on
the same file.

If file-name has the form of a disc file and the file does not exist,
an EDIT file is created. If the named file is an existing disc file,
the output is appended to the file.

The current log file is closed and all logging is stopped when the LOG
STOP command.is entered.

A-4

BASIC COMMANDS

OBEY Command

The OBEY command causes commands to be- read from a specified file.

--~------------------------~----------------------------------~----~--

OBEY file-name

where

disc-file-name

is the file name of an OBEY file

Commands are read from the named file and processed until an
end-of-file is encountered. At end-of-file the OBEY file is closed
and command input reverts to the previous input file, normally the
home terminal.

Additional OBEY commands can appear within an OBEY file; OBEY files
can be nested to a depth of four.

If the default setting of SYSTEM or VOLUME is changed in an OBEY file,
the setting is not automatically returned to the previous state when
the OBEY terminates.

If any part of the specification is invalid, if the file does not
exist, or if the file cannot be opened, an error occurs. INSPECT
displays an error message and prompts for input if the input file is a
terminal. If the input file was not a terminal, INSPECT terminates.

A-5

BASIC COMMANDS

OUT Command

The OUT command directs the output listing to a specified file. The
syntax of the OUT command is:

OUT { file-name }
{ I OUT file-name I }

where

file-name

is a file name.

---~----------~---------------

The first form of the OUT command causes permanent redirection of the
output.

The second form of the OUT command causes temporary redirection of the
output. This form is specified as part of another command and must be
positioned immediately after the other command name and before any
other part of that command. For example:

HELP/OUT filename/command-name

If the file name has the form of a disc file and the file does not
exist, an EDIT file is created. If the named file is an existing disc
file, the output is appended to the file.

If the file name is invalid or if the file cannot be opened, an error
occurs. An error message is displayed and the listing is not
executed.

A-6

BASIC COMMANDS

SYSTEM Command

The SYSTEM command sets the default system for expansion of any file
names.

SYSTEM [\system]

where

system

is a system name ·of the form \system

VOLUME Command

The VOLUME command sets the default volume and subvolume for expansion
of any file names.

--~---~~~~

VOLUME { $volume J
{ [$volume.] subvol

where

volume

is a volume name of the form $volume

subvol

specifies a subvolume on volume.

A-7

