NonStop™ Systems

¥

GUARDIAN™ Operating
System Programmer’s Guide

Operating System Library

82357

NOTICE

Effective with the BOO/E0O8 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term “NonStop 1+™ system” refers to the combination of NonStop 1+ processors with all software that
runs on themn.

The term “NonStop™ systems” refers to the combination of NonStop ™ processors, NonStop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the NonStop 1+ system only, others pertain to the NonStop systems only,
and still others pertain both to the NonStop 1+ system and to the NonStop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

NonStop™ Systems

GUARDIAN™ Operating System
Programmer’s Guide

Abstract
This manual describes the interface between user programs and the
GUARDIAN Operating System on the NonStop systems.

Product Version
GUARDIAN B0O

Operating System Version
GUARDIAN BO0O0 (NonStop Systems)

Part No. 82357 AQO

7

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

DOCUMENT HISTORY

Edition Part Number Operating System Date

First Edition 82357 A0Q00 GUARDIAN BO0OO March 1985

Copyright C) 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated: '

AXCESS BINDER CROSSREF DDL DYNABUS
DYNAMITE EDIT ENABLE ENCOMPASS ENCORE
ENFORM ENSCRIBE ENTRY ENTRY520 ENVOY
EXCHANGE EXPAND FOX GUARDIAN INSPECT
NonStop NonStop 1+ NonStop I1I NonStop TXP PATHWAY
PCFORMAT PERUSE SNAX Tandem TAL

TGAL THL TIL TMF TRANSFER
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This is a new publication for the NonStop system. The existing
two-volume GUARDIAN Operating System Programming Manual

(part numbers 82336/82337 with updates 82189/82192) is replaced
by two separate manuals for the B0O0 release of the GUARDIAN
operating system: this GUARDIAN Operating System Programmer's
Guide and the System Procedure Calls Reference Manual

(part number 82359).

All of the procedure call syntax information is now contained
in the System Procedure Calls Reference Manual.

Note that the scope of the System Procedure Calls Reference
Manual has been enlarged beyond that of the existing GUARDIAN
Operating System Programming Manual to include other products.

The scope of the GUARDIAN Operating System Programmer's Guide has
not been enlarged. It explains only how to use those features in

the existing GUARDIAN Operating System Programming Manual.

"How-to" information on procedure calls that are part of other
products, such as the spooler, ENFORM, and SORT/MERGE, continues
to reside in the manuals for those products.

For the B00 release, the following new features were added to
this manual:

e The time services provided for the GUARDIAN operating system
have been redesigned. The main features include:

--Four-word, microsecond resolution

--Julian Date based (GMT) timestamps

--CPU clock rate averaging

--Clock rate adjustment

--Automatic daylight savings time adjustments
--Julian date conversion routines

--Callable procedure to set system clocks

These features are described in Section 16.

) 82357 A00 3/85 iii

iv

Software support for the new 5530 serial printer is described
in Section 7.

New SCMON functions are described in Section 5,

LOCKMEMORY and UNLOCKMEMORY were removed because they are
privileged procedures.

Operator console information in Section 10 has been updated
to reflect the latest changes.

The Trap Handling description in Section 13 has been
rewritten.

A number of minor corrections and clarifications have been
made to the manual.

The entire publication has been reorganized and reformatted.

/"i 82357 A00 3/85

CONTENTS

PREFACE ®© 8 9 0 0 0 0 0 0 % 0 0 0 0 S L B OO OO SO OO OSSP OO L O LSS SO LB LSS GO N SO

SYNTAX CONVENTIONS L B I B A I N I I I B I I I O L I I B Y I I I I I I K I I I O B

SECTION 1. INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM ...
The File SYSEEM .uveereesocoesssosossesosssssssssssssssssss
ProCedUIeS ..ceosceseossssscesssscossssosnorsasosssssoscscsssasnsses
PrOCESSES +vtessosssssssassssssosssosssssoanssssssssssssasnsass

Process StrUCtUrecceoeeeecoccscsccssosososasoscsnccssssscas

Process PailS ..eveceesesscsssssessssssssssssonsssssosacsas

Process Control FUNCLIiONS suiiesessecosocassrssccscsosonss
SysStem MeSSAQgeS ceessssssecsassscsssossosssssssssssnsssassss
Checkpointing Facility (Fault-Tolerant Programming)
Transaction Monitoring Facility (TMF) ...eeeeececcsosonnns
Utility ProceduUresS ..eieseecesccssacscosossssnsesssnassasasns
Using the Command Interpreter ...soceeeessosssssscssoccascas
External Declarations for Operating System Procedures
Securing Your FileS ...ceeeeecesoseacssosossosssasososnnas
Traps and Trap Handling ...ceeeescceseosscssosssssascsases
Debug FaCility seeeeescessosoessesscnssossosssssssssssonss
INSPECT .iveeeeesosossasscsssocssososossosssssonssssssssssssscs

BINDER L I I A R R A A B R Y B B I S I R B N R I I Y Y B A 2 B R R I I I I B B N B R I I R B)

DIVER and DELAY ® 0 0 0 0 0 0 0 00 0 0 6 00 0 0 9S00 PO L LG OGN0 e

SECTION 2. BASIC CONCEPTS: FILES AND FILE NAMESccceees
FilleS tuieeeeesesesocnsonsesossscesssosssssossssnsssassnsssss
DISC FileS tevesssnseesessssssessssnsssossssossescnsasssss
NONAiSC DEVICES tuieeeseesossscssnsesosssssssssossssnscse
Processes (Interprocess Communication)eceececescscss
Operator CONSOle .t.ieeieeeorsososssssssosscsassssssssssascsns
File NAGMES .vveeesseseossssscassssaassssssssssssnsssssssoss
DisC File NAGMES .tvveeeeesocosossesssssssssssssssacsscsnsca
Volume NBME v sevessosocssssesssssssssassssccnssssssssns
Subvolume NamMe ...ceoeeeesessscosocccosoossssssssssscncss
File NAGME@ vt esvresssecssossosssnssnsssassssanssssssnsss
Disc File Name Expansion (External File Name)cceeess
Temporary File Namecveeecesesososscsseescsocossnanns
Device NAGMES teeesoseossssocsssssssssossssassssssssssscss

$O ® 5 0 0 0 0 0 0 0 0 2 9 8 0 0 0 P S S S O P OO E OSSOSO LSOO LS N0b00e0e

SRECEIVE ® © 0 0 9 6 0 0 0 H 0 s O S 00 S 00 8 0 000 0SSNSO

ﬂﬂ 82357 AQ00 3/85

« XV
Xix

1-1

1-4

1-6

1-8
1-10
1-12
1-12
1-14
1-14
1-16
1-17
1-17
1-18
1-19
1-20
1-20
1-21

(-
I

NN

[arp

FTRONNNNNDNODNODNDNDNDNDNDND
| 1
COOOWVWWOOOMOOIPWHKFH

NN N
)
e

CONTENTS

SECTION 3.
Process States

Internal File Names
External File Names
Correspondence of External to Internal File Names
Network File Names
Internal Network File Names
External Network File Names

® 5 0 0 060 0 5 05600 00 8 3 9000 600t 0 0o

® o8 08 00 0

Default System ® ® 0 8 © O ¥ 0 9 " B % 0B O PN BB 00
Expansion of Network File Names ...
Correspondence of Internal to External Network

Names

Logical Device Numbers

Process IDs and Process Names
Timestamp Form of Process ID
Process—-Name Form of Process
Network Form of Process ID
Process Names

How to Access
Disc Files
Terminals
Processes

Coordinating Multiple File Acc

Files

e ¢ o0 000000 0 00

Wait I1/0 and Nowait I1/0

How the File System Works

Executing System Procedures
Opening Files
File Transfers

Buffering .

¢ o 0 000 00

Closing Files

Error Indicat

Error Recovery
Automatic Communlcatlon Path

Files

Mirrored Volumes

ion

Process Creation ..
Process Execution .
Process Deletion ..

Process ID ..

Obtaining a Process ID

Creator
Process Pairs

Named Processes

Hardware I1/0 Structure
Software (File System)

e & o o o o o

MANAGING PROCESSES

.
.
.
.
.
.
3

Operation of the PPD ...

Ancestor Process
Reserved Process Names
Example Operation of the PPD

Procedures
Home Terminal

s e o e e & e o

® o 8 8 6 0 0 0 00 000000800000

e e e e ® & & o

. e o o o o ¢ o s o ¢ o (De o o o o o
e ¢ o o e ¢ o o o e o [N o o s o o

e & 8 e & e * e ¢ ® o =
e & e o & & & e & o & o =

I

Uo e o o

F{ e« o o o o o o o o o o [®» o o o o o
F{ e e e o e o o o o o ¢ O o o o o

F{ ¢ o o o o o o ¢ o o o

Qe o o o ¢ o o o o o

F{ o ¢ o ¢ o o » o o o ¢ [N o e o o o s o o o o o

* o

® & 2 o e ® e o e o

e o o

Recovery

® 60 000 06000 0 0

® o0 005 0 ¢

e @ e ® © e e e e e o ° e ° e ° ° & s

e e ® ® e e e & e e e o & e o e ° & °

e e & e e & o 6 6 ¢ o & ¢ o o o

@ @ @ @ @ 8 @ @ o e e & o

L)

.

.
e o & ¢ & & o * o o ¢ o o
e e e o & e e o & & ¢ o o

¢ e e o e e e © e e o o e e ® e & ¢ e e s * o

Fhe e e ¢ e e e e e © s o e ¢ o o s o o o & » o

QO ¢ ¢ o o s e o o o o o s e o & & e o s s e e .

. H ¢ o e o e o o o e o o o o o o o o @ o o o o

® e e & 6 8 ¢ e e ° * e ¢ e o o

@ 9 ¢ 6 8 ¢ 0 9 5 0 8 00 O B E DT P PO OSSN L o

File

e o o o o o o vttt ettt

e o e o & o e o & e o o o .

[] o e . e o . e e o o ° o e e o . e o s e o .
Q¢ ¢ o o o o ® 8 e ® o s © & & » o o & o o o o
L . L] L] L] * - . L] * L L o L] * e
® o e e e e o * 8 ° ° e e o o e e e ° e o o »

o Yl o e o o o o s s e e 6 o2 e o o © o o & e e e =

e LY
e o 0 0 ¢ 0
e o 0 0 s 0
e o o 0 0 0
* ® 0 000
s o 0 0 0 0
® e 0 0 ¢ 0
o e 0 0 00
¢ o 0o 0 & o
e o 0 0 s 0
* e e e 00
e e o o e o0
® 6 0 0 s 0
* o 0 0 s 0
o 0 00
¢ o 0 0 s 0
e 0 0 0 0
5 00 00

“4 82357

¢ ® @ o © e ® e @ e @ e e e ° ° e ° o o e o o

.
e ® e & o o e o e o+ o o o+ ¢ o o

2-11
2-12
2-13
2-14
2-15
2-16
2-16
2-17

2-17
2-18
2-18
2-18
2-18
2-19
2-20
2-21
2-22
2-24
2-24
2-25
2-26
2-30
2-30
2-31
2-33
2-36
2-38
2-40
2-41

e e e e e e & ® e 8 e o e ° & & e @ ° e ° o o

INEN
1

PN

NN

INY)
I

SIS
o

1 11
NHFOWOIJO0TE

e & ¢ e e ¢ s o

T WwWWwwwwwww
|

o

A00 3/85

CONTENTS

Process TiMINg suoeeeeeeeeseesacscosococsscsccsssssssssssess 3-20
Creating and Communicating With a New Processeeee.. 3-22
Execution Priority sueeeeeseeececeosacossesccssosssssocnses 324

Suggested Priority ValuesS ...eeeeescscscassscscsssosesee 3-24

SECTION 4. COMMUNICATING WITH OTHER PROCESSES ..ceveecconsses
General Characteristics of Interprocess Communication
Summary of Applicable ProceduUrescesesescsssscscocsccns
Types of Communication Between ProCeSSEeS ..ceeecescccsccses

Synchronization s.seeeesesseeesecsessssoscssssosscsascnsnns
SRECEIVE File .eiieteceeosserssosenosssssosossccssssscscsccacs
NOWAIE I/0 teeeeeoeenoseoeeeoaosossnnonsanssnsssansnsans
SysStem MESSAge5 c.eeessececoscccasssssosnsoscnsssssanscsess
CommuNication TYPE teeeseeesesossscossesscossosssoscnss
Process F1leS .ieeesesessssssosossssesassossossossssnscanscs
Sync ID for Duplicate Request DetectiOn ..ceeeeeececccanes
Interprocess Communication EXample ...eeeeesceoscoscocccons
Error RECOVEIY tesoeossocsoosssossssssnsssosssssssasssssnssnsaes

OOy WN Ll o VN OOoOWOIUTId N

(T N T T T N
'

N N
]
N

SECTION 5. INTERFACING TO THE GUARDIAN COMMAND INTERPRETER .
General Characteristics of the Command Interpreter
Passing Run-Time Parameter Information to an Application
PrOCESS teeoossosessssosssssssssscassssssssssosssssncssssossses

Startup MeSSage ..c.eceeeescsosssccsscsccscosssscosoacsnsssssocs
ASSigN MESSATE tveeeserossossssscossscsssosssssssscssssssess
Param MeSSa8ge ...eeeeesssssasososssscccsssssscssscasassscaasse
Reading All Parameter MeSSAQgeS ..eeeseescesccsccssnsscses
Application Process to Command Interpreter Interprocess
MESSAgES .cevessesessssssssssssssssssssasscsscsssscascsccssce D11
Wakeup MESSAQge ..essessssccsoscssssssssssssssoscssssssssse D11
Display MESSAQE .veveeeessconsssansssscosssccssssossssees D-12
User-Supplied CI Monitor Process (SCMON)ceeeesocseses 5-13
Communication Between Command Interpreters and S$CMON ... 5-14
SCMON MESS8QgES seeeeesssssssssssccsssssssscsssassssssssss D14

oot o,
|

SECTION 6. INTERFACING TO TERMINALS ..cccecsscoccccscscsscsos
General Characteristics Oof TerminalsS ..eeeeeccesccscossnnes
Summary of Applicable Procedures ...eceeeeecscsccsososssosnsss
AccessSing Terminals ..eeeeeeeccesesseccsosscessscsosssnssse

Transfer Termination when Reading ..ceeeeeeececccccccscns
Transfer MOAES ...ieeeeseesssssssvovsesceoosssssssssssosssnssas
Normal Page Mode versus Pseudopolled Page Mode
Conversational MOAE ...seesecscescaosovssnsssossassnsenss
Line-Termination Character ...ceceecescoccosccosenccncs
Conversational Mode Interrupt Characterscceeeees
Forms CONtroleeeeeeeeosossoocsossossonconsonsosss
Page MOAE tiiveeeoonsorsssssssssosososcscossossssssssnsossscssse
Page-Termination Character ...ceseesesessscsscsesssess 6-19
Page Mode Interrupt Charactersieceescecssecsssess 6-20
Pseudopolled TerminalsS ...ceeesessssossssossnsssensssss 6-23
Simulation of Pseudopolling ...eeececessccosscscosssess 624

[el)Mol e Wor N e AN o))
| 11
OO

292999
1
[N A R
GRS EN!

4 82357 A00 3/85 Vil

CONTENTS

Transparency Mode (Interrupt Character Checking Disabled) 6-26
Checksum Processing (Read Termination on ETX Character) .. 6-26
EChO © © 0 5 0 0 5 6 0 0 5 0 0 E 0 0 008 S S0 S B G E B GO0 8 0SS E G LIS EESEEDIOGEEE 6_27
TIMEOULS tvevensessssossssosccssssssnnssosssesessssescsases 6-27
MOAEMS . vvevsecsessossssossossssssssossssssssensnsscnsssse 0628
BREAK FEALULE .stveesseossscesssosssssosssosssscsssnsnssnees 629
BREAK System MeSSa8Qg€ ..ceeoesseossscossaccsccnnssssosssoss 6-31
Using BREAK (Single Process per Terminal) ...ceeeeessees 6-31
Using BREAK (More than One Process per Terminal) 6-33
Break MOAE (.cvisvevseressssssscccconssssssscssscssssasss 6-35
Error RECOVEIY «eeeeeecosacssssossosscaessssssssanssscccscascss 06—40
Operation Timed Out (Error 40) ...ceveececrenccecacsoses 6-40
BREAK (Errors 110 and 111) ...eeevoevossocsessoasnsssces 6-40
Preempted by Operator Message (Error 112)eseeaes. 6-41
Modem Error (Error 140)eeeseccossssssoasosnosssnses 6-41
Path Error (Errors 200-255) ..vievoeecsassascsoscsnsnsss 6-42
Summary of Terminal CONTROL and SETMODE Operations 6-43

SECTION 7. INTERFACING TO LINE PRINTERS ... ceveeeccocascnscoa
General Characteristics of Line Printers ...eeeececcccoosess
Summary of Applicable Procedures ...sceseseccsesscescsnnses
Accessing Line Printers ...eeesseesesscssescessosassanssnns
FOrms CONtrOl tuusivesecescccossossssocssssssssssssssssnscss
Programming Considerations for the Model 5508 Printer
Programming Considerations for the Model 5520 Printer
Programmatic Differences Between the Model 5520 and
Model 5508 .iviviverensssocesensssssssossssssossnacsasosss
Using the DAVFU ..ieeescessessossasasasssssssssnscoasanssnss
Loading the DAVFU ..uveeseeseoseossoosssssssscscscosssassssns
Underline Capability .uieeeeesseseecscssossssasoscnssnnnss
Condensed and Expanded Printeceseesecocccsconsncncone
Error Conditions for the Model 5520vvvevecesccncans
Data Parity Error RECOVELY .tveescececssossassssssnsanness 1—14
DEVICE POWER ON ErrOor ..ccccececescossssssssssccocssnsnss /7—15

Programming Considerations for the Model 5530 Printer 7-15

Using a Model 5508, 5520, or 5530 Printer Over a Telephone

LiN@ teeeesesecanssosssssssscsoasesescssosseseseasssnssseses 1716

ERROR RECOVERY . tvtevsvescssvescscscsscasasssscncssscsssssase 1—17
NOt ReAdY sseevevossosesoccccscssscssonsesssssssssscsccsss 1—17
Path EFFrOrS cuieeeesoteeesoosssssssssosossssasassscscsssss 718

Summary of Printer CONTROL, CONTROLBUF, and SETMODE

OpPeratiONS tuveeesssosesesossssscosesasssassscssessssnsnse 1-19

NNNNNNN
i
Ny W -

I 99
|

N

1
HKHFRFE
WNHWOWI

SECTION 8. INTERFACING TO MAGNETIC TAPES ..ecceecccencossonns
General Characteristics of Magnetic Tape FileS .veeeeeences
Summary of Applicable Procedurescesoeeseeceeccoscssnsss
Accessing Tape UnNitsS seeeeeeeesoeosscsosssessssessssssscnans
Magnetic Tape CONCEPLS teeeseeeerscscossssossccosssscsssssnsas

BOT and EOT MaArKkerS ...eesoeceesecesssoossossossscssaassnnssas

Files LR R A B N R N B 2 R R I B I R I I I R I I I I I I Y I I I O D I I Y I I I I BN I B B AN)

I

0o 00 00 GO O 0 o
1
[eoler W oMo W& NN L gb o

Records LA B R I B R R N B B B I R I Y I I I N I I 2 I A I B A L R IR N I I S I T I S }

viii 4 82357 A00 3/85

CONTENTS

Programming Considerations for the Tri-Density Tape

SubsSysStemciceeteessacsossscsssscssssanssasssssecssses 8-13
Downloading the Microcodeceeeeecescsscsssossccssssses 8-13
Selecting Tape DeNSity eeeeeeecesccosscasccasssnsacaseas 8-13
Controller Self-Test Failure ..e.ieescseessescascsssesses 8-14

Error RECOVEIrY .o esessseovesssssssssnsssssscssssssssssssseas 8-15
Path ErrOrS ..eveeeeeesssccesossecssssssssssssssesssssassss 8-17

Summary of Magnetic Tape CONTROL OperationsS ..eeeeeeeesses 8-18

Seven-Track Magnetic Tape Conversion ModesS ...¢.cco0ce0ee. 8-19
BINARY3TO4 .+.ucveeeesoosossoessasssesscssassssassssonssess 8-22
BINARY2TO3 s ieevsvssoesovsocsosssssossssssssssssscncssses B—23
BINARYITOL ...ceecoesensoossossosssesscssesssssanssossess 8-24
Selecting the Conversion MOAE ...ceeeevecocoscnscencssoses 8-24

Selecting Short Write MOde ...ceeseesscscescessssscosensee 8-25

SECTION 9. INTERFACING TO CARD READERS «.ccceecoccccsccsscscos
General Characteristics 0f Card REAderS ...c.cceeeesscesccsnse
Summary of Applicable ProceduresS .ceeceseessceocsossceocsscecs
Read MOAES ttveeeteccsossnscscsccssstssscssossoscscsscsncacscscsceass
Accessing a Card REAAer ..ueeseseesessssscesosssssacoscsosnsse
ErXFOr RECOVELY coeosoesssssssossosssssscssssssssccssssasossas

NOt REAAY ceeeveosssscscncososssssssssssssscasssssssassosa
MOtion CheCK tiveeereeseesccococoossosscscsasscccosccacssnssss
Read CheCK tiveeeeeescecssossssooesossasssssssnccssssssss
Invalid Hollerith .vueeeeeececeesecesosssctsccnoacoconscssns
Path ErrOrS tvieeeesereesscessoscatscssoscenssssasosncscsceses

[S S N R R B |
NN DOIIIONON MV

SECTION 10, INTERFACING TO THE OPERATOR CONSOLE .:.cccecoonse
General Characteristics of the Operator Consolece00
Summary of Applicable ProceduUresScesceseesscocsscscccsaes
Writing @ MeSSAge ..veeseseseoscssscnssssscssssoasassnseses 10-3
Console Message FOrmat ...ceeeececssssccscscsssssnsscscess 10-4
Error RECOVEIY ot veeeeesoacsoososascssossssssssssscsssnssees 10-4
Console Logging to an Application Processseeseeseesee 10-5

e
ocooo mm?mmmmwwmw

SECTION 11. PROVIDING FAULT TOLERANCE WITH THE TRANSACTION
MONITORING FACILITY (TMF) .veceeeoesencsnsaeess 11-1
Programming fOr TMF ...ucescessescsosssnscssnsnssssnacnses 11-2
Applications That Can Use TMF ...cieesseessnoscasenssees 11-2
Defining the Transaction Identifiereeceeeesecoscess 11-3
TAL Programming .eeeeeescsessssssoossssassscnsssssocssonssssss 11-4
Programming Considerations ..eeiveeesssescesosssssansensses 11-4
Accessing Audited Data Base File€S ..ieeevceccenssassnsse 11-5
Record LOCKING seveeeseesesssossscosscsssssssssssossseasses 11-6
Repeatable ReadsS tviieeeeecesssscecosssssscsssssnnssses 11-8
Opening Audited FileS——ErFrOrS .veeeeeseeosscenssncnssss 11-9
Reading Deleted RECOILAS +iveescssvsssssssassnsasssssss 11-9
Batch Updates sveeeecerossssosssssssssssssoasssssasssss 11-10
Coding SErVEerS sieseesesssssoosssssssssossssssssssssesse 11-10
Avoiding DeadloCk s.eveeceosnesscossessvsssssessonssesss 11-13
Using the Transaction Pseudofile (TFILE) ...cceoveeeeess 11-17
Opening the TFILE ..veeeeeacenaccsoscnsonscaassannsss 11-18

//’I 82357 A00 3/85 ix

CCONTENTS

Using AWAITIO to Complete ENDTRANSACTION Calls 11-18
Synchronizing the TFILE ACBS ..vsseessvscssossosseses 11-19
Using the TFILE for Checkpointed Operations ...¢e¢e.. 11-19
Handling TMF Backout AnomaliesS ...seecscesescecesonsosese 11-20
Advanced Usage Of TMF ..iceeccosssnsassscssassssnsasnass 11-21

SECTION 12. WRITING FAULT-TOLERANT PROGRAMS ...¢ceceveeceess 12-1
Checkpointing ProCedUreS ...eeesesescesesssessscosvsssnses 12-2
What Information Is Checkpointed? ...cceeeececessssoncceccess 123

Data StaACK seeeveesssesssesssesssosossssssssosssnssseanss 12-4
Data BUffers ...eicieeencecessssssessasonossssassneacssas 12-4
SYNC BlOCKS .tuiesseneecoossossssscnoscsossoasssssssccsnsssnscee 12-4
Information Not Checkpointed ..cieeveceeeerscessensoneese 12-5
Overview of Fault-Tolerant Transaction Processing 12-6
Fault-Tolerant Program StrucCtuUre ..ceeeseeeesvssosncecese 12-10
Main Processing LOODP teseesesoeeseconsscssssssssnassees 12-10
Process Startup for Named Process Pairs ..ceeeeesscesss 12-10
Process Startup for Nonnamed Process Pairs ...eeseeesee 12-19
File OPEN tuteeeessosssaossssossossssssssssosscssanensseas 12-23
Checkpointing .ieeeeeeseesvossoscencossosssssossnscnsannes 12-24
Guidelines for CheckpoinNting ..iieeeseeessocsscansesess 12-25
Example of Where Checkpoints Should OccUr ...eesneeaeee 12-26
Checkpointing Multiple Disc Updates ...ceeseeeessoeaeses 12-30
Considerations for Nowait I/O ..ieeeeceveosoesennsesses 12-30
Action for CHECKPOINT FailUre ...esocescesesccscesscsses 12-31
System MeSSagesS ...eceeececsccccsccccsssosscssccnssssnsansss 12-31
Recommended ACtiOnN ...ceeeeseocesscesasossessoassnsesaes 12-33
Takeover by BaCKUD +tviveeossossncoosccconsssssasscsssassss 12-35
Opening a File During ProcesSing ..ceeeeecescescossnsasee 12-37
Creating a Descendent Process or Process Pairc0... 12-38
Advanced CheCKkpointing ..eeeeeescosseosscvsscssossssssssses 12-39
BacKkup OPEeN .teeeeesesecsoscssscsscoscsssssssssasssssssss 12-39
File Synchronization Information ...ceeeveeeecocscesness 12-40
Advanced Usage of Checkpointing With TMFve00... 12-41

SECTION 13, TRAPS AND TRAP HANDLING .ecevecvoccssccssosnssss 13-1
Trap ConditionNs sieeveeeesessessosaosscosssasssssosansaasees 13-1
Traps While Executing System Code ...ieeceesseeesnecosase 13-3
Default Trap Handlereececcccssssosossasesssnsssnoscaes 13-4
User-Defined Trap Handlercececececcocssccssscossessss 13-4
EXampPle ..cieeeroesssecssosossassssnossnsosssassssesscsssesssaes 13-5

SECTION 14, USING EXTENDED MEMORY SEGMENTS ..¢.cceveneeeess 14-1
Extended MEMOIY «.eessvessscssscossssnosssosssssassesssssnss 14-2
Dynamic Memory Allocationeeceecososcssssosnssssssscas 14-3

Pool Management MethodS ...ceeoesovcoesnosocooscsoscssssss 14-3

SECTION 15. ADVANCED USES OF MEMORY ..:.cesvvessscossoessses 15-1
Reserved Link Control Blocks ® 9 0 5 6 0 0 & O O 0PSB T S OO S C 0P e o 15_—1

SECTION 16. MISCELLANEOUS UTILITY PROCEDURES¢.:0000000s 16-1
Procedures overview ® & & & & 9 0 P 0 " DS sSSP BLe e e 16—1

X //'I 82357 AQ0 3/85

CONTENTS

Procedures Related tO TimMe ..ieveeeeerosossccccncacccsnesss 163
Clock SettiNg stuiveeeeeeseeeeassnccasssossoensasnssncsosese 16-3
Clock Averaging s.seeeeeseessssssssosssossssssossasscsses 164
TeOIrMS 4ttt eeoestessosssestsscscsosnsasassssscscsssscsscnscscnssss LO6—4
JULIANTIMESTAMP ProceduUre ..eeeeeescocccscscscsssosscssoee 16—5
COMPUTETIMESTAMP, CONVERTTIMESTAMP, and
INTERPRETTIMESTAMP ..¢cccccescesccescoccscssssssscnsssssse 16-5
COMPUTEJULIANDAYNO and INTERPRETJULIANDAYNO Procedures . 16-6
SETSYSTEMCLOCK ProcedUre ...cecececssccccscsessosccsssoces 16-6
TIME ProCeAUILE .eeeveessocssccscosssosscsssocccscsccscssssses 16=7
CONTIME ProCedUre ...eeeececsccnssacssoscsosncsscccnsssscee 16=7
TIMESTAMP ProceduUre ...eeoeeesescccccssssscsccncccncssses 16=7

Procedures for String and Number Manipulationccceee. 16-7
SHIFTSTRING ProCcedUre ..cececcecsccccsosccssoscscscsescecss 16-8
FIXSTRING ProCcedUre ...ceoeececcccssssssscosccsssssssssees 16-8
NUMIN and NUMOUT ProcedUreS ...ccseecosscscsassccscssss 16-11
HEAPSORT ProcedUre ..ccocececscsccorsvessssccsssossccssasss 16-13

Other ProCedUresS .suisecececsssososcsssosssssosssasssssncssses 16-13
INITIALIZER ProCeAULE «eecesatscesssssstsscscccccsscssssse 16—14
LASTADDR ProC@AUIE .c.cestecccscscosocssccscssascssscscss 16-16
SYSTEMENTRYPOINTLABEL ProceduUre ...ceseeecescccescsssses 16-16
TOSVERSION and REMOTETOSVERSION ProceduUre ...cceeessess 16-17

SECTION 17. SEQUENTIAL INPUT/OUTPUT PROCEDURESceveeeo. 17-1
FCB StrUCLUre .e.eecececccoossosssssosccossssssnsssssncnss 174
Initializing the File FCB Without INITIALIZERe00.. 17-5
Interface With INITIALIZER and ASSIGN MesSSages ...seeeeese 17-9
INITIALIZER-Related Defines ...ceeeececoseconcccconssenss 17710
ConsiderationsS tuieesesseeecesescsssssssscscscnsnsencese 17-12
Usage EXampPleS ...eeeeesscsoecssccsssscesscssssneanssssesse 17-14
Example 1 ..ceeeeecescscssssssscnnosssssssssacscsscnsasas 17-14
SUMMABTY ceeeeosessossseosscscoassssssossssosocnsscsssssse 17-17
Example 2 .cieieeeeeosoesssasssccoccosssosssssssscscscnssss 17-17
SUMMAYY +.eesvcecccacssssssscssossosassssssssesssscsnssssnsss 1720
Practice EXampPle ...cveeescescoccosscssossnsensscesesse 17-21
Usage Example Without INITIALIZER Procedureceeeeeee 17-23
SOUIrCe FileS toveeveseoscessessosseosssssesssssossseassases 17725
SIO ConsiderationNs .ieeeeeceeecscesscssossessesssnsssee 17-25
SRECEIVE Handling ..eeececscecscccessscooscsosssssonsssees 17-27
NOWAIt I/0 tueveerecosoosesossssosssnansososasssssesossosssss 17-28

SECTION 18, FORMATTER 4¢cesecvsocsocssssssceaosasssssssssssss 18-1
Format-Directed Formatting ..eeeeeececososccosccccossssossess 18-2
Format CharacteristicCS .ieeeeeseecososcsssensonossssssas 18-2
EXample ..ceceeeeeceocosssosasssscoscsossosssssssccscscsscsssssse 18-5
Edit DeSCriptOrS ..iviecesesesescoecossescosssssansassnsossnses 18-8
Summary of Nonrepeatable Edit Descriptors ...ceeeeeeee.s 18-8
Summary of Repeatable Edit Descriptorsceceeeesscess 18-9
Summary of Modifiers ...eeveeeesscsscssessssscsssessess 18-10
Summary of DecorationsS ...eeeececsssssessessseseasssssss 18-10

4 82357 A00 3/85 xi

CONTENTS

Nonrepeatable Edit DeSCriptOrsS ..eeeensesessessessasssass 18-11
Tabulation DesSCriptOrsS .e.eeeeseessossssssssossesssssess 18-11
Literal DeSCriptOrS seeeeeecesesssenosssssssscsossssssss 18-12
Scale-Factor Descriptor (P) .e.eeeesoceevsosossssnseses 18-13
Optional Plus Descriptors (S, SP, S5) .teeveesscssseess 18-14
Blank Descriptors (BN, BZ)cceeossevesesssssasssssss 18-15
Buffer Control Descriptors (/, :) cieececeessseconsosss 18-16

Repeatable Edit DeSCriptoOrsS ...eeeesescssesessssscsccsssss 18-18
The Edit DeSCriptOr ceeeeeeoseesesscesssssossssssessss 18-18
The Edit DesCriptOr .uiveeeeecessesscsssssssssssssssss 18-20
The Edit DesCriptOr ciueeeecessecssscesscnnssscssansess 18-20
The Edit DesCriptOr .ieeeeesseecssscsosscosasaassasss 18-23
The Edit DesCriptOr .iveecesecccssscesvsncasssnasaaess 18-24
The Edit DesSCriptOr .ieeesseserssososssscsssesansansses 18-26
The Edit DesCriptOr .teeeeececocceasosseosscsossssccsssess 18-27
The Edit DesCriptOr s.eceseseesoscssosssssssessosssessss 18-29

MOAifiersS sueveeeesvesorssorsenssnssossnssnsssssssssssnssnss 18-32
Field-Blanking Modifiers (BN, BZ) ..v.eveveoesvsceneses 18-32
Fill-Character Modifier (FL) ..ceceveecsvocscecncaseses 18-32
Overflow—-Character Modifier (OC) ...ceeevencseoccanenss 18-33
Justification Modifiers (LJ, RJ) ceveeeevecosnoecossess 18-34
Symbol-Substitution Modifier (SS) .eceveeeeesnsecenssss 18-34

DecOrationsS seeessoeessscescoasssosssssosssansssosnsscsssess 18-37
CONAitiONS 4sueeessnesssessaonssssenssssesssosnssssscssesss 18-38
LOCAtiONS siveeeseoecssossessnssvsssssnssosnesssceasees 18-38
ProcessSiNg ..eeeseseesssssossssssssssssnsssssssssvessess 18-39

List-Directed Formatting ...eeeeeeeoscescosscsscssccsnsses 18-40
List-Directed INPUL .iieveveoscsoossscssscnsssnscssesss 18-41
List-Directed OUtPUL teveieeveconsscncssensssnsscooesss 18-42

kil NoRL N e el g

APPENDIX A. PROCEDURE SYNTAX SUMMARYcccveeseovcvessosess A-l
APPENDIX B. FAULT-TOLERANT PROGRAMMING EXAMPLEs0ss0.0 B-1
APPENDIX C. SOURCE FOR $SYSTEM.SYSTEM.GPLDEFSc¢ceesses0. C-1

APPENDIX D. SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT D-1

INDEX coco-cto..oooooo.o-o-ooooooooooono'onnoooooto.l-l..-oIndex_l

xii 44 82357 A00 3/85

CONTENTS

FIGURES

Files € 8 0 0 0 0.0 600 0 00 0 00 0SSOSO L LGSO L OSSOSO SOOI b

Checkpointing ® & & & 3 &6 0 0 5 0 0 0 s O 02 0O 8 00 O P OSSO O T SO P 0 s e 0
Files Open by a Primary/Backup Process Pair

|
w N -
[] . L 3
=

(N
o

Disc File Organization ® 8 06 0 % 0 00 O 6 00O PPN PO NS E PPN 00 D 2

Communication With a Process by Process IDvceeeeeee 2

Communication With a Process Pair by Process Name 2-
2

$RECEIVE File ® & 6. 0 0.0 00 00 00 90 0 00 6 000 0 0SS LSO LN OGSO

Internal Form of a File Nameeeeveeecccosecnssenes 2
External Form of a File Name ..c.eeeveeececsoscnnnccecns 2-
Correspondence of External to Internal File Names 2-14
Internal Form of a Network File Nameceeveeeeeees 215
External Form of a Network File Name ...c.cceeeeoeseses 216
Internal Process File Names FOIM .ieecevsencessescesees 2-20
Wait I/0 Compared With Nowait I/0 Operation 2-28
Nowait I/0 (Multiple Concurrent Operations) 2-29
Hardware I/0 StruCtUreeeeeceoccoscscennsescssnsnses 2-32
. Primary and Alternate Communication Pathsce000.. 2-34
2-15, System Procedure Execution ...cieceesescssscsccsscscosss 2-35
2-16. Opening @ File seeeevesoesvssessocossnssoscnsanssnsenass 2-37
File Transfer ...ccieeeceocecceossassnoscsscsssassscnsss 239
Buffering ..eeeeeeecoossccosssoosssssnossssnsssscssscnsees 2-40
. Mirrored VOlUME ..ccieoscocsccvososasoasssssssssossnasss 251

[
WHOOHON aor,m

| I S I |
FQOe o o o ¢ o o o o
L]
—

NDNNNNNDNNDNDNDNDNDNDNDN =
1
HFRWOUOONONOIBWNH

!
—
S wWwN
.

NN
1o

(Mg

W

Program Versus ProCeSS .ecceseesecssssesasossscsssssess 32
A PrOCESS ..sesssssscsocssssssssssssssssssssssssssssssse 373
Process PairS ..eeeeeescescosesseesscsssssenssssassenss 3-11
Home Terminal ..ceeeeeescccosssceossscosssensssnnssces 3-19
Execution Priority Examplececeeseescossseccssnses 326

1 1
N AT W e wNh

WWwwww
I 1

Transfer Modes for TerminalS ...ieeesesccocsssseoncssess 6=9
Conversational Mode Interrupt Charactersceee0... 6-14
Page Mode Interrupt Charactersieeceeeceoccocssssses 6-21
Break: Single Process per Terminalceoceeeeseess 6-33
Break MOAE ..ieeeseeesssorssossssssssossssoncssseanssoassss 638
Exclusive Access Using BREAK ...c.vevecccsscsesscssess 6-39

Column-Binary Read Mode for Cards ...eieeeessccsscassse 9-3
Packed-Binary Read Mode for Cards ...ceeescecesscossses 9-4

Ve B\e] oy OV OYOYOYON
|

11-1. Accessing and Changing Audited as Opposed to

Nonaudited FileS .ieeseescssosscssscssesscsssssssansss 11-5
11-2, Record Locking for TMFceeeseesscssessossesssssess 11-7
11-3. Record Locking by Transaction Identifierveeoee.. 11-8
11-4. NONQUEUINg SEIrVEer ...vssessssosssossssssssassassssass 11-11
11-5. SRECEIVE QUEUING teeeeeeoceccosoosoonosssssssascnnonssas 11-12
11-6. Deadlock Caused by Deleting a Record ...eeeeeeeessees 11-13
11-7. Deadlock Caused by Inserting a Record ...eeeeevessess 11-14

44 82357 A00 3/85 xiii

CONTENTS

11-8. Deadlock Caused by a Process Switching Transaction
IdentifiersS tuieeeeeeesnsesososnsssssssnsasonssssaaness 11-14

11-9., Deadlock Caused by Multiple SENDSecceeseesceeasss 11-15

11-10.Avoiding DeadloCKk ..vieveeerenreeaseesssennsansseaess 11-16

12-1. Sample Startup Sequence for a Process Paireeeeses 12-6
12-2. Fault-Tolerant Transaction Processingceeeeseeeees 12-7
12-3. Checkpoints and Restart POINtS ..eeeeveeecorecaseeea. 12-24
12-4. Backup Open by Backup ProCess ...cceseesscsccocssscsas 12-39
15-1. Link Control BlOCKS .civeeeesvcrncssoscnsesoansnsonass 15-2

16-1. Last AdAr eSS «.eeeeeooessosssosssssosnssossscesssssesees 16-16

TABLES

Table 8-1. Magnetic Tape CONTROL Operationseceeeeeee.. 8-18
Table 8-2. ASCII Equivalents to BCD Character Set 8-20

Xiv “4) 82357 A00 3/85

PREFACE

This manual describes the interface between user programs and
the GUARDIAN operating system on Tandem NonStop systems.

Specifically, this manual discusses:

e Managing files, managing processes, and checkpointing data
using the procedures provided by the GUARDIAN operating system

e Interfacing between application programs and the GUARDIAN
command interpreter (COMINT)

e Performing input/output using the sequential I/0 procedures
and the INITIALIZER procedure

e Formatting input and output using the formatter
e Using a trap handler

e Managing extended data segments

AUDIENCE

This manual is for systems and application programmers with
special needs to call operating system procedures from their
programs. The audience level is assumed to be intermediate-
to advanced-level programmers not familiar with the GUARDIAN
operating system., Familiarity with the Tandem Transaction
Application Language (TAL) or some other programming language,
such as FORTRAN or COBOL, is required.

/ﬂ 82357 A00 3/85 XV

PREFACE

SUGGESTED READING

Prerequisite reading includes:

e Introduction to Tandem Computer Systems (Part No. 82503) for
a general overview of the system

® GUARDIAN Operating System User's Guide (Part No. 82396),
Sections 1, 2, and 3, for information about logging on to the
system and running programs in general

Required reference manuals are:

e System Procedure Calls Reference Manual (Part No. 82359) for
all procedure call syntax and considerations

® GUARDIAN Operating System Utilities Reference Manual
(Part No. 82403) for information not covered in the above
manuals

For more information regarding the Tandem NonStop systems,
refer to the manuals listed below.

e System Description Manual (Part No. 82507)

e Svstem Operator's Guide (Part No. 82401)

e System Management Manual (Part No. 82569)

® System Messages Manual (Part No. 82409)

e Transaction Application Lanquage (TAL) Reference Manual
(Part No. 82581)

e Transaction Monitoring Facility (TMF) Reference Manual
(Part No. 82341)

® Transaction Monitoring Facility (TMF) System Management and
Operations Guide (Part No. 82543)

e ENSCRIBE Programming Manual (Part No. 82583)

e EXPAND Reference Manual (Part No. 82370)

e EXPAND Network Design Guide (Part No. 82371)

xvi 4 82357 A00 3/85

PREFACE

e ENVOY Byte-Oriented Protocols Reference Manual
(Part No. 82582)

e ENVOYACP Bit-Oriented Protocols Reference Manual
(Part No. 82588)

e SORT/MERGE User's Guide (Part No. 82091)

e Spooler Programmer's Guide (Part No. 82394)

e BINDER Manual (Part No. 82514)

e CROSSREF Manual (Part No. 82516)

e INSPECT Interactive Symbolic Debugger User's Guide
(Part No. 82315)

e DEBUG Manual (Part No. 82598)

e Communications Utility Program (CUP) Reference Manual
(Part No. 82430)

e X.25 Access Method--(X25AM) (Part No. 82431)

e Device-Specific Access Methods--(AM3270/TR3271)
(Part No. 82432)

e Device-Specific Access Method--(AM6520)
(Part No. 82433)

You will want to refer to other reference and programming
manuals, especially for communications products you are using.
For a complete list of Tandem software technical manuals and
their part numbers, refer to the following publication:

e Guide to Software Manuals (82552)

For a combined index to subjects covered in Tandem software
technical manuals, identifying the manual and the page number
for each reference, refer to the following publication:

e Master Index (82586)

//‘| 82357 A00 3/85 XV1ll

SYNTAX CONVENTIONS IN THIS MANUAL

The following list summarizes the conventions for syntax notation
in this manual.

Notation Meaning

UPPERCASE Uppercase letters represent keywords and reserved
LETTERS words; you must enter these items exactly as shown.

<lowercase Lowercase letters within angle brackets represent
letters> variables that you must supply.

Brackets [] Brackets enclose optional syntax items. A
vertically aligned group of items enclosed in
brackets represents a list of selections from which
you may choose one or none.

Braces {} Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents
a list of selections from which you must choose only
one.

Ellipsis ... An ellipsis immediately following a pair of brackets
or braces indicates that you can repeat the enclosed
syntax items any number of times.

Percent Precedes a number in octal notation.
Sign %

) 82357 A0O 3/85 Xix

SECTION 1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

The basic design philosophy of the Tandem NonStop system is
that no single module failure will stop or contaminate the
system. This capability is called fault-tolerant operation.

Redundant hardware, backup power supplies, alternate data paths
and bus paths, redundant controllers, and mirrored discs all
contribute to the fault-tolerance of the NonStop system. The
Introduction to Tandem Computer Systems describes these features.

There is more to a fault-tolerant system than just hardware.
Fault tolerance requires that all programs, operating system as
well as individual application programs, contribute to the
reliability and recoverability of a process in the case of a
failure. Therefore, fault tolerance should be considered from
both the hardware and the software perspectives.

Fault-tolerant software at the application level is achieved by
the use of process pairs; a primary process performs the appli-
cation, while a secondary (backup) process in another CPU remains
ready to take over if the primary fails. If the primary fails,
the backup process resumes work at the point of the last valid
checkpoint. The use of checkpoints is explained in Section 12.

One of the most effective safeguards against loss of data is

the use of mirrored disc volumes. Mirrored volumes allow you

to maintain copies of data on two physically independent disc
drives that are accessed as a single device and managed by the
same I/0 process. All data written to one disc is written to the
other as well. All data read from one disc could be read as well
from the other because the data is identical. A mirrored volume
safeguards your data against single disc failures; if one disc
drive fails, the other should still be operational. The odds
against both disc drives of a mirrored pair failing at the same
time are quite great.

4) 82357 AQ0 3/85 1-1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

After a disc is replaced or a drive is repaired, all data is
copied back onto it while transaction processing continues.
Mirrored-pair operation resumes as this transfer of data occurs.

The GUARDIAN operating system provides both multiprocessing
(parallel processing in separate processor modules) and multi-
programming (interleaved processing in one processor module).

In a typical NonStop system, master copies of the GUARDIAN
operating system, configured for the specific application, are
kept in a "system" area. Critical and frequently used parts

of the GUARDIAN operating system are always present in each
processor module memory. As such, the system capabilities are
maintained even if a processor module, I/0 channel, or disc
drive fails. Noncritical or less frequently used parts of the
GUARDIAN operating system are brought into a processor module's
memory from disc only when needed.

Maintenance of the system area and operation of mirrored volumes
is entirely transparent to both application programs and system
users. Several other functions of the GUARDIAN operating system
are also transparent to application programs. These include:

® Scheduling processor module time among multiple processes
according to their application-assigned priorities
(a process is an executing program)

e Enabling processes to communicate with each other regardless
of the processor module where they are executing

e Providing the virtual memory function by automatically
bringing absent memory pages in from disc when needed

® Preparing a program for execution in virtual memory when a
request is made to run a program.

The GUARDIAN operating system provides an extremely important
additional function. Concurrent with application program
execution, the operating system continually checks the integrity
of the system. Each processor module transmits "I'm alive"
messages to every other processor module at a predefined interval
(typically once per second). Following this transmission, each
processor module checks for receipt of an "I'm alive" message
from every other processor module. If the operating system in
one processor module finds that the "I'm alive" message has not
been received from another processor module, it first verifies
that it can transmit a message to its own processor module. 1If
it can, it assumes that the nontransmitting processor module is
inoperative; if it cannot, it takes action to ensure that its own
module does not impair the operation of other processor modules.
In either case, the operating system then informs system
processes and interested application processes of the failure.

1-2 4 82357 A00 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

In addition to the safeguards offered by the GUARDIAN operating
system, application programs must also contribute to their own
fault tolerance. Each application program must ensure that it
has a backup process.

An application program "sees" operating system services as a set
of callable library procedures. The library procedures have
names such as READ, WRITE, OPEN, and so on. For example, to
request the operating system service for input, a call to the
operating system READ procedure is written in the application
program. (The operating system library procedures exist in the
system code area and therefore are shared by all processes.)

Operating system services that can be requested programmatically
or that affect application program design are categorized as
follows (overviews of these services are given in the remainder
of this section):

e File system--how to perform the input and output operations is
discussed in Section 2.

e Process control--how to run, suspend, and stop programs is
described in Section 3.

e System messages--how to communicate information from the
GUARDIAN operating system to application processes is
described in Section 4.

e (Command interpreter program--how to communicate run-time
information to an application process is described in
Section 5,

e Terminals--how they relate to the operating system, as well
as an overview of terminology, access, connection, and error
recovery is presented for the TERMPROCESS interface in
Section 6.

e Line printers--the interfaces between line printers and the
operating system, along with the use of SETMODE and CONTROL
operations in setting up and using printers, is discussed in
Section 7.

e Magnetic tape--the characteristics and procedures used to
control tape usage are presented. Concepts, programming
considerations, and CONTROL operations are described.
BCD/ASCII character sets and available conversion modes are
also presented in Section 8.

e Card readers--applicable procedures are described in
Section 9.

4 82357 A0O 3/85 1-3

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
The File System

® Operator console--its use as a logging device for system
errors, statistical information, or application-supplied
information is described in Section 10.

® Fault-tolerant programming--use of the Transaction Monitoring
Facility (TMF) and its interface with the GUARDIAN operating
system is discussed in Section 11.

e Checkpointing facility--for writing fault-tolerant (NonStop)
programs is described in Section 12,

e Traps and trap handling--how to programmatically handle
trapped programs and identify critical error conditions is
described in Section 13,

e Extended memory management--how to allocate and use extended
memory segments and pools is described in Section 14.

e Memory management techniques--how to influence the efficiency
of a process is presented in Section 15.

e Utility procedures--procedures for time functions, timestamp
translation, string and number manipulation, number
translation, and other services, such as the INITIALIZER,
are described in Section 16.

e Sequential I/0--an alternate, standardized set of procedures
for performing common input-output operations only for
sequential files is described in Section 17.

e Formatting--the formatting of output data and conversion of
input data is discussed in Section 18.

THE FILE SYSTEM

A file (Figure 1-1) is the symbolic representation of:
e an input-output device,

® a process, Or

e the operator console,

for purposes of performing input-output operations in a simple,
efficient, and uniform manner. Typical file names are shown.

1-4 “4) 82357 A00 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
The File System

APPLICATION
PROCESS

INPUT/

OUTPUT

FILES
r S N\

=
“$VOL1.SVOL1.FNAME” <

TERMINAL [y A
ryar g

“$TERM1”

LINE

ESmMH4mw<w mr—m

A
\

™ PRINTER

“$LPU

MAG
TAPE

“$TAPE1” Y,

OTHER
PROCESSES

$RECEIVE
Process ID D,

OPERATOR
CONSOLE

f DISC FILES

g NON-DISC DEVICES

> INTERPROCESS FILES

) OPERATOR CONSOLE

n$0u

$5004-001

/1| 82357 AOQ0 3/85

Figure 1-1, Files

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Procedures

Each file, device, process (and even the console) in the system
is identified by a unique file name. Devices that are normally
dedicated to a single process or a related set of processes while
in use, such as terminals or line printers, are represented by a
single file name. In the case of disc devices, because they are
capable of storing massive amounts of data and must be accessed
by several processes concurrently, a file name represents a
portion of the total storage area on a designated disc. 1In
short, all nondisc devices, all disc files, and all processes

are treated as files.

PROCEDURES

There is a unique procedure defined for each operating system
operation. Each procedure has a name such as READ, WRITE, OPEN,
CLOSE, and so on.

Because there are so many GUARDIAN operating system procedures,
they are divided into groups by function for presentation in this
guide. Each group has a descriptive name. For example, those
procedures that perform file operations are called the file
system procedures. The procedures that control running programs,
or processes, are called process control procedures. The
procedures provided to perform utility operations are called
utility procedures.

All GUARDIAN procedure syntax is presented alphabetically in the
System Procedure Calls Reference Manual.

GUARDIAN operating system functions can be accessed in two ways:
through the command interface provided by the GUARDIAN command
interpreter (see the GUARDIAN Operating System User's Guide),

or through the programmatic interface described in this guide.

An alternate set of procedures, named the Sequential Input/Output
Procedures (or SIO procedures), is also available for use under
certain conditions. See Section 17.

File operations are performed by making calls to GUARDIAN file
system procedures. All files are accessed through this same set
of procedures, thereby providing a single, uniform access method.
Additionally, the file-system procedures are designed to
eliminate the operating peculiarities of various devices. The
file-system procedures include:

CREATE defines a new file on a disc volume

OPEN provides access to a file

1-6) 82357 A00 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

Procedures
READ transfers data from a file to an application process
data area
WRITE transfers data to a file from an application process
data area
WRITEREAD writes data to a file, then waits for data to be

returned (read) from the file

READUPDATE reads data from a file in anticipation of updating a
record in the case of disc files or replying to a
request message in the case of processes (the disc
update is made by using WRITEUPDATE; the message
reply is made by using REPLY)

REPLY is used to send a reply message in response to
reading a request message by using READUPDATE

WRITEUPDATE writes an updated record to a disc
CLOSE terminates access to a file
PURGE deletes a disc file

In order to access a file, it must first be opened. This is
done by using a call to the file-system OPEN procedure:

CALL OPEN(filename,filenum);
<Filename> is an array in the program data area containing the
symbolic name of the file. <Filenum> is a value returned by OPEN
to identify the file in subsequent file-system calls.

Then to write (output) to the file, the file-system WRITE
procedure can be called in the following manner:

CALL WRITE(filenum,buffer,write-count);
<Buffer> is an array in the program's data area containing the
information to be written. <Write-count> is the number of bytes
to be written,
To read (input) from the same file, use:

CALL READ(filenum,buffer,read-count,count-read);

Several other procedures are provided for performing device-
dependent operations.

“4}) 82357 A0O 3/85 1-7

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

PROCESSES

A process is the execution of a program under control of the
GUARDIAN operating system. It is the basic executable unit known
to the operating system. Specifically, the term "program”
indicates a static group of instruction codes and initialized
data—--the output of a compiler; the term "process" denotes the
dynamically changing states of an executing program. The same
program file can be executing concurrently a number of times;
each execution is a separate process.

The executing environment of a given process is a single
processor module (the processor module where a process executes
is specified at run time). A process environment consists of a
code area, containing instruction codes and program constants,
and a separate data area, containing variables and hardware
environment information. A given code area is shared by all
processes that are executing the same program file. This is
permissible because information within the code area cannot be
modified. Each process, however, has its own separate, private
data area.

The following terms referring to processes are used throughout
this manual (for more complete information, refer to Section 3):

e Process creation

The term "process creation" refers to the action performed by
a special system process called the System Monitor which
initially prepares a program for execution. Process creation
can be initiated by application programs or by the GUARDIAN
command interpreter (COMINT) through the process control
NEWPROCESS and NEWPROCESSNOWAIT procedures.

When the command interpreter is used to run a program, a
"startup" interprocess message is sent to the newly created
process. This message contains default disc volume and
subvolume names, input and output file names, and any
application-dependent parameters specified through the RUN
command. The startup message can be read by the new process
through use of the standard GUARDIAN file-system procedures,
or it can be obtained by using the INITIALIZER procedure
(see "Communicating With Other Processes" in Section 4).

e C(Creator
Another term, "creator", refers to the process that initiated
a process creation (by calling the NEWPROCESS procedure).

For example, the command interpreter is the creator of
processes it starts when the RUN command is given.

1-8 44 82357 A00 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

Certain attributes are associated with being a creator:

--A creator receives a notification if a process it has
created is deleted.

--A creator has the right to delete (stop) processes it
has created.

e Process deletion

Process deletion is the act, by the operating system, of
stopping further process execution.

There are two types of process deletion: normal and abnormal.
Normal deletion is initiated by a call to the process control
STOP procedure. Abnormal deletion is initiated by a call to
the process control ABEND procedure or by the occurrence of a
trap when certain other conditions are present (see "Traps" in
Section 13).

Process deletion can be initiated by a process itself, by
another process (under some circustances) or, if an abnormal
deletion, by the operating system.

® Process ID

A process is uniquely identified throughout the system by its
process ID. There are two forms of the process ID. The first
1s the timestamp form. This form of process ID is assigned to
a process at process creation time by the operating system and
contains a timestamp of when the process was created. The
other form of process ID is the process name form, which is
commonly used when a pair of processes must be identified by a
common name. Process names are application-defined and are
assigned to processes at process creation time. Either form
of process ID can be used to identify processes for the
purpose of interprocess communication. (Interprocess
communication is the sending of messages between processes.

It is performed through use of the file system.) The use of
the process name, moreover, has the advantage that a process
can be known throughout the system by a predefined identifier.

e Destination Control Table (DCT)

Named processes are known throughout the system by means of
entries in the destination control table. Parts of this table
were known in earlier Tandem systems as the process-pair
directory (PPD). (A device table was combined with the PPD of
the NonStop 1+ system to form the DCT in NonStop systems.)

The DCT is the table that contains the names of all named
processes in the system. PPD is the name used in this manual

/"i 82357 A00 3/85 1-9

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

to describe just the named processes in the DCT. A process

name is entered into the DCT when a process having a name is
created. A given process name is deleted from the DCT when

the la?t process having that name is deleted. (See "Process
Pair".

e Home terminal

Associated with each process is a home terminal. The home
terminal is the terminal from which the command interpreter
RUN command is given to run the process. This terminal is
used by the system to communicate with the programmer during
the debugging phase of program development (see "DEBUG
Facility") and to display process-related error messages.
Additionally, the home terminal can be used by the application
program to communicate interactively with the person who runs
the program.

Process Structure

The process structure provided by the GUARDIAN operating system
allows a program to be written as though it could run on a
processor of its own. This abstraction is possible because:

® FEach process executes independently of and without
interference from all other processes

e FEach process environment is private from all other processes

The process structure allows program functions (whether they are
operating system or application functions) to be modularized.
Modules can be written and tested independently of other modules.
I1f a module is known to execute correctly when run by itself, it
should execute correctly when run concurrently with other
modules.

The GUARDIAN operating system is essentially a collection of
processes, each process performing a specific function. For
example, a memory manager process provides the virtual memory
function for its processor; an I/0 process (of which there are
many) controls one or more similar I/0 devices.

Processes communicate information between one another using
messages.

(P1) » MESSAGE » (P2)

(P) = process

1-10) 82357 A00 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

For example, a GUARDIAN memory manager process may request that a
GUARDIAN disc I/0 process bring an absent memory page in from
disc. The request is sent in the form of an interprocess
message:

(MMP) —» BRING IN PAGE N » (DISCP)

Applications are structured in much the same way as the operating
system, That is, specific functions are performed by independent
processes that communicate with each other by way of interprocess
messages.

A common structure for applications is the requester-server
relationship. With this structure, requester processes make
requests of a common server process (an application may consist
of several of these requester-server relationships). A request
is made in the form of an interprocess message (sent through the
file system). The server replies to the message through the file
system (the reply usually consists of the requested data).

» REQUEST >
(RP) (SP)
- REPLY -

(RP) = requester process (SP) = server process

For example, in a simple data base query application, each user
terminal is controlled by a separate requester process. The
function of the requester process is to accept and interpret
commands entered at the terminal, then send a request for a data
base record to the common server process. The function of the
server process is to accept a request from a requester, then
return the requested record to that requester.

{TERMINAL A} — (RP1)
{TERMINAL B} — (RP2)

(sp) — {DB}

YVYY

{TERMINAL 2z} —> (RP26)
The obvious benefits of this structure are:

o The application is modularized by function: terminal device
control and data base control.

L The requester program is written to control a single
terminal. (To control multiple terminals, the program is run
multiple times concurrently; each time, a different terminal
is specified as the device to be controlled).

4 82357 A00 3/85 1-11

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

The reguester-server process relationship is discussed in detail
in Section 4, "Communicating With Other Processes" and examples
are presented in Appendix B,

Process Pairs

It is possible for a properly coded application process to
recover from any type of hardware failure except one--a failure
of the processor module where it is executing. Because of this,
much use is made of NonStop process pairs. This is a method of
increasing fault tolerance. For each pair of processes, the
primary process executes in one processor module, and the backup
process executes in another.

A process pair is usually two executions of the same program.
Logic in the program determines whether the process is executing
in the primary mode to perform the designated work, or in the
backup mode to monitor the operability of the primary.

With this primary and backup structure, the backup process is
continually aware of the executing state of the primary process
by the use of checkpointing messages periodically sent from the
primary process to the backup process. When the backup is
informed its primary has failed (by the receipt of a process or
processor failure system message), the backup switches into the
primary mode and continues with the application's work.

A process pair is typically identified by a single process name.
A process pair's process name is entered into the PPD part of the
DCT when the first process of the pair is created. At this time,
the identity of the ancestor process is also entered into the
DCT. (An ancestor process is the process responsible for
creating the first member of a process pair). The DCT provides
capabilities that are useful for fault-tolerant programming. For
example, one member of a process pair is notified if the other
member stops executing; the ancestor process is notified when the
process name is deleted from the DCT (the latter occurs when the
last process associated with a process name stops or fails).
Other important fault-tolerant considerations when communicating
with named process pairs are described in Section 2.

Process Control Functions

Process control operations are performed by calling the GUARDIAN
process control procedures. These procedures are described in
Section 3. Examples of process control procedures include:

1-12 4 82357 A0O 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Processes

NEWPROCESS and creates a process (runs a program) and,
NEWPROCESSNOWAIT optionally, gives it a name (if a name is
given, the name is entered into the DCT)

MYTERM provides the file name of the home terminal for the
process

DELAY suspends the calling process

PRIORITY changes the calling process execution priority

STOP deletes a process with a normal indication

ABEND deletes a process with an abnormal indication

For example, to create a process (run a program), the process
control NEWPROCESS procedure might be called as follows:

CALL NEWPROCESS (progname,pri,mem,cpu,process”id,error,name);

<progname> is an array in the calling program data area
containing the file name of the program to be run. <pri> is the
execution priority to be assigned to the new process. <mem> is
the number of data pages to be allowed for the new process, and
<cpu> is the processor module number where the new process is to
be created. <process”id> is a value returned by NEWPROCESS to
identify the newly created process, and <error> is a value
returned to indicate whether or not the process creation was
successful. <name> is the process name to be assigned to the new
process. The creator process can then pass the <process™id> to
the file-system OPEN procedure as a file name, and then use calls
to WRITE or WRITEREAD to send startup information to the new
process.

Or to have a process delete itself, the STOP procedure is called:
CALL STOP;

The calling process is deleted, all the files it had opened are
closed and its creator receives a STOP system message.

To suspend a process for some designated period of time, the
DELAY procedure can be called in the following manner:

CALL DELAY(1000D);

This delays the caller for ten seconds. ("D" indicates that the
number represents a 32-bit integer value.)

) 82357 A00 3/85 1-13

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
System Messages

SYSTEM MESSAGES

The operating system sends messages directly to application
processes to inform the application of certain system conditions.
These are referred to as "system messages". System messages are
read using the GUARDIAN file-system procedures. Examples of
system messages that can be sent to processes are:

CPU Down --Processor module failed.

STOP --Process stopped executing.

ABEND --Process stopped executing because of abnormal
condition.

CPU Up -—-Processor module reloaded.

The system messages are presented in the System Messages Manual.

CHECKPOINTING FACILITY (FAULT-TOLERANT PROGRAMMING)

The checkpointing facility provides the capability for writing
application programs that can recover from a processor module
failure. To use the checkpointing facility, an application
program must be executing as a process pair.

As shown in Figure 1-2, the checkpointing facility is used by the
primary process of a process pair to checkpoint pertinent data to
its backup process. It is used by the backup process to receive
the checkpoint data and to monitor the status of the primary
process. (The checkpoint data is sent from the primary process
to its backup process in the form of an interprocess message.)

If the backup process is notified of the failure of its primary
process, the checkpointing facility causes the backup process to
begin executing at the point indicated by the latest checkpoint
message. (The notification to the backup that the primary has
failed is in the form of a CPU Down, STOP, or ABEND system
message.)

You must use the following two procedures to checkpoint a process
environment. Their use is explained in Section 12; their syntax
is given in the System Procedure Calls Reference Manual.

1. CHECKPOINT is called by a primary process to checkpoint its
current state to its backup process.

2. CHECKMONITOR is called by a backup process to monitor its

primary and take appropriate action in the event of a
failure of the primary process.

1-14 “4) 82357 A0O 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Checkpointing Facility

PRIMARY BACKUP
PROCESS PROCESS
CHECKMONITOR =

READ Entry From Terminal READ...
RE!l\D Record From Disc ‘ RE/.\D..
Update Record in Memory Upc;ate...
CHI|ECKPOINT CHIECKPOlNT...
WRITE Updated Record to Disc WR.ITE...

The backup stays in CHECKMONITOR while the primary is operational. If the primary fails, the backup
leaves CHECKMONITOR and begins executing at the point indicated by the last call to CHECKPOINT
by the primary.

S5004-002

Figure 1-2. Checkpointing

When the checkpointing facility is used, each process in a
process pair has the same set of files open, as shown in Figure
1-3. This ensures that the backup process has immediate access
to the files in the event of the primary's failure.

Use the following two procedures when opening or closing files in
a fault-tolerant environment:

1. CHECKOPEN is called by a primary process to open a file in
its backup process.

2. CHECKCLOSE is called by a primary process to close a file in
its backup process.

A complete fault-tolerant programming example is presented in
Appendix B.

“4 82357 A00 3/85 1-15

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Transaction Monitoring Facility (TMF)

PRIMARY BACKUP
PROCESS PROCESS
(A) (A)

Files
> (N “
> 2 -
> (3) -
E > (;) * E
§5004-003

Figure 1-3. Files Open by a Primary/Backup Process Pair

TRANSACTION MONITORING FACILITY (TMF)

If the Transaction Monitoring Facility (TMF) is available on your
system, the need to checkpoint programs is practically removed.
Checkpointing is usually not necessary when TMF is used because
TMF does essentially everything that can be achieved with the
NonStop process pairs typically used when checkpointing.

TMF uses audit trails, online dumps, and backout, rollforward,
and autorollback facilities to ensure data base consistency even
through a total system failure. If a transaction is aborted, all
effects of that transaction are removed from the data base.

If a system should fail, TMF can remove all effects of any
transaction that was interrupted. The other major service of TMF
is transaction concurrency control,

The GUARDIAN interface to TMF is described in Section 11.

1-16 “4 82357 A0O 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Utility Procedures

UTILITY PROCEDURES

Among the various utility procedures are those that pertain to
time, system clocks, real time, process time, and so on.
Procedures are available to automatically convert Julian day
numbers to the Gregorian calendar date and time of day. Time of
day at different locations can be based on Greenwich Mean Time,
local standard time or, in the United States, on daylight saving
time. Procedures are available for setting and converting dates
and time of day.

Other utility procedures are presented together because they
share an ability to manipulate strings, arrays, or numbers.
Among these are procedures used to edit strings of characters,
sort arrays of equal-size elements in place, or convert the
ASCII representation of a number into its binary equivalent.

The remaining utility procedures include those that do not fit
into categories. Among these procedures are included very
important procedures such as the INITIALIZER that can reduce the
amount of code you need to write to start a program, and make the
coding much easier and more consistent.

Use of these utility procedures is described in Section 16; their
syntax is given in the System Procedure Calls Reference Manual.

USING THE COMMAND INTERPRETER

The GUARDIAN command interpreter (COMINT) is an interactive
program used to run programs, check system status, create and
delete disc files, and alter system hardware states. An
important feature of the command interpreter is its ability to
pass user-specified parameter information to a process at run
time. The parameter information is delivered to the process in
the form of interprocess messages. The programmatic interface
to the GUARDIAN command interpreter is covered in Section 5.
The user interface is described in the GUARDIAN Operating System
User's Guide. Complete syntax of all COMINT commands 1S given
in the GUARDIAN Operating System Utilities Reference Manual.

“4 82357 AOO 3/85 1-17

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
External Declarations

EXTERNAL DECLARATIONS FOR OPERATING SYSTEM PROCEDURES

Like all other procedures in an application program, the
operating system library procedures must be declared before they
can be called. These procedures are declared as "external” to
the application program. Declarations for these procedures are
provided in a system file designated "S$SYSTEM.SYSTEM.EXTDECSO".
You should include a SOURCE compiler command specifying this file
in the source program following the global declarations but
preceding the first call to one of these procedures:

<global-declarations>
?SOURCE $SYSTEM.SYSTEM.EXTDECSn (<ext-proc-name> , ...)
<procedure-declarations>

Each external procedure that is referenced in the program should
be specified in the SOURCE command.

For example:

7SOURCE SSYSTEM.SYSTEM.EXTDECSO (OPEN, READ, WRITE, CLOSE,
? NEWPROCESS ABEND, STOP,
? MYTERM)

compiles only the external declarations for the OPEN, READ,
WRITE, CLOSE, NEWPROCESS, ABEND, STOP, and MYTERM procedures
for the current release.

Multiple versions of EXTDECS are available. To specify the
current version, use EXTDECS0. To specify other versions, use
one of the following:

EXTDECS0 --current operating system release version
EXTDECS1 --current release, minus 1
EXTDECS2 --current release, minus 2
EXTDECS --current release, minus 2

Because the version is specified by a relative value, there is
no need to constantly update the level of EXTDECS used in your
programs. If you specify the level as EXTDECS0O, your programs
will always use the current release level of EXTDECS.

1-18 “4) 82357 A00 3/85

INTRODUCTION TC THE GUARDIAN OPERATING SYSTEM
Securing Your Files

SECURING YOUR FILES

The GUARDIAN operating system security capability is designed
to fulfill four objectives:

e To prevent inadvertent destruction of files through purging
or overwriting

e To prevent unauthorized access to sensitive data files by
programmers or operations personnel

¢ To prevent unauthorized interference with running programs
(processes)

e To provide a means of controlling intersystem accesses between
network nodes

Security is enforced by assigning a group name, a user name, and
(optionally) a password to individuals who are to access the
system.

For each file, file access at each level may be restricted to
reading, writing, executing, or purging.

To provide control over system security, a system has a single
user designated the super ID. The super ID is responsible for
creating new groups in the system. Each group has a single user
who is designated the group manager; the group manager is
responsible for creating new users in its group. The super ID
may also create new users in any group and has full access to any
file in the system.

Additional system security is provided by licensing. Programs
that are to execute in privileged mode must be licensed by the
super ID or be run by the super ID. An attempt by a user other
than the super ID to run an unlicensed privileged program is
rejected. Processes can be stopped or debugged only by their
creator or by the super ID. Privileged processes can be debugged
only by the super ID. For more information regarding security,
see the GUARDIAN Operating System User's Guide.

4 82357 A0O 3/85 1-19

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Traps and Trap Handling

TRAPS AND TRAP HANDLING

Certain critical error conditions occurring during process
execution prevent the normal execution of a process. These
errors, which are for the most part unrecoverable, cause traps
to operating system trap handlers. The conditions are:

e TIllegal address reference

e Instruction failure

® Arithmetic overflow

e Stack overflow

e Process-loop-timer timeout

e Memory manager disc read error

e No memory available

® Uncorrectable memory error

Generally, the first five trap conditions are caused by coding
errors in the application program. The last three errors
indicate a hardware failure or, in the case of "no memory
available", a configuration problem. These are beyond control
of the application program.

The default trap handler is DEBUG (or INSPECT, if specified for
the process). If you do not specify a trap handler, the default
is used.

If you prefer to write the code to handle your own traps, you can
call the system procedure ARMTRAP. Your trap handler is notified

of the particular trap condition. ARMTRAP is described further
in Section 13,

DEBUG FACILITY

The GUARDIAN debug facility provides a tool for interactively
debugging a running process at the process's home terminal.
DEBUG is the default trap handler for all processes as described
in Section 13. For a description of the debug facility and
instructions for using it, see the DEBUG Reference Manual for
your system.

=
|

20) 82357 A0O 3/85

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
Related Products

INSPECT

INSPECT is an interactive symbolic debugging tool used to isolate
errors in programs. It offers two modes of operation: low-level
INSPECT and high-level INSPECT. Low-level operation is very
similar to DEBUG. High-level mode INSPECT is much more inform-
ative, but it also requires much more memory and table space than
DEBUG. Because high-level INSPECT allows the use of symbols
instead of address expressions, it is easier to use than DEBUG.
Refer to the INSPECT Interactive Symbolic Debugger User's Guide
for more information.

If INSPECT is available on your system, it can be specified for
use in debugging. If INSPECT is specified for use but is not
available, DEBUG is used.

BINDER

BINDER is yet another development tool. If you wish to use high-
level INSPECT for a program, the program must have been created
with BINDER, or with a compiler that interfaces with BINDER.
BINDER builds the tables that go into the object file used by
INSPECT. If the symbol table is not appended to the object code,
INSPECT can still be run but will have to be used in low-level
mode. See the BINDER User's Manual for a complete description

of BINDER. There 1s no relationship between DEBUG and BINDER.

DIVER AND DELAY

The DIVER and DELAY programs are used to facilitate testing of
user application programs that are run as NonStop process pairs.
DIVER causes a processor to fail and then makes the processor
ready for a reload. It is typically used in conjunction with

the command interpreter and the DELAY program to automatically
cause repeated failures and reloads of processors in a system for
test purposes. Fault-tolerant application processes should
continue running even while processors are halted and reloaded.

The DIVER and DELAY programs are now documented in the
GUARDIAN Operating System Utilities Reference Manual.

“4) 82357 A0O 3/85 1-21

SECTION 2

BASIC CONCEPTS: FILES AND FILE NAMES

In a Tandem system, most entities are treated as files. Each
disc file, nondisc device, process, and even the operator
console is identified by a unique file name.

FILES

Input-output operations are performed by transmitting blocks of
data between processes and files. A file can be all or a portion
of a disc, or a device such as a terminal or line printer, or a
process (any running program), or the operator console. A file
is referenced by the symbolic file name that is assigned when the
file is created.

Disc Files

The ENSCRIBE data base record manager, an integral part of the
GUARDIAN operating system, provides access to and operations on
disc files. The ENSCRIBE software supports four file types:

L Key-Sequenced files--Records are placed in a file in
ascending sequence according to the value of a key field
in the record.

] Relative files--Records are stored relative to the beginning
of the file.

] Entry-Sequenced files--Records are appended to a file in
the order they are presented to the system.

4 82357 AOO 3/85 2-1

BASIC CONCEPTS: FILES AND FILE NAMES
Files

L] Unstructured files--Records are defined by the application
process; records are written to and read from a file on the
basis of relative byte addresses within the file.

For more information on the ENSCRIBE data base record manager,
refer to the ENSCRIBE Programming Manual.

The symbolic name that identifies an individual disc file in
the system consists of three parts as shown in Figure 2-1:
(1) a volume name to identify a particular disc pack in the
system, (2) a subvolume name to identify the disc file as a
member of a related set of files on the volume (as defined by
the application), and (3) a disc file name to identify the
file within the subvolume.

Volume Name Subvolume Names

1
4 AN

SVOL1 SVOL2 ACCT1—f
@ (&)

(Lruea) [:EﬂEEZJ INFILE)
=

$voL1

Disc File Names{ EE_E MYFILE OUTFILE }

|
\ i FILEC ’ j MYFILE '

“$VOL1.SVOL1.FILEA”
“$VOL1.SVOL2.FILEA”
“$VOL1.ACCT1.INFILE”

$5004-004

(1) Full Filename
(2) Full Filename
(3) Full Filename

Figure 2-1. Disc File Organization

A disc file must be created before it can be accessed. A file is
created by calling the file-system CREATE procedure or by using
the CREATE command of the command interpreter. All file-system
procedure call syntax is presented in the System Procedure Calls
Reference Manual. The GUARDIAN command interpreter commands are
presented in the GUARDIAN Operating System User's Guide.

A file can be designated as permanent or temporary. (A permanent
file remains in the system when access is terminated; a temporary
file is deleted.)

2-2 4§ 82357 A0 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Files

When you create a disc file, you must specify the maximum amount
of physical disc space to be allocated for storing information.
Physical space is allocated to files in the form of file extents
that need not be contiguous. A file extent is a contiguous block
of storage that can range in size from 2048 bytes to an entire
volume. A file can have up to 16 extents (unless changed by
SETMODE function 92--see the System Procedure Calls Reference
Manual). The first extent is called the primary extent, and its
size may be different from the other 15 secondary extents. File
extents are allocated automatically by the file system as the
need for space arises. Space not physically in use by one file
can be used by other files.

Also specifiable at disc file creation is an optional file code.
This is an integer whose meaning is entirely application
dependent (except that codes 100 through 999 are reserved for use
by Tandem Computers Incorporated.)

A disc drive having a removable pack can be designated at SYSGEN
(system generation) time to have a logically removable volume.

(A disc drive may, in fact, have a physically removable volume
that will never be removed.) To mount a new volume in place of a
currently mounted volume, the operator uses the RENAME command of
the Peripheral Utility Program (PUP). Logical interlocks exist
in the file system to ensure that an in-use volume cannot be
demounted (this interlock can be overridden by the operator), and
that once the command is given to mount a new volume, further
accesses to the mounted volume are prohibited.

Operations with disc files are described in detail in the
ENSCRIBE Programming Manual.

Nondisc Devices

Nondisc devices are items such as terminals (both conversational
and page mode), line printers, magnetic tape units, card readers,
and data communications lines. A file representing a nondisc
device is referenced by a symbolic device name or a logical
device number. Device names and their corresponding logical
device numbers are assigned at SYSGEN time. See your System
Management Manual for details.

What constitutes an input-output transfer with nondisc devices is
dependent on the characteristics of the particular device. On a
conversational-mode terminal, for example, a transfer is one line
of information; on a page-mode terminal, a transfer is one page
of information; on a line printer, a transfer is one line of
print; on a magnetic tape unit, a transfer is one physical record
on tape.

#4) 82357 A00 3/85 2-3

BASIC CONCEPTS: FILES AND FILE NAMES
Files

Operations with nondisc devices are described in detail in
sections 6 through 9.

Processes (Interprocess Communication)

A process (running program) can communicate with other processes
through standard file-system data transfers. A communication can
consist of a simple one-way transfer from the originating process
to the destination process, or a two-way transfer where the
originating process waits for a reply from the destination
process. The information transferred because of interprocess
communication appears identical to that of other files; there is
no implicit or special data format.

A process is identified by its process ID as the destination of
an interprocess communication. A process receives messages

from other processes and from the operating system through a file
identified by the name "SRECEIVE".

A process ID uniquely identifies a process. There are two
mutually exclusive forms of the process ID: the timestamp form
and the process-name form. Their formats are presented in
Section 3. Process IDs are sometimes referred to as CRTPIDs.

A process identified by the timestamp form of the process ID is
not known throughout the system. Rather, the process is known
only by its creator and its immediate descendants (if any).
Communication with processes identified by the timestamp form of
process ID typically occurs only between processes having this
creator-descendant relationship. This form of process ID is
assigned to a process by the operating system when the new
process is created. It consists of a timestamp of the time when
the process was created, the number of the processor module where
the process is executing, and a processor-local process number.

A two-way message in this environment is defined as the sending
of a message from the originator (requester) to the server and
the resultant reply by the server back to the originator, as
shown in Figure 2-2.

2-4 “4) 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Files

One-Way Message:
Originator Destination
(A) Messages > (B)

Two-Way Message:

Originator Server

Request >
(A) (B)
- Reply

§5004-005

Figure 2-2. Communication With a Process by Process ID

The process-name form of the process ID uniquely identifies a
process or a process pair in the system. Process names can be
predefined so that processes can be known throughout the system
in the same manner as other device types (such as a line printer)
are known throughout the system. If a process or process pair is
to be identified by the process-name form of the process ID, its
process name (which can be either application-defined or system
generated) is assigned before the new process is created. A
process name consists of a dollar sign ($) followed by one to
five alphanumeric characters (the first must be alphabetic),
optionally followed by one or two qualification names (see

"File Names").

As shown in Figure 2-3, there are certain fault-tolerant aspects
involved when communicating with a process pair. The primary
process of the pair, while it is operable, receives and replies
to all communications. If the primary process or its processor
module fails, the backup process becomes the primary process and
receives and replies to communications. The switch from the
primary process to the backup process as the destination of a
communication is performed automatically by the file system and
is invisible to the originator of the message.

) 82357 A0O 3/85 2-5

BASIC CONCEPTS: FILES AND FILE NAMES
Files

If the Server Primary is Executing:
Requester
(Originator) Server ($3SERVE)
‘ (One- Or Two-Way) _ .
(A) - Messages > (B) Primary
(B" Backup
If the Server Primary Has Failed:
Requester Server
P (One- Or Two-Way)
A - Messages | XXX
b ass—- (B') Backup
$5004-006

Figure 2-3, Communication With a Process Pair by Process Name

To receive and reply to communications from other processes
and to receive messages from the operating system, a process
references a file having the name "$RECEIVE" (there is only

one S$RECEIVE file per process). Communication with $SRECEIVE
is illustrated in Figure 2-4.

Messages From Other Processes =—essde.

Messages From GUARDIAN Operating System gy $RECEIVE

- Replies to Other ProCesses emmmmmmm—

S$5004-007

Figure 2-4. S$RECEIVE File

2-6 #4 82357 AQO 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Files

Unlike disc files and nondisc devices, reading from the SRECEIVE
file does not solicit input. Reading from S$SRECEIVE only checks
or waits for an incoming message.

Several interprocess messages can be read and queued by the
application process before a reply need be made. If one or more
messages are to be queued, the maximum number of messages that
the application process expects to queue must be specified. To
identify each incoming message and direct a reply back to the
originator of the message, a message tag must be obtained in a
call to a file-system procedure. When a reply is sent for a
particular message, it is identified by passing the message's
associated message tag back to the system. Communication between
processes is described in greater detail in Section 4.

Communication between system processes and user processes Occurs
in a manner similar to that described above. System messages are
simply interprocess messages sent from the operating system to
the user process. These system messages should be read from
SRECEIVE when a file-system error 6 (SYSTEM MESSAGE RECEIVED) is
encountered.

Operator Console

A process may log messages on the operator console through the
operator process referenced by the file name $0. The operator
console is a write-only file. The current date and time and the
ID of the process that logged the message are added as a prefix
to console messages by the operating system. There is no special
format imposed for logging messages on the operator console.
Operations involving the operator console are described in
Section 10.

4 82357 AOO 3/85 2-17

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

FILE NAMES

File names are used to access devices, disc files, processes, and
the operator console through the file-system OPEN procedure. A
file name can be that of a disc device, nondisc device, or named
process. File names are also used when creating new disc files,
purging old disc files, and renaming disc files.

Disc File Names

Disc file names are stored internally in the form:

word: [0:3] [4:7] [8:11]
$<volume-name> <subvolume-name> <disc-filename>

Volume Name

Volume names identify disc packs (each pack in the system has a
volume name). Volume names are assigned at system generation
time and when new disc packs are introduced into the system.
Their names are usually assigned by the system manager. A volume
name must be preceded by a dollar sign ($). It consists of a
maximum of seven alphanumeric characters; the first must be a
letter. Alphanumeric means only A through Z and 0 through 9.

Subvolume Name

This name identifies a subvolume, which is a subset of the disc
files on a volume (disc pack). Subvolume names are assigned
programmatically when disc files are created. Anyone can create
a new subvolume name or create new files within an existing
subvolume. A subvolume name consists of a maximum of eight
alphanumeric characters; the first character must be a letter.

File Name

Disc file names are assigned programmatically when disc files
are created. A disc file name consists of a maximum of eight
alphanumeric characters; the first character must be a letter.

2-8) 82357 A00 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

Disc File Name Expansion (External File Name)

As an operating convenience, the GUARDIAN command interpreter
accepts, where a file name is a parameter to a command, disc file
names in partially-qualified form. As a minimum, a partial file
name must consist of a <disc-file-name>. Partial file names are
expanded to full file names according to the following rules:

1. If the <volume-name> is omitted from the external file name,
the <default-volume-name> is used in its place.

2., If the <subvolume-name> is omitted from the external file
name, the <default-subvolume-name> is used in its place.

A complete description of default file names appears in the
GUARDIAN Operating System User's Guide.

Temporary File Name

This name identifies a temporary disc file. Temporary file names
are assigned by the file-system CREATE procedure when temporary
files are created. If you pass only a volume name followed by
blanks to CREATE, it will create a temporary file name. A
temporary file name consists of a number sign (#) followed by
four numeric characters; for example:

Permanent disc file:
INT .FNAME[0:11] := "$SSTORE1l ACCT1 MYFILE ";

Temporary disc file:

INT .FNAME[0:11] := ["$STORE1l ", 8 * [" "1];

only the volume name is supplied. The temporary file name,
such as "$STORE1l_#0931 ", is returned from the call to
CREATE.

CALL CREATE(FNAME);

“4) 82357 A00 3/85 2-9

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

Device Names

Device names identify particular input-output devices in the
system. They are assigned to the logical devices at system
generation time. A device name must be preceded by a dollar sign
($) and consists of a maximum of seven alphanumeric characters;
the first character must be a letter. For example:

INT .FNAME[0:11] := ["S$TERM1", 9 * [" "]];

$0

$0 (dollar-zero) is a special file name used to write messages on
the operator console; for example:

INT .FNAME[O0:11] := ["sO0", 11 * [" "1];

The use of $0 is discussed more fully in Section 10, "Interfacing
to the Operator Console".

SRECEIVE
SRECEIVE is a special file name used to receive and reply to
messages from other processes; for example:

INT .FNAME[O0:11] := ["SRECEIVE", 8 * [" "]];

2-10 4 82357 A00 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

Internal File Names

There are two forms of file names—--external and internal. The

internal form is used within the system when passing file

between application processes and the operating system.

The internal form of a file name is shown in Figure 2-5.

<filename> ! 12 words, blank filled.

to

to

to

to

to

access permanent disc files, use

<filename>[0:3]
<filename>[4:7]
<filename>[8:11]

S<volume-name> <blank-fill>
<subvolume-name> <blank-£fill>
<disc-filename> <blank-fill>

it nn

access temporary disc files, use

<filename>[0:3]
<filename>[4:11]

S<volume-name> <blank-£fill>
the <temporary-filename> returned
by CREATE (which is blank-filled)

access nondisc devices, use

<filename>[0:11] = $<device-name> <blank-£fill> or
$<logical-device-number> <blank-
fill>

communicate with other processes, use

<filename>[0:11]

SRECEIVE <blank-£fill>
to perform READ, READUPDATE, and REPLY operations,
<filename>[0:11] = <process-id> <blank-£fill>

to perform WRITE and WRITEREAD operations

write on the operator console, use

<filename>[0:11] = $0 <blank-fill>

“9

82357 A00 3/85

Figure 2-5. Internal Form of a File Name

names

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

External File Names

File names must be alphanumeric. This means they are made up
of only the letters A through Z and the digits 0 through 9.
Lowercase letters used to enter file names are converted to
uppercase. The first character of a file name must be a letter.

File names can be preceded by a special character, such as a
dollar sign ($) or a back slash (\).

File names are limited in length depending upon their use.
The file name of a nondisc device is represented to the command
interpreter in the same form as the file system's internal
representation; that is, as the device name or logical device
number preceded by a dollar sign ($). These are presented in
this manual in the form:

$<device-name>

or

S<ldev-number>
The external form of the file name is used when entering file
names into the system from the outside world (for example, by a
user to specify a file name to the command interpreter).

The external form of a file name is shown in Figure 2-6.

The various forms of external file names are discussed in the
GUARDIAN Operating System User's Guide.

Like the internal representation of a disc file name, the form
accepted by the command interpreter for a disc file consists of
three parts: a volume name, a subvolume name, and a disc file
name., However, unlike the fixed-field representation of the
internal form (where each part of a file name must begin in a
specific position), disc file names are represented to the
command interpreter (as well as to all other Tandem software
programs) with the three parts separated by periods and
concatenated into a contiguous string:

$<volume-name>.<subvolume-name>.<disc-filename>
The following example illustrates a disc file name:

SSTORE1.ACCTRCV,.SORTFILE

2-12 “4 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
File Names

<external-filename> ! up to 26 bytes.

to access permanent disc files, use
[$<volume-name>.] [<subvolume-name>.]
<disc-filename> <delim>
to access nondisc devices, use
$<device-name> <delim> or

$<ldev-number> <delim>

to specify a process, use

S<process-name> <delim>

<delim> is a delimiter; it can be any character that is not
valid as part of an external file name, such as a blank.

Figure 2-6. External Form of a File Name

The conversion of file names from external form to internal form
is performed automatically by the command interpreter for the

IN and OUT file parameters of the RUN command (refer to the
GUARDIAN Operating System User's Guide.

For general conversion of file names from the external to the
internal form, the FNAMEEXPAND procedure is provided. Conversion
of file names from the internal to the external form is done
using the FNAMECOLLAPSE procedure. These procedures are
described in the System Procedure Calls Reference Manual.

Correspondence of External to Internal File Names

The correspondence of the external form of file names to the
internal form is shown in Figure 2-7.

“) 82357 ADO 3/85 2-13

BASIC CONCEPTS: FILES AND FILE NAMES
Network File Names

Possible $name Device
External
Forms $name1 [.[#name2]{.name3]] Process
[$namel.][name2.]lname3 Disc
$namei.#name2 Temp Disc
word [0] [4] [8]
Possible $name Device/Process
Internal $name1 #name?2 Process/Temp Disc
Forms $name1 #name?2 name3 Process
$name name2 name3 Disc
$5004-010

Figure 2-7. Correspondence of External to Internal File Names

When the external form of a file name is entered as a parameter
to a command (for example, the IN parameter of the command
interpreter RUN command), it is converted to the internal form
as shown in Figure 2-7. For example, in the case of the IN
parameter <filename>, the <filename> is converted from the
external form to the internal form (and expanded if necessary)
and sent to the application process in an interprocess startup
message.

NETWORK FILE NAMES

File names can optionally include a system number that identifies
a file as belonging to a particular system on a network.

(A fuller description of file names appears in the GUARDIAN
Operating System User's Guide. Information regarding networks of
Tandem systems is presented in the EXPAND Reference Manual.)

In this context, a file name beginning with a dollar sign ($) is
said to be in local form, to distinguish it from a file name
beginning with a backslash (\), which is the network form.

2-14 4 82357 AQO 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Network File Names

Internal Network File Names

The internal form of a network file name is shown in Figure 2-8.

<network-filename> ! 12 words, blank filled

word [0].<0:7>
word [0].<8:15>
word [1:3]

"\" (ASCII backslash)

<system—-number>, in octal

<volume-name>, <device-name>, or
<process-id>

same as local file name

word [4:11]
<system-number>
is an integer between 0 and 254 that designates a
particular system. The assignment of system numbers

is made during SYSGEN,

<volume-name>

consists of at most six alphanumeric characters, the
first of which must be alphabetic.

<device-name>

consists of at most six alphanumeric characters, the
first of which must be alphabetic.

<process-id>

is in either the timestamp form or the process—name
form, described earlier in this section.

Figure 2-8. 1Internal Form of a Network File Name

Names of disc volumes and other devices, when embedded within a
network file name, are limited to having six characters, and do
not begin with a dollar sign. Similar restrictions apply to the
network form of the process ID, as mentioned in Figure 2-8.

44 82357 A00 3/85 2-15

BASIC CONCEPTS: FILES AND FILE NAMES
Network File Names

External Network File Names

For the purpose of providing access to files on remote systems in
a network, any file name can be qualified by a system name.
(System names, and networks in general, are discussed in the
GUARDIAN Operating System User's Guide. Additional information
on network file names appears in the EXPAND Reference Manual).

A system name consists of a backslash (\) followed by up to seven
alphanumeric characters, the first of which must be alphabetic.
Any file name can be preceded by a system name.

The external form of a network file name is shown in Figure 2-9.

\<system-name>.<external-filename>

<external-filename>

is the external form of any legal file name. The
length of a device or process name used with a system
name contains one character less than usual: device
names have at most six letters and/or digits, and
process names have at most four letters and/or digits.
For example:

\NEWYORK.$SYSTEM.SYSTEM.MYFILE ! fully qualified
! disc file name

\REMOTE.$WXYZ ! process

\DETROIT.$SYSTEM. #1234 ! temporary disc file name

Figure 2-9. External Form of a Network File Name

Default System

Each command interpreter running on a system in a network has
associated with it a default system that is used in file name
expansion. When you log on, your default system is always the
system on which your command interpreter is running. The default
system can be changed with the SYSTEM command. See the GUARDIAN
Operating System User's Guide for details.

2-16 “4) 82357 AQO 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Network File Names

Expansion of Network File Names

File names presented in external form to a command interpreter
(or any other Tandem subsystem, such as EDIT or FUP) running on
a system in a network are expanded using the default volume,
subvolume, and system names. For example, assume that your
current defaults are as follows:

default volume: SMYVOL

default subvolume: MYSUBVOL

default system: \CALIF

If you enter

this file name, it is expanded to this form.
MYFILE \CALIF,$MYVOL .MYSUBVOL .MYFILE
\NEWYORK .MYFILE \NEWYORK . SMYVOL .MYSUBVOL .MYFILE
SPROC \CALIF.$PROC

Correspondence of Internal to External Network File Names

When transforming an external file name to an internal one, the
system replaces the system name with the corresponding system
number. External network file names supplied as IN or OUT files
in a RUN command are converted to internal form by the command
interpreter before being passed to the new process. Thus an
application process that reads its startup message and opens its
IN file need not do anything different when remote files are
involved.

NOTE

When used across a network, the length of a device or
process name used with a system name must be one
character shorter than usual to allow for the embedded
backslash prefix (\): device names allow at most six
alphanumeric characters, and process names allow at most
four alphanumeric characters.

4 82357 A00 3/85 2-17

BASIC CONCEPTS: FILES AND FILE NAMES
Logical Device Numbers

LOGICAL DEVICE NUMBERS

Logical device numbers identify entries in an internal operating
system table which, in turn, identify particular input-output
devices in the system. Logical device numbers are assigned to
physical I/0 devices at system generation. A logical device
number must be preceded by a dollar sign (§). It must consist of
a maximum of four numeric characters; the maximum logical device
number is 4095.

PROCESS IDs AND PROCESS NAMES

A process is uniquely identified by its process ID. There are

three equivalent forms of the process ID: the timestamp form,

the process-name form, and the network form. Process names are
known throughout the system by means of the destination control
table (DCT).

Timestamp Form of Process ID

For the timestamp form, the GUARDIAN operating system assigns the
process ID when the process is created. The form of this type of
process ID is:

<process-id> [0].<0:1> = 2

<process-id> [0].<2:7> = unused

<process-id> [0].<8:15> = <system number> is 0 through 254

<process-id> [1:2] = low-order 32 bits of creation
timestamp

<process-id> [3].<0:3> = unused

<process-id> [3].<4:7> = <cpu> where process is executing

<process-id> [3].<8:15> = <pin> assigned by operating system

to identify the process in the CPU

Process—-Name Form of Process ID

For this form, the process ID contains an application-defined
<process—-name>, The process name is specified before process
creation time, then entered into the DCT at process creation
time.

2-18 44 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Process IDs and Process Names

The general form of this type of process ID is:

<process-id>[0:2]
<process-id>[3]

S<process—-name>
<(two blanks)> or <cpu,pin>

<process-name> must be preceded by a dollar sign ($) and consist

of a maximum of five alphanumeric characters; the first character
must be a letter. The <cpu,pin> may be included but is ignored.

However, if it is included, it must be wvalid.

If a process name represents a process pair and the process
accessing the pair is not a member of the pair, then the process
name references the pair as a single entity. Communication
occurs with the primary process of the pair while it is operable.
If it becomes inoperable, communication is redirected to the
back?p process (in a manner invisible to processes outside of the
pair).

If a process name represents a process pair and the process

accessing the pair is a member of the pair, then the process name
references the opposite member of the pair.

Network Form of Process ID

The network form of the process ID is:

<process-id>[0].<0:7>
<process—-id>[0].<8:15>
<process-id>[1:2]
<process-id>[3].<0:7>
<process—-id>[3].<8:15>

"\" (ASCII backslash)
<gystem-number> (in octal)
<process-name>

<cpu>

<pin>

mnwnunmn

Note that the process name in words 1 and 2 can contain at most
four alphanumeric characters (the first one must be a letter, as
usual) and does not include the initial dollar sign ($).

The application program rarely, if ever, concerns itself with
octal system numbers in network file names. Usually, the
application passes the external form of the file name (which
contains a system name, rather than a number) to the procedure
FNAMEEXPAND, which converts the system name into the
corresponding number.

The external form of network file names is described later in
this section. Information and examples regarding the use of
network file names in operating and programming Tandem systems
can be found in the EXPAND Reference Manual. Conversion between
internal and external forms of network file names is accomplished
by the procedures FNAMEEXPAND and FNAMECOLLAPSE.

4y 82357 A00 3/85 2-19

BASIC CONCEPTS: FILES AND FILE NAMES
Process IDs and Process Names

The following process control procedures relate to process IDs:
e MYPID provides a process with its own <cpu,pin>.
¢ GETCRTPID provides the process ID associated with a <cpu,pin>.

¢ GETREMOTECRTPID provides the process ID associated with a
<cpu,pin> in a remote system.

Process Names

The process-name form of a process ID can be further qualified at
file open time by the addition of one or two optional qualifier
names. This provides for internal process file names of the

form shown in Figure 2-10.

word:
[0:3] [4:7] [8:11]
$<process-name> [#<lst-qualif-name> [<2nd-qualif-name>]]

#<lst-qualif-name>
consists of a number sign (#) followed by one to seven
alphanumeric characters, the first of which must be
alphabetic.

<2nd-qualif-name>

consists of one to eight alphanumeric characters, the
first of which must be alphabetic.

Figure 2-10. Internal Process File Names Form

Only the process name has meaning to the file system (it indi-
cates the particular process or process pair being opened). The
qgualifier names have no particular meaning to the file system.
They are, however, checked for proper format. Instead, their
meaning must be interpreted by the process being opened, which
receives the qualifier names as part of the OPEN system message.

2-20 “4) 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
How to Access Files

HOW TO ACCESS FILES

Communication between an application process and a file is
established through the file-system OPEN procedure. An array

in the application process data area, containing the internal-
form symbolic file name of the file to be accessed, is passed as
a parameter to the OPEN procedure. In return, OPEN provides a
process-unique file number that is used to identify the file when
accessing it through subsequent system procedure calls.

For example, to establish communication (open a file) with a
terminal referenced by the device name "STERM1", you can use the
following in an application program:

INT .FILENAME [0:11] := ["STERM1",9 * [" "]], ! data
! declarations
.FILENUM, !
.NUMXFERRED, !
!

.BUFFER [0:35];
Communication is established using the OPEN procedure:

CALL OPEN(FILENAME,FILENUM);

This OPEN establishes communication with the terminal identified
by STERM1. A process-unique file number is returned in FILENUM.

To write (output) to a file, the file number returned from OPEN
is passed as a parameter to the WRITE procedure:

looé:

CALL WRITE(FILENUM, BUFFER,72);

This WRITE causes 72 bytes of the array BUFFER to be printed on
the terminal.

To read (input) from a file, the file number returned from OPEN
is passed as a parameter to the file-system READ procedure:

CALL READ(FILENUM,BUFFER,72,NUMXFERRED) ;

“§) 82357 AOO 3/85 2-21

BASIC CONCEPTS: FILES AND FILE NAMES
How to Access Files

This READ permits up to 72 bytes to be input from the terminal
into the array BUFFER. A count of the number actually input is
returned in NUMXFERRED.

GOTO loop;

The communication link with a file is terminated through use of
the file-system CLOSE procedure:

CALL CLOSE(FILENUM);

The file representing the terminal is closed.

Disc Files

Disc files must be created before access is possible. Creation
is accomplished by calling the file-system CREATE procedure:

INT .DISC"FNAME[0:11] := "$VOL1 MYFILES FILEA "

CALL CREATE(DISC"FNAME);

This creates a disc file with the subvolume name "MYFILES" and
the disc file name "FILEA" on the disc volume identified as
"SVOL1", A primary and secondary extent size of 2048 bytes and a
file code of "0" is implied.

CALL OPEN (DISC"FNAME,FILENUM);

This opens the disc file referenced by the file name DISC"FNAME.

Associated with each open disc file are three pointers: a
current-record pointer, a next-record pointer, and an end-of-
file pointer. Upon opening a file, the current-record and
next-record pointers are set to point to the first byte in the
file. A read or write operation always begins at the byte
pointed to by the next-record pointer. The next-record pointer
is advanced with each read or write operation by the number of
bytes transferred; this provides automatic sequential access to
a file. Following a read or write operation, the current-record
pointer is set to point to the first byte affected by the
operation. The next-record and current-record pointers can be
set to an explicit byte address in a file, thereby providing

2-22 44 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
How to Access Files

random access. The end-of-file pointer contains the relative
byte address of the last byte in a file plus one. The
end-of-file pointer is automatically advanced by the number of
bytes written when appending to the end of a file.

Sequential access to an unstructured disc file is implied. A
data transfer operation with an unstructured disc file always
starts at the location pointed to by the current setting of the
next-record pointer:

CALL READ(FILENUM, BUFFER, 512 ,NUMXFERRED) ;

This transfers 512 bytes from the disc file starting at relative
byte zero into BUFFER. The next-record pointer is incremented
by 512; the current-record pointer points to relative byte zero.

CALL READ(FILENUM, BUFFER, 512 ,NUMXFERRED) ;

This transfers 512 bytes from the disc file, starting at file
byte 512, into BUFFER. The next-record pointer is incremented
by 512 and now points to relative byte 1024; the current-record
pointer points to relative byte 512.

Random access to a disc file is provided by the file-system
POSITION procedure. This procedure is used to set the
current-record and next-record pointers:

CALL POSITION(FILENUM,4096D);

This positions the file pointers to point at relative byte 4096.

CALL READ(FILENUM, BUFFER, 512 ,NUMXFERRED) ;

This transfers 512 bytes from the disc file starting at relative

byte 4096 into BUFFER. The next-record pointer is incremented by
512 so that further sequential access is automatic. The current-
record pointer now points at relative byte 4096.

Data can be written at the position indicated by the current-
record pointer through use of the WRITEUPDATE procedure. Using
the position of the preceding example, the call

CALL WRITEUPDATE (FILENUM, BUFFER, 512);

This writes 512 bytes of the array BUFFER starting at relative
byte 4096.

4 82357 A0O 3/85 2-23

BASIC CONCEPTS: FILES AND FILE NAMES
How to Access Files

Terminals

Operations with terminals tend to be of the form "write, then
read". The WRITEREAD procedure combines these two operations.
A special hardware feature incorporated in the asynchronous
multiplexer controller ensures that the computer system is
immediately ready for input following the write of the prompt.

For example, assume that FILENUM contains a file number
representing a terminal:

BUFFER ':=' "PLEASE INPUT ACCOUNT NUMBER";
CALL WRITEREAD(FILENUM, BUFFER,27,72,NUMXFERRED);

This writes 27 bytes of the array BUFFER as a prompt, then
prepares for reading up to 72 bytes from the terminal back into
BUFFER. A count of the number of bytes input is returned in
NUMXFERRED.

Processes

A process can write messages to another process by opening a file
that references the process by its process ID (the process ID can
be of the process-name form or the timestamp form). A process
reads messages from other processes by opening a file designated
SRECEIVE. (System messages from the operating system can be also
be r?ad in this manner if the proper OPEN flags parameter bit is
set.

A one-way message can be sent to a process identified by the
timestamp form of process ID and received by that process as
follows:

ORIGINATOR (A) DESTINATION (B)
rname ':=' "SRECEIVE";
CALL OPEN (PIDB,BFNUM); CALL OPEN (RNAME,RFNUM);

"PIDB" contains B's process ID

CALL WRITE(BFNUM,..); —»MESSAGE —» CALL READ(RFNUM,...):

A sends a message to B by way of B's process ID. B reads the
message by use of its SRECEIVE file.

2-24 “4) 82357 A0O 3/85

BASIC CONCEPTS: FILES AND FILE NAMES
Coordinating Multiple File Accessors

A two-way message can occur with a process identified by the
process—name form of process ID as follows:

ORIGINATOR (A) SERVER ($SERVE)
sname ':=' "SSERVE"; rname ':=' "SRECEIVE";
CALL OPEN (SNAME, SNUM); CALL OPEN (RNAME,RNUM,,1);

REQUEST MESSAGE —> CALL READUPDATE (RNUM, ..);

CALL WRITEREAD (SNUM, ..); the message is processed by
the server and a reply is
generated

REPLY MESSAGE <«— CALL REPLY (..);

A sends a request to $SERVE and waits for a reply in the call to
WRITEREAD. SSERVE reads the message from its SRECEIVE file by a
call to READUPDATE. When the reply is ready, it is sent back to
A by a call to REPLY. When A receives the reply, WRITEREAD
completes, and A resumes processing.

COORDINATING MULTIPLE FILE ACCESSORS

A file can be accessed by several different processes at the same
time. To coordinate such simultaneous access, each process must
indicate (when opening the file) how it intends to use the file.
Both an access mode and an exclusion mode must be specified.

The access mode specifies the operations to be performed by an
accessor. The access mode is specified as either read-write
(default access mode), read-only, or write-only.

The exclusion mode specifies how much access other processes will
be allowed. It can provide shared, exclusive, or protected
access,

e Shared access, the default exclusion mode, indicates that the
opening process can allow simultaneous read and/or write
access by other processes to the file.

e Exclusive access indicates that the opening process cannot
allow any simultaneous access of any kind to the file.
Therefore, any further attempts to open the file, while the
file is open, are rejected. Likewise, if a file is already
open, any attempt to open the file with exclusive access is
rejected.

44 82357 A0O 3/85 2-25

BASIC CONCEPTS: FILES AND FILE NAMES
Wait and Nowait I/0

e Protected access indicates that the opening process can allow
simultaneous read access to the file but cannot allow
simultaneous write access to the file. Therefore, while the
file is opened with protected access, any further attempts to
open the file with read-write or write-only access mode are
rejected. Likewise, if the file is already open with
read-write or write-only access mode, any attempt to open it
with protected access is rejected. However, simultaneous
accessors can open a file with read-only access mode.

An additional method of access coordination is provided for disc
files through the LOCKFILE and UNLOCKFILE procedures. Multiple
processes accessing the same disc file call LOCKFILE before
performing a critical sequence of operations to that file. 1If
the file is not currently locked, it becomes locked, and the
process continues executing. This prevents other accesses to the
file until it is unlocked through a call to UNLOCKFILE. 1If the
file is locked, a caller of LOCKFILE is suspended until the file
is unlocked. 1If a process attempts to write to a locked file,
the access is rejected with a "file is locked" error indication;
if a process attempts to read from a locked file, it is suspended
until the file is unlocked.

An alternate mode for file locking is provided