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ABSTRACT: A transaction is an atomic update which takes a data base from a consistent state to
another consistent state. The Transaction Monitoring Facility (TMF), is a component of the
ENCOMPASS distributed data management system, which runs on the Tandem computer system.
TMF provides continuous, fault-tolerant transaction processing in a decentralized, distributed en-
vironment. Recovery from failures is transparent to user programs and does not require system
halt or restart. Recovery from a failure which directly affects active transactions, such as the
failure of a participating processor or the loss of communications between participating network
nodes, is accomplished by means of the backout and restart of affected transactions. The implemen-
tation utilizes distributed audit trails of data base activity and a decentralized transaction concur-
rency control mechanism.
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INTRODUCTION

The Tandem NonStop system architecture — hardware and software — is designed to provide failure-
tolerance, expandability, and distributed data processing in an online transaction processing en-
vironment. The architectural overview which follows shows how such features as continuous
availability, tolerance of single-module failures, fail-safe structural integrity of files, and I/O device
fault tolerance derive from the design. The extension of the operating system to support a network
of Tandem nodes is discussed. The network extension is reliable, highiy available, and provides
geographic independence. These features provide the foundation upon which to build a reliable
distributed data management system; however, reliable distributed tramsaction processing
requires that another layer of failure protection be provided for the data base. Logical data base
consistency must be guaranteed despite processor failure, application process failure, network
partition, transaction deadlock, or application-requested transaction abort. The means used by
ENCOMPASS to provide these features are examined.

ARCHITECTURAL OVERVIEW
Hardware Architecturs

The Tandem system is based on multiple, independent processors. Figure 1 illustrates the architec-
ture of a typical three-processor system. The hardware structure consists of from 2 to 16 processor
modules, each with its own power supply, up to two megabytes of memory, and I/O channel, inter- -
connected by dual high-speed (13.5 megabytes/sec) interprocessor buses. Each I/O controller is
redundantly powered and connected to two /O channels. Disc drives may be connected to two I/O
controllers, and dises themseives may be duplicated, or “mirrored”, to provide data base access
despite disc failures. At least two paths connect any two components in the system. Thus, hardware
redundancy is arranged so that the failure of a single module does not disable any other module or
disable any inter-module communication. Normally, all components are active in processing the
workload. However, when a component fails, the remaining system components automatically take
over the workload of the failed component *.
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Figure 1. The Tandem Nonstop Hardware Architecture

The Tandem Operating System

System resources are managed by a message-based operating system which decentralizes informa-
tion and control. The operating system resides in each component processor. The relationship

among the processors of a system is characterized by symmetry and the absence of any master-
slave hierarchy. ’



The operating system provides the software abstractions, processes and messages, necessary for
decentralized control of the distributed components. All communications between processes is via
messages. The Message System makes the physical distribution of hardware components
transparent to processes. User processes access the Message System through the File System. The
Message System and the File System effectively transform the mu.ltxple-computer structure into a
unified multiprocessor at the user level.

System-wide access to I/O devices is provided by the mechanism of the I/O “process-pair”. An /O
process-pair consists of two cooperating processes which run in the two processors physically con-
nected to a particular [/O device. One of these processes, designated the “primary”, controls the I/O
device, handling all requests to perform I/O on the device. The other process, designed the
“backup”, functions as a stand-by in case of failure of the primary path to the device. The primary
process sends the backup process “checkpoints”, via the Message System, which ensure that the
backup process has ail the information that it would need in the event of failure to assume control of
the device and carry through to completion any operation initiated by the primary. During normal
operation, the backup is passive, acting only to receive the primary’s checkpoints. In the event of an
L/O channel error or a failure of the primary’'s processor, the backup process takes control of the
device and becomes the primary.

The process-pair is a general mechanism utilized within the operating system to make system
resources and services available to all processes in a fauit-tolerant manner. An example of the use
of the process-pair mechanism for a system process other than an I/O process is the “operator”
process-pair, which is responsible for formatting and printing error messages on the system con-
sole. The primary and backup of the operator process run in two processors of the system. In the
event of a failure of the primary’s processor, the backup is able to continue offering this service.
The continous service provided by the process-pair is the essence of the feature termed NonStop.

The concept of the process-pair extends to application processes as well as to system processes.
User-callable operating system routines are provided for creating a backup process and sending
checkpoints to it. As shown by Bartlett 2, a process-pair application can provide continuous fault-
tolerant processing despite module failure.

The design of the Tandem operating systemris described in more detail in [1] and {2}

The Tandem Network

The message-based structure of the Tandem operating system allows it to exert decentmhzed con-
trol over a local network of processors. Since it already addresses some of the problems of controll-
ing a distributed computing system, the operating system has a natural extension to support a data
communications network of Tandem nodes, each node containing up to 16 processors. (Henceforth,
the terms “system” and “node” will be used interchangeably, and the term “network” will be used
to refer to a collection of Tandem nodes connected by data communications links).

The extension of the operating system to the network operating system involves the generalization
of message destinations to include processes in other nodes. This extension of the Message System
beyond the boundaries of a single system allows a process anywhere in the network to send or
receive a message from any other process in the network.



Features of the Tandem network include the following:
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fault-tolerant nodes for high availability and data integrity;

user-level transparency of access to geographically distributed system resources;

decentralized control, characterized by the absence of a network master;

dynamic best-path message routing, including automatic re-routing in the event of a com-
munications line failure;

automatic .packet forwarding via an end-to-end protocol which assures that data transmissions
are reliably received.

The design of the Tandem network system is described in more detail in [5].



DATA MANAGEMENT SYSTEM OVERVIEW
ENCOMPASS

The ENCOMPASS distributed data management system performs the functions required for the
development and operational control of on-line application systems. The basic functions provided by
ENCOMPASS components include: (1) data base management; (2) terminal management; (3) transac-
tion flow and application control; and, (4) transaction management. ‘

Data Base Management

The data base management component of ENCOMPASS provides a data definition language, a data
dictionary, a relational data base manager, and a high-level non-procedural relational query/report

language.
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Among the features provided by the ENCOMPASS data base manager are the following:

1. three types of structured file organizations: key-sequenced, relative, and entry-sequenced;
2. multi-key access to records witlr automatic maintenance of the indices during file update;
3. data and index compression;

4. partitioning of files—by key value range—across muitipie dise volumes (possibly on muitiple
nodes);

5. security controls by function, user class, network node, application program, and specified ter-
minal;

6. a cache buffering scheme designed to keep the most recently referenced blocks of data in main
memory.

The ENCOMPASS data base manager distributes data across multiple processors and dises, pro-
viding muitiple points of control. Implemented as an I/O process-pair per disc volume, designated
the DISCPROCESS, it protects the structural integrity of individual files through active
checkpointing of process state and data, and recovery in the case of processor, /O channel, or dise
drive failure. The DISCPROCESS controls all access to a logical disc volume, which in the case of a
mirrored device pair includes two physical disc drives and all primary and backup access paths (I/O
channels and I/O controllers).

The DISCPROCESS protects the integrity of the files resident on its volume by maintaining control
information and data in two processors—the processors in which the primary and backup
DISCPROCESSes reside. If a failure occurs which prevents the primary DISCPROCESS from com-
pleting an operation it has started, the backup DISCPROCESS automatically takes over and com-
pletes the operation.

Two granularities of locking are provided for concurrency control: file and record. Record level
locking operates on the primary key of an individual logical data record. (There is no locking at the
block or index level.) Locks on existing records are obtained at read time by explicit application pro-
gram request. All locks are exclusive mode.

Each DISCPROCESS maintains the locking control information for those records and files resident
on its volume only. Thus, concurrency control for ENCOMPASS is decentralized and is effectively
distributed among the DISCPROCESSes; no central lock manager exists. Deadlock detection is by
timeout, the interval being specified as part of the lock request.



Terminal Management

The terminal management component of ENCOMPASS, known as the Terminal Control Process
(TCP), provides screen formatting, data validation, screen sequencing, and data mapping. A TCP
controls up to 32 terminals and supports a variety of terminal types and communication lines. The
application interface to each terminal is defined by the user in a high-level language known as
Screen COBOL (a COBOL-like language with extensions for screen handling). The user's Screen
COBOL program is interpreted by the TCP to perform screen sequencing, data mapping, and field
validation for a single terminal. A TCP supervises the interleaved execution of Sereen COBOL pro-
grams, each associated with one of the terminals under control of the TCP. Multiple TCP’s can be
run to provide better distribution of available resources or to support large numbers of terminals.

~ TCP's are configured as process-pairs. As a result of the fatﬁt tolerance thus provided, the terminal
user has continuous access to the executing Screen COBOL program despite module failure,
including processor failure.

Transaction Flow and Application Control

ENCOMPASS applications have user-defined transactions that originate at terminals and access
data bases. In addition to providing a Screen COBOL program defining the screen formats and con-
trols for a terminal, the ENCOMPASS user provides a set of application program modules, known
as application “server” programs, which access and update data base files. Screen COBOL pro-
grams and application server programs communicate by exchanging request and reply messages.
Communication between a Screen COBOL program and a server is initiated by the Screen COBOL
“SEND"” verb. Under control of the SEND verb, the TCP, using the File System, passes a transac-
tion request message to a server. The server performs the application function against the data
base. The structure of an application server program is simple and singie-threaded: (1) read the
transaction request message; (2) perform the data base function requested; (3) reply. A server must
be “context free” in the sense that it retains no memory from the servicing of one request to the
next. Application servers are written to be independent of terminal and communications considera-
tions. Servers may be written in available commercial languages such as COBOL. -

ENCOMPASS application control provides monitoring of applications which are spread. across a
single system or network. It provides for the dynamic creation and deletion of application server
processes to ensure good response time and utilization of resources as the workload on the system
changes. Figure 2 shows a typical ENCOMPASS configuration.
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Figure 2. A Typical ENCOMPASS Configuration

Transaction Management

The transaction management component of ENCOMPASS is known as the Trangaction Monitoring
Facility (TMF). TMF implements the concept of a transaction as defined in the following.

A transaction is a (possibly multi-step) logical update which takes the data base from a consistent
state to another consistent state. A consistent data base is one which satisfies an application-
dependent set of assertions concerning the relationships between files, records, fields, and secon-
dary indices, the truth of which is required for the data base to effectively model the application’s
world of reference. ‘



In order for data base consistency to be maintained, a transaction must have the property of
atomicity: either all of its effects persist or none of its effects persist. This in turn requires that a
transaction which aborts for any reason, by user request or due to a failure, be backed out so that
none of its effects persist. On the other hand, a transaction which completes reaches a point at
which it abdicates the right to back out. At this point, the transaction is said to commit: all of its
effects will persist regardless of subsequent failures.

Prior to the existence of TMF in ENCOMPASS, data base consistency had to be preserved by ap-
plication fault-tolerance. The application had to be coded as a process-pair, which by careful design
of checkpoint logic could recover correctly from singie-module failures. (The run-time systems of
COBOL and FORTRAN automated process-pair coordination and error-recovery to some extent.)
Since process-pairs always carried forward to completion processing interrupted by failure, trans-
actions always committed. The reversal of a transaction had to be coded by the user, as there was
no automated transaction backout. Furthermore, there was no protection for the data base in the
event of multiple-module failure. If a disc's primary and backup processors failed simuitaneously,
data on the disc could be left in an unrecoverable or inconsistent state.

The introduction of transaction backout by TMF makes it unnecessary to code the application as a
process-pair. Without TMF, the application process must maintain correct state in a backup process
in case the primary fails. With- TMF, the state of progress of an incomplete transaction is im-
material, since failure will cause the transaction to be automatically backed out, restoring data base
consistency. TMF further provides voluntary transaction backout, making it unnecessary for the
user to code transaction reversal. Data base protection in the event of multiple-module failure is
provided by the ROLLFORWARD facility described in a later section. .

The ENCOMPASS user’s interface to TMF is through use of the Screen COBOL verbs:

BEGIN-TRANSACTION
END-TRANSACTION
ABORT-TRANSACTION
RESTART-TRANSACTION.

BEGIN-TRANSACTION is used to mark the beginning of a sequence of operations which should be
treated as a single transaction. For the Screen COBOL program, BEGIN-TRANSACTION marks
the beginning of a series of one or more SEND's of transaction request messages to application
server processes. The network location of the application server process and, in fact, of the data
base itself, is transparent to the Screen COBOL program. The server, the data base, or part of the
database (in any combination) may reside on remote network nodes. For example, a server may
transparently access data base files residing on any network node. A transaction may do work at
muitiple nodes and involve muitiple server requests.

Execution of BEGIN-TRANSACTION causes a unique transaction identifier, or “transid”, to be
generated. The transid consists of a sequence number, qualified by the number of the processor in
which BEGIN-TRANSACTION was called, qualified by the number of the network node which
originated the transaction, designated the “home”™ node for the transaction. The Screen COBOL
special register TRANSACTION-ID is set to contain the new transid, and the terminal is said to
enter “transaction mode”.

BEGIN-TRANSACTION marks a restart point in case of failure while the terminal is in transaction
_ mode. If the transaction fails for any reason except an explicit ABORT-TRANSACTION by the
Screen COBOL program (and the number of restarts has not exceeded a configurable “transaction
restart limit"™), the terminal’s execution is restarted at BEGIN-TRANSACTION after TMF backs
out any data base updates that have been performed for the current transid. A new transid is ob-
tained for the new attempt at executing the logicdl transaction.



The types of failures which would result in the automatic abort, backout, and restart of a transac-
tion by the system include: (1) failure of the primary TCP’s processor (i.e. primary process of the
process-pair}); (2) failure of an application server’s processor while that server was working on the
transaction; (3) complete loss of communication with a network node which participated in the trans-
action. On the other hand, recovery from the failure of a component such as a primary
DISCPROCESS' processor, an individual network communication line, a power supply, I/O con-
troller, or disc drive is handled automatically by the operating system transparently to transaction
processing.

The effect of a processor or other singie module failure, which would necessitate crash restart and
data base recovery on a conventional system, is limited to the on-line backout of those transactions
in process on the failed module. Transactions uninvolved in the failure continue processing. Because
the TCP checkpoints data extracted by the Screen COBOL program from input screen(s) to its
backup, in many cases the restart of a logical transaction may not require re-entering the input
screen(s).

All SEND's executed by a Screen COBOL program whose terminal is in transaction mode have the
terminal’s current transid automaticaily appended to the interprocess message by the File System.
When the application server reads the transaction request message, the terminal’s current transid
becomes the “current process transid” for the application process. When the application process
then executes a statement requiring disc /O and/or record or file locking, the File System
automatically appends the application process’ current transid to the request message which is sent
to the DISCPROCESS.

When all the SEND's required for the transaction’s execution are complete, the Screen COBOL pro-
gram indicates that the transaction should be committed by executing the END-TRANSACTION
verb. At the completion of the execution of this verb, the transaction’s data base updates become
permanent and will not under any circumstances be backed out. The Screen COBOL program's
END-TRANSACTION request can, however, be rejected because the transaction has been aborted
by the system due to one of the causes of automatic abort, e.g. network partition. If so, the Screen
COBOL program may be restarted at the BEGIN-TRANSACTION point.

If the Screen COBOL program, or any of the servers to which it has done a SEND, detects a need to
abort and back out a transaction—without automatic restart by the TCP —the Screen COBOL pro-
gram executes the ABORT-TRANSACTION verb.

Finally, RESTART-TRANSACTION is used to indicate that the current attempt to execute the
transaction has failed due to a transient problem and so should be backed out and restarted. For ex-
ample, a server may request a data base record lock with a timeout interval specified; then, in case
* the timeout occurs, it would recover from a possible deadlock by replying to the SEND with an er-
ror result indicating that the Screen COBOL program should call RESTART-TRANSACTION.



TMF DESIGN OVERVIEW
Concurrency Control

Gray defines a transaction that sees a consistent data base state as one that (a) does not overwrite
dirty data of other transactions: (b) does not commit any writes until the end of transaction: (c) does
not read dirty data from other transactions; and (d) prior to its completion, does not permit any data
it reads to be dirtied by other transactions. If all transactions observe these protocols, then transac-
tion backout produces a consistent state . ' .
TMF enforces clauses (a), (b), and (c) as follows. It verifies that all records updated or deleted by a
transaction have been previously locked by that transaction. (A lock on an existing record is ac-
quired at record read time by explicit application request.) TMF automatically generates locks on
all new records inserted by a transaction and on the primary key values of all records deleted by a
transaction. Clause (d) insures that the reads performed by a transaction are repeatable *. The
observance of clause (d) is recommended to writers of TMF transactions, but for system perform-
ance reasons is not enforced, as enforcement would require the generation of a lock for each record
read by a transaction. :

Audit Trails

TMF maintains distributed audit trails of logical data base record updates on mirrored dise
volumes. An audit trail is a numbered sequence of disc files whose volume of residence is con-
figurable and whose creation and purging is managed by TMF. The locations of audit trails for dise
volumes containing data base files designated by the user as “audited” are independently con-
figurable. Each DISCPROCESS which manages a disc volume configured as “audited” (i.e. capable
of containing audited data base files) automatically provides “before-images” and “after-images” of
data base updates by application processes to an AUDITPROCESS (of which several, each a
process-pair, are configurable), which writes to an audit trail. All audited discs on a given controller
share an AUDITPROCESS and an audit trail. Mulitiple controllers may be configured to use the
same or different AUDITPROCESSes and audit trails. Auditing of data base updates is totally
transparent to application programs. For transactions that span data bases on multiple nodes of a
network, all audit images for records residing on a particular node are contained in audit trails at
that node. This enables transaction backout at a node to occur without the need for communication
with other nodes. Transaction backout is performed by the BACKOUTPROCESS (a process-pair),
using the transaction’s before-images recorded in the audit trails.

The implementation of the DISCPROCESS as a process-pair, residing in two processors, eliminates
the necessity for the protocol, termed “Write Ahead Log” by Gray 3, which requires before-images
to be write-forced to the audit trail prior to performing any update of the data base on dise. The
Write Ahead Log protocol enables restart after system crash using conventional recovery tech-
niques. In the NonStop approach to handling failure, checkpoint is the functional equivalent of
Write Ahead Log. By checkpointing the audit records generated by an update request to its backup
prior to performing the update, the primary DISCPROCESS assures the feasibility of transaction
backout even in the event of the failure of the primary’s processor. As in Write Ahead Log,
however, all audit records generated by a transaction are write-forced to disc as part of the two-
phase transaction commit protocol.

In addition to the data base audit trails, TMF maintains, at each node, a “Monitor Audit Trail”
which contains a history of transaction completion statuses: commits and aborts. A transaction com-
mits at the time its commit record is written to the Monitor Audit Trail
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Transaction State Change

A transaction goes through several state changes during the commit or abort protocol. All transac-
tion state changes are broadcast, via the interprocessor bus, to all processors within a single node.
This is done regardless of which processors actually participated in the transaction. In contrast, in
the network case only those nodes which participated in the transaction are notified of transaction
state change. The decision to broadcast transaction state change information to all processors
within a single system was taken because of the speed and reliability of the interprocessor bus as a
communication medium. '

A summary of the possible states of a transaction follows:

1.

3.

Active. A transaction has this state after BEGIN-TRANSACTION has been called but before
commit or abort has been requested. BEGIN-TRANSACTION broadcasts the transid in
“active” state to all processors in the system. The possible states which can follow are “ending”
or “aborting”.

Ending. A transaction has this state after END-TRANSACTION has been called but before the

. transaction commit record has been written to the Monitor Audit Trail. During “ending” state,

all the transaction’s audit records are written to the audit trails. This constitutes “phase one” of
transaction commit. The possible states which can follow are “ended” or “aborting”.

Ended. A transaction has this state after the transaction commit record has been written to tl_ie
Monitor Audit Trail. Once the transaction has entered the “ended” state, the Screen COBOL

_ END-TRANSACTION verb completes, and participating DISCPROCESSes are notified to

release the committed transaction’s locks. This constitutes “phase two” of transaction commit.
Once the “ended” state has completed, the transid leaves the system. ‘

Aborting. A transaction has this state after the decision to back out the transaction has been
taken, but before any of its locks are released. While the transaction is in “aborting” state, all of
its audit records are written to the audit trails and the transaction’s data base updates are backed
out by the BACKOUTPROCESS. “Aborting” and “ending” are parallel states. The only possi-
ble following state is “aborted”. -

Aborted. A transaction has this state after the transaction has been backed out. Once the trans-
action has entered “aborted” state, particiy g DISCPROCESSes are notified to release the .
backed out transaction’s locks. “Aborted” ana “ended” are parallel states. Once the “aborted”
state has completed, the transid leaves the system.

The state transitions of a transaction are illustrated in Figure 3.

11
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Figure 3. State Transitions of a Transaction

For transactions which stay within a node, TMF uses an abbreviated two-phase commit. protocol. Its
purpose is to ensure that all audit records generated by a transaction are written to dise prior to
unlocking the transaction’s locks, thus making the transaction’s output visible to concurrent trans-
actions. This guarantees that a transaction, once committed, can always be recovered using
ROLLFORWARD, a TMF utility which can be used to apply after-images from the audit trails to a
previously archived copy of the data base. ROLLFORWARD is discussed in a later section.



Distributed Transaction Processing

Transactions can originate on any node of the network and can be transmitted by any path to any
number of other network nodes through SEND's from a TCP to remote servers or I/O requests from
servers to remote discs. TMF ensures data base consistency both within a singie node and across
nodes by treating all data base updates performed by a transaction as a group, identified network-
wide by the transid. All of the updates in the group are made permanent by the execution of the
Screen COBOL END-TRANSACTION verb. If a failure occurs, the transaction’s updates are backed
out on all participating nodes.

The strategy, used in the single-node case (up to 16 processors), of broadcasting transaction state
change information to all processors, regardless of their participation in the transaction, is clearly
too expensive to use in the network case. Furthermore, the information is likely to be useless to
most of the network. Therefore, only nodes participating in the transaction receive state change in-
formation.

Coordination of distributed transactions is one of the functions of the “Transaction Monitor Proc-
ess” (TMP), a process-pair which is configured for each network node that participates in the
distributed data base. Whenever a transid is transmitted by the File System to a remote node (as a
resuit of a SEND to a remote server or an I/O request to a remote audited data base file), the TMP
on the sending node determines whether the destination node has received a previous transmission
of the requesting transid from the sending node. If not, the TMP on the sending node notifies the
TMP on the destination node to broadcast the transid in “active” state to all processors on its node.
This “remote transaction begin” occurs prior to any transmission of the transid by the File System
to a server or DISCPROCESS on the destination node.

Distributed Commit Protocol

In a distributed data base environment, where a single transaction may resuit in the update of files
on multiple nodes, loss of communication between nodes may cause data base inconsistency. TMF
uses a more elaborate two-phase commit protocol for distributed transactions than that used for
singie-node transactions, due to the unreliability of the communication medium and the loose coupl-
ing of the nodes. The distributed commit protocol allows any participating node to unilaterally
abort a transaction. The purpose of phase one is twofold. First, it serves to ensure that all audit
records generated by a transaction are written to the audit trails on all participating nodes prior to
allowing the uniocking of any of the transaction’s locks. Secondly, it guarantees that the decision to
commit or abort a transaction is uniform across all nodes, even in the event of loss of communica-
tions between participating nodes or the catastrophie failure of a node.

In the distributed case, transaction state change is accomplished by TMP-to-TMP messages sent
over the network. Each participating node sends transaction state change messages to the TMP on
all nodes for which it was the direct source of transid transmission. On receipt of a transaction state
change message, the TMP broadeasts the state change to all processors within its node.

Certain network TMP message types are termed “critical response”. For critical response
messages, the destination TMP must be accessible at the time the message is initiated, and it must
reply with an affirmative response in order for the transaction state change to proceed. Examples
of critical response messages to remote TMP's are the network message requesting remote transac-
tion begin and that requesting phase one of commit (ie. transaction state change to “ending”).
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Other network TMP message types are termed “safe-delivery”. For safe-delivery messages, the
destination TMP need not be accessible at the time the message is initiated, and the reply serves
only to acknowledge receipt of the message rather than to signify concurrence. The sending of safe-
delivery messages—whenever transmission becomes possible—is guaranteed, but their delivery is
not time-critical to the transaction's state change. Examples of safe-delivery messages to remote
TMP’s are the network message requesting transaction state change to “ended” (phase two of com-
mit) and that requesting transaction state change to “aborting” (requesting transaction backout).
Following transaction backout, state change to “aborted” on each participating node is accom-
plished under local control, without need for further network communication.

The critical response message requesting phase one of commit is initially transmitted over the net-
work by the TMP on the transaction’s home node in response to the Screen COBOL program'’s END-
TRANSACTION call. For phase one to complete successfully, each node to which the home node
directly transmitted the transid must be accessible and must reply affirmatively after having writ-
ten the transaction’s audit records to disc on its node and after having assured, transitively, that ail
nodes to which the transid was further transmitted have done likewise. The existence of a node par-
ticipating in the transaction which is either inaccessible at phase-one time, or which responds
negatively to the phase-one request because it has previously decided to abort the transaction (e.g.
due to a prior loss of communications) will cause the commit attempt to fail. The TMP on the trans-
action’s home node will transmit transaction backout messages in this case. The successful comple-
tion of phase ome, on the other hand, will cause the home node TMP to transmit phase-two
messages, causing the release of the transaction’s locks throughout the network and the completion
of the END-TRANSACTION ecall. -

For example, suppose a TCP on node 1 SENDs to a server on node 2, which in turn updates a record
via a DISCPROCESS on node 3. The TMP on node 1 remembers that it transmitted the transaction
to node 2, but does not know that node 2 transmitted it to node 3. The TMP on node 2 remembers
that it transmitted the transaction to node 3. When END-TRANSACTION is called on node 1, “end-
ing” state is broadcast to all processors on node 1. The TMP-on node 1 receives this broadcast and
sends a network message to the TMP on node 2. The latter broadcasts to all processors on node 2
and i addition sends a network message to the TMP on node 3, which broadcasts to all processors
on its node. This causes the transaction to go into “ending” state on all processors of all par-
ticipating nodes. This is the first phase of the commit protocol. The second phase is similar.

Once phase one has completed successfully, the inability to communicate with all participating
nodes  ing phase two (lock release) does not impede the completion of the Sceen COBOL pro-
grams’s END-TRANSACTION call on the home node. It merely means that records locked by the
committed transaction on inaccessible remote nodes will remain- locked until such time as com-
munication is restored.

Until a non-home node has replied affirmatively to the phase-one message, it can unilaterally abort
the transaction, and then force network consensus to abort by replying negatively to the phase-one
message when it is received. Once a non-home node has replied affirmatively to the phase-one
message, however, it must hold the transaction’s locks until notification of the transaction’s final .
disposition (i.e. to state “ended” or to state “aborting”) is received (possibly indirectly) from the
transaction’s home node. If communication is lost at this point, the transaction’s locks on the inac-
cessible node will be held until communication is restored. The manual override for this situation re-
~ quires the following steps: (1) use of a TMF utility on the home node to determine the transaction’s
disposition; (2) a telephone conversation (for example) between operators on the home node and on
the inaccessible non-home node; and, finally, (3) use of the TMF utility on the non-home node to force
like dis~ .ition of the transaction.
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ROLLFORWARD -

Conventional transaction management systems must be optimized for quick restart in the event of
total node failure. NonStop systems allow optimization of normal processing at the expense of
restart time. For example, audit records need not be written to dise prior to updating the data base.
On the other hand, however rare the occurrence of total node failure (e.g. simultaeous failures of
two processors hosting a process-pair), TMF must have a provision for recovering the data base.

TMF"s approach to recovery from fotal node failure is based on occasional archived copies of
audited data. base files, plus an archive of all audit trails written since the data base files were ar-
chived. These copies can be created during normal transaction processing. TMF reconstructs any
files open at the time of a total node failure by using the after-images from the audit trail to reapply
the updates of committed transactions. ROLLFORWARD negotiates with other nodes of the net-
work about transactions which were in “ending” state at the time of the node failure.
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A DISTRIBUTED DATA BASE APPLICATION

Tandem's Manufacturing Division uses ENCOMPASS to implement a reliable distributed data base
to coordinate its four manufacturing facilities in Cupertino (California), Santa Clara (California),
Reston (Virginia), and Neufahrn (West Germany). Manufacturing is one application of Tandem'’s
50-node corporate network. (The network grows at a rate of about two nodes per month: the
manufactmng apphmtxon adds approximately two nodes yearly.) The network for the manufactur-
ing system is shown in Figure 4.

GLOBAL & GLOBAL &
LOCAL DATA LOCAL DATA

GLoBAL & GLOBAL &
LOCAL DATA LOCAL DATA

Figure 4. Mgnufac{uring Network

Each node has a copy of the “global” files: [tem Master File, Bill of Materials File, and the Purchase
Order Header File. In addition, each node has a set of “local” files: Stock File, Work-in-Progress
File, Transaction Hxstory File, and the Purchase Order Detail File.

The globa.l ﬁles are rephmted at all nodes for reasons of performance and availability. Most transac-
tions access and update only local files. Transactions which reference giobal files access only a few
records and occur infrequently. Transactions which update global files can originate at any node.
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The designers of the system were faced with two conflicting goals: (1) the maintenance of consisten-
¢y among the global file copies; and (2) node autonomy: the ability for a node to carry on its process-
ing, including the update of global data, despite network partition or the unavailability of other
nodes.

If consistency were the only goal, straightforward application of TMF to the problem would have
been the solution. All global files would be TMF-audited. All reads of a record in a global file would
be directed to the local copy. Updates of giobal files would be applied to all copies, within the scope
of a single TMF transaction. Unfortunately, this simple approach fails to address the goal of néde
autonomy, since no node can run a global update transaction at a time when any other node is
unavailable. . o

The actual design compromises the goal of replica consistency somewhat for the sake of node
autonomy. As in the above design, all files are TMF-audited and reads are always directed to the
local record copy. For the purpose of update, however, each global file record is assigned a master
node, the name of which is stored in each record instance. The update of a global record can occur
only if its master node is available. An update request is sent to a server on the record’s master
node. The server executes a TMF transaction which updates the master copy of the record and
queues “deferred” update requests for the non-master copies of the record in a “suspense file” at
the record’s master node. A dedicated process, called the “suspense monitor”, scans the suspense
file looking for work to do. When it finds a deferred update record for a node which is currently ac-
cessible, the suspense monitor executes 2 TMF transaction which sends the update to a server at
the non-master node and deletes the suspense file entry.

It is important that the deferred updates for non-master copies of records at a node occur in
suspense file order. If a node becomes disconnected from the network, deferred updates for it ac-
cumuiate in the suspense files of other nodes, and the disconnected node’s suspense file accumulates
updates for other nodes. When the network is re-connected and all accumulated updates are ap-
plied, global file copies converge to a consistent state.
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CONCLUSIONS |

The design of TMF is seen to rely heavily on the concept of NonStop, Tandem’s unique approach to
fault tolerance which provides continuous operation despite smgle module failures. Unlike conven-
tional data base recovery techniques, which are oriented to repairing the data base after a system
halt and restart, TMF maintains data base consistency through failures via the on-line backout of

those individual transactions affected by the failure.

Since a Ta.ndem node is in itself a local network of up to 16 processors, the techniques used to imple-
ment such features as transaction concurrency control and transaction commit coordination within
a single node are of necessity oriented to the distributed environment. Consequently, their exten-
" sion to a network is a relatively straightforward extrapolation of the single-node implementation.
The differences between the handling of the single-node case and the network case are largely ac-
counted for by the significant disparity in the speed and reliability of the communication media.
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