
TDL ZaD Relocating/Linking Assembler User's Manual
Chapter 1: Introduction

Chapter 1

Introductio~

- .
The TDL zao Relocating/Linking Assembler is the symbolic

assembly program for the zao. It is a two-pass assembler
(requiring the source program to be read twice to complete
the assembly process) designed - to' run under the TDL system
monitor. It is therefore device independent, allowing
complete user flexibility in the selection of standard input
and output device options. -

The assembler performs many "functions, making machine
language programming easier, faster, and more efficient.
Basically, the assembler processes the ZaD programmer's
source program statements by translating mnemonic operation
codes to the binary codes needed.~n machine instructions,
relatinq symbols to numeric values~ assigning relocatable or
absolute memory addresses for program instructions and data,
and preparing an output listin~ of the program which
includes any errors encountered during the assembly.

The TDL ZaD Assembler also contains a powerful macro
capability which allows the programmer to create new
language elements, thus expanding and adapting the assembler
to perform specialized functions for each programming- job.

In addition, the TDL Assembler' provides the facilities
required to specify program module linkages, allowing the
TDL Linkage Editor to link independently assembled program
modules together into a single executable program. This
allows for the modular and systematic development of large
programs, and for easy sharing ~f common program modules
among different programs.

Statements

Assembler programs are usually prepared on a terminal,
with the aid of a text editing p~ogram. A program consists
of a sequence of statements in the assecibly language. ,Each
statement is normally written on one line, and terminated by'
a carriage return/line feed sequence. TDL assembler ~
statements are free-format. Thi~ means that the var{ous­
statement elements are not placed at a specific numbered
column on the line.

There are four elements
of which are optional),
specific character~. These
order of appearance in the
(or delimiting) character
elements.

in an assembler statement (three
separated from each other by
elements are identified by their
statement, and by the separating
whj~h follows or precedes the

TDL ZaD Relocating/Linking Assembler User's Manual Page 2 .
Chapter 1: Introduction ~

... ' .~

Statements are written in the gegeral form:

label: operator operand,operand icomment <CR-LF)

The assembler converts statements written in this form into
the binary machine instructions.

Instruction Formats

The ZaD uses a variable length instruction format. A
given machine instruction may be one, two, three, or four
bytes long depending on the specific machine code and on the
addressing mode specified. The TDL assembler automatically
produces the correct number of machine code bytes for the
particular operation specified. Appendix A specifies the
various machine code mnemonics accepted by the assembler and
the format of the operands reguired~

.. , ~\
Statement Format

As previously described, assem~ler statements consist of
a combination of a label, an operator, one or more operands,
and a commenti the particular combination depends on the
statement usage and operator requirements.

The assembler interprets and processes these statements,
generating one or more binary instructions or data bytes, or
performing some assembly control pr~cess. A statement must
contain at least one of these elem~nts, and may contain all
four. Some statements have no operands, while others may
have many.

Statement labels, operators, and operands may be
represented numerically or symbolically. The assembler
interprets all symbols and replaces them with a numeric
(binary) value.

Symbols

The programmer may create symbols
labels, as operators, and as operands.
of any combination of from one to six
following set:

The 26 letters: A-Z
Ten digits: 0-9
Three special characte~s:

$ (Dollar Sign)
%. (Percent)
• (Period)

t(,l

to use as statement
A symbol may con~ist
characters from the

These characters constitute the Radix-40 character set (so
named because it contains only 40 characters). Any
statement character which is not in the Radix-40 set is

"
, ..

TOL Z80 Relocating/Linking Assembler User's Manual Page 3
Chapter 1: Introduction ~

... • !It

t~eated as a symbol delimiter whe~ encountered by the
assembler.

The first character of a symbo~' must not be numeric.
Symbols m?y also not contain embedded spaces. A symbol may
contain more than six characters, bu~only the first six are
used by the assembler.

The TOL assembler will accept programs written using
both upper and lower case letters and symbols. Lower case
letters are treated as upper case., in symbols. Additional
special characters and lower case letters elsewhere are
taken unchanged.

Labels

A label is the symbolic name created by the programmer
to identify a statement. If present, the label is written
as the first item in a statement, :and is terminated by a
colon (:). A statement may contain. ~ore than one label, in
which case all identify the sa:ne sta.tement. Each label must
be followed by a colon, however. A statement may consist of
just a label (or labels), in which case the label(s)
identifies the following statement •

. When a symbol is used as a label, it specifies a
symbolic address. Such symbols are said to be defined (have
a value). A defined symbol can reference an instruction or
data byte at any point in the program.

A label can be defined with only one value. If an
attempt is made to redefine a label. with a different value,
the second value is ignored, and an error is indicated.

The following are legal labels:

$SUM:
ABC:
B123:
WHERE%:

The following are illegal:

30QRT:
AB CD:

(First character must not be a digit)
(Cannot contain embedded space)

If too many characters are uied in a label, only the
first six are used. For example the label ZYXWVUTSR: is
recognized by the assembler to be the same as ZYXWVUABC:.

Operators

An operator may be one of . the
instruction codes, a pseudo-oper~tion code
assembly process, or a user defined code
or macro). The assembler pseudo-op codes
Chapter 3 and summarized in Appendix B.

mnemonic machine
which directs the
(either pseudo-op
are described in

j" !

TDL zao Relo(.;Q ... _ .. q/Linking Assembler User IS Manual Page 4
Chapter 1: Introduction :

.. ' .!'t

. The operator 'element of a statement is terminated by any
character not in the Radix-40 set (usually a space or a
tab). If a statement has no label, t~e operator must appear
first in the statement.

A symbol used as an operator must· be pre~efined by the
assembler or the programmer before its· first 'appearance as
an operator in a statement.

Operands

Operands are usually the symbolic' addresses of the data
to be acces$ed when an instruction is executed, the names of
processor registers to be used in the operation, or the
input data or arguments to a pseudo-op or macro instruction.
In each case, the precise interpretation of the operand(s)
is dependent on the specific statement operator being
processed. Operands are separated'. by commas, and are,
terminated by a semicolon (~) or .a, carriage return/line
feed. .

Symbols used as operands must have a value predefined by
the assembler or defined by the programmer. These may be
symbolic references to previously defined labels where the
arguments used by this instruction are to be found, or the
symbols may represent constant values or character strings.

Comments

The programmer may add a comment to a statement by
preceding it with a semicolon (:). Comments are ignored by
the assembler but are useful for documentation and later
program debugging. The comment is terminated by the
carriage return/line feed at the end of the statement. In
certain cases (e.g. conditiona~ assembly and macro
definitions), the use of the left and right square brackets
([1) should be avoided in a comment as it could affect the
assembly process.

An assembler statement may con~ist of just a comment,
but each such statement must· begin with a semicolon.

Statement Processing

The assembler maintains severai internal symbol tables
for recording the names and values of symbols used during
the assembly. These tables are:

1. Macro Table - This
initially empty, 'and
macros.

table contains
grows as' ·the

all macros. It is
programmer defines

2. Op-Code Table - This table c~ntains all of the machine
operation mnemonics (op-cod~s), th~ assembler
pseudo-operations (pseudo-ops), and' user defined

TDL zao Relocating/Linking Assembler User's Manual Page 5
Chapter 1: Introduction :

.. ' .,.

.~
operators (.OPSYNs). It 1nlt1ally
op-codes and pseudo-ops, and grows
provides additional definitions~

contains the basic
as the programmer

3. Symbol Table This -'table contains all
programmer-defined symbols other than those described
above. It initially contains the standard register
names, and then grows as new symbols are defined.

Internally, all of these tables occupy the same space, so
that all of the available space can be used as required.

Order of Symbol Evaluation

The following table shows the order in which the
assembler searches the tables for a symbol appearing in each
of the statement fields:

Label Field: :.-
1. Symbol followed by a colon. If no colon is found,

no label is present.

Operator
1.
2.
3.
4.

Operand
1.
2.
3.
4.

Field:
Macro
Machine operator
Assembler operator
Symbol

Field:
Number
Macro
Symbol
Machine operator

Because of the different table searching orders for each
field, the same symbol could b~ used as a label, an
operator, and a macro, with no ambiguity.

Programmer-Defined Symbols

There are two types of programmer-defined symbols:
labels and assignments. As previously described, labels are
generated by entering a symbol followed by a colon (e.g.
LABEL:). Symbols used as labels cannot be redefined with a
different value once they have been defined. The value of a
label is the value of the location counter at the time the
label is defined. .

Assignments are used to represent, symbolically,
numbers, bit patterns, or cl~racter strings. Assignments
simplify the program development ·task by allowing a single
source program modification (the assignment statement) to
change all uses of that number or bit pattern throughout th~

, .
, ,

TDL Z80 Relocating/Linking Assembler User's Manual Page 6
Chapter 1: Introduction :

.. ' ..
. ..~ .

program. Symbols given values 1n an ass1gnment statement
may have new values assigned in subsequent statements. Tne
current value of an assigned symbol is the last one given to
it.

A symbol may be entered into the symbol table with its
assigned value by using a direct assignment statement of the
form:

symbol = value {; or CR-LF}

where the value may be any valid numeric value or
expression.

The value assigned to the symbol may subsequently be
changed by another direct assignment statement.

The following are valid assignment statements:

VALUEl = 23
SIZE = 4*36
ZETA = SIZE ; ..

If it is desired to fix the vaiue assigned to a symbol
so that it cannot subsequently be redefined, the direct
fixed assignment statement should be used. This statement
is the same as the direct assignment statement except that
the symbol is followed by two equal signs instead of one.
For example:

FIXED == 46
NEWVAL == SIZE

Assembly-Time Assignments

It is often desirable to defer the assignment of a value
to a symbol until the assembly is actually underway (i.e.
not specify the value as part of the source program). This
is especiallY useful in setting program origin,' buffer.
sizes, and in specifying parameter values which will be used
to control conditional assembly pseudo-ops.

The TDL Assembler provides the ability to specify
symbols with values to be determined at assembly time, and
the mechanism by which the values may be interactively
defined. To speclry an assembly-time assignment, the
following format is used:

symbol =\ [dtextd]

where the dtextd in brackets indicates the optional
specification of a message to be output on the console
device at assembly time befor~ requesting the symbol's
value. The d represents a text delimiter, and may be any
character (other than a space or tab) which is not contained
in the text itself. The text may contain carriage".

TOL zeo Relocating/Linking Assembler' User's Manual Page 7
Chapter 1: Introduction

", .. ~
return/line feed sequences, which would result in a
mul ti-line message on the console. .~

After the optional message is output on the console, a
~olon (:) is output to indicate: that the assembler is
waiting for the desired value to be entered. The value
which is to be assigned to the symbol is then input on the
console device and the assembly continues with the symbol
having the specified value. This interaction only occurs
during the first assembly pass. The symbol's value remains
unchanged during subsequent passes.

Only numeric values may be entered through the console
in this fashion. The number which' is input must conform to
the same rules as any other number used in the assembly
source program, and may be follo,"Ied by an optional radix
modifier (see the section on Numbers below). The number is
assumed to be decimal unless followed by a radix modifier.

The value being input is not processed until a carriage
return is entered. Any mistyped character may be deleted by
the use of the DELETE (or RUBOUT) ,k.ey (which will echo the
deleted character), and the entire;· number may be deleted by
entering CTL-U (simultaneous use of the CTRL and the U key).
Any character which is input but is not valid as part of a
number will not be echoed and will be ignored.

The following are examples of assembly-time assignment
statements:

BUFSIZ =\ "BUFFER SIZE (50 TO 500 CHARACTERS)"
DISK =\ "VERSION (O-PAPER TAPE l-~ISK)"

Assembly-time assignment statements are similar to
direct fixed assignments (==) in not allowing the symbol to
be redefined elsewhere in the program.

Local and Global Symbols

When assembling a large program, it is sometimes
difficult to keep track of the symbols used for local data.
references and branching. To facilitate modular
programming, the TDL assembler provides for both global and
local symbols within a single program. All symbols which
start with two periods are defined as being local, and all
other symbols are global. For example, the following are
valid local symbols:

•. ABCD:
•• 1234:
A particular occurrence of a local symbol is only defined
within the boundaries of its e~closing global symbols. For
example, in the following sequence, of label definitions, the
symbol .. SYMI is only defined (and can only be referenced)

, ..

TOL zao Relocating/Linking Assembler' User's Manual Page a
Chapter 1: lritroduction :

.... ;.

within the program between the de~inition of GLOBland
GLOB2:

...
GLOB1: " .

• . SYMI:

GLOB2:

This localization of" symbol definitions allows the same
symbol to be used unambiguously. more than once in the
program. It also simplifies program understandability by
immediately differentiating between local and global
symbols.

In addition to labels,
symbol may be specified as
manner. Because of the loc
do not appear in the symbol
table optionally punched on

External, Internal, and Entr'

Programmer-defined symbc
internal, and entry point
appearance as labels or in a

Symbols which fall into
different from other symbols
be referenced by other,
modules. The manner in whic
they are located: in the pre
or in the program in which +

defined elsewhere.
If the symbol appears

defined, it must be declar
programs by the use of the
through the use of the de
"=\:" in their definiti
delimiters are exactly equiv

.INTERN symbol

any other programmer-defined
ocal (e.g. macros) in the same
1 usage of these symbols, they
table listing or in the symbol
Ie object tape.

Symbols

may also be used as external,
ymbols in addition to their
ignmen~ statements.
:1e o"f these three groups are
, the ~rogram because they can
~parately assembled, program
~hey are used depends on where
1m in which they are defined,
! are a reference to a symbol

a program in which it is
as being available "to other
~udo-ops .INTERN or .ENTRY, or
~iters "::", "=:", M==:", or

statements. These special
~nt to the sequence:

symbol <delimiter without co ,n (:»

In each case, the delimiter is the normal symbol definition
operator (:, =, ==, =\) wit an aoditional colon (:) added
to indicate an internal symb 1 definition.

If the symbol is located in a program in which it is a
reference to a symbol define, in ~nother program, it must be
declared as external by the :_se of t.he • EXTERN pseudo-op, or
through the use of the "#" symbol modifier. This special
symbol modifier is appended to the end of any sy~bol tQ

TDL zao Relocating/Linking Assembl~r User's Manual
Chapter 1: Introduction ..

.. ' -0:.

·declare it external. For example, ~he statement:

LXI H,SYMBOL#

is exactly equivalent to:

• EXTERNAL SYMBOL
LXI H,SYMBOL

Numbers

: .

Page 9

Numbers' used in a program are interpreted by the
assembler according to a radix (number base) specified by ,
the programmer, where the radix may be 2 (binary), B
(octal), 10 (decimal), or 16 (hexadecimal). The programmer
uses the .RADIX pseudo-op to set the radix for all numbers
which follow. If the .RADIX statement is not used, the
assembler assumes a radix of 10 (decimal).

The radix may be changed :~for a single number by
appending a radix modifier to the end of the number. These
modifiers are B for binary, 0 .or Q for octal, D or •
(period) for decimal, and H for hexadecimal. To specify the
hexadecimal digits, the letters A through F are used for the
values 10 through 15 decimal. All numbers, however, must
begin with a numeral. For example, the following are valid
numbers:

10 in current radix
10 decimal
10 binary (2 decimal)

10
10.
lOB
OFFH FF hexadecimal (255 decimal)

The following are invalid numbers:

14B 4 is not a binary digit
FFH the number must start with a numeral

Arithmetic and Logical Operationi

Numbers and defined symbols
arithmetic and logical operators.
are available:

+ Add (or unary plus)
Subtract (or unary minus)

* Multiply

may be combined using,
The following operators

/ Integer divis'ion (remainder discarded)
@ Integer remainder (quotient discarded)
& Logical AND
! Logical inclusive OR '" - Logical exclusive OR '(or radix change) unary
i Logical unary NOT

. .'

1DL Z80 Relocating/Linking Assemb1e~User's Manual Page 10
Chapter 1: Introduction :

<. Left binary shift
> Right binary shift

... ;.,

The assembler computes the l6-bit value of a series of
numbers and defined symbols connected by these operators.
All results are truncated to the left,' if necessary. Two's
complement arithmetic is used, with the meaning of the sign
bit (the most significant bit) being left to the programmer.
This means that a numeric value ma~ be either between 0 and
65,535 or between -32,768 and 32,7~7, depending on whether
it is signed or unsigned. .

These combinations of number and defined symbols with
arithmetic and logical operators .are called expressions.
When evaluating an expression, the assembler performs the
specified operations in a particular order, as follows:

1. Unary minus or plus (- +)
2. Unary radix change (-S -0 -Q -0 ~H)
3. Left and right binary shift « »
4. Logical operators (& ! - i)
5. Multiply/Divide (* /)
6. Remainder (@)
7. Add/Subtract (+ -)

Within each of
·performed from
expression:

the
left

above
to

-ALPHA+3*BETA/DELTl\&-H55

groups, the operations
right. for example, in

are
the

the unary minus of ALPHA is done fixst, then DELTA is ANDed
with a hexadecimal 55, then BETA is multiplied by 3, the
result of which is divided by the' result of the AND, and
finally, that result is added to the negated ALPHA.

To change the order in which the operations are
performed, parentheses may be used to delimit expressions
and to specify the desired orde~' of computation. Each
expression within parentheses is considered to be a single
numeric value, and is completely evaluated before it is used
to compute any further values. For example, in the
expression:

4* (ALPHA+BETA)

the addition of ALPHA to BETA is peformed before the
multiplication.

Radix Change Operator
--------------------- Q

The radix change operator is used to temporarily change
the radix in which a following number or expression is to be
interpreted. It is written as an up-arrow· (-) followed ,by

, .
TOL Z80 Relocating/Linking Assembler User's Manual Page 11
Chapter 1: Introduction ~

.... ;.

'the radix modifier of the desiredd radix. These modifiers
are the same as those used to specify the radix of a single,
number (B-binary, 0 or Q-octal, D-dec imal, and
H-hexadecima'l). The radix.. change only affects the,'
immediately following number o~ parenthesized numeric
expresslon. For example, all of the following are valid
representations of the decimal number 33:

33.
330
-033
-0(10*3+3)
-D(lO*THREE+THREE)
-010*"'03+-03

but the following is not a representation of decimal 33 if
the prevailing radix is not decimal:

-D3*10+3 :. '

because the radix change only affects the value immediately
following it, in this case 3.

Binary Shifting

The binary shift operators « left, > right) are used to
logically shift a 16-bit value ,to the left or right. The
number of places to be shifted 'is specified by the value
following the shift operator. If' that value is negative,
the direction of the shift is reversed. For example, all of
the following expressions have a value of 4 decimal:

8>1
1<2
2>-1

One-byte Values

All of the above discussion has been based on the
computation of 16-bit (two byte) numeric values. Many of'
the Z8D operations require an 8~bit (one byte) value. ~lnce
all computations are done as a 16-bit value, an operation
calling for only eight bits will discard the high order
eight bits (the most significant byte) of the value. If the
byte discarded is not either zero or minus one (all one
bi ts), a warning .will be given on· the assembly 1 isting.

Character Values
~

To generate a binary valu~ equivalent to the ASCII
representation of a character string, the single e') or
double (") quotation mark is used. The character string .is

... "-

TOL Z80 Relocating/Linking Assembler User's Manual Page 12
Chapter 1: Introduction ;

.. ' ' .
. ~

e~closed in a pair of the quotation marks. For example, all
of the following are valid character values:

"A"
, B •
"Aa"
'CD'

Note that whichever quotation mark~is used to initiate the
character string it must also be used to terminate it. If
the string is longer than two bytes, it is truncated to the
left. Each7-bit ASCII character~.is stored in an 8-bit
byte, with the high-order bit set to zero.

A character string of this type may be used wherever a
numeric value is allowed.

A single quote may be used inside a string delimited by
double quotes, and vice-versa. If it is necessary.to use a
single quote within a string delimited by single quotes, two
single quotes must be used. The scfme is true for a double
quote in a string delimited by doub~e quotes.

Location Counter Reference

The location counter may be referenced as a numeric
l6-bit value by the use of the symbol • (period). The value
represented by • is always the locat~on counter value at the
start of the cu~rent assembly language statement. For
example:

JMP •

is an effective error trap, jumping. "to itself continuously.

c·

"

TDL zao Relocating/Linking Assembler User's Manual Page 13
Chapter 2: Addressing and Relocation

.. t • .,.

Chapter 2
.~

Addressing and Relocation
-~--------

:.

Address Assignment

As source statements are processed by the assembler,
consecutive memory addresses are assigned to the instruction
and data bytes of the object 'program. This is done by
incrementing an internal program counter each time a memory
byte 1S assigned. Some statements may increment this
internal counter by only one, while others could increase it
by a large amount. Certain pseudo-ops and direct assignment
statements have no effect on the counter at all.

In the program listing generated by the assembler, the
address assigned to every statement is shown.

Relocation

The TDLZaO Assembler will create a relocatable object
program. This program may be loaded into any part of memory
as a function of what has been previously loaded. To
ac~omplish this, certain l6-bit values which represent
addresses within the program must have a relocation constant
added to them. This relocation constant, added when the
program is loaded into memory, is the difference between the
memory location an instruction' (or piece of data) is
actually loaded into, and the location it was assembled at.
If an instruction had been assembled at location 100
(decimal), and was loaded into location 1100 (decimal), then
the relocation constant would be 1000 (decimal).

Not all 16-bit quantities must be modified by the
relocation constant. For'example, the instruction:

LXI H,OOFFH

references a 16-bit quantity (OOFFH) which does not need
reloca~ion. However, the set of instructions:

JZ DONE

DONE:

does reference a 16-bit quantity (the address of DONE) which
must be relocated, since the physical. location of DONE
changes depending on where t~e program is loaded into
memory.

To accomplish this relocation, the 16-bit value forming

.. .
" !

TDL zao Relocating/Linking Assembler User's Manual Page 14
Chapter 2: Addressing and Relocation;

.. ' .~

.~

an address reference is marked by the assembler for later
modification by the loader or linkage editor. Whether a
particular l6-bit value is so marked depends on the
evaluation of the arithmetic expre~sion from which it is
obtained. A constant value (integer) is absolute (not
relocatable), and never modified •. Point references (.) are
relocatable (assuming relocatable code is being generated),'
and are always modified by the loader or linkage editor.
Symbolic references may be either absolute or relocatable.

If a symbol is defined by a direct assignment statement,
it may be absolute or relocatable depending on the
expression following the equal sign (=) .If the symbol is a
label (and relocatable code is being generated) then it is
relocatable.

To evaluate the relocatability of an expression,
consider what happens at load or linkage edit time. A
relocation constant, r, must be added to each relocatable
element, and the expression evalua~e~. For example, in the
expression:

Z = Y+2*X-3*W+V

where v, W, X, and Yare relocatable. Assume that r is the
relocation constant. Adding this constant to each
relocatable term, the expression becomes:

Z(r) = (Y+r)+2*(X+r)-3*(W+r)+(V+r)-·.

By rearranging the expression, the following is obtained:

Z(r) = Y+2*X-3*W+V + r

This expression is suitable for
contains only a single addition of
r. In general, if the expression
result in the addition of either of
legal:

O*r absolute expression
l*r relocatable expression

relocation because it
the relocation constant
can be rearranged to

the following~ . it is

If the rearrangement results in the following, it is
illegal:

n*r where n is not 0 or 1

Also, if the expression involves r to any power other than
1, it is illegal. This leads to the following rules:

~

1. Only two values of relocatability for a complete
expression are allowed (ie. n*r where n = 0 or 1).

2. Division by a relocatable value is illegal.

-

"

TDL Z8D Relocating/Linking Assembler User's Manual Page 15
Chapter 2: Addressing and Relocat~pn

.. ' .~

.3. Two relocatable values may not.be multiplied together.
4. Relocatable values may not be combined by logical

operators.
5. A relocatable value may not b~ logically shifted.

"

If any of these rules is broken, the expression is illegal
and an error message is given.

If X, Y, and Z are relocatable symbols, then:

x+Y-Z is relocatable
X-Z is absolute
X+7 .F is relocatable
3*X-Y-Z is relocatable
4&X-Z is illegal

Only 16-bit quantities may be relocated. All 8-bit
values must be absolute or an error will be given •.

Relocation Bases

One of the unique capabilities of the TDL Z8D Assembler
is its ability to handle symbolic references to separately
located areas of memory, where the mapping of symbols to
physical addresses occurs at linkage edit time. The
symbolic names for independently located memory areas are
called "relocation bases". These relocation bases may
represent ROM vs. RAM, shared COMMON areas, special memory
areas such as video refresh, memory mapped I/O, etc. Within
each subprogram, each of these memory areas is referenced by
a unique name, with the actual allocation deferred to the
link edit and load process. All memory references within
the assembled program are relative to one of these
relocation bases. '

As each relocation base is assigned a name in the
program (through the use of the .EXTERN pseudo-op), it is
implicitly assigned a sequential identifying number. This
number appears in the listing., as part of any address
relative to that base.

Four of these relocation bases (0-3) have pred~fined
names and meanings, and are treated differently at linkage- ,
edit time than the remainder of the bases. Base 0
represents absolute memory loca(ions (i.e. it always ha~ the
value of 0). Base 1 has the name .PROG. and represents the
program area (maybe PROM or ROM). Most program code (and
data in non-rommed programs) is generated relative to this
relocation base. Base 2 has the. name • DATA. and represents
the local data ~rea for each module. Most local data is
defined relative to this base. Base 3 has the name .BLNK.
and represents the global "blank common". This relocation
base is always assigned the v~lue of the first free byte in
memory after the local data stotage (.DATA.) and other data
relocation segments by the linkage editor. Because it.is

TDL Z80 Relocating/Linking Assembler User's Manual Page 16
Chapter 2: Addressing and Relocation ..

.. < .,

always the last allocated, modules ref~rencing this area can
be included in any order, regardless of the amount of the
area they use.

Relocation segments relative to bases land 2 (.PROG.
and .DATA.) are always allocated additively (i.e. after each
module is allocated, the value of the relocation base is
increased by the size of the segment).· All other relocation
bases are normally assumed to have constant values during
the allocation process (usually assigned by the linkage
editor). '

Each symbol defined during the assembly has a relocation
baSe associated with it. There are no limitations on
inter-base references (Le. code relative to ·:'.PROG. can
freely reference data relative to .DATA.). Expressions
containing symbols must evaluate to a value relative to a
single relocation base, but may contain references to
multiple relocation bases. All relocation base references
except for the final result must be·part of sub-expressions
which evaluate to absolute values. For example, if T and U
are symbols relative to base 1, V and W relative to base 2,
and X and Y relative to base 3, then'the following are valid
expressions:

T+(V-W) (note the parentheses to make V-W
a subexpression)

X+3
T-(V-W)*U+(X-Y)

and the following are invalid:

T+U

T+V-W

(within a relocation base, the
normal relocation rules apply)

(T+V is the first sUbexpression,
and it is mixed relocation bases)

It should be noted that conceptually, normal external
symbols are simply relocation bases ~ith a size of zero (0),
and the assembler treats them that way. An assignment of
the form:

1'1==P+5

where P is an external symbol, makes N a symbol whose
address is relative to P, even though P has no size. Bence,
expressions of the form:

5*(P-N)

where P and 1'1 have the same r€~ocation base, are in fact
valid.

e'

"' ."

TDL Z 80 Relocating/Linking Assemblet User' s Manual Page l~i
Chapter 3: Pseudo-Operations :

.. ' '.
Chapter 3'~

Pseudo-oper a t,ions

Pseudo-operations (pseudo-ops) are directions to the
assembler to perform certain operations for the programmer,

'as opposed to machine operations ~hich are instructions to
the computer. Pseudo-ops perform' such functions as listing

'. control, data conversion, or storage allocation.

Address Mode and Origin

The TDL zao Assembler normally assembles programs in
relocatable mode, so that the resultant program can be
loaded anywhere in memory for executio~. Therefore, all
programs are assembled assuming ,their first byte is at
address zero (0), because they C3n be relocated anywhere.
When desired~ however, the assembler will generate absolute
object code, either for the entire-program, or just selected
portions. The assembler will also locate the assembled code
at any address desired. The two pseudo-ops which control
address mode, relocation base and address origin are .LOC
and .RELOC •

• LOC n

This statement sets the locati6h counter to the value n,
which may be any- valid expression. If n is an absolute
value, then the assembler will assign absolute addresses to
all of the instructions and data which follow. If n is
relocatable, then relocatable addresses will be assigned,
relative to the relocation base of the expression.

The program is assumed to start with an implicit .LOC tc
relocatable address zero (0) of the relocation bas~ named
.PROG.- (the default relocation pase for normal programs).
A program can contain more. than one .LOC, each controls the
assignment of addresses to the statements following it •.

To reset the program counter to its value prior to the
last .LOC, the statement:

.RELOC

is used.
relocation
before the
done, then

.LOC 0

This statement restores both the value, the'
base and the addressing. mode which were in effect
immedi~tely preceding ~LOC. If no .LOC has been
a .RELOC is equivalent to a:

u

. , !

TDL Z80 Relocating/Linking Assembler User's Manual Page 18
Chapter 3: Pseudo-Operations

.. ' .,,"

. Wh~n in relocatable addressing mo~e, the assembler will
determine whether each l6-bit value is absolute or
relocatable as described in Chapter 2~

Data Definition
-,

The TDL Z80 Assembler
pseudo-ops for describing
the program •

provides a
and entering

number of different
data to be used by

. RADIX
When the assembler encounters a number in a

statement, it converts it to ,a l6-bit binary value
according to the radix indicated by the programmer. The
statement:

.RADIX n

where n is 2, a, 10, or 16,
numbers which follow, unless
encountered, or the radix is
or a suffix radix modifier.

The statement:

.RADIX 10

sets'the radix to n for all
another .RADIX statement is
modified by the -r operator

implicitly begins each assembly program, setting the
initial radix to decimal •

. BYTE
To enter one (or more) a-bit (one byte) data values

into the program, the statement:

• B YT E n {,. n ...}

where n is any expression with -~ valid a-bit value is
used. More than one byte can be defined at a time by
separating it from the preceding value with a comma.
All of the bytes defined in a single .BYTE statement ate
assigned consecutive memory locations. For example:

.BYTE 23,4*-HOFF,BETA-ALPHA

defines three sequential bytes of data •

• WORD
To enter a l6-bit (two byte) value into the

program, the statement:

.WORD nn {, nn ••• }

•

TDL ZaD Relocating/Linking Assembler,User's Manual Page 19
Chapter 3: Pseudo-Operations

.. " .~

where nn is any expression with a valid 16-bit
used. Multiple 16-bit values rngy be defined
.WORD statement by separating each from the
one with a comma.

value, is
wi th one.

preceding

All 16-bit values defined by the .WORD pseudo-op
are stored in standard za~ word format, leaSt
significant byte first.

For example, the following statement:

.WORD ALPHA,234*BETA,~HOEEFF

defines three sequential 16-bit values, or a total of
six bytes of data. J

.ASCII, .ASCIZ, and .ASCIS
To enter strings of text characters into the

program, one of the statements:

.ASCII dtextd [n]

.ASCIZ dtextd [n]

.ASCIS dtextd [n1

is used. The d represents a text delimiter, and may be
any character (other than space or tab) not contained in
the text itself. Each character in the text is
converted to its 7-bit ASCII representation (with the
eighth bit zero), and stored in sequential memory
locations. When the delimitdr character is again
encountered, the text is co~sidered terminated (the
delimiter is not stored with the string). The delimited
string may be followed by another delimiter, and another
string, and this may be repeated as desired.

If it is necessary to include values in the text
string for which no character' exists, then the second
option shown above may be used. If in place of a string
delimiter, the assembler finds a left square bracket
([), then the numeric expression enclosed within it and
a matching right square brack~t (]) is evaluated as an
a-bit value and stored as the next byte of the string.
These a-bit values may be intermixed with delimited
strings as required.

It is important to note .that tab, carriage return,
and line feed are all valid characters within a
delimited text string. It is therefore possible that a
.ASCIx statement will encompass more than one line in
the source program.

The difference between' the three pseudo-ops
described above is in' their treatment of the last byte
generated by the statement. The .ASCII statement just
stores the byte. The .A~CIZ statement stores on~

additional byte after the last one, a null (zero) byte
to mark the end of the string in memory. The .ASCIS

, .'

TDL zao Relocating/Linking Assembler User's Manual Page 20
Chapter 3: Pseudo-Operations

,.' .~

.~

'pseudo-op sets the high-order (eighth) bit of the last
byte to one to flag the last byte.

The following are all valid .ASCIx statements:

. ASCII /This is a string/
- .

.ASCIZ /This is two/ ' strings in one place'

.ASCIS [-HOD] [-HOA] "Message on new line"

.ASCII \
Message on new line\

• RAD40
The Radix-40 character set for symbols was chosen

because it allows a six char acter' symbol to be stored in
only four bytes of memory. To allow the program to
define data bytes in this character set, the statement:

.RAD40 symboll {, symbol2 ••• }
, i ...

is used. The symbol must conform to all the rules
specified for assembler symbols,. and is converted into
the Radix-40 notation and stored in four sequential
bytes of memory. If multiple symbols are to be
converted and stored, each must be separated from the
preceding one by a comma.

Storage Allocation

The TDL zao Assembler allows the programmer to reserve
single locations, or blocks of many locations, for use
during the execution of the program. The two pseudo-ops
used for this purpose are .BLKB and .BLKW. The format of
the statement using these pseudo-ops.is:

.BLKx n

where n is the number of storage locations to be reserved.
For the .BLKB pseudo-op,. each storage location consists

of one byte, so the above statement will reserve n
contiguous bytes of memory, starting at the current location
counter. The .BLKW pseudo-op uses a word (two bytes) as its
storage unit, so the above statement would reserve n words;
or two times n bytes of contiguous memory.

For example, each of the following statements reserves
24 (decimal) bytes of storage:

.BLKB 24 •
• BLKW -n12
.BLKB 2*12.

•
-j !

TDL zao Relocating/Linkinq Assembler User's Manual Page 21
Chapter 3: Pseudo-Operations :

.... ,.

. Program Termination

Every program must be terminated by a .END pseudo-ope
The format of this statement is:

.END start

where start is an optional starting address for the program.
The starting address is normally only necessary for the main
program. Subprograms, which are called from the main
program, need no starting address.'

When the assembler encounters the .END pseudo-op during
pass 1 of the assembly, it returns to the initialization
point to await further instructio"ns (see Appendix C). On a
listing pass, the .END pseudo-op initiates the printing of
the symbol table (if not suppressed by a prior .XSYM
pseudo-op). On a punching pass, ·.the .END pseudo-op punches
the EOF record on the object tape .'"

:.'.

Subprogram Linkage

Programs usually consist of a main program and ~umerous
subroutines which communicate with each other through'
parameter linkages and through reference to symbols defined
elsewhere in the program. Since the TDL zao Assembler
provides the means for the various program components to be
assembled separately from each other, the linkage editor
(which finally puts the pieces "together) must be able to
identify those symbols which are ~eferences (or referenced)
external to the -~~irent program. For a given subprogram,
these "linkage" symbols are either symbols defined
internally which must be available to other programs to
reference, or symbols used internally but defined externally
to the program. Symbols defined within the program but
available to other subprograms are called "internal"
symbols. Symbols used internally but defined elsewhere are
called "external" symbols.

To set up these linkages between subprograms, four
pseudo-ops are provided: .IDENT, ~EXTERN, • INTERN, and
.ENTRY.

The .IDENT statement has the~format:

.IDENT symbol

where symbol is the relocatable module name. This name is'
used by the linkage editor to identify the module on memory
allocation maps, and to allow the selective loading of the
module if it is part of a 'subprogram library. If the .IDENT

- statement does not appear in a~program, the name ".MAIN." is
assumed. The .IDENT name appea~s. at the top of every
listing page, and is displayed on the console at the start
of the second assembly pass of that module.

, .'

TDL zao Relocating/Linking Assembler User's Manual Page 22
Chapter 3: Pseudo-Operations ;

.. ' .~

All three remaining statements ~ave the same format:

.EXTERN symboll {, symbo12 ••. }

.INTERN symboll {, symbo12 ••• }

.ENTRY symboll {, symbo12 ••• }

where symboll is the symbol being declared as external, ,
internal, or as an entry point. Multiple symbols may be'
declared in the same statement b~ separating each from the
preceding one with a comma.

The • EXTERN statement identifies symbols which are
J; defined elsewhere. External symbols must not be defined

within the current subprogram. ,The external symbols may
only be used as addresses, or in expressions that are to be
used as addresses. External symbols may be used in the same
manner as any other relocatable symbol, with the following
restrictions:

1. The use of more than one external symbol in a single
expression is illegal. Thus X+Y where X and Yare both
external is illegal.

2. Externals may only be additive. Therefore the following
expressions are illegal (where X is an external symbol):

-X
2*X
SQR-X
2*X-X

Symbols declared as external by the .EXTERN pseudo-op
may also be used as relocation bases. This is done by using
an external symbol as the argument. to a .LOC pseudo-ope All
memory allocated by the assembler after the .LOC will be
addressed relative to the specified relocation base. The
most common use of this capability is the declaration of
COMMON blocks for the sharing of data between assembler and
FORTRAN subprograms. All named COMMON blocks are in fact
just different relocation bases. Symbols used as relocation
bases have unique values during the assembly of the prQgram
module. At any point in time, the current value of the­
relocation base symbol is the n~mber of bytes which have
been allocated to that base so far. This means that
subsequent .LOC pseudo-ops referencing the same external
symbol will start the memory allocation at the next
available byte in that relocation base, not at relative
location zero (0).,

There are three predefined relocation base symbols:
.PROG., .DATA. and .BLNK •• These relocation bases are used
for the program code, separatel~ located data (in a ROM/RAM
environment), and blank (unnamed) ~ommon respectively.

The .INTERN pseudo-op identifies those symbols within
the current subprogram which are to be made accessible to

., .
TDL zao Relocating/Linking Assembler User's Manual Page 23
Chapter 3: Pseudo-Operations "

.. ' .;.

·other programs as external symbols~ This statement has no
effect on the assembly process for the current program, b~t
merely records the name and value of the identified symbols'
on the object tape for later use by the linkage editor. An.
internal symbol must be defined within the current program'
as a label, or in a direct assignment statement.

The .ENTRY pseudo-op functions identically to the
.INTERN pseudo-op, with one addition. It is sometimes
desirable to put many subroutines with common usage into one
nlibrary", and to allow the linkage editor to select only
those programs from the library which are called by the
program being linkage edited.

The .ENTRY statement, in additign to functioning as a
.INTERN statement, also flags the specified symbols as
program entry points. If the subprogram is later put into a
library, this will specify to the linkage editor that this
program is to be included only if one of its entry points. is
referenced as an external symbol., by an already included
program.

Since these entry points are external to the program
referencing them, they must be listed in a .EXTERN statement
in the calling program.

Listing Control

Program listings are printed on the list device during
pass 2 and 4 (see Appendix C) of the assembly. The listing
is printed as the source program statements are processed
during the pass. The standard listing contains (from left
to right):

1. Error flags (if present).
2. Location counter for the first byte generated by this

statement.
3. Instruction or data in hexadecimal (maximum of five

bytes per line printed).
4. Exact image of the input stat.ement.

The standard listing displays all l6-bit quantiti~s in
16-bit (two byte), most significant byte first, format.~.
These quantities are properly reversed in the object code as
required by the zao. A l6-bit relocatable address relative
to the .PROG. relocation base is flagged with an apostrophe
(I), one relative to th~ • DATA. relocation base is flagged
with an asterisk (*), and all others are followed by the
assigned number of their relocatipn base.

Within a macro expansion, only the macro call and those
statements which generate actual object code are normally
listed. ~

If a single statement generates more than the maximum of
five bytes that can be liste~ on a single line, the
remaining byt.es are properly generated, b,ut no~ normaJ,ly

TDL Z80 Relocating/Linking Assembler User's Manual Page 24
Chapter 3: Pseudo-operations ..

.. ' . .,..

listed. d

A listing always begins at the top line of the page, and.
60 lines are printed per page, wit~a two line margin at the
top~ and a two line margin at the bottom. A page is assumed
to be 72 (or 79) columns wide (depending on the list device
selected - see Appendix C). Each page is numbered, and can
have an optional title and sub-title.

The standard listing options can be changed and expanded
by the use of the following pseudo-operations:

• PAGE

.XLIST

.LIST

.LALL

.XALL

.SALL

.XSYM

.LSYM

.LADDR

.XADDR

This statement causes the assembler to skip to
the top of the next page (by counting lines).
A form feed character in the input text will
have the same effect.

This statement causes the assembler to stop
listing the assembled program at this point ..

This statement is n~rmally used following a
.XLIST to resume program listing.

This statement causes the assembler to list
everything which is processed. This includes
all text, macro expansions, and all other
statements normally suppressed in the standard
listing.

This statement is normally used following a
.LALL to resume the normal listing.

This statement causes the suppression of all
macro expansions and. their text. It can be
reset by a subsequent .LALL or .XALL.

This statement suppresses
listing normally performed
the .END statement •. '

the symbol table
upon encountering

Normally not used, this statement enables the
listing of the symbol table previously
suppressed by the .}SYM pseudo-oPe

This statement causes the
all l6-bit quantities in
generates them in the
significant byte first).

assembler to list
the same order it

object code (least'

Normally used following a .LADDR statement,
this statement r~sumes the normal listing of
16-bit quantities i~ non-swapped format.

TDL zaD Relocating/Linking Assembler User's Manual Page 25
Chapter 3: Pseudo-Operations ..

'. .LIMAGE

.. . :;.
This statement causes .~the assembler to list
every byte generated, even if more than one
line (at five bytes per line) is required. In
this mode, the assembler will attempt to split
the input source statement to indicate which
part of the statement is generating which
bytes •

• XIMAGE Normally used following a .LIMAGE statement,
this statement resumes the normal listing of
only five bytes of generated data per
statement •

• LCTL This statement causes all subsequent listing
control statements (e.g •• XLIST) to be listed
themselves. Normally, no listing control
statement is itself listed.' The .XCTL
pseudo-op is used to reset this option •

. XCTL Normally used following a .LCTL statement,
this statement resum~s the default suppression
of the listing of listing control statements •

• SLIST This statement causes the current listing
control flags to be saved on a four element
push-down stack. The current flag settings
remain unchanged. These settings may later be
restored with the· .RLIST pseudo-oPe This
pseudo-op may be followed on the same line
with another listing control pseudo-op, which
will take effect prior to the listing of the
.SLIST statement •

. RLIST This statement restores the listing control
flags from the top element of the .SLIST
push-down stack. These new flags take effect
with the statement following the .RLIST •

. TITLE dtextd This statement defines the delimited
string text to be the title to be print~d at··
the top of every page of the listing. The
text must be delimited in the same mannei as
in the .ASCII pseudo-op, and must be no longer
than 72 characters. If the .TITLE pseudo op
is the first statement on a page, then the new
title will be printe9 at the top of that page •

. SBTTL dtextd This statement defines the delimited
string text to be the sub-title to be printed
at the top of e~ry page of the listing. It
follows the same· rules as the • TITLE
pseudo-ope

TOL Z80 Relocating/Linking Assembler User's Manual Page 26
Chapter 3: Pseudo-Operations ..

.• REMARK dtextd This
listing.
of lines
matching

.. ' .~

statement inserts a remark into the
The delimited text can be any number
long, being terminated only by the

delimiter. ,.
: .

• PRNTX dtextd This statement, when encountered, causes
the delimited text string to be typed on the
console. This statement is frequently used to
print out conditicnal information, and to
report the progress .. through pass 1 on very
long assemblies.

<.-~

Punch Control

The TDL zao Assembler normally produces an object tape
in the TOL Standard Relocatable Format (see Appendix E).
However, the assembler can produce an object tape compatible
with the "INTEL Standard" hex tape~ To control which format
is being produced, the two pseud~2ops .PREL and .PASS are
used. The .PABS pseudo-op causes the assembler to produce
an INTEL compatible tape for all. following generated code.
The .PREL causes the assembler to return to producing TDL
Standard Object Tape.

Every program starts with an implicit .PREL pseudo-oPe
In addition, the assembler can punch the output tape in

both binary and ASCII. To control which type of output is
being produced, the two pseudo-ops .PBIN and .PHEX are used.
The .PBIN pseudo-op causes the assembler to produce a binary
tape in the current format. The .PHEX pseudo-op causes the
output of an ASCII tape. Every program starts with an
implicit .PHEX pseudo-oPe

To control the generation of linkable object modules,
two pseudo-ops are provided. The·' .LINK pseudo-op indicates
that linkage information is to be included in the object
file produced. The .XLINK pseudo-op inhibits this
information from being output. Every program starts with an
implicit .XLINK pseudo-oPe

The TDL zao Assembler provid~s one additional facility
to assist the TDL Z80 Debugging System. At the programmers
option, the assembler will punch all of the giobal·~
(non-local) symbols in the program module onto the end of
the Object tape. For each symbol, the assembler also
punches its relocation base and its value relative to that
base. Two pseudo-ops are provided to control this symbol
table punching. The .PSYM pseudo-op enables the punching,
and the .XPSYM pseudo-op disables ~t. The default is to not
punch the symbol table (.XPSYM).

..
, .' .

TDL zao Relocating/Linking Assemble~ User's Manual Page 27
Chapter 3: Pseudo-Operations :

.. ' .-
~onditional Assembly

Parts of a program may be assembled on a conditonal
basis depending on the results of certain tests specified to,;
the assembler through the use of th~ .IFx pseudo-oPe

The general form of the pseudo-op is:

.IFx arg, [true text] ••• {[false text]}
,.

where the text within the first square brackets is assembled
only if the specified test on the argument is TRUE, and the
optional text within the second set of bracketsi"s assembled
if the condition is false. Any. number of spac'es or blank
lines (or lines with only comments) may separate the true
and false texts.

The square brackets around the true text may be omitted
if there is no false text, and ~the entire true text. is
contained on the same line as the .• ;IFx pseudo-oPe

The first set of conditions which can be tested are the
numeric value of the argument. These pseudo-ops are listed
below:

.IFE n, [•••] TRUE if n=O or n=blank

.IFN n, (•••] TRUE if n<O or n>O

.IFG n, [•••] TRUE if n>O

.IFGE n, [••.] TRUE if n>O or n=O

.IFL n, [••.] TRUE if n<O

.IFLE n, (•••] TRUE if n<O or n=O

The following .IF pseudo-ops test
assembler is processing pass 1 or not:

.IFl,[••.]

.IF2,[•••]
TRUE if it is 'pass I
TRUE if it is not pass I

for whether the

The next set of conditionals tests for whether a symbol
has been defined yet or not:

• IFDEF symbol, [•••]
• I FNDEf' symbol, [.•. J

TRUE if the symbol is defined .
TRUE if the symbol is undefined

The next set of .IF pseudo-ops tests to see whether its
argument is blank or not. These pseudo-ops require that the
argument be enclosed in square brackets ([). The format is
as follows:

.IFB [•••), [•••]

.IFNB [•••),[•••]
TRUE if blank'·
TRUE if not blank

~

The quantity enclosed in the brackets is blank if it is
empty, or consists only of spacei and tabs. Optionally, the
argument being tested may be enclosed in paired delimit~rs

., .
TDL Z80 Relocating/Linking Assembler User's Manual Page 28
Chapter 3: Pseudo-operations

.. ' '-:.

.in the same manner as the .ASCIx ~seudo-ops. If the first
non-blank, non-tab, character after the pseudo-op is a left
square bracket ([), the bracket method is used, otherwise,·
the delimiter method. For examplei

.IFB / ••. /,[••. 1

The last pair of conditionals operate on character
strings. They take two arguments which are interpreted as
7-bi t ASCII character strings, ,'and make a character by
character comparison of the two strings to determine if the
condition is met. Each of the strings may either be
enclosed in square brackets or delimited by a character, as
in the .IFB/.IFNB pseudo-ops above. The same method need
not be used for both strings. The format of these
conditionals is as follows:

.rFID~ [••• J

.IFDIF [••.]
[••• J , f •••]
[••• l,f •••]

TRUE if identical
TRUE ;~~ different

The max imum leng th of the s tr ing.s to be
characters. In making the comparison, all
and tabs are ignored in the two arguments.

Synonyms

compared is 255
trailing blanks

It sometimes becomes useful, f·or documentation or ease
of programming, to define new names for already existing
symbols. The TDL Z80 Assembler has four pseudo-ops which
allow the definition of synonyms for already defined
symbols. The format of these pseudo-ops is:

.xxSYN symboll,symbo12

The four pseudo-ops
The only difference
three limit the type
being defined.

are .SYN, .OPSYN, .SYSYN, and .MASYN.
between the four is that the latter
of symbol. for which the synonym is

The statement above defines the second operand as being
synonymous with the first operand. In the case of th~ .SYN -
pseudo-op, the symbol tables are searched for the first
operand in the order: programmer defined symbol, macro,
operation. The .OPSYN pseudo-op limits the search to
operations, the .SYSYN to programmer defined symbols, and
the .MASYN to macros. The second operand is defined to be
identical to the first operand at the time the synonym is
defined. Later changes to the fiist operand will not affect
the second. .

The following are valid synonym definitions:
~

.OPSYN .BYTE,DB

.SYN .WORD,DW

" .
TOL Z80 Relocating/Linking Assembler User's Manual
Chapter 3: Pseudo-Operations

.• SYSYN ALPHA,BETA
.SYN A,Rl

Object Machine Validation

.'
' . . ' .~

. -: ..

Page 29

Although the TOL Macro Assembler will run only on a Z80
processor, it can obviously be used to generate object code
for any of the 8080 compatible micro-processors. To
facilitate the use of the as~embler for this purpose, two
additional pseudo-ops are available: .18080 and .Z80.

The .18080 pseudo-op causes all subsequent uses of
machine operations which are unique to the Z80 (and hence
unavailable on the 8080) to be flagged with a Z warning
message. Such uses will be properly assembled however.

The .Z80 pseudo-op (which is the default) disables the
feature so that no further Z warnings will be given.

, ..

TDL zao Relocating/Linking Assembl~r User's Manual Pag~ 30
Chapter 4; Macros ..

.. ' .~

Chapter 4.

Macros

..

A common characteristic of assembly language programs is.
that many coding sequences are repeated over and over with
only a change in one or two of the operands. It is
convenient, therefore, to provide a mechanism by which the
repeated sequences can be generated by a single statement.
The TDL zao Assembler provides the capability to do so by
allowing the repeated sequences to be written, with dummy
values for the changed operands, as a macro. A single
statement, referring to the macro by name and providing
values for the dummy operands, can then generate the.
repeated sequence.

Macro Definition
.;-.

A macro is defined by use .of the .DEFINE pseudo-oPe
This is followed by the symbolic name of the macro. The
macro name must follow the rules for the construction of·
symbols. The name may be followed by a list of dummy
arguments enclosed in square brackets. The dummy arguments
are separated by commas, and may be any symbol which is
convenient. Following the macro 'name and optional dummy
arguments must be an equal sign (=)~ The following are
examples of the heading part of a macro definition:

.DEFINE MACRO =

.DEFINE MOVE(A,B] =

.DEFINE BIGMAC[ARGl,ARG2,ARG3,%ARG5] =

Following the macro definition header comes the body of
the macro. It need not start on the same line as the
definition header. The body of the macro is delimited by a
matched pair of left and right ~quare brackets ([]). For
example:

.DEFINE MOVE[A,B]=
[LDA A
STA 81

Macro Calls

A macro may be called by any statement. A macro call
consists of the macro name followed (optionally) by a list
of arguments. The arguments are separated by commas, and
may optionally be enclosed in :feft and right square brackets
([I). If the brackets are used (the first non-blank/non-tab
character after the macro name is a left square bracket>.,

TOL zaG Relocating/Linking Assembler User's Manual Page 31
Chapter 4: Macros ..

.. . . ;.
. then the arguments are terminated bo/ a right square bracket.
If there are n dummy arguments in the macro definition, then
all arguments after the first n are ignored (although the~
do take space and time to process). . I f the brackets are'
omitted, the argument string endsc.when a carriage return or"
semicolon is encountered.

The arguments must be written in the order in which they
are to be substituted for the dummy arguments." The first'
argument is substituted for each appearance of the first
dummy argument, the second for the second, etc. The actual
arguments are substituted as character strings for the dummy
arguments, no evaluation of the arguments takes place until
the macro is processed. J

Referring to the definition of MOVE above, the
occurrence of the statement:

MOVE ALPHA,BETA

will cause the substitution of ALPHA for A and BETA for B in
the macro.

Statements which contain macro calls may be labelled and"
have comments like any other statement.

Macro arguments are terminated only by comma, carriage
return, semicolon, or"right square bracket (when started by
left square bracket). These characters may not be used in
the arguments unless the argument is enclosed in
parentheses. Each time an argument is passed to a macro,
one set of matched parentheses i$ removed, but all of the
characters within the parentheses" are substituted for the
dummy argument in the macro. Note that spaces and tabs do
not terminate arguments, but are considered to be part of
them.

Macros do not need to have·arguments. The macro name
(and arguments if any) may appear anywhere in a statement
where a symbol would normally appear, and the text of the
macro exactly replaces the macro name and its arguments in
that statement.

Comments

Comments may be included within a macro definition.
Storing the comments with the macro (so that they 'will
appear when the macro is expanded) takes space however. If
the com~ent within the macro definition is preceded by two
semicolons (instead of the normal one), the comment will be
ignored during the definition of ~he macro, and will not be"
stored as part of the definition·. This will eliminate the
appearance of the comment every time the macro expansion is
listed, however.

TDL zao Relocating/Linking Assembler Usei's Manual Page 32
Chapter 4: Macros :

.. ' ,~

Crea tOed Symbols

When a macro is called, it is oft~:n useful to generate
symbols without explici~ly stating them in the call. A good
example of this is labels within the. macro body. It is
usually not necessary to refer to these label externally to
the macro expansion, therefore there is no reason why the
programmer should be concerned as to what those labels are.
The same with temporary data areas. To avoid conflicts,
however, it is necessary that a different symbol be used
each time the macro is called (even with local symbols, the
macro could be called more than once between two global
symbols). Created symbols are used fo~ this purpose.

Each time a macro that requires a created symbol is
called, a symbol is generated 2nd inserted into the macro.
These symbols are of the form .nnnn (two periods followed
by four digits). It should b0 noted that this makes these
symbols local symbols (star with ,.,two periods). The
programmer is advised not to u ~ symbols of this form. The
four digits start at 0000 and ~re incremented by one each
time a symbol is created.

A created symbol is specifie3 in the macro definition by
preceding a dummy argument by percent sign (%). When the
macro is called, all dummy argu nts of the form %symbol are
replaced by created symbols (, ch with a different one).
If, however, the position of he dummy argument in the
argument list corresponds to an actual ~rgument provided in
the call, then the actual arg~ nt is' used in place of the
created one.

An actual argument can 1n
two consecutive commas in the
of this kind (a ~null" argument
as having a value of the empt~
will prevent the generation c
corresponding dummy argument.

For example:

.DEFINE PRINT[A,%Bj=
'[CALL LINPRT
JMP %8
.ASCIS \A\
%8:]

act be empty (signified by
.rgument list). An argument
is considered to be defined
string (no characters), and

a created symbol for its

This macro prints a message on the printer. The first
. argument to the macro is the text string to be printed.

LINPRT is a line printer routlne. Labelling the location
following the text is necessar' because of the indeterminate
length of the message. The us~ of a created symbol here is
useful since there would norma 1y be no reason to reference
the label. Calling the macro y:

TDL ZeD Relocating/Linking Assembler User's Manual Page.33·
Chapter 4: Macros

.... ;.
PRINT This is the message

would result in printing "This is the message" when the
assembled macro was executed. If;it had been called:

PRINT This is the message,MAIN ..

the message would have been printed, but control would be
transferred to the label MAIN, which substituted for %B
instead of a created symbol.

Concatenation

The apostrophe or single quote (') is defined within a
macro definition as the concatenation operator. This allows
a macro argument to be only part of a symbol or expression,
with the character string which is substituted for the dummy
argument being joined with other· character strings that are
part of the macro definition to. ,form a complete symbol or
expression. This joining is called concatenation.
Concatenation is performed by the assembler when an
apostrophe is used between the strings to be joined (one or
both of which must be a dummy macro argument). For example:

.DEFINE BR[A,B]=
[JR'A B]

defines a conditional branch
argument A is appended to the
If the call were:

BR Z,LOOP

statement.
JR to form

then the generated code would be:

JRZ LOOP

Default Arguments

When called, the
a single symbol.

Normally, missing arguments in a macro are replacetl by
nulls. For example, in the macro:

.
. DEFINE BYTES[Al,A2,A3,A4,A5,A6]=
[.BYTE Al,A2,A3,A4,AS,A6]

a call of BYTES[1,2] would generate an error because of the
missing arguments to the pseudo-op .BYTE.

To remedy this, the assembler provides the programmer
with the means to supply default arguments to be used when
no argument is provided in the macro call. Default
arguments are defined as part 9f the macro definition by
enclosing them in parentheses and inserting them immediately

TDL zeo Relocating/Linking Assembler User's Manual Page 34
Chapter 4: Macros

.. ' .!tt

• d

after the dummy argument to which they refer. To solve the
above problem, the definition would be wri~ten as:

.DEFINE BYTES [Al (0) ,A2 (0) ,A3 (0) ,A4 (0) ,AS (0) ,AG (0)] =
[.BYTE Al,A2,A3,A4,A5,A5] .

which would always generate six bytes of data, regardless of
how many arguments were provided in the call.

ASCII Interpretation of Numeric Arguments,

If the reverse slash (\> preceeds the first character of
an argument in a macro call, the value of the expression
following the reverse slash is converted to an ASCII string.
This string is then used as the argument to the call. The
value is considered to be a lG-bit positive value, and the
conversion is done in the current radix.' Leading zeros are
suppressed unless the value is zero. ,:

For example:

A = S
B = 6
MACRO \A+B, \A*B

is the same as:

MACRO 11, 30

if the current radix is 10.

Macro Expansion Termination

Under normal conditions, a macro expansion terminates at
the end of the macro definition. It is sometimes desirable
to terminate the macro expansion prior to the end of the
definition. This is usually done as part of some
conditional assembly within the macro. 'A special pseudo-op
is provided for this purpose:

.EXIT

When processed by the assembler, the .EXIT pseudo-op
immediately terminates the macro expansion, just as if the
end of the macro had been encountered. Only the current
expansion is terminated if multiple macro expansions are
being nested.

User Defined Macro Errors

It is sometimes desirable tQ have· a macro cause an
assembly error. This might be done when invalid parameters
are passed to the macro, or if parameters are missing. A

'".";;,Ji.

TDL ZaD Relocating/Linking Assembl~r User's Manual Page ·35'
Chapter 4: Macros

.. '
special pseudo-op is provided to allow this:

.ERROR dtextd

This pseudo-op will cause an asterisk (*) to be listed a5
the error code, the error count-to be incremented by one,
and the line to be listed as an error. The delimited text
is treated exactly as in a .REMARK pseudo-op, and can he
used to provide information about the nature of the error.

Nesting

Macros may be nested. This means that macros may be both
called and defined within oth~r macros. A macro that is
defined within another macro may not be called until the
defining macro has been called. At that time, the new macro
is available to be called by any statement.

The only limit to how many levels deep macro calls and
definitions may be nested is the, amount of memory available.

TOL Z80 Relocating/Linking Assembler User's Manual Page 36
Appendix A: Summary of Machine Operat'ion Mnemonics

.. ' .;

Appendix A

Summary of Machine Operati~n Mnemonics
------- --~------ ---------

The following section presents a summary of the Z80
machine operations and their assembler mnemonics. The
appendix is arranged by type of. ~nstruction for ease of
reference. For further information on the machine

I operations, refer to the ~ZrLOG Z8G-CPU Technical Manual~.
To make the information presented more readily usable, a

shorthand notation is used for describing the assembler
format of the instruction and its actual operation. All
capital letters and special charcters in the mnemonic
description are required. The lower case letters indicate a
class of values which can be inserted in the instruction at
that point. A single lower case letter indicates an 8-bit
quanityor register, while a double lower case letter
indicates a 16-bit quantity or reg~ster. A symbol enclosed
in parentheses in the machine operation section indicates
that the value whose address is specified is used. The
following is a summary of the notation used; exceptions will
be noted where appropriate in the following sections.

r one of the a-bit registers A, S, ,C, 0, E, H, L
n any 8-bit absolute value
ii an index register reference, either X or Y
d an a-bit index displacement where -128 < d < 127
zz B for the BC register pair, 0 for the DE pair
nn any 16-bit value, absolute or relocatable
rr B for the BC register pair, 0 frir the DE pair, H for the

HL pair, SP for the stack pointer
gq B for the BC register pair, 0 for the DE pair, H for the

HL pair, PSW for the A/Flag pair
s any of r (defined above), M, or ,d (ii)
IFF interupt flip-flop
CY carry flip-flop
ZF zero flag
tt B for the BC register pair, 0 for the DE pair, SP for

the stack pointer, X for index register IX
uu B for the Be register pair, D for the DE pair, SF for

the stack pointer, Y for index register IY
b a bit position in an 8-bit byte, where the bits are

numbered from right to left 0 to 7
PC program counter :
v[n] bit n of the 8-bit value or register v
v[n-m] bits n through m of the 8-bit value or register v
vv\H the most significant byte of the 16-bit value or

register vv
vv\L the least significant byte of the l6-bit value or

register vv

.

, !

TOL zaD Relocating/Linking Assembier User's Manual Page 37
Appendix A: Summary of Machine Operation Mnemonics

Iv an
Ov an
w<-v
w<->v

. ~ ..
input operation on port v d

output operation on port v
the value of w is replaced; by the value of v
the value of w is exchanged with the value of v

-.J.

TDL Z80 Relocating/Linking Assembler User's Manual Page 38
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

MOV
MOV
MOV
MOV
MOV
MVI
MVI
MVI
LDA
STA
LDAX
STAX
LDAI
LDAR
STAr
STAR

r I r '
r ,M
r,d(ii)
M, r
d (ii) ,r
r,n
M,n
d (ii) ,n
nn
nn
zz
zz

.~

8-Bit Load GrouEJ

Operation

r <- r'
r <- (HL)
r <- (i i+d)
(HL) <- r
(i i +d) (- r
r <- n
(HL) <- n
(i i +d) <- n
A <- (nn)
(nn) <- A

A <- (zz)
(zz) <- A
A <- r
A <- R
r <- A
R <- A

.. * of Bytes

1
1
3
1
3
2
2
4
3
3
1
1
2
2
2
2

TDL Z80 Relocating/Linking Assembler User's Manual Page 39
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

LXI
LXI
LBCD

LDED

LHLD

LIXD

LIYD

LSPD

SBCD

SDED

SHLD

SIXD

SIYD

SSPD

SPHL
SPIX
SPIY
PUSH

PUSH

POP

POP

rr,nn
ii,nn
nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

qq

ii

qq

ii

.. ' . .;.

16-Bit Load Gfoup

Operation

rr (- nn
ii (- nn
B (- (nn+l)
C (- (nn)
D (- (nn+l)
E (- (nn)
H (- (nn+1)
L (- (nn)
IX\H (- (nn+l)
IX\L (- (nn)
IY\H (- (nn+1)
IY\L (- (nn)
SP\H (- (nn+1)
SP\L (- (nn)
(nn+1) (- B
(nn) (- C
(nn+1) (- D
(nn) (- E
(nn+l) (- H
(nn) (- L
(nn+l) (- IX\H
(nn) (- IX\L
(nn+l) (- IY\H
(nn) (- IY\L
(nn+1) (- SP\H
(nn) (- SP\L
SP (- HI..
SP (- IX
SP (- IY
(SP-l) (- qq\H.'
(SP-2) (- qq\L
SP (- SP - 2
(SP-l) (- ii \H
(SP-2) (- ii\L.

SP <- SF - 2
qq\H (- (SP+1)
gq\L (- (SP)
SP (- SP + 2
ii\H (- (SP+1)
ii\L (- (SP)
SP (- SP + 2

i of Bytes

3
4
4

4

3

4

4

4

4

4

3

4

4

4

1
2
2
1

2

1

2

TDL zao Relocating/Linking Assembler User's Manual Page 40
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

XCHG
EXAF
EXX
XTHL

XTIX

XTIY

LDI

LDIR
LDD

LDDR
CCI

CCIR

CCD

CCDR

,.

Exchange and Block Transfer ~nd Search Group

Operation ..

HL (-) DE
PSW <-) PSW'
BCDEHL <-) BCDtHL'
H (-) (SP+I)
L (-) (SP)
IX\H (-) (SP+I),
IX\L <-) (SP)
IY\H <-) (SP+l)
IY\L <-) (SP)
(DE) <- (HL)
DE <- DE + 1
HL <- HL + 1
BC (- BC - 1
repeat LDI until' BC=O
(DE) <- (HL)
DE (- DE - 1
HL <- HL - 1
BC (- BC - 1
repeat LDD until BC=O
A - (HL)
HL (- HL + 1
BC (- BC - 1
repeat CCI until A=(HL)

or BC=O
A - (HL)
HL <- HL - 1
BC (- BC - 1
repeat CCD until A= (HL)

or BC=O

of bytes

1
1
1
1

2

2

2

2
2

2
2

2

2

2

TDL Z80 Relocating/Linkin9 Assembler User's Manual Page 41
Appendix A: Summary of Machine Oper~tion Mnemonics

8-Bi t· Ar i thmetic and Log ical Group

Mnemonic Operation . i-'of Bytes
-------- --------- ----------
ADD r A <- A + r 1
ADD M A (- A + (HL) 1
ADD d (i i) A (- A + (i i +d)- 3
ADI n A (- A + n 2
ADC s ;;) A <- A + s + CY
ACI n
SUB s A <- A - s
SUI n
SSB s A (- A - s - CY
S81 n
ANA s A <- A & 5
ANI n ,-
ORA 5 A <- A ! 5
ORI n
XRA 5 A <- A s
XRI n

'CMP 5 A - s
CPI n
INR s 5 <- s + 1
DCR 5 s <- s - 1

TDL Z80 Relocating/Linking Assembler User's Manual Page 42
Appendix A: Summary of Machine Ope~ation Mnemonics

Mnemonic

DAA

CMA
NEG
CMC
STC
NOP
HLT
Dr
EI
IMO
1M1
1M2

,.' .~

General Purpose Arithmetic ~nd Control Group

Operation ..

convert A to packed BCD
after an add,or
subtract of ' packed BCD
operands

A (- #A
A (- -A
CY (- iCY
CY (- 1
no operation
halt
IFF (- 0
IFF (- 1
interrupt mode 0
interrupt mode-1
interrupt mode 2

of Bytes

1

1
2
1
1
1
1
1
1
2
2
2

TDL Z8D Relocating/Linking Assemble~ User's Manual Page 43
Appendix A: Summary of Machine Operation Mnemonics

..

.. . . ~

l6-Bit Arithmetic Group
.~

Mnemonic Operation # of Bytes . -------- --------- ----------
DAD rr HL <- HL + rr 1
DADC rr HL <- HL + rr + CY 2
DS8C rr HL <- HL - rr - CY 2
DADX tt IX <- IX + tt 2
DADY uu IY <- IY + uu 2
INX rr rr <- rr + 1 1
INX ii ii <- ii + 1 2
DCX rr rr <- rr -1 1
DCX ii ii (- ii - 1 2

TDL Z 80 Re10ca ting/Link i ng Assembler" User I 5 Manual Page 4 4
Appendix A: Summary of Machine Oper~tion Mnemonics

Mnemonic

RLC

RAL

RRC

RAR

RLCR 5

RALR 5

RRCR 5

RARR 5

SLAR 5

SRAR 5

SRLR 5

RLD

RRD

.. ' .,..

Rotate and Shift GTOUp

operation'

A [n+1] <- A [n]
A[O] <- A[7]
Cy <- A[7]
A[n+1] <- A[n]
A[O] <- CY
CY <- A[7]
A[n] <- A[n+1]
A[7] <-A[O]
CY <- A[O]
A[n] <- A(n+1J
A[7] <- CY
CY <- A(O]
s[n+1] (- s[n1
5[0] <- 5[7]
CY (- 5[7]
s[n+1] (- sen]
5[0] (-CY
CY <- 5[71
sen] <- s[n+l]
5[7] <- 5[0]
CY <- 5[0]
sen] (- s[n+1]
5(7) <- CY
CY <- 5[0]
5[n+1] <- sen]
5[0] (- a
CY (- 5[7]
5 [n] <- 5 [n+11
5[7] <- 5[7]
CY <- 5[0]
sen] <- s[n+1]
5[7] <-0
CY <- 5[0]
A [0-3] <- (HL) [!i-7]
(HL) [4~7] <- (HL) [0-3]
(HL) (0-3] <- A[O-3]
(HL) [0-3] <- (HL) [4-7]
(HL) [4-7] <- A [0-3]
A[0-3] <- (HL) [0:-3]

#; of Bytes

1

1

1

1

2 (or 4)

2

2

TDL zaG Relocating/Linking Assembler User's Manual Page 45
Appendix A: Summary of Machine Op~ration Mnemonics

Mnemonic

BIT
BIT
BIT
SET
RES

b,r
b,M
b,d (ii)
b,s
b,s

.... ;.

Bit Set, Reset, and.~Test Group

Operation
" .

ZF <- #r[b]
ZF <- # (HL) [b]
Z F < - # (i i +d). [b]
s[b] <- 1
s [b] <- 0 ,_

t of Bytes

2
2
4

TDL zao Relocating/Linking Assembl~r User's Manual Page 46
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

JMP
JZ

JNZ
JC
JNC
JPO
JPE
JP
JM
JO
JNO
JMPR

JRZ

JRNZ
JRC
JRNC
DJNZ

PCHL
PCIX
PCIY

nn
nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

nn

nn
nn
nn
nn

.. . -
. .a

Jump Group

Operation

PC <- nn
if zero, then JMP

else continue·
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negativ~~
if overflow ._
if not overflow
PC <- nn

where -126 < nn-PC < 129
if zero, then JMPR

else continue
if not zero
if carry
if not carry
B <- B-1

if 8=0 then continue
else JMPR

PC <- HL
PC <- IX
PC <- IY

i.of Bytes

3
3

3
3
3
3
3
3
3
3
3
2

2

2
2
2
2

1
2
2

TDL Z80 Relocating/Linking Assembler' User's Manual Page 4;
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

CALL

CZ

CNZ
CC
CNC
CPO
CPE
CP
CM
CO
CNO
RET

RZ

RNZ
RC
RNC
RPO
RPE
RP
RM
RO
RNO
RETI
RETN

RST

nn

nn

nn
nn
nn
nn
nn
nn
nn
nn
nn

n

.. ' ...
Call and Return Group

.,\

Operation

(SP-l) (- PC\H
(SP-2) (- PC\L
SP (- SP - 2
PC (- nn
if zero, then CALL

else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive .,
if sign negative
if overflow
if not overflow'.
PC\H (- (SP+l)
PC\L (- (SP)
SP (- SP + 2
if zero, then RET

else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negativ'e
if overflow
if no overflow
return from interrupt
r e tur n from non,:"'maskable
interrupt

(SP-I) (- PC\H
(SP-2) (- PC\L
PC (- 8 * n

where 0 <= n < 8

of Bytes

3

3

3
3
3
3
3
3
3
3
3
1

1

1
1
1
1
1
1
1
1
1
2
2

1

TDL Z80 Relocating/Linking Assemblet User's Manual Page 48
Appendix A: Summary of Machine Ope~ation Mnemonics

.... ~

Input and Output-Croup

Mnemonic Operation . i of Bytes
-------- --------- ----------
IN n A (- In 2
INP r r <- I (C) 2
INI (HL) <- I (C) 2

B <- B - 1
~~ HL <- HL + 1

INIR repeat INI until 8=0 2
IND (HL) (- I (C) 2

B (- 8 - 1
HL <- HL - 1

INDR repeat INO until 8=0 2
OUT n On <- A 2
OUTP r O(C) <- r 2
OUTI O(C) <- (HL) 2

B <- 8 - 1
HL <- HI. + 1

OUTIR ,repeat CJTI until 8=0 2
OUTO O(C) (- (HL) 2

8 (- 8 - 1
HL <- HL - 1

OUTDR repeat OUTO until B=O 2

"j !

TDL ZaD Relocating/Linking Assembl~r User's Manual Page 49
Appendix B: Summary of Pseudo-Operation Mnemonics

.. ' .!It

Append ix B'~

Summary of Pseudo-Operation Mnemonics

.ASCII dtextd I [n] •••

The .ASCII pseudo-op enters 7--bit ASCII characters into
the program. The text is 'either entered between two
delimiters, or as a numeric value enclosed in square
brackets ([]) ,and the two forms may-~e intermixed and
repeated as desired.

• ASCIS dtextd [n] •••

The .ASCIS pseudo-op enters 7~bit ASCII characters into
the program, and flags the last character by setting
its high-order bit on. The format of the text is the
same as for the .ASCII pseudo-oPe

.ASCIZ dtextd I [n] ••.

The .ASCIZ pseudo-op enters 7-bit ASCII characters into
the program, and flags the end of the characters by
inserting an additional null byte. The format of the
text is the same as for the ~~SCII pseudo-ope

.BLKB nn

The .BLKB pseudo-op reserves a block of contiguous
storage nn bytes long .

• BLKW nn

The .BLKW pseudo-op reserves a block of contiguous
storage nn words long (nn x 2' bytes) .

• B YT E n {, n ...}

The .BYTE pseudo-op enters single
program. Multiple values may be
them with a comma .

• DEFINE symbol[argl,arg2, •..]=[text]

byte values into,the
entered by separating

The .DEFINE pseudo-op defines a macro with the name
symbol. argl through argn are optional dummy
arguments. The body of the macro is represented by
text.

TDL zao Relocating/Linking Assembler User's Manual Page 50
Appendix B: Summary of Pseudo-Operation Mnemonics

.. ' .,.

.
• END nn

The .END pseudo-op signals the end of the assembly.
When encountered during PASS 1, it simply returns to
the initialization section. During a listing pass, it
initiates the listing of the symbol table (if not
previously suppressed by the .XSYM pseudo-op). During
a punch pass, it generates nn EOF record on the hex
tape containing the value nn.Ss the starting address of
the object program .

. ENTRY symboll {, symbo12 " } . . .
The .ENTRY pseudo-op identifies the internally defined
symbols which are subroutine library entry points to
this program. Multiple symbols may be identified by
separating them with commas .

• ERROR dtextd

• EXIT

The .ERROR pseudo-op causes an "*" error to occur,
forcing the listing of the current line, and an error
notification. The delimited text is treated as a
.REMARK .

The .EXIT pseudo-op causes an immediate exit from the
current macro expansion to occur .

• EXTERN symboll {, symbo12 •.. }

The .EXTERN pseudo-op defines
referenced in this program but
separately assembled, program.
defined by separating them with

. 18080

those symbols which are
are defined in another,
Multiple symbols can be
commas •

The .18080 pseudo-op enables the Z warning message.
This warning will be given w~enever a machine operation
unique to the Z80 is encountered .

. IDENT symbol

The .rDENT pseudo-op gives th~ module a name for later
use by the linkage editor.

TDL Z80 Relocating/Linking Assemb1~r User's Manual Page 51 .
Appendix B: Summary of Pseudo-Operation Mnemonics

..

.. ' .~

.INTERN symboll {, symbol2 ... }

The .INTERN pseudo-op identifies those symbols which
are defined in this program and which will be
referenced as external symbols by some separately'
assembled program. Multiple-symbols may be identified
by separating them with commas~

. LADDR

The .LADDR pseudo-op changes the listing
displaying l6-bit quantities to displaying
image with the least significant byte first .

mode from
the Z80

. LALL

The .LALL pseudo-op causes the assembler to list every
text character processed, including those suppressed in
the normal listing .

. LCTL

The .LCTL pseudo-op causes the assembler to list all
listing control statements .

. LINK

. LIST

The .LINK pseudo-op causes' the assembler to output
linkage information to the 'o?ject file .

The .LIST pseudo-op resumes a listing which has been
stopped by the .XLIST pseudo-op_

.LIMAGE

The .LIMAGE pseudo-op chariges the listing mode to
display every byte of object code generated rather than
the normal mode of a maximum of five bytes per
statement .

. LOC nn

The .LOC pseudo-op changes the value of the assembler's
program counter to nne If nn is relocatable, then all
labels will be assigned relocatable values. If it is
absolute, then absolute values will be assigned.

TOL zao Relocating/Linking Assembler'User's Manual Page 52
Appendix B: Summary of Pseudo-Operat~on Mnemonics

.LSYM

.. ' .~

The .LSYM pseudo-op reenables t~e listing of the symbol
table during the .ENO pseudo-op processing after it has
been disabled by the .XSYM. pseudo-oPe The .LSYM
pseudo-op must occur prior to the .END pseudo-op to be
effective .

. MASYN symboll,symbol2

The .MASYN pseudo-op
macro to be the same
Symbo12 is defined to
defined as symboll .

allows the definition of a new
as a previously defined one.

be a macro identical to the one

. OPSYN symboll,symbol2

. PABS

. PAGE

. PBIN

. PHEX

• PREL

The .OPSYN pseudo-oE? allows the, definition of a new op
code mnemonic as a synonym of,an already existing one.
The symboll must be a defined machine or pseudo oE? code
(or one previously defined using .OPSYN), symbol2 will
be defined to be the same operation •

The .PA8S pseudo-op signals that the hex object tape
produced from this point on in the assembly is to be in
absolute (INTEL comE?atable) fcirmat .

The .PAGE pseudo-op causes a skip to the top of the
next page during a listing pass .

The .PBIN pseudo-op specifies 'that the object tape is
to be produced in binary .

The .PHEX pseudo-op specifies that the object tape is
to be produced in ASCII .

The .PREL pseudo-op signals that the hex object tape
produced from this point on in the assembly is to be in
relocatable (TOL standard) format.

TDL Z80 Relocating/Link~n~ Assembler User's Manual Page 53
Appendix B: Summary of Pseudo-Oper~tion Mnemonics

. ' .,.

.PRNTX dtextd

The .PRNTX pseudo-op will cause its text .string to b~
printed on the console when~~er it is encountered in.
the assembly process.,

.PSYM

The .PSYM pseudo-op signals that the entire symbol
table from the assembly is tb be punched at the end of
the object tape. The .PSYM pseudo-op must appear prior
to the .END pseudo-op to be effective .

. RADIX n

The .RADIX pseudo-op changes the default base in which
a numeric constant is interpreted during the assembly
to n. The valid values for n are 2, 8, 10, or 16. The
value is always interpreted as a decimal number •

. RAD40 symbol

The .RAD40 pseudo-op generates a unique 4 byte value in.
radix-40 notation for the symbol given. The symbol
must conform to the rules for any symbol in the
assembly. This pseudo-op is used mostly for developing
system software utilizing symbol tables .

• RELOC

The .RELOC pseudo-op restores the
assembler's program counter to whatever
the immediately preceding .LOC pseudo-ope

value of the
it was before

.REHARK dtextd

The .REMARK pseudo-op allows. the entry of multiple
comments into the source program. All of the
between the delimiters is listed but is ignored.
text may contain carriage return/line feeds. .

line
text.

The

.RLIST

. SALL

The .RLIST pseudo-op restores the listing control flags
from the top element of the .SLIST push-down stack .

The .SALL pseudo-op suppresses all macro expansions on
the assembly listing (normally all lines generating
code are listed).

TDL Z80 Relocating/Linking Assembler User's Manual Page 54
Appendix B: Summary of Pseudo-Operaiion Mnemonics

.. ' .~

.
. SBTTL dtextd

The • SBTTL pseudo-op sets 'the sub-ti tIe for the
assembly listing to the specified text string (which
must be less than 72 charact~rs in length). If the
.SBTTL pseudo-op is the first operation after a .PAGE,
the sub-title will appear on the new page •

• SLIST

The .SLIST pseudo-op saves the current listing control
flags on the top of a four element push-down stack •

. SYN symboll,symbol2

The .SYN pseudo-op makes any two symbols synonYmou$.
The symbol tables are searched for symboll in the
normal operand field order (label/symbol, macro,
opcode), and symbol2 is defin~~ to have the same value
as symboll .

. SYSYN symboll,symbol2

The .SYSYN pseudo-op makes one symbol the synonym of an
already defined symbol/label. The value of a
symbol/label symboll is obtained, and symbol2 is
defined to be the same type and value .

. TITLE dtextd

The .TITLE pseudo-op sets the title for the assembly
listing to the specified text string (which must be
less than 72 characters in length). The title is put
at the top of every page during a listing. If the
.TITLE pseudo-op is the first operation after a .PAGE
pseudo-op, the title will be listed on the new page •

• WORD nn {, nn ... }

The .WORD pseudo-op enters 2-byte values into the·
program in proper zao format (least significant by~e
first). Multiple values may by entered by separating
them with a comma .

• XAODR

The .XADDR pseudo-op is used after
to return to the standard format
values.

a .LADDR pseudo-op
of listing l6-bit

TDL ZaD Relocating/Linking Assembler User's Manual Page 55
Appendix B: Summary of Pseudo-oper.ation Mnemonics

.XALL

The • XALL pseudo-op is used,: after a • LALL or • SALL
pseudo-op to return to the standard listing mode •

. .
• XCTL

The .XCTL pseuod-op is used after a .LCTL pseudo-op to
return the standard mode of -suppressing the listing of
listing control statements.-

.XIMAGE ... ~ .'

The .XlMAGE pseudo-op is used after a .LlMAGE pseudo-op
to return to the standard listing mode of only five
object bytes per statement •

• XLINK

The .XLINK pseudo-op is used after a .LINK pseudo-op to
suppress the inclusion of linkage information in the
object file .

. XLIST

The .XLIST pseudo-op
following statements
encountered) .

suppresses
(unt~l' c

the listing of all
.LIST pseudo-op is

• XPSYM

• XSYM

• Z80

The .XPSYM pseudo-op disables the punching of the
symbol table at the end of the object tape after it has
been enabled by the .PSYM pseudo-oPe The .XPSYM
pseudo-op must occur prior to the .END pseudo-op to be
effective .

The .XSYM pseudo-op disables the listing of the
table by the .END pseudo-op (unless reenabled
.LSYM pseudo-op). The .XSYM pseudo-ap must
before the .END pseudo-op to be effective .

symbol
by- the
appear

The .Z80 pseudo-op is used to disable the effect of a
previous .18080 pieudo-op. This inhibits the Z warning
message on machine operations unique to the zao.

TDL Z80 Relocating/Linking Assembler User's Manual Page 56
Appendix B: Summary of Pseudo-operat"ion Mnemonics

... "Mo

. .~

.IFx arg, [true text] ... {[false text]}

The • IFx pseudo-op will as'semble the true text
s-pecified only if .the particular condition being tested
for is true, The optional false text is assembled if
the condition is false. The .IFx pseudo-ops and their
conditions are as follows:

.IFl: assembling pass 1

.IF2: not assembling pass 1

.IfS: blank

.IFDEF: defined

.IFDIF: different

.IFE: zero or blank

.IFG: positive

.IfGE: zero or positive

.IfIDN: identical

.IFL: negative

.IFLE: zero or negative

.IFN: not zero

.IFNB: not blank

.IFNDEF: not defined

., .'

TDL Z80 Relocating/Linking Assembler User's Manual Page Si
Appendix C: Operation of the Assembler with a TDL Monitor

• • '!\II

. Append ix C'~

Operation of the Assembler ~ith a TDL Monitor

The TDL Z80 Relocating Assembler is designed to operate
with a TDL System Monitor. It relies upon the Monitor for
all I/O and memory management _functions. (For further
information on the TDL Monitors~ consult the appropriate
monitor reference manual.) When operating, the assembler
will use all available memory for its various tables (all
memory between the end of the assembler and the highest
available memory location). No memory location below the
assembler is changed by its operation.

The first step in using the assembler is to load it into '
the desired memory location using:the monitor "R" command.
After the load has been completed~ if the monitor is not
located at the standard memory address (FOOO hex), it will
be necessary to change the assembler's monitor transfer
vector to point to the monitor. This transfer vector
consists of nine (9) JMP instructions located beginning at
relative address six (6 hex) in the program. The addresses
of these instructions should be modified to point to the
correct locations.

After the assembler is loaded and ready to operate, the
appropriate monitor commands should'be used to designate the
reader, punch, and list devices'as desired. The console
device is also used during the asse~bly. After readying the
source program in the reader, a "Gil command should be used
to start the assembler.

It is important to note thai, the assembler requires a
"controlled" reader device (a' device which provides
characters on demand, at whatever rate the program wants
them). In the same manner in which the assembler "waits"
for the next character from the reader, the reader must be
capable of "waiting" for the next·.demand from the assembler.
(For further information on converting a non-controlled
reader to a controlled one, see one of the TDL System
Monitor re~erence manuals.)

When first started (and wh~pever an assembly pas~ is
completed), the assembler asks "PASS=" on the console.
Valid responses to this are only the numbers from 0 to 8. A
response of 0 will return to the monitor, but in a manner
which will allow resumption of the assembly by reentering
the "Gil command.· The val ues 1. through 4 signify wh ich
assembler pass is desired, as follows:

1 signifies the first assembly pass. The source is read,
and all necessary tables are built.,

TDL Z8D Relocating/Linking Assembl~r User's Manual Page 58
Appendix C: Operation of the Assembler with a TDL Monitor

2 signifies the listing only pass. The source is re-read,
and a listing of the assembled program is produced on
the list device.

. .
3 signifies the punch only pass. The source is re-read,

and an object tape of the assembled program is produced
on the punch device.

4 signifies the combination of 'passes 2 and 3.

The values of 5 through 8 provide the same options as 1
through 4, but do not reinitialize the assembler in any way
before proceeding. This allows the assembly of a program
residing on more than one source tape. Each of the pi~ces
must, however, be terminated by its own .END pseudo-oPe

During the first assembly pass (pass 1), it is possible
that some error messages will be ,optput on the list device.
These errors will be those uniquely determined during the
pass.

During the punch only pass (pass 3), no error messages
will be listed, but an errors indication will be given on
the console at the end of the assembly.

While an assembly is taking place, a number of console
control options are available. A control-C will always trap
back to the monitor after the completion of the current
statement. The assembly may be resumed (if no registers
have been changed) by using the monitor "G" command. A
control-C will, however, result in monitor output on the
console device, which could spoil a listing if the console
is the list device. To avoid this, the use of a control-S
will temporarily halt the assembly (e.g. to put more paper
in the teletype), but will not· return to the monitor or
cause any spurious output on the console device. A
control-Q will resume the assembly. If a control-C is
entered after the control-S, a trap to the monitor will
occur as above. In addition, a.~ontrol-T may be used t6
stop the assembly at the top of the next output page of the
listing. When the control-T is entered on the keyb.oard,
nothing will happen until the top-of-page is reached, at
which time the assembler will act as if a control-S had been
entered (see above). All of the above features will,
however, be disabled if the reader device is specified as
the Teletype.

When starting a listing pass, the paper in the list
device should be positioned at th~ top line of a page. The
assembler will count lines and put a page number and heading
at the top of every page. The page width is determined by
the assigned list device. If the list device is the
teletype (AL=T), then the page is assumed to be 72
characters wide. If not, then 'it is assumed to be 80
characters wide. In either case, it is assumed to be 66
lines long, and a two line margin, is left at the top and t~e

TDL Z80 Relocating/Linking Assembler·.~ser's Manual Page 59
Appendix D: Error Codes

"

.. ' .~

bottom of the page.

. .

.,,t

TDL Z80 Relocating/Linking Assembler User's Manual Page 60
Appendix D: Error Codes ..

.. ' .~

Appendix D

Error Codes

..
Errors in the source program encountered during the

assembly process are indicated on the listing by a single
letter code at the left of the statement in error. Although
the assembler may detect more than ,two errors per statement,
only the first two codes are given. As an added aid to
locating the error in the statement, a question mark is
printed to the right of the character which triggered the
error. All errors generate a question mark, even if they
are not one of the first two per statement.

The following is a list of the error codes and their
meanings:

A Argument error. This is a broad~class of errors which
may be caused by many different ihings.

B

D

Bad macro error. Either an error
or a calion a bad macro.

Duplicate symbol reference error.
multiply-defined. The first value
is used in the assembly.

in a macro definition

The symbol flagged is
given to the symbol

E External symbol error. An external symbol is improperly
used in the statement.

I Internal symbol error. An internal symbol is improperly
used in the statement.

L Label error. An invalid character has been found in the
label field of the statement.

M Multiply-defined symbol error. A symbol is defined more
than once. This error is given mostly during Pass 1.
During the other passes, it usually will appear as a
phase error (P).

o Operation error. The symbol in the operation field is
not a valid m~chine operation code, macro name, or
symbol.

P Phase error. A label is assigneq a value during Pass 2
(or 3 or 4) which is different than that assigned during
Pass 1.

Q Questionable error. This is
which the assembler gives

a broad' class of warnings
when it finds ambig~ous

TDL Z80 Relocating/Linking Assembl~r User's Manual Page 61
Appendix D: Error Codes

statements. Q errors
code. The assembler
programmer intended.

.. ' .~

mayor may not
will a~tempt

generate correct
to do what the

R Relocation error. A relocatable symbol or expression is
incorrectly used (eg. in a .ELKE pseudo-op).

T Table overflow. One of the hssembler's internal tables
has overflowed. The Assembler will attempt to continue,
but no new labels or macros will be defined.

U Undefined label/symbol error. A symbolic reference
which was never defined is us~d in the statement .

x . Index error. Another character appears in
at a point where only an index register
allowed (X or Y).

a statement
reference is

Z Z80 error. A Z80 machine operation has been encountered
while in 8080 mode (.18080) •. This is only a warning and
the opcode will be properly assembled.

* User defined macro error. A
encountered.

.ERROR pseudo-op was

TDL Z80 Relocating/Linking Assembler User's Manual Page 62
Appendix E:Object Tape Formats

.. ' ...

Appendix E"

Object Tape Formats

The TDL Assembler produces two different object tape formats
depending on the use of the .PASS_and the .PREL pseudo-ops.
It also punches the two formats two different ways, binary
(.PSIN) and ASCII (.PHEX). Each of the two formats will be
described separately, and where, differences between binary
and ASCII exist, they will be ,noted. In addition, the
.XLINK option allows the suppression of some of the
information in the relocatable format to allow the direct
production of a relocatable core image module instead of a
relocatable object module.

TDL Object Module Format Definition

The use of the .PREL pseudo-op (which is default if neither
is specified) causes the generation of the TDL Object Module
Format. This format allows for simple relocation of
complete programs by the TDL System Monitors, and for
complex relocation and linking of ~~dules by the TDL Linkage
Editor.

The default object module format is an extension of the
INTEL "hex file" format, but is not compatible with that
format. The module consists of a ,sequential file of ASCII
characters representing the binary'data, symbol, and control
information required to construct a final program from the
module. All binary bytes within this structure are
represented as two ASCII characters corresponding to the
hexadecimal value of the byte (e.g. 11001001 -) C9}. All
ASCII values are represented by the corresponding ASCII
character (e.g. A -) A). In the binary punch mode,- the
format is basically the same, but all binary bytes are
represented by themselves, not as~wo ASCII characters.

Each of the different records within
by the use of a prompt character as
the record (in the INTEL format,
valid prompt characters are:

the module is indicated
the first character of

this is the ":"). The

-) module identification record
@ -) entry point record

• -) internal symbol record
\ -) external symbol/relocation base record
& -) symbol table record

-) data/program/end-of-file ,record

TDL zao Relocating/Linking Assemble; User's Manual Page 63
Appendix E: Object Tape Formats

(Note that only the records prompted by a
the .XLINK mode is in effect.)

are output if

Every record in the module is terminated by a one byte
binary checksum of all of the preceeding bytes in the record
except for the prompt character. The checksum is the two's
complement of the sum of the preceeding bytes. Any output
format (two character binary, on~ character ASCII or one
byte binary) still counts as only one byte in the checksum
(i.e. before conversion for output).

In addition, each record in the ASCII punch mode is
preceeded by a carriage return/line feed sequence to
facilitate listing the module on an external device. It is
not present in the binary punch mode.

The following descriptions are specified assuming ASCII
punch mode. With the above noted "exception of the carriage
return/line feed preceeding each record, the binary format
is identical, with each binary byte being left unexpanded.
ASCII characters are left as they are in either mode.

Module Identification Record (!)

Byte 1-2
3
4-9
10-11

CR/LF
Exclamation ?oint (!) prompt.
ASCII module name.
Checksum.

Entry Point Record (@)

Byte 1-2
3
4-5
6-??

??

CR/LF
At-sign (@) prompt.
Number of entry points in this record.
ASCII names of entry points, 6 bytes per name.
The names are left ju§tified and blank filled,.
Checksum

Internal Symbol Record (#)

Byte 1-2
3
4-5
6-11

12-13

CR/LF
Pound sign (#) prompt.
Number of internal symbols in this record.
ASCII name of internal symbol, left justified
and blank filled.
Relocation base for syrr.bol. The value of this

TDL Z80 Relocating/Linking Assemble~ User's Manual Page 64
Appendix E: Object Tape Formats '

.. ' .~

symbol is relative to the relocation base
specified.

14-17 Symbol value (16 bit).
The above three fields. are repeated for each
internal symbol in the record.

?? Checksum.

External Symbol/Relocation Base Re~ord (\)

Byte 1-2
3
4-5

6-11

12-13

14-17

??

CR/LF
Back-slash ,\) prompt:
Number of external/relocation symbols in this
record.
ASCII name of the symbol, left justified and
blank filled.
Relocation number assigned to this symbol in
this module. This number is unique for each
symbol. It starts with one and increases
sequentially for each subsequent
external/relocation base symbol.
Relocation segment size/external reference flag.
If this value is zero, it represents a reference
to a symbol defined externally to this module
(usually a subroutine or global data item). If
it is non-zero, then'the value is the size of
the relocation segment as defined in this object
module. This segment can contain either code or
data, and may be located anywhere in memory by
the linkage editor, independent of any other
segment.
The above three fields are repeated for each
symbol contained in this record.
Checksum.

Symbol Table Record (&)

Byte 1-2
3
4-??

CR/LF
Ampersand (&) prompt.
The remainder of this record is identical to the
internal symbol record. All symbols defined in
this module are contaiDed in these records.

Data/Program Record (;)

Byte 1-2
3

CR/LF
Semicolon (;) prompt

TDL zao Relocating/Linking Assembler User's Manual Page 66
Appendix E: Object Tape Formats :

10-11

12-13

specified
optionally
and may be
Relocation
.XLINK mode
Checksum.

.. ' '.
relocation b~se.
generated by. the
zero.

This address is
l~nguage processor,

base for starting
may be only'O or 1.)

address. (In

INTEL Object Format

The use of the .PASS pseudo-op causes anJNTEL "hex" object
module to be produced. This object tape can also be loaded
by the TDL System Monitors, but provides no relocatability.

All of the above comments concerning byte formats and
checksums apply to this format as well.

Byte 1-2
3
4-5

6-9
10-11
12-77
17

CR/LF
Colon (:) prompt.
Number of binary data bytes in this record. The
maximum number is 32 binary bytes (64 bytes of
ASCII representation). If this value is zero,
this record is an end-of-file record, and the
load address is the program starting address.
Load address of the data' in this record.
Unused.
Data bytes.
Checksum.

TDL Z80 Relocating/Linking Assembler User's Manual Page 68
Appendix G: Assembler Operation wit"h CP/M

.. ' . ..,

..
Appendix G

Assembler Operation' with CP/M
:.

The TDL Z80 Relocating/Linking Assembler is initiated by
the CP/M command:

ASM {sd:}file{.ext} {dd:} {switches}.

where

sd is the optional CP/M disk specification for the
source file (defaults to the logged in disk)

file is the source file name
ext is the optional source file extension (defaults to

ASM)
dd is the optional CP/M disk specification for the

output files (defaults to the same as the source
file)

switches are the optional assembly control switches,
each of which is a single letter and which may
appear in "any order (with no intervening spaces)

The object file created by the
name as the source file, with
.PASS option was used, and .REL
(the default).

Switches

A • LALL

assembly will have the same
an extension of .HEX if the
if the .PREL option was used

B listing to both disk and list device
C . LCTL
D listing to disk (file name same as source with extension

of PRN)
H .PHEX (CP/M default is .PSIN)
I . LIMAGE
K .XLINK (CP/M default is .LINK)
L listing only - no object file~generated

.0 object only - no listing generated
P • PSYM
S .SALL
X .XLIST
Y .XSYM

Note that all switches with pseudo-op equivalents will be
overridden by contrary pseudo-ops within the source program.

•

TDL Z80 Relocating/Linking Assembler User's Manual Page 69
Appendix G: Assembler Operation with CP/M

.. ' .;.

'Assembly Time Control .~

All of the assembly time contr,:ol options (ctl-C, ctl-S,
ctl-T) and page width options described in App~ndix C also
apply to the CP/M based version.'

.....

