
TE.CHNICO SUPER STARTER MANUAL

Ve .. r$ion . .3, · April. 1978
·.,,' . . -...

® 1978 ··Tecnnfco, me:{.

All R:J.,gh~s .Reserv.ed
' ~-·) - > .. ·, -

No Por~ion .q~; -~4ii~p;ua:t,

~Y Be Repr6d1iced .

Witt~out Expresei Written Consent ..

I

II

III

IV

v

VI

VII

VIII

IX

x

XI

XII

XIII

XIV

xv
XVI

TABLE OF CONTENTS

TECHNICO SUPER STARTER MANUAL

Preface

Parts List

Bus Structure

System Configuration

Electrical Characteristics

System Expansion

Monitor

Hardware Assembly

Instruction Set (Programming)

Instant Input Assembler

Software (Monitor and Game listings)

Other Super Starter Products

Manufacturer's Spec Sheets

TI 9900 Overview

Other Technico Products

Price Lists,·order Forms

I PREFACE

The Super Starter System provides the basis of your own

personal minicomputer system - including a 2704/2708 EPROM

programmer. The Super Starter System is not a demo kit, but

is the basis for a powerful computing machine. Because it

incorporates the TI 9900 processor, it is compatible with the

TI 990/4 minicomputer and other TI 990 family products.

Before proceeding with assembly of your kit, read through
--

the entire manual and familiarize yourself with the features

of this kit. Then, carefully assemble your kit; test it as

described in the manual; apply power; and begin programming.

If you have any problems with this system, carefully

recheck your assembly. (Are all resistor values correct? Are

all chips aligned correctly? Is your terminal connected

properly?) Since critical components are pretested, misassembly

errors are the most likely cause of problems. If all else fails,

' Rosse Corporation (the designers of this system) are more than

willing to provide whatever a. ssist~~cle they can to solve the
7 D ':!; y·7 9(;;3 tJ

problem. Just call them at (793) Je9-~#:3i;

This manual has been written for a user with little or

no background in programming. In order to proceed directly

into the manual, the reader is assumed to understand the

foll.owing:

1. Binary, octal, binary coded decimal and

I-1

hexadecimal number systems.

2. Signed and unsigned binary arithmetic.

J. Boolean logic (AND, OR, EXCLUSIVE-OR).

4. ASCII character codes.

5. Basic concepts of the Texas Instruments TMS 9900.

The Super Starter System is organized for ma~imum user

flexibility. The basic ~ystem includes 1,024 bytes of fused

link read only memory (PROM), 512 bytes of read/write memory

(RAM), sixteen input bits, sixteen output bits, and eight levels

of interrupt. On board expansion is provided for 2,048 bytes

of erasable read-only memory (2708 EPROM), an additional 1,024

bytes of 74S472 PROM, and an additional 1,536 bytes of RAM.

The system also includes the necessary EPROM programming logic

to program EPROMs (TI 2708, Intel 2708, or Intel 2704). The

system has an EIA RS-232 or 20 milliamp current loop interface

with automatic Baud rate determination for terminals up to a

9600 Baud rate. TI 733ASR, 743 and 745 terminals are available

through Technico.

As you see, the Super Starter System is an excellant

beginning, but you may be interested in future expansion

boards. For example, with the 16K word (32K byte) expansion

RAM (part number TEC-9900-MA-32) you ~an even use the Super

Starter System to run our powerful relocating editor and assembler.

To "keep informed about future developements, just complete

tbe enclosed reply card and mail it to us. It is our intention

that you be completely satisfied with the products you receive

I-2

from Technico. If for any reason you are not pleased, let us

know and we will make every effort to provide immediate

corrective action.

Technico is a fully franchised distributor of Texas

Instruments, therefore, all parts in your system are completely

factory warranted. If you find a defective component, just

return the part to us for replacement. We appreciate any

suggestions you may have as to how we might improve both our

products and services.

Best Regards,

William E Regan, Jr.

President

TECHNICO INC.

I-3

ROSSE CORPORATION

THE SUPER STARTER DESIGNERS

Who Are We?

Rosse Corporation is a growing consulting firm located

in the metropolitan Washington, D.C. area. We specialize in

designing microprocessor based systems.

What Can We Do For You?

We have a strong background in both hardware and software,

and can help you to realize your objectives with microprocessors.

You have already purchased one of our designs - The Super Starter

Kit. This kit is a good example of the qnality design approach

used here at Rosse Corp.

What About Experience?

We have design experience with many of the popular

microprocessors, namely: F8, COSMAC, Z80, Intel 8080, TI 9900,

and Motorola 6800. Not just breadboards, but real products.

Members of our staff are also hgihly published in the micro­

processor area. In addition to our technical know-how, we are

aware of the manufacturing aspects of microprocessors, and

pride ourselves on producing the right documentation to

simplify manufacturing. If you will take a moment to review

the monitor, I think you will agree that it is both well

written and well documented.

I-4

What Next?

If you have a specific application for microprocessors,

why not give us a call. Maybe we can help you to mount the

microprocessor learning curve.

Best Regards,

Jim Ferry

President

Rosse Corporation

I-5

II PARTS LIST - SUPER STARTER KIT

SOCKETS (Basic Kit)

2 24 Pin

33 16 Pin

16 18 Pin

6 20 Pin

1 64 Pin (may consist of 2 20 Pin and

2 12 Pin socket strips)

1 8 Pin

9 14 Pin

RESISTORS

2 10 ohm

2 47 ohm

2 220 ohm

1 680 ohm

1 470 ohm

7 1K ohm

1 2.2K ohm

17 3.3K ohm

2 4.7K ohm

1 6.8K ohm

3 1 OK ohm

1 20K ohm

1 47K ohm

II-1A

1 51K ohm

1 100K ohm

4 15 ohm or 10 ohm

1 500K ohm - pot

CAPACITORS

2 22 pf

1 470 pf

1 620 pf or 680 pf

1 1000 pf

24 . 1 mf

1 27 mf electrolytic or4? mf

4 2.2 mf electrolytic

1 1500 pf

2 .01 mf

DIODES

3 1N4148

TRANSISTORS

5 2N3904

1 2N3906

2 2N4401 (TI S111)

II-2A

INTEGRATED

MISC.

1

1

3

1

2

1

1

1

1

2

2

1

1

15

1

1

4

1

2

1

2

CIRCUITS

..

741800

741804

741832

741840

741874

74123

7418148

7418156

7418155

7418251

7418259

748260

74LS362 (9904

7418367

7418377

72555

TMS 4042-2 RAM

TMS 9900

CLOCK)

748472 Monitor PROM's (U47,U49)

P.C. board

SPST switches

II-3

1

l*

2*

1

momentary contact switch

terminal connection cable

power connection cables

.47 microh. coil (looks like a large

resistor)

* Not supplied vith the basic kit. Purchased seperately.

II-4

III. BUS STRUCTURE

The TMS 9900 CPU has separate address and data buses.

Since the address and data words are not multiplexed on a

single bus, ~tandard memories can be used with the TMS 9900

without an external address latch.

The TMS 9900 instructions build a 16-bit address word

which describes a 64K x 8 address space. The least significant

bit is used inside the CPU to select the byte and the other

15 address bits are passed to external memory to access a

32K x 16 address space. Thus, a TMS 9900 system has a 16-bit

data word and a 15-bit address word. Byte addressing is

transparent to the memory.

The address bus is also used to select an I/O bit and

to pass the external control functions (IDLE, etc.). The

external control functions are not required in most applications

and therefore are not implemented in the Super Starter System.

The address bus is used either to address memory (MEMEN low),

to address an I/O bit, or to pass an external control function.

The TMS 9900 interface signals are shown in Figure III-1

The data bus is used only to transfer data to and from

the memory when MEMEN is low. The ROMs and RAMs are the only

devices connected to the CPU data bus. DBIN indicates whether

the data bus is the input or the output mode. The data bus is

normally in the output mode (DBIN low), and the memory data

outputs should be enabled only when DBIN is high.

III-1

The communications register unit (CRU) is a versatile

command-driven I/O interface bus. The CRU employs three

dedicated signals (CRUCLK, CRUOUT, and CRUIN) and the lower

12 bits of the address bus to interface with the CRU system.

The CPU can set, reset, input, or test any bit in the CRU

interface.

The CPU sets or resets an output bit by placing the bit

address on the address bus, the output data bit on CRUOUT,

and a clock pulse on CRUCL·K. The CPU inputs or tests an input

bit by placing the bit address on the address bus and testing

CRUIN. Thus, CRU output operations are clocked by CRUCLK,

while the CRU continuously decodes the CPU address to determine

which signal is to be input to CRUIN. The current CPU

instruction, however, determines whether or not the current

CRUIN input is used. The· Super Starter System provides 16

input and 16 output bits. One of the input bits and two of the

output bits are used to control the·RS-232/TTY interface and

EPROM programmer.

The TMS 9900 has fifteen user interrupt levels in addition

to the RESET and LOAD functions. The presence of an interrupt

is indicated by an external device driving INTREQ low and

placing the priority code on !CO throttgh !CJ. The Super Starter

Kit provides priority encoding logic for eight unique levels

of interrupt (Ull,U25).

III-2

Figure III-1 TMS 9900 Interface Signals

L /
CRUOUT (AO-A14)

0
..........
H

..-i
0
1'-1
.p
i:I
0
C)

s
(I)

.p
fl)

~
fl)

CRUCLK

CRUIN

/INTREQ

ICO-IC3

IAQ

/RESET

/LOAD.

-

9900

p1 p2 p3 P4
\ I •

CLOCK

III-3

I . :

I

'

(DO-D15)
·.·.J

1

/MEMEN

/WE

DBIN

READY

WAIT

HOLD
~
::E::

HOLDA o

IV. SY~TEM CONFIGURATION

A. MEMORY

The Super Starter Kit is equippedt6 handle three

different types of memory:

fRQM_i2k§k2gl - Four fusable link PROM's are available

for permanent program storage. Two PROM's, which

provide 512 words (1024 bytes) of program storage,

are provided with the kit~ These PROM's contain a

powerful monitor to assist with program development.

EfRQM_i!M§g708L1ll1~1_g1Q~l - Two EPROM's are wired

in parallel to provide an optional 1024 words (2048

bytes) of program storage. The two EPROM's may also

be programmed using the software provided in the

monitor. This provides a convenient means for saving

user programs in a read only memory.

R!M_i!M§kQkgl - Four 256 x 4 RAM's are p~ovided with

the kit, which provides 256 words (512 bytes) of

read/write memory. This memory can.be expanded to

1024 words (2048 bytes) by adding twelve more

256 x 4 RAM 1 s.

IV-1

The unique address decodi:~ logic allows maximum

flexibility in address assignment. A four input NAND

(U6-74LS40) detects any reference to the last 2K words

of memory. This signal partially enables an OR (Ul3-74LS32)

and a one-of-four decoder (US-74156). Address bit A4

determines whether the OR or the decoder will be enabled.

The jumpers determine which memory will be address when

the OR or the decoder is enabled. If these jumpers are

installed as shown in the schematic, memory will be

addressed as:

FCOO-FFFF

F800-FBFF

FOOO-F7FF

ROM-1 (Monitor)

ROM-2 (IIA or Expansion

'PROM)

EPROM

An OR gate (U7-74S260) detects any reference to the

first lK of memory. This signal enables a second one of

four decoder which determines exactly which section of

memory is addressed. If the jumpers are installed as

shown in the schematic, memory is addressed as:

0000-0lFF

0200-03FF

0400-05FF

0600-0?FF

IV-2

RAM-1 (Basic)

RAM-2

RAM-3

RAM-4

The Super Starter Kit will ignore a reference to any

address not shown above. The kit will also ignore addresses

0000-07FF if the jumper /FIRST K is removed. This may be

useful if external RAM is added to the system.

The jumpers also allow the memory to be reorganized

to suit the needs of any particular application. Some

useful configurations are:

e JW1,JW2,JW3,JW4-JW11 (out)

• JW5,JW6,JW7,JW8-JW11 (out)

JWl(in)-JW5(out),JW2(in)-JW6(out)

JW3(in)-JW7(out),JW4(in)-JW8(out)

Place EPROM

at F800-FFFF

Place EPROM at

0000-FFFF and

RAM at F800-FFFF

This reorganizing is useful, but should be done

carefully. Be certain that you do not enable two different

memories with the same signal - this will damage the memory.

B. INPUT/OUTPUT

Two octal multiplexers (U3,U4-74LS251) and two·

addressable latches (Ul,U2-74LS259) are used for CRU­

based I/O. The I/Oare addressed as bits 0-F (hex).

Additional I/O may be added to the system by adding

appropriate decoding logic.

One of the input bits (0) is used for RS-232/TTY

input. If any application requires these bits, but does

IV-3

not require the services of the monitor, the jumper may

be removed,which deactivates this input.

One of the output bits (0) is used for RS-232/TTY

output and one bit (1) is used to control the on-board

EPROM programmer. As with the inputs, these may be disabled

by removing the associated jumpers.

C. CLOCK GENERATION

The SN74LS362 clock generator (UlO) provides the

four-phase MOS timing signals for the TMS 9900. A single

capacitor is used to determine the clock frequency. This

is adequate for most applications, but if a more precise

frequency is required, a crystal rererence can be used.

A simple LC network is used to control the frequency

overtone. The SN74LS362 also provides TTL compatible clock

outputs. The RC network on the Schmitt-triggered D input

provides a power-on reset fot the system in addition to

the manual reset.

D. RESET, LOAD, AND INTREQ

The RESET,LOAD, and INTREQ TMS 9900 inputs are used

to alter the normal program execution sequence. The

encoding logic (Ull-74LS377,U25-74148) present the proper

interrupt code to the ICO-IC3 line on the processor. It

IV-4

also synchronizes the interrupt request.

The external load and reset signals are also directly

input to the CPU after being synchronized. RESET is held

active (low) for at least three clock cycles by the

switch or the power-on RC network. LOAD is held active

(low) for one instruction time as determined by the TMS

9900 IAQ output.

The load signal is used to enter the monitor. If

switch one is in the load position, a load request is

generated following any restart. This transfers control

to the monitor since the load vector is at ROM locations

FFFC-FFFF. If switch one is not in the load position,

restarts use the normal restart vector at 0000-0003.

E. EPROM PROGRAMMER

A unique feature of the Super Starter is the on­

board EPROM programmer for TMS 2708 or Intel 2708/2704

Erasable Read-Only Memories. The programming is enabled/

disabled by switch three. When disabled, all programming

requests are ignored by the hardware. When the programmer

is enabled, bit 1 of the CRU output controls the

programming. Another important feature is that both the

EPROM's are programmed at one time. It is not ~ecessary

to program the even bytes, then the odd ones as it is

IV-5

with a single EPROM programmer. Rather, a whole word is

programmed at one time.

If programming is enabled (by switch three, and CRU

I/Obit 1), then the processor can program any location

by simply writing into it. When the write is detected

(Ul2-74123), the address and data are held by placing

the processor in wait and a program pulse is generated.

After programming, the program mode can be reset to read,

and the EPROMs verified. The EPROM must be programmed

several times to insure data integrity. Do not continuously

reprogram one location, as .it may damage the EPROM. The

recommended sequence is (Rl,R2 preset to source and R3

to PROM destination):

INCT R2 ;.advance end

LI R4,255 ;R4= repeat

LOOP 1 MOV Rl,R5 ;R5= start

MOV R3,R6 ;R6=PROM start

ORI R6, >FOOO_ ;adjust for PROM

LOOP 2 MOV *R5+,*R6+ ;Do one pass

c R5,R2

JLE LOOP 2

DEC R4 ;Do another pass

JNE LOOP 1

IV-6

E. REAL TIME CLOCK

A real time clock oscillator is provided for software

timing. The oscillator output is connected to bit (1) of

the CRU input by jumper JWlJ. If the clock is not used

the jumper can be removed. The clock can also be used to

periodically interrupt the CPU, just connect the clock

output to an interrupt input.

IV-7

V. ELECTRICAL CHARACTERISTICS

The Super Starter Kit requires the following input

power:.

+5V Maximum of 1.5 Amps

+12V Maximum of .5 Amps

-5V Maximum of .5 Amps

To program 2704/2708 EPROMs the following power

must be supplied:

+28V Maximum of 40 Milliamps

A power supply to power the Super Starter System plus

a full 65K byte memory expansion is available (p/n TEC-

9900-PP). Power ratings for this expanded unit are as

follows:

+5V

+12V

-5V

+28V

Maximum of 5 Amps

Maximum of 3 Amps

Maximum of 2 Amps

Maximum of 40 Milliamps

~V-1

VI. SYSTEM EXPANSION

The Super Starter Kit has been designed for ease.of

expansion. Since any choice of edge connector would seriously

restrict the method of expansion, use of jacks was chosen instead.

All of the critical signals, including those for a computer

control panel, are available on 16-pin DIP sockets. The

individual jacks and pin assignments are described in the

paragraphs below.

The physical size of the Super Starter System, 7" x 16",

is the identical size of standard w±re wrap boards such as

the Garry (p/n NCS-13~ Flat Flexible Cable jumpers can be used

to interface with this type of board to perform control functions.

The TEC-9900-MA-32K byte memory add-on boards are physically

also the same size. Since the TEC-9900-SS is fully buffere~

memory expansion can be accomplished by merely jumping to the

memory boards (p/n TEJ-99DA-12). Program loading to the TEC-

9900-SS can be accomplished by interfacing a terminal or RS232

cassette tape into jack 10 of the kit. Refer to the monitor

section for details regarding program loading.

VI-1

A. J4 (Address Bus)

J4 1 Address Bit 0 (MSB)

J4 2 Address Bit 1

Jl+ 3 Address Bit 2

J4 4 Address Bit 3

J4 5 Address Bit 4

J4 6 Address Bit 5

J4 7 Address Bit 6

J4 8 Address Bit 7

J4 9 Ad.dress Bit 8

J4 10 Address Bit 9

J4 11 Address Bit 10

;u; 12 Address Bit 11

J4 13 Address Bit 12

J4 14 Address Bit 1.3

J4 15 Address Bit 14 (LSB)

J4 16 Ilrlused·

VI-2

B. J9 (Data Bus)

J9 1 Data Bit 0 (MSB)

J9 2 Data Bit 1

J9 3 Data Bit 2

J9 4 Data Bit 3

J9 5 Data Bit 4

J9 6 Data Bit 5

J9 7 Data Bit 6

J9 8 Data Bit 7

J9 9 Data Bit 8

J9 10 Data Bit 9

J9 11 Data Bit 10

J9 12 Data Bit 11.

J9 13 Data Bit 12

J9 14 Data Bit 13

J9 15 Data Bit 14

J9 16 Data Bit 15 (LSB)

VI-3

c. J8 (Interrupt Control)

~8 1 Interrupt level 7

J8 2 Interrupt level 6

J8 3 Interrupt level 5

J8 4 Interrupt level 4

J8 5 Interrupt level 3

J8 6 Interrupt level 2

JS 7 Interrupt level 1

J8 8 Interrupt level 0 (highest priority)

J8 9 to 16 Ground (unused)

VI-4

D. J6 (Control Signal Group 1)

J6 1 Ready (In)

J6 2 /HOLD (In)

J6 3 DBIN (Out)

J6 4 /WE (Out)

J6 5 /ME MEN (Out)

J6 6 HOLDA ((Out)

J6 7 WAIT (Out)

J6 8 LOAD· (In)

J6 9 /RESET (In)

J6 10 /RESET (Out)

J6 11 /LOAD (Out)

J6 12 IAQ (Out)'

J6 13 CRUIN

J6 14 CRUOUT

J6 15 CRUCLOCK

J6 16 GND

VI-5

E. J7 (Control Signal Group 2)

J7 1 /Phase one

J7 2 /Phase two TTL Level

J7 3 /Phase three Processor Clocks

J7 4 /Phase f'our

J7 5 Oscillator out

J7 6 Oscillator In

J7 7 to 16 Unused

VI-6

F. JlO (RS-232/TTY Interface)

JlO l' Pin 1

JlO 2 2

JlO 3 3

JlO 4 5

JlO 5 6

JlO 6 7

JlO 7 8 E.I.A. RS-23C Connector

JlO 8 Zl Pin Assignments

JlO 9 22

JlO 10 23

JlO 11 24

JlO 12 to 16 unused

VI-7

G. J2 (Input Port l/CRUIN)

J2 1 Bit 0 (LSB) TTY IN

J·2 2 ;Bit 1 CLOCK IN

J2 3 Bit 2

J2 4 Bit 3

J2 5 Bit 4

J2 6 Bit 5

J2 7 Bit 6

J2 8 Bit 7

J2 9 Bit 8

J2 10 Bit 9

J2 11 Bit 10

J2 12 Bit 11

J2 13 Bit 12

J2 14 Bit 13

J2 15 Bit 14

J2 16 Bit 15 (MSB)

VI-8

H. Jl (Output Port l/CRUOUT)

Jl 1 Bit O (LSB) TTY OUT

Jl 2 Bit 1 /PROGRAM ENABLE

Jl 3 Bit 2

Jl 4 Bit 3

Jl 5 Bit 4

Jl 6 Bit 5

Jl 7 Bit 6

Jl 8 Bit 7

Jl 9 Bit 8

Jl 10 Bit 9

Jl 11 Bit 10

Jl 12 Bit 11

Jl 13 Bit 12

Jl 14 Bit 13

Jl 15 Bit 14

Jl 16 Bit 15 (MSB)

VI-9

I. J5 (Input Power)

J5 1 to 4, 13 to 16 +5V

J-5 5 to 6, 11 to 12 +12V_

J5 7, 10 -5V

J5 8, 9 +28V (used only to

program EPROMs)

VI-10

J. J3 (Input Ground)

J3 1 to 16·

KARNINQ

Ground

Be careful when applying power to J3/J5. A misconnection

will seriously damage the system! Also, all unused pins are

grounded.

VI-11

VII. MIGHTY MONITOR

The Super Starter - Mighty Monitor provides the following

comprehensive set of commands:

A. Alter the contents of RAM

B. Breakpoint set/restore

C Copy memory to memory

D Dump memory to display or terminal

G Go to program in memory

H Hexadecimal Arithmetic

I Inspect CRU bit

L Load program from terminal

M Modify CRU bit

P Program EPROM

S Snap definition.

W Workspace dump

VII-1

The Mighty Monitor accepts input ~rom and produces outp~t

for a serial Asynchronous ASCII terminal or_ teletypewriter. To

insure maximum flexibility in the choice of a terminal, the

monitor always generates two stop bits after each character

and user controlled delay after each carriage return. The Baud

rate of the terminal is determined automatically during the

start up of the monitor. After a reset (power-on or manual)

the mon~tor will wait for the user to enter the letter 'X'.

When the letter 'X' is entered, th~ monitor automatically
I

calculates the Baud rate (110 to 9600) and begins normal operation.

During normal operation, the monitor prompts the user to enter

a command by typing a question mark at the beginning of a new

line. The first entry by the user must be ~ne of the allowable

command codes (A, B, C, D, G, H, I, L, M, P, S, W), and is

followed by the arguments in hexadecimal notation. Multiple

arguments are separated from one another by an arbitrary

sequence of symbols or characters, except for hexadecimal

digits (0-9,A-F) or carriage return. The command is terminated

by any non-hexadecimal digit (including carriage return)

after the last argument.

If an argument is typed with more than the required

number of digits (usually four), the monitor will use only

the right-most digits. This feature can be used to correct

input errors. If any argument is shorter than required, the

left-most digits will automatically be filled with zeros.

VII-2

The monitor uses certain locations in memory to store

breakpoint information, etc. The monitor memory map is shown

in Figure VII-1. To operate in half-duplex mode (no character

echo) change the echo flag to zero using monitor's Alter

command. To insert a delay after carriage return, enter the

required delay in the delay word (again using the Alter).

The total carriage return delay is Delay*6 microseconds. If

you do not know the delay required for your terminal, it can

be determined experimentally by increasing the delay until no

characters are lost after a carriage return. If you modify

any of the other locations used by the monitor, the monitor

may not function properly.

A detailed description of each command is provided in

the following paragraphs, along with an example of its usage.

NOTE: If you are using a TI Silent 700 which is equipped

for 1200 Baud operation, a special monitor is available

for communication with that terminal. Inquire at Technico

for further det~ils regarding the Silent 700 monitor.

VII-3

FIGURE VII-1 MEMORY MAP

A££!:~§.§._1h~2£l

0-3

4-7

8-B

C-F

10-13

14-17

18-lB

lC-lF

20

22

24

26

28

2A

2C

2E

32

34

36

38

3A

3C

3E

VII-4

Q~m~~n~§.

Interupt vector - level 0

- level 1

- level 2

- level_3

- level 4

- level 5

- level 6

- level 7

Carriage return delay

Echo fla·g

Terminal speed

No. of words for a break

User instruction - one

- two

- three

Return branch (two words)

Next stop

Stop increment

Maximum number of stops

Register bounds - first

- last

Memory bounds· - first

- last

FIGURE VII-1 MEMORY MAP (continued)

!£!£!.r.~§.§._ih~~l .9.2.!!~~!!~§.

40-43 XOP 0

44-47 XOP 1

48-4B XOP 2

4C-4F XOP 3

50-53 XOP 4

54-57 XOP 5

58-5B XOP 6
...

5C-5F XOP 7

60-63 XOP 8

64-67 . XOP 9

68-6B XOP 10

6C-6F XOP 11

70-73 XOP 12

74-77 XOP 13

78-7B XOP' 14

7.C-7F XOP 15

80-9F Monitor Workspace

AO-AF XOP Workspace (only 8 registers)

VII-5

FIGURE VII-1 MEMORY MAP (continued)

A!!!!r.~~.~Lih~~l Q.Q.!!~~!!~~

BO User - RO

B2 - Rl

B4 - R2

B6 - R3

BS - R4

BA - R5

BC - R6

BE - R7

co - RS

C2 R9

C4 - RlO (RA)

C6 - Rll (RB)

cs - R12 (RC)

CA - R13 (RD)

cc - R14 (RE)

CE - Rl5 (RF)

VII-6

!1Ill!.R - The contents of memory may .be examined and modified.

Format: A aaaa

Procedure: 1. Type "A".

Note:

2. Type the byte address (aaaa) of the memory

location to be examined (in hex) followed

by a space.

3. The monitor will display the contents of

the specified location in hexadecimal

format (followed by a hyphen).

4. If you wish to change the contents of this

location, simply enter the desired

hexadecimal value followed by a space or

carriage return. If noi, just type space or

carriage .return and the monitor will display

the contents of the next sequential address.

If a space is typed, the next value will

be displayed on the current line, but if a

carriage return is typed, both the next

byte's address and contents are displayed

on the next line.

5. Repeat steps 3-4 until all desired locations

have been examined or modified. To exit this

~outine depress the BREAK key on the terminal

(or type an ASCII NUL).

1. If the monitor was entered from a ~RE!EfQIHI,

!1.1'.~R can be used to examine or modify the

VII: 7

Example:

working registers.· Refer to the memory ma~

co~mand for a definition of the addresses

used.

2. !1!~E can ~lso be used to examine EPROM or

PROM, but it can not be used to modify them.

The following sequence will alter locations

#400 and #404 with #FF. Locations #401-403

are unchanged (user's entries are underlined).

?A~QQ OO-EE 11-_22-_33-_44-FF 55-

VII- 8

~Eli!~fQlllT - A breakpoint or trap may be set in any user program

that is stored in RAM. Whenever the processor

encounters the substituted trap instruction, the

state of the machine is saved and control is

transfered back to the monitor for user action.

Format: B aaaa,n

Procedure: 1. Type "B".

Note:

2. Type the hexadecimal address (aaaa) of the

location to be trapped, followed by a

delimiter. (aaaa) must be a word address

(even number).

3. Type the number of words (n) to be removed

for the trap. This shauld be the number of

words (1, 2, or 3) currently occupied by

the trapped instruction.

4. Type space or carriage return. The monitor

will remove any prior trap and then install

the new trap.

· 1. If the existing trap is to be removed

without setting a new one, the address is

omitted and the command terminated by

carriage return.

2. After entering the monitor from a trap, the

QQ command can be used to resume execution

(see QQ command, discussed later).

VII- 9

3. The contents of the user's workspace registers

ar~ saved whenever a breakpoint is encountered.

The contents of the registers can be examined

or modified using the !11~E command. The

Monitor Memory Map shows where the active

registers are sav~d. Note: If the workspace

pointer is changed by the user program, the

registers will be located at the address in

the workspace pointer.

4. Relative jump instructions should not be

breakpointed if a return QQ is to be used

or if a .2N!:E is es\ablished.

VII-10

QQ~I - The contents of a block of memory may be copied into

another area of memory.

Format: c

Procedure:

Note:

Example:

ssss, eeee, dddd

1.

2.

3.

1.

Type II C II•

Type (in hex) the starting address (ssss)

followed by a delimeter, and then the ending

address (eeee) followed by a delimeter of

the block of memory you wish to be copied.

Type (in hex) the destination address (dddd)

followed by a space or carriage return. For

a normal copy operation, the destination

address should not be within the bounds of

the block of memory th'a t you· are copying.

The copy command can be used to set a block

of memory to a specified constant. This is

done in two steps. First, place the desired

constant in the start location (using the

!11'.EB: command). Then perform a "C ssss,

eeee-1, ssss+l 11 , where (ssss) is the start

address and (eeee) is the end address of

the block.

1. The following command will copy #410-420

into #430-440.

VII-11

2. To set all locatio~s #410-41F to zero, t~e

following commands are used.

?A~lQ 11-QQ 22

?Q~lQ..a.~l~..a.~11

(sets 410 = 00)

(clears 410-41F)

Note that #41E is one less than the ending

address #41F and #411 is one greater than

the starting address #410.

VII-12

Q~M~ - The contents of a block of memory may be listed on the

printer.

Format: D ssss, eeee

Procedure: 1. Type "D".

Note:

Example:

2. Type (in hex) the starting address (ssss)

followed by a delimiter and then the ending

address {eeee) of the memory to be listed.

3. Terminate the command by typing a space or

a carriage return. The monitor will now list

the block of memory you requested, sixteen

bytes per line.

1. The ending address may be omitted (and the

command terminated by 'a carriage return),

in which case the monitor assumes that the

ending address is the end of memory

(65535, or #FFFF).

2. The dump may be stopped at any time by

depressing any key on the terminal.

3. The 1Q!Q co~mand can reload the program if

the dump is recorded, on paper tape or

other media.

Both of the following examples will dump

the entire memory:

VII-13

?QQ~EEEE

?QQ

QQ - Control can be transferred to a specified word in memory.

Execution can also be resumed after a breakpoint trap.

Format: G aaaa

Procedure: 1. Type "G".

Note:

Example:

2. Type the hex address (aaaa) where control

is to be transferred. (aaaa) must be a word

address (even).

3. Terminate the command by typing a space or

carriage return. The monitor will now

transfer control to address (aaaa).

1. The address (aaaa) may be omitted (and the

command terminated by a carriage return) in

which case the monitor will assume that a

trap was.reached, restore the state of the

machine, execute the instruction removed

for the trap, and return to the point

following the trap. This feature should be

used only if the monitor was entered by a

trap and the location being trapped does

not contain a relative jump.

2. Do not set a new breakpoint, then issue a

§Q without an address, as this will transfer

eontrol to the wrong location ••

The following will transfer control to

location #106.

?Q!Q.2
VII-14

H~!!Q~QIM!1 !RI!liM~!IQ - Calculate the hexadecimal sum and

difference of two numbers.

Format: H aaaa, bbbb

Procedure: 1. Type "H".

Example:

2. Type the two hexadecimal operands (aaaa)

and (bbbb) separated by a delimiter and

followed by a space or carriage return.

3. The monitor will now calculate and display

(xxxx)=(aaaa)+(bbbb) and (yyyy)=(aaaa)-(bbbb)

as follows:

H+=(xxxx) H-=(yyyy)

This command is useful for calculating the

destination address fo'r a jump. If the jump

instruction #1047 is at, say, location #1234

then the destination address is (#1234+2)+

2*47. This sum is calculated in two steps

as follows:

Step 1) ?fi1~l2i~2

H+=l27D

Step 2) ?li1~2Qi~2

H-=llEF

H+=l2C4 H-=1236

Note that the jump displacement is relative

to the next sequential instruction (#1236)

not the jump itself.

VII-15

IH2f~Q! - A CRU bit may be displayed on the terminal.

Format: Ibb

Procedure: 1. Type "I".

Example:

2. Type the CRU bit (bb) to be tested,

followed by a space.

3. The monitor will display the selected CRU

bit.

Display CRU bit 5 (assume it is set).

?12. 1

VII-16

1QAQ - A program file may be loaded into memory from paper

tape or any other terminal storage media.

Format: L

Procedure:

Note:

1.

2.

1.

2.

Type "L".

Initiate the input (e • g. the paper tape).

The 1QAQ command will reload programs

produced by the Q!H:!E command. The dumped

program will be reloaded into the same area

of memory that it was dumped from.

If you do not wish the input to be listed

as it is loaded, simply set locations #22,

#23 to zero. This will suppress the monitor's

echo.

3. The carriage return delay should be set to zero

(i.e., #20, #21) prior to loading.

VII-17

MQQ!E! - A CRU bit may be set or cleared.

Format:

Procedure:

Example:

M bb,v

1. Type "M".
2. Type the desired CRU bit

by a delimeter.

3. Type the bit value that

(O=clear, l=set).

Set bit 12 to 0

?!:!16..1.Q

VII-18

(bb) followed

you desire

~BQQBAM - Program a 2708 EPROM.

Format: P aaaa, bbbb, cccc

Procedure: 1. Type "P".

Note:

Example:

2. Type (in hex) the starting address (aaaa)

of the area to be placed in EPROM followed

by a delimiter, and then. by the ending

address (bbbb) followed by a delimiter.

3. Type the starting address of the EPROM

area to be programmed followed by a space

or carriage return.(0000 is the first

EPROM location)

4. The monitor will now program the EPROM 1 s.

1. The starting address df the EPROM's, for·

programming purposes only, is A~~Q·

2. The monitor always programs both EPROMs.

Even bytes ~n one and odd bytes in another.

3. To program only ~elected locations, place

#FF in any location U21 to be programmed.

Since the erased EPROM has #FF in all

locations, this will not change the EPROM.

4. The ending address (bbbb) ~~~! ~~ ~Y~~·

Program a copy or the monitor.

?,LFCQQ..t._!!!~.z.Q

VII-19

§.NAE. - Snap parameters can be established.

Format: S fff~, iiii, nnnn

?R rl, r2

Procedure:

Note:

Example:

?M Ml, M2

1 . Type 11 S 11 •

2. Type the first time a snap is desired (ffff)

followed by a delimiter, then the increment

between snaps required (nnnn) followed by

a delimiter, and finally the total number

of snaps (nnnn) followed by a delimiter.

3. When the monitor types 11 ?R 11 , enter the

workspace registers to be snapped. If no

registefs are to be·snapped, then type a

carriage return.

4. When the monitor types 11 ?M 11 , enter the area

of memory to be snapped. If no memory is to

be snapped, then type a carriage return.

Prior to establishing a snap a breakpoint

!!t!!.§.1 be s e t .

The following sequence will snap registers

Rl-R3 and memory area #100-105 after the

fourth .execution of the instruction at #130.

After the initial snap, it will snap every

third time until a total of six snaps.

VII-20

?~llQil

?§~ili£

?Rlil

?M lQQilQ2

(first set trap)

(set trap)

The sample output given on the next page

illustrates the use of A, B, and S commands.

The A command is used to enter a program into

memory. This program will decrement Rl, R2,

and RJ. The B command is used to set a

Breakpoint trap at #130 (which contains a 1

word instruction). The S command specifies

a snap of Rl through R3 and memory locations

#100 through #105 to be taken iY~1 prior to the

4th, 7th, 10th,. 13th, 16th, and 19th times that

the instruction at location #130 is executed.

VII-21

?A130 2C-06 00-01 06-06 02-02 06-06 03-03 10-10 FC-FC BA-

?S4 3 6
R?l 3
M?100 105
?G130

PC=0132 WP=OOBO ST=DOOO
R1=00BO R2=2B36 R3=0D38
0100: 02 03 00 01 CO Cl

PC=0132 WP=OOBO ST=DOOO
Rl=OOAD R2=2B33 R3=0D35
0100: 02 03 00 01 CO Cl

PC=0132 WP=OOBO ST=DOOO
Rl=OOAA R2=2B30 R3=0D32
0100: 02 03 00 01 CO Cl

PC=0132 WP=OOBO ST=DOOO
R1=00A7 R2=2B2D R3=0D2F
0100: 02 03 00 01 CO Cl

PC=0132 WP=OOBO ST=DOOO
R1=00A4 R2=2B2A R3=0D2C
oioo: 02 03 oo 01 co c1

PC=0132 WP=OOBO ST=DOOO
R1=00A1 R2=2B27 R3=0D29
0100% 02 03 00 01 CO Cl

VII-22

VIII. ASSEMBLY

The Super Starter Kit is designed for easy assembly. You

don't have to be a microprocessor wizard to build and t~st your

computer. If you carefully follow the assembly instructions,

your computer will operate properly - the first time that power

is applied.

To be sure that you don't make assembly errors, we highly

recommend that you familiarize yourself with the kit prior to

assembly. The best way to do this is to study the manual before

proceeding. After you have read the manual - all of it- you

are set to begin. The following simple precautions will help

minimize the chances of error:

• Use care in handling the integr.ated circuits. All of

the integrated circuits (I.C.) will be seriously

damaged by static discharge. Carpeted areas are a

problem. Even a minor static shock will ruin most I.C;~s.

• Use the proper tools, and exercise care when soldering

the cpmponents. In particular, use a low wattage iron -

no more than 30 watts. Use only rosin-core solder.

Acid core solder will ruin the kit. Keep the tip of

your iron clean - a damp sponge is ideal for this

purpose.

VIII-1

... :

• Never remove or install components when power is

applied to the board. If you do, you will almost

surely burn out some of the I.e. rs.

• Prior to starting to assemble your kit, gather the

necessary tools. The Super Starter Kit does not

require an extensive set of tools. The following

set should be sufficient:

l~ needle~nose pliers

2. diagonal cntters

3. soldering iron (25 or 30 watts)

Do not use a soldering gun because

it gets mucrr too hot.

4. solder (remember - use rosin-core)

5. volt-ohmmeter or continuity checker

You are now ready to assemble the computer. Follow each of

the instructions precisely, and in the order shown. All of the

components are installed on the silk-screened side of the board,

and are soldered on the other side. Be sure you have the board

oriented with the silk-screen printing down when soldering

·components.

VIII-2

STEP 1 - Parts Verification

Separate 'and check all parts against the parts list

of section II. If you find that any parts are missing,

notify us immediately, and a replacement will be sent to

you. Keep the parts separated for ease of assembly -

paper cups or a small muffin tin is ideal storage.

VIII-3

STEP 2 - Install Sockets

Install the IiC. sockets shown below. Be certain to

orient the socket properly. Each socket will have a -~

distinctive marking to indicate pin one. Some sockets

have a cut-off-corner, others have a notch in the end

with pin one. In any case, pin one must be aligned with

the pin one indication on the printed circuit board as

shown in Figure VIII-1.

() Jl 16 pin socket

() J2 16 pin socket

() J3 16 pin socket

(.) J4 16 pin socket

() J5 16 pin socket

() J6 16 pin socket

() J7 16 pin socket

() JS 16 pin socket

() J9 16 pin socket

() JlO 16 pin socket

() U23 64 pin socket (CPU)

() tr22 18 pin .socket (RAM)

() U37 18 pin socket (RAM)

() U18 18 pin socket (RAM)

() U33 18. pin socket (RAM)

VIII-4

() UlO

() U47

() U49

20 pin socket (clock)

20 pin socket (PROM)

20 pin socket (PROM)

VIII-5

STEP 3 - Install Resistors

The resisotrs should be installed in the order

indicated below. Bend the leads to fit the distance

between the mounting holes, insert the leads, push the

resistor snug against the board, carefully solder it in

place, and then trim off the excess leads. All resistor

values are in ohms, and all resistors are t watt. For

your convenience, the color code for each resistor is

also shown. Figure VIII-2 illustrates the standard resistor

color code.

(') Rl 3.3K orange,orange,red

(i R2 3.3K orange,orange,red
J

() R3 3~3K orange,orange,red

c ') R4 3.3K orange,orange,red

() R5 3.3K orange,orange,red

(') R6 3.3K orange,orange,red

() R7 3.3K orange,o~ange,red

() RS 3.3K orange,orange,red

(,) R9 lOK brown, black orange

c{ 'RlO 10 brown,black,bl~ck

(,{ Rll 20K red, black, orange

(".;{ ,Rl2 51K green, brown, orange

{~-)/ Rl3 3.3K orange,orange,red

VIII-6

(/) Rl4 3.3K orange,orangP red
,{

(~Rl5 47 yellow,violet,black

{ Rl6 lOK brown, black, orange

(,,.j' .. Rl 7 lK brown,black,red
/

~ Rl8 .4.7K yellow,violet,red

Rl9 3.3K orange.orange,red

c1h R20 220 red,red,brown
/

{ ,') R21 220 red,red,brown

c·i R22 680 blue,grey,brown

{) R23 10 brown, black, black

{ 1 R24 3.3K orange,orange,red

(,~R25 lK brown,black,red
I

{ . R26 3.3K orang.e, orange, red

{ '-) R27 lK brown,black,red

{ ~! R28 ·100K brown,black,yellow

{ ,1; R30 lK brown,black,red (R29 not used)

{ J R31 3.3K orange,orange,red

{' f) R32 3.3K orange,orange,red

{1/1, R33 4.7K yellow,violet,red

cl, l R34 6.SK blue,gray,red

c/f R35 470 yellow,violet,brown

«) •. R36 3.3K orange,orange,red

cl R38 3.3K orange,orange,red {R37 will be

".{ C'· . R39 2.2K red,red,red done later)

VIII-7

(/~/'
R40 lK brown, black, red

C·{ R41 47K yellow,violet,orange
(I('~

R42 3. 3K~J orange,orange,red
,/'

(/) R43 47 yellow,violet,black

(:"') R44* 10 or 15 brown, black, black or

brown,green,black

(\) R45* 10 or 15 brown, black, black or

brown,green,black

(\/) R46* lK brown, black, red

(/) \,,,i R47* 10 or 15 brown, black, black or

c<
brown, green, black

R48* 10 or 15 brown, black, black or

browR,green,bla~k

* Revision 'B' P.C. Board only

VIII-8

FIGURE VIII-1 SOCKET INSTALLATION

PIN 1 PIN 1 PIN 1

> >

VIII-9

FIGURE VIII-2. RESISTOR COLOR CODE ------------------------------------

.·~.BLACK - 0 BLACK - 0

BROWN - 1 BROWN - 1

RED - 2 RED - 2

ORANGE - 3 ORANGE - 3

YELLOW - 4 YELLOW - 4

GREEN - 5 GREEN - 5

BLUE - 6 BLUE - 6

VIOLET - 7 VIOLET - 7

GRAY - 8 GRAY - 8

WHITE - 9 WHITE - 9

""" ~ I [I I I 11.11 I
~ I

BLA.CK GOLD :::: + 5% TOL.

BROWN 0 SILVER = * 10% TOL.

RED 00 NO BAND = + 20% TOL.

ORANGE .- 000

YELLOW - 0000 Example: RED RED ORANGE

GREEN - 00000 2 2 000 =22K

BLUE - 000000

VII-10

STEP 4 - Install Pot

Install the 500K ohm pot at location R37. This pot

controls the speed of the real time clock and can be set

as required by your software. It must be oriented as

shown on the board. That is, the screw should be

positioned according to the marking on the board.

VIII-11

STEP 5 - Install Capacitors and Inductor

Each capacitor should be installed in the order

indicated below. Insert the leads into the board, gently

push the capacitor snug against the board, carefully

solder it in place, and then trim off the excess leads.

All values shown below are in microfarads unless otherwise

indicated. Many of these capacitors are bypass capacitors -

they minimize electrical noise on the board and insure

"glitch" free operation. If disc capacitors are enclosed,

the value is printed on them. If color coded capacitors

are included, the resistor color code is used to determine

the value.

() Cl .1

() C2 .1

(.•~ C3 .1

() C4 .1

() C5 .1

() C6 .1

() C7 .1

() C8 .1

() C9 .1

() ClO .1

(.) Cll .1

() CJ.2 .1

(\1 Cl3 .1

VIII-12

c/i Cl4 .1

c~l> Cl5 .1

(0 Cl6 22pf

("1 Cl? 27mf or 47 mf (electrolytic -

~
(/) Cl8 22pf see notebbelow)

(/) Cl9 .1

('') C20 .1

() C21 .1

cv{ C22 620pf

(·.'1 C23 .1

cl> C24 2.2 (electrolytic - see note below:

Cv') C25 .1 \
-~· - - - .. j

l
.I

(\') C26 .1

(/(. C27 470pf

·cv{ C28 .1

(./(C29 lOOOpf

Cv·r. CJO .1

(.!)' C31 2.2 (electrolytic - see note below

c/ C32 .01

(V-) C33 2.2 (electrolytic - see note below:

(.,) C34 2.2 (electrolytic - see note below

('~ C35 1500pf

c·l C36 .01

cf) 11 .47 microh. coil

VIII-13

All of the electrolytic capacitors must be properly

oriented on the board. One end of the capacitor is marked

with a"+". This end of the capacitor must be positioned

as indicated on the board. Since these are used to filter

the power, proper orientation is essential or the kit

will be damaged when power is applied.

In some cases the capacitance value is printed on the

capacitor in the form of a three digit number, with the

first two digits indicating the number of zeroes to be

added to the right {as in the resistor color code). For

example, 470 indicates 47 picofarads and 104 indicates

100000 picofarads, l.e., 0.1 microfarads. As another

example, C22 is nominally 620 pf. But your kit may have a

capacitor marked CK05/681K. The 681 means that the capacitor

is 680 pf. This is the capacitor that you would use for

C22 in this case.

VIII-14

STEP 6 - Processor Power

Regulator U29 was used for earlier 6V processors

and is no longer required. To provide additional power

filtering, install jumpers 's' and 1 T 1 • A scrap resistor

lead makes an excellent jumper.

VIII-15

STEP 7 - Install the Diodes

All of the diodes are the same - 4148. They must be

properly oriented on the board. One end of the diode is

marked with a band. This banded end filR~i be positioned

as shown on the board. Since diodes are used to prevent

current flow in one direction, reversing them will burn

out your kit!

() CR 1

() CR 2

() CR 3

VIII-16

4148

4148

4148

STEP 8 - Install the Transistors

There are three different types of transistors in

the Super Starter Kit, so be careful to install the proper

type. Each transistor has three pins, and must be properly.

oriented. If you look at the transistor from the side that

is flat (pins facing down), the pins are (from left to right) -

emitter, base, and emitter Be sure to orient the emitter

pin as shown on the board. If not properly oriented, the

transistor will be damaged.

(r) Q 1 2N3906

(.~/ Q 2 2N3904

(,,,,r/ Q 3 2N39.04

(v Q 4 2N3904

()/ Q•j 5 ~ 2N3904

() Q 6 2N4401 (or TIS111)

()/ Q 7 2N4401 (or TIS111)

(,)" Q 8 2N3904

VIII-17

STEP 9 - Install the I.C.'s

All integrated circuits must be properly positioned.

Pin one of the IC is indicated by a small dot or number

one in the corner, or by a note~ at one end of the chip.

Pin dne must be positioned as shown on the board. If you

purchased a fully socketed kit, first install the proper

size socket, and then install the IC in the socket (Be sure

to position the socket as described in Step 2.). DO NOT

solder the socket with the I;C. installed. When you solder

the I.C.'s be careful not to create a solder "bridge"

between adjacent pins. This type of soldering error is

the most common kit building error, and can be very

difficult to locate. Check each joint after you solder

it. Install the I. C. 's listed below.

() Ul 741S259

() U2 741S259

() U.3 741S251

() U4 741S251

() U5 7418155

() U6 741840

() U7 74S260

() U8 7418156

() U9 741S74

(l UlO 7418.362 (socket installed

VIII-18

in Step

c) Ull 741S377

() Ul2 74123

() Ul3 741S32

() Ul4 72555

() Ul8 4042 (socket installed in Step 2)

() U22 4042 (socket installed in Step 2)

() U24 741S367

() U25 7418148

() U26 741s3·2

() U27 741800

() U28 741S04

() U29 No Longer Used- do not install

() U33 4042' (socket installed in Step 2)
I

() U37 4042 (socket installed in Step 2)

() U38 74LS367

() U39 74.LS367

() · U40 7418367

() U41 7418367 .

() U42 741S367

() U43 7418367

() U44 741S367

() U45 741S367

() U47 74S472 Monitor - odd addressed

bytes (s6cket installed in Step 2)

VIII-19

() U49 74S472 Monitor - even addressed

bytes (socket installed in Step

() U52 7418367

() U53 7418367

() U54 741S367

() U55 741S367

() U56 741S367

() U57 741S367

() U58 741S32

() U59 741S74

~~D!.!~g; The CPU, U23, should not be installed at

this time. It will be installed later after the

integrity of the.board has been verified.

VIII-20

2)

STEP 10 - Install Expansion Memory I.C.'s

If you purchased any of the memory expansion capability,

install those I.C 's and their sockets. The available

~xpansion areas are:

() RAM 1

() U21 4042

() U36 4042

() Ul7 4042

() U32 4042

() RAM 2

() U20 4042

() U35 4042

() Ul6 4042

() U31 4042

() RAM 3

() Ul9 4042

() U34 4042

() Ul5 4042

() U30 4042

VIII-21

() PROM 1 - Usually reserved for ~Instant

Input Assembler"

C) u46

() U48

7418472 - odd addressed bytes

7418472 - even addressed bytes

NOTE: Refer to our literature for programs that we offer

in fusable link PROM. All of them are designed to

run in this expansion area. Many of them, like the

Instant Input Assembler, will speed up your

programming tasks.

() EPROM

() U51 2708 - odd addressed bytes

() U50 270& ~ even addressed bytes

NOTE: These two EPROMs can be programmed by the Super

Starter Kit itself. Just put a blank EPROM in

each socket, and then use the monitor to save

your program in EPROM. Refer to the monitor

section for detailed instructions.

VIII-22

$TEP 11 - Memory Configuration

Install the jumper wires to select the proper memory

addressing. The Stiper Starter Kit allows you to rearrange

the memory addressing allocation. The only restriction

involves the PROM monitor. If you are using the PROM·o~

monitor, then the PROM monitor must be located at #FCOO

and RAM must be located at #0000. If you are not planning

to use the monitor, or your application requires a special

address allocation, then refer to the schematic and

determine for yourself what jumper configuration is

required. If you want to use the standard kit configuration,

then install the jumpers as follows:

() JWl (in) to. JWl (out)

() JW2 (in) to JW2 (out)

() JW3 (in) to JW3 (out)

(.) JW4 (in) to JW4 (out)

(), JW5 (in) to JW5 (out)

() JW6 (in) to JW6 (out)

() JW7 (in) to JW7 (oµt)

() JW8 (in) to JW8 (out)

() JWlO (in) to JWlO (out)

() J\Tll (in) to JWll (out!'.

() JW12 (in) to JW12 (ou;t)

VIII-23

STEP 12 - Input/Output Conf igur~tion

The Super Starter Kit includes 32 bits of I/O (16 bits

in and 16 bits out). The monitor uses three of these bits.

We recognize that many users may not want to use the monitor,

and have made provisions for removing the monitor related

I/O. If you are using the monitor, install the follawi~g

jumpers. If not, simply leave them out, and the monitor

I/O is disabled. JW13 connects the clock to I/O bit two.

It may be removed if you do not plan to use the real time

clock.

() JW9 (in) to JW9 (out)

() JW13 (in) to JW13 (out)

() JW14 (in) ~o JW14 (out)

() JW15 (in) to JW15 (out)

VIII-24

STEP 13 - Install Control Switches

There are two different types of switches supplied

with the kit, namely SPST and momentary contact switches.

The first step is t~ separate th~m from each other. The

momentary contact switch is the one ~hich does not "latch".

That is, if you move its handle it will spring back when

it is released. The two SPST switches can be installed in

either direction, but the momentary contact one must be

properly oriented. The handle of the switch must face the

processor. It is very important that the switch be installed

correctly or the processor will be continually halted!

() SWl - SPST

() SW2 momentary contact

() SWJ - SPST

VIII-25

STEP 14 - Short Test

The board has been assembled, and before applying

power, you can test for short circuits which might seriously

damage the kit. Using a volt-ohmmeter or a continuity

checker, check the resistance between the pins of the

processor as described below. Each reading should indicate

a high resistance or a ~e~y· di~'*lo*_o£ the light. If any

of them show a zero resistance or a bright lit light, then

you have a short. If you find a short, you mg~1 recheck

all of your connections until the problem is located and

repaired. If power is applied to the kit in the presence

of a short circuit, ~11 of the_ I.C.'s may be damaged!

() Pin 1 (-5V)· and Pin 26 (GND)

() Pin 1 (-5V) and Pin 2 (+5V)

() Pin 1 (-5V) and Pin 27 (+12V)

() Pin 2 (+5V)* and Pin 26 (GND)

() Pin 2 (+5V) and Pin 27 (+12V)

() Pin 27 (+12V) and Pin 26 (GND)

VIII-26

STEP 15 - Connection of Power

Ii' the kit has no power shorts, then you are ready to

apply the power. Ii' you have located any shorts, DO NOT

apply power. All of the Super Starter power is obtained

via the 16-pin jacks. All of the pins of Jack J3 should

be connected to the power supply ground. Jack J5 should be

connected as follows:

() Pins 1-4, and 13-16 1 +5v:

() Pins 5,6,11,12 +12V

() Pins 7,10 -5V

() Pins 8,9 +28V (optional - used

only for EPROM programming)

After you have connected jacks J3 and J5 to the power

supply, check to be sure that the jacks are inserted

properly (pin 1 to pin 1) and that you have the proper

supply input on each pin. An error here is very costly -

it will ruin the entire kit!

VIII-27

STEP 16 - Power Check

As a further precaution before applying continuous

power, we suggest that you perform the following power

supply check. Place your volt-ohmmeter on the pins shown

below, turn power on and then immediately turn power back

off again. While power is on, check the reading and verify

that it is correct. If it is not correct, then you have a

construction error o~ you have not connected the power

correctly. Correct the problem before proceeding with

final checkout.

() +5V between Pin 16 of U8 and Pin 8 of U8

() -5V between Pin 1 of U23 and Pin 8 of U8

() +12 V between Pin 27 Df U23 and Pin 8 of U8

VIII-28

STEP 17 - Install Processor

Turn off power and install the TMS 9900 CPU. The socket

was installed earlier. Be certain to properly orient the

CPU. Pin 1 should be in the corner nearest the toggle

switches.

VIII-29

STEP 18 - Connection of Terminal

Turn off the power. Connect your terminal to input

jack JlO. If you have an RS;.;;2J2C terminal, the pins on

its connector should be connected as follows:

() Pin 1 (terminal) to Pin 1 of JlO

(} Pin 2 to Pin 2 of JlO

() Pin 3 to Pin 3 of JlO

() Pin 5 to Pin 4 of JlO

(') Pin 6 to Pin 5 of JlO

() Pin 8 to Pin 7 of JlO

() Pin 7 to Pin 6 of JlO

-If you have a TTY or other 20m~ current loop interface,

connect it as follows (there are no' standard.connector,

assignments - refer-to the manual for your terminal):

() TTY IN - input to Pin 11 of JlO and return

on Pin 10 of JlO

() TTY OUT - input on Pin 8 of JlO and return

on Pin 9 of JlO

Apply power to the kit. If tou are using a TTY, a~d it

begins to "chatter" then reverse the output leads (Pin 8

and Pin 9).

VIII-JO

STEP 19 - Start Monitor

To activate the monitor, reset the CPU and then type

the letter 'X' on the terminal. The CPU should respond with

a "?". If you cannot get the "?", you have an assembly error.

First, check the small things:

() SWl set correctly?'(in LOAD position)

() SW2 oriented correctly? (handle toward CPU)

()) Terminal wired correctly?

() All I.C.'s in right position?

() Monito~ PROM in· proper· socket? (If they are

reversed the monitor won't work.)

() All jumpers properly installed?

If the monitor responds with "?", then the kit is

running. Try using the monitor and exploring the capabilities

of your new computer. If you have further trouble and cannot

get the kit running, contact the dealer that you purchased

the kit f~om and ask for his assistance; If he cannot help

you, call .us at Rosse Corporation, and we will do everything

we can to help you. Our number is (703) 471-7530.

VIII-31

IX. INSTRUCTION SET

The following notation is used to describe the TI 9900

instruction set. For further information regarding addressing

modes, timing, etc. refer to the TMS 9900 Microprocessor Data

Manual, which is found in section XIII.

S - General address for the source operand. Any addressing

mode is acceptable. (See Figure IX-1)

·D - General address for the destination operand. Any

addressing mode is· acceptable. (See Figure IX-1)

IOP - Immediate operand

~- W - Workspace register

DISP - Relative displacement

WP - Workspace pointer

PC - Program counter

ST - Status Register {See Figure IX-2)

{) - Contents of address or register

~ ~ Replaces

II-1

' .

FIGURE IX-1 ADDRESSING MODES

A.!!.!!!:~.§..§.i!!k_M2..!!~

Workspace Register

Workspace Register

Indirect

Indexed

Direct

Workspace Register

Indirect with Auto

Increment

The contents of the indicated workspace

register are the operands. (e.g. R3,R7)

The contents of the indicated workspac~

register contain the memory address of

the operand. (e.g. *R3,*R6)

The contents of the indicated workspace

register (RO is not allowed as an index

register) are added to the address

enclosed in the second command word.

(e.g. @2(Rl),@6(R4))

The word following the instruction

contains the memory address of the

operand. {e.g. @6,@9)

The contents of the indicated workspace

register contain the memory address of

the operand which is automatically

incremented after the access (plus 2 for

word operations and plus 1 for byte

operations). (e.g. *Rl+,*R9+)

II-2

FIGURE IX-1 ADDRESSING MODES (continued)

!g9.r.§..§..§.i-.gg_!1.Q.g§.

Immediate

Relative

Q§..§..£r.i-.£1i-.2.U

The word following the instruction

contains the operand.

The 8-bit displacement of the.

instruction is added to the updated

program counter in jump instructions

or to the base address in single-bit

CRU instructions.

II-3

FIGURE IX-2 STATUS REGISTER

!!!~

0-LGT

1-AGT

2-EQ

3-C

4-0V

5-P

12-15

!2~.§.£r.i12~1.Q!!

logical greater than

arithmetic greater than

equal

carry

overflow

odd parity

interrupt

IX-4

INSTRUCTION: ADD

Format: A S,D

Opcode: AOOO

Status Changed: LGT,AGT,EQ,C,OV

Definition: The source operand is added to the destination

operand. The sum replaces the destination

operand.

Results: (S)+(D)+ (D)

Notes: Use to add 16 bit numbers from:

Memory to Memory A @SCALE,@TABLE

Register to Register A R10,R9

Memory to Register A @PRIME,R6

Register to Memory A R14,@SUM

IX-5

INSTRUCTION: ADD BYTES

Format: AB S,D

Opcode: BOOO

Status Changed: LGT,AGT,EQ,C,OV,OP

Definition: Add two 8-bit byt~s. The 8-bit source operand

is added to the 8-bit destination operand. If

~ither address is a workspace register, then

the left-most eight bits of that workspace

register will be used.·

Results: (S)+(D) .. (D)

Notes: Used to add signed 8-bit numbers from:

' Memory to Memory AB @X,@Y

Register to Memory AB Rl,@Y

Memory to Register AB @X,Rl

Register to Register AB Rl,R2

IX-6

INSTRUCTION: ABSOLUTE VALUE

Format: ABS S

Opcode: 0740

Status Changed: LGT,AGT,EQ,C,OV

Definition: Compute the absolute value of the source

operand and replace the source operand with

that result.

Results: Absolute value of (S)~ (8)

Notes: Used to compute the absolute value of a 16-bit

number.

ABS @LISTA

A·BS ®LISTB

LISTA

LIS TB

BEFORE

FFF4

oooc

IX-7

AFTER

oooc

oooc

INSTRUCTION: ADD IMMEDIATE

Format: AI W,IOP

Opcode: 0220

Status Changed: LGT,AGT,EQ,C,OV

Definition: Add the immediate value to the spacified

workspace register.

Results: (W) + IOP-+ (W)

Notes: Add a constant to a workspace register.

AI R4,100

AI Rll,10

IX-8

Add 100 to register R4

Add ten to register Rll

INSTRUCTION: AND IMMEDIATE

Format·: ANDI W,IOP

Opcode: 0240

Status Changed: LGT,AGT,EQ

Definition: Perform a bit-by-bit logical AND operation

between the workspace register and the

immediate operand. Place the result in the

workspace register.

Results: (W) AND IOP -+ (W)

Notes:
I

Use to isolate certain bits of a workspace register.

ANDI 6, > FOOE

Befo~e! (R6)=)9877 1001 1000 0111 0111

Immed. operand=>FOOE 1111 0000 0000 1110

After: (R6)=)9006 1001 0000 0000 0110

IX-9

INSTRUCTION: UNCONDITIONAL BRANCH

Format: B S

Opcode: 0440

Status Changed: None

Definition: Replace PC with the source address. Effectively,

transfers control to the source address.

Results: S ~ (PC)

Notes: This is the most flexible jump and can be used to

transfer control to any location in memory. If the

jump is out of range (+127, -128 words) for a

relative jump instruction, use B.

Example: B @107 will cause PC to be reloaded

with 107.

IX-10

INSTRUCTION: BRANCH AND LINK TO SUBROUTINE

Format: BL S

Opcode: 0680

Status Changed: None

Definition: Place source address in PC and place address

Results:

Notes:

of the instruction following the BL instruction

in workspace register Rll.

(PC) ~ (Rll)

S ~ (PC)

Use to transfer control to a subroutine. Return

from the subroutine is accomplished with a branch

indirect through register 11.

BL @SUB

•
•
•

~~~~~~---)• SUB e 

IX-11 

• 
• 
• 
B * Rll 



INSTRUCTION: BRANCH AND LOAD WORKSPACE POINTER 

Format: BLWP S 

Opcode: 0400 

Status Changed: None 

Definition: Place source operand into WP and the word 

following it into the PC. Place previous 

contents of WP into Rl3 of the new workspace, 

PC (address immediately following BLWP) in 

new ·Rl4 and ST in new .Rl5. 

Results: 

Notes: 

(S) ~ (WP) 

(S+2) ~ (PC) 

(original WP) ~ (Rl3) 

(original PC) ~ (Rl4) < 

(original ST) ~ (;Rl5) 

Use to call a subroutine and change the workspace 

environment. The subroutine must return via RTWP 

command. 

BLWP R4 

BLWP @SBR 

II-12 

Place (R4) in WP,(R5) in PC 

Place. (SBR) in WP,(SBR+2) in PC 



INSTRUCTION: COMPARE 

Format: C S,D 

Opcode: 8000 

Status Changed: LGT,AGT,EQ 

Definition: Compare the contents of the source operand 

with the contents of the destination operand 

and set/reset designated status register bits. 

Results: Status register bits set/reset after comparison. 

Notes: Use to compare 16-bit numbers from: 

Memory to Memory c @TOP,@LAST 

Register to Register c Rl,R6 

Memory to Register c @BOT,R5 

Regi·ster to Memory c R7,@ll 

II:-13 



INSTRUCTION: COMPARE BYTES 

Format: CB S,D 

Opcode: 9000 

Status Changed: LGT,AGT,EQ,OP 

Definition: Compare the contents of the source operand 

byte with the contents of the destination 

operand byte and set/reset the designated 

status register bits. 

Results: Status Register bits set/reset after comparison. 

Notes: Use to compare 8-bit numbers. If a workspace 

register is used for S or D, the left-most 

8-bi ts will be used. ·. 

CB Rl,R2 Compare Rl (byte) with R2 (byte). 

IX -14 



INSTRUCTION: COMPARE IMMEDIATE 

Format: CI W,IOP 

Opcode: 0280 

Status Changed: LGT,AGT,EQ 

Defintion: Compare the contents of the specified register 

with the immediate operand and set/reset 

designated status register bits. 

-
Results: Status register bits set/reset after comparison. 

Notes: Use to compare contents of workspace register 

with some known value and set status register 

bits accordingly. 

CI R2 ,)7FFF Compare register R2 to 

>7FFF 

CI R3,0 Compare register R3 

to zero. (A more 

efficient way is: 

MOV R3,R3) 

IX-15 



INSTRUCTION: CLEAR 

Format·: CLR S 

Opcode: 04CO 

Status Changed: None 

Definition: Replace source operand with a full 16-bit 

word of zeroes. 

Results: (S) ~O 

Notes: Use to zero workspace registers or memory locations. 

CLR R5 Clear register R5 

CLR @SUM Clear location SUM 

' 
LI Rl,X Clear (I) to (X+lO) 

.LOOP CLR *Rl+ 

CI Rl,X+l2 

JL LOOP 

IX -16 



INSTRUCTION: COMPARE ONES CORRESPONDING 

Format: COC S,W 

Opcode: 2000 

Status Changed: EQ 

Definition: When all ones in the source operand have a corres­

ponding one in the destination workspace register, 

set the equal bit in the status register. 

Results: EQ status bit is set/reset. 

Notes: Use to check if a bit or bits in a destination work­

space register are set to one. Bits correspond to the 

one bits in the source operand. If corresponding bits 

in destination are also set, the equal bit ·in Status 

Register is also set. 

Assume TEST= Cl02 = 1100 0001 0000 0010 

RS = E306 = 1110 0011 0000 0110 

Then COC @TEST,R8 

Every logic one bit in TEST has a corresponding logic 

one bit in reg. R81 therefore the equaL status bit'is set 

MASK DATA 8000 

coc 

JEQ 

@MASK,Rl 

ADD 

IX-17 

IS SIGN IN Rl A ONE? 

IF SO, JUMP TO ADD 



INSTRUCTION: COMPARE ZEROES CORRESPONDING 

Format: czc s,w 

Opcode: 2400 

Status Changed: EQ 

Definition: When the bits in the destination workspace 

register corresponding to the one bits in the 

source operand are all equal to a logic zero, 

set equal status bit. 

Results: Set/reset status register equal bits. 

Notes: Use to test single/multiple bits within a 

workspace register. 

Assume TEST=>Cl02 = 

RS =)2201 = 

Then CZC @TEST,RS 

1100 0001 0000 0010 

0010 0010 0000 0001 

Every logic one bit in TEST has a corresponding 

logic zero in register RS; therefore, the equal 

status bit is set. 

II-18 



INSTRUCTION: DECREMENT BY ONE 

Format: DEC S 

Opcode: 0600 

Status Changed: LGT,AGT,EQ,c,ov 

Definition: Subtract one from the 16-bit source operand. 

Results: (S)-1 ~ (S) 

Notes: Used for indexing or contro1ling loops. 

DEC 

JNE 

@TEC 

LOOP 

IX-19 

TEC=TEC-1 

JUMP IF TEC NOT ZERO 



INSTRUCTION: DECREMENT BY TWO 

Format: DECT S 

Opcode: 0640 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: Subtract two from the 16-bit source operand. 

Results: (S)-2 ~ (S) 

Notes: Useful f~r counting and in~exing full word arrays. 

DECT @COUNT Subtract two from COUNT 

DECT RlO Subtract two from register 10 

IX-20 



INSTRUCTION: DIVIDE 

Format: DIV S,W 

Opcode: 3COO 

Status Changed: OV 

Definition: Divide the destination operand (a 32-bit 

unsigned integer) by the source operand (a 

16-bit unsigned integer) using integer 

arithmetic and place the quotient in the 

destination operand and the remainder in the 

second word of the destination operand. If 

the quotient exceeds 16-bits, the overflow 

is set. 

Results: (W,W+l) / (S) --; (W) quotient 

(W+l) remainder 

Notes: Use divide (DIV) for integer division (unsigned). 

DIV R3,R4 Divide registers R4,R5 by register (R3) 

DIV @SUM,2 Divide registers R2,R3 by (SUM) 

IX-21 



INSTRUCTION: IDLE COMPUTER 

Format: IDLE 

Opcode: 0340 

Status Changed: None 

Definition: Place the computer in an IDLE state. 

Results: Computer is IDLE. 

Notes: Used to halt the processor and wait for an 

interrupt. 

IX-22 



INSTRUCTION: INCREMENT BY ONE 

Format: INC S 

Opcode: 0580 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: Add one to the 16-bit source operand. 

Results: (S)+l ~ (S) 

Notes: !NC @CNT(Rl) increment t~ble location selected 

by Rl 

' < 

IX-23 



INSTRUCTION: INCREMENT BY TWO 

Format: INCT S 

Opcode: 05CO 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: Add two to the 16-bit source operand. 

Results: (S)+2 ~ (S) 

Notes: Useful for controlling wor~ addressing of an index. 

• < 

rx:-24 



INSTRUCTION: INVERT 

Format: INV S 

Opcode: 0540 

Status Changed: LGT,AGT,EQ 

Definition: The 16-bit source operand is replaced with its 

one's complement. 

Results: 

Notes: 

One's complement of (S) ~ (S) 

Use this operation to "flip" the bits in some 

memory location or register. 

INV R2 

INV @SUM 

INV *R3 

Invert register R2 

Invert location (SUM) 

Invert location in register R3 

IX-25 



INSTRUCTION: JUMP EQUAL 

Format: JEQ DISP 

Opcode: 1300 

Status Changed: None 

Definition: When the equal status bit is set, the signed 

displacement is added to the PC. 

Results: (PC) + (displacement) ~PC (if EQ) 

(PC) + 2 ~ PC (if not EQ) 

Notes: Used to transfer if equal 

C @X,@Y 

JEQ YES go to YES if (X) = (Y) 

IX-26 

' < 



INSTRUCTION: JUMP IF GREATER THAN 

Format: JGT DISP 

Opcode: 1500 

Status Changed: None 

Definition: When the arithmetic greater than status bit 

is set, add the signed displacement to the PC. 

Results: (PC) + Displacement ~ (PC) (if AGT) 

(PC) + 2 ~ (PC) (if AGT .clear) 

Notes: Used following a 16-bit arithmetic operation~ 

c 

JGT 

@ONE,@TWO 

@OUI go to OUI i£ (ONE) is 

arithmetically greater 

than (TWO) 

The arithmetic greater than is the result of a 

signed compare, so > FFFF (-1) is !12.i arithmetic 

greater than > 7FFF, but it is logical greater 

than. 

\ 



INSTRUCTION: JUMP ON HIGH 

Format: JH DISP 

Opcode: lBOO 

Status Changed: None 

Definition: When the logical greater than status bit is 

set and the equal status bit is clear then 

the signed dispalcement is added to the PC. 

Results: (PC) +Displacement ~ (BC) (if LGT and not EQ) 

(PC) + 2 ~ (PC) (if LGT clear or EQ) 

Notes: Used when comparing logical or unsigned values. 

c 

JH 

@BIG,@GOOD 

@BAD go to BAD if (BIG) is 

logically greater than 

(GOOD) (unsigned) 

Since the logical greater than is an unsigned 

compare, this instruction is most often used 

for address comparisons. 

IX:-28 



INSTRUCTION: JUMP ON HIGH OR EQUAL · 

Format-: JHE DISP 

Opcode: 1400 

Status Changed: None 

Def'inition: When the equal status bit or the logical 

greater than status bit is set, the signed 

displacement is added to the PC. 

Results: (PC)+ Displacement~ (P.C) (if LGT or EQ) 

(PC) + 2 ~ (PC) (if LGT clear and EQ clear) 

Notes: Use to branch or transfer control when either 

logical greater than or equal status bits=l. 

JHE $+4 If SR bits 0 or 2 =l~ skip 

one word. 

JHE SUB 

IX_-29 

If' SR bits 0 or 2 =l, jump 

to SUB. 



INSTRUCTION: JUMP ON LOW 

Format: JL DISP 

Opcode: lAOO 

Status Changed: None 

Definition: When the logical greater than and equal stauts 

bits are both reset, then th signed displacement 

is added to the PC. 

Results: (PC) + Displacement ~ (PC) (If LGT and EQ 

Notes: 

are clear) 

(PC) + 2 ~ (PC) (If LGT or EQ) 

Use to transfer control when a logical or unsigned 

less than condition is detected. 

C @ONE,@TWO 

JL @GO 

IX-30 

go to GO if (ONE) logically 

less than (TWO) (unsigned 

compare) 



INSTRUCTION: JUMP ON LOW OR EQUAL 

Format: JLE DISP 

Opcode: 1200 

Status Changed: None 

Definition: When the equal status bit is set or the 

logical greater than is reset, then the 

signed dispalcement is added to the PC. 

Results: (PC) + Displa~ement ~ (PC) (if LGT clear or EQ set) 

(PC) + 2 ~ (PC) (if LGT set and EQ clear) 

Notes: Use to test status register bits and transfer 

control if LGT=O or EQ=l. 

JLE ADDNO If SR bits O=O or 2=1, 

go to ADDNO 

IX-31 



INSTRUCTION: JUMP ON LESS THAN 

Format: JLT DISP 

Opcode: 1100 

Status Changed: None 

Definition: If the arithmetic greater than and equal 

status bits are reset then add the signed 

displacement to the PC. 

Results: (PC) + Displacement ~ (P'C) (If LGT and EQ reset) 

(PC) + 2 ~ (PC) (If LGT or EQ set) 

Notes: Used when comparing arithmetic values. 

c 

JLT 

@A,@B 

LESS 

IX-32 

go to LESS if (A) is 

arithmetically less than (B) 



INSTRUCTION: UNCONDITIONAL JUMP 

Format: JMP DISP 

Opcode: 1000 

Status Changed: None 

Definition: Add the signed displacement to the PC and 

place the sum into the PC. 

Results: (PC) + Displacement ~ PC 

Notes: Use to transfer control un_condi tionally. 

JMP LOOP Begin execution at loop 

JMP $ Remain at this location 

HERE JMP $+4 Remain at this location 

JMP $+4 Jump over next address 

The destination address must be 1o1ithin the range 

+127 to -128 1o1ords. If not, use the branch (B) 

instruction. 

IX-33 



INSTRUCTION: JUMP ON NO CARRY 

Format: JNC DISP 

Opcode: 1700 

Status Changed: None 

Definition: If the carry status bit is clear, add the 

signed displacement to the PC. 

Results: (PC) + Displacement ~ (PC) (If no carry) 

( PC ) + 2 / 4 ( PC ) ( If car r'y ) 

Notes: Use to branch when carry cleared. 

JNC YES If carry clear, go to YES 

Can be used to check for 16-bit carry for multi~ 

precision arithmetic. The following will calculate 

(Rl, R2) + ( R3 , R4) • 

A 

JNC 

INC 

GO A 

R4,R2 

GO 

Rl 

R3,Rl 

IX:-34 



INSTRUCTION: JUMP ON NOT EQUAL 

Format: JNE DISP 

Opcode: 1600 

Status Changed: None 

Definition: 

Results: 

If the equal status bit is reset, add the 

signed displacement to the PC. 

(PC) + Displacement ~ (PC) (If not EQ) 

{PC) + -2 -7 (PC) (If EQ) · 

Notes: Used to branch when not equal. 

A Rl,R2 

JNE x go to X if Rl + R2 not zero 

MOV Rl,Rl 

JNE NO go to NO if Rl not z.ero 

IX·-35 



INSTRUCTION: JUMP ON NO OVERFLOW 

Format·: JNO DISP 

Opcode: 1900 

Status Changed: None 

Definition: When the overflow status bit is reset, add 

the signed displacement to the PQ. 

Results: (PC) + Displacement ~ (PC) (If no OV) 

{PC) + .2 ~ (PC) {If OV) · 

Notes: Used to test arithmetic overflow. 

A Rl,R2 

JNO- GOOD go to GOOD if Rl+R2 does 

not overflow 

An overflow occurs during an add if the sign of 

the two operands are the same but the sign of the 

sum is not the same. 

IX-36 



INSTRUCTION: JUMP ON CARRY 

Format: JOC DISP 

Opcode: 1800 

Status Changed: None 

Definition: When the carry status bit is set, add the 

signed displacement to the PC. 

Results: (PC) + Displacement ~ (PC) (if carry) 

(PC) + 2 -l) (PC) (if no carry) 

Notes: Use to branch or transfer control if carry is set. 

JOC START If Carry, Go to Start 

JOC $-2 If Carry, Go to Previous Instruction 
. < 

IX'.-37 



INSTRUCTION: JUMP ON ODD PARITY 

Format: JOP DISP 

Opcode: lCOO 

Status Changed: None 

Definition: When the odd parity status bit is set, add 

the signed displacement to the PC. 

Results: (PC) +Displacement ~ (PC) (If OP) 

(PC) + ·2 ~ (PC) (Ir not .op) 

Notes: Used to test parity of 8-bit values. 

MOVB @CH,Rl 

JOP ODD go to ODD if CH is 

odd 'parity 

Note that the OP flag is only changed by byte 

instructions (e.g. MOVB,CB) 

IX-38 



INSTRUCTION: LOAD COMMUNICATIONS REGISTER UNIT (OUTPUT) 

Format·: LDCR S,C 

Opcode: 3000 

Status Changed: LGT,AGT,EQ,OP (IF C (9) 

Definition: Transfer the number of bits specified (C) 

from the source operand to consecutive CRU 

lines. The contents of Rl2 determines the 

least significant CRU line. 

Results: (S) ~ CRU for C bits 

Notes: Use this to output a bit pattern to CRU lines 

for versatile I/O. If number of bits specified 

is less than nine, then S is a byte address. If 

number of bits is nine or more, S becomes a word 

address. The least significant memory bit goes to 

the least significant memory CRU bit. If the bit 

count (C) is zero, then 16 bits are output. Prior 

to an LDCR instruction, register R12 (CRU Base 

Address) must be loaded with the appropriate 

address. With this kit, Rl2=0 will address bit 0. 

LDCR 2,0 Transfer 16 bits to CRU from R2 

LDCR @NUM,8 Transfer 8 bits to CRU from· NUM 

IX-39 



INSTRUCTION: LOAD IMMEDIATE 

Format.: LI W,IOP 

Opcode: 0200 

Status Changed: LGT,AGT,EQ 

Definition: Place the immediate operand in the specified 

register. 

Results: IOP ~ (W) 

Notes: Use to initialize register for counters or addresses. 

LI R5,TABLE 

LI Rl,10 

LI R2,1000 

IX-40 

LOAD R5 WITH ADDRESS OF TABLE 

SET R1 TO 10 

LOAD REGISTER R2 WITH 1000 



INSTRUCTION: LOAD INTERRUPT MASK IMMEDIATE 

Format: LIMI IOP 

Opcode: 0300 

Status Changed: Interrupt Mask 

Definition: Place the four least significant bits of 

IOP into the interrupt mask (bits 15-12 of 

the Status Register). 

,, 

Results: IOP (15-12) ~ Status Register (15-12) 

Notes: Used to enable or disable interrupts. 

LIM! O disable all interrupts 

LIMI >F enable all interrupts 

IX::-41 



INSTRUCTION: LOAD WORKSPACE POINTER IMMEDIATE 

Format: LWPI IOP 

Opcode: 02EO 

Status Changed: None 

Definition: Replace contents of workspace pointer register 

with the beginning address of 16 contiguous 

words. This changes the current workspace 

pointer and environment. 

Results: IOP ~ (WP). 

Notes: Use to initialize the WP register to alter 

workspace environment. 

LWPI ) 100 

LWPI WSP 

IX-42 

Place )100 in workspace pointer 

Location WSP = Register 0 



INSTRUCTION: MOVE WORDS 

Format: MOV S,D 

Opcode: cooo 

Status Changed: LGT,AGT,EQ 

Definition: 

Results: 

Replace destination operand with a copy of 

the source operand. 

(S) ~ (D) 

Notes: Use to mov~ from: 

Memory to Memory MOV@TABLE,@TEMP 

Register to Register MOV. R5,R9 

Register to Memory (Store)MOV R3,@ANSWER 

Memory to Register (Load) MOV @TABLE,R8 

IX-43 



INSTRUCTION: MOVE BYTES 

Format: MOVB S,D 

Opcode: DOOO 

Status Changed: LGT,AGT,EQ,OP 

Definition: 

Results: 

Notes: 

Move the source byte operand to the 

destination byte operand. Whenever S or D is 

a workspace register, then the leftmost 8-bits 

are used. 

(S) ~ (D) 

Load Register 

Store Register 

Move Memory to Memory 

Move Register to Register 

IX-44 

MOVB @X,Rl 

MOVB Rl,@Y 

MOVB @X,@Y 

MOVB Rl,R2 



INSTRUCTION: MULTIPLY 

Format: MPY S,W 

Opcode: 3800 

Status Changed: None 

Definition: Multiply the destination operand, an unsigned 

16-bit integer by the source operand, an 

unsigned 16-bit integer. Place the product 

into the 32-bit (two word) destination field 

right justified. 

Results: (W) * (S) -.::,. (W,W+l) 

Notes: Use multiply (MPY) to'multiply two 16-bit unsigned 

integers. The destination operand must be a workspace 

register, therefore the result will be in workspace 

register specified and the next one. If workspace 

register 15 is specified then the next memory 

location following the workspace area is the 

second half of the product. 

MPY *1,4 MPY reg R4 by reg Rl (indirect) 

MPY @NUM,4 MPY reg R4 by {NUM) 

IX~-45 



INSTRUCTION: NEGATE 

Format: NEG S 

Opcode: 0500 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: Replace. source operand with two 1 s complement 

value or the source operand. 

Results: 0-(S) ~ (S) 

Notes: Use NEG to replace the operand with its additive 

inverse. 

NEG R7 

The contents or workspace register R7 is replaced 

with its two's complement value • 

. IX'-46 



INSTRUCTION: OR IMMEDIATE 

Format: ORI W,IOP 

Opcode: 0260 

Status Changed: LGT,AGT,EQ 

Definition: Perform a logical OR operation between the 

specified workspace register and the immediate 

operand. Place the result in the workspace 

register •. 

Results: (W) OR IOP ~ (W) 

Notes: Use to perform logical OR between workspace 

register and some known immediate value. 

Example: ORI RlO,) 202D 

Before: RlO=) 1AD5 0001 1010 1101 0101 

Imed. Operand= 0010 0000 0010 1101 

After: RlO= > 3AFD 0011 1010 1 1 1 1 1101 

ORI R5,) 8000 Set sign bit to one in 

ORI RlO,) F Set four LSB to one in 

IX"-47 

R5 

RlO 



INSTRUCTION: RETURN. WITH WORKSPACE POINTER 

Format: RTWP 

Opcode: 0380 

Status Changed: All status bits set by Rl5, including 

interrupt mask. 

Definition: 

Results: 

Replace contents of WP with contents of 

current Rl3, PC with contents of Rl4, ST 

with currnet value of Rl5. 

(Rl3) ~ (WP) 

(Rl4) ~ (PC) 

(Rl5) ~ (ST) 

Notes: Use to return from a BLWP,XOP or a hardware interrupt. 

IX-48 



INSTRUCTION: SUBTRACT WORDS 

Format: S S,D 

Opcode: 6000 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: Subtract the source operand from the destination 

operand and place the result in the destination 

operand. 

Results: (D)-(S) ~ (D) 

Notes: Use to subtract signed 16-bit integers from: 

Memory to Memory 

Register to Register 

Register to Memory 

Memory to Register 

IX:-49 

S @OLDVAL,@NEWVAL 

S R8,R7 

S RlO,@DIFF 

S @CONS,Rl4 



INSTRUCTION: SUBTRACT BYTES 

Format: SB S,D 

Opcode: 7000 

Status Changed: LGT,AGT,EQ,C,OV,OP 

Definition: Subtract the source operand byte from the 

destination operand byte and place the 

difference in the destination operand byte. 

Results: (D)::.(S)' -+ (D) 

Notes: Use to subtract signed integer bytes. 

SB @> 501,@> 503 Result in address> 503 

SB Rl,R2 Result in upper byte of R2 

. IX-50 



INSTRUCTION: SET BIT ONE 

Format: SBO DISP 

Opcode: lDOO 

Status Changed: None 

Definition: Set the output bit to a logic one. The bit 

address is computed by adding bits 3-14 of 

Rl2 to the signed dispalcement. 

Results: 

Notes: 

1 ~ (CRU bit specified by bits 3-14 of Rl2 + 

displacement) 

Use to set a particular CRU line to a logical one. 

CLR Rl2 Set CRV base 

SBO 5 Set bit 5 

The following sequence is equivalent: 

LI Rl2,30 Set CRU Base 

SBO -10 SEt bit 5 

Bit 5 is specified because bits 3-14 of Rl2 is 

15(Rl2/2) and 15+(-10) is 5. 

lX·-51 



INSTRUCTION: SET BIT ZERO 

Format: SBZ DISP 

Opcode: lEOO 

Status Changed: None 

Definition: Set output CRU bit to a logical zero. The 

CRU bit is determined by adding contents or 

bits 3-14 of Rl2 to the signed displacement. 

Results: 

Notes: 

0 ~ (CRU bit specified by bits 3-14 of Rl2 + 

displacement) 

Use to get the particular CRU line to a logical 

zero. 

LI 

SBZ 

SBZ 

12, > 280 

>28 

-2 

· rx·-52 

CRU base address=> 140 ( Rl2/2) 

Sets CRU address >168 (140+28) 

to zero 

Sets CRU address ~13E (140-2) 

·to zero 



INSTRUCTION: SET TO ONES 

Format: SETO S 

Opcode: 0700 

Status Changed: None 

Definition: Replace· the source operand with a 16-bit word 

of one's. 

Results: (S) ~ FFFF 

Notes: Use to initialize a table with -1 values instead 

of zeroes if your application requires such. Use 

to initialize refister with -1. 

SETO 5 ·Set register 5 to >FFFF 

SETO @SUM Set SUM to -1 

IX'-53 



INSTRUCTION: SHIFT LEFT ARITHMETIC 

Format: SLA W,C 

Opcode: OAOO 

Status Changed: LGT,AGT,EQ,C,OV 

Definition: The contents of the workspace register are 

shifted left the specified number of bits (C) 

with zeroes filling the vacated bit positions. 

The last bit shifted out is placed in the 

carry out bit. If C=O; the right four bits of 

register RO are used as the shift count. 

Results: (W) is shifted left the specified shift count (C). 

Notes: Use to shift the contents of a workspace register 

left by some shift count. 

SLA R4,8 Shift reg R4 left 8 places 

SLA R4,2 

SLA R4,0 

Effectively multiply reg R4 by 4 

Shift reg R4 by contents of RO 

Note that SLA R4,0 will shift R4 by the contents of 

the lower four bits of RO. If RO=l7, the shift 

count is one because 17=10001 (binary). 

IX-54 



INSTRUCTION: SET ONES CORRESPONDING (LOGICAL OR) 

Format: SOC S,D 

Opcode: EOOO 

Status Changed: LGT,AGT,EQ 

Definition: Set to logic one the bits in the destination 

operand that correspond to any logic one value 

in the source operand. This result is placed 

in the destination. This is effectively a 

logical OR opera ti on. · 

Results: (S) OR (D) ~ (D) 

Notes: Use to perform a logical OR operation. This is 

similar to ORI except it may be done between two 

general addresses. 

Before: ( PATRNl) = > E06B=lll0 0000 0110 1101 

(PATRN2)= )4482=0100 0100 1000 0010 

SOC @PATRN1,@PATRN2 

After: (PATRN1)=>E06B 

(PATRN2) = > E4EF=1110 0100 1110 1111 

IX-55 



INSTRUCTION: SET ONES CORRESPONDING BYTE (LOGICAL OR) 

Format: SOCB S,D 

Opcode: FOOO 

Status Changed: LGT,AGT,EQ,C 

Definition: Set to a logical one the bits in the 

destination operand byte that correspond to 

any logical one in the source operand byte. 

This is effectively an 8-bit logical OR 

operation. 

Results: (S) OR (D) ~ (D) 

Notes: Use to perform an 8-bit OR. 

SOCB Rl,®X (X)=(X) OR Rl 

IX-56 



INSTRUCTION: SHIFT RIGHT ARITHMETIC 

Format: SRA W,C 

Opcode: 0800 

Status Changed: LGT,AGT,EQ,C 

Definition: Shift the contents of the specified 

workspace register right by the number of 

places specified by C. The sign bit is 

extended to fill the vacated bits. If C=O, 

then the right four b~ts of workspace register 

RO are used for the shift count. The last bit 

shifted out is placed in the carry bit of 

the status register. 

Results: (W) shifted right C places ~ (W) 

Notes: Use to shift to the right a signed integer. 

SRA Rl4,5 

Shift right the contents of Rl4 by 5 places. This 

is a divide by 32. 

IX-57 



INSTRUCTION: SHIFT RIGHT CIRCULAR 

Format: SRC W,C 

Opcode: OBOO 

Status Changed: LGT,AGT,EQ,C 

Definition: Shift the specified workspace register right 

by the specified number of places (c), with 

the bits being shifted out of bit 15 placed 

in bit O. If C=O, the right four bits of 

register RO are used ~s the shift count •. 

Results: (W) shifted right circular C places~ (W). 

Notes: Shift right circular some specified workspace 

register. · 

SRC R9,R5 

IX-58 



INSTRUCTION: SHIFT RIGHT LOGICAL 

Format: SRL W,C 

Opcode: 0900 

Status Changed: LGT,AGT,EQ,C 

. Definition: Shift the specified work register to the right 

the specified shift count filling the vacated 

bits with zeroes. The last bit shifted out is 

placed in the carry out bit. If C=O, the right 

four bits of register ·o are used as the shift 

count. 

Results: (W) shifted right C places ~ (W) 

Notes: Use to shift a workspace register right logical. 

SRL Rl0,5 

SRL R9,l 

IX-59 

Shift reg RlO right 5 places 

Effectively divide reg 9 

by 2 (unsigned) 



INSTRUCTION: STORE COMMUNICATION REGISTER UNIT (INPUT) 

Format.: STCR S,C 

Opcode: 3400 

Status Changed: LGT, AGT, EQ, OP ( ( < 9) 

Definition: Transfer number of bits specified (C) from 

the CRU lines addressed by Rl2 to the source 

operand. If the number of bits does not fill an 

entire memory word, then zeroes are added on 

the "left. If C <9, then S is a byte address. 

If C > 9 then S is a word address. 

Results: CRU lines ~ (S) for C bits 

Notes: Use to store contents of CRU lines in some memory 

location. Least significant CRU line to least 

significant memory bit. 

I.f C<.9 byte addressing 

C > 9 word addressing 

IX-60 



INSTRUCTION: STORE STATUS REGISTER 

Format: STST W 

Opcode: 02CO 

Status Changed: None 

Definition: Transfer the status register to workspace 

register W. 

Results: Status Register ~ (W) 

Notes: Used to transfer the status register to workspace 

so it can be manipulated. 

STST RS R5=status 

IX'-61 



INSTRUCTION: STORE WORKSPACE POINTER 

Format: STWP W 

Opcode: 02AO 

Status Changed: None 

Definition: Transfer the workspace pointer to workspace 

register W. 

Results: WP ~ (W) 

Notes: Used to determine the address of the register file. 

STWP R6 R6-= address of RO 

After execution of the above instruction, the 

following two instructions are the same. 

INC RO 

INC *R6 

IX-62 



INSTRUCTION: SWAP BYTES 

Format: SWPB S 

Opcode: 06CO 

Status Changed: None 

Definition: 

Results: 

Swap the upper byte of the source operand 

with the lower byte of the source operand. 

Swap ( S) upper and, ( S) lower. 

Notes: Used for character manipulation. 

MOVB @Cl,Rl Rl=character one 

SWPB Rl reverse bytes 

MOVB @C2,Rl Rl=character two,one 

IX-63 



INSTRUCTION: SET ZEROES CORRESPONDING 

Format: SZC S,D 

Opcode: 4000 

Status Changed: LGT,AGT,EQ 

Definition: Set to a logic zero the bits in the destination 

operand that correspond to bit positions equal 

to logic one in the source operand. The source 

is not changed. Effectively this is a logical 

AND·with the source b~ing inverted prior to 

the AND. 

Results: NOT (S) AN"D D ~ D 

Notes: Use to turn off flag bits or AND the contents of 

one's complement source and destination. 

Before: (PAT1)=>3030=0011 0000 0011 0000 

(PAT2)= :> 5511=0101 0101 0001 0001 

SZC @PAT1,@PAT2 

After: (PATl)= >3030 

(PAT2)="14501=0100 0101 0000 0001 

IX-64 



INSTRUCTION: SET ZEROES CORRESPONDING (BYTE) 

Format: SZCB S,D 

Opcode: 5000 

Status Changed: LGT,AGT,EQ,OP 

Definition: Set to a logical zero the bits in the destination 

operand byte that correspond to bit positions 

equal to a logical one in the source byte. 

R'esuits: NOT (S) AND (D) ~ (D) 

Notes: Useful for character or flag·manipulation. 

SZCB @X,@Y Y=X AND Y 

1x·-65 



INSTRUCTION: TEST BIT 

Format: TB DISP 

Opcode: lFOO 

Status Changed: EQ 

Definition: Read the specified input bit whose address 

is computed by adding the signed displacement 

to bits 3-14 of Rl2. Set the equal status 

register bit to the value read. 

Results: EQ (;- CRU line read 

Notes: Use to read a particular CRU line and depending 

on the result,-make appropriate decisions. 

CLR Rl2 set CRU base 

TB 14 wait for bit 14 to be set 

JNE $-2 

IX'-66 



INSTRUCTION: EXECUTE 

Format: x s 

Opcode: 0480 

Status Changed: None (remote instruction may, however) 

Definition: The instruction at the source operand is 

executed. 

Results: Execute (S) 

Notes: Used to execute an instruction out of line, typically 

in a table. 

x @TAB(Rl) execute the instruction in 

table TAB pointed to by Rl 



INSTRUCTION: EXTENDED OPERATION 

Format: XOP S,N 

Opcode: 2COO 

Status Changed: None 

Definition: Place extended operation into execution. 

Results: 

Notes: 

The (N) field indicates which XOP trap 

location to utilize. 

S ~ (Rll) of XOP workspace . 
(0040+4n) ~ (WP) 

(0042+4n) ~ (PC) 

{WP) ~ (Rl3) of XOP workspace 

{PC) ~ (Rl4) of XOP workspace 

{ST) ~ (Rl5) of XOP workspace 

Use to implement software routines which are used 

frequently, for example: floating point arithmetic 

signed multiply 

extended precision 

The monitor uses XOP 0 as a breakpoint call. That 

is, a breakpoint replaces the users instruction 

by an XOP O. XOP 1 and XOP 2 are used for input 

and output. The following will print the letter "A". 

LETTER BYTE 'A 1 

IOP @LETTER,2 

IX'-68 



INSTRUCTION: EXCLUSIVE OR 

Format: XOR S,W 

Opcode: 2800 

Status Changed: LGT,AGT,EQ 

Definition: Perform a bit by bit exclusive OR of the 

16-bit source operand with the 16-bit 

destination workspace register. 

Results: 

Notes: 

(S) XOR (W) ~ (W) 

Use to perform an exclusive OR between a workspace 

register and a source operand. 

Assume: (RO)=> 2lBD = 0010 0001 1011 1101 

(TC)= >E436 = 1110 0100 0011 0110 

Then: XOR @TC,O 

(RO)=>C58B = 1100 0101 1000 1011 

IX-69 



INSTRUCTION: EXTERNAL CONTROL 

Format: CKOF 

OKON 

LREX 

RSET 

Opcode: 0300 

03AO 

03EO 

0360 

Definition: 
' 

(Clock Off) 

(Clock On) 

(Load Rom/Execute) 

(Reset) 

These instructions can be decoded by external 

hardware. The TI 9900 does not perform any 

function when they are executed. This kit 

does not decode these instructions, so they 

should be avoided. 

IX-70 



INSTRUCTION PATCHING: It is frequently necessary to patch a 

program resident in RAM. The TI 9900's addressing often 

becomes confusing when trying to patch programs. To assist 

the user, the patching tables are provided. The first gives 

the hexadecimal op-code and the second provides the additional 

digits for addressing. 

For example, if a MOV *Rl,@5(R2) is needed, the following 

steps are used: 

(1) op-code = Cxxx (from Table I) 

(2) xxx = 89s (from Table II) 

(3) Thus, instruction = C89s = D891 

IX-71 



A Axxx' add Rs to Rd 

AB Bxxx" add Rs (byte) to Rd (byte) 

AI 022s· add constant to Rs 

4NDI 024s 
,. 

AND Rs with Rd 

c 8xxxt compare Rs with Rd 

CB 9xxx'- compare Rs (byte) to Rd (byte) 

CI 028s.- compare constant with Rs 

CKOF 03CO · clock-off 

CKON 03AO- clock-on 

coc 2aaa·· compare {Rd and Rs) with Rs 

czc 2bbb v compare (Rd and Rs) with zero 

DIV 3ccc v Rd={Rd,Rd+l)/Rs, Rd+l=remainder 

IDLE 034ot idle 

JEQ 13yy/ jump if equal 

JGT 15yy· jump if greater than 

JH 1Byyr1 jump if high 

JHE 14yy.; jump if high or equal 

JL lAyyt jump if low 

JLE 12yy.1 jump if low or equal 

JLT llyy" jump if less than 

JMP lOyy Ii jump uncond~tional 

JNC 17yy" jump if carry clear 

JNE 16yy ii jump if not equal 

IX'.-72 



JNO 

JOC 

JOP 

LDCR 

LI 

LIMI 

LREX 

LWPI 

MOV 

MOVB 

MPY 

ORI 

RSET 

RTWP­

S 

S·B 

SBO 

SBZ 

SLA 

soc 

SOCB 

SRA 

SRC 

SRL 

19yy 

18yy 

lCyy 

3aaa 

020s 

0300 

03EO 

02EO 

Cxxx 

Dxxx 

3ddd 

026s 

0360 

0380 

6xxx 

7xxx 

lDyy 

lEyy 

OAns 

Ex xx 

Fxxx 

08ns 

OBns• 

09ns 

jump if no overflow 

jump if carry set 

jump if odd parity 

d-bits of Ri to CRU 

load Rs immediate 

load interrupt mask immediate 

load Rom and execute 

load workspace pointer immediate 

move Rs to Rd 

move Rs (byte) to Rd (byte) 

(Rd,Rd+l)=Rd 'times Rs 

OR or constant with Rs 

reset 

return with workspace 

subtract Rs from Rd 

subtract Rs (byte) from Rd (byte) 

set CRU bit yy 

set CRU bit yy 

shift Rs left (alg.) by n 

OR Rs with Rd 

OR Rs (byte) to Rd (byte)· 

shift Rs right (alg.) by n 

shift Rs r~ght (circ.) by n 

shift Rs right.(log.) by n 

rx:-73 



STCR 3bbb d-bits of CRU to Rs 

STST 02Cs Rs = status register 

STWP 02As Rs = workspace pointer 

szc 4xxx Rd = Rd and not Rs 

SZCB 5xxx Rd (byte) = Rd (byte)' and not Rs 

TB lFyy test CRU bit 

XOP 2ccc· extended operation 

XOR 2ddd ex-OR Rs with Rd 

Rs *Rs *Rs+ @Rs 

ABS 074s 077s 076s 076s absolute· "lfalue of Rs 

B 045s 047s 046s branch 

BL 069s 06Bs 06As branch and link Rll 

BLWP 041s 043s 042s branch and link workspace 

CLR 04Cs 04Ds 04Fs 04Es clear Rs 

DEC 060s 06ls 063s 062s decrement Rs by one 

DECT 064s 065s 067s 066s decrement Rs by two 

INC 058s 059s 05Bs 05As increment Rs by one 

INCT 05Cs 05Ds 05Fs ,05Es increment Rs by two 

INV 054s 055s 057s 056s invert Rs (ones comp.) 

NEG 050s 051s 053s 052s negate Rs (twos comp.) 

SETO 070s 07ls 073s 072s set Rs to ones 

SWPB 06Cs 06Ds 06Fs 06Es swap bytes of Rs 

I 048s 049s 04Bs 04As execute inst. at Rs 

IX-74 



xx xx 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,*Rd 

*Rs,*Rd 

*Rs+,Rd 

@Rs,*Rd 

Rs,*Rd+ 

\ *Rs, *Rd+ 

EQ El Ilg El Eli: !!2 E2 E1 

OOs 04s 08s OCs 10s 14s 18s lCs 

Ols 05s 09s ODs lls 15s 19s lDs 

03s 07s OBs OFs 13s 17s lBs lFs 

02s 06s OAs OEs 12s 16s lAs lEs 

40s 44s 48s 4Cs 50s 54s 58s 5Cs 

4ls 45s 49s 4Ds 5ls 55s 59s 5Ds 

43s 47s 4Bs 4Fs 53s 57s 5Bs 5Fs 

42s 46s 4As 4Es 52s 56s 5As 5Es 

COs C4s C8s CCs DOs D4s D8s DCs 

Cls C5s C9s CDs Dls D5s D9s DDs 

*Rs+,*Rd+ C3s C7s CBs CFs D3s D7s DBs DFs 

@Rs,*Rd+ C2s C6s CAs CEs D2s D6s DAs DEs 

Rs,@Rd 80s 84s 88s 8Cs 90s 94s 9Bs 9Cs 

*Rs,@Rd 8ls 85s 89s 8Ds 9ls 95s 99s 9Ds 

*Rs+,@Rd 

@Rs,@Rd 

83s · 87s 8Bs 8Fs 93s 97s 9Bs 9Fs 

82s 86s 8As 8Es 92s 96s 9As 9Es 

IX"-75 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

aaaa 

bbbb 

cc cc 

dddd 



XIII 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,*Rd 

*Rs,*Rd 

*Rs+,*Rd 

@Rs,*Rd 

Rs,*Rd+ 

*Rs,*Rd+ 

*Rs+,*Rd+ 

@Rs,*Rd+ 

Rs,@Rd 

*Rs,@Rd 

*Rs+,@Rd 

@Rs,@Rd 

!!~ !!2 !!lQ !!ll !!16. !!11 !!!~ !!12 

20s 24s 28s 2Cs 30s 34s 38s 3Cs 

21s 25s 29s 2Ds Jls 35s 39s 3Ds 

23s 27s 2Bs 2Fs 33s 37s 3Bs 3Fs 

22s 26s 2As 2Es 32s 36s 3As 3Es 

60s 64s 68s 6Cs 70s 74s 78s 7Cs 

6ls 65s 69s 6Ds · 7ls 75s 79s 7Ds 

63s 67s 6Bs 6Fs 73s 77s 7Bs 7Fs 

62s 66s 6As 6Es 72s 76s 7As 7Es 

EOs E4s E8s ECs FOs F4s F8s FCs 

Els E5s E9s EDs Fls F5s F9s FDs 

E3s E7s EBs EFs F3s F7s FBs FFs 

E2s E6s EAs EEs F2s F6s FAs FEs 

A Os A4s A8s A Cs BOs B4s B8s BCs 

Als A5s A9s ADs Bls B5s B9s BDs 

A3s A7s ABs . AFs B.3s B7s BBs BFs 

A2s A6s AAs AEs B2s B6s BAs BEs 

IX-76 

. 

Rs, Rd . 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

Rs,Rd 

*Rs,Rd 

*Rs+,Rd 

@Rs,Rd 

aaaa 

bbbb 

cc cc 

dddd 



Tired of writing or patching programs in hex? Then our 

new "Instant Input Assembler" is just what you have been 

waiting for. The "Instant _Input Assembler" offers most standard 

assembler features, except for symbolic labels. The unique 

difference is that it operates in conversational mo~e-. It 

accepts input from the operator terminal and immediately 

translat•s it to machine code. No need to edit and punch a 

tape first. Furthermore, the "Instant Input Assembler" is 

delivered in PROM.so that it is always ready for use. To 

activate the assembler, just jump to the start of it! 

To order your "Instant Input Assembler", just contact 

your Super Starter Kit dealer - or Techn~co,Inc.~ The 

assembler is delivered in two fused link PROMs, ready to be 

plugged into the expansion PROM area of the Super Starter 

Kit. In addition, you will receive complete user documentation 

and a .source listing of the amazing.512 word "Instant Input 

Assembler". 

When ordering the "Instant Input Assembler" it is 

necessary to specify the monitor version that it is to operate 

with. The monitor is uniquely identified by the contents of 

location FCOO_ (hex) so just tell us the contents of that 

location. This is accomplished by the monitor command "D FCOO,FCOl". 



XI. SOFTWARE 

A. MONITOR 

The source listing of the mighty monitor is included 

in this section. A review of the monitor listing will help 

you to understand how the TI 990 instructions are used. The 

monitor listing is relative addressed. That is, the loader 

modifies the code to operate where loaded. In the kit, the 

monitor is loaded at #FCOO. Therefore, you must add #FCOO 

to the address shown in the listing to obtain the PROM 

address of that data. For example, STRTlO is the label of 

the instruction at relative #16. The actual PROM address 

of that word is #FCOO + 16 = FC16. 

In addition to the terminal commands, the monitor 

provides other useful features for the programmer. During 

power-on the monitor establishes two XOP's (Extended 

Operators) to be used for terminal input/output. These 

IOP's can be exploited by a user program to perform input/ 

output to the user terminal. XOP 1 is used for input, and 

IOP 2 is used for output. The program in Figure XI-1, 

entered by the Instant Input Assembler, uses these XOP's 

to print the message "pick a number from 1 to 5 " and 

then collect the user response. Notice that the Instant 

Input Assembler recognizes the XOP's by the mnemonics 

IN and OUT. 

II-1 



Figure XI-1 Use of XOP'x for Input/Output 

Program entered via the "Instant Input Assembler". 

1GF800 

0100: 0201 
0102: 0110 
0104: 2C91 
OJ.06: no:~:1. 

0108! 16FD 
010A: 2C4:1. 
01.0C! 10F9 

OUT ;t:R1 

,JNE > 1. 04 
IN 1:;:1 
.JMP >100 
I :1.1. 0 

; R1=MESSAGE ADDRESS 

PFn:NT OU) 
ADVANCE AND TEST FOR 
CONTINUE TILL END 
GET f~EPL Y 
REPEAT THE PROCESS 

01.0E: 
0110: ODOA 
0112: ~;o:r9 
01.14! 434B 
01 j_ c~) t 204 l 

+>ODOA ; CRvLFv THEN MESSAGE 
SPICK A NUMBER FROM 1 TO 5 

O:t18! 204E 
01:tA: :::;~:i4 D 
0:1.1c: 424~:~ 

(>11E: !:i~:~~?.O 

01.20: ·4l\~::i~~ 

0122: 4F4D 
0124! 2031 
0126: 2054 
0128: 4F20 
O:l.2A: 3520 
012c: 0000 +o ; STOPPER 
012E! 

EXECUTE THE PROGRAM 

?G100 

PICK A NUMBEr-i: FROM 1 TO 5 3 
PICK A NUMBER FROM 1 TD 5 ,, ,,_ 

PICK A NUMBER FROM 1 TD 5 1. 
PICK A NUMBEF< FROM 1 TO c:· .;; 0 

XI-2 

END 



.Other routines in the monitor are also useful. 

Some of them are: 

TYPEN 

DMEMN 

DISRG 

TYPEWD 

Proceed to a new line on the terminal. 

Uses register R4 as scratch. Called 

by BL @TYPEN. 

Display the contents of register Rl as 

four hex digits. The value is displayed 

o~ a new line and is followed by a ":". 

Input in register Rl. Registers RO,R4, 

R5, and R7 are used as scratch. Called 

by BL @DMEMN. 

Display contents of R5 as four hex digits. 

· The format is "XY = dddd" where "XI" are 

any two characters following the call. 

Input in R5 and word following the call. 

Registers RO,R4,R5,and R7 used as scratch. 

Called as follows: 

BL @DISRG 

DATA 'XY' 

Display the contents of R5 as four hex 

digits. Input in R5. Registers RO,R4,R5 

used as scratch. Called by BL @TYPEWD. 

XI-3 



RDNUM 

DUMP 

BDISPS 

i 
This is a powerful routine for accepting 

hex parameters from the operator. It will 

read one, two, or three parameters and 

put them in Rl,R2,R3. Refer to the 

source listing for further details of 

RDNUM. 

Dump memory from address in Rl to the 

address in R2. Registers RO,Rl,R5 used 

as scratch. The following will dump #107 

to'#311 and then return to the user. 

LI Rl, ">107 

LI R2, "> .:311 

BL @DUMP 

Display the leftmost byte of R5 as two 

hex digits preceeded by a space. Input 

is in R5. Registers RO,R4,R5 used as 

scratch. Called by BL @BDISPS. 

XI-4 



B. SUPER STARTER GAMES 

The Super Starter Game package is a set of four games 

that you can play against your computer. The listing of the 

games is included in this section. Like the monitor, the 

games are relative addressed. If you wish to run the games 

in RAM (it takes lK words) load the first dump following 

the source listing and jump to the start (via G D2). If you 

want to put the games in EPROM, first load the second dump 

following the source listing into RAM. Then program it into 

EPROM (via PB0,7FE,O). To execute the games in EPROM just 

jump to them (via GFOOO). Be sure you load the proper 

dump or the games will not work. If your kit does not have 

lK words of RAM, you must enter the·program a piece at a 

time and program each segment into the EPROM. Be careful 

to get the addressing correct or the games won't work. To 

be sure you have programmed the EPROM's correctly just 

dump them and recheck the dump against the second dump in 

this section. To dump the EPROM type "DFOOO, F7FF". 

XI-5 



PAGE-1 TMS9900 MIGHTY MONITOR <VER3 - 12/1/77> 

0000 
0000 

0001 
0000 
0000 
2COO 
1·000 
0080 
OOBO 
0090 
0020 
0026 
0028 
OOOD 
OAOD 
001A 

TITL 'TMS9900 MIGHTY MONITOR <VER3 - 12/1/?7>' 
II•TMM IDT 

DREG 

* * * * * * * * * * * * 

NOTICE: WHEN THE MONITOR IS ENTERED IT WILL 
AWAIT USER INPUT TO DETERMINE THE BAUD RATE 
OF THE TERMINAL DEVICE. THE USER SHOULD 
TYPE AN 'X' TO SET THE BAUD RATE+ 
DO NOT TYPE 'CARRIAGE RETURN' AS IT WILL 
NOT WORK!!! 

THE BASIC TMS9900 DEBUG MONITOR OFFERS THE 
FOLLOWING SET OF COMMANDS<PARAMETERS IN CJ 
ARE OPTIONAL>: 

* A <ADDRESS> * B C<ADDRESS>J C<WORD COUNT>J ·* C <START> <END> <TARGET> * D <START>C<END>J * G C<ADDRESS>J * H <NUMBER-1> <NUMBER-2> * I <BIT> * L C<ADDRESS>J 
* M <BIT> <VALUE> * P <START> <END> <TARGET> * S <1ST> <INC> <TOTAL> * TR C<REG-1> <REG-2>J * ?M C<START> <END>J * W <REG>C<REG>:J 

* * • EXTERNAL DEFINITIONS 

* DEF TYPE,TYPEN,TYPEH 
DEF DMEMN,TYPEWD,RDNUM 

* * SYSTEM EQUIVALENCES 

* PRG 
TTYI 
TTYO 
XOPO 
NOOP 
MTRWP 
USRWP 
XOPWS 
DELAY 
BREAK 
BKRTN 
CR 
CRLF 
MAX 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

1 
0 
0 
>2COO 
>1000 
>SO 
>BO 
>90 
>20 
>26 
BREAK+2 
>OD 
>OAOD 
26 

; 
6 , 
6 , 
; 
; 
; 
6 , 
6 , 
6 , 
6 , . , 
; 
6 , .. , 

ALTER 
BREAKPOINT 
COPY 
DUMP 
GO 
HEX ARITH 
INSPECT BIT 
LOAD 
MODIFY BIT 
PROGRAM 
SNAP 

WORKSPACE DUMP 

PROGRAM MODE 
TTY INPUT 
TTY OUTPUT 
XOP-0 
NO-OP 
MONITOR WORKSPACE 
USER l.JORl'\SPACE 
XOP WORKSPACE<8 REG.) 
DELAY WORD 
BREAKPOINT AREA 
BREAK RETURN 
CARRIAGE RETURN 
CAR+ RET., LINE FEED 
<NO. OF COMM+ + 1>*2 

* THE FOLLOWING AREA OF RAM IS USED * BY THE MONITOR 

* * 20 CR DELAY TIME * 22 ECHO FLAG 

XI-6 



PAGE-2 TMS9900 MIGHTY MONITOR <VER3 - 12/1/77) 

0000 02EO 0080 
0004 04CC 
0006 1D01 
0008 020D OOBO 
oooc 0201 0040 
0010 0203 036E 

* 24 TERMINAL SPEED * c26 ··~ (BREAK) NO. OF ~JOFWS FOR TF~AP * 28 USER INST. ONE * 2A TWO * 2C THREE * 2E RETURN BRANCH <TWO WORDS> * 32 NEXT STOP 
* 34 
* 36 
* 38 * 3A 

STOP INCREMENT 
MAX NO. OF STOPS 
SNAP REG ·- FIRST 

LAST * 3C SNAP MEM - FU:$T 
* 3E· * 40-43 XOP--0 * 44-47 XOP-1 * 48-4B XOP-2 * 4C-4F XOP-3 
* 50-53 XOP-4 * 54-57 XOF'-5 
* 58-5B XOP-·6 * 5C-5F XOP-7 * 60-63 XOP-8 * 64-67 XOP-9 * 68-6E{ XOP-10 
* 6C-6F XOP-11 * 70-73 XOP~··12 * 74-77 XOP--13 
* 78-7B XOP-14 
* 7C-7F XOP-15 

LAST 
BREAKPOINTS 
INPUT 
OUTPUT 

* 80-9F MONITOR WORKSPACE * AO-AF XOP WORKSPACE CONLY 8 REGISTERS> * BO USER HO * B2 R1 * B4 R2 * B6 R3 * BB R4 * BA R5 * BC R6 
* BE R7 
* CO R8 * C2 R9 * C4 RA 
* C6 RB * ca RC * CA l=<D * CC RE * CE RF 
* 
* 

<R10> 
<R11) 
( R12·-USER 
<IU3) 
<R14> 
<R15) 

Cl~U BASE) 

* THE FOLLOWING IS MONITOR POWER UP * SEQUENCE 

* START LWPI 
CLR 
SBO 
LI 
LI 
LI 

MTRWP 
R12 
PRG 
R13,USRWP 
Rl,>40 
R3,XOPTB 

XI-7 

; SET CRU BASE 
; CLEAR PROG. MODE 

SET USER WP 
; SET UP XOP VECTORS 
; <WORKSPACE,ENTRY> 



PAGE-3 TMS9900 MIGHTY MONITOR <VER3 - 12/1/77) 

00.14 02A2 
0016 CC42 ~ 
0018 0202 0090 
001C CC73 
001E 16FB __, 
0020 0200 FFED 
0024 C702 
0026 0201 0020 
002A CC41 
002C 0731 
002E 1DOO 
0030 1FOO 
0032 1302 
0034 06AO ESOO 
0038 1FOO 
003A 13FE 
003C 0580 
003E 1FOO 
0040 16FD 
0042 0920 
0044 CC40 
0046 1000 

0048 05C1 
004A 0972 

004C 0203 0026 
0050 C033 
0052 C123 0008 
0056 6100 
0058 6100 
0.05A C:L54 
005E 
005C 0285 2COO 
0060 1601 
0062 C513 
0064 0643 
0066 0742 
0068 CCC2 
006A C111 
006C 0602 
006E CC60 005E 
0072 CCC4 
0074 0204 1000 
0078 C082 
007A 1302 
007C 0602 

STWP R2 
STFalO MOV R2·,*F..:1t 

LI. R2, XOF'WS 
MOV . *R3t, *R:l.t 
JNE STRT10 
LI R0,-19 
MOV R2, *F\12 
LI Rl,DELAY 
MOV R1,*R:tt 
SETO *R1+ 
SBO TTYO 
TB TTYI 
JEQ STRT20 
BL @>ESOO 

STRT20 TB TTYI 
JEQ STRT20 

STRT30 INC RO 
TB TTYI 
JNE STRT30 

STFH 40 SRL RO, 2 
MOV RO,*R1+ 
NOP 

* 

; BREAK USES MON. WS 

; OTHERS USE XOP WS 

RO=TE~";;M. TI MEF~ 
; INT+ LEV+ o, W.S. 

; CLEAR DELAY 
; SET ECHO 
; TTY=HIGH 
; CRT? 
; NO 
; SETUP FOR Cf·<:T 
; WAIT FOR STAl~T 

MEASURE A BIT 

; REDUCE TO BIT COUNT 
; SAVE SPEED 

TO KEEP ADDRESSES PER VER2 

* REMOVE ANY BREAKPOINTS AND THEN * ENTER MONITOI~ 

* 

* 

INCT F\1 
SRL R2-,7 

* ROUTINE: Bf"..:EAK 

; ADVANCE TO BREAK RET+ 
; R2=1CIT WAS 90-HEX> 

*ESTABLISH A BREAKPOINT OR SNAP AT <Ri), * REMOVING R2 INSTRUCTIONS AND SETTING * NEXT=-1r ANY PRIOR BREAK IS REMOVED. * IF OLD BREAK DOES NOT CONTAIN CXOP> IT IS * NOT DISTURBED. SINCE Ri IS PRESET TO Bl·\RTN, IT 
* CAN ACT AS A BREAKPOINT REMOVAL. 

* BRK 

BRKXOF' 

BRK1 

BRK2 

LI 
MDV 
MOV 
s 
s 
MDV 
EQU 
CI 
JNE 
MOV 
DECT 
ABS 
MDV 
MDV 
DEC 
MOV 
MOV 
LI 
MOV 
.JEQ 
DEC 

R3-,BREAK 
*F~~H, RO 
@8CR3> ,i:;:4 
RO,R4 
RO,R4 
*R4,R5 
$f 2 
RS,XOF'O 
BRK:l 
*R3,*R4 
R3 
f<2 
R2,*R3+ 
*R1 ,li4 
R2 
@BRKXOP,*Rl+ 
R4,*R3+ 
R4,NOOP 
f<~!, H2 
BRK3 
R2 

XI-8 

; R3=BREAK POINTER 
; GET NO. OF WORDS 

GET RETURN 
; READJUST IT TO START 

; CHECK FOR XOP 

; IF NOT xop, SKIP RESTORE 
; RESTORE CODE 
; RESET R3 
; IF R2=-1, R2=1 
; STORE NO. OF WORDS 
; GET INST 

; PUT IN XOP 
; SAVE INST 
; PRESET R=NOOP 
; IF R2 NOT o, GET INST. 



PAGE-4 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77) 

007E C131 MOV *R1+,R4 
0080 0283 002E BRK3 
0084 16F6 

CI R3, BF<EAKt8 
JNE BF<K2 

; CONT TILL THREE WORDS SET 

0086 CCEO 0338 
008A CCCl. 
ooac 011~5 
008E 1030 

0090 06C4 
0092 2C84 
0094 OA84 
0096 16FD 
0098 045B 

009A C:J.3B 
009C C68B 
009E 06AO 0090 
OOA2 0701 
OOA4 C081 
OOA6 0205 0007 
OOAA 06AO 021E 
OOAE·C2DA 
OOBO CE81 
OOB2 CE82 

OOB4 0204 OAOD 
OOB7 
OOBB 10EB 

OOBA 2D 
OOBB 3D 
OOBC C1CB 
OOBE 06AO OOB4 
OOC2 C141 
OOC4 06AO 01BA 
OOCB 2CAO 02D1 
oocc 0457 

* 

MOV . @BRANCH,*R3t 
MDV R1,*R3t 
SETO *R3 
JMP MTR 

ROUTINE: TYPE 

; SET RETURN BRANCH 
; PUT IN RETURN ADDRESS 
; R2=-1 
; GOTO MONITOR 

* * * 
TYPE THE RIGHT BYTE OF R4. AFTER THAT, 
TYPE THE LEFT BYTE IF IT IS NOT ZERO. 

* TYPE 
TYPE1 

TYPEX 

* 

SWPB R4 
OUT li4 

R4P8 
TYPE1 
*F<11 

SLA 
JNE 
B 

* ROUTINE: GET 
* PROMPT THE OPERATOR * TWO ENTRIES IS -1. 

* GET MOV 
HOV 
BL 
SETO 
MOV 
LI 
BL 
MOV 
MDV 
MDV 

*R11trR4 
R11r*R10 
@TYPE 
Rl 
R1,R2 
R5,7 
@RDNUMB 
*R10,R11 
R1,*R10t 
R2,*R.10+ 

ROUTINE: TYPEN 

; PUT IN LEFT BYTE 
; OUTPUT R4 
; ANOTHER CHAR? 
; YES-TYPE IT 
; RETURN 

USING <R11), THEN* GET AN UPDATED VALUE 

; GET PROMPT 
; SAVE RETUl~N 

; PROMPT THE OPERATOR 
;'SET DEFAULTS 

; GET USEI~ INPUT 

; RESET RETURN 

* * * * * 
PROCEED TO A NEW LINE ON THE TERMINAL 
PRINT CR,LFr THEN WAIT 

TY PEN 
CRET 

* 

LI 
EQU 
JMP 

R4,CRLF 
$-1 
TYPE 

* ROUTINE: DMEMN 

; PRINT THE CRLF 

* DISPLAY Rl ON A NEW LINE IN FORMAT: * 'XXXX: I 

* DASH 
EQUAL 
DMEMN 

* 

BYTE 
BYTE 
MOV 
BL 
MDV 
BL 
OUT 
B 

,_, 

'=' 
R11,R7 
@TY PEN 
R1,R5 
@TYPEWD 
@COLON 
*R7 

* ROUTINE: DISRG 

; SAVE EXIT 
; GOTO NEW LINE 
; DISPLAY R1 
; DISPLAY 
; OUTPUT 't' 
; EXIT 

* DISPLAY REGISTER R5 ON CURRENT LINE. 
*TITLE OF THE DISPLAY IS IN <Rll>. 

* 
XI-9 



PAGE-5 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77> 

OOCE C13B DISRG MOV *RU.+,R4 
MOV R1.1,R7 
SWPB R4 

; GET TITLE' 
; SAVE EXIT ADDRESS OODO ClCB DISRA 

OOD2 06C4 
OOD4 06AO 0090 
OOD8 2CAO OOBB 
OODC 06AO 01BA 
OOEO 2CAO 0287 
OOE4 0457 

OOE6 02EO 0080 
OOEA 04CC 
OOEC 06AO OOB4 
OOFO 2CAO 01.3E 
OOF4 2C44 
OOF6 020:1. 033C 
OOFA C281 
OOFC C171 
OOFE 13F3 

;0100 9144 
0102 16FB 
0104 06AO 0218 
0108 0284 OOOD 
010C 1303 
010E CO:l.A 
0110 OA90 
0112 1702 
0114 06AO OOB4 
0118 coos 
011A 0810 
011C 17E4 

011E C2AA OOlA 
0122 069A 
0124 10EO 

0126 0582 
0128 DCF1 
012A 8081 
012C 16FD 
Of2E 10EO 

* 

BL . @TYF,'E 
OUT @EQUAL 
BL @TYPEWD 
OUT @SPACE 
B *R7 

; TYPE TITLE 
; OUTPUT '=' 
; OUTPUT VALUE 
; SPACE AND EXIT 

* BASIC MONITOR LOOP. QUERY OPERATOR FOR * DESIRED FUNCTION; GATHER PARAMETERS; AND * TRANSFER CONTROL TO APPROPRIATE ROUTINE. 

* MTRN 

MTR 

FINDC 

NEWL 
CONT 

* 

LWPI 
CLR 
BL 
OUT 
IN 
LI 
MOV 
MOV 
JEQ 
CB 
JNE 
BL 
CI 
JEQ 
MOV 
SLA 
JNC 
BL 
MOV 
SRA 
JNC 

MTRWF' 
R12 
@TYPEN 
@QUEST 
R4 
Rl,TABC 
Rl,RlO 
*R1+rR5 
MTRN 
R4,R5 
FINDC 
@RDNUM 
R4,CR 
NEWL 
*RlO,RO 
R0,9 
CONT 
@TY PEN 
R5, f~O 
R0,1 
MTRN 

; RESET CfW 
; NEW LINE 
; ISSUE PROMPT 
; GET REPLY 
; SEARCH TABLE OF COMMANDS 
; SAVE TABLE POINTER 
; GET NEXT TABLE ENTRY 
; IF ZERO-TABLE EXHAUSTED 
; COMPARE TO USER ENTRY 
; IF NO MATCH - CONT+ SEARCH 
; GET PARAMETERS 
;'FORCE NEW LINE IF 
; TERMINATED BY CR OR IF 
; INDICATED BY P. D. 

; R5=0DD NO+ IF PARAM+ O+K+ 

; ILLEGAL ENTRY 

* WHEN BRANCHING TO THE INDIVIDUAL COMMAND * PROCESOR, THE FOLLOWING INFO IS PROVIDED: * R5=PARAM DEC, SHIFTED BY NO. OF * · PARAMS INPUT * Rl=PARAMETER ONE <DEFAULT BKRTN> * R2=PAREMETER TWO <DEFAULT >FFFF> * R3=PARAMETER THREE <NO SPECIFIC DEFAULT> 

* MOV @MAXCR10),R10 
BL *R10 
JMP MTRN 

ROUTINE: COPY 

; BRANCH TO COMMAND 
; PROCESSING ROUTINE 
; RETURN TO LOOP 

* * * * * 
COPY MEMORY FROM <R1> TO CR2> INTO CR3> 
ANY NUMBER OF BYTES MAY BE MOVED 

COPY 
COPY10 

* 

INC 
MOVB 
c 
JNE 
JMP 

R2 
*R1+,*R3t 
R1,R2 
COPY10 
MTR 

* ROUTINE: SNAP 

XI-10 

; MOVE ONE BYTE 
; TEST END 
; CONTINUE TILL DONE 



PAGE-6 TMS9900 MIGHTY MONITOR CVER3 .- 12/1/77) 

0130 020A 0032 
0134 CE81 
0136 CE82 
0138 CE83 
013A 06AO 009A 
013E 
013E 3F52 
0140 06AO 009A 
0144 3F4D 
0146 10D4 

0148 0201 0028 
014C 0621 OOOA 
0150 1303 
0152 11C9 

0154 C381 
0.156 0380 

0158 C14E 
015A 06AO OOB4 
015E 06AO OOCE 
0162 5043 
0164 C14D 
0166 06AO OOCE 
016A 5750 
016C C14F 
016E 06AO OOCE 
0172 5354 
0174 COAl 0012 
0178 C061 0010 
017C 1104 
017E 06AO OOB4 
0182 06AO 01EO 
0186 0203 003C 

. 018A C073 
018C 0281 FFFF 
0190 1305 

* ESTABLISH PRIOR BREAKPOINT AS A SNAP. 
* IF NO PARAMETERS ENTERED' USE EXISTING * DATA; OTHERWISE R1= FIRST SNAP, R2= SNAP 
* INCREMENTr R3= MAXIMUM NO. OF SNAPS. 
* IF NEW PARAMETERS ENTERED, QUERY OPERATOR 
* TO GET REGISTERS AND MEMORY TO BE DUMPED 

* SNAP 

QUEST 

* 

LI 
MOV 
MOV 
MDV 
BL 
EQU 
TEXT 
BL 
TEXT 
JMP 

R10, BF<EAK+12 
R1r*R10+ 
R2,*R10+ 
R3,*R10+ 
@GET 
$ 
'1R' 
@GET 
'1M' 
MTR 

* ROUTINE: BKIN 

; R10=BREAK POINT 
; NEXT=R1 
; INC-R2 
; SET MAX+=R3 

; BACK TO MONITOR 

* THIS ROUTINE IS ENTERED VIA A USER BREAK. 
* IT PRINTS wp, pc, ST. IF A SNAP ENTRY IT ALSO 
* PRINTS REGISTERS AND MEMORY. 

* BKIN 

* 

LI 
DEC 
JEG 
JLT 

R1,BKRTN 
@10<R1> 
BKDSP 
MTRN 

* ROUTINE: GO 

; Rl=BREAK PTR<BREAK+2> 
; NEXT=NEXT-1 
; ·IF ZERO-DISPLAY 
; IF LESS-GOTO MONITOR 

*BRANCH TO <R1>. BRANCH VIA A RETURN WITH 
* WORKSPACE. GO ASSUMES R1 IS PRESET TO 
* BKRTN. R13CWP> MUST BE PRESET DURING POWER-UP 

* GO 

* 
MOV 
RTWP 

R1,f<14 ; PC=R1 
; BRANCH 

* AT THIS POINT, A SNAP HAS BEEN ENCOUNTERED+ * DISPLAY THE SELECTED REGISTERS AND MEMORY 

* BKDSP 

BKDSP~ 

MOV 
.BL 
BL 
TEXT 
MOV 
BL 
TEXT 
MOV 
BL 
TEXT 
MOV 
MOV 
JLT 
BL 
BL 
LI 
MOV 
CI 
JEQ 

R14,R5 
@TYPEN 
@I•ISRG 
'PC~ 

R13,R5 
@DISRG 
'WP' 
R15,R5 
@DISRG 
'ST' 
@18<R1),R2 
@16CR1),R1 
BKI•SP2 
@TYPEN 
@DISPW 
R3,BREAK+22 
*R3+,IU 
Rl,-1 
BKDSP3 

XI-11 

; PRINT PC 
; ON A NEW LINE 

; PRINT WP 

; PRINT ST 

; GET RD1,RD2 

; IF RD1=-1, NO REG DISP 
; DISPLAY REGISTERS 

; GET MD1,MD2 

i IF MDl=-1' NO DIS~. 



PAGE-7 TMS9900 MIGHTY MONITOR ·~VER3 - 12/1/77> 

0192 C093 
0194 06AO 02AA 
0198 06AO OOB4 
019C 0201 0028 
01AO 0621 OOOE 
01A4 13AO 
01A6 C861 OOOC 
01AA OOOA 
01AC 10D3 

01AE 2CAO 0287 
01B2 06C5 
01B4 0200 0004 
01B8 1002 

01BA 0200 OOOC 
01BE C105 
01CO OB04 
01C2 0244 OOOF 
01C6 0224 0030 
01CA 0284 003A 
01CE 11102 
01DO 0224 0007 
01D4 06C4 
01D6 2C84 
01D8 0220 FFFC 
01DC 18FO 
01DE 045B 

01EO COCB 
01E2 
01E6 
01E8 
OlEA 
OlEE 
01F2 
01F4 
01F8 
01FA 

lg!~~ 
0200 
0204 

·0206 
0208 
020A 

0241 OOOF 
6081 
C101 
0224 5230 
0284 523A 
1102 
0224 0007 
C141 
OA1S 
A14D 
C155 
06AO OODO 
0602 
1107 
0581 
0281 0008 

MOV 
BL 
BL 

BKDSP3 LI 
DEC 
JEQ 
MDV 

JMP 

* 

*R3,R2· 
@DUMP 
@TYPEN 

. R1 ,BKraN 
@14<F~1 > 
MTRN 
@12CR1> ,@10<R1> 

GO 

* ROUTINE; BDISP 

; SET THE END 
; DUMP 

; DEC. MAX 

; IF ZERO, GOTO MON+ 
; SET NEXT=INC 

; RET+ TO USER 

* * 
DISPLAY THE LEFTMOST BYTE OF RS, 
PRECEEDED BY A SPACE 

* BDISPS 
BDISP 

* 

OUT @SPACE 
SWPB RS 
LI R0,4 
JMP TYPEH 

* ROUTINE: TYPEH 

; TYPE SPACE 
; PUT DATA IN LOWER BYTE 
; PRINT AND EXIT 

* DISPLAY R5 AS A HEX DIGIT STRING 

* * 
THE SHIFT COUNT IN RO CONTROLS THE NO. 
OF DIGITS PRINTED <12=4,4=2> 

* TYPEWD 
TYPEH 

TYPEH2 

* 

LI 
MOV 
SRC 
ANDI 
AI 
CI 
JLT 
AI 
SWPB 
OUT 
AI 
JOC 
B 

R0,12 
1~5, R4 
R4,FW 
R4,>F 
R4,>30 
R4,>3A 
TYPEH2 
R4,7 
R4 
R4 
R0,-4 
TYPEH 
*R11 

* ROUTINE: DISPW 

; .EXTRACT ONE NIBBLE 

; MASK OFF FOUR BITS 
; ADJUST FOR ASCII 
; TEST 'A'-'F' AND 

IF SO-READJUST . , 
; TYPE 

; REDUCE SHIFT COUNT 
; CONT. TILL DONE 
; EXIT 

* DISPLAY WORKSPACE R<R1>-R<R2> 

* I•ISPW 

DISPW1 

DISPW2 

MOV 
ANDI 
s 
MDV 
AI 
CI 
JLT 
AI 
MOV 
SLA 
A 
MDV 
BL 
DEC 
JLT 
INC 
CI 

R11,R3 
R1 ,>F 
R1'R2 
R1 ,1~4 
R4,'RO' 
R4,'R9't1 
IIISPW2 
R4P7 
R1,R5 
R5P1 
R13,R5 
*R5,R5 
@DISl~A 

R2 
IIISPW3 
R1 
R1P8 

XI-12 

; SAVE RETURN 
; FORCE R1=0-F 
; R2=NO. OF REG. 
; FORM REG NAME 

; GET REGISTER 
; FORM A WORD ADDRESS 

; DISPLAY REGISTER 
; TEST FOR END 
; EXIT IF MINUS 
; ADVANCE REG+ COUNT 
; IF REG. a, THEN 



PAGE-8 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77) 

020E 16EC 
0210 06AO OOB4 
0214 10E9 
0216 0453 

0218 0201 0028 
021C 0702 
021E 04C4 
0220 C20B 
0222 02A6 
0224 04C7 
0226 C004 
0228 0220 FFDO 
022C 1117 
022E 0280 OOOA 
0232 1108 
0234 0220 FFF9 
0238 0280 OOOA 
023C 110F 
023E 0280 OOOF 
0242 150C 
0244,C1C7 
0246 1603 
0248 0587 
024A 05C6 
024C 04D6 
024E COD6 
0250 OA43 
0252 AOCO 
0254 C583 
0256 2C44 
0258 0984 
025A 10E5 

025C C1C7 
025E 1306 
0260 04C7 
0262 0915 
0264 coos 
0266 0240 OOOE 
026A 1303 
026C 0284 OOOD 
0270 16F2 
0272 0458 

DISPW3 

* 

JNE 
BL 
JMP 
B 

DISPW1 
@TY PEN 
DISPW1 

·*R3 

* ROUTINE:RDNUM 

; GOTO NEW LINE 

; EXIT 

* * * * * 

READ PARAMETERS AND PLACE THEM IN REGISTERS 
R1,R2,R3. PARAMETER DESCRIPTION IS IN R5 AND 
IS SHIFTED RIGHT ONE POSITION FOR EACH PARAM. 
THAT IS READ. RDNUMA AVOIDS THE PRESET AND 
INITIAL READ+ RDNUMB AVOIDS THE PRESET ONLY. 

* Rl IS PRESET TO BKRTN AND R2 IS PRESET TO >FFFF. 

* RDNUM 

RD NUMB 
RDNUMA 

STRT 

ADD IN 

NONEW 

CONT! 

LI Rl,BKRTN 
SETO R2 
CLR 
MDV 
STWP 
CLR 
MDV 
AI 
JLT 
CI 
JLT 
AI 
CI 
JLT 
CI 
JGT 
MOV 
JNE 
INC 
INCT 
CLR 
MDV 
SLA 
A 
MDV 
IN 
SRL 
JMP 

R4 
R11,R8 
R6 
R7 
R4 ,RO . 
R0,->30 
NOH EX 
R0,10 
ADD IN 
R0,-7 
R0,10 
NOHEX 
R0,15. 
NO HEX 
R7,R7 
NO NEW 
R7 
R6 
*R6 
*R6,R3 
R3,4 
RO,R3 
R3,*R6 
R4 
R4,8 
STRT 

; PRESET R1,R2 

; FIRST CHAR PRESET 
; SAVE RETURN 
; R6=WORKSPACE 
; RESET FLAG< R7 ). 
; TEST INPUT FOR HEX 
; RO=INPUT-'0' 

IF MINUS, NOT HEX 
; CHECK R0=0-9, IF SO 

GOTO ADDIN . , 
; CHECK RO=A-F, IF SO 

FALL THRU TO ADDIN .. 
' 

; RO=NEXT DIG<BINARY> 
; IF FIRST, PRESET VALUE 
; SET FLAG 
; ADVANCE TO NEXT VALUE 
; CLEAR NEXT VALUE 
; GET .VALUE 
; MULT. BY 16 
; ADit NEW DIGIT 
; REPLACE VALUE 
; GET CHAR 
; RIGHT JUST. 
; CONTINUE SCAN 

* * * * * 

AT THIS POINT, WE KNOW THAT THE INPUT 
IS NOT A HEX DIGIT, SO CHECK FOR END 
OF ENTRY AND END OF INPUT. 

NOH EX 

TSTND 

EXIT 

* 

MDV 
JEG 
CLR 
SRL 
HOV 
ANDI 
.JEG 
CI 
JNE 
B 

R7,R7 
TSTND 
R7 
RS,1 
RSrRO 
ROr>E 
EXIT 
R4,CR 
CONT! 
*RS 

* ROUTINE: ALTER 

XI-13 

; IF NON NULL ENTRY, THEN 
REVISE THE P.D • . , 

; RESET FLAG 
; UPDATE P.n. 
; IF P.D.=Xx ••• xxooox, THEN 
; RETURN TO CALLER 

; IF CR, THEN RETURN 

; RETURN TO CALLER 



PAGE-9 TMS9900 MIGHTY MONITOR <VER3 - 12/1/77) 

0274 C081 
0276 D152 
0278 06AO 01B2 
027C 2CAO OOBA 
0280 2C44 
0282 0984 
0284 0284 0020 
0287 
0288 1~308 

028A 0205 0002 
028E D052 
0290 06C1 
0292 06AO 0220 
0296 06C1 
0298 [1481 
029A 0582 
029C 0284 OOOD 
02AO 16EA 
02A2 C042 
02A4 06AO OOBC 
02A8 10E6 

02AA COCB 
02AC 06AO OOBC 
02BO D171 
02B2 06AO 01AE 
02B6 8081 
02BB 1BAE 
02BA C141 
02BC 13AC 
02BE OAC5 
02CO 13F5 
02C2 10F6 

02C4 C081 
02C6 0205 0002 
02CA 06AO 021E 
02CE 0284 003A 
02D1 
02D2 13F8 
02D4 06C1 
02D6 DC81 
02DB 10F6 

*DISPLAY CP1); AWAIT OPERATOR UPDATE, IF ANY; * INCREMENT ADDRESS AND CO~TINUE+ IF THE * ENTRY IS TERMINATED BY A CR, DISPLAY CURRENT * ADDRESS ON A NEW LINE, THEN THE DATA BYTE+ 
* IF SPACE ENTERED, SKIP UPDATE OF THIS BYTE+ 

* ALT 
ALT1. 

SPACE 

ALT2 

* 

MOV 
MOVB 
BL 
OUT 
IN 
SRL 
CI 
EQU 
JEQ 
LI 
MOVB 
SWPB 
BL 
SWPB 
MOVB 
INC 
CI 
JNE 
MOV 
BL 
JMP 

*R2,R5 
@BDISP 
@DASH 
R4 
R4,8 
R4, I I 

$-1 
ALT2 
R5,2 
*R2 ,fU 
H:L 
@RDNUMA 
R1 
R1,*R2 

F.:4, Cl~ 
ALT1 
R2,R1 
@DMEMN 
ALT1 

* ROUTINE: DUMP 

; SAVE ADDRESS 
DISPLAY <R2> 

; OUTPUT 1 - 1 

; GET REPLY 

IF I ,, SKIP UPDATE 

; READ FULL REPLY 
SET DEFAULT 

GET REPLY 
; ALTER <R2> 

; ADV+ ADDR POINTER 
.; IF TERMINATED BY CR, THEN 

TYPE CURRENT ADDRESS . , 

* * * * 

DUMP THE MEMORY FROM <R1> TO <R2>+ IF 
CALLED FROM MONITOR LOOP, DUMP WILL RETURN 
TO MTRN; OTHERWISE IT RETURNS TO CALLING 
ROUTINE+ 

* DUMP 
DUMP1 
DUMP2 

* 

MDV 
BL 
MOVB 
BL 
c 
JH 
MOV 
JEQ 
SLA 
JEQ 
JMP 

R11,R3 
@DMEMN 
*IU+,1~5 
@BDISPS 
R1,R2 
DISPW3 
Rb F\5 
DISPW3 
R5,12 
DUMF'1 
DUMF'2 

* ROUTINE: LOAD 

; SAVE RETURN 
DISPLAY ADDRESS 

; GET NEXT BYTE 
; DISPLAY IT SPACE FIRST 
; CHECK END 
; IF NOT END-CONTINUE 
; IF R1=0-EXIT, IF R1 MULT 16 

; 
; 

THEN DISP ADDRESS, 
ELSE CONTINUE 

; CONTINUE DUMP 

* LOAD A MONITOR DUMP BACK TO RAM 

* LOAD 
LOAD1 

COLON 

MOV 
LI 
BL 
CI 
EQU 
JEQ 
SlJPB 
MOVB 
JMP 

R1,R2 
R5,2 
@RD NUMB 
R4,'t' 
$-1 
LOAD 
R1 
R1,*R2+ 
LOAD1 

XI-14 

; R2=LOAD ADDRESS 
; READ VALUE 

; IF TERM+ BY 1 : 1 RESET R3 

; DATA IN LEFT BYTE 
; STORE ONE BYTE 
; CONTINUE 



PAGE-10 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77> 

02DA OA11 
02DC C301 
02DE 0204 3031 
02E2 1FOO 
02E4 1601 
02E6 06C4 
02E8 2C84 
02EA 045B 

02EC OA11 
02EE C301 
02FO C082 
02F2 1302 
02F4 1DOO 
02F6 1001 
02F8 1EOO 
02FA 0460 OOFO 

02FE 1E01 
· 0300 05C2 
0302 0204 OOC8 
0306 C141 
0308 C183 
030A 9266 FOOO 
030E CDB5 
0310 0207 0006 
0314 0607 
0316 16FE 
0318 8085 
031A 16F9 
031C 0604 
031E 16F3 
0320 1D01 
0322 10EB 

0324 C141 
0326 A142 
0328 06AO OOCE 
032C 482B 
032E C141 
0330 6142 
0332 06AO OOCE 
0336 482[1 
0338 0460 OOE6 

* * ROUTINE: INSPECT -
* INSPECT A CRU BIT CR1> 

* 
INSP 

INSP1 

* 

SLA 
MDV 
LI 
TB 
JNE 
SWPB 
OUT 
B 

R4, "01" 
0 
INSP1 
R4 
R4 
*R11 

* ROUTINES MODIFY 

; ALIGN FOR CRU BASE 
; PUT IN CRU BASE 
; SET F~4=0/1 

; DISPLAY THE BIT 
; BACK TO MONITOR 

*MODIFY A CRU BIT CR1> TO BE CR2> 

* 
MODIF SLA R1r1. 

MOV R1vR12 
MOV R2,R2 
JEQ MODIF1 
SBO 0 
JMP MODIF2 

MODIF:l SBZ 0 
MODIF2 B @MTR 

* * ROUTINE: PROG 

; ALIGN FOR CRU BASE 
SET.CRU BASE 

; TEST BIT 
IF ZERO, JUMP 

; BACK TO MONITOR 

*PROGRAM ROM. SOURCE IS CR1>-<R2>. * ROM TARGET IS <R3> 

* PROG 

PROG1 

PROG2 

PROG3 

* 

PF<G SBZ 
INCT R2 
LI 
MOV 
MOV 
ORI 
MOV 
LI 
DEC 
JNE 
c 
JNE 
DEC 
JNE 
SBO 
JMP 

R4r200 
R1rR5 
R3vF<6 
R6,>FOOO 
*R5t, *li:6t 
R7,6 
FO 
PROG3 

PROG2 
R4 
PROG1 
PRG 
MODIF2 

* ROUTINE! HEX * PRINT R1tR2 AND R1-R2 

* HEX 

BRANCH 

MOV 
A 
BL 
TEXT 
MOV 
s 
BL 
TEXT 
B 

R1,R5 
R2,R5 
@I•ISRG 
"H+" 
R1,R5 
R2,R5 
@I•ISRG 
~1-1-' 

@MTF~N 

XI-15 

; ENABl_E 

; REPEAT COUNT 
; SAVE INPUT 

ADJUST FOR ROM 
; PROG ONE WORD 

; ALLOW DYNAMIC RAM 
; TO REFRESH ITSELF 

CONT. THIS PASS 

; NEXT PASS 
; IIISABLE PROG. 
; BACK TO MONITOR 

; SUM 

; DIFFERENCE 



PAGE-11 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77) 

033C 4102 
033E 4287 
0340 4388 
0342 4406 
0344 4783 
0346 4884 
0348 4902 
034A 4C83 
034C 4D84 
034E 5088 
0350 5388 
0352 5786 
0354 0000 
0356 0274 004C 
035A 0126 02AA 
035E 0154 0324 
0362 02DA 02C4 
0366 02EC 02FE 
036A 0130 01.EO 
036E 01.48 
0370 039E 
0372 0376 
0374 0000 

0376 020A 03EA 
037A D21B 
037C 0209 0002 
0380 069A 
0382 0609 
0384 16FD 
0386 0209 0008 
038A 1EOO 
038C 069A 
038E 3048 
0390 069A 
0392 0918 
0394 0609 
0396 16FB 
0398 1DOO 
039A 06C8 

·039c 1019 

* * COMMAND TABLE 

* TABC 'A',>02 
'B',>87 
'C',>88 
'D',>06 
'G',>83 
'H',>84 
'I',>02 
'L'1>83 
IM I, >84 
'P'1>88 

; ALTER 
; lJREAKPO I NT 
; COPY 
; DUMP 
; GO 
; HEX ARITH. 
; INSPECT 

- ; LOAD 
; MODIFY 
; PROGRAM 

BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
DATA 

'S',>88 ; SNAP 
'W'1>86 WORKSPACE DUMP 
o,o ; END OF TABLE 
ALT1BRK1COPY1DUMP 

XOPTB DATA BKIN 
DATA ROUT2 
DATA ROUT1 
DATA 0 

* 
* * * * 
* 

XOP HOUTINES 
XOP-1 ~·· INPUT 
XOP-2 = OUTPUT 

* * 
ROUTINE: ROUT1 <TERMINAL OUTPUT> 
OUTPUT THE BYTE AT <R11>. IF IT IS 

* * 
A CARRIAGE RETURN, DELAY ACCORDING TO 
THE VALUE <DELAY> 

* ROUT1 

R110 

R120 

* 

LI 
MOVB 
LI 
BL 
DEC 
JNE 
LI 
SBZ 
BL 
LDCR 
BL 
SRL 
DEC 
JNE 
SBO 
SWPB 
JMP 

RlO,WAITA 
*R111R8 
R9,2 
*R10 
R9 
R110 
R9,8 
TTYO 
*R10 
R8"1 
*R10 
R8'1 
R9 
R120 
TTYO 
RS 
R250 

; R10=INDEX TO WAIT 
; 1~8=CHARACTEI=< 
; R9=NO STOP BITS 
; STOP BIT WAIT 

; R9=CHARACTER COUNT 
; START BIT 
; WAIT FOR START BIT 
;c22> OUTPUT ONE BIT 
j(16) WAIT FOR IT 
;(14) GET NEXT BIT 
;(10) CONTINUE TILL DONE 
;( 10) 
; STOP BIT 
; REPOSITION BYTE 
; GO CHECK BREAK, ETC. 

* ROUTINE: ROUT2 <TERMINAL ECHO) * INPUT ONE CHARACTER FROM TERMINAL AND * RETURN IT IN <R11>. IF CARRIAGE RETURN 

XI-16 



PAGE-13 TMS9900 MIGHTY MONITOR CVER3 - 12/1/77> 

0406 04CC 
0408 020A 0004 
040C !DOA 
040E 1D09 
0410 3208 
0412 !FOB 
0414 16FE 
0416 1DOB 
0418 C820 0022 
041C 0022 
041E 1308 
0420 060A 
0422 16F4 
0424 04C8 
0426 96EO 0432 
042A 1602 
042C 0609 
042E 16EC 
0430 0380 
0432 ODOD 
0434 04CC 
0436 1FOC 
0438 16FD 
043A 04C8 
043C 35C8 
043E 1DOG 
0440 It6C8 
0442 0288 1BOO 
0446 1602 
0448 0460 OOE6 
044C C220 0022 
0450 16D7 
0452 0380 

0454 

0244 ADD IN 0274 
OlAE BDISPS 0158 
0028 BKRTN 0338 
0072 BRK2 0080 
0256 CONT1 0126 
OAOD CRLF OOBA 
01F8 DISPW2 0216 
02AA DUMP 02AC 
OOFA FINDC 009A 
02DA INSP 02E8 
02EC MOD IF 02F8 
~080 MTRWP 0114 

001 PRG 02FE 
013E GUEST 0000 
0380 R110 oooc 
OOOF RlS 0002 

T9901A 
T9901B 

T9901C 

T9901D 
T990Cf< 
T9902 

T9902A 

* 

CLR 
LI 
SBO 
SBO 
LDCf< 
TB 
JNE 
SBO 
MDV 

JEQ 
DEC 
JNE 
CLR 
CB 
JNE 
DEC 
JNE 
RTWP 
DATA 
CLR 
TB 
JNE 
CLf< 
STCR 
SBO 
MOVB 
CI 
JNE 
B 
HOV 
JNE 
RTWP 

R12 
f<10P4 
>A 

. >9 
f<B,B 
>B 
T9901C 
>B 
@>22,@>22 

T9901D 
R10 
T9901B 
R8 
@.T990CR,*R11 
T9901D 
R9 
T9901A 
; EXIT 
>ODOD 
R12 

T9902 
RS 
R8r7 
>C 
R8,*R11 
R8,>1BOO 
T9902A 
@MTRN 
@>22rR8 
T9901 
; NO-EXIT 

* END OF MONITOf"< 

; SET BASE 
; ECHO <1200 BAUD> 

; OUTPUT 

; ECH01 

; NO-EXIT 
; EACH ONE OUT 4 TIME 

; CR1 

; CR DELAY 

; CR 
; CHAR ECHO 

; RETURN THE.CHAR 

; ECH01 
; YES-DO 'IT 

* THE LOAD VECTOR MUST BE PATCHED IN 

* END START 

ALT 0276 ALT1 029A ALT2 01B2 BDISP 
BKDSP 0186 BKDSP2 019C BKDSP3 0148 BKIN 
BRANCH 0026 BREAK 004C BRK 0064 BRK1 
BRK3 005E BRKXOP 02D1 COLON 0118 CONT 
COPY 0128 COPY10 OOOD CR OOB7 CRET 
DASH 0020 DELAY 01EO DISPW 01E8 DISPW1 
DISPW3 OODO DI SRA OOCE DISRG OOBC DMEMN 
DUMP! 02BO DUMP2 OOBB EQUAL 0272 EXIT 
GET 0154 GO 0324 HEX *0000 IDTMM 
INSP1 02C4 LOAD 02C6 LOAD1 001A MAX 
MODIF1 02FA MODIF2 OOFO MTR OOE6 MTRN 
NEWL 025C NO HEX 024E NONEW 1000 NOOP 
PROG 0306 PROG1 030E PROG2 0314 PROG3 
RO 0001 R1 OOOA R10 OOOB R11 
R12 038E R120 OOOI1 R13 OOOE R14 
R2 03A2 R210 03AC R220 03B4 R230 

XI-18 



PAGE-14 TMS9900 MIGHTY MONITOt~ <VER3 - 12/1/77) 

03BC R240 03DO R250 03DA R260 03DE F~270 03E2 r~2so 
03E8 R290 0003 R3 0004 R4 0005 F~5 0006 t\6 
0007 R7 0008 RB 0009 R9 0218 i=WNUM 0220 F~DNUMA 
,,21E RDNUMB 0376 ROUT1 039E FWUT2 0130 SNAP 0287 SPACE 
t>ooo START 0226 STFn 001.6 STRT10 0038 sTra20 003C sTFn3o 

*0042 STRT40 0400 T9901 0408 T9901A 040C T9901B 0412 T9901C 
0430 T9901D 0434 T9902 044C T9902A 0432 T990CR 033C TABC 
026C TSTND 0000 TTY! 0000 TTYO 0090 TYPE 0092 TYPE1 
01BE TYF'EH 01D4 TYPEH2 OOB4 TYPEN 01BA TYPEWD *0098 TYPEX 
OOBO USF\WF' 03EA WAIT A 03EE WAI TB 03F2 WAI TC 2COO XOPO 
036E XOF'TB 0090 XOf'WS 

EDIT/ASM/LOAD? 

XI-19 



PAGE-1 SUPER STARTER GAMES CVER 6/77) 

0000 
0000 

OOBO 
OOBO 
OOB2 
OOB4 
OOB6 
OOB8 
OOBA 
OOBC 
OOBE 
ooco 
OOC2 
OOC4 
OOB6 
OOB8 
OOC4 
OOB6 
OOBB 
OOB6 
OOB8 

0000 
0000 0460 06F4 
0000 

0004 07 
0005 2E 
0006 20 
0007 3F 
0008 40 
0009 OD 
OOOA OA 
OOOC 03E8 
OOOE 4132 3334 
0012 3536 3738 
0016 3954 4A51 
001A 4B 
001C OOOA 
001E ooor1 
0020 0006 
0022 038A 0042 
0026 04F6 0046 
002A 05EB 0043 
002E 0678 0041 
0032 0000 
0034 01 

TITL 'SUPER STARTER.GAMES CVER 6/77)' 
IDTSSG IDT 'IDTSSG' 

DREG ; DEFINE REGISTERS 

* * RAM DATA BASE * ORDER IS IMPORTANT~ CHANGE WITH CARE 

* 
SEED 
BROLL 
WAGER 
PTOT 
PACE 
CTOT 
CACE 
CNT 
CHLD 
DRW 
DECK 
GUESS 
GAMES 
NO 
POINT 
ROLL 
NUMl 
NUM2 

* 

AORG >BO 
BSS 2 
BSS 2 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
EQU 
EQU 
EQU 
EQU 
EQU 
ECW 
EQU 

2 
2 
2 
2 
2 
2 
2 
2 
14 
PTOT 
PACE 
DECI\ 
PTOT 
PACE 
PTOT 
PACE 

* MONITOR INTERFACE 

* 
TTY 

* * ROM 

* BELLS 
DEC ML 
SPACE 
QUEST 
ATSGN 
CR 
LF 
BANK 
LABEL 

TEN 
C13 
C6 
GTAB 

ONE. 

* 

RORG * 
B @BEGIN 
EQU O 

DATA BASE 

BYTE 7 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
DATA 
TEXT 

, , 
• , , 

, ? , 
'@' 
>OD 
>OA 
1000 
'A23456789TJQK' 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
BYTE 

10 
13 
6 
BLK10,'B' 
GSOO,'F' 
CRP10,'C' 
ADlO,'A' 
0 
1 

* PLAYER MESSAGES 

XI-20 

; ADDRESS RAM 
; RANDOM NO+ SEED 
; CURRENT BANKROLL 
; CURRENT WAGER 
; PLAYER TOTAL 
; PLAYER ACE COUNT 
; COMPUTER TOTAL 
; COMPUTER ACE COUNT 
; CARDS REMAINING 
; COMPUTER HOLD 
; CARD LAST DRAWN 
; THE DECK 
·; ·TOTAL NO. OF GUESSES 
; TOTAL NO. OF GAMES 
; NUMBER 
; POINT 
; ROLL 
; NUMBER ONE 
; 'NUMBER TWO 

; CHANGE TO RELATIVE 
; GO TO START 
; TTY BIT 

. 
; BELL CODE 

; CARRIAGE RETURN 
; LINE FEED 
; SIZE OF BANK 

; CONSTANT 
; CONSTANT 
; CONSTANT 
; TABLE OF SELECTIONS 

; END OF TABLE FLAG 
~ BYTE INCREMENT 



PAGE-2 SUPER STARTER GAMES CVER 6/77> 

* 0035 424C 4143 MESSOO TEXT 'BLACKJACK@' 
0039 4B4A 4143 
003D 4B40 
003F 494E 4954 MESS01 TEXT 'INITIAL BANKROLL IS $200@' 
0043 4941 4C20 
0047 4241 4E4B 
004B 524F 4C4C 
004F 2049 5320 
0053 2432 3030 
0057 40 
0058 5245 4144 MESS02 TEXT 'READY?@' 
005C 593F 40 
005F 484F 5553 MESS03 TEXT 'HOUSE LIMIT IS $100@' 
0063 4520 4C49 
0067 4D49 5420 
006B 4953 2024 
006F 3130 3040 
0073 5741 4745 MESS04 TEXT 'WAGER?@' 
0077 523F 40 
007A 4849 543F MESS05 TEXT 'HITT@' 
007E 40 
007F 4445 414C MESS06 TEXT 'DEALER HOLDS @' 
Q083 4552 2048 
0087 4F4C 4453 
008B 2040 
008D 4445 414C MESS07 TEXT 'DEALER BUSTED@' 
0091 4552 2042 
0095 5553 5445 
0099 4440 
009B 594F 5520 MESS08 TEXT 'YOU WIN@' 
009F 5749 4E40 
OOA3 594F 5552 MESS09 TEXT 'YOUR BANKROLL IS $@' 
OOA7 2042 414E 
OOAB 4B52 4F;4C 
OOAF 4C20 4953 
OOB3 2024 40 
OOB6 4445 414C MESS10 TEXT 'DEALER TOTAL IS - @' 
OOBA 4552 2054 
OOBE 4F54 414C 
OOC2 2049 5320 
OOC6 2Il20 40 
OOC9 594F 5520 MESS11 TEXT 'YOU LOSE@' 
OOCD 4C4F 5345 
OOD1 40 
OOD2 4741 4D45 MESS12 TEXT 'GAME OVER - YOU ARE BROKE!@' 
OOD6 204F 5645 
OODA 5220 2D20 
OODE 594F 5520 
OOE2 4152 4520 
OOE6 4252 4F4B 
OOEA 4521 40 
OOED 2121 2120 MESS13 TEXT'!!! YOU BROKE THE BANK ! ! !@' 
OOF1 594F 5520 
OOF5 4252 4F4B 
OOF9 4520 5448 
OOFD 4520 4241 
0101 4E4B 2021 

XI-21 



F'AGE-3 SUPER STARTER GAMES <VER 6/77) 

0105 2121 40 
0108 534F 5252 MESS14 TEXT 'SORRYr NO CREI1IT@.' 
010C 592C 204E 
0110 4F20 4352 
0114 4544 4954 
0118 40 
0119 594F 5520 MESS15 TEXT 'YOU DRAW - @., 

011[1 4452 4157 
0121 202[1 2040 
0125 594F 5552 MESS16 TEXT 'YOUR TOTAL IS - @., 

0129 2054 4F54 
012D 414C 2049 
0131 5320 2D20 
0135 40 
0136 594F 5520 MESS17 TEXT 'YOU BUSTED@' 
013A 4255 5354 
013E 4544 40 
0141 424C 4143 MESS18 TEXT 'BLACKJACK ! @. '· 

0145 4B4A 4143 
0149 4B21 40 
014C 4445 414C MESS19 TEXT 'DEALER DRAWS - @., 

0150 4552 2044 
0154 5241 5753 
0158 202D 2040 

* 
015C 464F 5552 MESS20 TEXT 'FOUR DIGIT GUESS@/ 
0160 2044 4947 
0164 4954 2047 
0168 5545 5353 
016C 40 
016D 4755 4553 MESS21 TEXT 'GUESS NO. @., 
0171 5320 4E4F 
0175 2E20 40 
0178 4449 4749 MESS22 TEXT 'DIGITS CORRECT - @., 

017C 5453 2043 
0180 4F52 5245 
0184 4354 202D 
0188 2040 
018A 494E 2043 MESS23 TEXT 'IN CORRECT F'OS.- @., 
018E 4F52 5245 
0192 4354 2050 
0196 4F53 2E2D 
019A 2040 
019C 4C41 5354 MESS24 TEXT 'LAST SHOT, YOU LOSE. IT WAS - @.' 
01AO 2053 484F 
01A4 542C 2059 
01A8 4F55 204C 
01AC 4F53 452E 
01BO 2020 4954 
01B4 2057 4153 
01BB 202D 2040 
OlBC 3F3F 3F20 MESS25 TEXT '?11 NUMBERS ONLY!@.' 
OlCO 4E55 4D42 
01C4 4552 5320 
OlCB 4F4E 4C59 
01CC 2140 
OlCE 5448 4154 MESS26 TEXT 'THATS IT!@' 
01D2 5320 4954 

XI-22 



PAGE-4 SUPER STARTER GAMES <VER 6/77) 

01D6 2140 
01D8 594F 
01DC 2041 
01EO 5241 
01E4 2049 
01E8 2D20 

01EB 5745 
01EF 4F4D 
01F3 544F 
01F7 4845 
01FB 2E53 
OlFF 4741 
0203 524F 
0207 40 
0208 4348 
020C 5345 
0210 4F55 
021.4 4741 
0218 2028 
021C 2046 
0220 5354 
0224 4554 
0228 5229 

022B 4352 
022F 5340 
0231 524F 
0235 202E 
0239 2E2E 
023C 594F 
0240 2050 
0244 4E54 
0248 2040 

024A 4143 
024E 2044 
0252 4345 
0256 5448 
025A 5041 
025E 202D 

0262 
0262 2CAO 
0266 2CAO 
026A 045B 

5552 MESS27 TEXT 'YOUR AVERAGE IS - @' 
5645 
4745 
5320 
40 

* 4C43 MESS30 TEXT 'WELCOME TO THE S.S. GAMEROOM@' 
4520 
2054 
2053 
2E20 
4D45 
4F4D 

4F4F MESS31 TEXT 'CHOOSE YOUR GAME <BY FIRST LETTER>@' 
2059 
~5220 

4D45 
4259 
4952 
204C 
5445 
40 

4150 

4C4C 
2E2E 
40 
5552 
4F49 
202D 

4559 
5545 
5940 
4520 
4952 
2040 

0009 
OOOA 

* MESS40 TEXT 'CRAPS@' 

MESS41 TEXT 'ROLL • + ••• @' 

MESS42 TEXT 'YOUR POINT - @' 

* MESS50 TEXT 'ACEY DUECEY@' 

MESS51 TEXT 'THE PAIR - @' 

* * COMMON SUBROUTINES 

* * 

* ROUTINE: TY PEN 

* GO TO A NEW LINE 

* EVEN ; MUST BE EVEN ADDRESS 
TY PEN OUT @CR 

OUT @LF 
B *R11 

* * ROUTINE: WIN, LOSE 

* PRINT WIN OR LOSE MESSAGE, 

* UPDATE AND SHOW THE TOTALS 

* CHECK FOR OVERFLOW AND UNDERFLOW 

* 
XI-23 



PAGE-5 SUPER STAf<TER GAMES <VER 6/77) 

026C COCB WIN MDV R11,R3 ; SAVE RETURN 
026E 069F BL *R15 
0270 009B DATA MESS08 
0272 C020 OOB4 MOV · @WAGER,fW 
0276 1006 JMP SHOW 
0278 COCB LOSE MOV R11,R3 .. SAVE RETUf<N , 
027A 069F BL *R15 
027C OOC9 DATA MESS11 
027E C020 OOB4 MOV @WAGER,RO 
0282 0500 NEG RO 
0284 A020 OOB2 SHOW A @BROLL,RO ; RO=NEW TOTAL 
0288 110C JLT SHOW10 .. BROKE , 
028A 130B JEQ SHOW10 ; BROKE 
028C 8800 oooc c RO,@BANK ; CHECK AGAINST BANK LIMIT 
0290 150B JGT SHOW20 ; BIG WINNER 
0292 C800 OOB2 MOV RO,@Bf<OLL ; SAVE NEW BANKROLL 
0296 069F BL *R15 ; DISPLAY IT 
0298 OOA3 DATA MESS09 
029A C160 OOB2 MDV @BROLL,R5 
029E C203 MDV R3,R8 .. SETUP RETURN FOR DISP , 
02AO 101E JMP DI SPA .. DISPLAY AND EXIT ' 02A2 069F SHOW10 BL *R15 .. BROKE , 
02A4 OOD2 DATA MESS12 
02A6 1008 JMP SHOW40 
02A8 069F SHOW20 BL *f<15 .. BANK I~ROKE , 
02AA OOED DATA MESS13 
02AC 0201 0014 LI Rl,20 ; RING THE BELLS 
02BO 2CAO 0004 SHOW30 OUT @BELLS ; RING THE .BELLS! 
02B4 0601 DEC R1 
02B6 16FC JNE SHOW30 
02B8 0460 06F4 SHOW40 B @BEGIN ; RESTART 

* * ROUTINE: TYPE II * TYPE A DIGIT IN R4 

* 02BC 0284 OOOA TYPED CI R4r10 ; CHECK FOR TWO DIGITS 
02CO 1108 JLT TYPE3 .. JUMP IF NOT , 
02C2 04C3 I•ISPD CLR R3 ; DISPLAY TWO DEC+ DIG. 
02C4 3CEO 001C DIV @TEN,R3 
02C8 OA83 SLA R3,8 
02CA A103 A R3rR4 
02CC 0224 3000 TYPE2 AI R4,>3000 ; ADJUST SECOND DIGIT 
02DO 2C84 OUT R4 ; TYPE DIGIT 
02D2 0224 0030 TYPE3 AI R4,>30 .. ADJUST FOR ASCII ' 02D6 06C4 SWPB R4 
02D8 2C84 OUT R4 
02DA 045B B *R11 

* ROUTINE: DISP 

* DISPLAY THE CONTENTS OF R5 

* 02DC C20B DISP MOV R11,R8 
02I•E 0201 03E8 DI SPA LI Rl,1000 ... SETUP DIVISOR ' 02E2 C105 DISP10 MOV R5,R4 
02E4 04C3 CLR R3 .. <R3,R4>=INPUT ' 02E6 3CC1 DIV R1rR3 .. R3=INPUT/DIVISOR ' 02EB C103 HOV R3,R4 
02EA 04C3 CLR R3 
02EC 3CEO 001C DIV @TENrR3 .. R4=NEXT DIGIT , 

XI-24 



PAGE-6 SUPER STARTER GAMES <VER 6/77> 

02FO 06AO 02BC BL @TYPE[I 
02F4 04CO CLR RO 
02F6 3C20 001C [IIV @TEN,RO 
02FA C040 MOV . RO,Rl 
02FC 16F2 JNE [IISP10 
02FE 0458 B *RB 

* 
* ROUTINE: RANDOM 
* GENERATE A RANDOM NUMBER 

* N<I>=N<I-1>*C CMOD 2**16J 
* C=R*2**S+1=5*2**3+1=41 
* PERIOD=2**<16-3>=2**13 
* 

0300 0029 GEN DATA 41 . GENERATOR ' 0302 C020 OOBO f<AN[IOM MOV @SEED,RO . GET SEED , 
0306 160l. JNE RAND10 ; IF ZERO - CORRECT IT 
0308 05CO INCT RO 
030A 3820 0300 RAND10 MPY @GEN,RO . <RO,R1>=NEXT NO+ , 
030E C801 OOBO MOV R1,@SEED . RESET SEED , 
0312 045B B *R11 ; EXIT 

* 
* ROUTINE: WAIT 
* WAIT FOR OPERATOR GO AHEAD, AND 

* RANDOMIZE THE GENERATOR 
* 

0314 COCB WAIT MOV R11,R3 ;.SAVE RETURN 
0316 069i=" BL *R15 . READY'"t , 
0318 0058 DATA MESS02 
031A 0201 OOCB LI R1,200 . PRESET BANKROLL , 
031E C801 OOB2 MOV l:U ,@BROLL ; PRESET BANKROLL 
0322 04EO OOBE CLR @CNT . CLEAR COUNTER , 
0326 C2C3 MOV R3,R11 • RESET RET • FOR ALT+ ENTRY , 
0328 COCB WAIT A MOV l:U1,R3 . SAVE RETURN , 
032A 06AO 0302 WAIT10 BL @RANDOM ; GEN+ NO+ 
032E 1FOO TB TTY ; WAIT FOR OP+ INPUT 
0330 13FC JEQ WAIT10 
0332 2C44 IN R4 . GET INPUT ' 0334 0453 B *R3 

* * ROUTINE: GETWG 

"* GET li}AGER 

* 0336 COCB GETWG MOV R11,R3 . SAVE RETURN , 
0338 069F GETW10 BL *R15 ; ASK FOR INPUT 
033A 0073 [IATA MESS04 
033C 04C1 CLR R1 . CLEAR TOTAL , 
033E 2C44 GETW20 IN R4 . GET INPUT , 
0340 0984 SRL R4P8 . RIGHT JUSTIFY , 
0342 0224 FFDO AI R4r->30 • REMOVE ASCII BIAS , 
0346 1108 JLT GETW30 
0348 0284 0009 CI R4P9 
034C 1505 JGT GETW30 
034E 3860 OOlC MPY @TEN,R1 . <R1rR2>=R1*10 , 
0352 A084 A R4rR2 . R2=NEW VALUE , 
0354 C042 MOV R2rR1 

. 0356 10F3 JMP GETW20 
0358 0281 0064 GETW30 CI R1r100 . TEST SIZE , 
035C 1B06 JH GETW40 . TOO BIG , 

XI-25 



PAGE-7 SUPER STARTER GAMES (VER 6/77> 

035E 8801 OOB2 c R1,@BROLL .. CHECK AGAINST ASSETS , 
0362 1506 JGT GETW50 
0364 C801 OOB4 MDV R1,@WAGER ; SAVE IT 
0368 0453 B . *f<3 .. EXIT , 
036A 069F GETW40 BL *R15 
036C 005F I•ATA MESS03 
036E 10E4 JMP GETW10 
0370 069F GETW50 BL *R15 ; REFUSE CREDIT 
0372 0108 DATA MESS14 
0374 10E1 JMP GETW10 

* * l~OUTINE: MESS 

* DISPLAY THE MESSAGE WHOSE ADDRESS 
* FOLLOWS THE CALI-
* 

0376 COBB. MESS MDV R11,R2 .. SAVE RETURN , 
0378 06AO 0262 BL @TYPEN .. NEW LINE ' 037C C072 MOV *l=\:2f ,R1 ; R1=MESSAGE ADDR 
037E 2C91 MSS10 OUT *f<1 .. OUTPUT CHARACTER , 
0380 0581 INC R1 ; AI•VANCE TO NEXT 
0382 9811 0008 CB *R1,@ATSGN END? 
0386 16FB JNE MSS10 ; NO-CONTINUE 
0388 0452 B *R2 .. EXIT , 

* * GAME-1 <BLACKJACK> 

* 038A 069F BLl\10 BL *R15 .. SIGN-ON MESSAGE , 
038C 0035 DATA MESSOO 
038E 069F BL *R15 ; GIVE OUT BANKROLL 
0390 003F DATA MESS01 
0392 06AO 0314 BL @WAIT ; WAIT FOR GO 
0396 06AO 0336 BLK20 BL @GETWG ; GET WAGER 
039A 0201 OOB6 LI R1,PTOT ; CLEAR TOTALS 
039E 04F1 BLK30 CLI~ *R1+ 
03AO 0281 OOBE CI R1,CNT 
03A4 16FC JNE BLK30 
03A6 06AO 0456 BL @DLR .. GET DEALER HOLD , 
03AA 06AO 0410 BL @PLAY .. GET PLAYEl=\:S TWO , 
03AE 06AO 0410 BL @PLAY 
03B2 06AO 0456 BL @DLR .. GET DEALER SHO"W , 
03B6 069F BLK40 BL *R15 .. HIT? , 
03B8 007A DATA MESS05 
03BA 2C44 IN R4 .. GET INPUT , 
03BC 0984 SRL R4,8 .. RIGHT JUSTIFY , 
03BE 0284 004E ·CI R4, , NI ; N01 
03C2 1306 JEQ BLK45 
03C4 0284 0059 CI R4r'Y' .. IF NOT YES?r ASK AGAIN , 
03C8 16F6 JNE BLK40 
03CA 06AO 0410 BL @PLAY .. GET HIT , 
03CE 10F3 JMP BLK40 .. ASK AGAIN , 
03DO 069F BLK45 BL *R15 .. SHOW HOLD CARD , 
03D2 007F DATA MESS06 
03D4 2CAO OOC1 OUT @CHLD+1 .. PRINT CARD , 
03D8 C060 OOBA BLK50 MDV @CTQT,Rl .. IF CTOT<16 - HIT , 
03DC 0281 0010 CI Rlr16 
03EO 1503 JGT BLK70 
03E2 06AO 0456 BLK60 BL @DLR .. DEALER HIT , 
03E6 10F8 JMP BLK50 

XI-26 



PAGE·-8 SUPER STARTER GAMES <VER 6/77) 

03E8 0281 0016 BLK70 CI R1,22 . IF CTOT>21 - BUST , 
03EC 1105 JLT BLK100 
03EE 069F BL. *R15 ; DEALER BUST 
03FO 008[1 DATA.MESS07 
03F2 06AO 026C BLK80 BL @WIN . A· WINNER , 
03F6 10CF JMP BLK20 ; CONTINUE 
03F8 8060 OOB6 BLK100 c @PTQT,R1 ; COMPARE SCORES 
03FC 15FA .. JGT BLK80 ; TRY AGAIN 
03FE 069F BL *R15 ; DEALER TOTAL 
0400 OOB6 DATA MESS10 
0402 C120 OOBA MOV @CTQT,R4 ; SHOW TOTAL 
0406 06AO 02C2 BL @DISPD 
040A 06AO 0278 BLK110 BL @LOSE ; A LOSER 
040E 10C3 JMP BLK20 ; CONTINUE 

* * ROUTINE: PLAY 

* GET A CARD FOR PLAYER 
* ADJUST SCORE ACCORDING TO CARDS HELD 

* CHECK FOR BUST 
* 

0410 COCB PLAY MOV R11PR3 ; SAVE RETURN 
0412 069F Ifl. *R15 . DRAW-'· 0414 0119 DATA MESS15 
0416 06AO 0488 BL @GET • GET CARD ' 041A A801 OOB6 A R1,@PTOT ; ADD TO TOTAL 
041E A802 OOB8 A R2,@PACE ; ·ADD UP ACES TOO 
0422 0201 0015 PLAY10 LI R1,21 ; TEST SCORE 
0426 8060 OOB6 c @Pl'QT,R1 
042A 1508 JGT PLAY20 . BUST <MAYBE> ' 042C 1311 JEQ PLAY40 . BLACKJACK , 
042E 069F BL *R15 • SCORE 1-20 , 
0430 0125 DATA MESS16 
0432 C120 OOB6 MOV @PTOT,R4 ; PRINT TOTAL 
0436 C2C3 MOV R3,R11 . SETUP FOR CALL TO I•ISP , 
0438 0460 02C2 B @DISPD . CALL AND EXIT , 
043C 0620 OOB8 PLAY20 DEC @PACE • IF NO ACES-BUST , 
0440 1104 JLT PLAY30 
0442 6820 001C s @TEN,@PTOT . REDUCE ACE FROM 11 TO 1 , 
0446 OOB6 
0448 10EC JMP PLAY10 • RETEST ' 044A 069F PLAY30 BL - *R15 . BUST , 
044C 0136 DATA MESS17 
044E 10DD JMP BLK110 . A LOSER , 
0450 069F PLAY40 BL *R15 . BLACKJACK ' 0452 0141 DATA MESS18 
0454 10CE JMP BLKSO 

* * ROUTINE: DLR 

* DRAW ONE FOR THE DEALER 

* ADJUST TOTAL SCORE 

* 0456 COCB DLR MDV R11rR3 • SAVE RETURN , 
0458 C020 OOBA MDV @C·TOT, RO . IF FIRST CALL• , 
045C 1302 JEQ I•LRS . DON'T SHOW DRAW , 
045E 069F BL *R15 . D-EALER DRAWS , 

·0460 014C ItATA MESS19 
0462 06AO 0488 DLR5 BL @GET . GET CARD ' 0466 A801 OOBA A R1r@CTOT • UPDATE TOTAL ' 

XI-27 



PAGE-9 SUPER STARTER GAMES <VER 6/77) 

046A A802 OOBC 
046E 0201 0015 
0472 8060 OOBA 
0476 1501 
0478 0453 
047A 0620 OOBC 
047E 11FC 
0480 6820 001C 
0484 OOBA 
0486 10F3 

0488 C34B 
048A 0620 OOBE 
048E 150A 
0490 0201 OOC4 
0494 04F1 
0496 028:1. 00[12 
049A 1:1.FC 
049C 0201 003:~ 

04AO C801 OOBE 
04A4 06AO 0302 
04A8 04CO 
04AA 3C20 001E 
04AE D021 OOC4 
04B2 CBO:I. OOC2 
04B6 0980 
04B8 0280 0003 
04BC 15F3 
04BE B860 0034 
04C2 OOC4 
04C4 D121 OOOE 
04C8 0581 
04CA 0281 OOOA 
04CE 1102 
04DO 0201 OOOA 
04D4 04C2 
04[16 0984 
04[18 0284 0041 
04DC 1603 
04DE 0582 
04EO 0201 OOOB 
04E4 C020 OOBA 
04EB 1303 
04EA 06C4 
04EC 2C84 
04EE 045D 
04FO C804 OOCO 
04F4 045D 

04F6 04EO OOB8 
04FA 04EO OOB6 
04FE 069F 

Dlf~10 

DLR20 
DLR30 

* 

A 
LI 
c 
JGT, 
B 
DEC 
JLT 
s 

JMP 

R2,@CACE 
fH ,21 
@CTOT, F~1 
DLR30 
*R3 
@CACE 
DLR20 
@TEN,@CTOT 

DLR10 

; UPDATE ACES TOO 
; TEST SCORE 

; BUST <MAYBE> 
; EXIT WITH NEW SCORE 
; IF ACES, REDUCE SCORE 
; IF NOT, EXIT 

; RETEST 

* ROUTINE! GET * GET ONE CARD. 
* PRINT IT ALSO 

IF NOT FIRST CALL 

* GET 

GET5 

GET10 

GET15 

GET20 

GET30 

* 

MDV 
DEC 
JGT 
LI 
CLR 
CI 
JLT 
LI 
MDV 
BL 
CLR 
DIV 
MOVB 
MDV 
SRL 
CI 
JGT 
AB 

MOVB 
INC 
CI 
JLT 
LI 
CLR 
SRL 
CI 
JNE 
INC 
LI 
MDV 
JEQ 
SWPB 
OUT 
B 
MDV 
B 

* GAME - 2 

* GSOO CLR 
CLR 

GS05 BL 

R11,R13 
@CNT 
GET10 
R1,DECK 
*R1t 
R1 ,X)ECK+14 
GET5 
R:f.,51 
FU, C~CNT 
@li:ANDOM 
RO 
@C13rRO 
@DECK< IU > , RO 
R1 dHIRW 
li:O, 8 
R0,3 
GET10 
@ONE ,@DECI\ < R1 > 

@LABEL<R1),R4 
R1 
R1,10 
GET15 
Rl,10 
R2 
R4P8 
R4,'A' 
GET20 
R2 
R1'11 
@CTOT,RO 
GET30 
R4 
R4 
*R13 
R4,@CHLD 
*R13 

<FOUR DIGIT GUESS) 

SAVE RETURN 
; CHECK CARDS LEFT 
; IF NONE, RESHUFFLE 

CLEAi:-.: DEC!\ COUNT 
CLEAR COUNTERS 

; RESET COUNT 

GET RANDOM NO. 
~ FORCE PROPER RANGE 

ANY LEFT? 
; SAVE DRAWN CARD 

; NO-RETRY 
UPDATE CARD COUNT 

; ADJUST FOR J,Q,K 

; CHECK FOR ACE 

; FLAG AS ACE 
; CHANGE VALUE 
; PRINT IF NOT FIRST 

; OUTPUT 

; EXIT 
; SAVE HOLD CARD 
; EXIT 

@GAMES ; CLEAR GAME TOTAL 
@GUESS ; CLEAR GUESS TOTAL 
*R15 ; SIGN-ON 

XI-28 



PAGE-10 SUPER STAF\TER GAMES <VER 6/77) 

0500 015C DATA MESS20 
0502 06AO 0314 BL @WAIT ; WAIT FOR STA Fa 
0506 05AO OOB8 INC @GAMES . UPDATE NO. OF GAMES , 
050A 04C2 CLR . R2 ; GENEF.:ATE NUMBER 
050C 06AO 0302 GS10 BL @RANDOM ; GET NO. 
0510 04CO CLR RO . FORCE RANGE 0-9 ' 0512 3C20 001C DIV @TEN,RO 
051.6 C881 OOC4 MOV R1r@NO(R2) SAVE NO 
051A COC2 MDV R2rR3 ; CHECK FOR DUP 
051C 0643 GS20 DECT R3 
051E 1104 JLT GS30 
0520 88C1 OOC4 c R1,@NOCR3) 
0524 13F3 JEQ GS10 ; DUPLICATE 
0526 :l.OFA JMP GS20 
0528 05C2 GS30 INCT R2 ; DIGIT O.K. 
052A 02s2· 0008 CI R2r8 CONTINUE TILL ALL DONE 
052E 16EE JNE GS10 
0530 0205 0001 LI R5r1 ; R1=GUESS COUNT 
0534 04CD GS35 CLR R13 ; R6=CORf;:ECT POSITION 
0536 04C7 CLF\ R7 ; R7=JUST CORHECT 
0538 05AO OOB6 INC @GUESS ; INC. TOTAL GUESS 
053C 069F GS40 BL *R15 ; ASK FOR GUESS 
053E 016D DATA MESS21 
0540 C105 MOV R5rR4 ; PRINT GUESS NO. 
0542 06AO 02BC BL @TYPED 
0546 2CAO 0007 OUT @QUEST ;.PRINT ''?' 
054A 04C2 CLR R2 ; GET FOUR DIGIT GUESS 
054C 2C44 GS50 IN R4 ; GET INPUT 
054E 0984 SRL 1;:4, 8 ; RIGHT JUSTIFY 
0550 0224 FFDO AI R4r ·->30 ; REMOVE ASCII BIAS 
0554 1130 JLT GS100 ; NOT A DIGIT 
0556 0284 OOOA CI R4r10 ; CHECK RANGE 
055A 152[1 JGT GS100 . AGAIN NOT A DIGIT , 
055C 8884 OOC4 c R4r@NOCR2) ; CORRECT POS'? 
0560 1601 JNE GS60 
0562 058D INC R13 
0564 0203 0008 GS60 LI R3r8 ; CORRECT'? 
0568 88C4 OOC2 GS70 c R4r@N0-2<R3) 
056C 1601 JNE GS80 
056E 0587 INC R7 
0570 0643 GS80 DECT R3 
0572 16FA JNE GS70 
0574 05C2 INCT R2 . FINISHED GUESSING? , 
0576 0282 0008 CI R2,8 
057A 16E8 JNE GS50 . IF NOTr CONTINUE , 
057C 028D 0004 CI R13,4 . A WINNER'? ' 0580 131D JEQ GS110 
0582 069F BL *R15 ; SHOW RESULTS 
0584 0178 DATA MESS22 
0586 C107 MDV R7rR4 ; DISPLAY TOTAL 
0588 06AO 02BC BL @T_YPED 
058C 069F BL. *R15 
058E 018A DATA MESS23 
0590 C10D MDV R13,R4 ; DISPLAY SECOND TOTAL 
0592 06AO 02BC BL @TYPED 
0596 0585 INC R5 ; UPDATE GUESS COUNT 
0598 0285 0010 CI R5r16 ; BUST? 
059C 11CB JLT GS35 

XI-29 



·:~ 

.. 
PAGE-11 SUPER STARTEf( GAMES <VER 6/77> 

059E 069F BL *R15 . A LOSER , 
05AO 019C DATA MESS24 
05A2 04C2 CLR R2 . SHOW ANSWEf( , 
05A4 C122 OOC4 GS90 MOV @NO<R2>,R4 
05A8 06AO 02BC BL @TYPED 
05AC 05C2 INCT R2 
05AE 0282 0008 CI R2,8 
05B2 11F8 JLT GS90 
05B4 1005 JMP GS120 . START OVER ' 05B6 069F GS100 BL *R15 ; ILLEGAL ENTRY 
05B8 01BC DATA MESS25 
05BA 10CO JMP GS40 
05BC 069F GS110 BL *R15 ; A WINNER 
05BE 01CE DATA MESS26 
05CO 069F GS120 BL *IU5 . DO BATTING AVERAGE , 
05C2 01D8 DATA MESS27 
05C4 C160 OOB6 MOV @GUESS,R5 ; R5=GUESS 
05C8 3960 001C MPY CHEN ,R5 ; <R5,R6>=GUESS*10 
05CC 3[160 OOB8 DIV @GAMESrR5 . R5=<GUESS/GAMES>*10 , 
05[10 04C4 CLR R4 . <R4rR5>=<GUESS/GAMES>*10 , 
05[12 3D20 001C DIV @TEN,R4 ; R4=GUESS/GAMES, R5=1~EMA I NDER 
05[16 06AO 02BC BL @TYPED . PRINT R4 , 
05DA 2CAO 0005 OUT @DECML ; PRINT , , 

• 
05DE 0225 0030 AI RS'' 0' 
05E2 06C5 SWPB R5 
05E4 2C85 OUT RS ;'PRINT DIGIT 
05E6 108B JMP GS05 

* * GAME-3 <CRAPS> 

* 05E8 069F CRP10 BL *IU5 • SIGN ON , 
05EA 022B DATA MESS40 
05EC 069F BL *R15 ; GIVE OUT MONEY 
05EE 003F DAl'A MESS01 
05FO 06AO 03l.4 BL @WAIT ; READY? 
05F4 06AO 0336 CRP20 BL @GETWG ; GET WAGER 
05F8 04EO OOB6 CLR @POINT ; CLEAR POINT 
05FC 069F CRP30 :BL *R15 ; ROLL 
05FE 0231 DATA MESS41 
0600 06AO 0262 BL @TY PEN . NEW LINE , 
0604 06AO 0328 ·BL @WAI TA ; WAIT TO GO 
0608 3860 0020 MPY @C6,R1 
060C C101 MDV R1rR4 ; R4=DIG ONE 
060E C042 MDV R2,R1 
0610 OA31 SLA R1•3 . RANDOMIZE ' 0612 3860 0020 MPY @C6,R1 
0616 0581 INC R1 . FORCE RANGE 1-6 , 
0618 0584 INC R4 
061A C004 MOV R4,RO . CALC TOTAL , 
061C AOOl A Rl,RO 
061E caoo OOB8 MOV RO,@ROLL . SAVE IT , 
0622 OA81 SLA R1r8 
0624 A101 A R1rR4 
0626 06AO 02CC BL CHYPE2 
062A C020 OOB6 MOV @POINTrRO 
062E 1617 JNE CRP50 ; JUMP IF NOT FIRST 
0630 C020 OOBB MOV @ROLLrRO 
0634 0280 .0007 CI ROr7 A 7=WINNER , 

XI-JO 



PAGE-12 SUPER STARTER GAMES <VER 6/77> 

0638 131C JEQ CRP70 
063A 0280 OOOB CI ROr11 ; !!=WINNER 
063E 1319 JEQ CRF'70 
0640 0280 0004 CI · Ro,4 . 2,3=LOSER , 
0644 1113 JLT CRP60 
0646 0280 oooc CI R0,12 . 12=LOSER , 
064A 1310 JEQ CRP60 
064C 069F BL *R15 ; SHOW POINT 
064E 023C IIATA MESS42 
0650 C120 OOB8 MOV @ROLL,R4 
0654 C804 OOB6 HOV 1~4 r@PO I NT 
0658 06AO 02C2 BL @DISPD 
065C 10CF JMP CRP30 . CONTINUE , 
065E C060 OOB8 CRP50 MOV @l~OLL,R1 ; CHECK POINT 
0662 8040 c RO, Ii:! 
0664 1306 JEQ Cl~P70 

. YES, WINNER , 
0666 0281 0007 CI R1r7 ; 7=LOSER 
066A 16C8 JNE Cl~P30 

066C 06AO 0278 CRP60 BL @LOSE ; A LOSER 
0670 10C1 JMP CRP20 ; CONTINUE 
0672 06AO 026C CRP70 BL @WIN . A WINNER , 
0676 10.BE JMP CRP20 

* 

* GAME-4 <ACEY DUECEY> 

* 0678 069F AD10 BL *R15 ; ·SIGN ON 
067A 024A DATA MESS50 
067C 069F BL *R15 . GIVE OUT MONEY , 
067E 003F DATA MESS01 
0680 06AO 0314 BL @WAIT ; WAIT TO GO 
0684 069F AD20 BL *f<15. ; LABEL THE PAIR 
0686 0256 DATA MESS51 
0688 0720 OOBA SETO @CTOT SET DISP. FLAG 
068C 06AO 0488 BL @GET GET ONE 
0690 C820 OOC2 MOV @DRW,@NUM1 
0694 OOB6 
0696 1603 JNE AD21 ; SKIP IF NOT ACE 
0698 C820 06AE MOV @THRTr@NUM1 ; NUM1=13 
069C OOB6 
069E 2CAO 0006 AD21 OUT @SPACE ; OUTPUT SPACE 
06A2 06AO 0488 BL @GET • .GET TWO , 
06A6 C060 OOC2 MOV @DRW,R1 . R1=IIRAW , 
0.6AA 1602 JNE AD22 ; JUMP IF NOT ACE 
06AE THRT EQU $+2 • ADDRESS OF 13 , 
06AC 0201 OOOD LI R1P13 . RESET AS 13 , 
06BO 8801 00It6 AD22 c R1,@NUM1 
06B4 1506 JGT AD30 
06B6 CB20 OOB6 MDV @NUM1r@NUM2 
06BA OOBB 
06BC C801 OOB6 MOV R1r@NUM1 
06CO 1002 JMP AD40 
06C2 C801 OOB8 AD30 MOV R1r@NUM2 
06C6 06AO 0336 AD40 BL @GETWG . WAGER , 
06CA C020 OOB4 MOV @WAGER,RO ; IF ZERO, NO BET 
06CE 13DA JEQ AD20 

. 06DO 069F BL *R15 . DRAW , 
06It2 0119 DATA MESS15 
06[14 06AO 0488 BL @GET . GET CARD , 

XI-31 



PAGE-13 SUPER STARTER GAMES <VER 6/77) 

06D8 8820 OOC2 c @ItRWr@NUM1 
06ItC OOB6 
06DE 150:3 JGT AD60 ; O.K. so FAf< 
06EO 06AO 0278 AD50 BL · @LOSE ; LOSER 
06E4 10CF JMF' AD20 
06E6 8820 OOB8 AD60 c @NUM2r@DRW 
06EA OOC2 
06EC 12F9 JLE Ait50 
06EE 06AO 026C BL @WIN ; A WINNER 
06F2 10C8 JMP AD20 

* * CONTf<OL LOOP 

* 06F4 02EO 0080 BEGIN LWPI >BO . USE MONITOR WORKSPACE , 
06F8 020F 0376 LI R:L5, MESS ; PRESET R15 
06FC 04CC CL.R R12 ; PRESET CRU BASE 
06FE 069F BL *R15 SHOW CHOICES 
0700 01EB DATA MESS30 
0702 069F BL *R15 
0704 0035 DATA MESSOO 
0706 069F BL *R15 
0708 015C DATA MESS20 
070A 069F BL *Rl.5 
070C 022B DATA MESS40 
070E 069F BL *l:U5 
0710 024A DATA MESS50 
0712 069F BEG10 :BL *R15 
0714 0208 DATA MESS31. 
0716 2C44 IN R4 ; GET CHARACTEF< 
0718 0984 SRL R4r8 . RIGHT JUSTIFY , 
071A 0201 0022 LI R1rGTAB 
071E COB1 BEG20 MOV *IH+,R2 
0720 13F8 JEQ BEG10 ; NO MORE 
0722 8C44 c R4r*R1t 
0724 16FC JNE BEG20 
0726 0452 B *R2 ; GO TO CHOICE 
0728 END BEGIN ; END OF SYSTEM 

0678 Ait10 ·0684 AD20 069E AD21 06BO A[t22 06C2 AD30 
06C6 AD40 06EO AD50 06E6 AD60 0008 ATSGN oooc BANK 
0712 BEG10 071E BEG20 06F4 BEGIN 0004 BELLS 038A BLK10 
03F8 BLK100 040A BLK110 0396 BLK20 039E BLK30 03B6 BLK40 
03[10 BLK45 03[18 BLK50 *03E2 BLK60 03E8 BLK70 03F2 BLK80 
OOB2 BROLL 001E C13 0020 C6 OOBC CACE ooco CHLD 
OOBE CNT 0009 CR 05E8 CRP10 05F4 CRP20 05FC CRP30 
065E CRP50 066C CRP60 0672 CRP70 OOBA CTOT OOC4 DECK 
0005 DECML *02DC DISP 02E2 DISF'10 02DE DI SPA 02C2 DISPD 
0456 DLR 046E DLR10 0478 DLR20 047A DU~30 0462 DLR5 
OOC2 ItRW OOB8 GAMES 0300 GEN 0488 GET 04A4 GET10 
04D4 GET15 04E4 GET20 04FO GET30 0494 GET5 0338 GETW10 

~~~ GETW20 0358 GETW30 036A GETW40 0370 GETW50 0336 GETWG 
GSOO 04FE GS05 050C GS10 05B6 GS100 05BC GS110

05CO GS1.20 051C GS20 0528 GS30 0534 GS35 053C GS40
054C GS50 0564 GS60 0568 GS70 0570 GS80 05A4 GS90
0022 GTAB OOB6 GUESS *0000 IDTSSG OOOE LABEL OOOA LF

XI-32

PAGE-14 SUPER STAraEr~ GAMES <VER b/77>

0278 LOSE 0376 MESS 0035 MESSOO 003F MESS01 0058 MESS02
005F MESS03 0073 MESS04 007A MESS05 007F MESS06 008Ir MESS07
009B MESS08 OOA3 MESS09 OOB6 MESS10 OOC9 MESS11 oorr2 MESS12
)~OED MESS13 0108 MESS14 0119 MESS1.5 0125 MESS16 0136 MESS17
0141 MESSlB 014C MESS19 015C MESS20 016D MESS21 0178 MESS22
018A ·MESS23 019C MESS24 01BC MESS25 01CE MESS26 01fl8 MESS27
01EB MESS30 0208 MESS31. 022B MESS40 0231 MESS41 023C MESS42
024A MESS50 02!56 MESS51 037E MSS10 OOC4 NO OOB6 NUM1
OOBB NUM2 0034 ONE OOBB PACE 0410 PLAY 0422 PLAY10
043C PLAY20 044A PLAY30 0450 PLAY40 OOB6 POINT OOB6 PTOT
0007 QUEST 0000 RO 0001 Rl *OOOA R10 OOOB R11
oooc R12 ooon R13 *OOOE R14 OOOF R15 0002 R'">

"'""
0003 R3 0004 R4 0005 r~5 *0006 R6 0007 R7

·0008 RB *0009 R9. 030A RAND10 0302 RANDOM OOB8 ROLL
OOBO SEED 0284 SHOW 02A2 SHOW10 02A8 SHOW20 02BO SHOW30
02B8 SHOW40 0006 SPACE 001C TEN 06AE THRT 0000 TTY
02CC TYPE2 02D2 TYPE3 02BC TYPED 0262 TYPEN OOB4 WAGER
0314 WAIT 032A WAIT10 0328 WAIT A 026C WIN

EDIT /ASM/LOADrf

XI-33

SUPER STARTER GAMES
LOAD INTO RAM AT INDICATED ADDRESSES
~BEGIN EXECUTION BY •G D2•

0002: 04 60 07 C6 07 2E 20 3F 40 OD OA 00 03 E8
OOEO: 41 32 33 34 35 36 37 38 39 54 4A 51 4B 00 00 OA
OOFO: 00 OD 00 06 04 5C 00 42 05 CS 00 46 06 BA 00 43
0100: 07 4A 00 41 00 00 01 42 4C 41 43 4B 4A 41 43 4B
0110: 40 49 4E 49 54 49 41 4C 20 42 41 4E 4B 52 4F 4C
0120: 4C 20 49 53 20 24 32 30 30 40 52 45 41 44 59 3F
0130: 40 48 4F 55 53 45 20 4C 49 4D 49 54 20 49 53 20
0140: 24 31 30 30 40 57 41 47 45 52 3F 40 48 49 54 3F
0150: 40 44 45 41 4C 45 52 20 48 4F 4C 44 53 20 40 44
0160: 45 41 4C 45 52 20 42 55 53 54 45 44 40 59 4F 55
0170: 20 57 49 4E 40 59 4F 55 52 20 42 41 4E 4B 52 4F
01SO: 4C 4C 20 49 53 20 24 40 44 45 41 4C 45 52 20 54
0190: 4F 54 41 4C 20 49 53 20 2D 20 40 59 4F 55 20 4C
OlAO: 4F 53 45 40 47 41 4D 45 20 4F 56 45 ~2 20 2D 20
01DO: 59 4F 55 20 41 52 45 20 42 52 4F 4B 45 21 40 21
01co: 21 21 20 59 4F 55 20 42 52 4F 4B 45 20 54 48 45
0100: 20 42 41 4E 4B 20 21 21 21 40 53 4F 52 52 59 2C
01EO: 20 4E 4F 20 43 52 45 44 49 54 40 59 4F 55 20 44
OlFO: 52 41 57 20 2D,20 40 59 4F 55 52 20 54 4F 54 41
0200: 4C 20 49 53 20 2D 20 40 59 4F 55 20 42 55 53 54
0210: 45 44 40 42 4C 41 43 4B 4A 41 43 4B 21 40 44 45
0220: 41 4C 45 52 20 44 52 41 57 53 20 2D 20 40 46 4F
~230: 55 52 20 44 49 47 49 54 20 47 55 45 53 53 40 47
0240: 55 45 53 53 20 4E 4F 2E 20 40 44 49 47 49 54 53
0250: 20 43 4F 52 52 45 43 54 20 2D 20 40 49 4E 20 43
0260: 4F 52 52 45 43 54 20 50 4F 53 2E 2D 20 40 4C 41
0270: 53 54 20 53 48 4F 54 2C 20 59 4F 55 20 4C 4F 53
02SO: 45 2E 20 20 49 54 20 57 41 53 20 2D 20 40 3F 3F
0290: 3F 20 4E 55 4D 42 45 52 53 20 4F 4E 4C 59 21 40
02AO: 54 4S 41 54 53 20 49 54 21 40 59 4F 55 52 20 41
02BO: 56 45 52 41 47 45 20 49 53 20 2D 20.40 57 45 4C
02co: 43 4F 4D 45 20 54 4F 20 54 48 45 20 53 2E 53 2E
02DO: 20 47 41 4D 45 52 4F 4F 4D 40 43 48 4F 4F 53 45
02EO: 20 59 4F 55 52 20 47 41 4D 45 20 28 42 59 20 46
02FO: 49 52 53 54 20 4C 45 54 54 45 52 29 40 43 52 41
0300: 50 53 40 52 4F 4C 4C 20 2E 2E 2E 2E 2E 40 59 4F
0310: 55 52 20 50 4F 49 4E 54 20 2D 20 40 41 43 45 59
0320: 20 44 55 45 43 45 59 40 54 48 45 20 50 41 49 52
0330: 20 2D 20 40 2C AO 00 DB 2C AO 00 DC 04 ·5a CO CB
0340: 06 9F 01 6D CO 20 00 B4 10 06 CO CB 06 9F 01 9B
0350: CO 20 00 B4 05 00 AO 20 00 B2 11 OC 13 OB 88 00
0360: 00 DE 15 OB CS 00 00 B2 06 9F 01 75 C1 60 00 B2
0370: C2 03 10 1E 06 9F 01 A4 10 08 06 9F 01 BF 02 01
OJSO: 00 14 2C AO 00 D6 06 01 16 FC 04 60 07 C6 02 84
0390: 00 OA 11 08 04 C3 3C EO 00 EE OA 83 Al 03 02 24
03AOt 30 00 2C S4 02 24 00 30 06 C4 2C 84 04 5B C2 OB
OJBO: 02 01 03 ES Cl 05 04 C3 3C Cl Cl 03 04 C3 3C EO
p3co: 00 EE 06 AO 03 8E 04 co 3C 20 00 EE co 40 16 F2
OJDO: 04 58 00 29 CO 20 00 BO 16 01 05 CO 38 20 03 D2
03EO: ca 01 00 BO 04 SB co CB 06 9F 01 2A 02 01 00 ca
OJFO: ca 01 00 B2 04 EO 00 BE C2 CJ co CB 06 AO 03 D4

XI-34

0400: 1F 00 13 FC 2C 44 04 53 co CB 06 9F 01 45 04 C1
0410: 2C 44 09 84 02 24 FF DO 11 08 02 84 00 09 1S 05
0420: 38 60 00 EE AO 84 co 42 10 F3 02 81 00 64 1B 06
0430: 88 01 00 B2 1S 06 ca 01 00 B4 04 S3 06 9F 01 31
~440: 10 E4 06 9F 01 DA 10 El co BB 06 AO 03 34 co 72
~450: 2C 91 05 81 98 11 00 DA 16 FB 04 S2 06 9F 01 07
0460: 06 9F 01 11 06 AO 03 E6 06 AO 04 08 02 01 00 B6
0470: 04 Fl 02 81 00 BE 16 FC 06 AO OS 28 06 AO 04 E2
0480: 06 AO 04 E2 06 AO OS 28 06 9F 01 4C 2C 44 09 84
0490: 02 84 00 4E 13 06 02 84 00 S9 16 F6 06 AO 04 E2
04AO: 10 F3 06 9F 01 51 2C AO 00 Cl co 60 00 BA 02 81
04BO: 00 10 15 03 06 AO 05 28 10 FS 02 81 00 16 11 05
04COt 06 9F 01 5F 06 AO 03 3E 10 CF 80 60 00 B6 15 FA
04DO: 06 9F 01 88 Cl 20 00 BA 06 AO 03 94 06 AO 03 4A
04EO: 10 C3 co CB 06 9F 01 EB 06 AO 05 SA AS 01 00 B6
04FO: AS 02 00 BB 02 01 00 15 BO 60 00 B6 15 08 13 11
osoo: 06 9F 01 F7 Cl 20 00 B6 C2 C3 04 60 03 94 06 20
os10: 00 BB 11 04 68 20 00 EE 00 B6 10 EC 06 9F 02 08
0520: 10 DD 06 9F 02 13 10 CE co CB co 20 00 BA 13 02
OS30: 06 9F 02 1E 06 AO OS SA AS 01 00 BA AB 02 00 BC
0540: 02 01 00 1S 80 60 00 BA 1S 01 04 53 06 20 00 BC
05SO: 11 FC 68 20 00 EE 00 BA 10 F3 C3 4B 06 20 00 BE
0560: 15 OA 02 01 00 C4 04 Fl 02 81 00 D2 11 FC 02 01
0570: 00 33 ca 01 00 BE 06 AO 03 [14 04 co 3C 20 00 FO
osBo: DO 21 00 C4 ca 01 00 C2 09 80 02 BO 00 03 15 F3
OS90: BB 60 01 06 00 C4 Dl 21 00 EO 05 81 02 81 00 OA
05AO: 11 02 02 01 00 OA 04 C2 09 84 02 B4 00 4,1 ,16 03
OSBO: 05 82 02 01 00 OB co 20 00 BA 13 03 06 C4 2C 84
osco: 04 5D ca 04 00 co 04 SD 04 EO 00 BB 04 EO 00 B6
,PSDO: 06 9F 02 2E 06 AO 03 E6 OS AO 00 BS 04 C2 06 AO
,,i)5EO: 03 D4 04 co 3C 20 00 EE CB 81 00 C4 co C2 06 43
05FO: 11 04 BS Cl 00 C4 13 F3 10 FA OS C2 02 82 00 08
0600: 16 EE 02 05 00 01 04 CD 04 C7 05 AO 00 B6 06 9F
0610: 02 3F Cl OS 06 AO 03 SE 2C AO 00 D9 04 C2 2C 44
0620: 09 84 02 24 FF DO 11 30 02 84 00 OA lS 2D 88 84
0630: 00 C4 16 01 OS SD 02 03 00 08 88 C4 00 C2 16 01
0640: OS 87 06 43 16 FA OS C2 02 B2 00 OB 16 EB 02 8D
06SO: 00 04 13 1D 06 9F 02 4A Cl 07 06 AO 03 BE 06 9F
0660: 02 SC Cl OD 06 AO 03 SE OS 85 02 85 00 10 11 CB
0670: 06 9F 02 6E 04 c2 Cl 22 00 C4 06 AO 03 SE 05 C2
0680: 02 82 00 08 11 F8 10 OS 06 9F 02 SE 10 co 06 9F
0690: 02 AO 06 9F 02 AA Cl 60 00 B6 39 60 00 EE 3It 60
06AO: 00 B8 04 C4 3[1 20 00 EE 06 AO 03 BE 2C AO 00 It7
OqBO: 02 2S 00 30 06 cs 2C as 10 BB 06 9F 02 FD 06 9F
06CO: 01 11 06 AO 03 E6 06 AO 04 08 04 EO 00 B6 06 9F
06DO: 03 03 06 AO 03 34 06 AO 03 FA 38 60 00 ·F2 Cl 01
06EO: co 42 OA 31 38 60 00 F2 05 81 05 84 co 04 AO 01
06FO: ca 00 00 BS OA 81 A1 01. 06 AO 03 9E co 20 00 B6
0700: 16 17 co 20 00 BS 02 80 00 07 13 lC 02 80 00 OB
0710: 13 19 02 80 00 04 11 13 02 80 00 oc 13 10 06 9F
0720: 03 OE Cl 20 00 BB ca 04 00 B6 06 AO 03 94 10 CF
0730: co 60 00 BB 80 40 13 06 02 Bl 00 07 16 ca 06 AO
0740: 03 4A 10 Cl 06 AO 03 3E 10 BE 06 9F 03 1C 06 9F
0750: 01 11 06 AO 03 E6 06 9F 03 28 07 20 00 BA 06 AO
~760: 05 SA CB 20 00 C2 00 B6 16 03 ca 20 07 80 00 B6

770: 2C AO 00 DB 06 AO 05 SA CO 60 00 C2 16 02 02 01
0780: 00 Oii 88 01 00 B6 lS 06 ca 20 00 B6 00 BS ca 01
0790: 00 B6 10 02 cs 01 00 BB 06 AO 04 08 co 20 00 B4

XI-35

07AO: 13 DA 06 9F 01 EB 06 AO 05 5A 88 20 00 C2 00 B6
11107BO: 15 03 06 AO 03 4A 10 CF 88 20 00 B8 00 C2 12 F9
l\)7CO: 06 AO 03 3E 10 CB 02 EO 00 80 02 OF 04 48 04 cc
07D6: 06 9F 02 BD 06 9F 01 07 06 9F 02 2E 06 9F 02 FD
07EO: 06 9F 03 lC 06 9F 02 DA 2C 44 09 84 02 01 00 F4
07FO: co Bl 13 FB BC 44 16 FC 04 52 04 60 05 FO 1E 01
1

XI-36

SUPER STARTER GAMES - PROM VERSION
LOAD PROGRAM INTO RAM AT >BOv THEN PROGRAM
INTO A PROM BY "~ BOv7FFvO". PROGRAM IS.
EXECUTED IN PROM BY "G rooo·.

OOBO: 04 60 F6 F4 07 2E 20 3F 40 OD OA 00 03 EB 41 32
OOCO: 33 34 35 36 37 3B 39 54 4A 51 4B 00 00 OA 00 OD
OODO: 00 06 F3 SA 00 42 F4 F6 00 46 F5 EB 00 43 F6 78
OOEO: 00 41 00 00 01 42 4C 41 43 4B 4A 41 43 4B 40 49
ooro: 4E 49 54 49 41 4C 20 42 41 4E 4B 52 4F 4C 4C 20
0100: 49 53 20 24 32 30 30 40 52 45 41 44 59 3F 40 48
0110: 4F 55 53 45 20 4C 49 4D 49 54 20 49 53 20 24 31
0120i 30 30 40 57 41 47 45 52 3F 40 48 49 54 3F 40 44
0130! 45 41 4C 45 52 20 48 4F 4C 44 53 20 40 44 45 41
0140: 4C 45 52 20 42 55 53 54 45 44 40 59 4F 55 20 57
0150: 49 4E 40 59 4F 55 52 20 42 41 4E 4B 52 4F 4C 4C
0160: 20 49 53 20 24 40 44 45 41 4C 45 52 20 54 4F 54
0170: 41 4C 20 49 53 20 2D 20 40 59 4F 55 20 4C 4F 53
01801 45 40 47 41 4D 45 20 4F 56 45 52 20 2D 20 59 4F
0190: 55 20 41 52 45 20 42 52 4F 4B 45 21 40 21 21 21
01AO: 20 59 4F 55 20 42 52 4F 4B 45 20 54 48 45 20 42
01BO: 41 4E 4B 20 21 21 21 40 53 4F 52 52 59 2C 20 4E
01co: 4F 20 43 52 45 44 49 54 40 59 4F 55 20 44 52 41
01DO! 57 20 2D 20 40 59 4F 55 52 20 54 4F 54 41 4C 20
01EO! 49 53 20 2D 20 40 59 4F 55 20 42 55 53 54 45 44
OlFO! 40 42 4C 41 43 4B 4A 41 43 4B 21 40 44 45 41 4C
0200: 45 52 20 44 52 41 57 53 20 2D 20 40 46 4F 55 52
0210: 20 44 49 47 49 54 20 47 55 45 53 53 40 47 55 45
0220: 53 53 20 4E 4F 2E 20 40 44 49 47 49 54 53 20 43
0230: ~F 52 52 45 43 54 20 2D 20 40 49 4E 20 43 4F 52
02401 52 45 43 54 20 50 4F 53·2E 2D 20 40 4C 41 53 54
0250! 20 53 48 4F 54 2C 20 59 4F 55 20 4C 4F 53 45 2E
0260: 20 20 49 54 20 57 41 53 20 2D 20 40 3F 3F 3F 20
0270! 4E 55 4D 42 45 52 53 20 4F 4E 4C 59 21 40 54 48
0280: 41 54 53 20 49 54 21 40 59 4F 55 52 20 41 56 45
0290! 52 41 47 45 20 49 53 20 2D 20 40 57 45 4C 43 4F
02AO: 4D 45 20 54 4F 20 54 48 45 20 53 2E 53 2E 20 47
02BO: 41 4D 45 52 4F 4F 4D 40 43 48 4F 4F 53 45 20 59
02co: 4F 55 52 20 47 41 4D 45 20 20 42 59 20 46 49 52
02DO; 53 54 20 4C 45 54 54 45 52 29 40 43 52 41 50 53
02EO! 40 52 4F 4C 4C 20 2E 2E 2E 2E 2E 40 59 4F 55 52
02FO: 20 50 4F 49 4E 54 20 2D 20 40 41 43 45 59 20 44
0300: 55 45 43 45 5~ 40 54 4B 45 20 50 41 49 52 20 2D
0310: 20 40 2C AO FO 09 2C AO FO OA 04 5B CO CB 06 9F
0320: FO 9B CO 20 00 B4 10 06 CO CB 06 9F FO C9 CO 20
0330: 00 B4 05 00 AO 20 00 B2 11 OC 13 OB 88 00 FO OC
0340: 15 OB CB 00 00 B2 06 9F FO A3 Cl 60 00 B2 C2 03
0350: 10 1E 06 9F FO D2 10 08 06 9F FO ED 02 01 00 14
0360t 2C AO FO 04 06 01 16 FC 04 60 F6 F4 02 84 00 OA
0370: 11 08 04 C3 3C EO FO lC OA 83 Ai 03 02 24 30 00
0380: 2C 84 02 24 00 30 06 C4 2C 84 04 5B C2 OB 02 01
0390t 03 EB Cl 05 04 C3 3C Cl Cl 03 04 CJ 3C EO FO 1C
03AO: 06 AO F2 BC 04 CO 3C 20 FO 1C CO 40 16 F2 04 58
03BO: 00 29 CO 20 00 BO 16 01 05 CO 38 20 F3 00 CB 01
03CO: 00 BO 04 SB co CB 06 9F FO 58 02 01 00 ca CB 01
03DO: 00 B2 04 EO 00 BE C2 CJ CO CB 06 AO F3 02 1F 00
Q,J,EO: :1.:3 FC 2C 44 04 ::'i3 CO CB 06 9F FO 73 04 Cl 2C 44
03FO: 09 84 02 24 FF DO 11 OB 02 84 00 09 15 05 38 60

XI-37

'

0400: FO 1C AO 84 CO 42 10 F3 02 81 00 64 1B 06 88 01
0410! 00 B2 15 06 CB 01 00 B4 04 53 06 9F FO 5F 10 E4
0420! 06 9F Fl 08 10 El CO BB 06 AO F2 62 CO 72 2C 91
0430! 05 81 98 11 FO 08 16 FB 04 52 06 9F FO 35 06 9F
0440: FO 3F 06 AO F3 14 06 AO F3 36 02 01 00 B6 04 Fl
0450! 02 8i 00 BE 16 FC 06 AO F4 56 06 AO F4 10 06 AO
0460! F4 10 06 AO F4 56 06 9F FO 7A 2C 44 09 84 02 84
0470! 00 4E 13 06 02 84 00 59 16 F6 06 AO F4 10 iO F3
0480: 06 9F FO 7F 2C AO 00 Ci CO 60 00 BA 02 81 00 10
0490! 15 03 06 AO F4 56 10 F8 02 81 00 16 i1 05 06 9F
04AO: FO BD 06 AO F2 6C iO CF 80 60 00 B6 15 FA 06 9F
04BO! FO B6 Cl 20 00 BA 06 AO F2 C2 06 AO F2 78 10 C3
04CO: CO CB 06 9F Fi 19 06 AO F4 88 AB 01 00 B6 AB 02
04DO !' 00 BB 02 0 :I. 00 1 ~'.'i tlO 60 00 El6 1 ::'i 08 :I. 3 :I. l 06 9F
04EO! Fl 25 C:I. 20 00 B6 C2 C3 04 60 F2 C~ 06 20 00 BB
04FO: :1.1 04 68 20 FO lC 00 B6 10 EC 06 9F Fi 36 :1.0 DD
0500: 06 9F Fl 41 10 CE CO CB CO 20 00 BA 13 02 06 9F
0510! Fl 4C 06 AO F4 88 AB 01 00 BA AB 02 00 BC 02 Ol
0520! 00 15 80 60 00 BA 15 01 04 53 06 20 00 BC :l.l FC
0530! 68 20 FO 1C 00 BA 10 F3 C3 4B 06 20 00 BE 15 OA
0540: 02 0:1. 00 C4 04 F:I. 02 81 00 D2 ll FC 02 0:1. 00 33
0550: CB Ol 00 BE 06 AO F3 02 04 CO 3C 20 FO 1E QO 21
0560! 00 C4 CB 01 00 C2 09 80 02 80 00 03 15 F3 B8 60
0570: FO 34 00 C4 D:I. 21 FO OE 05 8:1. 02 81 00 OA :1.l 02
0580: 02 Ol 00 OA 04 C2 09 84 02 84 00 41 16 03 05 82
0590: 02 01 00 OB CO 20 00 BA 13 03 06 C4 2C 84 04 5D
05AO: ca 04 00 co 04 5D 04 EO 00 B8 04 EO oo· B6 06 9F
05BO: F:I. 5C 06 AO F3 14 05 AO 00 BB 04 c: 06 AO F3 02
05CO! 04 CO 3C 20 FO 1C CB 81 00 C4 CO C2 06 43 11 04
05DO: 88 Cl 00 C4 13 F3 10 FA 05 C2 02 82 00 08 16 Ll
05EO! 02 05 00 01 04 CD 04 C7 05 AO 00 B6 06 9F Fl 6D
05FO: Cl 05 06 AO F2 BC 2C AO .FO 07 04 C2 2C 44 09 84
0600: 02 24 FF DO 1:1. 30 02 84 00 OA 15 2D 88 84 00 C4
0610: 16 01 05 SD 02 03 00 08 88 C4 00 C2 :1.6 01 05 87
0620:.06 43 16 FA 05 C2 02 82 00 08 16 EB 02 SD 00 04
0630: :1.3 1D 06 9F F1 78 Cl 07 06 AO F2 BC 06 9F F:I. BA
0640! Cl OD 06 AO F2 BC 05 85 02 85 00 :1.0 11 CB 06 9F
0650! Fl 9C 04 C2 Cl 22 00 C4 06 AO F2 BC 05 C2 02 82
0660! 00 08 ll F8 10 05 06 9F F1 BC 10 CO 06 9F Fl CE
0670: 06 9F Fl DB Cl 60 00 B6 39 60 FO lC 3D 60 00 BB
0680! 04 C4 3D 20 FO lC 06 AO F2 BC 2C AO FO 05 02 25
0690! 00 30 06 C5 2C 85 10 BB 06 9F F2 2B 06 9F FO 3F
06AO: 06 AO F3 14 06 AO F3 36 04 EO 00 B6 06 9F F2 31
06BO: 06 AO F2 62 06 AO F3 28 38 60 FO 20 Cl 01 CO 42
06CO! OA 31 38 60 FO 20 05 81 05 84 CO 04 AO 0:1. C8 00
06DO: 00 BB Ot1 8:l. 'Al 01 06 tiO F2 CC CO 20 00 B6 ..-:U) LI'
06EO: CO 20 00 BB 02 80 00 07 13 1C 02 80 00 OB 13 19
06FO! 02 BO 00 04 11 13 02 80 00 OC 13 10 06 9F F2 3C
0700! Cl 20 00 BB CB 04 00 B6 06 AO F2 C2 10 CF CO 60
0710: 00 B8 80 40 13 06 02 81 00 07 16 CB 06 AO F2 78
0720: 10 Cl 06 AO F2 6C 10 BE 06 9F F2 4A 06 9F FO 3F
0730: 06 AO F3 14 06 9F F2 56 07 20 00 BA 06 AO F4 88
0740! CB 20 00 C2 00 B6 16 03 CB 20 F6 AE 00 B6 2C AO
0750: FO 06 06 AO F4 88 CO 60 00 C2 16 02 02 0:1. 00 OD
0760: 88 01 00 B6 15 06 CB 20 00 B6 00 BS CB 0:1. 00 B6
07701 10 02 CB 01 00 B8 06 AO F3 36 CO 20 00 84 13 DA
0780: 06 9F Fl 19 06 AO F4 88 88 20 00 C2 00 B6 15 03

XI-38

0790: 06 AO F? 78 10 CF 88 20 00 B8 00 C2 12 F9 06 AO
07AO: F2 ·r bd 10 C8 O? 4 EO 00 80 02 OF F3 76 04 cc 06 9F
07BO: F1 EB 06 9F FO 35 06 9F Fl 5C 06 9F F2 2B 06 9F
07CO: r~ - 4A 06 9F F? 08 2C 44 09 84 02 01 FO ~~

'' co Bl
07DO! 13 F8 SC 44 16 FC 04 52 06 AO 14 CE 48 2B Cl 41
07EO: 61 42 06 AO 14 CE 48 2D 04 60 14 E6 41 02 4~ A ~ 87
07FO: 4;3 88 44 06 47 83 48 84 49 02 4C 83 4D 84 50 88
?

XI-39

The TMS-9900 MICROPROCESSOR:
Used in Technico Systems
tOtched. In word size. Instruction
set. Addressing capabilities. Tl's 16-
bit TMS9900 microprocessor.

Powerful enough to be the heart of
a minicomputer. Ideal for terminals.
Instrumentation. Machine control.
Scores of OEM applications. Destined
to become today's and tomorrow's
design standard.

B.ecause the TMS9900 micro­
processor represents more than just a
single device. It introduces a new
family concept allowing full design
flexibility. Enabling you to move
freely and easily over your entire
range of applications. Now. And in
the future. With less redesign. Less
software reinvestment. Less relearn­
ing. Less obsolescence.

Improved System Cost/Perfor­
mance Compared to 8-bit µ.Ps, Tl's
TMS9900 microprocessor provides
these unmatched savings:

• 3096 faster execution time
• M savings in program coding ev savings on system interface

costs
• 50% mo~ efficient interrupt hand­

ling
• 2096 reduction in memory bit

requirements

These benefits stem from the
TMS9900's advanced features:

16-bit instruction word with full
16-bit data precision.

Operation at 3.3 MHz clock rate.
Full minicomputer instruction set

including Hardware multiply and
divide.

Advanced memory-to-memory
architecture that locates general-pur­
pose register files in memory.

Se'1'4rate 16-bit address. data, 110
and interrupt buses.

Fully Compatible Software
The 9900/990 software has been
tested and proven in more than 1000
systems. Any software you develop
for the TMS9900 can be used with the
~and 990/10 minicomputers - or
tft'P'SBP9900 and TMS9980
microprocessors. In fact, any soft­
ware developed for the TMS9900 can
be used with any other family mem-

her - at present and in the years
ahead.

~fore 9900 Family Soon
The TM.~9900 is just the beginning.
Future family circuits, all software

2L compatible: SBP9900, an I
microprocessor designed to handle
military temperature ranges.
TMS9980, an N-channel µ, P with
an 8-bit data bus for smaller
systems.

INSTRUCTION SET
The instruction set of the

TMS9900-contains 69
commands, including

multiplication and
division, which may be

divided into seven
principal groups:

ARCHITECTURE

Arithmetic (16)

Program Control
(20)

Data Control (14)

Logical (6)
Shifts (4)•
1/0 (5)
External (4)

Also coming are 9900
peripheral support circuits:
TMS9901 programmable systems
interface. TMS9902 asynchronous
communication controller.
TMS9903 synchronous com­
munications controller. And the
TIM9904 low power Schottky
TTL 4-phase clock generator.

INSTRUCTION SET SUMMARY
(69 INSTRUCTIONS)

ADD (W. B. lmmt. SUB (W. B). COMPARE
(W. B. Imm). IN R (1.2). DECR (1,2),
ABS. NEG. MPV, DIV
BRANCH (LINK, LOAD WP).
JUMP. JUMP CONDITIONAL (12) RETURN,
IDLE. EXECUTE. EXTENDED OPERATION
MOVE (W. B) LOAD (Imm. WP, ST),
STORE (ST. WP), SWAP BYTES. CLR,
SETO. SOC (W. B), SZC (W, B)
ANDI. ORI, INV, COC, CZC. XOR
SRA,SRL,SRC.SLA
LDCR.STCR. TB.SBO.SBZ
RESET. CKON.CKOFF. LREX

The memory word of the TMS9900 i• 16 bits long. Each word is also defined as 2 bytes of 8 bits.
The irn<truction set of the TMS9900 allows both word and byte operands. Thus, all memory
locations are on even address boundaries. and byte instructions can address either the even or
odd byte. The memory space i• 65.5a6 bytes or a2.768 words. The word and byte formats are
shown below ..

MSB LSB

ls~dJ 2 3 I 4 I s I s I 1 I s I s I 10 I 11 l 12 I 13 I 14 f 1s I
BIT

MEMORY WORD (EVEN ADDRESSI
MSB LSB MSB LSB

. SIGN SIGN
'~B-IT..._~~---v-~~~~~__,A_B~l-T~~~-vr-~~~~~J'

EVEN BYTE ODD BYTE

ADDRESSING MODE
Workspace Register

Workspace Register
Indirect

Indexed

Direct (S or 0 Equals 0)

Workspace Register
Indirect with Auto
Increment

Immediate

Relative

DESCRIPTION
The contents of the indicated workspace
register are the operand.
The contents of the .indicated workspace
register contain the memory address of the
operand.
The contents of the indicated workspace
register are added to the address enclosed
in the second command word.
The word following the instruction contains
the memory address bf the operand.
The contents of the indicated workspace
register contain the memory address of the
operand which is automatically incremented
after the access (plus 2 for word operations
and plus 1 for byte operations).
The word following the instruction contains
the operand.
The 8-bit displacement of the instruction is
added to the update program counter in
jump instructions or to the base address ir1
single-bit CRU instructions.

Addressing Modes
A program can use seven
different modes of
addressing.

32
BITS

IBM TE CHIU CO
COMPARE I 360 Tl 9900

WORD SIZE IR11l1l1rl 4BYTES 2 BYTES

IUMBEI OF ACCUMUIATORS 16 16

IUMIER OF SEPARATE SETS OF REGISTERS 1 MANY

ACCUMUIJTOR ARITHMETIC CAPABILITY II 4.3 •illi11 ID 65.535

IUllEI OF llOEX REGISTERS 15 15

MAXIMUM llDEX REG. ADDRESS VALUE 16.777.216 65.535

MAXIMUM DISPIACEMENT FROM INDEX REGISTER +4096 +65.535. -65.535

MEMORY ADDRESSING LEVEL BYTE BYTE

MEMORY TO MEMORY DATA MOVEMENT YES YES

HARDWARE MULTIPLY AND DIVIDE YES YES

SllBLE CHIP CENTRAL PROCESSING UNIT ICPUI .. YES

SOFTWARE COMPATIBLE MlllCOMPUTER FAMILY .. YES

BIT ADDRESSABLE COMMUllCATIOIS REG. UNIT nt YES

EASY 11d lllEXl'EllSIVE 11 lllTERFACE 11 .. YES

q'ECHllCO

lfllEllAL MEMORY
TllS-

nougA t---H PC !Al]
? >

H WP (Al] ~ WOlllSNCE llRlmll 1

WOllUNCEA I ST !Al I
WOlllJNa llHISTEll 15

.. j,. ? TMS9900 Memory Architect ure

PllOlllAll I

? ?

~·

The Program Counter (PC) contains the
address of the next instruction to be executed. As
each instruction is executed, the PC is
automatically updated.

The Workspace Pointer (WP) contains the
memory address of the first sixteen consecutive
memory words in the workspace. Thus, the pro­
cessor has access to sixteen 16-bit registers. When
a different · set of registers is required, the
program simply reloads the Workspace Pointer
with the address of the new workspace. This
results in a significant reduction in processor over­
head when a new set of registers is required.

The Status Register CSR) contains flag bits
which indicate results of the most recent

16
BITS

DEC 0111611 Natl ml
LSl-11 NOVA PACE

2 BYTES 2 BYTES lmE

7 4 4

1 1 1

II 65,535 ID 65.535 1165.535

7 2 2

65,535 32,767 65.535

+65.535. ·65.535 +127. -128 +127. -128

BYTE wt rd ward

YES na RO

apliDnal YES no

ID YES YES

YES YES H .. IO na

. .. YES YES

POWER
+1h +5v -Sv GNU

{ CRUOUT ----<
UO CRUCLK -----1

•TERMCE CRUIN

:'J:~ll{ = Tiii-

SYSTEM { IAQ
CONTROL ll8IT
lllTERFACE t:lllD

•.• , •i •.
CLOCI

TMS9900 Microprocessor CPU

INTERRUPTS

a
BITS

Z1LOG INTEL Mot1rol1
Z·80 8080 6800

1 BYTE 1 BYTE 1 BYTE

1 1 2

2 1 1

ID 255 ID 255 11255

2 0 1

65,535 - 65,535

+127. ·128 - +255

BYTE

YES

RO

YES

ID

no

YES

BYTE

RD ..
YES ..
no

YES

IAD·AHJ i

100-0151

BYTE

nD

no

YES

H

no

YES

;MEN :\'::~~E
OllN
READY
WIUT

=A } ~'1:RFAU

The TMS9900 employs 16 interrupt levels with the
highest priority level 0 and lowest level 15. Level 0 is
reserved for the RESET function, and all other levels
may be used for external devices. The external levels
may also be shared by several device interrupts,
depending upon system requirements.

MbS
6502

I BYTE

I

1

la 255

2

255

+65.535

BYTE ..
IO

YES ..
no

YES

arithmetic or logical operations performed. The
SR also contains the 4-bit interrupt mask level.

INPUT/OUTPUT
The TMS9900 can input and output data by three
distinct methods. A dedicated method of perform­
ing 1/0, utilizing a separate 1/0 port called the
Communications Register Unit <CRU), may be
preferred in a majority of applications because of
its easy interfacing capabilities.

fmTECHNICO Im INCORPORATED

9130 RED BRANCH RO.
COLUMBIA. MD. 21045
PHONE 301-596·4100

COMPARE 16 BIT COMPUTERS

TECHNICO vs. HEATH
An attractive vacuum formed chassis may be added to any Technico System at a cost of $179; however, a modular design is used which
does not require a mother board or chassis. Get a more powerful, more flexible system from Technico based on the Texas Instruments TMS-
9900 16 Bit Microprocessor, and save $500 to S 1,000.

TECH NICO
SUPER SYSTEM 16

Includes serial and parallel interface, E-PROM programmer,
CPU and Memory - can be programmed in Hex. No power sup­
ply or terminal. Hardware multiply divide is included. Order PIN
TK-1.

Power Supply is added so that system is a functioning micro­
computer. Only a terminal or keyboard and video board is
needed for operation. Order PIN TK-1-PC.

The Instant Input Assembler can be added in ROM for only
$49. Provides assembly language capability. Order PIN TK-1-IA.

Allows 12K Byte user area with assembler, editor, linking loader.
Allows 10K Byte with Basic. Additional 8K Bytes of memory only
$100. Order TK-2-18K.

A 4800 Baud digital cassette is used for program loading. It also
provides 80,000 Bytes of memory storage. Storage time for an
8K program under 3 minutes. Reliable, fast storage on digital
cassette. Price - S 199. Order PIN T-9948-C.

Technico Chassis Capacity

Technico chassis will hold CPU plus 65K Byte of memory.
Floppy disk controller, digital cassette interface and up to 7-
RS232 or 20 ma current loop interfaces, 48 Bits of parallel input
and output and a video color graphics board with Keyboard
Interface. A 2708 and/or 2716 E-PROM programmer can also be
included.

IN STORE TECH NICO HEATH'
PRICE SYSTEM H· 11

1

$299 $1,350

WITH POWER $442 $1,550
SUPPLY AND
1-0

WITH ASSEM-
BLY $491 $1,845
LANGUAGE

WITH MEMORY $968 $2, 140
FOR FULL
SOFTWARE

*FOR COMPLETE COMPARISON SEE HEATH
AND SEND FOR TECHNICO PRICE LIST

Circle Inquiry No.

TECHNICO
INCORPORATED

9130 RED BRANCH RD.
COLUMBIA, MD. 21045
PHONE 301-596-4100

1-800-638-2893

*ALL P-C BOARDS ARE AVAILABLE ASSEMBLED AND TESTED OR AS TEC-KITS™
BUY TECHNIC9 PRODUCTS FROM YOUR LOCAL COMPUTER STOREJ,

HEATH
H-11

Contains power supply and limited chassis but no Interface for
terminal; there is no way to enter data or programs. CPU does
not include hardware multiply divide. The H-11-6 costs an extra
s 159. (pg. 6 & 7*)

n H-11-2 para I lei interface and H-11-5 serial interface cost
$200. (pg. 7*)

An H-11 -1 at $295 must be added to bring the system to the
minimum memory to run any software. (pg. 6*)

Another H-11 -1 at $295 must be added to bring the memory to
the size recommended by Heath (page 6, 3rd column, last
para.*) DOES NOT INCLUDE ANY TERMINAL DEVICE

The only method for program loading described in Heath
catalog is a 50 character/sec paper tape reader H 10. Punch
operates at 10 characters per sec. Estimated time to punch an
8K program is over 25 minutes. COST - $370 (page 8*)

Heath Chassis Capacity. (pg. 6)

(Col. 1, para 3*, and Pg. 6, col. 1, para. 1 *) With KO 11 F Board
and H-11-2 and H-11-5 there is space for only 20K words (40K
Byte) of memory not 65K Bytes. No space for additional RS232
interfaces. No space for floppy disk controller. No color
graphics. No digital or audio cassett interface.

*Source Heath Catalog
Christmas 12Z.7 issue

DTECHNICO U INCORPORATED

CALL TOLL FREE 1-800-638-2893

9130 RED BRANCH RO.
COLUMBIA, MO. 21045
PHONE 301-596-4100

TECHNICO PRODUCT DESCRIPTION

Technlco products are available assembled and tested and in most cases. unassembled in TEC-KIT™ form. Due to
Technico's previous experience in supplying hi-rel computer components to the aerospace and defense industry, only full spec
manufacturer warranteed parts rated and guaranteed over the full temperature range are used in TEC-KITS.™ The PC board
material is the same as that used in the aerospace industry. All boards are socketed for easy repair and servicing. Domestic
prices range from $299 to over $5000 and all boards are compatible to form whatever level system the user may desire or
be able to afford. Any boards purchased as TEC-KITS™ and assembled by the user may be returned initially and factory tested
and repaired for a flat $25.00 fee.

The Technico Super Starter System is a low cost start towards owning the most powerful personal computer (the
Super Starter 16) on the market today. It is the most powerful because it uses the 16 bit TMS9900 microprocessor. It is low
cost because of a unique modular design which allows operations either without a chassis or with a chassis which does not
require an expensive mother board. The bus structure is universal and allows easy interface to other Technico boards or S100 or
S50 boards. A chassis with fan switches cables and connectors may be added to the system at any time.

Unlike other competing personal computing systems, however, a chassis is not required for operation. In the case of
the lmsai, for example, of the first $1000 spent on a system, almost 40% of the price goes for chassis and mother board and the
resulting system does not have enough memory to run full software. Technico is dedicated to giving maximum computing
power per dollar.

For a reasonable price you can own art 1 BK byte Technico system capable of accepting full Basic or an
A.ssembler Editor Linkage loader and still leaving a large 6, 8, or 1 OK byte user area, depending on the software loaded.

The Technlco Super Basic is the most extensive and fastest basic now offered in a personal computing system. Using
the Kilobaud magazine Benchmark Program No. 7, which is the most difficult of their Benchmarks. as a test, the fastest time
previously reported was by Ohio Scientific who ran the benchmark in 51 seconds. The slowest time was by Southwest
Tech, at 235 seconds, which is almost four minutes. All other systems were reported somewhere between these two times.
The Technl~o System 16 ran the benchmark in 13 seconds, thats 400% faster than OSI and almost 2000% faster than
Southwest Tech. In more complex programs. the difference in speed of execution is even more drastic! The reason for this
dramatic performance in increase in speed and efficiency of the TMS 9900 processor and the ease and efficiency of
programming it provides to the talented programmer. Since the memory is BYTE or WORD addressable, and because of the
large number of accumulators & registers the Basic requires less code and hence less memory than comparable basics on
other processors.

The TMS9900 truly provides mini-computer performance in a microprocessor because it was designed to be the CPU
of a data processing system, not to be a controller or logic replacement device like the 8 bit machines. The 9900 is a
miniaturized version of the discrete PC board CPU used by Texas Instruments in their 990/10 minicomputer. Tl merely
took their existing CPU design and reduced it to a single N-MOS Silicon chip, which includes hardware multiply and divide. The
TMS9900 not only copies the architecture of the PDP11, but adds the bit manipulation features of the 990/1 O which makes
it easy to interface to and to use in process control and data applications. Since the chip is a reproduction of the 990/10, it is soft­
ware compatible with this larger machine and the smaller 990/4 Tl minicomputer. As you can see frotn the JMS9900 comparison
sheet with its 16 bit format, 16 accumulators and 15 registers, the TMS9900 looks more like an IBM 360 than it does an
8080 or ZBO or 6502. But yet, it is priced in the Technico system at a price competitive with the older 8 bit machines.

The 9900 will not be obsolete as will today's 8 bit processors. Approximately 13 years ago Tl introduced the 7 400
series of integrated circuits and said they would produce a compatible family of IC's. At the time, the RTL and DTL circuits were
popular. Today, 13 years later. the 7 400 series is the industry standard and still in wide use and has not been obsoleted. Tl
announced a family of software compatible processors in 1977, starting with the TMS9900. So far the family has been
expanded from the original 2.3 mhz version and the present 3.3 mhz version to 12L version which is approved for space flight use
& in the future will reach 10 mhz speeds. A low cost 8 bit and single chip version (the g940) with RAM, E-Prom on the chip are
also available. It is reported that the 79 model year Chrysler will use the TMS9900 as its lean burn computer. Tl buble memory
boards and analog boards are planned to be compatible with the TMS9900. If the experience with the 7 400 is any indication we
can truly expect that the 9900 system you invest in today may be around until 1990. So get started with your system of the
90's, the Technico 9916 System, it's the best value in microcomputing.

The Techl'.llco Super· Starter System is designed to serve two purposes. One is to.be the CPU and peripheral inter­
face for the powerful system 16, which can be expanded to 65K bytes with dual floppy disks, digital cassettes, video
graphics, six RS232 interfaces and over 192 bits of 10. A powerful systems monitor and fully buffered data and
address lines and s.erial and parallel interface are included on the Super Starter Board, together with the capacity for 2K of
memory. Each additional card, by adding memory or 10, enhances an already operating system. The super starter system can
also be an initial stand alone microcomputer with which a person can learn about microcomputing without spending a
fortune.

Unlike other competing systems where the initial learning device must be thrown away and a new investment made to get
a real working computer, there are no throw away boards or peripheral devices intended in a technico system. A user merely
decides which level of system his knowledge, budget or application dictates. Any system may be expanded at a later date
without sacrificing the initial investment that is made. For example there are many learning devices on the market in the
price range of the super starter system which allow programming in hex. Unfortunately after a few weeks of hex programming
the user's knowledge outgrows the kit and the entire system with hex keypad is discarded and the investment lost. This is not the
intent of the super starter system. It is intended to become part of the system 16. The super starter system contains the powerful
16 bit TMS9900 microprocessor with hardware multiply and divide, 16 accumulators, 15 index registers and separ­
ate 16 bit data and address lines. The board has capacity for 2k bytes each of Ram, rom and E-Prom a parallel and
serial RS232 and 20 milli amp current loop.

It incorporates 8 vectored interrupts and also contains as a free bonus, an on board E-Prom 2708 programmer. A
2716 programmer can be added at minimal cost. Because of the ease of interfacing to the TMS9900, the RS232 interface con­
tains only a few transistors. and under the software control of the monitor it is completely adjustable up to 9600 baud by
merely hitting reset and carriage return. ·

This makes the interface almost universal and allows the unit to communicate with any terminal or RS232 or 20 milliamp
device up to 96QO paud. The monitor also contains advanced commands, such as break point and snap, so that the operat­
ing registers a,nd memory locations can be displayed on the terminal during an operating program, thus eliminating the need for
a front panel. A LJser program can be programmed into E-Prom with merely a "p" command from the monitor. In the prom area of
the board Rom ~ased mini assembler, which is called the Instant Input Assembler , can be inserted. This allows the
programmer tq VfOrk in assembly language. It also converts the mnemonic instructions of the TMS9900 to Hex, one instruction
at a time, therefore, being both an excellent programming and learning tool. The memory of 512 bytes which is provided in the
Initial price of the system can be expanded to 2K on the board. Additional memory in SK byte increments can be added to 32K
byte capacity memory add on boards allowing memory expansion to 65K bytes, not including mass storage or memory mapping.
Of the 2K each of RAM, ROM and E-Prom (6K bytes total) capacity of the super starter board, 512 bytes of Ram and 1 K bytes of
Prom, which is the powerful systems monitor, are included in the initial price. ·

Additional RAM is purchased separately. In the remaining 1 K byte ROM area. either the instant Input Assembler or
expanded monitor can reside. The expanded monitor is used to control and provide reliable timing for the Technico 4800 baud
digital cassette (part No. T9948-C) which can be used for program loading and program data storage. The llA can then be
stored on digital cassette as can the other software, such as the assembler editor linking loader and basic.

The recommended system configuration to run either the assembler, editor. linking loader or basic is the Super Starter
System with 2K bytes of memory and expanded monitor. To this is added a 16K byte memory add on board giving the system a
RAM area of 18K bytes. This system in Tee-Kit form is part No.TK-2-1 BK or as an assembled and tested systems part No. TAS-
1 SK. It is recommended that the 4800 baud cassette part No. T9948-C be hooked into the system to provide rapid program load­
ing and storage. Since the cassette is not interfaced through the RS232 interface. the RS232 interface is available for connection
to an·y standard.terminal. By using this cassette system, program loading is approximately 400% faster than audio cassette
and 2400% faster than paper tape. If the user does not have a terminal the color graphics board can be combined with
the system and· hooked to a TV or video monitor. The interface to a television is done through an FCC approved device con­
nected to the antenna. The memory of the system can be expanded with additional RAM boards. The input can be expanded by
adding a board. with six RS232 interfaces. Floppy disks can be added for expanded memory. An E-Prom board can be added for
use with ROM based software. A 192 Bit 10 board can be added for expanded 10. Because of the number of compatible boards
and peripheral-Qe.vices available and the fact that they can be used inside or outside a chassis, as well as be purchased on TEC­
KITSTM or asse11;1pled and tested, the user is provided maximum flexibility to meet his desires, application or budget.

A. INTRODUCTION

Tlie Texas Instruments 9900 is not the first 16-bit

microprocessor to be intorduced, but it is probably the

most powerful one. The architecture of the 9900 is unlike

that of most other microprocessors (8 or 16 bits). It is

more like that of a minicomputer. In fact, the 9900 is

identical to the 990 microcomputer offered by T.I. This

section provides an overview of .the TI 9900 from a

programming viewpoint. Combined with the detailed instruction

descriptions in section IX you have all the tools to

begin writing code.

As we already mentioned, the TI 9900 is a 16-bit

microprocessor. Its architecture is vastly different from

the simpler 8-bit microprocessors. One difference is that

the registers are contained in memory. The only registers

w·ithin the processor itself are: the program counter,

status register, and a pointer to the registers in memory.

The overall architecture is shown in FIGURE XIV-1. The

program counter contains the address of the current

instruction. The workspace pointer (WP) is a 16-bit

register which holds the address of the first register in

memory. The sixteen general registers RO-Rl6 are contained

XIV-1

Figure XIV-1 TMS9900 Architecture

CPU

WP ~

PC
ST

ALU

~--R-0__,

R1

MEMORY

XIV-2

• • •

R15

in the sixteen sequential locations addressed by the WP.

For easy reference, the entire 9900 instruction set

is described in detail in section IX and summarized at

the end of that section.

Computations in the TI 9900 are performed between the

registers, between the registers and memory, or between

two memory locations. The memory of the 9900 is addressed

by byte or word. The processor always references a word

because the least significant address bit is not available

as an external pin on the processor. Internally, however,

you can address either words (two consecutive bytes, the

address of the first one is even), or bytes. All instructions

are stored as consecutive words. Th~ addressing modes of the

TI 9900 are:

(1) immediate - The operand is contained in the

word following the instruction. For example,

LI Rl,> 1234 load Rl with 1234 (hex)

will load register Rl with the value 1234 (in·

hexadecimal notation). The symbol '>'
indicates to the assembler that the value is

hexadecimal, not decimal.

XIV-3 '

(2) register - The operand is contained in one

of. the general registers (RO-Rl5). These

registers are actually in memory. The address

of register 'x' is WP+2*x, where WP is the

contents of the workspace pointer. You should

be careful to preset WP at the beginning

of your program. If not set properly, the

registers may be located on top of your

program, which will cause serious programming

problems.

(3) register indirect - The operand is contained

in the memory location whose address is

contained in one of the general registers.

For example:

MOV *Rl,R2 R2=(Rl)

will load register R2 with the memory location

whose address is contained in Rl.

(4) register indirect, auto increment - The operand

is contained in the memory location whose

address is contained in one of the general

XIV-4

registers. After execution of the instruction,

the register is incremented by one or two. If

the instruction is a byte instruction (e.g. MOVB),

then the register is incremented by one. If the

instruction is a word instruction (e.g. MOV)

the register is incremented by two. For example:

MOV *Rl+,R2

will load register R2 with the memory location

whose address is contained in Rl. After the

move, register Rl is incremented by two since

MOV is a word reference.

(5) indexed - The operand is contained in the

memory location whose address is obtained by

adding a constant to the contents of one of

the general registers. If the register RO

is used, the operand address is merely the

constant. To move the contents of a variable,

called VAR, to regist~r Rl we can use:

MOV @VAR,Rl

XIV-5

In this case~ no index register was specified

so_ the assembler assumes the RO (no index) is

desired. The following instruction:

MOV @10(Rl),R2

will load R2 with the memory location

addressed by the contents of Rl plus 10.

(6) relative - Rela~ive addressing is used to

obtain the destination address for most of

the 9900 1 s jump instructions. To obtain the

final destination addr.ess, the second byte of

the instruction is multiplied by two and added

to the address of the next sequential instruction.

The addition is performed using two's

complement arithmetic. This allows the programmer

to transfer control to an dddress within the r~

range of -254 to +256 of the present instruction.

Since all instructions are stored as words

(two Bytes), we can transfer control to a

word within the range of -127 to +128 of the

present instruction. An example of relative

addressing is:

XIV-6

JMP +10

. This instruction will transfer control to

the address of the next sequential instruction

plus 20 (10*2). If the jump were at >1200,

this would transfer control to address ')-1216.

As you can see, the 9900's instruction set is more

complicated than the run of the mill microprocessor. All

of the op-codes are one word long. If immediate, indirect,

or indexed addressing is used, the constant is stored

in the word(s) following the op-code. The constant for

the source operand is stored in the .first word following

the op-code and the constant for the destination operand

is stored in the next available word. This means the 9900

instructions are one to three words long, or two to six

bytes. The following six byter will transfer the contents

of variable VARl to VAR2:

MOV @VAR1,@VAR2 ; VAR2=VAR1

XIV-7

B. SUBROUTINE LINKAGE

Unlike many machines, the 9900 does not use a stack

to hold subroutine return addresses. Instead, the processor

saves the return address in general register Rll. For

example, the following instruction will save the address

of BACK in Rll and will transfer control to ROUT:

BL @ROUT ; call ROUT

BACK ..

To return from the subroutine, all you need to do is jump

to the contents of Rll (B *Rll).

If one subroutine must call another, the first

subroutine must first save the contents of Rll, since the

new return address will be placed in Rll - thus destroying

the old return address. There are several different ways

to approach this problem. The first, and simplest, method

is to save the return address in one of the general -­

registers. For example, if ROUT is called as indicated

above and must then call ROUT2, the sequence below can

be used:

XIV-8

MOV Rll,Rl

BL @ROUT2

B *Rl

save return address

call next subroutine

exit

If you have only two or three levels of subroutine,

this may be the most efficient approach. However, in

larger systems there are usually too many levels of

subroutines to store all the return addresses in the

registers. In that case, the return address can be saved

in RAM. One way to do that is:

MOV Rll,@TEMP save return

To exit the subroutine, the following two instructions

are used:

MOV

B

@TEMP,Rll

*Rll

get return

; exit

The major disadvantage of this technique is that four

words of instruction memory are required for the exit

sequence, not to mention the word used to hold the return

address. This is rather wasteful of memory~ If the program

XIV-9

is always to be run in RAM (never put in PROM/ROM storage),

an alternate ent~y/exit sequence is:

MOV Rll,@EX+2 save return in exit branch

EX B @O ; exit

This time we saved the return address in the second word

of the branch instruction, thus eliminating the move. The

disadvantage here is that the program modifies itself. This

means that the program can never be placed in ROM. Most

microprocessor programs are eventually stored in ROM so

this sequence ~ouldn't be used. In fact, I would normally

not recommend using any self-modifying techniques. However,

if you are writing a quick and dirty routine, to be run

only from RAM, this approach works well.

There is yet another way to save the return address.

We can put it on the stack. What stack, you say? Because

of the flexible modes of addressing, creation of a software

stack is a very simple task. During the initial start of

the program. we load one of the general registers, let's

say Rl5, with the address of the first location of the

stack. Then, an entry can be placed on the stack with

XIV-10

the following move:

MOV Rll,*Rl5+ stack Rll

The stack pointer is incremented after the store, so the

stack builds up instead of down as in other micros. To

retrieve an entry from the stack, the following instructions

are used:

DECT Rl5 ; Rl5=Rl5-2

MOV *Rl5,Rll ; get the top entry

The stack could also be used to save some of the other

general registers that would be used by the subroutine.

If the subroutine requires a number of registers, another

approach is to use th~ Brin6h and Link Workspace Pointer

(BLWP). This instruction is also a subroutine call, but

before performing the call it resets the workspace

pointer. This means that the subroutine has a whole new

set of registers to work with - without having to store the

old ones! This instruction is very valuable, but should

be used with discretion because it requires more memory.

More memory for the call and sixteen words more memory

for the new,set of registers.

XIV-11

C. PASSING PARAMETERS

There are many differnt methods for passing data to

to subroutines - in the registers, following the subroutine

call, or addresses following the subroutine call. Since

the return address of the routine is already in one 6f

the general registers (Rll), passing parameters or their

addresses following the call is especially useful with

the 9900. For example, consider the floating point

subroutines called FMUL and FADD which are the multiply

and add floating point routines, respectively. Each one

requires three parameters, the address of which can be

1 placed after the subroutine call. If this approach is used

with the 9900, the following sequence is used to calculate

Xl=X2*X3+X4:

XIV-12

Before we can manipulate the parameters, it would be

necessary to place then in the registers, perhaps. This is

easily accomplished by the following:

MOV

MOV

MOV

*Rll+,Rl

*Rll+,R2

*Rll+,R3

; Rl=address of param 1 1

; R2=address of param 2

; RJ=address of param 3

Notice how the indirect with auto increment addressing mode

avoids the need for intermediate increments.

D. RETURNING RESULTS

Many subroutines must return results to the calling

program. The easiest way is to return the result in one

of the general registers. This works fine if the subroutine

is called via a BL instruction. On the other hand, if a

BLWP (or XOP - which will be discussed later) is used,

the calling routine uses a different set of registers

than the subroutine. Therefore, if we place the results

in the registers, they will be lost when control is returned

to the calling program since the workspace pointer will

be reset. Since the 9900 1 s regis~ers are located in

memory, there is a simple way around this problem. Let's

assume that we want to return a value in RO and Rl - in

XIV-13

the old workspace. When the BLWP is executed, the old

workspace pointer is saved in Rl3. Using this fact, we

can create a sequence to store values in the previous

workspace:

MOV RO,*Rl3 ; old RO=new RO

MOV Rl,@2(Rl3) ; old Rl=new Rl

As you see, the old register "l" is the same as memory

location Rl3+2*1. That location may be addressed by

@l+l(RlJ). RO is a special case since @O(RlJ) is the

same as *RlJ.

E. BYTE OPERATIONS

Although the 9900 is ·primarily a 16-bit processor,

it can still handle most byte operations. There are a

few aspects of the byte operations that can be confusing.

First, whenever a register is addressed in the byte mode,

the left byte of the register is used (not the right byte).

Second, whenever the processor references memory it reads

a full word. The proper byte of that word is selected
~

within the processor. This mean~ that it is not necessary

for the processor to supply the external memory addressing

circuitry with the least significant address bit - so it

XIV-14

does not. If you examine the hardware carefully you wiil

note that there are only fifteen addr~ss bits. The missing

bit is the least significant address bit. It is unnecessary

because the processor performs the byte selection.

Recognizing the special byte addressing operation,

you will quickly discover that the 9900 can cope with byte

operands nearly as well as it can with full word operands.

To add the contents of byte Bl to B2 we cah use:

AB @Bl,@B2 B2=B2+Bl

F. EXTENDED OPERATIONS

The TI 9900 offers a unique instruction - Extended

Operation (XOP). The XOP execution is similar to the BLWP,

but the target address is determined by the XOP transfer

vectors - there are sixteen possible XOPs and the source

operand is placed in Rll of the new workspace. For

example, the following:

XOP @X,15

will perform an extended operation 15 and will place the

address of variable X in the new Rll. The work~pace

pointer and address for extended operation 15 is in memory

XIV-15

locations 7C-7F. For other extended operations, the

extended operation transfer vector is stored in location

40 + 4*I through 43 + 4*Il.

The monitor uses three extended operations. Refer to

the monitor description fro details of the monitor XOP.

G. MULTIPLY/DIVIDE

One of the truly unique operations offered in the

9900 is the hardware multiply and divide. Notice, however,

that they require unsigned operands. This is different

than the other instructions, which use two's complement

operands. Ve can easily form a signed twds complement

multiply. If Xl and X2 are two arbitrary numbers, then

Xl*X2's sign is the exclusive-or of the signs of Xl and X2.

Using this fact we can devise the routine to perform

signed multiply. The sequence in Figure XIV_2 will

calculate X3=Xl*X2.

The multiply operation produces a 32-bit result

(in Rl,R2 for the example above), but does not affect
'

any of the condition bits (thats why the test can be

performed before the multiply}. After the multiply, the

result can be converted back to two's complement. Since

you will often µse the result for some further add/subtract

operation, only the lower word of the product was

XIV-16

Figure XIV-2 Signed Multiply

X1 = address #200

X2 = address #202

X3 = address #204

?GFflOO

01.00! C060 MOl.J fr?>200 v f~ :I.
0102: 0~?00

0104 • COEO M01v' (!·~>202 v F~3 •
0:1.06! o;.~<J~.=:

0:1.0El: C ()EJ l MOl.J F<: :I. y i:;.: ::!.
01. Ott: 2 i:5 f:~ ::s XOF: F~3vF~:2

O:l.OC: 0:?4:1. 1'.~,B~:; F;; :I.
0:1.0E: ()}43 A Bi:; F~3

9:1.10: COD2 jvj()\,J !~:::.'. v F~2
ou.2: :·5~=~-4 ~) MPY F~~'.; v F~ :I.
Ol:l.4 . .r r•• .·-. •I 11":': .. C ::·· l :t ~3 • .I. ~J • .. _.1 .L -..1 t.J I

OU.ti: () ~:5 (i ::.~ NEG i:;:2

01 Hl t c·(;) r., .. :>
.. i..J \.._. ·"'··

M()t.,t !~::::'. y G:!:::<::'.04
011(.i: o::!.o4
011.C !

XIV-17

v F~:f.::::X:l

; R2CSIGN)=SIGN OF X:l.*X2

GET F~ID OF f)J:GNS

TEST SIGN OF ANSWER
; <R1,R2>=X:l.*X2 <MAGNITUDE>

COF:1:;:ECT THF ~3IGN

; X3=X:l.*X2 CLOWER :1.6 BITS>

converted. If you need to convert both words, its a bit

more difficult. The following sequence will g£1 work:

NEG R2

NEG R3

Why not? If R2=1 and R3=1, then the two's complement of

(R2,R3) is >FEFF. However, the two's complement of 1 is

FF. So you see that the above sequence would yield 4>FFFF

instead of the required >FEFF. The solution is to take the

one's complement of R2 except in the case where R3=0. The

required code is:

A similar approach can be used to construct a signed

divide. The sign of Xl/X2 is again the exclusive-or of

Xl,X2. If Xl and X2 are both 16-bit two's complement

variables, then the rofrtine~ in Figure XIV-3 will calculate Xl/X2.

XIV-18

Figure XIV-3 Signed Divide

X1 = address 200

X2 = address 202

!'GF800

01.00: co.~o MDV 1~>200, F\2 ; R2::-~X1

0102: 0200
0104: COEO MDV fr?>202y1:;,:;3 ; F\3===X2
0106: 0202
0108: C:l.02 MDV F\2? 1:;:4 ; F~4<SI{3N)::::SIGN OF X:l./X2
010A: 2s:·o3 XDf(i:;::~ y 1:;,:4
01oc: 0742 .~BS F·"·-. \ ... ·.: ; GET RID OF SIGNS
010Et 074.:S ABS 1:~;3

ou.o: 04C1 CL.f\ 1=;: 1 ; CLEAR UPPEF(NUME1:;,:p., TOfi: BITS
ou.2: ·~~C4:~ DIV f;:;3, F: :I. ; fU:::: < R:I., R2) /1:;:3
0114! C104 MDV t=Mvl=M ; COF(F\E:: CT SIGN
0116: 150j. ,JGT >111~
0118! ()~)01 NEG R 1
011A: C801 MDV FU' @>202 A X2=X1/X2 ' 011c: 0202
011E!

XIV-19

As you may have observed in that sequence, the divide

operation divides a 32-bit operand by a 16-bit operand.

Since we used only a 16-bit operand, the operand is placed

in the lower register of the pair of registers and the

upper register of the pair is cleared. If we want to use

the full divide capability, the routine must be recoded

as shown in Figure XIV-4.

The multiply is restricted to integer operands, but

that does not mean you cannot use it to perform fractional

operations. The approach is called scaling. Lets take a

sample case. If the decimal point of Xl is at the extreme

right and the decimal point of X2 is at the extreme left,

then the decimal point of Xl*X2 is between the two registers.

Using this approach, we can multiply ABC by .75:

CON DATA >cooo constant of .75 (decimal

at left)

MOV @ABC,Rl get operand

MPY @CON,Rl (Rl=integer part, R2=

fraction part)

In the beginning of this di$cussion, I indicated that

it was unusual that the multiply was unsigned. Yet, we

can turn this into an asset. Consider the problem of

XIV-20

Figure XIV-4 Full Divide

X1 = address #200 to 203

X2 = address #204 to 207

?GFBOO

0100: C060 MOV @>2001R1
0102: 0200
0104: COAO MDV @>202vR2
0106: 0202
0108: COEO MDV @>204,R3
OlOA: 0204
01oc: C101 MDV Rl ,R4
OlOE! 2903 XOR R3vR4
0110: 0743 ABS p7 'J
0112: 0741 ABS Rl
0114: 1503 JGT >11C
0116: 0502 N[Q p?

- ,~.

0118: 1301 JEQ >11C
OllA: 0601 DEC Rl
011c: 3C43 DIV R3,R1
011E: C104 MDV R4vR4
0120: 1501 JGT >124
0122: 0501 NEG R1
0124: C801 MOV Rl .@>204
0126! 0204
0128:

: R3=X2

; R4CSIGN>=SIGN OF X1/X2

; GET RID OF SIGN OF X2
GET RID OF SIGN OF Xl

; IF Xl MiNUSv INVERT LOWER HALF

IF R2 NONZERO, ADJUST Rl

R1=Xl/X2
CORRECT SIGN

; X2=X1/X2

XIV-21

creating a double precision mult~ply (32-bits times 32~bits).

If we consider unsigned numbers only (signs can be handled

as in .the previous examples), then a 32-bit multiply (which

produces a 64-bit result) can be formed using four single

precision multiplies. Figure XIV-5 illustrates the concept.

We just use what is commonly called "cross multiply"

techniques. Before presenting the double precision multiply,

lets look at the double precision add which is an integral

part of the multiply routine. To calculate (Rl,R2)=(Rl,R2) +

(R3,R4) we can use the following (all values are assumed

to be unsigned):

Ll

A

JNC

INC

A

R4,R2

11

Rl

R3,Rl.

; ad.d lower half

if Cy, correct upper

add upper half

Now, using this same concept for the subproduct additions,

we can create the 32-bit multiply routine shown in Figure XIV-6.

H. ARITHMETIC

The advanced instruction set of the TI 9900 opens up

a new microprocessor application area - signal processing.

Because of the mathematics involved, most signal processing

XIV-22

Figure XIV-5 Multiprecision multiply

.
Rl R2 R3 :R4 •

R2 \R3
.

R9 ~RlO
I

RS !R6 R7 ~RS .

RS :R6
t '

: R7 : RS
f I

XIV-2J

Figure XIV-6 Double Precision Multiply

?GF800

0100: C141 MOV R1,R5 R5,R6 - Rl*R3
0102: 3943 MPY R3,R5
0104: C1C2 MOV R2YR7 ; R7,R8 - R2*R4
0106: 39C4 MPY R4vR7
0108: C241 MDV R1,R9 R9,R10 - Rl*R4
OlOA: 3A44 MPY R4vR9
01oc: 38C2 MPY R2vR3 ; R3vR4 - R2*R3
OlOE! 04CO CLR RO ; RO=CARRY ACCUMULATOR
0110: A1C3 A R3vR7
0112: 1701 JNC >116
0114: 0580 INC RO
011~: Al CA A R10vR7
0110: 1701 JNC >11C
011A: 0580 INC RO
011c: 04C1 CLR Rl ; R1=CARRY ACCUMULATOR
011E: A182 A R2vR6
0120: 1701 JNC >124
0122: 0581 INC Rl
0124: A189 A R9vR6
0126: 1701 JNC >12A
0128: 0581 INC Rl
012A: A180 A ROvR6 . ADD IN FIRST CARRY ,
012c: 1701 JNC >130
012E: 0581 INC Rl
0130: A141 A R1YR5 l ADD IN SECOND CARRY ,
0132:

XIV-24 .

tasks cannot be done with the off-the-shelf microprocessor.

The 9900 certainly cannot handle all of the signal processing

applications, but it can tackle a few of them.

Most signal processing algorithms use the SIN, COS,

or other trigonometric functions as an integral part of the

filter computation. One trigonometric algorithm - ideally

suited to the 9900, is the CORDIC (Coordinate Rotation

Digital Computer) algorithm. Although you may not recognize

it, it is the same algorithm used in many of the hand

calculators. We will see later why the TI 9900 is ideally

suited for the CORDIC procedure.

The CORDIC algorithm relies on a few very simple

mathematical facts. First, any given angle (we will restrict

the angle to 0-90°) can be represented as a sum/difference

of a set of base angles. Mathematically this can be

expressed as:

a.
·1

where d .· = ± 1
1

a. = base angle
1

This identity is certainly not true for any random selection

of base angles, but yoy can intuitively see the 90°, 45°,

22.5°, .•. is one possible base set. The second cornerstone

of this algorithm is a pair of trigonometric identities:

XIV-25

SIN (a+b) = (SIN{a) + TAN(b)COS(a)) COS(b)

cos.'(a+b) = (cos(a) TAN(b)SIN(a)) COS(b)

Now, if we have a given angle represented as a sum/

difference of a set of base angles - which are as yet

unspecified - then we can devise a simple process for

calculating the SIN and COS of that angle:

XO = 0

Yo = 1

xi = X .. 1 + TAN (d. a.) *Y. l
1- 1 1 1-

y_ = Y. 1 TAN(d.a.)*X. l
1 1- 1 1 1-

After executing the above procedure, we don't really

have the SIN and COS. Instead, we have X = R SIN(O) and
n n

Y = R COS(O), where the constant R is l/(COS(d.a.)* ••• n n · n 1 1

*COS(dnafi)• So far, we have nothing to cheer about because

o~t algorithm involves many more multipliesthan a simple

Tay.lor series. But, the plot thickens. If we define the

base angles .as:

then

XIV-26

This means that all of the· multiply operations can be

reduced to a right shift. We must, of course, prove that all

angles can be represented as a sum of our base angles

or the whole algorithm collapses. I will not do so here,

but it can be done rather easily. Now, if we use base

angles as I defined above, the algorithm ma:y be restated as:

v = -0
0

x = 0
0

yo = l/Rn = .• 60725

xi = x .. 1 SIGN(Vi-l)*Yi-l /2i-l
l.-

Y. = Y. 1 + SIGN (V .) * X . ''/ 2 i-l
l. l.- J.-1 J.-1 . 1

Vi = V. 1 SIGN(Vi-l)*(ATAN(i/2 1
-))

l.-

If we store the ArcTan values in a table, then this

algorithm requires only shift, add, and subtract. The shift

operation requires a variable shift constant. This is why

t~e algorithm fits nicely in the 9900. If the shift count

is stored .in RO, the variable shift can be performed by

a single 9900 instruction:

SRA Rl,RO ; shift Rl right by (RO)

XIV-27

Since the SIN and COS are fractional values, we must

scale the input to our routine. To keep matters simple,

we scale the angle so that Rl=angle*256. This_provides

8-bits of integer and 8-bits of fraction. We scale the

X,~ ~~lues ~~o that X=SIN*32768, and Y=COS*32768. This

provides 16-bits of signed fraction. The entire algorithm

is shown in Figure XIV-7. The input angle is in Rl, and

the outputs are in R2 and RJ. This subroutine calculates

~21h the SIN and COS. The TAN can be calculated by one

additional divide. As you see, this algorithm is a very

fast and efficient way to obtain the trigonometric values.

XIV-28

"?GFf.~00

0100! 04C2 Cl ... F< r•'") '\ .~. ; X===O
6:1.02: 0203 LI F<:3, 19898 ; y::::6()72~326>o'<2**15

0104: 4DBA
0106: 04C4 Cl...F: 1:;:4 ; XO==:O
01. 08 ! Cl.4:~ MDV 1:~3 v i:;::s ; YO=::Y
010A! 04CO Cl...f~ FW ; SHIFT::::O
01. oc: 04Cc> Cl ... F\ r<6 COUNT ==O
010E! o::rn:1. NEG r< 1. ; V::::-·V
01.10! C041 MDV· FU d< 1. TEST SIGN CJF ANGLE
01.12: 11.05 .• .Jl ... T .>1.1E .. JUMP . IF MINUS
0114: 608~.) C'· .. > 1:~ :=s , 1:~ 2 , C===C·-·Y /~.~**I
01.16: (10C4 (1 R4, F<::~ 'f::::'f+X/'.;!.**I
01.18! 60c>6 (''

,'.} fr~> 140 (F(6) v Fcl. V::::l.)··-(.~TAN < :f./2**I)
01.Hi: 01.40
ou.c: 1.004 .. JMP >126 ; CDf--ITINUE
ou.E: P.10B!5 A F~::_:; v r-::2 X::::X+Y/2**I
0120! 60C4 ("' ;::. R4, F~~5 ; Y===Y-·X/2>.'<*I'
0122! f~066 f.i fr?:> :L 4o <1:;:6) , 1:u ; V::::V+ATf.1N (:l/2**I)
01.24! 0140
01:;.~6: 0500 INC 1:w ; UF'GF:r~DE SHIFT COUNT
0128! 05C6 INCT F-:6 UPG1:~1:iDE ANGLE INDEX
012A! C:l.02 MOV r.:2, E<4 F<4::::X/2**I
012c: 0804 SF\1'.'.i F<4 v 1:;:0
012E! C:l.43 MDV F\3, 1:;::5 R5===Y /~!.**I
0130! OB05 SFM F<5 'RO
0132! 02El0 CI F\O, 12 ' END'?
0134°! oooc
01. ~56: 1.6EC JNE >110
0138: 045B Ei *F\11 . RETUr-<N TO CALLER ,

013A: /1·10 ; ENTEF~ CONSTANTS
0140: 2rroo +11520 ; ATAN (1/1)*256
0142: 1A90 +6800 ; ATAN (1/2) >.'<2:::;6
0144: OE09 +3!59:~ ; ATAN (1/4)*2~)6

0146! 0720 +1824 ; ATAN (118) *2~36
0148: 0394 t9:L6- ; ATAN <1/:l.6>*25,-S
014A: O:LCA .+458 ; ATAN (1./32) *256
'014c: OOE5 +229 ; ATAN (1./64) *256
O:L4E! OO?:~ +115 ; ATAN < 1.112s) *2!'.'ic>
01~'i0! 0039 +57 ; ATAN (l /2!'5/)) *2~36
0152: 001D +29 ; ATAN < 1./~H;~>*256
0154! OOOE +14 . ATAN (1/1.024)*256 ,
0156: 0007 +7 ; ATAN (1/2048)*256

XIV-29,

	000
	001
	01-01_Preface
	01-02
	01-03
	01-04
	01-05
	02-01A_Parts_List
	02-02A
	02-03
	02-04
	03-01_Bus_Structure
	03-02
	03-03
	04-01_System_Configuration
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01_Electrical_Characteristics
	06-01_System_Expansion
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01_Mighty_Monitor
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01_Assembly
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	09-01_Instruction_Set
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	10-01_Instant_Assembler
	11-01_Monitor
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	12-01_Other_Super_Starter_Products
	12-02
	12-03
	12-04
	12-05
	14-01_TI_9900_Overview
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29

