
TEK PROGRAMMERS
REJ:"ERENCE MM·JUAL

4027A
C LOR
GRAPHICS
TERMINAL

P· 11 N<;i
(17(! • .1., 73-1)

TE K PROGRAMMER'S
REFERENCE MANUAL

First Printing AUG 1981
Revised FEB 1982

4027A

Part No. 070-4173-00
Product Group 11

COLOR GRAPHICS
'

TERMINAL

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

COMMITTB) TO EXCEUENCE

Copyright © 1981 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this publication may not be reproduced in any
form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more U.S. or foreign patents or patent applications.
Information provided on request by Tektronix, Inc., P.O. Box
500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

MANUAL REVISION STATUS

PRODUCT: 4027 A Color Graphics Terminal

This manual supports the following versions of this product: Serial Numbers 8030100 and up.

REV DATE DESCRIPTION

AUG 1981 Original Issue

NOV 1981 Revised: pages iv, 8-3, 8-4, 8-5, 8-6, 8-7, 11-14, and IDX-3.

FEB 1982 Revised: pages 9-13 and D· 1.

4027A PROGRAMMER'S REV, FEB 1982

CONTENTS

Section 1 INTRODUCTION Page
About This Manual 1-1
Related Documentation 1-1
The 4027A Color Graphics Terminal 1-2

Features .. 1-2
Optional Features 1-3

The Split Screen: Workspace and Monitor 1-4
The Keyboard .. 1-5

ASCII Keys .. 1-6
Cursor/Numeric Pad Keys 1-6
Function Keys .. 1-6
Programmable Keyboard 1-7

Section 2 COMMAND STRUCTURE
How to Find Commands in This Manual 2-1
The Format of Commands 2-1

Delimited ASCII Strings 2-3
Continuing a Command 2-3

The Syntax of Command Descriptions 2-4
Selecting the Command Character 2-5

COMMAND Command 2-5

Section 3 HOST PROGRAMMING
Text and Commands 3-1
Computer-to-Terminal Communications 3-1

Sending Numeric Parameters 3-2
Continuing a Command 3-2
A Note on Invalid Commands 3-3
Displaying a Command File 3-4

Terminal-to-Computer Communications 3-5
Typing into the Monitor 3-5
SEND Command 3-5
REPORT Command 3-8

Section 4 PROGRAMMING THE KEYBOARD
Programming a Key4-1

LEARN Command 4-1
Special Considerations 4-3

Macros and the EXPAND Command4-4
EXPAND Command4-4
The LEARN Command and the COMMAND
Command .. 4-4

Key Programming and Keyboard Lockout4-4
Clearing Key Definitions 4-5

CLEAR Command _ 4-5

4027A PROGRAMMER'S @ ii

Section 5 SYSTEM STATUS AND INITIALIZATION
Terminal Status Commands 5-1

COMMAND Command 5-1
WORKSPACE Command 5-2
MONITOR Command 5-2
MARGINS Command 5-3
STOPS Command 5-4
FORM Command 5-4
SNOOPY Command 5-5
PAD Command 5-5

Communications Status Commands 5-6
BAUD Command 5-6
PARITY Command 5-7
ECHO Command 5-8
BUFFERED Command 5-9

BREAK Function 5-11
EOL (End-of-Line) Command 5-11
REMOTE START STOP Command 5-12
PROMPT Command 5-13
DELAY Command 5-13
FIELD Command 5-14
EOF (End-of-File) Command 5-14
DUPLEX Command 5-15
DISCONNECT Command 5-16
BREAK Functions 5-16

Status Messages .. 5-1 7 .
The STATUS Key and the STATUS Message 5-17
SYSTAT and the SYSTAT Message 5-17
Systat Parameters 5-17
TEST Command 5-18
GTEST Command 5-20

Section 6 CONTROLLING THE DISPLAY
The Cursor Commands 6-1

JUMP Command 6-1
UP Command .. 6-3
DOWN Command 6-4
RIGHT Command 6-5
LEFT Command 6-6

The Tab Commands 6-8
TAB Command 6-8
BACKT AB Command 6-9

The Scrolling Commands 6-10
RUP (Roll Up) Command 6-10
RDOWN (Roll Down) Command 6-11

Additional Commands 6-13
ERASE Command 6-13
BELL Command 6-13

iii @ 4027 A PROGRAMMER'S

Section 7 COLOR COMMANDS
The Color Commands 7-1

COLOR Command 7-1
MAP Command 7-2
RMAP (Relative Map) Command 7-3
MIX Command 7-3
PATTERN Command 7-4

Section 8 GRAPHICS
The Graphic Commands 8-1

GRAPHIC Command 8-1
ENABLE Command•.............. 8-3
DISABLE Command 8-4
VECTOR Command 8-4
RVECTOR (Relative Vector) Command 8-5
LINE Command 8-5
POLYGON Command 8-6
RPOLYGON (Relative Polygon) Command ..•........... 8-7
PIE Command .. 8-8
CIRCLE Command 8-9
INK Command .. 8-11
STRING Command 8-12
ERASE G Command 8-13
SHRINK Command 8-14

Effects of a Graphic Region 8-15
Delete Character 8-15
Delete Line .. 8-15
Erase and Skip 8-15
Erase Workspace 8-15
Cursor Movement and Typing 8-15
Form Fillout Mode 8-16
Attribute Codes 8-16
The SEND Command 8-16

4010-Style Graphics 8-17
Addressing the Graphic Beam 8-17
Graph Mode Memory 8-17

Alternate Character Fonts 8-18
SYMBOL Command 8-18
FONT Command 8-19
DFONT (Delete Font) Command 8-20

4027 A PROGRAMMER'S REV, NOV 1981 iv

Section 9 FORMS AND FORM FILLOUT
Form Fillout Mode 9-1

FORM Command 9-2
Creating a Form .. 9-3
Field Attributes and Field Attribute Codes 9-5

Font Attributes .. 9-5
Logical Attributes 9-5
Visual Attributes 9-6

Color Attributes 9-6
Inverted Attributes 9-6
Blinking Attributes 9-6
4025A-Style Visual Attributes 9-6

Field Attribute Codes Within a Line 9-7
Creating Fields .. 9-7

ATTRIBUTE Command 9-7
Creating Fields with JUMP 9-9

Rulings .. 9-11
HRULE (Horizontal Rule) Command 9-11
VRULE (Vertical Rule) Command 9-12
Making Correct Junctions 9-12

The Effect of Form Fillout on Commands 9-14
Typing in Form Fillout 9-14
TAB in Form Fillout 9-15
BACKTAB in Form Fillout 9-16
ERASE in Form Fillout 9-17
The HOME Key and JUMP in Form Fillout 9-17

Transmitting Forms and Form Data 9-18
SEND in Form Fillout 9-18
FIELD in Form Fillout 9-19
Some Sample Transmissions 9-19

v @ 4027 A PROGRAMMER'S

Section 10 TEXT EDITING
The Text Editing Commands 10-1

DCHAR (Delete Character) Command 10-1
ICHAR (Insert Character) Command 10-2
DUNE (Delete Line) Command 10-3
ILINE (Insert Line) Command 10-5

Section 11 PERIPHERALS
Initializing for Peripheral Communications 11-1

SET Command 11-1
Printer Parameters 11-2
Tape Unit Parameters 11-3
Plotter Parameters 11-4

PERIPHERALS Command 11-5
The REPORT Command and Peripherals 11-6

Tape Unit .. 11-6
Plotter .. 11-6
Printer .. 11-6

Communicating with Peripherals 11-7
ALLOCATE Command 11-7
DIRECTORY Command 11-9
KILL Command 11-10
PASS Command 11-10
COPY Command 11-14
Auto-Incrementing the Tape Unit 11-16
Copying the Workspace to the Plotter 11-16

Copying on a Hard Copy Unit 11-17
HCOPY (Hard Copy) Command 11-17

4027 A PROGRAMMER'S @ vi

vii

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

COLOR STANDARD

ASCII CODE

4010-STYLE GRAPHICS CODES

ALTERNATE CHARACTER FONTS

SAMPLE PROGRAMS

MEMORY CONSIDERATIONS

PROGRAMMER'S REFERENCE TABLE

OPTION SUMMARY

ROUTINE EXTERNAL CONVERGENCE BOARD ADJUSTMENTS

COMMAND LISTING

@ 4027 A PROGRAMMER'S

ILLUSTRATIONS

Figure Description Page

1-1 The 4027A Color Graphics Terminal x
1-2 The Split Screen; Workspace and Monitor Scrolls 1-4
1-3 The Keyboard .. 1-5
2-1 Command Format .. 2-2
2-2 String Delimiters .. 2-3
5-1 STATUS Message .. 5-17
5-2 The 4027A SYSTAT Message 5-18
5-3 !TEST<CR>Results .. 5-19
5-4 !GTEST<CR>Results 5-20
6-1 The Workspace Window and the Workspace Scroll 6-2
8-1 A Graphic Region .. 8-2
8-2 The VECTOR Command 8-4
8-3 The RVECTOR Command 8-5
8-4 VECTOR Line Types 8-6
8-5a An RPOL Y Command Using 0,0 as the First

Coordinate Pair .. 8-7
8-5b An RPOL Y Command Using 150,0 as the First

Coordinate Pair .. 8-7
8-6 Drawing a Line in INK Mode 8-11
8-7 The STRING Command 8-12
8-8 A Graphic Display .. 8-15
8-9 A Graphic Display After the SEND Command 8-16
8-10 A User-Defined Symbol 8-19
9-1 Sample Form .. 9-1
9-2 The Parts of a Form .. 9-2
9-3 Rulings Junction Chart 9-13
11-1 Peripherals Data List 11-5
A-1 Color Standard .. A-1
A-2 Cross Section of the Color Standard A-3
H-1 United Kingdom Keyboard H-1
H-2 French Keyboard .. H-3
H-3 Swedish Keyboard .. H-3
1-1 Adjusting the External Convergence Board 1-2

4027A PROGRAMMER'S @ viii

TABLES

Table Description Page

5-1 Snoopy Mode Mnemonics 5-5
8-1 4010-Style Graphics Required Byte Transmissions 8-17
11-1 Tape Error Codes .. 11-6
11-2 Plotter Language Commands 11-12
11-3 Transmitting Plotter Commands Using PASS 11-13
11-4 Copy Parameters .. 11-14
11-5 Copy Switches .. 11-15
B-1 ASCII Code Chart .. B-1
B-2 ASCII Control Characters B-2
C-1 4010-Style Graphics Code Chart C-1
D-1 Alternate Character Fonts 0-1
D-2 Ruling Junctions Chart D-2
F-1 Graphic Memory Capacity F-2
G-1 Programmer's Reference Table G-1
H-1 United Kingdom Character Set H-2
H-2 Swedish Character Set H-4
J-1 Command Listing .. J-1

4027A PROGRAMMER'S @ ix

Figure 1-1 . 4027A Color Graphics Terminal.
4173-100

)(

@

4027 A PROGRAMMER'S

Section 1

INTRODUCTION

The 4027 A Color Graphics Terminal belongs to the
class of machines popularly known as "smart termi­
nals." It is a computer terminal that carries communi­
cations between the operator and a host computer. In
addition, the terminal contains its own microprocessor
and supporting electronics. With this electronics, the
terminal responds to its own set of commands, inde­
pendently of the host computer.

The 4027 A is not intended to be a stand-a lone
computing system. Rather, its computing ability
complements that of the host computer, enabling the
user to make full use of the terminal's information
display capabilities.

ABOUT THIS MANUAL

The purpose of this manual is to acquaint you with
these capabilities and to describe in detail the com­
mands to which the terminal responds. You can then
use the full potential of the terminal for problem solving
and information display.

Two assumptions are made concerning the reader of
this manual. First, the person should be familiar with
computer operations in general and with at least one
programming language. Second, the person should
have access to the 4027 A Operator's Manual.

This Programmer's Reference Manual is organized
along broad functional lines. Section 1 gives an
overview of the Color Graphics Terminal. Each
succeeding section explores one class of commands
related to a basic terminal function.

An alphabetical Command List is included following the
list of Tables to provide an easy means of locating the
various commands in this manual. Also, Appendix J is
an alphabetical command list which includes additional
information.

The terminal has a variety of parameter settings, most
of which are set by command, and the action of other
commands may be influenced by these settings. When
this is the case, commands are cross-referenced.

RELATED DOCUMENTATION

Information related to programming can be found in the
following documentation:

4027A Color Graphics Terminal Operator's Manual

4010801-4010805 Plot 10 Easy Graphing Soft­
ware documentation

4027 A PROGRAMMER'S @

A 4027A Programmer's Reference Guide, containing a
summary of information in this manual, is also avail­
able.

1-1

INTRODUCTION

THE 4027A COLOR GRAPHICS TERMINAL

The 4027A Color Graphics Terminal (Figure 1-1) is an
interface between the terminal operator and a host
computer. It is designed especially for creating color
graphic displays, including a variety of character fonts,
in 64 different colors. In addition, it may be used for
applications involving text editing and display and
processing of forms.

The terminal consists of a display unit and a keyboard
attached to the display unit by a thin cable. The display
unit contains a 13-inch, refresh-style color cathode ray
tube (crt), a microprocessor with supporting electron­
ics, and a standard RS-232 interface. The terminal
operator types information on the keyboard.
Information from both the keyboard and the host
computer is displayed on the crt.

Terminal operations are controlled by the microproces­
sor and its associated firmware (programs for the
microprocessor which are stored in Read Only Memory
chips, or ROMs). With this firmware, the terminal
responds to several dozen commands, independently
of the host computer. These commands determine
settings of the terminal system parameters, control the
screen display, and perform various functions useful in
applications programs.

FEATURES

• Workspace and Monitor - Display memory can be
divided into two portions (or scrolls). One portion,
called the workspace, serves as a composition area
for creating color graphics, editing text, filling out
forms, or displaying the results of applications
programs. The monitor portion of memory stores
messages to and from the computer and any
terminal commands typed on the keyboard.

1-2 @

• Split Screen - The screen can be divided into two
areas or windows, corresponding to the two portions
of the display memory. The upper area is the
workspace window and displays information from
the workspace. The lower area is the monitor
window and displays information from the monitor
without writing over the workspace display. The
portions of the screen allotted to each of these
windows are set by command.

• Color Graphics - The terminal can store and
display graphs and a variety of geometric shapes in
the workspace. Solid lines and several types of
dashed lines can be drawn. All graphs, shapes, and
lines can be displayed in any of 64 colors.

• Color Display - The terminal can display up to eight
of it's palette of 64 colors at one time. Eight colors
are assigned to color number CO-C7. If other colors
are desired, the colors set by each of the color
numbers may be changed by using the MAP, RMAP,
or MIX commands.

• Visual Enhancements - Characters can be dis­
played with the standard (CO) attribute (white on
black background) or on one of six other colors on a
black background. In addition, the characters may
be inverted (black characters on a colored back­
ground). Characters may also blink between colors,
or between inverted and noninverted. In addition,
various combinations of characters and background
colors may be defined by the operator to provide an
even wider variety of attributes. Screen contrast is
controlled manually by the operator but screen
brightness is internally set.

• Scrolling - When either the workspace window or
the monitor window is full, information in that
window scrolls up to display additional information.
lnfomation scrolled off the screen is saved as long
as memory is available; the scrolled text may be
reviewed by scrolling down.

4027 A PROGRAMMER'S

• Forms - The workspace can display a form. When
the operator has filled in the blanks of the form, the
data in these blanks can be sent to the computer
with a single command.

• Locally or Remotely Controllable - Commands can
be typed on the keyboard or sent from the computer.

• Programmable Operating Parameters - Various
operating parameters (such as parity, workspace
margins, tab stops, etc.) can be set by commands
given either from the keyboard or from the computer.

• Programmable Baud Rate - The baud rate can be
set by command.

• Buffered Operation - In buffered mode, a line of text
(up to 80 characters) in the monitor is saved for
proofing or local editing before it is sent to the
computer.

• Programmable Keyboard - Almost all of the keys on
the keyboard can be programmed to generate a
different character or character string than the
default one. This allows commonly used character
strings or commands to be generated by pressing a
single key.

• Local Text Editing - Using the editing keys or
commands, one can edit text held in the workspace
before sending it to the computer.

• Status Messages - The terminal can display status
messages which indicate parameter settings, the
command character, and the amount of unused
memory in the terminal.

• Modules - Display unit and detached keyboard. The
keyboard can be located up to eight feet from the
display unit.

4027 A PROGRAMMER'S @

INTRODUCTION

OPTIONAL FEATURES

• Printer Copies - Text in the workspace or in the
computer can be copied on a Tektronix 4642
Printer. The printer cannot copy graphics.

• Hard Copies - The terminal can make permanent
copies of all information on the screen using a
Tektronix 4632 Hard Copy Unit. The 4632 Video
Hard Copy Unit with Option 06 (Enhanced Gray
Scale) will copy forms and graphs just as they
appear on the screen (substituting gray scale for
color).

• Additional Graphics Memory - Standard graphics
memory is 48K. Options provide 96K, 144K, or 192K
total graphics memorv.

• Additional Display Memory - Standard display
memory is 16K. An option provides 32K bytes total
display memory.

• Optional Interfaces - Options allow the terminal to
use a 20 mA current loop or an RS-232 peripheral
communications line.

• GPIB Interface - The terminal can communicate
with four Tektronix 4924 Digital Cartridge Tape
Drives and two Tektronix 4662 or 4663 Interactive
Digital Plotters, using a GPIB (General Purpose
Interface Bus).

• Half Duplex - A half duplex optional interface is
available. With this option the DUPLEX command is
added to the terminal command set.

• Alternate Character Fonts - The Math Characters
font provides a variety of symbols useful in
mathematical applications. A number of fonts con­
taining 128 characters each may be assigned by the
user for graphics or other purposes. Thirty-two fonts
are available, of which 30 may be user defined.

• Rulings - The Ruling Characters font provides a
variety of ruling characters. Using this font, the
terminal can draw horizontal and vertical rulings to
highlight the structure of a form displayed in the
workspace.

1-3

INTRODUCTION

THE SPLIT SCREEN: WORKSPACE AND MONITOR

Information sent to the display unit from the keyboard
or the computer is stored in a part of the terminal's
memory called the display list. This display list can be
divided into two sections or scrolls - the workspace
scroll (or simply workspace) and the monitor scroll (or
simply monitor).

Information from the keyboard can be directed into
either scroll, as can information from the computer.
Each scroll has specific uses, and the terminal
processes information in the workspace differently
than it processes information in the monitor.

The workspace serves as a composition area. The
operator can use it to create text to send to the
computer, to edit text, to create graphics, to create or
fill out forms, or to display results of applications
programs. Text typed into the workspace is stored
there until the terminal is commanded to send data in
the workspace to the computer. Data is not transmitted
as it is typed.

WORKSPACE
SCROLL

MONITOR
SCROLL

The monitor is used to display commands typed on the
keyboard and messages to and from the computer. The
monitor cannot contain forms or graphics. In general,
the monitor allows (1) the operator to communicate
with the terminal or the computer, and (2) the computer
to issue error messages or prompts, without this
information being written over the contents of the
workspace.

There is always a monitor defined; hence there is
always a monitor window of at least one line. There
may, however, be no workspace defined. If no work­
space is defined, there is no workspace window; the
entire screen is devoted to the monitor.

When the terminal is powered up or RESET (using the
reset button on the back panel), the monitor window
occupies the entire 34 lines of display, no workspace is
defined, and text from the keyboard and text from the
computer are directed into the monitor. Appropriate
commands to the terminal define a workspace, select
the number of lines in each window, and direct text
from the keyboard and text from the computer into the
desired scrolls.

WORKSPACE
WINDOW

MONITOR
WINDOW

(2402) 4173-1

Figure 1-2. The Split Screen; Workspace and Monitor Scrolls.

1-4 @ 4027A PROGRAMMER'S

NOTE

If the command character is not known, pressing
the shift STATUS key displays the command
character, whether the terminal is in buffered or
unbuffered mode, and the number of blocks of
display memory available. The command charac­
ter must be known so that commands may be
given to define the workspace and monitor re­
gions of the display. If the workspace and monitor
areas have not been defined, text will not appear
on the screen.

For each scroll there is a cursor - a pointer in the
display list indicating where the next character entered
in the scroll will be stored. The cursor appears on the
screen as a bright underline one column wide. Only
one cursor will be visible at a given time. (There may be
brief periods, while the terminal performs certain
routines, when neither cursor is visible.)

INTRODUCTION

If the workspace window is full and additional text is
entered in the workspace, the workspace automatically
scrolls up to display the new text. Text scrolled off the
screen is saved in the display list so long as that
memory capacity is not exceeded. The operation of the
monitor is similar, except that information scrolled off
the monitor window will be discarded if that memory
space is needed for other purposes.

Scrolling commands and scrolling keys roll the
workspace and monitor up and down, independently, to
display various portions of text.

THE KEYBOARD

As indicated in Figure 1-3, keys fall into three catego­
ries: ASCII keys, cursor/numeric pad keys, and func­
tion keys.

The keyboard is shown in Figure 1-3.

--~- --·--

Figure 1 -3. The Keyboard.

4027 A PROGRAMMER'S @

2657- 1

1-5

INTRODUCTION

ASCII KEYS

The ASCII section of the keyboard resembles an
ordinary typewriter keyboard. Each key in this section,
except the BREAK key, sends a character of the ASCII
code to the computer. (See the ASCII Code Chart,
Appendix B.) The BREAK key sends a break signal
which interrupts the computer's operation.

CURSOR/NUMERIC PAD KEYS

The cursor/numeric pad is the group of 11 keys to the
right of the ASCII section of the keyboard. This group of
keys functions either as a cursor pad or as a numeric
pad.

When the NUMERIC LOCK function key is off (unlight­
ed), the group functions as a cursor pad. In this mode
the four keys marked with arrows move the cursor and
the two keys marked with triangles scroll the display
list. If the terminal has been given the ENABLE
command, the four keys marked with arrows move the
crosshair in the direction indicated. The zero/crosshair
(0/+) key and the ENABLE command may be used to
ENABLE the crosshair on the terminal. The remaining
pad keys have no effect.

When the NUMERIC LOCK function key is on (lighted),
the group functions as a numeric pad, generating the
digits 0-9 and the decimal point (period). The shifted
versions of the appropriate pad keys still move the
cursor and scroll the display list.

FUNCTION KEYS

The function key group consists of the ERASE key, the
PT (Pad Terminator) key, and the sixteen keys along
the top of the keyboard.

The ERASE key is at the extreme upper left of the
ASCII section of the keyboard. This key erases
whichever scroll (workspace or monitor) receives text
from the keyboard.

The PT (Pad Terminator) key is the large key to the
right of the cursor/numeric pad. The default definition
of this key is "undefined."

The sixteen keys along the top of the keyboard are
divided into four groups of four keys each. Each key in
the rightmost group includes an LED which, when
lighted, indicates the key is "on." These sixteen keys
have the following definitions.

-~

1-6 @

DID DID DID DID

••••••••••••••• ~D ••••••••••••••• ·············­•••••••••••••
ASCII KEYS

DID DID DID DID
11111111111111111 •••
. 1111111111111 __ ••• 0 i 1111 i I Ii I I I I I I •••

. 11111111111 1._L-•

CURSOR/NUMERIC PAD

1~ 1~ 1~1F~1 . I I I I I I I I 11 II I . . D
I 11 Ii I I I I I Ii I I I

. 11111111111 '1
CURSOR MOVEMENT KEYS

DID DID DID DID

NUMERIC LOCK

1~1~1~1~ . 1111111111111 ..••• D
I 11i111111 i I Ii I •••

. 11111111111 I_-·

NUMERIC KEYS

••••••••••••••••
~ 111111111111111~ 1111111111111 I
-111i111111i11 I

I 11 I I I I I I 11 I

FUNCTION KEYS

4027A PROGRAMMER'S

F1 - Undefined
F2 - Undefined
F3 - Undefined
F4 - Undefined
F5 -HOME
F6 - Undefined
F7 - Undefined
F8 -SEND8

F9 - DELETE CHARACTER
F10 - DELETE LINE
F11 - ERASE & SKIP
F12 - INSERT LINE
F13 - INSERT MODEb
F14 - TTY LOCKb
F15 - NUMERIC LOCK/LEARNb
F16 -COMMAND LOCKOUT/STATUSb

8The SEND key has no definition untll programmed.
blighted keys.

Function keys F1 -F4 and F6-F8 have default
definitions of "undefined"; these keys cause no action
unless they are programmed.

Function key F5 is the HOME key. Pressing this key
returns the visible cursor to its "home" position in row
1, column 1 of its scroll.

Function keys F9-F16 perform the functions indicated
by their keyboard labels. These keys are discussed in
detail in the 4027 A Operator's Manual.

The default definition of the SEND key is "undefined."
Since the command set includes two different types of
SEND commands, the shifted and unshifted versions of
the SEND key may be programmed, each with a
different type of SEND command.

The LEARN key is the shifted version of the NUMERIC
LOCK key. The STATUS key is the shifted version of
the COMMAND LOCKOUT key. Neither the LEARN nor
the STATUS key is a lighted key; each operates
independently of the corresponding unshifted key.

The action of the DELETE CHAR, DELETE LINE,
INSERT LINE, INSERT MODE, and LEARN keys can be
duplicated by commands discussed later in this
manual.

4027 A PROGRAMMER'S @

INTRODUCTION

There are no commands that exactly duplicate the
action of the HOME, ERASE & SKIP, TTY LOCK,
NUMERIC LOCK, COMMAND LOCKOUT, or STATUS
keys. The action of the HOME, ERASE & SKIP, and
COMMAND LOCKOUT keys can be duplicated by
certain command sequences discussed in later sec­
tions of this manual. There are no command sequences
which duplicate the action of the TTY LOCK or
NUMERIC LOCK keys.

PROGRAMMABLE KEYBOARD

Most of the keys on the keyboard can be programmed
with definitions other than the default ones. This allows
the operator to generate commonly used character
strings, commands, or command sequences by press­
ing a single key.

All of the keys on the keyboard can be programmed
except the following:

• The rightmost three lighted function keys - TTY
LOCK, NUMERIC LOCK, and COMMAND LOCKOUT.
(Neither the shifted nor the unshifted versions of
these keys can be programmed.)

• The three ASCII keys - SHIFT, CTRL, and BREAK.

Key programming can assign different definitions to the
shifted and unshifted versions of the same key. For
example, the upper case "A" key and its unshifted
version, the "a" key, may be programmed with different
definitions.

Function keys F1 -F4, F6-F8, and the PT (Pad
Terminator) key have no definitions assigned to them.
These keys are reserved specifically for programmed
definitions. The SEND key (function key F8) is usually
programmed with some version of the SEND command.

1-7

Section 2

COMMAND STRUCTURE

HOW TO FIND COMMANDS IN THIS MANUAL
The terminal responds to several dozen commands.
This manual is organized functionally. Each command,
with a description of its structure and what it does, is
listed in the appropriate section of the manual: the UP
and DOWN commands are described in Controlling the
Display, the HRULE and VRULE commands In Forms
and Form Fillout, and so forth. The first section in which
a command appears contains a complete description of
the command syntax.

If the presence of certain modes or settings affects the
action of the command, these effects are discussed in
the relevant section. The TAB command, for example,
causes a different action when the terminal is in form
fillout mode, and the action of TAB in form fillout mode
is discussed in the Forms and Form Fillout section.

In addition to these command descriptions, Appendix J
Is a convenient alphabetical listing of commands and
additional information. Also, following the Table list In
the Contents section is an alphabetical list of com­
mands including the section and page where each
command is found.

THE FORMAT OF COMMANDS
Each terminal command is represented by an English­
style ASCII string. In addition to the English-style
commands, the graphics commands have counterparts
on existing 4010 Series terminals and PLOT 10
software. When these commands are sent from the
computer, they can be represented using the 4010-
style codes.

Terminal commands consist of four parts:

• The command character.

• The command keyword.

• The command parameters.

• The command terminator.

4027 A PROGRAMMER'S @

The command character is a unique, user-selectable
character that does not normally occur in text. This
character informs the terminal that the information
which Immediately follows is a command. The exclama­
tion point (I) Is the default command character. The
operator or programmer can change the command
character by using the COMMAND command. (See
Selecting the Command Character later in this section.)
The exclamation point (I) is used as the command
character throughout this manual.

The command keyword is a single word that identifies
the command to be executed. This keyword can be
spelled out entirely or, if it contains more than three
letters, it can be truncated to the first three letters. Two
exceptions are the DISCONNECT and DISABLE com­
mands which each require four letters. The keyword
must immediately follow the command character; no
spaces or other characters are allowed between the
command character and the keyword.

2-1

COMMAND STRUCTURE

The command parameters, if any, follow the keyword.
The type and number of parameters depend on the
particular command; some commands take no
parameters at all. Parameters can be numbers, charac­
ter strings, or words. A parameter word can be
abbreviated to its first letter.

Parameters which are characters or character strings
must be separated from the keyword and from each
other by separators. A separator can be a comma or
one or more spaces. The separator between a numeric
parameter and the keyword or between a numeric
parameter and neighboring alphabetic parameters can
be omitted.

!BELL<CR>

/\
COMMAND KEYWORD

CHARACTER

\
TERMINATOR

The last character in a command, whether a parameter
or the final character of the keyword, is separated from
subsequent information by a command terminator. A
terminator can be a semicolon, a carriage return, or
another command character. If the command is the
final string on a line of text, then the terminator is a
carriage return. If the command is followed by text, a
semicolon terminates the command and separates it
from the text. If the command is followed by another
command, then the command character of the following
command can serve as the terminator.

Figure 2-1 illustrates the command format.

(NO PARAMETERS)

! BAUD 1200, 2400 <CR>

2-2

/w w1 •u• '

c~~~~~~~. L. \ ~ .. ~.::M••••o•
KEYWORD PARAMETER

(KEYWORDS ABBREVIATED;
UNNECESSARY SEPARATORS ! WOR 20 K ! MAR 10 , 70 <CR>

\ I C-r'(~ ~:::~.~~:::OR OMITTED)
PARAMETER ~PARAMETER /~~BRt..:.~vL.JUI KEYWORD

COMMAND PARAMETERS ABBREVIATED SEPARATOR
CHARACTER (SEPARATORS KEYWORD (NECESSARY)

OMITTED)

COMMAND
CHARACTER
(SERVES AS

TERMINATOR)

Figure 2-1. Command Format.

@

(2402) 4173-2

4027A PROGRAMMER'S

Consider the following line in Figure 2-1.

!WOR 20 H;THIS IS THE WORKSPACE!MON H
!BEL<CR>

The ; terminates the !WOR H command. The ! of the !
BEL command terminates the !MON H command. The
<CR> terminates the !BEL command and the entire
line. The string THIS IS THE WORKSPACE, since it is
not preceded by a command character, is treated as
text and printed in the workspace.

Separators followed by + signs can be omitted. The
command

!RVE + 5,0,-20,-11 O,+ 35,-110< CR>

may be written

!RVE+ 5,0,-20,-110+ 35,-11 O<CR>

The separator between + 5 and 0 cannot be omitted.
The separators followed by - signs cannot be omitted.

DELIMITED ASCII STRINGS

Some commands accept delimited ASCII strings as
parameters. A delimited ASCII string consists of any
string of printing ASCII characters with a delimiter at
each end of the string. The delimiters mark the
beginning and the end of the delimited string.

The characters which can be used as delimiters are
shown in Figure 2-2.

{ [@ t $ % " & * () _(under I ine)

+)] ~ "'()?/'

Figure 2-2. String Delimiters.

4027A PROGRAMMER'S

.(period)
(24021-4173.3

@

COMMAND STRUCTURE

The symbol currently used as the command character
cannot be used as a delimiter. The hyphen (-),space,
semicolon (;), and comma (,) cannot be used as
delimiters (although their shifted versions can be
used), since these symbols have special uses in
command syntax.

The same symbol must be used for both delimiters of a
string. You may write

!LEARN F1 [!SEND MOD;[< CR>

but not

!LEARN F1 [!SEND MOD;]< CR>

The delimited string must not contain its own delimiter.
To set the end-of-line string to the ASCII string***/*,
for example, we could write

!EOL@***/*@<CR>

Neither the * nor the I may be used here as a delimiter.

Some commands restrict the length of a delimited
string. In general, a delimited string should not contain
the command character (except in the LEARN com­
mand). See the individual command descriptions for
details.

CONTINUING A COMMAND

Commands typed from the keyboard may be continued
to the next line by simply typing beyond the end of the
current line and allowing the command or parameter
string to "wrap around" to the next line.

Some commands sent from the host require a continu­
ation character when commands are continued from
one line of code in the host program to the next line of
code. This is discussed in fhe Host Programming
section.

2-3

COMMAND STRUCTURE

THE SYNTAX OF COMMAND DESCRIPTIONS

Command descriptions which appear in this manual
use the following conventions:

• The exclamation point (I) is always used as the
command character.

• In a keyword or parameter string which can be
abbreviated, the necessary part of the string is
written in uppercase; the optional part is written in
lower case. For example,

ST Ops

means that any of the strings STO, STOP, or STOPS
can be used as the keyword in a STOPS command.
Usually the choice will be STO for efficiency or
STOPS for readability.

• Expressions in angle brackets, < ... >, are
parameter names (except the expression <CR>,
which always means carriage return). When a
command is given, the parameter name is replaced
by one choice from a specified set of valid
replacements. The set of valid replacements for the
parameter name is listed or described. The OLINE
command, for example, is described in this way:

!Oline [<count>]< CR>

where <count> is a positive integer.

2-4 @

• Optional parameters or parameter names are en­
closed in square brackets. In the OLINE command
noted above,

[<count>)

means that the <count> parameter may or may not
be specified. Default values are given for all optional
parameters.

• Whenever a list appears, with the members of the
list separated by vertical bars, (I), this means that
one element is to be chosen from the list. For
example, the FORM command syntax reads:

!FORm [Yes I Nol< CR>

This means that either Yes or No may be specified, but
not both. Neither of these have to be specified. The
notation Yes means that Y, YE, and YES are all valid
parameter names and define the same command;
likewise for No. Thus, !FOR< CR>, !FOR Y<CR>, I
FORM YES< CR>, !FOR N< CR>, and
!FORM NO< CR> are all valid commands.

• The carriage return, <CR>, is always used as the
command terminator when a single command is
listed. In particular, in the command descriptions,
<CR> always terminates the command.

4027A PROGRAMMER'S

COMMAND STRUCTURE

SELECTING THE COMMAND CHARACTER
When the terminal Is shipped from the factory, it
recognizes the exclamation point (!) as the command
character. The command character can be changed by
the computer or the operator by using the COMMAND
command. The terminal remembers its command char­
acter even when it is RESET or powered off. The only
way to change the terminal's command character is to
give the COMMAND command.

~
Symbols such as carriage return, line feed, or
space, which are normally used during communi­
cations between the terminal and the computer,
should NOT be used as command characters.

Whenever the terminal receives the command
character, it tries to interpret the information immedi­
ately following as a command. If this information is not
intended to be a command, confusion may result.
Therefore, the command character must be selected
with care. It should not interfere with normal printing of
text or terminal/computer communications.

The command character may vary from one applica­
tions program to another. In a text-editing program the
exclamation point (I) would be a risky choice for the
command character, since this symbol ls occasionally
used as a punctuation mark. Another symbol, perhaps
#or@, should be chosen.

At the end of a program the command character should
always be reset to the exclamation point. In this way,
the next user will know the proper command character
and be able to command the terminal as needed. If this
has not been done, the command character may be
found by pressing the shift STATUS key and observing
the display on the screen.

4027A PROGRAMMER'S @

COMMAND COMMAND

The COMMAND command is used to select a new
command character.

Syntax

!COMmand <character>< CR>

where <character> is a single ASCII character or a
two- or three-digit ASCII Decimal Equivalent (ADE) of
an ASCII character.

Action

This command sets the command character to the
symbol designated by <character>. If <character> is
a single numeral, that character is the new command
character. If <character> is a two- or three-digit
numeral, that numeral is the ADE of the new command
character.

Examples

!COMMAND #<CR>
ICOM#<CR>
ICOM35<CR>

!COM 8<CR>

ICOM 08<CR>

Sets the command character
to the number sign (#) whose
ADE is 35.

Sets the command character
to the ASCII character 8.

Sets the command character
to the ASCII BS (backspace)
character, whose ADE is 08.

2-5

Section 3

HOST PROGRAMMING

This section discusses how to use programming lan­
guage statements to communicate with the terminal.
Application programs can be written in any program-

ming language which can display alphanumeric infor­
mation on the terminal screen and accept data from the
terminal.

TEXT AND COMMANDS
All information received by the terminal, whether sent
from the computer or typed on the keyboard, can be
divided into two categories: commands and text. A
command causes the terminal to modify its internal
status in some way - perhaps to select a new
command character, to redirect text from the computer,
etc. Text is information which is printed verbatim on the
terminal screen.

The terminal distinguishes between text and
commands by the presence of the command character.
When the terminal receives the command character, it
assumes a command follows and tries to process
incoming data as a command. When not processing a
command, the terminal treats information as text and
displays it in the appropriate text window.

COMPUTER· TO-TERMINAL COMMUNICATIONS

Any programming statement which sends alphanumer­
ic data can be used to send text and commands to the
terminal. Common examples are the PRINT statement
in BASIC, the WRITE statement in FORTRAN or
PASCAL, and the DISPLAY statement in COBOL.

Suppose we are programming in BASIC. The BASIC
statement

100 PRINT "IWOR 20 K"

creates a workspace of 20 lines and directs text from
the keyboard into the workspace.

4027A PROGRAMMER'S @

NOTE

When the PRINT statement Is executed, the
computer sends a <CR> after !WOR 20 K. This
<CR> serves as the command terminator.

In contrast, the BASIC statement

200 PRINT "WOR 20 K"

causes the text WOR 20 K to be displayed in
whichever scroll receives text from the computer. The
command character in line 100 makes the difference; it
indicates to the terminal that the information which
follows is a command.

3-1

HOST PROGRAMMING

Suppose you wish to initialize the terminal by estab­
lishing a 20 line workspace to receive text from the
computer, signal the operator by printing the message
THIS IS THE WORKSPACE in the workspace, and ring
the terminal bell. The BASIC statement

100 PRINT "IWOR 20 H K;THIS IS THE
WORKSPACE!BEL"

causes the following events:

• The terminal receives the first ! , signaling that a
command follows.

• The terminal recognizes the string WOR 20 H K; as
a valid command and executes it.

• The terminal receives the string THIS IS THE
WORKSPACE. As long as the terminal does not see
the command character, it treats incoming
information as text and prints it in the workspace,
which now receives text from the computer.

• The terminal receives the second I , signaling that
another command follows.

• The terminal receives the string BEL, followed by the
<CR> sent by the computer at the end of the
PRINT statement. The terminal recognizes the
BEL< CR> as a valid command and executes it.

When the terminal receives information from the com­
puter, it processes that information as it is received.
Consider the example:

100 PRINT "IWOR 20 H K;THIS IS THE
WORKSPACEIBEL"

The terminal executes the !WOR 20 H K; command as
soon as the ; is received, while continuing to receive
information from the computer. The information THIS IS
THE WORKSPACE, since it is not a command, is sent to
the workspace as soon as the IWOR 20 H K; command
has been executed. When the terminal receives the
<CR> it executes the !BEL< CR> command.

In contrast to this, suppose the following line is typed
on the keyboard:

!WOR 20 H K;THIS IS THE WORKSPACE
!BEL<CR>

No information is processed until the <CR> is typed.
Then the line THIS IS THE WORKSPACE is displayed
in the workspace. If the line came from the host it
would be displayed in the monitor.

3-2 @

SENDING NUMERIC PARAMETERS

Consider the VECTOR command:

!VEC 100, 100 200, 100 1 50,200 100,100< CR>

In BASIC, this command can be sent to the terminal in
any of the following ways.

1. Include the VECTOR command parameters as
alphanumeric data in the PRINT statement:

495 PRINT "!VEC 100,100 200,100 150,200
100,100"

(The PRINT statement provides its own <CR>.
This <CR> terminates the VECTOR command.)

2. Send the VECTOR command parameters as data.

495 PRINT "!VEC";100,100,200,100,150,200,-
100,100

3. Define, by host programming, BASIC variables
X1=100, X2= 150, X3= 200, Y1=100, and Y2=
200. Then use the BASIC statement

495 PRINT "!VEC";X1 ,Y1 ,X3,Y1 ,X2,Y2,X1 ,Y1

This method is most versatile, since the values of
the variables can be modified by input from the
operator or by the program itself.

Graphic commands are discussed in detail in the
Graphics section.

CONTINUING A COMMAND

Some commands can be continued from one line of
code in the host program to the next line of code by
inserting a continuation character at the end of the line.
There are two cases where this can be done:

• In a VECTOR, RVECTOR, POLYGON, RPOL YGON,
PATTERN or SYMBOL command, the ampersand, & ,
can be inserted after a parameter to continue the
command to the next line, provided that the only
characters separating the command lines are the
ampersand followed by <CR> or the ampersand
followed by < CR/LF>. The BASIC statement

100 PRINT '!POLYGON 0,0,175,175,0,175,0,0"

can be written as two lines of code:

100 PRINT "IPOL YGON 0,0,&"< CR>
101 PRINT "175,175,0,175,0,0"<CR>

4027 A PROGRAMMER'S

In addition to the ampersand, the parentheses may
be used to allow for interline characters that some
host systems insert between lines. In this case, the
ampersand is followed by left parenthesis, &(i then
a series of characters which may include <CR>,
DC1, etc., then right parenthesis,) , to resume the
command. The BASIC statement

100 PRINT "!POLYGON 0,0,175,175,0,175,0,0"

can be written as two lines of code:

100 PRINT "!POLYGON 0,0&(" ... interline char­
acters ...

101 PRINT ")175,175,0,175,0,0"< CR>

• In a command which takes a delimited ASCII string
as a parameter, t.he delimited string can be divided
into two delimited strings on two consecutive lines
of code using the hyphen (-)as a continuation
character. For example, the BASIC statement

200 PRINT "!LEARN F1 /!SEND ALL!ERA W/13"

can be written as two lines of code:

200 PRINT "!LEARN F1 /!SEND ALL/-"
201 PRINT "/!ERA W/13"

The line of text to be continued in this way should
NOT be divided between the command character
and the keyword, within the keyword, within a
numeric parameter, or between a number and its
plus or minus sign (if the sign is present). Com­
mands typed from the keyboard may be continued to
the next line by simply typing beyond the end of the
current line and allowing the command or parameter
string to "wrap around" to the next line.

Individual commands may tolerate minor variations in
syntax. See the command descriptions for details.

4027A PROGRAMMER'S @

HOST PROGRAMMING

A NOTE ON INVALID COMMANDS

Since not all programs run correctly the first time, some
information is in order concerning what to expect from
the terminal when it receives data which confuses it.

When the terminal receives an invalid command (that
is, a string preceded by the command character but
which the terminal cannot recognize as a command),
the results depend on the origin of this invalid
command. In the following examples the command
keyword STOPS is misspelled STEPS:

1. Suppose the invalid command

!STEPS 20 40 60< CR>

is sent from the computer in the BASIC PRINT
statement

100 PRINT "!STEPS 20 40 60"

The terminal treats this invalid command as text
and prints the entire string, !STEPS 20 40 60, in
whichever scroll receives text from the computer.

2. When the invalid command

!STEPS 20 40 60< CR>

is typed on the keyboard, an error message is
printed and the invalid command is repeated:

WHAT?
!STEPS 20 40 60

This calls the operator's attention to the source of
the error.

3. Suppose this same invalid command is part of a
sequence of commands sent from the computer as
in the following BASIC statement:

100 PRINT "!ERA W!STEPS 20 40 60!BEL"

The terminal erases the workspace, prints the text !
STEPS 20 40 60 in whichever scroll receives text
from the computer, and rings the bell. No error
message is given; whatever the terminal cannot
recognize as a command is treated as text.

3-3

HOST PROGRAMMING

4. If the sequence of commands

!ERA W!STEPS 20 40 60!BEL< CR>

is typed on the keyboard, all information preceding
the invalid command is processed. Then an error
message, the invalid command, and the remainder
of the line are all printed in the monitor:

WHAT?
!STEPS 20 40 60!BEL

If the terminal receives a command that requires
workspace and no workspace is defined, the command
is ignored. Nothing will be executed and no error
message will appear.

3-4 @

DISPLAYING A COMMAND FILE

How does one display a file containing terminal
commands so that it can be read, modified, or de­
bugged? There are two ways this can be done:

1. The operator can press the COMMAND LOCKOUT
key and then display the file on the screen. When
this key is lighted, the terminal treats all informa­
tion, including the command character, as text and
prints it in the appropriate scroll.

Press COMMAND LOCKOUT (LED comes on).

: (Display file containing ! as the command
: character, review and edit this file, and
: return edited file to the computer.)

Press COMMAND LOCKOUT again (LED goes off).

2. The operator or the computer can change the
command character to a symbol which does not
appear in the file to be reviewed. In a file which
does not contain the symbol #,one might have

!COM #<CR> (Change command character to#.)

: (Display file containing ! as the command
: character, review and edit this file, and
: return edited file to the computer.)

#COM! (Reset command character to! .)

The terminal can also stay execution of commands by
using the COPY command (see the Peripherals sec­
tion).

4027 A PROGRAMMER'S

HOST PROGRAMMING

TERMINAL-TO-COMPUTER COMMUNICATIONS

There are three ways to send information from the
terminal to the computer: type into the monitor, use the
SEND command, or use the REPORT command.

TYPING INTO THE MONITOR

One way to enter information into the computer is to
type it into the terminal monitor. If the terminal is in
unbuffered mode, information typed into the monitor is
sent to the computer character by character, as it is
typed. If the terminal is in buffered mode, information
typed into the monitor is sent to the computer line by
line, as each line is terminated by a carriage return.
Buffered and unbuffered modes are discussed in more
detail in the System Status and Initialization section.

4027 A PROGRAMMER'S @

SEND COMMAND

A second way to send information to the computer is to
first enter that information in the terminal workspace.
When the operator or the computer gives the SEND
command, all the information in the workspace is sent
to the computer.

Syntax

!SENd<CR>

This command causes all information in the workspace
to be sent to the computer.

Usually the SEND key is programmed to give the SEND
command, so that the operator can send the workspace
contents to the computer simply by pressing the SEND
key at the appropriate time.

The SEND command is used in conjunction with
whatever input request statement is available in the
programming language. In BASIC, for example, the
INPUT statement is used; in COBOL, the ACCEPT
statement is used.

3-5

HOST PROGRAMMING

NOTE

The key labeled SEND on the keyboard is NOT
pre-programmed. It may be programmed to give
the SEND command using the LEARN command
or the LEARN key.

The following program asks the operator to type a one­
line message in the workspace and press a key to send
this message to the computer. When the computer
receives the message, it prints it back in the monitor,
so that the operator can verify the message was
correctly received.

3-6

LIST
NaRE .09:09 ~ 2S-11:>r-78
1~ REM---CREATE A CLE~ ~~
110 PRINT '!lim 20 K'
120 REM---~ SEND KEY CFLKTICti KEY 8) TO GIVE !SEND C~D
130 PRINT '!LEA F8/!SEND/13 10'
140 REM---INF~ CH:RAH:'R
150 PRINT ' ! f"O'I H'
160 PRINT 'This pro9ram accepts a messa9e from the 4027A Workspace
161 PRINT 'and verifies the messa9e was received. 1-tlen you type your'
162 PRINT 'message, it appears in the workspace. 1-tlen you press the'
163 PPINT 'SEND key, your messa9e is sent to the COITlJUter. The computer·
164 PRINT 'verifies your messa9e by pr int in9 it back to you, in the'
165 PRINT 'monitor. l'bw type your messa9e and press the SEND key uilen'
166 PRINT 'ready.'
200 REM---~CEPT Il'A.JT FRa1 TERMif'R...
210 Itfll.JT A$
220 REM---SEND l'Ess:G: RECEIVED 9=0< TO TERMif'R...
230 PRINT 'Your messa9e was received. It read:'
240 PRINT
250 PRINT A$
260 PRINT
270 PRINT
999 END

4173-101

@ 4027 A PROGRAMMER'S

HOST PROGRAMMING

NOTE In the latter case, the program never executes
line 210. It halts at line 200, waiting for data
which never comes. When the SEND command is given from the

computer, it must be placed in the applications
program before the input request statement. In
BASIC, for example, write

100 PRINT "!SEND"
110 INPUT A$

The use of the SEND command in form fillout
applications is discussed in the Forms and Form Fillout
section.

Do not write

2001NPUTA$
210 PRINT "!SEND"

NOW IS Tl-£ TI 1'£

This program accepts a messa9e from the 4027A Workspace
and verif 1es the messa9e was received. l-.tlen you type your
message, 1 t appears 1 n the workspace. l-.tlen you press the
SEND key, your message is sent to the computer. The computer
ver1f 1es your message by pr1nt1n9 it back to you, in the
monitor. Now type your messa9e and press the SEND key utien
ready.
? .
Your message was recei~d. It read:

tm IS Tl-£ Til'E:

4027A PROGRAMMER'S @

4173-102

3-7

HOST PROGRAMMING

REPORT COMMAND

A third way to send information to the computer is for
the computer to issue the REPORT command to the
terminal.

Syntax

!REPort <device>< CR>

where <device> is an integer from 0 to 14.

Action

This command causes the terminal to send a report to
the computer. The report has the following format:

!ANS <device>,< data field>;

The report identifier ANS (for "answer") is followed by
one space, the two-digit <device> number, then a
comma, then the <data field>, and finally a semicolon.

The <data field> parameter contains one or more
fields, separated from each other by commas. The
format of <data field> depends on the value of
<device>; that is, on the device reporting. For a given
device, however, the format of <data field> is always
the same. This allows the applications program to
correctly extract data from <data field>, knowing
which device was interrogated.

3-8 @

Examples

1 . The command

!REPOO<CR>

causes the terminal to report the system status
block to the computer. This report is in the
following format:

!ANS 00,< p1 > ,< p2>;

where

< p1 > is a four-digit decimal number specifying
the number of unused blocks of memory. (A block
consists of 16 8-bit bytes.)

< p2> is a three-digit number representing the
decimal equivalent of a binary number which
specifies the system status byte. The numbers
which may be displayed and the condition they
represent are:

004-monitor present (always true).

005-monitor present, buffered mode.

006-monitor present, form fillout mode.

007 - monitor present, form fill out mode, buffered
mode.

4027A PROGRAMMER'S

2. The command

!REP 01<CR>

causes the terminal to report the status of the
alpha cursor within the workspace to the computer.
If no workspace is present, all zeros are returned.
This report is in the following format:

!ANS 01,< p1 > .< p2> .< p3>;

where

< p1 > is a three-digit decimal number specifying
the row of the workspace in which the cursor is
located.

<P2> is a three-digit decimal number specifying
the column of the workspace in which the cursor is
located.

< p3> is a single character, the character dis­
played at the cursor position. If the cursor is
located under an alternate character, such as
rulings, the alpha character representing that posi­
tion is transmitted. If it is located under a graphics
cell, any one of the 128 ASCII characters may be
transmitted.

4027A PROGRAMMER'S @

HOST PROGRAMMING

3. The command

!REP02<CR>

causes the terminal to report the position, color,
and shrink factor of the graphic beam. This report
is in the following format:

!ANS 02,< data 1 >,<data 2> ,<data 3> .<data
4>;

where

<data 1 > is a three-digit decimal number which
indicates the current x-coordinate of the graphic
beam position.

<data 2> is a three-digit decimal number which
indicates the current y-coordinate of the graphic
beam position.

<data 3> is a three-digit decimal number preced­
ed by C or P which indicates the current color
(CO-C7) or pattern number (PO-P119).

<data 4> is a three-digit number indicating the
current shrink factor. The number may be:

001=4010
002= hardcopy
003= both 401 O and hardcopy

NOTE

Hardcopy shrinking is not necessary on the
4027A, but is included for 4025A compatibility.

3-9

HOST PROGRAMMING

4. The command

!REP03<CR>

Causes the terminal to report the status of the
crosshair; whether it is present and its position.
This report is in the following format:

!ANS 03,< data 1 >,<data 2> ,<data 3> ;

where

<data 1 > is a three-digit decimal number that
indicates whether the crosshair is visible (000 is
off, 001 is on, 002 is on in 401 O mode).

<data 2> is a three-digit decimal number that
indicates the current x-coordinate of the crosshair.

<data 3> is a three-digit decimal number that
indicates the current y-coordinate of the crosshair.

The REPORT command can be used for purposes other
than straightforward interrogation of the system status
block, the workspace cursor, graphic beam information
and crosshair positioning.

As an example, suppose the applications program is
sending large amounts of data to the terminal at
relatively high baud rates. It is possible for the
computer to overrun the terminal's input buffer,
resulting in loss of information. Occasionally inserting
the pair of statements (here in BASIC)

XXX PRINT "!REP 00"
xxx+ 1 INPUT A$

causes the program to pause at each input statement
and not continue until it receives input for A$ (that is,
until the terminal has processed its entire input buffer
and ANSwers the REPort command). This prevents the
program from sending more data to the terminal until
the terminal has processed its input buffer. What the
terminal ANSwers is not important, only that it AN­
Swers.

3-10 @

The REPORT command is also used to obtain informa­
tion about peripherals which may be attached to the
terminal. Details are contained in the Peripherals
section. Appendix E contains a program segment in
PASCAL to illustrate how the input from a REPORT
command can be processed.

Listed below is a summary of the REPORT command
<device> numbers and the devices they reference.

Device Number

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

Reports

system status block
alpha cursor information
graphic beam information
crosshair information
tape unit 1
tape unit 2
tape unit 3
tape unit 4
reserved
reserved
reserved
reserved
plotter 1
plotter 2
printer

4027A PROGRAMMER'S

Section 4

PROGRAMMING THE KEYBOARD

The keyboard is programmable; that is, most of the
keys can be programmed to generate a character or
string of characters other than the default ones. When
a key is programmed, the new definition assigned to
that key is stored in the RAM (Random Access
Memory). If the terminal is RESET or powered off, the
definition is lost and the key reverts to its default
definition.

Key programming enables the operator to give a
command or sequence of commands by pressing a
single key. During an applications program the operator
can log on or log off the computer, change terminal
parameters, send information to the computer, page
through text, or perform any of several convenient
functions just by pressing a key. Key definitions may
be part of terminal initialization or may occur at
convenient points in a program. A key can have several
different definitions in a single program.

The user can also use the LEARN command to define
sixteen macros (M1-M16). Macros are command or
text strings defined in the same way as programmed
keys. However, a macro is not executed by depressing
any key. Instead, a macro is executed when the
EXPAND command is received from the host computer
or the keyboard.

All the keys on the keyboard can be programmed
except the following six keys:

• The rightmost three lighted function keys - TTY
LOCK, NUMERIC LOCK/LEARN, and COMMAND
LOCKOUT/STATUS. (Neither the shifted nor the
unshifted versions of these keys can be pro­
grammed.)

• The SHIFT, CTRL, and BREAK keys.

PROGRAMMING A KEY
A key may be programmed with a new definition in one
of two ways:

• The operator may use the LEARN key.

• The operator or computer may give the LEARN
command.

The LEARN key performs the same action as the
LEARN command. The Operator's Manual describes
the use of the LEARN key.

LEARN COMMAND

Syntax·

!LEArn< key>[< string>]< CR>

where

<key> designates the key or macro to be pro­
grammed.

<string> designates the character or character
string to be assigned to the designated key.

4027A PROGRAMMERS @

Action

This command redefines the key or macro designated
by the <key> parameter; whenever this key is
pressed or macro called, it generates the character
string defined by <string>.

Range of Parameters

The< key> parameter may be any of the following:

• A single printing ASCII character.

• A two- or three-digit ADE (ASCII Decimal Equivalent)
value from 00 through 127, inclusive. (See the ASCII
Code Chart Appendix B.)

• A mnemonic representing a non-ASCII key (function
key or cursor/numeric pad key):

F1-F12
S1-S12

PO-P9, P., PT

M1-M16

Function keys 1 through 12
Function keys 1 through 1 2 with
SHIFT depressed
Numeric pad keys and Pad
Terminator key
Internal macros 1 through 16 set
by giving the LEARN command
from keyboard or host.

4-1

PROGRAMMING THE KEYBOARD

LEARN COMMAND

• A "psuedo-ADE value" representing a non-ASCII
key:

1 28 Function Key 1
129 Function Key 2
130 Function Key 3
131 Function Key 4
132 Function Key 5
133 Function Key 6
134 Function Key 7
135 Function Key 8
136 Function Key 9
137 Function Key 1 0
138 Function Key 11
139 Function Key 1 2
140 Function Key 13

144 SHIFT-Function Key 1
145 SHIFT-Function Key 2
146 SHIFT-Function Key 3
147 SHIFT-Function Key 4
148 SHIFT-Function Key 5
149 SHIFT-Function Key 6
150 SHIFT-Function Key 7
151 SHIFT-Function Key 8
152 SHIFT-Function Key 9
153 SHIFT-Function Key 10
154 SHIFT-Function Key 11
155 SHIFT-Function Key 12
156 SHIFT-Function Key 13

160 Pad Key 0
161 Pad Key 1
162 Pad Key 2
163 Pad Key 3
164 Pad Key 4
165 Pad Key 5
166 Pad Key 6
167 Pad Key 7
168 Pad Key 8
169 Pad Key 9
170 Pad Key.
171 Pad Terminator Key
172 ERASE
173 SHIFT-ERASE
174 BK TAB

The <string> parameter may be any of the following:

• One or more ADE values.

• One or more pseudo-ADE values.

4-2 @

• One or more delimited ASCII strings.

• Any combination of the above.

Examples

I LEARN #/(End-of-Page)/< CR>
!LEA 35 /(End-of-Page)/< CR>

Redefines the # key (SHIFT-3 key), whose ADE is 35,
to generate the parenthetical comment (End-of-Page).
The definition of the 3 key is unchanged.

!LEA 35 13< CR>

Redefines the# key to mean carriage return.

ILEA F8 "!SEND MOD;"13< CR>
ILEA 135 "!SEND MOD;"13<CR>

Programs function key F8, whose pseudo-ADE is 135,
to give the !SEND MOD command.

ILEA 148 /!WORIERA W;READY FOR NEXT PRO­
GRAM/ 7 7 7 /IMON;/13< CR>

Programs the SHIFT-HOME key, whose pseudo-ADE is
148, to direct text from the keyboard into the
workspace, erase the workspace, print the message
READY FOR NEXT PROGRAM there, ring the terminal
bell three times, and return the keyboard to the monitor.

!LEA 148< CR>

Restores the SHIFT-HOME key to its default meaning
(undefined).

!LEA M1 /The rain in Spain falls mainly on the
plain.I< CR>

Programs macro M1 to print the delimited string. M1
may be invoked by giving the EXPAND M1 command
from the keyboard or the host computer.

!LEA M16/IRVE 0,0 20,0 0,100 -10,-50/ 13< CR>

Defines macro M16 to be the specified RVECTOR
command.

If the <string> parameter is omitted, the key is
assigned its default meaning (the standard keyboard
meaning). The <string> parameter may be any length
as long as the terminal's display memory is not
exceeded.

4027A PROGRAMMERS

!LEA F1/IRMAP C2 30, -25, -50/ 13<CR>
!LEA 128/!RMAP C2 30, -25, -50/ 13<CR>

Defines function key F1 to the specified RMAP com­
mand.

NOTE

When programming a key to give a command or
sequence of commands, always include the ADE
13 as the last character of< string> (outside the
delimiters). This insures that pressing the pro­
grammed key causes the command(s) to be
executed.

Special Considerations

When the LEARN command is given from the computer,
it may be continued from one line of program code to
the next by using a hyphen (-) as a continuation
character. This causes the next <CR>, up to one
< LF>, and all NU Ls, RUBOUTs, and SYNCs to be
ignored until another character is received. The LEARN
command

!LEA F3 /THIS COMMAND IS TOO LONG TO FIT ON
ONE LINE./ 13< CR>

can be written on two consecutive lines of BASIC
program code as follows:

100 PRINT "!LEA F3 /THIS COMMAND IS TOO/-"
101 PRINT "/LONG TO FIT ON ONE LINE./ 13"

This does not apply to a LEARN command entered from
the keyboard. If the command is entered from the
keyboard, one simply continues typing until the com­
mand is complete. If the command is longer than one
line (80 characters), the cursor wraps around to the
next line; the command is not terminated until <CR>
is pressed.

Since delimited strings may contain only printing ASCII
characters, any control characters or non-ASCII
characters included in a LEARN command must be
encoded using ADEs or pseudo-ADEs outside the
delimited string. Thus, the command

! LEA $ 13 1 0< CR>

programs the$ key (SHIFT-4 key) to mean
<CR>< LF>. In contrast, the command

!LEA$ /13 101< CR>

programs the$ key to print the ASCII string 13 10.

4027A PROGRAMMERS @

PROGRAMMING THE KEYBOARD

LEARN COMMAND

If one of the ASCII numeral keys (0-9) or the period
key (.) is programmed, the corresponding numeric pad
key (with the NUMERIC LOCK key lighted) is also
programmed. Likewise, if the numeric pad key (with
NUMERIC LOCK on) is programmed, the corresponding
ASCII numeral or period key is programmed. Program­
ming an ASCII key does not program the corresponding
cursor pad key with NUMERIC LOCK off. Likewise,
programming the cursor pad key with NUMERIC LOCK
off does not program the ASCII key marked with the
same symbol.

If the character string assigned to a programmed key
includes one or more commands, those commands are
executed but not displayed on the screen when the
programmed key is pressed.

The< string> parameter may include the CLEAR
command, discussed later in this section. Suppose we
program the F1 function key as follows:

!LEARN F1 /!ERA M!CLEAR!BEL;Goodbye for now.
IMON/13< CR>

Pressing F1 causes all of the commands to be
executed and the text "Goodbye for now." to be printed
in the workspace, even though the CLEAR command is
given early in this string. The string will be executed
only the first time the key is pressed.

Function key pseudo-ADE's can be included in the
<string> parameter, but those ADE's generate default
definitions instead of previously programmed defini­
tions. Consider the command sequence:

!LEARN 172 /!ERA WIBEL/13< CR>
!LEARN 128 172< CR>

The first LEARN command programs the ERASE key
(pseudo-ADE 172) to erase the workspace and ring the
bell. The second LEARN comand programs function
key F1 to mean the same as the unprogrammed ERASE
key.

NOTE

The SEND keys (keys FB and SB, with pseudo­
ADEs 135and151, respectively) have no mean­
ing until programmed. Normally, these keys will
be programmed to give the SEND ALL or SEND
MOD command, or some command sequence
which sends information to the computer.

4-3

PROGRAMMING THE KEYBOARD

EXPAND, LEARN COMMAND

MACROSANDTHEEXPANDCOMMAND

The EXPAND command is used to execute macros
which were defined by the LEARN command.

EXPAND COMMAND

Syntax

!EXPand <macro no.>< CR>

where< macro no.> is a macro name (M1, M2, ... ,
M16).

Action

This command is used to invoke any macros specified
by the LEARN command. EXPAND may be given by the
keyboard or the host computer. Thus, a command or
series of commands or a string may be sent by the host
or the operator by giving the EXPAND command.

Example

IEXPand M1 <CR>

causes the string assigned to the given macro (M 1) to
be inserted in the input queue in place of the EXPAND
command. Macros are numbered M1 through M16.

THE LEARN COMMAND AND THE
COMMAND COMMAND

Do not confuse programming a key using the LEARN
command and selecting a new command character
using the COMMAND command. These operations are
different.

Programming a key with the LEARN command causes
the programmed key to generate a different character
or character string than it normally generates. In
contrast to this, selecting a new command character
does not change the character string generated by any
key. Rather, it changes the way the terminal processes
the default symbol generated by one particular key.
The same key generates the same symbol, but that
symbol, when seen by the terminal, now has a different
effect.

When the COMMAND command selects a new com­
mand character, this new selection is stored in the
battery-maintained RAM. This means that the terminal
remembers the new command character, even when it
is turned off or RESET. The only way to change the
terminal's command character is to give a new COM­
MAND command. When a key Is programmed using the
LEARN command, however, the learned definition is
lost if the terminal is turned off or RESET, and the key
returns to its default definition.

KEY PROGRAMMING AND KEYBOARD LOCKOUT

When a key Is programmed, the new definition as­
signed to that key is generated whenever the key is
pressed; however, the default character assigned to
that key can still be sent to the terminal. It is not the
default character, but the key itself, which generates
the new definition.

Suppose we execute the following sequence of
commands:

!LEA 127 341LEA 34 /!WOR 20 H K/13< CR>

The RUBOUT key (ADE 127) is now programmed to
mean quotes (") and the quotes key (ADE 34) is
programmed to mean IWOR 20 H K< CR>. The ASCII
quotes character can be sent to the terminal with its

4-4 @

usual meaning, either by sending the ASCII quotes
character (ADE 34) from the computer or by pressing
the RUBOUT key on the keyboard.

It may be desirable to prevent an operator from issuing
arbitrary commands to the terminal during an applica­
tions program, but still allow the operator to issue
certain specific commands or command sequences.
During a form fillout program for example, the operator
should not be able to modify the form itself, but should
be able to give the SEND MOD command.

Key programming can accomplish this. Suppose I is the
command character. If the computer sends the com­
mand

ILEARN 33 OO<CR>

4027A PROGRAMMERS

to the terminal, the I (SHIFT-1) key is programmed to
generate the ASCII NUL character. This prevents the
operator from using the ! key to generate the command
character. Yet the computer can send command char­
acters to the terminal and can program function keys to
issue commands when pressed by the operator. Only

PROGRAMMING THE KEYBOARD

CLEAR COMMAND

the operator's ability to issue the command character
arbitrarily from the keyboard is impaired. At the proper
time, the computer returns control of the terminal to the
keyboard by sending the command

I LEARN 33< CR>

This returns the I key to its default meaning.

CLEARING KEY DEFINITIONS

To restore a single key to its default definition or to
clear a macro definition, use the LEARN command with
the <string> parameter omitted. The command

!LEARN <key>< CR>

will restore the <key> key or macro to its default
meaning.

4027 A PROGRAMMERS @

CLEAR COMMAND

To clear all programmed key def.initions and all macro
definitions simultaneously, use the CLEAR command.

The command

!CLEar<CR>

clears all key and macro definitions generated by
LEARN commands or by the LEARN key. All keys revert
to their default definitions; all macros become
undefined.

4-5

Section 5

SYSTEM STATUS AND INITIALIZATION

The terminal has many operating parameters which
can be set from the keyboard or from the computer.
This allows the terminal to interface with a variety of
host systems, as well as run many different applica­
tions programs easily and effectively. Some of these
parameters (the end-of-line string, for example) must
be set when the terminal is first installed and are
changed infrequently, if at all. Other parameters (the
form fillout mode setting, for example) will be changed
more often, perhaps several times within the same
program.

Clearly, it is necessary for the host and the applica­
tions program to be well informed of the status of these
parameters. Since these settings may be changed from
the keyboard without the host's knowledge, the first
task of any applications program is to initialize the
terminal; that is, the terminal must be set to a known

and desired state which facilitates execution of the
program. When the program is completed, the terminal
should be returned to a known reference state for the
convenience of future users.

Some parameters affect the status of the terminal itself.
Other parameters affect the status of communications
between the terminal and the host computer. This
section first discusses the terminal status commands
which determine the status of the terminal itself. These
are the COMMAND, WORKSPACE, MONITOR, MAR­
GINS, STOPS, FORM, SNOOPY, and PAD commands.
Then the communication status commands which
determine the status of communications between the
terminal and the host computer are discussed. These
are the BAUD, PARITY, ECHO, BUFFERED, EOL,
REMOTE START STOP, PROMPT, DELAY, FIELD, EOF,
DUPLEX, and DISCONNECT commands.

TERMINAL STATUS COMMANDS

COMMAND COMMAND

The syntax of the COMMAND command is

!COMmand <character> < CR>

where <character> is a single printing ASCII charac­
ter or the ADE (ASCII Decimal Equivalent) of an ASCII
character. The syntax and action of this command were
discussed In the Command Structure section; however,
some additional comments regarding terminal Initializa­
tion are in order here.

Since each command must be preceded by the com­
mand character, the computer must know the
command character at all times. Although the terminal
operator can discover the command character by
pressing the STATUS (SHIFT-COMMAND LOCKOUT)
key, the computer cannot do this. Therefore, at the end
of each applications program the command character
must be set to a reference symbol. This insures the
next user proper access to the terminal. The exclama­
tion point (I) is recommended as the reference
symbol. It is the default command character. It is also
used as the command character throughout this manu­
al and throughout the Operator's Manual.

4027 A PROGRAMMERS @

The command character can be changed at the
beginning of an applications program, or anytime
during the program, by using the COMMAND command.
But the program should always reset the command
character to the reference character, I , before releas­
ing control of the terminal. Consider a text-editing
program. Since the I symbol is used occasionally as a
punctuation mark, one may wish to avoid using it as the
command character In this situation. Such a program
might begin by choosing another command character,
say the @ character, and resetting to ! at the end of the
program:

!COM@<CR>

(Body of program)

@COM !<CR>
End of execution

5-1

STATUS INITIALIZATION

WORKSPACE, MONITOR COMMAND

WORKSPACE COMMAND
When the terminal is powered up or RESET, there is no
workspace or workspace window, the entire 34-line
screen is devoted to the monitor window, and text from
both the keyboard and the computer is directed into
the monitor. Before an applications program is run, the
terminal screen must be initialized:

• Divide the screen into a workspace window and a
monitor window to display information from the
corresponding scrolls.

• Direct text from the computer and from the keyboard
into the appropriate scrolls.

One of the commands used to initialize the screen is
the WORKSPACE command.

Syntax

IWORkspace
[<number>][Host][Keyboard]< CR>

where <number> is an integer between 0 and 33,
inclusive.

Action

If <number> is included, this command erases the
entire display list (the monitor, and if a workspace is
defined, the workspace also). The terminal then defines
a workspace and allots the top< number> lines of the
screen for the workspace window. The remaining 34-
< number> lines are used for the monitor window. At
least one line is always reserved for the monitor
window.

If H (Host) is specified, text from the host computer is
directed into the workspace. If K (Keyboard) is speci­
fied, text from the keyboard is directed into the
workspace. (Commands typed on the keyboard are still
displayed in the monitor.)

If only the <number> parameter is specified, text from
the keyboard and text from the computer go to the
same scrolls as before. A WORKSPACE 0 command
directs text from both the keyboard and the computer
into the monitor, since this command destroys the
workspace.

If no parameters are specified, and the command
comes from the host computer, a WORKSPACE H
command is executed. If no parameters are specified
and the command is typed on the keyboard, a WORK­
SPACE K command is executed.

5-2 @

Examples

IWOR 20 H K< CR>

Erases the display list, reserves the top 20 lines of the
screen for the workspace window, and directs text from
both the computer and the keyboard into the work­
space.

IWOR 25<CR>

Erases the display list, reserves the top 25 lines of the
screen for the workspace window. Does not change the
destination of text from the computer or of text from the
keyboard.

IWORO<CR>

Erases the display list, reserves the entire 34-line
screen for the monitor window. Directs text from both
the computer and the keyboard into the monitor, since
no workspace is defined.

IWORH<CR>

Directs text from the computer into the workspace.
Does not erase the workspace or change the position
of the workspace cursor.

IWOR<CR>

If this command comes from the computer, it directs
text from the computer into the workspace. If the
command comes from the keyboard, it directs text from
the keyboard into the workspace.

MONITOR COMMAND
The WORKSPACE command does not allow you to
specify which devices (Host, Keyboard) send
information to the monitor. The MONITOR command
allows you to do this, as well as create text windows.

Syntax

IMONitor [<number>][Host][Keyboard]< CR>

where <number> is an integer between 1 and 34,
inclusive.

4027 A PROGRAMMERS

Action

If <number> is included, this command erases the
entire display list (the monitor, and if a workspace is
defined, the workspace also). The terminal then defines
a workspace and reserves the top 34-< number> lines
of the screen for the workspace window. The remaining
<number> lines are used for the monitor window. At
least one line is always reserved for the monitor
window.

If H (Host) is specified, text from the computer is
directed into the monitor. If K (Keyboard) is specified,
text from the keyboard is directed into the monitor.

If <number> is the only parameter specified, text from
the computer and from the keyboard go into the same
scrolls as before. A MONITOR 34 command directs text
from both the computer and the keyboard into the
monitor, since this command destroys the workspace.

If no parameters are specified and the MONITOR
command comes from the host computer, a MONITOR
H command is executed. If no parameters are specified
and the MONITOR command is typed on the keyboard,
a MONITOR K command is executed.

Examples

!MON 10 H K<CR>

Erases the display list, creates a monitor window of ten
lines and a workspace window of 24 lines, and directs
text from the computer and from the keyboard into the
monitor.

!MON4<CR>

Erases the display list, creates a monitor window of
four lines and a workspace window of 30 lines. Text
from the keyboard and text from the computer go into
the same scrolls as before.

IMON34<CR>

Erases the display list and reserves the entire 34 lines
of screen for the monitor window. Directs text from both
the computer and the keyboard into the monitor, since
no workspace is defined. Equivalent to a WORKSPACE
Ocommand.

!MON H<CR>

Directs text from the computer into the monitor; does
not erase either scroll.

4027 A PROGRAMMERS @

STATUS INITIALIZATION

MARGINS COMMAND

IMON<CR>

If this command comes from the computer, it directs
text from the computer into the monitor. If the command
comes from the keyboard, it directs text from the
keyboard into the monitor.

MARGINS COMMAND

Workspace margins are set with the MARGINS com­
mand. (Monitor margins are always set to columns 1
and 80, and cannot be changed.)

Syntax

IMARgins [<left> H< right>]< CR>

where< left> and <right> are integers between 1
and 80, inclusive, and <left> is less than <right>. If
only one parameter is specified, it is taken to be the
<left> parameter; in this case, the <right> parameter
remains unchanged. If both parameters are omitted,
<left> and< right> default to 1 and 80, respectively.

Action

This command sets the workspace margins - the left
margin to column <left> and the right margin to
column <right>.

When the terminal receives a <CR> from the compu­
ter or from the keyboard, the cursor moves to column
<left>. All cursor movement keys and almost all
commands which move the cursor respect the left
margin: if the left cursor key is pressed repeatedly, the
cursor moves left to column <left>, then wraps around
to column 80 of the previous line; the BACKTAB key
does not move the cursor past column <left>. (The
one exception is the JUMP command. See the Control­
ling the Display section.)

If a character is typed into column <right>, the
terminal bell rings. This is the only action which occurs.
If more characters are entered in the workspace, those
characters are displayed on the same line, and the
cursor continues moving right until either (1) the cursor
moves past column 80 and wraps around to the next
line, or (2) the terminal receives a <CR> as a signal to
begin a new line. In either case, the cursor moves to the
left margin in column <left> of the next line.

5-3

,, I

STATUS INITIALIZATION

STOPS, FORM COMMAND

Examples

I MARGINS 10 70< CR>

Sets the left workspace margin to column 10 and the
right margin to column 70.

!MAR 25<CR>

Sets the left margin to column 25; leaves the right
margin unchanged.

!MAR< CR>

Sets the left and right margins to their default settings:
columns 1 and 80, respectively.

The terminal remembers its right and left margins when
it is powered off or RESET.

NOTE

Unless stated otherwise, it is always assumed in
this manual that the left margin is set to column 1.

STOPS COMMAND

Tab stops are set with the STOPS command.

Syntax

!STOps [<stop 1 > H< stop 2> 1 ... [<stop
16>l<CR>

where each <stop n> parameter is a positive integer
between 2 and 80, inclusive, and parameters are
arranged in increasing order.

Action

This command sets up to 16 tab stops by listing the
columns in which stops are defined. Stops are defined
in both the workspace and the monitor simultaneously.
Only the stops specified are defined; all previous stops
are deleted. Stops may be set to the left of the left
workspace margin, to the right of the right workspace
margin, and between the margins.

If no parameters are specified, all tab stops are
cleared.

5-4 @

Examples

!STO 10 20 35 45 60< CR>

Defines monitor and workspace tab stops in columns
10, 20, 35, 45, and 60. No other stops are defined; any
previously defined stops are deleted.

!STO<CR>

Clears all tab stops.

The terminal remembers its tab stops when powered
off or RESET.

FORM COMMAND

The FORM command places the terminal in form fillout
mode and removes it from form fillout mode.

Syntax

!FORm [Yes I Nol< CR>

Action

The FORM YES command (or equivalent) places the
terminal in form fillout mode. The FORM NO command
(or equivalent) removes the terminal from form fillout
mode. A detailed discussion of form fillout mode is
found in the Forms and Form Fillout section.

If no parameter is specified, Y (Yes) is assumed.

Examples

!FORM YES< CR>
!FOR Y<CR>
!FOR< CR>

Places the terminal in form fillout mode.

!FORM NO< CR>
!FOR N<CR>

Removes the terminal from form fillout mode.

The terminal always powers up and RESETs to FORM
NO.

4027 A PROGRAMMERS

SNOOPY COMMAND

The terminal has a "snoopy" mode of operation. In
snoopy mode, the non-printing ASCII characters
(control characters) are represented on the screen by
two letter mnemonics. The RUBOUT (or DELETE)
character is represented by a blotch of fine diagonal
lines. Entering and leaving snoopy mode is controlled
by the the SNOOPY command.

Syntax

ISNOopy [Yes I No]< CR>

If neither parameter is specified, Yes is assumed.

Action

The SNOOPY YES command places the terminal in
snoopy mode. The SNOOPY NO command removes the
terminal from snoopy mode.

Snoopy mode is useful for troubleshooting and debug­
ging, since it allows the operator to examine all ASCII
characters received by the terminal, not just printed
characters. It is also useful for inserting control
characters into text stored in the workspace. Com­
mands are still executed in snoopy mode.

To see the ASCII NUL character printed when examin­
ing incoming data, it is necessary to have the terminal
parity set to "data." (See the discussion of the PARITY
command in this section.)

Examples

!SNOOPY YES< CR>
ISNOY<CR>
ISNO<CR>

Places the terminal in snoopy mode.

!SNOOPY NO< CR>
!SNON<CR>

Removes the terminal from snoopy mode.

The terminal always powers on or R~SETs to SNOOPY
NO.

4027 A PROGRAMMERS @

STATUS INITIALIZATION
SNOOPY, PAD COMMAND

Table 5-1

SNOOPY MODE MNEMONICS

Control Snoopy Mode Control Snoopy Mode
Character Mnemonic Character Mnemonic

NUL N OLE D u L

SOH s DC1 D
H 1

STX ~ DC2 D
2

ETX E DC3 D x 3

EOT ;. DC4 D
4

ENQ E NAK N
a K

ACK A SYN s
K y

BEL B ETB E
L B

BS B CAN c
s N

HT H EM E
T M

LF ~ SUB \
VT v ESC 'b T

FF F FS F
F s

CR c GS G
R s

so ~ RS R s
SI s us u

I s

RUBOUT ~

PAD COMMAND

The PAD command is used to perform two functions:
keyboard lock and delete ingore. Keyboard lock
enables the host program to control keyboard opera­
tion and data entry. Delete ignore enables the delete
character (ADE 1 27) to be cancellled when it is
received by the terminal.

Syntax

IPAD (205/203)< CR>

Action

The PAD 205 command places the terminal in key­
board lock mode. With the keyboard locked, no data or
commands may be entered from the keyboard. Any
attempt to enter data or commands from the keyboard
rings the bell. The PAD 203 command, which can be
given only from the computer, removes the terminal
from keyboard lock mode. Keyboard lock mode may be
exited without the computer PAD 203 command by
pressing the BREAK key two times in rapid succession.

5-5

STATUS INITIALIZATION

BAUD COMMAND

Examples

!PAD 205< CR>

Places the terminal in keyboard lock mode.

!PAD 203< CR>

Computer only - removes the terminal from keyboard
lock.

BREAK-BREAK

KEyboard only - removes the terminal from keyboard
lock.

Syntax

!PAD (209/2071< CR>

Action

The PAD 209 command places the terminal in delete
ignore mode. With delete ignore invoked, any delete
characters (ADE 1 27) are cancelled as they are
received by the terminal. This feature permits operation
with computers which randomly output delete charac­
ters to the terminal. When operating in 4010-style
graphics mode, the unwanted delete characters can
distort the graphics display. The delete characters can
also interrupt terminal commands if transmitted within
a command string.

Examples

!PAD 209< CR>

Places the terminal in delete ignore mode.

!PAD 207<CR>

Places the terminal in full 128-character receive mode.

COMMUNICATIONS STATUS COMMANDS

BAUD COMMAND

The simplest communications system consists of a
device to transmit information, a device to receive
information, and a communications link or "line." The
rate at which information is transferred over a
communications line is called the "baud rate." This rate
is given in bits/second; a baud rate of 1200 means
information is transferred at the rate of 1200
bits/second.

During any communication, the rate at which the
transmitting device transmits information must be the
same as the rate at which the receiving device receives
it. If the host computer is sending data to the terminal
at 1200 baud, the terminal must be set to receive data
at 1200 baud or greater.

The terminal has a "receive baud rate" and a "transmit
baud rate." These need not be the same; i.e., the
terminal may receive information at a different rate
than it transmits information.

Baud rates are set using the BAUD command.

5-6 @

Syntax

!BAUd <transmit>[< receive>]< CR>

where both <transmit> and <receive> are chosen
from the following list:

(O 1 so 11s 111 o I 134 I 1 so I 3oo I 60011 200 I 1800 I
2400 I 4800 I 9600)

Action

This command sets the transmit baud rate to <trans­
mit> and the receive baud rate to < receive>. A baud
rate of O means a "times 1" external clock is used.

If <receive> is omitted, it is set equal to <transmit>.

4027A PROGRAMMERS

Examples

!BAU 300,1200< CR>

Sets the transmit baud rate to 300 baud and the
receive baud rate to 1200 baud.

!BAU 2400<CR>

Sets both transmit and receive baud rates to 2400
baud.

When the terminal is turned off or RESET, it remembers
the current baud rate.

PARITY COMMAND

In the ASCII code, each of the 128 ASCII characters is
represented by a 7-bit binary number. When a charac­
ter is transmitted, an eighth bit, called a "parity bit," is
also transmitted. Some computers use this extra bit for
error checking, some use it as a data bit, and some
simply ignore it.

The terminal parity must be set to correspond with that
of the computer to which it is connected. This is done
by using the PARITY command.

Syntax

!PARity [Even I Odd I None I High I Data]< CR>

If no parameter is specified, the terminal parity defaults
to None.

Action

This command sets the terminal parity. If the parity is
set to Even, the terminal transmits characters with even
parity and checks incoming characters for even parity.
If the parity is set to Odd, the terminal transmits
characters with odd parity and checks incoming char­
acters for odd parity. If the parity is set to None, the

4027 A PROGRAMMERS @

STATUS INITIALIZATION

PARITY COMMAND

terminal transmits characters with parity bit set to zero;
the parity of characters input to the terminal is ignored.
If the parity is set to High, the terminal transmits
characters with parity bit set to one; the parity of
incoming characters is ignored. If the parity is set to
Data, the parity bit of each character input to the
terminal is treated as data; the parity bit is set to zero
on characters output from the terminal. Note that with
parity set to data, if a character is received which has
the parity bit set to one, it will be treated as a pseudo­
ADE rather than a real ASCII character (since real
ASCII is in the range of 0 to 127). Thus a parity setting
of data should only be used if the programmer can
control how the computer sets the parity bit.

Examples

!PAR E<CR>

Sets the terminal to even parity.

IPARO<CR>

Sets the terminal to odd parity.

!PAR N<CR>

Sets parity to "none;" the terminal ignores the parity bit
on input characters and sets it to zero on output
characters.

!PAR H<CR>

Sets parity to "high;" the termlnal ignores the parity bit
on Input characters and sets it to one on output
characters.

!PAR D<CR>

Sets parity to "data;" the parity bit is read as a data bit
for incoming characters and set to zero on output
characters.

The terminal remembers its parity setting when
powered off or RESET.

5-7

STATUS INITIALIZATION

ECHO COMMAND

ECHO COMMAND

When the operator types into the monitor in unbuffered
mode, there are two ways that the characters typed
may be displayed on the screen: remote echo and local
echo.

In remote echo communications, characters typed into
the monitor are sent to the computer without being
displayed. As the computer receives each character, it
"echoes" it back to the terminal. (In some systems, a
modem may provide the echo.) It is the received echo,
rather than the original transmitted character, that the
terminal displays on the screen. In remote echo
communications:

• As each character is typed into the monitor, the
operator can tell immediately whether the computer
has received that character correctly.

• Selective echo is possible. The computer can be
programmed to decide which characters to echo. In
timesharing systems, for example, the computer is
usually programmed not to echo a user's password.

In local echo communications, as each character is
typed into the monitor, the terminal supplies its own
echo. It displays each character sent to the computer
without waiting for the computer echo. Local echo
communications may be used with half duplex com­
munications links, while remote echo requires full
duplex communications.

It is important that the terminal be set for the proper
echo. If the terminal is set to remote echo and neither
the host nor the modem provides an echo, characters
typed on the keyboard are not displayed at all. If the
terminal is set to local echo and either the host or the
modem also provides an echo, characters typed in the
keyboard are displayed twice.

The type of echoing which the terminal uses is
selected with the ECHO command.

5-8 @

Syntax

!ECHo [Local I Remote]< CR>

If neither L nor R is specified, Lis assumed.

Action

This command selects the echoing used when text
from the keyboard is directed into the monitor and the
terminal is in unbuffered mode.

Examples

IECH<CR>
!ECH L<CR>

Sets the terminal for local echo.

!ECH R<CR>

Sets the terminal for remote echo.

The terminal remembers its ECHO setting, even when
powered off or RESET.

4027A PROGRAMMERS

BUFFERED COMMAND

The terminal can operate either in unbuffered mode or
buffered mode. These modes of operation differ in the
way that the terminal processes information from the
keyboard and from the computer. The terminal powers
up in unbuffered mode. It remains in unbuffered mode
until placed in buffered mode by the BUFFERED
command.

When the terminal is in unbuffered mode, each charac­
ter typed into the monitor is immediately transmitted to
the host. Under these circumstances, it is not possible
to locally edit the information displayed in the monitor.
As soon as a character appears in the monitor window
(if in local echo), it is sent to the computer. Text typed
into the workspace is not sent to the computer until the
SEND command is given and executed. When the
SEND command is executed, all the text in the
workspace is sent to the computer in an uninterrupted
stream.

When the terminal is in buffered mode, characters
entered in the monitor are stored in the keyboard buffer
until RETURN is pressed. Anytime before RETURN is
pressed, the current line can be edited locally. When
RETURN is pressed, the terminal marks the end of the
line and stores the line in the transmit buffer. The line
remains in the transmit buffer until it is processed. By
comparison, each line typed in the workspace is stored
there and can be edited locally, even after RETURN is
pressed. When the SEND command is given, the entire
workspace contents are read into the transmit buffer
for processing.

The contents of the transmit buffer are processed line
by line on a first-in/first-out basis. To do this, the
terminal uses a handshaking process involving
prompts (prompt strings) from the computer and EOL
(end-of-line) strings from the terminal.

4027A PROGRAMMERS @

STATUS INITIALIZATION

BUFFERED COMMAND

When the computer is ready to receive data, it sends a
prompt to the terminal. When the terminal receives this
prompt, it knows the computer has finished its
transmission and is ready to receive data. The terminal
waits for the programmed delay time before transmit­
ting. The terminal then processes the oldest (first-in)
line in its transmit buffer. Information destined for the
computer is sent there and any terminal commands
entered from the keyboard are executed. When a line is
sent to the computer, an EOL terminates the line. When
the computer sees the EOL string, it knows that the
terminal has finished sending a line and is waiting for
another prompt or data from the computer. If the
computer has data for the terminal, it sends this out,
followed by a prompt; if the computer has no data to
send but wants another line from the terminal, it simply
sends a prompt. A more detailed description of each
command and its operation follows.

The commands which relate to buffered mode are
PROMPT, DELAY, and BUFFERED. The PROMPT com­
mand sets the prompt string to be used by the
computer to request a line from the terminal. The
DELAY command sets the time interval between a
computer prompt and a transmitted line, plus sets the
time measured after a prompt string to assure that the
string is actually a prompt rather than text. These two
commands are described on the following pages under
PROMPT and DELAY.

The BUFFERED YES and BUFFERED NO commands
are used to enter and exit buffered mode and can be
invoked either from the computer or keyboard. The
effect of the BUFFERED commands and the sequence
of buffered mode events differ depending upon the
source of the commands, computer or keyboard.

5-9

STATUS INITIALIZATION

BUFFERED COMMAND

Syntax

!BUFfered [Yes]< CR>
from the keyboard

IBUFfered [Yes]< CR>
from the computer

!BUFfered [Yes];
from the computer

Yes is assumed if not specified.

Action

The BUFFERED YES command puts the terminal in
buffered mode regardless of the source of the com­
mand or previous buffered/unbuffered condition. If
previously in unbuffered mode and the IBUF command
is given from the keyboard, the output buffer is armed
to send the first line placed in the trasmit buffer without
the need of a host prompt. If already in buffered mode
when the keyboard !BUF command is given, there is no
change to the original first line condition, and a prompt
is required for each additional line in the transmit
buffer.

If the computer is the source of the IBUF command, the
functions are threefold. First, the IBUF command
places the terminal in buffered mode. Second, the
computer IBUF command cancels any previous prompt
which may have the transmit buffer in an armed
condition. This is used prior to communication of any
computer commands to prevent the terminal processor
from attempting a transmit while in computer command
mode. And third, the computer IBUF command places
the workspace in keyboard type-ahead. When the
teriminal is in type-ahead, keyboard characters
directed to the workspace are not immediatley dis­
played. Type-ahead prevents interaction between si­
multaneous workspace display of computer and key­
board information.

When the computer is ready for the terminal to
proceed, the prompt string is sent to the terminal. If the
defined prompt string is followed by the specified
DELAY time (no CR, NUYL, SYNC, or other characters),
the above condition of type-ahead is cancelled,
releasing keyboard data to the workspace, and the
transmit buffer is armed for one line.

5-10 @

Syntax

!BUFfered [No]< CR>
from the keyboard

!BUFfered [No]< CR>
from the computer

!BUFfered [No];
from the computer

N or No must be specified.

Action

The BUFFERED NO command puts the terminal in
unbuffered mode and trasmits any lines remaining in
the transmit buffer. If the keyboard is the source of the
IBUF N command, the command is placed in the
keyboard buffer. (The keyboard buffer holds keyboard
data and is separate from the transmit buffer.) If there
are lines or commands in the keyboard buffer awaiting
prompts, the keyboard IBUF N command does not
execute until the lines or commands are prompted in
sequence. If the keyboard buffer is empty, execution of
the IBUF N command is immediate. The terminal exits
bufferd mode and transmits the remaining lines to the
host.

If the computer is the source of the IBUF N command,
execution is always immediate. The terminal exits
buffered mode, transmits any remaining lines to the
computer, and executes any commands waiting in the
keyboard buffer.

Examples

keyboard !BUF< CR>

Places the terminal in buffered mode. If previously
unbuffered, arms transmit buffer.

keyboard !BUFISEN< CR>

Places the terminal in buffered mode. Sends the
workspace to the transmit buffer. If previously unbuf­
fered, transmits one line.

4027 A PROGRAMMERS

computer !BUF< CR>
!BUF;

Places the terminal in buffered mode. Cancels an
outstanding prompt. Places the workspace in keyboard
type-ahead.

computer <prompt/delay>

Follows the above host command. Waits the delay then
arms the transmit buffer. Removes the workspace from
type-ahead.

computer !BUF;< prompt/delay>

Places the terminal in buffered mode. Cancels an
outstanding prompt. Waits the delay then arms the
transmit buffer.

computer !BUF!JUM n n;

Cancels an outstanding prompt. Directs host output to
terminal display.

computer <prompt/delay>

Follows the above host command sequence. Waits the
delay then arms the transmit buffer. Removes the
terminal from type-ahead.

keyboard IBUF N< CR>

Exits buffered if keyboard buffer is empty. Transmits all
lines in transmit buffer.

computer !BUF N< CR>

!BUFN;

Exits buffered mode. Transmits all lines in transmit
buffer. Executes any buffered keyboard commands.

The computer should always transmit "display" com­
mand sequences (!JUM, IATT, etc.) to the terminal
starting with !BUF and ending with a< prompt/delay>.
This minimizes the possibility of keyboard entry inter­
fering with the computer commands. Once the !BUF
has executed, there is no chance of interaction.

For example, use:

!BUF!JUM!ATT E;ENTERIATT S!JUM 10,20;
<prompt/delay>

4027A PROGRAMMERS @

STATUS INITIALIZATION

EOLCOMMAND

Computer sequences which include "output" com­
mands OSEN, !REP, etc.) should start with !BUF and
include a <prompt/delay> prior to the output com­
mand. The computer should not use sequences such
as !BUF!SEN.

For example, use:

!BUF!JUM!ATT E;STOP!ATT S;< prompt/delay>
!SEN;

Initialization commands (!DEL, !PRO, !WOR, !MON,!
EOL, ect.) should be done prior to displaying computer
information and entering buffered mode. A minimum of
500 milliseconds should follow a command to set up
the workspace/monitor screen (!WOR n HK) before
sending a buffered <prompt> to the terminal. When
prompting the terminal, the host should not send in
excess of eight prompt strings within one delay time.

Break Function

In addition to the previously described BUFFERED NO
commands, the BREAK key can be used to exit
buffered mode. When pressed two times in rapid
succession, the terminal exits buffered mode, cancels
all data in the transmit buffer, and sends a break signal
to the computer. BRK-BRK should be used only when it
is desirable to cancel data in the buffers.

EOL (END-OF-LINE) COMMAND

When the terinal sends information to the computer, it
sends an end-of-line string at the end of each line of
text. This end-of-line string tells the computer where
one line of text ends and the next line begins. In
buffered mode, it also informs the computer that the
terminal has finished current processing tasks and can
receive data from the computer. Some computers
expect to see <CR> (carriage return) at the end of
each line; others may expect to see <CR> < LF>
(carriage return, line feed) or other strings at the end of
each line.

When the operator types text into the monitor destined
for the computer, an end-of-line string is inserted
whenever RETURN is pressed. When text from the
workspace is sent to the computer (with a SEND
command), an end-of-line string is inserted at the end
of each line of text. (In buffered mode, as the computer
requests each line of text from the terminal, the
terminal sends that line, and inserts an end-of-line
string at the end of the line.) The EOL command is used
to set the end-of-line string.

5-11

STATUS INITIALIZATION

REMOTE START STOP

Syntax

!EOL [<string>l<CR>

where <string> may be:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces, or
commas.

3. Any combination of 1 and 2.

The end-of-line string defined by this command must
not be more than ten characters in length. If< string>
is not specified, it defaults to< CR> (carriage return).

Action

This command sets the end-of-line string which the
terminal sends to the computer at the end of each line
of text.

Examples

IEOL<CR>
IEOL 13<CR>

Sets the end-of-line string to carriage return,< CR>,
with ADE 13.

!EOL 1310<CR>

Sets the end-of-line string to <CR>< LF>.

!EOL /**$/ 13 10< CR>

Sets the end-of-line string to the ASCII string **
$<CR><LF>.

The terminal remembers its end-of-line string when it is
powered off or RESET.

5-12 @

REMOTE START STOP COMMAND

Under certain circumstances either the host computer
or the terminal may be limited as to the number of
characters which can be received at a time, especially
at high baud rates. When these conditions are known
to exist, the terminal can be programmed to stop and
restart transmission under host control, and, if the host
has the capability, the terminal can send characters to
stop or resume host transmission.

Syntax

!RSS
[Host I Terminal I Neither I Both I Status][ADE
STOP I ADESTART]<CR>

Action

This command enables the terminal or host computer
to start and stop host tranmission.

Examples

!RSS H<CR>

Sets the terminal to respond to host control of data
from the terminal to the host with default parameters of
DC3 for stop and DC1 for start.

!RSS T<CR>

Sets the terminal to control the host, with the default
parameters of DC3 for stop and DC1 for start.

!RSS N<CR>

Turns off the RSS control of the currently active device.

IRSS B<CR>

Sets both terminal and host control with the default
parameters of DC3 for stop and DC1 for start.

!RSS S<CR>

Checks current status of the RSS control. The terminal
will respond with:

RSS CONTROL: OFF (if not active)
RSS CONTROL: BOTH (if both are active)
RSS CONTROL: HOST (if host mode is active)
RSS CONTROL: TERMINAL (if terminal mode is active)

4027A PROGRAMMERS

PROMPT COMMAND

In buffered mode, when the host computer is ready to
accept another line of text from the terminal, it sends a
prompt or prompt string as a cue for the terminal to
transmit another line. The prompt must always be the
last character(s) sent by the computer. If characters
are received by the terminal after the prompt charac­
ter(s), the terminal may assume that the computer is
still transmitting. If there is any doubt about control
characters being sent after the prompt, the program
can be run in SNOOPY, UNBUFFERED mode so that
the output may be examined. Prompt strings vary with
the computer and with the program; but the prompt to
which the terminal responds must agree with the
prompt sent from the computer. The terminal prompt
string is set using the PROMPT command.

Syntax

!PROmpt [<string>]<CR>

where <string> may be:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces or
commas.

3. Any combination of 1 or 2.

The< string> parameter may not define a string of
more than ten ASCII characters. If <string> is omitted,
the prompt string is set to the line feed character,
<LF>.

Action

This command sets the prompt string to< string>. In
buffered mode, the terminal waits to receive <string>
from the computer before processing the next line in its
transmit buffer.

Examples

!PRO/**$/< CR>

Sets the prompt string to**$. In buffered mode, the
terminal must receive this string from the host before it
sends a line of text from its transmit buffer.

!PRO 1310<CR>

Sets the prompt string to <CR>< LF>, with ADEs 13
and 10, respectively.

4027 A PROGRAMMERS @

STATUS INITIALIZATION

PROMPT, DELAY COMMAND

!PRO /**$/13 10< CR>

Sets the prompt string to **$<CR>< LF>.

!PRO< CR>

Sets the prompt string to the default setting,< LF>.

The terminal remembers its prompt string when RESET
or powered off.

DELAY COMMAND

Sometimes it is desirable that the terminal not respond
immediately to a prompt from the computer. If the
terminal is executing a SEND command on a rather full
workspace and the computer's input buffers are small,
it is possible for the terminal transmission to overrun
this input buffer. Information is lost and communica­
tions are garbled.

The prompt string may be used in other ways as well.
Suppose the prompt string is < LF> and the computer
is sending a paragraph of straight text to the terminal.
There will be many line feeds which are not intended
as prompts. If the terminal waits before responding to a
< LF>, and another character is received, the terminal
knows to cancel the planned response and keep
listening to the computer for more text.

The transmission delay is set using the DELAY com­
mand.

Syntax

IDELay <time>< CR>

where <time> is a positive integer.

Action

This command sets the transmission delay to <time>
milliseconds. In buffered mode, after a prompt is
detected, the terminal waits at least <time>
milliseconds before transmitting anything back to the
computer.

5-13

STATUS INITIALIZATION

FIELD, EOF COMMAND

Examples

IDEL20<CR>

Causes the terminal to wait at least 20 milliseconds
before responding to a prompt from the computer.

IDELO<CR>

The terminal responds immediately to a prompt from
the computer.

The terminal remembers Its delay time when it is
RESET or powered off.

FIELD COMMAND

When the terminal, in form fillout mode, sends form
fields to the host computer in a SEND operation, the
computer must know when a new field begins. This can
be arranged In two ways:

• Fields sent to the computer are preceded by a field
separator character; each time the computer sees
this character it knows a new field immediately
follows. If a field has not been completely filled out,
only the filled out portion of the field Is transmitted;
trailing spaces are not sent.

• Each field is sent in its entirety, including trailing
spaces. The choice of which method to use Is
determined largely by the programming language
used. (See Forms and Form Fillout for details.)

The terminal is instructed how to send form fields to
the host by using the FIELD command.

Syntax

!FIEid [<character>]< CR>

where <character> Is a single printing ASCII charac­
ter, or a 2- or 3-diglt ADE between 00 and 127,
inclusive.

If no parameter is specified, it is assumed to be NUL.

Action

This command sets the character which precedes
fields of a form when they are transmitted to the
computer by the terminal. If no value is supplied, then
no character is Inserted before a field, and trailing
spaces are sent. Common choices for the field separa­
tor are TAB, CR, and US.

5-14 @

Examples

IFIE@<CR>
IFIE64<CR>

Sets the field separator to the @ character, with ADE
64. This character precedes each field of a form sent to
the computer.

IFIE<CR>

When fields of a form are sent to the computer, no field
separator is used. Each field is sent In its entirety,
Including all trailing spaces.

The terminal remembers the field separator when
RESET or powered off.

EOF (END-OF-FILE) COMMAND
(Requires Option 03 or 04)

The terminal can copy a file from one device to another
by using the COPY command. When the data comes
from the host, the terminal looks for an end-of-file
string to know when to stop the COPY operation. It also
sends the EOF string to the host at the end of a copy.

The end-of-file string is selected using the EOF
command.

Syntax

IEOF [<string>]<CR>

where <string> consists of:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces or
commas.

3. Any combination of 1 and 2.

This command may not define an ASCII string of more
than ten characters. If <string> Is not specified, it
defaults to r.

Action

This command sets the end-of-file string. This string
marks the end of a file transferred by a COPY
command. See the Peripherals section.

4027 A PROGRAMMER'S

Examples

IEOF /$**I< CR>

Sets the end-of-file string to the ASCII string,$**. Thif
string marks the end of a file transferred by a COPY
command.

IEOF 27 27 7 <CR>

Sets the end-of-file string to**< ESC>.

IEOF<CR>

Sets the end-of-file string to its default value,/*.

The terminal remembers the EOF setting when RESET
or powered off.

DUPLEX COMMAND
(Requires Option 01)

The terminal with Option 01 may be set for either full
duplex or half duplex communications.

Full duplex mode is used with full duplex communica­
tion lines, which permit both terminal and host to
transmit at the same time. Half duplex is used with half
duplex communications lines, over which only one
device (terminal or host) can transmit at a time.

Half duplex communications can use either normal or
supervisor mode.

In half duplex communications, the terminal can also
be set to respond to either "line turnaround only" or
"prompt string plus line turnaround" as the prompting
condition in buffered mode.

The DUPLEX command is used to set the terminal for
half duplex or full duplex communications.

Syntax

!DUPiex [<fulldup> I <halfdup>]<CR>

where

< fulldup> = Full
< halfdup> = Half [Supervisor I Normal][Line I Prompt]

If no parameters are specified, full duplex operation is
assumed. If half duplex is chosen, supervisor mode and
line are the default parameters.

4027A PROGRAMMER'S @

Action

STATUS INITIALIZATION

DUPLEX COMMAND

This command sets the terminal for either full duplex or
half duplex communications. If half duplex is chosen,
either Supervisor or Normal mode is chosen. Also, the
prompt condition to which the terminal responds in
buffered mode is set to either Line (line turnaround
only) or Prompt (prompt string plus line turnaround).

Examples

IDUP<CR>
IDUP F<CR>

Sets the terminal for full duplex.

IDUP H<CR>
IDUP H S<CR>
IDUP H S L< CR>

Sets the terminal for half duplex with supervisor. In
buffered mode the prompt condition is line turnaround
only.

IDUP H S P< CR>

Sets the terminal for half duplex with supervisor. In
buffered mode the prompt condition is the prompt
string plus line turnaround.

IDUP H N<CR>
!DUP H N L<CR>

Sets the terminal for half duplex normal. In buffered
mode the prompt condition is line turnaround only.

IDUP H N P< CR>

Sets the terminal for half duplex normal. In buffered
mode the prompt condition is the prompt string plus
line turnaround.

The terminal remembers its duplex setting when
RESET or powered off.

5-15

STATUS INITIALIZATION

DISCONNECT COMMAND

D~CONNECTCOMMAND
(Requires Option 01)

Syntax

IDISConnect< CR>

Action

This command sends a signal to the modem, causing it
to disconnect the terminal from the communications
line. (The terminal turns off the "data terminal ready"
signal on the RS-232 interface for about one second.
This causes the modem to disconnect from the commu­
nications line.)

Example

!DISC< CR>

Disconnects the terminal from the communications
line.

NOTE

DISCONNECT may not be abbreviated to the first
three letters (DIS) as this would conflict with the
DISABLE command.

5-16 @

BREAK FUNCTIONS
The BREAK key is used to signal an interrupt to the
computer and to terminate a variety of local operations
regarding buffered mode and peripheral functions. The
effects of a single press of the BREAK key differ from
two presses of the BREAK key as follows:

• BREAK - The RS-232 TDATA communication line
is held active for 350 milliseconds. Internal terminal
operations are not affected.

• BREAK-BREAK - The TDATA break time is 350
milliseconds, buffered mode is exited, transmit and
receive buffers are cancelled, keyboard lock is
exited, COPY and DIRECTORY operations are termi­
nated, and a multiple HCOPY command is discontin­
ued.

4027 A PROGRAMMER'S

STATUS INITIALIZATION

STATUS,SYSTAT

STATUS MESSAGES
In addition to the commands which set the terminal
parameters and communications parameters, there are
four "status" messages which display, on the screen,
information about the parameter settings and internal
status of the terminal. These are the STATUS message,
the SYSTAT message, the system TEST message, and
a GTEST (Graphic Test) message.

THE STATUS KEY AND THE STATUS
MESSAGE

At any time, the operator may press the STATUS
(SHIFT-COMMAND LOCKOUT) key to get a brief
STATUS message. This message is displayed in the
monitor, without disturbing the contents of the work­
space. The STATUS message shows whether the
terminal is in buffered or unbuffered mode, the com­
mand character, and the number of unused blocks of
terminal memory. (A block consists of 16 eight-bit
bytes. One block holds at most 14 characters.) A status
message is shown in Figure 5-1.

SYSTAT AND THE SYSTAT MESSAGE

The terminal has a SYSTEM STATUS, or SYSTAT,
message which lists most of the parameter settings
discussed in this section. The SYSTAT command
displays the SYSTAT message in the monitor.

Syntax

!SYStat< CR>

SYSTAT Parameters

The SYSTAT message lists the following parameters,
using the abbreviations shown.

TB= Transmit baud rate

RB= Receive baud rate

DL= Delay time

LM= Left margin

RM= Right margin

WL= Number of workspace lines displayed on the
screen

V#= Firmware version number

TS= Tab stops

CC= Command character

4027 A PROGRAMMER'S @

FS= Field separator

PR= Prompt string

EL= End-of-line string

DU= Duplex (DU= F means full duplex, DU= H means
half duplex.)

BU= Buffered mode (Y means buffered, N means
unbuffered.)

EC= Echo (EC= R means remote echo, EC= L means
local echo.)

FF= Form fillout mode (Y means yes, N means no.)

SN= Snoopy mode (Y means yes, N means no.)

KB= Keyboard (KB= M means text typed on the key­
board is directed to the monitor, KB= W
means text from the keyboard is sent to the
workspace.)

CM= Communications line (CM~ M means text from
the communications line is directed to the
monitor, CM= W means such text is sent to
the workspace.)

PA= Parity (N means none, D means data, E means
even, 0 means odd, H means high.)

CO-C7= Color numbers CO-C7 are displayed with
color samples and the HLS parameters for
each color.

If the terminal contains Option 01 (Half Duplex) and is
set for half duplex communications, the DU field may
contain one or two additional letters. See the DUPLEX
command description earlier in this section for details.

u ! 988.

/\~
UNBUFFERED COMMAND CHARACTER 988 BLOCKS OF

MODE IS "I" MEMORY LEFT

/\~
BUFFERED COMMAND CHARACTER 988 BLOCKS OF

MODE IS"\" MEMORY LEFT
(2657) 4173-31

Figure 5-1. STATUS Message.

5-17

STATUS INITIALIZATION

TEST COMMAND

If a parameter is set to an ASCII control character, the
two-letter mnemonic for that character is shown in the
parameter setting. The SYSTAT message is illustrated
by Figure 5-2.

When the terminal is turned off or RESET, it remembers
some of the parameter settings in the SYSTAT mes­
sage, and resets others to default settings. Those
settings which are remembered are: TB, RB, DL, LM,
RM, TS, CC, FS, PR, EL, DU, EC, and PA (and the PL
setting, if present).

When the terminal is powered up or RESET:

WL= 0 (There is no workspace defined.)

BU= N (In unbuffered mode.)

FF= N (Not in form fillout mode.)

SN= N (Not in snoopy mode.)

KB= M and CM= M (Both the keyboard and the
computer direct text to the monitor.)

CO-C7= All eight colors are displayed with their
default HLS parameters. Color C7 (black) is
not visible.

The V# setting will not change unless a different
firmware version is installed in the terminal.

TB=
TS= 0
CC=!

Fl 0
PF'.='l:

DL=
(1 [1

EL='1':

[1

D 0

DU=F BU=il EC=L FF=H ~::;i··l=H

cc{] o. 100. 100 cBJ12iJ_. so. 1c10
C411BC1~ so:. 10[1 csl3C10~ 50, 100

TEST COMMAND

The command:
!TEST< CR> or ITES< CR>

causes the terminal to run a program which checks
whether the terminal memory and display are operating
properly. The following actions occur:

• The terminal erases the entire display list and
creates a 34-line monitor window.

• System ROM (Read Only Memory), system RAM
(Random Access Memory), and display RAM are
checked. Each possible ROM location is displayed;
its version number; "OK," if the checksum is
correct; "BAD," with correct checksum, if it's incor­
rect; or "NO ROM," if there is no ROM installed. An
error in display RAM prevents a bad block of
memory from being used; the number of free blocks
is reduced, but the terminal operates correctly.

• After the memory test, the lights on the four lighted
function keys are turned on, all 128 ASCII charac­
ters are displayed in the monitor in snoopy mode,
and all Font 1 characters (ruling characters) are
displayed. (If this character set is not installed, each
of its characters is displayed as a dot matrix with
every dot turned off.)

LM= 1
C1 D

PM=E:O
0 0

l.-.JL= VI
(1 (1

VB=M CM=M PA=H
C28240, 50 .• 100
CE~\~\1 60 . 50 .• 1 DO

(1

,.--~::! .. _._
I .··
'·-· !

\/#=:3. D

D.. 5C1_, 100
o .• ~J . 100

4173-103

Figure 5-2. The 4027A SYSTAT Message.

5-18 @ 4027A PROGRAMMER'S

• After the two character sets are displayed, a sample
of colors CO-C6 is represented by displaying three
upper-case letter A's in each color. Color C7 (black)
is not visible.

• At the end of the test, the lights on the function keys
are turned off and the bell is rung.

Should the test reveal a failure in the system RAM, the
message "RAM ERROR" appears. If such a message
appears, call your Tektronix service personnel.

leele V3.0 OK
2330 V3.0 OK
3eee V3.0 OK
4eei0 V3.0 OK
6000 NO ROM
7000 V3.0 OK
5000 V3.0 OK
5001 V3.0 OK
5002 NO ROM
5003 NO ROM
5004 V3.0 OK
5005 NO ROM
5006 NO ROM
5007 NO ROM

NOTE

STATUS INITIALIZATION

TEST COMMAND

Running this test destroys any text or key defini­
tions which may have been stored in memory.

An example of the display created by a successful
TEST is shown Figure 5-3.

~~~'X"tfQ'k'l "s'\-.,,'?FFIJt!i>Si'l 01'll~~'kV11<i.~li1Vsl\"s~ ! "l$Y.&' ( ) *+, - . /0123456789: ; ( = )?@ABCDEFGHIJKLl'l'IO 
PQRSTUVWXYZ[']A_'abcdef9hiJklmnopqrstuVUJxyz{:}-~ 

~~mftt111IIIltlUlll*'-... ,,,,, .......... t-H**-'l-H*-' 
AAAAAAAAA AAl=IAAAAAA 

4173-104 

Figure 5-3. !TEST< CR> Results. 

4027A PROGRAMMER'S @ 5-19 



STATUS INITIALIZATION 

GTEST COMMAND 

GTEST COMMAND 

Graphics Memory can be tested by the command: 
!GTEST <CR> or !GTE< CR> 

When this command is executed, the entire display list 
is erased and a 34-line monitor window is created. The 
terminal then tests its graphic memory. After a delay of 
about 15 seconds while it performs the test, the 
terminal displays the test results in the monitor 
starting with Font 1 and proceeding to Font 31. 11f no 
RAM is installed for a particular character set, the 
terminal displays a "NO MEM" message. If RAM is 
installed, each character is tested twice (each bit is 
tested for both 1 and 0). If the RAM passes the test, the 
terminal displays "OK" for each of these two tests. If 
the RAM for a particular character set fails the test, the 
terminal displays the "RAM ERROR" message and an 
error code for use by Tektronix service personnel. 

A sample display of a successful GTEST is shown in 
Figure 5-4. 

5-20 @ 

1 RCll"1 FONT- ROM Font 1 Enabled 
2 NO l"EM-- RAM and ROM Not Enabled 

3 RCll"1 FONT- Font 3 Enabled 

4 NO l"EM 
5 NO l"EM 
6 NO l"EM >--- RAM and ROM Not Enabled 

7 NO l"EM ~ 
8 NO l"EM 
9 NO l"EM 

10 NO l"EM 
ll NO l"EM >-- RAM Not Enabled 
12 NO l"EM 
13 NO l"EM 
14 NO l"EM 
15 NO l"EM ) 
16·0K 
17 OK 
18 OK 
19 OK 
20 OK 
21. OK 
220K 
23 OK 
24 OK 
250K 
26 OK 

)-----RAM Fonts 16-31 Enabled 
and Functioning 

Z'? OK 
28 OK 
29 OK 
30 OK 
31 OK l 

TEST COM?LETE 

2657-7 

Figure 5-4. IGTEST <CR> Results. 

4027 A PROGRAMMER'S 



Section 6 

CONTROLLING THE DISPLAY 

Before information is displayed on the terminal screen, 
decisions must be made regarding the set-up of the 
screen: how the screen's 34-line display is to be 
divided between the workspace window and the moni­
tor window; which scroll is to receive text from the 
computer and which from the keyboard; and margins 

and tab stops. The commands which set these parame­
ters are discussed in the System Status and Initializa­
tion section. We assume here that these parameters 
have been set. Throughout this section we assume the 
left workspace margin is set to column one. 

THE CURSOR COMMANDS 

The terminal displays three cursors. One, called the 
graphic cursor or crosshair, is used in the creation of 
graphic displays and is discussed in the Graphics 
section. This section will discuss only the other two 
cursors; the workspace cursor and the monitor cursor. 
Only one of these is visible at a given time. Since, in 
either window, the cursor indicates the position at 
which new information will be printed on the screen, 
one may wish to change the cursor position at various 
times. 

The programmer uses commands to position the cursor 
at a desired location. (The operator may give these 
same commands from the keyboard or use the 
corresponding keys.) The commands which affect ·the 
cursor position are the cursor commands (JUMP, UP, 
DOWN, RIGHT, LEFT) and the tab commands (TAB, 
BACKTAB). In addition, even though there is no 
"HOME" command corresponding to the HOME key, 
the JUMP command can be used to simulate the action 
of the HOME key. (See discussion of the JUMP 
command.) 

NOTE 

If a cursor movement command, tab command, or 
scrolling command is typed on the keyboard and 
text from the keyboard is directed into the 
monitor, execution of the command inserts a line 
just below the line on which the command is 
typed. 

4027A PROGRAMMER'S 

JUMP COMMAND 
(Workspace only) 

Syntax 

IJUMp [<row>[< column> 11< CR> 

where <row> is a positive integer, and 
<column> is a positive integer not greater 
than 80. If only one parameter is specified, it is 
assumed to be the< row> parameter. If 
neither parameter is specified, both <row> 
and <column> default to one. 

@· 6-1 



CONTROLLING THE DISPLAY 

JUMP COMMAND 

Action 

This command positions the workspace cursor In the 
row and column of the workspace designated by 
<row> and <column>, respectively. 

Picture the workspace scroll as a long table with an 
indeterminate number of rows, each row having 80 
columns (Figure 6-1 ). The topmost row In the work­
space, (whether it contains text or Is blank) is labeled 
row 1, the next row Is row 2, and so forth. In each row, 
columns are labeled column 1, column 2, ... , 80. This 
establishes an absolute coordinate system in the 
workspace scroll. Portions of this scroll may be visible 
in the workspace window. 

The JUMP command moves the workspace cursor to 
the specified row and column of the workspace, 
expressed in absolute workspace coordinates. The 
destination of the cursor does not depend on its 
current location. (This Is In contrast to the other cursor 
movement commands, whose parameters specify posi­
tions relative to the current cursor position.) 

If the <row> parameter specifies a row of the 
workspace below the bottom of the workspace window, 
the workspace rolls up and stops with the line 
containing the cursor at the bottom of the window. If 
<row> exceeds the current number of lines in the 
workspace, blank lines are created at the bottom of the 
workspace and the < row>-th row is displayed as the 
last row in the workspace window. 

If the <row> parameter specifies a row of the 
workspace above the top of the workspace window, the 
workspace rolls down, stopping with the row containing 
the cursor at the top of the window. 

NOTE 

This command applies only, and always, to the 
workspace cursor. It is not necessary for the 
workspace to receive text from the computer or 
the keyboard for this command to move the 
workspace cursor. When the workspace cursor 
next appears, it appears at the location specified 
in the JUMP command (assuming no other in­
structions which affect the workspace cursor 
location have been given to the terminal 
meanwhile). 

6-2 @ 

Examples 

1. The command 

IJUM 3,10<CR> 

moves the workspace cursor to row 3, column 10. 

2. Either of the commands 

IJUM3<CR> 
IJUM 3,1<CR> 

moves the workspace cursor to row 3, column 1. 

3. Any one of the commands 

IJUM<CR> 
IJUM 1<CR> 
!JUM 1,1<CR> 

moves the workspace cursor to row 1, column 1. 
Each of these commands is equivalent to pressing 
the HOME key when the workspace cursor is • 
visible and the terminal is not in form fil/out mode. 

Line 1 
Line 2 

L.imLtL __ _ 

\ 
(N,1) 
Row N, Column 1 

--;-
(N,80) 

Row N, Column 80 I WORKSPACE 
WINDOW 

(2402) 4173-4 

Figure 8-1. The Workspace Window and the Workspace 
Scroll. 

4027A PROGRAMMER'S 



UP COMMAND 

Syntax 

IUP [<count>]<CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the up cursor 
key (pad key 8, marked f) <count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 

Suppose text from the computer Is printed in the 
workspace and the command 

IUP <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor up <count> lines from its current 
position, leaving the column location unchanged. 

If <count> is large enough to move the cursor to a line 
not visible In the workspace window, the workspace 
rolls down so that the line which the cursor moves to is 
the top line in the window. However, the cursor will not 
move past the first line of the workspace, regardless of 
how large <count> is. 

If text from the computer is printed in the monitor and 
this command Is sent from the computer, it has the 
same effect on the monitor cursor. 

4027 A PROGRAMMER'S @ 

CONTROLLING THE DISPLAY 

UP COMMAND 

Examples 

Suppose text from the computer is printed in the 
workspace, with the cursor in lln.e 23, column 5. 

Line 1 
Lina 2 

Line 20 
Line 21 
Line 22 
~:~x~3 ____ , 
Line 25 

1 . The command 

IUP3<CR> 

positions the cursor in line 20, column 5. 

Line 1 
Line2 
Line 3 

~:~:i'r~ ----AFTER IUP 3<CR> 
Line 22 CURSOR IN LINE 20, 
Line 23 COLUMN 5 
Line 24 
Line 25 

2. The subsequent command 1

, 

IUP7<CR> 

causes the workspace to roll down and positions 
the cursor in line 13, column 5. 

Line 1 
Line 2 
Line 3 

~:~:·:;~~----t~:~~~: ~~~~~. 
COLUMNS 

6-3 



CONTROLLING THE DISPLAY 

DOWN COMMAND 

3. The subsequent command 

IUP 13<CR> 

rolls the workspace down, leaving the cursor in 
column 5 of line 1. Since the workspace will not 
scroll past the first line, the commands 

IUP 14<CR> 
IUP 15<CR> 

each have the same effect. 

t:~:-~~----'Cr:r::6~~~~1~~~~ 
Line 3 COLUMN 5 

DOWN COMMAND 

Syntax 

IDOWn [<count>]<CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the down 
cursor key (pad key 2, marked 1) <count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 

Suppose text from the computer is printed in the 
workspace and the command 

IDOW <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor down <count> lines from its cur­
rent position, leaving the column location unchanged. 

6-4 @ 

If <count> is large enough to move the cursor to a 1.ine 
not visible in the workspace window, the workspace 
rolls up until the line which the cursor moves to is at 
the bottom of the window. If <count> is large enough 
to move the cursor past the last line in the workspace, 
enough blank lines are created at the bottom of the 
workspace to accommodate this command. 

If text from the computer is printed in the monitor and 
this command is sent from the computer, it has the 
same effect on the monitor cursor. 

Pressing the LINE FEED key <count> times has the 
same effect on the cursor. Pressing this key also 
generates the ASCII Line Feed character, while 
pressing the down cursor key does not. 

Examples 

Suppose a workspace window of ten lines is defined, 
and the workspace contains 20 lines of text (some of 
which may be blank). Suppose also that line 1 is the 
top line in the workspace window and the cursor is in 
line 1, column 6. 

Line 1:----CURSOR IN LINE 1, 
t:~: ~ COLUMN 6 

Line 19 
Line 20 

1. The command 

IDOWB<CR> 

moves the cursor down eight lines to line 9, column 
6. No roll up occurs. 

Line 1 
Line 2 
Line 3 

· AFTER IDOW B<CR> 
: ------ CURSOR IN LINE 9, 

Line ~ COLUMN 8 
Line 10 

Line 19 
Line 20 

4027A PROGRAMMER'S 



2. The subsequent command 

IDOW5<CR> 

moves the cursor to line 14, column 6; the 
workspace rolls up four lines. 

3. The subsequent command 

!DOW 10<CR> 

adds four blank lines at the bottom of the work­
space and rolls the workspace up 10 lines. The 
cursor stops in the last blank line created, at the 
bottom of the workspace window. 

Line 1 
Line 2 
Line3 

ine 15 

4027A PROGRAMMER'S @ 

CONTROLLING THE DISPLAY 

RIGHT COMMAND 

RIGHT COMMAND 

Syntax 

IRIGht [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command Is equivalent to pressing the right 
cursor key (pad key 6, marked~) <count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 1 

Suppose text from the computer is printed in the 
workspace and the command 

!RIG <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor< count> columns to the right. 

If <count> Is large enough to move the cursor beyond 
column 80, the cursor wraps around to the left margin 
of the next line and continues moving right a total of 
<count> columns. If this action requires the cursor to 
move to a line which is not visible in the workspace 
window, the workspace rolls up so that the line in 
which the cursor stops is the bottom line in the window. 
If this command requires the cursor to move beyond 
the last line of the workspace, enough blank lines are 
created at the bottom of the scroll to accommodate this 
command. 

I 
If text from the computer is printed in the monitor and 
this command is sent from the computer, it has the 
same effect on the monitor cursor. 

6-5 



CONTROLLING THE DISPLAY 

LEFT COMMAND 

Example 

Suppose there is a workspace window of ten lines, with 
ten lines of text in this window. The left margin is set at 
column 1 and the cursor is in column 1 of line 8. 

Line 1 
Line 2 

1 . The command 

IRIG ?<CR> 

moves the cursor right seven columns to column 8 
of line 8. 

2. The subsequent command 

!RIG 153<CR> 

6-6 

moves the cursor through the remaining 73 col­
umns of line 8 to column 1 of line 9, then through 
the 80 columns of line 9 to column 1 of line 10. No 
roll up occurs. 

@ 

3. The subsequent command 

!RIG 167 <CR> 

moves the cursor through the 80 columns of line 
10, creates a blank line 11 and moves the cursor 
through the 80 columns of line 11, creates a blank 
line 12 and moves the cursor through seven 
columns to column 8 of line 12. The workspace 
rolls up to display line 12 as the last line in the 
workspace window. 

Line 1 
Line 2 

Line 3 
Line 4 

Line 9 
Line 10 AFTER !RIG 187<CR> 
Line 11 (blank) / CURSOR IN LINE 12 
Line 12J.~ COLUMN 8 ' 

LEFT COMMAND 

Syntax 

ILEFt [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the left cursor 
key (pad key 4, marked-) <count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 

Suppose text from the computer is printed in the 
workspace and the command 

ILEF <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor <count> columns to the left. 

4027A PROGRAMMER'S 



If <count> is large enough to move the cursor to the 
left of the left margin, the cursor wraps around to 
column 80 of the preceding line and continues moving 
left a total of< count> columns. If this action requires 
the cursor to move to a line which is not visible In the 
workspace window, the workspace rolls down so that 
the cursor stops in the top line of the window. However, 
the cursor will not move above the first line in the 
workspace. Thus this command does not insert blank 
lines at the top of the workspace. 

If text from the computer Is printed In the monitor and 
this command is sent from the computer, it has the 
same effect on the monitor cursor. 

Examples 

Suppose a workspace is defined and the cursor is 
visible in column 10 of line 6. 

1. The command 

ILEF9<CR> 

moves the cursor to column 1 of line 6. 

4027A PROGRAMMER'S @ 

CONTROLLING THE DISPLAY 

LEFT COMMAND 

2. The subsequent command 

ILEF 150< CR> 

moves the cursor through the 80 columns In line 5, 
rolls down the workspace to display line 4, and 
moves the cursor through the rightmost 70 
columns in line 4. The cursor stops in column 11 of 
line4. 

Line 1 

t:~: ~-····-AFTER ILEF 150<CR> 

Line 6 cuRgg~J:~·~f 4, 

3. The subsequent command 

ILEF 300< CR> 

moves the cursor through the leftmost ten columns 
in line 4, then through the 80 columns In each of 
lines 3, 2, and 1, rolling the workspace down to 
display these lines. The cursor stops at column 1 
of line 1. 

~~ 
L!ne ~ ----- AFTER ILEF 300 <CR> 
Line 3 CURSOR IN LINE 1, 
Lin~ 4 COLUMN 1 

6-7 



CONTROLLING THE DISPLAY 

TAB COMMAND 

THE TAB COMMANDS 

TAB COMMAND 

Syntax 

!TAB [<count>]< CR> 

where< count> is a positive integer. If< count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the TAB key 
<count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 

Suppose text from the computer is printed in the 
workspace and the command 

IT AB <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor< count> tab stops to the right. If 
there are no tab stops defined to the right of the current 
cursor position, the next tab moves the cursor to the 
beginning of the next line. Thus if< count> is large 
enough to move the cursor past the last tab stop in a 
line, the cursor jumps to column 1 of the next line and 
continues tabbing a total of <count> stops. Each skip 
to the next line, as well as each skip to the next tab 
stop in a line, accounts for one of the< count> tabs. If 
<count> is large enough to move the cursor below the 
bottom of the workspace window, roll up occurs. 

If <count> is large enough to move the cursor past 
the last line in the workspace, enough blank lines are 
created at the bottom of the workspace to accommo­
date the command. 

If the text from the computer is printed in the monitor 
and this command is sent from the computer, it has the 
same effect on the monitor cursor. 

NOTE 

The TAB command, like the TAB key, performs a 
different action when the terminal is in form ti/lout 
mode. See the Forms and Form Fi/lout section for 
details. 

6-8 @ 

Examples 

Suppose there is a workspace window of ten lines, with 
tab stops in columns 10, 20, and 30, and the cursor is 
in line 9, column 1. 

Line 1 
Line 2 

1 . The command 

!TAB4<CR> 

moves the cursor to the three stops in line 9 and 
then to column 1 of line 10. 

AFTER ITAB 4<CR> 
Line 9 ------- CURSOR IN LINE 10, 
~~ COLUMN1 

2. The subsequent command 

ITAB 17<CR> 

moves the cursor to column 10 {the first stop) in 
line 14. The first 16 tabs move the cursor through 
lines 10, 11, 12, and 13, to column 1 of line 14; the 
final tab moves the cursor from column 1 of line 14 
to the first tab stop in line 14. 

Line 1 
Line 2 

Line 5 

Line 10 
Line 11 (blank) 
Line 12 (blank) AFTER ITAB 17<CR> 
Line 13 (blank) / CURSOR IN LINE 14, 
Line 14 (bL8J!!!L.,/ COLUMN 10 

4027 A PROGRAMMER'S 



BACKTAB COMMAND 

Syntax 

!BACktab [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the BACKT AB 
key (SHIFT-BACKSPACE) <count> times. 

This command can be used to move either the 
workspace cursor or the monitor cursor. If the com­
mand is typed on the keyboard, it moves the cursor in 
that scroll which receives text from the keyboard. If the 
command is sent from the computer, it moves the 
cursor in that scroll which receives text from the 
computer. 

Suppose text from the computer is printed in the 
workspace and the command 

IBAC <count>< CR> 

is sent from the computer. This command moves the 
workspace cursor< count> tab stops to the left. Each 
backtab moves the cursor one tab stop to the left, or to 
the left margin if there are no tab stops to the left of the 
cursor position. The cursor does not move to a 
preceding line of text, regardless of how large 
<count> is, but "sticks" at the left margin of the 
current line. 

If text from the computer is printed in the monitor and 
this command is sent from the computer, it has the 
same effect on the monitor cursor. 

NOTE 

The BACKTAB command, like the BACKTAB key, 
performs a different action when the terminal is in 
form ti/lout mode. See the Forms and Form Fi/lout 
section for details. 

4027A PROGRAMMER'S @ 

CONTROLLING THE DISPLAY 

BACKTAB COMMAND 

Examples 

Suppose tab stops are set at columns 10, 20, 30, and 
40 and the cursor is in column 35. 

LlneN 

1 . The command 

!BAC<CR> 

1 
CURSOR IN LINE N, 

COLUMN35 

moves the cursor left one stop to column 30 of the 
current line. 

LlneN 

i 
AFTER IBAC <CR> 
CURSOR IN LINEN, 

COLUMN30 

2. Any of the subsequent commands 

IBAC 3<CR> 
IBAC4<CR> 

moves the cursor to column 1 of the current line. 

~i-ne_N ____ AFTER IBAC 3<CR>, 

IBAC 4<CR>, ETC. 
CURSOR IN LINE N, 

COLUMN 1 

6-9 



CONTROLLING THE DISPLAY 

RUPCOMMAND 

THE SCROLLING COMMANDS 

RUP(ROLLUP)COMMAND 

Syntax 

IRUP [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command is equivalent to pressing the up scroll­
ing key (pad key 7, marked A) <count> times. 

This command rolls up the current scroll (workspace or 
monitor) <count> lines, or until the last hne of the 
scroll is visible at the bottom of the window. This 
command does not create blank lines at the end of the 
scroll. If <count> is larger than the number of lines 
remaining in the scroll, the scroll rolls up until the last 
line of the scroll is visible in the window, then stops. 

When the scroll rolls up, the cursor moves with it, 
remaining in the same line of text, at the same column 
position, as long as that line of text remains visible. If 
that line of text passes out of the window, the cursor 
"sticks" at the top of the window, with the column 
position unchanged. 

Examples 

Suppose a workspace window of ten lines is defined, 
the workspace scroll contains 30 lines, and the cursor 
is in line 9, column 5. 

6-10 

Line 1 
Line 2 

@ 

1. The command 

IRUP8<CR> 

leaves line 9 at the top of the workspace, with the 
cursor in line 9, column 5. 

Line 1 
Line 2 

~:~=-~;7;"1)----AFTER IRUP B<CR> 
CURSOR IN LINE II, COLUMN 5 

AT TOP OF WORKSPACE WINDOW 

Line 29 
Llne30 

2. The subsequent command 

!RUP 10<CR> 

leaves line 19 at the top of the workspace window, 
with the cursor in line 19, column 5. 

Line 1 
Line 2 
Line3 

~:~=·~..\!._~O ---AFTER IRUP 10<CR> 
CURSOR IN LINE 111, COLUMN 5 

AT TOP OF WORKSPACE WINDOW 

4027 A PROGRAMMER'S 



3. Any of the subsequent commands 

!RUP2<CR> 
IRUP3<CR> 

leaves line 30 at the bottom of the workspace 
window, with the cursor in line 21, column 5. 

Line 1 
Line 2 

Lln~1 
Line~ 

·- ---AFTER IRUP 2<CR>, 
IRUP 3<CR>, ETC. 

CURSOR IN LINE 21, COLUMN 5 
AT TOP OF WORKSPACE WINDOW 

RDOWN (ROLL DOWN) COMMAND 

Syntax 

IRDOwn [<count>]<CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command rolls down the current scroll (work­
space or monitor) <count> lines, or until the first line 
of the scroll is at the top of the window. The RDOWN 
command cannot be used to insert blank lines at the 
top of the workspace. 

Giving this command is equivalent to pressing the 
down scrolling key (pad key 1, marked Y) <count> 
times. 

When the current scroll rolls down, the cursor moves 
with It, remaining at the same row and column position 
as long as that position is visible in the window. If that 
position passes out of the window, the cursor "sticks" 
at the bottom line of the window, with the column 
position remaining unchanged. 

4027A PROGRAMMER'S @ 

CONTROLLING THE DISPLAY 

RDOWN COMMAND 

Examples 

Suppose a workspace window of ten lines is defined, 
with a workspace scroll of 30 lines and the cursor 
positioned in line 21, column 5. 

Line 1 
Line 2 

1. The command 

IRD09<CR> 

rolls the workspace down 9 lines, leaving the 
cursor still positioned in line 21, column 5. 

Line 1 
Line 2 

Line 12 
Line 13 

. AFTER IRDO II <CR> 
Line 20 JCuRSOR IN LINE 21, COLUMN 5 
Lin ~ AT BOTTOM OF WORKSPACE WINDOW 

Line 29 
Line 30 

6-11 



CONTROLLING THE DISPLAY 

RDOWN COMMAND 

2. The subsequent command 

IRD06<CR> 

6-12 

rolls the workspace down an additional six lines, 
leaving the cursor in line 15, column 5, at the 
bottom of the window. 

Line 1 
Line 2 

Line 6 
Line 7 

. AFTER IRDO ll<CR> 
Line 14 /CuiiSoR IN LINE 15, COLUMN 5 
Line.~ AT BOTTOM OF WORKSPACE WINDOW 

Line 29 
Line 30 

@ 

3. Any of the subsequent commands 

IRD05<CR> 
IRD06<CR> 
IRD07<CR> 

rolls the workspace down five lines, with the cursor 
in line 10, column 5, at the bottom of the window. 

4027 A PROGRAMMER'S 



CONTROLLING THE DISPLAY 

ERASE, BELL COMMAND 

ADDITIONAL COMMANDS 

ERASE COMMAND 

Syntax 

!ERAse [Workspace I Monitor]< CR> 

Action 

This command erases the specified scroll. The entire 
scroll, not just the portion visible in the window, is 
erased. If text is currently directed into that scroll, the 
cursor quickly reappears in the home position (line 1, 
column 1, in the upper left corner) of the window. If text 
is not currently directed into that scroll, the next time 
that cursor appears, it appears in the home position. 
This command does not affect the size of the work­
space and monitor windows. 

If no parameter is specified, the source of the 
command determines which scroll is erased. If the 
commmand is sent from the computer and no parame­
ter is specified, the scroll which receives text from the 
computer is erased. If the command is typed on the 
keyboard and no parameter is specified, the scroll 
which receives text from the keyboard is erased. 

Examples 

!ERAW<CR> 

Erases the workspace scroll and returns the work­
space cursor to the home position. This destroys any 
graphic area which has been defined. 

!ERA M<CR> 

Erases the monitor scroll and returns the monitor 
cursor to the home position. 

4027 A PROGRAMMER'S @ 

!ERA< CR> 

If sent from the computer, this command erases 
whichever scroll receives text from the computer. 

If typed on the keyboard, this command erases which­
ever scroll receives text from the keyboard. 

NOTE 

The ERASE command can also be used to erase 
the contents of a graphics region in the 
workspace by entering the command !ERA 
G< CR>. See the Graphics section for details. 

BELL COMMAND 

The terminal contains a bell. This bell sounds automati­
cally when certain conditions occur; for example, the 
bell rings if the operator types beyond the right margin, 
or if an attempt is made to enter a character in a 
protected field when the terminal is in form fillout mode. 

The programmer may wish to sound the bell at various 
times during an applications program - perhaps to 
remind the operator to enter data, or to press a function 
key. The BELL command is used for this purpose. 

Syntax 

IBELl<CR> 

or 

!BEL< CR> 

Action 

This command sounds the bell. The bell also sounds 
when the ASCII BEL character, CTRL-G, is sent to the 
terminal. 

6-13 



Section 7 

COLOR COMMANDS 

The terminal has a palette of 64 distinct colors. Of 
these 64, eight may be selected at any one time to 
create graphics, to develop unique symbols and pat­
terns, and to assign colors (visual attributes) to the 
character fonts. These eight colors are assigned color 
numbers CO, C1, ... , C7, respectively. This section 
explores the commands used to select and invoke the 
various colors and how patterns may be created. 

Appendix A, the Tektronix Color Standard, should be 
reviewed before using the commands discussed in this 
section. The Tektronix Color Standard is a model used 
to explain the relationship between hue, lightness, and 
saturation and how they are used to achieve a 
particular color. 

THE COLOR. COMMANDS 

There are five commands which control the selection 
and assignment of color on the display. The COLOR 
command is used to assign one of the eight color 
numbers (CO-C7) or one of 1 20 possible patterns 
(PO-P119) to be used in any subsequent graphic 
displays. The MAP, RMAP, and MIX commands are 
used to determine which of th,e 64 possible colors will 
be assigned to the eight color numbers. The PATTERN 
command is used to define any of 120 patterns. Each 
of these commands will be discussed in turn. 

COLOR COMMAND 

The COLOR command is used to designate the color of 
subsequent graphics. 

Syntax 

!COLor <vector color no.> I< vector pattern 
no.>[< boundary color no.> I< boundary pattern 
no.>]<CR> 

where 

<vector color number> is one of CO, C1, ... , C7. 

<vector pattern no.> is one of PO, P1, ... , P119. 

<boundary color no.> is one of CO, C1, ... , C7. 

<boundary pattern no.> is one of PO, P1, ... , P119. 

4027A PROGRAMMER'S @ 

Action 

The first parameter (<vector color no.> I< vector pat­
tern no.>) specifies the color or pattern which will be 
used to draw subsequent vectors or fill subsequent 
polygons. If a boundary color or pattern is required, 
then the second parameter(< boundary color 
no.> I< boundary pattern no.>) is given. The boundary 
parameter is optional. If no color command is given, the 
default color for subsequent vectors and polygons is 
CO (default white). Valid colors for both vectors and 
boundaries are CO-C7 and PO-P1i9. 

Examples 

ICOLor C1 <CR> 

All vectors and polygons will be color C1 (default color 
red). 

ICOL C1 C2<CR> 

All vectors and polygons will be color C1 (default color 
red) and the polygons will have a boundary color C2 
(default color green). 

!COL P1<CR> 

All vectors and polygons will be pattern P1 . 

!COL P1 C4< CR> 

All vectors and polygons will be drawn in pattern P1. 
The polygons will have a boundary of color C4. Pattern 
P1 must be defined by the PATTERN command prior to 
its use in a COLOR command. Refer to the PATTERN 
command described later in this section. 

7-1 



COLOR COMMANDS 

MAP COMMAND 

MAP COMMAND 

The terminal provides a selection of 64 possible colors 
of which eight (CO-C7) may be designated at any one 
time. If colors other than the eight default colors are 
desired, the MAP command may be used to set the hue, 
lightness, and saturation to redefine any of the eight 
color numbers. If a MAP command is not given, default 
colors for CO-C7 are white, red, green, blue, yellow, 
cyan, magenta, and black, respectively. 

Syntax 

IMAP< Cn> <hue an-
gle>< lightness>< saturation>< CR> 

where 

< Cn> is one of eight color numbers (CO-C7). 

<hue angle> is an integer from 0 to 360. 

<lightness> and <saturation> are integers from 0 
to 100. 

NOTE 

Refer to Appendix A for further information on the 
Tektronix Color Standard. 

Action 

The < Cn> indicates which of the eight color numbers 
(CO-C7) is being MAPped. 

<Hue angle> is a gradation of color measured around 
a circle as an angle from 0 to 360 degrees. Referring to 
the color cone in Appendix A, observe that a <hue 
angle> of 0 degrees always specifies one of several 
shades of blue, 60 degrees magenta, 120 degrees red, 
180 degrees yellow, 240 degrees green, and 300 
degrees cyan (360 degrees= 0 degrees). If a <hue 
angle> is given between two of these angles, an 
intermediate color is produced. For example, specifying 
a <hue angle> between 0 and 60 gives a color 
between blue and magenta. 

The <lightness> and <saturation> parameters deter­
mine which shade of the given hue will be produced by 
a given <hue angle>. Again referring to the color cone 
in Appendix A, notice that <lightness> is expressed 
as a value between 0 percent (black) at the bottom of 
the cone and 100 percent (white) at the top. This 
means that any of the colors selected by the< hue 
angle> parameter will be shaded according to the 
value given by the< lightness> parameter. In addition, 
if the value of <lightness> is 0 percent, the color 

7-2 @ 

produced will be black regardless of the <hue angle> 
or< saturation>. Conversely, a <lightness> value of 
100 percent always produces white. 

The third parameter of the MAP command,< satura­
tion>, sets the amount of gray to be contained at a 
given <hue angle> and <lightness>. As the 
saturation approaches 100 percent, less gray is added 
and a purer hue is produced. 

NOTE 

Small changes in any of the HLS (hue, lightness, 
saturation) parameters may not produce a 
change in the MAPped color. For example, if the 
< hue angle> of 120 degrees, which produces 
red, is changed to 125 degrees, the red hue is still 
produced. The same is true for small changes in 
the <lightness> and< saturation> parameters. 
A total of 64 colors can be displayed. Each of 
these is invariant over a finite range in each 
parameter. 

The SYSTAT message displays the HLS (hue, light­
ness, saturation) parameters assigned to each of the 
colors CO-C7, along with a color sample. All colors 
return to their default parameters when the terminal is 
powered off or RESET. 

The default colors for CO-C7 and their respective 
default parameters are as follows: 

CO (white) - 0,100,100 
C1 (red) - 120,50,100 
C2 (green) - 240,50, 100 
C3 (blue) - 0,50,100 
C4 (yellow) - 180,50,100 
C5 (cyan) - 300,50, 1 00 
CS (magenta) - 60,50, 1 00 
C7 (black) - 0,0, 100 

Examples 

!MAP C1 0,50,100<CR> 

Sets <color number> C1 (default red) to a <hue 
angle> of 0 degrees (blue), a <lightness> of 50%, and 
<saturation> of 100%. Color number C1 is then blue. 

IMAP C4 240,50,50<CR> 

Sets <color number> C4 (default yellow) to a <hue 
angle> of 240 degrees,< lightness> of 50%, and 
<saturation> of 50%. Color number C4 is then green. 

4027 A PROGRAMMER'S 



RMAP (RELATIVE MAP) COMMAND 

The RMAP command changes a color's HLS parame­
ters by amounts specified relative to the current HLS 
parameters. 

Syntax 

IRMAp < Cn> <hue an-
gle>< lightness>< saturation>< CR> 

where 

< Cn> is one of the color numbers CO, C1, ... , C7. 

<hue angle> is a positive or negative integer from O 
to 360. 

<lightness> and <saturation> are positive or 
negative integers from 0 to 100. 

Action 

< Cn> is the color number to be redefined. The color 
may be redefined by changing the <hue angle> a 
number of degrees or by changing the <lightness> or 
<saturation> a given percentage. Any or all of the 
parameters may be changed in an RMAP command. If 
zero (0) is entered for any of the parameters, then no 
change is made to that parameter. 

NOTE 

Small changes in the HLS parameters may not 
produce a visible change in the displayed color. 
Refer to Appendix A for further information. 

When a SYSTAT command is given, it will display the 
RMAPped color and the current HLS parameters for 
that color. When the terminal is powered off or RESET, 
all eight colors return to their default values. 

The default colors for CO-C7 and their respective 
default parameters are as follows: 

CO (white) - 0, 100, 100 
C1 (red) - 120,50,100 
C2 (green) - 240,50, 1 00 
C3 (blue) - 0,50,100 
C4 (yellow) - 180,50, 100 
C5 (cyan) - 300,50, 100 
C6 (magenta) - 60,50, 100 
C7 (black) - 0,0, 100 

4027A PROGRAMMER'S @ 

COLOR COMMANDS 

.RMAP, MIX COMMAND 

Examples 

IRMAP C1 0,10,0<CR> 

C1 has default HLS parameters 120, 50, 100. By 
entering the command above, the <lightness> is 
changed 10 percent. The new HLS parameters for C1 
are then 120,60, 100. Notice that since 0 was entered 
for the <hue angle> and <saturation> parameters, 
<hue angle> and <saturation> are not changed. The 
revised parameters and a color sample will appear 
when a new SYSTAT message is displayed. 

IRMAP C2 30,-25,-50< CR> 

C2 has default HLS parameters of 240, 50, 100. This 
command will change the <hue angle> from 240 to 
270 degrees, the < lightness> from 50 to 25 percent, 
and the <saturation> from 100 to 50 percent. 

MIX COMMAND 

The MIX command provides an alternative to the MAP 
and RMAP methods of defining the color assigned to a 
given color number. The MIX command combines 
proportionate amounts of red, green, and blue to create 
one of the 64 possible colors. 

Syntax 

!MIX< Cn> <red>< green>< blue>< CR> 

where 

< Cn> is one of the eight color numbers CO-C7. 

<red>, <green>, and <blue> are positive 
integers from 0 to 100. 

Action 

This command redefines the color Cn by mixing the 
basic colors of red, green, and blue. The <red>, 
<green>, and <blue> parameters specify the amount 
of the corresponding colors to be MIXed, In percent­
ages of full Intensity. Small changes in the percentages 
of <red>, <green>, or <blue> may not cause the 
displayed color to change. 

If a SYSTAT message is displayed, it will show the 
newly MIXed color but the HLS parameters will be 
shown as 0,0,0. 

7-3 



COLOR COMMANDS 

PATTERN COMMAND 

Examples 

!MIX C2 25,0,100<CR> 

Color C2 will have a <red> component which is 25 
percent of its full intensity, no <green> component, 
and a< blue> component which is 100 percent of its 
full intensity. 

!MIX C2 0,0,0<CR> 

Color C2 is a mixture of red - 0%, green - 0%, blue -
0%. With this mixture, C2 is black. 

!MIX C2100,100,100<CR> 

Color C2 is a mixture of red - 100%, green - 100%, 
blue - 100%. With this mixture, C2 is white. 

MIX C3 50,50,0< CR> 

Color C3 will have: <red> and <green> components 
which are both 50 percent of their full intensity, and 
zero <blue> component. 

7-4 @ 

PATTERN COMMAND 

The PATTERN command is used to define a colored 
pattern for use in vector drawing, polygon filling, and so 
forth. The terminal can have 120 user-defined patterns 
in its memory at any one time. 

Syntax 

!PATtern < Pn> [<background 
COL>]< foreground COL>[< value 1 > ] ... [<val­
ue 14> H< foreground color>[< value 1 > ] .. 
.[<value 14>]] ... <CR> 

where 

< Pn> is one of PO, P1, ... , P119. 

<background COL>, <foreground COL>, and all 
occurrences of <foreground color> are chosen 
from CO, C1, ... , C7. 

All <value 1 > parameters are integers from 0 to 
255. If less than 14 <value 1 > parameters are 
specified, the omitted ones default to zero. 

Action 

The pattern Pn is defined by setting the color of each 
dot in a color cell. If two colors are given, the first is the 
<background color>, and the remainder of the com­
mand consists of groups that specity a <foreground 
color> and the dots that are to be made that color. 
Once a <foreground color> is set, all the dots which 
are designated by the following <value number> will 
be made that color. Sets of dots within each row may 
be set to different colors by giving additional <fore­
ground colors> and specifying the dots to be made 
that color by giving additional <value numbers>. In 
this manner, it is possible to have each of the eight 
dots in each row be an individual color. 

The dots which are turned on to create the pattern are 
set by giving a <value number> which is an integer 
between 0 and 255. <Value numbers> are decimal 
equivalents of binary numbers and are assigned for 
each of the 14 rows of the color cell. If a <value 
number> 0 or no <value> is given for any row, the 
<background color> is displayed. 

4027 A PROGRAMMER'S 



Examples 

!PATtern PO C2 C3 
0,0,0,0,60,60,60,60,60,60,0,0,0,0< CR> 

Pattern PO will have a <background color> C2, which 
will be the color for all of the rows which have a 
<value> of 0. Rows 5 through 10, which are given a 
<value> of 60, will have some of their dots turned on 
in the <foreground color> (C3) as shown below. The 
rest of their dots will be color C2. 

!PAT P1 C1 C3 7,7,7,7,7,7,7,7,7,7,7,7,7,7 C2 
24,24,24,24,24,24,24,24,24,24,24,24,24,24< CR> 

Pattern P1 will have a <background color> C1 
(default red) which will fill the dots not designated by 
the <foreground COL> parameter. The rightmost three 
columns of the color cell are displayed in color C3 
(default blue). Columns four and five (counting from the 
right) are displayed in color C2 (default green). The 
remaining columns have not been designated by this 
command and will therefore appear in the <back­
ground color> C1. 

Integer 

0 
0 
0 
0 

60 
60 
60 
60 
60 
60 

0 
0 
0 
0 

(2657) 4173-32 

COLOR COMMANDS 

PATTERN COMMAND 

A USER DEFINED PATTERN 

Eight-Bit 
Binary Equivalent 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Pattern Within 
One Color Cell 

Foreground Background 
Color Color 

Notice that when a new <foreground color> is given, a 
<value number> is given for each row, starting at row 
one (the topmost row). The illustration below shows the 
integers used, the eight-bit binary equivalent, and the 
pattern . 

A USER DEFINED PATTERN 

Color 1 
( < Background > ) 

No Integers 
Assigned 

4027 A PROGRAMMER'S 

Color 2 

Integer 

24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

BINARY 
00011000 

Color 3 

Integer 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

BINARY 
00000111 

@ 

Eight-Bit 
Binary Equivalent 

0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 

Pattern 

(2657) 4173-33 

7-5 

.1 



Section 8 

GRAPHICS 

The terminal has extensive color graphics capability. It 
can draw several styles of vectors (line segments), 
intermix graphics with text and forms, and store special 

purpose character fonts defined by the user. The 
terminal can also draw circles, pies (filled circles), and 
polygons. All these features include color capability. 

THE GRAPHIC COMMANDS 

There are seventeen commands designed for creating 
color graphic displays on the terminal. This section 
contains a discussion of each of these commands, in 
the order in which they are.listed: 

• Graphic • Circle 
• Enable • Ink 
• Disable • String 
• Vector • Erase G 
• RVector • Shrink 
• Line • Symbol 
• Poly • Font 
• RPoly • DFont 
• Pie 

GRAPHIC COMMAND 

Graphics are displayed in the terminal workspace. 
Before this can be done, the workspace must be 
prepared to display graphs by defining a graphic 
region. The GRAPHIC command is used for this 
purpose. 

4027 A PROGRAMMER'S @ 

Syntax 

IGRAphic <beg row>< end row>[< beg 
col>[< end col> 11< CR> 

where all parameters are positive integers designating 
rows and columns in absolute workspace coordinates. 
Thus <beg row> must be less than <end row>, <beg 
col> must be less than <end col>, and <end col> 
must be less than or equal to 80. Also, <end row> 
must not exceed <beg row> by more than 53 rows. 
The default values of <beg col> and <end col> are 1 
and 80, respectively. 

Action 

This command defines a graphic region in the terminal 
workspace and erases all information currently stored 
in this region. The graphic region thus defined consists 
of rows <beg row> through <end row>, and columns 
<beg col> through <end col> in each of these rows. 

8-1 



GRAPHICS 

GRAPHIC COMMAND 

Examples 

!GRAphic 1,33< CR> 

Creates a graphic region in the workspace containing 
columns 1 through 80 of rows 1 through 33. 

!GRA 1,33,30< CR> 

Creates a graphic region in the workspace containing 
columns 30 through 80 of rows 1 through 33. 

The structure of a graphic region is best illustrated by 
an example. The command 

!GRA 10,19,20,49< CR> 

creates a graphic region which occupies rows 1 O 
through 19, columns 20 through 49 in each of these 
rows. 

As illustrated in Figure 8-1, this graphic region is 1 O 
cells (character cells) high and 30 cells wide. Each cell 
consists of a dot matrix 8 dots wide by 14 dots high. 
Each dot can be turned on (lighted). Various commands 
discussed in this section create graphic displays or 
display user-defined symbols by turning on patterns of 
these dots. 

The columns of dots are numbered from left to right 
across the graphic region, starting with 0 for the 
leftmost column, and from bottom to top, starting with 0 
for the bottom row. In Figure 8-1, the 240 columns of 
dots (30 cells, each cell 8 dots wide) are numbered 
from 0 to 239; the 140 rows of dots (10 cells, each cell 
14 dots high) are numbered from 0 to 139. This 
establishes a coordinate system in the graphic region. 
For each dot in this region there is a pair of numbers: 
its X- and Y-coordinates. The X-coordinate gives the 
dot's horizontal position; the Y-coordinate gives the 
dot's vertical position. These coordinates are used in 
the VECTOR, POLYGON, PIE, and CIRCLE commands. 

This coordinate system is also used in the RVECTOR 
and RPOL YGON commands. In these commands, how­
ever, each coordinate pair is relative to the last 
coordinate pair given in the command. 

It is possible to define more than one graphic region in 
the workspace. If this is done, new graphic commands 
affect only the graphic region most recently defined. 
Different graphic regions should not overlap. 

3ocELLS----1 
___ w10E I 

8-2 

l --
I 

10 CELLS 
HIGH 

I 
L---

· 1 

Figure 8-1. A Graphic Region. 

@ 

00000000 
00000000 
00000000 
00000000 
00000000 
000000•• 
ooooeeoo 
ooeeoooo 
eeOOOOOO 
00000000 
00000000 
00000000 
00000000 
00000000 

(2657) 4173-34 

4027 A PROGRAMMER'S 



ENABLE COMMAND 

The ENABLE command places the terminal in the 
Graphic Input (GIN) mode. This mode is used to 
provide graphic beam position and color information to 
the host computer. 

Syntax 

IENAble [<count>]<CR> 

where <count> is a positive integer specifying the 
number of points to be sent to the host computer. If 
<count> is not specified, it defaults to infinity. 

NOTE 

GIN mode may also be initiated by pressing the 
crosshair key. 

Action 

The ENABLE command causes the terminal to enter 
GIN mode. When GIN is first ENABLEd, the crosshair is 
displayed at the graphic beam position. The crosshair 
can then be manipulated with the cursor control and 
home keys. 

When a key other than the crosshair control key is 
pressed, a report is sent to the host. The report is in the 
form: 

< cmd. chr.> DAT 03, <key>, < x pos>, < y pos> 
<color>; 

where 

< cmd. chr.> is the current command character. 
DAT 03 indicates the crosshair device. 

<key> is the ASCII decimal equivalent of the key 
value that generated this report. 

< x pos> is a three-digit number indicating the 
location of the crosshair with respect to the horizon-
tal axis. · 

<Y pos> is a three-digit number indicating the 
location of the crosshair with respect to the vertical 
axis. 

<color> is a three-digit number indicating the color 
of the point at that location. 

The terminal remains in GIN mode until one of the 
following occurs: 

• the crosshair key is pressed. 

• a DISABLE command is sent from the host or typed 
on the keyboard. 

GRAPHICS 

ENABLE COMMAND 

• the specified <count> number of points and the 
carriage return have been sent. An end-of-line 
sequence is not sent between each point when 
multiple points are sent. 

Certain characteristics of the graphic beam during GIN 
mode should be noted. When ENABLE is given, the 
crosshair is displayed at the graphic beam position. If 
the crosshair is moved, the graphic beam is moved to 
the crosshair position when a key is pressed. Also, if 
INKing is on, a line is drawn from the previous graphic 
beam position to the present crosshair position when a 
key is pressed. The key normally used to set the 
graphic beam at the position of the crosshair is the pad 
terminator key. However, pressing most of the alpha or 
numeric keys will have the same result. Keys which, 
when pressed, do not set the graphic beam at the 
position of the crosshair are the BREAK, CROSSHAIR, 
SHIFT, CONTROL, HOME, TTY LOCK, NUMERIC LOCK, 
Scrolling, cursor moving, and COMMAND LOCK OUT 
keys. Unless the command lockout light is on, the 
command character key also will not set the graphic 
beam. 

Examples 

IENAble <CR> 

Places the terminal In GIN mode and sets the crosshair 
at the graphic beam position. 

_______ ._ _____ _ 

A crosshalr appears In the workspace 
when the 4027 A Is ENABLED. 

IENA5<CR> 

Places the terminal In GIN mode for the specified 
number of points (5) and sets the crosshalr at the 
graphic beam position. An end-of-line sequence Is 
sent, after five reports have been sent, which causes 
the crosshalr to leave the screen and the terminal to 
leave GIN mode. 

4027A PROGRAMMER'S REV, NOV 1981 8-3 



GRAPHICS 

DISABLE, VECTOR COMMAND 

DISABLE COMMAND 

Syntax 

IDISAble <CR> 

Action 

The DISABLE command removes the terminal from GIN 
mode. The crosshair is removed from the graphic area 
and the crosshair control keys return to controlling the 
alpha cursor. An end-of-line sequence is sent to the 
host as the terminator of the GIN messages, if any have 
been sent. 

VECTOR COMMAND 

When a graphic region of suitable size has been 
defined, vectors (line segments) can be drawn in the 
graphic region using the VECTOR command. 

Syntax 

IVECtor <XO>< YO>< X1 > < Y1 > [< X2> < Y2> 
.. <Xn><Yn>]<CR> 

where all < X> and < Y> parameters are positive 
integers. 

Action 

This command draws a vector from the point with 
graphic coordinates (<XO>,< YO>) to the point with 
coordinates (< X1 >, < Y1 > ). If additional pairs of 
coordinates are specified, additional vectors are drawn 
from (< X1 >, < Y1 >) to (< X2>, < Y2>), from (< X2>, 
< Y2>) to(< X3>, < Y3> ), ... , and finally from 
(< X(n-1)>,<Y(n-1 )>)to(< Xn>, < Yn>). All vec­
tors are drawn in the color currently defined by the 
COLOR command. 

The < X> and < Y> coordinates are graphic region 
coordinates. If the value of < X> or < Y> is not within 
the graphic region, the vector is "clipped;" that is, a 
line is drawn to the edge of the graphic region in the 
current direction. If another vector is drawn after this, 
the new vector is also clipped as it comes back into the 
window. 

NOTE 

IVEC <XO>< YO> causes the beam position to 
be moved to< XO>.< YO>. No vector is drawn. 

Example 

Suppose you have used the IGRA 10, 19,20,49< CR> 
command to define the 240 X 1 40 graphic region 
described earlier. The command 

IVEC 120,120 91,30 168,85 72,85 149,30 
120,120< CR> 

creates the following display. (Axes are not shown on 
the display.) Note that, since either a space or a comma 
serves as the separator, we have alternated these to 
emphasize the VECTOR coordinate pairs. 

Y-AXIS 

(120,120) 

""' 
(72,85) 

\ 

'----------------i~ X-AXIS 

!VEC 120, 120,91,30,168,85, 72,85, 149,30, 120, 120 

12402) ., 73-5 

Figure 8-2. The VECTOR Command. 

8-4 REV, NOV 1981 4027 A PROGRAMMER'S 



RVECTOR (RELATIVE VECTOR) 
COMMAND 

It is possible to draw vectors by specifying relative 
coordinates - that Is, coordinates relative to the last 
graphic beam position. This is done using the RVEC­
TOR command. 

Syntax 

IRVEctor <rel XO>< rel YO>< rel X1 ><rel Y1 > 
[<rel X2> <rel Y2> ... <rel Xn> <rel 
Yn>]<CR> 

where <rel X> and <rel Y> are Integers, not 
necessarily all positive. The parameters are separated 
by spaces or commas. 

Action 

This command draws one or more vectors in the 
graphic region, as does the VECTOR command. The 
pair< rel XO>,< rel YO> specifies coordinates rela­
tive to the current graphic beam position. Each suc­
ceeding pair of <rel X>, <rel Y> parameters speci­
fies new coordinates relative to the preceding 
coordinate pair. All vectors are drawn in the color 
currently defined by the COLOR command. 

Example 

Suppose that the current graphic beam position is at 
the point with absolute workspace coordinates (120,-
65). The command: 

IRVE 0,55 - 29,- 90 77,55 - 96,0 77,- 55 
-29,90<CR> 

draws the star in Figure 8-3. It is the same figure drawn 
by the earlier VECTOR command, but now each pair of 
coordinates given is relative to the preceding pair of 
coordinates. 

As in the VECTOR command, if a pair of coordinates 
specifies a point outside the graphic region, the 
terminal will draw the vector only to the edge of the 
graphic region where It will be terminated or "clipped." 
The next line to be drawn will be drawn as though the 
entire vector was present. The clipping action has no 
effect on subsequent vectors. 

GRAPHICS 

RVECTOR COMMAND 

START FINISH 
Y-AXIS (120+0,85+55) - (120, 120) ~ (149-29,30+90) 

t / 

ORIGINAL VECTOR BEAM 
POSITIONED AT (120,85) 

/ 
(120-29, 120-90) - (91,30) 

i 
(149,30) • (72+77,85-55) 

'--------------- X-AXIS 

IRVE O, 55,-29,-90,77,55,-98,0,77,-55,-29,90<CR> 

(24021 4173-8 

Figure 8-3. The RVECTOR Command. 

NOTE 

!RVE <XO>< YO> causes the beam position to 
be moved <XO> units in the horizontal direction 
and < YO> units in the vertical direction from the 
current beam postion. 

LINE COMMAND 

The terminal can draw different styles of vectors. The 
style of vector is selected with the LINE command and 
will be drawn in the current vector color by the 
VECTOR command. 

Syntax 

ILINe [<line type>]< CR> 

where <line type> must be one of the following: 

• A digit from 1 to 8, Inclusive 

• The letter P 

• The letter E 

If <line type> is not specified, it defaults to one. 

4027 A PROGRAMMER'S REV, NOV 1981 8-5 



GRAPHICS 

LINE, POLYGON COMMAND 

Action 

This command sets the type of line used to draw 
vectors in subsequent VECTOR, RVECTOR, and CIR­
CLE commands. Line type 1 is a solid line, the default 
line type. Line types 2 through 8 are various styles of 
dashed lines. Line types 1 through 8 are shown In 
Figure 8-4. 

Line type P causes subsequent VECTOR and RVEC­
TOR commands to plot Isolated points rather than 
connect the points with line segments. 

Line type E causes subsequent VECTOR and RVEC­
TOR commands to draw vectors In the background 
color which effectively "erase" existing vectors. 
However, If a line that crosses a polygon Is erased In 
this way, It will leave a background color line across 
the polygon. 

1 
,l·. 
3' 
4 
5 
6 
7 
8 

Figure 8-4. Vector LINE Types. 

POLYGON COMMAND 

(2401) 4173-40 

A large number of shapes and panels may be drawn in 
color by the terminal using the POLYGON command. 

Syntax 

IPOLygon 
<X1 ><Y1><X2> <Y2><X3> <Y3> [ ... 
< Xn> < Yn> ]<CR> 

where 

< X1 > Is an Integer Indicating a point on the 
horizontal axis which will be one of the coordinates 
for one vertex of the polygon. 

< Y1 > Is an integer indicating a point on the vertical 
axis which will be the second coordinate for one 
vertex of the polygon. Additional parameters define 
the succeeding vertices of the polygon. A minimum 
of 3 vertices are necessary to form a polygon. 

Action 

This command draws a polygon whose verticies are 
defined by the given parameters. This polygon Is filled 
In with the current color (as defined by the COLOR 
command). Boundaries of polygons are drawn In the 
current line type, as defined by the LINE command. 
Bo~ndarles are drawn in current boundary color, as 
defined by the second parameter of the COLOR 
command. If no boundary color has been specified the 
color will be the same as the polygon interior. The ' 
vertices are given as In the VECTOR command; if the 
last vertex Is not the same as the first vertex, then a 
closing edge is automatically drawn. If any edges 
cross, the polygon will still be filled correctly. 

Y-AXIS 

(100,200) (200,200) 

(100,100) (200,100) 

--------------X-AXIS 

IPOL 100, 100, 200, 100, 200, 200, 100, 200< CR> 

4173-105 

8-6 REV, NOV 1981 4027A PROGRAMMER'S 



Since a maximum of 53 lines may be allotted to the 
graphic region, the largest possible Y axis coordinate 
that can be displayed is 752 (14 X 53 = 752). Larger 
coordinates will result In the polygon being clipped. X 
axis coordinates larger than 639 will also produce 
clipping. If the SHRINK command has been given, 
larger coordinates are possible. 

Refer to the GRAPHIC command discussion for further 
explanation of the graphic region coordinate system. 

Example 

IPOLygon 
100, 100,200, 100,200,200, 100,200< CR> 

Creates a polygon designated by the given vertices in 
the current color as shown below. 

RPOLYGON (RELATIVE POLYGON) 
COMMAND 

The terminal can draw polygons using relative coordi­
nates (as in the RVECTOR command). 

Syntax 

RPOLygon < X1 > < Y1 > < X2> < Y2> < X3> 
<Y3>[ ... <Xn><Yn>]<CR> 

where 

< X1 > and < Y1 > are coordinates relative to the 
current position of the crosshair and define the first 
point of the polygon. 

< Xn> and < Yn> are subsequent coordinates 
which define the other vertices of the polygon 
relative to the last given pair of coordinates. 

Action 

This command creates a filled polygon in the current 
vector and boundary color as does the POLYGON 
command. But the vertices are given in relative coordi­
nates, as in the RVECTOR command. If the last vertex 
is not the same as the first, a closing edge Is 
automatically created. Like the POLYGON command, 
the resulting filled area covers anything below it. If 
polygons overlap, the last one created Is the one 
displayed in the overlapping area. 

Example 

IRPOLygon 0,0,50,50,- 50,50< CR> 

GRAPHICS 

RPOLYGON COMMAND 

Creates a triangle at the location of the crosshair in the 
current vector and boundary colors, as shown In Figure 
8-5a. 

IRPOL 150,0,50,50,- 50,50< CR> 

Creates a triangle. Its first coordinate pair is 150 points 
to the right of the crosshair position on the X axis. 
Subsequent vertices of the trlangle are drawn relative 
to the position designated by the previous coordinate 
pair. Refer to Figure 8-5b. 

Y-AXIS 

SECOND VERTEX (50,50) 

/~START IDPI ISATLOCATION 
CROSSHAIR / I OF THE CROSSHAIR. 

I 

'---------------X-AXIS 

IRPOL 0,0 50,50 -50,50< CR> 

4173-106 

Figure 8-Sa. AN RPOLY Command Using 0,0 as the 
First Coordinate Pair. 

Y-AXIS 

CROSSHAIR 

I 
I 
I 150 
-POINTS 

/

THIRD VERTEX (-50,50) 

SECOND VERTEX 
(50,50) 

/ 

'--------------- X-AXIS 
IRPOL 150,0 50,50 -50,50<CR> 

4173-107 

Figure 8-Sb. An RPOLY Command Using 150,0 as the 
First Coordinate Pair. 

4027A PROGRAMMER'S REV, NOV 1981 8-7 



GRAPHICS 

PIE COMMAND 

PIE COMMAND 

The terminal can draw filled circles, circle sectors, or 
equilateral polygons using the PIE command. 

Syntax 

!PIE< radius> [<start angle>] [<end angle>] 
[<increment angle>]< CR> 

where 

8-8 

<radius> is a positive integer representing the 
radius of the pie or polygon in raster units. A raster 
unit is one dot within a character cell. Refer to the 
GRAPHIC command (in this section) for further 
explanation of dots and character cells. 

<start angle> is a positive or negative Integer 
which states the angle at which the first radius is 
drawn. 

<end angle> is a positive or negative integer which 
states the angle at which the last radius is drawn. 

<increment angle> is a positive integer which 
represents the angle between points on the cir­
cumference that become vertices of a polygon. 

._. (0°) START ANGLE 

CENTER 
POINT 

~(270°) END ANGLE 

!PIE 100 0 270< CR> 

4173-108 

@ 

Action 

The PIE command causes a pie shape to be drawn, 
centered at the current crosshair position. The pie has 
a< radius> of the specified number of raster units and 
is filled with the current vector color and outlined in the 
current boundary color from the <start angle> to the 
<end angle>. If the <start angle> and <end angle> 
are not given, 0 and 360 degrees are the default values 
and a complete pie is drawn with the specified 
<radius>. 

If <increment angle> is given, the PIE command 
creates a polygon with vertices every <increment 
angle> degrees. These points are joined and become 
the vertices of a polygon. The default value for 
<increment angle> is 4 degrees. A polygon drawn 
with vertices this close together looks like a circle. 

All angles are measured with 0 degrees as the point of 
reference. Zero degrees is the horizontal line segment 
which extends from the center point to the point on the 
right side of the graphic area. Angle values increase in 
a direction moving counterclockwise. 

/(45°) INCREMENT ANGLE 

!PIE 100 0 360 45< CR> 

/(0°) START ANGLE 

,(360°) END ANGLE 

CENTER 
POINT 

4173-109 

4027 A PROGRAMMER'S 



Examples 

IPIE 100 0 270<CR> 

Causes a pie to be drawn as shown below. The 
<radius> Is 100 raster units,< start angle> Is 0 
degrees, and <end angle> is 270 degrees. 

!PIE 100 0 360 45< CR> 

This command draws a polygon as shown below. The 
<radius> Is 100 raster units, <start angle> is 0 
degrees, and <end angle> is 360 degrees. Since the 
<Increment angle> of 45 degrees has been given, the 
pie is drawn as a polygon with 8 equal sides. 

IPIE 100 0 360 90<CR> 

When this command is given the polygon shown below 
Is drawn in the current boundary color and filled in the 
current vector color. The <radius>, <start angle>, 
and <end angle> are the same as in the previous 
example. With the <increment angle> set at 90 
degrees, a square polygon is drawn which is rotated 45 
degrees from the X axis. 

..........-(90°) INCREMENT ANGLE 

IPIE 100 0 360 90< CR> 

4027A PROGRAMMER'S 

(0°) START ANGLE 

I 
\ 

(360°) END ANGLE 

CENTER 
POINT 

4173-110 

@ 

GRAPHICS 

CIRCLE COMMAND 

CIRCLE COMMAND 

The CIRCLE command is used to create circles, circle 
sectors, and equilateral polygons, just as the PIE 
command. These shapes, however, are not filled; 
instead just the boundary is drawn in the current color. 

Syntax 

ICIRcle <radius> [<start angle> 1 [<end angle> 1 
[<increment angle> 1< CR> 

where 

<radius> is a positive integer representing the 
radius of the circle or polygon in raster units. 

<start angle> Is a positive or negative integer 
which states the angle at which the first radius of 
the circle will be drawn. 

<end angle> is a positive or negative integer which 
states the angle at which the last radius of the circle 
will be drawn. 

<increment angle> is a positive integer which 
represents the number of degrees between the 
vertices of the polygon . 

R•dlus 
_.100RHter­

Unltl 

/(0°) START ANGLE 

' 
CENTER 
POINT 

(360°) END ANGLE 

CIRCLE CREATED BY ICIR 100 0 360< CR> 

4173-111 

8-9 



GRAPHICS 

CIRCLE COMMAND 

Action 

The CIRCLE command creates various shapes in the 
same manner as the PIE command. The CIRCLE 
command causes a shape to be drawn around the 
beam position which, unlike the PIE command, is not 
filled with the current vector color. Only the boundary 
of the figure is made the current color. 

The circle (or polygon) will be drawn from the< start 
angle> to the <end angle> at a radius of <radius> 
raster units. If the <start angle> and <end angle> 
are not given, they default to 0 and 360 degrees, 
respectively. 

If <increment angle> is given, the CIRCLE command 
will mark vertices at intervals of <increment angle> 
degrees. The vertices then are joined to form a polygon 
as in the PIE command. Default value for< increment 
angle> is 4 degrees. 

All angles are measured with 0 degrees as the point of 
reference. Zero degrees is the horizontal line segment 
which extends from the center point to the right side of 
the graphic area. Angle values increase in a direction 
moving counter clockwise relative to zero degrees. 

8-10 

/(0°) START ANGLE 

' (360°) END ANGLE 

CENTER 
POINT 

POLYGON CREATED BY !CIR 100 0 360 45<CR> 

4173-112 

@ 

Examples 

!CIRcle 100 0 360< CR> 
!CIR 100< CR> 

Creates a complete circle in the current vector color 
with a< radius> of 100 raster units, as shown below. 

!CIR 100 0 360 45< CR> 

Creates a polygon in the current vector color with a 
<radius> of 100 raster units. As shown below, 
including the <increment angle> of 45 degrees 
causes an eight-sided polygon to be formed. <Start 
angle> and <end angle> must be given when <in­
crement angle> is used. 

!CIR 100 90 360< CR> 

Creates a sector of a circle with a <radius> of 100 
raster units from the <start angle> of 90 degrees to 
the <end angle> of 360 degrees, as shown below. 

_....,.,__--- (90°) START ANGLE 

R•dlua 
..,,...-100 Raate..- - (360°) END ANGLE 

/" Units 
CENTER 
POINT 

SHAPE CREATED BY !CIR 100 90 360 <CR> 

4173-113 

4027 A PROGRAMMER'S 



INK COMMAND 

The INK command enables the drawing of lines 
between points in the graphic area without typing in 
coordinates. The terminal must be in the GIN mode to 
INK. 

Syntax 

!INK [Yes I No]< CR> 

If no parameter is specified, Yes is assumed. 

Action 

When the INK or INK YES command is given, the 
terminal can draw lines from the present crosshair 
location to the previous location without designating 
the coordinates as in a VECTOR or RVECTOR 
command. The terminal must be ENABLED by giving 
the ENABLE command or pressing the zero/crosshair 
key. After this has been done, pressing the pad 
terminator key or any other non-cursor moving key 
causes a line to be drawn from the present position of 
the crosshair to the previous position. 

The INK NO command turns INKing off. 

Example 

!INK Yes< CR> 

Refer to Figure 8-6. When drawing a line from crosshair 
position one to position two, position one must first be 
established by moving the crosshair to the desired 
location and pressing the pad terminator key. Remem­
ber that the crosshair is displayed by giving the 
ENABLE command or pressing the crosshair key. When 
the crosshalr first comes up, if IN King is already on, a 
line is drawn from the previous beam position to the 
crosshair position when the pad terminator key is 
pressed. 

4027 A PROGRAMMER'S 

GRAPHICS 

INK COMMAND 

After the position of the crosshair has been estab­
lished, give the INK command. Then, each time the 
crosshair is repositioned and the pad terminator key is 
pressed, a line is drawn between the present location 
of the crosshair and the previous one. Lines are drawn 
in the current vector color. If no color has been 
specified, lines are drawn in color number CO (default 
white). 

!INK No< CR> 

The IN King process is terminated. If INKing is off, then 
no vectors are drawn when points are set in GIN mode. 

If an ENABLE command for X points is given, after X 
points are entered, the crosshair goes down and INKing 
appears to terminate. However, INKing is still in effect 
and additional vectors will be INKed if the ze­
ro/crosshair key is pressed, returning the crosshair to 
the graphic region. INKing is terminated only by giving 
the INK NO command. 

4027A GRAPHIC AREA 

LINE DRAWN IN CURRENT 
COLOR WHEN PAD TERMINATOR 

KEY PRESSED.~ 

: PREVIOUS 
I CROSSHAIR POSITION 

PRESENT 
CROSSHAIR POSITION 

4173-114 

Figure 8-6. Drawing a Line In INK mode. 

@ 8-11 



GRAPHICS 

STRING COMMAND 

STRING COMMAND 

Text may be entered in a graphic region directly from 
the keyboard or by using the STRING command. The 
STRING command allows text to be positioned relative 
to the displayed graphics using graphic coordinates. 

Syntax 

ISTRing <text>< CR> 

where <text> may be: 

1. One or more delimited ASCII strings. 

2. A sequence of ASCII Decimal Equivalents. 

3. Any combination of 1 and 2. 

The string defined by <text> should not contain the 
command character. 

8-12 @ 

Action 

This command inserts the string defined by the 
<text> parameter into the graphic region. The first 
character defined by <text> is displayed in the 
character cell containing the graphic beam. 
Succeeding characters of <text> are displayed In 
succeeding character cells. Any vectors or characters 
that were previously displayed in the character cells 
where <text> is inserted are no longer visible, since 
each character of <text> fills an entire character cell. 

Example 

ISTRing/Triangle/< CR> 

where "Triangle" is a delimited ASCII string which will 
be displayed at the position of the graphic beam. 

Triangle 

! GRl=f'HIC 1, 35 
!VECT~ 0,0 300,0 150,200 0,0 
!VECT~ 120,80 
!STRit«; "Tr1an9le" 

Figure 8-7. The STRING Command. 

(2657) 4173-35 

4027A PROGRAMMER'S 



ERASE G COMMAND 

When the information displayed in a graphic region is 
no longer needed, it can be deleted in one of two ways. 
You can delete the graphic region and all information 
stored in it from the workspace display list. You can 
also erase the graphic information but leave the 
graphic region defined to display new graphic informa­
tion. 

To delete the graphic region from the display list, give 
the ERASE WORKSPACE command. The graphic re­
gion, along with all other information in the workspace, 
is deleted from the display list. No further graphic 
commands can be executed until a new graphic region 
is defined by a GRAPHIC command. 

If you wish to reuse the same graphic region, the 
ERASE G command is used. The ERASE G command 
can include a color number or pattern number which 
will cause the graphic area to be flooded (erased) with 
the specified color or pattern. 

Syntax 

!ERAse [G [raphics] [<color number> I< pattern 
number>]]< CR> 

4027 A PROGRAMMER'S @ 

Action 

GRAPHICS 

ERASE G COMMAND 

This command causes the graphic area to be erased. If 
the parameters include a color number (CO-C7) or 
pattern number (PO-P119), the color or pattern be­
comes the background color. The current vector and 
panel drawing color is not changed. The ERASE 
GRAPHICS command does not reallocate the graphic 
memory cells at the top of Font 31. 

NOTE 

The ERASE command can a/so be used to erase 
the contents of the workspace or monitor. Refer 
to the Controlling the Display section for details. 

Examples 

IERAG<CR> 

Erases the contents of the graphic area containing the 
graphic cursor. 

!ERA G C1 <CR> 

Erases the contents of the graphic area with color C1. 

!ERA G P1 <CR> 

Erases the contents of the graphic area with pattern 
P1. 

8-13 



GRAPHICS 

SHRINK COMMAND 

SHRINK COMMAND 

When using 4010-style graphics it is necessary for the 
terminal to alter the coordinates of graphic information 
in its display list. 

The terminal can accept 4010-style graphic commands 
from a host computer. In 4010-style graphic 
commands, the X-coordinates can be as great as 1023. 
The X-coordinates in terminal_ graphic commands 
should not exceed 639 (in a graphic region occupying 
all 80 columns). It is necessary, therefore, to scale 
incoming 4010-style graphic commands for display in 
the terminal graphic region. (See discussion of 4010-
style graphics in this section.) 

Syntax 

ISHRink [Yes I Hardcopy I Both I Resolution I 
No]< CR> 

The default parameter is Yes. 

8-14 @ 

Action 

SHRINK YES. This command causes the terminal to 
"shrink" X- and Y-coordinates in subsequent VECTOR, 
RVECTOR, POLY, RPOL Y, CIRCLE and PIE commands, 
multiplying them by a factor of approximately 5/8. This 
accommodates the terminal to the range of possible 
coordinates in 4010-style graphics commands. The 
SHRINK YES command also sets the appropriate 
output condition for transmitting DATA coordinates in 
graphic input mode. 

To use the terminal to execute a 4010-style graphic 
command file, first dimension the graphic region to hold 
35 rows of 80 columns. (!GRA 1,35,1,80 or IGRA 10,44 
are two GRAPHIC commands which do this.) Then give 
a SHRINK YES command to put the terminal in 
graphics shrink mode. 

NOTE 

SHRINK HARDCOPY and SHRINK BOTH com­
mands are included only for compatibility with 
programs written for the 4025A. These commands 
are not recommended for programs written for the 
4027A. 

SHRINK NO. This command removes the terminal from 
shrink mode. 

SHRINK RESOLUTION. This command tells the termi­
nal to translate VECTOR and RVECTOR commands, 
which may be passed to the 4662 Plotter with Option 
04 in 4096 X 4096 resolution information. 

4027A PROGRAMMER'S 



GRAPHICS 

EFFECTS OF A GRAPHIC REGION 

EFFECTS OF A GRAPHIC REGION 

The presence of a graphic region affects the action of 
some terminal commands and keys as follows: 

DELETE CHARACTER: Inside a graphic region, the 
character is replaced by a space. 

DELETE LINE: In a line which passes through a 
graphic region, only characters outside the graphic 
region are deleted. Information inside the graphic 
region is not deleted. 

ERASE & SKIP: In a line that passes through a graphic 
region, only characters outside the graphic region are 
deleted. 

-TOTA.. 

ERASE WORKSPACE: This erases the entire work­
space, including the graphic region definition. A new 
GRAPHIC command must be given before new 
graphics can be displayed. 

CURSOR MOVEMENT AND TYPING: The ASCII keys, 
the cursor movement keys 'and commands, and the 
scrolling keys and commands are not affected by the 
presence of the graphic region. If the cursor is moved 
into a graphic region and a character typed on the 
keyboard, that character replaces graphic information 
previously stored in the character cell. Entering GIN 
mode causes the cursor movement keys to control the 
movement of the crosshair instead of the cursor. 

15 ······· HIQU:WS FK> OTI£R TRAEPCRTATiai 
-·-· ms5 TRA'EIT FtlD RAI~ 

B 
I 
L 
L 
I 
0 
N 
s 

10 

5 

e 

- - ~TER 

.··' .. ···· 
... 

............ ·-·········· 
.·· 

.. .. ... 
···' ~----·~--. 

... -::;::.:::::::::::::::::::::::::::::::.::::~-------~~~~-~ -- - -
..., ..... yf..-· - - -- - .,,,. -............. - - - .,,,. -

- - _, - ---

68 69 70 

.,,,,,, - - - -

71 12. 73 74 75 
F"I&:A.. ~ 

Figure 8-8. A Graphic Display. 

76 Tl 78 79 

(2402) 4173-7 

4027 A PROGRAMMER'S @ 8-15 



GRAPHICS 

EFFECTS OF A GRAPHIC REGION 

FORM FILLOUT MODE: All locations within the graph­
ic region are protected in form fillout mode. If a graphic 
region is less than 80 columns wide and no form exists 
in the side region(s), the area to the left of the form is 
unprotected (text may be entered) but all other areas 
outside the form are protected and text may not be 
entered in them. To prevent text from being entered 
into the unprotected area of the field, expand the 
graphic area so that it will begin at column 1. 

ATTRIBUTE CODES: Inside a graphic region, the 
terminal inserts only font attribute codes in the display 
list. All other attributes are ignored. Any visual attrib­
utes (enhanced, etc.) which are in effect at the left 
edge of the graphic region affect the entire row of 
character cells running through the graphic region. 
Logical attributes and font codes in effect at the left 

TOTFl.. 

edge of the graphic region do not affect the graphic 
region itself, but characters to the right of the graphic 
region are given these same font and logical attributes. 

THE SEND COMMAND: Graphic information in a 
graphic region is not transmitted by the SEND com­
mand. Every character cell containing graphic 
information is transmitted as an ASCII space. Text 
information is sent, however. 

Suppose the graph shown in Figure 8-8 is displayed in 
the workspace. 

If you do a SEND operation to the computer, then SEND 
back from the computer to the terminal, you obtain the 
display in Figure 8-9. No information generated by 
graphic commands was sent to the computer. The 
display in Figure 8-9 is what is stored in the computer. 

15 HIQt.RYS Fl«> On£R TIRERRTATICl-t 
r-RSS TIRf31T FH> RAILJOl)S 

B 
I 
L 10 
L 
I 
0 
H 
s 

5 

0 

~TER 

68 69 70 71 72 73 74 75 76 77 78 79 
rISCA.. VEMS 

(2657) 4173-36 

Figure 8-9. A Graphic Display After the SEND Command. 

8-16 @ 4027 A PROGRAMMER'S 



GRAPHICS 

4010-STYLE GRAPHICS 

4010-STYLE GRAPHICS 

The terminal with standard Graphics Memory, accepts 
4a1 a-style graphic commands when these commands 
are sent from the host. (The terminal does not accept 
4a1 a-style graphic commands entered on the key­
board.) 4a1 a-style graphics are characterized by ad­
dressable screen coordinates and the use of ASCII 
characters to encode these addresses. 

To enable the terminal to respond properly to 4a1 a­
style graphic commands, issue the commands 

!GRAPHIC 1,35< CR> 
!SHRINK< CR> 

These set up a graphics region which is correctly 
proportioned to display 4a1 a-style graphics. Specifi­
cally, the addressable graphic region is approximately 
64aX by 49aY, in terminal workspace coordinates 
(1 a24X by 784Y in 4a1 a coordinates). (See the 
SHRINK command discussion earlier in this section.) 

In 4a1 a-style graphics, certain control characters are 
interpreted by the terminal as graphic commands. The 
following 4a1 a-style commands from the host cause 
the terminal to change operating modes: 

1. The GS command places the terminal in 4a1 a­
style graph mode. 

2. The US command exits the terminal from graph 
mode and positions the cursor at the character cell 
containing the graphic beam. 

3. The ESC command notifies the terminal that the 
next character should be interpreted as a 
command. This command has no effect if the 
terminal is in 4a1 a-style graph mode. 

4. The ESC-Form Feed command erases the current 
graphics region if the terminal is in US mode. 

ADDRESSING THE GRAPHIC BEAM 

The graphic beam is moved to a point in the graphic 
region by sending to the terminal the binary equiva­
lents of the Y address and the X address (4a1 a 
coordinate addresses) of the point. Each binary equiva­
lent is separated into two parts: the five most signifi­
cant bits and the five least significant bits. The address 
2asY,148X translates to aa11 aa11 a1 Y, 
aa1 aa1 a1 aax (binary). The aa11 aa11 a1 Y becomes 
aa11 a HiY and a11 a1 LoY; the aa1 aa1 a1 aax be­
comes aa1 aa HiX and 1 a1 aa LoX. In graph mode, 

4027 A PROGRAMMER'S @ 

these bytes cause the beam to be moved to the 
2asY,148X position in the graphic region. To be sent to 
the terminal, these bytes must be encoded as ASCII 
equivalents. The aa11 a HiY bit is encoded as an ASCII 
"&"symbol, which has binary representation a1 aa11 a. 
The first two bits, a1, instruct the terminal that this is a 
HiY address. The last five bits, aa11 a, form the HiY 
segment of the Y address aa11 aa11 a1. 2asv, 148X is 
encoded as "&m$T." Appendix C is a Coordinate 
Conversion Chart for encoding X- and Y-coordinates 
as ASCII characters. Refer to Section 5 for an explana­
tion of the Delete Ignore feature as controlled by the 
PAD command. 

GRAPH MODE MEMORY 

When an address is sent to the terminal, the HiY, LoY 
and HiX bytes are stored in a register. If the next 
address sent to the terminal repeats some of these 
bytes, they need not be retransmitted. LoX must always 
be sent, since the command is not executed until LoX 
is received. Even if the terminal leaves graph mode and 
reenters it later, these three bytes are retained. The 
following table shows which bytes must be sent in 
response to specific byte changes. 

Bytes 
Which 
Change 

HiY 

LoY 

HiX 

Lox 

Table 8-1 

4010-STYLE GRAPHICS 
REQUIRED BYTE TRANSMISSIONS 

Bytes which must be transmitted 

HIV LoY HIX Lox 

# # 

# # 

# # # 

# 

When the terminal exits 4a1 a-style graph mode, the 
communications port is returned to the portion of 
display memory it was in before entering graph mode 
(workspace or monitor). 

For a complete discussion of 4a1 a-style graphics, see 
the 4a1 a Series documentation. 

8-17 



GRAPHICS 

SYMBOL COMMAND 

ALTERNATE CHARACTER FONTS 

The terminal graphics memory may be used to store 
alternate character fonts, defined by the user for 
special purposes. 

With its full 192K of graphics memory (Option 29), the 
terminal can accommodate up to 32 different fonts, 
each containing up to 128 characters. Thirty-one of 
these fonts may be user-defined. (The standard font is 
Font 0 and cannot be modified by the operator or by 
the computer.) In addition to the standard font, two 
other predefined fonts are available: Ruling Characters 
(Option 32) and Math Characters (Option 34). 

NOTE 

Font 31 is used to store user-defined patterns. A 
FONT 31 command will cause an error condition. 

Alternate character fonts are defined by the FONT 
command or on a character by character basis with the 
SYMBOL command. 

SYMBOL COMMAND 

Syntax 

!SYMbol <number> <font>[< background color 
no.> 1 [<foreground color no.> 1 [<value 1>1 ... 
[<value 14> H< foreground color no.> H< value 1>1 

[<value 14>11<CR> 

where 

<number> is an integer between 0 and 127, 
inclusive, or any of the ASCII characters. 

<font> is an integer between 1 and 31, inclusive. 

<background color no.> is a color number, CO-C7, 
which designates the color of the dots which will not 
be a part of the symbol. 

<:foreground color no.> is a color number, CO-C7, 
which designates the color of the dots which form 
the symbol. 

Each <value n> is an integer from 0 to 255 which 
specifies which dots in a particular row will be the 
foreground color. 

8-18 @ 

The< font> parameter must specify a character font 
for which graphics memory is installed. (The operator 
can discover which character fonts have graphics 
memory installed with the GTEST command, discussed 
in the System Status and Initialization section.) Each 
<value n> parameter defaults to zero. 

Action 

This command defines a symbol in character font 
<font>. The <number> parameter is the ASCII 
decimal equivalent of some ASCII character. The ASCII 
character itself may be used. The symbol defined by 
this command is displayed whenever the specified 
ASCII character is entered in a field with font attribute 
<font>. 

The symbol is defined by specifying which dots in the 8 
x 14 character cell matrix are lighted in the 
<foreground color> when the symbol is displayed. 
Each <value n> parameter is converted into an 8-bit 
binary equivalent. The zero/one pattern of this binary 
equivalent determines which of the eight dots in then­
th row of the character cell are lighted in the <fore­
ground color> when this character is displayed. 

Rows and dots within a row which are not used to form 
the symbol will be displayed in the <background 
color> or, if none is specified, will default to color C7 
(default black). 

4027A PROGRAMMER'S 



Example 

The command 

!SYM 
97,30,c1 ,c2,o,o,o.o,2,s2,72,72,s2,2,o,2ss< CR> 

or 

!SYM 
a,30,C1 ,C2,0,0,0,0,2,52,72,72,52,2,0,255< CR> 

defines character 97 of font 30. The number 97 is the 
ASCII Decimal Equivalent of the ASCII character "a". 
When the "a" character is entered in a field with font 
attribute 30, the symbol defined by this command is 
displayed. The symbol is displayed in color C2 and all 
dots which are not used to form the symbol are 
displayed in the< background color> C1. Figure 8-10 
illustrates this symbol and how the SYMBOL command 
defines it. 

If one wishes to clear symbol 97 from user-defined font 
30, the command 

!SYM 97,30,C7<CR> 

is given. All rows in the character cell matrix are set to 
zero, and this symbol is displayed as a space, with all 
matrix dots color C7. 

Integer 

0 
0 
0 
0 
2 

52 
72 
72 
52 

2 
0 

255 
Default 
Default 

Eight-Bit 
Binary Equivalent 

00 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 00 1 0 
0 0 1 1 0 1 00 
0 1 00 1 0 0 0 
0 1 0 0 1 0 0 0 
00 1 1 0 1 00 
0 0 0 0 0 0 1 0 
oo 0 0 00 0 0 
1 1 1 1 1 1 1 1 
00 0 0 0 0 0 0 
0 0 00 0 0 0 0 

FONT COMMAND 

Syntax 

GRAPHICS 

FONT COMMAND 

!FONT[< hardware font> J <font number> [<back­
ground color> J [<foreground color> 1< CR> 

where 

<hardware font> is the number of the font to be 
copied. Default is the regular ASCII font, font 0. 

<font number> is an integer between 1 and 31 
which represents some font in graphic memory. 

<background color> is the color or pattern of the 
background. 

<foreground color> is the color or pattern for the 
characters. 

NOTE 
Font 31 is reserved for user-defined patterns set 
by the PATTERN command. Font 31 is illegal and 
if used an error condition will occur. The terminal 
must be powered off or RESET to remove the 
error condition. 

Dot Pattern 

....... -1------ NON-SYMBOL AREA IS 

._... <BACKGROUND COLOR> 

J 

SYMBOL AREA IS 
<FOREGROUND COLOR> 

(2657) 4173-37 

Figure 8-10. A User-Defined Symbol. 

4027 A PROGRAMMER'S @ 8-19 



GRAPHICS 

DFONT COMMAND 

Action 

This command copies the <hardware font> into the 
given font, if it exists, in the given colors. If the 
<hardware font> is not specified, the regular ASCII 
font (font 0) is used. This entry is only valid if the 
optional Character Set Expansion board (Option 31) is 
installed. The two color numbers specify the colors to 
be used for background and foreground. They may be 
either a color number (CO-C7) or a pattern number (PO­
P119). If the colors are omitted they default to the 
default foreground and background colors (CO on C7). 
Fonts should be defined before drawing graphics to 
avoid altering the graphic area. 

The ATTRIBUTE command is used to display the font 
at the position of the alpha cursor. Refer to the Forms 
and Form Fillout section for information describing the 
ATTRIBUTE command. 

Example 

IFONt 0,30,C1 ,C4< CR> 

Copies the hardware font (0) into font 30 in <back­
ground color> C1 and <foreground color> C4. 

8-20 @ 

DFONT (DELETE FONT) COMMAND 

The graphics memory used to store symbol definitions 
in a user-defined character font can be released for 
another use by giving the DFONT command. 

NOTE 

Font 31 should be deleted with care. Font 31 is 
used to store patterns defined by the PATTERN 
command. Deleting Font 31 destroys any stored 
patterns. 

Syntax 

IDFOnt <font>< CR> 

where <font> is an integer between 1 and 31 , 
inclusive. 

Action 

The DFONT command deletes the symbol definitions in 
the programmable font. The space may be used for 
graphics when the font has been deleted. When the 
Character Set Expansion board (Option 31) is installed, 
the ATTRIBUTE command allows specification of a font 
number. Deleting font 31 does not affect the top eight 
characters. This allows the user to reuse the low 
characters, but not disturb the palette of possible 
vector and panel colors. 

Example 

The command 

IDFO 30<CR> 

Allows memory used to store symbol definitions now to 
be used to store graphics or another character set. 

4027A PROGRAMMER'S 



Section 9 

FORMS AND FORM FILLOUT 

From the operator's viewpoint, a form consists of 
several lines of text displayed in the workspace and 
formatted in a particular way. A form is divided into 
blanks areas, which the operator fills in, and labels, 
which identify the type of data to be entered in each 
blank. There may also be horizontal and vertical ruling 
lines to emphasize the structure of the form. The 
operator fills in the blanks with appropriate data and 
sends this data to the computer for storage or 
processing. 

A sample form used to store a customer's name and 
address is shown in Figure 9-1, with the blanks shaded 
gray. In typical applications, these blanks could be 
spaces or colored areas on the screen. 

Customer's Name ••••••••••••• 

Street Address ••••••••••••• 

City······· 

State ••••• 

(2402) 4173-8 

Figure 9-1. Sample Form. 

FORM FILLOUT MODE 

A form is filled out and the data in the form sent to the 
computer while the terminal is in form fillout mode. 

Form fillout mode has several features designed to 
make it easy to fill out and process forms. 

• Data can be entered only in the blanks of the form. 
These blanks are called unprotected fields. If the 
operator attempts to enter a character in a protected 
field, the terminal bell sounds and the character is 
inserted in the next unprotected field In the form. 

• Several keys on the keyboard behave differently 
when the keyboard types into the workspace. The 
TAB key moves the cursor to the beginning of the 
next unprotected field of the form. The BK TAB key 
moves the cursor to the beginning of the current 
field. The HOME key moves the cursor to the 
beginning of the first unprotected field in the form, 
rather than to column 1 of row 1 of the workspace. 
The ERASE key erases only the data in the unpro­
tected fields; protected fields are not erased. 

• Several commands have effects other than the usual 
ones. When the computer types into the workspace, 
the TAB, BACKTAB, and ERASE commands have the 
same effects as the corresponding keys. The editing 
commands also behave differently. These differ­
ences are detailed, command by command, 
throughout this section and later sections. 

4027 A PROGRAMMER'S @ 

A typical form fillout application includes the following 
steps: 

• Insure that the terminal is not in form fillout mode. 

• Display the form in the workspace. Either the 
operator creates the form from the keyboard or, 
more often, a stored form is sent from the computer 
or tape unit to the workspace. Both processes are 
the same from the terminal's viewpoint. 

• Put the terminal into form fillout mode. 

• Fill out the form. 

• Send the data in the form to the computer, printer, 
tape unit, or a hard copy unit). 

• Erase the unprotected fields of the form and fill it out 
again; then send the new data in the form to the 
computer. Repeat this process as long as necessary. 

• When the form is no longer needed, remove the 
terminal from form fillout mode and erase the form 
itself from the screen. 

The FORM command is used to place the terminal in 
form fillout mode and to remove it from form fillout 
mode. 

9-1 



FORMS AND FORM FILLOUT 

FORM COMMAND 

FORM COMMAND 

Syntax 

!FORm [Yes I Nol< CR> 

If no parameter is specified, Yes is assumed. 

Action 

If Yes is specified, the terminal is placed in form fillout 
mode. If No is specified, the terminal is removed from 
form fillout mode. 

9-2 @ 

Examples 

!FOR< CR> 
!FOR Y<CR> 
!FORM YES< CR> 

Places the terminal in form fillout mode. 

!FOR N<CR> 
!FORM NO<CR> 

Removes the terminal from form fillout mode. 

4027 A PROGRAMMER'S 



FORMS AND FORM FILLOUT 

CREATING A FORM 

CREATING A FORM 

From the terminal's viewpoint, there is more to a form 
than meets the eye. Consider the sample form in Figure 
9-2. This form consists of several lines of text. Each 

Customer's Name 

Street Address 

State 

S I Customer's Name 

S1 
SI Street Address 

~ I 

SI City 

)1 

11 State 

FIELDS 

line is divided into one or more sections called fields; 
each field is divided into individual character positions. 

Zip Code 

IS 
1S 

IS~ 
LINES 

1S...--
1V 
1) 

Zip Code - IS 

(2657) 4173-38 

Figure 9-2. The Parts of a Form. 

4027A PROGRAMMER'S @ 9-3 



FORMS AND FORM FILLOUT 

CREATING A FORM 

To display a form, the terminal stores the information 
which defines the form in the portion of memory called 
the workspace display list. In addition to the characters 
which are displayed on the screen, the display list 
includes markers which are not displayed. These 
markers are of two types: 

• End-of-line markers which indicate where one line 
of text ends and the next begins. 

• Markers called attribute codes. Attribute codes 
divided a line into fields and determine the proper­
ties, or attributes, of those fields. 

The fourth line of the sample form appears on the 
screen as follows: 

) I Street Address 

(2402) 4173-9 

To the workspace display list, however, the following 
information is stored: 

To create a form you must complete the following 
steps: 

• Decide what each line of the form is to look like -
what attributes each field will possess; what text, if 
any, will be printed in the protected fields. 

• Attach attribute codes to each field so that when the 
terminal displays the form, each field will have the 
desired attributes and the form, as a whole, will have 
the desired appearance. 

• Type desired text into protected fields. 

Street Address I <ATT> ""'====;........ ..... <ATT> OJ <END-OF-LINE> 
MARKER 

9-4 

3rd 
FIELD 

ATTRIBUTE CODES 
(NOT VISIBLE ON THE SCREEN 

BUT INCLUDED IN THE DISPLAY) 

@ 

4th 
FIELD 

5th 
FIELD 

2402-21 

4027 A PROGRAMMER'S 



FORMS AND FORM FILLOUT 

FIELD ATTRIBUTES 

FIELD ATTRIBUTES AND FIELD ATTRIBUTE CODES 

There are three classes of field attributes: 

• Character font attributes: font zero, font one, font 
two, etc. 

• Logical attributes: alphanumeric, numeric, protected, 
and protected modified. Alphanumeric and numeric 
denote unprotected fields into which the operator 
can enter data. 

• Visual attributes: the characters and background 
may be assigned any of the color numbers (CO-C7). 
Characters and background colors may be inverted 
and also made to blink between colors. 4025A-style 
visual attributes (standard, enhanced, inverted, and 
underscored) may also be used. 

FONT ATTRIBUTES 

A font attribute is an integer between 0 and 31, 
inclusive. The integer designates the character font 
from which characters are selected for display in the 
field. The default font attribute is 0. Font 0 is called the 
standard font and consists of the 1 28 characters of the 
ASCII code. Font 1 is always the Ruling Characters font 
(Option 32); Font 2 is the Math Characters font (Option 
34) if it is installed. Other fonts may be determined by 
ROMs inserted in the Character Set Expansion Board 
(Option 31 ), or may be defined by the user with 
SYMBOL and FONT commands which are described in 
the Graphics section. 

NOTE 

Font 31 is used to store user-defined patterns. A 
FONT 31 command (see Graphics section) 
causes an error condition. 

If a font attribute is specified for which no character 
font is defined, each character in the font is displayed 
as a rectangle with all the dots in that character cell 
matrix turned on in random fashion. 

NOTE 

Font attributes in the display list affect the 
display, whether the terminal is in form ti/lout 
mode or not. A field with font attribute 1, for 
example, displays characters from Font 1 at all 
times (assuming Option 32 is present). 

4027 A PROGRAMMER'S @ 

LOGICAL ATTRIBUTES 

The logical attributes which a field can possess are as 
follows: 
Symbol Used Attribute Meaning 

A Alphanumeric The default logical attribute. 
Specifies an alphanumeric 
unprotected field into which 
any alphanumeric charac-
ter may be entered. 

N Numeric Specifies a numeric unpro-
tected field. In form fillout 
mode, only characters with 
ADEs 32-63 can be en-
tered in a numeric field. 
(This Includes the numerals 
0-9, and most punctuation 
symbols.) 

p Protected Specifies a protected field. 
In form fillout mode, a 
protected field cannot be 
typed into or erased. 

Note that the fields of the form to be filled in by the 
operator must be unprotected fields, with logical attrib­
utes A or N; labels and areas in which the operator is 
not to type should be protected. 

Each field possesses one of these logical attributes. In 
addition, any field may possess the logical attribute M, 
for "modified." The SEND MOD command sends to the 
computer the data in those, and only those, fields 
which have been flagged as "modified" with the logical 
attribute M. (See the discussion of the SEND command 
later in this section.) 

9-5 



FORMS AND FORM FILLOUT 

FIELD ATTRIBUTES 

A field may be flagged as "modified" in either of two 
ways: 

• When the data in any unprotected field is changed, 
the terminal automatically attaches the logical at­
tribute M to that field. The next SEND MOD com­
mand sends the data in that field to the computer 
and removes the M attribute. The data in this field is 
not sent to the computer again until it has been 
modified again in some way and the field once again 
flagged with the logical attribute M. 

• The ATTRIBUTE command may specify the logical 
attribute PM, for "protected modified." A SEND MOD 
command sends the data in such a field to the 
computer, but does not remove the M attribute; thus 
a PM field is sent to the computer with every SEND 
MOD command. 

NOTE 
Logical attributes have effect only when the 
terminal is in form fillout m~de. When not in form 
ti/lout mode, the terminal ignores logical 
attributes. 

VISUAL ATTRIBUTES 

The ATTRIBUTE command is used to give various 
visual attributes to the characters and their back­
grounds. Characters and backgrounds may be as­
signed any of the eight color numbers (CO-C7), they 
may be inverted, or they may be made to blink between 
two visual attributes. 

Color Attributes 
Visual attributes are used to select the color of the 
characters and the color of the background as listed 
below. 

!ATT CO is color 0 (default white) on color 7 (default 
black). 
!ATT C1 is color 1 (default red) on color 7. 
!ATT C2 is color 2 (default green) on color 7. 
!ATT C3 is color 3 (default blue) on color 7. 
IATT C4 is color 4 (default yellow) on color 7. 
IATT C5 is color 5 (default cyan) on color 7. 
IATT C6 is color 6 (default magenta) on color 7. 
IATT C7 is color 7 (default black) on color 7 
(invisible). 

9~6 @ 

Inverted Attributes 
Characters and backgrounds may be inverted by using 
"I" and a color number as listed below. Default colors 
for the color numbers are the same as listed under the 
color attribute descriptions. 

!ATT ICO is color 7 on color 0. 
!ATT IC1 is color 7 on color 1. 
!ATT IC2 is color 7 on color 2. 
IATT IC3 is color 7 on color 3. 
IATT IC4 is color 7 on color 4. 
!ATT IC5 is color 7 on color 5. 
!ATT IC6 is color 7 on color 6. 
IATT IC? is color 7 on color 7 (invisible). 

The actual color displayed by each of the eight color 
names may be controlled by the color commands: MAP, 
RMAP, and MIX. 

Blinking Attributes 

The terminal can blink between two colors or between 
inverted and non-inverted by putting a hyphen (-) 
between the desired parameters. For example, the 
command 

IATT C2-C4 

causes the characters to blink between color numbers 
C2 and C4 on a C7 background. Blinking will not occur 
within a graphic area. 

4025A-Style Visual Attributes 

4025A-style attributes may be used to run a program 
on the 4027 A which was written for the 4025A. The 
4025A uses visual attibutes designated S, E, U, and I, 
and these parameter forms may be used on the 4027 A. 
The 4025A visual attributes correspond to 4027 A color 
attributes as listed below: 

S (Standard)= CO 
I (Inverted)= ICO 
E (Enhanced)= C2 
U(Underscore)= C4 
IE (Inverted, Enhanced)= IC2 
IU (Inverted, Underscore)= IC4 
EU (Enhanced, Underscore)= C6 
IEU (Inverted, Enhanced, Underscore)= IC6 

NOTE 

Like font attributes, visual attributes affect the 
display even when the terminal is not in form 
ti/lout mode. 

4027 A PROGRAMMER'S 



FIELD ATTRIBUTE CODES WITHIN A LINE 

Unless instructed otherwise by an ATTRIBUTE com­
mand, the terminal begins each line with the default 
attribute in each class: Font 0, alphanumeric logical 
attribute, and CO visual attribute. 

An attribute code may specify attributes from one, two 
or all three classes of field attributes. As the terminal 
scans each line in its display list, it searches for 
attribute codes. When it encounters a new attribute 

FORMS AND FORM FILLOUT 

ATTRIBUTE COMMAND 

code, it modifies only the class or classes of attributes 
specified in this new code; the other class or classes 
of attributes are not modified. Suppose, for example, 
the following line is stored in the display list: 

<font O,protected,C2>-----------­
< numeric>------< CR> 

Since the second attribute code specifies only the 
logical attribute numeric, the second field is displayed 
in Font 0, C2 (the font and visual attributes of the 
preceding field). 

CREATING FIELDS 

Each field in a line is created by specifying the font, 
logical, and visual attributes which the field possesses. 
The ATTRIBUTE command is used for this purpose. 

ATTRIBUTE COMMAND 

Syntax 

IA TTribute [<font> J [<logical>][< visual>[-< visu­
al>]]< CR> 

where <font> denotes a font attribute,< logical> 
denotes a logical attribute, and each <visual> de­
notes one or more visual attributes. 

4027A PROGRAMMER'S @ 

Action 

The ATTRIBUTE command inserts a field attribute code 
into the workspace display list at the cursor position. 
This field attribute code marks the beginning of a new 
field and designates the font, logical, and visual 
attributes of this field, as specified in the ATTRIBUTE 
command. If this field is the first field in the line, the 
ATTRIBUTE command specifies the attributes of the 
field which differ from the default attributes. If the field 
is preceded by another field on the same line, the 
ATTRIBUTE command specifies the attributes of the 
new field which differ from those of the preceding field. 
If two visual attributes or sets of attributes are 
separated by a hyphen, the display blinks that field 
between the two specified visual attributes or sets of 
visual attributes. The display will not blink between 
visual attributes within a graphic area. 

9-7 



FORMS AND FORM FILLOUT 

ATTRIBUTE COMMAND 

Restrictions on Syntax 

<Font> is an integer between O and 31, inclusive. 
<Font> defaults to O (at the beginning of a line) or to 
the font attribute of the preceding field. 

<Logical>= [A IN IP I PM] 

where A denotes alphanumeric, N denotes numeric, P 
denotes protected, and PM denotes protected modified. 
These parameters must be given in this single letter 
form. 

<Logical> defaults to A (at the beginning of a line) or 
to the logical attribute of the preceding field. 

<visual>= [<color name> I I< color name>] 

and 

-<visual>=-[< color name> I 1< color name>] 

where< color name> is a color number CO-C7 and I 
denotes inverted. The order of the color names does 
not affect the display. Also, the 4025A-style attributes 
(S, E, I, and U) may be used in place of <color name>. 

If the-< visual> parameter is specified, the display 
blinks between the two attributes or sets of attributes 
specified. For example, visual attributes of C2-C4 
cause the field to blink between C2 and C4 visual 
attributes. 

<Visual> defaults to CO (at the beginning of a line) or 
to the visual attribute(s) of the preceding field. 

When using 4025A-style attributes (S, E, U, I), no 
spaces are allowed between alphabetic parameters in 
the ATTRIBUTE command. To define a protected field 
with the enhanced and inverted visual attributes, for 
example, give the command 

!ATT PEl<CR> 

To blink that field between the enhanced and inverted 
visual attributes, give the command 

!ATT PE-l<CR> 

9-8 @ 

Examples of ATTRIBUTE Commands 

Font Attributes 

!ATTO<CR> 
!ATT<CR> 

Defines a new field beginning at the cursor position. 
When characters are entered in this field the field 
displays characters from Font 0, the standard font. 

!ATT 1 <CR> 

Defines a new field beginning at the cursor position. 
When characters are entered in this field, the field 
displays the corresponding character from Font 1, the 
Ruling Characters font. (Requires Option 32.) 

!ATT 1 C4< CR> 

Defines a new field beginning at the workspace cursor 
position. When characters are displayed in this field, it 
displays the corresponding characters in color c4 from 
character Font 1 (ruling characters). (Requires Option 
32.) 

!ATT 30<CR> 

Defines a new field beginning at the workspace cursor 
position. When characters are entered in this field, the 
field displays characters from Font 30. The character­
istics of Font 30 must first have been set by the FONT 
command which is described in the Graphics section. 
Fonts 1 through 31 are user definable, but Font 31 is 
reserved for patterns and, if used, results in an error 
condition. 

Logical Attributes 

!ATT A<CR> 

Defines an alphanumeric unprotected field beginning 
at the cursor position. 

!ATT N<CR> 

Defines a numeric unprotected field beginning at the 
cursor position. In form fillout mode, only characters 
with ADEs 32-63 can appear in this field. 

!ATT P<CR> 

Defines a protected field, beginning at the cursor 
position. In form fillout mode, this field cannot be typed 
into or erased. 

!ATT PM<CR> 

Defines a protected modified field beginning at the 
cursor position. This field is transmitted to the 
computer with any subsequent SEND MOD command. 

4027 A PROGRAMMER'S 



Visual Attributes 

!ATTCO<CR> 

Defines a new field beginning at the cursor position. 
Displays that field with the standard visual attribute of 
color CO on color C7. 

!ATTC2<CR> 

Defines a new field beginning at the cursor position. 
Displays that field with the enhanced visual attribute of 
color C2 on color C7. 

!A TT ICO< CR> 

Defines a new field beginning at the cursor position. 
Displays that field with the inverted visual attribute of 
color C7 on color CO. 

!ATT C4<CR> 

Defines a new field beginning at the cursor position. 
Displays that field with the underscored visual attribute 
of color C4 on color C7. 

!A TT C2-CO< CR> 

Defines a new field beginning at the cursor position 
and blinks that field between the visual attributes C2 
and C4. This provides blinking between color CO and 
color C2 on color C7. 

!A TT IC2-C4< CR> 

Defines a new field beginning at the cursor position 
and blinks that field between the visual attributes of 
inverted C2 with C4. This provides characters blinking 
between C4 and C7 with background blinking between 
CO and C2. 

!ATT C3-IC4<CR> 

Displays the field beginning at the cursor position with 
the inverted attribute and alternate blinking between 
the specific colors. The dash before the inverted 
attribute creates the blinking attribute. The attribute 
will appear as colors C3 and C7 on a background of 
colors C4 and C7. 

!A TT PMS-C6< CR> 

Sets up a protected field, labels it "modified" for SEND 
MOD operations, and causes it to be displayed as a 
blinking between colors CO and C6. 

4027 A PROGRAMMER'S @ 

FORMS AND FORM F!LLOUT 

ATTRIBUTE, JUMP COMMAND 

CREATING FIELDS WITH JUMP 

The JUMP command can be used with the ATTRIBUTE 
command to create several fields on one line. Suppose 
you want to create a protected C2 field 60 character 
positions in length in row 3 of the workspace. The 
command 

!JUM 3!ATT PC2;----(60 spaces)----< CR> 

creates the desired field. However, the command 

!JUM 3!ATT PC2!JUM 3,60!ATT PCO<CR> 

creates the desired field more quickly and with more 
efficient coding. 

The JUMP command can be used to create several 
fields on one line of the workspace. Suppose you want 
row 5 to appear as follows: 

Ft~ld 1 

PROTECTED 
Color CO 

20 

PROTECTED 
Color C2 

50 50 

NUMERIC 
• Color C4 

This can be done by transmitting the fields as series of 
spaces, as in our first example. But the command 
sequence 

!JUM 5!ATT PCO;Field 1 !JUM 5,20!ATT PC2!JUM 
5,50!ATT NC4;Field 3---<CR> 

gives the same display and transmits fewer characters 
than sending the first two fields as series of spaces. 

Suppose the workspace cursor is in the home position 
(row 1, column 1) and consider the three command 
sequences: 

1. !ATT P;Name !ATT AC2!JUM 1,25!ATT PCO< CR> 

2. !ATT P;Name !ATT AC2!JUM 1,25!ATT CO!JUM 
1,60!A TT PCO< CR> 

3. !ATT P:Name !ATT AC2!JUM 1,25!ATT PCO!JUM 
1,SO!ATT PCO< CR> 

9-9 



FORMS AND FORM FILLOUT 

JUMP COMMAND 

When executed, each of these command sequences 
causes the same display: 

. .,,, .,,~ .. I 
Each sequence, however, creates a very different "line" 
in the display list, and the differences between them 
are important when the terminal is in form fillout mode. 

The line generated by sequence 1. ends in column 25; 
the display list contains nothing beyond that column. If 
the operator moves the cursor right of column 25 in line 
1 and presses a key, the cursor moves to the beginning 
of the next unprotected field and prints the typed 
character there. The terminal bell does not ring. 

9-10 @ 

The line generated by 2. ends in column 60. Columns 
26 through 60 constitute an unprotected field. If the 
operator types in these columns, the text is printed just 
as it is typed. 

The line generated by 3. ends in column 80; all 80 
columns of the screen are included in this line. 
Columns 26 through 80 constitute a protected field. If 
the operator moves the cursor into this field and types 
a character, the terminal bell rings, the cursor moves to 
the beginning of the next unprotected field in the form, 
and the character is printed there. 

~ 
When using the JUMP command to create fields, 
always "tie down" the line with the !A TT PCO 
command, as shown in the preceding examples. If 
this is not done, the display list may not include 
the last field created with JUMP. 

4027A PROGRAMMER'S 



FORMS AND FORM FILLOUT 

HRULE COMMAND 

RULINGS 

You can highlight the structure of a form by drawing 
rulings, or ruling lines. The 4027A with the Ruling 
Characters font (Option 32) has two provisions for 
doing this. First, the basic command set includes the 
HRULE (Horizontal Rule) and VRULE (Vertical Rule) 
commands. Second, the Ruling Characters font (Option 
32) itself provides additional ruling characters for 
making junctions between horizontal and vertical rul­
ings. 

Horizontal and vertical rulings can be made any of the 
64 colors by assigning a visual attribute to each line or 
location at which the ruling appears. When making 
horizontal rulings, assigning a visual attribute works 
well since the attribute can be made to color the entire 
row in the display. When visual attributes are given to 
vertical rulings, however, they must be given for each 
row in which the vertical ruling appears. 

4027A PROGRAMMER'S @ 

HRULE (HORIZONTAL RULE) COMMAND 
(Requires Option 32) 

Syntax 

IHRUle 
<row>< column>[< length>[< width> 11< CR> 

where all parameters are positive integers. The< row> 
and <column> parameters give absolute workspace 
coordinates (as in the JUMP command). Since there 
are only 80 columns, the< column> parameter must 
not exceed 80 and the sum of <column> and 
<length> must not exceed 81. The <width> parame­
ter, if specified, must be either 1 or 2. The default value 
for both <length> and <width> is 1 . 

Action 

This command draws a horizontal ruling in the work­
space. The first character of the ruling is inserted at 
the row and column specified by the <row> and 
<column> parameters. The ruling continues to the 
right for a total of <length> columns. This ruling is a 
single line if <width> is 1 and a double line if 
<width> is 2. 

Examples 

IHRU 3,5,20< CR> 
!HRU 3,5,20,1<CR> 

Beginning at row 3, column 5 of the workspace, draws 
a horizontal ruling through 20 columns (columns 5 
through 24). The ruling is a single line. 

IHRU 3,5,20,2< CR> 

Beginning at row 3, column 5 of the workspace, draws 
a horizontal ruling through 20 columns (columns 5 
through 24). The ruling is a double line. 

9-11 



FORMS AND FORM FILLOUT 

VRULE COMMAND 

VRULE (VERTICAL RULE) COMMAND 
Requires Option 32) 

Syntax 

!VRUle <row> <column> [<length> [<width>] 
]<CR> 

where all parameters are positive integers. The <row> 
and <column> parameters are absolute workspace 
coordinates (as in the JUMP command). The< col­
umn> parameter may not exceed 80. The <width> 
parameter, if specified, must be either 1 or 2. The 
default value of both< length> and <width> is 1. 

Action 

This command draws a vertical ruling in the 
workspace. The first ruling character is inserted at the 
row and column specified by the <row> and <col­
umn> parameters. The ruling continues downward for 
a total of <length> rows. If <width> is 1 (or omitted), 
the ruling is a single line; if <width> is 2, the ruling is 
a double line. 

Examples 

!VRU 3,5,20< CR> 
IVRU 3,5,20, 1 <CR> 

Beginning at row 3, column 5 of the workspace, draws 
a vertical ruling through 20 rows (rows 3 through 22). 
This ruling is a single line. 

IVRU 3,5,20,2< CR> 

Beginning at row 3, column 5 of the workspace, draws 
a vertical ruling through 20 rows (rows 3 through 22). 
This ruling is a double line. 

NOTE 

If the terminal receives an HRULE or VRULE 
command but does not contain Option 32, each 
character cell affected by the command is dis­
played as a rectangle with all its matrix dots 
turned off (black). 

9-12 @ 

MAKING CORRECT JUNCTIONS 

While the HRULE and VRULE command are conve­
nient, vertlcal and horizontal rulings drawn with these 
commands do not cross or join each other. Each ruling 
character occupies an entire character cell on the 
display, and a character cell which contains a vertical 
ruling character cannot contain a horizontal ruling 
character. For example, suppose you give the following 
sequence of commands: 

!VRU 3,20,10,1 <CR> 
IVRU 3,30,10,1 <CR> 
!VRU 3,40,10,1 <CR> 
!VRU 3,50,10,1 <CR> 
IVRU 3,60,10,1 <CR> 
!HAU 3,20,41,1 <CR> 
!HAU 5,20,41,2< CR> 
!HAU 12,20,41,1 <CR> 

At this point, the basic structure of the form has been 
created, but the junctions between horizontal and 
vertical rulings need to be added. The workspace 
display appears as follows: 

I 

4027A PROGRAMMER'S 



The variety of ruling characters provided in the Ruling 
Characters Font (Option 32) allows the programmer or 
operator to make neat, well-fitted junctions by selecting 
appropriate font characters. The Ruling Junctions 
Chart (Figure 9-3) is a reference sheet for making 
junctions. With it you can make junctions for this 
sample form with the sequence of commands: 

IJUM3,20;@!JUM3,30;A!JUM3,40;A!JUM3,50;A! 
JUM3,60;8< CR> 
!JU M5,20;\ !J UM5,30;KIJ UM5,40; KIJ UM5,50; K! 
JUM5,60;< CR> 
IJUM12,20;P!JUM12,30;Q!JUM12,40,QIJUM12,50; 
Q!JUM12,60;R<CR> 

4025A Rulings 

Rulings Standard 
(Font 1) (Font 0) 

e'f'YGYYm'YYYYB 
[ - [ [ 

'\]]MllKlllll" 
[ - [ [ 

HYYOYYIYYYYYJ 
[ - [ [ 
[ - [ [ 
[ - [ [ 

PYYWYYQYYYYYR 

DllCllElllllf' 
- [ - -
')\'("(IYYOYYVYYZ 
- ( - -
Ll lKllMl]] l lN 

- [ - -
- [ - -
- [ - -
TllSllUlllllV 

Now the form looks like this: 

FORMS AND FORM FILLOUT 

VRULE COMMAND 

A complete table of ruling characters is given in 
Appendix D. 

4027A Rulings 

Rulings Standard 
(Font 1) (Font 0) 

d »c }}~}}}} H 
? [ ? ? 
xYYIYYoYYYYYz 
? [ ? ? 
I ))k ))rn))} ))n 

? [ ? ? 
? ( ? ? 
? [ ? ? 
t )}s }}u}}}} }v 

hlllElllllllJ 
[ - ( 
[ - [ 
: )) }y}} }{)) }"' 

[ - [ 
[ - ( 

plllllllUlllr 

aYYYYY9YYYYYb 
- ? -
- ? -
'l('('('ffloYYYYYZ 
- ? -
- ? -
qYYYYYwYYYYY i 

4173-116A 

Figure 9-3. Rullngs Junction Chart. 

4027 A PROGRAMMER'S REV, FEB 1982 9-13 



FORMS AND FORM FILLOUT 

EFFECT ON COMMANDS 

THE EFFECT OF FORM FILLOUT ON COMMANDS 

Form fillout mode alters the action of some commands, 
but does not affect the action of others. For commands 
discussed in later sections, any effects of form fillout 
mode on a command are discussed when the command 
is introduced. Some of the display control commands 
already discussed are affected by form fillout mode: 

• The TAB, BACKTAB, and ERASE commands (and 
their corresponding keys) are affected by form fillout 
mode. 

• The UP, DOWN, RIGHT, LEFT, RUP, and RDOWN 
commands (and their corresponding keys) are not 
affected by form fillout mode. The JUMP command is 
not affected by form fillout mode, but is still useful 
for working with forms. 

The following discussion assumes that the terminal is 
in form fillout mode, that commands come from the 
computer, and that text from the computer is directed 
into the workspace. 

9-14 
@ 

TYPING IN FORM FILLOUT 

When the terminal is in form fillout mode, text can be 
entered only in the unprotected fields of the form. If the 
operator types a character while the terminal is in form 
fillout mode, text can be entered only in the unprotect­
ed fields of the form. If the operator types a character 
while the workspace cursor is in a protected field, the 
terminal bell rings and the typed character is inserted 
in the first column of the next unprotected field in the 
form. 

If the cursor is in the last column of an unprotected 
field and the operator types a character, the character 
is inserted in that column and the cursor moves to the 
first column of the next unprotected field of the form. 

If the cursor is moved beyond the last field in a line 
(using JUMP or a cursor key) and a character is typed, 
the cursor moves to the beginning of the next unpro­
tected field in the form and the typed character is 
entered there. In this case, the terminal bell does not 
ring. (See the Creating Fields with JUMP discussion 
earlier in this section.) 

When a form is created, a line of the form may consist 
only of a carriage return,< CR>. Such a line contains 
no protected or unprotected fields; it appears on the 
terminal screen as a blank line, but in the workspace 
display list only a <CR> is stored. If the cursor is 
positioned anywhere in such a line and a character is 
typed, the cursor moves to the beginning of the next 
unprotected field in the form; the terminal bell does not 
ring. 

If the cursor is moved beyond the last unprotected field 
in the form and a key is pressed, the cursor moves to 
column 1 of the last line in the workspace window. The 
typed character is not displayed. 

4027 A PROGRAMMER'S 



TAB IN FORM FILLOUT 

Each tab character advances the workspace cursor to 
the beginning of the next unprotected field in the form. 
If the cursor is in the last unprotected field of the form, 
the next tab character sends the cursor to the home 
position at the beginning of the first unprotected field. 

Examples 

Suppose the sample form shown below is displayed in 
the workspace, with the cursor positioned as shown. 

Name Age-yr s . 
CURSOR ------ • 

He19ht lllllft. lll1n. We19ht lllll ibs . 

Socia I ~cur 1 ty !'limber -

1 . The command 

!TAB< CR> 

(2402) 4173- 12 

moves the cursor to the beginning of the next 
unprotected field. 

Name Hge 'J r s. 

-- CURSOR AFTER 
He19ht lllllH. lll1n. We19ht lllll ib s . !TAB < CR > 

Soc 1 a I ~cur 1 ty ~umber ---11111 
(2402) 4173-13 

4027 A PROGRAMMER'S @ 

FORMS AND FORM FILLOUT 

TAB COMMAND 

2. The subsequent command 

!TAB 4<CR> 

advances the cursor four unprotected fields and 
positions it as shown. 

Name ······ 

Social ~curity !'limber -·------- CURSOR AFTER 
ITAB4 <CR> 

(2402) 417 3-14 

3. The subsequent command 

!TAB 3<CR> 

advances the cursor through the last two unpro­
tected fields of the form and back to the home 
position. 

CURSOR IN HOME Name ......... Age- yrs. 
POSITION AFTER -

ITAB 3< CR > He19ht lllll ft. lll 1n. We19ht lllll lbs. 

Social ~cur1ty !'limber -·--(2402) 4173-15 

9-15 



FORMS AND FORM FILLOUT 

BACKTAB COMMAND 

BACKTAB IN FORM FILLOUT 

A BACKTAB character moves the cursor to the 
beginning of the unprotected field in which it is located. 
If the cursor is already at the start of an unprotected 
field, or if it is not inside an unprotected field, a 
BACKTAB character moves the cursor to the start of 
the preceding unprotected field. If the cursor is already 
at the start of the first unprotected field in the form, a 
BACKT AB character leaves the cursor where it is. 

Examples 

Suppose the cursor is positioned in the last unprotect­
ed field of our sample form, as shown. 

Name····-He19ht - ft . • in. We19ht - lbs. 

Soc ial ~cur1ty !'limber -----._CURSOR 

(2402) 4173-16 

9-16 @ 

1. The command 

!BAC<CR> 

moves the.cursor to the beginning of the unprotect­
ed field in which it is located. 

Name ••••••• Age- yrs. 

He19ht - ft . • in. We19ht - lbs. 

Social ~cur1ty !'limber - - - ... 

(2402) 4173-17 

2. Any of the subsequent commands 

!SAC 7<CR> 
!SAC 8<CR> 
!SAC 9<CR> 

CURSOR 

moves the cursor through all the preceding seven 
fields of the form , to the beginning of the first 
unprotected field . 

Name ······ CURSOR---· 

He19ht - ft . • 1n. We19ht - lb s . 

Soc 1a 1 ~cur 1 ty !'limber--·- -

(2402) 4173-1 B 

4027 A PROGRAMMER'S 



ERASE IN FORM FILLOUT 

In form fillout mode, the ERASE command erases only 
the contents of the unprotected fields in the form and 
leaves the cursor at the beginning of the first unpro­
tected field. 

Example 

Suppose a sample form is filled out as shown and the 
information in the form is sent to the computer. 

Hei9ht - ft .• in. Wei9ht - lbs. 

Social ~curity Number ----

The command 

!ERAW<CR> 

(2402) 4173-19 

erases the contents of the form and leaves the cursor 
positioned as shown. 

! --~~~~~~~~~~~~~~~~~~---, 

Name ······ CURSOR --- • 

Hei9ht - ft . • in. Wei9ht - lbs. 

Social ~curity Number - • -

(2402) 4173-20 

The command 

!ERA< CR> 

also does this if, as we assume here, the device issuing 
the command (computer or keyboard) also types into 
the workspace. 

4027 A PROGRAMMER'S @ 

FORMS AND FORM FILLOUT 

ERASE, JUMP COMMAND 

THE HOME KEY AND JUMP IN FORM 
FILLO UT 

When the terminal is not in form fillout mode, the 
command 

!JUM<CR> 

has the same effect as pressing the HOME key. In each 
case, the workspace cursor moves to row 1, column 1, 
the "home" position. 

In form fillout mode, pressing the HOME key moves the 
cursor to the beginning of the first unprotected field in 
the form, which generally does not begin in row 1, 
column 1. But the JUMP command has no respect for 
form fillout mode. Giving the command 

!JUM<CR> or 
!JUM 1,1 <CR> 

moves the cursor to row 1, column 1, whether or not 
that field is protected, unprotected, or even part of the 
form. 

The JUMP command can still be used, with the TAB 
command, to simulate the action of the HOME key. As 
long as row 1 , column 1 is a protected location, the 
sequence of commands 

!JUM!T AB< CR> 

moves the cursor first to row 1, column 1 (!JUM), then 
to the beginning of the first unprotected field in the 
form (!TAB). 

9-17 



FORMS AND FORM FILLOUT 

SEND COMMAND 

TRANSMITTING FORMS AND FORM DATA 

Because of the formatted nature of forms 'and form 
data, special care must be taken when transmitting 
either to the computer. The SEND command and the 
FIELD command have been specially designed for 
transmitting form information. 

SEND IN FORM FILLOUT 

Syntax 

!SENd [ All I Mod ]<CR> 

The default parameter is All; that is, !SEN< CR> is 
equivalent to !SEN A< CR>. 

There are two uses of the SEND command involving 
forms. 

First, suppose the operator has constructed a form in 
the workspace and wishes to store this form in the 
computer. (The terminal with Option 04 can also store 
forms or form data on a Tektronix 4924 Digital 
Cartridge Tape Drive. See the Peripherals section.) 
After making sure that the terminal is not in form fillout 
mode, the operator gives the SEND command. (If the 
terminal is not in form fillout mode, the SEND, SEND 
ALL, and SEND MOD commands are equivalent.) This 
command sends all the information in the workspace to 
the computer. Field attribute codes in the workspace 
display list are automatically encoded as ATTRIBUTE 
commands; thus, when the form is sent back to the 
terminal from the computer, the terminal has the 
information necessary to reconstruct the form. 

Second, suppose a form is displayed, the terminal is 
placed in form fillout mode, and the form is filled out. 
The operator now wishes to send the data in the form 
(not the form itself) to the computer for storage or 
processing. With the terminal in form fillout mode, the 
operator uses either the SEND ALL command or the 
SEND MOD command. 

The SEND ALL command sends to the computer the 
data in each unprotected field of the form. 

9-18 
@ 

The SEND MOD command sends to the computer the 
data in just those fields flagged with the logical 
attribute M (modified). In this case, the data in a field is 
sent to the computer if and only if (1) the field is an 
unprotected field whose contents have been changed 
since the last SEND or SEND MOD command, or (2) the 
field is a protected field permanently flagged with the 
logical attribute PM (protected modified). 

When a SEND MOD command is given, then, 
consecutive blocks of data may not come from conse­
cutive unprotected fields in the form. For the applica­
tions program to process the data correctly, however, it 
must know the form location from which each block of 
data comes. Therefore, when a SEND MOD command is 
executed, the data from each modified field is sent to 
the computer, preceded by a pair of three-digit num­
bers separated by a comma. These numbers specify, in 
absolute workspace coordinates, the row (first number) 
and column (second number) of the first character 
position of the field. Suppose, for example, a modified 
field begins in row 5, column 3. When the data in this 
field is sent to the computer, it is preceded by the 
string 005,003. Examples of transmissions using the 
SEND MOD command appear later in this section. 

The commands or keyboard operations which affect 
the contents of a form are ERASE WORKSPACE, 
DELETE CHARACTER, DELETE LINE, ERASE & SKIP, 
or the additions and changes made to the unprotected 
fields. 

The source of the !ERA W, !OCH, or IDLI commands, as 
well as any updates to the contents of the form 
determines the affect on the logical attribute m~dified 
flag. If these commands or updates are given from the 
host computer, the fields are NOT flagged as modified. 
Any keyboard operation, however, which affects the 
status of unprotected fields, flags those fields to be 
transmitted on the next SEND MODIFIED command. 

In the case of the keyboard ERASE of the workspace, 
or the !ERA W command from the keyboard, all 
unprotected fields are marked as modified and are 
transmitted with the row and column position on the 
next SEND MODIFIED. This informs the host that 
information has been removed from the screen. 

4027 A PROGRAMMER'S 



FIELD IN FORM FILLOUT 

Syntax 

!FIEid [<separator>)< CR> 

where <separator> is a single printing ASCII 
character or a two- or three-digit ADE of an ASCII 
character. If no <separator> is specified, it is as­
sumed to be NUL, whose ADE is 00. 

Action 

The FIELD command sets the field separator. If any 
non-NUL field separator is specified, that character 
precedes the data sent to the computer from each field; 
trailing spaces are not transmitted. 

If no field separator (or the NUL separator) is specified, 
all the data in each field is transmitted to the computer 
by a SEND (ALL or MOD) command. If a field is not 
completely filled out, all the spaces at the end of the 
field are treated as data and sent to the computer, 
along with the rest of the data in the field. 

The terminal remembers its field separator when 
powered off or RESET. 

Examples 

!FIE @<CR> 
!FIE 64<CR> 

Sets the field separator to the @ character, whose ADE 
is 64. 

!FIE 9<CR> 

Sets the field separator to the ASCII character 9. 

!FIE 09<CR> 

Sets the field separator to the ASCII HT (horizontal tab) 
character, whose ADE is 09. 

!FIE<CR> 

Sets the field separator to NUL. When data in a field is 
sent to the computer, no field separator is used. 

4027 A PROGRAMMER'S @ 

FORMS AND FORM FILLOUT 

SEND, FIELD COMMAND 

SOME SAMPLE TRANSMISSIONS 

Suppose the following form begins in row 1 of the 
workspace . The unprotected fields are attribute C2 
(shown here shaded gray) ; the last unprotected field 
has logical attribute numeric. The end of each non­
blank line is at the end of the last unprotected field in 
the line. The three lines containing unprotected fields 
are separated from each other by blank lines. 

Name 

Address 

••• State -- ZI P --

(2402) 4173-21 

To store this form in the computer, give the command 

!SEN< CR> 

The following information is sent to the computer: 

!ATT P;----Name !ATT C2A; 
--------------.,...----<CR> !ATT 
P<CR> 

!ATT P;-Address !ATT C2A; 
-------------------<CR> !ATT 
P<CR> 

!ATT P:----City !ATT C2A;---------! 
ATT SP;-State: !ATT C2A;---------!ATT 
SP;-ZIP !ATT C2N;----<CR> 

Transmitted spaces are shown here as dashes. Re­
member that the default logical attribute of lines 2 and 
4 (the blank lines) is alphanumeric. These lines must 
be protected to prevent text from being entered in 
them. 

9-19 



FORMS AND FORM FILLOUT 

SEND COMMAND 

Suppose now the terminal is placed in form fillout mode 
and the form is filled out. 

Name ······· Address ••••••••• 

City ••• State··· ZIP··· 
(2402) 4173-22 

1. If no field separator is specified, the command 

!SEN A<CR> 

sends the following data to the computer: 

John Doe------------< CR> 
1111-W.-First-St.----< CR> 

Anytown- - -Oregon- -00000< CR> 

No field separator is used and each field is sent, 
including all trailing spaces. In a programming 
language which can divide an incoming line into 
blocks of predetermined length (such as COBOL), 
this is a convenient format. 

2. Suppose the field separator is the number sign, (#). 
The command 

!SENA<CR> 

now sends the following to the computer 

#John-Doe< CR> #1111-W.-First-St.< CR> 
#Anytown#Oregon#OOOOO< CR> 

The host program must use the # character to 
distinguish data from different fields. 

9-20 @ 

3. Suppose that the same form is filled out for John 
Doe's sister, Jane Doe, who lives at a different 
street address in Anytown. Instead of erasing the 
form, the operator presses the HOME key to return 
the cursor to the first unprotected field, and simply 
types over the old information which must be 
changed. 

Name ······· Address ••••••••• 

City ··· State··· ZIP'--
(2402) 4173-23 

Now the first two unprotected fields are flagged 
with the logical attribute M. The SEND MOD 
command sends the data in these fields to the 
computer. 

If no field separator is specified, the command 

!SEN M<CR> 

sends the following data to the computer: 

001,01 OJane-Doe------- -----<CR> 

003,0109999W.-Ninth-St.< CR> 

Note that no spaces or other characters separate 
the row and column identifiers from the first 
character in the field . 

4. Finally suppose the form is filled out for John's 
brother, Brad Doe, with no street address informa­
tion provided, and the City and ZIP information 
modified: 

Name ······· Address ••••••••• City •••• State··· ZIP--
(2402) 4173-24 

If the field separator is the #character, the 
command 

!SEN M<CR> 

sends the following data to the computer: 

#001 ,01 OBrad-Doe< CR> #003,010< CR> 
#005,010Sometown#005,01 O 99999< CR> 

4027 A PROGRAMMER'S 



Section 10 

TEXT EDITING 

THE TEXT-EDITING COMMANDS 

The terminal recognizes four commands designed 
specifically for text editing: DC HAR (Delete Character), 
ICHAR (Insert Character), OLINE (Delete Line), and 
ILINE (Insert Line). 

NOTE 

If an editing command is typed on the keyboard 
and text from the keyboard is printed in the 
monitor, execution of the command inserts a 
blank line just below the line on which the 
command is typed. All examples deal with the 
workspace display. 

DCHAR (DELETE CHARACTER) 
COMMAND 

Syntax 

!DCHar [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

This command deletes <count> characters, beginning 
with the character at the cursor position. As each 
character is deleted, characters to the right of the 
cursor shift left to fill the gap. The cursor does not 
move. If the terminal is in form fillout mode, only 
characters to the right of the cursor in the same field 
shift left. If the terminal is not in form fillout mode, all 
characters right of the cursor on the same line shift left. 

This command is equivalent to pressing the DELETE 
CHARACTER key <count> times. 

4027A PROGRAMMER'S @ 

Examples 

Suppose the following text is displayed io the work­
space, with the cursor position as indicated: 

Everything seems seems in order. • 
The command 

!DCH<CR> 

or 

!DCH1<CR> 

deletes the sat the cursor position, leaving the 
following display: 

Everything seems eems in order. • 
The subsequent command 

!DCH5<CR> 

leaves the desired display: 

Everything seems in order. • 
Suppose a form contains incorrect information in an 
unprotected field; with the cursor positioned as shown: 

Name: Jane Doe DoeAge: 23 • 
The command: 

!DCH4<CR> 

deletes the middle "Doe" and the extra space. Neigh­
boring fields are not affected: 

Name: Jane Doe• Age: 23 

10-1 



TEXT EDITING 

ICHAR COMMAND 

ICHAR (INSERT CHARACTER) COMMAND 

Syntax 

llCHar<CR> 

Action 

The ICHAR command places the terminal in insert 
mode. This command is equivalent to pressing the 
INSERT MODE key. 

In insert mode, when new text is sent from the 
computer or typed on the keyboard, the cursor, the 
character at the cursor position, and characters to the 
right of the cursor are shifted right to make room for the 
new text. 

Suppose the text 

END PAGE • is displayed in the workspace, with the cursor posi-
tioned as shown. If the string 

llCH;OF <CR> 

is sent from the computer, it inserts the text OF 
(including a space) and displays the text 

END OF PAGE • in the workspace, with the cursor positioned to the left 
of the line. 

If the string 

!ICH;OF <CR> 

is typed from the keyboard, the <CR> is sent to the 
workspace as text, and the cursor is positioned at the 
beginning of the next line: 

END OF PAGE 

• 
In form fillout mode, only characters in the unprotected 
field containing the cursor are shifted right. Characters 
shifted past the rightmost position in that field are lost. 

The DCHAR key can be used to delete unwanted 
characters at or to the right of the cursor position, 
WITHOUT leaving insert mode. 

Any other cursor movement, resulting either from giving 
a command or from pressing a key, will cause the 
terminal to leave insert mode. 

10-2 @ 

Examples 

Suppose the terminal is in form fillout mode and the 
following form is displayed, with the cursor positioned 
as shown. The only unprotected fields are the three 
inverted fields; all other fields are protected. 

NAME: Ebenezer Scrooge Age: U 
Position Applied f~: ~ 

If the string 

!ICH; A 

is sent from the computer the following display 
results 

NAME: Ebenezer A ScroogeAge: U 
Position Applied for:* M.lw 

The subsequent string 

!ICH;ber 

sent from the computer results in the form fillout 
display 

Name: Ebenezer Aber ScroAge: U 
Position Applied for: t!iser 

Finally, the string: 

llCH;nathy 

sent from the computer, moves the cursor past the end 
of1he first unprotected field and into the second 
unprotected field. The following first lines of the form 
will be seen in rapid succession: 

Name: crAge: ll 
Name: Age: U 
Name: Age: U 
Name: U 
Name: '//-

If the second unprotected field has the A 
(alphanumeric) attribute, any further insertion of char­
acters shifts characters in the second field to the right 
and the old characters are lost. If the string 

!ICH;B 

is sent from the computer, the following display results: 

Name: Ebenezer AbernathyAge: .at 
Position Applied for: Miser 

However, if the second unprotected field has the N 
(numeric) attribute, a subsequent ICHAR command 
which inserts alphabetic characters moves the cursor 
to the first position of the numeric field, rings the bell, 
and does not insert succeeding characters. 

4027 A PROGRAMMER'S 



If the insert character operation moves the cursor past 
the last unprotected field on the form, the cursor moves 
to the beginning of the first unprotected field which can 
accept the new characters; the new characters are 
inserted in that field. 

OLINE (DELETE LINE) COMMAND 

Syntax 

!DLlne [<count> I< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

If the terminal is not in form fillout mode, this command 
deletes <count> consecutive lines of text, including 
the line containing the cursor. If the cursor is in the 
middle of a line, the entire line is deleted. As each line 
is deleted, the lines below roll up to fill the gap. 

In form fillout mode, this command erases the contents 
of all unprotected fields in <count> lines of the form. 
The line containing the cursor is counted as a deleted 
line, whether or not it contains any unprotected fields. 
After this line, only lines containing at least one 
unprotected field are counted as deleted lines. The 
cursor is positioned at the beginning of the next 
unprotected field, after the last field Is erased. 

This command is equivalent to pressing the DELETE 
LINE key <count> times. 

Examples 

Suppose the terminal is not in form fillout mode, and 
the workspace contains the text shown, with the cursor 
in line 2, column 8: 

This is Line 1 
This is0 L.,_in""-'e 2,__ __ CURSOR IN LINE 2, 
This is Line 3 COLUMN 8 
This is Line 4 
This is Line 5 
This is Line 6 

4027 A PROGRAMMER'S @ 

The command 

!DLI 3<CR> 

TEXT EDITING 

OLINE COMMAND 

gives the workspace display shown here: 

Suppose the terminal is in form tillout mode, and the 
workspace holds the form shown here. The unprotect­
ed fields are enhanced (shown here shaded gray): 

Name ____ _ 

~te ll .......... .. 

Position Applied For •••••••••• 

References 

(2402) 4173-25 

10-3 



TEXT EDITING 

OLINE COMMAND 

If the cursor is positioned anywhere in the first line of 
the form, the command 

!DLl<CR> 

results in the display shown below. 

Nanr-----Date l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!••L ___ CURSOR AFTER 
IDLI < CR > 

Position ~plied For •••••••••• 

References 

(2402) 4173-26 

The subsequent command 

IDLI 3<CR> 

results in the display shown here. Note that the line 
"References" is not counted as a deleted line, since it 
contains no unprotected fields. 

Nanr-----Date ······· 

Position ~plied For •••••••••• 

References 

/-----CURSOR AFTER 
IDLI 3 < CR > 

10-4 

(2402) 4173-27 

@ 

Suppose you begin with the form shown below and the 
cursor positioned as shown: 

Name······ Date······· 

Position ~plied For •••••••••• 

References 
• 

I 
CURSOR 
POSITION 

The command 

!DLI 3<CR> 

(2402) 4173-28 

results in the display shown here. Observe that the line 
which originally contained the cursor has been count­
ed as the first deleted line, even though it contains no 
unprotected fields: 

Nanr-----Date ······· 

Position 11Jplied For •••••••••• 

References 

LINES I 
ERASED ••••••••••••••••• 

,,, 
CURSOR AFTER 

!DLE3 < CR > (2402) 4173-29 

4027 A PROGRAMMER'S 



ILINE (INSERT LINE) COMMAND 

Syntax 

!ILlne [<count>]< CR> 

where <count> is a positive integer. If <count> is not 
specified, 'it defaults to one. 

Action 

This command inserts <count> blank lines into the 
text immediately below the line containing the cursor. 
The cursor is positioned at the beginning of the newest 
line. Lines of text below the cursor position are rolled 
down to make room for the inserted blank lines, and the 
scroll is lengthened so that these lines are saved in the 
display list. 

This command is equivalent to pressing the INSERT 
LINE key< count> times. 

The ILINE command makes it easy to insert new text 
between lines of old text. Use the ILINE command to 
create several blank lines at the desired location. Type 
the new information into the blank lines; and use the 
OLINE command to delete any blank lines left over. 

NOTE 

For text editing applications, the first line entered 
into the workspace should always be blank. If 
new text must be inserted above the old text, the 
cursor is moved to the beginning of the 
workspace and the /LINE command is used to 
create space for the new text. If the first line of 
the workspace already contains text, this proce­
dure inserts blank lines below the first line of old 
text, rather than above it. 

4027A PROGRAMMER'S @ 

TEXT EDITING 

ILINE COMMAND 

Examples 

Suppose the workspace contains the text shown 
opposite, with the cursor positioned as shown: 

The command 

llLI 3<CR> 

Line 1 

~:~=~----
Line 4 

inserts three blank lines between line 2 and line 3, 
leaving the cursor in column 1 of the newest blank line: 

Line 1 
Line 2 
(blank) 
(blank) 
~lank) 

ne3 
Line 4 

When the terminal is in form fillout mode, the ILINE 
command has no effect. 

10-5 



Section 11 

PERIPHERALS 

The 4027 A supports the following peripherals: 

• With Option 03 (RS-232 Peripheral Interface), the 
terminal supports a Tektronix 4642 Printer and 
other compatible printers. 

• With Option 04 (GPIB Interface), the terminal sup­
ports up to four Tektronix 4924 Digital Cartridge 
Tape Drives and up to two Tektronix 4662 or 4663 
Interactive Digital Plotters. 

• The terminal supports the Tektronix 4632 Hard 
Copy Unit. 

Throughout this section the term "devices" is used. 
This term always refers to one of the following: a 
peripheral device such as the printer or a tape unit, the 
host computer, the terminal monitor, or the terminal 
workspace. These devices are specified by device 
mnemonics as follows: 

Device 

Printer 
Tape Units 1-4 

Plotters 1 ,2 
Monitor 
Workspace 
Host Computer 

Mnemonic 

Por PR 
TA1-TA4 (TA1 may be 
shortened to T) 
PL1,PL2 
Mor MO 
WorWO 
Hor HO 

INITIALIZING FOR PERIPHERAL COMMUNICATIONS 

Before the terminal can copy file information from one 
device to another, it must be correctly informed about 
the status of the various peripheral devices attached to 
it. SET commands are used to initialize the terminal for 
communicating with peripheral devices. The SET com­
mand should be given for those and only those 
peripheral devices present and powered up. 

4027 A PROGRAMMER'S 
@ 

SET COMMAND 
(Requires Option 03 or 04) 

Syntax 

!SET <device> 
<parameter> [<parameter>]< CR> 

where 

<device> is a one to three-letter device mnemonic, 
and <parameter> is a parameter setting for the 
indicated device. The form of each <parameter> 
depends on which peripheral device is specified. 

~ 
Do not attempt to set parameters for devices 
which are not attached to the terminal and 
powered up. Giving such a SET command may 
disable all communications to the terminal and 
require it to be reset. 

11-1 



PERIPHERALS 

SET COMMAND 

Printer Parameters 
(Requires Option 03) 

The terminal comes from the factory set for communi­
cating with a Tektronix 4642 Printer. There are two 
parameters, however, which can be set to allow it to 
communicate with printers other than the 4642 Printer. 

• Some printers recognize the ASCII form feed 
character (<FF>) as a signal to begin a new page; 
other printers do not. On such printers a series of 
line feeds (< LF> s) must be sent to begin a new 
page. The terminal can be set to send either the 
ASCII form feed (<FF>) character or the proper 
number of ASCII line feed (< LF>) characters to 
cause the printer to begin a new page. 

• The "carriage return, line feed" mechanical opera­
tion which the printer uses to begin a new line is 
relatively slow, compared to terminal data transmis­
sion speeds. Thus the terminal has "printer delay" 
parameter which can be set. After the terminal 
sends a <CR>< LF> or <FF> to the printer, it 
waits a specified length of time before sending 
another character. This gives the printer time to 
complete its mechanical functions before having to 
cope with new text to be printed. 

The command which SETs the terminal for printer 
communications has the following form: 

!SET PR [FI LH< delay>]< CR> 

where: 

• F stands for "form feed," and instructs the terminal 
to use a <FF> character as a page separator. 

11-2 
@ 

• L stands for "line feed," and instructs the terminal to 
replace any< FF> character to the printer by the 
number of < LF> s required to begin a new page. 

• <delay> gives the printer delay. If <delay> is a 
positive integer, after the terminal sends a <CR>, 
< LF>, or <FF> to the printer, it waits <delay> 
tenths of a second before sending the next charac­
ter. If< delay>= 0, the terminal communicates with 
the printer using "flagged simplex protocol." This 
means that after the terminal has sent a <CR>, 
< LF>, or< FF> to the printer, it waits for the RS-
232 DTR (Data Terminal Ready) signal to become 
true before sending the next character. 

Examples 

!SET PR F 3< CR> 

Instructs the terminal to use a form feed character 
(<FF>) as the page separator; when the printer 
receives a <FF>, it begins a new page. This command 
also sets the printer delay to 0.3 seconds; after 
sending a <CR>,< LF>, or< FF> to the printer, the 
terminal waits 0.3 seconds before sending another 
character. 

!SET PR L<CR> 

Instructs the terminal that the printer does not treat a 
<FF> character as the page separator. The terminal 
replaces a <FF> with the number of < LF> s required 
to begin a new page. 

!SET PR 0< CR> 

Instructs the terminal to communicate with the printer 
using flagged simplex protocol. After sending a <CR>, 
< LF>, or< FF>, the terminal waits for a DTR (Data 
Terminal Ready) signal from the printer before sending 
another character. 

4027A PROGRAMMER'S 



Tape Unit Parameters 
(Requires Option 04) 

To prepare the terminal to communicate with a 4924 
Digital Cartridge Tape Drive (hereafter referred to as a 
"tape unit"), three parameters must be set. 

• Since the terminal can have up to four tape units 
connected to it, each tape drive is numbered: tape 
unit 1, tape unit 2, tape unit 3, or tape unit 4. 

• The 4924 is a GPIB device; that is, the terminal 
communicates with it using a GPIB (General 
Purpose Interface Bus). Each tape unit has two GPIB 
addresses: a command address and a data address. 
Since a tape unit's command address is always 
numerically just one larger than its data address, 
only the data address must be set. The GPIB data 
address of a tape unit must be set to an even 
number between 2 and 28, inclusive. This address 
must be physically set by switches on the back of 
the tape unit itself. But the terminal must also be 
SET to send messages to the proper GPIB address. 
(See the terminal Operator's Manual Peripheral 
Devices section for operating procedures.) 

• The tape unit can record information in one of two 
formats. One format is compatible with the Tektronix 
4050 Series Graphic System internal tape drive. 
This is the format normally used to store file 
information for the terminal, and is called "4051-
compatible format." 

The other format is compatible with the Tektronix 
4923 Digital Cartridge Tape Recorder. This format 
should be used only if you must exchange tape 
cartridges with a 4923. 

The command which initializes the terminal for com­
municating with a tape unit has the following format: 

!SET< device>< address> [4051 I 4923]< CR> 

where: 

<device> is one of the following: (TA 1 IT A2 IT A3 I 
TA4). This identifies the given device as tape unit 1, 
tape unit 2, etc. 

<address> is an even number from 2 to 28, 
inclusive. This specifies the GPIB address assigned 
to the tape unit in all GPIB communications. 

4027A PROGRAMMER'S @ 

PERIPHERALS 

SET COMMAND 

The default [4051 I 4923] setting is 4051; if this 
parameter is not specified, 4051-compatible format is 
assumed. The TA1 parameter may be abbreviated to T, 
but TA2, TA3, and TA4 may not be abbreviated. 

A separate SET command must be given for each tape 
unit powered up and attached to the terminal. 

Examples 

!SET TA1 8 4051 <CR> 
ISETT8<CR> 

Instructs the terminal that tape unit 1 is present at 
GPIB address 8, and instructs the terminal to write data 
on tape unit 1 in 4051-compatible format. The GPIB 
address for a tape unit must be even. (Requires Option 
04) 

!SETT A2 10 4923< CR> 

Instructs the terminal that tape unit 2 is present at 
GPIB address 10, and instructs the terminal to write 
data on this tape unit in 4923-compatible format. 
(Requires Option 04) 

11-3 



PERIPHERALS 

SET COMMAND 

Plotter Parameters 
(Requires Option 04) 

To prepare the terminal to communicate with a 4662 or 
4663 Interactive Digital Plotter, two parameters must 
be set. 

• Since the terminal may have two plotters attached to 
it, each plotter present must be numbered: plotter 1 
or plotter 2. 

• Since the plotter is a GPIB device, it must be 
assigned a GPIB address. This address must be set 
physically by switches on the plotter; in addition, the 
terminal must be instructed to send information to 
the proper GPIB address. The plotter GPIB address 
may be any integer from 1 to 30 inclusive. It must 
not, however, be a tape unit address plus one, since 
this would duplicate the tape unit's command ad­
dress. (See SETting the Tape Unit Parameters 
earlier in this section.) 

11-4 @ 

The command which initializes the terminal to commu­
nicate with a plotter has the following format: 

ISET <device>< address>< CR> 

where: 

<device> is PL 1 (for plotter 1) or PL2 (for plotter 
2). 

<address> is an integer from 1 to 30, inclusive; 
this integer specifies the GPIB address of the 
plotter. 

If two plotters are present, a separate SET command 
for each plotter is required. 

NOTE 

If switch settings on the back of the plotter are 
changed while the plotter is powered on, these 
switches are not read by the plotter until power is 
cycled. If you change the plotter's address 
switches, go through the entire GP/8 power up 
procedure. (See 4027A Operator's Manual, the 
Peripheral Devices section.) 

Example 

!SET PL 1 15< CR> 

Instructs the terminal that plotter 1 is present at GPIB 
address 15. This must agree with the address switch 
settings on the plotter. GPIB addresses are specified 
for those, and only those, devices present and powered 
up on the GPIB. (Requires Option 04) 

4027 A PROGRAMMER'S 



PERIPHERALS COMMAND 

The PERIPHERALS command allows you to examine 
the settings for communicating with peripheral devices. 

Syntax 

!PERipherals [<device> 1< CR> 

where <device> specifies a non-GPIB device on 
which the peripheral settings are to be listed. If 
<device> is not specified, it defaults to M (monitor). 

Action 

This command causes the terminal to generate a 
peripherals data list. For each device attached to the 
terminal and powered up, this list gives the <device> 
parameter (explained in the SET discussion), the GPIB 
address (this field is blank for the printer), and a data 
field listing the parameter settings for that device 
(explained in the SET command. discussion). 

PERIPHERALS 

PERIPHERALS COMMAND 

The last line in the peripherals data list gives the EOF 
(end-of-file) string. (Setting the end-of-file string with 
the EOF command is discussed in System Status and 
Initialization.) 

Example 

!PER M<CR> 
!PER< CR> 

Outputs a peripherals data list to the monitor. 

A sample peripherals data list is shown in Figure 11-1. 

TAPE UNIT 1 RECORD DATA IN 4051 
MNEMONIC GPIB ADDRESS COMPATIBLE FORMAT 

PRINTER NO GPIB SEND LINEFEEDS 
MNEMONIC ADDRESS TO PRINTER PRINTER DELAY = 0 

-
EOF STRING 

(2402) 41 73-30 

Figure 11-1. Peripherals Data List. 

4027 A PROGRAMMER'S @ 11-5 



PERIPHERALS 

REPORT COMMAND 

THE REPORT COMMAND AND 
PERIPHERALS 

The REPORT command has the following syntax: 

IREPort <device>< CR> 

The Host Programming section of this manual dis­
cusses the REPORT command and the format of the 
ANSwer sent to the host for device 00 (System Status 
Block), and device 01 (workspace cursor), device 02 
(graphic beam information), and device 03 (crosshair 
information). The terminal can also report the status of 
each peripheral device and whether or not the given 
peripheral is present (attached to the terminal and 
powered up on the GPIB). This allows an applications 
program to investigate which peripherals are present at 
a given time and branch or modify instructions accord­
ingly. 

The peripherals have the following <device> numbers 
assigned: 

<Device> Perlpheral(s) 

04-07 
12,13 
14 

Tape Unit 

When the command: 

!REPort n< CR> 

Tape Units 1-4, respectively 
Plotters 1 ,2, respectively 
Printer 

is given, and n is chosen from 04-07 (representing tape 
units 1-4, respectively), the status of the designated 
tape unit is reported to the computer. This report has 
the following format: 

!ANS n,< p1 > .< p2> ,< p3>; 

where: 

< p1 > = 1 if the tape unit is present; 0, if not. 

< p2> is a two-digit decimal value indicating the 
last tape error code. (See Table 11-1.) 

< p3> (4 bytes) = 4051 or 4923, indicating the 
format in which information is to be written on the 
tape. 

11-6 @ 

Table 11-1 

TAPE ERROR CODES 
Code Meaning 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

Domain error or invalid argument 
File not found 
Mag tape format error 
Illegal access 
File not open 
Read error 
No cartridge inserted 
Over-read 
Write-protected 
Read-after-write error 
End of medium 
End of file 

Plotter 
When the command: 

!REP 12<CR> 

is given, the status of plotter 1 is reported to the 
computer. This report has the following format: 

!ANS 12,< p1 > ,< p2> ; 

where: 

< p1 > = 1 if the plotter is present; 0, if not. 

< p2> (6 digits) is the value or each bit of plotter 
status word 0. 

The command: 

IREP 13<CR> 

causes a similar report for plotter 2 to be sent to the 
computer. 

Printer 

When the command: 

!REP 14<CR> 

is given, the status of the printer is reported to the 
computer. This report has the following format: 

!ANS 14,< p1 > ,< p2> .< p3>; 

where: 

< p1 > = 1 if the printer is present; 0, if not. 

< p2> = L if the line feed option is used, F if the 
form feed option is used. (See the Printer Parame­
ters discussion in this section.) 

< p3> (3 digits) is the ASCII integer value of the 
printer delay. (See the Printer Parameters 
discussion in this section.) 

4027A PROGRAMMER'S 



PERIPHERALS 

ALLOCATE COMMAND 

COMMUNICATING WITH PERIPHERALS 

The remainder of this section discusses commands 
which enable the terminal to communicate with peri­
pheral devices. The ALLOCATE, DIRECTORY, and KILL 
commands are used to communicate with a tape unit; 
the PASS command is used to communicate with a 
plotter; and the COPY command is used to copy files 
from one device to another. 

ALLOCATE COMMAND 
(Requires Option 04 and a 4924 Tape Unit) 

Before information can be recorded on a tape in 4051-
compatible format, files must be created on the tape to 
hold the information. This is done by using the 
ALLOCATE command. 

Syntax 

!Allocate <device>< beg 
file>< number>< size>< CR> 

where: 

<device> is a device mnemonic (T[A1], TA2, TA3, 
or TA4) which specifies the tape unit used to record 
information. 

<beg file> is a non-negative integer which speci­
fies the number of the first file to be created. 

<number> is a positive integer which specifies the 
number of files to be created. 

<size> is a positive integer which specifies the 
number of eight-bit bytes which each newly created 
file is to contain. Each tape cartridge can store 
approximately 250K bytes of information. 

Action 

This command creates new files on a tape inserted in 
the tape unit specified by the <device> parameter. 

4027A PROGRAMMER'S @ 

<beg file> =0. If the tape has not previously been 
used to record information, <beg file> must be set to 
zero. This causes the tape to be properly initialized 
before a file structure is recorded on it. If the tape has 
already been used to record information, setting <beg 
file> to O destroys all information previously recorded 
on the tape, including the file structure marked on the 
tape; then the tape is reinitialized. In either of these 
cases, new files 1 through <number> are created. 
Each new file contains enough space to store <size> 
eight-bit bytes of information. 

<beg file> positive. If <beg file> is positive, this 
command creates <number> consecutive new files on 
the tape. The first new file created is file number< beg 
file> and each new file contains enough space to hold 
<size> eight-bit bytes of information. 

Examples 

INITIALIZING AN UNMARKED TAPE 

!ALL TA 1 0,2,5000< CR> 
!ALL T 0,2,5000< CR> 

Initializes the unmarked tape in tape unit 1 and creates 
two files (files 1 and 2) of 5000 bytes each. (If the tape 
has already been marked, this command destroys all 
old information on the tape.) 

ALLOCATING FILE SPACE ON A MARKED TAPE 

!ALL TA 1 1,2,5000< CR> 
!ALL T 1,2,5000< CR> 

Creates two new files on tape unit 1, beginning with 
file 1. Each new file contains 5000 bytes. 

!ALL TA1 7,4,8000<CR> 

Creates four new files on tape unit 1, beginning with 
file 7. Each new file contains 8000 bytes. 

11-7 



PERIPHERALS 

ALLOCATE COMMAND 

In addition to the <number> new files created, an 
ALLOCATE command attaches a file called LAST 
immediately after the last newly created file. The LAST 
file is always 768 bytes long. It marks the logical end of 
the file structure on the tape. If new files are allocated 
in the middle of an existing file structure, all the old 
information on the tape from file <beg file> to the end 
of the tape is lost, even if the newly ALLOCATEd space 
is shorter than previously ALLOCATEd space. Suppose 
you have 10 files of 5000 bytes each on the tape in 
tape unit 1 as represented in Example 11-1. 

HEADER FILE 1 FILE 2 FILE 3 FILE 4 FILE 5 

The command 

!ALL TA 1 4,3,5000< CR> 

creates new files 4, 5, and 6 (destroying the old files 4, 
5, and 6) and attaches a LAST file immediately 
following file 6, as represented in Example 11-2. 

The tape now contains six files. Even though old files 
8-10 and part of old file 7 are still magnetically 
recorded on the tape, this information is no longer 
accessible. 

FILE6 FILE 7 FILE 8 FILE 9 FILE 10 LAST 

Example 11-1. 

HEADER FILE 1 FILE2 FILE3 
(OLD) (OLD) (OLD) (OLD) 

OLD FILES SAVED 

11-8 

FILE4 FILE5 FILE6 LAST 
(NEW) (NEW) (NEW) (NEW 

NEW FILES CREATED 

Example 11-2. 

@ 

I-

I» 
I-

T- - I - - ...... - - 'T'" - _, 
7 I FILE 8 I FILE 9 I FILE 10 I LAST I 

I (OLD) I (OLD) I (OLD) I (OLD) I ..J. __ .l. __ ,.L __ .1. __ _. 

OLD INFORMATION 
NO LONGER ACCESSIBLE 

4027A PROGRAMMER'S 



DIRECTORY COMMAND 
(Requires Option 04) 

When information has been stored on a tape, it will be 
necessary at times to examine the file structure on the 
tape (perhaps to recall how many files have already 
been created). The DIRECTORY command allows you 
to do this. 

Syntax 

!DIRectory <tape device>[< output de­
vice>]< CR> 

where: 

<tape device> specifies a tape unit. 

<output device> specifies a non-GPIB device. If 
this parameter is not specified, it defaults to M 
(monitor). 

Action 

This command outputs file header information stored 
on the tape in the tape unit specified by <tape 
device>. The information on this tape must be record­
ed in 4051-compatible format. (Files recorded in 4923-
compatible format do not contain file header 
information.) This information is recorded on the device 
specified by the <output device> parameter. This 
output device must be a non-GPIB device. Each file 
header lists the file number, the file type, and the length 
of the file. 

There are three types of files: a NEW file is one which 
has been marked on the tape, but no information has 
yet been recorded in it; a file with information recorded 
in it is an ASCII DATA file; the LAST file ·marks the 
logical end of the tape file structure. 

4027A PROGRAMMER'S @ 

PERIPHERALS 

DIRECTORY COMMAND 

Even though file lengths are ALLOCATEd in terms of 
bytes, the DIRECTORY command lists file lengths in 
blocks. In 4051-compatible format, a block consists of 
256 bytes. 

Examples 

The command 

!ALL TA1 0,5,5000<CR> 

initializes the tape and creates five files of 5000 bytes 
each, as well as a sixth file, LAST. Suppose data is 
entered in files 1, 2 and 3, and one of the following 
commands is given: 

!DIR TA1 M<CR> 

or 

!DIRT<CR> 

The following list is displayed in the monitor: 

1 
2 
3 
4 
5 
6 

ASCII 
ASCII 
ASCII 
l'EW 
l'EW 
LAST 

DATA 
DATA 
DATA 

20 
20 
20 
20 
20 
3 

Note that a LAST file is always three blocks (768 
bytes) long. 

The command: 

!DIR TA2 P<CR> 

prints tape unit 2 file headers on the printer. 

11-9 



PERIPHERALS 

KILL, PASS COMMAND 

KILL COMMAND 

When a (4051-compatible) file is first created, its file 
header reads NEW, meaning that the file exists but no 
information is recorded in it (except the file header 
information). When information is stored in that file, its 
file header is changed to ASCII DATA. 

An ASCII DATA file can be restored to its NEW status 
by the KILL command. 

Syntax 

!KILi <tape unit.file number>< CR> 

Example 

If you wish to restore file 6 on the tape in tape unit 1 to 
its NEW status, give the command: 

!KIL TA1.6<CR> 

This restores the file header for that file to NEW and 
any information stored in the file is lost. 

11-10 @ 

PASS COMMAND 
(Requires Option 04) 

The terminal can display graphs and text on a Tektro­
nix 4662 or 4663 Interactive Digital Plotter. The 
terminal has a vocabulary of commands for creating 
graphic displays. (See the Graphics section.) The 
plotter also has a vocabulary of commands for creating 
graphic displays. This plotter language includes more 
graphic capabilities than the terminal language, and 
the formats of the two languages are different. Table 
11-2 gives a summary of the plotter-command lan­
guage. 

Ultimately, any command to which the plotter responds 
must be in plotter command language. The terminal is 
designed so that the user can specify graphic com­
mands destined for the plotter in either of two ways. 

1 . Create a file of plotter-language commands and 
send that file to the plotter via the terminal. 

This method has the advantage of using the full 
range of plotter commands; however, it has two 
disadvantages. First, such a command file can be 
used only for drawing graphs on the plotter. Since 
the terminal does not understand plotter-language 
commands, this file is meaningless to it. Second 
(and more serious), the plotter language uses the 
ASCII< ETX> (end-of-text) character. Being a 
control character, it will not be displayed or 
inserted in the terminal workspace unless the 
terminal is in snoopy mode. The < ETX> character 
is also used frequently in communications with the 
host computer. Transmitting a plotter-language 
command file containing< ETX>s to or from some 
computers may cause unintended results. 

4027A PROGRAMMER'S 



2. Create a command file of terminal graphic com­
mands and send that file to the plotter, instructing 
the terminal to translate these commands into 
plotter commands. 

This method has the advantage that the command 
file thus created can be used to display the same 
graph both in the terminal workspace and on the 
plotter. Such a file is easily transmitted to and from 
the computer with no troublesome control charac­
ters. 

This method has a disadvantage, however. Since 
the plotter's vocabulary of graphic commands is 
larger and more versatile than that of the terminal, 
a command file using only terminal commands 
cannot use the full range of the plotter's graphic 
capabilities. 

To send 4027 A-style command files to the plotter, use 
the COPY command with the /P switch setting. (See the 
COPY discussion later in this section.) To send plotter­
style commands which have no terminal equivalents, 
use the PASS command. 

4027A PROGRAMMER'S @ 

PERIPHERALS 

PASS COMMAND 

The PASS command allows you to transmit plotter style 
commands to the plotter, without the terminal trying to 
interpret them as terminal commands and translating 
them. 

Syntax 

!PASs <string>< CR> 

where <string> can be: 

• A delimited ASCII string. 

• One or more ADE values. 

• A combination of the above. 

Table 11-2 gives a summary of the plotter command 
vocabulary. Table 11-3 illustrates how various plotter 
commands are transmitted using the PASS command. 

11-11 



PERIPHERALS 

PLOTTER LANGUAGE COMMANDS 

Command 

H<CR> 
or 
H<ETX> 8 

M50,75<CR> 
or 
M50,75< ETX> 

D 100,50< CR> 
or 
D1 00,50< ETX> 

D 100,50 0,0 50, 1 0< CR> 
or 
D100,50,0,0,50,10< ETX> 

PThis is a test.< ETX> 

S 1.5,3.0< CR> 
or 
S 1 .5,3.0< ETX> 

11-12 

Table 11-2 

PLOTTER LANGUAGE COMMANDS 

Action 

Home. Moves the pen to the 
upper left corner of the plotting 
area. 

Move. Moves the pen to the 
point (50,75) in the plotter sys-
tern of coordinatesb. 

Draw. Draws a line from the 
current pen position to the point 
(100,50) In the plotter's system 
of coordinates. 

Draws a line from the current 
pen position to the point 
(100,50); from there, to the point 
(O,O); and from there, to (50, 10). 

Print. Prints on the plotter, start-
ing at the current pen position, 
the message "Th is is a test." 

Alpha Scale. Sets the size of 
each character cell to 1 .5 graph-
ic display units In the 
X-direction and 3.0 graphic 
display units in the Y-direction. 
(The "graphic display unit" Is a 
measure of length used by the 
plotter. In the X-direction, it is 
1 /1 50 the length of the plotting 
area; in the Y-direction, it is 
1/100 the height of the plotting 
area.) 

@ 

Command 

R 10<CR> 
or 
R10<ETX> 

F2<CR> 
or 
F2<ETX> 

A<CR> 
or 
A<ETX> 

TO<CR> 
or 
TO<ETX> 

T 1<CR> 
or 
T1<ETX> 

Action 

Alpha Rotate. Sets the angle at 
which alphanumeric characters 
are printed on the plotting sur­
face. Characters printed after 
this command is executed slant 
upwards at ten degrees with 
respect to the positive X-axis. 

Alpha Font. Selects printing 
font number 2 from among the 
plotter's seven fonts. 

Alpha Reset. Resets the 
alphanumeric printing parame­
ters (Alpha Scale, Alpha Rotate, 
Alpha Font) to their default val­
ues. 

Prompt Light. Turns off the 
PROMPT light on the plotter's 
front panel. 

Turns on the plotter's PROMPT 
light. 

aTo Hiid an <ETX> or <CR> In • PASS command, It must be put In •• •n ADE 
value, 81nce control ch•racters ara not allowed In delimited strings. 

bThe plotter's coordinate system la not the .. me •• the terml11111'a coordl1111te aya­
tam. The plotter's x .. xla •lw•ya runs from 0 to 150, •nd Ila v .. xla runs from 0 to 
100. 

4027A PROGRAMMER'S 



Table 11-3 

PERIPHERALS 

PASS COMMAND 

TRANSMITTING PLOTTER COMMANDS USING PASS 

Command Name Plotter Language Terminal Language 

HOME H<CR> !PASS "H'',13<CR> 
H<ETX> IPASS"H",3< CR> 

MOVE M 50,75<CR> !PASS "M 50,75",13< CR> 
M50,75< ETX> !PASS "M50,75",3<CR> 

DRAW 0100,50< ETX> !PASS "01 00,50" ,3< CR> 
0100,50,0,0< ETX> !PASS "0100,50,0,0",3< CR> 

MOVE, followed M50,75 D100,100<ETX> !PASS "M50,75" "0100, 100",3 
by DRAW8 !VEC 213,30,427 ,4 79< CR> 

PRINTb PThis is a test.< ETX> IPASS"PThis is a test.",3<CR> 
!STRING "This is a test."< CR> 

ALPHA SCALE S1 .5,3.0< ETX> !PASS "S1 .5,3.0",3<CR> 

ALPHA ROTATE R10<ETX> !PASS "R10",3<CR> 

ALPHA FONT F2<ETX> !PASS "F2",3<CR> 

ALPHA RESET A<ETX> !PASS "A",3<CR> 

PROMPT LIGHT TO<ETX> !PASS "T0",3<CR> 
T1<ETX> !PASS "T1 ",3<CR> 

8The coordlnat• In the terminal-language VECTOR command differ from thosa In tha plotter-language MOVE and DRAW commands. In translating VECTOR 
commands, the terminal aHumas a graphics area with a maximum X-coordlnate of e3g and maximum Y-coordlnate of 4 7g 1s to be mapped onto a plotter work area 
with maximum X-coordlnate of 150 and maximum Y-coordlnate of 100. 

bon1y PRINT requlr• the < ETX> character. All other commands take< ETX> or< CR>. 

4027A PROGRAMMER'S @ 11-13 



PERIPHERALS 

COPY COMMAND 

COPY COMMAND 
(Requires Option 03 or 04) 

The terminal can transfer files of information from one 
device to another by means of the COPY command. 

Syntax 

!COPY< source>[< switches>] [<destination>] 
[<switches>]< CR> 

Action 

This command copies the information contained in 
<source> to< destination>. If the <switches> par­
ameter is present, the terminal receives or transmits 
information according to certain conventions deter­
mined by the value of <switches>. The <source> 
and <destination> parameters are shown in 
Table 11-4. 

A particular file on a tape is designated TAn.k (see 
Table 11-4). In this notation, n is the number of a tape 
unit (1<n<4) and k is the number of a file on the given 
tape unit (e.g., TA1 .3 or TA3.15). The TA1 mnemonic 
can be shortened to T; for example, TA1 .3 can be 
written T.3. 

If <destination> is l"!Ot specified, it defaults to W 
(Workspace). 

Examples 

ICOPWH<CR> 

Copies the contents of the workspace to the host and 
includes an EOF at the end of the communication. 

!COP W TA1 .3<CR> 
!COP W T.3< CR> 

Copies the workspace contents to file 3 of tape unit 1. 

!COP TA3.5 W< CR> 
!COP T A3.5< CR> 

Copies file 5 of the tape in tape unit 3 to the 
workspace. 

!COP T A3.5 P< CR> 

Copies file 5 of tape unit 3 to the printer. 

!COP TA2.15PL1 <CR> 

Copies file 15 of tape unit 2 to plotter 1. 

NOTE 

The COPY operation is non-destructive. The 
command !COP TA 1.3 W< CR> copies the con­
tents of file 3, tape unit 1 to the workspace, 
leaving that information still stored in file 3 of 
tape unit 1. 

The < switches> parameter consists of one or more 
slashes (/),each followed by a single letter. Each letter 
serves as a "switch" which, if present, instructs the 
terminal to receive or transmit information in a certain 
way. Each switch is given for a specific purpose and is, 
strictly or loosely, associated with a specific 
<source> or< destination>. The switches and their 
uses are summarized in Table 11-5. 

Table 11-4 

COPY PARAMETERS 

Mnemonic Used Used As Used As 
Device as Parameter <source> <destination> 

Terminal Workspace WorWO x x 
Host Computer Hor HO x x 
Printer PorPR x 
4662 Plotter 1 and 2 PL1,PL2 x x 
A file on a given tape unit TAn.k x x 

11-14 REV,NOV1981 4027A PROGRAMMER'S 



Switch 

IN 

IN 

IU 

ID 

Use 

Table 11-5 

COPY SWITCHES 

When <source> is the workspace, this switch 
instructs the terminal to ignore all attribute codes 
stored in the workspace display list and convert 
all ruling characters to asterisks. In this way, a 
form containing ruling characters can be copied 
to the printer. 

When <destination> is the workspace, this 
switch instructs the terminal to treat all informa­
tion coming from <source>, including the com­
mand character, as text to be displayed. This 
allows the operator to display a file containing 
commands in the workspace for examination and 
modification. Setting this switch is equivalent to 
pressing COMMAND LOCKOUT while the termi­
nal receives text from the host computer. Once 
the file is displayed in the workspace, however, 
the terminal again recognizes the command 
character. To send such a file from the work­
space to some other <destination> one can do 
either of two things: 

1. Initiate a file transfer from the workspace 
(COPY or, if <destination> is the host 
computer, SEND). 

2. If the host is going to echo the data back, 
simply change the command character to a 
symbol which does not appear in the dis­
played file. Then COPY or SEND as usual. 

When <source> is the workspace and the 
workspace holds a form, this switch instructs the 
terminal to copy data in the unprotected fields 
only. If a form is being filled out repeatedly and 
you wish to store just the data in the form, use 
this switch. If the workspace holds a form and 
this switch is not set, a COPY operation copies 
the entire form, including attribute codes and data 
in protected fields. 

If the workspace does not contain a form (no 
attribute codes inserted in the display list), the IU 
switch has no effect. 

When <source> is the host computer and 
<destination> is neither workspace nor monitor, 
this switch instructs the terminal to display the 
copied file in the workspace. Without this switch 
set, a file copied from the host to file TA 1 .3, for 
example, would not be displayed on the screen. 
ID is legal only if <source> is the host. 

4027A PROGRAMMER'S @ 

PERIPHERALS 

COPY COMMAND 

Table 11-5 (cont) 

COPY SWITCHES 

Switch Use 

IP When a file containing terminal graphic com­
mands is copied with the IP switch set, the 
terminal translates all VECTOR, RVECTOR, 
STRING, and PASS commands into plotter-com­
mand language. Only the boundary of a panel 
created with the POLYGON or RPOL YGON com­
mand is drawn on the plotter. This enables the 
same file to be used to create graphs on both the 
terminal and the plotter. IP is legal only if 
<source> is host or tape. 

Examples 

!COP W/N P< CR> 

Copies the workspace contents to the printer, ignoring 
attribute codes and converting all ruling characters to 
asterisks. (Requires Option 03) 

!COP W/U TA1 .4<CR> 

If the workspace holds a form, copies data from the 
unprotected fields only to file 4 of tape unit 1. 
(Requires Option 04) 

!COP HID T A2.5< CR> 

Copies the host file to file 5 of tape unit 2, displaying 
this file in the workspace as it is copied. (Requires 
Option 04) 

!COP TA1 .7/P PL 1 

Copies file 7 of tape unit 1 to the plotter, translating all 
VECTOR, RVECTOR, STRING, and PASS commands 
into plotter-command language. (Requires Option 04) 

It is possible to set more than one switch in a COPY 
command. The command 

!COP H/D/P PL 1 <CR> 

copies the host file to plotter 1, displaying this file in 
the workspace and translating terminal graphic com­
mands into plotter-command language. 

11-15 



PERIPHERALS 

COPY COMMAND 

AUTO-INCREMENTING THE TAPE UNIT 

When a particular file on a tape unit is designated in a 
COPY command, the terminal remembers that file 
number until it is replaced by another file number (or 
until the terminal is RESET or powered off). If the file 
number is omitted in a subsequent COPY command, 
the terminal automatically increments the file number 
in its memory by one and copies to or from that file on 
the tape. 

This feature is useful in text editing or form fillout. 
Suppose the operator has created a form in the 
workspace and stored the form on tape unit 1 with the 
command 

!COP W TA1 .1 <CR> 

Suppose the PT (Pad Terminator) key has been 
programmed to give the command 

!COP W/U TA1 !ERA W<CR> 

The operator fills out the form and presses PT. The 
terminal stores the data from the unprotected fields in 
the next available file (file 2) of tape unit 1 and erases 
the workspace. (With the terminal in form fillout mode, 
only the data in the unprotected fields is erased.) The 
operator fills out the form again, with different data, and 
again presses PT. Again the terminal stores the data 
from the unprotected fields in the next available file 
(now file 3) of tape unit 1 and erases the blanks of the 
form. The operator proceeds in this way as long as 
necessary. 

As another example, suppose successive pages of text 
to be edited are stored in files 12-27 of tape unit 2. To 
get the first page into the workspace, give the 
command 

!COP T A2.12< CR> 

To get each succeeding page, give the command 

!COP T A2< CR> 

11-16 @ 

COPYING THE WORKSPACE TO THE 
PLOTTER 

If the workspace holds a graph, it is tempting to try 
copying this graph directly to the plotter. This cannot 
be done. The workspace display list does not contain 
sufficient information to translate the graphic informa­
tion displayed into commands which can recreate the 
graph. If the terminal is commanded to copy the 
workspace to the plotter, graphic information does not 
copy. (This is similar to the SEND command.) To obtain 
graphs, you must store somewhere (on a tape or in the 
host) a command file containing the necessary com­
mands to recreate the graph. These cannot be derived 
from the display list. 

4027A PROGRAMMER'S 



PERIPHERALS 

HCOPY COMMAND 

COPYING ON A HARD COPY UNIT 

A Tektronix 4632 Video Hard Copy Unit (Option 06, 
Enhanced Gray Scale required) can be used to make 
copies of the workspace, the monitor, o.r the screen. 

This 4632 Video Hard Copy Unit produces pages of 
copy approximately 8-1 /2 inches by 11 inches in size. 
These copies can show whatever can be displayed on 
the screen: text, control characters in snoopy mode, 
rulings, alternate character fonts, visual attributes 
(except blinking), and graphs. One or several 34-line 
"pages" from the workspace or the monitor can be 
copied. The 4632 produces gray-scale reproductions 
of the displayed copy aligned with the short axis of the 
terminal's display. 

Hard copies are made on the 4632 Video Hard Copy 
Unit with the HCOPY command. 

HCOPY (HARD COPY) COMMAND 

Syntax 

!HCOpy [<count> ][Workspace I Monitor I 
Screen]< CR> 

where <count> is a positive integer. If <count> is not 
specified, it defaults to one. 

Action 

If M (monitor) or W (workspace) is specified, this 
command copies <count> "pages" from the specified 
scroll to a Tektronix 4632 Video Hard Copy Unit. The 
copy begins with the first visible line in that scroll. 
Each "page" of copy continues until it includes 34 
lines of text or until an ASCII< FF> character appears 
in column 1 of a line. The line of text containing such a 
form feed is not copied. If the specified scroll contains 
fewer than <count> pages, only the number of pages 
in the scroll is copied. If one attempts to make a hard 
copy of a blank scroll, one (blank) page of hard copy 
will be produced. · 

If S (screen) is specified,< count> is ignored and one 
copy of the visual screen display, both workspace and 
monitor windows, is made. 

4027A PROGRAMMER'S @ 

If the HCOPY command comes from the computer and 
neither W nor M nor S is specified, pages are copied 
from whichever scroll receives text from the computer. 

If the HCOPY command is typed on the keyboard and 
neither W nor M nor S is specified, pages are copied 
from whichever scroll receives text from the keyboard. 

Examples 

!HC03W<CR> 

Copies three "pages" from the workspace to the Hard 
Copy Unit. The first page copied begins with the first 
line visible in the workspace. 

NOTE 

This means one copy each of three consecutive 
pages in the workspace scroll, not three copies of 
the same page. If the workspace contains only 
one page, then only one sheet of copy is 
produced. 

!HCO M<CR> 

Copies one page from the monitor to the Hard Copy 
Unit. This page begins with the first line visible in the 
monitor. 

!HCOS<CR> 

Copies all information displayed on the screen to the 
Hard Copy Unit. 

!HCO<CR> 

If this command comes from the computer, copies a 
page from the scroll which receives text from the 
computer. 

If this command is typed on the keyboard, copies a 
page from the scroll which receives text from the 
keyboard. 

11-17 



Appendix A 

TEKTRONIX 
4027A 
COLOR 
STANDARD 

L = 100 \white 

L=86j 

L=85 

180" ()" 

HUE (H) 0-360° 
LIGHTNESS (L) 0-100% 
SATURATION (S) C..100% 

Example1: 
!MAP C2 240 50 33 

(H) (L) (S) 

*Note: 

180" 

180" 

The lightness planes (L) shown on the scale are for 
S = 100%. If S = 0% the lightness planes will be: 

L = 71 • 100 (white) 
L = 43 · 70 (light grey) 
L = 14 · 42 (dark grey) 
L = 0 - 13 (black) 

4027 A PROGRAMMER'S 
Figure A-1 . 4027A Color Standard. 

@ 

L=70 

()" 

0° Blue 

L=29 

L=14 

L=13 7 
L=O jblack 

L=56 

L=43 

A-1 
Copyright © 1981. Tektronix, Inc. 
·All rights reserved 



COLOR STANDARD 

TEKTRONIX 
4027A 
COLOR 
STANDARD 

Overview: 

The world of color is filled with ambiguous 
terminology, i.e. intensity, purity, value, etc. 
Many color users feel that "color theory" is a 
prerequisite to operating color systems; T.V., 
Videotaping, Photography, Computer Graph­
ics. 

In order to end this confusion, Tektronix has 
developed a color language and function 
based on human engineering, rather than 
machine engineering. Below is a description 
of this system, which will provide a clear 
and concise means for understanding how 
color is defined and how our syntax was 
derived. 

4027 A Color Concepts: 

Color selection is specified by hue, light­
ness and saturation which is the HLS 
method. The definitions are as follows: 

Hue: 

Lightness: 

A-2 

The characteristic associ­
ated with a color name 
such as red, yellow, green, 
blue, etc. Hue is a grada­
tion of color advanced by 
degrees, thus represented 
as an angle from 0 to 360. 

The characteristic that al­
lows the color to be 
ranked on a scale from 
dark to light. Lightness is 
expressed as a parameter 
ranging from 0 to 100% 
with black being 0 (bot­
tom of cone) and white 
being 100% (top of cone). 

@ 

Saturation: The characteristic which 
describes the extent to 
which a color differs from 
a gray of the same light­
ness. Saturation is ex­
pressed as percentage, 
ranging from 0% (maxi­
mum white content at that 
lightness level) to 100% 
(full saturated). 

Geometrically, colors can be described in 
terms of a double cone (see Figure 1 ). 
Variations in lightness are represented 
along the axis, with white at the apex of 
the cone and black at the opposite apex. 
Variations in saturation are represented by 
radial distances from the lightness axis, in 
constant lightness planes. Hue is repre- . 
sented as an angular quantity from a known 
reference point. 

The 64 colors available in the 4027 A are 
discrete samples from this continuous color 
space. They are obtained by intersecting the 
cone into several planes of constant light­
ness. 

Copyright © 1981 by Tektronix, Inc., Beaverton, Oregon. 
Printed in the United States of America. All rights reserved. 
Contents of this publication may not be reproduced in any form 
without permission of Tektronix, Inc. U.S.A. and foreign TEK­
TRONIX products covered by U.S. and foreign patents and/or 
patents pending. 

TEKTRONIX is a registered trademark for Tektronix, Inc. 

4027A PROGRAMMER'S 



NOTE 

Colors displayed on the terminal screen and 
those printed on this page are produced by 
significantly different methods. Therefore, actual 
tones may be different. 

100% 

70% 

50% 

42% 

13% 

0% 
LIGHTNESS 

100% 0% 
SATURATION 

COLOR STANDARD 

A better understanding of the color standard can 
be had by looking at a cross section of the 
double-ended cone (Figure A-2). There are four 
gray levels along the middle of the cone. At 0% 
saturation the four levels of gray are black, dark 
gray, light gray, and white. At any other value of 
saturation, different hues (color mixtures) are 
obtained. Hue has no effect at 0% saturation. A 
maximum of seven different "planes" of color can 
be obtained at any value of saturation except 0%. 

- --- - -WHITE 

LIGHT GRAY 

--0 % SATURATION 

----- -BLACK 

100% 

(2656) 4173-41 

Figure A-2. Cross Section of the Color Standard. 

4027 A PROGRAMMER'S @ A-3 



Appendix B 

ASCII CODE 
Table B-1 

ASCII CODE CHART 

B7 BG 
B5 

00 
0 

00 
1 

0 1 
0 

0 1 
1 

1 0 
0 

1 0 
1 

1 1 
0 

1 1 
1 

BITS 
HIGH X & Y 

B4 B3 B2 Bl 
CONTROL GRAPHIC INPUT LOWX LOWY 

0 0 0 0 NUL DLE SP 0 @ p \ p 
0 16 32 48 64 80 96 112 

0 0 0 1 SOH DCl I 1 A Q 81 
a 

q113 
. 

1 17 33 49 65 97 

0 0 1 0 STX DC2 " 2 B R b r 
2 18 34 50 66 82 98 114 

0 0 1 1 ETX DC3 # 3 c s c s 
3 19 35 51 67 83 99 115 

0 1 0 0 EQT DC4 $ 4 D T d t 
4 20 36 52 68 84 100 116 

0 1 0 1 ENQ NAK % 5 E u e u 
5 21 37 53 69 85 101 117 

0 1 1 0 ACK SYN & 6 F v f v 
6 22 38 54 70 86 102 118 

0 1 1 1 BEL ETB I 7 G w g w 
BELL 7 23 39 55 71 87 103 119 

1 0 0 0 BS CAN ( 8 H x h x BACK- 8 24 40 56 72 88 104 120 SPACE 

1 0 0 1 HT EM ) 9 I y I y 
9 25 41 57 73 89 105 121 

1 0 1 0 LF SUB * • J z J z • 
10 26 42 58 74 90 106 122 

1 0 1 1 VT ESC + • K [ k { 
' 11 27 43 59 75 91 107 123 

1 1 0 0 FF FS ' < L \ I I * 
12 28 44 60 76 92 108 124 

1 1 0 1 CR GS - - M ] m } -
RETURN13 29 45 61 77 93 109 125 

1 1 1 0 so RS • > N /\ n '"V 
14 30 46 62 78 94 110 126 

SI us I ? 0 0 
RUBOUT 

1 1 1 1 . - (DEL) 
15 31 47 63 79 95 111 127 

I * I on some keyboards or systems. 

4027A PROGRAMMER'S @ B-1 



ASCII CODE 

Table B-2 

ASCII CONTROL CHARACTERS 

Usual 
ASCII 

Mnemonic Abbrev. Name of Character Keys to Press 

N NUL Null CRTL-@ u 
s SOH Start of Heading CTRL-A H 

s STX Start of Text CTRL-B x 
E ETX End of Text CRTL-C x 
E EQT End of Transmission CTRL-D T 
E ENO Enquiry CTRL-E a 
A ACK Acknowledgement CTRL-F K 

B BEL Bell CTRL-G L 

B BS Backspace CTRL-H s 
H HT Horizontal Tab CTRL-1 T 
L LF Line Feed CTRL-J F 

v VT Vertical Tab CTRL-K T 
F FF Form Feed CTRL-L F 

c CR Carriage Return CTRL-M R 

s so Shift Out CTRL-N 0 

s SI Shift In CTRL-0 I 
D OLE Data Link Escape CTRL-P L 

D DC1 Device Control 1 CTRL-Q 1 

D DC2 Device Control 2 CTRL-R 2 

D DC3 Device Control 3 CTRL-S 3 
D DC4 Device Control 4 CTRL-T 4 

N NAK Negative Acknowledgement CTRL-U K 

s SYN Synchronization Character CTRL-V y 

E ETB End of Transmission Block CTRL-W B 
c CAN Cancel CTRL-X N 

E EM End of Medium CTRL-Y M 

s SUB Substitute CTRL-Z B 

E ESC Escape CTRL-[ c 
F FS Field Separator CTRL-\ s 
G GS Group Separator CTRL-) s 
R RS Record Separator CTRL-t s 

CTRL- /\ 
(CTRL-up arrow or 
CTRL-circumflex 

accent) 
u us Unit Separator CTRL--s 

(CTRL-underscore) 

B-2 @ 4027 A PROGRAMMER'S 



Appendix C 

4010-STYLE GRAPHICS CODES 

Table C-1 

401 0-STYLE GRAPHICS CODE CHART 

Low Order X Low Order V 

ASCII DEC. X or V Coordinate DEC. ASCII 

@ 64 0 32 64 96 128 160 192 224 96 \ 

A 65 1 33 65 97 129 161 193 225 97 a 
B 66 2 34 66 98 130 162 194 226 98 b 
c 67 3 35 67 99 131 163 195 227 99 c 
D 6B 4 36 6B 100 132 164 196 228 100 d 
E 69 5 37 69 101 133 165 197 229 101 e 
F 70 6 38 70 102 134 166 198 230 102 f 
G 71 7 39 71 103 135 167 199 231 103 g 
H 72 8 40 72 104 136 168 200 232 104 h 
I 73 9 41 73 105 137 169 201 233 105 i 
J 74 10 42 74 106 138 170 202 234 106 j 
K 75 11 43 75 107 139 171 203 235 107 k 
L 76 12 44 76 108 140 172 204 236 108 I 
M 77 13 45 77 109 141 173 205 237 109 m 
N 78 14 46 78 110 142 174 206 238 110 n 
0 79 15 47 79 111 143 175 207 239 111 0 
p 80 16 48 80 112 144 176 208 240 112 p 
a 81 17 49 81 113 145 177 209 241 113 q 
R 82 18 50 82 114 146 178 210 242 114 r 
s 83 19 51 83 115 147 179 211 243 115 s 
T 84 20 52 84 116 148 180 212 244 116 t 

u 85 21 53 85 117 149 181 213 245 117 u 
v 86 22 54 86 118 150 182 214 246 118 v 
w 87 23 55 87 119 151 183 215 247 119 w 
x 88 24 56 88 120 152 184 216 248 120 x 
v 89 25 57 89 121 153 185 217 249 121 y 
z 90 26 58 90 122 154 186 218 250 122 z 
[ 91 27 59 91 123 155 187 219 251 123 { 

\ 92 28 60 92 124 156 188 220 252 124 ' ' 
] 93 29 61 93 125 157 189 221 253 125 } 
A 94 30 62 94 126 158 190 220 254 126 -
- 95 31 63 95 127 159 191 223 255 127 R~J1a'f 

DEC. 
ASCII 

32 33 34 35 36 37 38 39 
SP ! .. # $ % & 

. 
High Order X & Y 

INSTRUCTIONS: Find coordinate value in body of chart; follow that column to bottom of chart to find decimal value or 

ASCII character which represents the High Y or High X byte; go to the right in the row containing the coordinate value to 

find the Low Y byte, or go to the left to find the Low X byte. EXAMPLE: 200Y, 48X equals 38 104 33 80 in decimal code, 

and equals & h I P in ASCII code. 

4027A PROGRAMMER'S @ C-1 



4010-STYLE GRAPHICS CODE 

Table C-1 (cont) 

4010-STYLE GRAPHICS CODE CHART 

Low Order X Low Order Y 

ASCII DEC. X or Y Coordinate DEC. ASCII 

@ 64 256 288 320 352 384 416 448 480 96 . 
A 65 257 289 321 353 385 417 449 481 97 a 

B 66 258 290 322 354 386 418 450 482 98 b 
c 67 259 291 323 355 387 419 451 483 99 c 
D 68 260 292 324 356 388 420 452 484 100 d 

E 69 261 293 325 357 389 421 453 485 101 e 

F 70 262 294 326 358 390 422 454 486 102 f 

G 71 263 295 327 359 391 423 455 487 103 g 

H 72 264 296 328 360 392 424 456 488 104 h 

I 73 265 297 329 361 393 425 457 489 105 i 

J 74 266 298 330 362 394 426 458 490 106 j 

K 75 267 299 331 363 395 427 459 491 107 k 

L 76 268 300 332 364 396 428 460 492 108 I 

M 77 269 301 333 365 397 429 461 493 109 m 
N 78 270 302 334 366 398 430 462 494 110 n 

0 79 271 303 335 367 399 431 463 495 111 0 

p 80 272 304 336 368 400 432 464 496 112 p 

a 81 273 305 337 369 401 433 465 497 113 q 

R 82 274 306 338 370 402 434 466 498 114 r 

s 83 275 307 339 371 403 435 467 499 115 s 
T 84 276 308 340 372 404 436 468 500 116 t 

u 85 277 309 341 373 405 437 469 501 117 u 

v 86 278 310 342 374 406 438 470 502 118 v 

w 87 279 311 343 375 407 439 471 503 119 w 

x 88 280 312 344 376 408 440 472 504 120 x 
y 89 281 313 345 377 409 441 473 505 121 y 

z 90 282 314 346 378 410 442 474 506 122 z 
[ 91 283 315 347 379 411 443 475 507 123 { 

\ 92 284 316 348 380 412 444 476 508 124 ' 
' 

J 93 285 317 349 381 413 445 477 509 125 } 
A 94 286 318 350 382 414 446 478 510 126 -
- 95 287 319 351 383 415 447 479 511 127 R~8fi)'T 

DEC. 40 41 42 43 44 45 46 47 
ASCII ( I * + - I . 

High Order X & Y 

C-2 @ 4027 A PROGRAMMER'S 



4010-STYLE GRAPHICS CODE 

Table C-1 (cont) 

4010-STYLE GRAPHICS CODE CHART 

Low Order X Low Order Y 

ASCII DEC. X or Y Coordinate ASCII DEC. 

@ 64 512 544 576 608 640 672 704 736 ' 96 
A 65 513 545 577 609 641 673 705 737 a 97 
B 66 514 546 578 610 642 674 706 738 b 98 
c 67 515 547 579 611 643 675 707 739 c 99 
D 68 516 548 580 612 644 676 708 740 d 100 
E 69 517 649 581 613 645 677 709 741 e 101 
F 70 518 550 582 614 646 678 710 742 f 102 
G 71 519 551 583 615 647 679 711 743 g 103 
H 72 520 552 584 616 648 680 712 744 h 104 
I 73 521 553 585 617 649 681 713 745 i 105 
J 74 522 554 586 618 650 682 714 746 j 106 
K 75 523 555 587 619 651 683 715 747 k 107 
L 76 524 556 588 620 652 684 716 748 I 108 
M 77 525 557 589 621 653 685 717 749 m 109 
N 78 526 558 590 622 654 686 718 750 n 110 
0 79 527 559 591 623 655 687 719 751 0 111 
p 80 528 560 592 624 656 688 720 752 p 112 
Q 81 529 561 593 625 657 689 721 753 q 113 
A 82 530 562 594 626 658 690 722 754 r 114 
s 83 531 563 595 627 659 691 723 755 s 115 
T 84 532 564 596 628 660 692 724 756 t 116 
u 85 533 565 597 629 661 693 725 757 u 117 
v 86 534 566 598 630 662 694 726 758 v 118 
w 87 535 567 599 631 663 695 727 759 w 119 
x 88 536 568 600 632 664 696 728 760 x 120 
y 89 537 569 601 633 665 697 729 761 y 121 
z 90 538 570 602 634 666 698 730 762 z 122 
[ 91 539 571 603 635 667 699 731 763 { 123 
\ 92 540 572 604 636 668 700 732 764 ' 124 

' 
] 93 541 573 605 637 669 701 733 765 } 125 
I\ 94 542 574 606 638 670 702 734 766 - 126 

95 543 575 607 639 671 703 735 767 RP8~'L'f 127 
DEC 48 49 50 51 52 53 54 55 

ASCII 0 1 2 3 4 5 6 7 
High Order X & Y 

4027 A PROGRAMMER'S @ C-3 



4010-STYLE GRAPHICS CODE 

Table C-1 (cont) 

4010-STYLE GRAPHICS CODE CHART 

Low Order X Low Order Y 

ASCII DEC. X or Y Coordinate DEC. ASCII 

@ 64 768 800 832 864 896 928 960 992 96 ' 
A 65 769 801 833 865 897 929 961 993 97 a 
B 66 770 802 834 866 898 930 962 994 98 b 
c 67 771 803 835 867 899 931 963 995 99 c 
D 68 772 804 836 868 900 932 964 996 100 d 
E 69 773 805 837 869 901 933 965 997 101 e 
F 70 774 806 838 870 902 934 966 998 102 f 
G 71 775 807 839 871 903 935 967 999 103 g 
H 72 776 808 840 872 904 936 968 1000 104 h 
I 73 717 809 841 873 905 937 969 1001 105 i 
J 74 778 810 842 874 906 938 970 1002 106 j 
K 75 779 811 843 875 907 939 971 1003 107 k 
L 76 780 812 844 876 908 940 972 1004 108 I 
M 71 781 813 845 877 909 941 973 1005 109 m 
N 78 782 814 846 878 910 942 974 1006 110 n 
0 79 783 815 847 879 911 943 975 1007 111 0 
p 80 784 816 848 880 912 944 976 1008 112 p 
a 81 785 817 849 881 913 945 977 1009 113 q 
R 82 786 818 850 882 914 946 978 1010 114 r 
s 83 787 819 851 883 915 947 979 1011 115 s 
T 84 788 820 852 884 916 948 980 1012 116 t 

u 85 789 821 853 885 917 949 981 1013 117 u 
v 86 790 822 854 886 918 950 982 1014 118 v 
w 87 791 823 855 887 919 951 983 1015 119 w 
x 88 792 824 856 888 920 952 984 1016 120 x 
y 89 793 825 857 889 921 953 985 1017 121 y 
z 90 794 826 858 890 922 954 986 1018 122 z 
[ 91 795 827 859 891 923 955 987 1019 123 { 

\ 92 796 828 860 892 924 956 988 1020 124 ' 
' 

] 93 797 829 861 893 825 957 989 1021 125 } 
/\ 94 798 830 862 894 926 958 990 1022 126 -
- 95 799 831 863 895 927 959 991 1023 127 A~8R'r 

DEC 56 57 58 59 60 61 62 63 
ASCII 8 9 : . < = > ? 

High Order X & Y 

C-4 @ 4027 A PROGRAMMER'S 



Appendix D 

ALTERNATE CHARACTER FONTS 
Table D-1 

ALTERNATE CHARACTER FONTS 

Character Ruling M•th Ch.,•cter Ruling M•th Ch.,•cter Ruling M•th Ch•racter Ruling M•th I ASCII I 4027A I I ASCII I 4027A I I ASCII I 4027A I I ASCII I 4027A I 
(Font OJ (Font 1 J I (Font 3J (Font OJ (Font 1 J I (Font 3J (Font OJ (Font 1 J I (Font 3J (Font OJ (Font 1 J I (Font 3J 

83 I @] ? 
79 H B 0 

95 D rn 111 I ~ 0 

84 

~ ~ @ 
p BO ~ ~ \ g5 w D 112 ~ ~ p 

85 ~ ~ A 
B1 ~ ~ Q 97 [d OJ a 

113 

~ [!] q 

88 @ ~ B 
B2 

~ ~ R 
gB n ~ b 

114 ~ ~ r 

87 ~ [iJ c B3 ~ ~ s gg i ~ c 
115 ~ ~ s 

8B i ~ D 
B4 ~ ~ T 100 [i ~ d 

118 ~ ~ t 

5g e [§ E 
B5 

~ ~ u 101 i rn e 
117 ~ ~ u 

70 e ~ F 
B8 ~ ~ v 102 i ~ f 

11 B ~ ~ y 

71 

~ [] G 
B7 ~ ~ w 

103 i § g 
119 ~ ~ w 

72 [E ~ H 
BB H ~ x 104 [E [g h 

120 I ~ x 

73 ~ [g I 
B9 B ~ y 105 ~ [[] i 

121 ~ ~ y 

74 ti] ~ J 
90 H ~ z 

108 BJ EJ j 
122 I [§ z 

75 i ~ K 
91 [I] ~ [ 

107 i ~ k 
{ 123 i [] 

78 I ~ L \ 92 ~ B 10B I 0 I 
124 

~ ~ I 
I 

77 I ~ M 
] g3 a a 1og I ~ m 

} 125 ~ rn 
7B llJ ~ N 

g4 ~ [] A 
110 I rn n 

128 ~ ~ -

4027 A PROGRAMMER'S REV, FEB 1982 D-1 



ALTERNATE CHARACTER FONTS 

D-2 

Table D-2 

RULING JUNCTIONS CHART 

Rulings 
(Font 1) 

Standard 
(Font 0) 

~ 
[ - [ [ 

'llMllKlllll" 
[ - [ [ 
HYYOYYIYYYYYJ 
[ - [ [ 
[ - [ [ 
[ - [ [ 
PY'rWYYQYYYYYR 

DlJCllElllllF 
- [ - -
';(('(JYYOYYYYVZ 
- [ - -
UlKllMlllllN 
- [ -
- [ -
- [ - -
Tl lSl lUl l l l lV 

d })c })~})} })f 
? [ ? ? 
xYYIYYoYYYYYz 
? [ ? ? 
I })k })m}) }) }n 

? [ ? ? 
? [ ? ? 
? [ ? ? 
t })s })u}) }) }v 

hlllElllllllJ 
[ [ 

[ - [ 
: }})~}}}{)))"' 
[ [ 
[ - [ 
plllllllUllJr 

alllll9lllllb 
? 
? 

x:iYYYYo YYYYYX 
? 
? 

qYYYYYwYYYYY I 

@ 

4025A 
Rulings 

4027A 
Rulings 

4027 A PROGRAMMER'S 



Appendix E 

SAMPLE PROGRAMS 

This appendix contains three sample programs for the 
4027A Color Graphics Terminal. The first is a program 
written in BASIC which allows the operator to sample 
the 64 colors of the terminal. The second is a short 
program (actually a segment of a larger program) in 
PASCAL which processes the input to the host from a 

! REP 00 command. The third is a complete COBOL 
program which displays a form in the terminal work­
space and stores the data from the form in a file. 

THE BASIC PROGRAM 

The second parameter •. < lightness>, varies The program which follows is written to demonstrate 
the 64 color mixtures available on the terminal. The 
program allows the operator to move the graphic cursor 
to any position on the center plane of the color cone. 
Any one position on this plane repres~nts the <hue>, 
<lightness>, and <saturation> parameters of a MAP 
command. 

the color created by the other two parameters. The 
program displays all seven variations on the lightness 
plane with <hue> and <saturation> remaining con­
stant. 

1 11= 20 
4 x:168 
5 y:200 
6 r:100 
7 t:5 
9 !goto setup subroutin 
10 gosub 8000 
16 12=34 
17 13:48 
18 14:62 
19 15=7 4 
990 rem Enable cross-hair,turn off ink, and input a point 
998 pr int "! ena" 
999 print "!ink n" 
1000 print"!era m!rep 03" 
1005 input d1$,k1,x1 ,d2$ 
1006 on error goto 1000 
1007 y1:val(left(d2$,(len(d2$)-1))) 
1009 if x1=0 then goto 9000 
1010 x2=x1-x 
1015 y2:y1-y 
1020 if x2=0 then x2:.001 
1022 rem If cross-hair is not in the circle then get another point 
1025 if sqr((x2*x2)+(y2*y2))>r then goto 1000 
1030 h:fix(atn(y2/x2)/k) 
1031 if x2<0 then h=h+180 
1032 if h<O then h=h+360 
1035 s=fix(sqr((x2*x2)+(y2*y2))*100/r) 
1050 gosub 2000 
1055 goto 1000 

4027A PROGRAMMER'S @ E-1 



SAMPLE PROGRAM 

2000 !color output routine 
2005 print"!map c1 ";h;l1;s 
2010 print"!map c2 ";h;l2;s 
2015 print"!map c3 ";h;l3;s 
2020 print"!map c4 ";h;l4;s 
2025 print"!map c5 ";h;l5;s 
2030 print"!wor h!jum 8 8" 
2032 print"Hue=";h,"Saturation=";s 
2035 print"!mon h" 
2040 return 
8000 !seup routine 
8001 print"!map co 0 0 O!map c7 0 50 O!map c6 0 100 0" 
8002 print"!wor 30!gra 1 30" 
8003 k:6.28/360 
8005 !draw circle 
8009 print "!col cO" 
8021 print "!vec ";x;y;"!cir ";r 
8022 print "!cir ";r/2 
8023 print "!line 2" 
8024 for i=15 to 345 step 30 
8025 print"!vec";fix(r/2*cos(i*k))+x;fix(r/2*sin(i*k))+y; 
fix(r*cos(i*k))+x;fix(r*sin(i*k))+y/1 
8026 next i 
8027 print "!line 1" 
8028 for i=10 to 350 step 20 
8030 print "!vec "; 
8035 print fix(r/2*cos(i*k))+x;fix(r/2*sin(i*k))+y; 
8040 print fix((r+t)*cos(i*k))+x;fix((r+t)*sin(i*k))+y 
8041 next i 
8042 for i=30 to 330 step 60 
8043 print"!vec";x;y;fix(r*cos(i*k))+x;fix(r*sin(i*k))+y 
8044 next i 
8047 t1=y-r-75 
8048 t2=Y-:"-25 
8050 fo:" i=O to 6 
8055 p!"int"!col c";chr$(i+48); 11 cO" 
8060 p!"int"!pol 11 ;336;t1+i*50;600;t1+i*50;600;t2+i*50;336;t2+i*50 
8065 next i 
8099 p!"int"!WO!" h" 
8100 p!"int"!jum 2 38;Lightness 11 

8105 pdnt 11 !jum 4 39;100" 
8110 p!"int 11 !jum 7 40;83 11 

8 1 1 5 p !" i n t" ! j um 1 1 4 0 ; 6 7" 
8120 p!"int"!jum 14 40;55" 
81 25 p!" int" ! j um 1 8 4 0; 4 1" 
8130 p!"int"!jum 21 40;27" 
8 1 3 5 p !" int" ! j um 2 5 4 0 ; 1 3 11 

8 1 4 0 pd n t" ! j um 2 9 4 1 ; 0 11 

8145 p:"int 11 !mon h11 

8150 p:"int"!jum" 
8999 :"etu:"n 
9000 p:"int "!disa 11 

9001 stop 
9999 end 

E-2 @ 4027 A PROGRAMMER'S 



SAMPLE PROGRAM 

THE PASCAL PROGRAM 

The following PASCAL program issues a !REP 00; 
command to the terminal, analyzes the ANSwer to the 
host, and returns the terminal status indicated by 
ANSwer. 

{$t-,d-} 
{ *** REPORT *** 

(See the REPORT command discussion in the 
Host Programming section in this manual.) 

This will read the data returned from the terminal for the 
various REPort commands } 

VAR No more to do : boolean; 

PROCEDURE Convert number(VAR number:integer); 
{ This wiil convert the ASCII character string being input 

by the terminal to INTEGER format. Any non-numeric character 
terminates the conversion process. The default value is O } 

BEGIN 
number := O; 
WHILE ttyA in 

number := 
get( tty) 

{ set up default value } 
['0' .. '9'] DO BEGIN 
number*10 + (ord(ttyA)-48); 

END; {of while} 
END; { converting a number } 

PROCEDURE Report 1; 
{ This will inquire about the system itself } 

VAR Blocks 
, Bytes 
'i 
,Status 

4027A PROGRAMMER'S 

integer; 

@ E-3 



SAMPLE PROGRAM 

BEGIN 
Write (tty,' !rep 00; '); 

Break; Reset(tty); 
Issue report request } 

WHILE ttyA # '!' DO get(tty); 
FOR i := 1 to 6 DO get(tty); 
IF ttyA # '0' THEN Writeln (tty,'<< 

{ Search for command character 
{ Skip over to the type of ans 
ANS not of proper type >>') 

ELSE BEGIN 
get(tty); get(tty); { skip commas } 
convert number(blocks); { get blocks free} 
write (tty,blocks:4,'=Blocks/'); 
bytes := blocks*16; { convert blocks to bytes 
write (tty,bytes:5,'=Bytes Available'); 
get( tty); { skip comma 
convert number(status); 
CASE status OF 

1 Write (tty,' < 
2 Write (tty,' < 
3 Write (tty,' < 
4 Write (tty,' < 
5 Write (tty,' < 
6 Write (tty,' < 
7 : Write (tty,' < 

END; { of CASE } 
END {If then ELSE} 

END; {report 1} 

* * * * 

BEGIN 

Rewrite (ttyoutput); 
No more to do := true; 

REPEAT 
Report 1; 
no more to do := true 

UNTIL no more to do 

END. 

E-4 

M A I N 

Buffered>'); 
Form Fill out >'); 
Buffered & Form Fill out>'); 
Monitor Present >'); 
Buffered & Monitor Present > '); 
Form Fill out & Monitor Present 
Monitor, Form, & Buffered >') 

* * * * 

Open tty communications } 
initz } 

@ 

) I ) ; 

4027 A PROGRAMMER'S 



SAMPLE PROGRAM 

THE COBOL PROGRAM 

The program which follows is written in COBOL and 
demonstrates the use of form fillout and buffering. The 
program could have been written in any language 
which supports some way of writing to and reading 
from the display character type information. 

DESIGN OBJECTIVES 

Because COBOL works best with defined fields of fixed 
length and because the 1968 COBOL standard has no 
string handling verbs, this program was set up to 
process a field at a time instead of a line at a time. 

To make the terminal do this, buffered mode is used 
and the FIELD SEPARATOR character is set to carriage 
return. The EOL string becomes the field separator in 
addition to the normal end of line string. In this manner, 
the ACCEPT always gets either one field followed by an 
EOL or just an EOL. With SEND MOD, each field of 
variable form data is preceded by seven characters of 
row and column information. The amount of form data 
is variable because trailing blanks are not sent. 

This field is ACCEPTED into TERMINAL-DATA which is 
PICTURed large enough to contain the largest data 
field from the form plus seven more characters. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FORM. 

REMARKS. 

ANALYZING THE INPUT 

The program examines TD-ROW. Once the row is 
identified, a routine is PERFORMED to examine TD­
COLUMN. Once the column is identified, a routine is 
PERFORMED to analyse the data. In this program the 
data analysis simply stores the data in a file. Because 
data is being moved from a larger to smaller field, the 
compiler will generate warning messages telling you of 
this fact. 

END OF DATA FROM THE TERMINAL 

Since this form does not require all of its fields to be 
entered and since the information is received and 
processed a field at a time, line 23 was set up as a 
protected modified field. Therefore, this field is always 
sent to the host and is sent last. When this field is 
received, the end of the screen has been reached and 
everything on that screen has been processed. An 
appropriate indicator is set to indicate the end of the 
buffer. 

EXITING THE PROGRAM 

To provide an orderly exit from the program, the 
keyword QUIT is entered ihto the first field of a new 
screen. The column processor for that line detects 
QUIT and sets an end of job indicator which signals the 
end to the rest of the program. An exit is made after the 
terminal is returned to a reference state for the next 
job. 

The following program was run using asynchronous 
protocol. 

000100 
000020 
000300 
000400* 
000500** 
000600** 
000100** 
000800** 
000900 
001000** 
001100** 
001200** 
001300** 

THIS IS A SAMPLE PROGRAM WHICH SENDS A FORM 
TO THE TERMINAL AND PROCESSES THE DATA RETURNED. 

<< INPUT/OUTPUT ASSUMPTIONS >> 

THIS PROGRAM USES THE 'ACCEPT' AND 'DISPLAY' VERBS TO 
COMMUNICATE WITH THE VIDEO TERMINAL. FILE OUTPUT 
IS AS PER USUAL. 

4027A PROGRAMMER'S @ E-5 



SAMPLE PROGRAM 

001400** 
001500** 
001600** 
001700** 
001800** 
001900** 
002000** 
002100** 
002200** 
002300** 
002400** 

THE INPUT FROM THE TERMINAL IS VARIABLE IN LENGTH WITH 
THE FIRST 7 CHARACTERS ALWAYS PRESENT AND IN THE SAME 
FORMAT. 

FROM TERMINAL: 

END OF DATA 
START OF DATA 

-------- COLUMN DATA STARTS IN 
----------- ROW DATA STARTS IN 

002500** THIS PROGRAM WAS ORIGINALLY DEVELOPED ON A DECSYSTEM-10 
002600** AND WITH MODIFICATIONS TO THE 'SELECT' AND 'FD' STATEMENTS AND 
002700** CHANGING THE 'DISPLAY-7' TO WHATEVER DISPLAY ALLOWS INPUT OF 
002800** OF UPPER AND LOWER CASE CHARACTERS SHOULD CONVERT IT TO 
002900** ANOTHER SYSTEM. 
005200 ENVIRONMENT DIVISION. 
005300 INPUT-OUTPUT SECTION. 
005400 FILE-CONTROL. 

SELECT TEK-FORM 
ASSIGN TO DSK 

005500 
005600 
005700 
005800 
005900 
006000 
006500 

ACCESS MODE IS SEQUENTIAL 
PROCESSING MODE IS SEQUENTIAL. 

006600 DATA DIVISION. 
006700 
006800 
006900 
007000 FILE SECTION. 

FD TEK-FORM 
IS 'DATA SEQ' 
IS TEK-FORM-DATA. 

007200 
007300 
007400 
007500 
007600 01 
007700 
007800 
007900 
008000 
008100 
008200 
008300 
008400 
008500 
008600 
008700 
008800 
008900 
009000 
011000 

VALUE OF ID 
DATA RECORD 

TEK-FORM-DATA USAGE IS DISPLAY-7. 
02 TF-REF 
02 TF-CUST. 

03 TF-CUST-1 
03 TF-CUST-2 

02 TF-INSTRUMENT 
02 TF-VALUE 
02 TF-TYPE 
02 TF-FC-AMOUNT 
02 TF-RATE 
02 TF-DOLLARS 
02 TF-OUR-ACCT 
02 TF-CONTRACT-NR 
02 TF-CREDIT-REFERENCE 
02 TF-CHECK-OK 

011900 WORKING-STORAGE SECTION. 
012000 
012200 

PIC X(10). 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

X(4). 
X(10). 
X(8). 
X( 8). 
X(5). 
X(13). 
X(12). 
X(15). 
X( 4). 
X(8). 
X(12). 
x ( 1 ) • 

012300 01 TEK-FORM-FILL-OUT USAGE IS DISPLAY-7. 
012400*======================= 
012500 
012600 
012700 
012800 
012900 

E-6 

02 TFF0-0 PIC X(33) VALUE IS 
'!FOR N;!BUF;!WOR 24 K H;!JUM;!ERA'. 
02 TFF0-1 PIC X( 12) VALUE IS 
I !JUM; !ATT IP'. 

@ 4027A PROGRAMMER'S 



SAMPLE PROGRAM 

013000 
013100 02 TFF0-1A PIC X(19) VALUE IS 
013200 '!JUM 1,11;T C2 K 
013300 
013400 02 TFF0-18 PIC X(33) VALUE IS 
013500 '!JUM 1,27;SAMPLE OF FORM FILL OUT'. 
013600 
013700 02 TFF0-1C PIC X(27) VALUE IS 
013800 '!JUM 1,79; !ATT PCO;!JUM 3,1'. 
013900* 
014000 02 TFF0-3 PIC X(19) VALUE IS 
014100 '!ATT P;REF !JUM 3,6'. 
014200 
014300 02 TFF0-3A PIC X(27) VALUE IS 
014400 '!ATT C2A; !JUM 3,16'. 
014500 
014600 02 TFF0-38 PIC X(36) VALUE IS 
014700 '!ATT PCO; CUST !ATT C2A; !ATT PCO'. 
014800 
014900 02 TFF0-3C PIC X(27) VALUE IS 
015000 I !ATT C2A; !JUM 3,39; !ATT PCO'. 
015100 
015200 02 TFF0-30 PIC X(46) VALUE IS 
015300 INSTRUMENT !ATT C2A; !ATT PCO;!JUM 3,61'. 
015400 
015500 02 TFF0-3E PIC X(33) VALUE IS 
015600 'VALUE DT !ATT C2A; !ATT PC0 1 • 

015700 
015800* 
015900*LINE 5 
016100* 
016200 02 TFF0-5 PIC X(55) VALUE IS 
016300 '!JUM 5;!ATT PCO; TYPE !ATT C2A; !JUM 5,17;!ATT PCO'. 
016400 
016500 02 TFF0-5A PIC X(45) VALUE IS 
016600 ' F/C AMT !JUM 5,27; !ATT AC2; !JUM 5,40; !ATT PCO'. 
016700 
016800 02 TFF0-58 PIC X(33) VALUE IS 
016900 I RATE !ATT C2A;!JUM 5,60; !ATT PCO'. 
017000 
017100 02 TFF0-5C PIC X(30) VALUE IS 
017200 I $ !ATT C2N!JUM 5,79; !ATT PCO'. 
017300 
018000* 
018100* LINE 7 
018200* 
018400* 
018500 
018600 02 TFF0-7 PIC X(45) VALUE IS 
018700 '!JUM 7;!ATT PCO; OUR ACCT !ATT AC2; !ATT PCO'. 
018800 
018900 02 TFF0-7A PIC X(30) VALUE IS 
019000 ' CONTI! !ATT AC2; !ATT PCO'. 
019100 
019200 02 TFF0-78 PIC X(46) VALUE IS 
019300 CREDIT REFERENCE/! !ATT AC2;!JUM 7,62; !ATT PCO'. 
019400 
019500 02 TFF0-7C PIC X(29) VALUE IS 
019600 ' CHECK OK !ATT AC2; !ATT PCO'. 
019700 
030100* 

4027 A PROGRAMMER'S @ E-7 



SAMPLE PROGRAM 

030200* LINE 23: SPECIAL END OF SCREEN DATA FLAG 
030300* 
030400 
030500 
030600* 

02 TFFO-EOD-FLAG 
'!JUM 23;!ATT PM;01'. 

PIC X(45) VALUE IS 

030700* FORM END 
030800* 
030900 
031000 
031100 

02 TFFO-END 
'!JUM 3,6;!FOR'. 

PIC X(13) VALUE IS 

031200 01 TERMINAL-DATA 
031300*================ 
031400 
031500 
031600 
031700 
031800 
031900 
032000 

02 TD-LOCATION. 
03 TD-LOC-ROW 
03 FILLER 
03 TD-LOC-COL 

02 TD-DATA 

032100 01 INDICATORS. 
032200*============== 
032300 
032400 
032500 
032600 
032700 
032800 
032900 

02 END-OF-JOB-IND 
88 END-OF-JOB 

02 LINE-IS-EMPTY-IND 
88 LINE-IS-EMPTY 

033000 01 CONSTANTS. 
033100*============= 
033200 
033300 
033400 

02 PROMPT-4025 

033500 01 VARIABLES. 
033600*============= 
033700 
033800 
034090* 

02 TIMES-SCREEN-RESET 

034100 PROCEDURE DIVISION. 
034200* 
034400 
034600 INITIALIZATION. 

OPEN OUTPUT TEK-FORM. 

USAGE IS DISPLAY-7. 

PIC X(3). 
PIC X. 
PIC X(3). 
PIC X(40). 

PIC X(3). 
VALUE IS 'EOJ I. 

PIC X(3). 
VALUE IS 'EOL I. 

PIC X VALUE IS 

PIC 9(2). 
* 

034800 
034900 
035000 
035100 
035200 
035400 

MOVE SPACES TO TEK-FORM-DATA. 
PERFORM TERMINAL-SET-UP. 
PERFORM DISPLAY-THE-FORM. 

-035500 
035700 MAIN-PART. 
035900 
036000 

I? I, 

* 

036100 
036200* FLUSH 
036300 

MOVE SPACES TO END-OF-JOB-IND. 
PERFORM PROCESS-THE-TERMINAL-DATA UNTIL END-OF-JOB. 

036310 
036320 
036330 
036400 
036500 
036600 

E-8 

THE LINE 23 FIELD STILL BUFFERED UP 
DISPLAY PROMPT-TERMINAL. 
ACCEPT TERMINAL-DATA. 
DISPLAY PROMPT-TERMINAL. 
ACCEPT TERMINAL-DATA. 
CLOSE TEK-FORM. 
PERFORM TERMINAL-SET-DOWN. 
STOP RUN. 

@ 4027 A PROGRAMMER'S 



036700* 
037000 
037200* 
037200 
037300 
037400 
037500 
037600 
037700 
037800 
037900 
038000 
038100 
0382.00 
038300 
038400 
038500 
038600 
038700* 
038800 
039010* 
039000 
039120* 
039130* 
039100* 
039200* 
039300* 
039400* 
039500 
039600 
039700 
039800 
039900 
040000 
040200 
040210* 
040400 
040500* 
040600* 
040700* 
040800* 
040900* 
041000* 
041100* 
041210* 
041220* 
041200 
041300 
041400 
041500 
041600 
041800 
041810* 
042000* 
042010* 
042020* 
042300 
042400 
042500 
042510 

<< LOGICAL END OF PROGRAM >> 
PROCESS-THE-TERMINAL-DATA. 

MOVE SPACES TO TERMINAL-DATA. 
PERFORM GET-BUFFER-LINE. 

MOVE SPACES TO LINE-IS-EMPTY-IND 
PERFORM DISASSEMBLE-TERMINAL-INPUT UNTIL 

LINE-IS-EMPTY 
IF NOT END-OF-JOB 

ELSE 

WRITE TEK-FORM-DATA 
DISPLAY PROMPT-TERMINAL 
MOVE SPACES TO TEK-FORM-DATA 
DISPLAY PROMPT-TERMINAL 

NEXT SENTENCE. 
DISPLAY '!ERA;!BEL'. 

TERMINAL-SET-UP. 

IT IS BEST TO SET THE TERMINAL TO A KNOWN STATE 
RATHER THAN TO ASSUME WHAT STATE IT IS IN. 
SET PROMPT := <?><CARRIAGE-RETURN><LINE-FEED> 
SET F1 := <CARRIAGE-RETURN><LINE-FEED> 
SET PT :: <SEND MODIFIED> 
SET FIELD-SEPERATOR :: <CARRIAGE-RETURN> 

DISPLAY '!PRO 63,13,10'. 
DISPLAY '!LEA F1 13, 10'. 
DISPLAY '!LEA PT /!REP 1;!SEN MOD/13'. 
DISPLAY '!FIE 13'. 

TERMINAL-SET-DOWN. 

PURPOSE: 

RETURN THE TERMINAL TO COMMUNICATION WITH THE HOST, 
THE KEYBOARD TO THE MONITOR SPACE, NON-FORM FILL OUT, 
UNBUFFERED, ALL FUNCTION AND OTHER KEYS UN-LEARNED, AND 
DISPLAY IN THE MONITOR SPACE OF THE TERMINAL A MESSAGE SAYING 
WHAT HAS BEEN DONE. 

IN THIS WAY, IT IS POSSIBLE FOR THE USER TO COMMUNICATE 
WITH THE COMPUTER WITHOUT LOSING THE LAST SCREEN. 

DISPLAY '!FOR N;!BUF N;!MON K H'. 
DISPLAY '!CLEAR'. 
DISPLAY'<< END OF TEK FORM FILLOUT EXAMPLE>>'. 

GET-BUFFER-LINE. 

SINCE INFORMATION IS 'BUFFERED' , IT IS NECESSARY TO 
'PROMPT' THE TERMINAL TO SEND THE DATA AND THEN WAIT FOR IT TO 
BE SENT. 

DISPLAY PROMPT-TERMINAL. 
ACCEPT TERMINAL-DATA. 

4027A PROGRAMMER'S @ 

SAMPLE PROGRAM 

E-9 



SAMPLE PROGRAM 

043000 DISASSEMBLE-TERMINAL-INPUT. 
043010* ----------------------
043200 
043300* 
043400* 
043500* 
043600* 
043700* 
043800* 
043900* 
044100* 

THIS SECTION IS A 'CASE' STATEMENT THAT EXAMINES 
THE DATA FROM THE TERMINAL AND PERFORMS A ROUTINE 
WHICH FURTHER EXAMINES THE LINE. 

CASE TD-LOC-ROW OF 
1 003' PERFORM ROW 3 PROCESSING 
'005' : PERFORM ROW 5 PROCESSING 
'023' : PERFORM ROW 23 PROCESSING 

044300* 
044400* 
044500* 
044600* 
044700* 
044800 

WHEN THE PROTECTED MODIFIED FIELD ON LINE 23 IS PROCESSED, EOL IS 
SET TRUE AND THE BUFFER CONSIDERED PROCESSED. THE WHOLE PROCESS 
STARTS OVER AGAIN AND A NEW BUFFER IS PROCESSED. 

044900 
045000 
045100 
045200 
045210 
045220 
045230 
045300 
046800* NOTE: 

IF TD-LOC-ROW = '003' 
PERFORM ROW-3 

ELSE IF TD-LOC-ROW = 1 005' 
PERFORM ROW-5 

ELSE IF TD-LOC-ROW = '023' 
PE RF ORM ROW-2 3. 

IF ADDITIONAL LINES EXIST O~ THE FORM 
ADDITIONAL 'ELSE IF' LINES MAY BE CODED. 

HOWEVER, THERE IS A LIMIT TO THE DEPTH TO WHICH 
MOST COMPILERS WILL ALLOW !F'S TO BE NESTED. 

046900* 
047000* 
047100* 
047200* 
047300* OTHER 
049800 
049900 
050000 
050200 
050300 
050500* 

TO OVERCOME THE NESTING LIMIT, START UP AN­
' IF ... THEN ... ELSE I. 

IF LINE-IS-EMPTY 
NEXT SENTENCE 

ELSE PERFORM GET-BUFFER-LINE. 

050600* WORK RO~TINES 
050700* 

THESE ROUTINES FURTHER BREAK DOWN THE DATA JUST RECEIVED 
FROM THE TERMINAL. EACH OF THE ROUTINES THAT FOLLOW 

050800* 
050900* 
051000* 
051100* 
051200* 
051700* 
051800* 
051900 

IS DEDICATED TO ONE ROW FROM THE TERMINAL. THESE ROUTINES WILL 
EXAMINE THE COLUMN NUMBER AND TAKE APPROPRIATE ACTION. 
IN THIS PROGRAM THE DATA IS JUST SAVED IN A DISK FILE 
BUT ADDITIONAL PROCESSING COULD HAVE BEEN DONE. 

052000******* 
052100 ROW-3. 
052200******* 
052300 
052400 
052500 
052600 
052700 
052800 
052900 
053000 
053100 
053200 

E-10 

IF TD-LOC-COL = '006' 
MOVE TD-DATA TO TF-REF 

ELSE IF TD-LOC-COL = '025' 
MOVE TD-DATA TO TF-CUST-1 

ELSE IF TD-LOC-COL = '030' 
MOVE TD-DATA TO TF-CUST-2 

@ 4027 A PROGRAMMER'S 



053300 
053400 
053500 
053600 
053700 
053800 
053900 
054000 
054100 
054200 
054300 
054400 
054500 
054600 
054700 
054800******* 
054900 ROW-5. 
055000******* 
055100 
055200 
055300 
055400 
055500 
055600 
055700 
055800 
055900 
056000 
056100 
056200 
056300 
056400 
056500 
056600 
056700******* 
056800 ROW-7. 
056900******* 
057100 
057200 
057300 
057400 
057500 
057600 
057700 
057800 
057900 
058000 
058100 
058200 
058300 
058400 
058500 
068100 
068200******** 
068300 ROW-23. 
068400******** 
068500 
068600 
068700 

ELSE IF TD-LOC-COL = '053' 
MOVE TD-DATA TO TF-INSTRUMENT 

ELSE IF TD-LOC-COL = '071 I 

MOVE TD-DATA TO TF-VALUE 

ELSE 
NEXT SENTENCE. 

IF TF-REF = 'QUIT' 

ELSE 

MOVE 'EOL' TO LINE-IS-EMPTY-IND 
MOVE 'EOJ' TO END-OF-JOB-IND 

NEXT SENTENCE. 

IF TD-LOC-COL = '011' 
MOVE TD-DATA TO TF-TYPE 

ELSE IF TD-LOC-COL = '027' 
MOVE TD-DATA TO TF-FC-AMOUNT 

ELSE IF TD-LOC-COL = 1 048 I 

MOVE TD-DATA TO TF-RATE 

ELSE IF TD-LOC-COL = 1 066 I 

MOVE TD-DATA TO TF -DOLLARS 

ELSE 
NEXT SENTENCE. 

IF TD-LOC-COL = '012' 
MOVE TD-DATA TO TF-OUR-ACCT 

ELSE IF TD-LOC-COL = 1 023 I 

MOVE TD-DATA TO TF-CONTRACT-NR 

ELSE IF TD-LOC-COL = 1 051 I 

MOVE TD-DATA TO TF-CREDIT-REFERENCE 

ELSE IF TD-LOC-COL = 1 076 I 

MOVE TD-DA TA TO TF-CHECK-OK 

ELSE 
NEXT SENTENCE. 

MOVE 'EOL' TO LINE-IS-EMPTY-IND. 

068800 DISPLAY-THE-FORM. 
071300* ----------------

4027 A PROGRAMMER'S @ 

SAMPLE PROGRAM 

E-11 



SAMPLE PROGRAM 

DISPLAY TFF0-0. 
DISPLAY TFF0-1. 
DISPLAY TFF0-1A. 
DISPLAY TFF0-1B. 
DISPLAY TFF0-1C. 
DISPLAY TFF0-3. 
DISPLAY TFF0-3A. 
DISPLAY TFF0-3B. 
DISPLAY TFF0-3C. 
DISPLAY TFF0-3D. 
DISPLAY TFF0-3E. 
DISPLAY TFF0-5. 
DISPLAY TFF0-5A. 
DISPLAY TFF0-5B. 
DISPLAY TFF0-5C. 
DISPLAY TFF0-7. 
DISPLAY TFF0-7A. 
DISPLAY TFF0-78. 
DISPLAY TFF0-7C. 
DISPLAY TFFO-EOD-FLAG. 

DISPLAY TFFO-END. 

071400 
071500 
071600 
071700 
071800 
071900 
072000 
072100 
072200 
072300 
072400 
072500 
072600 
072700 
072800 
072900 
073100 
073200 
073300 
073400 
075600 
075700* 
075800* 
075900 
076000* 
076100* << PHYSICAL END OF PROGRAM >> 

E-12 @ 4027 A PROGRAMMER'S 



Appendix F 

MEMORY CONSIDERATIONS 

It is possible for the terminal to use all of its display 
memory. Likewise, the terminal may use up all of its 
graphics memory. The comments in this appendix 

should help the programmer judge how much of each 
type of information can be sent to the terminal before 
running out of memory. 

DISPLAY MEMORY 

On the screen, a full line of text (a character displayed 
in every column) plus ten attribute codes uses 112 
bytes (in the display list). A full screen of such lines 
(34 lines X 112 bytes/line) uses about 3800 bytes. As 
a rule of thumb, then, you get about one full screen of 
display for every 4K bytes of display memory. Usually, 
of course, one does not use the full 80 columns of a 
line for display. A rough calculation of line length will 
give the proper adjustment factor. For example, if the 
program uses roughly 50% of each line for display, a 
16K byte display memory will store approximately: 

16K bytes x 1 screen x 2 = 8 34-line screens 
'-v--' 
4K bytes 

The workspace and the monitor both use memory out 
of the same "pool" of display memory. When the 
terminal has used most of its display memory and you 
attempt to display more information, the result depends 
on which scroll is receiving information. 

If the terminal runs low on memory while you are 
sending Information to the workspace, the terminal bell 
rings as a warning to the operator, and the terminal 
overprints a portion of the current line with incoming 
data. If information continues to come, the terminal 
soon refuses to print and the cursor sticks at its 
current location. 

4027A PROGRAMMER'S @ 

If the terminal runs low on memory while you are 
sending information to the monitor, the cursor simply 
sticks at its current location and the terminal refuses to 
print new information. The terminal still processes a 
carriage return, however, and enough memory is saved 
to give at least one command. Cit.the monitor has 
scrolled information up past the top of the monitor 
window, the terminal discards this information as 
needed, line by line. In this case, you may keep sending 
information to the monitor, and the terminal will keep 
discarding scrolled up information.) 

An applications program may keep track of the amount 
of unused display memory by occasionally giving the 
command 

!REPOO<CR> 

This command causes the terminal to return a report to 
the computer in the following format: 

!ANS 00,< p1 > .< p2>; 

where < p1 > is a four-digit decimal number specifying 
the number of unused blocks of display memory. (A 
block consists of 16 8-bit bytes.) When < p1 > falls 
below a given level, the program can instruct the 
terminal to erase information by sending an ERASE, 
OLINE, or DCHAR command or, if the information 
displayed is not needed, a WORKSPACE or MONITOR 
command. To recover display memory from the compu­
ter, you must give some command which erases text. 

F-1 



MEMORY CONSIDERATIONS 

GRAPHICS MEMORY 

Table F-1 The terminal can contain 48K, 96K, 144K, or 192K 
bytes of graphics memory. The amount of graphics 
memory which a given graph requires depends on the 
density of information in the graph. The following is an 
estimate of how much graphics memory is required for 
graphic display. The term "pie chart" refers to a pie 
chart with 10 pieces. The term "graph" refers to a line 
graph of approximately the same density as the graph 
in Figure 8-8. 

GRAPHIC MEMORY CAPACITY 

F-2 @ 

Amount of 
Graphic Memory 

48K bytes 
96K bytes 
144K bytes 
192K bytes 

Display Capacity 

2+ pie charts, or 2 line graphs 
4 pie charts, or 3 to 4 line graphs 
6 pie charts, or 6 to 7 line graphs 
8 pie charts, or 7 to 8 line graphs 

4027 A PROGRAMMER'S 



Appendix G 

PROGRAMMER'S REFERENCE TABLE 

Please record the following settings for future refer­
ence: 

Parity (None, Even, Odd, High, or Data) PA= 

Transmitting Baud Rate 

Receiving Baud Rate 

Command Character 

Prompt String 

End-of-line String 

Remote Start Stop 

Duplex (Full or Half) 

Echo (Remote or Local) 

4027A PROGRAMMER'S 

TB= 

RB= 

CC= 

PR= 

EL= 

RS= 

DU= 

EC= 

@ 

Field Separator 

End-of-File String 

Send Key String 

Display Memory Capacity 

Graphics Memory Capacity 

Fonts Installed 

Options Installed 

FS= 

EF= 

G-1 



Appendix H 

OPTION SUMMARY 

OPTION 01 : HALF DUPLEX 

Permits half duplex normal and supervisor modes in 
addition to the full duplex communications provided as 
standard equipment. 

OPTION 02: CURRENT LOOP 

Permits the terminal to communicate with the host 
computer or another device by means of a 20 mA 
current loop rather than the standard RS-232 interface. 

OPTION 03: RS-232 PERIPHERAL 
INTERFACE 
(Requires Option 36) 

Permits the terminal to transmit to RS-232 compatible 
peripheral devices such as the Tektronix 4642 Printer. 
With this option, data from the host computer or the 
workspace can be printed on the 4642 Printer. In­
cludes current loop board and l-bracket. 

I I I 

OPTION 04: GPIB PERIPHERAL 
INTERFACE 
(Requires Option 36) 

Permits the terminal to communicate with and control 
the Tektronix 4924 Digital Cartridge Tape Drive and 
4662 Interactive Digital Plotter. These devices commu­
nicate with the termainal over the General Purpose 
Interface Bus (GPIB), which is defined in IEEE Stan­
dard 488-1975. Allows the terminal to save data or 
command files on the 4924, and retrieve them later 
without the need for intervention by the host computer. 

OPTION 4A: UNITED KINGDOM 
CHARACTER Set 

This option permits Tektronix 4020 Series terminals to 
change to a United Kingdom standard keyboard layout 
so that the United Kingdom characters are displayed. 
The only change is that the "#" sign is replaced by the 
English"£" sign. This is shown in the revised keyboard 
configuration (see Figure H-1), and the revised ASCII 
Code Chart (see Table H-1). When th is key is pressed 
(or the appropriate code is received by the termlnal), 
the"£" sign is displayed on the screen. 

I I I I 

D 
2943·1A 

Figure H-1. United Kingdom Keyboard. 

4027A PROGRAMMER'S @ H-1 



OPTION SUMMARY 

Table H-1 

UNITED KINGDOM CHARACTER SET 

B7 B6 
B5 

00 
0 

00 
1 

0 1 
0 

0 1 
1 

1 0 
0 

1 0 
1 

1 1 
0 

1 1 
1 

BITS 
HIGH X & Y 

B4 B3 B2 Bl 
CONTROL GRAPHIC INPUT LOWX LOWY 

0 0 0 0 NUL DLE SP 0 @ p \ p 
0 16 32 48 64 80 96 112 

0 0 0 1 SOH DCl I 1 A Q 81 
a q 

1 17 33 49 65 97 113 

0 0 1 0 STX DC2 II 2 B R b r 
2 18 34 50 66 82 98 114 

0 0 1 1 ETX DC3 3 c s c s 
3 19 51 67 83 99 115 

0 1 0 0 EQT DC4 $ 4 D T d t 
4 20 36 52 68 84 100 116 

0 1 0 1 ENQ NAK % 5 E u e u 
5 21 37 53 69 85 101 117 

0 1 1 0 ACK SYN & 6 F v f v 
6 22 38 54 70 86 102 118 

0 1 1 1 BEL ETB I 7 G w g w 
7 23 39 55 71 87 103 119 

1 0 0 0 BS CAN ( 8 H x h x 
8 24 40 56 72 88 104 120 

1 0 0 1 HT EM ) 9 I y I y 
9 25 41 57 73 89 105 121 

1 0 1 0 LF SUB * 
. J z J z . 

10 26 42 58 74 90 106 122 

1 0 1 1 VT ESC + . K [ k { 
' 11 27 43 59 75 91 107 123 

1 1 0 0 FF FS < L \ I I 

' 
I 

12 28 44 60 76 92 108 124 

1 1 0 1 CR GS - - M ] m } -
13 29 45 61 77 93 109 125 

1 1 1 0 so RS . > N /\ n "V 
14 30 46 62 78 94 110 126 

SI us I 7 0 0 
RUBOUT 

1 1 1 1 - (DEL) 
15 31 47 63 79 95 111 127 

2943-2A 

H-2 @ 4027 A PROGRAMMER'S 



OPTION 48: FRENCH CHARACTER SET 

This option permits Tektronix 4020 terminals to 
change to the French "AZERTY" keyboard layout for 
the standard ASCII character set. All the characters are 
the same as the 4020 standard keyboard. The only 
changes are that four keys are switched around. This is 
shown in the revised keyboard configuration (see 
Figure H-2). There are no changes to the ASCII Code 
Chart. When these four keys are pressed (or the 
appropriate codes are received by the terminal), these 
characters are displayed on the screen. 

I I I I I 

OPTION SUMMARY 

OPTION 4C: SWEDISH CHARACTER SET 

This option permits Tektronix 4020 terminals to 
change to the Swedish standard layout so that the 
Swedish characters are displayed. There are 17 
changes to the kayboard, with three of these changes 
being new characters. These changes are shown in the 
revised keyboard configuration (see Figure H-3), and 
the revised ASCII Code Chart (see Table H-2). When 
these 1 7 keys are pressed (or the appropriate codes 
are received by the terminal), these characters are 
displayed on the screen. 

I I I I I 

D 
2944-1A 

Figure H-2. French Keyboard. 

I I 

11 II • 

4027 A PROGRAMMER'S 

I I I I I I 

RllllllllllBll • •• • 
Figure H-3.Swedlsh Keyboard. 

@ 

I I I I 

D 
2947-1A 

H-3 



OPTION SUMMARY 

Table H-2 

SWEDISH CHARACTER SET 

B7 B6B5 00 
0 

00 
1 

0 1 
0 

0 1 
1 

1 0 
0 

1 0 
1 

1 1 
0 

1 1 
1 

BITS 
HIGH X & Y 

B4 B3 B2 Bl 
CONTROL GRAPHIC INPUT LOWX LOWY 

0 0 NUL DLE SP 0 @ p \ p 
0 16 32 48 64 80 96 112 

0 0 0 1 SOH DCl 1 A Q a q 113 17 33 49 65 81 97 

0 0 1 0 STX DC2 " 2 B R b r 
2 18 34 50 66 82 98 114 

0 0 1 1 ETX DC3 # 3 c s c s 
3 19 35 51 67 83 99 115 

0 1 0 0 EQT DC4 $ 4 D T d t 
4 20 36 52 68 84 100 116 

0 1 0 1 ENQ NAK % 5 E u e u 
5 21 37 53 69 85 101 117 

0 1 1 0 ACK SYN & 6 F v f v 
6 22 38 54 70 86 102 118 

0 1 1 1 BEL ETB I 7 G w g w 
7 23 39 55 71 87 103 119 

1 0 0 0 BS CAN ( 8 H x h x 
8 24 40 56 72 88 104 120 

1 0 0 1 HT EM ) 9 y y 
9 25 41 57 73 89 105 121 

1 0 1 0 LF SUB * J z z 
10 26 42 58 74 

1 0 1 1 VT ESC + K 
11 27 43 59 75 

1 1 0 0 FF FS < L 
12 28 44 60 76 

1 1 0 1 CR GS - M -
13 29 45 61 77 

1 1 1 0 so RS > N /\ n rv 
14 30 46 62 78 94 110 126 

1 1 1 1 SI us I ? 0 0 
RUBOUT 

(DEL) 
15 31 47 63 79 95 111 127 

2947-2A 

H-4 @ 4027 A PROGRAMMER'S 



OPTION 22: ADDED DISPLAY MEMORY 

The standard 4027A includes 16,384 bytes of display 
memory. (Each byte is 8 binary bits, and can hold one 
ASCII character.) Option 22 expands this, permitting 
larger quantities of text to be stored in the workspace 
and monitor. 

Option 22: A total of 32,768 (32K) bytes of display 
memory. 

OPTIONS 27, 28, AND 29: COLOR 
GRAPHICS Memory 

Permits the terminal to draw a variety of geometric 
shapes and panels in any of 64 possible colors. Solid 
lines and seven types of dashed lines can be drawn, 
and Individual points can be plotted. Individual lines 
can be erased by drawing over them with "erase 
vectors." 

In addition, the Graphics Memory options permit the 
user to create alternate character fonts for displaying 
text in the workspace, to create individual symbols and 
120 user-defined patterns. 

These options differ only in the amount of graphics 
memory they include. Larger amounts of graphics 
memory permit the terminal to perform more complex 
tasks in its workspace, and to create more alternate 
character sets. 

Option 27: 96K (total) bytes of graphics memory. 

Option 28: 144K (total) bytes of graphics memory. 

Option 29: 192K (total) bytes of graphics memory. 

OPTION 31: CHARACTER SET 
EXPANSION 

Permits the addition of ROMs (Read Only Memories) 
containing alternate character fonts. 

4027 A PROGRAMMER'S @ 

OPTION SUMMARY 

OPTION 32: RULING CHARACTERS 
(Requires Option 31) 

Adds the "ruling" character font, permitting single and 
double lines to be drawn on forms In the workspace, as 
well as ruling junctions characters. 

OPTION 34: MATH CHARACTERS 
(Requires Option 31) 

Adds a set of "math" characters to permit mathemati­
cal symbols to be displayed In the workspace. Includes 
standard mathematical symbols, Greek letters, and 
superscripts. 

OPTION 36: PERIPHERALS ROM 

Provides instructions for the processor, allowing it to 
communicate with RS-232 or GPIB peripheral devices. 
(Required for Option 03 or Option 04.) 

POWER CORD OPTIONS 

Option A1 

Option A2 

Option A3 

Option A4 

220V/16A 50 Hz operation, universal 
European plug. 

240V/13A 50 Hz operation, United 
Kingdom plug. 

240V/1 OA 50 Hz operation, Australian 
Eruopean plug. 

240V/15A 50 Hz operation, North 
American plug. 

H-5 



Appendix I 

ROUTINE EXTERNAL CONVERGENCE BOARD 
ADJUSTMENTS 

Routine external convergence board adjustments 
should be made by qualified personnel only. 

The external convergence board may need to be 
adjusted occasionally. Convergence should be 
checked when the terminal is first installed or when­
ever it is relocated. 

Proper convergence means that the red, green, and 
blue beams come to a point on the screen. If the 
convergence is not properly adjusted, red, green, and 
blue colors will appear on the perimeter of any white 
areas on the screen. If convergence appears to be out 
of adjustment, the following procedure should be used 
to adjust the external convergence board. 

PROCEDURE FOR ROUTINE 
CONVERGENCE Adjustments 

1. Type the CAL command (!CAL <CR>). 

This will cause a message to be displayed which 
assi·gns each of the function keys (F1 through F8) 
to a color and F9 to an alignment grid. Go through 
the function keys from F1 to F8 and check that the 
following colors appear: white, red, green, blue, 
yellow, cyan, magenta, an_d black. 

4027 A PROGRAMMER'S @ 

2. Remove the two screws securing the external 
convergence board tray and slide out the tray 
(Figure 1-1 ). 

The external convergence board contains 27 adjust­
ments arranged in groups of three. Looking at the 
board from the front of the terminal, there is a 
direct correspondence between each of these 
groups and an area on the screen. For example, 
upper left on the board corresponds to upper left 
on the screen. In addition, the adjustments are 
color coded. Thus, the red adjustments control the 
red beam, the green adjustments control the green 
beam, and the blue adjustments control the blue 
beam. 

Refer to Figure 1-1 for the direction of beam 
movement produced by the convergence adjust­
ments. For a particular area, the red and green are 
converged first, then the blue is converged with 
them. 

3. After the terminal has warmed up for 30 minutes, 
press the "degauss" button on the rear panel for 2 
or 3 seconds. Press function key F9 to display the 
alignment grid. 

4. Begin adjusting in the center (first the red and 
green, then the blue) and continue in the following 
order: top center, bottom· center, right center, left 
center, top right, bottom right, top left and bottom 
left. 

5. Once satisfactory convergence has been obtained, 
restore the external convergence board to its 
compartment. 

1-1 



EXT. CONVERGENCE ADJUSTMENTS 

I I 
I I 

BEAM MOVEMENTS 
PRODUCED BY 

THE CONTROLS 

I 

-- ,--
I 
I 

r+--1---
I I 

- -+---~-- + --- I I 

r--- -+- --
I I 
I 1: I 

r--= r+--
- _j__ --

I I 

,--
I 
I 

ft--
I 
I 

ft--
I 
I 

T--
I 
I 

RED GREEN 

I
-- --
1- --

--- ---1- -

1- -- ---1-- --

1- -- t- --

BLUE 

,-
l 
r -

: 
+-
I 
I 

i=r-
I 
I 

2658-11 
EXTERNAL CONVERGENCE BOARD 

Figure 1-1. Adjusting the External Convergence Board. 

1-2 @ 4027 A PROGRAMMER'S 



Command 

ALLOCATE 
ATTRIBUTE 

BACKTAB 
BAUD 
BELL 
BUFFERED 
CIRCLE 
CLEAR 
COLOR 
COMMAND 
COPY 
DC HAR 
DELAY 
DFONT 
DIRECTORY 
DISABLE 
DISCONNECT 
DUNE 
DOWN 
DUPLEX 
ECHO 
ENABLE 
EOF 
EOL 
ERASE (Workspace 

and Monitor:l_ 
ERASE (Graphics) 
EXPAND 
FIELD 
FONT 
FORM 
GRAPHIC 
GTEST 
HRULE 
ICHAR 
ILINE 
INK 

4027 A PROGRAMMER'S 

Appendix J 

COMMAND LISTING 

Discussed 
on Page 

11-7 
9-7 

6-9,9-16 
5-6 
6-13 
5-9 
8-9 
4-5 
7-1 
2-5,5-1 
11-14 
10-1 
5-13 
8-19 
11-9 
8-4 
5-16 
10-3 
6-4 
5-15 
5-8 
8-3 
5-14 
5-11 
6-13,9-17 

8-13 
4-4 
5-14,9-19 
8-19 
5-4,9-2 
8-1 
5-20 
9-11 
10-2 
10-5 
8-11 

Table J-1 

COMMAND LISTING 

Options 
Required 

4 

3 or 4 

1 

1 

3 or 4 

32 

@ 

Action Different 
In Form. 
Flllout Mode 

Logical attributes 
effective only in 
Form Fillout Mode 
x 

x 

x 

x 

x. 
x 

Other 
Comments 

Workspace Only 

J-1 



COMMAND LISTING 

Command 

JUMP 
KILL 
LEARN 
LEFT 
LINE 
MAP 
MARGINS 
MIX 
MONITOR 
PARITY 
PASS 
PA TIE RN 
PERIPHERALS 
PIE 
POLYGON 
PROMPT 
RDOWN 
REPORT 

RIGHT 
RMAP 
RPOLYGON 
RSS 
RUP 
RVECTOR 
SEND 
SET 
SHRINK 
SNOOPY 
STOPS 
STRING 
SYMBOL 
SYSTAT 
TAB 
TEST 
UP 
VECTOR 
VRULE 
WORKSPACE 

J-2 

Discussed 
on Page 

6-1,9-9,9-17 
11-10 
4-1,4-4 
6-6 
8-6 
7-2 
5-3 
7-3 
5-2 
5-7 
11-10 
7-4 
11-7 
8-8 
8-6 
5-13 
6-11 
3-8, 11-6 

6-5 
7-3 
8-7 
5-12 
6-10 
8-5 
3-5,9-18 
11-1 
8-14 
5-5 
5-4 
8-12 
8-18 
5-17 
6-8,9-15 
5-18 
6-3 
8-4 
9-12 
5-2 

Table J-1 (cont) 
COMMAND LISTING 

Options 
Required 

4 

4 

4 

3 or 4 

32 

@ 

Action Different 
In Form Other 
Flllout Mode Comments 

Workspace only 

Workspace only 

From the host only. 
Some forms require 
oj)tions. 

x 

x 

4027 A PROGRAMMER'S 



INDEX 

DCHAR (Delete Character) Command ............................... 8-15, 10-1 
DELAY Command ................................................. 5-13 
DFONT Command ................................................. 8-20 
DIRECTORY Command ............................................ 11-9 

DISABLE Command ............................................... 8-4 
DISCONNECT Command ........................................... 5-16 
Display unit ....................................................... 1-2 
OLINE (Delete Line) Command ..................................... 8-15, 10-3 
DOWN Command .................................................. 6-4 
DUPLEX Command ................................................ 5-15 

ECHO Command .................................................. 5-8 
ENABLE Command ................................................ 8-3 
End angle ......................................................... 8-8, 8-9 
EOF (End-of-File) Command ....................................... 5-14 
EOL (End-of-Line) Command ....................................... 5-11 
ERASE Command, workspace and monitor .......................... 6-13, 9-17 
ERASE G Command ............................................... 8-13 
EXPAND Command ................................................ 4-4 

FIELD Command .................................................. 5-14 
Field attribute codes ............................................... 9-5 
Fields 

creating with JUMP ............................................. 9-9 
Form Fi II out Mode ............................................... 9-1 4 
unprotected .................................................... 9-6 

FONT Command ................................................... 8-19 
Fonts, alternate character .......................................... 8-18 
FORM Command .................................................. 5-4, 9-2 
Form, creating ..................................................... 9-3 
Form Fillout Mode ................................................. 9-1, 9-14 

Forms, Transmitting ............................................. 9-18, 9-19 

GIN (Graphic Input) Mode .......................................... 8-3 
Graphic beam ..................................................... 8-3, 8-17 
GRAPHIC Command ............................................... 8-1 
Graphic region 

coordinate system .............................................. 8-2 
Graphic 

color ........................................................... 8-1 
memory ........................................................ F-2 
4010-Style ..................................................... 8-17 

GTEST Command ................................................. 5-20 

IDX-2 @ 4027A PROGRAMMER'S 



INDEX 

HCOPY (Hard Copy) Command ..................................... 11-17 
HRULE (Horizontal Rule) Command ................................. 9-11 
Hue angle ......................................................... 7-2, 7-3 

ICHAR (Insert Character) Command ................................ 10-2 
ILINE (Insert Line) Command ....................................... 10-5 
INK Command ..................................................... 8-11 
Increment angle ................................................... 8-8, 8-9 
Interfaces, optional ................................................ 1-3, H-1 

JUMP Command ................................................... 6-1, 9-9, 9-17 
Junctions, making correct. ......................................... 9-12 

Key definitions, clearing ........................................... 4-5 
Key Programming ................................................. 4-1, 4-4 
Keyboard ......................................................... 1-5, 1-7 
Keys 

ASCII ........................................................... 1-6 
Cursor/Numeric Pad ............................................ 1-6 
Function ........................................................ 1-6 

KILL Command .................................................... 11-10 

LEARN Command ................................................. 4-1, 4-4 
LEFT Command ................................................... 6-6 
LINE Command .................................................... 8-5 
Lightness ......................................................... 7-2, 7-3 

Macros ........................................................... 4-4 
MAP Command .................................................... 7-2 
MARGINS Command ............................................... 5-3 
Memory 

display ......................................................... F-1 
graphic ......................................................... F-2 

MIX Command .................................................... 7-3 
Monitor ........................................................... 1-4 
MONITOR Command .............................................. 5-2 

Numeric parameters ............................................... 3-2 

4027A PROGRAMMER'S REV,NOV1981 IDX-3 



INDEX 

PAD Command .................................................... 5-5 
PARITY Command ................................................. 5-7 
PASS Command ................................................... 11-1 O 
PATTERN Command ............................................... 7-4 
PERIPHERALS Command .......................................... 11-5 
Peripherals Data List .............................................. 11-5 
Peripherals supported ............................................. 11-1 
PIE Command ..................................................... 8-8 
Plotter Language Commands ....................................... 11-12 
POLYGON Command .............................................. 8-6 
PROMPT Command ............................................... 5-13 

Raster unit ........................................................ 8-8 
RDOWN (Roll Down) Command ..................................... 6-11 
REPORT Command ................................................ 3-8, 11-6 
RGB (Red-Green-Blue) ............................................ 7-3 
RIGHT Command .................................................. 6-5 
RMAP Command .................................................. 7-3 
ROM checksums .................................................. 5-18 
RPOLYGON (Relative Polygon) Command .......................... 8-7 
RSS Command .................................................... 5-12 
Rulings ........................................................... 9-11 
RUP (Roll Up) Command ........................................... 6-10 
RVECTOR (Relative Vector) Command .............................. 8-5 

Saturation ......................................................... 7-2, 7-3 
Scrolling .......................................................... 6-1 O 
SEND Command ................................................... 3-5, 8-16, 9-18 
SET Command .................................................... 11-1 
SHRINK Command ................................................ 8-14 
SNOOPY Command ............................................... 5-5 
Split screen ....................................................... 1-4 
Start angle ........................................................ 8-8, 8-9 
Status messages .................................................. 5-1 7 
STOPS Command ................................................. 5-4 
STRING Comm~n.d ................................................ 8-12 
Switches, COPY ................................................... 11-15 
SYMBOL Command ............................................... 8-18 
SYSTAT (System Status) message ................................. 5-17 

IDX-4 @ 4027 A PROGRAMMER'S 



INDEX 

TAB Command .................................................... 6-8, 9-1 5 
TEST Command ................................................... 5-18 
Text and commands ............................................... 3-1 

UP Command ..................................................... 6-3 

VECTOR Command ................................................ 8-4 
Vector LINE types ................................................. 8-6 
Visual enhancements (attributes) ................................... 9-6, 9-9 
VRULE (Vertical Rule) Command ................................... 9-12 

Workspace ........................................................ 1-4 
WORKSPACE Command ........................................... 5-2 

4027A PROGRAMMER'S @ IDX-5 



INDEX 

ALLOCATE Command ............................................. 11-7 
ANSWER .......................................................... 3-8, 11-6 
ASCII Code Chart .................................................. B-1 
ASCII strings, delimited ............................................ 2-3 
ATTRIBUTE Command ............................................. 9-7 
Attributes 

alphanumeric ................................................... 9-5 
codes .......................................................... 8-1 6, 9-5 
field ............................................................ 9-5 
font ............................................................ 9-5, 9-8 
logical .......................................................... 9-5, 9-8 
numeric ........................................................ 9-5 
protected ....................................................... 9-5 
visual .......................................................... 9-6, 9-9 
4025-Style ..................................................... 9-6 

BACKTAB Command .............................................. 6-9, 9-16 
BAUD Command .................................................. 5-6 
BELL Command ................................................... 6-13 
BUFFERED Command ............................................. 5-9 

CIRCLE Command ................................................. 8-9 
CLEAR Command ................................................. 4-5 
COLOR Command ................................................. 7-1 
Color 

background ..................................................... 7-4,8-18,8-19 
boundary ....................................................... 7-1 
foreground ...................................................... 7-4,8-18,8-19 
vector .......................................................... 7-1 

Color Standard, Tektronix 4027A ................................... A-1 
COPY Command .................................................. 11-1 4 
Command, descriptions of syntax ................................... 2-4 
Command file, displaying .......................................... 3-4 
Commands, format. ................................................ 2-1 
Commands, invalid ................................................ 3-3 
COMMAND Command ............................................. 2-5, 5-1 
COPY Switches ................................................... 11-1 5 
Crosshair ......................................................... 6-1, 8-3, 8-15 
Cursor ............................................................ 1-5, 6-1, 8-15 

4027 A PROGRAMMER'S @ IDX-1 


	00000
	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	I-01
	I-02
	J-01
	J-02
	idx-02
	idx-03
	idx-04
	idx-05
	idx



