
ETS-TG-5-0598

TNT Embedded Technologies

Guidebook

Please Note:

Due to limitations of Adobe Acrobat, you will need to zoom in on all

screen captures for better viewing. If you would like a printed version

of Phar Lap’s TNT Technologies Guidebook, please email:

info@pharlap.com.

Phar Lap Software, Inc.

60 Aberdeen Ave.

Cambridge, MA, 02138

tech-support@pharlap.com

phone: (617) 661-1510

fax: (617) 876-2972

www: http:/ / www.pharlap.com

ii TNT Embedded Technologies Guidebook

NOTICE: This publication is furnished as a courtesy to potential

customers, and is not intended nor should it be used as a technical or

reference document. Phar Lap Software, Inc. is in no way responsible

for errors in this publication or for any consequences arising from its

use. While every effort has been made to assure accuracy, the

information provided in this publication is subject to change without

notice and represents no commitment on the part of Phar Lap Software,

Inc.

Copyright © 1995, 1996, 1997, 1998 by Phar Lap Software, Inc.

All rights reserved. Printed in the United States of America. No part of

this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without prior written

permission of Phar Lap Software, Inc. Use, duplication, or disclosure

by the Government is subject to restrictions as set forth in subparagraph

(c)(1)(ii) of the Rights in Technical Data and Computer Software clause

at 252.227-7013.

Fifth Edition: May 1998

Printing History:

Fourth Edition: March 1997

Third Edition: September 1996

Second Edition: January 1996

First Edition: September 1995

Phar Lap®, TNT Embedded ToolSuite®, TNT DOS-Extender®, and the

Phar Lap logo are Registered in the U.S. Patent and Trademark Office

by Phar Lap Software, Inc.

ETS™ and LinkLoc™ are trademarks of Phar Lap Software, Inc.

Other brand and product names and marks are included herein and are

trademarks or registered trademarks of their respective holders.

� This manual is printed on recycled paper. �

iii

Contents

Preface vii

An Industrial Strength RTOS vii

Support for Off-the-Shelf Win32 Tools vii

Modular Subsystems Provide Networking, MicroWeb

Server Technology and More viii

TNT Embedded ToolSuite Provides Development Tools viii

All About x86 viii

System Requirements ix

Ordering Information x

About Phar Lap x

Format of TNT Technologies Guidebook xi

Organization of the Manual xi

For Further Information xii

Chapter 1 Introduction 1

TNT Embedded ToolSuite Features 2

The Realtime ETS Kernel 3

Networking 4

Embedded StudioExpress 5

The Visual System Builder 5

Developing Your Application 6

Chapter 2 A Quick Tour of the Realtime ETS

Kernel 7

Key Concepts of the Realtime ETS Kernel 8

A Sample Realtime Program 12

The ETS Project Wizard 14

Creating a New ETS Workspace 15

Building the Program 17

Running with the Realtime ETS Kernel 21

Contents

iv TNT Embedded Technologies Guidebook

The Typical Development Cycle 22

RAM-Based Applications 23
ROM-Based Applications 23

Chapter 3 A Quick Tour of the

Visual System Builder and CFIGKERN 27

Preconfigured Templates 27

The Property Sheets 28

CFIGKERN 30

Chapter 4 Debugging with the

Realtime ETS Kernel 33

A Sample Debug Session 34

Embedded StudioExpress Extensions 38

Target Port Input/ Output 38
Target System Information 39

Debugging Multithreaded Programs 40

Sample Output from EtsDumpThreads() 43

The Event Logging System 44

Chapter 5 Options for the Realtime ETS Kernel 47

Booting from Disk 50

Booting from ROM 52

BIOS Extension ROM Boot Method 53
Boot Jump Method 54

DOS Boot Option 54

Kernel Build Options 56

Replaceable Code 56

The Kernel Initialization Process 56

Chapter 6 Realtime ETS Kernel

Programming Environment 61

The Protected-Mode Environment 62

C Run-Time Library Support 63

Host/Local File System 64

TCP/IP and WinSock 1.1 Networking 65

Floating-Point Emulation 65

Communications with the Development Host 66

Contents

TNT Embedded Technologies Guidebook v

Accessing Memory Mapped Devices 66

Host Command Line and Environment 66

Replaceable Code 67

Building and Using Dynamic Link Libraries (DLLs) 67

Interrupts and Exceptions 69

ETS Kernel Interrupt Processing 69

Installing an Interrupt Handler in Your Application 70

Structured Exception Handling 72

Realtime ETS Kernel Device Drivers 73

ETS PC Card Support Package 74

Priority Inversion Avoidance 75

Realtime ETS Kernel Version 9.1 Memory Requirements 76

Minimal C++ Run-Time Libraries 77

Chapter 7 Network Programming with ETS

TCP/IP 79

Network Protocols 80

The ETS MicroWeb Server 81

MicroWeb Server Components 82

Appendix A The Realtime ETS Kernel API 85

Memory Management Routines 87

Threads and Synchronization Routines 87

File Management Routines 90

DLL Management Routines 91

Time Routines 92

TCP/IP Device Driver Configuration APIs 93

Event Logging Routines 94

Console Routines 95

Interrupt Control Routines 96

Process-Related Routines 97

Miscellaneous Routines 98

Windows Sockets APIs 99

C Run-Time Library Alternate Functions 101

HTTP Server APIs 102

Contents

vi TNT Embedded Technologies Guidebook

FTP Server APIs 103

PC Card APIs 104

PCI Bus APIs 105

Porting Routines 106

Appendix B Supported C Run-Time Library

Routines 109

Appendix C Realtime ETS Kernel Performance

Measurements 113

C.1 Measuring Interrupt Latency 113

C.2 Measuring Interthread Yield Times 116

Appendix D Other Supported Compilers 119

Index Error! Bookmark not defined.

vii

Preface

This manual, TNT Embedded Technologies Guidebook, provides an

overview of Phar Lap’s TNT Embedded ToolSuite, an embedded

development toolkit that features a Windows-friendly realtime

operating system (RTOS). Phar Lap’s RTOS, the Realtime ETS Kernel,

combines the benefits of Windows development tools with hard

realtime performance. While this manual discusses the entire ToolSuite,

emphasis is on its core component, the Realtime ETS Kernel.

AN INDUSTRIAL STRENGTH RTOS

The Realtime ETS Kernel was built from the ground up to meet the

requirements of industrial-strength embedded applications. Based on a

Phar Lap-defined subset of the Win32 API, the Realtime ETS Kernel

provides unequalled hard realtime functionality in a Windows-friendly

package, including:

® A deterministic scheduler with 31 priority levels

® A threads-based multitasker

® Priority-based scheduling

SUPPORT FOR OFF-THE-SHELF WIN32 TOOLS

The Realtime ETS Kernel’s support for Microsoft Visual C++ 5.0 and

the Developer Studio Integrated Development Environment (IDE)

allows you to use the industry’s leading compiler/ IDE combination to

create embedded and realtime systems. Phar Lap’s Embedded

StudioExpress is an add-in that seamlessly integrates the Realtime ETS

Kernel with Developer Studio. It lets you take advantage of the

Developer Studio IDE, so you can do all of your development in a

single environment. It also enables you to debug your embedded

application using the Developer Studio’s integrated debugger.

Preface

viii TNT Embedded Technologies Guidebook

MODULAR SUBSYSTEMS PROVIDE NETWORKING, MICROWEB

SERVER TECHNOLOGY AND MORE

The Realtime ETS Kernel is scalable. You can select only the

components you need and incorporate them into your embedded

system. The kernel’s subsystems include:

 The ETS TCP/IP network stack — which includes support for standard

network and Internet protocols, including SLIP, PPP, and FTP

® The ETS MicroWeb Server— which includes an embedded HTTP Server

and HTML-On-The-Fly libraries

® Flash File System Support

® A DLL Loader

TNT EMBEDDED TOOLSUITE PROVIDES DEVELOPMENT TOOLS

TNT Embedded ToolSuite was designed to provide all the software

development tools you need to build embedded and realtime systems.

In addition to the Realtime ETS Kernel, the ToolSuite includes:

® LinkLoc — a 32-bit linker/locator

 Embedded StudioExpress

® ETS Visual System Builder — a point-and-click Windows utility for easily

configuring the Realtime ETS Kernel for custom hardware systems

® 386|ASM — a 32-bit assembler

ALL ABOUT X86

As the company that pioneered 32-bit x86 software development tools,

Phar Lap understands the requirements of x86 processors. The Realtime

ETS Kernel supports all 32-bit x86 hardware, from the Intel 386EX to

the NS486 and Intel Pentium family.

Preface

TNT Embedded Technologies Guidebook ix

SYSTEM REQUIREMENTS

In order to use TNT Embedded ToolSuite for embedded development,

you will need two 32-bit x86-compatible systems:

Host System:

486 or Pentium personal computer with:

® 32MB memory

® 20MB free disk space

® Serial or parallel port

® Windows NT or Windows 95

One of the following compilers:

® Microsoft Visual C++, Version 4.x or later

® Borland C++, 32-bit compiler, Version 4.5-5.x

® Aonix ObjectAda Real-Time for Intel/ETS

Optional:

In-circuit emulator

Target System:

Embedded system with:

® 386, 386EX, 486, NS486, Pentium, Pentium Pro, MMX, Pentium II or

compatible processor

® Sufficient memory for the ETS Monitor and your application (RAM with

ROM or Flash memory)

® 100K bytes minimum required memory

® Serial or parallel port for debugging between target and host.

Preface

x TNT Embedded Technologies Guidebook

Optional Target Hardware:

® Keyboard

® Video Monitor

® IDE Controller

® Floppy Disk Controller

® Floating-Point Coprocessor

® Network Interface Card

® PC Card Controller

® Flash Disk

ORDERING INFORMATION

The TNT Embedded ToolSuite, Realtime Edition Software

Development Kit (SDK) sells on a per-seat basis. Each programmer

developing code using any component of the ToolSuite will need a

complete development system.

Run-time licenses are required for distribution of the Realtime ETS

Kernel and each of its subsystems.

ABOUT PHAR LAP

Phar Lap Software provides software tools that make developing

embedded and hard realtime systems as easy as developing Windows

applications. Founded in 1986, Phar Lap pioneered 32-bit x86

development tools, and continues to lead in embedded development

through advanced realtime capabilities, seamless integration with

Windows-compatible development tools, and innovations such as Web-

accessibility using standard Internet technology.

More than 50,000 programmers worldwide have used Phar Lap tools to

build and deliver more than 3,000 applications and embedded system

designs.

Phar Lap is also at the forefront of the Embedded Internet technology

wave. Phar Lap’s “World’s Smallest Web Server”

(http:/ / smallest.pharlap.com) demonstrates a realtime weather station

application developed with the Realtime ETS Kernel. “Smallest”

Preface

TNT Embedded Technologies Guidebook xi

displays live weather data from Phar Lap’s headquarters in Cambridge,

Massachusetts. The company’s MicroWeb Server technology lets

developers create Web-accessible embedded systems, such as security

and office equipment systems, “ smart home” applications, and

manufacturing and process control devices.

FORMAT OF TNT TECHNOLOGIES GUIDEBOOK

TNT Embedded Technologies Guidebook includes examples using the

Realtime ETS Kernel which have been excerpted from the product

documentation. They are presented here in a format useful to readers

who may be evaluating the product. TNT Embedded Technologies

Guidebook is not a substitute for product documentation.

ORGANIZATION OF THE MANUAL

The following is a quick summary of the chapters and appendices in

this book:

Chapter 1, Introduction

An overview of programming for the Realtime ETS Kernel

Chapter 2, A Quick Tour of the Realtime ETS Kernel

Building a simple realtime embedded program with each

supported compiler and running it on your embedded system

Chapter 3, A Quick Tour of the Visual System Builder and CFIGKERN

How to use the Phar Lap Visual System Builder to manage your

embedded application

Chapter 4, Debugging with the Realtime ETS Kernel

How to use CodeView or Turbo Debugger on the host, along

with the new event logging system, to debug an embedded

program on the target

Chapter 5, Options for the Realtime ETS Kernel

A description of the configurable features of the Realtime ETS

Kernel

Chapter 6, Realtime ETS Kernel Programming Environment

Features of the Realtime ETS Kernel used in application

programs

Chapter 7, Network Programming with ETS TCP/ IP

Overview of networking capabilities provided with ETS TCP/ IP

Preface

xii TNT Embedded Technologies Guidebook

Appendix A, The Realtime ETS Kernel API

Functions in the Realtime ETS Kernel Libraries

Appendix B, Supported C Run-Time Library Routines

Table identifying C run-time routines implemented by the

Realtime ETS Kernel

Appendix C, Realtime ETS Kernel Performance Measurements

An illustrated discussion of interrupt latency and other factors

influencing performance of realtime systems

Appendix D, Other Supported Compilers and Languages

Descriptions of compilers and languages other than Microsoft

Visual C++/ Developer Studio that can be used to build programs

targeted to the Realtime ETS Kernel.

FOR FURTHER INFORMATION

If you have questions about the product functionality and capabilities

of TNT Embedded ToolSuite and the Realtime ETS Kernel, please

contact your Phar Lap sales representative for further information. You

may reach Phar Lap sales between the hours of 8:30 a.m. and 5:30 p.m.

Eastern Standard Time, Monday-Friday at:

Telephone: (617) 661-1510 Fax: (617) 876-2972

Email: sales@pharlap.com www.pharlap.com

1

Chapter 1

Introduction

Welcome to Phar Lap’s TNT Embedded ToolSuite (ETS), a total

solution toolkit for embedded systems development on the 32-bit x86

family of processors! The ToolSuite includes the ETS Kernel, Phar

Lap’s realtime operating system (RTOS).

The native PC marketplace has long since standardized on 32-bit x86-

compatible architecture. This has resulted in several factors that make

this platform an obvious and attractive solution for embedded systems

developers. For instance:

® The price/performance advantage of the 32-bit x86 family

® The availability of inexpensive, industry-standard compilers and other

mature third-party development tools that run on Windows

® Standard APIs such as Win32, which include functions for multithreading,

multitasking, and deterministic priorities, and WinSock, which provides an

interface to a standard TCP/IP protocol stack

® The proliferation of low-cost 32-bit x86 boards designed specifically for

embedded systems

With expertise in 32-bit protected-mode and embedded development

tools, Phar Lap Software created TNT Embedded ToolSuite to help

embedded systems programmers capitalize on the many advantages of

the 32-bit x86-compatible architecture.

In the past, embedded systems developers have had to obtain

development tools from many vendors, selecting a linker from one

company, a debugger from another. The result was usually a hit-and-

miss solution with a high price tag. Now with TNT Embedded

ToolSuite, developers have a full-featured single-source solution at a

reasonable price. TNT Embedded ToolSuite is unique in providing all

the components you need to build multithreaded realtime embedded

applications for 32-bit x86 processors. The rich feature set includes

robust networking capabilities, priority inversion avoidance, a powerful

event logging system, and booting from a disk (floppy, IDE hard, PC

Card ATA, or M-Systems flash), from ROM, or from DOS.

Chapter 1

2 TNT Embedded Technologies Guidebook

Ultimately, building your embedded application with the ToolSuite

simply costs you less than building the same application with tools

from multiple vendors. The ToolSuite itself is priced lower than its

competition, and the Windows compilers supported by the ToolSuite

are much less expensive than specialty compilers for embedded

systems development.

The ability to use standard Windows tools for developing embedded

software is one of the most significant benefits of using the ToolSuite.

For example, you can use the familiar 32-bit C and C++ compilers to

build embedded applications. And for the first time, you can debug

your embedded applications using Microsoft’s Developer Studio

debugger. In fact, the ETS Project Wizard lets you use the full

capabilities of the Developer Studio IDE, including automatic

compilation of modified source files, to build ETS applications. When

you can buy a high-quality 32-bit compiler from Microsoft for $300, you

have an excellent reason to reevaluate the $3000 you might spend on a

specialty embedded systems compiler to produce the same program.

TNT EMBEDDED TOOLSUITE FEATURES

TNT Embedded ToolSuite includes the following major components:

® The Realtime ETS Kernel, an RTOS that implements the C/C++ runtime

libraries and a subset of the Win32 APIs on your embedded target

® Embedded StudioExpress, CVEMB, TDEMB, and SBEMB shells for

embedded cross-debugging

® The ETS Project Wizard, a tool for creating Developer Studio workspaces

targeted to the Realtime ETS Kernel

® LinkLoc, a 32-bit linker/locator

® The Visual System Builder, a Windows program for configuring the ETS

Kernel and your application

® Full support for C/C++ run-time libraries

® The ability to boot from a disk (floppy, IDE hard, PC Card ATA, or M-

System flash), from ROM, or from DOS

® Comprehensive user documentation

Introduction

TNT Embedded Technologies Guidebook 3

Phar Lap’s most powerful product is TNT Embedded ToolSuite,

Realtime Edition, which includes all the functionality of the Standard

Edition plus the following:

® Support for deterministic multithreaded embedded applications, including

reliable priority inversion avoidance

® Support for priority scheduling

® Support for round-robin scheduling with variable timeslices

® Robust networking capabilities including a built-in TCP/IP stack and

support for Ethernet and WinSock 1.1, including multi-homed Ethernet and

serial connections

® Support for Dynamic Link Libraries (DLLs)

® An MS-DOS compatible file system with support for FAT12, FAT16, and

FAT32 formats as well as a wide variety of disk types including IDE (both

CHS and LBA formats), floppy, PC Card ATA (both flash and rotating

media), M-Systems Flash, and RAM disk.

® A floating-point emulation library

® Support for PC Card ATA disks, Ethernet adapters, serial ports, and

modems

For more information about the features of the Realtime and Standard

Editions, please contact your Phar Lap sales representative.

THE REALTIME ETS KERNEL

The Realtime ETS Kernel is physically divided into two separate pieces:

the ETS Monitor and the ETS Libraries, which are linked with your

application.

The ETS Libraries provide the Win32 APIs that support the C/ C++ run-

time library, and also contain optional components of the Realtime ETS

Kernel.

The ETS Monitor handles communications with the host debugger or

program launcher, program downloading or loading off disk, and

system hardware initialization and switching the processor to protected

mode. The ETS Monitor can be booted from disk on a PC/ AT-

compatible target, or it can be linked into a ìcontainerî file along with

your application for programming a ROM or downloading to a ROM

emulator.

Chapter 1

4 TNT Embedded Technologies Guidebook

The Realtime ETS Kernel is a simple, compact RTOS (as small as 75 Kb)

for running embedded programs. The two main functions of the kernel

are to initialize 32-bit protected mode and to provide the foundation for

a C/ C++ run-time library, making it almost as easy to develop programs

for embedded systems as it is to develop console applications for

Windows. For a complete discussion, see Chapter 4.

The kernel also includes an optional host communications module that

allows your embedded system to communicate with a host PC running

Windows. You can use familiar Windows tools to develop your

embedded programs, then download the compiled and linked program

via a cable to the target system. The Realtime ETS Kernel running on

the target loads your program and, while you’re debugging, can

synchronize with the Developer Studio debugger running on the host.

Before your program is loaded, the kernel performs the low-level

details of setting up a protected-mode environment. Once your

program is running, the ETS Libraries (which are linked with your

application) provide the functionality of most of the C run-time library.

The only unsupported functions are those that assume the existence of

resources that may not be available on the embedded system.

Optional kernel components include the structured exception handling

library, timer, keyboard, and screen drivers, host communications

software and a disk loader (loads an embedded application from the

same boot disk as the kernel).

The system requirements for using TNT Embedded ToolSuite are listed

in the Preface. The default hardware configuration for the embedded

system is PC/ AT. Many configurations are supported, as listed in

Chapter 2. For a complete list of currently supported configurations,

please call your Phar Lap Software sales representative.

To accommodate the wide range of target systems available in today’s

market, all the hardware-specific code in the Realtime ETS Kernel is

contained in “ replaceable” modules for which source code is provided.

NETWORKING

The Realtime ETS Kernel provides robust networking capabilities

through the popular TCP/ IP and WinSock 1.1 protocol specifications.

A properly equipped embedded system built with TNT Embedded

ToolSuite can thus run network applications over the Internet, or even

act as a network server. (Visit http:/ / smallest.pharlap.com to see an

Introduction

TNT Embedded Technologies Guidebook 5

interesting implementation of Phar Lap’s realtime embedded HTTP

server.) All the standard application-level protocols are supported,

including FTP, SMTP, and HTTP. Network connections are supported

for Ethernet, SLIP, and PPP. See Chapter 7, “Network Programming

with ETS TCP/ IP,” for a complete discussion.

EMBEDDED STUDIOEXPRESS

Embedded StudioExpress is a Developer Studio add-in that lets you

debug your ETS applications using the Developer Studio’s integrated

development environment. Additionally, Embedded StudioExpress

extends Developer Studio by providing special integrated functions for

manipulating the remote target system. There are three parts to

Embedded StudioExpress:

® The host communications package that works behind the scenes to turn

Developer Studio into a powerful debugging environment so you can debug

your embedded program using this same source-level debugger that you

use for native Windows programs.

® The ETS Project Wizard that lets you create Developer Studio workspaces

targeted to the Realtime ETS Kernel so you can use the full capabilities of

the Developer Studio IDE for building ETS applications. C and C++

compilation options can be set from within the IDE, and Phar Lap's LinkLoc

linker is run directly from the Build menu, using options set from the Linker

Settings dialog. Chapter 2 shows the use of the ETS Project Wizard.

® The StudioExpress Toolbar features that allow you to display a

comprehensive view of the embedded target. These features are illustrated

in Chapter 4.

THE VISUAL SYSTEM BUILDER

Optional kernel components are easily selected with the Visual System

Builder, a Windows program for managing and configuring your

embedded application environment. Besides selecting the components

to be included in your custom kernel, the Visual System Builder also

makes it easy to replace target-specific kernel modules with your own

code.

You do not have to use the Visual System Builder. If you prefer, you

can create and edit your own linker command files. However, we think

Chapter 1

6 TNT Embedded Technologies Guidebook

that if you try the Visual System Builder, you’ll want to continue using

it. Please refer to Chapter 3 for more details.

DEVELOPING YOUR APPLICATION

In a perfect world, you would be able to do all the development of your

embedded program using the final, stable hardware that will be used

for production runs of your application. This, however, is rarely the

case. In fact, we recommend that your initial ETS development

environment consist of two PC-compatible computer systems (one is

the host, the other is the target), with the COM1 serial ports of each

machine connected using the standard LapLink serial cable shipped

with TNT Embedded ToolSuite. This way, you’re using the default

kernel, libraries, and drivers, and can focus on developing your

program.

Of course, eventually you will replace the PC/ AT target with your

custom hardware, but at that point the hardware-independent portion

of your application will be working and you can concentrate your

efforts on debugging your custom drivers and replacement modules.

Clearly, TNT Embedded ToolSuite provides a powerful, versatile

environment for developing your embedded application. The

remaining chapters in this book provide a more detailed description of

additional features of the TNT Embedded ToolSuite and its RTOS, the

Realtime ETS Kernel.

7

Chapter 2

A Quick Tour of the Realtime ETS

Kernel

This chapter uses a simple embedded program to illustrate the basics of

embedded system development with TNT Embedded ToolSuite.

Embedded software development attains a new level of ease and

sophistication with the Realtime ETS Kernel. In fact, it’s almost as

simple to develop programs for your embedded system as it is to

develop Windows console applications.

Designed to work with popular 32-bit C/ C++ compilers and most of

the standard C run-time library, the Realtime ETS Kernel is an RTOS

that creates a protected-mode environment for your program on the

embedded system.

Using Visual C++ along with the Realtime ETS Kernel brings 32-bit

power and the ease of C-language programming to embedded systems.

Appendix D describes support for compilers and languages other than

Microsoft Visual C++/ Developer Studio.

The Realtime ETS Kernel bootstraps the embedded system and

establishes a protected-mode environment for your program. When

your program gets control at the beginning of main(), the Realtime ETS

Kernel has already performed the low-level details of setting up a

protected-mode environment for your embedded program:

® The embedded processor is in protected mode.

® Selectors are set up for the code and data segments.

® Registers and flags are initialized.

® Global variables are automatically initialized from compressed data in

ROM.

® The C run-time library is initialized.

Thus, the programming environment for your embedded system is

similar to that for other 32-bit protected-mode systems. The Realtime

ETS Kernel performs all system-level initializations as part of the

Chapter 2

8 TNT Embedded Technologies Guidebook

bootstrap process, leaving only application-specific initializations for

your program. As detailed in Appendix B, most of the C run-time

library is available to your program.

The Realtime ETS Kernel can be run in either WaitHost or NoWaitHost

mode. The difference between these modes is that in WaitHost mode,

the kernel boots the target system, initializes itself, and then waits for the

host computer to instruct it to start executing the embedded program.

In NoWaitHost mode, the kernel boots the target system, initializes

itself, and then begins executing the embedded program (loaded either

in ROM or from disk). In general, WaitHost mode is used during

program development and NoWaitHost mode is used for production

runs.

The examples in this chapter use the Realtime ETS Kernel in WaitHost

mode.

KEY CONCEPTS OF THE REALTIME ETS KERNEL

The paragraphs below provide a quick summary of the main points of

programming with the Realtime ETS Kernel.

® Supported Win32 APIs

The Realtime ETS Kernel supports a Phar Lap-defined subset of the

Win32 API with functions for threads, events, mutexes,

semaphores, critical sections, and thread-local storage. In addition,

we have added some functions to the Realtime ETS Kernel API to

allow you to specify the granularity of the timer tick and time slices.

Please see Appendix A for a complete list of supported Win32 and

ETS API functions.

® Single Process, Multiple Threads

The Win32 API supports multi-process as well as multithreaded

applications. The Realtime ETS Kernel, however, supports only

multithreaded programs. There is a single process within an ETS

application, and all ETS Realtime Kernel threads share the same 32-

bit flat address space.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 9

® The Realtime ETS Kernel Scheduler

There is one significant difference between the implementation of

threads in the Realtime ETS Kernel and in Windows NT/ 95. In the

Realtime ETS Kernel, the scheduling of tasks is deterministic,

whereas in Windows NT/ 95 it is not. To put this another way,

under ETS,

The highest priority runnable thread will run.

This thread will run until it blocks, a higher priority thread becomes

runnable, or, if time slicing is enabled, the time slice expires and

there are other runnable threads of equal priority.

A thread is runnable so long as it is not waiting on a

synchronization object (event, semaphore, mutex, or critical section)

or waiting in the Sleep() system call. Each thread has a priority

which can range from -15 (lowest) to 15 (highest) with a default

of 0. The function SetThreadPriority() is used to change the

priority.

 The ETS multitasking library includes a scheduler that determines

which thread will run. From the scheduler’s point of view, each

thread has a state which is either runnable or waiting. When

anything happens to change the state of any thread, the scheduler

looks at all the runnable threads to determine which one has the

highest priority so that the highest priority runnable thread will

run.

Sometimes a thread needs an object owned by a lower-priority,

unrunnable thread. This scheduling anomaly, known as priority

inversion, can lead to unexpected, non-deterministic behavior in

your program. The multitasking scheduler in the Realtime ETS

Kernel prevents the ill effects of priority inversion. It

automatically watches for priority inversions and carefully

manipulates thread priorities to allow the higher-priority thread to

run. See Chapter 6 for more information.

® Time Slicing

The frequency with which the Realtime ETS Kernel switches among

same-priority threads is controlled by the length of the time slice.

The default time slice is 10 milliseconds. Time slicing can be

disabled by setting a time slice length of zero. The ETS Libraries

include functions for adjusting the length of the time slice from your

embedded application.

Chapter 2

10 TNT Embedded Technologies Guidebook

Although not required, the time slice length should be an integer

multiple of the timer tick period to obtain accurate time slices. The

timer tick period is the rate of the hardware clock. The default

timer tick period is 10 milliseconds. The programmer has the

option of setting the timer tick period to the granularity required by

the application. The smaller the period, the more precisely you can

schedule time-outs in the Sleep() and Wait() system calls.

® Choosing the Timer Tick Period

The limits to the timer tick period are hardware-dependent. For

PC/ AT machines, the period is usually between 1 and 55

milliseconds. There are functions in the ETS API for specifying sub-

millisecond timer periods. There is, however, a cost associated with

very short periods. On some lower performing systems, you could

end up spending a significant amount of processor time servicing

the timer tick interrupt.

We chose the default value of 10 milliseconds as one that gave good

performance on lower-end systems. On a 20 MHz 386SX machine

with a timer tick period of 10 milliseconds, about 5% of the CPU

time is spent servicing the timer tick interrupt. The percentage is

correspondingly less on machines with faster CPUs. On fast

enough machines, you can significantly improve the resolution of

the timer by making the period of the timer tick smaller without

affecting the performance of your application.

® An Example of Thread Scheduling

In the simplest case, there is no time slicing. The highest priority

runnable thread runs until:

§ A higher priority thread becomes runnable.

§ The thread calls Sleep().

§ The thread finishes running (calls _endthread()).

§ The thread has to wait for a synchronization object.

§ The thread makes a system call, many of which are implemented using
synchronization objects. For example, critical sections are used in the C run-
time library print routines so that two threads are not simultaneously accessing
the same file.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 11

The situation gets a bit more complicated when time slicing is

enabled. The thread scheduler works the same, but with some

additional considerations:

§ The highest priority runnable thread is still runnable when the time slice ends. If
there are other runnable threads with the same priority, the one that has been
waiting to run for the longest time will be scheduled. If this is the only runnable
thread with this priority, it will continue to run.

§ At the beginning of the time slice, Thread1 is the thread running. During the
time slice, Thread2 of higher priority becomes runnable, so the scheduler starts
Thread2. If Thread2 completes before the end of the time slice, the scheduler
runs Thread1 for the remainder of the slice.

® Scheduler Callback Functions

Callback functions are called whenever the Realtime ETS Kernel

creates a thread, terminates a thread, or switches context from one

thread to another. There are default functions within the Realtime

ETS Kernel that perform the necessary actions, but you can use the

ETS Library function EtsRegisterCallback() to cause your own

function(s) to be called as well.

® Using Threads to Service Hardware Interrupts

You may find it convenient to create threads to handle the

interrupts. The ISR for the interrupt simply signals an event and

returns. The actual interrupt processing is done in a thread which is

waiting for the event, mutex, or semaphore. The following Win32

APIs may be called from an ISR:

§ GetCurrentThreadID()

§ GetTickCount()

§ PulseEvent()

§ QueryPerformanceCounter()

§ ReleaseSemaphore()

§ ResetEvent()

§ ResumeThread()

§ SetEvent()

Chapter 2

12 TNT Embedded Technologies Guidebook

The significance of this approach is that the priority of the thread is

not the same as the priority of the hardware interrupt. This allows

you to quickly dispatch hardware interrupts while high-priority

threads are running and then service them at a priority appropriate

to your application.

A SAMPLE REALTIME PROGRAM

Let’s look at an example. Many manuals begin with the familiar “hello

world” sample program, but we need to modify the program for

realtime. This version of HELLO.C isn’t a particularly realistic example

of a realtime program, but neither is “hello world” a realistic example

of C programs. It is, however, a a good way to illustrate building and

running realtime programs with TNT Embedded ToolSuite.

HELLO.C has a simple main() program that starts up num_threads

(which is initialized to 5) different threads, each one executing the

OneHello() procedure. OneHello() is essentially the traditional “hello

world” program in a loop. There are, however, some additions for

realtime. Let’s look at the code (there isn’t much of it) and then explain

the realtime features.

#include <windows.h>

#include <stdio.h>

#include <process.h>

#define STACK_SIZE (16 * 1024)

void OneHello(void *id);

volatile DWORD alive;

int num_threads = 5;

void main()

{

 int i;

 int id = 0;

 // start threads

 for (i = 0 ; i < num_threads ; i++)

 {

 if (_beginthread(OneHello, STACK_SIZE, (void *) id)

 != (ULONG)-1)

 {

 ++id;

 InterlockedIncrement((LPLONG)&alive);

 }

 }

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 13

 while (alive)

 Sleep(50);

 printf("main thread terminates\n");

 exit(0);

}

void OneHello(void *id)

{

 int i;

 for(i = 0; i < 5; ++i)

 printf("Hello From Thread %c\n", 'A' + (int)id);

 InterlockedDecrement((LPLONG)&alive);

 _endthread();

}

Looking at main(), we see that it simply calls _beginthread() in a loop to

start the multiple threads of OneHello(). Although the Win32 API

supported by the Realtime ETS Kernel provides a complete set of

thread functions (for example, CreateThread() and ExitThread()), you

should always use the _beginthread() and _endthread() functions

provided by the C run-time library. This is required if the thread calls

any other C run-time library function, and is good practice in all cases.

After starting up the threads, main() waits for all the other threads to

finish executing before calling exit() to terminate itself. This is very

important: the last thread to finish executing must call exit() so the C

run-time library performs an orderly, normal shutdown. Calling

_endthread() or ExitThread() will not cause this orderly shutdown and

information could be lost; for example, open files are not flushed to disk

correctly unless exit() is called.

Let’s look at the definition of _beginthread():

unsigned long _beginthread(

 void(*start_address)(void *),

 unsigned stack_size,

 void * arglist);

We see that the first argument is the address of the function that starts

the thread, which is OneHello() for this example. Although in this

example, OneHello() simply executes a few instructions and then

returns, in a more realistic example this function would be more like

the typical main() function in a traditional C program.

The next argument is the size, in bytes, of the stack to be allocated by

_beginthread(). For this example, we’re using a 16KB stack. You

Chapter 2

14 TNT Embedded Technologies Guidebook

should specify the appropriate stack size for the thread, remembering

that a stack of this size is allocated for each thread created by this call.

If the stack is too big, you can be wasting memory. If it is too small, the

stack may overflow, which can be very hard to debug. The thread stack

is allocated from the heap, making it difficult to determine in advance

what will be overwritten if the stack overflows.

The final parameter is a pointer to the arguments to be passed to the

newly created thread. In this example, the argument is the variable

alive, which is a count of the number of threads. Note that alive has

been declared with the volatile attribute. This indicates to the compiler

that alive is going to be accessed by multiple threads simultaneously,

and thus should not be stored in a CPU register. Just before

terminating, each thread decrements the value of alive and main()

monitors this variable. When it returns to 0, main() knows that all the

threads have finished executing and it safe for main() to call exit().

It is also important to note that the value of alive is changed by calling

the Win32 functions InterlockedIncrement() and

InterlockedDecrement(). Use of these functions prevents more than one

thread from simultaneously trying to change the value of alive.

The code for OneHello() looks just like any other C code. There is a

loop in which printf() is called to display a message. The formal

parameter id is used to identify the thread. Rather than returning when

it is finished processing, OneHello() decrements the value of alive and

calls _endthread().

Now that we’ve seen what a realtime program looks like, we need to

know how to build.

THE ETS PROJECT WIZARD

The ETS Project Wizard creates a new Developer Studio workspace

targeted to the ETS Kernel. This means that you can use the full

capabilities of the Developer Studio IDE, including automatic

compilation of modified source files, for building ETS applications.

C and C++ compilation options can be set from within the IDE, and

Phar Lap's LinkLoc linker is run directly from the Build menu, using

options set from the Linker Settings dialog.

An ETS workspace under Developer Studio is essentially a Win32

Console Application project that has a / ETS switch added to its Link

command line. When Developer Studio attempts to link an application,

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 15

Embedded StudioExpress intercepts the operation and looks for the

/ ETS:FILENAME switch on the Link command line. If it does not find

this switch, it just passes the command line on to Microsoft Link to

allow the application to be linked as normal. If the / ETS switch is on

the command line, then Embedded StudioExpress translates the

Developer Studio linker switches to LinkLoc format and invokes

LinkLoc using the filename included in the / ETS switch as a linker

command file. In addition, the complete list of object file names is

passed to LinkLoc with no changes.

A linker command file is simply a text file that contains the switches

and options that would be specified on the LinkLoc command line. The

ETS Project Wizard uses a linker command file to specify the LinkLoc

switches required for your program. One of the ETS Project Wizard

dialogs lets you choose which ETS subsystems you want to have linked

with your application.

CREATING A NEW ETS WORKSPACE

After starting Developer Studio,

select New ETS Project from the

Embedded StudioExpress toolbar:

There are two general areas on the first ETS Project Wizard screen: one

for specifying the name and location of the workspace and one for

specifying the linker command file.

Chapter 2

16 TNT Embedded Technologies Guidebook

If you select “Create New File,” the Subsystem Selection dialog lets you

select the ETS components that will be linked with your application.

Let’s take a look at this dialog to see the ETS Kernel components that

can be included with your application:

For this sample program, we need to select the multithreaded library as

well as the PC-Compatible Screen Driver. Selecting this driver allows

us to display console output on the target screen.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 17

Before the ETS Project Wizard actually creates the workspace and

linker command file, it shows you the options you have selected and

gives you a chance to make changes, if necessary.

When the ETS Project Wizard creates the HELLO1.LNK linker

command file, the file is included in your project and you can later edit

it to make changes if you find that you want to include a different set of

subsystems.

When you select Finish, the ETS Project Wizard closes the currently

open Developer Studio workspace (if there is one). You may be

prompted by Developer Studio to save your work. The ETS Project

Wizard then creates the newly specified workspace and tells Developer

Studio to open it.

After using the ETS Project Wizard to create the workspace and project,

you’re ready to continue with building your program.

BUILDING THE PROGRAM

Using Developer Studio to build programs targeted to the ETS Kernel is

the same as using Developer Studio to build programs targeted to

Windows. You add your files to the project, creating them if they don’t

already exist. You use the standard Developer Studio features to

specify whether you’re building a debug or release version of your

program. Then you use the tools on the Developer Studio Build menu

to build and run the program.

Chapter 2

18 TNT Embedded Technologies Guidebook

The first thing we’re going to do is add the HELLO.C file to the project

so Developer Studio knows to include it in the compilation and linking

commands. To do this, select Workspace from the View menu and then

click on the File View tab in the Workspace window.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 19

Right-click on “hello1” and then select Add Files to Project:

Select the files you want to add to the project. For this project, the only

file we need to add is HELLO.C. Choose All Files (*.*) in the Files of type

box to see more than just HELLO.C:

Chapter 2

20 TNT Embedded Technologies Guidebook

To edit a project file, double click on its name in the Workspace

window.

To build a debuggable version of HELLO1.EXE, choose Build hello1.exe

from the Developer Studio Build menu:

The output from the build process appears in the Build window at the

bottom of the screen:

-------------Configuration: hello1 - Win32 Debug-------------

Compiling...

hello.c

Linking...

LinkLoc: 9.1 -- Copyright (C) 1986-98 Phar Lap Software, Inc.

Microsoft (R) Debugging Information Compactor Version

5.00.7022

Copyright (C) Microsoft Corp 1987-1997. All rights reserved.

hello1.exe - 0 error(s), 0 warning(s)

The resulting HELLO1.EXE is ready to run or debug.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 21

RUNNING WITH THE REALTIME ETS KERNEL

When an ETS application is linked, LinkLoc marks its file header as an

ETS application. Embedded StudioExpress automatically notices these

specially marked applications and downloads them to the embedded

target. It ignores standard Win32 applications which Developer Studio

loads normally on the development host.

Because Embedded StudioExpress ignores standard Win32

applications, there is no need to remove it when you aren’t building

ETS applications. It is there to use when you need it, but it doesn’t

prevent you from using Developer Studio for non-ETS programs.

Once you’ve built your program, you can run it by choosing Execute

hello1.exe from the Build menu.

StudioExpress will download your program to the embedded target. A

console window opens on the host screen before the download starts.

This console window will be used to perform keyboard input for the

application running on the embedded target.

After the download is complete, the following text appears on the

target screen:

Hello From Thread A

Hello From Thread A

Hello From Thread A

Hello From Thread A

Hello From Thread A

Hello From Thread B

Hello From Thread B

Chapter 2

22 TNT Embedded Technologies Guidebook

Hello From Thread B

Hello From Thread B

Hello From Thread C

Hello From Thread C

Hello From Thread C

Hello From Thread C

Hello From Thread C

Hello From Thread D

Hello From Thread E

Hello From Thread D

Hello From Thread E

Hello From Thread D

Hello From Thread E

Hello From Thread D

Hello From Thread E

Hello From Thread D

Hello From Thread E

main thread terminates

The host console window will display the text “Press a key to exit.” As

directed, press any key on the host keyboard to exit the program.

THE TYPICAL DEVELOPMENT CYCLE

The HELLO example gives you the flavor of building and running

programs for the Realtime ETS Kernel. Running from Developer

Studio is easy and simplifies the example, but does not utilize the

full power of TNT Embedded ToolSuite. While the Realtime ETS

Kernel may be the heart of ETS’s support for programs written in C

or C++, Embedded StudioExpress is the soul of its convenience for

programmers. When run in WaitHost mode from Developer Studio,

the Realtime ETS Kernel is part of a powerful debugging

environment that facilitates debugging embedded programs using

the same source-level debuggers used for non-embedded programs.

Chapter 4, “Debugging with the Realtime ETS Kernel,” contains

detailed information about debugging ETS programs.

One of the first questions you have to answer when building an

embedded system is whether the application is going to be RAM-based

or ROM-based. If the answer is RAM-based, your development

environment will be similar to the one described in this book. If you’re

building a ROM-based application, there will be some difference in

how you boot ETS on the embedded target, but you’ll use the same

procedures for building and debugging your program.

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 23

RAM-Based Applications

Most embedded targets that run RAM-based applications are PC/ AT-

compatible or PC/ 104 systems. The production version of the system

loads the application from some kind of disk: floppy, fixed IDE, PC

Card, or M-System flash.

A typical development cycle for a RAM-based application might

contain the following steps:

1. Boot ETS Monitor in WaitHost mode from disk, download

embedded program from development host: In this stage, your

target system is connected to a host PC with a cable between the

communications ports. You take full advantage of the host tools to

develop your program. During this stage of development, you’re

making frequent changes to your program and usually running

with a debugger to track down problem areas.

2. Boot ETS Monitor in WaitHost mode from disk, run embedded

program from disk: Your target system is still connected to a host

PC with a cable between the communications ports. During this

stage of development, you’re running a lot of tests and using the

debugger only when a problem is encountered. This scenario might

be suited for Alpha and Beta releases of your product. If your

program is particularly large, you may find it faster to load the

program from disk instead of downloading it from the

development host.

3. Boot ETS Monitor in NoWaitHost mode from disk, run

embedded program from disk: This scenario describes the

production version of your product. The embedded system

contains everything needed to run the program.

ROM-Based Applications

Depending on the availability of the target hardware, you may want to

start development using a PC/ AT-compatible target. If so, you would

follow Steps 1 and 2 in the previous section.

However, you probably want to start running your program on

hardware that more closely resembles the intended embedded system

as soon as possible. The ToolSuite documentation describes the

Chapter 2

24 TNT Embedded Technologies Guidebook

procedures to be used for getting the Realtime ETS Kernel up and

running on a variety of different target boards.

A typical development cycle for a ROM-based application might

contain these steps:

1. Boot ETS Monitor in WaitHost mode from ROM, download

embedded program from development host: In this stage, your

target system is connected to a host PC with a cable between the

communications ports. You take full advantage of the host tools to

develop your program. During this stage of development, you’re

making frequent changes to your program and usually running

with a debugger to track down problem areas.

2. Boot ETS Monitor in WaitHost mode from ROM, run embedded

program from ROM: Your target system is still connected to a host

PC with a cable between the communications ports, but the ROM

for your embedded system now contains your program as well as

the ETS Monitor. During this stage of development, you’re running

a lot of tests and using the debugger only when a problem is

encountered. This scenario might be suited for Alpha and Beta

releases of your product. If your program is particularly large, you

may find it faster to load the program from ROM instead of

downloading it from the development host.

3. Boot ETS Monitor in NoWaitHost mode from ROM, run

embedded program from ROM: This scenario describes the

production version of your product. The embedded system

contains everything needed to run the program.

If your target is not one of those directly supported by the Realtime ETS

Kernel, you will also have to port the Realtime ETS Kernel to the target

system. Version 9.1 supports the following hardware targets:

PC/104 Systems

Adastra Systems Corporation http://www.adastra.com

Ampro Computers Inc. http://www.ampro.com

Real Time Devices, Inc. http://www.rtdusa.com

VersaLogic Corporation http://www.versalogic.com

WinSystems Inc. http://www.winsystems.com

A Quick Tour of the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 25

Single Board Computers

Adastra Systems Corporation http://www.adastra.com

Ampro Computers Inc. http://www.ampro.com

Cell Computing, Inc. http://www.cellcomputing.com

Megatel Computer Corporation http://www.megatel.ca

RadiSys Corporation http://www.radisys.com

S-MOS Systems, Inc. http://www.smos.com

Teknor Industrial Computer Inc. http://www.teknor.com

VersaLogic Corporation http://www.versalogic.com

Industrial PCs

or Industrial Computers http://www.or-computers.com

Texas Micro Inc. http://www.texasmicro.com

STD-32 Systems

Octagon Systems http://www.octa.com

VersaLogic Corporation http://www.versalogic.com

Compact PCI Systems

Texas Micro Inc. http://www.texasmicro.com

Ziatech Corporation http://www.ziatech.com

CPU Modules

Forth-Systeme Modul 386EX

Forth-Systeme Modul SC400

ZF MicroSystems http://www.zfmicro.com

x86 CPU Evaluation Boards

AMD SC300/310

http://www.amd.com/products/lpd/elan300/elan300-310.html

AMD SC400/410

http://www.amd.com/products/lpd/elan400/21027a.html

Intel/Radisys 386EX EXPLR2

http://developer.intel.com/design/intarch/PRODBREF/27291601.htm

NS486

http://www.national.com/appinfo/ns486/evboard.html

Intel Pentium Processor Modules

Intel

http://www.intel.com/design/intarch/prodbref/971978.htm

27

Chapter 3

A Quick Tour of the

Visual System Builder and

CFIGKERN

You have a choice of methods for configuring your project. The Visual

System Builder (VSB) presents an efficient graphical interface for

specifying linker options and configuring the Realtime ETS Kernel. If

you wish, you may instead use the CFIGKERN utility to specify kernel

options.

The Visual System Builder (VSB) is a Windows program that acts as a

task-oriented interpreter between you and LinkLoc, providing a simple

and reliable way to select the options you need for your particular

compiler and target. This saves you the trouble of learning and

remembering dozens of switches. You simply click on choices that

describe the kind of system you want to build. The VSB then

automatically selects the linker switches and kernel options appropriate

to a system with the properties you’ve specified.

When you save your project, the VSB writes the switches and options

into linker command files that are referenced by Developer Studio

when building your application. Given the great number of options

required for even a small system, the VSB can greatly simplify

application development. And because your options are generated

automatically, you’re safe from typos and other syntax errors.

PRECONFIGURED TEMPLATES

Many projects will inevitably share the same or similar target

hardware. The Visual System Builder supplies preconfigured

templates for several hardware configurations.

A template is provided for you automatically when you begin your

project. You choose a template at the beginning of the project from the

New Project dialog box:

Chapter 3

28 TNT Embedded Technologies Guidebook

Each template is customized for a particular target hardware

configuration and already includes appropriate settings for most of the

options in the VSB. Using a template essentially frees you from having

to make all but a few decisions for your project. If no template is

provide for your particular target, you can begin with the template for

the hardware most like yours.

Phar Lap frequently adds templates for new target hardware. Check

with your Phar Lap sales representative for the most up-to-date

information.

THE PROPERTY SHEETS

The Visual System Builder presents options on property sheets.

Labeled icons in a scrollable window at the left side of the VSB dialog

let you select the property sheet you want to work on. Each VSB

property sheet presents you with options for different types of targets

and applications.

A Quick Tour of the Visual System Builder and CFIGKERN

TNT Embedded Technologies Guidebook 29

The Components Property Sheet

Several property sheets are standard for every project:

® Compiler/Linker

® Monitor

® Memory Layout

® Host Communications

® Components

® Monitor Drivers

® Kernel Drivers

® Extra Linker Switches

These additional sheets present options for the Realtime Edition:

® File System

® TCP/IP

® IP Addresses

® Network Driver

® PC Card Support

Chapter 3

30 TNT Embedded Technologies Guidebook

Certain property sheets, such as TCP/ IP, are present only when an

option has been selected on one of the standard pages.

Most of the property sheets will not allow you to choose options that

are incompatible with options that have already been specified. In

order to provide maximum flexibility, however, other options do not

include this insurance. If you have trouble building your application,

make sure that the specifications you have entered do not conflict.

CFIGKERN

CFIGKERN is a command-line utility that can be used to display and

change certain options in a previously-linked kernel. It thus provides

an easy way to change many settings in your project without having to

relink. CFIGKERN does not allow you to change settings that require

relinking.

If no switches are specified when CFIGKERN is run on a kernel,

CFIGKERN prints out a summary of the options that can be configured

in the named kernel file. The following is an excerpt from such a report:

CFIGKERN: 9.1 -- Copyright (C) 1986-98 Phar Lap Software,

Inc.

Dump of ETS Kernel settings in monitor file ‘A:\DISKKERN.BIN’

 Boot Type: Disk (WaitHost)

 Debug Flag: 00000000h

 Monitor Code Base Address: 00007E00h

 Monitor Data Base Address: 00001000h

 Floating Point Coprocessor Detect: Auto

 Null Pointer Protection: Enabled, Range 0 to FFFh

 Bad Jump Protection: Disabled

CFIGKERN allows you to change settings in the following areas:

® Host Communication

® Application Loader

® Error Detection

® Specifying Target Memory

® Local File System

® Floating-Point Emulation

® Multitasking

® General Networking

A Quick Tour of the Visual System Builder and CFIGKERN

TNT Embedded Technologies Guidebook 31

® Specifying IP Addresses

® Driver Configuration

Chapter 3

32 TNT Embedded Technologies Guidebook

33

Chapter 4

Debugging with the

Realtime ETS Kernel

The Microsoft Developer Studio debugger is included with Visual C++

and Embedded StudioExpress is included with TNT Embedded

ToolSuite. These two components work together to let you debug your

embedded application with the Developer Studio Integrated

Development Environment (IDE).

The beginning of this chapter discusses general issues related to

debugging embedded programs and show you how to use the basic

features of Developer Studio to debug a simple embedded program.

We then describe the additional debugging features available with

Embedded StudioExpress. These features extend the Developer Studio

debugger, adding capabilities specific to debugging embedded

applications under the Realtime ETS Kernel.

Chapter 4

34 TNT Embedded Technologies Guidebook

A SAMPLE DEBUG SESSION

To demonstrate the debug capabilities of the Developer Studio

debugger and Embedded StudioExpress, we’ll use the DIVBUG sample

program. This program inputs two numbers and divides the first by

the second without first checking to make sure that the denominator is

not zero. If the second number is zero, this results in an integer divide

by zero exception (exception 0). DIVBUG uses the C run-time library

functions printf() to prompt the user for input on the host machine and

scanf() to collect the data.

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 35

To start a debug session, select Start Debug from the Build menu. For

this sample, we’re going to choose Step Into:

StudioExpress will download your program to the embedded target. If

you carefully watch the host screen, you’ll see a console window open

after the download is complete. Notice the new button labeled

divbug.exe on the Windows taskbar. This console window will be used

to perform keyboard input and screen output for the DIVBUG

application running on the embedded target.

Chapter 4

36 TNT Embedded Technologies Guidebook

Because we started the debugger by choosing Step Into, a breakpoint is

automatically set at main() as indicated by the arrow next to the

beginning of this function:

At this point, you can use any of the normal Developer Studio

debugging commands.

Recall that the DIVBUG sample program inputs two numbers and

divides the first by the second without first checking to make sure that

the denominator is not zero. If the second number is zero, this results

in an integer divide by zero exception (exception 0). DIVBUG uses the

C run-time library functions printf() to prompt the user for input on the

host machine and scanf() to collect the data.

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 37

We’ll let the program run (by selecting Go from the Debug menu) and

see what happens. When prompted for input in the console window,

specify 60 for the distance and 0 for the time.

As expected we get an integer divide by zero error:

Click OK to return to the debugger. The breakpoint is at the line

speed = (60 * distance) / time;

Chapter 4

38 TNT Embedded Technologies Guidebook

Notice that if you place the cursor over the variable time, the current

value is displayed:

To correct this problem, we should add some checking code to the

program to verify that the value of time is non-zero.

EMBEDDED STUDIOEXPRESS EXTENSIONS

Target Port Input/Output

The Target Port Input/ Output

dialog allows you to do direct port

I/ O on the embedded target from

the debugger. Direct port I/ O can

be very useful when debugging device drivers, analyzing I/ O states,

configuring hardware, etc. To access this component, click on the ETS

Target Input/ Output icon on the ETS Toolbar.

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 39

Target System Information

The Target System Information

component of Embedded

StudioExpress displays just about

everything there is to know about

what’s happening on your embedded target. To access this component,

click on the Target System Information icon on the StudioExpress Toolbar.

If we were to do this when the exception occurred in DIVBUG, we’d see a

list of subsystems for which information is available. Clicking on the

name of any target subsystem will cause StudioExpress to display

information about the components of that subsystem. At any level of the

display, a plus sign (+) preceding an object name indicates more

information is available. Click on the plus sign to see the next level of

detail. For example, the following screen shows detailed information

about the timer and memory subsystems.

Clicking on the Save button causes the entire contents of the Target

System Information window to be copied to a user-specified text file,

which is then opened in the main window of the debugger:

We have tried to include just about anything you could possibly want

to know about the state of the embedded system in the Target System

Information. In most cases, you should be able to find everything you

need to fix your problem without going to the lowest levels of detail.

But, know that the information is there if you need it.

Chapter 4

40 TNT Embedded Technologies Guidebook

DEBUGGING MULTITHREADED PROGRAMS

The techniques that you use for debugging single threaded programs

aren’t always going to be adequate for multithreaded programs. In

general, your realtime program will have several threads running and

it is quite helpful to know the state of those threads when you’re

debugging. You may also have questions that just don’t come up when

debugging single threaded programs. For example, why is this

particular thread blocked? The embedded system can also become

deadlocked. This happens when no threads are runnable and each is

waiting on a resource owned by another thread.

The Target System Information displayed by Embedded StudioExpress

is a comprehensive view of the current state of the embedded target.

The following window appears when you select Target System

Information from the StudioExpress Toolbar:

Clicking on the name of any target subsystem will cause StudioExpress

to display information about the components of that subsystem. If, for

example, you click on “Threads,” you’ll see the state of all the active

threads. Clicking on any thread will display more information about

that thread. For example, the ETS Timer Thread is usually waiting for

an event to be signaled by the ETS Timer Interrupt Handler:

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 41

We see that the object being waited for is at address 00102274h. We can

also see that the ETS Timer Thread is the only one waiting for this

object. If other threads were also waiting, they would be listed.

In addition to the information displayed by Embedded StudioExpress,

you may find it helpful to take advantage of the following procedures

and Realtime ETS Kernel features when debugging multithreaded

programs.

® Use the Realtime ETS Kernel API function EtsSetDebugName()

to name your threads and synchronization objects. This

information is then automatically displayed by StudioExpress when

examining the state of the target system. It will also be displayed if

you call EtsDumpThreads().

® Use the ETS event logging system to keep track of significant

events in your program, including system APIs and events and

user events. The basic event logging system is described later in

this chapter.

® If your embedded system appears to be deadlocked, and if there’s

an NMI button on the embedded target, you can signal an NMI

to stop the target, giving control to the ETS Monitor. This will

restore you to the debugger prompt. This technique will work even

if interrupts are disabled on your target. If interrupts are enabled,

you can effect the same thing by using Ctrl-Break on the

development host. This will stop the program on the target, giving

you control at the debugger prompt.

Chapter 4

42 TNT Embedded Technologies Guidebook

® The Realtime ETS Kernel creates a very low priority (-16) system

thread named “ETS Null Thread.” Because the priority is so low,

this thread will run only if no other threads can run. This can

happen if the embedded target gets deadlocked. If you’re using the

StudioExpress Toolbar or if you call EtsDumpThreads(), see if the

current thread is the “ETS Null Thread.” If so, you should look for

signs of deadlock in your program.

® When you enter the “go” command to a debugger, your program

starts to run and you have no control over which threads are

running. While this behavior is desirable in a running program, it

greatly complicates the debugging process. In order to simplify

your debugging, you should freeze all threads except the one you’re

debugging. Please note that only application threads — not system

threads — can be frozen. In particular you cannot freeze the timer,

keyboard or null system threads. In practice, the inability to freeze

the timer thread is the only one that might be troublesome. The

timer thread will run according to its priority, calling any registered

timer callback functions.

Once you’ve corrected any problems in the thread you’re

debugging, unfreeze the other threads and see what happens.

Repeat this process, each time freezing all threads but one until

you’ve debugged the whole program.

When you’re debugging a multithreaded program, you might also

want to specify the debug version of the ETS Multithread Library. This

version of the library contains some additional functionality which

facilitates debugging, but has a performance cost unnecessary in

production programs:

® A stack frame is created on every function call. This means that some

compiler optimizations have been disabled, but it allows you to more easily

look at threads other than the current one while debugging. If you look at

a stack backtrace, you will eventually find the call to your user code in the

other threads.

® There is additional error checking within the library itself.

® When switching threads, the ETS Multithread Library code reads the

Thread ID out of memory at a specific time so hardware-assisted

debuggers can trap on this read. The ETSCHECKPOINTS structure

defined in EMBKERN.H resides at the start of the monitor code segment

and contains “checkpoint” locations.

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 43

typedef struct tagETSCHECKPOINTS

{

 char ChkReturnToApp;

 char ChkEnterMonitor;

 char ChkThreadSwitch;

 char reserved[13];

} ETSCHECKPOINTS;

When switching threads, the ETS Multithread Library reads location

ChkThreadSwitch. This is a signal to a hardware-assisted debugger

that the next data read will be the 32-bit Thread ID.

Sample Output from EtsDumpThreads()

The following is a portion of the active threads list from the software

running Phar Lap's “World’s Smallest Web Server.” This software can

be demonstrated by pointing your Web browser at

http:/ / smallest.pharlap.com.

Current Thread List:

THREADBLK at 00101A48, System Thread, ID=2, BasePri=-16,

CurrPri=-16

 Thread Name = "ETS Null Thread"

 Flags = 0801, In Run Queue

THREADBLK at 001045BC, Application Thread, ID=4,

BasePri=0, CurrPri=0

 Thread Name = "ETS TCP/IP Receive Thread"

 Flags = 0C06, Waiting on IPC Object(s), In Timeout

Queue

 Waiting on EVENTBLK at 001047C0 (name="/event/ETS TCPIP

Incoming Packet")

THREADBLK at 001043A0, Application Thread, ID=5,

BasePri=0, CurrPri=0

 Thread Name = "ETS TCP/IP Transmit Thread"

 Flags = 0C01, In Run Queue

 IPC Objects owned by this thread:

 MUTEXBLK at 00104838, No waiters

*** Current Thread: ***

THREADBLK at 00143E2C, Application Thread, ID=107,

BasePri=0, CurrPri=0

 Thread Name = "HTTP Connection to 192.107.36.201"

 Flags = 0C01, In Run Queue

Chapter 4

44 TNT Embedded Technologies Guidebook

The information displayed for each thread includes the following:

® Whether the thread was created by the system (Realtime ETS Kernel) or

the application

® The number of the thread

® The base and current priority of the thread

® The thread name

® The status of the thread

® Any synchronization objects the thread either owns or is waiting on

There were eight threads running when the above list was generated.

The four threads shown illustrate interesting and helpful information

that can appear in the thread list:

® ETS Null Thread

The very low priority system thread that should run only when no

other threads are runnable. If “ETS Null Thread” is the current

thread, it is a good indication that your program is deadlocked.

When this snapshot was taken, “ETS Null Thread” is sitting in the

run queue while higher priority threads are running.

® ETS TCP/IP Receive Thread

A typical application thread. It is waiting for an incoming TCP/ IP

packet.

® ETS TCP/IP Transmit Thread

Another application thread. It owns a mutex object on which no

other threads are waiting.

® HTTP Connection to 192.107.36.201

The currently active thread. This thread manages the connection to

the Web browser.

THE EVENT LOGGING SYSTEM

The ETS event logging system provides a convenient, automatic way of

keeping track of significant events in the life of your program. This can

be particularly helpful in locating and fixing troublesome bugs in your

Debugging with the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 45

code. The ETS event logging system is particularly useful for

debugging multithreaded programs.

Here’s a simple abridged example of an event log:

t=90 tid=5 API Enter: GetLastError

 Params= none

t=90 tid=5 API Exit: Sleep

 Params= none

t=80 tid=6 API Enter: ExitThread

 Params= 0x00000000h

t=80 tid=6 API Exit: TlsSetValue

 Params= 0x00000001h

t=80 tid=6 API Enter: TlsSetValue

 Params= 0x0000001Dh 0x00000000h

The buffer is LIFO (last-in, first-out). Starting at the bottom, then, we

see that the time (t) is 80 milliseconds, and the thread ID (tid) is 6. The

thread has just entered the Thread Local Storage Set Value function

(TlsSetValue()) with 01Dh passed as an argument.

Moving up, we see that the next entry is still at timer tick 80. Thread 6

is exiting TlsSetValue() at this point. No argument is being passed on

exit.

Moving up to the third and middle entry, and still at the same timer

tick, we see that thread 6 is executing ExitThread().

At the next entry we see that the timer tick has been incremented by the

Realtime ETS Kernel to 90 milliseconds. Thread 5 is being awakened by

the Realtime ETS Kernel, as you can see by the Exit call to Sleep().

In the last entry in this example, we see thread 5 executing a call to

GetLastError() with no argument.

As you can see even from this brief example, the event log makes it

very easy to track the sequence of events in program execution.

Now that you’ve seen some typical output from an event log, let’s look

at the more technical aspects.

Chapter 4

46 TNT Embedded Technologies Guidebook

Events are logged to a circular buffer of log entries which can then be

displayed. Under the Realtime ETS Kernel, an event is a variable-

length structure defined in the file EVENTLOG.H:

typedef struct

{

 DWORD TimeStamp; // Time event was logged.

 DWORD ThreadId; // Thread id that logged event.

 DWORD EventId; // Id identifying event.

 DWORD ParamCnt; // Number of DWORD parameters in event.

 DWORD Params[]; // Array of DWORD parameters.

} EVENT_LOG_ENTRY;

As you saw in the example above, the TimeStamp and ThreadId fields

are filled in automatically for all events. Every logged event is

identified by a DWORD EventId. Event IDs below 0x8000000 are used

for system events; Event IDs of 0x8000000 and higher are available for

user-defined events. To log a user event, you specify the EventId,

ParamCnt, and Params fields.

You specify which events are to be logged by setting bits in the log

flags, corresponding to the events of interest. ETS events are grouped

into four subsystems:

® SUBSYS_API

Creates a log entry whenever infrequently called ETS or Win32

APIs are entered or exited.

® SUBSYS_VAPI

Enables logging of frequently called ETS and Win32 APIs.

® SUBSYS_LOADER

Enables logging of events whenever any function in the DLL Loader

Library is called.

® SUBSYS_EMBMT

Enables logging when key events happen inside the Realtime ETS

Kernel multitasking library.

The pseudo-subsystem SUBSYS_ALL can be used to enable logging of

all ETS system events.

47

Chapter 5

Options for the

Realtime ETS Kernel

The Realtime ETS Kernel includes a number of configuration options,

providing a great degree of flexibility in building your system. Some

options must be specified when the kernel is built, while others can be

changed later with the CFIGKERN utility. This chapter identifies these

options.

The most basic configuration option is the boot method. There are two

basic choices. Disk kernels can load embedded programs from disk or

over the communications cable from a host PC. ROM kernels can load

programs over the communications cable, from ROM on the embedded

system, and from disk (BIOS Extension ROM kernels only).

The Realtime ETS Kernel has two operational modes, independent of boot

method: WaitHost and NoWaitHost. In WaitHost mode, the Realtime

ETS Kernel boots the target system, initializes itself, optionally loads your

program, and waits for a signal from the host PC before executing your

program. Therefore, to run in WaitHost mode, you must have a host PC

connected to your embedded system with a communications cable. In

NoWaitHost mode, the Realtime ETS Kernel boots the target system,

initializes itself, loads your program, and begins executing it. There are

three ways to set the run mode:

® When the kernel is built.

® By running the CFIGKERN utility on the kernel.

® By writing a function called EkCustomRunMode(), which is linked into the

kernel. This function could, for example, read a hardware switch at boot

time to select WaitHost or NoWaitHost mode dynamically.

Chapter 5

48 TNT Embedded Technologies Guidebook

You must choose whether to include host communications code. This

code must be included for any kernel that must run in WaitHost mode,

for instance during debugging.

If a kernel includes an application loader, one of the last steps in the

kernel initialization is to load an application. There are two ways to

specify the application file:

1. The default is to load the second file on the boot disk.

2. You can use the CFIGKERN switches -APPNAME and -APPDRIVE to

specify the name and drive location of the application. If no drive is

specified, the default is to use the boot drive for disk kernels and drive A:

for ROM kernels. The file name is a standard DOS file name with no

provisions for directory specification, so the file must be located in the root

directory on the specified drive.

The figure opposite illustrates the process of loading an application and

how the different kernel options can affect this process.

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 49

Does the ETS

Monitor contain

an application

loader?

Could the specified

application be

found?

Load the

application

Is this a ROM

monitor?

Is there an

application in ROM?

YESYES

YES YES

NO NO

NONO

Is the run mode

WaitHost?

Wait for

command

from host

Is "application

present" flag set?

Run the

application

Fatal Error

YES

YES

NO

NO

Set

"application

present" flag

Realtime ETS Kernel Application Loading Process

Chapter 5

50 TNT Embedded Technologies Guidebook

To summarize, if an application loader is present, the Realtime ETS

Kernel will try to load the specified application. If no loader is present

or if the specified application could not be found, ROM kernels will use

the application in ROM, if one is present.

The combination of NoWaitHost run mode and no application (either

loaded or in ROM) causes the Realtime ETS Kernel to generate a fatal

error and exit.

If the kernel run mode is WaitHost, you can choose either to run the

loaded application (if any), or download a different application and run

it instead.

Although it is easy to customize a kernel with the Visual System

Builder, for your convenience several pre-made kernels are included

with the TNT Embedded ToolSuite to suit a wide variety of platforms

and boot methods.

The “BIOS Extension” and “Boot Jump” methods for booting the

Realtime ETS Kernel are discussed later in this chapter.

BOOTING FROM DISK

When the Realtime ETS Kernel boots from a disk, the process is the

same for all disks: floppy, IDE hard, PC Card ATA, or M-Systems flash.

Because the boot sector loader calls PC BIOS functions to load the ETS

Monitor, the target system must have a PC/ AT-compatible BIOS if you

want to boot from disk.

When the machine is turned on, the BIOS tries to boot by first checking

the A drive and, if there is no disk, then checking the C drive. By

convention, bootable disks have a boot sector loader in the boot record.

The BIOS loads the boot sector loader into memory and begins to

execute this code. The boot sector loader is a simple program (it has to

fit in one 512-byte disk sector) that loads the first file on the boot disk

and transfers control to that code. The only constraint imposed by the

boot sector loader is that the file to be loaded must be contiguous on

disk. It can be as large as necessary, it just cannot be fragmented.

When you boot DOS, the first file on the disk is MSDOS.SYS. When

you boot the Realtime ETS Kernel, however, this file is usually

DISKKERN.BIN, a disk kernel. The ETS boot sector loader loads the

Realtime ETS Kernel into memory and begins to execute it.

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 51

Because of the different physical characteristics of flash, floppy, and

hard disks, there are some procedure differences in the way you create

the boot disk. Once the disk contains DISKKERN.BIN, however, there

are no differences. In particular, the procedures for loading your

program are the same for all disk kernels, regardless of type of disk.

It is also possible to put the Realtime ETS Kernel in a BIOS Extension

ROM which will load your application from disk each time the target is

booted. This strategy eliminates the step of loading the Realtime ETS

Kernel from the disk. Once the Realtime ETS Kernel starts executing,

the boot sequence continues unchanged.

Once running, the Realtime ETS Kernel starts the booting process by

determining the disk drive from which the application should be

loaded. The drive letter can be configured into the kernel or you can

use the default drive, the one from which the kernel booted (the “boot

Next, the Realtime ETS Kernel checks to see if an application name has

been configured into the kernel. If it has, the Realtime ETS Kernel tries

to load it from the root directory of the designated disk. If no

application name has been configured, the Realtime ETS Kernel tries to

load the second file in the root directory of the designated disk.

When you boot the embedded system, the Realtime ETS Kernel will

initialize itself and then load your program from the disk. What

happens next depends on whether the kernel is running in WaitHost

mode or NoWaitHost mode.

Running in WaitHost mode requires that the kernel was built with the

host communications option. Assuming that your kernel has been

appropriately configured for WaitHost mode, you must choose Execute

or Start Debug from the Developer Studio Build menu on the host to

synchronize with the kernel and start execution. Use the Nodownload

option to prevent downloading the file (since it was already loaded

from disk).

If you don’t use the Nodownload option, the application from the host

will be downloaded, overwriting the one loaded from disk, and the

Realtime ETS Kernel will execute the downloaded application instead

of the one loaded from disk.

If the kernel is running in NoWaitHost mode, your program will begin

executing as soon as the kernel has finished loading it. No additional

action is required, or even possible.

Chapter 5

52 TNT Embedded Technologies Guidebook

Loading your embedded program from disk is useful during Beta

testing or when there is no host PC, or as a way to try new versions of

your application in the field if your embedded system includes a disk

drive.

BOOTING FROM ROM

When your program is fairly stable, and you’re ready to prepare for the

final production, you need to program a ROM with the Realtime ETS

Kernel and your program.

Before you can begin programming the ROM, you must decide on the

method by which the Realtime ETS Kernel will be booted. There are

two possible methods: BIOS Extension ROM and Boot ROM. Samples

of both kernels (BIOSKERN.EXE and BOOTKERN.EXE) for PC/ AT

machines are included in TNT Embedded ToolSuite.

The ToolSuite also contains sample kernels for several commercially

available target boards.

There are two ways to run an embedded program loaded from ROM,

depending on whether the kernel is running in WaitHost mode or

NoWaitHost mode.

When a ROMable program is built, the resulting ROM image contains

both the Realtime ETS Kernel and a protected-mode embedded

program. When the kernel boots, it initializes itself and then loads this

embedded program.

If the kernel is running in NoWaitHost mode, this program will begin

executing as soon as the kernel has finished loading it. No additional

action is required, or even possible.

If it is running in WaitHost mode, the kernel does not begin executing

the code but waits for a signal from the host. This gives you a chance to

load a different program from the host. Normally, when you are

planning to download your application, the application program you

place in ROM with the Realtime ETS Kernel will be the tiny MINAPP

sample program distributed with TNT Embedded ToolSuite.

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 53

BIOS Extension ROM Boot Method

In this book, the term “BIOS extension” kernel refers to a kernel that

runs after other software has initialized the system hardware.

IBM PC/AT-Compatibles

For an IBM PC/ AT-compatible, the BIOS extension method uses the

BIOS capabilities that allow additional components to be initialized

as part of the BIOS power-on self test (POST) and initializations.

During POST processing, the BIOS code scans specific address

ranges, looking for a three-byte signature:

Byte 0 0x55

Byte 1 0xAA

Byte 2 Number of 512-byte blocks in the ROM

The address ranges searched are:

C0000h – DFFFFh search the address range in increments of 2K

E0000h search the address, the ROM must occupy the

entire 64K

When the signature is found, the BIOS issues a far call to the address

in the first byte following the signature. When the call returns, the

BIOS continues processing. When all BIOS processing has been

completed, an INT 19h is issued to boot and start.

When the BIOS extension method is used to boot the Realtime ETS

Kernel from ROM, the ROM must be located at one of the specified

addresses. A valid signature will be found while the BIOS is

searching the address ranges. The code called will install an INT 19h

handler and return. After the BIOS has completed all self-testing

and loaded all the other extensions, the BIOS issues an INT 19h as

usual. Now, however, the Realtime ETS Kernel INT 19h handler will

intercept the interrupt and boot the Realtime ETS Kernel instead of

DOS. Since this kernel is already in ROM, control is passed to the

beginning of the code.

National Semiconductor NS486SXF Evaluation Board

In the case of the National Semiconductor NS486SXF Evaluation Board,

initialization is performed by the NSC boot program in the flash

memory. The BIOS extension ROM program is downloaded to the

Chapter 5

54 TNT Embedded Technologies Guidebook

flash memory using the NSC utility program, FLASHLDR.EXE. When

you reboot the target, the NSC boot program runs first and then jumps

to the application program you downloaded with FLASHLDR.EXE.

The NSC boot program initializes the chip select registers to make the

128K flash memory answer at FFFC0000h–FFFFFFFFh, and makes the 1

MB of RAM memory appear from 0–100000h. The on-chip I/ O

peripherals are programmed to appear at the PC/ AT-compatible I/ O

addresses.

Boot Jump Method

Not all embedded systems will have an IBM PC-compatible BIOS. For

those systems, the “Boot Jump” method is used to boot the Realtime

ETS Kernel. When a 32-bit x86-compatible CPU is booted, control goes

to address F000:FFF0. If the ROM containing the Realtime ETS Kernel

is placed at this address, the machine will begin executing the code in

the ROM when it is powered on.

A kernel that is booted using the Boot Jump method must initialize the

chip set on the motherboard. Because there are so many different chip

sets, the BOOTKERN.EXE distributed with TNT Embedded ToolSuite

does not do chip set initialization, and therefore can only run on a

motherboard with a chip set that doesn’t require software initialization.

In spite of this limitation, BOOTKERN.EXE is useful because together

with the BOOTJMP sample program provided with TNT Embedded

ToolSuite, it illustrates how to build an embedded product with a Boot

Jump kernel. The sample kernels for the Forth-Systeme Modul 386EX

Board and the Intel386 EX Evaluation Board also employ the Boot Jump

method.

DOS BOOT OPTION

If your target system is a PC/ AT that can run DOS, you can also boot

the Realtime ETS Kernel from the DOS prompt. This feature can be

particularly convenient during program development. For example:

® You can use the standard, familiar DOS utilities for file management on

your target.

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 55

® While you’re developing your device drivers, you can use the DOS drivers

to initialize your hardware devices.

® Many single-board computers are supplied with DOS. Booting the

Realtime ETS Kernel directly from DOS is a quick and easy way to get up

and running.

® If you’re modifying the real-mode start-up code in the Realtime ETS Kernel,

you can use real-mode DOS debuggers like SYMDEB or DEBUG to debug

your changes to this code.

® A query can be added to the AUTOEXEC.BAT file, asking the user whether

to run DOS or the Realtime ETS Kernel, to provide dual boot capabilities on

the target. If the user wishes to run the Realtime ETS Kernel, invoke the

DOSBOOT program described below from within AUTOEXEC.BAT.

If you’re going to boot from DOS, there are some constraints on the

environment:

Your embedded application must be loaded above 1 MB. You specify

this load address with the -OFFSET switch to LinkLoc. For example,

C:\>linkloc @vc.emb test -offset 100000h

When you start the target with DOS, do not load DOS high.

The target cannot be running in Virtual 8086 mode. EMM386 and other

memory managers put the machine into this mode. You should not

load one of these programs if you’re planning to boot the Realtime ETS

Kernel.

Once booted from DOS, the Realtime ETS Kernel behaves as if it had

been loaded directly by the disk boot loader. The only difference is

where the kernel code and data are loaded in memory. When you boot

the Realtime ETS Kernel directly, the kernel code and data are loaded at

the locations specified when the kernel was linked. When you boot

from DOS, they are loaded where DOS chooses to load them.

Chapter 5

56 TNT Embedded Technologies Guidebook

KERNEL BUILD OPTIONS

The Realtime ETS Kernel consists of three components, two of which

are optional:

1. Basic operations (required)

2. Application loader (optional)

3. Host communications (optional)

In addition, the kernel can be loaded from a bootable diskette, using the

BIOS Extension method from ROM, or using the Boot Jump method

from ROM.

These options are all selectable from the Kernel Options property sheet

in the Visual System Builder.

In addition, there are batch files shipped with the ToolSuite distribution

for building these kernels. To build a kernel with different build

options, you would edit one of these files, choosing the batch file that

corresponds with the method used to boot the Realtime ETS Kernel on

your system.

REPLACEABLE CODE

As part of its initialization, the Realtime ETS Kernel calls a number of

functions which perform specified actions on the embedded system

hardware. As stated previously, the default hardware configuration is

a PC/ AT-compatible computer. Other platforms are also supported.

Please contact your Phar Lap sales representative for the most up-to-

date list of supported hardware. If you have different hardware, you

can replace the target-specific files with ones that are applicable to your

system. All the replaceable kernel functions begin with the prefix

EkCustom. The EkCustom function are listed in Appendix A.

The Kernel Initialization Process

This section describes the initialization sequence for the Realtime ETS

Kernel from the time that the embedded system is booted in real mode

until user code begins to execute. During initialization, the Realtime

ETS Kernel initializes the machine, communicates with the host if

necessary, and then transfers control to the application. The description

is from the point of view of the EkCustom functions. Details of kernel

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 57

initialization which are not target specific (like creation of descriptor

tables and switching into protected mode) are described mostly in

terms of the kernel doing additional processing.

The following diagram presents a timeline for the kernel initialization

process.

System Boot

EkCustomRealModeInit()
Performs real-mode initialization.

EkCustomMaskNMI()
Temporarily disables non-maskable interrupts.

EkCustomRunMode()
Determines whether an application is present on the target.

EkCustomBiosInit()
Allows for any initialization that requires services from the BIOS.

EkCustomPutChar()
If not a boot jump kernel, displays a sign-on banner.

EkCustomPutChar()
If a boot jump kernel, displays a sign-on banner.

EkCustomSystemInit()
Performs target hardware initialization for protected mode.

EkCustomDeviceInit()
Completes hardware initialization, including a call to

EkCustomProtCommInitialize() to initialize a port for

host communications.

Switch to Protected Mode

Realtime ETS Kernel Initialization Sequence

The kernel starts up in real mode. This part of the kernel runs out of

ROM only and does not touch any memory outside the ROM. It sets up

Chapter 5

58 TNT Embedded Technologies Guidebook

a register set which it wants to use (CS, DS, SS:SP, etc.) and then jumps

to EkCustomRealModeInit(). The kernel data segment is not

addressable at this time.

EkCustomRealModeInit() completes real-mode initialization so that the

kernel can transfer control to protected mode.

EkCustomRealModeInit() is responsible for the following:

® Initializing all motherboard memory hardware (including DMA refresh) so

that the kernel can touch RAM memory.

® Calling the kernel function EkCustomInitKernelData() to initialize the data

segment to all zeroes.

® Detecting hardware devices and storing their addresses in the global

KernelInfo data structure. For the PC/AT hardware, the following devices

are detected:

§ Master 8259

§ Slave 8259

§ Monochrome Display Adapter

§ CGA or better Display Adapter

For non-PC/AT hardware, EkCustomRealModeInit() should initialize the

corresponding devices.

If the machine is PC/AT-compatible and has an installed BIOS, then the

kernel was either loaded from disk or run as a BIOS extension. In this

case, the BIOS has already run its power-on self test and done hardware

detection, so rather than detecting the hardware devices,

EkCustomRealModeInit() calls the BIOS to detect the following hardware

devices and store their addresses in the global KernelInfo data structure:

§ CPU Type and Coprocessor Type

§ Master 8259

§ Slave 8259

§ Monochrome Display Adapter

§ CGA or better Display Adapter

§ BIOS Memory values

Options for the Realtime ETS Kernel

TNT Embedded Technologies Guidebook 59

® Regardless of whether a BIOS is present, enabling A20 to allow full 32-bit

addressing.

When EkCustomRealModeInit() completes, it returns to the kernel by

jumping to the address passed to it in the DX register. At this point the

kernel data segment and stack are now usable.

The kernel collects some basic information about the system. First, it

determines the type of CPU and coprocessor present. Then the kernel

calls EkCustomMaskNMI() to temporarily disable non-maskable

interrupts (NMIs).

The kernel calls EkCustomRunMode() which is responsible for making

a decision as to whether or not the kernel should wait and synchronize

with the host before continuing to execute the application. If the kernel

is to wait for the host, EkCustomRunMode() should return FALSE. If

the kernel is to continue and start execution of the application

(assuming there is one in memory already), EkCustomRunMode()

should return TRUE. This routine is replaceable in case the user wants

to check some status information (like a DIP switch on the target) to

decide whether or not to wait for the host debugger.

At this point, the kernel calls EkCustomCommInitialize(). This call is

made for reasons of backwards compatibility only. The actual

initialization of the communications hardware now takes place in

protected mode.

The kernel then prepares to enter 16-bit protected mode. After it enters

protected mode but before interrupts have been enabled, the kernel

calls the function EkCustomSystemInit().

EkCustomSystemInit() is responsible for initializing any target

hardware required for the kernel to run in protected mode.

EkCustomSystemInit() must not enable interrupts while it does its

work.

When EkCustomSystemInit() completes, it returns to its caller. At this

time, the kernel continues its initialization. After it enables interrupts, it

calls EkCustomDeviceInit(), which is responsible for final initialization

of any hardware devices required to run the kernel. In particular,

EkCustomDeviceInit() calls EkCustomProtCommInitalize() to initialize

the communications hardware. The only difference between

EkCustomSystemInit() and EkCustomDeviceInit() is that the machine is

running with interrupts enabled so unmasked hardware interrupts will

Chapter 5

60 TNT Embedded Technologies Guidebook

be occurring while EkCustomDeviceInit() — and all subsequent code —

is executing.

The kernel then completes its initialization. If EkCustomRunMode()

returned TRUE (NoWaitHost), the kernel then transfers control to the

application code. If EkCustomRunMode() returned FALSE (WaitHost),

the kernel then uses the EkCustomComm functions to initiate a

conversation. At this point, the kernel is under the control of the host

computer, which may or may not instruct it to start running (and/ or

debugging) application code.

If EkCustomRunMode() returned TRUE and no application is present,

the kernel will display a message on the screen (if there is one) and then

assume that EkCustomRunMode() should have returned FALSE. It will

then attempt to synchronize with the host.

After the application loaded by the kernel terminates, the kernel re-

initializes itself to get the machine into the same state as it was when the

application was first loaded. This is so that another application can be re-

loaded into the machine.

The kernel calls all the protected-mode EkCustom functions that were

called at cold-boot time, this time with a parameter indicating that this

is a warm reboot.

61

Chapter 6

Realtime ETS Kernel

Programming Environment

In previous chapters of this book, we’ve talked about the Realtime ETS

Kernel, told you how to build programs that run with it on your

embedded target, discussed various ways to run those programs, and

showed you how to use the host debuggers to find problems in your

program. Now, it is time to look more closely at the Realtime ETS

Kernel itself.

Using Visual C++ and Developer Studio along with the Realtime ETS

Kernel brings the power of 32-bits and the ease of C-language

programming to embedded systems. The simple HELLO and DIVBUG

sample programs mentioned in previous chapters show that

developing an embedded program can be quite straightforward, and

not all that different from developing programs for general-purpose

operating systems like MS-DOS, Windows, or UNIX.

Like a general-purpose operating system, the Realtime ETS Kernel

provides the following features and capabilities through Win32- and

WinSock 1.1-compatible APIs:

® Memory allocation

® Console I/O

® Host file I/O

® System timer services

® Structured exception handling

® Multi-threading and synchronization

® TCP/IP networking

® Local file I/O

® Loading and using DLLs

® Other miscellaneous APIs

Chapter 6

62 TNT Embedded Technologies Guidebook

While the Realtime ETS Kernel does provide many features of a general

purpose operating system, it is by design an embedded operating

system. As an embedded operating system, the Realtime ETS Kernel

has additional characteristics specific to embedded computer

applications:

® The Realtime ETS Kernel is scaleable. You can choose which operating

system features you want to include in your embedded application. If your

application does not need a particular feature or subsystem, you can

exclude it to reduce the memory footprint of the Realtime ETS Kernel.

® The Realtime ETS Kernel guarantees your application the capability of

responding to real-world events in real time.

® The Realtime ETS Kernel provides many additional APIs for taking over

interrupt vectors, logging events, configuring the system, retrieving status

information and debugging realtime applications.

® The Realtime ETS Kernel operates on physical memory only. In order to

guarantee realtime responsiveness, it does not provide demand-paged

virtual memory. Embedded applications must be aware of this fact. In

particular, an embedded application cannot allocate unlimited memory and

must use fixed-size stacks.

® The Realtime ETS Kernel can be customized for non-standard hardware.

All hardware-dependent modules in the Realtime ETS Kernel are shipped

in source code form and can be modified and replaced as necessary.

THE PROTECTED-MODE ENVIRONMENT

Regardless of which configuration options have been selected, the

Realtime ETS Kernel always sets up a protected-mode environment for

your embedded program. When your program gets control at the

beginning of main(), the kernel has already performed the low-level

details of setting up this environment:

® The embedded processor is switched to protected mode.

® The code and data segment selectors are set to a flat address space

starting at address 0 and extending to 4 GB.

® Registers and flags are initialized.

® Interrupts are enabled.

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 63

® Global variables have been initialized from compressed data in ROM.

® If it has been linked with your program, the C run-time library is initialized.

Having the Realtime ETS Kernel automatically perform this

initialization greatly simplifies development of programs for embedded

systems. For example, your program no longer has to specify and

manage system resources such as Descriptor Tables.

C RUN-TIME LIBRARY SUPPORT

As listed in Appendix B, “Supported C Run-Time Library Routines,”
most of the C run-time library compiler is supported by the Realtime
ETS Kernel. In general, unsupported routines are those needing a
resource not likely to be present on an embedded system.

In general, behavior of C run-time library routines under the Realtime

ETS Kernel is the same as under Windows. There are, however, some

differences:

® By default, the application gets all available RAM. Also,

EtsCustomGetMemPool() can be used to size and locate the heap

dynamically at run time.

® The environment and command line are hardwired at build time. Please

see “Host Command Line and Environment” below for more information.

® File I/O is supported over the communications cable to the host when

running in WaitHost mode, and locally on the embedded system if the local

file system library has been linked with the application. Please see

“Host/Local File System” for details.

® Screen/keyboard I/O are supported over the communications cable to the

host when running in WaitHost mode, and locally on the embedded system

if the embedded processor has a screen and keyboard. The local console

is supported in both WaitHost and NoWaitHost mode.

® Timer services are supported on the target via the timer driver.

The EtsCustom functions and other ETS functions are documented in

Appendix A.

Using the C run-time library can greatly simplify program

development. However, as with most time-savers, there is an

associated cost. In this case, this cost is the increased size of your

embedded program. If you don’t need the functionality provided by

Chapter 6

64 TNT Embedded Technologies Guidebook

the C run-time library, you can write a program with an assembly

language entry point that calls C code, and then not use any C run-time

library calls in your C code.

HOST/LOCAL FILE SYSTEM

The Realtime ETS Kernel supports file operations on both the host and

target systems. File operations are performed using the regular C run-

time library functions — for example, fprintf() is used for formatted

output to a file and fread() is used for unformatted input from a file.

The host file system is available only when running in WaitHost mode

and is automatically included when you link your program. This is

particularly useful during development, when it is often more

convenient to manipulate files on the host system. You can also use a

host file to simulate data received from an input device. If your stand-

alone embedded system will eventually have a file system, you can use

the host file system for initial development of your application,

switching over to the local file system at the appropriate time.

The local (target) file system is available in both WaitHost and

NoWaitHost modes. This file system is an MS-DOS compatible FAT

file system, with the following features:

® Support for FAT12, FAT16, and FAT32 formats

® Support for a variety of disk types, including IDE (both CHS and LBA

formats), floppy, PC Card ATA (both flash and rotating media), M-Systems

Flash, and RAM Disk

The function EtsSelectFileSystem() selects whether file operations that

take a file name (e.g., opening, creating, or deleting) are directed to the

local file system or to the host file system. There is no limit to the

number of times EtsSelectFileSystem() can be called, so your program

can toggle file I/ O operations between the development host and

embedded target as desired. Once a file is open, its file handle

identifies whether the file resides locally or on the development host.

The default file system selection (before the first call to

EtsSelectFileSystem()) is local if the local file system is linked in,

otherwise host. If neither file system is available, then file operations

return an error.

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 65

When a new thread is created, the new thread uses the system default

file system as described above. If file operations are to be directed to a

specific file system, you should call EtsSelectFileSystem() before

making any calls that use the file system.

TCP/IP AND WINSOCK 1.1 NETWORKING

The ETS Realtime Kernel includes a built-in TCP/ IP stack with support

for a subset of the WinSock 1.1 API. ETS TCP/ IP supports Ethernet,

SLIP, and PPP network connections. The following protocols are

supported:

Application Protocols Network Protocols

File Transfer Protocol (FTP) ARP

Finger BOOTP

Hypertext Transfer Protocol (HTTP) DNS

Simple Mail Transfer Protocol (SMTP) Ethernet

ICMP

IP

PPP

RARP

SLIP

TCP

UDP

Chapter 7, “Network Programming with ETS TCP/ IP,” describes ETS

TCP/ IP and WinSock support in more detail.

FLOATING-POINT EMULATION

Most compilers do not provide floating-point emulation libraries.

Rather, they depend on the operating system, in this case the Realtime

ETS Kernel, to provide this service.

By default, the Realtime ETS Kernel does not include floating-point

emulation. If your embedded program uses floating-point operations

and the target computer does not have a coprocessor, you must link the

emulation library with your program. If the embedded system has a

Chapter 6

66 TNT Embedded Technologies Guidebook

coprocessor, it will be used for all floating point operations even if the

emulation library is present.

COMMUNICATIONS WITH THE DEVELOPMENT HOST

The communications option (serial or parallel) of the Realtime ETS

Kernel supplies much of the functionality of the WaitHost run mode.

This option allows you to debug your program with Developer Studio

and provides access to the host keyboard, screen, and file system.

You must connect the ports of the development host and embedded

target systems with a LapLink cable. You may connect a serial port on

the development host to a serial port on the embedded target or you

may connect a parallel port on the development host to a parallel port

on the embedded target. You may not connect a serial port on one

system to a parallel port on the other.

ACCESSING MEMORY MAPPED DEVICES

The Realtime ETS Kernel sets up the descriptor for the 32-bit data

segment with a base of 0, and a size of 4 GB. With the paging unit shut

off, all addresses are physical addresses. Thus your program can

directly access all physical memory in the embedded system, including

memory mapped devices, with a 32-bit pointer.

If, for example, the target system has a video display screen, your

program can write directly to the physical address of the screen.

HOST COMMAND LINE AND ENVIRONMENT

Embedded programs can access their command line and environment

variables using standard C programming techniques. Command line

arguments are accessed through the traditional argc and argv

parameters to main(). Environment variables can be accessed through

the getenv() and _putenv() functions or through the envp parameter to

main(). The effects of _putenv() are analogous to those in MS-DOS:

calling _putenv() only changes the environment for the duration of the

embedded program. No changes are made to the host environment.

When the Realtime ETS Kernel is running in WaitHost mode, the

command line contains the name of the program and any arguments

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 67

following it. For Developer Studio, these arguments are specified in

the Project Settings dialog and argv[0] is the name of your embedded

program.

The environment contains all the environment variables defined on the

host when Developer Studio launched your program.

When running in NoWaitHost mode, the Realtime ETS Kernel calls the

EtsCustomGetCommandLine() and EtsCustomGetEnvStrings()

functions to specify default values for the command line and

environment strings. The default functions just initialize the command

line to “ETS dummy command line” and the environment to

“ETS=dummy” . If these default values are not adequate for your

program, you can write replacement functions that supply appropriate

values.

REPLACEABLE CODE

As mentioned earlier, the Realtime ETS Kernel and the ETS libraries

linked with your application can be customized to meet the needs of

your embedded hardware. In general, there are two kinds of

customizations: those implemented via link-time switches and options

and those implemented via replaceable code modules. If the Realtime

ETS Kernel includes the necessary code (a floating-point emulation

library, for example), you can specify the customization at link time,

most easily by using the Visual System Builder. If, however, the code

appropriate to your hardware is not available, you can replace the

applicable module in the Realtime ETS Kernel or linkable libraries with

code that targets your system.

Appendix A identifies all the replaceable modules in the Realtime ETS

Kernel and libraries.

BUILDING AND USING DYNAMIC LINK LIBRARIES (DLLS)

The Realtime ETS Kernel supports dynamic link libraries (DLLs).

Normal subroutine libraries are included in the .EXE file that uses the

library. In contrast, DLLs are libraries of code and data that are not

included in the .EXE file; instead, the .EXE links to the DLL while it is

running.

Chapter 6

68 TNT Embedded Technologies Guidebook

A DLL is a Microsoft-defined executable file containing functions that

are available to other programs. DLLs are used extensively in Windows

95 and Windows NT, as well as OS/ 2. The Realtime ETS Kernel brings

DLLs to embedded systems!

DLLs provide an ideal mechanism for giving your application an add-

in (user-extension) facility. Third-party developers would package

their add-ins as DLLs. Because the functions in a DLL are also

accessible via their ASCII string names, accessing new services in a DLL

is easy: no more messy glue routines. And again because functions in a

DLL are accessible via their ASCII string names, this facility is perfect

for any type of program that is user-extensible.

The benefits of DLLs are:

® More modular software development

® Not tightly linked to compiler or language

® Overlays for protected mode

® ASCII named functions for linking at run time

In the Realtime ETS Kernel, DLLs are loaded into RAM at run time by

calling LoadLibrary().

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 69

INTERRUPTS AND EXCEPTIONS

There are three types of interrupts This chapter describes how these

interrupts are handled by programs using the Realtime ETS Kernel:

® Hardware interrupts (caused by external hardware)

® Software interrupts (caused by executing an INT instruction)

® Processor exceptions (generated by the processor when it detects certain

programming errors)

Two “special” hardware interrupts are the timer (IRQ0 for PC/ AT-

compatible machines) and keyboard (IRQ1). The Realtime ETS Kernel

includes replaceable drivers for these hardware devices in source form.

Before writing your own driver for one of these devices, consider

whether the ETS driver could meet or be modified to meet your needs.

If your ETS application needs to handle processor exceptions, you may

want to consider the structured exception handling mechanism provided

by Visual C++.

ETS Kernel Interrupt Processing

The Realtime ETS Kernel creates Interrupt Descriptor Table (IDT)

entries (or vectors) for all 256 interrupts. Because each table entry is an

interrupt gate, interrupts are disabled when the handler starts to

execute. On most PC/ AT systems, hardware interrupts IRQ0 through

IRQ7 are mapped to INT 8 through INT 0Fh; hardware interrupts IRQ8

through IRQ15 are mapped to INT 070h through INT 077h.

Replaceable modules in the ETS Monitor control this mapping.

The Realtime ETS Kernel uses the following interrupts:

® Processor exceptions are used for debugging.

® One hardware interrupt (IRQ0 for PC/ATs) is used by the optional timer

driver.

® One hardware interrupt (IRQ1) is used by the optional keyboard driver.

® Software interrupt INT FEh is used to provide kernel services.

® Software interrupt INT FFh is used to provide host services.

Chapter 6

70 TNT Embedded Technologies Guidebook

Additionally, some other hardware interrupts are used by the Realtime

ETS Kernel for components such as the local file system, the ETS PC

Card Support Package and the ETS TCP/ IP stack.

INSTALLING AN INTERRUPT HANDLER IN YOUR APPLICATION

An interrupt handler is a section of code that is automatically executed

by the CPU when a particular interrupt occurs. This code which fields

and processes an interrupt is often called an interrupt service routine or

“ ISR.” The terms “ interrupt handler” , “ interrupt service routine” and

“ISR” will be used interchangeably throughout this section.

Before installing an interrupt handler in your ETS application, you

should first spend a little bit of time thinking about the software

architecture you are going to use. You will need to choose a strategy

for hooking the interrupt, and a strategy for managing preemption,

reentrancy and interrupt latency. The strategy you choose will be

affected by the type of interrupt you are hooking: a software interrupt,

processor exception, or a hardware interrupt.

For a software interrupt or processor exception, the architecture may be

quite simple because the options and trade-offs are few. Software

interrupts occur only when issued by your application. Processor

exceptions usually result from an error in the application. Both of these

events are synchronous — they only occur when generated by

application code. Thus reentrancy is only a problem if your application

can generate multiple simultaneous software interrupt requests, or if

your processor exception handler itself generates another processor

exception.

The recommended way for an application to handle a software

interrupt is by installing a C-language interrupt handler.

There are two ways for an application to handle processor exceptions:

® You can use the facilities for structured exception handling, provided by

Visual C++.

® You can handle them directly by installing a C-language exception handler.

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 71

Hardware interrupts are, by nature, more complicated. They occur

asynchronously and are usually arbitrated by a hardware device called

a programmable interrupt controller (or PIC). Because hardware

interrupts usually represent some sort of “ real-world” happening, they

often arrive with realtime service and response requirements. If you

are including the ETS Realtime Multi-Tasker in your application, you

will also have to choose whether you want to service your device

directly in the hardware interrupt handler, or signal a driver thread

that will service the device when it wakes up.

A few minutes spent thinking about the overall strategy for your

hardware interrupt handler will likely save you a lot of time down the

road when bringing up your finished driver.

Before choosing a software architecture for your hardware ISR, we

recommend that you do the following:

® Understand the realtime requirements of the hardware device you will be

driving and how they relate to the requirements of the other hardware

devices in your target system. (For example: a software architecture that

spends 10 milliseconds with interrupts disabled in a driver interrupt service

routine would not be suitable if there were another device in the system that

required its interrupt be serviced every 5 milliseconds.)

® Read all the ToolSuite documentation about interrupts to understand your

options for hooking the interrupt and managing reentrancy, latency, and the

programmable interrupt controller (or PIC). This documentation includes

annotated sample programs and references to ETS drivers that illustrate

different architectures for different types of interrupts.

Once you’ve digested all this information, you’ll be ready to design the

handler for your application. Again, some recommendations:

® If possible, use a C function as your interrupt handler. This is the simplest

way to hook an interrupt and should suffice for all but the highest frequency

interrupts that must avoid the overhead of the Realtime ETS Kernel

umbrella handler.

Chapter 6

72 TNT Embedded Technologies Guidebook

® If possible, start with an ETS sample program or driver. These programs

and drivers have been extensively tested by Phar Lap and are known to

work.

® If you have any questions about the architectural choices for your interrupt

handler(s), feel free to contact Phar Lap’s technical support department for

advice. Phar Lap’s support engineers have the benefit of years of

experience with the Realtime ETS Kernel and can recommend a design

that will meet your needs as simply as possible.

Structured Exception Handling

Visual C++ includes a powerful language construct called “ structured

exception handling.” The construct includes four keywords:

 __try

® __except

® __finally

® __leave

and two intrinsic Win32 functions:

® GetExceptionCode()

® GetExceptionInformation()

The syntax of a structured exception handler is:

 __try

 {

 body, or guarded code

 }

 __except (exception-filter)

 {

 exception handler

 }

These try-except statements can be nested to any depth. If any

exception occurs while executing in the __try body, the exception-filter

expression is evaluated.

The exception filter can use the intrinsic functions GetExceptionCode()

to obtain a code identifying the exception that occurred, and

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 73

GetExceptionInformation() to obtain detailed information about the

program’s registers when the exception occurred. The exception-filter

expression can invoke a function, so the filter can be quite elaborate,

including changing register values for the program before continuing

from the exception.

REALTIME ETS KERNEL DEVICE DRIVERS

The Realtime ETS Kernel contains drivers for many PC/ AT-compatible

peripherals on the embedded target. Target systems that include one of

these supported peripherals can use the driver shipped with the

Realtime ETS Kernel — in most cases, without making any changes to

the driver. Your application can then access the device through the

high-level Win32 or C run-time library functions. The Realtime ETS

Kernel handles all the details of seamlessly integrating the driver into

the Win32 API layer presented to the application.

The Realtime ETS Kernel includes built-in support for the following

types of device drivers:

Driver Type Description

Timer The timer device driver provides time-of-day and

timer interrupt services. The timer driver is required

by the Realtime ETS Kernel.

Screen The screen device driver provides services for writing

ASCII text to the display.

Keyboard The keyboard device driver provides services for

receiving and processing keystrokes, and processing

keyboard interrupts.

Disk The local file system contains block device drivers for

several different types of disk devices.

Network The ETS TCP/ IP stack contains Ethernet drivers for

several different types of Ethernet interfaces. It also

contains a 16550-compatible serial driver for SLIP/ PPP

connections.

Chapter 6

74 TNT Embedded Technologies Guidebook

Driver Type Description

PC Card The ETS PC Card Support Package contains a device

driver for Intel 82365-compatible PC Card host

controllers. It also contains enablers for several

popular PC Card devices.

Serial Although the Realtime ETS Kernel does not include

direct support for serial devices through the Win32

communications APIs, it does include several serial

device drivers in source form.

Because the timer driver is required, it is installed by default. The other

drivers are all optional and are installed only if specifically mentioned.

The drivers distributed with the Realtime ETS Kernel are for the

PC/ AT hardware architecture. Like all hardware-dependent code in

the Realtime ETS Kernel, they are distributed as both source and object

code. If you want to use these drivers, but the device in your target

system is not PC/ AT-compatible, you must modify the source code to

these drivers as appropriate.

ETS PC CARD SUPPORT PACKAGE

Because they’re small, portable and interchangeable, PC Cards

(formerly called PCMCIA Cards) are a convenient way to add

functionality to your embedded system using standard connections and

components. The ETS PC Card Support Package provides the software

needed to use these devices.

The ETS PC Card Support Package is a set of libraries and source code

needed to use PC Card ATA Disks, Ethernet Adapters, Serial Ports, and

Modems with your embedded target. The libraries implement key

functions from the PC Card Standard, as well as some functions specific

to the Realtime ETS Kernel. The source code includes enablers that

recognize specific PC Cards and some sample programs. We have

included enablers for most PC Cards. However, new cards are coming

on the market all the time and you may have a card for which we have

yet to write an enabler. Source code is provided for the enablers, to be

used as a starting point for writing your own.

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 75

Note that while the PC Card Standard supports linear flash memory

devices (which are not ATA compatible) , this type of card is not

supported by the ETS PC Card Support Package.

PRIORITY INVERSION AVOIDANCE

Priority inversion is a scheduling anomaly that can occur when a thread

is waiting on an object held or owned by a lower-priority, unrunnable

thread. This can lead to unexpected, non-deterministic behavior in

your embedded program. The following scenario illustrates the

problem.

® Thread H is a high priority thread that is waiting on resource X.

® Thread L is a low priority thread that currently owns resource X.

® Thread M is a medium priority thread that is runnable.

® Thread M will run forever, effectively becoming higher priority than Thread

H. Thread L will never get a chance to run, thus never relinquishing

ownership of resource X, and never enabling Thread H to run.

Priority inversion will never happen under the Realtime ETS Kernel.

The Realtime ETS Kernel includes code that watches for such situations

and takes actions to avoid the priority inversion. If a thread is holding

a mutex or critical section object (resource X in the scenario above) and

a higher priority thread is waiting for that object, the priority of the

owning thread is immediately increased to that of the waiting thread.

As soon as the owning thread relinquishes ownership of the object, its

priority is returned to the original level. The Realtime ETS Kernel does

not perform this temporary priority adjustment for events and

semaphores, which cannot be “owned” by a particular thread.

The view presented above is a bit simplistic, but it is important that you

understand the basic concepts first. Suppose the lower priority thread

owns several objects, each of which is being waited on by a different

thread and all of the waiting threads have different priorities. In this

situation, the simple case is generalized as follows: a thread’s

temporarily adjusted priority is the maximum of it’s original priority

and that of the highest priority thread waiting on an object it owns.

Chapter 6

76 TNT Embedded Technologies Guidebook

Let’s look at another example to illustrate what happens:

1. Thread L owns objects X1, X2, and X3. The priority of Thread L is 5.

§ Thread H1 is waiting on object X1. The priority of Thread H1 is 3.

§ Thread H2 is waiting on object X2. The priority of Thread H2 is 7.

§ Thread H3 is waiting on object X3. The priority of Thread H3 is 9.

2. The priority of Thread L is temporarily set to 9.

§ Thread L releases ownership of X1. Thread H1 is waiting on X1, but its priority
is lower than the original priority of Thread L so the Realtime ETS Kernel makes
no adjustments.

§ Thread L releases ownership of X3.

3. The priority of Thread L is adjusted to 7. This is the same as Thread H2, the highest

priority thread waiting on an object owned by Thread L.

4. Thread H3 takes ownership of X3 and runs at priority 9 until it is no longer runnable.

5. Thread L runs at priority 7.

§ Thread L releases ownership of X2.

6. The priority of Thread L is returned to its original level of 5. At this point, all threads

have returned to their original priority levels.

The Realtime ETS Kernel automatically prevents priority inversion

from occurring, with no action on your part.

REALTIME ETS KERNEL VERSION 9.1 MEMORY REQUIREMENTS

The Realtime ETS Kernel contains a number of customization and

configuration options. One reason for this architecture is to minimize

the memory required. Your embedded program loads only the kernel

features that are actually used, reducing the overhead.

The following table summarizes the memory requirements of the

various Realtime ETS Kernel components.

NOTE: The Realtime ETS Kernel supports embedded systems that do

not use a ROM. For memory requirements on these systems, just add

the ROM and RAM figures together.

Component ROM

(CODE)

RAM

(DATA)

Realtime ETS Kernel Programming Environment

TNT Embedded Technologies Guidebook 77

Base ETS Kernel (single task)

ETS Monitor

ETS Kernel Libraries

min

16K

32 K

max

32 K

50 K

min

12 K

5 K

max

24 K

10 K

Total for Base Kernel 48 K 82 K 17 K 34 K

Multithread support* 28 K 16 K

Structured exception support 3 K < 1K

Floating-point emulator 23 K <1 K

Local file system 42 K 28 K

DLL Loader 10 K 4 K

PC Card support 32 K 16 K

M-Systems Flash support 20 K 4 K

TCP/IP minimal stack (2 sockets)**

TCP/IP typical stack (10 sockets)**

TCP/IP server stack (50 sockets)**

100 K

100 K

100 K

68 K

100 K

260 K

SLIP/PPP (with serial driver) driver 20 K 6.5 K

Ethernet driver (approx.) 4 K 1 K

* Minimum sizes to create a multithreaded Realtime ETS Kernel (103 K).

Minimum kernel starts at 75 K.

** The default number of sockets is 10.

Minimal C++ Run-Time Libraries

ROM Size RAM Size RAM only System

Microsoft Visual C++ ver. 5.0 14 k 4 k 19 k

Borland C++ ver. 5.0 20 k 4 k 24 k

Chapter 6

78 TNT Embedded Technologies Guidebook

79

Chapter 7

Network Programming with ETS

TCP/IP

The Realtime ETS Kernel provides robust networking capabilities

through the popular TCP/ IP and WinSock 1.1 protocol specifications.

A properly equipped embedded system built with TNT Embedded

ToolSuite can thus run network applications over the Inter/ intranet, or

even act as a network server.

Standard application-level protocols are supported, including HTTP

and FTP. Network connections are supported for Ethernet, SLIP,

CSLIP, and PPP.

The Realtime ETS Kernel supports the WinSock 1.1 API. WinSock 1.1

provides an application interface to the TCP/ IP stack. The WinSock

API was designed for Microsoft Windows, and is closely based on the

popular UNIX networking API known as Berkeley Sockets.

The ETS TCP/ IP stack supports the following popular Ethernet

controller chips:

SMC 8003, 8216, 8416, 91C92, and 91C94

3COM 3C509

Novell NE2000 and compatibles

Digital 2104x and 2114x

The source code for these drivers is included with ToolSuite, making it

easier for you to write your own driver if your card is not one of those

supported.

The ETS TCP/ IP stack also supports the SLIP, CSLIP, and PPP serial IP

protocols over an 8250, 16450, or 16550 UART. The source code for the

serial drivers used by the PPP/ CSLIP driver is also included with

ToolSuite, making it easier for you to write your own driver if you use

a different serial chip.

In addition, TNT Embedded ToolSuite includes the Phar Lap

MicroWeb Server, a collection of libraries and plug-ins linked with your

Chapter 7

80 TNT Embedded Technologies Guidebook

application to create an embedded Web server than runs under the

Realtime ETS Kernel on your target system. The MicroWeb Server is

described later in this chapter.

NETWORK PROTOCOLS

The ETS TCP/ IP stack supports several network protocols, used for a

variety of applications:

Protocol Typical Application

ARP translate Internet address to Ethernet address

BOOTP used to auto configure network devices

DNS domain name lookups

Ethernet local area network

Finger get information from remote computer

FTP transfer files between computers

HTTP transfer Web pages

ICMP network management

IP basic network protocol used by TCP and UDP

PPP point to point protocol, used to transfer data over serial lines

RARP used to auto configure network devices

SLIP serial line IP, used to transfer data over serial lines

SMTP send and receive electronic mail

TCP stream protocol used by most other protocols

UDP datagram protocol used by several other protocols

In addition, TNT Embedded ToolSuite includes several network client

and server programs:

Network Clients Network Servers

Finger Client Finger Server

Email Client FTP Server

Time Client HTTP Server

The ToolSuite includes source code for all these programs, except the

FTP server.

Network Programming with ETS TCP/IP

TNT Embedded Technologies Guidebook 81

THE ETS MICROWEB SERVER

The ETS MicroWeb Server is a collection of libraries and plug-ins

linked with your application to create an embedded Web server

that runs under the Realtime ETS Kernel on your target system.

The World Wide Web has enjoyed unprecedented popularity,

with Web browsers becoming a de facto standard for user

interfaces. The MicroWeb Server components work with the ETS

TCP/ IP Stack to implement a Web interface for your embedded

application.

Any product that communicates across a network must be

compatible with the other products running on that network. For

example, the information from a medical instrument that resides

in a patient’s hospital room may have to be accessed by one or

more nurses’ stations, the attending physician(s) in their offices,

and various hospital departments. Everyone accessing this

information could have computers from different manufacturers

running different operating systems.

In general, there are two major compatibility problems:

® The machines must all be able to communicate with each other.

® It would be nice if there could be a single user interface that can be

used for each hardware/software platform.

The widespread acceptance of TCP/ IP as the network protocol of

choice has effectively solved the first problem. This solution has

been in wide use since the early 1980s.

It is only recently that a solution to the second problem has

become available, based on Web technology. Over the next year

nearly every operating system will either ship with a Web

browser or have browser technology built right into the system.

The Web browser has become the most common graphical user

interface (GUI) in use today.

Having a Web browser on every computer is only half of the

solution. In order to have bi-directional communications

between your embedded product and a user’s computer, the

embedded product must contain a Web server that can transmit

and receive data in the form of HTML pages. (HTML stands for

Chapter 7

82 TNT Embedded Technologies Guidebook

Hyper Text Markup Language and is the language through

which Web servers and browser clients communicate.)

The MicroWeb Server gives you the tools you need to implement

the server functionality in your embedded product. The

availability of Web browsers on users’ computers frees you from

the responsibility of implementing a user interface for those

computers.

MicroWeb Server Components

The MicroWeb Server is a collection of libraries, plug-ins, and

sample programs. The libraries and plug-ins are linked with

your application to create a Web server. Each sample program

is a functioning Web server application built from the

MicroWeb components and can serve as the basis for your

embedded Web server.

The MicroWeb Server contains four libraries, each of which is

distributed as source code in addition to the linkable library.

The following components comprise the ETS MicroWeb Server:

® HTTP Server Library

This library implements an HTTP/ 1.0 server that complies with

RFC 1945.

® HTML Page Library

The functions in this library are the interface used to build HTML

pages in memory (finding URIs in the data structures, handling

common errors, etc.).

® HTML On-The-Fly Library

HTML stands for Hyper Text Markup Language, the text

formatting convention of the World Wide Web. Phar Lap provides

a library of functions that let your network programs perform on-

the-fly HTML formatting of realtime data for display by a Web

server. Using Phar Lap’s HTML On-the-Fly library, your

embedded system can publish realtime data to a local area network

or to the entire Internet community. This library creates the HTML

entirely in memory, and does not create any disk files. If you want

to save the HTML to disk, your application must open and write the

file.

Network Programming with ETS TCP/IP

TNT Embedded Technologies Guidebook 83

® HTML On-The-Fly Forms Library

This library is analogous to the HTML On-The-Fly Library, but the

functions are for creating forms and decoding the returned form

data.

There is one MicroWeb Server plug-in, which is distributed only as a

linkable library. Unlike traditional libraries, the interface to the plug-in

does not contain callable functions. A plug-in is a series of HTML

pages that can be accessed from your Web server application using the

defined interface.

On-line Debugger Plug-In This plug-in provides a convenient

way to help debug your Web

server application.

ToolSuite includes three sample programs that illustrate the use of the

MicroWeb Server components. Each program is a functioning stand-

alone Web server that can be used as the basis for your application.

® WEBDISK

A sample Web server that serves files off disk. HTTPSERV.LIB is

the only MicroWeb Server component used.

® WEBMEM

A sample Web server that constructs HTML pages in memory. All

the MicroWeb Server components are used and linked into one

executable.

® WEBSERVE

A sample Web server that first attempts to construct HTML pages

in memory, then (optionally, depending on a compile-time option)

attempts to serve files off disk before returning a page not found

error. All the MicroWeb Server components are used and the

MicroWeb DLL plug-in technology is used to create a modular

server that can accept additional DLL “plug-ins” to construct

HTML pages in memory.

Chapter 7

84 TNT Embedded Technologies Guidebook

85

Appendix A

The Realtime ETS Kernel API

The Realtime ETS Kernel API contains functions that augment the

capabilities provided by the C run-time library. There are three types

of services provided:

§ Access to functionality in the ETS Kernel

§ Access to functionality in the Win32 API

§ Alternate functions for the C run-time library

The Realtime ETS Kernel additionally provides APIs that support

realtime multitasking and networking, including:

§ WinSock APIs

§ HTTP Server APIs

§ FTP Server APIs

§ HTML Page Library APIs

§ HTML On-The-Fly APIs

Finally APIs provide a convenient mechanism for customizing the

Realtime ETS Kernel to your target hardware:

§ Replaceable Driver Functions

§ Replaceable Modules in the ETS Libraries

§ Replaceable Modules in the ETS Monitor

This appendix presents tables of all the APIs included with or

supported by the Realtime ETS Kernel that can be called by an

embedded program. Each table presents APIs grouped by the type of

function they perform.

Functions from the Win32 API are identified by a
W32

 following the

name.

Appendix A

86 TNT Embedded Technologies Guidebook

The ETS Kernel APIs are listed in the following functional groups:

Group

Memory Management Routines

Threads and Synchronization Routines

File Management Routines

DLL Management Routines

Time Management Routines

TCP/IP Device Driver Configuration APIs

Event Logging Routines

Console Routines

Interrupt Control Routines

Process-Related Routines

Miscellaneous Routines

Windows Sockets APIs

C Run-Time Library Alternate Functions

HTTP Server APIs

FTP Server APIs

PC Card APIs

PCI Bus APIs

Porting Routines

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 87

MEMORY MANAGEMENT ROUTINES

C Routine Description

GetProcessHeap
W32

Get handle to process heap

HeapAlloc
W32

Allocate memory for specified heap

HeapCreate
W32

Create a heap

HeapDestroy
W32

Destroy specified heap

HeapFree
W32

Free memory from specified heap

HeapReAlloc
W32

Reallocate heap memory

HeapSize
W32

Return size of specified heap memory block

HeapValidate
W32

Validate specified heap

HeapWalk
W32

Walk memory blocks in specified heap

LocalAlloc
W32

Allocate memory from local heap

LocalFree
W32

Free local memory block

LocalReAlloc
W32

Modify size of local memory block

LocalSize
W32

Get current size of local memory block

VirtualAlloc
W32

Reserve/commit memory pages

VirtualFree
W32

Release memory pages

VirtualQuery
W32

Get info about memory pages

THREADS AND SYNCHRONIZATION ROUTINES

C Routine Function Description

CreateEvent
W32

Create an event object

CreateMutex
W32

Create a mutex object

CreatePipe
W32

Create an anonymous pipe

CreateSemaphore
W32

Create a semaphore object

CreateThread
W32

Create a thread

DeleteCriticalSection
W32

Release resources used by critical section

object

EnterCriticalSection
W32

Wait for ownership of specified critical

section object

EtsCheckISRPriority Compare Current Thread Priority to ISR

Priority

EtsClearISRPriority Unlock the ETS scheduler

Appendix A

88 TNT Embedded Technologies Guidebook

THREADS AND SYNCHRONIZATION ROUTINES. CONT.

C Routine Function Description

EtsDisableThreadStackOvfCheck Disable Thread Stack Overflow Checking

EtsDisableThreadTimeCounting Stop Per-Thread CPU Utilization Counting

EtsDumpThreads Display information about active threads

EtsEnableThreadStackOvfCheck Enable Thread Stack Overflow Checking

EtsEnableThreadTimeCounting Start Per-Thread CPU Utilization Counting

EtsEnumerateThreads Call Specified Function for Each Active

Thread

EtsEnumerateThreadTimeCounts Call Specified Function with Thread ID and

Time Count

EtsExitProcess Notify kernel of process termination

EtsForceThreadFuncCall Force Function Call when Thread is

Scheduled

EtsFreeUnusedThreadBlocks Give Free Thread Block List Back to

Memory Allocator

EtsGetThreadDebugName Get ASCII name of thread

EtsGetTimeSlice Get length of multitasking time slice

EtsMoveThreadToFront Move a thread in front of same-priority

peers

EtsSetISRPriority Lock the ETS scheduler

EtsSetThreadDebugName Set ASCII name of thread

EtsSetTimeSlice Specify the length of the multitasking time

slice

EtsTestCritSecOwner Does Currrent Thread Own a Specified

Critical Section?

ExitProcess
W32

Terminate program

ExitThread
W32

End a thread

GetCurrentProcess
W32

Return handle for current process

GetCurrentProcessId
W32

Return process identifier for current

process

GetCurrentThread
W32

Return handle for the current thread

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 89

THREADS AND SYNCHRONIZATION ROUTINES (CONT.)

C Routine Function Description

GetCurrentThreadId
W32

Return thread identifier of current thread

GetExitCodeThread
W32

Return termination status of specified thread

GetThreadPriority
W32

Return priority value for specified thread

InitializeCriticalSection
W32

Initialize a critical section object

LeaveCriticalSection
W32

Release ownership of specified critical section

object

OpenEvent
W32

Return handle for existing event object

OpenMutex
W32

Return handle for existing mutex object

OpenSemaphore
W32

Return handle for existing semaphore object

PulseEvent
W32

Release threads waiting on an event object

ReleaseMutex
W32

Release ownership of the specified mutex object

ReleaseSemaphore
W32

Release ownership of the specified semaphore

object

ResetEvent
W32

Set event object state to unsignaled

ResumeThread
W32

Decrement the suspend count for a thread

SetEvent
W32

Set event object state to signaled

SetThreadPriority
W32

Set priority value for specified thread

Sleep
W32

Suspend execution of current thread

SuspendThread
W32

Suspend the specified thread

TerminateThread
W32

Terminate a thread

TlsAlloc
W32

Allocate a TLS (thread local storage) index

TlsFree
W32

Release a TLS (thread local storage) index

TlsGetValue
W32

Get value for TLS (thread local storage) index

TlsSetValue
W32

Store value for TLS (thread local storage) index

WaitForMultipleObjects
W32

Wait until one or all of several objects is

signaled

WaitForSingleObject
W32

Wait until object is signaled

Appendix A

90 TNT Embedded Technologies Guidebook

FILE MANAGEMENT ROUTINES

C Routine Description

CreateDirectory
W32

Create a new directory

CreateFile
W32

Create or open a file

DeleteFile
W32

Delete file

DosDateTimeToFileTime
W32

Convert DOS date and time to 64-bit file time

EtsQueryFileHandle Query file handle

EtsSelectFileSystem Select host or target file system

FileTimeToDosDateTime
W32

Convert 64-bit file time to DOS date and time

FileTimeToLocalFileTime
W32

Convert UTC file time to local file time

FileTimeToSystemTime
W32

Convert 64-bit file time to system time format

FindClose
W32

Close specified search handle

FindFirstFile
W32

Search directory for specified filename

FindNextFile
W32

Continue file search

FlushFileBuffers
W32

Commit file buffers to disk

GetCurrentDirectory
W32

Retrieve current directory

GetDiskFreeSpace
W32

Get data about specifed disk

GetDriveType
W32

Identify drive type

GetFileAttributes
W32

Get attributes for specified file

GetFileInformationByHandle
W32

Get info about specified file

GetFileSize
W32

Return size of specified file

GetFileTime
W32

Get times for creation, last access, and last

modification for specified file

GetFileType
W32

Return file type for specified file

GetFullPathName
W32

Get full path and filename for specified file

GetLogicalDrives
W32

Get data for currently available drives

GetLogicalDriveStrings
W32

Return bitmask representing available disk

drives

LocalFileTimeToFileTime
W32

Convert local file time to UTC file time

MoveFile
W32

Rename specified file or directory

ReadFile
W32

Read data from file

RemoveDirectory Delete empty directory

SetCurrentDirectory Change directory

SetEndOfFile Move end-of-file position for specified file

SetFileAttributes Set attributes for specified file

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 91

FILE MANAGEMENT ROUTINES (CONT.)

C Routine Description

SetFilePointer Move file pointer for specified file

SetFileTime Set times for creation, last access, and last

modification for specified file

SystemTimeToFileTime Convert a system time to a file time

WriteFile Write data to specified file

DLL MANAGEMENT ROUTINES

DLL MANAGEMENT ROUTINES

C Routine Function Description

FreeLibrary
W32

Unload a previously loaded DLL

GetModuleFileName
W32

Return path and file name for file containing module

GetModuleHandle
W32

Return handle to specified module

GetProcAddress
W32

Return address of specified DLL function

LoadLibrary
W32

Load the specified DLL

Appendix A

92 TNT Embedded Technologies Guidebook

TIME ROUTINES

C Routine Description

DosDateTimeToFileTime
W32

Convert DOS date and time to 64-bit file time

EtsGetRTCTime Get Current Time from External Real-time

Clock

EtsGetTimerPeriod Get Frequency of Time-of-Day Clock

EtsMarkTimeSlice Notify scheduler of timer tick

EtsResetSystemTimeFromRTC Resynchronize In-Memory Time

EtsSetTimerPeriod Specify frequency of time-of-day clock

FileTimeToDosDateTime
W32

Convert 64-bit file time to DOS date and time

FileTimeToLocalFileTime
W32

Convert UTC file time to local file time

FileTimeToSystemTime
W32

Convert 64-bit file time to system time format

GetLocalTime
W32

Get current local date and time

GetSystemTime
W32

Get current system date and time

GetTickCount
W32

Get elapsed time since Windows was started

GetTimeZoneInformation
W32

Get current time-zone parameters

LocalFileTimeToFileTime
W32

Convert local file time to UTC file time

QueryPerformanceCounter
W32

Get current value of high-resolution

performance counter

QueryPerformanceFrequency
W32

Get resoulution of high-resolution

performance counter

SetLocalTime
W32

Set current local time and date

SetSystemTime
W32

Set current system time and date

SystemTimeToFileTime
W32

Convert a system time to a file time

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 93

TCP/IP DEVICE DRIVER CONFIGURATION APIS

The TCP/ IP Device Driver Configuration APIs are used to obtain

configuration information on an Ethernet or PPP/ CSLIP driver, or to

override configuration information specified with the Visual System

Builder or the CFIGKERN utility.

For PPP/ CSLIP drivers, the configuration APIs are also used to provide

needed information, such as a phone number to dial, that cannot be

specified with the Visual System Builder or CFIGKERN.

C Routine Description

EtsTCPBringDeviceDown Bring Down Device Driver

EtsTCPBringDeviceUp Initialize Device Driver

EtsTCPConfigureDevice Set New Configuration for Device Driver

EtsTCPGetDeviceCfg Get Base Configuration Info for Device

Driver

EtsTCPGetDeviceExtendedInfo Get Extended Configuration Info for Device

Driver

EtsTCPGetDeviceHandle Get Handle for Installed Device Driver

EtsTCPGetDeviceInstanceInfo Get Device Ethernet Info

EtsTCPGetDeviceStatus Get Status of Network Device

EtsTCPGetStackCfg Get Stack Configuration Info

EtsTCPRegisterDevice Register Device

EtsTCPSetDefaultGateway Set Default Gateway for PPP/CSLIP

Connection

EtsTCPSetDeviceEthernetInfo Set Device Ethernet Info

EtsTCPSetDeviceInstanceInfo Set Device Instance Info

EtsTCPSetStackCfg Set Stack Configuration Info

Appendix A

94 TNT Embedded Technologies Guidebook

EVENT LOGGING ROUTINES

C Routine Description

EtsClearLogEnd Enable overwriting existing entries in event

log

EtsEnableLog Enable or disable event logging

EtsEnumLogEntries Return pointer to next logged event

EtsFormatLogEvent Convert binary event log record to

committed ASCII string

EtsGetRealtimeEventLogMask Return mask for realtime event log

EtsGetSubsysLogFlags Return events being logged

EtsInitializeLogBuffer Initialize event logging

EtsLogEvent Write event to log

EtsLogEventFromBuff Write event from buffer to log

EtsSetLogEnd Disable overwriting existing entries in

event log

EtsSetRealtimeEventLogMask Specify mask for realtime event log

EtsSetSubsysLogFlags Specify events being logged

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 95

CONSOLE ROUTINES

C Routine Description

EtsSelectConsole Select host or local console

GetConsoleMode
W32

Get input/output mode for a console

GetConsoleScreenBufferInfo
W32

Get data about console screen buffer

GetLargestConsoleWindowSize
W32

Get largest possible size for console

window

GetNumberOfConsoleInputEvents
W32

Get number of unread input records in

console input buffer

PeekConsoleInput
W32

Peek data from console input buffer

ReadConsole
W32

Read character input from console input

buffer

ReadConsoleInput
W32

Read data from console input buffer

ScrollConsoleScreenBuffer
W32

Move block of data in screen buffer

SetConsoleCursorPosition
W32

Set cursor position in specified console

screen buffer

SetConsoleMode
W32

Set mode of console input buffer or

screen buffer

WriteConsole
W32

Write string to console screen buffer

WriteConsoleOutput
W32

Write character and color attribute data to

specified cell block in console screen

buffer

Appendix A

96 TNT Embedded Technologies Guidebook

INTERRUPT CONTROL ROUTINES

C Routine Description

_dx_idt_rd Read IDT descriptor

_dx_idt_wr Write IDT descriptor

EtsCheckISRPriority Compare Current Thread Priority to ISR

Priority

EtsClearISRPriority Unlock the ETS scheduler

EtsPicEnable Enable or Disable an IRQ on the 8259 PIC

EtsPicEOI Issue an EOI for the Specified Hardware

IRQ

EtsPicGetIRQNumber Get Interrupt Vector Corresponding to

Hardware IRQ

EtsRestoreExceptionHandler Restore Specified Exception Vector

EtsRestoreIDTHandler Restore Contents of IDT Entry

EtsRestoreInterruptHandler Restore Specified Interrupt Vector

EtsSaveExceptionHandler Save Specified Exception Vector

EtsSaveIDTHandler Save Contents of IDT Entry

EtsSaveInterruptHandler Save Specified Interrupt Vector

EtsSetExceptionHandler Install C Function as Exception Handler

EtsSetIDTHandler Install Function as IDT Interrupt Handler

EtsSetInterruptHandler Install C Function as Interrupt Handler

EtsSetISRPriority Lock the ETS scheduler

RaiseException
W32

Raise exception in calling thread

SetUnhandledExceptionFilter
W32

Supersede top-level exception handler

UnhandledExceptionFilter
W32

Pass unhandled exceptions to debugger, or

display error message and execute

exception handler

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 97

PROCESS-RELATED ROUTINES

C Routine Description

EtsCallExitHandlers Call registered exit functions

EtsHostGetCommandLine Get Passed-in Command Line from Host

EtsHostGetCommandLineLen Return Length of Passed-in Command Line from

Host

EtsHostGetEnvSize Return Size of Environment from Host

EtsHostGetEnvStrings Return Environment from Host

GetCommandLine
W32

Get command line for current process

GetEnvironmentStrings
W32

Get address of environment block for current

thread

GetEnvironmentVariable
W32

Get value of variable from calling process

GetStartupInfo
W32

Get contents of STARTUPINFO structure

GetStdHandle
W32

Return handle for standard input, output, error

device

SetEnvironmentVariable
W32

Set value of environment variable

SetStdHandle
W32

Set handle for standard input, output, error

device

Appendix A

98 TNT Embedded Technologies Guidebook

MISCELLANEOUS ROUTINES

C Routine Description

EtsAddSubsysData Add Record of Internal Data for Remote Debugging

CloseHandle
W32

Close an open object handle

CompareString
W32

Compare two strings at specified location

DuplicateHandle
W32

Duplicate an object handle

EtsDisplayError Display Error Messages on Host and Target

Consoles

EtsGetKernelRunMode Return run mode configured into kernel

EtsGetSystemInfo Get configuration information

EtsGetVsbVarsPointer Get pointer to kernel VSB_VARS structure

EtsRegisterCallback Register device driver callback

GetACP
W32

Get ANSI code page ID for system

GetCPInfo
W32

Get data about specified code page

GetLastError
W32

Return the last-error code

GetOEMCP
W32

Get OEM code-page identifier

GetUserDefaultLCID
W32

Get user default locale ID

GetVersion
W32

Return operating system version number

InterlockedDecrement
W32

Decrement specified LONG variable

InterlockedExchange
W32

Atomically exchange two LONG variables

InterlockedIncrement
W32

Increment specified LONG variable

IsBadCodePtr
W32

Determine if current process has access to specified

memory address

IsBadReadPtr
W32

Verify that current process has read access to

specified range of memory

IsBadWritePtr
W32

Verify that current process has write access to

specified range of memory

IsValidCodePage
W32

Determine whether specified code page is valid

RtlUnwind
W32

Unwind Stack Frames (Used by C runtime libraries to

implement structured exception handling.)

SetLastError
W32

Set last-error code

VkKeyScan
W32

Translate a character to virtual-key code

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 99

WINDOWS SOCKETS APIS

C Routine Description

accept() Accept a connection on a socket

bind() Associate a local address with a socket

closesocket() Close a socket

connect() Establish a connection to a peer

gethostbyaddr() Get host information corresponding to an IP address

gethostbyname() Get host information corresponding to a hostname

gethostname() Return the standard host name for the local machine

getpeername() Get the IP address of the peer to which a socket is

connected

getprotobyname() Get protocol information corresponding to a protocol

name

getprotobynumber() Get protocol information corresponding to a protocol

number

getservbyname() Get service information corresponding to a service name

and protocol

getservbyport() Get service information corresponding to a port and

protocol

getsockname() Get the local IP address for a socket

getsockopt() Retrieve a socket option

htonl() Convert a u_long from host to network byte order

htons() Convert a u_short from host to network byte order

inet_addr() Convert a string containing a dotted address into an

in_addr

inet_ntoa() Convert a network address into a string in dotted format

ioctlsocket() Control the mode of a socket

listen() Establish a socket to listen for incoming connection

Appendix A

100 TNT Embedded Technologies Guidebook

WINDOWS SOCKETS APIS (CONT.)

C Routine Description

ntohl() Convert a u_long from network to host byte order

ntohs() Convert a u_short from network to host byte order

recv() Receive data from a socket

recvfrom() Receive a datagram and store the source address

select() Determine the status of one or more sockets, waiting if

necessary

send() Send data on a connected socket

sendto() Send a datagram to a specific destination

setsockopt() Set a socket option

shutdown() Disable sends and/or receives on a socket

socket() Create a socket

WSACleanup() Terminate use of Windows Sockets

WSAGetLastError() Get the error status for the last operation that failed

WSASetLastError() Set the error code which can be retrieved by

WSAGetLastError()

WSAStartup() Initialize Windows Sockets, using highest compatible

version

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 101

C RUN-TIME LIBRARY ALTERNATE FUNCTIONS

The following functions are used internally by the Realtime ETS Kernel.

Each routine implements the functionality of the similarly-named

procedure from the C run-time library. If space is at a premium, you

can use these alternate functions to avoid loading the version from the

C run-time library.

Additionally, some of these functions provide functionality that is not

supported by Visual C++.

C RUN-TIME LIBRARY ALTERNATE FUNCTIONS

C Routine Description

EtsAtoi Convert ASCII to Integer

EtsBsearch Binary Search of Sorted Array

EtsInp Read Byte from Specified Input Port

EtsInpw Read Word from Specified Input Port

EtsLtoa Convert Long to ASCII

EtsMemcpy Copy Bytes to Memory

EtsMemmove Copy Bytes to Memory

EtsMemset Fill Memory Locations

EtsOutp Write Byte to Specified Output Port

EtsOutpw Write Word to Specified Output Port

EtsStrcat Concatenate Strings

EtsStrchr Find Character in String

EtsStrcmp Compare Strings

EtsStrcpy Copy String

EtsStricmp Compare Strings

EtsStrlen Determine Length of String

EtsStrncmp Compare Partial Strings

EtsStrncpy Copy Partial String

EtsToupper Convert Character to Uppercase

Appendix A

102 TNT Embedded Technologies Guidebook

HTTP SERVER APIS

The HTTPSERV.LIB library implements an HTTP server that complies

with RFC 1945. This library is part of the MicroWeb Server. Please

note that the HTTP Server has one set of functions it exports and a

separate set that it imports.

FUNCTIONS EXPORTED BY THE HTTP SERVER

C Routine Description

StartWebServer Initialize HTTP server

StopWebServer Shut down HTTP server

FUNCTIONS IMPORTED BY THE HTTP SERVER

C Routine Description

GetURI Read entity-body for requested URI into memory

for a GET or HEAD method

LogRequest Record each processed HTTP request

PostURI Process entity-body for a POST method

WebServerError Report errors in HTTP server

WebServerInfo Handle MicroWeb Server Messages

WebServerWarning Handle MicroWeb Server Warnings

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 103

FTP SERVER APIS

The FTPSERV.LIB library implements an FTP server that complies with

RFC 1945. Please note that the FTP Server has one set of functions it

exports and a separate set that it imports.

FUNCTIONS EXPORTED BY THE FTP SERVER

C Routine Description

FtpStartServer Initialize FTP Server

FtpStopServer Shut Down FTP Server

FUNCTIONS IMPORTED BY THE FTP SERVER

C Routine Description

FtpAuthenticate Authenticate FTP Client

FtpLogSession Record Each FTP session

FtpServerError Report FTP Server Errors

Appendix A

104 TNT Embedded Technologies Guidebook

PC CARD APIS

 C Routine Description

EtsCSAccessConfigurationRegister Access PC Card Socket Register Info

EtsCSAdjustResourceInfo Identify Resources to the ETS PC Card

Support Package

EtsCSGetCardServicesInfo Return Information About the ETS PC Card

Support Package

EtsCSGetConfigurationInfo Get Description of PC Card Socket and

Configuration

EtsCSGetFirstClient Get Handle of Registered Client

EtsCSGetFirstConfigurationInfo Get Description of PC Card Socket and

Configuration

EtsCSGetFirstTuple Get First Tuple from CIS

EtsCSGetNextClient Get Handle of Registered Client

EtsCSGetNextConfigurationInfo Get Description of PC Card Socket and

Configuration

EtsCSGetNextTuple Get Next Tuple from CIS

EtsCSGetTupleData Get Data Associated with Returned Tuple

EtsCSGetStatus Get Current Status of PC Card and Socket

EtsCsIsACard Query Card Information Structure on PC Card

EtsCSMapMemPage Map Memory Area of PC Card into Window

EtsCSModifyConfiguration Modify Configuration of a PC Card and Socket

EtsCSModifyWindow Change Attributes or Access Speed of a Window

EtsCSParseTuple Interpret Tuple Data

EtsCSRegisterClient Register Client with Client Services

EtsCSReleaseConfiguration Remove Configuration Information for Card

EtsCSReleaseIO Release I/O Addresses

EtsCSReleaseIRQ Release Interrupt Request Line

EtsCSReleaseWindow Release Block of System Address Space

EtsCSReportError Interpret Tuple Data

EtsCSRequestConfiguration Configure PC Card and Socket

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 105

PC CARD APIS (CONT.)

C Routine Description

EtsCSRequestIO Allocate I/O Addresses

EtsCSRequestIRQ Reserve Interrupt Request Line

EtsCSRequestWindow Assign Window to PC Card and Socket

EtsCSValidateCIS Validate Card Information Structure (CIS)

EtsPcCardGetATACount Return Number of PC Card ATA Disks in

System

EtsPcCardGetATA Get Configuration of PC Card ATA Disk

EtsPcCardGetSerialPort Get Configuration of Serial Port PC Card

EtsPcCardGetSerialPortCount Return Number of Serial Port PC Cards in

System

PCI BUS APIS

PCI BUS APIS

 C Routine Description

EtsPCICall Directly Access PCI BIOS

EtsPCIFindDevice Query PCI BIOS About a Specific Device

EtsPCIFindDeviceByClass Query PCI BIOS About a Specific Device Type

EtsPCIInit Check for Presence of PCI BIOS and 32-bit Entry

Point

EtsPCIReadCfgByte Read Byte from PCI Configuration Register

EtsPCIReadCfgDWord Read Double Word from PCI Configuration Register

EtsPCIReadCfgWord Read Word from PCI Configuration Register

EtsPCIReadConfig Read from PCI Configuration Register

EtsPCIWriteCfgByte Write Byte to PCI Configuration Register

EtsPCIWriteCfgDWord Write Double Word to PCI Configuration Register

EtsPCIWriteCfgWord Write Word to PCI Configuration Register

EtsPCIWriteConfig Write to PCI Configuration Register

Appendix A

106 TNT Embedded Technologies Guidebook

PORTING ROUTINES

REPLACEABLE DRIVER FUNCTIONS

C Routine Description

EtsCustomGetKeyboardDriver Initialize Keyboard Driver

EtsCustomGetScreenDriver Initialize Screen Driver

EtsCustomGetTimerDriver Initialize Timer Driver

REPLACEABLE MODULES IN THE ETS LIBRARIES

C Routine Description

EtsCustomAdjustResourceInfo Specify Memory and IRQ Resources to ETS PC Card

Support Package

EtsCustomAdjustResourceInfo2 Specify IO Resources to ETS PC Card Support

Package

EtsCustomAlloc Allocate heap memory at a specified location

EtsCustomCalloc Allocate heap memory

EtsCustomClearCoProcesor Clear coprocessor error

EtsCustomEmulInit Initialize Floating-Point Emulator

EtsCustomExitProcess Terminate the Process

EtsCustomFree Release memory

EtsCustomFSExit Shut Down Target File System

EtsCustomFSInit Initialize Target File System

EtsCustomGetCommandLine Get Host’s Command Line

EtsCustomGetDriveType Return Type of Specified DiskDrive

EtsCustomGetEnvStrings Get Host’s Environment Strings

EtsCustomGetFloppyType Get Floppy Type

EtsCustomGetKeyboardDriver Initialize Keyboard Driver

EtsCustomGetMemPool Return Available Memory Ranges

EtsCustomGetScreenDriver Initialize Screen Driver

EtsCustomGetTCPIPCfg Get Internet Protocol Configuration

EtsCustomGetTimerDriver Initialize Timer Driver

EtsCustomGetTimeZone Get Time Zone

EtsCustomGetTimeZoneInformation Get Current Time Zone Parameters

EtsCustomInstallFPUExceptionHandler Install FPU exception handler

EtsCustomRemoveFPUExceptionHandler Remove FPU exception handler

EtsCustomSetTCPIPCfg Override Configured TCP/IP Settings

EtsCustomTCPInit Install Network Device Drivers

The Realtime ETS Kernel API

TNT Embedded Technologies Guidebook 107

REPLACEABLE MODULES IN THE ETS MONITOR

(16-BIT MONITOR FUNCTIONS)

C Routine Description

EkCustomBiosInit Perform initialization that uses the BIOS

EkCustomBreakDisable32 Disable communications break interrupt

EkCustomBreakEnable32 Enable communications break interrupt

EkCustomBreakInitialize Initialize break interrupt handler

EkCustomClear32NMI Clear source of non-maskable interrupt

EkCustomClearNMI Clear source of non-maskable interrupt

EkCustomCommBreakOff Turn off line break

EkCustomCommBreakOn Turn on line break

EkCustomCommClearStatus Clear latched status indicators

EkCustomCommGetStatus Get communications device status

EkCustomCommInitialize Initialize host communications driver

EkCustomCommReadCharacter Read a message character

EkCustomCommSetSpeed Set the communications speed

EkCustomCommStartReceive Set up for start of message reception

EkCustomCommStartSend Set up for start of message transmission

EkCustomCommWriteCharacter Write a message character

EkCustomCoprocInit Initialize floating-point coprocessor

EkCustomDeviceInit Initialize custom target hardware

EkCustomGetScreenCursor Get cursor position on target screen

EkCustomHaltMonitor Stop Monitor Operations

EkCustomLinearFill Fill memory at linear address

EkCustomLinearRead Read memory at linear address

EkCustomLinearWrite Write memory at linear address

EkCustomMaskNMI Mask non-maskable interrupt

EkCustomMask32NMI Mask non-maskable interrupt

EkCustomProtCommInitialize Initialize host communications driver

EkCustomPutChar Write character to target display adapter

EkCustomRealModeInit Complete real-mode initialization

EkCustomRunMode Set kernel run mode

EkCustomSetScreenCursor Set cursor position on target screen

EkCustomSystemInit Initialize system-critical hardware

Appendix A

108 TNT Embedded Technologies Guidebook

109

Appendix B

Supported C Run-Time Library

Routines

This appendix lists the functions in the C run-time library supported by

the Realtime ETS Kernel:

abort
abs
_access
acos
_alloca
asctime
asin
assert
atan
atan2
atexit
atof
atoi
atol
_beginthread
_beginthreadex
bsearch
_cabs
calloc
ceil
_cexit
_c_exit
_cgets
_chdir
_chdrive
_chgsign
_chmod
_chsize
_clear87
clearerr
_clearfp
clock
_close
_commit
_control87
_controlfp
_copysign
cos
cosh
_cprintf
_cputs
_creat

_cscanf
ctime
difftime
_disable
div
_dup
_dup2
_ecvt
_enable
_endthread
_endthreadex
_eof
_exit
exp
_expand
fabs
fclose
_fcloseall
_fcvt
_fdopen
feof
ferror
fflush
fgetc
_fgetchar
fgetpos
fgets
_filelength
_fileno
_findclose
_findfirst
_findnext
_finite
floor
_flushall
fmod
fopen
_fpclass
_fpieee_flt
_fpreset
fprintf
fputc

_fputchar
fputs
fread
free
freopen
frexp
fscanf
fseek
fsetpos
_fsopen
_fstat
ftell
_ftime
_fullpath
_futime
fwrite
_gcvt
getc
_getch
getchar
_getche
_getcwd

_getdcwd
*

_getdrive
_getdrives
getenv
_get_osfhandle
_getpid
gets
_getw
gmtime
_heapchk
_heapwalk
_hypot
_inp
_inpd
_inpw

* Supported for local

file I/ O, not for host

Appendix B

110 TNT Embedded Technologies Guidebook

isalnum
isalpha
__isascii
_isatty
iscntrl
__iscsym
__iscsymf
isdigit
isgraph
islower
_isnan
isprint
ispunct
isspace
isupper
isxdigit
_itoa
_j0
_j1
_jn
_kbhit
labs
ldexp
ldiv
_lfind
localeconv
localtime
log
log10
_logb
longjmp
_lrotl
_lrotr
_lsearch
_lseek
_ltoa
_makepath
malloc
_matherr
__max
_memccpy
memchr
memcmp
memcpy
_memicmp
memmove
memset
__min
_mkdir
_mktemp
mktime
modf
_msize
_nextafter
_onexit
_open
_open_osfhandle

_outp
_outpd
_outpw
perror
_pipe
pow
printf
putc
_putch
putchar
_putenv
puts
_putw
qsort
rand
_read
realloc
remove
rename
rewind
_rmdir
_rmtmp
_rotl
_rotr
_scalb
scanf
_searchenv
setbuf
_setjmp
_setmode
setvbuf
sin
sinh
_snprintf
_sopen
_splitpath
sprintf
sqrt
srand
sscanf
_stat
_status87
_statusfp
strcat
strchr
strcmp
_strcmpi
strcpy
strcspn
_strdate
_strdup
_strerror
strerror
strftime
_stricmp
strlen
_strlwr

strncat
strncmp
strncpy
_strnicmp
_strnset
strpbrk
strrchr
_strrev
_strset
strspn
strstr
_strtime
strtod
strtok
strtol
strtoul
_strupr
strxfrm
_swab
tan
tanh
_tell
_tempnam
time
tmpfile
tmpnam
__toascii
_tolower
_toupper
_tzset
_ultoa
_umask
ungetc
_ungetch
_unlink
_utime
va_arg
va_end
va_start
vfprintf
vfwprintf
vprintf
_vsnprintf
_vsnwprintf
vsprintf
vswprintf
vwprintf
_write
_y0
_y1
_yn

Supported C Run-Time Library Routines

TNT Embedded Technologies Guidebook 111

113

Appendix C

Realtime ETS Kernel Performance

Measurements

Phar Lap Software has written a number of performance measuring

programs for the Realtime ETS Kernel. The programs primarily

measure interrupt latency, or the time to interrupt a thread, and context

switch times, or the time it takes one thread to yield to another. These

measurement programs with their results are described below.

C.1 MEASURING INTERRUPT LATENCY

The ISRTIME.C program measures the “ time to interrupt thread” for

the Realtime ETS Kernel on a particular embedded system. This

number is often called the “ interrupt latency” because it is the length of

the delay between when a hardware interrupt is signaled and when the

thread that processes the interrupt is awakened by the hardware ISR

function.

ISRTIME.C gathers information using the instrumentation code in the

default PC/ AT-compatible timer driver shipped with TNT Embedded

ToolSuite (LIB\BUILD\PCTIMER.C and PCTIMERA.ASM). This

instrumentation code measures the latency for each IRQ0 periodic timer

interrupt. If you build a custom timer driver for your target hardware

that does not contain the instrumentation to measure interrupt latency,

ISRTIME will not display meaningful results. In fact, it will most likely

fail to link.

The PC/ AT-compatible timer driver gathers its data as follows:

1. Each time the periodic timer counts down from its preset value and

crosses zero, it requests an IRQ0 and automatically resumes counting

down from its preset value.

2. The IRQ0 handler is installed directly in the IDT and will interrupt any task

executing with interrupts enabled. The IRQ0 handler does a small amount

of work (to mask further IRQ0 interrupts and issue an EOI so other

interrupts can occur) and then wakes up the timer ISR task by calling

Appendix C

114 TNT Embedded Technologies Guidebook

SetEvent() to set the event on which the timer ISR task is waiting. If the

interrupted task is lower priority than the timer ISR task, (as will be the

case most of the time) the call to SetEvent() will preempt the current

thread and immediately schedule the timer ISR task.

3. The timer ISR task is a loop which calls WaitForSingleObject() on an event

which gets signaled by the IRQ0 hardware interrupt service routine. Each

time the IRQ0 handler signals the event, the timer ISR task wakes up,

processes the interrupt, and goes back to sleep inside

WaitForSingleObject().

4. Immediately after the timer ISR task returns from WaitForSingleObject(), it

calls a function that reads the current value of the countdown timer. By

subtracting this value from the timer’s preset value, you get an extremely

accurate measure of the elapsed time since the periodic timer had its last

zero crossing and requested its interrupt. The timer ISR task samples

each of these values and keeps enough data to track the maximum,

minimum, and average values.

Thus ISRTIME can measure the time to interrupt by calling the private

function inside the PC/ AT timer driver which retrieves the current set

of interrupt latency statistics.

Because the samples gathered by the timer driver are real-world

numbers gathered while performing its assigned duties, you should be

able to look at these numbers with a reasonable expectation that you

will see similar numbers if your application dispatches tasks to process

hardware interrupts.

The following chart shows the average results from the ISRTIME

program on four different machines:

Realtime ETS Kernel Performance Measurements

TNT Embedded Technologies Guidebook 115

This EPS image does not contain a screen preview.

It will print correctly to a PostScript printer.

File Name : chart4book.eps

Title : C:\- Graphics\Miscellaneous\chart4book.eps

Creator : CorelDRAW 8

CreationDate : Tue May 26 12:58:03 1998

The hardware timer ISR and timer ISR task have not been optimized for

this test, so you can probably slightly reduce the interrupt latency to

your hardware ISR task by minimizing the amount of work the

hardware ISR does before calling SetEvent(). (The timer driver masks

interrupts, issues an EOI, and calls a function in the Realtime ETS

Kernel to update time-slicing data structures before calling SetEvent().)

The timing results can vary somewhat, even though each interrupt

follows the exact same code path. If your target hardware has a

memory cache (as most x86 boards do), you can often see a 20% to 30%

difference between the measured minimum latency and the measured

maximum latency. This performance difference is caused by memory

wait states which get inserted when the ISR and task dispatch code

path is not in the memory cache. This was empirically determined by

disabling the memory cache in a 486 target machine. The variance in

the data was eliminated when the memory cache was disabled, and the

Appendix C

116 TNT Embedded Technologies Guidebook

minimum, maximum, and average latencies converged on the same

(though dramatically higher) value. With the memory cache enabled, it

is often possible to get a 5% difference in the measured results simply

by moving bits of code around in memory to change instruction

alignments.

When comparing the performance numbers for the Realtime ETS

Kernel with those for other realtime kernels, it is important that you

understand exactly what each test is measuring in order to make a fair

comparison. Hardware memory caches and test programs that are

optimized for a particular hardware configuration can make a big

difference in performance between seemingly identical computers.

When designing your embedded application, you should use the

measured maximum latency as a worst-case estimate for the time

needed to schedule your ISR task. Your application can also call the

timer driver (using the same calls as ISRTIME) to measure the interrupt

latency for the IRQ0 interrupt under typical conditions for your

application.

The measured latency can also be affected when interrupts are disabled

by the application. This happens transparently when tasks make system

calls to the multitasking scheduler. So, the best way to get a truly worst

case number for your application is to make the measurement calls into

the timer driver while your application is under heavy load.

C.2 MEASURING INTERTHREAD YIELD TIMES

YLDTIME.C measures the time cost of both directed and non-directed

yields. This program only uses Win32 functions (no Phar Lap APIs),

and can thus be used to compare the performance of your program

under Windows NT or Windows 95 to that under the Realtime ETS

Kernel or the Phar Lap TNT Realtime DOS-Extender systems.

Undirected Yield is the amount of time it takes to switch from one task

to another when the current task calls Sleep(). YLDTIME measures this

by having two tasks which are both calling Sleep(0) in a loop. Each task

records the start time before calling Sleep(0) and records the end time

when its Sleep(0) system call returns. So, the elapsed time between each

start and end pair is the amount of time it takes one task to enter

Sleep(0) and yield control to the other task which returns from Sleep(0).

Directed Yield Up is the amount of time it takes for a lower priority

task to wake up a higher priority task which is currently blocked inside

Realtime ETS Kernel Performance Measurements

TNT Embedded Technologies Guidebook 117

WaitForSingleObject(). YLDTIME measures this by having a high

priority task which loops calling WaitForSingleObject() to wait for an

event, and a low priority task which loops calling SetEvent() on that

same event. The low priority task records the start time before calling

SetEvent(), and the high priority task records the end time when its call

to WaitForSingleObject() returns. Thus the elapsed time between each

start and end pair is the amount of time it takes a thread to enter

SetEvent(), wake up and switch to the higher priority thread, and for

the higher priority thread to return from WaitForSingleObject().

Directed Yield Down is the amount of time it takes for a higher priority

task to enter WaitForSingleObject() and yield control to a lower priority

task. YLDTIME measures this with the same two tasks as for the

Directed Yield Up measurement, but with different start and end times.

The high priority task records the start time before calling

WaitForSingleObject() and the low priority task records the end time

when its call to SetEvent() (where it was blocked because it woke up a

higher priority task) returns. Thus the elapsed time between each start

and end pair is the amount of time it takes a thread to enter

WaitForSingleObject(), block, and switch control to another thread.

YLDTIME uses the Win32 function QueryPerformanceCounter()to

record the starting and stopping times. The calling function saves the

value of the high resolution performance counter at the time of the call.

When calculating the results of the tests, YLDTIME calls

QueryPerformanceFrequency() to determine the frequency of the

performance counter. By dividing the number of counts (returned by

QueryPerformanceCounter()) by the frequency of the counter, we can

determine the number of elapsed seconds. This allows you to measure

very small amounts of time with much more accuracy than would be

possible by using traditional C run-time library timing functions.

Appendix C

118 TNT Embedded Technologies Guidebook

119

Appendix D

Other Supported Compilers

In addition to Microsoft Visual C++ and Developer Studio, you can also

use the following compilers to build ETS programs:

® Borland C++, Version 4.5 or 5.x

® Aonix ObjectAda Real-Time for Intel/ETS

® Microsoft MASM, Phar Lap 386|ASM, or Borland TASM

If you’re using Borland C++, you use the command-line compiler to

build your program. Once your program is built, you can use the

TDEMB cross-developed shell that is part of TNT Embedded ToolSuite.

TDEMB turns Borland Turbo Debugger into a debugger for embedded

programs. You have access to all the debugging features of Turbo

Debugger.

Aonix ObjectAda includes an integrated development environment for

building and debugging your program. For more information on

ObjectAda, visit the Aonix Web site (http://www.aonix.com/).

You may also write part or all of your program in assembly language. TNT

Embedded ToolSuite includes 386|ASM. Assemblers from Microsoft and

Borland are also supported.

Appendix D

120 TNT Embedded Technologies Guidebook

121

Index

32-bit environments, vii-viii, x

A

Aonix ObjectAda compiler, 117

APIs, 83-105

C run-time library alternate functions,

99

console routines, 93

DLL management routines, 89

event logging routines, 92

file management routines, 88-89

FTP Server, 101

HTTP Server, 100

interrupt control routines, 94

memory management routines, 85

miscellaneous routines, 96

PC Card, 102-103

PCI Bus, 103

porting routines, 104-105

process-related routines, 95

Realtime ETS Kernel, 60, 84-105

TCP/ IP device driver configuration, 91

threads and synchronization routines,

85-87

time routines, 90

Win32, 1, 8, 84-105

Windows sockets, 97-98

application protocols, 63, 78

applications

developing your own, 6, 21-24

installing interrupt handler, 68-71

loading and kernel options, 47

assemblers, 117

B

batch files, 54

_beginthread function, 13

Berkeley sockets, 77

BIOS

booting from disk, 48-50

extension, ROM boot method, 51-52

kernel build options, 45-48, 51-52

power-on self test (POST), 51

boot drive, 49

boot methods

BIOS Extension, 51-52

Boot Jump, 52

Bootable ETS Kernel, 48-50

booting from disk, 48-50

booting from disk, 48-50

booting from DOS, 52-53

booting from ROM, 50-52

bootstrap process, 7-8, 21-24, 45-48

memory usage, 74-75

options, 2, 45-53

selecting via Visual System Builder

(VSB), 25-28

typical development cycle, 21-24

bootable diskettes

application loading options, 45-48

boot sector loader, 48

choosing templates, 25-28

typical development cycle, 21-24

Bootable ETS Kernel, 21-24, 45-48

BOOTJMP sample program, 52

Bootstrap Protocol (BOOTP), 63, 78

Borland compilers, 117

breakpoints, 34, 35

browsers, 79

building. See also compilers

kernel, options, 45-48, 54

using Developer Studio, 17-19

Visual System Builder project, 25-28

C

C functions and interrupts, 68-71. See also

interrupts

C/ C++ runtime libraries, 2. See also

libraries

Index

122 TNT Embedded Technologies Guidebook

cable, communications, 6, 22-23, 45-48, 64

callback functions, 11

CFIGKERN utility, 28-29

chip set initializations, 52

clients, network, 78. See also network

programming

COM ports and host communications, 64

command files

creating your own, 14-17

Visual System Builder output, 6, 25-28

command line, 14-15, 64-65

communications. See also host

communications

changing kernel options with

CFIGKERN, 28-29

custom routines, 54-58

initializing, 55, 57

parallel and serial, viii, 6, 64

Compact PCI Systems, 24

compilers

_beginthread function, 13

building projects with VSB, 25-28

building realtime programs, 17-19

command files, 14-17

_endthread function, 10, 13

memory usage, 75

supported, 7, 117

typical development cycle, 21-24

using with Realtime ETS Kernel, 7

configuration

default hardware, 3-4

files, 25-28

kernel, 5-6

console APIs, 93

CPU Modules, 24

critical sections, Realtime ETS Kernel

support, 8

CSLIP connections, 77. See also network

programming

Ctrl-Break, 39

custom kernel, creating bootable diskette,

48-50. See also bootable diskettes

D

deadlock, diagnosing, 38-40

DEBUG debugger, 53

debugging

breakpoints, 34, 35

building debug version of programs,

17, 19

cross debuggers, 2, 117

event logging, 39, 42-44

in Developer Studio IDE (Integrated

Development Environment), 31-

36

multithreaded programs, 38-42

program resides in ROM on target, 50-

52

sample debug session, 32-36

Target Port Input/ Output, 36

Target System Information, 37

typical development cycle, 6, 21-24

using Embedded StudioExpress, vii, 5,

36-37

using ETS Multithread Library, 40-41

defaults. See also initialization

COM1 for serial communications, 64

development environment, 6

device drivers, 71-72

hardware configuration, vii-viii, 3-4

interrupt handling, 67-71

floating point emulation software, 63

thread priority, 8-9

time slice, 9

timer tick period, 10

Developer Studio IDE (Integrated

Development Environment), vii,

5, 14

building programs with, 17-19

debugging with, 31-36

running programs, 20-21

development cycle

advantages of embedded systems, 1-2

building programs, 17-19

command files, 15, 25

debugging, 31-36

default environment, 6

running programs, 20-21

typical, 6, 21-24

Visual System Builder in, 25-28

device drivers, 61, 67, 71-72

Ethernet, 3, 5, 77

devices, memory mapped, 64

direct screen writes, 64

Index

TNT Embedded Technologies Guidebook 123

disk. See also bootable diskettes

boot method and product

development, 22-23

booting from, 48-50

drivers, 71-72

flash, 49

floppy, booting from, 49

loader, 4, 45-48

DIVBUG sample program, 32-36

DLLs

building and using, 3, 66

management APIs, 89

memory usage, 74-75

DOS boot option, 2, 52-53. See also boot

methods

drivers. See device drivers

dynamic link libraries (DLLs). See DLLs

E

EkCustom functions, 54, 105

embedded programs

advantages of developing, 1-2

application loading, 45-48

BIOS extension ROM boot method, 1-

52

booting . See boot methods

deadlock, diagnosing, 38-40

debugging. See debugging

developing, 3-4, 7-12, 21-24

distributing, x

loading over communications cable, 49

memory, 74-75

networking, 4-5

protected-mode environment, 3-4, 7-8,

54-58, 60-61

Realtime ETS Kernel and, 3-4

running, 20

size and C run-time libraries, 62

TNT Embedded ToolSuite features,

viii, 2-3

typical development cycle, 21-24

Visual System Builder, 2, 5-6

Embedded StudioExpress, 2, 5

creating new ETS Workspace, 15-17

running programs, 20-21

Toolbar, 5, 15, 36, 37

Embedded StudioExpress Extensions

Target Port Input/ Output, 36

Target System Information, 37

_endthread function, 10, 13

environment variables, 25-28, 64-65

error checking. See also debugging

event logging system, 39, 42-44

Ethernet, 3, 5, 63,77. See also network

programming

controller chips, 77

PC Card support, 72

ETS Kernel. See Realtime ETS Kernel

APIs

ETS Kernel APIs, 83-105

ETS MicroWeb Server, 79-81

ETS Multithread Library, debug version,

40-41

ETS PC Card Support Package, 72

ETS Project Wizard, 2, 5, 14-15

ETS Workspace, 15-17

Ets*() functions, 83-105

event logging, 39, 42-44

event logging APIs, 92

events, Realtime ETS Kernel support, 11

exceptions, 4, 67-71

Divide By Zero, 32, 35-36

F

file management APIs, 88-89

file system, host/ local, 59, 62-63, 74-75

File Transfer Protocol (FTP), 63, 77, 78

Finger protocol, 63, 78

flags, setting up, 7

flash disk, 49, 72

floating point emulation, 3, 63, 74-75

floppy disks, booting from, 49

Forth-Systeme Modul 386 EX Board, 24,

26

FTP Server APIs, 101

H

handlers, C interrupt, 68-71

hard disk, booting from, 49

Index

124 TNT Embedded Technologies Guidebook

hardware

32-bit x86 embedded systems

development, 1, 21-24

custom, 60

default configuration, 3-4

Fourth-Systeme Modul 386 EX Board,

24, 26

hardware-specific code, 5, 54-58, 104-

105

initializing, 54-58

Intel 386 EX Evaluation Board, 24, 26

Intel/ Radisys 386 EX Explorer, 24, 26

interrupts, 11-12, 67-71

kernels, 45-48

measuring interrupt latency, 111-114

measuring interthread yield times, 114-

115

Microtek Emulator Boards, 26

NS486SXF Eval Board, 24, 26, 51-52

PC/ AT compatible Boards, 22-23, 26,

51

system information, 57

system requirements, ix-x, 3-4

targets for ROM-based applications,

22-24

timer tick period and, 9-10

VSB templates configured for, 25-26

host communications. See also target

booting from disk, 48-50

bootstrap process, 7-8, 21-24, 45-48

I/ O with host, 61-62

initializing, 55, 57

kernel build options, 45-48, 54

kernel initialization process, 54-58

module, 4, 64

program load method, 22-23

services and interrupts, 67-71

typical development cycle, 6, 22-23

using Ctrl-Break, 39

WaitHost mode, 8, 21-23, 45-48

host/ local file system, 59, 62-63, 74-75

HTML (Hyper Text Markup Language)

On-The-Fly Libraries, 80-81

pages, 79-81

support, 79-81

HTTP (Hypertext Transfer Protocol), 42,

63, 77, 78

HTTP Server Library, 80

HTTP Server APIs, 100

I

I/ O, 36, 61-62, 71-72

ICMP (Internet Control Message

Protocol), 78

Industrial PCs, 24

initialization. See also defaults

chip set, 52

communications code, 55, 57

kernel, 54-58

Realtime ETS Kernel set up, 3-4, 7-8, 21,

54-58

Intel 386 EX Evaluation Board, 24, 26

Intel Pentium Processor Modules, 24

Intel/ Radisys 386 EX Explorer, 24, 26

Internet applications, 4-5. See also

network programming

interrupts, 67-71

control APIs, 94

hardware, using threads to service, 11-

12

Interrupt Descriptor Table (IDT), 67

interrupt service routines (ISR), 11-12

latency, measuring, 111-114

interthread yield times, measuring, 114-

115

K

kernel. See also Realtime ETS Kernel

application loading, 45-48

build options, 45-48,

building with batch files, 54

changing options with CFIGKERN, 28-

29

collecting system information, 57

command files, 25-28

configuration, 5-6

initialization, 54-58

keyboard driver and I/ O, 4, 61, 71-72

Index

TNT Embedded Technologies Guidebook 125

L

LapLink parallel and serial connection,

viii, 6, 64

libraries, 7

C run-time alternate support, 99

C run-time support, 2. 7, 61-62, 99, 107-

109

C++ and memory, 75

dynamic link (DLLs), 3, 66, 89

floating-point emulation 3, 63, 74-75

MicroWeb Server, 80-81

replaceable modules, 54-58, 65, 104-105

thread functions, 8-11

License, Realtime ETS Kernel Run-Time,

x

linking

linker command files, 5-6, 14-15, 25-28

linker command line, 14-15

RTHELLO program, 15-17

using ETS Project Wizard, 14-17

Visual System Builder (VSB), 25-28

with LinkLoc, 2, 15

LinkLoc switches

ETS Project Wizard, 14-15

Visual System Builder (VSB), 25

loading process, 45-48

local file system, 59, 62-63, 74-75

logging events, 39, 42-44

M

memory

HTML (Hyper Text Markup Language)

On The Fly library, 80

initializing, 54-58

management APIs, 85

mapped devices, 64

Memory Layout property sheet (VSB),

27

requirements, ix

usage and embedded programs, 13-14,

74-75

Microsoft compilers, supported, vii, 1-2,

7, 117

Microtek Emulator Boards, 26

MS-DOS, 2, 3, 52-53

multithreaded applications

debugging, 38-42

ETS Multithread Library, 40-41

Realtime ETS Kernel and, 2, 8-11

TNT Embedded Tool Suite Realtime

Edition, 3

mutex, Realtime ETS Kernel support, 8,

11

N-O

network

clients, 78

drivers, 71-72

servers, 78

network programming

Berkeley routines, 77

Ethernet board support, 3, 5,77

HTML (Hyper Text Markup Language)

support, 79-81

Internet Control Message Protocol

(ICMP), 78

introduction, 4-5, 77-78

MicroWeb Server, 79-81

TCP/ IP support, 3, 5, 63, 77-81

WinSock support, 3, 4, 63, 77, 97-98

network protocols, 63, 78

NoWaitHost mode, 8, 22-23, 45-48

NS486SXF Evaluation Board, 24, 26, 51-52

options, Realtime ETS Kernel, overview,

45-48

P

parallel communications, 64. See also host

communications

kernel options, 45

system requirements, ix-x

PC Card APIs, 102-103

PC Card ATA disks, 3, 49, 72

PC card device drivers, 71-72

PC Card Support Package, 72

PC/ 104 Systems, supported, 22-23

PC/ AT compatible

BIOS extension method, 1-52

Boards, 24, 26, 51

devices detected at initialization, 56

Index

126 TNT Embedded Technologies Guidebook

PC/ AT compatible, cont.

EkCustom functions, 54, 105

hardware configuration, vii-viii, 3-4

kernel build options, 45-48

RAM-based applications, 21-22

replaceable code, 54-58, 65

ROM-based applications, 21-24

VSB template, 25-28

PCI Bus APIs, 103

PCI Systems, 24

PCMCIA devices. See PC Card devices

performance, measuring, 111-115

Phar Lap 386|ASM assembler, 117

Phar Lap software, x-xi

World's Smallest Web Server, x-xi, 4-5,

41

plug-ins, ETS MicroWeb Server, 81

porting APIs, 104-105

ports, direct I/ O, 36

POST processing, 51

PPP connections, 5, 63, 77. See also

network programming

priority

inversion avoidance, 9, 73-74

of threads, 3, 8-11

process-related APIs, 95

processor exceptions. See exceptions

processors, supported, viii

program load method, 22-23

programming environment. See also

embedded programs

C run-time library support, 7, 61-62,

107-109

device drivers, 71-72

host command line and environment,

64-65

host/ local file system, 59, 62-63, 74-75

I/ O with host, 61-62

interrupts and exceptions, 67-71

memory mapped devices, 64

memory usage, 74-75

networking, 4-5, 63, 77-81

overview, 59-60

protected-mode environment, 3-4, 7-8,

54-58, 60-61

programming environment, cont.

replaceable code, 54-58, 65, 104-105

scalable, 60

structured exception handling, 70-71

protected mode, 3-4, 7-8, 54-58

protocols, application and network, 63,

77, 78

R

RAM memory usage, 74-75

RAM-based applications, 21-22

real-mode initialization, 54-58

Realtime ETS Kernel API, 83-105

replaceable modules, 54-58, 65, 104-105

Win32 API functions, 1, 8, 83-105

WinSock 1.1 APIs, 97-98

Realtime ETS Kernel, features, viii, 7-12

realtime program, example, 12-14

redistribution information, x

replaceable code, 6, 54-58, 65, 104-105

ROM

applications, typical development

cycle, 21-24

BIOS extension boot method, 1-52

booting from, 22-23, 50-52

loading embedded program into, 22-23

memory usage, 74-75

RTOS (realtime operating system), vii, 1

run mode, 22-23, 48

Run-Time License, x

running with Realtime ETS Kernel, 20-21

S

scheduler, 3, 9-11, 73-74. See also

multithreaded applications

screen drivers, 4, 71-72

screen I/ O, 61-62, 71-72

semaphores, Realtime ETS Kernel

support, 11

serial drivers, 71-72

Index

TNT Embedded Technologies Guidebook 127

serial communications, 64. See also host

communications

kernel options, 45

system requirements, ix-x

used in typical development cycle, 22-

23

serial modems, 72

servers, network, 78. See also network

programming

Simple Mail Transfer Protocol (SMTP),

63, 78

SLIP connections, 5, 63, 77. See also

network programming

smallest .pharlap.com, x-xi, 4-5, 41

sockets, 77. See also network

programming

software interrupts, 67

stack size, 13, 74-75

STD-32 Systems, 24

structured exception handling, 70-71

SYMDEB debugger,53

synchronization objects and threads, 8-11

System Information, Target, 37

system requirements, hardware and

software, ix-x, 3-4

T

target. See also host communications

bootstrap process, 7-8, 22-23, 54-58

file system, 62-63

keyboard and screen drivers, 71-72

supported hardware, 23

Target Port Input/ Output, 36

Target System Information, 37

TCP/ IP support, 3, 5, 63, 77-78, 79. See

also network programming

device driver configuration APIs, 91

templates, Visual System Builder (VSB),

25-28

threads

APIs, 85-87

debugging multithreaded programs,

38-42

ETS Multithread Library, debug

version, 40-41

EtsDumpThreads(), 41-42

threads, cont.

event logging system, 39, 42-44

hardware interrupts and, 11-12

priority inversion avoidance, 9, 73-74

priority, 3, 8-11

programming concepts and, 8-11

scheduling, 9-11

ThreadId field, event logging, 39, 42-44

time APIs, 90

time slice, 9-10

timer, 4, 9-11, 61, 71-72

timing. See performance

Turbo Debugger, 117

U-V

UART, supported, 77

video memory, 64

Visual System Builder (VSB)

choosing templates, 25-28

linker command files, 5-6, 25-28

Property Sheets, 26-28

W-X

WaitHost mode, 8, 21-23, 45-48

web server

ETS MicroWeb Server, 79-81

sample programs, 81

Win32 API support, 1, 8, 83-105

Win32 tools, supported, vii

WinSock, 3, 4, 63, 77, 97-98. See also

network programming

World Wide Web connections, thread for,

42

World's Smallest Web Server, x-xi, 4-5, 41

x86 CPU Evaluation Boards, 24

129

	BACK TO PHAR LAP CONTACT

