
4.6 Technico Super BASIC

4.6.1 Loading

Super BASIC is supplied in severa l forms - tap e , paper
tape, disk, etc. Instructio ns suppli ed with your object
program will· describe how to load Super BASIC.

4.6.2 Operation

To begin Super BASIC, branch to the start address using
the monitor's GO command. The start address is included
with the loading instructions. When you br a nch to Super
BASIC, it will print the version identific a tion and th e n
prompt for configuration parameters as follows:

FILES? enter the maximum number of I/O file
buffers required followed by a carriage return. A
typical response is two or three. If only a
carriage return is entered, BASIC will use the
default of two.

BUFFER SIZE? enter the maximum number of bytes
for each file buffer followe d by a carriage return.
BASIC will r ese rve this amoun t of RAM memo ry fo r
each file. A typical response is 132. If yo u SAVE
a program in source form, the buffer must be l a r ge
enough for the longest line of source text. If
not, an error is generated durin g the SAVE.
Th e re f o re , a r e s po n s e o f 1 e s s than 1 3 2 may 1 i mi t
th e SAVE command. If only a carriage return is
entered, BASIC will use the default buffer length
of 80.

SYMBOLS? enter the maximum number of variable
names your program will require followed by a
carriage return. BASIC will create a symbol table
of sufficient size to hold this number of symbols.
Each table entry is four bytes. A typical respons e
is 50. If only a · carriage return is en tered, BASIC
will use the default of 50.

Af t er you have e nter e d the con figuration info rm at ion ,
BASIC will print the BREAK message and then prompt for a
command by printing a decimal point. You are now in the
c om man d mo d e and yo u c an e i th er en t er · a p r o g r am o r
direct execution statement.

To restart Super BASIC without erasing the program in
memory, and retaining the c urrent configuration, you can
branch to the restart address.

BASIC - 1

-

To interrupt program execution, depress BREAK on the
terminal. After completing the current BASIC line,
BASIC will stop execution and print a prompt. To
restart execution, type a CONT command. If BASIC is
printing and you wish to BREAK, press and hold BREAK
until the printing stops . If your term i nal does not
have a BREAK, then put the system RAM switch in the RAM
position and reset the system. BASIC sets the restart
vector to simulate a break.

BAS IC - 2

....__.

4.6.3 Errors

During execution, BASIC may print an error message
indicating its displeasure. The line number of the
errant statement is also printed (RUN mode only).
Certain disk file errors, however, will return control
to the disk/tape handler (distinguished by the ">"
prompt). You can then execute any valid disk command
(e.g. CD,DF). To return control to BASIC just press
BREAK on the terminal or reset the system as described
in paragraph 4. 6. 2. The er ror numbers fo r the· BASIC
errors are described below.

00 Unrecognized lin e or a syntax error (improper line
construction).

01 Improper BASIC statement issued by the input
routine. Similar to error 00, except that the line
contains non BASIC characters.

02 Symbol table overflow - program has more variables
than than indicated during program start (see
paragraph 4.6.2).

03

04

Range of a number exceeds BASIC's capacity.

Illegal line number (e.g. 12345).
must be between 1 and 9999.

Line numbers

05 Illegal construction of a number (e.g. 1. 7. 2) •

06 Print Using Error A list of expressions was
encountered but no previous print specifications
(e.g. PRINT using "XYZ",A).

07 Print Using Error numeric specification but
string data (e • g • PR I NT Using " If 1111" , A$) •

08 Print Using Error - Ne ga tive number with "$" or "*"
format and no trailing "-".

09

10

Print
(e.g.

Using Error - number
124 with 1111) •

exceeds s pecification

Print Using
numeric dat a

.: r ror
(e_. g •

string specification,
PRINT Using "LLLL",

but
12).

11 Continue (CONT) not allowed at this point. If the
program was stopped by BREAK, entry of an indire c t
statement prevent s a futur e CONTinue.

12 Command Error. Illegal command or the command

BAS IC - 3

parameters are invalid.

13 Resequence Error text cannot be resequenced as
specified without creating invalid line numbers
(e.g., RESEQ 1000, 1000 for 300 lines of text).

14 Text Buffer full. A "CLEAR" will return all
available memory to text buffer . If the program
still overflows it is too large for the existing
memory.

15 Arithmetic overflow. Int eger exceeds two bytes or
floating point exponent too large or small.

16 Line number expected but not found.

17 Variable name expected but not found.

18 Trace parameter error.

19 Integer expected but not found.

20 Reference to undefined line number.

21 Improp er GOSUB/RETURN sequence.

22 Memory overflow during variable

23 Improper FOR/NEXT sequence.

24 Receptacle String
X$="TOOBIG")

too small

25 Receptacle list in error.

26 Data exhausted during READ.

(e.g.

allocation.

DIM X$(5):

32 Expression stack overflow - expression too complex.

33 Expression improperly formed.

34 Illegal operand mix (e.g., X MOD Y for X,Y single
precision).

35 Arithmetic overflow during expressio n evaluation.

36 Type error. An array expected but not found (e.g.,
1(3)), or a variable was referenced (e.g. PRINT I)
befor e it was assigned a value (e.g. 1=23).

37 String error.

BAS IC - 4

38 Allocation error during expression evaluation.
User space was exhausted.

39 Subscript error (e.g., A(-1,2)).

40 Function call error (e.g., SQR('X').

41 Illegal file number or device or the specified file
is already active.

42 File name improperly formed

43 Illegal device code

44 Disk handler error. This can be caused by SAVEing
a CHAIN file using a filename that is already on
the d i s k • C HA I N f i 1 es mus t b e u n i q u e f i 1 e s no t
already on the disk. Source files can duplicate
files on the disk in which case that file is
overwritten.

45 Chain error

46 Buff er overflow on output or input disk error

BASIC - 5

"'--··

4.6.4 Direct/Indirect Execution

If a BASIC statement is preceded by a line number it is
an indirect s tatment and is stored in the text buffer.
Any old lines with the same line numb e r will be erased.
For example:

100 PRINT 'THIS'

If not preceded by a line number it is called a direct
statement and is immediately executed. An exa mple of
direct execution is:

FOR I=l,10: PRINT I: NEXT

If any indirect stat ement is used after a BREAK, Super
BASIC will not allow a future CONTinue.

BAS IC - 6

4.6.5 EDIT COMMANDS

When Super BASIC is in the command mode you can enter
any of the followin g Edit commands (direct execute
statements) . Any word in all caps (e.g. DELETE) is
typed as a keyword. Words within <-> (e . g. <Ll>)
indicate the type of item requir e d at that point. Any
item within
omitted.

(-] (e.g. [<Ll>]) is optional and may be

DELETE<Ll>(,<L2>]

Delete lines <Ll> through <L2>, or just <Ll>, if
<L2> is not entered .

NULL<N>

Set the number of nulls (RUBOUTS) after a carriag e
return to <n>. If a source prog r am is to be saved
on paper tape, set <n> t o 10 or more . This command
allows a delay after carriage return which is
required by some terminals (e .g. TI700 series) .

WIDTH<N>

Set the terminal page width to <n> . <n> must be
between 40 and 132. During startup, BASIC will set
the width to the default va lue of 72.

AUTO[<Ll>[,<L2>]]

Initiate prompting with a line .number. <Ll> is th e
first line number used and <L2> is the increment
between lines. If <L l > is omitted, the p revious
<tl> parameter is u se d. I f th e re is no previous
<L l > paramter, 100 is u sed for <Ll> . If <L2> is
omitted, the pr evio us <L2> paramter is us e d. If
th ere is no previous <L2> paramter , then 10 is used
for <L2>. To exit the AUTO line number mode, type
a carriage return immedia tel y following the line
number prompt. This command removes the b ur den of
entering line numbers durin g prog r am en try thus
speedin g the entry time .

RENAME<Vl > , <V2>

Replace all occurrences of variable nam e <Vl> with
variable name <V2> . If th e program is now LISTed ,
you will see that all occurrences of <Vl> are
listed as <V2> .

BAS IC - 7

'-·

NEW

CLEAR

Clear the text and variable buffer and prepare for
a new program.

Clear all variable or array definitions, but leave
the text buffer undisturbed.

RUN [<L l>]

Begin program execution at the specified line or at
the beginning of the program if no line is
specified. BASIC will CLEAR before beginning.

SAVE<FILE> [,CHAIN) [<,device >)

Store the current program in the text buffer on the
specified device. If CHAIN is specified the
program is stored in absolute. Refer to the
description of CHAIN for more d e tails. The <file>
must be a s trin g representation of a valid disk
file (e.g. "XYZ", "ABC.SRC /2 "). If the file is on
the disk already (non CHAIN mode) it will be
rewritten or an e rror message issued (CHAIN mode).
If not already on the disk, a n ew fil e is
allocated. The <device> is an integer which
specifies the save device (O=disk, l=tape). The
<device> can be ommitted in which case <device>=O.

LOAD<file> [,CHAIN) [,<device>)

Load the program <file> into memory. If it was
saved in CHAIN mode, CHAIN must be specified.
Refer to the description of CHAIN for more
information regarding CHAIN files. <device> is as
defined above. A non chain or source LOAD will not
er as e the program in memory • Th is feat u r e can b e
used to merge to programs together. For example,
the followin g sequence merges the pro g rams on files
"PRGl" and PRG2" and saves the r esulting prog ram on
file "PRG3". Note that the text was reseque nced to
insure that the pro gram line numbers did not
overlap.

BASIC - 8

.NEW

.LOAD "PRGl"
.RESEQ 1000, 10
.SAVE "PRGl"
.NEW
.LOAD "PRG2"
.RESEQ 2000, 10
.LOAD "PRGl"
.SAVE "PRG3"

LIST[<Ll>[,<L2>]]

List program lines <Ll>
omitted, use <Ll>=l. If
<L2>=<Ll>. BREAK can be
print.

to <L2>.
<L 2> is

used to

If <L 1> is
omitted, use

interrupt the

RESEQ[<Ll > [,<L2>]]

Resequence the lines of text currently in the
buffer. If <Ll> is omitted, <Ll>=lOO. If <L2> is
omitted, <L2>=10. Notice that all GOTO or GOSUB
references are also changed to correspond to the
new line numbers.

RESEQ 9999

CONT

This special form of resequence will resequence the
program for high speed execution. Line numbers are
replaced by memory pointer s . Use of thi s statement
will significantly reduce program exe~ution time.
Prior to editing the progr am , restor e normal line
numbers with a resequence like RESEQ 100, 10. If
you list a program in this form, the line numbers
will be meaningless.

Continue program execution that was interrupted by
BREAK. A CONT will result in an error if any
indirect statements are entered before the CONT
command (e.g. 100 I=l).

BASIC - 9

4.6.6 BASIC STATEMENTS

The allowed Super BASIC statements are s ummari zed below.
It is intended as r eference material only and it is
assumed that the user is already familiar with the
concepts of BASIC. Any word in all caps (e.g. GOTO) is
typed as a keyword. Lower case words (e.g., <variable>)
refer to the type of item required at that point. Items
within [-] a r e optional and may be omitted.

GOTO <line-number>

Branch to the specified line number.

GOSUB <line-number>

Perform a subroutine cal l to the specified line
number.

NOTE: GOTO and GOSUB are executed
faster when you RESEQ 9999 prior to
not RESEQ 9999 on an untried program!

substantially
RUN. But do

TRACE <level>

END
STOP

Trace execution according to specified <leve l>:
0 - No trace
l - Trace GOSUB/RETURN statements
2 - Trace GOTO/GOSUB/RETURN statements
3 - Trace all statements

Terminate program execution and return to command
mode.

DATA <val ue> , ,<va lue>

Define va lu es for a later READ. If <val u e> do es
not begin with+ , -, ., or a digit it is assumed to
b e a s tr in g • · Wh en the p r o g r am i s 1 i st e d , BAS IC
will always put s uch strings in quotes.

RESTOR E

Restore DATA statements . The Next READ will reuse
the first DATA statement .

BASIC - 10

REM <anything>

Insert a comment. <anything> can include any
character except carriage return.

FOR <index>=<exp-1> TO <exp-2> [STEP <exp-3>]

FOR is used with NEXT to create program loops. If
the step expression is not specified, <exp-3> is
one. The FOR is equivalent to the following if the
STEP expression is positive.

<index>=<exp-1>
<top>

<index>=<index>+<exp-3>
IF <index> <= <exp-1> THEN <top>

If the STEP expession is negative, the comparison
is reversed. That is, <=becomes >=.

NEXT [<variable>]

EXIT

End of FOR/NEXT loop. If <variable> is not
specified end the inner most loop . only.

[<var i ab 1 e >]

EXIT provides a vehicle to exit a FOR/NEXT loop
prior to completion. If you GOTO from within a
FOR/NEXT loop, the stack is left set incorrectly
since the loop was not terminated. EXIT is like
NEXT, but forces the loop to complete. An example
of its usage is:

100 FOR I=l TO 10
110 INPUT A(I)
120 IF A(I)<>O THEN NEXT ELSE EXIT

If the EXIT is not at the end of the loop as in the
above example, it should be followed by a GOTO to
transfer out of the loop.

DEF FN<variable> (<parameters>)=<expression>

Define a user function The variable names used for
parameters are global so you must use unique names.
The definition must be executed prior to any
reference. BASIC will interpret the function like
a macro so the output type is determined by ·the

BASIC - 11

in p u t p a ram e t e r s . As an exam p 1 e , t he f o 11 owing
program will first print "AA", and then "2". Thus ,
the function is both a string and a floating point
function.

100 DEF FNA(Il)=Il+Il
110 PRINT FNA("A")
1 2 0 PR I NT F NA (1)
130 END

DIM <variable list>

Define dimensioned variables (e.g. A(l0,5)). An
array may have one or two dimensions only.
Dimensioned strin g s are in te rpr eted as fol lows :
one dimension specified the string length (e.g.
A$(75)). Two dimensions specifies a group of
strings of a specific length (e.g. A$(5,75)
specifies 6 strings (0 to 5) of 76 characters (0 to
75) each .

IF <relation> THEN <stmt> or <lin e no.>
IF <relation> ELSE <stmt> or <line no.>
IF <relation> THEN <stmt> or <line no.> ELSE <stmt> or
<line no.>

Conditional statement. Examples illustrate various
possibilities.

100
110
120
130

IF X=Y THEN 1 7
IF (X=Y) AND

IF X=Y THEN Z =2
IF X=Y THEN END

Z=l THEN X=2 ELSE
THEN K=l
ELSE Z=l THEN T=2

PRINT 1

NOTE: THEN can b e used to combine multiple statements
to an IF or ELSE. The following are not the same:

100 IF X=l THEN Y=Z: Z=3
110 IF X=l THEN Y=Z THEN Z=3

The first will always set Z=3. The second will set
Z=3 only when X=l.

ON <expression> GOTO <line-number>, ,<line-number>

Branch to the <line-number> selected by the
<expression>. A value of one will select the first
<l i ne-number >, two the second and so on. If the
<expression> is out of range an error is issued.

LET <receptac le>= <expression>

BASIC - 12

<receptacle>=<expression>

Store the value of the <expression> in the
specified <receptacle>. For example: X(3)=1+5 or
LET X(3)=r+s. BASIC will accept the functions CRU
and LOC as valid receptacles. Refer to the
description of these functions for further details.

INPUT[<string>]<receptacle>, ,<receptacle>
INPUT[:<file number>)<receptacle>, ,<receptacle>

If a string is specified, print it on a new line.
Th en , p r in t a p r om p t (11 ? 11

) and aw a it us e r in p u t s •
To stop the program, type a carriage return in
response to 11 ?". To begin the input line over,
type CONTROL-S. If a <file number> is present data
will be taken from that file. Refer to file I/O
for further details. The input must agree in type
with the receptacle. For example, a response of
?l.2 to INPUT A$ will produce an error.

PRINT[USING<string>)<expression>,
PRINT:<file number> <expression>,

,<expression>
,<expression>

Print the expressions. If a <file number> is
specified, the data is transferred to the specified
file. Refer to the description of file 1/0 for
further details. If "; 11 is typed instead of 11

," no
space is left between entries. The USING option
allows the user to format the output to his unique
requirements. Format characters are:

$

II

*

EEEE
! L ••• L
! R ••• R
! c .•. c
! E ••• E

numeric with leading "$" prior to first
non-zero digit.
numeric digit
leading asterisk
decimal point
comma notation
exponent form
left justify string
right justify string
center string
left justify string, but extend field to
handle the string, if required.
minus sign

Examples: If the number is 101.27 it can be printed
in several forms as follows:

$$$$./Ill
fl/I# If. II

$101. 27
101.3 - rounded

BASIC - 13

11/1. /IEEEE L OE+02

Th e s tr in g "AB CD " c an a 1 s o b e p r in t e d in s e v e r a 1
ways:

!RRRRRRR
!LLLLLLL
!CCCCCCC

ABCD
ABCD

ABCD

READ<receptacle>, ,<receptacle>

Read data from the DATA statement into specified
receptacles. For example, the following will with
I=l, J=2, A$="THIS", and K=l

100 DATA 1
110 DATA THIS,2
120 READ I,A$
130 READ J
140 RESTORE
150 READ K

CHAIN <file>[,<device>]

Load and begin execution of the specified file on
the specified device. If the <device> is not
specified, <device>=O or disk. The <file> must be
a file that was saved by SAVE <file>,CHAIN. Also,
the configuration of BASIC during the CHAIN must be
the same as the configuration of BASIC during the
SAVE. If not, errors will result and execution is
unpredictable. Refer to paragraph 4.6.2 for
instructions regarding the specification of the
BASIC configuration.

BASIC - 14

4.6.8 EXPRESSIONS

4.6.8.1 Variable Names

The format of a variable name is:

<letter> [<digit>) [<type>)

The <letter> or <letter><digit> specify the name of the
variable. <type> is optional a nd specifies one of the
following types:

$ - string
- double precision
% - integer

4.6.8.2 Storage Allocation

Floating point values require 4 bytes, integer values
require 2 bytes, double precision values require 8 bytes
and st rings require 4 bytes plus the length of the
string.

Arrays require 4 bytes plus the storage for the
elements. That is, X(4, 5) would require 4+20*4 for
single p recision, 4+20*8 for double precision, and
4+20*2 for integer.

Floating point values are strored as follows (word 3 and
word 4 are for double precision values) .

0 1 - 7 8-15

WORD l I s E I D 1

WORD 2 I D2 I D 3

WORD 3 I D4 I D5

WORD 4 I D 6 I D7

S=sign of number (0=+, 1=-) E=hexadecimal exponent
" e" + 64 Dl-D7=hexadecimal mantissa with radix
point at left of Dl. Each of Dl to D7 are two hex
digits.

The value of the number is (16**(E-64))*(.Dl D2 D3 D4 D5
D6 D7). therefore >41 10 0000 (16**(>41->40))*(>.10
0000)

4.6.8.3 Constants

BAS IC - 15

Constants in BASIC can be integer, floating point, or
string. An integer constant is a number betwe en -32,768
and +32,767 which does not contain a decimal point or
exponent . Sample integer constants are :

123
-5678
2
32760

A special
integer.
preceeding
BASIC will

form of integer constant is
A hexadecimal integer is
the value by the symbol &.

assume that the following
hexadecimal. For example:

&123
&A
&FFFE

a hexadecimal
indicated by
In this case,
digits are in

A floating point constant is any number which exceeds
the range allowed for integer or contains a decimal or
exponent. Typical floating point values are :

1.
2.3E-3
222222222
.00004

It is important that you fully understand the difference
between integer and floating point constants, because
BAS IC will apply integer rules to any operation like
divide. Therefore , 1 I 2 is zero and 1. I 2 or 1I2 • or
1./2. is .5. As you see, entering a decimal will force
BASIC to use floating point rules.

String constants are any sequence of characters except
carriage return that are enclosed between double quotes.
String constants are most often used with the PRINT
statement to label the output. Sample string constants
are:

"THIS IS A BIG ONE"
II A"·
11 123"

4.6.8.4 Operators

BASIC provides several expression operators described
below. The allowed operand types are shown in paren s
preceeding the operator. For example, (SFI) means the

BASIC - 16

..____.

-.__/

operator allows string,
operands.

floating point or integer

(SFI) +
(FI)
(FI) *
(FI) I
(FI) **

rules!)
(SF I) <>
(SF I) <=
(SF I) >=
(SF I) <
(SFI) >
(I) AND
(I) OR
(I) XOR
(I) MOD
(I) NOT

Examples:

Add
Subtract
Multiply
Divide (int/int uses int. rules!)
Exponentiation(int**int uses integer

Not Equal
Less than or equal
Greater than or equal
Less than
Greater than
Logical bit by bit AND
Logical bit by bit OR
Logical bit by bit Exclusive-OR
Modulo
Ones complement

Expression Result
1+2 3
(1 =2) OR (3=3) -1
(1=2) OR (3=4) 0
6 AND 10 2
13 MOD 3 1
"A"+"B" II AB II
NOT(3=3) 0

NOTE: integer/integer or integer**integer use integer
rules. Therefore, 1/2=0 and 10**10 is to large for an
integer answer so an error is given. To eliminate the
integer rules , enter the numbers as 1 • / 2 and 1 0 • * * 1 0.
The decimal in the numbers will force a floating point
representation.

4.6.8.5 Intrinsic Functions

The intrinsic functions can be used in any arithmetic
expression. The allowed funct i ons are des c ribed below.

CRU(I[,J])

Perform
return J
If used
output J

9900 CRU I/O. If used in an expression,
bits at CRU bit I. If J not present J=l.
on left of replace (e . g. CRU (10,3) = 7)
bits starting at CRU bit I.

BASIC - 17
~.

LO C (I)

If used in an express ion, return the contents of
memory word I . I should be an even address . If
used on left of replace (e.g. LOC (10) = 5), store
into the specified location.

SEG$(S,I)

Return the first I characters of string S. The
SEG$ can also select any subsequence of a · string .
If we want characters 14 to 17 (a tota l of 4
characters) of A$, just write:

SEG$(A$(14) ,4)

Since A$(14) refers to the substring of A$ which
starts at character 14 (not character 14 alone as
you might expect) . To insert the letter 11 J 11

between character 14 and 15 just code the following
(remember the characters start with zero).

A$=SEG$(A$, 15)+"J"+A$(15)

SEG$(A$,15) selects characters 0 to 14, A$(15)
selects characters 15 to the end.

INSTR([I,]<string-l>,<string-2>)

Return the index to <string -1 > of the first
occurance of <string-2>. If I is specified, begin
the search at that character position . If I is not
specified, begin the search at character zero of
<string- 1>. If <string-2> is not contained within
<string -1> return -1. Examples:

O=INSTR("ABCABC","ABC")
3=I N s TR (1' "AB c AB c II 'II AB c II)
-l=INSTR("ABCABC","X")
4=INSTR(A$,B$), assuming A$= "THI STHAT 11 and B$="THAT"

LINE$(I)

Retur n a single line of text from the specified
fil·e I. If the file numb e r is ze ro, assume that
the input is from the terminal. All characters
typed or read, including the carr iage return , are
returned as a string . This function can be used to
perform unformatted input. As mentioned earlier, a
response of ?12 to the statement INPUT A$ wi l l
result in an error message. But, the same r e sponse
to LINE$(0) is acceptable . To insure maximum

BAS IC - 18

"-.-

flexibility, the LINE$ function does not issue an
input prompt or a carriage return. It is the user
program's responsibility to prompt for input.

USR(I, [parameter list])

Call a user routine written in assembly language.
I is the address of a workspace point e r, program
counter pair in memory. When BASIC encounters the
USR call, it will evaluate all of the expressions
in the parameter list and will then perform a BLWP
to ad d re s s I • The par am et er s a r e pa s s e d to the
user routine as a sequence of five word p ackets.
Word one of each packe t determine what is contained
in the packet as described below. To return a
result, the user routine stores its answer in a
similar five word packet. The address of the first
parameter packet is in BASIC's RO (or user *Rl3).
The address of the result packet is in BAS IC's Rl
(or user @2(Rl3)). The number of parameter packets
is in BASIC's R2 (or user @4(Rl3)). The assembly
language routine should perform all necessary
computations and then return via an RTWP. It
cannot destroy Rl3, Rl4, Rl5 or the RTWP will not
function properly. All other user registers are
available. The user routine must be stored outside
of BASIC memory. To reserve memory for a user
routine, simply modify the beginning or ending of
memory pointers to reserve a block of memory from
BASIC. The address of the beginning ·or ending of
memory pointers are indicated in the loading
instructions for BASIC.

PARAMETER PACKETS:

Word l=O single precision floating point parameter
Word 2-3=value in floating point notation
Word 4-S=unused

Word l=l integer parameter
Word 2=value in integer form
Word 3-S=unused

Word 1=2 string parameter

string

location,

Word 2=length of the string in bytes
Word 3=pointer to the first character of

Word 4-S=normally unused, but may be the
string itself if Word 3 points to this

BASIC - 19

and the length is four or less.

Word 1=3 double precision parameter
Word2-5=value in double

floating
point representation.

ABS(I)

Return the absolute value of I.

ASC(S)

Return the ASCII numeric
character of the string s.
is 65 or 41 (hexadecimal)

ATN(I)

equivalent of
For example,

Return the ArcTangent of I.

COT (I)

Return the CoTangent of I.

COS (I)

Return the CoSine of I.

EXP (I)

Return E**I.

INT(I)

Return the integer part of I.

FRE(dummy)

Return the number of bytes of free space.

CHR$(I)

precision

the
ASC

first
("A")

Return a one character string containing the the
character whose ASCII code is the integer I. For
example "A"=CHR$(65). This can be used to create
strings with embedded control codes.

Return the actual length of string s .

BASIC - 20

___ ,.

LOGlO(I)

Re turn the base 1 0 or co mmon 1 o gar it h m of I •

LOG(I)

Return the base e or natural logarithm of I.

HEX$(I)

Return a four character string
hexadecimal equivalent of integer
"1 234" = HEX$(4660)

HEX (S)

containing the
I. For example:

Return the integer value of the hexadecimal string
S. The string S is not che cke d for valid
hexadecimal digits. For example: 4660 HEX
("1234").

POS(I)

Returns the current position of the terminal print
head.

RND(I)

Return a random number O<=X<l according to I as
follows:
I<O Re set random s e quence
I=O Return last random numb e r
I>O Return a new random number

SHIFT(I,N)

Return the shifted value of integer I. I is
shifted left N bit positions for positive N and
right N bit positions for negative N. For examp l e :
4=SHIFT (1,2) l=SHIFT (4,-2)

SIN (I)

Return the Sine of I.

S GN (I)

Return an integer value representing the sign of I
as follows:
I<O Return -1

BASIC - 21

'---·

I=O Return 0
l>O Return +l

S QR (I)

Return the square root of r.

STR${I)

Return a character string which repr e s e nt s the
value of I. For example "-1" = STR $ (-l) ·

TAB(I)

Tab (move over) to column I on the terminal. TAB
should b e used only with PRINT statement. An error
will be issued if past column I.

TAN(!)

Return the tangent of I.

VAL(S)

Return the numeric value of string s. For example:
-f = VAL ("-1").

BASIC - 22

4.6.9 File I/O

Two statements are used to control . the file I/O in BASIC
- OPEN and CLOSE. Prior to an INPUT:<file> or
PRINT:<file>, the <file> must be OPENed. The syntax of
each is described below.

OPEN <file no>,<name>[,<device>[,<rec len>[,<tot len>]]]

This statement will open the <file no> whose name
is <name> on the device specified by the i:n teger
value <device>. If the <device> is not specified,
<device>=O. <rec len> is the number of characters
per record . If not specified, BASIC will assume
that each record will be the length of the file
buffer . If the records are variable length, this
is the maximum length required. <tot len> is the
total number of records to be allocated for this
file. If the file is not already on the disk,
BASIC will allocate enough space for this number of
records. If the file is already on the disk, the
<tot len> is ignored. OPEN will also rewind the
file to its logical beginning. It is the users
responsibility not to read beyond the end of file .
Typically this is avoided by writing some marker
character on the end of the file.

CLOSE [<file no>, ,<file no>]

Close all of the specified files. If ~o files are
specified, all user files are closed. To rewind a
file, simply CLOSE then reOPEN it.

BAsIC - 23

