THE ZAPPLE MONITOR

A. INTRODUCTION

This monitor system is a result of many years of work
by many people. It was first wused on an 8008 system
(Intellec 8 by Intel), and then later modified for the 8080.
Although the actual <c¢ode has been creatly modified, the
basic concept has been retained in this Z-80 implementation.

There are many approaches that can and have been used
regarding a "“SYSTEM MONITOR". The one that is used here 1is
orobably the most desirable for either the industrial or the
hobbyist/experimenter environment. This monitor may he
classified as a “DEBUG" monitor. That is, it contains all
the needed tools to fully debug both hardware & software, as
well as supvort the I/0 used by the system or transient USER
programs. It should be painfully obvious to anyone that has
watched this field grow that each person has his own idea as
to what he wants (or can afford) for his Input/Output
devices. This makes exchanging software extremely
difficult, and takes some of the fun out of it. TDL's
ZAPPLE monitor may help solve this problem. All of our
resident software contains NO I/0 routines whatsoever! What
we are suggesting 1s that since evervone's I/0 is different,
let’'s make the avplications software "I/0 INDEPENDENT", and
then suoply a universal monitor system that each person can
CUSTOM-FIT to his own wvarticular needs. As long as the I/0
VECTORS are honored, then a BASIC or & FORTRAN or a TEXT
EDITOR (etc.) program does not have to be concerned whether
you have a parallel input keyboard & video disvlay or a
model 33.

The ZAPPLE system monitor ©oprogram may be called a
"CHARACTER ORIENTED" system. This means that there are no
buffers needed to buffer keyboard input, or hold data
waiting for output. It handles all I/0 through vectors at
the beginninag of the program. It also contains features that
have come about as the need for them was felt during it's
use by the author. This monitor will come to be the most
important piece of software in your system.

The Zavple Monitor occupies 2K of memory, 1is
relocatable, expandable, and RCMable.

The expandability feature is of tremendous user
importance as it allows the user to attach his own
additional monitor routines at the end of the monitor. Such
routines often include I/0 drivers. Tvpical additions miaht
be a VDM driver routine or cassette driver routine. Specific
routines will be published in the TDL User's aqroup
newsletter from time to time.

The monitor also includes many useful subroutines that
mav be used by wuser written orograms (see the Assembly
listing).

Page 2

B. LOADING PROCEDURE

All TDL software is relocatable. That 1is, it may be
loaded and run from any address the user chooses, providing
only that sufficient memory space above the starting address
is provided. Loadina of all this software is accomplished
via the Monitor. The monitor however reguires a bitswitched
loader for its loading.

If you now have the 1-K ZAP monitor in runnina in your
system, it is a simple matter to load the 2-K ZAPPLE. Set
the tape up on the reader AFTER the binary boot-strap, and
type: R,F000(cr), and start the reader. If ZAP 1is now
located at OF000H, vou mzy 1lcad a temporary copy at some
other location, and then load ZAPPLE up at 0F000H. Remember,
this is the location that future software expects to find
the monitor. (althouagh it may be located elsewhere, and the
I1/0 vectors modified in any future software accordingly.)

ZAPPLE will 1initially be set up for the o0ld MITS
standard, I.E.:

DEVICE STATUS DATA TEST BIT
MAIN CONSOLE O 1 0=RDA, TBE=7
CRT 4 5 SAME
CASSETTE 6 7 SAME

The test bits are active low. I.E.

Receiver Data Available (RDA)= 0 (there is data)
Transmitter Buffer Empty (TBE)= 0 (You may load the buffer.)

Once the proaram has been loaded, the user is free to
modify any of the drivers, using the software listings
included with the Monitor documentation. This will be
adeaguate as all current and future programs reference the
monitor system for its I/0 handlina. This establishes a
large degree of hardware independence for the aovlications
software.

To initially 1load the monitor, a small “bootstran”
proaram 1s recuired. This program may use any I1/0 port, with
any "Data Available" test bit, and may have any polaritv.
Once 1loaded, 1if standards other than the ©previously
mentioned ones were used, bit-switching will be needed to at
least bring up the main console device. Once this is done,
the monitor itself mway be used to modify the other I1I/0
drivers.

Since the Zapple Monitor is relocatable, it 1is
necessary to tell the loader where it is to be loaded. This
1s done by setting the SENSE switches to the startina PAGE
desired. For examole, to load the monitor to run at OFO000H,
set the sense switches to 11110000. It is recommended that
the monitor be loaded 1in the highest available location in
memory, so that both the monitor and its stack area be “out

Page 3

of the way" of your other software. Additionally, it is wise
to leave some blank memory above the monitor so that your
own user routines may be added on. For our in-house systems
we typically ‘load the monitor in one 4K board, addressed
from FO0O to FFFF. Thus, the monitor will be addressed from
F000 to F7FF, leavina F800 to FFFF available for additional
I/0 drivers.

It should be noted that the monitor does NOT recuire
contiguous memory below it. It will function ecually well
with itself located at FO000 and the remainder of your RAM
from 0 to 1FFF for example.

TDL software is sent out assuming the monitor resides
at FOOO (hex) or 360:000 (crazy octal) or 170000 (octal) or
61470 (decimal). If this address is either not possible or
inconvenient, you may subtract the size of the monitor (800
hex) from the top address available. For example, 1if you
have a 12K system, and you wish to put the monitor in at
10K, then you would subtract 800 hex from 3000 hex. This
means settina the sense switches at 28 Hex.

The LOADER for ZAPPLE has been modified from the one
used with the ZAP monitor. It is now easier to set-up for
almost any type of device that may be used to read paver
tave. The followinag is the minimum procedure recquired:

1. Load the following bcootstrao program in at address Q.

(This boot program would be used with the old MITS I/0
standards. Examples of this and other possible boot loaders
are contained in appendix A.)

addr 61 2 3 4 5 6 7 8 9 & B C D E F

0000 C3 1A 00 00 00 00 00 00 00 00 0O 00 00 00 00 QO
0010 00 0O 00 00 00 00 0C 00 00 00 31 00 02 21 F3 01
0020 CD 2B 00 BD 28 FA 2D 77 20 F6 E9 DB 00 E6 01 20
0030 FA DB 01 C9

2. Set the sense switches to the page address where you
wish the Monitor to reside.

3. Hit RESET on the processor.

4. Place the tape in the reader device.

5. Start the reader, and WHILE the 1initial pattern of
*1110011" is being read THEN:

6. Hit RUN on the processor.
After the proaram loads, at the end of the tape it will

“sian on" to the console device. 1If you are usina
non-standard I/0, (that 1is, not as ver the standard already

Fage 4

stated) it will be sitting in a loop, attempting to sign on.
At this time, stop the processor, and modify the routines to
handle your own I/0 set-up.

This short vprogram actually 1loads a larger, more
sovhisticated loader which actually performs the relocating.
It is also a checksumed loader. If while loading a checksum
error is detected, the Programmed Output lights on an IMSAI
will all flash at a rate of about 1 HZ. The machine may be
stoooed and the tave backed up tc an area before the error
was detected, (2-3 feet) and the machine reset and started
from zero. If you do this, do not change the sense switches.

The relocatinag checksumed loader listing is given later
in this manual. It 1is similar to the “R" command 1in the
monitor, the primary difference bteing that the loader at the
beginning of the tape gets 1its address reference from the
sense switches. That of +the Monitor itself gets the data
from the overator console.

Paae 5

COMMANDS

The following is a 1list of commands for the Zavpvle

Monitor. Precise definitions and usage notes are covered 1in
the next section.

mam™mmy O w

o

woO0Y oz X R

ASSIGN reader, opunch, console or 1list device options
from the console.

BYE (system shut down).

COMPARE the contents of memory with the reader inout and
display anv differences.

DISPLAY the contents of any defined memory area in Hex.
END OF FILE statement generator.

FILL any defined area of memory with a constant.

GOTO an address and execute. With breakpointina.

HEX MATH. Gives the sum and difference of two Hex
numbers.

USER DEFINED.

JUSTIFY MEMORY - a non-destructive test for hard memory
failures.

USER DEFINED.

LOAD a binary file.

MOVE a defined memory area to another starting address.
NULLS to the punch device.

USER DEFINED.

PUT ASCII characters into memory from the keyboard.

QUERY I/O vorts - may output or input any value to or
from any I/0 port.
READ a Hex file. Performs checksum, relocating,

offsetting, etc.

SUBSTITUTE and/or examine any value at any address (in
hex) .

TYPEs the contents of a defined memory block in their
ASCII ecuivalent.

UNLOAD a2 binary tave to the punch device.

VERIFY the contents of a defined memory block against
that of another block and disvplay the differences.

WRITE a checksummed hex file to the punch device.
eXAMINE and/or modify any or all reagisters including the
special Z2-80 registers.

“Yis there". Search memory for defined byte strings and
display all the addresses where they are found.

"Z end". Locate and display the highest address in
memory.

Page 6

D. COMMAND SET USAGE

The following section lists the commands, and describes
their format and their wuse. It should be noted that the
Zapple Monitor recognizes both upper and lower case letters
for its commands, and that in general, a command which is
printing can be stoooved with a CONTROL C, which is checked
during a carriadge return - line feed seaguence. The following
EXAMPLES show a comma {[,] as a delimiter between parameters,
however a space may also be used. If an error is made while
inputting a commend from the keyboard, it may be terminated
by a rubout and the command re-tyved. An asterisk 1is
displayed indicating an ABORT of some kind.

COMMAND DESCRIPTION

A ASSIGNMENT OF 1/0 DEVICES: The monitor system 1is
cavable of supporting up to 4 logical devices, these
being: The CONSOLE, The READER, the PUNCH, and the
LIST DEVICE. To these may be connected 4 different
actual I/0 devices, for a total of 16 direct
combinations of I/0 device and function. The
specific permutations are:

LOGICAL DEVICE ASSIGNED DEVICES
CONSOLE TTY

CRT

BATCH

USER {(user defined)

READER TTY
CASSETTE
PAPER
(HIGH SPEED READER
user written)
USER (user defined)

PUNCH TTY
CASSETTE
PAPER
(HIGH SPEED PUNCH
user written)
USER (user defined)

LIST DEVICE TTY
CRT
LINE PRINTER (user written)
USER (user defined)

The default mode for each 1logical device is
always the teleprinter.

Assignments are made using the followina
format:

Page 7

EXAMPLE: AC=C(cr)

assigns the console egual to the Crt (video
terminal) device. similarly:

EXAMPLE: AR=T (cr)
assigns the reader device to be the teleprinter.

While performing a command which recguires a
reader input (C,L,R), if the assigned reader is the
Teleprinter, the software will 1look for a character
from the TTY input. If a character 1is not recieved
within a few seconds, it will ABORT, vrinting an
asterisk [*], and return to the commend mode.
Similarly, if the assigned reader is the Cassette
device, and vyou WISH to abort for some reason,
changing the position of any of the SENSE switches
will force an ABORT. On the external reader
routines, returning with the carry set indicates an
abort (or OUT OF DATA) condition.

When assigning a device, only the first letter
initial of its name is reguired.

The Monitor itself 1is set-up to support the
TTY, CRT and Cassette routines. The other
assionments reguire the addition of user's routines.
These are addressed via the commands, which vector
to startinag addresses.

EXAMPLE: AL=L (cr)

assians the list device to be the 1line printer. It
vectors to (start address) +812H, or 12H above the
end of the wonitor. That would be the address for
the line printer routine. For details of these
arrangements, see the Source Documentation.

Within the above, the assign <console ecguals
batch "AC=B(cr)" deserves further mention. In BATCH
mode, the READER is made the Kevboard inout, and the
LIST DEVICE is made the console ocutput. This allows
the running of a job directly from the reader input,
with the result beina output to the list device.

A typical use of this assignment would be the
reconstruction of a lenathly text editina job where
the text and vyour editing commends have all been
saved on paper tame. With the BATCH MODE, vou may
assign the reader equals the TTY, the List device
equals the TTY, and Console eauals BATCH. Running
the tape throuch the reader 1s the same as vou
redoina the entire text editing by hand, and the
output will go to the TTY and be orinted. On a very
lengthly job, you could even stert the pbrocess, and

go away until it's done. Its usefullness is limited
only by your imaaination.

Page 8

BYE. This command completly shuts down the
system. It 1is useful where <children wmight have
access to the system, where a telephone
communications 1link is established wunder remote
control, or anytime when the operator wishes to make
the system inaccessible to unauthorized use.

EXAMPLE: B

completly kills the keyboard. Recovery from the
shut-down is accomplished simply by inputting a

CONTROL-SHIFT N from the keyboard. (ASCII
eguivalent 1is a Record Separator - “"RS"; HEX
character is a 1EH.) The monitor will sign on and
print a greater-than sian (>), however the reagister

storage area will not be cleared.

COMPARE the reader input with memory. This
command 1is wuseful for verifyving <correct loads,
verifying that a dumped tape matches with its source
etc.

EXAMPLE: Cl1000, 2000 (cr,start reader)

compares the memory block 1000H to 2000H with the
inout from the reader device.

For those with automatic readers, the overation
is very simple. Assian the Reader ecqual to the
device you wish to enter the data against, tvype
C(starting address), (ending address) (cr), and the
reader will start. The first character read by the
reader will be the one matched with the startina
address. If any discrepencies are encountered, the
reader will stop, and the address (in hex) of the
error will be ©orinted on the disvlay. The reader
will restart, and continue in this fashion until the
entire tape is compared.

If your reader cannot operate automatically, start
the reader manually. If an error 1is encountered,
however, while the incorrect address 1s beina
printed, the reader will continue, and get "out of
sync" with the comwmare action. Therefore, it is
necessary to manually stop the reader if an error is
encountered, and manually revcosition the tape to the
byte following the error. (An excellent article on
how to convert ASR33 type readers to automatic
overation was recently vpresented in INTERFACE
magazine.)

DISPLAY memory contents. This command displavs
the contents of memory in Hex. Memory is displayed

Paace 9

16 bytes per line, with the startina address of the
line given as the first piece of data on the line.

EXAMPLE: D100, 1FF (cr)

will display in hex the values contained 1in the
memory block 100H to 1FFH.

END OF FILE. This command generates the end of
file pattern for the checksum loader. It 1s used
after punching a block of memory to the punch device
usina the "W" command. An address parameter for the
end of file may be given 1if so desired.

EXAMPLE: E(cr)
will generate an "end of file marker".
EXAMPLE: E100 (cr)

generates the EOF marker with the address parameter
“100H". When loading =such a file, upon completion,
the address contained in the End of File will be
placed in the "P" register. Execution of the program
may then be initiated by typing "G(cr)".

FILL command. This command fills a block of
memory with a specific value. It is quite handy for
initializinag a block to a specific value (such as
for tests, zeroing memory when starting up, etc.)
*NOTE: Avoid doing this over the monitor's stack
area. This area may be determined as being between
the value vou get when typing the 2 command, and the
value in the S register upon sign-on. It is
aporoximately 60H Dbytes below the "Torp of memory"”
(Z) .

The format for the command is:
EXAMPLE: F100, 1FF,FF
fills memory block 100H to 1FFH with the value FFH.

GOTO command. This command allows the user to
cause the processor to GOTO an address and execute
the orogram from that address. In the actual
verforming of the G command, a vroaram, which has
been placed in the stack area during the sian=-on of
the monitor, 1is executed. This proaram will first
take all of the values 1in the reaister storage area
{displayed with the X command), and stuff them in

their correct registers in the CPU, and finally JMP
to the ©oproaram address beina reguested by the

Page 10

overator. If this short program up in the stack has
been destroyed (as a result of a "blow-un", or the F
or M commands, etc.) the monitor will not be able to
GO anywhere, and a manual restart of the monitor
will be reauired. Whenever the monitor is restarted
at the initialization point (first address I.E.
QF000H), the contents of the registers are set to
ZERO with the exception of the S (stack), which
contains a valid stack address. This actual value
devends on the amount of memory in the system, etc.
In its simplest form, the letter "G" accompanied by
a parameter causes the ©vrocessor to 9o to that
address and start execution.

EXAMPLE G1000

would cause the processor to goto address 1000 (H)
and execute from that address.

Additionally, one or two breakooints may be set.
EXAMPLE: G1000,1005,1010

would cause the ©oprogram to start execution at
address 1000H, and 1IN THE EVENT that the proaram
gets to address 1005, OR 1010, the proaram will stoo
execution, and return to the monitor, vprinting an
"at" sign, and the address of the breakpoint that
was executed. (I.E. @1010) It then prints the "“>"
prompt, awaiting further instructions. This action
also cancels any breakpoints previously set,.

Breakpoints must be set at locations containing an
instruction byte. This 1s a SOFTWARE breakpoint
system, and reguires either RAM at RST 7 {(restart 7,
addr. 0038H), or if using ROM, a permanent JMP to
the monitor TRAP address (OFO01EH) at 0038H.
Remember, this is a SOFTWARE breakpoint system, and
the program being debugged must be in non-protected
Read/Write memory.

EXAMPLE: *C2 JNZ 1234H
34
12
*3E MVI A,CR
0D
*21 LXI H,1000H
00
10
*77 MOV M,A
*23 INX H
*CD CALL 5678H
78
56

The asterisks (*) mark the bytes that may be used as
breakpoints.

Page 11

HEX MATH. This command allows the execution of
hexidecimal arithmetic directly from the console. it
will aive the sum and difference of any two hex
numbers entered.

EXAMPLE: H1000,1010(cr)
2010 FFFO
>

20108 being the sum, and FFF0 being the difference
of the two hex values.

The J command is a non-destructive memory test.
The command reads any dgiven byte, complements it,
writes into the location the complement, compares
the complement with the accumulator, and rewrites
the original byte into the location. The command 1is
used with two parameters, delineating the block of
memory to be checked.

EXAMPLE: J1000, LFFF

would verform the above test on the block 1000H to
1FFFH.

If errors are detected, the address at which the
error is found and the error are displayed on the
console before the test is continued.

EXAMPLE: J1000,1FFF (cr)
1700 000601000
>

would indicate that the 4th bit (D3) at location
1F00H did not correctly complement itself.

This test is useful for the discovery of hard memory
failures, and also serves as a aquick check for
accidentally protected memory. A fully protected
memory block would oprint out as entirely "ls".
{11111111)

LOAD BINARY FILE. This command loads a binary
file from either a cassette or paper tape.

EXAMPLE: L1000 (cr)

would load the tave at address 1000H. This would
require that the program be an absolute proaram,
desianed for address 1000H. The start-of-file mark
(automatically generated by the "U" command) 1is a
series of 8 OFFH's (rubouts). When this is detected
at the start of file, the bell will ring on the TTY
to indicate the start of the load process. When the
end-of-file 1is detected (again, a series of 8
rubouts) the load is terminated, and the address of

Page 12

the NEXT location that would have been loaded is
printed on the console. There are two constraints on
this type of file system. The middle of the proaram
cannot contain more than 6 0FF's (11111111) in a row
(an unusual occurence), and if OFFH is the LAST data
byte in the file, it will be ignored. This too is
unusual, and only a minor inconvenience.

Binary programs loaded at other than their design

address will not run. The "L" command does not
perform checksum functions, and cannot handle
relocatable files. This 1is a pure and simple

byte-for-byte binary loader (see "U" command).

MOVE COMMAND. This command 1is used to move a
block of memory from one 1location to another. The
original block 1is NOT affected by the move,
remaining intact so long as the block moved into
does not overlap with the block currently occupied.
This command, like the "F" command should be used
with some caution as moving a block into an area
occupied by the stack, or the program or the monitor
will cause unpredictable results.

EXAMPLE: M1000,1FFF, 2000 (cx)

moves the contents of memory contained in the block
1000H to 1FFFH to a starting address of 2000H. The
new block has the limits 2000H to Z2FFFH,

This command is very useful for working on programs
without destroving the original, verifying blocks of
memory loaded with existinag memory, etc.

NULL. This command ounches nulls to the punch
device. 72 nulls are opunched whenever the command is
used. It may be used revetitively for any desired
leader length.

EXAMPLE: (N)
*Note: The "“N" or “n" will NOT echo, so
as to not spoil the paper tape.

It will punch 72 nulls to the punch device.

PUT ASCII <characters into memory. This command
allows ASCII characters to be written directly into
memory. It is useful for ©wlacing labels in files
etc.

EXAMPLE: P1000 (cr)

activates the command, and any further inouts via
the keyboard would be placed into memory in their
ASCII eauivalent. The command 1is terminated by a
CONTROL D character, with the address of the

Page 13

location following the last entry printed on the
console (the Control-D is NOT stored). Recovery of
the input data is affected by use of the "T" or "U"
command.

QUERY INPUT/OUTPUT PORTS. This command allows
any value to be output to anv I/O port, and allows
the value in binary on any I/0 port to be read on
the console.

EXAMPLE: Q01,7 (cr)

would outout an ASCII "7" to I/0 PORT 1. (ASCII
seven is a "bell" so on a TTY, the bell would ring.)

EXAMPLE: QIl(cr) 00001101

inputs the value at port 1, in the illustration
above, we see that bits 0,2 and 3 are high, the
others low. This 1is useful for observina the
condition of status Dbits and other diagnostic
activities.

READ A CHECKSUMMED HEX FILE. This command reads
checksummed hex files 1in the INTEL format, as well
as beina cavable of 1loading the relocatable TDL
files at any selected address and bias offset. When
reading an ABSOLUTE file (INTEL format), there may
be only a BIAS added. These files cannot be
relocated. The format is:
R[bias], {relocation] (cr).

If a checksum error or a failure to write the data
to memorv occurs, the loading process is stopved, an
asterisk is printed (indicating some error
condition), and the address that was attempting to
be written will be displayed on the console device.
This is to assist in determining the failure.

EXAMPLE: R{(cr, start reader)

will load a hex file at its absolute address.
EXAMPLE: R,1000(cr,start reader)

will load a TDL relocatable hex file at address
1000H and modify the program to run at address
1000H.

EXAMPLE: R1000,100(cr,start reader)

loads the file set up to run at 100H, but with a

positive BIAS of 1000H added to it. Thus, the file,
set up to run at 100H will be loaded at 1100H.

Page 14

EXAMPLE: R1000 {cr)

will load the file, set up to run at address 0000H,
at address 1000. In other words, wusing the TDL
relocating format, vyou may 1load any proaram, to
execute anywhere in memory, anywhere in memory.
(Think about it.....)

SUBSTITUTE and examine. This command allows any
address in memory to be examined directly, and
allows substituion of one value for another at that
address if desired.

EXAMPLE: SF810(sp)00~(sp)1lA-(sp)C3~(sp) (cr)
>

In this case the "S" command examines address F810H.
The hitting of the svace bar (sp) displays the value
at that address. (assuming value O00H at that
address.) Hitting the space bar again disvlays the
NEXT location 1in memory (F811H), and so forth.
Simply tyoing S{(sv) starts display from address
0000H. By repetitive typing of {(sp), all of memory
could be disvlayed one address at a time.

EXAMPLE: SF810(sv)00~-(kb)FF (cr)

This command examines address F810H, showing the
value 00H at that address. Immediately tyoing in FFH
from the keyboard SUBSTITUTES FFH for 00OH at that
address. Repeating the example above would show:

EXAMPLE: SF810 (sp)FF-

When an address is being examined, the addres< beina
examined may be moved BACKWARD by entering a
backarrow (ba) or SHIFT-0, or wunderline, depending
on the terminal used.

EXAMPLE: SF810 (sp) 00— (ba)AA-

shows that at address F80FH, the value AA exists.
Typing a svace bar will examine F810H again.

TYPE ASCII characters from memory. This command
allows the contents of memory to be disvlaved in
their ASCII ecuivalents. All non-printing characters
will be disvlayed as periods [.]. It is may used to
disovlay the results of the "“P" command which allows
kevboard entry of ASCII characters directly into
memory. Also useful for finding text strinags and
messages in software. The initial address is first
displayed, then the first 64 characters, the next
address, etc. until the uoper limit has been
reached.

o]
W
Q
[t]
—
wn

EXAMPLE: T71000,2000 (cr)

displays the ASCII eguivalents of memory locations
1000 to 2000H. If the "P" command had been used to
place a "message" into memory somewhere 1in that
memory block, it would soon be aprarent on the
console display.

UNLOAD BINARY. This command simply dumps core to
the punch device. It may be used with a cassette
system as well, with no start-up problems. It does
not generate a checksum. The format which is
generated will be a 1leader, eight O0FFHs, binary
data, eight Q0FFHs, and a trailer. The OFFHs are
"rubouts" and are called file cues. These are
detected and counted to determine the start and the
end of files.

EXAMPLE: U00,FF (cr,start reader)

will generate a binary tape, formated as described
above, of the values contained in memory locations
00H to FFH.

VERIFY. This command allows the user to verify
the contents of one memory block against the
contents of another memory block. This 1is very
useful for functions such as verifyina that a file
generated from a oprogram 1is a duplicate of the
actual program, etc.

EXAMPLE: v1000,2000,3000

will compare the contents of the memory block 1000H
to 2000H against the contents of the memory block
commencing at 3000H and extending to 4000H. Any
differences will be disvplaved.

EXAMPLE: v1000,2000,3000
100r 0G FF

indicates that the contents of address 100FH is a 00
while that at 300FH is an FF.

WRITE Hex file. This command dumps memory to the
punch device in the standard "Intel-style" hex file
format. Both start and end of file parameters are
reguired. The vprooer “end of file" (EQOF) is
generated by the "E" command.

EXAMPLE: WO0,FF(cr,start punch)
{(after punching)
E(cr)

Paae 16

will generate a checksummed hex file of the values
in the memory block 00H to FFH. 1If the assianed
punch and console are the same, the program will
pause and wait for the operator to turn on the punch
(ASR33, etc.). Use of the "N" command at either the
beginning and/or end of the file is optional, but
recommended.

eXAMINE REGISTERS. The "X" command allows the
user to examine and/or modify all of the 280
registers.

A=Accumulator
B,C,D,E,H,L=CPU REGISTERS
M=Memory (pointed to by H&L)
P=Program Counter (PC)
S=Stack Pointer (SP)
I=Interrupt Register

X=Index (IX)

Y=Index (1Y)

R=Refresh Register

EXAMPLE : X (cr)

displays the contents of MAIN registers
A,B,C,D,E,F,H,L,M,P,S and I, in hex.

EXAMPLE: X'(cr)

displays the contents of PRIME registers
A,B,C,D,E,F,H,L,M,X,Y and R.

Typing the letter "X" (or X'), followed by a
specific register letter will display the contents
of that register. Entering a new wvalue via the
keyboard (kb) will substitute the new wvalue in the
specific register. Hitting the space bar will
display the next register in which you may then
perform substitutions, etc. In the unigue case of
the "M" register, you may modify the 16 bit pointer
(H&L) to that memory location.

EXAMPLE: XA 00-(kb)FF (cr)
XA FF-{sp)00-(kb)FF (cr)
XA FF-(sp)FF-(cr)
>

first examines the contents of register "“a" (00H),
then substitutes an FF. In the next line, the FF is
displayed, a svace character displays the next
reagister (again a O00H), and substitutes an FF for
this value. The last line displays both registers as
containing FFHs.

SEARCH. This command allows unicue bvte strinas,
from one up to 255 bytes to be searched for in

Page 17

memory, and the addresses where they are found to be
displaved. It is advisable to search for unigue
patterns rather than single bytes. The search
overation may be stopped with a control-C.

EXAMPLE: YC3,21,F3,01(cr)
0081
00B2
0F08
>

indicates that the byte strina (in hex) C3, 21, F3,
01, is found in memory at locations 0081H, 00B2H and
OF08H. This routine will search all 65-K of memory
for a unicue secuence of Dbytes in 1less than one
second.

Z TOP OF MEMORY. This command locates and gives
the highest address of available memory in vour
system.

EXAMPLE: Z
TEFF
>

indicates that the highest available memory 1is at
address 7FFFH. Note that NO carriage return 1is
required. Also, If only one 1K board were 1in the
system, and it was adressed to have its top byte at
address 7FFFH, the 2 command would so indicate
regardless of the absence of lower memory.

