TECHNICO SUPER STARTER MANUAL

Version.3, April 1978
{(AppHies to Versicn 3-Monitor:and ITA)
1978 Téehnico,. Tic.
A11 Rights Reserved
No Portion of Thig:Manual
- May Be Reproduced

- ‘Without Express Written Consent.

TABLE OF CONTENTS

TECHNICO SUPER STARTER MANUAL

I Preface

IT Parts List

I1I Bus Structure

IV System Configuration

v Electrical Characteristics

VI System Expansion

VII Monitor

VIII Hardware Assembly

IX Instruction Set (Programming)
X Instant Input Assembler

XI Software (Monitor and Game listings)
XIT | Other Super Starter Products
XIII Maﬁufactﬁrer's Spec Sheets
XIV TI 9900 Overview

XV , Other Technico Products

XVI Price Lists, Order Forms

I PREFACE

The Super Starter System provides the basis of your own
personal minicomputer system - including a 2704/2708 EPROM
programmer. The Super Starter System is not a demo kit, but
is the basis for a powerful computing machine. Because it
incorporates the TI 9900 processor, it is compatible with the
TI 990/4 minicomputer and other TI 990 family products.

Before proceeding with assembly of.your kit, read through
the entire manual and familiarize yourself with the features
of this kit. Then, carefully assemble your kit; test it as
described in the manual; apply power; and begin programming.

If you have any pfoblems with this System, carefully
recheck your assembly. (Are all resistor values correct? Are
all chips aligned correcfly? Is your terminal connected
properly?) Since critical components are pretested, misassembly
errors are the most likely cause of‘problems. If all else fails,
Rosse Corporation (the designers of this syséem) are more than

willing to provide whatever assistagﬁe they can to solve the
708 Y1 O53p

problem. Just call them at

 This manual has been written for a user with little or
"no background in programming. In ordéf to proceed directly
into the manual, the reader is assumed to understand the
following:

1. Binary, octal, binary coded decimal and

- I-1 -

hexadecimal number systens.
2. Signed and unsigned binary arithmetic.
3. Boolean logic (AND, OR, EXCLUSIVE-OR).
4. ASCII character codes.
5. Basic concepts of the Texas Instruments TMS 9900.

The Super Starter System is organized for makximum user
flexibility. The basic system includes 1,024 bytes of fused
link read only memory (PROM), 512 bytes of read/write memory
(RAM), sixteen input bits, sixteen output bits, and eight levels
of interrupt. On board expansion ié provided for 2,048 bytes
of erasable read-only memory (2708 EPROM), an additional 1,024
bytes of 748472 PROM, and an additional 1,536 bytes of RAM.

The system also includes the necessary EPROM programming logic
to program EPROMs (TI 2708, Intel 2708, or Intel 2704). The
system has an EIA RS-232 or 20 milliamp current loop interface
with automatic Baud rate determination for terminals up to a
9600 Baud rate. TI 733ASR, 743 and 745 terminals are available
through Technico. .

As you see, the Super Starter System is an excellant
beginﬁing, but you may be interested in future expansion
boards. For examﬁle, with the 16K word (32K byte) expansion
RAM (part number TEC-9900-MA-32) you can even use the Super
Starter System to run our powerful relocating editor and assembler.
Tp‘keep informed about future developements, just complete
the enclosed reply card and mail it to us. It is our intentioni
that you be completely satisfied with the products you receive

I-2

from Technico. If for any reason‘fou are not pleased, let us
know and we will make every effort to provide immediate
corrective action.

Technico is a fully franchised distributor of Texas
Instruments, therefore, all parts in your system are completely
factory warranted. If you find a defective component, just
return the part to us for replacement. We appreciate any
suggestions you may have as to how we might improve both our
products and services.

Best Regards,
William E Regan, Jr.

President

TECHNICO INC.

I-3

ROSSE CORPORATION

THE SUPER STARTER DESIGNERS

Who Are We?
Rosse Corporation is a growing consulting firm located
in the metropolitan Washington, D.C. area. We specialize in

designing microprocessor based systems.

What Can We Do For You?

We have a strong background in both hardware and software,
and can help you to realize your objectives with microprocessors.
You have already purchased one of our designs - The Super Starter
Kit. This kit is a good example of the gquality design approach

used here at Rosse Corp.

What About Experience?

We have design experience with many of the popular
microprocessors, namely: F8, COSMAC, Z80, Intel 8080, TI 9900,
and Motorola 6800. Not just breadboards, but real products.
Members of our staff are also hgihly published in the micro-
processor area. In addition to our technical know-how, we are
awvare of the manufacturing aspects of microprocessors, and
pride ourselves on prdducing the right documentation to
simplify manufacturing. If you will take a moment to review
the monitor, I think you will agree that it is both well

written and well documented.

I-4

What Next?

If you have a specific application for microprocessors,
why not give us a call. Maybe we can help you to mount the
microprocessor learning curve.

Best Regards,

Jim Ferry
President

Rosse Corporation

IT PARTS LIST - SUPER STARTER KIT

SOCKETS (Basic Kit)
2 24 Pin
33 16 Pin
16 18 Pin

6 20 Pin
1 64 Pin (may consist of 2 20 Pin and
2 12 Pin socket strips)
1 8 Pin
9 14 Pin
- RESISTORS

2 10 ohm

2 47 ohm

2 220 ohm

1 680 ohm

1 470 ohm

7 1K ohm

1 2.2K ohm

17 3.3K ohm

2 L.7K ohm

1 6.8K ohm

3 10K ohm

1 20K ohm

1 4TK ohm

II-1A

1 51K ohm

1 100K ohm
A 15 ohm or 10 ohm
1 500K ohm - pot
CAPACITORS
2 22 pf
1 470 pf
1 620 pf or 680 pf
1 1000 pf
24 .1 mf
1 27 mf electrolytic ori¥% mf
4 2.2 mf electrolytic
1 1500 pf
2 .01 mf
DIODES
3 . 1NL148
TRANSISTORS
5 2N3904
1 2N3906
2 2N4401 (TI S111)

IT-2A

INTEGRATED CIRCUITS

1 . 741800
1 74LLS04
3 741832
1 74LS40
2 74LLSTL
1 74123
1 74LS148
1 7418156
1 7418155
2 7418251
2 7418259
1) 748266
1 7418362 (9904 CLOCK)
15 " 7418367
1 7418377
1 72555
A TMS 4042-2 RAM
1 TMS 9900
2 ,748472 Monitor PROM's (U47,UL9)
MISC.
1 | P.C. board
2 SPST switches

II-3

1*

2%

*

momentary contact switch

terminal connection cable

power connection cables

.47 microh. coil (looks like a large

resistor)

Not suppliedxwith the basic kit. Purchased seperately.

II-4

ITII. BUS STRUCTURE

The TMS 9900 CPU has separate address and data buses.
Since the address and data words are not mﬁltiplexed on a
single bus, standard memories can be used with the TMS 9900
without an external address latch.

The TMS 9900 instructions build a 16-bit address word
wﬁich describes a 64K x 8 address space. The least significant
bit is used inside the CPU to select the byte and the other
15 address bits are passed to external memory to access a
32K x 16 address space. Thus, a TMS 9900 system has a 16-bit
data word and a 15-bit address word. Byte addressing is
transparent to the memory.

The address bus is also used to select an I/0 bit and
to pass the external control functions (IDLE, etc.). The
external control functions are not required in most applications
and therefore are not implemented in the Super Starter System.
The address bus is used either to address memory (ﬁﬁﬁfﬁ low),
to address an I/0 bit, or to pass an external control function.
The TMS 9900 interface signals are shown in Figure III-1

The data bus is used only to transfer data to and from
the memory when MEMEN is low. The ROMs and RAMs are the only
devices connected to the CPU data bus. DBIN indicates whether
the data bus is the input or the output mode. The data bus is
normally in the output mode (DBIN low), and the memory data

outputs should be enabled only when DBIN is high.

ITI-1

The communications register unit (CRU) is a versatile
command-driven I/0 interface bus. The CRU employs three
dedicated signals (CRUCLK, CRUOUT, and CRUIN) and the lower
12 bits of the address bus to interface with the CRU system.
The CPU can set, reset, input, or test any bit in the CRU
interface.

The CPU sets or resets an output bit by placing the bit
address on the address bus, the output data bit on CRUOUT,
and a clock pulse on CRUCLK. The CPU inputs or tests an input
bit by placing the bit address on the address bus and testing
CRUIN. Thus, CRU output operations are clocked by CRUCLK,
while the CRU continuously decodes the CPU address to determine
which signal is to be input to CRUIN. The current CPU
instruction, however, determines whether or not the current
CRUIN input is used. The Super Starter System provides(16
input and 16 output bits. One of the input bits and two of the
output bits are used to control the RS-232/TTY interface and
EPROM programmer. !

The TMS 9900 has fifteen user interrupt levels in addition
to the‘ﬁﬁgfﬁ and LOAD functions. The presence of an interrupt
is indicated by an external device driving Tﬁﬁﬁﬁa low and
- placing the priority code on ICO through IC3. The Super StarterA
Kit provides priority encoding logic for eight unique levels

of interrupt (Ul1l,U25).

ITI-2

Figure III-1

/
CRUOUT
o Y CRUCLK
~
= CRUIN
N\
.p
o /INTREQ
&~
s IC0-1IC3
+
=}
ord
—
a IAQ
L2
5 /RESET
o ¢
5 /LOAD.
1
o \
0w

TMS 9900 Interface Signals

£

9900

p———= DBIN

p————e READY

e (AO-A14,)

--—f(Do-D15)

—— /WE

*,

WATIT /

/HOLD

HOLDA

g1 42 43 44

Ny

CLOCK

ITI-3

Memory Interface

DMA

IV. SYSTEM CONFIGURATION

A. MEMORY
The Super Starter Kit is equipped to handle three
different types of memory:

PROM (74S472) - Four fusable link PROM's are available

for permanent program storage. Two PROM's, whic¢h
provide 512 words (1024 bytes) of program storage,
are provided with the kit. These PROM's contain a

powerful monitor to assist with program development.

EPROM (TMS2708/Intel 2708) - Two EPROM's are wired

in parallel to provide an optiénal'lOZA words (2048
bytes) of program storage. The two EPROM's may also
be programmed ﬁsing the software prévided in the
monitor. This provides a convenient means for saving

user programs in a read only memory.

RAM (TMSL042) - Four 256 x 4 RAM's are provided with

the kit, which provides 256 words (512 bytes) of
read/write memory. This membry can be expanded to
1024 words (2048 bytes) by adding twelve more

256 x 4 RAM's.

The unique address decodi: logic allows maximum
flexibility in address assignment. A four input NAND
(U6-741540) detects any reference to the last 2K words
of memory. This signal partially enables an OR (U13-74LS32)
and a one-of-four decoder (U8-74156). Address bit AL
determines whether the OR or the decoder will be enabled.
The jumpers determine which memory will be address when
the OR or the decoder is enabled. If these jumpers are
installed as shown in the schematic, memory will be

addressed as:

FCOO-FFFF ROM-1 (Monitor)

F800-FBFF ROM-2 (ITA or Expansion
"PROM)

FOOO-F7FF EPROM

An OR gate (U7—74826d) detects any reference to the
first 1K of memory. Tﬁis signal enables a second one of
four decoder which determines exactly which section of
memory is addressed. If the jumpers arevinstalled as

shown in the schematic, memory is addressed as:

0000-O01FF RAM-1 (Basic)
0200-03FF RAM-2
0400-05FF RAM-3
0600-07FF RAM-4

IV-2

The Super Starter Kit will ignore a reference to any
address not shown above. The kit will also ignore addresses
0000-07FF if the jumper /FIRST K is removed. This may be
useful if external RAM is added to the system.

The jumpers also allow the memory to be reorganized
to suit the needs of any particular application. Some
useful configurations are:

e JW1l,JW2,JW3,JW4-JW1ll (out) Place EPROM
at F800-FFFF
e JW5,JW6,IJW7,JW8-JW1l (outj Place EPROM at

JW1l(in)-JW5(out),JW2(in)-JW6(out) O000O0-FFFF and

JW3(in)-JW7(out),IW4(in)-JW8(out) RAM at F8OO-FFFF

This reorganizing is useful, but should be done
carefully. Be certain that you do not enable two different

memories with the same signal - this will damage the memory.

B. INPUT/OUTPUT

Two octal multiplexers (U3,U4—74LS251) and two
addressable latches (U1,U2-74L8259) are used for CRU-
based I/0. The I/0 are addressed as bits 0-F (hex).
Additional I/0 may be added to the system by adding
appropriate decoding logic.

One of the input bits (0) is used for RS-232/TTY

input. If any application requires these bits, but does

Iv-3

not require the services of the monitor, the jumper may
be removed, which deactivates this input.

One of the output bits (0) is used for RS-232/TTY
output and one bit (1) is used to control the on-board
EPROM programmer. As with the inputs, these may be disabled

by removing the associated jumpers.

' C. CLOCK GENERATION

The SN74LS362 clock generator (Ul0) provides the
four-phase MOS timing signals for the TMS 9900. A single
capacitor is used to determine the clock frequency. This
is adequate for most applications, but if a more precise
frequency is required, a crystal reference can be used.

A simple LC network is used to control the frequency
overtone. The SN74LSB62 also provides TTL compatible clock
outputs. The RC network on the Schmitt-triggered D input
pfovides a power-on reset fot the system in addition to

the manual reset.

D. RESET, LOAD, AND INTREQ

The RESET,LOAD, and INTREQ TMS 9900 inputs are used
to alter the normal program execﬁtion sequence. The
encoding logic (Ul1-74LS377,U25-74148) present the proper

interrupt code to the ICO-IC3 line on the processor. It

IV-4

also synchronizes the interrupt request.

The external load and reset signals are also directly
inpﬁf to the CPU after being synchronized. RESET is held
active (low) for at least three clock cycles by the
switch or the power-on RC network. TOAD is held active
(low) for one instruction time as determined by the TMS
9900 IAQ output.

The load signal is used to enter the monitor. If
switch one is in the load position, a load request is
generated following any restarf. This transfers control
to the monitor since the load vector is at ROM locations
FFFC-FFFF, If switch one is not in the load position,

restarts use the nbrmal restart vector at 0000-0003.

E. EPROM PROGRAMMER

A unique feature of the Super Starter is the on-
board EPROM programmer for TMS 2708 or Intel 2708/2704
Erasable Read-Only Memories. The programﬁing is enabled/
disabled by switch three. When disabled, all programming
requests are ignored by the hardware. When the programmer
is enabled, 5it 1 of the CRU output controls the
programming. Another important feature is that both the
EPROM's are programmed at one time. It is not pecessary

to program the even bytes, then the odd ones as it is

with a single EPROM programmer. Rathef, a whole word is
programmed at one time.

If programming is enabled (by switch three, and CRU
I/0 bit 1), then the processor can program any location
by simply writing into it. When the write is detected
(U12-74123), the address and data are held by placing
the processor in wait and a program pulse is generated.
After programming, the program mode can be reset to read,
and the EPROMs verifiéd. The EPROM must be programmed
several times to insure data iﬁtegrity. Do not continuously
reprogram one locatién, as it may damage the EPROM. The
recommended sequence is (R1,R2 preset té source and R3

to PROM destination):

INCT R2 sddvance end
LI R4,255 ;R4L= repeat
LOOP 1 MOV R1,R5 sR5= start
MOV R3,R6 ;R6=PROM start
ORI R6,:>F0001;adjust for PROM
LOOP 2 MOV *R5+,%*R6+ ;Do one pass
c R5,R2
JLE LOOP 2
DEC R4 3 Do anéther pass
JNE LooP 1

IV-6

E. REAL TIME CLOCK

A real time clock oscillator is provided for software
timing. The oscillator output is connected to bit (1) of
the CRU input by jumper JW13. If the clock is not used
the jumper can be removed. The clock can also be used to
periodically interrupt the CPU, just connect the clock

output to an interrupt input.

Iv-7

V. ELECTRICAL CHARACTERISTICS

The Super Starter Kit requires the following input

power:.
+5V - Maximum of 1.5 Amps
+12V - Maximum of .5 Amps
-5V - Maximum of .5 Amps

To program 2704/2708 EPROMs the following power
must be supplied:
+28V - Maximum of 40 Milliamps
A power supply to power the Super Starter System plus
a full 65K byte memory expansion is available (p/n TEC-

9900-PP). Power ratings for this expanded unit are as

follows:
+5V - Maximum of 5 Amps
+12V - Maximum of 3 Amps
-5V - Maximum of 2 Amps
+28V - Maximum of AO’Miliiamps

1

VI. SYSTEM EXPANSION

The Super Startgr Kit has been designed for ease.of
expansion. Since any choice of edge connector would seriously
restrict the method of expansion, use of jacks was chosen instead.
All of the critical signals, including those for a computer
control panel, are available on 16-pin DIP sockets. The
individual jacks and pin assignments are described in the
paragraphs below.

The physical size of the Super Starter System, 7" x 16",
is the identical size of standard wire wrap boards such as
the Garry (p/n NCS-13), Flat Flexible Cable jumpers can be used
to interface with this type of.board to perform control functions.
The TEC-9900-MA-32K byte memory add-on boards are physically
aiso the same size. Since the TEC-9900-SS is fully buffered,
memory expansion can be accomplished by merely jumping to the
memory boards (p/mn TEJ-99DA-12). Program loading to the TEC-
9900-SS can be accomplished'by interfacing a terminal or RS232

cassette tape into jack 10 of the kit. Refer to the monitor

- section for details regarding program loading.

VIi-1

A.

J4 (Address Bus)

J4
J4
J4
J4
J4
J4
J4
J4
J4
J4
J4
JZ
T4
J4
J4
J4

1

O B I o0 W

11

12
13
14
15
16

Address
Address
Address
Addfess
Address
Address
Address
Address
Addréss
Address
Address
Address
Address
Address
Address

Ordused-

VIi-2

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

0 (MSB)

O B8 9 o B~ W

13
14 (LSB)

B.

J9 (Data Bus)

J9
J9
Jo
Jo
J9
J9
J9
J9
J9
J9
J9
J9
J9
J9
J9
J9

1

O B8 9 00 W

11
12
13
14
15
16

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
. Data
Data
Data
Data
Data

Data

VI-3

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

Bit

0 (MSB)

O 8 9 O W~ W

11
12
13
14
15 (LSB)

C.

J8 (Interrupt Control)

78
8
38
8
8
78
8
78
38

to 16

Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt

Interrupt

level

level

level

level

level

level

level

level

Ground (unused)

VI-4

o 2

PSRN

3
2
1

Ov(highest priority)

D.

J6 (Control Signal Group_l)

Jé
Jé
Jé6
J6
Jé
J6

J6

Jé
Jé6
J6
J6
J6
J6
Jé
Jé6
J6

1

O 6 9 o oW

11
12
13
14
15
16

Ready (In)
/HOLD (In)
DBIN (Out)
/WE (out)
/MEMEN (Out)
HOLDA {(Out)
WAIT (Out)
LOAD * (In)
/RESET (1In)
/RESET (Out)
/LOAD (Out)
- IAQ (Out):
CRUIN
CRUOQUT
CRUCLOCK

GND

VI-5

E. J7 (Control Signal Group 2)

J7 1 : /Phase one

J7 2 / Phase two TTL Level

J7 3 /Phase three Processor Clocks
J7 4 /Phase four

J7 5 ' Oscillator out

J7 6 Oscillator In

J7 7 to 16 Unused

VI-6

F. J10 (RS-232/TTY Interface)

Jio 1 : Pin 1

Jio 2 2

Jio 3 3

J10 4 5

Jio 5 6

J10 6 7

Jio 7 8 E.I.A. RS-23C Connector
Jio 8 ' 21 Pin Assignments
Jio 9 22

J10 10 23

Jio 11 24

J10 12 to 16 unused

VI-7

G. J2 (Input Port 1/CRUIN)

J2

J2

J2

J2
J2
J2
J2
J2
J2
J2
J2
J2
J2
J2
J2

J2

1

11
12
13
14
15
16

(Ve B o I A A B - S WV

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

Bit

Bit

Bit

VIi-8

0 (LSB)

1

O 8 I 0N W

11
12
13
14
15 (MSB)

TTY IN

CLOCK IN

H. J1 (Output Port 1/CRUOUT)

J1l
J1
J1
J1
Jl
J1
J1
J1
J1
J1
J1
J1l
Jl
J1
J1l

Jl

1

O B 0N M W

11
12
13
14
15
16

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
ﬁit
Bit
Bit

Bit

VI-9

© (LSB)

O o ~2 (o RN B w

11
12
13
14
15 (MSB)

TTY OUT

/PROGRAM ENABLE

I. J5 (Input Power)
J5 1 to 4,~13 to 16
J5 5 to 6, 11 to 12
J5 7, 10

J5 8, 9

VI-10

+57

+12V.

-5V

+28V (used only to

program EPROMs)

J. J3 (Input Ground)

J3 1 to 16 Ground

WARNING
Be careful when applying power to J3/J5. A misconnection
will seriously damage the system! Also, all unused pins are

grounded.

VI-11

VII. MIGHTY MONITOR
The Super Starter - Mighty Monitor provides the following
comprehensive set of commands:
A. Alter the contents of RAM
B. Breakpoint set/restore

C. Copy memory to memory

D Dump memory to display or terminal
G Go to prbgram in memory

H Hexadecimal Arithmetic

I Inspect CRU bit

1. Load program from terminal

M Modify CRU bit

P Program EPROM

S Snap definition .

W Workspace duﬁp

VII-1

3

The Mighty Monitor accepts input from and produces outpdﬁ
for a serial Asynchrénous ASCII terminal or teletypewriter. Tb
insure maximum flexibility in the choice of a terminal, the
monitor always generates two stop bits after each character
and user controlled delay after each carriage return. The Baud
rate of the terminal is determined automatically during the
start up of the monitor. After a reset (power—on or manual)
the monitor will wait for the user to enter the letter 'X!'.
When the letter 'X' is entered, th% monitbr automatically
calculates the Baud raté (110 to 9600) and begins normal operation.
During normal operation, the monitor prompts the user to enter
a command by typing a question mark at the beginning of a new
line. The first entry byrthe user must be ‘one of the allowable
command codes (A, B, C, D, G, H, I, L, M, P, S, W), and is
followed by the arguments in hexédecimal notation. Multiple
arguments are separated froﬁ one another by an arbitrary
sequence of symbols or characters, except for hexadecimal
digits (0-9,A-F) or carriage return. The commaﬁd is terminated
by any non-hexadecimal digit (including carriage return)
aftér the last argument.

If an argument is typed with more than the required
number of digits (usually four), the monitor will use only
the right-most digits. This feature can be used to correct
input errors. If any argument is shorter than required, the

left-most digits will automatically be filled with zeros.

VII-2

The monitor uses certain locations in memory to store
breakpoint information, etc. The monitor memory map is shown
in Figure VII-1l. To operate in half-duplex mode (no character
echo) change the echo flag to zero using monitor's Alter
command. To insert a delay after carriage return, enter the
required delay in the delay word (again using the Alter).

The total carriage return delay is Delay*6é microseconds. If
you do not know the delay required for your terminal, it can
be determined experimentally by increasing the delay until no
characters are lost after a carriage‘return. If you modify
any of the other locations used by the monitor, the monitor
may not function properly.

A detailed -description of each command is provided in

the following paragraphs, along with an example of its usage.

NOTE: If you are using a TI Silent 700 which is equipped
for 1200 Baud operation, a special monitor is available
for communication with that terminal. Inquire at Technico

for further details regarding the Silent 700 monitor.

VII-3

FIGURE VII-1 MEMORY MAP

Address (hex)

0-3
47
8-B
C-F

10-13

14-17

18-1B

1C-1F
20
22
24
26
28
2A
2C

- 2E
32
34
36
38
34
3¢
3E

VII-4

Contents

Interupt vector level O

- level 1
- level 2
- level.
- level
- level

- level

<N O W

- level
Carriage return delay
Echo flag
Terminal speed

No. of words for a break

User instruction one

- two

- three
Return branch (two words)
Next stop
Stop increment
Maximum number of stops
Register bounds - first

- last

Memory bounds - first

- last

FIGURE VII-1 MEMORY MAP (continued)

Address (hex) Contents

40-43 X0P O.

L4=4T7 X0P 1

4L8-4B X0P 2

4LC-4AF X0P 3

50-53 - XOP 4

54-57 ‘ XO0P 5

58-5B - X0P 6

5C-5F . XOP 7

60-63 XopP 8

64-67) . X0P 9

68-6B X0P 10

6C-6F : X0P 11

70;73 X0P 12

74=717 | | | X0P 13

78-7B XO0P 14

7C-7F X0P 15

- 80-9F Monitor Workspace

AO-AF X0P Workspace (only 8 registers)

VII-5

FIGURE VII-1 MEMORY MAP (continued)

Address (hex)

BO
B2
B4
B6
B8
BA
BC
BE
Cco
c2
C4
cé
c8
CA
CC

" CE

VII-6

Contents

R10
R11
R12
R13
R14

R15

(R4)
(RB)
(RC)
(RD)
(RE)

(RF)

Format:

Procedure:

Note:

A aaaa
1. Type "A".
2. Type the byte address (aaaa) of the memory

location to be examined (in hex) followed

by a space.

The monitor will display the contents of

the specified location in hexadecimal

format (followed'by a hyphen).

If you wish to change the contents of this
location, simply enter the desired
hexadecimal value followed by a space or
carriage return. If not, just type space or
carriage return and the monitor will display
the c&ntents of the next sequential address.
If a space is typed, the next value will

be displayed on the current line, but if a
carriage return is typed, Both the next
byte's address and contents are displayed

on the next line.

Repeat steps 3-4 until all desired locations
have been examinedhor modified. To exit this
routine depress the BREAK key on the terminal
(or type an ASCII NUL).

If the monitor was entered from a BREAKPOINT,

ALTER can be used to examine or modify the

VII= 7

working registers. Refer to the memory map
command for a definition of the addresses
‘used. |
2. ALTER can also be used to examine EPROM or
PROM, but it can not be used to modify them.
Example: The following sequence will alter locations
#400 and #404 with #FF. Locations #401-403

are unchanged (user's entries are underlined).

?2A4L00 OO-FF 11-_22-_33-_A4-FF 55-

VII- 8

BREAKPOINT - A breakpoint or trap may be set in any user program

that is stored in RAM. Whenever the processor
encounters the substituted trap instruction, the
state of the machine is saved and control is
transfered back to the monitor for user action.

Format: B aaaa,n

Procedure: 1. Type "B",.

2. Type the hexadecimal address (aaaa) of the
location to be trapped, followed by a
delimiter. (aaaa) must be a word address
(even number).

3. Type the number of words (n) to be removed
for the trap. This should be the number of
words (1, 2, or 3) currently occupied by
the trapped instruction.

4. Type space or carriage return. The monitor
will remove any prior trap and then install
the new trap.

Note: 1. If the existing trap is to be removed
without setting a new one, the address is
omitted and the command terminated by
carriage return.

2. After entering the monitor from a trap, the

- GO command can be used to resume execution

(see GO command, discussed later).

VII-O9

3. The contents of the user's workspace registers
are saved whenever a breakpoint is encountered.
The contents of the registers can be examined
or modified using the ALTER command. The
Monitor Memory Map shows where the active
registers are saved. Note: If the workspace
pointer is changed by the user program, the
registers will be located at the address in
the workspace pointer.

L. Relative jump instructions should not be

breakpointed if a return GO is to be used

or if a SNAP is es%ablished.

VII-10

COPY - The contents of a block of memory may be copied into

|
|
[
|
|
i
i
|

another area of memory.

Format:

Procedure:

Note:

Example:

C ssss, eeee, dddd

1.

2.

l'

Type "C".
Type (in hex) the starting address (ssss)
followed by a delimeter, and then the ending
address (eeee) followed by a delimeter of
the block of memory you wish to be copied.
Type (in hex) the destination address (dddd)
followed by a space or carriage return. For
a normal copy operation, the destination
address should not be within the bounds of
the.ﬁlock of memory that you are copying.
The copy command can be used to set a block
of memory td a specified constant. This 1is
done in'two steps. First, place the desired
constant in the start location (using the
eeee-1l, ssss+1l", where (ssss) is the start
address and (eeee) is the end address of
the block.
The following command will copy #410-420
into #430-440.

?C0410,420,430

VII-11

2. To set all locations #410-41F to zero, tHe
following commands are used.
?A410 11-00 22 (sets 410 = 00)

7C410,41E,411 (clears 410-41F)

Note that #4L1E is one less than the ending
address #41F and #411 is one greater than

the starting address #410.

VII-12

DUMP - The contents of a block of memory may be listed on the

printer.
Format:

Procedure:

Note:

Example:

D ssss, eeee

1.

2.

Type "D".

Type (in hex) the starting address (ssss)
followed by a delimiter and then the ending
address (eeee) of the memory to be listed.
Terminate the command by typing a space or
a carriage return. The monitor will now 1list
the block of meméry you requested, sixteen
bytes per line.

The ending address may be omitted (and the
comﬁand terminated by a cérriage return),
in which case the monitor assumes that the
ending address is the end of memory

(65535, or #FFFF).

The dump may be stopped at any time by
depressing any key on thelterminal.

The LOAD command can reload the program if
the dump is recorded, on paper tape or
other media.

Both of the following examples will dump
the entire memory:

D0

VII-13

GO - Control can be transferred to a specified word in memory.

Execution can also be resumed after a breakpoint trap.

Format:

Procedure:

Note:

Example:

G aaaa
2. Type the hex address (aaaa) where control

is to be transferred. (aaaa) must bé a word
address (even).

Términate the command by typing a space or
carriagé return. The monitor will now |
transfer control to address (aaaa).

The address (aaaa) may be omitted (and the
command terminated by a carriége return) in
which case the monitor will assume that a
trap was reached, restore the state of the
machiﬁe, execute the instruction removed
for the trap, and return to the point
following the trép. This feature should be
used only if the monitor was entered by a
trap and the location being trapped does
not contain a relative jump.

Do not set a new bfeakpoint, then issue a
&0 without an address, as this will transfer
control to the wrong location..

The following will transfer control to
location #106.

?G106
VII-14

HEXADECIMAL ARITHMETIC - Calculate the hexadecimal sum and
| difference of two numbers.
Format: H aaaa, bbbb
Procedure: 1. Type "H".

2. Type the two hexadecimal operands (aaaa)
and (bbbb) separated by a delimiter and
followed by a space or carriage return.

3. The monitor will now calculate and display
(xxxx)=(aaaa)+(bbbb) and (yyyy)=(aaaa)-(bbbb)
as follows: |

H+=(xxxx) H-=(yyyy)
Example: This command is useful for calculating the
desfination address for a jump. If the jump
instruction #1047 is ét, say, location #1234
then the deétination address is (#1234+42)+
2¥LT. Tﬁis sum is calculated in two steps
as follows:
Step 1) 7HL236,47
| H+=127D H-=11EF
Step 2) ?H127D,47
H+=12C4 H-=1236
Note that the jump displacement is relative
to the next sequential instruction (#1236)

not the jump itself.

VII-15

INSPECT - A CRU bit may be displayed on the terminal.
Format: Ibb
Procedure: 1. Type "I".
2. Type the CRU bit (bb) to be tested,
followed by a space.
3. The monitor will display the selected CRU
bit. |
Example: ' Display CRU bit 5 (assume it is set).

?2I5 1

VII-16

LOAD - A program file may be loaded into memory from paper
tape or any other terminal storage media.
Format: L
Procedure: 1. Type "L".
2. Initiate the input (e.g. the paper tape).
Note: 1. The‘LQAQ command will reload programs
produced by the DUMP command. The dumped
program will be reloaded into the same area
of memory that it was dumped from.
| 2. If ybu do not wish the input to be listed
as it is loadéd, simply set locations #22,
#23 to zero. This will suppress the monitor's
echo.
3. The carriage return delay should be set to zero

(i.e., #20, #21) prior to loading.

VII-17

Format: M bb,v
Procedure: 1. Type "M".
2. Type the desired CRU bit (bb) followed
by a delimeter.
3. Type the bit value that you desire
(0O=clear, l=set).
Example: Set bit 12 to O

7M12,0

VII-18

Format:

Procedure:

Note:

Example:

P aaaa, bbbb, cccc

l.

2.

Type "P".

Type (in hex) the étarting address (aaaa)
of the area to be placed in EPROM followed
by a delimiter, and then by the ending
address (bbbb) followed by a delimiter.
Type the starting address of the EPROM
area to be programmed followed by a space
or carriage return.(0000 is the first
EPROM location)

The monitor will now program the EPROM's.
The starting address of the EPROM's, for
programming purposes only, is zero.

The monitor always programs both EPROMs.
Even bytes in one and odd bytes in another.
To program only selected locations, place
#FF in any location not to be programmed.
Since the erased EPROM has #FF in all

locations, this will not change the EPROM.

"The ending address (bbbb) MUST BE EVEN.

Program a copy of the monitor.

?P_FCOO0,_FFFE,O

VII-19

SNAP - Snap parameters can be established.

Format:

Procedure:

Note:

Example:

S f£ffff, iiii, nnnn

?R rl,

?M M1,

1.

2.

r2

M2

Type ‘"S".

Type the first time a snap is desired (ffff)
followed by a delimiter, then the increment
between snaps required (nnnn) followed by
a delimiter, and finally the total number
of snaps (nnnn) followed by a delimiter.
When the monitor types "?R", enter the
workspace registers to be snapped. If no
registers are to be'snapped, then type a
carriage return.
When the monitor types "?M", enter the area
of memory to be snapped. If no.memory is to
be snapped, then type a carriage return.
Prior to establishing a‘snap a breakpoint
must be set.

The following sequence will snap registers
R1-R3 and memory area #100-105 after the
fourth execution of the instruction at #130.
After the initial snap, it will snap every

third time until a total of six snaps.

VII-20

?B130,1 " (first set trap)
?84,3,6 (set trap)
?R1,3

?M 100,105

The sample output given on the next page
illustrates the use of A, B, and S commands.
The A command is used to enter a program into
memory. This program will decrement R1, R2,

and R3. The B command is used to set a
Breakpoint trap at #130 (which contains a 1
word instruction). The S command specifies

a snap of Rl throﬁgh R3 and memory locations
#100 through-#lOS to be taken just prior to the
4Lth, 7th, 10th, 13th, 16th, and 19th times that

the instruction at location #130 is executed.

VII-21

TAl3I0 2004 0001 0&-068
'f‘lfJuSOy 1

FC=0132 WE=00R0
RlWOOLu R&=2HE8 FEwLL?;
QLoG: 02 0¢ 00 01 CO C1

FO=01L32 W= ET=0000
RI=0000D RI ‘\5 R3=0030

QLG0T 02 03 «;‘)(’) a1 Co 01

FO=QL32 WF=00R0 ST=0000
Rl= \ '-.)f 1 R2=2BREQC RA=QLIZ
Lo 02 O3 00 o1 O ¢l

'[I Q132 WP=00 BT=0000
=007 2 F=QI2F
QLOO: 02 03 uO ul Co 1l

FC=0132 WP=00E0 ST=0000
F1=0084 RE=ZREA REI=OL2C

QRGO 02 03 00 0L 00 01

=[1G00
OnEY

Co .l

FO=0L32 W
R1=00a1 B2
21008 02

VII-22

Q&0

QF -

P

03

10~

10

VIII. ASSEMBLY

The Super Starter Kit is designed for easy assembly. You
don't have to be a microprocessor wizard to build and tést your
computer. If you carefully follow the assembly instructions,
your computer will operate properly - the first time that power
is applied.

To be sure that you don't make assembly errors, we highly
recommend fhat you familiarize'yourself with the kit prior to
assembly. The best way to do this is to study the manual before
proceeding. After you have read the manual - all of it- you
are set to begin. The following simple precautions will help
minimize the chances of error:

® Use care in handling the integrated circuits. All of
the integrated circuits (I.C.) will be seriously
damaged by static discharge. Carpeted areas are a

problem. Even a minor static shock will ruin most I.C.!s.

® Use the proper tools, and exercise care when soldering
the components. In particular, use a low wattage iron - -
no more than 30 watts. Use only rosin-core solder.
Acid core solder will ruin the kit. Keep the tip of
your iron clean - a damp sponge is ideal for this

purpose.

VIII-1

@ Never remove or install components when power is
applied to the board. If you do, you will almost

surely burn out some of the I.C.'s.

® Prior to starting to assemble your kit, gather the
necessary tools. The Super Starter Kit does not
require an extensive set of tools. The following
set should be sufficient:
1. needle-nose pliers
2. diagonal cntters
3. soldering iron (25 or 30 watts)
Do not use a soldering gun because
it gets much too hot.
4. solder (remember - use rosin-core)

5. volt-ohmmeter or continuity checker

You are now ready to assemble the computer. Follow each of
the instructions precisely, and in the order shown. All of the
components are installed on the silk-screened side of the board,
and are soldered on the other side. Be sure you have the board
oriented with the silk-screen printing down when soldering

‘components.

VIII-2

STEP 1 - Parts Verification

Separate and check all parts against the parts list
of section II. If you find that any parts are missing,
natify us immediately, and a replacement will be sent to
you. Keep the parts separated for ease of assembly -

paper cups or a small muffin tin is ideal storage.

VIII-3

STEP 2 - Install Sockets

Install the I2C. sockets shown below. Be certain to
orient the socke£ properly. Each socket will have a =
distinctive marking to indicate pin one. Some sockets
have a cut-off-corner, others have a notch in the end
with pin one. In any case, pin one must be aligned with
the pin one indication on the printed circuit board as

~shown in Figure VIII-1.

J1 16 pin socket
J2 16 pin socket
J3 16 pin socket
JL 16 pin socket
J5 16 pin socket
J6 16 pin socket
J7 16 pin socket
J8 16 pin socket
J9 16 pin socket
J10 16 pin socket
023 6/ pin socket (CPU)
022 18 pin socket (RAM)
U37 18 pin socket (RAM)

Uls 18 pin socket (RAM)

TN N N NN N NN TN N N NN N S

U33 18 pin socket (RAM)

VIII-4

() U10 20 pin socket (clock)
() 047 20 pin socket (PROM)

() Uu49 20 pin socket (PROM)

VIII-5

STEP 3 - Install Resistors

The resisdtrs should be installed in the order -
indicated below. Bend the leads to fit the distance
between the mounting hbles, insert the leads, push the
resistor snug against the board, carefully solder it in
place, and then trim off the ekcess leads. All resistor
values are in ohms, and all resistors are + watt. For
your convenience, the color code for each resistor is
also shown. Eigure VIII-2 illustrates the standard resistor

color code.

(") Rl 3.3K orange,orange,red
() R2 3.3k orange,orange,red
() R3 3.3K orange,orange,red
() R4 3.3k orange,orange,red
() RS 3.3K orange,orange,red
() R6 3.3K orange,oraﬁge,red
() R®7 3.3K orange,orange,red
() &8 3.3K orange,orange,red
(~{(R9 10K brown,black orange
(‘*) - R10 10 brown,black,bléck
(14(R11 20K red,black,orange
(/) R12 51K green,brown,orange
¢-)Y Rl13 3.3K orange,orange,red

VIII-6

R14

R15

R16
R17
R18
R19
R20
R21
R22
R23

R24

/R25
R26

R27
R28
R30
R31
R32
R33

‘R34
. R35

R36
R38
R39

3.3K
L7
10K

1K

4 .TK

3-3K
220

220

1680

10
3.3K
1K
3.3K
1K

100K

1K
3.3K
3.3
4.7K
6.8K
470
3.3K "
3.3K

2.2K

VIII-7

orange,orange red
yellow,violet,black
brown,black,orange
brown,black,red
yellow,violet,red
orange.orange,red
red,red,brown

red,red,brown

blue,grey,brown

brown,black,black
orange,orange,red
brown,black,red
orange,orange,red
brown,black,red
brown,black,yellow
brown,black,red (R29 not used)
orange,orange,red

orange,orange,red

yellow,violet,red

blue,gray,red
yellow,violet,brown
orange,orange,red
orange,orange,red (R37 will be

red,red,red done later)

(") R40
¢4 R41
(/7/ R42
(/) R4L3
(1) R44®
(1) R45*
M Rru6x
() R4T*
(") R48*

Revision

1K

47K

3.3%)

47

10

10

1K

10

10

'B

or

or

or

or

1

15

15

15

15

P.C.

VIII-8

brown,black,red
yellow,violet,orange
orange,orange,red
yellow,violet,black
brown,black,black or
brown,green,black
brown,black,black or

brown,green,black

brown,black,red

brown,black,black or
brown,green,black
brown,black,black or

brown, green,black

Board only

FIGURE VIII-1 SOCKET INSTALLATION

PIN 1

/

|

PIN 1

»

VIII-9

PIN 1

FIGURE VIII-2. RESISTOR_COLOR_CODE

E.I.A. COLOR_CODE_INDICATOR

~BLACK
BROWN
RED
ORANGE
YELLOW
GREEN
BLUE
VIOLET
GRAY

WHITE

1 | | I |
B < T BN e AN, SR - S VO N |

~a

= O

O

BLACK
BROWN
RED
ORANGE
YELLOW
GREEN
BLUE
VIOLET
GRAY

WHITE

Af*”’/’

BLACK
BROWN
RED
ORANGE
YELLOW
GREEN

BLUE

0]

00
000
0000
00000

000000

VII-10

GOLD
SILVER

NO BAND

Example:

-0

-1

-2

-3

- 4

-5

-6

-7

-8

-9

= + 5% TOL.

= % 10% TOL.

= + 20% TOL.

RED RED ORANGE
2 2 000

=22K

STEP 4 - Install Pot

Install the 500K ohm pot at location R37. This pot
controls the speed of the real time ciock and can be set
as required by your software. It must be oriented as
shown on the board. That is, the screw should be

positioned according to the marking on the board.

VIII-11

STEP 5 - Install Capacitors and Inductor

| Each capacitor should be installed in the order
indicated below. Insert the leads into the board, gently
push the capacitor shug against the board, carefully
solder it in place, and then trim off the excess leads.
All values shown below are in microfarads unless otherwise
indicated. Many of these capacitors are bypass capacitors -
they minimize electrical noise on the board and insure
"glitch" free operation. If disc capacitors are enclosed,
the value is printed on them. If color coded capacitors
are -included, the resistor color code is used to determine

the value.

() c1 1
() c2 .1
(3 c3 1
() C4 .1
() cs5 .1
() cé 1
() c7 .1
() cs8 1
() ¢©9 .1
(1) c1o .1
() c11 .1
() ci12 1
() c13 1

VIII-12

(*4 Cl4

() ci1s
(uj C1é
(4 c17
- (A c18
vﬂ(f) C19
() c=o0
() c21
~f c22
(/) c23
(/) c2s
() c©25
(?% c26
(" c27
4 ces
(/5 c29
(»). €30
(A 3
(¥ c32
() ©33
() ©34

(V4(€35
A o6

VIII-13

.1

.1

22pf

27mf or 47 mf (electrolytic -

22pf see notehbalow)

.1

.1

.1

620pf

.1

2.2 (electrolytic - see note below,
.1 el

.1

470pf

.1

1000pf

.1

2.2 (electrolytic - see note below.
.01 .

2.2 (electrolytic - see note below
2.2 (electrolytic - see note below
1500pf |

.01

.47 microh. coil

A1l of the electrolytic capacitors must be properly
oriented on the board. One end of the capacitor is marked
with a "+", This end of the capacitor must be positioned
as indicated on the board. Since these are used to filter
the power, proper orientation is essential or the kit
will be damaged when power is applied.

In some cases the capacitance value is printed on the
capacitor in the form of a three digit number, with the
first two digits indicating the number of zeroes to be
added to the right (as in the resistor color code). For
example, 470 indicates 47 picofarads and 104 indicates
100000 picofarads, l.e., 0.1 microfarads. As another
example, C22 is nominally 620 pf. But your kit may have a
capacitor marked CKO5/681K. The 681 means that the capacitor
is 680 pf. This is the capacitor that yom would use for

C22 in this case.

VIII-14

STEP 6 - Processor Power

Regulator UR9 was used for earlier 6V processors
and is no longer required. To provide additional power
filtering, install jumpers 's' and 'T'. A scrap resistor

lead makes an excellent jumper.

VIII-15

STEP 7 - Install the Diodes

All of the diodes are the same - 4148. They must be
properly oriented on the board. One eﬁd of the diode is
ﬁarked with a band. This banded end must be positioned
as shown on the board. Since diodes are used to prevent
current flow in one direction, reversing them will burn

out your kit!
() Ccr1 4148

() CRrR 2 4148
() CRrR 3 4148

VIII-16

STEP 8 - Install the Transistors

There are three different types of transistors in
the Super Starter XKit, so be careful to install the proper
type. Each transistor has three pins, and must be properly.
oriented. If you look at the transistor from the side that
is flat (pins facing down), the pins are (from left to right) -
emitter, base, and emitter Be sure to orient the emitter
pin as shown on the board. If not properly oriented, the

transistor will be damaged.

() Q1 2N3906
(/ﬁ/IQ 2 2N3904
(LY Q3 2N3904
(Y Q4 2N3904
() Q75" 2N3904
() Q6 284401 (or TIS111)
(Y Q7 2N4401 (or TIS111)

(aw”‘Q 8 2N3904

VIII-17

STEP 9 - Install the I.C.'s

A1l integrated circuits must be properly positioned.

Pin one of the IC is indicated by a small dot or number

one in the corner, or by a notch at one end of the chip.

Pin one must be positioned as shown on the board. If you

purchased a fully socketed kit,

first install the proper

size socket, and then install the IC in the socket (Be sure

" to position the socket as described in Step 2.). DO NOT

solder the socket with the I.C.

installed. When you solder

the I.C.'s be careful not to create a solder "bridge"

between adjacent pins.

This type of soldering error is

the most common kit building error, and can be very

difficult to locate.

Check each joint after you solder .

it. Install the I.C.'s listed below.

(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)

Ul
U2
U3
U4
U5
ué
U7
U8
U9
Ulo0

VIII-18

T4LS259
7T4LS259

" 7418251

7418251
7418155
741840
748260
7418156
741874

74,LS362 (socket installed in Step

U1l
U12
U13
U1
U18
U22
U2
U25
U26
U27
U28
29
U33
u37
U38
U39

L U40
U4l
U42
U43
U4
U45
U47

S A A S S~ A g ~ N R A — S~ St S S N” N A N g N g N?

VIII-19

T4LLS3T7

74123.

7T4LS32

72555

4042 (socket installed in Step 2)
4042 (socket installed in Step 2)
7418367

T4LLS148

741832

74LS00

TALSO04

No Longer Used- do not install
4042 (socket installed in Step 2)
4042 (socket installed in St;p 2)
7418367

7418367

74LLS367

7418367

74,LS367

74LLS367

74LS367

7418367

745472 Monitor - odd addressed

bytes (s6cket installed in Step 2)

() U49 748472 Monitor - even addressed
bytes (socket installed in Step 2)
U52 T7AL8367
U53 7418367
U54 74LLS367

()

()

()

() Us5 7418367
() us6 74LL8367
() us7 7418367
() uss 741532

() U59 74LLS7/,

Warning: The CPU, U23, should not be installed at

this time. It will be installed later after the

integrity of the board has been verified.

VIII-20

STEP 10 - Install Expansion Memory I.C.'s
If you pufchased any of the memory expansion capability,
install those I.C 's and their sockets. The available
expansion areas are:
: () RAM 1
() mU21 4042
() u3s6 4042
() uL7 4042
() U32 4042

() 120 4042
() U35 -+ 4042
() U6 4042
() U3l 4042

() RAM 3
() 119 4042
() U3 4042
() u1s 4042
() U30 4042

VIII-21

NOTE:

NOTE:

() PROM 1 - Usually reserved for "Instant
Input Assembler"

() U6 7418472 - odd addressed bytes

() vUu4e 74LLSLT72 - even addressed bytes
Refer to our literature for programs that we offer
in fusable 1link PROM. All of them are designed to
run in this expansion area. Many of them, like the
Instant Input Assembler, will speed up your

programming tasks.

() EPROM
() wuvs1 2708 - odd addressed bytes
() TUs50 2708 = even addressed bytes
These two EPROMs can be programmed by the Super .
Starter Kit itself. Just put a blank EPROM in
each sockef, and then use the monitor to save

your program.in EPROM. Refer to the monitor

section for detailed instrucﬁions.

VIII-22

STEP 11 - Memory Configuration
Install the‘jumper wires to select the proper memo}y
addressing. The Siiper Starter Kit allows you to rearrange
the memory addressing allocation. The only restriction
involves the PROM monitor. If you are using the PROM' i
monitor, then the PROM monitor must be located at #FCOO
and RAM must be located at #0000. If you are not planning
to use the monitor, or your application requires a special
#ddress allocation, then refer to the schematic and
determine for yourself what jumper configuration is
required. If you want to use the standard kit configuration;
then install the jumpers as follows:
- () JWl (in) to JW1l (out)
| JW2 (in) to JW2 (out)
JW3 (in) to JW3 (out)
JW4 (in) to JW4 (out)
JW5 (in) to JW5 (oﬁt)

JWé6 (in) to JW6 (out)
JW8 (in) to JW8 (out)

JW10 (in) to JW10 (out)

()

()

()

()

()

() JW7 (in) to JW7 (oumt)
() |

()

() JWll (in) to JW1l (out}’
()

JW12 (in) to JW12 (out)

VIII-23

STEPVlZ - Input/Output €onfiguration
The Super Starter Kit includes 32 bits of I/0 (16 bits

in and 16 bits out). The monitor uses.three of thege bits.
We recognize that many users may not want to use the monitor,
and have made provisions for removing the monitor related
I/0. If you are using the monitor, install the following
jumpers. If not, simply leave them out, and the monitor
I/0 is disabled. JW13 connects the clock to I/0 bit two.
It may be removed if you do not plan to use the real time
clock.

() JW9 (in) to JW9 (out)

() JWl3 (in) to JW13 (out)

() JIWili (in) to JW1l4 (out)

() JIWls (in) to JW1l5 (out)

VIII-24

STEP 13 - Install Control Switches

There are two different types of switches supplied
with the kit, namely SPST and momentafy contact switches.
The first step is to separate them from each other. The
momentary contact switch is the one which does not "latch".
That is, if you move its handle it will spring back when
it is released. The two SPST switches can be installed in
either direction, but the momentary contact one must be
properly oriented. The handle of the switch must face the
processor. It is very important that the switch be installed
correctly or the processor will be continually halted!

() swl - SPST
- () SW2 - momentary contact

() SW3 - SPST

- VIII-25

STEP 14 - Short Test

The board has been assembled, and before applying
power, you can test for short circuits which might seriously
damage the kit. Using a volt-ohmmeter or a continuity
checker, check the resistance between the pins of the
processor as described below. Each reading should indicate
a high resistance or a very'dim’glow.of the light. If any
of them show a zero resistance or a bright 1lit light, then
you have a short. If you find a short, you must recheck
all of your connections until the problém is located and
repaired. If power is applied to the kit in the‘presence
of a short circuit, all of the I.C.'s may be damaged!

Pin 1 (-5V)- and Pin 26 (GND)

Pin 1 (-5V) and Pin 2 (+5V)

Pin‘2 (+5V)* and Pin 26 (GND)

()
()
() Pin 1 (-5V) and Pin 27 (+12V)
()
() Pin 2 (+5V) and Pin 27 (+12V)
()

Pin 27 (+12V) and Pin 26 (GND)

VIII-26

STEP 15 - Connection of Power
If the kit'has no power shorts, then you are ready to

appl& the power. If you have located ény shorts, DO NOT
apply power. All of the Super Starter power is obtained
via the 16-pin jacks. All of the pins of Jack J3 should
be connected to the power supply ground. Jack J5 should be
connected as follows:

() Pins 1-4, and 13-16 '+5V

() Pins 5,6,11,12 +12V

() Pins 7,10 -5V

() Pins 8,9 +28V (optional - used

only for EPROM programming)

After you have connected jacks J3 and J5 to the power
supply, check to be sure that the jacks are inserted
properly (pin 1 to pin 1) and that you have the proper
supply input on each pin. An error here is véry costly -

it will ruin the entire kit!

VIII-27

STEP 16 - Power Check
As a further precaution before applying continuous
power, we suggest that you perform the following power
supply check. Place your volt-ohmmeter on the pins shown
below, tufn power on and then immediately turn power back
off again. While power is on, check the reading and verify
that it is correct. If it is not correct, then you have a
. construction error or you have not connected the power
correctly. Correct the problem before proceeding with
final checkout.
() +5V between Pin 16 of U8 and Pin 8 of U8
() -5V between Pin 1 of U23 and Pin 8 of U8

() +12 V between Pin 27 of U23 and Pin 8 of U8

VIII-28

STEP 17 - Install Processor

Turn off power and install the TMS 9900 CPU. The sbcket
was installed earlier. Be certain to éroperly orient the
CPU. Pin 1 should be in the corner nearest the toggle

switches.

VIII-29

STEP 18 - Connection of Terminal
Turn off the power. Connect your terminal to input
jack J10. If you have an RS=232C terminal, the pins on

its connector should be connected as follows:

() Pin 1 (terminal) to Pin 1 of J10
() Pin 2 to Pin 2 of J10
() Pin 3 to Pin 3 of J10
() Pin 5 to Pin 4 of J10
(') Pin 6 to Pin 5 of J10
() Pin 8 to Pin 7 of J10
() Pin 7 to Pin 6 of J10

If you have a TTY or other 20ma current loop interface,
connect it as follows (there are no standard connector:
assignments - refer to the manual for your terminal):

() TTY IN - input to Pin 11 of J10 and return
on Pin 10 of J10
() TTY OUT - input on Pin 8 of J10 and return

on Pin 9 of J10
Apply power to the kit. If you are using a TTY, and it

begins to "chatter" then reverse the output leads (Pin 8

and Pin 9).

VIII-30

STEP 19 - Start Monitor
To activate the monitor, reset the CPU and then type
the letter 'X'" on the terminal. The CPU should respond with
a "?", If you cannot get the "?", you have an assembly error.
First, check the small things:
() SWl set correctly?/(in LOAD position)
() SW2 oriented correctly? (handle toward CPU)
()) Terminal wired correctly?
() All I.C.'s in right position?
() Monitor PROM in proper socket? (If they are
reversed the monitor won't work.)

() All jumpers properly installed?

If the monitor responds with "?", then the kit is
running. Try using the monitor and exploring the capabilities
of yoﬁr new computer. If you have further trouble and cannot
get the kit running, céntact the dealer that you purchased
the kit from and ask for his assistance; If he cannot help
you, call us at Rosse Corporation, and we will do everything

we can to help you. Our number is (703) 471-7530.

VIII-31

IX. INSTRUCTION SET

The following notation is used to describe the TI 9900

instruction set. For further information regarding addressing

modes, timing, etc. refer to the TMS 9900 Microprocessor Data

Manual, which is found in section XIII.

S

IOP

DISP
WP
PC
ST

0)

General address for the source operand. Any addressing
mode is acceptable. (See Figure iX—l)

General address for the destination operand. Any
addressing mode is acceptable. (See Figure IX-1)
Immediate 6perand

Workspace register

Relative displacement

Workspace pointer

Program counter _

Status Register (See Figure IX-2)

Content§ of address or register

Replaces

IX-1

FIGURE IX-1 ADDRESSING MODES

Addressing Mode

Workspace Register

Workspace Register

Indirect

Indexed

Direct

Workspace Register
Indirect with Auto

Increment

Description

The contents of the indicated workspace

register are the operands. (e.g. R3,R7)

The contents of the indicated workspace
register contain the memory address of

the operand. (e.g. *R3,*R6)

The contents of the indicated workspace
register (RO is not alloﬁed as an index
register) are added to the address
enclosed in the second command word.

(e.g. @2(R1),@6(R4))

The word following the instruction
contains the memory address of the

operand. (e.g. @6,@9)

The contents of the indicated workspace
register contain the memory address of
the operand which is automatically .
incremented after the access (plus 2 for
word operations and plus 1 for byte
operations). (e.g. *R1l+,*R9+)

IX-2

.FIGURE IX-1 ADDRESSING MODES (continued)

Addressing Mode

Immediate

Relative

Description

The word following the instruction

contains the operand.

The 8-bit displacement of the
instruction is added to the updated
program counter in jump instructions
or to the base address in single-bit

CRU instructions.

IX-3

FIGURE IX-2 STATUS REGISTER

Bit Description

0-LGT logical greater than
1-AGT arithmetic greater than
2-EQ equal

3-C carry

4L-0V overflow

5-P odd parity

12-15 interrupt

IX-4

INSTRUCTION: ADD
Format: A S,D
Opcode: A000
Status Changed: LGT,AGT,EQ,C,OV
Definition: The source operand is added to the destination
operand. The sum‘reblaces the destination
operand.

Results: (s)+(D)~=» (D)

Notes: Use to add 16 bit numbers from:

Memory tq Memory A @SCALE,@TABLE
Register to Register A R10,R9

Memory to Register A @PRIME,R6
Register to Memory A R14,@SUM

IX-5

INSTRUCTION: ADD BYTES

Format: AB S,D

Opcode: B0OOO

Status Changed: LGT,AGT,EQ,C,OV,OP

Definition: Add two 8-bit bytes. The 8-bit source operand
is added to the 8-bit destination operand. If
either address is a workspace register, then
the left-most eight bits of that workspace
regiéter will be used.’

Results: (S)+(D)=p(D)

Notes: Used to add signed 8-bit numbers from:

i

Memory to Memory AB e@X,@Y
Register to Memory AB Rl,@Y
Memory to Register AB @X,R1
Register to Registér AB R1,R2

IX-6

INSTRUCTION:

Format:

Opcode:

ABSOLUTE VALUE

ABS S

0740

Status Changed: LGT,AGT,EQ,C,OV

Definition: Compute the absolute value of the source

Results:

Notes:

operand and repléce the source operand with

that result.

Absolute value of (S)<p (S)

Used to compute the absolute value of a 16-bit

number.
ABS @LISTA
ABS @LISTB

BEFORE AFTER
LISTA FFF. 000C
LISTB oooCc 000C

IX-7

INSTRUCTION: ADD IMMEDIATE
Format: AT W,IOP
Opcode: 0220
Status Changed: LGT,AGT,EQ,C,OV

Definition: Add the immediate value to the spacified

workspace register.

Results: (W) + IOP -» (W)

Notes: Add a constant to a workspace register.
AI R4,100 Add 100 to register R4
AI R11,10 Add ten to register R11

1

IX-8

INSTRUCTION: AND IMMEDIATE
Format: ANDI W,IOP
Opcode: 0240
Status Changed: LGT,AGT,EQ
Definition: Perform a bit-by-bit logical AND operation
between the workspace register and the
immediate operand. Place the result in the
workspace register.
Results: (W) AND IOP ~» (W)
Notes: Use to isolate certain bits of a workspace register.
ANDI 6, > FOOE
Before: (R6)=>9877 1001 1000 0111 0111

Immed. operand=>F00E 1111 0000 0000 1110

After: (R6)=>9006_ 1001 0000 0000 0110

IX-9

INSTRUCTION: UNCONDITIONAL BRANCﬁ
Format: B S
Opcode: 0440
Status Changed:» None

Definition: Replace PC with the source address. Effectively,

transfers control to the source address.
Results: S = (PC)

Notes: This is the most flexible jump and can be used to
transfer control to any location in memory. If the
jump is out of range (4127, -128 words) for a

relative jump instruction, use B.

Example: B @107 will cause PC to be reloaded

with 107.

IX-10

INSTRUCTION: BRANCH AND LINK TO SUBROUTINE

Format: BL S

Opcode: 0680

Status Changed: None

Definition: Place source address in PC and place address

of the instruction following the BL instruction

in workspace register RI11.

Results: (pC) —§ (R11)
S — (pC)
Notes: Use to transfer control to a subroutine. Return

from the subroutine is accomplished with a branch

indirect through register 11.

BL @SUB Y SUB @
@ [
. °
° : °
B * R11

IX-11

INSTRUCTION: BRANCH AND LOAD WORKSPACE POINTER
Format: BLWP S
Opcode: 0400
Status Changed: None

Definition: Place source operand into WP and the word
following it into the PC. Place previous
contents of WP into R13 of the new workspace,‘
PC (address immediately following BLWP) in

new R1l4 and ST in new .R15.

Results: (s) = (wp)
(s+2) » (p0)
(original wf) - (R13)
(original PC) —> (R14)

. (original ST) -a (R15)

Notes: Use to call a subroutine and change the workspace

environment. The subroutine must return via RTWP

command.
BLWP R4 Place (R4) in WP, (R5) in PC
BLWP @SBR Place (SBR) in WP, (SBR+2) in PC

IX.12

INSTRUCTION: COMPARE

Format: c s,D

Opcode: 8000

Status Changed: LGT,AGT,EQ

Definition: Compare the contents of the source operand

with the contents of the destination operand

and set/reset designated status register bits.

Results: Status register bits set/reset after comparison.
Notes: Use to compare 16-bit numbers from:
Memory to Memory C @TOP,@LAST
Register to Register C R1,R6é
Memory to Register C @BOT,R5
Register to Memory C R7,@l1

IX:-13

INSTRUCTION: COMPARE BYTES

Format: CB S,D

Opcode: 9000

Status Changed: LGT,AGT,EQ,OP

Definition: Compare the contents of the source operand
byte with the contents of the destination
operand byte and set/reset the designated
status register bits. |

Results: Status Register bits set/reset after comparison.

Notes: Use to compare 8-bit numbers. If a workspace

register is used fof S or D, the left-most

8-bits will be used.

CB R1,R2 Compare R1 (byte) with R2 (byte).

IX -1

e

INSTRUCTION: COMPARE IMMEDIATE

Format: CI W,IOP

Opcode: 0280

Status Changed: LGT,AGT,EQ

Defintion: Compare the contents of the specified register
with the immediate operand and set/reset
designated status register bits.

Resulﬁs: Status }egister bits set/reset after comparison.

Notes: Use to comﬁare contents of workspace register

with some known value and set status register

bits accordingly.

CI R2,)7FFF Compare register R2 to
>TFFF
CI R3,0 - Compare register R3

to zero. (A more
efficient way is:

MOV R3,R3)

IX-15

IﬁSTRUCTION: CLEAR
Format: CLR S
Opcode: 04CO
Status Changed: None

Definition: Replace source operand with a full 16-bit

word of geroes.

Results: (S) &0

Notes: Use to zero workspace registers or memory locations.
CLR R5 Clear register R5
CLR @SUM : Clear location SUM
LI R1,X Clear (X) to (X+10)

'LOOP CLR *R1+
CI RI1,X+12

JL LOOP

IX -16

INSTRUCTION: COMPARE ONES CORRESPONDING
Format: CoC S,W
Opcode: 2000

Status Changed: EQ

Definition: When all ones in the source operand have a corres-
ponding one in the‘destination workspace register,

set the equal bit in the status register.

Results: EQ status bit is set/reset.

Notes: Use to check if a bit or bits in a destination work-
space registep are set to one. Bits correspond to the
one bits in the soufce operand. If corresponding bits
in destination are also set, the equal bit in Status
Register is also set.

Assume TEST= (€102 = 1100 0001 0000 0010
| R8 = E306 = 1110 0011 0000 0110
Then COC @TEST,R8 ’
Every logic one bit in TEST has a corresponding logic
one bit in reg. R8; therefore the equal status bit:is set
MASK DATA 8000
cocC @MASK,R1 IS SIGN IN R1 A ONE?

JEQ ADD IF SO, JUMP TO ADD

IX-17

INSTRUCTION:

Format:

Opcode:

COMPARE ZEROES CORRESPONDING
CZC S,W

2400

Status Changed: EQ

Definition: When thé bits in the destination workspace

Results:

Notes:

register corresponding to the one bits in the
source operand are all equal to a logic zero,

set equal status bit.
Set/reset status register equal bits.

Use to test single/multiple bits within a

workspace register.

Assume TEST=>C102 1100 0001 0000 0010

R8 =)2201

0010 0010 0000 0001

Then CZC @TEST,R8

Every logic one bit in T?ST has a corresponding
logic zero in register R8; therefore, the equal

status bit is set.

IX-18

INSTRUCTION: DECREMENT BY ONE
Format: DEC S
Opcode: 0600

Status Changed: LGT,AGT,EQ,C,OV

Definition: Subtract one from the l6-bit source operand.
Results: (8)-1 = (8)
Notes: Used for,indexing or controlling loops.

DEC @TEC TEC=TEC-1

JNE LOoOP ' JUMP IF TEC NOT ZERO

IX-19

INSTRUCTION: DECREMENT BY TWO
Format: DECT S
Opcode: 0640
Sta#us Changed: LGT,AGT,EQ,C,OV
Definition: Subtract two from the 16-bit source operand.

Results: (8)-2 = (8)

Notes: Useful for counting and indexing full word arrays.
DECT @COUNT Subtract two from COUNT
DECT R10 Subtract two from register 10

- IX-20

INSTRUCTION: DIVIDE

Format: DIV S,W

Opcode: 3C00

Status Changed: ov

Definition: Divide the destination operand (a 32-bit
unsigned integer) by the source operand (a
16-bit unsigned integer) using integer
arithmetic and place the quotient in the
destination operand and the remainder in the
second word of the destination operand. If

the qﬁotient exceeds 16-bits, the overflow

is set.
Results: (W,w+1) / (S) = (W) quotienf
(W+1) remainder
‘Notes: Use divide (DIV) for integer division (unsigned).
DIV R3,R4 Divide registers R4,R5 by register (R3)

DIV @SUM, 2 Divide registers R2,R3 by (SUM)

IX-21

INSTRUCTION: IDLE COMPUTER

Format: IDLE

Opcode: 0340

Status Changed: None

Definition: Place the computer in an IDLE st;te.

Results: Computer is IDLE.

Noteé: Used to halt the processor .and wait for an
interrupt.

IX-22

INSTRUCTION: INCREMENT BY ONE

Format: INC S

Opcode: 0580

Status Changed: LGT,AGT,EQ,C,OV

Definition: Add one to the 16-bit source operand.

Results: (s)+1 = (8)

Notes: INC @CNT(R1l) increment table location selected
by R1

IX-23

INSTRUCTION: INCREMENT BY TWO
Format: INCT S
Opcode: 05CO0
Status Changed: LGT,AGT,EQ,C,0V
Definition: Add two to the 1§—bit source operand.
Results: (s)+2 = (8)

Notes: Useful for controlling word addressing of an index.

IX-24

INSTRUCTION: INVERT

Format: INV S

Opcode: 0540

Status Changed: LGT,AGT,EQ

Definition: The 16-bit source operand is replaced with its

one's complement.

Results: One's complement of (S) — (8S)

Notes: Use this operation to "flip" the bits in some
memory location or register.
INV R2 Invert register R2
INV @SUM Invert location (SUM)

INV *R3 Invert location in register R3

- IX-25

INSTRUCTION: JUMP EQUAL
Format: JEQ DISP
Opcode: 1300
Status Changed: None

Definition: When the equal status bit is set, the signed

displacement is added to the PC.

Results: (PC) + (displacement) —> PC (if EQ)

(PC) + 2 — PC (if not EQ)

Notes: Used to transfer if equal

c @x,ey

JEQ YES go to YES if (X) = (Y)

t

IX-26

INSTRUCTION: JUMP IF GREATER THAN

Format: JGT DISP

Opcode: 1500

Status Changed: None

Definition: When the arithmetic greater than status bit

is set, add the signed displacement to the PC.

Results: (PC) + Displacement = (PC) (if AGT)

(PC) + 2 = (PC) (if AGT .clear)

Notes: Used following a 16-bit arithmetic operation:
C @ONE,@TWO
JGT @0UI go to OUI if (ONE) is

arithmetically greater
than (TWO)
The arithmetic greater than is the result of a
signed compare; so > FFFF (-1) is not arithmetic
greater than > 7FFF, but it is logical greater

than.

IX-27

INSTRUCTION: JUMP ON HIGH
Format: JH DISP
Opcode: 1B0OO
Status Changed: None
Definition: When the logical greater than status bit is
set and the equal status bit is clear then

the signed dispalcement is added to the PC.

Results: (PC) + Displacement —> (PC) (if LGT and not EQ)

(PC) + 2 — (PC) (if LGT clear or EQ)

Notes: Used when comparing logical or unsigned values.
C @BIG,@GO00D
JH @BAD go to BAD if (BIG) is

logically greater than

(GoOoD) (unsigned)
Since the logical greater than is an unsigned
compare, this instruction is most often used

for address comparisons.

IX-28

INSTRUCTION: JUMP ON HIGH OR EQUAL -
Format: JHE DISP
Opcode: 1400
Status Changed: None

Definition: When the equal status bit or the logical
greater than status bit is set, the signed

displacement is added to the PC.

Results: (PC) + Displacement —> (PC) (if LGT or EQ)

(PC) + 2 — (PC) (if LGT clear and EQ clear)

Notes: Use to branch or transfer control when either
logical greater than or equal statﬁs bits=1.
JHE $+4 If SR bits 0 or 2 =1, skip
one word.
JHE SUB If SR bits O or 2 =1, jump

to SUB.

IX-29

INSTRUCTION: JUMP ON LOW
Format: JL DISP
Opcode: 1A00
Status Changed: None

Definition: When the logical greater than and equal stauts
bits are both reset, then th signed displacement

is added to the PC.

Results: (PC) + Displacement —> (PC) (If LGT and EQ
are clear)

(pCc) + 2 = (PCc) (If LGT or EQ)

Notes: Use to transfer control when a logical or unsigned
less than condition is detected.
C @ONE,@TWO
JL @GO go to GO if (ONE) logically
less than (TWO) (unsigned

compare)

1X-30

INSTRUCTION: JUMP ON LOW OR EQUAL
Format: JLE DISP
Opcode: i200
Sta?us Changed: None
Definition: When the equal status bit is set or the
logical greater than is reset, then the

signed dispalcement is added to the PC.

Results: (PC) + Displacement - (RC) (if LGT clear or EQ set)

(PC) + 2 — (PC) (if LGT set and EQ clear)

Notes: Use to test status register bits and transfer
control if LGT=0 or EQ@=1.
JLE ADDNO If SR bits 0=0 or 2=1,

go to ADDNO

i

IX-31

INSTRUCTION: JUMP ON LESS THAN
Format: JLT DISP
Opcode: 1100
Status Changed: None
Definition: If the arithmetic greater than and equal
status bits are feset then add the éigned

displacement. to the PC.

Results: (pPC) +TDisplacement — (PC) (If LGT and EQ reset)

(pC) + 2 = (PC) (If LGT or EQ set)

Notes: Used when comparing arithmetic values.
C @A,@B
JLT LESS go to LESS if (A) is

arithmetically less than (B)

IX-32

INSTRUCTION: UNCONDITIQNAL JUMP
Format: JMP DISP
Opcode: 1000
Status Changed: None

Definition: Add the signed displacement to the PC and

place the sum into the PC.

Results: (PC) + Displacement —-» PC
Notes: Use to transfer control unconditionally.
JMP LOOP Begin execution at loop
JMP $. Remain at this location
HERE JMP $+4 Remain at this location
JMP $+4 Jump over next address
The destination address must be within the range
+127 to -128 words. If not, use the branch (B)

instruction.

IX-33

INSTRUCTION: JUMP ON NO CARRY
Format: JNC DISP
Opcode: 1700
Status Changed: None

Definition: If the carry status bit is clear, add the

signed displacement to the PC.

Results: (PC) + Displacement —» (PC) (If no carry)

(PC) + 2 = (PC) (If carry)

Notes: Use to branch when carry cleared.
JNC YES If carry clear, go to YES
Can be used to check for 16-bit carry for multi-
precision arithmetic. The following will éalculate

(R1,R2) + (R3,R4).

A R4, R2
JNC GO
INC R1

GO A R3,R1

IX-34

INSTRUCTION: JUMP ON NOT EQUAL

Format: JNE DISP

Opcode: 1600

Status Changed:

None

Definition: If the equal status bit is reset, add the

signed displacement to the PC.

Results: (PC) + Displacement —» (PC) (If not EQ)

(pc) + 2 = (PC) (If EQ) -

Notes: Used to branch when not edual.
A R1,R2
JNE X ‘go to X if R1 + R2 not zero
MOV R1,R1
JNE NO go to NO if Rl not zero

IX'-35

INSTRUCTION: JUMP.ON NO OVERFLOW
Format: JNO DISP
Opcode: 1900
Status Changed: None

Definition: When the overflow status bit is reset, add

the signed displacement to the PC,

Results: (PC) + Displacement —» (PC) (If no OV)

(PC) + 2 = (PC) (If oV) -

Notes: Used to test arithmetic overflow.
A R1,R2
JNO. GOOD . go to GOOD if R1+R2 does

not overflow
An overflow occurs during an add if the sign of
the two operands are the same but the sign of the

sum is not the same.

IX-36

INSTRUCTION: JUMP ON CARRY
Format: JOC DISP
Opcode: 1800
Status Changed: None

Definition: When the carry status bit is set, add the

signed displacement to the PC.

Results: (PC) + Displacement =y (PC) (if carry)

(pc) +‘2 - (PC) (if no carry)

Notes: Use to branch or transfer control if carry is set.
JOC START If Carry, Go to Start
Joc $-2 ' If Carry, Go to Previous Instruction

IX'-37

INSTRUCTION: JUﬁP ON ODD PARITYA'
Format: JOP DISP
Opcode: 1Cc00
Staﬁus Changedf None

Definition: When the odd parity status bit is set, add

the signed displacement to the PC.

Results: (PC) + Displacement -» (PC) (If OP)

(pCc) + 2 -» (PC) (If not .0P)

Notes: Used to test parity of 8-bit values.
MOVB @CH,R1
:of 0DD ‘ go to ODD if CH is
odd parity
Note that the OP flag is only changed by byte

instructions (e.g. MOVB,CB)

IX-38

INSTRUCTION:

Format:

Opcode:

LOAD COMMUNICATIONS REGISTER UNIT (OUTPUT)
LDCR S,C

3000

Status Changed: LGT,AGT,EQ,O0P (IF C <9)

Definition: Transfer the number of bits specified (c)

Results:

Notes:

from the source operand to consecutive CRU
lines. The contents of R12 determines the

least significant CRU line.
(S) —> CRU for C bits

Use this to 6utput a bit pattern to CRU lines
for versatile I/0. If number of bits specified
is less than nine, then S is albyte address. If
number of bits is nine or more, S becomes a word
address. The least significant memory bit goes to
the least significant memory CRU bit; If the bit
count (C) is zero, then 16 bits are output. Prior
to an LDCR instruction, register R12 (CRU Base
Address) mus£ be loaded with the appropriate
address. With this kit, R12=0 will address bit O.
LDCR 2,0 Transfér 16 bits to CRU from R2
LDCR @NUM,8 Transfer 8 bits to CRU from NUM

IX -39

INSTRUCTION: LOAD IMMEDIATE
Format: LI wW,I0P
Opcode: 0200
Status Changed: LGT,AGT,EQ

Definition: Place the immediate operand in the specified

register.

Results: I0OP = (W)

Notes: Use to initialize register for counters or addresses.
LI R5,TABLE ° LOAD R5 WITH ADDRESS OF TABLE
LI R1l,10 SET R1 TO 10
LI R2,1000 LOAD REGISTER‘RZ WITH 1000

1

IX-40

INSTRUCTION: LOAD INTERRUPT MASK IMMEDIATE
Format: LIMI IOP
Opcode: 0300
Status Changed: Interrupt Mask
Definition: Place the four least significant bits of
IOP into the inﬁerrupt mask (bits 15-12 of

the Status Register).

Results: IOP (15-12) —» Status Register (15-12)

Notes: Used to enable or disable interrupts.
LIMI O disable all interrupts
LIMI >F enable all interrupts

IXi-41

INSTRUCTION: LOAD WORKSPACE POINTER IMMEDIATE

Format: LWPI IOP

Opcode: 02EO

Status Changed: None

Definition: Replace contents of workspace pointer register
with the beginning address of 16 contiguous
words. This changes the current workspace
pointer and environment.

Results: I0P = (WP).

Notes: Use to initialize the WP register to alter

workspace environment.

LWPI >100 Place »100 in workspace pointer

LWPI WSP Location WSP = Register O

IX =42

INSTRUCTION: MOVE WORDS
Format: MOV S,D
Opcode: G000
Status Changed: LGT,AGT,EQ

Definition: Replace destination operand with a copy of

the source operand.

Results: (s) > (D)

Notes: Use to move from:
Memory to Memory MOV@TABLE,@TEMP
Register. to Register MOV . R5,R9

Register to Memory (Store)MOV R3,@ANSWER

Memory to Register (Load) MOV @TABLE,R8

1X-43

INSTRUCTION: MOVE BYTES
Format: MOVB S,D
Opcode: DOOO
Status Changed: LGT,AGT,EQ,OP
Definition: Move the source byte operand to the
destination byté operand. Whenever S or D is
a workspace register, then the leftmost 8-bits

are used.

Results: (s) = (D)

Notes: Load Register MOVB @X,R1
Store Register MOVB R1l,@Y
Move Memory to Memory ‘ MOVB e@X,@eY

Move Register to Register MOVB R1,R2

IX -44

INSTRUCTION: MULTIPLY
Format: MPY S,W
Opcode: 3800
Status Changed: None

Definition: Multiply the destination operand, an unsigned
16-bit integer by the source operand, an
unsigned 16-bit integer. Place the product
into the 32-bit (two word) destiﬁation field

right justified.
Results: (W) * (8) —=> (W,W+1)

Notes: Use multiply (MPY) to multiply two 16-bit unsigned
integers. The destination operand must be a workspace
register, therefore the result will be in workspace
register specified and the next one. If workspace
register 15 is specified then the next memory
location following the workspace area is the
second half of the product.

MPY *¥1,4 MPY reg R4 by reg Rl (indirect)

MPY @NUM,4 MPY reg R4 by (NUM)

IX.-45

INSTRUCTION: NEGATE

Format: NEG S

Opcode: 0500

Status Changed: LGT,AGT,EQ,C,OV

Definition: Replace. source operand with two's complement

value of the source operand.

Results: 0-(8) => (8)

Notes: Use NEG to replace the operand with its additive
inverse.
NEG R7
The contents of workspace register R7 is replaced

with its two's complement value.

CIX'-46

INSTRUCTION: OR IMMEDIATE
Format: ORI W,IOP
Opcode: 02§0
Statué Changed: LGT,AGT,EQ

Definition: Perform a logical OR operation between the
specified workspace register and the immediate
operand. Place the result in the workspace

register.
Results: (W) OR IOP —=> (W)

Notes: Use to perform logical OR between workspace
register and some known immediate §a1ue.
Example: ORI R10, > 202D
Before: R10=2>1AD5 . 0001 1010 1101 oOl01
Imed. Operand= 0010 0000 0010 1101
After: R10=2> 3AFD 0011 1010 1111 1101
ORI R5, > 8000 Set sign bit to one in R5

ORI R10,> F Set four LSB to omne in R1O0

IX-47

INSTRUCTION: RETURN, WITH WORKSPACE POINTER
Format: RTWP
Opcode: 0380

Status Changed: A1l status bits set by R15, including

interrupt mask.

Definition: Replace contents of WP with contents of
current R13, PC with contents of R14, ST
with currnet value of R15.

Results: (R13) = (wWp)

(R14) -~ (PC)

(R15) — (ST)

Notes: Use to return from a BLWP,XO0P or a hardware interrupt.

IX-48

INSTRUCTION: SUBTRACT WORDS

Format: S s,D

Opcode: 6000

Status Changed: LGT,AGT,EQ,C,OV

Definition: Subtract the source operand from the destination

operand and plade the result in the destination

operand.

Results: (D)-(8) - (D)

Notes: Use to subtract signed 16-bit integers from:
Memory to Memory S @OLDVAL,@NEWVAL
Register to Register S R8,R7
Register to Memory 'S R10,@DIFF
Memory to Register S @CONS,R14

IX-49

INSTRUCTION: SUBTRACT BYTES

Formaf: SB S,D

Opcode: 7000

Status Changed: LGT,AGT,EQ,C,OV,OP

Definition: Subtract the source operand byte from the
destination operéqd byte and place the
difference in the destination operand byte.

Results: (D)-(S) = (D)

Notes: Use to subtract signed integer bytes.

SB @>501,@> 503 Result in address> 503

SB R1,R2 Result in upper byte of

- IX-50

R2

INSTRUCTION:

Format:

Opcode:

SET BIT ONE

SBO DISP

1D0oo

Status Changed: None

Definition: Set the output bit to a logic one. The bit

Results:

Notes:

address is computed by adding bits 3-14 of

R12 to the signed dispalcement.

1 = (CRU bit specified by bits 3-14 of R12 +

displacement)

Use to set a particular CRU line to a logical one.
CLR R12 s Set CRU base
SBO 5 ; Set bit 5
The following sequence is equivalent:
LI R12,30 ; Set CRU Base
SBO -10 ; SEt bit 5
Bit 5 is specified because bits 3-14 of R1l2 is

15(R12/2) and 15+(-10) is 5.

IX--51

INSTRUCTION: SET BIT ZERO
Format: SBZ DISP
Opcode: 1E00
Status Changed: None
Definition: Set output CRU bit to a logical zero. The
CRU bit is deterﬁined by adding contents of

bits 3-14 of R12 to the signed displacement.

Results: 0 — (CRU bit specified by bits 3-14 of R12 +

displacement)

Notes: Use to get the particular CRU line to a logical

zero.
LI 12, > 280 CRU base address=>140 (R12/2)
SBZ >28 Sets CRU address >»168 (140+28)
to zero
SBZ -2 Sets CRU address »13E (140-2)
"to zero

S IX-52

INSTRUCTION: SET TO ONES

Format: SETO S

Opcode: 0700

Status Changed: None

Definition: Replace the source operand with a 16-bit word

of one's.

Results: (S) « FFFF

Notes: Use to initialize a table with -1 values instead
of zeroes if your application requires such. Use
to initialize refister with -1.
SETO 5 ‘Set register 5 to >FFFF

SETO @SUM Set SUM to -1

IX'-53

INSTRUCTION: SHIFT LEFT ARITHMETIC

Format: SLA W,C

Opcode: 0AO0O

Status Changed: LGT,AGT,EQ,C,OV

Definition: The contents of the workspace register are
shifted left the specified number of bits (C)
with zeroes filling the vacated bit positions.
The last bit shifted out is placed in the
carry out bit. If C=0, the right four bits of
register RO are used as the shift count.

Results: (W) is shifted left the specified shift count (Q).

Notes: Use to shift the contents of a>workspace register

left by some shift count.

SLA R4,8 Shift reg R4 left 8 places
SLA R4,2 Effectively multiply reg R4 by 4
SLA R4,0 Shift reg R4 by contents of RO

Note that SLA R4,0 will shift R4 by the contents of
the lower four bits of RO. If RO=17, the shift

count is one because 17=10001 (binary).

IX-54

INSTRUCTION: SET ONES CORRESPONDING (LOGICAL OR)

Format: soCc S,D

Opcode: EQOO

Status Changed: LGT,AGT,EQ

Definition: Set to logic one the bits in the destination
operand that cofrespond to any logic one value
in the source operand. This result is placed
in the destination. This is effectively a

logical OR operation. -

Results: (s) or (D) = (D)

Notes: Use to perform a logicaerR operation. This is
similar to ORI except it may be done between two
general addresses.

Before: (PATRN1)=>E06B=1110 0000 0110 1101

(PATRN2)=>4482=0100 0100 1000 0010
SOC @PATRN1,@PATRN2
After: (PATRN1l)=>EO06B

(PATRN2)=>E4EF=1110 0100 1110 1111

IX-55

INSTRUCTION: SET ONES CORRESPONDING BYTE (LOGICAL OR)

Format: S0CB S,D

Opcode: FOOO

Status Changed: LGT,AGT,EQ,C

Definition: Set to a logical one the bits in the
destination operand byte that correspond to
any logical one in the source operand byte.
This is effectively an 8-bit logical OR
operation.

Results: (s) or (D) => (D)

Notes: Use to perform an 8-bit OR.

SOCB R1,@X (X)=(X) OR Rl

IX-56

INSTRUCTION: SHIFT RIGHT ARITHMETIC
Format: SRA W,C
Opcode: 0800
Status Changed: LGT,AGT,EQ,C

Definition: Shift the contents of the specified
workspace register right by the number of
places specified by C. The sign bit is
extended to fill the vacated bité. If C=0,
then the right four bits of workspace register
RO are used for the shift count. The last bit
shifted out is placed in the carry bit of

the status register.
Results: (W) shifted right C places => (W)
Notes: Use to shift to the right a signed integer.
SRA R14,5

Shift right the contents of R14 by 5 places. This

is a divide by 32.

1X-57

INSTRUCTION: SHIFT RIGHT CIRCULAR

Format: SRC W,C

Opcode: 0BOO

Status Changed: LGT,AGT,EQ,C

Definition: Shift the specified workspace register right
by the specified number of places (C), with
the bits being shifted out of bit 15 placed
in bit 0. If C=0, the right four bits of
register RO are used as the shift count..

Results: (W) shifted right circular C places => (W).

Notes: Shift right circular some specified workspace

register.

SRC R9,R5

IX-58

INSTRUCTION: SHIFT RIGHT LOGICAL
Format: SRL W,C
Opcode: 0900
Status Changed: LGT,AGT,EQ,C
Definition: Shift the specified work reéister to the right
the specified shift count filling the vacated
bits with zeroes. The last bit shifted out is
placed in the carry out bit. If C=0, the right

four bits of register 'O are used as the shift

count.

Results: (W) shifted right C places —> (W)

Notes: Use to shift a workspace regisfer right logical.
~SRL R10,5 Shift reg R10 right 5 places
SRL R9,1 Effectively divide reg 9

by 2 (unsigned)

IX-59

INSTRUCTION: STORE COMMUNICATION REGISTER UNIT (INPUT)
Format: STCR S,C
Opcode: 3400
Status Changed: LGT,AGT,EQ,0P((<9)

Definition: Transfer number of bits specified (C) from
the CRU lines addressed by R12 to the source
operand. If the number of bits does not fill an
entire memory word, then zeroes are added on .
fhefleft. If <9, then S is a byte address.

If C>9 then S‘ is a word address.
Results: CRU lines -» (8) for C bits

Notes: Use to store contents of CRU lines in some memory
location. Least significant CRU line to least
significant memory bit.

If C<9 byte addressing

C>»9 word addressing

IX-60

INSTRUCTION: STORE STATUS REGISTER
Format: STST W
Opcode: 02Co
Status Changed: None

Definition: Transfer the status register to workspace

register W.
Results: Status Register —> (W)
Notes: Used to transfer the status register to workspace

so it can be manipulated.

STST R5 R5=status

IX-61

INSTRUCTION: STORE WORKSPACE POINTER

Format: STWP W

Opcode: 02A0

Status Changed: None

Definition: Transfer the workspace pointer to workspace

register W.

Results: WP = (W)

Notes: Used to determine the address of the register file.
STWP R6 R6-= address of RO
After execution of the above instruction, the

following two instrﬁctions are the same.
INC RO

INC *R6

1X-62

INSTRUCTION: SWAP BYTES
Format: SWPB S
Opcode: 06CO
Status Changed: None

Definition: Swap the upper byte of the source operand

with the lower byte of the source operand.
Results: Swap (S) upper and (S) lower.
Notes: Used for character manipulation.

MOVB @C1l,R1 Rl=character one

SWPB R1 reverse bytes

MOVB @C2,R1 Rl=character two,one

IX-63

INSTRUCTION: SET ZEROES CORRESPONDING
Format: SzZC S,D
Opcode: 4000
Status Changed: LGT,AGT,EQ

Definition: Set to a logic zero the bits in the destination
operand that correspond to bit positions equal
to logic one in the source operand. The source
is not changed. Effectively this is a logical
AND with the source being inverted prior to

the AND.
Results: NOT (S) AND D — D

Notes: Use to turn off flag bits or AND the contents of
one's complement source and destination.

Before: (PAT1)=>3030=0011 0000 0011l 0000
(PAT2)=>5511=0101 0101 0001 0001

SZC @PAT1,@PAT2

After: (PAT1)=>3030
(PAT2)= >4501=0100 0101 0000 0001

IX-64

INSTRUCTION: SET ZEROES CORRESPONDING (BYTE)
Format: SZCB S,D
Opcode: 5000
Status Changed: LGT,AGT,EQ,OP
Definition: Set to a logical zero the bits in the destination
operand byte that correspond to bit positions
equal to a logical one in the source byte.

Results: NOT (S) AND (D) = (D)

Notes: Useful for character or flag-manipulation.

SZCB @X,eY Y=X AND Y

1X-65

INSTRUCTION: TEST BIT

Format: TB DISP

Opcode: 1F00

Status Changed: EQ

Definition: Read the specified input bit whose address
is computed by adding the signed displacement
to bits 3-14 of R12. Set the equal status
register bit to the value read.

Results: EQ & CRU line read

Notes: Use to read a particular CRU line and depending

on the result, make appropriate decisions.

CLR R12 set CRU base’
TB 14 wait for bit 14 to be set
JNE $-2

I1X-66

INSTRUCTION: EXECUTE
Format: X s
Opcode: 0480
Status Changed: None (remote instruction may, however)

Definition: The instruction at the source operand is

executed.
Results: Execute (8)

Notes: Used to execute an instruction out of line, typically
in a table.
X @TAB(R1) execute the instruction in

table TAB pointed to by R1

1

1% -67

INSTRUCTION:

Format:

Opcode:

EXTENDED OPERATION
X0P S,N

2C00

Status Changed: None

Definition: Place extended operation into execution.

Results:

Notes:

The (N) field indicates which XOP trap

location to utilizé.

S = (R11) of XOP workspace
(0040+4n) = (WP)

(0042+4n) - (PC)

(WP) —> (R13) of XOP workspace
(PC) = (R14) of XOP workspace

(ST) —> (R15) of XOP workspace

Use to implement software routines which are used
frequently, for example: floating point arithmetic
signed multiply
extended precision
The monitor uses XOP O as a breakpoint call. That
is, a breakpoint replaces the users instruction
by an XOP 0. XOP 1 and XCP 2 are used for input
and output. The following will print the letter "A"
LETTER BYTE 'A'

X0P @LETTER,2
IX-68

INSTRUCTION: EXCLUSIVE OR

Format: XOR S,W

Opcode: 2800

Staﬁus Changed: LGT,AGT,EQ

Definition: Perform a bit by bit exclusive OR of the
16-bit source operand with the 16-bit
destination workspace register.

Results: (S) XOR (W) = (W)

Notes: Use to perform an exclusive OR between a workspace

register and a source operand.

0010 0001 1011 1101

Assume: (RO)=>21BD

(TC)=>E436 1110 0100 0011 0110
Then: XOR @TC,O

1100 0101 1000 1011

(RO)=>C58B

1X =69

INSTRUCTION: EXTE

Format: CKOF
CKON
LREX

RSET

RNAL CONTROL

(Clock Off)
(Clock On)
(Load Rom/Execute)b

(Reset)

Opcode: 03CO

03A0
03EO

0360

Definition:

These instructions can be decoded by external
hardware. The TI 9900 does not perform any
function when they are executed. This kit
does not decode these instructions, so they

should be avoided.

IX-70

INSTRUCTION PATCHING: It is frequently necessary to‘patch a
program resideht.in RAM. The TI 9900's addressing ofteﬁ
becomes confusing when trying to patch programs. To assist
the user, the patching tables are provided. The first gives
the hexadecimal op-code and the second provides the additional

digits for addressing.

For example, if a MOV *R1l,@5(R2) is needed, the following
steps are used:

(1) op-code = Cxxx (from Table I)

(2) xxx = 89s (from Table II)

(3) Thus, instruction = C89s = C891

IX-71

TABLE_1I1:

OP-CODES
A Axxx®
AB Bxxx"
AT 022s-
ANDI 024s”
C 8xxx\
CB 9xxxt
CI 028s.
CKOF 03C0 -
CKON 03A0-
cocC 2aaa’
CzC 2bbb ¥
DIV 3cce v
IDLE 0340t
JEQ 13yy”’
JGT 15yy-
JH 1Byy"
JHE l4yy~
JL 1Ayy -
JLE 12yy.
JLT 1llyy>~
JMP 10yy v
JNC 17yy>
JNE léyy v

add Rs to Rd

add Rs (byte) to Rd (byte)
add constant to Rs

AND Rs with Rd

compare Rs with Rd

compare Rs (byte) to Rd (byte)
compare constént ﬁith Rs
clock-off

clock-on

compare (Rd and Rs) with Rs
compare (Rd and Rs) with zero

Rd=(Rd,Rd+1)/Rs, Rd+l=remainder

- idle

Jump if equal

jump if greater than
jump if high

jump if high or equal
jump if low

jump if low or equal
jump if less than
jump unconditional
jump if carry clear
jump if not equal

1X-72

TABLE I: OP-CODES (continued)

JNO 19yy jump if no overflow

Joc 18yy jump if carry set

JOP 1Cyy jump if odd parity

LDCR 3aaa d-bits of Rs to CRU

LT 020s load Rs immediate

LIMI 0300 load interrupt mask immediate
LREX 03EO0 load Rom and execute

LWPI 02EO load wofkspace pointer immediate
MOV Cxxx move Rs to Rd

MOVB Dxxx move Rs (byte) to Rd (byte)
MPY 3ddd (R4,Rd+1)=Rd 'times Rs

ORI 026s OR or constant with Rs

RSET 0360 reset

RTWP - 0380 ‘return with workspace

S 6xxx subtract Rs from R4

SB 7xxxX subtract Rs (byté) from Rd (byte)
SBO 1Dyy set CRU bit yy

SBZ 1Eyy set CRU bit yy

SLA OAﬁs shift Rs left (alg.) By n

soC Exxx OR Rs with Rd

SOCB Fxxx OR Rs (byte) to Rd (byte)

SRA 08ns shift Rs right (alg.) by n
SRC OBns: shift Rs right (circ.) by n
SRL 09ns shift Rs right (log.) by n

IX-73

d-bits of CRU to Rs

status register

workspace pointer

Rd and not Rs

. absolute value o

branch

branch and link
branch and link
clear Rs
deérement Rs by
decrement Rs by
increment Rs by
increment Rs by
invert Rs (ones
negate Rs (twos
set Rs to ones

swap bytes of Rs

TABLE_I: OP-CODES_(continued)
STCR 3bbb
STST 02Cs Rs =
STWP 02As Rs =
SZC LxxX Rd =
SZCB 5xxx Rd (byte) =
TB 1Fyy test CRU bit
X0P 2ccce extended operation
XO0R 2ddd ex-0R Rs with R4
Rs *Rs *¥Rs+ @Rs

- ABS 074s 077s 076s Q076s
B —— 045s 047s 0465
BL —_—— 069s 06Bs 06As
BLWP ———— 041s 043s 042s
CLR 04Cs 04Ds 04Fs 04Es
DEC 060s 061s 063s 062s
DECT 064s 065s 067s 066s
ING 058s 059s 05Bs 05As
INCT 05Cs 05Ds O5Fs 05Es
INV 054s 055s 057s 056s
NEG 050s 051s 053s 052s
SETO 070s 071s 073s 072s
SWPB 06Cs 06Ds 06Fs 06Es
X 048s 049s 04Bs O4As

IX-74

execute inst. at

Rd (byte} and not Rs

f‘Rs

R11

workspace

one
two
one
two
comp.)

comp.)

Rs

TABLE II:

XXXX

ADDRESSING

RO

fis,Rd 00s
*¥Rs,Rd 0ls
¥Rs+,Rd 03s
@Rs,Rd 02s
Rs, ¥Rd 40s
¥Rs, *¥*Rd 41s
*¥Rs+,Rd 438
@Rs, ¥Rd L2s
Rs,*Rd+ COs
*Rs, ¥Rd+ Cls
¥Rs+,*¥Rd+ C3s
@Rs, ¥Rd+ C2s
Rs,@Rd 80s
¥Rs,@Rd 81ls
¥Rs+,@Rd 83s -
\@Rs,@Rd 82s

Lis
45s
LTs
4L6s

Cls
C5s
C7s

Cés

84s
85s
87s
86s

48s
49s
.Bs

LAs

C8s
C9s
CBs

CAs

88s
89s
8Bs

8As

0OCs
0Ds
OFs

OEs

4LCs
4LDs
LFs

LEs

CCs

CDs

CFs

CEs

8Cs
8Ds
8Fs

8Es

IX'=75

10s
11s
13s

12s

50s
51s
53s

52s

DOs
Dls
D3s

D2s

90s
91s
93s
92s

1is
15s
17s

16s

54s
558
5T7s
56s

Dis
D5s
D7s

Dés

94s

955

97s
96s

R6

18s
19s
1Bs

1As

58s
59s
5Bs

5As

D8s
D9s
DBs

DAs

98s
99s
9Bs

9As

1Cs

1Ds

1Fs

1Es

5Cs
5Ds
5Fs

5Es

DCs
DDs
DFs

DEs

9Cs

9Ds

.9Fs

9Es

Rs,Rd
¥Rs,Rd
*¥Rs+,Rd

@Rs,Rd

Rs,Rd ‘1

¥Rs,Rd

*¥Rs+,Rd

aaaa

= bbbb

Rs,Rd)
*Rs,Rd

¥Rs+,Rd

L. cccce

@Rs,Rd |

. Rs,Rd

*Rs,Rd

" #Rs+,Rd

@Rs,Rd

dddd

TABLE _II: ADDRESSING_ (continued)

R8 R9 R10 R11 R12 R13 R4 R15

(Rs,Rd 20s 24s 28s 20s 30s 34s 38s 3Cs Rs,Rd .
¥Rs,Rd 21s 25s 29s 2Ds 31s 35s 39s 3Ds *¥Rs,Rd
¥Rs+,Rd 23s 27s 2Bs 2Fs 33s 37s 3Bs 3Fs *Rs+,Rd}‘aaaa
@Rs,Rd 22s 26s 2As 2Es 32s 36s 3As 3Es @Rs,Rd_

Rs, ¥Rd 60s 6b4Ls 68s 6Cs 70s 74s 178s 1T7Cs Rs,Rd)
¥Rs, *Rd 6ls 65s 69s 6Ds 7T7ls 75s 179s 7Ds *Rs,Rd
¥Rs+, *Rd 63s 67s 6Bs 6Fs 73s 77s 7Bs 7Fs *¥Rs+,Rd ppRp
@Rs, *Rd 62s 66s 6As 6Es 72s 76s 7As 7Es @Rs,Rd‘J

XXXX —4 Rs, ¥Rd+ EOs E4s E8s ECs FOs Fis F8s FCs Rs,Rd
¥Rs, *Rd+ Els E5s E9s EDs Fls F5s F9s FDs ¥Rs,Rd ‘rcccc
¥Rs+,*¥Rd+ E3s E7s EBs EFs F3s F7s FBs FFs *¥Rs+,Rd
@Rs, *Rd+ E2s Eés EAs EEs F2s Fés FAs FEs @Rs,Rd‘J
Rs,@Rd . AOs A4s A8s ACs BOs Bis B8s BCs Rs,Rd
*Rs,@Rd Als A5s A9s ADs Bls B5s B9s BDs *Rs,Rd fada

*Rs+,@Rd A3s A7s ABs . AFs B3s B7s BBs BFs *Rs+,Rd

L?Rs,@Rd A2s A6s AAs AEs B2s Bébés BAs BEs @Rs,Rd

IX-76

SOFTWARE_PRODUCT ANNOUNCEMENT

Tired of writing or patching.programs in hex? Then our
new "Instant Input Assembler" is just what you have been
waiting for. The "Instant Input Assembler" offers most standard
assembler features, except for symbolic labels. The unique
difference is that it operates in conversational mode: It
accepts input from the operator terminal and immediately
translates it to machine code. No need to edit ané punch a
tape first. Furthermore, the "Instant Input Assembler" is
delivered in PROM so that it is always ready for use. To
activate the assembler, just jump to the start of it!

To order your "Instant Input Assembler”, jﬁst contact
your Super Starter Kit dealer - or Technico,Inc.. The
assembler is delivered in two fused link PROMs, ready to be
plugged into the expansion fROM area of the Super Starter
Kit. In addition, you will receive complete user documentation
and a .source listing of the amazing.512 word "Instant Input
Assembler". v

When ordering the "Instant Inpﬁt Assembler" it is
necessary to specify thé monitor version that it is to operate
with The monitor is unlquely 1dent1f1ed by the contents of
blocatlon FCoOo (hex) so just tell us the contents of that

location. This is accomplished by the monitor command "D FCOO,FCO1".

XI.

SOFTWARE

A. MONITOR

The source listing of the mighty monitor is included
in this section. A review of the monitor listing will help
you to understand how the TI 990 instructions are used. The
monitor listing is relative addressed. That is, the loader
modifies the code to operate where loaded. In the kit, the
monitor is loaded at #FC00. Therefore, you must add #FCOO
to the address shown in the listing ts obtain the PROM
address of that data. For example, STRT10 is the label of
the instruction at relative #16. The actual PROM address
of that word is #FCOO + 16 = FC16.

In addition to the terminal comman&s, the monitor
prpvides other useful features for the programmer. During
power-on the monitor establishes two XOP's (Extended
Operators) to be used for terminal input/output. These
X0P's can be exploited by a user program to perform input/
output to the user terminal. XOP 1 is used for input, and
X0P 2 is used for output. The program in Figure XI-1,
entered by the Instant Input Assembler, uses these XOP's
to print the message "pick a number from 1 to 5" and
then collect the user response. Notice that the Instant
Input Assembler recognizes the XOP's by the mnemonics

IN and OUT.

XI-1

Figure XI-1

Use of XOP'x for Input/Output

Program entered via the "Instant Input Assembler".

<>

W W Wr Wr E»

A
y

-

y

R1=MESSAGE ANNRESS
FRINT (R1)

ATDVANCE AND TEST FOR
CONTINUE TILIL END
GET REFLY

REFEAT THE FROCESS
CReLFy THEN MESSAGE

{

STOFFER

PGFB00

01003 0201 LI Ri1s110
0102¢ 0110

0104: 2091 OUT *Ri

0104¢ NOZL MOVE %R14yRO
0108% 16FI1 JUNE 104

010A3 2041 IN RI1

010C: 10F9 JMF =100

010K /110

0110% ODOA +3000A

01122 F049 $FICK A NUMBER FROM 1 TO 5
0114% 4AZ4E

0114¢ 2041

0118¢ 204E

0l1Ad 554D

0110 4245

CLIES mR20

01203 4652

01223 4FAD

01243 2031

0126 2054

0128¢ 4F20

012A3 3H20

0120 0000 40

012E ¢

—===em— EXECUTE THE FROGRAM
?G100

PICK A NUMEER FROM 1 TD 5 3
FICK A NUMBER FROM 1 TO 5 2
FICK A NUMBER FROM 1 TO 5 1
FICK A NUMEER FROM 1.T0 % 0

XI-2

END

.Other routines in the moﬁitor are also useful.

Some of them are:

TYPEN

DMEMN

DISRG

TYPEWD

Proceed to a new line on the terminal.
Uses register R4 as scratch. Called

by BL @TYPEN.

Display the contents of register R1 as

four hex digits. The value is displayed
on a new line and is followed by a ":",.
Input in register R1l. Registers RO,R4,

R5, and R7 are used as scratch. Called

by BL @DMEMN. |

Display contents of R5 as four hex digits.

" The format is "XY = dddd" where "XY" are

any two characters following the call.
Input in R5 and word following the call.
Registers RO,R4,R5,and R7 used as scratch.
Called as follows:

BL @DISRG

DATA 'XY!
Display the contents of R5 as four hex
digits. Input in R5. Registers RO,R4,R5

used as scratch. Called by BL @TYPEWD.

XI-3

RDNUM

DUMP

BDISPS

This is a pawerful routine for accépting
hex parameters from the operator. It will
read one, two, or three parameters and
put them in R1,R2,R3. Refer to the

source listing for further details of

RDNUM.

Dump memory from address in Rl to the
address in R2. Registers RO,R1,R5 used
as scratch. The following will dump #107
to'#311 and then return to the user.

LI R1l, >107

LI R2,>311

BL @DUMP

Display the leftmost byte of R5 as two

hex digits preceeded by a space. Input

is in R5. Registers RO,R4,R5 used as

scratch. Called by BL @BDISPS.

\

XI-4

B. SUPER STARTER GAMES

The Super.Starter Game package is a set of four games
that you can play against your computer. The listing of the
games is included in this section. Like the monitor, the
games are relative addressed. If you wish to run the games
in RAM (it takes 1K words) load the first dump following
the source listing and jump to the start (via G D2). If you
want to put the games in EPROM, first load the second dump
following the source listing into RAM. Thgn program it into
EPROM (via PBO,7FE,0). To execute the games in EPROM just
jump to them (via GF000). Be sure you load the proper
dump or the games will not work. If your kit does not have
1K words of RAM, you must enter the'program a piecg at a
time and program each segment into the EPROM. Be careful
to get the addressing correct or the games won't work. T&
be sure you have progfammed the EPROM's correctly just
dump them and recheck the dump against the second dump in

this section. To dump the EPROM type "DFOOO, F7FF",

XI-5

FAGE-1 TMS59900 MIGHTY MONITOR (VER3 - 12/1/77)

TITL ‘TMS89900 MIGHTY MONITOR (VER3 - 12/1/?7)’

0000 IDTMM IDT
0000 LIREG

NOTICE?!: WHEN THE MONITOR IS ENTERED IT WILL
AWAIT USER INFUT TO DETERMINE THE BAUD RATE
OF THE TERMINAL DEVICE. THE USER SHOULD
TYFE AN ‘X’ TO SET THE BAUD RATE.

00 NOT TYFE ‘CARRIAGE RETURN’ AS IT WILL
NOT WORK!!!

THE RASIC TMS9900 DERUG MONITOR OFFERS THE
FOLLOWING SET OF COMMANDS(PARAMETERS IN [
ARE OFTIONAL):

A <ADDRESS: ALTER

E C<ANDRESSHT C<WORD COUNT:1 BRREAKFOINT

C <START» <ENDX> <TARGET> COrY
SETART > LEND] DUMF

G CADDRESS:] GO

H <NUMBER-13* <NUMBER-2X> HEX ARITH

I <RIT> INSFECT BIT

L CZADDRESS:] LOAD

M <RITx> <VUALUEX MODIFY BIT

F <START> <END> <TARGETX: FROGRAM

§ 187> <INCH <TOTALX: ' SNAF

TR [ZREG~13> <REG-2x1]
M CESTART: <ENDN-] v
W <REG:L<REG>] WORRSFACE DUMF

EXTERNAL DEFINITIONS

=

DEF TYPEs TYFENsTYFEH
DEF DIMEMNs TYPEWD» ROINUM

X
X SYSTEM EQUIVALENCES
b. 4
0001 FRG EQU 1 # FROGRAM MODE
0000 TTYI EQU 0 s TTY INFUT
0000 TTYO EQU 0O # TTY OQUTRUT
2C00 X0OFO EQU 2000 i XOF-0
1000 NOOF EQU >1000 ¢+ NO-OF
0080 MTRWF EQU =80 # MONITOR WORKSFACE
10):1¢) USRWF EQU >ERO + USER WORKSFACE
0090 XOFWS EQU >90 ¢+ XOF WORKSFACE(8 REG.)
0020 DELAY EQU =20 # DELAY WORD
0026 BREAN EQU 26 s BREARFOINT AREA
0028 BRRTN EQU BREAR+2 # BREAK RETURN
000D CR EQU 0D # CARRIAGE RETURN
0AOD CRLF EQU >0AO0D + CAR. RET.» LINE FEED
0014 MAX EQU 26 ¥ (NO. OF COMM. + 1)x%2
X ' : _
¥ THE FOLLOWING AREA OF RAM IS USED
X BY THE MONITOR B
X
X 20 CR DELAY TIME
¥ 22 ECHO FLAG

XI-6

FAGE-2 TM59900 MIGHTY MONITOR (VER3 - 12/1/77)

0000
0004
0006
¢008
000C
0010

02E0

04CC

inoi1
o20n
0201
0203

0080

Q00RO
0040
036E

EAK)Y NO. OF WORDS FOR TRAF

XOF WORKSFACE (ONLLY 8 REGISTERS)

CRU RASE)

SET CRU EASE
CLEAR FROG. MODE
SET USER WF

SET UP XOF VECTORS

X 24 TERMINAL SFEED
X 26 (BR
X 28 USER INST. ONE
¥ 248 TWO
X 2C THREE
¥ 2E RETURN BRANCH (TWO WORDS)
X 32 NEXT STOF
X 34 STOF INCREMENT
X 36 MAX NO. OF STOFS
X 38 SNAF REG ~ FIRST
X 34 LAST
X 3C SNAF MEM - FIRST
X 3E- LAST
X 40-43 XOF-0 EREAKFOINTS
X 44-47 XOF-1 INFUT
X 48-4F XOF-2 QUTFUT
X AC-4F XOP-3
X 50-53 XOF-4
¥ 54-57 X0F-5
X 58-Sk XOF-4
X 5C-5F XOF-7
X 60-63 XOP-8
X 64-47 XOF-9
¥ 68-46R XOF-10
X 6C-6F XOF-11
X 70-73 XOF-12
X 74-77 XOP-13
X 78-7R XOF-14
X 7C~7F XOF-15
X 80-9F MONITOR WORKSFACE
X AO-AF
X RO USER RO
¥ E2 Ri
X R4 R2
X Ré R3
X E8 R4
X EA RS
¥ EC Ré&
¥ RE R7
X CO R8
X C2 RS
X C4 RA (R10)
X Cé RE (R11)
X C8 RC (R12-USER
X CA RO (R13)
X CC RE (R14)
X CE RF (R15)
X
%
¥ THE FOLLOWING IS MONITOR FOWER UF
¥ SEQUENCE '
X ,
START LWFI MTRWF
CLR R12
SE0 FRG
LI R13yUSRUWF
LI Rls>40
R3yXOFTR

LI

XI-7

r M GF Gr S»

(WORKRSFACEENTRY)

FAGE~3 TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

0014
0016
0018
001C
001E
0020
0024
0026
002A
002C
002k
0030
0032
0034
0038
003A
003C
Q03E
0040
0042
0044
0046

0048
004A

004C
0050
00352
0056
0058
0035A
005E
0035C
0060
0062
00464
0066
0048
004A
006C
0064E
0072
0074
0078
007A
007C

02A2
CCa2
0202

<

0090

CC73 |

16FE
0200
C702
0201
cCat
0731
10100
1F00
1302
06A0
1F00
13FE
0580
1F 00
16FD
0920
CC40
1000

05C1
0972

0203
co33
ci23
6100
6100
Cl54

0285
1601
€513
0643
0742
ccez
ci11
0602
CC&0
CCC4
0204
cosz
1302
0602

i

FFETD

0020

E800

0024

0008

2C00

00SE

1000

VERZ

STWF R2 3 BREAK USES MON. WS
STRT10 MOV RZ2eXR1+
LI R2» XOFWS 3 OTHERS USE XOF WS
MOV . XR3+s¥R1+
JNE STRT10 -
LI ROy—-19 + RO=TERM. TIMER
LI R1sDELAY
MOV R1s%R1+ + CLEAR DELAY
SETO %R1+ # SET ECHO
SEO TTYO $ TTY=HIGH
TR TTYI # CRT?
JEQ@ STRTZ20 i NO
EL @xEB00 # SETUF FOR CRT
STRT20 TR TTYI ¢ WAIT FOR START
JEQ@ STRT20
STRT30 INC RO # MEASURE A RIT
TR TTYI
JNE STRT30 :
STRT40 SRL RO»2 i REDUCE TO EBIT COUNT -
MOV ROs%kRI1+ # SAVE SFPEED
NOF i TO KEEP ADDRESSES FER
X .
¥ REMOVE ANY BREAKFOINTS AND THEN
*x ENTER MONITOR
X .
INCT R1 + ADVANCE TO RREAK RET.
SRL R2s7 # R2=1(IT WAS 20-HEX)
X
¥ ROUTINE: EBREAK
X ESTARBLISH A BREAKFOINT OR SNAP AT (R1)»
¥ REMOUVING R2 INSTRUCTIONS AND SETTING
X NEXT=-1r ANY FRIOR BREAK IS REMOVED.
¥ IF OLD BREAK DOES NOT CONTAIN (XOF) IT IS
X NOT DISTURRED, SINCE R1 IS PRESET TO BRRTNs IT
¥ CAN ACT AS A BREAKFOINT REMOVAL. :
X .
BRKN LI R3 s BREAK i R3=BREAK FOINTER
MOV X%R3+,RO +# GET NO. OF WORIDS
MOV EB8(R3) R4 #+ GET RETURN
S ROsR4 # READJUST IT TO START
s ROrR4 »
MOV XR4sRG # CHECK FOR XOF
BRKXOF EQU 442
CI RSy XOFO :
JNE BRK1 s IF NOT XOF» SKIF RESTORE
MOV %R3s%R4 s RESTORE CODIE '
BRK1 DECT R3 + RESET R3
ABRS R2 # IF R2=-1, R2=1
MOV R2Zs%R3+ i STORE NO. OF WORDS
MOV XR1:R4 # GET INST
DEC R2
MOV GBRKXOFs%R1+ i PUT IN XOF
BRK2 MOV R4»%R3+ i SAVE INST
LI R4 NOOF # PRESET R=NOOF
MOV R2sR2 i IF R2 NOT 0» GET INST.
JEQ BRK3
DEC R2

XI-8

FAGE-4 TM89900 MIGHTY MONITOR (VER3 - 12/1/77)

007E
0080
0084
0086
008A
008C
008E

0090
0092
0094
0096
0098

0094
009C
009%E
00A2
00A4
00A6
Q0AA

00AE "

Q0RO
Q0B2

O0E4
O0E7
OORS8

O0RA
OOER
00RC
OORE
00C2
00C4
00C8
oocC

Ci31
0283
16F6
CCEO
CCcel
0713
1030

Q6C4
2084
0AB4
16FI
045R

Cl3R
Cé8E
Q4A0
0701
co81
0205
Q600
C204a
CE81
CEB2

0204

_10EE

20

3n

C1CE
046A0
€141
06A0
2CA0
0457

002E

0338

0090

0007
021E

OAOLD

O0ER4

01EA
o201

MOV XxR1+sR4
BRK3 CI R3yEBREAK+8 #
JNE BRK2
MOV ~ EBRANCH » XR3+ ’
MOV R1sXR3+ t
SETO XR3 H
JMF MTR ¥
* .
¥ ROUTINE: TYFE
¥ TYPE THE RIGHT RBYTE OF RA4.
¥ TYFE THE LEFT BYTE IF IT IS
X
TYFE SWFE R4 §
TYFEL OUT R4 ’
SLA R4-8 H
JNE TYFEL ’
TYFEX R ¥R11 ’
X
X ROUTINE: GET

X PROMFT THE OFERATOR USING (R

¥ TWO ENTRIES I8 1.

X ,

GET MOV %R11+sR4 ’
MOV R11.%R10 ’
EL BTYFE ’
SETO R1 }
MOV Ri,R2Z
LI RSs7 §
EL ERIONUME
MOV XR10sR11 ’
MOV R1y%R10+
MOV RZ2s%R10+

X

¥ ROUTINE: TYFEN

¥ FROCEED TO A NEW LINE ON THE

¥ PRINT CRysI.LFy THEN WAIT

X

TYFEN LI R4y CRLF K

CRET EQU %1
JMP TYFE

* .

X ROUTINE: DIMEMN

¥ DISFLAY R1 ON A NEW LINE IN

X SXXXXi’

*

DASH BYTE ‘-7

EQUAL RBYTE ‘=’

DMEMN MOV R11sR7 ;
BL BTYFEN ;
MOV R1sRS ¥
BL CTYFEWD ’
OUT ECOLON H
B *R7 $

X

X ROUTINE? DISRG

¥ DISFLAY REGISTER RS ON CURRE
¥ TITLE OF THE DISPLAY IS IN (
X

XI-9

CONT TILL THREE WORDS SET

SET RETURN BRANCH

FUT IN RETURN ADDRESS
R2=-1

GOTO MONITOR

AFTER THAT»
NOT ZERO.

FUT IN LEFT RYTE
OUTFUT R4
ANOTHER CHAR?
YES-TYFE IT
RETURN

11y THENX GET AN UFDATED VALUE:

GET FROMFT
SAVE RETURN

FROMFT THE OFERATOR
"SET DEFAULTS

GET USER INFUT

RESET RETURN

TERMINAL

PRINT THE CRLF

FORMAT:

SAVE EXIT
GOTO NEW LINE
DISFLAY R1
DISFLAY
OQUTRUT
EXIT

LR v 4
+

NT LINE.
ki1,

FAGE-S5 TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

00CE
oono
oonz
o0on4
oons
oonc
O0EQ
O0E4

00ES
00EA
00EC
00F0
00F4
00F &
00FA
00FC
00FE
0100
0102
0104
0108
010C
010E
0110
0112
0114
0118
011A
011C

O11E
0122

0124

0126
0128
012A
- 012C
012E

C13E
CiCE
06C4
046A0
20A0
06A0
20A0
0457

02E0
04CC
06A0
2CA0
2Ca4
0201
c281
Ci71
13F3
2144
16FER
06A0
0284
1303
cola
0A20
1702
06A0
Co0%
0810
17E4

C2AA
0694
10E0

0582
DCF1
8081

16FIY

10E0

0090
QORE
01EA
0287

0080

QOR4
013E

033C
0218

000N

OOk4

001A

DISKRG MOV XR11+yR4 $ GET TITLE
DISRA MOV R11sR7 i SAVE EXIT ADDRESS
SWFE R4
EL BTYFE i TYPE TITLE
OUT REQUAL i OUTPUT ‘=’
EL @TYFEWD i OUTFUT VALUE
OUT E@SFACE ; SFACE AND EXIT
E KK7
X
X BASIC MONITOR LOOF, QUERY OFERATOR FOR
% DESIRED FUNCTIONS GATHER FARAMETERS: AND
* TRANSFER CONTROL TO AFPROFRIATE ROUTINE,
X
MTRN LWFI MTRWF
CLR R12 3 RESET CRU
EL @TYFEN 3 NEW LINE
MTR OUT RQUEST i ISSUE PROMPT
IN R4 i GET REFLY
LI R1sTAEC i SEARCH TAELE OF COMMANDS
FINDC MOV R1sR10 i SAVE TAELE FOINTER
MOV kR1+sRS i GET NEXT TAELE ENTRY
JEQ MTRN i IF ZERO-TAELE EXHAUSTELD
CE R4sRS i COMPARE TO USER ENTRY
JNE FINDG i IF NO MATCH - CONT. SEARCH
EL @RINUM ; GET FARAMETERS
CI R4»CR ' FORCE NEW LINE IF
JE@ NEWL 3 TERMINATED BY CR OR IF
MOV KR10sRO 5 INDICATED EBY F. I,
SLA ROs9
JNC CONT
NEWL BL @TYFEN
CONT MOV RS5sRO i RS=0DD NO. IF FARAM. 0.K.
SRA RO»1 - |
JNC MTRN } ILLEGAL ENTRY
X v
X WHEN BRANCHING TO THE INDIVIDUAL COMMAND
X FROCESORy THE FOLLOWING INFO IS FROVIDED:
X RS=FARAM DECs SHIFTED EY NO. OF
X - FARANS INFUT
X R1=FARAMETER ONE (DEFAULT BKRTN)
X R2=FAREMETER TWO (DEFAULT >FFFF)
* R3=FARAMETER THREE (NO SFECIFIC DEFAULT)
X |

ERANCH TO COMMAND
FROCESSING ROUTINE

CONTINUE TILL DONE

MOV @EMAX(R10)sR10 H
EL XR10 ’
JMF MTRN # RETURN TO LOOF
X
X ROUTINE: COFY
¥ COFY MEMORY FROM (R1) TO (R2) INTO (R3)
¥ ANY NUMBER OF RBYTES MAY RE MOVED
X
COFYy INC R2
COFY10 MOVE XR1+s%R3+ § MOVE ONE RYTE
c R1»,R2 i TEST END
JNE COFY10 ¥
JMF MTR
X ,
¥ ROUTINES: SNAF

XI-10

FAGE-6 TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

ESTARLISH FRIOR BREAKFOINT AS A SNAF.

X
¥ IF NO FPARAMETERS ENTEREDy USE EXISTING
X DATAY OTHERWISE Ri= FIRST SNAF» R2= SNAF
¥ INCREMENT, R3= MAXIMUM NO. OF SNAFS.
¥ IF NEW FARAMETERS ENTERED, QUERY OFERATOR
X TO GET REGISTERS AND MEMORY TO RE DUMFED
X ' :
0130 020A 0032 GNAF LI R10s BREAK+12 # R1IO0=EREAK FOINT
0134 CES81 MOV R1%R10+4 # NEXT=R1
01346 CEB2 MOV R2y%R10+ # INC-R2
0138 CE83 MOV R3sXR10+ # SET MAX.=R3
013A 06A0 009A EL BGET
013E QUEST EQU %
013E 3F52 TEXT ‘PR’
0140 06A0 0094 EL @GET
0144 3F 4D TEXT ‘7?M’
0146 10D4 JMF MTR # BACK TO MONITOR
% ‘
X ROUTINE: EKIN . ’
¥ THIS ROUTINE IS ENTERED VIA A USER BREAK.
X IT PRINTS WPy FPCy ST, IF A SNAF ENTRY IT ALSO
¥ FRINTS REGISTERS AND MEMORY.
X
0148 0201 0028 EKIN LT R1sEBKRTN ¢ Ri=RREAK FTR(BREAK+2)
014C 0621 000A LDEC @10(R1) 3 NEXT=NEXT-1
0150 1303 JEQ EKOSF i IF ZERO-DISFLAY
0152 11C9 JLT MTRN s IF LESS-GOTO MONITOR
X
% ROUTINE: GO
X BRANCH TO (R1). RBRANCH VIA A RETURN WITH
- ¥ WORKSFACE, GO ASSUMES R1 IS FRESET TO
X BRKRTN. R13(WF) MUST RBE FRESET DURING FOWER-UP
X ' :
0154 C381 GO MOV R1sR14 ¥y FC=R1
0156 0380 RTWF # BRANCH
X T
¥ AT THIS FOINT»y A SNAF HAS RBREEN ENCOUNTERED.
¥ DISFLAY THE SELECTED REGISTERS AND MEMORY
X
0158 Cl4E ERKDISF MOV R14sRS $ PRINT PC
015A 046A0 OORA4 ‘ BL CTYFEN s ON A NEW LINE
013E 06A0 0OOCE BL CLISRG '
0162 5043 TEXT ‘FC’
0164 C14D MOV R13sRO # PRINT WP
0166 06A0 O0CE EL GLOISRG :
016A 5750 TEXT ‘WF’
016C C14F MOV R15sRS # PRINT ST
016E 086A0 0O0CE EL @DISRG
0172 5354 TEXT ‘ST’
0174 COA1 0012 MOV @18(R1)sR2 # GET RD1sRD2
0178 C061 0010 MOV @1l46(R1)sR1 ,
017C 1104 JLT EBKISFZ ‘ # IF RD1=-1, NO REG DISF
017E 046A0 OOR4 BL GTYFEN # DISPLAY REGISTERS
1 0182 06A0 01EO BL CLISFUW
0186 0203 003C ERKDSF2 LI R3sBREAK+22 § GET MD1,MD2
"018A CO73 MOV XR3+sR1 :
018C 0281 FFFF CI le~1 s IF MD1l=-1y NO DISF.
0190 JEQ ERKDSF3 '

1305
' XI-11

FAGE~-7 TMS52900 MIGHTY MONITOR (VER3 - 12/1/77)

0192 CO93 MOV %R3sRZ § SET THE END

0194 06A0 02AA BL. BLUMF ¢ DUMF

0198 06A0 O0k4 EL BTYFEN

019C 0201 0028 EKDSF3 LI . R1sBKRTN 3 DEC. MAX

01A0 0621 000OE DEC @14(R1)

0144 13A0 JEQ@ MTRN # IF ZERO» GOTO MON.
01A6 C861 000C MOV @12(R1)s@10(R1) 3 SET NEXT=INC

01AA 000A

01AC 1003 JHMF GO # RET. TO USER

*

% ROUTINE: RIISF

¥ DISFLAY THE LEFTMOST BYTE OF R3»
¥ PRECEEDED RY A SFACE

X
O01AE 2CA0 0287 ERDISFS OUT @SFACE # TYPE SFACE
O1R2 06CH EDISF SWFE RS # PUT DATA IN LOWER RBYTE
O1R4 0200 0004 LI RO»4 # PRINT AND EXIT
O1R8 1002 JMF TYFEH
X

X ROUTINE: TYFEH

X DISFLAY RS A8 A HEX DIGIT STRING

¥ THE SHIFT COUNT IN RO CONTROLS THE NO.
¥ OF DIGITS FRINTED (12=4y4=2)

X

O1RA 0200 000C TYFEWD LI RO 12
O1RE C1035 TYFEH MOV R35sR4 # \EXTRACT ONE NIBELE
01C0O ORO4 SRC R4»RO
01C2 0244 O00OF ANDI R4»:F + MASK OFF FOUR BRITS
01C46 0224 0030 Al R4y =30 i ADJUST FOR ASCII
01CA 0284 003A CI R4y >3A # TEST “A’-'F’ AND
01CE 1102 JLT TYFEHZ2 i IF SO-READJUST
0100 0224 0007 Al R4»7
01014 04C4 TYFEH2 SWFRE R4 s TYPE
01D46 2CB4 : OuUT R4
0108 0220 FFFC - Al ROy -4 # REDUCE SHIFT COUNT
o10C 18FO , JOC TYFEH # CONT. TILL DONE
O1LE OA4GE E *R11 # EXIT

v X

X ROUTINE: DISFW ,
% DISFLAY WORKSFACE R(R1)-R(R2)

X
01EQ0 COCE DISFW MOV R11sR3 # SAVE RETURN
O1E2 0241 OO0OF ANDI R1y:F # FORCE R1=0-F
O1lE6 6081 : s R1sR2 7 R2=NO. OF REG.
01E8 C101 DISFW1 MOV R1,R4 + FORM REG NAME
O1EA 0224 5230 Al R4y RO’
O1EE 0284 523A CI R4y ’R?+1
01F2 1102 JLT DISFWZ
O1F4 0224 0007 Al R4y7
01F8 C141 DISFW2 MOV R1sRS # GET REGISTER
01FA 0Al15 SLA RS»1 # FORM A WORD ADDRESS
O1FC Al4D A R13yRS
O1FE C155 MOV XRSsRS
0200 06A0 00DNO EL CIISKRA + DISPLAY REGISTER
0204 0602 ~ DEC R2 # TEST FOR END
0206 1107 JLT DISFW3 ¢+ EXIT IF MINUS
0208 03581 INC R1 ¢+ ADVANCE REG. COUNT
’

0204 0281 0008 CI R1.8
' XI-12

IF REG. 8s THEN

 FAGE-8 TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

Q20E
0210
0214
0216

0218
oz21cC
021E
0220
0222
0224
0226
0228
022C
022E
0232
0234
0238
023C
023E
0242

0244,

0246
0248
024A
024C
024E
02350
0252
0254
0256
0258
025A

025C
025E
0260
0262
0264
02646
026A
026C
0270
0272

16EC
06A0
10E9
0453

0201

0702

04C4
C20E
02486
Q4C7
Co04
0220
1117
0280
1108
0220
0280
110F
0280
150C
cic7
1603
0587
05C6
046
cons
0A43
AQCO
ce83

OOE4

0028

FFIO

000A

FFF®?
000A

000F

2C44

0984
10ES

cicz
1306
04C7
0915
Co05
0240
1303
0284
16F2
0458

O00E

000

JNE DISFW1
EL CTYFEN
JMF DISFW1
DISFW3 B "XR3
ROUTINE:RIONUM
READ' FARAMETERS AND
R1sR2yR3., FARAMETER
THAT IS READ, RINUMA AVOIDS
INITIAL REAI, RIONUMEB AVOIDS
R1 IS FRESET TO EBRKRTN AND R2
X
RONUM LI R1y BRKRTN
SETO R2
RIONUME CLR R4
RONUMA MOV R11,R8
STWF Ré
CLR R7
STRT MOV R4sRO
Al RO# =30
JLT NOHEX
CI RO 10
JLT ADIDIN
Al ROy -7
CI RO» 10
JLT NOHEX
CI RO»15
JGT NOHEX
ADDIN MOV R7sR7
JNE NONEW
INC R7
INCT Ré
CLR XRé
NONEW MOV XRé6sR3
SLA R3:4
A RO+R3
MOV R3r%Ré
CONT1 IN R4
SRL R4,8
JHMP STRT
X
¥ AT THIS FOINT»
¥ IS NOT A HEX DIGIT»
X OF ENTRY AND END OF INFUT.
X
NOHEX MOV R7:R7
JE@ TSTND
CLR R7
SRL R3»1
MOV RSsRO
ANDI ROs:E
JEQ EXIT
TSTND CI R4yCR
JNE CONT1
EXIT E XR8
X
¥ ROUTINE: ALTER

XI-13

-

-

MP e SR P EE W e W W

“-s W» uy

Wr E WP WE W >

-

-

W@y WP WP WP Er WF W WE 6P WP W

CHECK RO=A-Fy
) FalLL THRU TO ADDIN

GOTO NEW LINE

EXIT

b ¢

X

X FLACE THEM IN REGISTERS
X DESCRIFTION IS
X IS SHIFTED RIGHT ONE FOSITION FOR EACH FARAM.
X

b 3§

X

IN RS AND
THE
THE
I8 PRESET TO

FRESET AND
PRESET ONLY.
SFFFF.

FRESET R1sR2

FIRST CHAR FRESET

SAVE RETURN

R6=WORKSFACE

RESET FLAG(R7)

TEST INFUT FOR HEX

RO=INFUT~"0"

IF MINUSs NOT HEX

CHECK RO0=0-9, IF S50
GOTO ADDIN

IF 50

RO=NEXT DIG(EINARY)
IF FIRST»
SET FLAG

ADVANCE TO NEXT VALUE

CLEAR NEXT VALUE
GET VALUE ‘
MULT. BY 16

ADD NEW DIGIT
REFLACE VALUE
GET CHAR

RIGHT JUST.
CONTINUE SCAN

WE KNOW THAT THE INFUT
S0 CHECK FOR

END

IF NON NULL ENTRY»
REVISE THE F.D.

RESET FLAG

UFDATE F.I.

IF PaDle=XX4s s o XX000X
RETURN TO CALLER

IF CRy THEN RETURN

RETURN TO CALLER

FRESET VALUE

THEN

THEN

C FAGE~-9 TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

¥ DISFLAY (F1)3 AWAIT OFERATOR UFDATE, IF ANY3#

¥ INCREMENT ADDRESS AND CONTINUE. IF THE

X ENTRY IS TERMINATED BY A CR» DISFLAY CURRENT

¥ ADDRESS ON A NEW LINE, THEN THE DATA EBYTE.

% IF SFACE ENTEREDy SKIF UFDATE OF THIS EBYTE.

X : -
0274 CO81 ALT MOV R1sR2 # SAVE ADDRESS
0276 D152 ALT1 MOVR XR2yR3G i DISFLAY (R2)
0278 06A0 O1EZ EL GRIISF
027C 2CA0 OOEA ouT @enASH # OUTRUT 7~/
0280 2044 IN R4 # GET REFLY
0282 0984 SRL R4»8 ‘
0284 0284 0020 CI R4y’ 7 - s IF * ‘¢ SKIF UFDATE
0287 SFACE EQU $-1
0288 1308 JEQ ALTZ
028A 0205 0002 LI RS2 # READ FULL REFLY
028E D032 MOVE XRZ2sR1 i SET DEFAULT
0290 06C1 SWFE Rl
0292 06A0 0220 BL GRIONUMA s GET REFLY
0296 06C1 SWFE R1 #i ALTER (R2)
0298 481 MOVE R1s%R2Z
029A 0582 ALTZ INC R2 i ADV, ADDR FOINTER
029C 0284 000D CI R4yCR 4 IF TERMINATED RY CR» THEN
02A0 16EA JNE ALT1 ; TYFE CURRENT AUIDRESS
0242 €042 MOV RZsR1
0244 06A0 OORC BL COMEMN
02Aa8 10E6 JMF ALTL

- X

¥ ROUTINE: DIUMF

¥ DUMFP THE MEMORY FROM (R1) TO (RZ2). IF

¥ CALLED FROM MONITOR LOOPs DUMP WILL RETURN

X TO MTRN3 OTHERWISE IT RETURNS TO CALLING

¥ ROUTINE. '

X .
02AA COCE DUMF MOV R115R3 # SAVE RETURN
02AC 06A0 OORC IUMFL EBL BOMEMN # DISFLAY ADDRESS
0280 D171 DUMF2 MOVR XR1+sRG i GET NEXT BYTE
02R2 046A0 01AE EL @RDISFS § DISFLAY IT SPACE FIRST
02R4 8081 C R1syR2 3 CHECK ENID
O2E8 1BAE ~JH DISFW3 # IF NOT END-CONTINUE
02BA C141 MOV R1yRS # IF R1=0-EXITy IF R1 MULT 1é
O02EC 13AC JEQ DISFW3
O2BE OACS SLA RSs12 ’ THEN DISF ADDRESS»
02C0 13FS5 JEQ@ DUMF1 i ELSE CONTINUE
02C2 10Fé6 JMF DUMP2 # CONTINUE DUMF

X

¥ ROUTINE: LOAD
X LOAD A MONITOR DUMF BACK TO RAM

X
02C4 Co081 LOAD MOV R1sR2 # R2=LOADI' ADDRESS
02C6 0205 0002 LOADL LI R3r2 i READ VALUE
02CA 06A0 021E EL EBRONUME
02CE 0284 003A CI R4y’ 3’ i IF TERM. BY ‘1’ RESET R3
0201 . COLON EQU $-1 '
o202 13F8 JEQ LOALD C
02n14 06C1 SWFPE R1 + DATA IN LEFT BYTE
o206 nCs1 MOVE R1s%XR2+ # STORE ONE BYTE
o208 10Fé& JMP LOADI # CONTINUE

XI-14

FAGE-10

02I'A
o200
020E
02E2
O02E4
O2E6
02E8
02EA

02EC
O02EE
02F0
02F2
C2F4
02F &
02F8
02FA

02FE
- 0300
0302
0304
0308
0304
030E
0310
0314
0316
0318
031A
031C
031E
0320
0322

0324
0326
0328
032C
032E
0330
0332
03346
0338

TMS9900 MIGHTY MONITOR

0All
C301
0204
1FO00
1601
06C4
2C84
0435R

0Aall
€301
co8s2
1302
1000
1001
1E00

0460 00FO

1E01
03C2
0204
Cl41
ci183
02646
COES
0207
0607
16FE
8085
16F9
0604
146F3
ino1
10EER

008

FOOO

0006

Cl41
Al42
046A0
482Fk
141
6142
06A0
4821
0460 O0E6S

00CE

00CE

X
X ROUTINE?

X INSFECT A

(VER3 - 12/1/77)

INSFECT -

CRU RIT (R1)

e W W

““r ‘.

C T T DI 13

IS (RL)

-

ALIGN FOR CRU EASE
FUT IN CRU EASE
SET R4=0/1

DISPLAY THE BIT
EACK TO MONITOR

ALLIGN FOR CRU BASE
SET CRU ERASE

TEST RIT

IF ZEROy» JUMF

BACK TO MONITOR
-(RE)-

ENABLE

REFPEAT COUNT
SAVE INFUT

ADJUST FOR ROM
+ FROG ONE WORD
ALLOW DYNAMIC RAM
TO REFRESH ITSELF

CONT. THIS FASS

NEXT FPASS
DISARLE FROG.
BACK TO MONITOR

SUM

DIFFERENCE

*
INSF SLA Rl»1
MOV R1syR12
LI R4y 701’
TE 0
JNE INSF1
: SWFE R4
INSF1 OUT R4
E XR11
X
¥ ROUTINE: MODIFY
X MODIFY A CRU RIT (R1) TO EBE (R2)
X
MODIF SLA R1l»s1
MOV RI1IyRI12
MOV R2sR2
JEQ@ MODIFL
SEO O
JMP MODIF2
MODIFL SBZ O
MODIF2 B BMTR
X
X ROUTINE: FROG
¥ PROGRAM ROM. SOURCE
¥ ROM TARGET IS (R3)
*
FROG SRZ FRG
INCT R2
LI R4:200
FROG1 MOV R1sRS
MOV R3sR6
ORI Ré6s>=FO000
FROG2 MOV XRS5+s%R6+
LI R7+6
FROG3 ©LEC R7
JNE FROG3
c RS»R2
JNE FROG2
DEC R4
JNE FROG1L
SED FRG
JMF MODIFZ2
X
¥ ROUTINE: HEX
X FRINT R1+4R2 AND R1-R2
X
HEX MOV R1sR3
A R2sRS
BL. -~ @LISRG
TEXT ‘H+”
MOV R1sRS
S R2sRS
EL GLISRG
TEXT ‘H-’
ERANCH B BMTRN

XI-15

FAGE-11

033C
033E
0340
0342
0344
0346
0348
034A
034C
034E
0350
0352
0354
0356
035A
035E
0362
0366
036A
034K
0370
Q372
0374

0376
0374
037C
0380
0382
0384
0386
0384
038C
038E
0390
0392
0394
03964
0398

0394

1 039C

TMS9900 MIGHTY MONITOR (VER3 - 12/1/77)

4102
4287
4388
4406
4783
4884
4902
4C83
41184
5088
5388
578646
0000
0274
0126
0154
0206
02EC
0130
0148
039PE
0374
0000

020A
D21B
0209
06%A
0609
16FD
0209
1E00
069A
3048
0694
0918
0609
16FER
inoo
06C8
1019

004C
02AA
0324
02C4
Q2FE
01EQ

03EA

0002

0008

X
X COMMAND TAELE
X
TAEC EYTE ‘A7»>02 $ ALTER
EYTE ‘E’,>87 BREAKFOINT
BYTE ‘C’»>88 3 COFY
BYTE ‘I y>06 3 DIUMF
EYTE ‘G’»>83 i GO
EYTE ‘H’,>84 5 HEX ARITH.
EYTE ‘I‘»>02 3 INSFECT
EYTE ‘L‘,>83 $ LOAD
BYTE ‘M’,>84 3 MODIFY
BEYTE ‘F’,:88 } FROGRAM
BRYTE ‘S’,>88 3 SNAF
EYTE ‘W’y>86 i WORKSFACE DUMF
EYTE 050 i ENDI' OF TAELE
DATA ALTyERKyCOFY» DUMF
DATA GOsHEX» INSFyLOALs MODIF y FROG y SNAF y DISFU
XOFTE DATA EKIN
DATA ROUT2
DATA ROUTL
DATA O
X
X XOF ROUTINES
X XOF-1 = INPUT
X XOP-2 = QUTFUT
X
% P
¥ ROUTINE: ROUT1 (TERMINAL OUTFUT)
¥ OUTFUT THE BYTE AT (Ri1), IF IT IS
X A CARRIAGE RETURN, UELAY ACCORDING TO
% THE VALUE (DELAY)
X
ROUTT LI R10>WAITA 5 R10=INDEX TO WAIT
MOVE %R11sR8 i R8=CHARACTER
LI R9s2 } R9=NO STOF BITS
R110 BL XR10 5 STOP BIT WAIT
DEC R9
CJUNE K110
LI R9,8 $ R9=CHARACTER COUNT
SEZ TTYO i START EIT
BL XR10 $ WAIT FOR START BIT
R120 LDCR R8sl $(22) OUTFUT ONE EIT
BL *R10 $(16) WAIT FOR IT
SRL R8sl $(14) GET NEXT BIT
DEC RS9 7(10) CONTINUE TILL DONE
JNE R120 5(10)
SEQ TTYD } STOF EIT
SWFE RS } REPOSITION BYTE
JMF R250 } GO CHECK EREAKs ETC.
* : .
X ROUTINE: ROUT2 (TERMINAL ECHO)

¥ INFUT ONE CHARACTER FROM TERMINAL AND
¥ RETURN IT IN (R11). IF CARRIAGE RETURN

XI-16

FAGE~13

0406 04CC
0408
040C
040E
0410
0412
0414
0416
0418
041C
OA41E
0420
0422
0424
0426
0424
042C
042E
0430
0432
0434
0434
0438
043A
043C
043E
0440
0442
0446
0448
044C
0450
0452

100A
1no9
3208
1FOR
16FE
100K

0022
1308
060A
16F 4
04C8

14602
04609
16EC
0380
onon
04CC
iFocC
16FD
04C8
3508
1n0¢
nscs

1602

1607
0380

0454

0244
01AE
0028
0072
0256
oAOD
01F8
02AA
O00FA
o2Ia
O2EC
2080
001
013E
0380
Q00F

ADDIN
BDISFS
BRRTN
BRK2
CONT1
CRLF
DISFW2
DUMF
FINDC
INSF
MOUIF
MTRWF
FRG
QUEST
R110
R1S

020A 0004

C820 0022

POHEOQ 0432

0288 1E00

0460 O00ES
C220 0022

0274
0158
0338
0080
0126
O0EA
0216
02AC
009A
02ES8
02F8
0114
O2FE
0000
000C
0002

, CLR
T99201A LI
T9901k SEO

SEO
LIOCR
T9201C TE
JNE
SEO
MOV
JEQ
DEC
JNE
CLR
CEB
JNE
LEC
JNE
T92010 RTWF
T990CR NATA
79902 CLR
TR
JNE
CLR
STCR
SEO
MOVE
CI
JNE
: E
792024 MOV
JNE
RTWF
X
X END
¥ THE LOAD
*
END
ALT 0276
EKLISF 0184
ERANCH 0026
BRK3 Q0SE
COrY 0128
DIASH 0020
DISFW3 0000
DUMF1 02RO
GET 0154
INSF1 02C4
MODIF1L O2Fa
NEWL. 025C
FROG 03046
RO 0001
Ri2 038E
R2 03A2

R12
R10+4
*A

R8.8
=B
T9901C
*R

Bx22,@x22

T99201D
R10
T?901ER
R8

BTP?90CRyXR11

T9901D
R9
T9901A
3 EXIT
QIO
R12
=G
T9902
RE

RSy 7

w0

RSy ¥R11

R8s >1E00

T9902A
@MTRN
@:22,R8
T9901

§ NO-EXIT

OF MONITOR

START

ALTI1
BROSF2
EREAK
BRKXOF
COFY10
LELAY
DISRA
DUMF2
GO
..0AD
MODIF2
NOHEX
FPROG1
R1
R120
R210

XI1-18

VECTOR MUST BE

029A
019C
004C
0201
o00on
01E0
00CE
O0ORE
0324
02Cé6
00FO
024E
030E
000A
Qoon
03AC

TMS59900 MIGHTY MONITOR (VER3 - 12/1/77)

- -

-»

-y

> .

SET RASE
ECHO (1200 BRAUID

OUTFUT

ECHO?

NO-EXIT
EACH ONE OUT 4 TIME

5. CR?T

-

e -

-

CR
CHAR ECHO

CR DELAY

RETURN THE CHAR

3 ECHO?

YES-DO 'IT
FATCHED IN
ALT2 O1E2 RIISF
ERDISF3 0148 EBKIN
EBRK 0064 EBERK1
COL.ON 0118 CONT
CR O00E7 CRET
LDISFW 01E8 DISFW1
DISRG OOEBC DIMEMN
EQUAL 0272 EXIT
HEX X0000 IDTMM
LOAD1 001A MAX
MTR OOE6 MTRN
NONEW 1000 NOOF
FROG2 0314 FROG3
R10 000k R11
R13 000E R14
R220 03E4 R230

FAGE~-14 TMS59200 MIGHTY MONITOR (UER3 - 12/1/77)

03EC
03ES8
0007
Y21E
$000
%0042
0430
024C
O1EE
00RO
036E

ERIT/ASM/LOADT

R240
R290
R7
RIONUME
START
STRT40
T99010
TSTND
TYFEH
USRWF
XOFTHE

0300
0003
0008
0376
0226
0400
0434
0000
o104
03EA
0090

R230
R3

R8
ROUT1
STRT
T29201
T9902
TTYI
TYFEHZ
WAITA
XOFWS

030A
0004
0009
039K
0016
0408
044C
0000
00R4
03EE

R260
R4

R?
ROUT2
STRT10
T?901A
T22024A
TTYO
TYFEN
WAITE

XI-19

03IE
0005
0218
0130
0038
040C

0432

0090
01RaA
03F2

R270
RS
RIINUM
SNAF

STRT20

T9901E
T990CR
TYFPE
TYFEWD
WAITC

03E2
0004
0220
0287
003C
0412
033C
0092
0098
2000

R280
Ré&
RIINUMA
SFACE
STRT30
T9901C
TAERC
TYFEL
TYFEX
X0OFO

FAGE~1 SUFER STARTER GAMES (VER 6/77)

TITL ‘SUFER STARTER GAMES (VER 6/77)7
0000 IDTSSG 10T ‘IDTSSG
0000 DREG i DEFINE REGISTERS
* .

¥ RAM DATA EBASE
¥ ORDER IS IMPORTANT» CHANGE WITH CARE

X
OOEO AORG RO i ADDRESS RAM
OOEO SEED BSSs 2 # RANDOM NO. SEED
O00R2 BROLL BSS 2 # CURRENT BANKROLL
00EA4 WAGER RSS 2 # CURRENT WAGER
O0R6 FTOT Ess 2 i PLAYER TOTAL
OOES8 ’ FACE B&g 2 # PLAYER ACE COUNT
OOEA CTOT Brgs 2 ¢+ COMPFUTER TOTAL
QOEC CACE E§Ss 2 # COMFUTER ACE COUNT
OORE : CNT RGeS 2 ¢+ CARIS REMAINING
00CO CHLD RSS2 # COMPUTER HOLD
00C2 DRW gESS 2 # CARD LAST DRAUWN
00C4 DECK BRSS 14 # THE DECK
OOR6 GUESS EQU PTOT 5 TOTAL NO. OF GUESSES
OOE8 GAMES EQU FACE # TOTAL NO. OF GAMES
00C4 NO EQU DECK i NUMEER
OOR& FOINT EQU PTOT s POINT
00R8 ROLL EQU FPACE + ROLL
O0R6 NUM1 EqQUu PTOT § NUMEBER ONE
00ES8 NUMZ2 EQU FACE # 'NUMBER TWO

X

¥ MONITOR INTERFACE

X
0000 RORG X # CHANGE TO RELATIVE
0000 0460 06F4 B @REGIN i GO TO START
0000 TTY EQU O s TTY BIT

: X

¥ ROM DATA BASE

* 1
0004 07 RELLLS RBYTE 7 i BELL CODE
0005 2E DECML RBYTE .7
00056 20 SFACE RYTE “ 7
0007 3F QUEST RBYTE ‘77
0008 40 ATSGN BRBYTE ‘@°
0009 OD CR RYTE >0D i CARRIAGE RETURN
0004A 0A LF EYTE »0A # LINE FEED
“000C 03ES8 BANK DATA 1000 ;

SIZE OF BANK
000E 4132 3334 LAEBEL TEXT ‘A23456789TJQK’ :
0012 3536 3738
0016 3954 4A51

0014 4B

001C 000A TEN DATA 10 i CONSTANT

001E 000D C13 DATA 13 # CONSTANT

0020 0006 Cé DATA 6 # CONSTANT

0022 038A 0042 GTARB DATA BLK10s ‘R’ 3 TABLE OF SELECTIONS
0026 04F &6 0046 DATA GSO00y'F’

0024 O3E8 0043 DATA CRF10»'C”’

002E 0678 0041 DATA AD10s ‘A’ ‘

0032 0000 DATA O # END OF TABLE FLAG
0034 01 ONE BYTE 1 # BYTE INCREMENT

X
¥ PLAYER MESSAGES

XI-20

FAGE-2

0035
0039
003D
Q03F
0043
0047
004K
004F
Q033
0057
0058
005C
Q05SF
0063
Q047
Q06R
006F
Q073
Q077
0074
007E
Q07F
0083
0087
008E
oo8n
0021
Q095
0099
Q0%R
Q00%9F
00A3
00Aa7
Q0AER
QOAF
QQR3
QORS
OO0ORA
OQRE
00C2
00Cs
00C?
o0oCDh
[s14]1R1
oon2
o0oné
00nA
O0DE
O0EZ2
Q0ES
Q0EA
QOEL
00F1
QOF3
Q0F9
QOFD
0101

SUFER

4240
4R4A
4R40
494E
4941
4241
524F
2049
2432
40

5245
H593F
484F
4520
40149
4953
3130
5741
523F
4849
40

4445

4552

4F 4C
2040
4445
4552

5553

4440
594F
5749
59 4F
2042
AE52
4C20
2024
4445
4552
AFS4
2049
2020
594F
ACA4F
40
4741
204F
5220
594F
4152
4252
4521
2121
S94F
4252
4520
4520
AE4R

STARTER GAMES (VER

4143
4143

4954
4C20
4E4ER
4CAC
5320
3030

4144
40

5353
4C49
5420
2024
3040
4745
40

S43F

414C
2048
4453

A14C
2042
5445

9520

4E40
5552

A14E
AFAC
4953
40

414C
2054
414c
5320
40

5520
5345

ADIAS
5645
2020
5520
4520
AF 4R
40

2120
5520
AFAR
5448
4241
2021

X
MESS500

MESS01

MESS02

MESS03

MESS504
MESS0S
MESS06

MESS07

MESS08

MESS10

MESS11

MESS12

MESS13

TEXT

TEXT

TEXT

TEXT

TEXT
TEXT
TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

6/77)

' BLACKJACK®

‘INITIAL RBANKROLL IS $200@°

‘READY?@”

’HOUSE LIMIT IS $100@°

WAGER?@
‘HIT?@’
‘DEALER HOLDS @7

‘DEALER RUSTED@

‘YOU WINE’

‘YOUR BANKROLL IS $@-
‘NEALER TOTAL IS - @

‘YOU LOSE@’

‘GAME OVER - YOU ARE BROKE!@’

‘111 YOU ERORE THE EBANK 111@”

XI-21

FAGE-3 SUFER

0105
0108
o10C
0110
0114
0118
0119
011D
0121
0125
0129
0120
0131
0135
0136
0134
013E
0141
0145
0149
014C
0150
0154
0158

015C
0140
01464
0168
Q016C
014D
0171
0175
0178
017C
0180
0184
0188
0184
018E
0192
0196
01%9A
019C
01A0
01h64
01A8
01AC
01EB0
01E4
O1E8
O1ERC
01C0O
01CA4A
01C8

oicc

01CE
o1D2

2121
S34F
592C
4F 20
4544
40

S594F
4452
2020
S94F
2054
414C
5320
40

594F

4255

4544
4240
AR4A
AE21
4445

4552

5241
2020

ALA4F
2044
4954
5545
40

4755
5320
2E20
4449
5453
AF52
4354
2040
494E
4F 52
4354
4FS3
2040

4C41

2033
542C
AF 55
4FS3
2020
2057
2020
3F3F
4E5S
4552
4F 4E
2140
5448
5320

STARTER GAMES (VER 6/77)

40 o

5252 MESS14 TEXT ‘SORRY» NO CREDITE@’
204E

4352

4954

5520 MESS1S TEXT ‘YOU DRAW - @

4157

2040

5552 MESS16 TEXT ‘YOUR TOTAL IS - @7
4F 54

2049

2020

5520 MESS17 TEXT “YOU RUSTED@”

5354

40 .

4143 MESS18 TEXT ‘EBLACKJACK!@”

4143

40

414C MESS19 TEXT ‘DEALER DRAWS - @7
2044

5753

2040

5552 MESS20 TEXT ‘FOUR DIGIT GUESSE’
4947
2047

89353

4553 MESS21 TEXT ‘GUESS NO. @7

4E4F

40

4749 MESS22 TEXT ‘DIGITS CORRECT - @7
2043 '
5245

2020

2043 MESS23 TEXT ‘IN CORRECT FOS.—- @7
9245
2050
2EZD

5354 MESS24 TEXT ‘LAST SHOT, YOU LOSE. IT WAS
484F

2059

204C

452E

4954

4153

2040

3F20 MESS25 TEXT ‘7?77 NUMBERS ONLY!@”
4042 -

5320

4C59

4154 MESS26 TEXT ‘THATS IT!@’
4954

XI-22

@I

FAGE—-4 SUFER

0106
o108
oinc
01E0
01E4
0O1ES8

O1ER
O1EF
Q1F3
01F7
O1FE
O1FF
0203
0207
0208
020C
0210
0214
0218
021C
0220
0224
o228

022k
022F
0231
0235
0239
023C
0240
0244
0248

0244
024E
0252
0256
025A
025E

0262
0262
0266
026A

2140
594F
2041
5241
2049
2120

5745
4F 4D
544F
4845
2653
4741
524F
40

4348
5345
4F 55
4741
2028
2046
5354
4554
5229

4352
5340
504F
202E
RERE
594F
2050
AES4
2040

4143
2044
4345
5448
5041
2020

2CA0
2CA0
045k

STARTER GAMES

5552

5645
4745
5320
40

4C43
4520
2054
2083
2E20
41145
4F 4D

AF4F
2059
5220
41145
4259
4952
2040
5445

40

4150

4C4C
2E2E
40

5552

4F 49
202N

4559
9545
5940
4520
4952
2040

0009
000A

MESS27

X
MESS30

MESS31

X
MESS40
MESS41

MESS542

MESS51

X

(VER 6/77)

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

‘YOUR AVERAGE IS - @7

‘WELCOME TO THE S.S. GAMEROOME@”

\

‘CHOOSE YOUR GAME (RY FIRST LETTER)@’

‘CRAFSE’

,ROLL 04000@,

‘YOUR FPOINT - @7

‘ACEY DUECEY@®“

‘THE FAIR - @7

¥ COMMON SUEBROUTINES

X
X

X ROUTINE?
¥ GO TO A NEW LINE

X
EVEN

TYFEN OUT
ouT
E

X

¥ ROUTINE?

X

X

X

X

TYFEN

; MUST BE EVEN ADIDRESS
eCR
@LF
XR11

WIN, LOSE

FRINT WIN OR LOSE MESSAGE,
UFDATE AND SHOW THE TOTALS
CHECK FOR OVERFLOW AND UNDERFLOW

XI-23

FAGE-S SUFER

026C
026E
0270
0272
0276
0278
027A
027C
027E
0282
0284
0288
028A
028C
0270
0292
0296
0298
029A
029E
02A0
0242
0244
0246
02A8
02AA
02aC
O2E0
02E4
02Ré
O2E8

02ERC
02C0
02C2
02C4
02C8
02CA
o2cC
0200
o202
020D6
oz2ns
020A

02DC
020E
02E2
02E4
02Eé
02E8
02EA
02EC

COCE
069F
009k
Co20
1006
COCE
069F
00C?
Co020
0500
AO20

110C

130k
8800
150R
c800
069F
00A3
C160
C203
101E
069F
oonz
1008
069F
OOET
0201
2CA0
0601
14FC
0460

0284
1108
04C3
3CEO
0AB3
A103
0224
2C84
0224
046C4
2084
045k

C20E
0201
C105
04C3
3CC1
C103
04C3
3CEOQ

STARTER GAMES (VER &/77)

O0R4

OOEk4

OOKR2

000C

OOR2

O0R2

0014
0004

06F 4

000A
001C

3000

0030

03E8

001C

WIN MOV R11sR3
EL XR15
DATA MESS08
MOV RWAGER»YRO
JHF SHOW
LOSE MOV R11,R3
EL XR15
DATA MESS11
MOV CWAGERsRO
NEG RO
SHOW A @PEROLL sRO
JLT SHOW10
JEQG SHOW10
C ROy BRANK
JG6T SHOWZ20
MOV ROyCEROLL
BL *¥R1S
DATA MESS09
MOV @RBROLLsRS
MOV R3»R8
JMF DISFA
SHOW10 EL XR1S
DATA MESS12
JHMF SHOWA40
SHOW20 EBL ¥R15
DATA MESS13
LI R1,20
SHOW30 0OUT EERELLS
DEC R1
JNE SHOW30
SHOWA40 R GREGIN
¥
¥ ROUTINE: TYFED

X TYPE A DIGIT IN R4
X

TYFED CI R4»,10
JLT TYFE3
DISFD CLR R3
DIV BTENsR3
SLA R3.8
A R3:R4
TYFE2 AI R4»,>3000
OUT R4
TYFEZ AL R45:30
SWFE R4
OUT R4
E XR11
X ROUTINES: DISF

¥ DISFLAY THE CONTENTS OF RS

X
DISF MOV R11sR8
DISFA LI R1,1000
DISF10 MOV RSsR4
CLR R3
DIV R1syR3
MOV R3yRA4
CLR R3
DIV EGTENsR3

XI-24

-

-r

WP P S M W S W

-y ‘8r e

-

- -y w»

-y Er W

-r wr e

-y

-y -

-

SAVE RETURN
SAVE RETURN

RO=NEW TOTAL
EROKE
EROKE

CHECK AGAINST BANK LIMIT

BIG WINNER
SAVE NEW EBANKROLL
DISFLAY IT

SETUF RETURN FOR DISF
DISFLAY AND EXIT
EROKE

BANK BROKE

-RING THE EBELLS

RING THE ERELLS!

RESTART

CHECK FOR TWO DIGITS
JUME IF NOT
DISFLAY TWO DEC. DIG.

ADNJUST SECOND DIGIT
TYFE DIGIT
ADJUST FOR ASCII

SETUF DIVISOR

(R3yR4)=INFUT
R3=INFUT/DIVISOR

R4=NEXT DIGIT

FAGE-6 SUFER

02F0
02F 4
02F &
02FA
02FC
02FE

0300
0302
0306
0308
0304
030E
0312

0314
0316
0318
0314
031E
0322
0326
0328
032A
032E
0330
0332
0334

0334
0338
0334
033C
033E
0340
0342
0346
0348
034C
034E
0352
0354
- 0356
0358
035C

06A0
04C0O
3C20
Co040

16F2

0458

0029
Coz20
1601
05C0
3820
cgol
045H

COCE
069F
0058
0201

€801

04E0
C2C3
COCE
046A0
1F00
13FC
2C44
0453

COCE
049F
0073
04C1
2C44
0984
0224
1108
0284
1505
3840
A0B4
co4a2
10F3
0281
1E06

STARTER GAMES (VER 6/77)
02RC EL CTYFED
CLR RO
001C DIV @TENsRO
MOV . ROsR1
JNE DISF10
B *R8
X
¥ ROUTINE: RANDOM
¥ GENERATE A RANDOM NUMEER
X NCI)=N(I-1)%C [CMOD 2%x%1461]
X C=RYX2%XS+1=50X2%X3+1=41
¥ PERIOD=2%%(16-3)=2XX13
X
GEN DATA 41
00RO RANDOM MOV @SEEDSRO
JNE RANIDNLO
INCT RO
0300 RAND1IO MFY RGENsRO
OORO MOV R1»@SEED
E xR11
X
¥ ROUTINE? WAIT
X WAIT FOR OFERATOR GO AHEAI,
¥ RANDOMIZE THE GENERATOR
X
WAIT MOV R11,R3
BL *XR15
DATA MESSOZ
o0ocs LI R1s200
O0R2 MOV R1,»@EBROLL
OOBRE CLR ECNT
MOV R3sR11
WAITA MOV RI11sR3
0302 WAIT10 BL ERANDOM
TR TTY
JE@ WAIT10
IN R4
B *R3
X
¥ ROUTINE! GETWG
* GET WAGER
b ¢
GETWG MOV R11,R3
GETW1C EBL XR13
IATA MESS04
CLR R1
GETW20 IN R4
SRL R4»8
FFDo Al R4,~->30
JLT GETW30
0009 CI k4,9
JGT GETW30
001C MPY @TENsR1
A R4»R2
MOV R2sR1
JMF GETW20
0064 GETW30 CI R1,100
JH GETW40

XI-25

P Er Eh

“r wr ‘@»

. a»

s W Wr 6F WP Er WP

-

-5 w®»

> e W N>

-y e

- N>

GENER

ATOR

GET SEED

IF ZERO - CORRECT IT

(ROsR1)=NEXT NO.

RESET
EXIT

AND

- SAVE

READY

FRESET BRANKROLL
FPRESET BANRKROLL

CLEAR
RESET
SAVE
GEN.

SEED

RETURN
P

COUNTER
RET
RETURN

NO.

GET INFUT

SAVE RETURN
ASK FOR INFUT

CLEAR
GET I
RIGHT

TOTAL
NFUT
JUSTIFY

FOR

ALT.

WAIT FOR OF. INFUT

REMOVE ASCII EIAS

(R1sR

2)=R1X10

R2=NEW VALUE

TEST SIZE

TO0O B

IG

ENTRY

FAGE-7 SUFER STARTER GAMES (VER 6/77)‘

035E
0362
0364
03648
036A
0364C
036E
0370
0372
0374

0376
0378
037C
037E
0380
0382
0286
0388

038aA
038C
038E
0390
0392
0396
039A
039E
03A0
03A4
034a6é
03AA
03AE
O03E2
03Eé6
03E8
Q3ERA
03EC
O3EE
03C2
03C4
03C8
03CA
03CE
0300
o302
0304
0308
o30nC
03E0Q
03E2
03Eé

8801
1506
C801
0453
069F
005F
10E4
069F
0108
10E1

CO8E

06A0
co72
2C9%1
0581
9811
16FE
0452

069F
0035
069F
Q03F
06A0
06A0
0201
04F1
0281
16FC
06A0
06A0
06A0
06A0
069F
0074
2C44

0984

0284
1306
0284
16F6
06A0
10F3
069F
007F
2CA0
Co60
0281
1503
06A0
10F8

O0R2

O0OEk4

0008

0314
0336
Q00R&
Q0RE
0456
0410

0410
0456

004E
0059

0410

00C1
OORA
0010

0456

GETWA40

GETWS0

ROUT

c
JGT
MOV
R

EL
DATA
JMP
EL
DATA
JMF

INES

R1,@EROLL
GETWSO
R1yRWAGER

. XR3

XR15
MESS03
GETW10
XR15
MESS14
GETW10

MESS

FOLLOWS THE CALL

MESS

MS5510

X

MOV
BL
MOV
ouT
INC
CE
JNE
B

R11sR2
CTYFEN
*¥R2+rR1
¥R1

R1
¥R1,BATSGN
MS§510

*R2

¥ GAME-1 (BLACKJACK)

X
BRLK10Q

ELK20

BLK30

BLK40

BLK45

BLKS0

BLK&O

RL
[DATA
BL
DATA
REL
KL
LI
CLR
CI
JNE
BL
EL
BL.
BL
RL
DATA
IN
SRL
- CI
JEQ
CI
JNE
BL
JMP
EBL
DATA
ouT
MOV
CI
JGT
EL
JMP

XR15
MESS00
XR15
MESS01
CWAIT
BGETWG
R1+PTOT
XR1+
R1sCNT
RLK30
CILLR
BCFLAY
CFLAY
COLR
XR1S
MESS0S
R4
R4+8
R4y N’
BLKA4S
R4y’'Y’
RLK40O
BFLAY
RLK40
XR15
MESS04
CGCHLD+1
RCTOTsR1
Ris16
BLK70
@DLR
ELKSO

XI-26

-

- .

-r

ar
-

-r

N> wr W

- -r . - > |y w -y > -r =»

- Ay

-r

WP Wr EF WP WP EF WP E»

CHECK AGAINST ASSETS

SAVE IT
EXIT

REFUSE CREDIT

X
X
¥ DISFLAY THE MESSAGE WHOSE ADDRESS
X
X

SAVE RETURN

NEW LINE
R1=MESSAGE ADIDR
OUTFUT CHARACTER
ADVANCE TO NEXT
END?

NO-CONTINUE

EXIT

SIGN-ON MESSAGE
GIVE OUT BANKROLL
WAIT FOR GO

GET WAGER
CLEAR TOTALS

GET DEALER HOLD
GET FLAYERS TWO

GET DEALER SHOW
HIT? .

GET INFUT

RIGHT JUSTIFY

NO7?

IF NOT YES?» ASK AGAIN
GET HIT

ASK AGAIN

SHOW HOLD CARD

FRINT CARD

IF CTOT<16 - HIT

DEALER HIT

FAGE-8 SUFER

03ES8
03EC
03EE
03F0
03F2
03F 6
03F8
03FC
03FE
0400
0402
0406
0404
040E

0410
0412
0414
0416
0414
041E
0422
0426
0424
042C
042E
0430
0432
0436
0438
043C
0440
0442
0446
0448
044A
044C
044E
0450
0452
0454

0456
0458
045C
045E
0460
0462
0466

0281
1105
069F
0080
06A0
10CF
8060
15FA
069F

-00R6

C120
06A0
06A0
10C3

COCE
069F
0119
0640
AB01
ABO2
0201
80460
1508
1311
Q69F
0125
C120
C2C3
Q440
0620
1104
46820
QORé
10EC
069F
0134
1000
Q49F
0141
10CE

COCR
Co20
1302
069F
014C
06A0
AB0O1

STARTER

0016 ELK70 CI

QOO0RA
02C2
0278

0488
Q0R&
O0OR8
0015
O0RS

O0R6

02C2
1010) :35)

001C

OORA

0488
OORA

-

NP Wy Wr w> W -

-r

> a»

“-r > G 6> > B> W W WP WS E» - .

-

- -

-y .y

Er Wr W 9P

IF CTOT>21 - BUST
DEALER BRUST

A WINNER
CONTINUE
COMFARE SCORES
TRY AGAIN
DEALER TOTAL

SHOW TOTAL

A LOSER
CONTINUE

SAVE RETURN
IRAW-

GET CARD
ADD TO TOTAL

-ADD UF ACES TOO

TEST SCORE

RUST (MAYRE)
ELACKJACK
SCORE 1-20

PRINT TOTAL

SETUF FOR CALL TO
CALL AND EXIT

IF NO ACES-BUST

REDUCE ACE FROM 11 TO 1

RETEST
BUST

A LOSER
ELACKJACK

SAVE RETURN

IF FIRST CALL>y
DON‘T SHOW DIRAW

DEALER DRAWS

GAMES (VER &6/77)
R1.22
JLT ELK100
EL. XR1S
IATA MESS07
ELK80 EL RWIN
: JMP BLK20
ELK100 C EFRTOTsR1
JGT BLK8O
BL. XR15
DATA MESS10
MOV RCTOTsR4
BL GLISFD
ELK110 EBEL CLOSE
JMP BLK20
X
¥ ROUTINE?: PLAY
¥ GET A CARD FOR FLAYER
¥ ADJUST SCORE ACCORDING TO CARDS HELD
¥ CHECK FOR BUST
*
FLAY MOV R11sR3
EL XR1S
NATA MESS1S
EL BGET
A R1+@FTOT
A R2yRFACE
FLAY10 LI Ris21
C CFTOTsR1
JGT FLAYZ20
JEQ PLAYAO
EL ¥R1S5
DATA MESS16
MOV @FTOTsR4
MOV R3sR11
E CHISFD
FLAY20 DEC @FACE
JLT - PLAY3O
S BTEN,@FTOT
JHF FPLAY10
FLAY30 EBL . X%R1S
DATA MESS17
JMP BLK110
FLAY40 EL XR15
DATA MESS1S8
JMP BLK8O
X
¥ ROUTINE: DLR
X DRAW ONE FOR THE DEALER
X ADJUST TOTAL SCORE
b 3
LR MOV R11sR3
MOV @CTOT»RO
JEQ@ DLRS
EL XR15
- DATA MESS19
DLRS EL BGET

A R1,ECTOT
XI-27

-r ‘ar

GET CARD
UFDATE TOTAL

FAGE-9 SUFER

0464
0446E
0472
0476
0478
047A
047E
0480
0484
0486

0488
0484
048E
0490
0494
0496
0494
049C
0440
0444
04a8
0444
04AE
Q4R2
Q4Ré6
0418
04RC
04BE
04C2
04C4
0408
04CA
04ACE
04110
0404
04né6
04108
04LC
Q4NE
04E0
04E4
04E8
04EA
Q4EC
04EE
04F 0
04F 4

04F &6
04F A
QAFE

ABOL
0201
8060
1501
0453
0620
11FC
6820
O0ORA
10F3

C34E
0620
1504
0201
04F1
0281
11FC
0201
c8o01
0640
0400
3C20
no21
caol
0980
0280
15F3
B840
00C4
D121
0581
0281
1102
0201
04C2
0984
0284
14603
0582
0201
€020
1303
06C4
2084
0450
c804
0450

04E0
04E0
069F

XI-28

- .

ay w> > E»

-

-y W> EF ar W

“r = -y ar o cer -y

-

-

- -, W e

- wr Gr

-r > w»

UFDATE ACES TOO
TEST SCORE

RUST (MAYRE)
EXIT WITH NEW SCORE
IF ACESy

IF NOT», EXIT

RETEST

SAVE RETURN

CHECK CARDS LEFT
IF NONEy RESHUFFLE
CLEAR DECK COUNT
CLEAR COUNTERS

RESET COUNT

GET RANDOM NO.
FORCE FPROFER RANGE

ANY LEFT?
SAVE DRAWN CARD

NO-RETRY

UFDATE CARD COUNT

ADJUST FOR JyQsK
CHECKR FOR ACE

FLAG AS ACE
CHANGE VALUE
FRINT IF NOT FIRST

OQUTFUT
EXIT

SAVE HOLD
EXIT

CARD

CLEAR GAME TOTAL
CLEAR GUESS TOTAL
SIGN-ON

STARTER GAMES (VER 6/77)
OORC A R2y@CACE
0015 DLR10 LI FR1s21
O0KA (» @CTOT»R1
JGT . DLR30
ILR20 E XR3
QORC DLR30 DEC @CACE
JLT DLR20
001cC S @TENyRCTOT
JMP DLR10
X
¥ ROUTINE! GET
X GET ONE CARD. IF NOT FIRST CALL
¥ FRINT IT ALSO
X v
GET MOV R11,R13
OORE DEC @CNT
JGT GET10
00C4 LI R1»DECK
GETS CLR XR1+
oon2 CI R1sDECK+14
JLT GETS
0033 LI R1s51
OORE MOV R1s@CNT
0302 GET10 BL @RANDOM
CLR = RO
001E DIV @C13sRO
ooc4 MOVR BUECK(R1)sRO
oocz MOV R1,GLORW
, SRL RO»8 ‘
0003 CI ROs3
JGT GET10
0034 AR RONE,@DECK(R1)
000E MOVE BLAEEL(R1)sR4
INC K1
000A CI Ris10
JLT GET1S
000A LI R1s10
GET15 CLR R2
SRL R4,8
0041 CI R4r‘A’
JNE GET20
INC R2
000K LI R1ls11
O0EBA GET20 MOV @CTOTsRO
JER GET30
SWFE R4
OUT R4
,)] XR13
00CO GET30 MOV R4y@CHLD
B - %R13
X
¥ GAME - 2 (FOUR DIGIT GUESS)
X
O0R8 GS00 CLR @GAMES
O00E6 CLR RGUESS
G505 EL *R15

REDUCE SCORE

FAGE-10

0500
0502
0506
050A
050C
0510
0512
0816
051A
051C
051E
0520
0524
0526
0528
052A
052E
0530
0534
0336
0538
0583C
053E
0540
0542
0546
0544A
054C
054E
0550
0554
05546
055A
055C
0560
0562
0564
0548
056C
054E
0570
0572
0574
0576
0574
057C
0580
0582
0584
0586
0588
058C
058E
0590
0592
0596
0598
059C

SUFER

015C
06A0
03A0
04C2
0640
04C0
3C20
ce81
cocz2
0643
1104
88C1
13F3
10FA

05C2

0282

14EE
0205
04CI
04C7
05A0
069F
0140
£105
046A0
2040
04C2
2C44
0984
0224
1130
0284
1520
8884
1601
058D
0203
88C4
1601
0587
0643
14FA
05C2
0282
14E8
028D
1310
Q469F
0178
C107
06A0
069F
018A
cion
06A0
0585
02835
11CE

STARTER

0314
OOES8

0302

001C
00C4

00C4

0008

0001

Q0R6

02EkC
0007

FFIDO

000A

00C4

0008
00C2

0008

0004

GS10

GS30

G835

GS40

G850

G540
G570

GS80

DATA
EL
INC
CLR
EL
CLR
nIiv
MOV
MOV
DECT
JLT
C
JEQ
JMF
INCT
CI
JNE
LI
CLR
CLR
INC
EL
DATA
MOV
EL.
ouT
CLR
IN
SRL
Al
JLT
CI
JGT
C
JNE
INC
LI

C
JNE
INC
DECT
JNE
INCT
CI
JNE
CI
JEQ
BL
DATA
MOV
BL.
BL .
DATA
MOV
BL
INC
cI
JLT

GAMES (VER 6/77)

MESS20
BWAIT
CGAMES

. R2

CRANDIOM
RO
BTENYRO
R1+CNO(R2)
R2sR3
R3

GS30
R1s@NO(R3)
6510
G520

R2

R2,8
G510
RS9 1
R13

R7
RGUESS
XR1S
MESS21
RS+R4
@TYFED
EQUEST
R2

R4

R4+8
R4y—-2>30
GS100
R4+10
GS100
RA4s@END(R2)
G560
R13
R3+8

R4y@NO-2(R3)

G580
R7

R3
GS70
R2
R2:8
GSS0
R13,4
GS110
*R13
MESS22
R7 R4
@GTYFELD
*XR15
MESS23
R13,R4
@CTYFEID
RS
RSr16
G835

XI-29

- w» Ny W> Wr W E»

-

-r .

s Y Wr W @

-

LTI DR TR T DT T TARE TN

-

-

-, W

-

-» .y

WAIT FOR START
UFDATE NO. OF GAMES
GENERATE NUMRER

GET NO.

FORCE RANGE 0-9

SAVE NO
CHECK FOR DUF

NUFLICATE

DIGIT O.K.

CONTINUE TILL ALL DONE

R1=GUESS COUNT
R6=CORRECT FOSITION
R7=JUST CORRECT
INC. TOTAL GUESS
ASK FOR GUESS

PRINT GUESS NO.

FRINT 77

GET FOUR DIGIT GUESS
GET INFUT

RIGHT JUSTIFY

REMOVE ASCII RIAS
NOT A DIGIT
CHECK RANGE
AGAIN NOT A
CORRECT FOS7?

DIGIT

CORRECT?

FINISHED GUESSING?

IF NOTs CONTINUE
A WINNER?

SHOW RESULTS
DISPLAY TOTAL
DISPLAY SECOND TOTAL

UFDATE GUESS COUNT
RUST?

- FAGE-11

0S9E
05A0
05A2
05A4
05A8
0SAC
0SAE
OSE2
OSE4
0SEé
05ES
0SEA
0SEC
0SBE
05CO
05C2
05C4
05C8
05CC
0510
0502
0SD6
0SDA
OSDE
0SER
0SE4
0SES

05ES8

0SEA
0SEC
OSEE
05F0
05F4
05F8
05FC
OSFE
0600
0604
0608
060C
060E
0610
0612
0616
0618
0614
061C
061E
0622
0624
0626
- 062A
062E
0630
0634

SUFER STARTER GAMES (VER 6/77)

069F
019C
04C2
c122
06A0
035C2
0282
11F8
1005
069F
O1EC
10C0O
0469F
01CE
069F
o108
C160
3960
30460
04C4
3020
06A0
2CA0
0225
06CS
2085
108E

069F
022R
069F
003F
06A0
06A0
04E0
069F
0231
06A0
06A0
3860
€101
co42
0A31
3860
0581
0584
Coo4
AOCO1
€800
0A81
A101
06A0
Co20
1617
€020
0280

00C4
02RC

0008

10107
001C
O0RS8

001C
02RC
0005
0030

0314
0336
O0R6

0262
0328
0020

0020

O0OE8
02CC
0103 57

OOES8
0007

BL.

DATA

CLR
MOV
EL

G20

INCT

CI

JLT

JMF
G5100 BL

DATA

JMF
65110 BL

DATA

GS120 BL

DATA

MOV
MPY
Div
CLR
niv
EL

ouT
AL

SUPE

ouT
JHF
X

K15
MESS24
R2

ENO(R2) R4

CTYFED
R2

R2+8
G590
GS120
XR1S
MESS25
G540
XR15
MESS826
XR1S
MESS27
PGUESS RS
CTENYRS
CGAMES YRS
R4
RTENyR4
CTYFED
PRECML
RSy ‘07
RS

RS

GS05

¥ GAME-3 (CRAFS)

X
CRF10 BL

DATA

BL

DATA

EBL
CRF20 BEL

CLR
CRF30 RL

DATA

BL
- BL
MPY
MOV
MOV
sLA
MFY
INC
INC
MOV
A
MOV
SLA
A
EL
MOV
JNE
MOV
CI

XR15
MESS40
X¥R15
MESS01
CWALT
EGETWG
BFOINT
kR1S
MESS41
CTYFEN
GUAITA
@BCérR1
RirR4
R2+R1
R1+3
@CéyR1
R1

R4

R4yRO
R1sRO
ROy PROLL
R1,8
R1+R4
GTYFEZ2
GFOINTIRO
CRFSO
CROLL RO
RO 7

XI-30

-

-

-y .

-

-

P D> P WF WP B R>

-

-

- - - -r e “r wr s wr e

-

-

-

-r

A LOSER

SHOW ANSWER

START OVER
ILLEGAL ENTRY

A WINNER
00 BATTING AVERAGE

RS=GUESS

(RS5sR6)=GUESSX10
RS=(GUESS/GAMES)X10
(R4yRS)=(GUESS/GAMES) %10
R4=GUESS/GAMESy RU=REMAINDER
FRINT R4

PRINT ‘.7

"PRINT DIGIT

SIGN ON

GIVE OUT MONEY

READY?

GET WAGER
CLEAR POINT
ROLL

NEW LINE
WAIT TO GO

R4=D1IG ONE
RANDOMIZE

FORCE RANGE 1-6
CALC TOTAL

SAVE IT

JUMF IF NOT FIRST

7=WINNER

FAGE-12

0638
0463A
063E
0640
0644
0646
0644
064C
064E
0650
0654
0658
065C
06SE
0662
0664
0666
066A
066C
0670
0672
0676

0678
0674
067C
0467E
0680
0684
0686
0688
068C
0690
0694
0696
0698
069C
04%E
06A2
0646
06AA
06AE
Q06AC
06RO
046ER4
O&ES
046RA
0&ERC
06CO
06C2
04C4
06CA
06CE
e
Q602
0604

SUFPER STARTER GAMES (VER 6/77)

1310
0280
1319
0280
1113
0280
1310
069F
0230
C120
C804
06A0
10CF
CO60
8040
1306
0281
146C8
06A0
10C1
0640
10EE

0469F
0244
069F
003F
06A0
069F
0256
0720
06A0
c820
10107 21
1603
€820
101¢) 51
2CA0
06A0
Co0&0
1602

0201
8801
1506
cg20
OOES8
C801
1002
c801
06A0
Co20
130A
Q69F
0119
06A0

000R
0004

000C

O0R8
00R6

02C2

O0R8

0314

QORA
0488
00C2
06AE
0006

0488
00C2

ooon
Q00R6
00B6
00R6
OORS8

0336
00E4

0488

CRFS0

CRF &0
CRF70

X

JEQ
CI
JER
CI
JLT
CI
JEQ
BL
DATA
MOV
MOV
EL
JMFP
MOV
c
JEQ
CI
JNE
EL
JMP
EL
JMF

CRF70
ROy11
CRF70

-ROs4

CRF&0
RO»12
CRF&60
XR13
MESS42
CROLL R4
RAyEFFOINT
BOISFI
CRF30
CROLLsR1
ROsR1
CRF790
R1+7
CRF30
CLOSE
CRF20
CWIN
CRF20

¥ GAME-4 (ACEY DUECEY)

X
AlL1O

A2O

Al21

THRT

an22

AD30
Al40

REL ,
DATA
EL
DATA
BL
EL
IATA
SETO
BL
MOV

JNE
MOV

ouT
BL
MOV
JNE
EQU
LI
c
JGT
MOV

MoV
JMP
MOV
BL
MOV
JEQ
BL
DATA
BL.

*R15
MESSS0
*XR15
MESSO01
CWAIT
*R1S
MESSS51
GCTOT

EGET .
EDRWyYENUM1

AD21
CTHRTyENUML1

@SFaCE

GGET
@IORWsIR1
ALn22

$42

R1+13
R1s@NUMI1
AD30
CNUML y BNUM2

R1y@NUM1
AL40
R1s,@NUM2
GGETUWG
GWAGER RO
ADZ0

¥R15
MESS15
@GET

XI-31

- “-r» -

- B -

-y -y

- wr .

-

- > -

- ‘a» - -

EE Wr WME B W W

-r ‘@» .

-

-

11=WINNER
2+ 3=L0OSER
12=LOSER

SHOW FOINT

CONTINUE
CHECK FOINT

YES» WINNER
7=L0OSER

A LOSER
CONTINUE
A WINNER

*SIGN ON

GIVE OUT MONEY

WAIT TO GO
LAREL THE FAIR

SET DISP. FLAG

GET ONE

t

SKIF IF NOT ACE
NUM1=13

OUTFUT SFACE

GET TWO

R1i=DIRAW

JUMP IF NOT ACE
ADDRESS OF 13
RESET AS 13

WAGER
IF ZEROs NO EET

DRAW

GET CARD

FAGE-13

o618
Q6IC
OALE
Q6E0
06E4
06ES
Q4EA
Q6EC
04EE
06F2

06F4
06F8
06FC
06FE
0700
0702
0704
0706
0708
0704
070C
070E
0710
0712
0714
0716
0718
0714
071E
0720
0722
0724
0726
0728

SUFER STARTER

8820 00C2
16103 37
1503
06A0 0278
10CF
8820 OOES
00C2
12F9
06A0 026C
10C8

02E0 0080
020F 0376
04CC
069F
01ER
049F
0035
049F
015C
069F
022E
049F
0244
049F
0208
2C44
0984
0201 0022
COR1
13F8
8CA44
16FC
0452

0678 AD1O 0684
06C6 ADN4O 06E0
0712 BEG10 071E
03F8 BLK100 0404
0300 ELKAS 0308
OOR2 EBROLL O01E
OORE CNT 0009
0465E CRFS0 066C
0005 DECML %02LDC
0456 ILR 046E
00C2 DRUW OOR8
04014 GETLS 04E4
@§3E GETW20 0358

4F6 GS00 O4FE
05C0 GS120 051C
054C GSS50 0564
0022 GTAER OO0R6

ANSO

Al6O

X

c

JGT
EL
JMF
c

JLE
EL
JHF

GAMES (VER 6/77)

CORWr, BNUM1

AlILO

- CLOSE

AL20
ENUM2sCDRW

ANS0O
GWIN
AD20

¥ CONTROL LOOF

X
REGIN

BEG10

BEGZ20

ALI20
AlS0
REG20
BLK110
BLKS0
C13

CR
CRF&0
DISF
DLR1O
GAMES
GET20
GETW30
GS0S
GS20
GS460
GUESS

LWFI
LI
CLR
BL
DATA
RL
DATA
EL
DATA
EL
DATA
EL
DATA
BL
[ATA
IN
SRL
LI
MOV
JEQ
c
JNE
]
END

046%E
06E6
06F 4
0396
X03E2
0020
05SES8
0672
02E2
0478
0300
04F 0O
034A
050C
0528
0568
¥X0000

»>80
R15,MESS
R12
XR15
MESS530
XR1S5
MESS00
¥R1S
MESS20
¥R13
MESS40
XR15
MESSS50
¥R1S
MESSE31
R4

k4,8
R1yGTAER
¥R1+2R2
REG10
R4»%kR1+
REG20
XR2
BEGIN

AN21 046E0
AlGO 0008
BEGIN 0004
ELK20 03%E
EBLK60O 03ES
Cé O0QEC
CRF10 05F 4
CRF70 00BA
DNISF10 O2DE
DLR20 0474
GEN 0488
GET30 0494
GETW40 0370
GS10 05Ré
G830 0534
G570 0570
INTSSG O00E

XI-32

-sr "

-

ar wr wr ws

- -r -

- e

=Y (Jede
ATSGN
BELLS
BLK30
BLK70
CACE

CRF20
cToT

NISFA
DLR30
GET

GETS

GETWS
GS100
G535

G580
LAREL

0.K. S0 FAR
LOSER

A WINNER

USE MONITOR WORKSFACE
FRESET R135

FRESET CRU ERASE

SHOW CHOICES

GET CHARACTER
RIGHT JUSTIFY

NO MORE

GO TO CHOICE
ENDIl OF SYSTEM

06C2 Al30
000C BANK
0384 BILLK10
03R4 BLKA4O
03F2 BLK80
00C0 CHLI
05FC CRF30
Q00C4 DECK
Q2C2 DISFD
0462 DNLRS
0444 GET10
0338 GETW10
O 03346 GETWG
O05RC GS110
053C GS40
05A4 6590
000A LF

FAGE~14 SUFER STARTER GAMES (VER &6/77)

0278 LOSE 03746 MESS 0035 MESS00 003F MESS501 0058 MESS02
005F MESS03 0073 MESS504 0074 MESS0S5 007F MESS06 008D MESS07
Q09 MESS08 00A3 MESS09 OOR6 MESS10 00C%? MESS11 00D2 MESS12
wOED MESS13 0108 MESS14 0119 MESS515 0125 MESS1é6 0136 MESS17
0141 MESS18 014C MESS519 015C MESS20 016D MESS21 0178 MESS22
018A MESS23 019C MESSZ24 OLRC MESS25 O01CE MESS246 0108 MESS27
O1ER MESS30 0208 MESS31 022R MESS40 0231 MESS41 023C MESS4R

024A MESSS0 0256 MESSS1 037E MSS10 00C4 NO O0EB&6 NUMI
OOR8 NUM2 0034 ONE 00E8 FACE 0410 FLAY 0422 FLAY10
043C FLAYZ20 044A FPLAY30 0450 FLAY40 OORé6 FOINT 00E6 FTOT
0007 QUEST 0000 RO 0001 R1 *x000A R10 O00E R11
000C R12 o000 R13 *¥000E R14 000F R15 0002 R2
0003 R3 0004 R4 0005 RS X0006 R6 0007 R7
0008 R8B %0009 R? 030A RAND1IO 0302 RANDOM OOE8 ROLL
OOEO SEED 0284 SHOW 02A2 SHOW10 02A8 SHOW20 02B0 SHOW3O
0288 SHOW40 0006 SFACE 001C TEN 06AE THRT 0000 TTY

02CC TYFEZ 0202 TYFE3 02EBC TYFED 0262 TYPEN 00E4 WAGER
0314 WAIT 032A WAIT10 0328 WAITA 026C WIN
EDIT/ASM/LOAD?

XI-33

SUFPER STARTER GAMES
LOAD INTO RAM AT INDICATED ADDRESSES
BEGIN EXECUTION BY "G D2°

o0D2: 04 60 07 C6 07 2E 20 3F 40 OIr 0OA 00 03 ES8
O0EO? 41 32 33 34 35 36 37 38 39 S4 4A 51 4R 00 00 0OA
00F0: 00 OD 00 06 04 SC 00 42 05 €8 00 46 06 ERA 00 43
0100 07 4A 00 41 00 00 01 42 4C 41 A3 4R 4A 41 43 4R
01102 40 49 4E 49 54 49 41 4C 20 42 41 4E 4R 352 4F 4C
0120% 4C 20 49 53 20 24 32 30 30 40 352 45 41 44 59 3F
01302 40 48 4F 05 53 45 20 4C 49 4D 49 54 20 49 53 20
01402 24 31 30 30 40 S7 41 47 45 52 3F 40 48 49 54 3F
01502 40 44 45 41 AC 45 S2 20 48 4F 4C 44 53 20 40 44
01602 45 41 4C 45 52 20 42 55 53 54 45 44 40 S9 4F S5
01702 20 57 49 4E 40 59 4F 55 52 20 42 41 4AE 4R 52 4AF
0180: 4C 4AC 20 49 53 20 24 40 44 45 41 4C 45 52 20 54
0190% 4F 54 41 4C 20 49 S3 20 20 20 40 59 4F 55 20 4AC
01A0¢ 4F S3 45 40 47 41 4D 45 20 4AF 56 45 S5S2 20 2D 20
O01R0: 59 4F 535 20 41 52 45 20 42 52 4F 4R 45 21 40 21
01C0¢ 21 21 20 59 4F 355 20 42 S2 4F 4B 45 20 54 48 45
0102 20 42 41 4E 4B 20 21 21 21 40 83 4F 52 52 59 2C
O1E0: 20 4E 4F 20 43 52 45 44 49 54 40 59 4F 55 20 44
O01F0¢ 52 41 57 20 2020 40 S92 4F 55 52 20 54 4F S54 41
0200% 4C 20 49 53 20 2D 20 40 39 4F 35 20 42 55 53 54
02103 45 44 40 42 4C 41 43 4R 4A 41 43 4B 21 40 44 45
02202 41 4C 45 52 20 44 52 41 57 $3 20 2D 20 40 46 4F
02308 55 52 20 44 49 47 49 54 20 47 S5 45 53 53 40 47
0240¢ 55 40 53 53 20 4E 4F 2E 20 40 44 49 47 49 5S4 53
02508 20 43 4F 52 52 45 43 54 20 2D 20 40 49 4E 20 43
0260% 4F 52 52 45 43 54 20 S0 4F 53 2E 2D 20 40 4C 41
0270: 53 54 20 G3 48 4F 54 2C 20 99 4F 55 20 4C 4F 53
02802 45 2E 20 20 49 54 20 57 41 53 20 2D 20 40 3F 3F
0290 3F 20 4E 55 4D 42 45 S2 53 20 4F 4E 4C 59 21 40
02A0: 5S4 48 41 S4 53 20 49 54 21 40 39 4F 55 52 20 41
02B0! 56 45 52 41 47 45 20 49 S3 20 2D 20.40 57 45 4C
02C0¢ 43 AF AD A5 20 54 4F 20 S4 48 45 20 53 2E 53 2E
0200 20 47 41 4D 45 52 AF 4F 40 40 43 48 4AF 4F 53 45
02E0?! 20 59 4F 535 52 20 47 41 40 45 20 28 42 59 20 46
02F02 49 52 53 54 20 4C 45 54 54 45 52 29 40 43 52 41
0300¢ S0 53 40 52 4F 4C 4AC 20 2E 2E 2E 2E 2E 40 59 4F
0310: S5 52 20 SO0 4F 49 4E 54 20 2D 20 40 41 43 45 59
0320 20 44 55 45 43 45 59 40 54 48 45 20 50 41 49 52
0330: 20 201 20 40 2C A0 00 DB 2C A0 00 DC 04 SEB CO CR
0340: 06 9F 01 &I CO 20 00 B4 10 06 CO CE 06 9F 01 9B
0350: CO 20 00 E4 05 00 A0 20 00 E2 11 OC 13 OR 88 00
0360: 00 DE 15 OR C8 00 00 R2 06 9F 01 75 C1 60 00 ER2
0370¢ C2 03 10 1E 06 9F 01 A4 10 08 06 9F 01 BF 02 01
0380¢ 00 14 2C A0 00 D6 06 01 16 FC 04 60 07 C6 02 84
0390: 00 0A 11 08 04 C3 3C EO 00 EE 0A 83 Al 03 02 24
03A0¢ 30 00 2C 84 02 24 00 30 06 C4 2C 84 04 Sk C2 OB
03BO: 02 01 03 E8 C1 05 04 C3 3C C1 C1 03 04 C3 3C EO
3C0: 00 EE 06 A0 03 8E 04 CO 3C 20 00 EE CO 40 16 F2
30! 04 58 00 29 CO 20 00 RO 16 01 05 CO 38 20 03 D2
03E0: C8 01 00 RO 04 SR CO CEB 06 9F 01 2A 02 01 00 C8
03F0: C8 01 00 B2 04 EO 00 BE C2 C3 CO CR 046 A0 03 D4

XI-34

04003
04103
04203
0430
04403
V450
0440
0470¢
0480¢
04904
04A0¢
04K0}
04CO¢
04N0¢
04EO0!
04F 0
0500
0510¢
0520
05303
0540
0550
0560¢
0570%
05804
05903
0540
0SB0 ¢
05C0¢
0500
ASE0S
O05F0 ¢
0600
0610
04620
0630¢
06403
06503
0660
0670
0680
0690
06403
06KE0
06C0}
0600
06E0 ¢
06F0 ¢
0700
0710¢
07203
0730
0740
0750
0760
%?70:
0780
0790¢

iF
2C
38
88
10
2C
06
04
06
02
10
00

06
10
A8
06
00
10
06
02
11
15
00
no
E8
11
05
04
06
03
11

16

02
09
00
03
00
02
06
02
02
00
02
01
03
co
c8
16
13
03
Co
03
01
05
2C
00
00

00
44
60
01
E4
?1
?F
Fi
A0
84
F3
10

?F
c3
02
?F
R8
Do
9F
01
FC
0A
33
21
60
02
82
sh
oF
n4
04
EE
3F
84
c4
87
04
sc
?F
82
A0
k8
25
11
03
42
00
17
19
OE
60
4A
11
SA
A0
on
Bé

13
09
00
00
06
05
01
02
04
00
06
15
01
01
co
00
01
11
06
02
00
68
02
c8
00
01
o2
02
c8
02
04
88
02
Cc1
02
16
06
13
Cc1
02
00
06
04
00
06
06
0A
00
co
02
C1
00
10
06
c8
00
88
10

FC
84
EE
R2
9F
81
11
81
E2
4E
?F
03
SF
88
CE
E8
F7
04
oF
1E
15
20
01
01
Ca
06
01

04
2E
co
C1
05

24
01
43
iD
on
6k
08
?F
Ca
30
AO
AO
31
E8
20
80
20
E8
Cc1
AO
20
ng
01
02

44
24
84
04
DA
11
AO
EE
Ao
06
51

A0

20
9F
01
20
20
13
AO
60

C4
RE
01
C4
0A

co
AQ
20

C4

01
AO
no
an
FA
F
A0

il

e

F8
AA

o]

e
CS

Eé

34

60
81
k8
04
B8
40
AQ
Eé
c2
AO
Bé6

04
FF
co
c8
10
00
03
16
05
02
2C
035
03
00

00
00
00
10
05
00
00
04
06
00
i
04

04
03
00
13
04
03
i1
02
03
02
03
c1
10
C1
00
2C
06
06
00
Al
02
11
c8
13
03
06
00
035
15

00

53 CO
po 11
42 10
01 00
E1 CO
na 16
E& 06
FC 06
28 046
84 00
A0 00
28 10
3E 10
BA 06
EER 06
15 80
Bé6 C2
EE 00
CE CO
94 AB
BA 15
EA 10
F1 02
A0 03
c2 09
21 00
c2 09
20 00
50 04
E6 03
EE €8
F3 10
Chh 04
8E 2C
30 02
03 00
c2 02
44 C1
8E 05
22 00
05 06
40 00
EE 06
85 10
AD 04
A0 03
F2 05
01. 06
80 00
13 02
04 00
06 02
3E 10
F 03
Bé6 16
5S4 CO
06 C8
B8 06

XI-35

?F
84
81

AQ
92
08
28
4C
Fé
460

60
?4
9A
B6
60
EC
20
BA
53
4R

na2

CO

80
81
84
03
E8
E8
Ca
€2
AQ
ne
oA
cC4
08
Ao
85
AQ
8E
60
8E

EQ
60
84
PE
ic
ocC
AO
07
9F
20
20
c2
Ré
08

07403
O7EO
W7C0¢
0700
07E0:
07F0¢
?

13
15
06
06
06
co

DA
03
A
9F
9F
Bl

06
06
03
02
03
13

9F
AO
3E
ED
ic
F8

01
03
10
06
06
8cC

EE
46
c8
9F
9F
44

06
10
02
01
02
16

AO
CF
EO
07
DA
FC

05
88
00
06
20
04

54
20
80
OF
44
52

88
00
02
02
09
04

XI-36

20
E8
OF

b

~

84
60

00

00
04
06
02
05

c2
c2
48
9F

FO

00
12
04
02
00
1E

Ré
Fo
ccC
FI
F4
01

SUFER STARTER GAMES - PROM VERSION

LOAD PROGRAM INTO RaM AT B0y THEN FROGRAM
INTO & PROM BY "F BOZFF»Q", PROGRAM T8
EXECUTED IN FROM BY "G FOOO".

OQOROY 04 &0 Fé& F4 OF 2ZE 20 3F 40 0 04 00 03 EZ 41 32
OQCOT 33 34 38 JFa 37 3R 39 H4 48 G 4R 00 00 04 00 QD
QOIO: 00 06 F3 8a 00 42 F4 Fé 00 44 FI ES 00 43 F& 78
OOEO! 00 41 00 00 01 42 40 41 43 4R 44 41 43 4R 40 49
QOFOT 4E 4% 534 49 41 40 20 42 41 4E 4R 52 4F 40 40 20
QLOOT 4% 33 20 24 32 30 30 40 52 4% 41 44 5P 3F 40 48
QLLO: 4F 8% 53 45 20 4C 49 40 49 54 20 49 53 20 24 31
OLR203 B0 IO A0 5V 41 47 45 H52 OBF 40 48 49 S4 3F 40 44
QL30T AL 41 40 4% 52 20 48 4F 40 44 53 20 40 44 45 41
G140 A0 45 2 20 42 85 53 G4 45 44 40 Y 4F 589 20 47
QLE0L 4% S 40 59 4F HE 52 20 42 41 4E 4R 52 AF 40 AP
0L&00 20 4% 53 20 24 40 44 45 41 40 45 52 20 54 4F G4
QL70: 41 40 20 4% GF 20 20 20 A0 59 4F GO 20 40 4F &5
0L80: 45 40 47 41 4D 45 20 4F 5& 45 52 20 20 20 59 4F
Q190 G5 20 41 532 45 20 42 52 4F 4R 45 21 40 210 20 21
GLaGd 20 59 4F S5 20 42 52 4F 4B 435 20 54 48 45 20 473
QLEG: 41 SE 48 20 21 21 21 40 G348 52 52 e 20 20 4E
QLCOL 4F 20 43 G2 45 44 4% 54 40 G 4F 55 20 44 52 41
QLnO: 57 20 20 20 40 59 4F ﬁb G220 54 4F 5 S
QLEG: 4% 53X 20 2D 20 40 59 4F 55 20 42 1
OQLFQO: 40 42 40 41 43 4B 44 41 43 48 21
Q200: 495 52 20 44 G2 41 57 33 20 20 20
02101 20 44 49 47 47 g4 20 47 55 45 53 53
Q2203 83 53 20 AR S0040 44 4% 47
QRZ0 AF 52 52 1” 20 20 20 40 49 4
Q2A40F B2 45 43 G4 S0 O4F 5325 2D 20
Q2G0T 20 53 48 4F ﬁﬂ 20 20 5Y 4AF 55 20
026G 20 20 49 H4 20 57 41 5% 20 2 20
QR700 4 505 40 43 A5 52 HI 20 4F 4E AC & .
Q2808 41 54 53 20 4% 34 21 40 59 4F 55 52 20 41 58 45
Q2908 52 41 47 45 20 49 33 20 20 20 40 37 45 AL 43 AF
Q2600 40 45 20 54 4F 20 G4 48 45 20 53 2E H3 2E 20 47
Q2BE01 41 A0 435 52 4F 4F 4D 40 43 48 4F 4F 53 45 20 59
Q200 4F 55 G2 20 47 41 40 45 20 28 42 59 20 44 4% 52
Q2063 53 54 20 40 45 54 G4 45 G2 029 40 43 82 41 50 53
O2EQL 40 I2 4F 40 40 20 2E 2E 2E 2E 2E 40 59 4F BH 52
02F0: 20 G0 4F 49 4FE 54 20 20 20 40 41 43 45 5% 20 44
Q3005 G 45 43 45 59 40 54 48 45 20 50 41 49 52 20 20
OF103 20 40 2C A0 FO 09 20 A0 FO 0 04 5k 0O OB 04 9F
03208 FO 9B CO 20 00 B4 10 06 CO CE 046 9F FO C9 CO 20
Q330% 00 R4 05 00 A0 20 00 B2 11 0C 13 OR 88 00 FO OC
03403 15 OB C8 00 00 B2 04 9F FO AZ Cl 40 00 BE C2 03
0350% 10 1E 06 9F FO D2 10 08 06 9F FO EI 02 01 00 14
Q3600 2C A0 FO 04 046 0L 146 FC 04 40 F& F4 02 84 00 04
Q3703 11 08 04 C3 3C EO FO 1L 0a 83 Al 03 02 24 30 00
03808 20 84 02 24 00 30 06 T4 20 84 04 SR C2 OB 02 01
G390 03 EG C1 0% 04 C3 3C CL CL 03 04 C3 30 EO FO 1C
O3A0L 06 A0 F2 BC 04 0 30 20 FO LC CO 40 16 F2 04 58
Q3BG: 00 29 CO 20 00 BO 16 01 05 CO 38 20 F3 00 C8 01
Q3C0: 00 RO 04 3B CO CBE 046 9F FO S8 02 01 00 €8 8 01
QANOL 00 B2 04 EO 00 BE 2 C3 CO CR 06 A0 F3 02 1F 00
OFEGT 13 FC 20 44 04 53 GO CR 06 9F FO 73 04 1 20 44
O3FQ 0% 84 02 24 FF DO 11 08 02 84 00 09 15 05 38 &0
P

XI-37

04002
04102
Q043203
04303
Q04402
04503
Q4803
04701
04801
04902
04703
Q4RO
Q40C03

Gano s

Q410!
04F G
05002
05103
Q320
053G1
Q5403
Q55032
Q5603
QE708
QE80:
Qa0
05RO
QLR S
QuECo:
Qa0 s
QGO
O5FO2
Q&G0
06103

06208

Q6308
06403
Q&350
Q6603
Q47012
G680
069012
Q6A0 S
QHRO S
C&CO:
&N
Q6EQS
Q4602
07003
0710¢
Q7201
Q7308
07402
07502
07601
Q7701
Q7808

FoO
00
0b4
05
0
02
-4
00
0é
15
FG
FO
co
00
1
11
06
1
00
&8
o
Ca
QG

FG 3

02
02
]
Fi
04
88
02
¢
02
14
(1)
13
1
F1
00
0&
04

00 ¢

O
Gb
0f
Q0
Co
o2
Ci
Q0
10
0&
e
FO
28
10
0&4

1C
B2
(}} l:t'
a1
3F
g1
10
AF
GF
03
an
Bé&
Ch
-

i
04
oF
Al
18
20
0l
Q1
C4

Ho
13
F1
@8
06
00

06'

13
Fo
Q8
0b
c1
O&
02
(i}
()\‘
F1
0b
8o
FG
Q0
00
cy
00
(0
4]¢]
Q0

all 04

3
Go
00
0é

.....

F' ;3:‘ 1 Y

Q%
16
08
04
04
11

Fi

30 20
06 €5
F3 14
F2 &2
38 &40

Of
00
00
(¢1¢
80
0&
3
91¢]
0é
00
ca
F1

Bé

19

IO
13
04
F2
11
02
QF

- F1

F2

2 Gl

10

» Gl

FQ
A
06
Q&

FO

"l

02
11
cE
13
F2

06

2 00

F4
135
00
04

42
01
1

0\)'

......

B
30

sssss

kS

10
Q0
Co
14
Q&
Q&4
QO&
QO
102¢]
10
16
QOd
Qb
80

16
co
]

Q6

F3
B4
B
FE&
A
Ao
oF

lJ’)"

cl
F&
CF
Ao
Yo

\)f‘)

o2
04
Qh
04

F3 3
Fa !
Eo

1é

Co
Q2
a0
Fa
F4
Q0

3 04

Bé
CR

&8

10
Co
Q0
Q4

f C3

Q0

2 04

02
]
R
13
a0
1¢]
4]¢]
Q3
G5

O

00
8g
Q0
0
02
06
F1
36

o’
AL

Qb
O .\"}

'38

05
o

13
G0
()
00
06
07
ce
G0
00

B

F3 3
88

XI-32

Q0
06
2
Q&
02
0é
20
0é
Q0
Q0

00 B

)
A8
13
)

Qb

......

00 B

A8
0&

Q4

F2
00

o
o
02
13
-
16
00
Fé
16
00
o
00

O«

R S
~o

Bé

SE
G2
g
BC
10
RBC
GO
1C
MO
2
Bé
20
04
20
R0
10
G2
2]
44
BA
=13
02
B3
20

el
L

.......

ce
QO
00

P
LS
£y
LS

)
St

20
Q&
04
O()
02
10
Q0
[$1
Q&
10
A8
Q&
00
10
(o1
O
11

00
ne
BH
14
0%
(4
O
F3
11

16

s [

09
1y
0%
61¢]
Fi
06

202

F1
00

» 02
- O

F2

Co
ce

SN

13
F2
Co
F2
FO
F4
20
00
00
13
15

OL

9]
QF
1
A0
84
10
ol
S
C3
02
SF
BE
I
9F
Q1
FC

1S 0n

33
21
&0
o2
82

il
’:r' Ff'
Q2
(4

oo

NPT
R AR A

R

o

[l s s
£

e

[s
£
>

~G
Pty
2

88
AQ
Qu
R&
i)
03

Q7¢02
Q7RG
Q7602
Q7008
Q7N0
O7EGE
O7F 03

¥

O
]
A

Fl
F2
13
&1
43

aYe)
&
s
44
F&
42

&8

F2
10
Q6
0&
8e
Q&

44

78
ca
oF
‘.'? IZZ‘
44
Ao
0é

10
O
a2
)
14
A7

20 00 BY
80 02 OF
YF F1 8C
44 Q% 4
32 046 A0
20004 60
B4 4% 02

XI-39

iy
ol Ao

76
OF
01
CE
Eé

83

12
04
Fa
FO

ATI

Eo
ce
28
23
2k
03

&4

Qé
WA
0&
Co
Gl

”y

&
I

The TMS-9900 MICROPROCESSOR:
Used in Technico Systems

Uﬂstched. In word size. Instruction
set. Addressing capabilities. TI's 16-
bit TMS9900 microprocessor.

Powerful enough to be the heart of
a minicomputer. Ideal for terminals.
Instrumentation. Machine control.
Scores of OEM applications. Destined
to become today’s and tomorrow’s
design standard.

Because the TMS9900 micro-
processor represents more than just a
single device. It introduces a new
family concept allowing full design
flexibility. Enabling you to move
freely and easily over your entire
range of applications. Now. And in
the future. With less redesign. Less
software reinvestment. Less relearn-
ing. Less obsolescence.

Improved System Cost/Perfor-
mance Compared to 8-bit wPs, TI's
TMS9900 microprocessor provides
these unmatched savings:

® 30% faster execution time

@ 20% savings in program coding

0@3 savings on system interface
costs :

® 50% more efficient interrupt hand-
ling

® 20% reduction in memory bit
requirements

These benefits stem from the
TMS9900’s advanced features:

16-bit instruction word with full
16-bit data precision.

Operation at 3.3 MHz clock rate.

Full minicomputer instruction set
including Hardware multiply and
divide.

Advanced memory-to-memory
architecturethat locates general-pur-
pose register files in memory.

Separate 16-bit address, data, I/O
and interrupt buses.

Fully Compatible Software
The 9900/990 software has been
tested and proven in more than 1000
systems. Any software you develop
for the TMS9900 can be used with the
P and 990/10 minicomputers — or
®SBP9900 and TMS9980
microprocessors. In fact, any soft-
ware developed for the TMS9900 can
be used with any other family mem-

ber — at present and in the years
ahead.

More 9900 Family Soon

The TMF9900 is just the beginning.
Future family circuits, all software
compatible: SBP9900, an I°L
microprocessor designed to handle
military temperature ranges.
TMS9980, an N-channel w P with
an 8-bit data bus for smaller
systems.

Also coming are 9900
peripheral support circuits:
TMS9901 programmable systems
interface. TMS9902 asynchronous
communication controller.
TMS9903 synchronous com-
munications controller. And the
TIM9904 low power Schottky
TTL 4-phase clock generator.

INSTRUCTION SET INSTRUCTION SET SUMMARY
_) (69 INSTRUCTIONS)
The instruction set of the oy ADD (W. B, Imm), SUB (W, B), COMPARE
TMS9900-contains 69

(W, B. Imm), INCR (1,2), DECR (1,2),
ABS, NEG, MPY, DIV :

commands, including
multiplication and | (20)

Program Control

BRANCH (LINK, LOAD WP),
JUMP, JUMP CONDITIONAL (12) RETURN,
IDLE. EXECUTE, EXTENDED OPERATION

division, which may be
divided into seven

Data Control (14)

MOVE (W, B) LOAD (Imm, WP, ST),
STORE (ST, WP), SWAP BYTES, CLR,

o , SETO. SOC'(W. B), SZC (W, B)
,prmmpal groups: i) ANDI, ORI, INV, COC, CZC, XOR
Shifts (4)° SRA. SAL, SRC. SLA
70 (5) LDCR, STCR. T8, SBO, 582
External (4) RESET. CKON, CKOFF, LREX
ARCHITECTURE

The memory word of the TMS9900 is 16 bits long. Each word is also defined as 2 bytes of 8 bits.
The instruction set of the TMS9900 allows both word and byte operands. Thus, all memory
locations are on even address boundaries, and byte instructions can address either the even or
odd byte. The memory space is 65,536 bytes or 32,768 words. The word and byte formats are

shown below. .

MmsB : LS8
0|1]2 3[4[5[617l8]9]10 11112 13|14 |15
]
\BIT /
Vv
MEMORY WORD (EVEN ADDRESS)
MSB LSB MSB LSB .
lo123455789101112131415
SIGN SIGN
8IT BIT /
\ Bl \ AB! Vs
EVEN BYTE ODD BYTE
ADDRESSING MODE | DESCRIPTION Addressing Modes
Workspace Register | The contents of the indicated workspace A program can use seven
‘. register are the operand. diff t d £
Workspace Register | The contents of the indicated workspace ! eren. modes o
Indirect register contain the memory address of the addressing.
operand.
Indexed The contents of the indicated workspace

register are added to the address enclosed
in the second command word.

Direct (S or D Equals 0) | The word following the instruction contains
the memory address of the operand.

Wo;kspaqe Register | The contents of the indicated workspace

Indirect with Auto register contain the memory address of the

Increment operand which is automatically incremented
after the access (plus 2 for word operations
and plus 1 for byte operations).

Immediate The word follewing the instruction contains
the operand.

Relative The 8-bit displacement of the instruction is

added to the update program counter in
jump instructions or to the base address in

single-bit CRU instructions.

32 16 8
BITS BITS BITS
IBM TECHNICO DEC Databen | National 21106 INTEL | Rotorola|MOS
COMPARE! 360 Ti 9800 Lsi-n NOVA PACE 1-80 8080 | 5800 |6502
WORD SIZE (Register) 4 BYTES 2 BYTES 2 BYTES 2 BYTES 1 8YTE 1 BYTE 1 8YTE | 1BYTE |1BYTE
KUMBER OF ACCUMULATORS 16 16 1 4 4 1 1 2 1
NUMBER OF SEPARATE SETS OF REGISTERS 1 MANY 1 1 1 2 1 1 1
ACCUMULATOR ARITHMETIC CAPABILITY te 4.3 billion | t0 65.535 10 65.535 10 65,535 | 1065.535 | to 255 10255 | 10255 |10 255
MUMBER OF INDEX REGISTERS 15 15 1 2 2 2 0 1 2
MAXIMUM INDEX REG. ADDRESS VALUE 16.777.216 | 65.535 65.535 32,761 65.535 65.535 — 65,535 |255
MAXIMUM DISPLACEMENT FROM INDEX REGISTER | +4096 +65.535, -65.535 | +65.535,-65.535 | +127,-128 | +127,-128 | +127.-128 | — +255 | +65.,535
MEMORY ADDRESSING LEVEL BYTE . BYTE BYTE word word BYTE BYTE BYTE BYTE
MEMORY TO MEMORY DATA MOVEMENT YES YES YES no no YES no no no
HARDWARE MULTIPLY AND DIVIDE YES YES optional YES no no no no no
SINGLE CHIP CENTRAL PROCESSING UNIT (CPU) " YES n YES YES YES YES YES YES
SOFTWARE COMPATIBLE MINICOMPUTER FAMILY no YES YES YES no no n no no
BIT ADDRESSABLE COMMUNICATIONS REG. UNIT ne YES RO no ne no no no no
EASY and INEXPENSIVE to INTERFACE te ne YES . no YES YES YES YES YES YES
CTECHNICO
B . POWER
GENERAL MEMORY TS 9900 nlzv »s; _sl' G:n
e f{F] me e
o { F) S — (00-015)
P g > CRUIN WEWER | MEMORY
TMS 9900 WE INTERFACE
e e w] e
/ INTERFACE Y 1C0-IC3 —_— READY
= A — o
. i INTERFACE | [0AD ———1 mA) A aEACE
WORKSPACE REGISTER 15 ‘ L
] 4 TMS3900 Memory Architecture TMS9900 Microprocessor CPU
PROGRAN § INTERRUPTS
The TMS9900 employs 16 interrupt levels with the
< highest priority level 0 and lowest level 15. Level 0 is
. reserved for the RESET function, and all other levels
WORKSPACE S may be used for external devices. The external levels

The Program Counter (PC) contains the
address of the next instruction to be executed. As
each instruction is executed, the PC is
automatically updated.

The Workspace Pointer (WP) contains the
memory address of the first sixteen consecutive
memory words in the workspace. Thus, the pro-
cessor has access to sixteen 16-bit registers. When
a different "set of registers is required, the
program simply reloads the Workspace Pointer
with the address of the new workspace. This
results in a significant reduction in processor over-
head when a new set of registers is required.

The Status Register (SR) contains flag bits
which indicate results of the most recent

may also be shared by several device interrupts,
depending upon system requirements.

arithmetic or logical operations performed. The
SR also contains the 4-bit interrupt mask level.

INPUT/OUTPUT :

The TMS9900 can input and output data by three
distinct methods. A dedicated method of perform-
ing I/0, utilizing a separate I/O port called the
Communications Register Unit (CRU), may be

- preferred in a majority of applications because of

its easy interfacing capabilities.

TECHNICO

9130 RED BRANCH RD.
COLUMBIA, MD. 21045

INC ORPORATED PHONE 301-596-4100

TECHNICO
SUPER SYSTEM 16

Includes serial and parallel interface, E-PROM programmer,
CPU and Memory — can be programmed in Hex. No power sup-
ply or terminal. Hardware multiply divide is included. Order P/N
TK-1.

Power Supply is added so that system is a functioning micro-
computer. Only a terminal or keyboard and video board is \
needed for operation. Order P/N TK-1-PC.

The Instant Input Assembler can be added in ROM for only\
$49. Provides assembly language capability. Order PIN TK-1-1A.

Allows 12K Byte user area with assembler, editor, linking loader.

Allows 10K Byte with Basic. Additional 8K Bytes of memory only
$100. Order TK-2-18K.

A 4800 Baud digital cassette is used for program loading. It also
provides 80,000 Bytes of memory storage. Storage time for an
8K program under 3 minutes. Reliable, fast storage on digital

COMPARE 16 BIT COMPUTERS
TECHNICO vs. HEATH

An attractive vacuum formed chassis may be added to any Technico System at a cost of $179; however, a modular design is used which
does not require a mother board or chassis. Get a more powerful, more flexible system from Technico based on the Texas Instruments TMS-
9900 16 Bit Microprocessor, and save $500 to $1,000.

O i s .

HEATH
H-11

IN STORE
PRICE

T
MINIMUM
KIT

L WITH POWER

SUPPLY AND

1-0

~WITH ASSEM-

BLY

LANGUAGE

WITH MEMORY
~FOR FULL
SOFTWARE

cassette. Price — $199. Order P/N T-9948-C.

*FOR COMPLETE COMPARISON SEE HEATH
AND SEND FOR TECHNICO PRICE LIST

TECHVNICO HEATH
SYSTEM H-11
$442 $1,550— |
$491 SI,845/
$968 $2,140 |

Circle Inquiry No.

Contains power supply and limited chassis but no Interface for
terminal; there is no way to enter data or programs. CPU does
not include hardware multiply divide. The H-11-6 costs an extra
$159. (pg. 6 & 7*)

n H-11-2 parallel interface and H-11-5 serial interface cost
$200. (pg. 7*)

An H-11-1 at $295 must be added to bring the system to the
minimum memory to run any software. (pg. 6*)

Another H-11-1 at $295 must be added to bring the memory to
|_~the size recommended by Heath (page 6, 3rd column, last
para.*) DOES NOT INCLUDE ANY TERMINAL DEVICE

The only method for program loading described in Heath
catalog is a 50 character/sec paper tape reader H10. Punch

Technico Chassis Capacity

Technico chassis will hold CPU plus 65K Byte of memory.
Floppy disk controller, digital cassette interface and up to 7-
RS232 or 20 ma current loop interfaces, 48 Bits of parallel input
and output and a video color graphics board with Keyboard
Interface. A 2708 and/or 27 16 E-PROM programmer can also be
included.

TECHNICO

INCORPORATED

9130 RED BRANCH RD.
COLUMBIA, MD. 21045
PHONE 301-596-4100

1-

800-638-2893

*ALL P-C BOARDS ARE AVAILABLE ASSEMBLED AND TESTED OR AS TEC-KITS ™
BUY TECHNICO PRODUCTS FROM YOUR LOCAL COMPUTER STORE!

operates at 10 characters per sec. Estimated time to punch an
8K program is over 25 minutes. COST — $370 (page 8*)

Heath Chassis Capacity. (pg. 6)

(Col. 1, para 3* and Pg. 6, col. 1, para. 1*) With KD11F Board
and H-11-2 and H-11-5 there is space for only 20K words (40K
Byte) of memory not 65K Bytes. No space for additional RS232
interfaces. No space for floppy disk controller. No color
graphics. No digital or audio cassett interface.

*Source Heath Catalog
Christmas 1227 issue

TECHNICO ‘s
INCORPORATED PHONE 301-596-4100

CALL TOLL FREE 1-800-638-2893

TECHNICO PRODUCT DESCRIPTION

Technico products are available assembled and tested and in most cases, unassembled in TEC-KIT™ form. Due to
Technico’s previous experience in supplying hi-rel computer components to the aerospace and defense industry, only full spec
manufacturer warranteed parts rated and guaranteed over the full temperature range are used in TEC-KITS™ The PC board
material is the same as that used in the aerospace industry. All boards are socketed for easy repair and servicing. Domestic
prices range from $299 to over $5000 and all boards are compatible to form whatever level system the user may desire or
be able to afford. Any boards purchased as TEC-KITS™ and assembled by the user may be returned initially and factory tested
and repaired for a flat $25.00 fee.

The Technico Super Starter System is a low cost start towards owning the most powerful personal computer (the
Super Starter 16) on the market today. It is the most powerful because it uses the 16 bit TMS9900 microprocessor. It is low
cost because of a unique modular design which allows operations either without a chassis or with a chassis which does not
require an expensive mother board. The bus structure is universal and allows easy interface to other Technico boards or S100 or
S50 boards. A chassis with fan switches cables and connectors may be added to the system at any time.

Unlike other competing personal computing systems, however, a chassis is not required for operation. In the case of
the Imsai, for example, of the first $1000 spent on a system, almost 40% of the price goes for chassis and mother board and the
resulting system does not have enough memory to run full software. Technico is dedicated to giving maximum computing
power per dollar.

For a reasonable price you can own art 18K byte Technico system capable of accepting full Basic or an
Assembler Editor Linkage loader and still leaving a large 6, 8, or 10K byte user area, depending on the software loaded.

The Technico Super Basic is the most extensive and fastest basic now offered in a personal computing system. Using
the Kilobaud magazine Benchmark Program No. 7, which is the most difficult of their Benchmarks, as a test, the fastest time
previously reported was by Ohio Scientific who ran the benchmark in 51 seconds. The slowest time was by Southwest
Tech, at 235 seconds, which is almost four minutes. All other systems were reported somewhere between these two times.
The Technico System 16 ran the benchmark in 13 seconds, thats 400% faster than OSI and almost 2000% faster than
Southwest Tech. In more complex programs, the difference in speed of execution is even more drastic! The reason for this
dramatic performance in increase in speed and efficiency of the TMS 9900 processor and the ease and efficiency of
programming it provides to the talented programmer. Since the memory is BYTE or WORD addressable, and because of the
large number of accumulators & registers the Basic requires less code and hence less memory than comparable basics on
other processors.

The TMS9900 truly provides mini-computer performance in a microprocessor because it was designed to be the CPU
of a data processing system, not to be a controller or logic replacement device like the 8 bit machines. The 9900 is a
miniaturized version of the discrete PC board CPU used by Texas Instruments in their 990/10 minicomputer. T merely
took their existing CPU design and reduced it to a single N-MOS Silicon chip, which includes hardware multiply and divide. The
TMS9900 not only copies the architecture of the PDP 11, but adds the bit manipulation features of the 990/10 which makes
it easy to interface to and to use in process control and data applications. Since the chip is a reproduction of the 990/10, it is soft-
ware compatible with this larger machine and the smaller 990/4 TI minicomputer. As you can see from the TMS9900 comparison
sheet with its 16 bit format, 16 accumulators and 15 registers, the TMS9900 looks more like an IBM 360 than it does an
8080 or Z80 or 6502. But yet, it is priced in the Technico system at a price competitive with the older 8 bit machines.

The 990G will not be obsolete as will today’s 8 bit processors. Approximately 13 years ago Tl introduced the 7400
series of integrated circuits and said they would produce a compatible family of IC’s. At the time, the RTL and DTL circuits were
popular. Today, 13 years later, the 7400 series is the industry standard and still in wide use and has not been obsoleted. Ti
announced a family of software compatible processors in 1977, starting with the TMS9900. So far the family has been
expanded from the original 2.3 mhz version and the present 3.3 mhz version to 12L version which is approved for space flight use
& in the future will reach 10 mhz speeds. A low cost 8 bit and single chip version (the 8940} with RAM, E-Prom on the chip are
also available. It is reported that the 79 model year Chrysler will use the TMS9900 as its lean burn computer. Tl buble memory
boards and analog boards are planned to be compatible with the TMS9900. If the experience with the 7400 is any indication we
can truly expect that the 9900 system you invest in today may be around until 1990. So get started with your system of the
90’s, the Technico 9916 System, it's the best value in microcomputing.

The Technico Super Starter System is designed to serve two purposes. One is to be the CPU and peripheral inter-
face for the powerful system 16, which can be expanded to 65K bytes with dual floppy disks, digital cassettes, video
graphics, six RS232 interfaces and over 192 bits of 10. A powerful systems monitor and fully buffered data and
address lines and serial and parallel interface are included on the Super Starter Board, together with the capacity for 2K of
memory. Each additional card, by adding memory or |0, enhances an already operating system. The super starter system can
also be an initial stand alone microcomputer with which a person can learn about microcomputing without spending a
fortune.

Unlike other competing systems where the initial learning device must be thrown away and a new investment made to get
a real working computer, there are no throw away boards or peripheral devices intended in a technico system. A user merely
decides which level of system his knowledge, budget or application dictates. Any system may be expanded at a later date
without sacrificing the initial investment that is made. For example there are many learning devices on the market in the
price range of the super starter system which allow programming in hex. Unfortunately after a few weeks of hex programming
the user’s knowledge outgrows the kit and the entire system with hex keypad is discarded and the investment lost. This is not the
intent of the super starter system. It is intended to become part of the system 16. The super starter system contains the powerful
16 bit TMS9900 microprocessor with hardware multiply and divide, 16 accumulators, 15 index registers and separ-
ate 16 bit data and address lines. The board has capacity for 2k bytes each of Ram, rom and E-Prom a parallel and
serial RS232 and 20 milli amp current loop.

It incorporates 8 vectored interrupts and also contains as a free bonus, an on board E-Prom 2708 programmer. A

2716 programmer can be added at minimal cost. Because of the ease of interfacing to the TMS9900, the RS232 interface con-
tains only a few transistors, and under the software control of the monitor it is completely adjustable up to 9600 baud by
merely hitting reset and carriage return.

This makes the interface almost universal and allows the unit to communicate with any terminal or RS232 or 20 milliamp
device up to 9600 baud. The monitor also contains advanced commands, such as break point and snap, so that the operat-
ing registers and memory locations can be displayed on the terminal during an operating program, thus eliminating the need for
a front panel. A user program can be programmed into E-Prom with merely a “p” command from the monitor. In the prom area of
the board Rom based mini assembler, which is called the Instant Input Assembler , can be inserted. This allows the
programmer to work in assembly language. It also converts the mnemonic instructions of the TMS9900 to Hex, one instruction
at a time, therefore, being both an excellent programming and learning tool. The memory of 512 bytes which is provided in the
initial price of the system can be expanded to 2K on the board. Additional memory in 8K byte increments can be added to 32K
byte capacity memory add on boards allowing memory expansion to 65K bytes, not including mass storage cr memory mapping.
Of the 2K each of RAM, ROM and E-Prom (6K bytes total) capacity of the super starter board, 512 bytes of Ram and 1K bytes of
Prom, which is the powerful systems monitor, are included in the initial price.

Additional RAM is purchased separately. In the remaining 1K byte ROM area, either the instant Input Assembler or
expanded monitor can reside. The expanded monitor is used to control and provide reliable timing for the Technico 4800 baud
digital cassette (part No. T9948-C) which can be used for program loading and program data storage. The IIA can then be
stored on digital cassette as can the other software, such as the assembler editor linking loader and basic.

The recommended system configuration to run either the assembler, editor, linking loader or basic is the Super Starter
System with 2K bytes of memory and expanded monitor. To this is added a 16K byte memory add on board giving the system a
RAM area of 18K bytes. This system in Tec-Kit form is part No.TK-2-18K or as an assembled and tested systems part No. TAS-
18K. Itis recommended that the 4800 baud cassette part No. T9948-C be hooked into the system to provide rapid program load-
ing and storage. Since the cassette is not interfaced through the RS232 interface, the RS232 interface is available for connection
to any standard terminal. By using this cassette system, program loading is approximately 400% faster than audio cassette
and 2400% faster than paper tape. If the user does not have a terminal the color graphics board can be combined with
the system and -hooked to a TV or video monitor. The interface to a television is done through an FCC approved device con-
nected to the antenna. The memory of the system can be expanded with additional RAM boards. The input can be expanded by
adding a board with six RS232 interfaces. Floppy disks can be added for expanded memory. An E-Prom board can be added for
use with ROM based software. A 192 Bit IO board can be added for expanded 10. Because of the number of compatible boards
and peripheral-devices available and the fact that they can be used inside or outside a chassis, as well as be purchased on TEC-
KITS™ or assembled and tested, the user is provided maximum fiexibility to meet his desires, application or budget.

XIV. TI_9900 OVERVIEW

A. INTRODUCTION

THe Texas Instruments 9900 is not the first 16-bit
microprocessor to be intorduced, but it is probably the
most powerful one. The architecture of the 9900 is unlike
that of most other microprocessors (8 or 16 bits). It is
more like that of a minicomputer. Iﬁ fact, the 9900 1is
identical to the 990 microcomputer offered by T.I. This
section provides an overview of.the TI 9900 from a
programming viewpoint. Combined with the detailed instruction
descriptions in section IX you have all the tools to
begin writing codé.

As we already mentioned, the TI 9900 is a 16-bit
microprocessor. Its architecture is vastly different from
the simpler 8-bit microprocessors. One difference is that
the registers are contained in memory. The only registers
within the processor itself are: the pragram counter,
status register, and a pointer to the registers in memory.
The overall architecture is shown in FIGURE XIV-1l. The
program counter containsAthe address of the current
instruction. The workspace pointer (WP) is a 16-bit
register which holds the address of the first register in

memory. The sixteen general registers RO-R16 are contained

XIv-1

Figure XIV-1 TMS9900 Architecture

CPU

WP >

PC

ST

RO|

R1

R15

MEMORY

XIv-2

in the sixteen sequential locations addressed by the WP.

For easy reference, the entire 9900 instruction set
is described in detail in section IX and summarized at
the end of that section.

Computations in the TI 9900 are performed between the
registers, between the registers and memory, or between
two memory locations. The memory of the 9900 is addressed
by byte or word. The processor always references a word
because the least significant address bit is not available
as an external pin on the processor. Internally, however,
you can address either words (tﬁo consecutive bytes, the
address of the first one is even), or bytes. All instructions
are stored as consecutive words. The addressing modes of the
TI 9900 are:

(1) immediate - The operand is contained in the

word following the instruction. For example,
LI R1,>1234 ; load Rl with 1234 (hex)
will load register Rl with the value 1234 (in-
hexadecimal notation). The symbol '>'

indicates to the assembler that the value is

hexadécimal, not decimal.

XIV-3 -

(2) register - The operand is contained in one
of the general registers (R0O-R15). These
registers are actually in memory. The address
of register 'x' is WP+2¥x, where WP is the
contents of the workspace pointer. You should
be careful to preset WP at the beginning
of your program. If not set properly, the
registers may be located on top of your
program, which will cause serious programming

problems.

(3) register indirect - The operand is contained
in the memory location whose address is
contained in one of the general registers.

For example:
MOV *¥R1,R2 ; R2=(R1)

will load register R2 with the memory location

whose address is contained in R1l.-
(4) register indirect,qauto increment - The operand

is contained in the memory location whose

address is contained in one of the general

XIV-4

(5)

registers. After execution of the instruction,

the register is incremented by one or two. If

the instruction is a byte instruction (e.g. MOVB),
then the register is incremented by one. If the
instruction is a word instruction (e;g. MOV)

the register is incremented by two. For example:
MOV *R1+,R2

will load register R2 with the memory location
whose address is contained in R1l. After the
move, register Rl is incremented by two since

MOV 'is a word reference.

indexed ; The operand is contained in the
memory location whose address is obtained by
adding a constant to the contents of one of
the general registers. If the register RO

is used, the operand address is merely the
constant. To move the contents of a variable,

called VAR, to register Rl we can use:

MOV @VAR,R1

XIV-5

In this case, no index register was specified
so the assembler assumes the RO (no index) is

desired. The following instruction:
MOV @10(R1),R2

will load R2 with the memory location

addressed by the contents of R1 plus 10.

(6) relative - Relative addressing is used to
obtain the destination address for most of
the 9900's jump instructionsi To obtain the
final destination address, the second byte of
the instruction is multiplied by two and added
to the address of the next sequential instruction.
The addition is performed using two's
complement arithmetic. This allows the programmer
to transfer control to an dddress within the r=
range of -25, to +256 of the present instruction.
Since all instructions are stored as words
(two bytes), we can transfer control to a
word within the range of ~127 to +12é of the
present instruction. An example of relative

addressing is:

XIV-6

JMP - +10

" This instruction will transfer control to
the address of the next sequential instruction
plus 20 (10%2). If the jump were at >1200,

this would transfer control to address >1216.

As you can see, the 9900's instruction set is more
coﬁplicated than the run of the mill microprocessor. All
of the op-codes are one word long. If immediate, indirect,
or indexed addressing is used, the constant is stored
in the word(s) following the op-code. The constantvfor
the source operand is stored in the .first word following
the op-code and the constant for the destination operand
is stored in the next available word. This means the 9900
instructions are one to three words loﬁg, or two to six
bytes. The following six byter will transfef the contents

of variable VARl to VARZ2:

MOV @VAR1l,@VARZ2 3 VAR2=VAR1

XIV-7

B. SUBROUTINE LINKAGE

Unlike many machines, the 9900 dpes not use a stack
to hold subroutine return addresses. Instead, the processor
saves the return address in general register R11l. For
example, the following instruction will save the address

of BACK in R1l1l and will transfer control to ROUT:

BL @ROUT 3 call ROUT
BACK

o0 e e

To return from the subroutine, all you need to do is jump
“to the contents of R11 (B *R11).

If one subfoutine must call another, the first
subroutine must first save the contents of R11l, since the
neﬁ return address will be placed in R11l - thus destroying
the old return address.‘There are several different ways
to approach this problem. The first, and simplest, method
is to save the return address in one of the general
registers. For example, if ROUT is called as indicated
above and must,thep call ROUT2, the sequence below can

be used:

XIv-8

MOV R11,R1 ; save return address

BL (@ROUT2 call next subroutine

e

B ¥R1 5 exit

If you have only two or three levels of subroutine,
this may be the most efficient approach. However, in
larger systems there are usually too many levels of
subroutines to store all the return addresses in the
registers. In that case, the return address can be saved

in RAM. One way to do that is:

save return

-e

MOV R11l,@TEMP

To exit the subroutine, the following two instructions

are used:

MoV @TEMP,R11 get return

e

B ¥R11 exit

.o

The major disadvantage of this technique is that four
words of instruction memory are required for the exit
sequence, not to mention the word used to hold the return

address. This is rather wasteful of memory. If the program

XIV-9

is always to be run in RAM (never put in PROM/ROM storage),

an alternate entry/exit sequence is:

MOV R11,@EX+2 ; save return in exit branch

EX B @0 exit

we

This time we saved the return address in the second word
of the branch instruction, thus eliminating the move. The
disadvantage here is that the program modifies itself. This
means that the program can never be pléced in ROM. Most
microprocessor programs are eventually stored in ROM so
this sequence couldn't be used. In fact, I would normally
not recommend using any self-modifying techniques. However,
if you are writing‘a quick and dirty routine, to be run
only from RAM, this approach‘works well.

There is yet another way to save the return address.
AWe can put it on the stack. What stack, you say? Because
of the flexible modes of addressing, creation of a software
stack is a fery simple task. During the initial start of
the program, we load one of the general registers, let's
say R15, with the address of the.first location of the

stack. Then, an entry can be placed on the stack with

XIV-10

the following move:
MOV R11,*R15+ ; stack R11

The stack pointer is incremented after the store, so the
stack builds up instead of down as in other micros. To
retrieve an entry from the stack, the following instructions

are used:

DECT R15 3 R15=R15-2

MOV ¥R15,R11 ; get the top entry

The stack could also be used to save some of the other
general registers that would be used by the subroutine.
If the subroutine requires a number of registers, another
approach is to use the Branch and Link Workspace Pointer
(BLWP). This instruction is also a subroutine call, but
before performing the call it resets the workspace
pointer. This means that the subroutine has a whole new
set of registersto work with - without having to store the
old ones! This ‘instruction is very valuable, But should
be used with discretion because it requires more memory.
More memory for the call and si%teen words more memory

for the new.set of registers.

XIV-11

C. PASSING PARAMETERS

There are many differnt methods for passing data to
to subroutines - in the registers, following the subroutine
call, or addresses following the subroutine call. Since
the return address of the routine is already in one 6f
the general registers (R1l), passing parameters or their
addresses following the call is especially useful with
the 9900. For example, consider the floating point
subroutines called FMUL and FADD which are the multiply
and add floating point routines, respectively. Each one
requires three parameters, the address of which can be
placed after the subroutine call. If this approach is used.
with the 9900, the following sequence is used to calculate

X1=X2%¥X3+X4:

BL @FMUL ;3 TMP=X2%X3
vDATA X2

DATA X3

DATA TMP

BL @FADD ; X1=TMP+X4
DATA TMP

DATA X4

DATA X1

XIv-12

Before we can manipulate the parameters, it would be
necessary to place then in the registers, perhaps. This is

easily accomplished by the following:

MOV *¥R11+,R1 3 Rl=address of param’l
MOV *R11+,R2 3 R2=address of param 2
MOV ¥R11+,R3 s R3=address of param 3

Notice how the indirect with auto increment addressing mode

avoids the need for intermediate increments.

D. RETURNING RESULTS

Many subroutines must return results to the calling
program. The easiest way is to return the result in one
of the general registers. This works fine if the subroutine
is called via a BL instruction. On the other hand, if a
BLWP (or XOP - which will be discussed later) is used,
the calling routine ﬁses a different set of registers
than the subroutine. Therefore, if we ﬁlace the results
in the registers, they will be lost when control is returned
to the calling program since the workspace pointer will
be reset. Since the 9900's registers are located in
memory, there is a simple way around this prbblem. Let's

assume that we want to return a value in RO and Rl - in

XIV-13

the o0ld workspace. When the BLWP is executed, the old
workspace pointer is saved in R13. Using this fact, we
can create a sequence to store values in the previous

workspace:

MOV RO, *R13 3 old RO=new RO

MOV R1l,@2(R13) ; 0ld Rl=new Rl

As you see, the o0ld register "1" is the same as memory
location R13+2%1. That location may be addressed by
@1+1(R13). RO is a special case since @O0(R13) is the

same as *R13.

E. BYTE OPERATIONS

Although the 9900 is‘primarily a 16-bit processor,
it can still handle most byte operations. There are a
few aspects of the byte operations that can be confusing.l
First, whenever a register is addressed in the byte mode,
thé left byte of the register is used (not the right byte).
Second, whenever the processor references memory it reads
a ful; word. The proper byte of\that word is éelected
within the processor. This means that it is not necessary
for the processor to supply the external memoryvaddressing

circuitry with the least significant address bit - so it

XIV-14

does not. If you examine the harﬁware carefully you will

note that there are only fifteen address bits. The missing

bit is the least significant address bit. It is unnecessary

because the processor performs the byte selection.
Recognizing the special byte addressing operation,

you will quickly discover that the 9900 can cope with byte

operands nearly as well as it can with full word operands.

To add the contents of byte Bl to B2 we cah use:
AB @Bl,@B2 3 B2=B2+Bl

F. EXTENDED OPERATIONS

The TI 9900'6ffers a unique instruction - Extended
Operation (XOP). The XOP execution is similar to the BLWP,
but the target address is.determined by the XOP transfer
vectors - there are sixteen possible X0OPs and the source
operand is plaéed in R11 of the new workspace. For

example, the following:
X0P @X,15
will perform an extended operation 15 and will place the

address of variable X in the new R11l. The workspace

pointer and address for extended operation 15 is in memory

XIV-15

locations 7C-7F. For other extended operations, the
extended operation transfer vector is stored in location
40 + 4*T through 43 + 4*I1.
The monitor uses three extended operations. Refer to

the monitor description fro details of the monitor XOP.

G. MULTIPLY/DIVIDE

One of the truly uﬁique operations offered in the
9900 is the hardware multiply and divide. Notice, however,
that they require unsigned operands. This is different
than the other instructions, which use two's complement
operands. We can easily form a signed two's complement
multiply. If X1 aﬁd X2 are two arbifrary numbers, then
X1*X2's sign is the exclusive-or‘of the signs of.Xl and X2.
Using this fact we éan devise the routine to perform
signed multiply. The sequence in Figure XIV_2 will
calculate X3=X1¥*X2. '

The multiply operation produces a 32—bit result
(in R1,R2 for the example above), but does not affect
any of the condition bits (thats why the test can be
‘performed before the multiply). After‘the multiply, the
result can be converted back to two's complement. Since
you will often use the result for some further add/subtract

operation, only the lower word of the product was

XIV-16

Figure XIV-2

X1

X2

"

X3

address #200

address #202

address #204

THFEO0

01003
01028
01042
010648
01088
010A3
01003
010E S
01103
01128
01142
01163
01183
011A?
01103

CO&60
Q200
COEQ
0202
Ccoal
S883
0741
0743

MOV

MOV

MOV
XOR
RS
MRS
MOy
MY
SGT
NEG
MOy

=

@r200yR1

202y R3

FLyR2
3y R2

il

F3

R2yR2
3y R1
~il8

R
RE2,@5204

Signed Multiply

XIv-17

“«s ~w e e

-y e e

-

Fed=X1
RZ=X D

RICEBIGEND

=51T6N OF

GET RID OF STGNS

TEST SI6
(R1yR2)=
CORRECT

X3=XLhX2

NOOF ANSUWER

XLkX2

KLLRKE (MAGNITUDED)

THE STGN

(LOWER

16

BITS)

converted. If you need to convert both words, its a bit

more difficult. The following sequence will not work:

NEG R2

NEG R3

Why not? If R2=1 and R3=1, then
(R2,R3) is > FEFF. However, the

FF. So you see that the above

instead of the required ;>FEFF.‘

the two's complement of
two's complement of 1 is
sequence would yield <$FFFF

The solution is to take the

one's complement of R2 except in the case where R3=0. The

required code is:

INV R2

NEG R3

JNE ZRQ

INC R2
ZRO .

R2=one's comp. of R2

~e

s R3=-R3

if R3=0, adjust R2

we

R2=two's comp. of RR2

we

A similar approach can be used to construct a signed

divide. The sign of X1/X2 is again the exclusive-or of

X1,X2. If X1 and X2 are both 16-bit two's complement

variables, then the routine in Figure XIV-3 will calculate X1/X2.

XIV-18

Figure XIV-3

X1 =

X2 =

address 200

address 202

THFRO0

0100¢
010218
01043
010461
0108¢
010M:
Q1o
010E:
01101
01123
0114:
01163
01182
011Az
01103
O11E:

Coag

Q200
COEQ
Q202
1oz
Q503
Q0742
0743
Q4L
343
104
1501
0301
C8ol
0202

MO

MOV

MOy
KOR
ARS
Ak
CLR
nry
MOV
JGT
NEG
MOV

Br200yR2

BrA02yR3

1
R3sR1
R4y R4
=114
K1

Rl @202

Signed Divide

XIv-19

~ <>

-

‘e e» ey

R 13

R2=X1

3= X2

RA(SIGENY=8T16GN OF X1/X2

GET RID OF SIGNS

CLEAR UFPER NUMERATOR BITSH

Ri=(R1LsR2I/R3

CORRECT SIGN

X2=X1/X2

As you may have observed in that sequence, the divide
6peration divides a 32-bit operand by a 16-bit operand.
Since we used only a 16-bit operand, the operand is placed
in the lower register of the pair of registers and the
upper register of the pair is cleared. If we want to use
the full divide capability, the routine must be recoded
as shown in Figure XIV-4.

The multiply is restricted to integer operands, but
that does not mean you cannot use it to perform fractional
operations. The approach is célled scaling. Lets take a
sample case. If the decimal point of X1 is at the extreme
right and the decimal point of X2 is at the extreme left,
then the decimal point of X1%X2 is between the two registers.

Using this approach, we can multiply ABC by .75:

CON DATA >»C000 ; constant of .75 (decimal
at left)
MOV @ABC,R1 ; get operand
MPY @CON,R1 ; (Rl=integer part, R2=

fraction part)
In the beginning of this discussion, I indicated that

it was unusual that the multiply was unsigned. Yet, we

can turn this into an asset. Consider the problem of

XIV-20

Figure XIV-4 Full Divide

X1 address #200 to 203

X2 address #204 to 207

PHFEO0

01003 CO&0 MOV B:Z00-RI1
0102 0200

Q104 COao MOV @H202«RE
010468 0202 .

01088 Corpo MOV BR204,R3
010/ 0204

0100 €101 MOV RIyR4Y
QLOE: 2903 XOR RIsR4
0LLO 0743 &S R3

0112% 0741 Rl

01142 18503 3T =110
01148 GHO2 3 R2

olig: 1301
Olléad G&01 DED RI
0LIC: 3043 DIV R3«R1
OL1E: C104 R4 4
01208 1501 3T x1E4
0122t 0501 G R

01243 €801 MOV R1LyE@x204
01282 Q204

01282

(1(1 ¥ R:Z) n

-

o m

FBaX2

X1

RAISIGNY =GTGN F X1/X2

OF SIGN OF X2
OF STGN OF X1

?

§ GET RID
#oGET RID

s IF X1 MINUSY

3

5 ORL=X1/XD
5 CORKEDT
5 OX2=EX1/XD

XIv-21

STEN

ITNVERT LOWER

IF R2 NONZEROy ALJUST RI1

HALF

creating a double precision multiply (32-bits times 32-bits).
If we consider unsigned numbers only (signs can be handled
as in .the previous examples), then a 32—bit multiply (which
produces a 64-bit result) can be formed using four single

. precision multiplies. Figure XIV-5 illustrates the concept.
We just use what is commonly called "cross multiply"
techniques. Before presenting the double precision multiply,
lets look at the double precision add which is an integral
part of the multiply routine. To calculate (R1,R2)=(R1,R2) +
(R3,R4) we can use the following (all values are assumed

to be unsigned):

A R4,R2 3 add lower half
JNC Ll ; if Cy, correct upper
INC R1

Ll A R3,R1"° ; add ﬁpper half

Now, using this same concept for the subproduct additions,

we can create the 32-bit multiply routine shown in Figure XIV-6.

H. ARITHMETIC
The advanced instruction set of the TI 9900 opens up
a new microprocessor application area - signal processing.

Because of the mathematics involved, most signal processing

XIv-22

Figure

XIV-5 Multiprecision multiply

R5 |R6

R7 {R8

XIV-23

Figure XIV-6 Double Precision Multiply

TEFROO

0100: G141 MOV RLsRS v REGyRE = RIKR3Z
01027 3943 MPY R3IsRS
0104% CLC2 MOV R2yR7
01068 I904 MPY RasR7
0108: C241 MOV R1I-R9 v RPyRIO = R1I¥R4
01043 3n44 MPY R4sRY
01008 3808 MPY R2yR3E
Q10K 0400 CLR RO
Q110 ALC3 & RILR?7
0112 1701 JNC =116
01140 0580 INC RO
0116t ALCA A RIOsRY
01182 1701 UNC =110
0lime 059 ING RO
GLIC: 0401 CLR RI1
QLLIE? AlBE A R2IWRS
01202 1701 JUNC =124
0122¢ 0581 INC Ri
0124% ALBY A RYyR&
01263 1701 UND =128
0128¢ 0UG81L INC RI

-y

R7sR8 = R2%R4

R34 = RIXRF
RO=CARRY ACCUNMILLATOR

-y "G

RI=CARRY ACCUMULATOR

b 1Y

012A% ALB0 A ROYRSE s ANl IN FIRST CaRRY

0120 1701 JUNE =130

012E: 0581 INC Rl :

0130 Al4al A R1sRI 4 AN IN SECOND CARRY

01323

XIV-24

tasks cannot be done with the'off-the—shelf microprocessor.
The 9900 certainly cannot handle all of the signal processing
applications, but it can tackle a few of them.

Most signal processing algorithms use the SIN, COS,
or other trigonometric functions as an integral part of the
filter computation. One trigonometric algorithm - ideally
suited to the 9900, is the CORDIC (COordinate Rotation
Digital Computer) algorithm. Although you may not recognize
it, it is the same algorithm used in many of the hand
calculators. We will see later why the TI 9900 is ideally
suited for the CORDIC procedure.

The CORDIC algorithm relies on a few very simple
mathematical facts. First, any given angle (we will restrict
the angle to 0-906) can be represented as a sum/difference
of a set of base angles. Mathematically this can be

expressed as:

A= E d. a, where d. = $ 1
1 .1 1

base angle

o
I

.This identity is certainly not true for any random selection
of base angles, but yoy can intuitively see the 909, 45°,
22.5°, ... is one possible base set. The second cornerstone

of this algorithm is a pair of trigonometric identities:

XIv-25

SIN (a+b)

(SIN(a) + TAN(Db)cOS(a)) cos(b)

c0s. (a+b) (cos(a) = TAN(b)SIN(a)) co0S(b)
Now, if we have a given angle represented as a sum/

difference of a set of base angles - which are as yet

unspecified - then we can devise a simple process for

calculating the SIN and COS of that angle:

Xg =0
T, =1
X, = X, _; + TAN(d a)*Y, .
Y. = Y, ; - TAN(d;a)*X,

After executing the above procedure, we don't really
have the SIN and COS. Instead, we have X_ = R SIN(O) and
Y =R_COS(0), where the constant R is 1/(cos(diai)*...
*COS‘dnaﬁ). So far, we have nothing to Qheer about because
our algorithm involves many more multipliesthan a éimple
Taylor series. But, the plot thickens. If we define the

base angles as:

a, = TaNTH (311

then

TAN(a,) = 311

XIV-2¢

This means that all of the multiply operations can be
reduced to a right shift. We must, of course, prove that all
angles can be represented as a sum of our base angles

or the whole algorithm collapses. I will not do so here,

but it can be done rather easily. Now, if we use base

angles as I defined above, the algorithm may be restated as:

vV = -0
(o]
X =0
(o]
I = 1/Rn = .60725
_ _ M i-1
xi Xi_l SIGN(Vi_l) Yi_l /2
_ . B |
Yi = Yi_l + SIGN(Vi_l)*Xi_l /2 L1
_ :)
= - ¥*
Vi vl__l SIGN(Vi_l)_(ATAN(l/Z

If we store the ArcTan values in a table, then this
algorithm requires only shift, add, and subtract. The shift
operation requires a variable shift constant. This is why
the algorithm fits nicely in the 9900. If the shift count
is stored .in RO, the variable shift can be performed by

a‘single 9900 instruction:

SRA R1,R0 ; shift R1 right by (RO)

XIV-27

Since the SIN and COS are‘fractional values, we must
scale the input to our routine. To keep matters simple,
we scale the angle so that Rl=angle*256. This provides
8-bits of integer and 8-bits of fraction. We scale the
X,Y values so that X=SIN#32768, and Y=C0S*32768. This
provides 16-bits of signed fraction. The entire algorithm
is shown in Figure XIV-7. The input angle is in R1l, and
the outputs are in R2 and R3. This subroutine calculates
both the SIN and CO0S. The TAN can be calculated by one
additional divide. As you see, this algorithm is a very

fast and efficient way to obtain the trigonometric values.

X1v-28

-Figuré X{V,-7

THFBOO

01003
Q1023
0LO4:
0L0&2
01082
010a2
01002
010E3
01102
01123
01143

01203
GlRo
Q1241
012618
0128
0124
0120
O12E?
0130
01323
01343
01363

01382

013A:
0140
01423
0144
01463
01483
0l4a:
014C:
014E?
01502
01528
0154
0156¢

0402
0203

A4TNEA

0404
143
QACO
QaCAs
QHO1L
COo41
1105

&GOS

HOC4H

HOGSE
0140
1004
HBo8n
&HQL4
PO&ES
0140
QaER0

C1o2
0504
C143
Q805
0280
QOO0
146EC
O45R

2000
1490
OEQ?
0720
0394
01CA
O0ES
0073
0039
001D
QO0E
0007

oL
..... AN

e

LT R3y157898

CLE
MOy
CL.F
CLR
NEG
MOV

LT

)
R3¢ G
RO
Ré
(]
RisRl

=11E

8 RIyR2

A RAPRE

B ORFLA0(RA) o R

CORDIC. Routine

- er

er W SR @ W Er S >

KCE

ING
INCT
MOy
SR
MOV
GRA
CI ROv1L2

JNE

RO

Fé
32 e R4
RaAy RO
RIvRG

Ry RO

=110

B ki1

/140
+11520
+6800
+3593
+1824
+216

- +458

+3229

+1173

3

+57
+29
+14
+7

-

<

-3

Er W €r wr 'S> WP WF 6> W> E> B> Tr W

Xz ()
Y607 REREKDKKLS

XQ=0

YO =Y

SHIFT=0

COUNT 0

(VEERY)

TEST SIGN OF ANGLE
JUME TF MINUS
Cal-Y/ 28]

RE R D At S 4)
ety TAN (L /7 2%0K)

CONTINUE
VU ATAN L2k

UFGRALE SHIFT COLNT
UFGRATIE ANGLE TNTEX
Fed=Xs2%kd

REG=Y /2% 1

END?
RETURN TO CALLER

ENTER CONSTANTS
ATAN (1L/1)%256
ATAN (1L/2)%286
ATAN (1/74)%206
ATAN (L/8)%256
ATAN (1/146)X%2054
ATAN (L/32)%206
ATAN (1/764)%256
ATAN C(L/128)K254
ATAN (1/72548)%2546
ATAN (L/51 SEHT)
ATAN (L/71024)%258
ATAN (1/72048)%256

XIV-29

	000
	001
	01-01_Preface
	01-02
	01-03
	01-04
	01-05
	02-01A_Parts_List
	02-02A
	02-03
	02-04
	03-01_Bus_Structure
	03-02
	03-03
	04-01_System_Configuration
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01_Electrical_Characteristics
	06-01_System_Expansion
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01_Mighty_Monitor
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01_Assembly
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	09-01_Instruction_Set
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	10-01_Instant_Assembler
	11-01_Monitor
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	12-01_Other_Super_Starter_Products
	12-02
	12-03
	12-04
	12-05
	14-01_TI_9900_Overview
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29

