4.6 Technico Super BASIC

4.6.1 Loading

Super BASIC is supplied in several forms - tape, paper
tape, disk, etc. Instructions supplied with your object
program will describe how to load Super BASIC.

4.6.2 Operation

To begin Super BASIC, branch to the start address using
the monitor’s GO command. The start address is included
with the loading instructions. When you branch to Super
BASIC, it will print the version identification and then

prompt for configuration parameters as follows:
FILES? - enter the maximum number of I/0 file
buf fers required followed by a carriage returm. A
typical response 1is two or three. I omly a

carriage return 1is entered, BASIC will wuse the
default of two.

BUFFER SIZE? = enter the maximum number of bytes
for each file buffer followed by a carriage return.
BASIC will reserve this amount of RAM memory for
each file. A typical response is 132. If you SAVE
a program in source form, the buffer must be large
enough for the longest line of source text. LE
not, an error is generated during the SAVE.
Therefore, a response of less than 132 may limit

the SAVE command. If only a carriage return 1is
entered, BASIC will use the default buffer length
of 80.

SYMBOLS? = enter the maximum number of wvariable

names your program will require followed by a
carriage return. BASIC will create a symbol table
of sufficient size to hold this number of symbols.
Each table entry is four bytes. A typical response
is 50. 1If only a carriage return is entered, BASIC
will use the default of 50.

After you have entered the configuration information,
BASIC will print the BREAK message and then prompt for a
command by printing a decimal point. You are now in the
command mode and you can either enter ‘a program or
direct execution statement.

To restart Super BASIC without erasing the program in
memory, and retaining the current configuration, you can
branch to the restart address.

BASIC - 1

To dinterrupt program execution, depress BREAK on the
terminal. After completing the current BASIC 1line,
BASIC will stop execution and print a prompt. To
restart execution, type a CONT command. If BASIC is
printing and you wish to BREAK, press and hold BREAK
until the printing stops. If your terminal does not
have a BREAK, then put the system RAM switch in the RAM
position and reset the system. BASIC sets the restart

vector to simulate a break.

BASIC - 2

4.6.3 Errors

During execution, BASIC may print an error message
indicating dits displeasure. The 1line number of the
errant statement is also printed (RUN mode only).
Certain disk file errors, however, will return control
to the disk/tape handler (distinguished by the ">"
prompt) . You can then execute any valid disk command
(e.g. CD,DF). To returm control to BASIC just press
BREAK on the terminal or reset the system as described
in paragraph 4.6.2. The error numbers for the BASIC
errors are described below.

00 Unrecognized line or a syntax error (improper line
construction) .

01 Improper BASIC statement - issued by the dinput

routine. Similar to error 00, except that the line
contains non BASIC characters.

02 Symbol table overflow - program has more variables
than than indicated during program start (see
paragraph 4.6.2).

03 Range of a number exceeds BASIC’s capacity.

04 Illegal 1line number (e.g. 12345). Line numbers
must be between 1 and 9999.

05 Illegal construction of a number (e.g. 1.7.2).
06 Print Using Error - A 1list of expressions was
encountered but no previous print specifications

(e.g. PRINT using "XYZ",A).

07 Print Using Error - numeric specification but
string data (e.g. PRINT Using "###", AS$).

08 Print Using Error - Negative number with "§" or "%x"
format and no trailing "-".
09 Print Using Error - number exceeds specification

(e.g- 124 With ##)o

10 Print Using .Jrror - string specification, but
numeric data (e.g. PRINT Using "LLLL", L2

11 Continue (CONT) not allowed at this point. If the
program was stopped by BREAK, entry of an indirect

statement prevents a future CONTinue.

12 Command Error. Illegal command or the command

BASIC - 3

13

14

15

16

17

18

19

20

21

22

23

24

2>

26

32

33

34

35

36

37

Parameters are invalid.

Resequence Error - text cannot be resequenced as
specified without creating dinvalid 1line numbers
(e.g., RESEQ 1000,1000 for 300 1lines of text).

Text Buffer full. A "CLEAR" will returm all
available memory to text buffer. If the program
still overflows 1t 1is too large for the existing
Memory.

Arithmetic overflow. Integer exceeds two bytes or
floating point exponent too large or small.

Line number expected but not found.

Variable name expected but not found.

Trace parameter error.

Integer expected but not found.

Reference to undefined line number.

Improper GOSUB/RETURN sequence.

Memory overflow during variable allocation.
Improper FOR/NEXT sequence.

Receptacle String too small (e.g. DIM X$(5):
X$="TOOBIG")

Receptacle list in error.
Data exhausted during READ.

Expression stack overflow - expression too complex.

Expression improperly formed.

Illegal operand mix (e.g., X MOD Y for X,Y single
precision).

Arithmetiec overflow during expression evaluation.
Type error. An array expected but not found (e.g.,
1(3)), or a variable was referenced (e.g. PRINT I)

before it was assigned a value (e.g. I=23).

String error.

BASIC - 4

38

39
40

41

42

43

44

45

46

Allocation error during expression evaluation.
User space was exhausted.

Subscript error (e.g., A(-1,2)).
Function call error (e.g., SQR("X7).

Illegal file number or device or the specified file
is already active.

File name improperly formed

Illegal device code

Disk handler error. This can be caused by SAVEing
a CHAIN file using a filename that is already on
the disk. CHAIN files must be unique files not
already on the disk. Source files can duplicate
files on the disk in which case that file is
overwritten.

Chain error

Buffer overflow on output or dinput disk error

BASIC - 5

4.6.4 Direct/Indirect Execution

If a BASIC statement is preceded by a line number it is

an indirect statment and is stored in the text buffer.
Any o0ld lines with the same line number will be erased.

For example:

100 PRINT ‘THIS’

If not preceded by a line number it is called a direct
statement and is immediately executed. An example of

direct execution is:
FOR I=1,10: PRINT 1I1: NEXT

If any indirect statement is used after a BREAK, Super
BASIC will not allow a future CONTinue.

BASIC - 6

4.6.5 EDIT COMMANDS

When Super BASIC is in the command mode you can enter
any of the following Edit commands (direct execute
statements). Any word in all caps (e.g. DELETE) is
typed as a keyword. Words within <-> (e.g. <L1>)
indicate the type of item required at that point. Any

item within [-] (e.g. [<L1>]) is optional and may be
omitted.

DELETE<L1>[,<L2>]

Delete lines <L1> through <L2>, or just <L1l>, if
<L2> is not entered.

NULL<N>

Set the number of nulls (RUBOUTS) after a carriage
return to <n>. If a source program is to be saved
on paper tape, set <n> to 10 or more. This command
allows a delay after carriage return which is
required by some terminals (e.g. TI700 series).

WIDTH<N>

Set the terminal page width to <n>. <n> must be
between 40 and 132. During startup, BASIC will set
the width to the default value of 72.

AUTO [<L1>[,<L2>1]

Initiate prompting with a line number. <L1> is the
first line number wused and <L2> is the increment
between lines. If <L1> is omitted, the previous
<L.1> parameter is used. If there is no previous
<L1> paramter, 100 is used for <L1l>. If <L2> is
omitted, the previous <L2> paramter is used. If
there is no previous <L2> paramter, then 10 is used
for <L2>. To exit the AUTO line number mode, type
a carriage return immediately following the 1line
number prompt. This command removes the burden of
entering line numbers during program entry thus
speeding the entry time.

RENAME<V1>,<V2>

Replace all occurrences of variable name <V1> with
variable name <V2>. If the program is now LISTed,
you will see that all occurrences of <V1> are
listed as <V2>.

BASIC - 7

NEW

Clear the text and variable buffer and prepare for
a new programe.

CLEAR

Clear all variable or array definitions, but leave
the text buffer undisturbed.

RUN[<L1>]

Begin program-execution at the specified line or at
the beginning of the program if mno 1line 1is
specified. BASIC will CLEAR before beginning.

SAVE<FILE>[,CHAIN] [<,device>]

Store the current program in the text buffer on the
specified device. If CHAIN is specified the
program 1is stored din absolute. Refer to the
description of CHAIN for more details. The <file>
must be a string representation of a wvalid disk
£ille (esgs “EXYZ"™, "ABC.SRC/2"): 1If the flle is on
the disk already (nomn CHAIN mode) it will be
rewritten or an error message issued (CHAIN mode).
If not already on the disk, a new file is

allocated. The <device> 1is an integer which
specifies the save device (0=disk, l=tape). The
<device> can be ommitted in which case <device>=0.

LOAD<file>[,CHAIN] [,<device>]

Load the program <file> into memory. If it was
saved in CHAIN mode, CHAIN must be specified.
Refer to the description of CHAIN for more
information regarding CHAIN files. <device> is as
defined above. A non chain or source LOAD will not
erase the program in memory. This feature can be
used to merge to programs together. For example,
the following sequence merges the programs on files
"PRG1" and PRG2" and saves the resulting program on
file "PRG3". ©Note that the text was resequenced to
insure that the program line numbers did not
overlap.

BASIC - 8

.NEW
.LOAD "PRGL"
.RESEQ 1000,10
.SAVE "PRGL"
.NEW

.LOAD "PRG2"
.RESEQ 2000, 10
LOAD "PRG1"™
+.SAVE "PRG3"

LISTI [,4125]]

List program lines <L1> to <L2>. If <L1l> dis
omitted, use <Ll>=1l. If <L2> 4is omitted, wuse
<L2>=<L1>. BREAK can be used to interrupt the
print.

RESEQ[<L1>[,<L2>1]

Resequence the 1lines of text currently din the
buffer. If <L1> is omitted, <L1>=100. If <L2> is
omitted, <L2>=10. Notice that all GOTO or GOSUB
references are also changed to correspond to the
new line numbers.

RESEQ 9999

CONT

This special form of resequence will resequence the
program for high speed execution. Line numbers are
replaced by memory pointers. Use of this statement
will significantly reduce program execution time.
Prior to editing the program, restore normal line
numbers with a resequence like RESEQ 100,10. It
you list a program in this form, the line numbers
will be meaningless.

Continue program execution that was interrupted by
BREAK. A CONT will result in an error if any
indirect statements are entered before the CONT
command (e.g. 100 I=1).

BASIC - 9

4.6.6 BASIC STATEMENTS

The allowed Super BASIC statements are summarized below.

It is intended as reference material only and it 1is
assumed that the wuser is already familiar with the

concepts of BASIC. Any word in all caps (e.g. GOTO) is
typed as a keyword. Lower case words (e.g., <variable>)
refer to the type of item required at that point. Items
within [=~] are optional and may be omitted.

GOTO <line-number>
Branch to the specified line number.
GOSUB <line-number>

Perform a subroutine call to the specified 1line
number.

NOTE: GOTO and GOSUB are executed substantially
faster when you RESEQ 9999 prior to RUN. But do
not RESEQ 9999 on an untried program!

TRACE <level>

Trace execution according to specified <level>:

0 - No trace
1 - Trace GOSUB/RETURN statements
2 - Trace GOTO/GOSUB/RETURN statements

3 - Trace all statements

END
STOP

Terminate program execution and returmn to command
mode .

DATA <value>, ... ,<value>
Define wvalues for a later READ. If <value> does
not begin with +, -, ., or a digit it is assumed to

be a string. When the program is listed, BASIC
will always put such strings in quotes.

RESTORE

Restore DATA statements. The Next READ will reuse
the first DATA statement.

BASIC - 10

REM <anything>

Insert a comment. <anything> can include any
character except carriage return.

FOR <index>=<exp=1> TO <exp=-2> [STEP <exp=-3>]

NEXT

EXIT

FOR is used with NEXT to create program loops. If
the step expression is not specified, <exp-3> is
one. The FOR is equivalent to the following if the
STEP expression is positive.

<indeéx>=<exp-1>
<top> .

<index>=<index>+<exp-3>
IF <index> <= <exp~1> THEN <top>

If the STEP expession is negative, the comparison
is reversed. That is, <= becomes >=.

[<variable>]

End of FOR/NEXT 1locop. If <variable> 1is not
specified end the inner most loop .only.

[<variable>]

EXIT provides a vehicle to exit a FOR/NEXT 1loop
prior to completion. If you GOTO from within a
FOR/NEXT loop, the stack is left set incorrectly
since the loop was not terminated. EXIT is 1like
NEXT, but forces the loop to complete. An example
of its usage is:

100 FOR I=1 TO 10
110 INPUT A(I)
120 IF A(I)<>0 THEN NEXT ELSE EXIT

If the EXIT is not at the end of the loop as in the
above example, it should be followed by a GOTO to
transfer out of the loop-.

DEF FN<variable> (<parameters>)=<expression>

Define a user functionm The variable names used for
parameters are global so you must use unique names.
The definition must be executed prior to any
reference. BASIC will interpret the function like
a macro so the output type 1is determined by the

BASIC - 11

input parameters. As an example, the following
program will first print "AA", and then "2". Thus,
the function is both a string and a floating point
function.

100 DEF FNA(I1l)=I1+I1
110 PRINT FNA("A")
120 PRINT FNA(1l)

130 END

DIM <variable list>

Define dimensioned variables (e.g. A(10,5)). An
array may have one or two dimensions onlye.
Dimensioned strings are interpreted as follows:
one dimension specified the string length (e.g-
A$(75)). Two dimensions specifies a group of
strings of a specific length (e.g. AS$(5,75)
specifies 6 strings (0 to 5) of 76 characters (0 to
75) each.

IF <relation> THEN <stmt> or <line no.>

IF <relation> ELSE <stmt> or <line no.>

IF <relation> THEN <stmt> or <line no.> ELSE <stmt> or
<line no.>

Conditional statement. Examples illustrate wvarious
possibilities.

100 IF X=Y THEN 17

110 IF (X=Y) AND Z=1 THEN X=2 ELSE PRINT 1
120 IF X=Y THEN Z=2 THEN K=1
130 IF X=Y THEN END ELSE Z=1 THEN T=2

NOTE: THEN can be used to combine multiple statements
to an IF or ELSE. The following are not the same:

100 IF X=1 THEN Y=Z: Z=3
110 IF X=1 THEN Y=Z THEN Z=3

The first will always set Z=3. The second will set
Z=3 only when X=1.

ON <expression> GOTO <line-number>, ... ,<line-number>
Branch to the <line-number> selected by the
<expression>. A value of one will select the first
<line-number>, two the second and so on. If the

<expression> is out of range an error is issued.

LET <receptacle>=<expression>

BASIC = 12

<receptacle>=<expression>

Store the

value of the <expression>

in the

specified <receptacle>. For example: X(3)=1+5 or

LET X(3)=I+45.

and LOC

as wvalid receptacles. Refer

BASIC will accept the functiomns CRU

to the

description of these functions for further details.

INPUT [<string>]<receptacle>, ... ,<receptacle>
INPUT[:<file number>]<receptacle>, ... ,<receptacle>

If a string is specified, print it on a new line.

Then, print a prompt

To stop
response

type CONTROL-S.

will be taken from that file. Refer to

for further details.

with the

?1.2 to INPUT AS$ will produce an error.

("?") and await user inputs.
the program, type a carriage return in
o YV To begin the input line over,
If a <file number> is present data

file I/0

The input must agree in type
receptacle. For example, a response of

PRINT [USING<string>]<expression>, ... ,<expression>
PRINT:<file number> <expression>, ... ,<expression>

Print the
specified,
file. Refer to the descriptiomn of file

expressions. If a <file number> 1is
the data is transferred to the specified

I1/0 for

further details. If ";" is typed instead of "," no

space 1is

left between entries. The USING option

allows the user to format the output to his unique
requirements. Format characters are:

$,
#

*

3

EEEE
L...L
IR...R
I1Cee.C
!E. . .E

Examples:

$88S.##
. #

numeric with leading "$" prior
non-zero digit.

numeric digit

leading asterisk

decimal point

comma notation

exponent form

left justify string

right justify string

center string

left justify string, but extend
handle the string, if required.
minus sign

to first

field to

If the number is 101.27 it can be printed
in several forms as follows:

$101.27
101.3 - rounded

BASIC - 13

##.#EEEE 1.0E+02

The string "ABCD" can also be printed in several

ways:

IRRRRRRR ABCD
!LLLLLLL ABCD
lcccececege ABCD

READ<receptacle>, ... ,<receptacle>

Read data from the DATA statement into specified
receptacles. For example, the following will with
I=1, J=2, AS$="THIS", and K=1

100 DATA 1

110 DATA THIS, 2
120 READ I,A$
130 READ J

140 RESTORE

150 READ K

CHAIN <file>[,<device>]

Load and begin execution of the specified file on
the specified device. If the <device> 1is not
specified, <device>=0 or disk. The <file> must be
a file that was saved by SAVE <file>,CHAIN. Also,
the configuration of BASIC during the CHAIN must be
the same as the configuration of BASIC during the
SAVE. If not, errors will result and execution is
unpredictable. Refer to paragraph 4.6.2 for
instructions regarding the specification of the
BASIC configuration.

BASIC - 14

4.6.8 EXPRESSIONS

4.6.8.1 Variable Names

The format of a variable name is:
<letter>[<digit>] [<type>]

The <letter> or <letter><digit> specify the name of the
variable. <type> is optional and specifies one of the
following types:

$§ - string
- double precision
Z - integer

4.6.8.2 Storage Allocation

Floating point values require 4 bytes, integer values
require 2 bytes, double precision values require 8 bytes
and strings require 4 bytes plus the length of the
string.

Arrays require &4 bytes plus the storage for the
elements . That dis, X(4,5) would require 4+20%4 for
single precision, 4+20%8 for double precision, and
4+20*%2 for integer.

Floating point values are strored as follows (word 3 and
word 4 are for double precision values). ’

0 1-7 8-15
WoRD 1 s | E |Dp1 |
worD 2 | p2 | D3 |
WORD 3 T-SZ——-_-_T-BE-_———nT
WworD 4 | b6 | D7 |
S=sign of number (0=+, =-) E=hexadecimal exponent

"e" + 64 DIl-D7=hexadecimal mantissa with radix
point at left of Dl. Each of D1 to D7 are two hex
digits.
The value of the number is (16%**(E-64))*%(.D1 D2 D3 D4 D5
D6 D7). therefore >4110 0000 = (16**(>41->40))*%(>.10
0000)

4.6.8.3 Constants

BASIC - 15

Constants in BASIC can be integer, floating point, or
string. An integer constant is a number between =32,768
and +32,767 which does not contain a decimal point or
exponent. Sample integer constants are:

123
-5678
2

32760

A special form of integer constant is a hexadecimal
integer. A hexadecimal integer is indicated by
preceeding the wvalue by the symbol &. In this case,
BASIC will assume that the following digits are in
hexadecimal. For example:

&123
&A
&FFFE

A floating point constant is any number which exceeds
the range allowed for integer or contains a decimal or
exponent. Typical floating point values are:

1.

2.3E-3
222222222
. 00004

It is important that you fully understand the difference
between integer and floating point constants, because
BASIC will apply dinteger rules to any operation like
divide. Therefore, 1/2 4is zero and 1./2 or 1/2. or
1./2. is .5. As you see, entering a decimal will force
BASIC to use floating point rules.

String constants are any sequence of characters except
carriage return that are enclosed between double quotes.
String constants are most often used with the PRINT
statement to label the output. Sample string constants
are: '

"THIS IS A BIG ONE"

man
" 1 23"

4.6.8.4 Operators
BASIC provides several expression operators described

below. The allowed operand types are shown in parens
preceeding the operator. For example, (SFI) means the

BASIC - 16

operator allows string, floating point or integer
operands.

(SFI) + Add

(FI) - Subtract

(FI) * Multiply

(FI1L) / Divide (int/int uses int. rules!)

(FI) * % Exponentiation(int**int uses integer
rules!)

(SFI) <> Not Equal

(SFI) = Less than or equal

(SF1) >= Greater than or equal

(SFI) < Less than

(SFI) > Greater than

(1) AND Logical bit by bit AND

() OR Logical bit by bit OR

(1) X0R Logical bit by bit Exclusive-O0OR

(1) MOD Modulo

(1) NOT Ones complement
Examples:

Expression Result

142]

(1=2) OR (3=3) -1
(1=2) OR (3=4) O

6 AND 10 2
13 M0D 3 1
mpngn npApt
NOT (3=3) 0

NOTE: dinteger/integer or integer**integer use integer
rules. Therefore, 1/2=0 and 10%#*10 is to large for an
integer answer so an error is given. To eliminate the
integer rules, enter the numbers as 1./2 and 10.%*10.
The decimal in the numbers will force a floating point
representation.

4.6.8.5 Intrinsic Functions

The dntrinsie functions can be used in any arithmetic
expression. The allowed functions are described below.

CRU(I[,J])

Perform 9900 CRU I/O. If used in an expression,
return J bits at CRU bit I. If J not present J=l.
If used on left of replace (e.g. CRU (10,3) = 7)
output J bits starting at CRU bit TI.

BASIC - 17

LOC (1)

If used in an expression, return the contents of

memory word I. I should be an even address. If
used on left of replace (e.g. LOC (10) = 5), store

into the specified location.
SEGS$(S,1I)

Return the first I characters of string S. The
SEGS can also select any subsequence of a string.
If we want characters 14 to 17 (a total of 4
characters) of AS$, just write:

SEG$(AS(14),4)

Since AS$(l4) refers to the substring of A$ which
starts at character 14 (not character 14 alone as

you might expect). To insert the 1letter "J"
between character 14 and 15 just code the following
(remember the characters start with ZEro) e

AS=SEGS$(AS,15)+"J"+AS(15)

SEGS$(AS$,15) selects characters 0 to 14, A$(15)
selects characters 15 to the end.

INSTR([I,]<string-1>,<string-2>)

Return the idindex to <string-1> of the first
occurance of <string-2>. If I is specified, begin
the search at that character position. If I is not
specified, begin the search at character zero of
<string-1>. If <string-2> is not contained within
<string-1> return -1. Examples:

O=INSTR("ABCABC","ABC")

3=INSTR(1,"ABCABC","ABC")

-1=INSTR ("ABCABRC","X"™)

4=INSTR(A$,BS$), assuming AS="THISTHAT" and BS$="THAT"

LINES(I)

Return a single line of text from the specified
file I. If the file number is zero, assume that
the input is from the terminal. All characters
typed or read, including the carriage return, are
returned as a string. This function can be used to
perform unformatted input. As mentioned earlier, a
response of ?12 to the statement INPUT AS$ will
result in an error message. But, the same response
to LINES$(0) is acceptable. To dinsure maximum

BASIC - 18

flexibility, the LINES$ function does not issue an
input prompt or a carriage returne. It is the user
program’s responsibility to prompt for dinput.

USR(I,[parameter list])

Call a user routine written in assembly language.
I is the address of a workspace pointer, program
counter pair in memory. When BASIC encounters the
USR call, it will evaluate all of the expressions
in the parameter list and will then perform a BLWP
to address 1I. The parameters are passed to the
user routine as a sequence of five word packets.
Word one of each packet determine what is contained
in the packet as described below. To return a
result, the user routine stores its answer 1in a
similar five word packet. The address of the first
parameter packet is in BASIC’s RO (or user *%*R13).
The address of the result packet is in BASIC’ s RI1
(or user @2(R13)). The number of parameter packets
is in BASIC’ s R2 (or user @4(R13)). The assembly
language routine should perform all necessary
computations and then return wvia an RTWP. It
cannot destroy R13, Rl4, R15 or the RTWP will not
function properly. All other user registers are
available. The user routine must be stored outside
of BASIC memory. To reserve memory for a user
routine, simply modify the beginning or ending of
memory pointers to reserve a block of memory from
BASIC. The address of the beginning or ending of
memory pointers are indicated din the loading
instructions for BASIC.

PARAMETER PACKETS:

Word 1=0 single precision floating point parameter
Word 2-~3=value in floating point notation
Word 4-5=unused

Word 1=1 1integer parameter
Word 2=value in integer form
Word 3-5=unused

Word 1=2 string parameter
Word 2=length of the string in bytes
Word 3=pointer to the first character of
string
Word 4-5=normally unused, but may be the
string itself if Word 3 points to this
location,

BASIC - 19

and the length is four or less.

Word 1=3 double precision parameter

Word2-5=value in double precision

floating
point representation.

ABS (1)
Return the absolute value of I.
ASC(S)
Return the ASCII numeric equivalent of the
character of the string S. For example, ASC
is 65 or 41 (hexadecimal)
ATN(I)
Return the ArcTangent of I.
COT(1)
Return the CoTangent of I.
COS (1)
Return the CoSine of I.
EXP(I)
Return E#**T.
INT (1)
Return the integer part of TI.
FRE(dummy)
Return the number of bytes of free space.

CHRS (I)

first
("AII)

Return a one character string containing the the

character whose ASCII code is the integer I.

For

example "A"=CHRS$(65). This can be used to create

strings with embedded control codes.

Return the actual length of string S.

BASIC - 20

LOG10(1)
Return the base 10 or common logarithm of I.
LOG(I)
Return the base e or mnatural logarithm of 1I.
HEXS$(I)
Return a four character string containing the
hexadecimal equivalent of integer I. For example:
"1234" = HEXS$(4660)

HEX(S)

Return the integer value of the hexadecimal string
S+ The string S is not checked for wvalid

hexadecimal digits. For example: 4660 = HEX
("1234").

POS(I)
Returns the current position of the terminal print
head.

RND(I)

Return a random number 0<=X<1 according to I as
follows:

I<0 Reset random sequence

I=0 Return last random number

I>0 Return a new random number

SHIFT(I,N)

Return the shifted wvalue of integer I. I is
shifted left N bit positions for positive N and
right N bit positions for negative N. For example:
4=SHIFT (1,2) 1=SHIFT (4,-2)

SIN(IL)

Return the Sine of 1I.

SGN (1)

Return an integer value representing the sign of I
as follows:
I<0 Returmn =1

BASIC - 21

I=0 Return 0
I>0 Return +1

SQR(I)

Return the square root of I.

STRS(I)
Return a character string which represents the
value of I. For example "-1" = STRS$(-1)

TAB(I)

Tab (move over) to column I on the terminal. TAB
should be used only with PRINT statement. An error
will be issued if past column I.

TAN(I)
Return the tangent of I.

VAL (S)

Return the numeric value of string S. For example:
-1 = VAL ("-1").

BASIC - 22

4.6.9 File I/O

Two statements are used to control _the file I/0 in BASIC
- OPEN and CLOSE. Prior to an INPUT:<file> or
PRINT:<file>, the <file> must be OPENed. The syntax of
each i1is described below.

OPEN <file no>,<name>[,<device>[,<rec len>[,<tot len>]]]

This statement will open the <file no> whose name
is <name> on the device specified by the integer
value <device>. If the <device> is not specified,
<device>=0. <rec len> is the number of characters
per record. If not specified, BASIC will assume
that each record will be the length of the file
buffer. If the records are variable length, this
is the maximum length required. <tot len> is the
total number of records to be allocated for this
file. If the file 1is not already on the disk,
BASIC will allocate enough space for this number of
records. If the file is already on the disk, the
<tot len> is dignored. OPEN will also rewind the
file to its logical beginning. It is the users
responsibility not to read beyond the end of file.
Typically this dis avoided by writing some marker
character on the end of the file.

CLOSE [<file no>, «.. ,<file no>]
Close all of the specified files. If mo files are

specified, all user files are closed. To rewind a
file, simply CLOSE then reOPEN it.

BASIC - 23

