REFERENCE ‘Product Group 76

TEK PROGRAMMER’S Part No. 070-3917-01
—~

4041

SYSTEM
CONTROLLER

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

First Printing JUN 1982

f,/\ Revised AUG 1985 -
Tektronix

COMMITTED TO EXCELLENCE

Copyright ©1982 , 1983 Tektronix, Inc. All rights reserved.
Contents of this publication may not be reproduced in any
form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered
by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and are
registered trademarks of Tektronix, Inc. TELEQUIPMENT
is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges
are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag,
or stamped on the chassis. The first number or letter
designates the country of manufacture. The last five digits
of the serial number are assigned sequentially and are
unique to each instrument. Those manufactured in the
United States have six unique digits. The country of
manufacture is identified as follows:

B000000 Tektronix, Inc., Beaverton, Oregon, USA
100000 Tektronix Guernsey, Ltd., Channel Islands
200000 Tektronix United Kingdom, Ltd., London
300000 Sony/Tektronix, Japan

700000 Tektronix Holland, NV, Heerenveen,
The Netherlands

MANUAL REVISION STATUS

s PRODUCT: 4041 System Controller

This manual supports the following versions of this product: Firmware Version 1, Level 1 and above.

REV DATE DESCRIPTION
JUN 1982 Original Issue; replaces 061 - 2546 - 00.
JUN 1983 Rewritten; replaces 070-3917-00.

4041 PROGRAMMER’S REFERENCE

Tektronix. MANUAL CHANGE INFORMATION

COMMITTED TO EXCELLENCE Date: 12-4-85 Change Reference: M59185
Product: 4041 Programmer’'s Reference Manual Manual Part No.: 070-3917-01
DESCRIPTION PG 76

This manual insert describes “UTL2”, a set of array-handling romcalls included in
standard 4041s with serial numbers above B070100. Included in this insert is a new
8-page section (Section 16) which describes the romcalls, and one new page to be
added at the end of Appendix A, which lists the numeric error codes associated with

UTL2.

Page 1 of 10

Section 1

Section 2

Section 3

Section 4

CONTENTS

INTRODUCTION TO 4041 BASIC

About the 4041 System Controfler
4041 BASIC. ... e
4041 Program Segment Structure
HowtoUseThisManual.....................

ELEMENTS OF 4041 BASIC
Introduction

StringConstants.
NumericVariables
String Variables.
Operators. . o
Expressions. e e
Functions
Statements

FRONT PANEL, KEYBOARD, AND OPTION

Introduction
FrontPanel
Program Development (P/D)Keyboard
InstrumentOptions

EDITING, DEBUGGING, AND DOCUMENTATION

Introduction
Reporting Errors. ...
Reporting Debugging Information
The BREAK Statement coiiiiii..

4041 PROGRAMMER’S REFERENCE

Section 5

Section 6

ENVIRONMENTAL CONTROL

INtrodUCtioNot e 5-1
The ASKand ASK$ Functionso it 5-2
ASK Functions:
ANGLE. .. 5-3
AUTOLOAD ... e e e e 5-3
BUFFER ..ot 5-4
CHPOS . e 5-5
JODONE ..o 5-6
KEY o 5-7
MEMORY ..o 5-7
PROCEED ... i 5-8
SEGMENT . e 5-8
SPACE . .. e 5-9
TIME . o e 5-9
UPCASE ... 5-9
ASKS$ Functions:
CONSOLE e 5-10
DRIVER . . o 5-11
ERROR ..ottt 5-11
DD 5-12
LU o 5-12
PATH. L e 5-13
ROMPACK .. e e 5-14
SELECT . ..ot 5-14
SELFTEST ..ottt e e e e e e 5-14
SY SDEV .. e e e 5-15
TIME . . o 5-15
VAR . e 5-16
VOLUME . . e e e e e e e 5-16
The INIT Statement i e e 5-17
The SET Statement i e ea e 5-18
ANGLE. . .. e e 5-19
AUTOLOAD ... e e e e e e 5-19
CONSOLE ... e e e e 5-20
DEBUG ... i 5-20
DRIVER . ..o e 5-21
FUZZ . 5-22
PROCEED ...t e e e e 5-24
SYNTAX . . 5-24
SYSDEV . e 5-25
TIME . . o e e e e 5-26
UPCASE ... o e 5-27
MEMORY MANAGEMENT
INtrodUCHiON . . . o e 6-1
The COMPRESS Statementc. . 6-2
The DELETEALL Statement 6-2
The DELETEVAR Statement. 6-3
The DIM Statement i e e e 6-4
The INTEGER Statement i, 6-5
The LET (“*Assignment”) Statement. 6-6
The LONG Statementt 6-7

4041 PROGRAMMER’'S REFERENCE

Section 7

Section 8

CONTROL STATEMENTS

Introduction e 7-1
The CALL Statement 7-2
The CONTINUE Statement i, 7-3
The END Statement. 7-4
The EXIT Statement. 7-5
The FORand NEXT Statements 7-7
TheGOSUBand GO TO Statements 7-9
ThelF Statement e e 7-11
Invoking User-Defined Functions 7-12
The RCALL Statement 7-13
The RETURN Statement. i, 7-15
The RUN Statement. 7-16
The STOP Statement. i 7-17
INPUT/OUTPUT
Introduction 8-1
HO DIVEIS .o 8-2
The System ConsoleDevice, 8-2
SpecifyingDataPaths. L. 8-4
Proceed-Mode /O 8-5
The CLOSE Statement 8-7
The COPY Statement i, 8-8
The DATAStatement i 8-9
The GETMEM Statement 8-10
The IMAGE Statement 8-11
TheINPUT Statement. i 8-12
The#Clause 8-15
The ALTERCIlause e 8-16
The BUFFERCIause ...t 8-16
The DELNCIause e 8-17
TheDELSClause ... e 8-17
The INDEXClause i 8-18
The PROMPTClause. 8-18
TheUSINGClausecoovi i e 8-19
The OPENStatement 8-28
The PRINT Statement 8-30
The#Clause e 8-33
The BUFFERCIlause ... 8-33
The INDEXClauset 8-34
TheUSINGClause.ci i 8-34
The PUTMEM Statement i, 8-43
The RBYTE Statement 8-44
The READ Statement 8-47
The RESTORE Statement 8-48
The SELECT Statement 8-49
The WBYTE Statement. 8-50

4041 PROGRAMMER’S REFERENCE

Section 9

Section 10

Section 11

INSTRUMENT CONTROL WITH GPIB
Introduction
Setting the GPIB’s Physical Driver Parameters
The SET DRIVER Statement(GPIB)........................
Setting Up LogicalUnitsoo o ...
The OPEN Statement(GPIB)
The ASK$(“LU”) Function(GPIB)
High-LevelDataTransfers
The INPUT Statement(GPIB)................ccoo ...
The PRINT Statement (GPIB)..............................
Low-Level Data Transfers and Instrument Control...............
The RBYTE Statement(GPIB).............................
The WBYTE Statement(GPIB).
Serial Polls.

RS-232-C DATA COMMUNICATIONS
Introduction

TypeaheadBuffer.........

Flagging
TheEDIParameter

LineEditing e
ControlCharacterNotes

SUBPROGRAMS AND USER-DEFINED FUNCTIONS
Introduction

4041 PROGRAMMER’S REFERENCE

Section 12

Section 13

Section 14

Section 15

INTERRUPT HANDLING

INtrOdUCHION e 12-1
ABORT . o 12-6
ERRORS .o 12-8
GPIB ConditionSs ... i 12-12
IODONE . . e 12-14
SRQ INTERRUPTS (OPT2DRIVER) 12-15
USER-DEFINABLE FUNCTIONKEYS it 12-17
The ADVANCE Statement ..., 12-19
The BRANCH Statement i 12-20
The DISABLE Statement it 12-21
The ENABLE Statement it 12-22
The MONITOR Statement i i 12-24
The OFF Statement it e 12-25
The ON Statement e 12-26
The RESUME Statement i 12-28
The RETRY Statement i 12-29
The TRAP Statement. i 12-30
The WAIT Statement i 12-31
PROGRAM MANAGEMENT

IMrOQUCHION . . oo e e 13-1
The APPEND Statement. i 13-2
The LOAD Statement. i e 13-4
The SAVE Statement et 13-5
DC-100 TAPE

INtrodUCHiON . ..o 14-1
The DELETEFILE Statement iivinnn, 14-2
The DIR Statement. e 14-3
The DISMOUNT Statementoi i, 14-4
The EOF Function ... i i 14-5
The FORMAT Statement. i 14-6
The INPUT Statement (TAPE) 14-7
The OPEN Statement (TAPE).co oo, 14-8
The PRINT Statement (TAPE)o, 14-9
The RBYTE Statement (TAPE). o it 14-12
The RENAME Statement i, 14-13
The TYPEFUNCHON . ..o e e 14-14
The WBYTE Statement (TAPE), 14-15

SCSI (OPTION 03) SUB-SYSTEM

Introduction 15-1
ASCIIVSItem Files 15-1
Logical VS Physical Disk I/O 15-1
Wild Cards and Other Special Characters 15-1
EXamples oo 15-2
Stream Specification Settings for SCSI
Disk Interface 15-9
4041 PROGRAMMER'S REFERENCE REV JAN 1985

vi

vii

Appendix A
Appendix B
Appendix C

Appendix D

Appendix E

Appendix F

INDEX

ERROR MESSAGES
ASCII (GPIB) CODE CHART
GLOSSARY
STREAM SPECIFICATIONS
Form of a Stream Specification D-1
Parameters e D-2
Logical Units D-5
INTRODUCTION TO GPIB CONCEPTS
Mechanical Elements of IEEE-488 Standard E-1
Electrical Elements E-3
Functional Elements: the 10 Interface Functions................ E-3
Addresses: Primary, Talk, Listen, and Secondary E-4
Data, Management, and “Handshake” Buses.................. E-6
GPIB Communications Protocol:
Talkers, Listeners,and Controllers E-8
UniversalCommands i E-10
AddressedCommands E-11
Serial Polling E-12
Parallel Pollingc oo e E-13
INTRODUCTION TO TEKTRONIX CODES AND FORMATS
Introduction F-1
Compatibility F-2
Humaninterface........ F-4
RepresentingNumbers. F-4
Device-Dependent Message Structure F-5
Message Conventions. F-7
Status Bytes ... F-8
QU S . . ottt F-9
Additional Features i F-10
REV OCT 1984 4041 PROGRAMMER’S REFERENCE

AN

Figure

1-1
2-1
3-1
3-2
10-1
E-1
E-2
E-3
F-1

F-2
F-3

F-4

Table

3-1
4-1
8-1

8-3
8-4
10-1
12-1

D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9
D-10
D-11
D-12
F-1
F-2
F-3

ILLUSTRATIONS

Description

The Tektronix 4041 Controller.
“Row-Major” Mapping in Assignment Statements..............
4041 FrontPanel. o
4041 Program Development (P/D) Keyboard.
Control Character Functions.
Allowable Configurations for GPIB Devices....................
“Typical” Binary Switch System, with Address Setto 19
Data, Management, and “Handshake” buses

Three Valid Data Representations for the Same Data on
the GPIB. Tektronix Codes and Formats Standardizes on

ASCII Code with the Most SignificantByte First

Problem: Talker Delimits on <CR> <LF>;

Controller Delimitson <CR>

Problem: Sending Binary Data,

Using <CR> <LF>asTerminator

Query Commands are Formed by Adding a Question Mark

to the Mnemonic for the Settingtobe Queried

Devices Should Assert SRQ When an

lllegal CommandisReceivedot

TABLES

Description

Instrument Options
Table of Defaults for RENUMBER
InputUsingOperators L.
Input Using Modifiers.o
Print UsingOperators.t
Print Using Modifiers oo
Control Character Functions.
4041 Interrupts
Physical Parameters for COMMDriver........................
Logical Parameters for COMMDriver.........................
ASK$ Parameters for COMMDriver
Logical Parameters for FRTP Driver
Physical Parameters for GPIBDriver
Logical Parameters for GPIBDriver
ASK$ Parameters for GPIBDriver...............
Physical Parameters for OPT2Driver.........................
ASKS$ Parameters forOPT 2Driver.............
Logical Parametersfor PRIN Driver
Logical Parameters for TAPE Driver,
Logical Parametersfor TAPEFiles
Number Formats (ANSI x 3.42).
Non-Character Arguments,
Status Byte Defintions i

4041 PROGRAMMER’S REFERENCE

Page

ix
2-11
3-2
3-5
10-4
E-2
E-4
E-6

F-3

F-7
F-9

F-10

Page

3-12
4-12
8-19
8-19
8-35
8-35
10-5
12-5
D-6
D-7
D-8
D-8

D-8

D-9

D-10
D-11
D-11
D-11
D-11
D-12
F-4

F-8

viii

=
e
""E"::'“:!'!': fe

T
i e b C\H. k2

'\.-\.-_\.-.-.'\.'\.-EE;;.:E:IE R

R e

o
%c_g St i
T e

b e

i

e

'\J_-G-»??;..;}h

-mH'ﬁiC;zi-:: S
: S o i
'Wﬁnxg e

WG R A Y

B e R S R

3919-136

Figure 1-1. The 4041 System Controller.

4041 PROGRAMMER'S REFERENCE

Section 1

INTRODUCTION TO 4041 BASIC

ABOUT THE 4041 SYSTEM CONTROLLER

The Tektronix 4041 System Controller combines the
power and versatility of a desktop computer with
enhanced programmability to control GPIB-compatible
and RS-232-C compatible instruments.

The GPIB, or General Purpose Interface Bus, is the
name given to the protocol that governs data communi-
cation between devices that implement IEEE-488,
“|EEE Standard Digital Interface for Programmable
Instrumentation” (ANSI/IEEE-488-1978, Institute of
Electrical and Electronics Engineers, Inc., 345 East
47th Street, New York, N.Y. 10017).

GPIB interfacing allows the 4041 to communicate with
and control any of hundreds of GPIB-compatible
instruments available today, including multimeters,
counters, waveform generators, power supplies, data
loggers, oscilloscopes, spectrum analyzers, discs,

tapes, and other instruments and computer peripherals.

The RS-232-C standard (published by the Electronic
Industries Association, 2001 | Street, NW., Washing-
ton, D.C. 20006) applies to data communication be-
tween data terminal equipment and data communica-
tions equipment employing serial binary data
interchange.

With its RS-232-C interface capability, the 4041 can
communicate with a variety of data communications

_ equipment, including terminals, printers, plotters, and

other computers.

4041 PROGRAMMER'S REFERENCE

Operating the standard 4041 involves connecting
instruments to it, loading a tape into the built-in DC-
100 magnetic tape drive, and pressing the AUTOLOAD
key.

From this point, the 4041 is capable of operation with
any desired degree of supervision, from unattended
program execution to interactive operations involving
the 4041’s front-panel keys, the Program-Development
(P/D) keyboard (which plugs into a jack in the 4041’s
front panel), or peripheral devices, such as a computer
terminal attached through an RS-232-C interface port.

While running interactive programs, operators can
invoke program functions by pressing one of the ten
user-definable function keys on the front panel or P/D
keyboard.

The user can also enter numeric values by means of
the front-panel keys when the 4041 requests numeric
input. Numeric or alphabetic data can also be input by
means of the Program Development (P/D) keyboard or
computer terminal.

Programs are written on a 4041 equipped with Option
30, Program Development ROMs. Programmers com-
municate with the 4041 by using the P/D keyboard or a
computer terminal.

1-1

INTRODUCTION TO 4041 BASIC

4041 BASIC

The 4041 uses a version of the BASIC programming
language optimized for ease of programming and GPIB
device control. 4041 BASIC includes the following
features:

8-Character Variable Names

Variables in 4041 BASIC can be given variable names
up to eight characters long.

Optional Line Labels

Each line in a 4041 BASIC program can be labeled,
and the line can be referred to by that label. This
feature improves readability and greatly eases pro-
gramming effort, by relieving the programmer of the
need to remember line numbers. Labels can be chosen
to indicate the function that a section of code performs
— for instance, the first line of a sorting routine might
be labeled SORT, and a line to transfer control to that
routine would be written GO TO SORT.

GPIB Support

The 4041 can control any IEEE-488 compatible device
in all legal states. 4041 BASIC contains both high- and
low-level constructs for communicating with GPIB
devices. It also includes several special functions to
enhance readability of statements that send commands
over the GPIB.

Tek Codes and Formats Support

The 4041 is designed to be especially easy to operate
with instruments that support the Tektronix Codes and
Formats standard. This standard defines device-de-
pendent message formats and codings to reduce the
cost and time required to develop software for
controlling GPIB devices.

Subprograms and User-Defined Functions

Subprograms and user-defined functions can be de-
fined with local environments, local as well as global
variables, and formal parameter passing. This feature
makes it simple to construct modular programs that are
easy to read and maintain.

1-2

Interrupt-Handling

The user can define handling routines to allow the
4041 to recognize any interrupt and recover from it
under program control. The user can also define “local”
interrupt-handlers, so that the action taken to recover
from an interrupt can vary depending on where the
interrupt occurs.

Efficient Memory Management

For efficient use of memory, variables can be stored in
integer, “regular” floating point, or long-floating-point
(double precision) form.

Engineering Notation

For user convenience, numbers can be entered using
abbreviations for such common prefixes as “micro-",
“milli-"’, and “kilo-". Using this notation, for example,

the number .0032 could be entered as 3.2M.

Binary/Octal/Hexadecimal Numbers

The user can enter binary, octal, or hexadecimal
numbers by enclosing the number in brackets and
adding a “B”, “Q”, or "H" suffix. For example, the
hexadecimal number B97E would be entered as
[BO7EH].

Debugging Aids

Among the debugging aids included in the 4041 are
commands to:

® Trace each change in the value of any user-
specified variable;

® Trace program flow;
® Set “breakpoints” to stop the program at any point

and allow the programmer to examine contents of
variables.

4041 PROGRAMMER’S REFERENCE

INTRODUCTION TO 4041 BASIC

4041 PROGRAM SEGMENT STRUCTURE

A 4041 program consists of one or more segments: a
“main program’” segment followed optionally by a
sequence of subprogram segments.

Each line of the program is numbered, and lines are
executed in ascending order, from lowest to highest.

The main program segment consists of that part of the
program from the first (lowest-numbered) line to the
first END statement, inclusive. The main program
segment is usually used to perform “housekeeping”
(see explanation below) and to specify the order in
which subprograms are called during execution.

Subprogram segments begin with a SUB or FUNCTION
statement and end with END statements.

A SUB statement designates the first line of a subpro-
gram or user-defined interrupt handler.

A FUNCTION statement designates the first line of a
yser-defined function.

THE MAIN PROGRAM SEGMENT

Entire 4041 programs can be written in one main
program segment. For complex applications, however,
the program is usually divided into a main program
segment and several subprogram segments.

The main segment of a well-constructed program
usually does two things:

1. It performs “housekeeping”’ chores the program
requires, and

2. It specifies the order in which subprograms are
executed.

Included among the “housekeeping” chores usually
performed in the main segment at the start of execution
are;

1. Naming the system console device;

2. Setting physical parameters for the GPIB and RS-
232-C interface ports;

3. Opening logical units for I/0 operations.

4041 PROGRAMMER'S REFERENCE

Naming the System Console Device

The system console device is the driver through which
the user communicates with the 4041. 1t is the device
through which the user enters commands for the 4041,
and also is the default device for INPUT, PRINT, and
other operations where the 4041 must output mes-
sages for the user.

Usually, the system console device will be either the
front panel and P/D keyboard or a computer terminal
connected to the 4041 through an RS-232-C interface
port.

When the 4041 powers up, the front panel and P/D
keyboard are automatically made the system console
device.

In order to change the system console device to a
computer terminal connected to an RS-232-C interface
port, the command

Set console "comm:"
must be executed.

If the user has no P/D keyboard and wishes to name
the RS-232-C interface port as system console device,
he/she should insert a tape containing a file named
“AUTOLD” into the DC-100 tape drive and press the
“AUTOLOAD" key on the front panel. Pressing this key
automatically loads and runs the “AUTOLD?” file. This
file should contain a command designating the RS-
232-C interface port as system console.

Once execution begins, the SET CONSOLE statement
is used to change the system console device. (See the
description of the SET CONSOLE statement in Section
10, “RS-232-C Data Communications”, for more infor-
mation.)

1-3

INTRODUCTION TO 4041 BASIC

Setting GPIB and RS-232-C Physical
Parameters

Because the GPIB and RS-232-C interface ports are
used to communicate with other devices, several
parameters governing their operation are typically set
once, at the beginning of program execution.

For the GPIB interface ports, for example, these
parameters include {among others) the 4041’s primary
address on the bus, and a status parameter indicating
whether or not the 4041 is system controller.

For the RS-232-C interface ports, these parameters
include such items as baud rate, number of stop bits,
number of bits per character, parity, etc.

The values of these parameters are set by means of the
SET DRIVER statement. (See the descriptions of the
SET DRIVER statement in Section 9, “Instrument
Control With GPIB”, and in Section 10, “RS-232-C Data
Communications”, for more information.)

Opening Logical Units

INPUT and PRINT operations use the system console
device as a default. For example, if the front panel and
P/D keyboard are the system console device, then
upon execution of the command

1000 Input number

the 4041 expects the value of a numeric variable called
Number to be input via the system console device.

Similarly, upon execution of the command

1010 Print number

the 4041 displays the value of the numeric variable
Number on the system console device.

INPUTs and PRINTSs to devices other than the system
console are primarily done by means of logical units. A
logical unit is associated with a device for input or
output by means of the OPEN statement.

For example, if the user wishes certain output to go to
the thermal printer, then he/she might open logical unit
1 and associate it with the printer, as follows:

1500 Open #1:"prin:"

Then, the command

2000 Print #1:a,b,c

would print the values of numeric variables A, B, and C
on the thermal printer.

In general, logical units are OPENed in the main
program segment and used throughout the remainder
of the program. Logical units may, however, be opened
and closed at any time.

For more information about opening and closing logical
units, see the descriptions of the OPEN statement in
Section 8, “Input/Output”, and in Section 9, “Instru-
ment Control With GPIB”. See also the description of
the CLOSE statement in Section 8.

4041 PROGRAMMER'S REFERENCE

FLOW OF CONTROL BETWEEN PROGRAM
SEGMENTS

A 4041 BASIC program executes sequentially, from the
lowest line number to the highest, or until an END
statement is encountered {(whichever comes first).

When the 4041 is executing statements in one program
segment, the GO TO and GO SUB commands can only
transfer control to other program lines IN THE SAME
SEGMENT.

Control is transferred to other segments under the
following conditions:

1. Control is transferred to a subprogram by means of
the CALL statement.

Example:
1575 Call snarf(a,b,c)

This command transfers control to a subprogram
called Snarf, passing to it the parameters A, B, and
C.

2. Control is transferred to a user-defined function by
invoking the function’s name within another state-
ment.

Example:
1600 Zip=sumsquar(x,y)+2

This command transfers control to the user-de-
fined function SumSquar, passing to it the
parameters X and Y. When control returns from the
function, the number 2 is added to the returned
value. The result is stored in numeric variable Zip.

3. Control is transferred to a user-defined interrupt
handler when the condition it handles is sensed. In
order for an interrupt condition to be recognized
and control passed to a handler for that condition,
two things must be true: (1) the handler for the
interrupt condition must be defined; and (2) the
4041 must be enabled to recognize the condition.

Interrupt conditions on which ocntrol can be
transferred to a handler include ABORT, ERROR,
IODONE, KEYS, and several GPIB-dependent inter-
rupt conditions. (See Section 12, “Interrupt Han-
dling”, for more information about interrupt condi-
tions.)

4041 PROGRAMMER’S REFERENCE

INTRODUCTION TO 4041 BASIC

Handlers for conditions are defined by the ON
statement. Conditions are enabled by the ENABLE
statement.

Handlers for ABORT and ERROR conditions are
automatically defined and enabled at power-up.
The ABORT condition may be disabled and an
alternate handler defined for it. Errors may also
have alternate handlers defined for them, but may
never be disabled. For more information, see
Section 12, “Interrupt Handling”.

Example:

300 On srq then call srqhand
310 enable srgq

1000 sub srghand ! handler for srq interrupt

After the first two statements are executed, control
will be transferred to a subprogram called
“SRQHand” whenever the 4041 senses the SRQ
line being asserted on the standard GPIB interface
port, as long as an OFF SRQ or DISABLE SRQ
command has not been executed after statement
310.

interrupt handlers are special cases of subpro-
grams. For information about them, see Section 12,
“Interrupt Handling”.

No program segment can call or invoke itself or any
other segment in the “active call sequence”.

The “active call sequence” consists of those
program segments currently executing. (The main
program segment is always in the active call
sequence.)

For example, if a program consists of a main
segment and subprograms A, B, and C, and the
main program calls A, which calls B, which in turn
calls C, then C cannot call A, B, or itself — all are in
the active call sequence.

15

INTRODUCTION TO 4041 BASIC

HOW TO USE THIS MANUAL

GUIDE TO NOTATION FOR SYNTAX AND
DESCRIPTIVE FORMS

The following conventions apply for the syntax and
descriptive forms of commands shown in this manual:

1. Items enclosed in square brackets are optional.
Example:
Syntax Form: RUN [numexp]

The square brackets indicate that the numeric

expression following the RUN keyword is optional.

Any of the following forms of the RUN statement,
therefore, are syntactically correct:

RUN

RUN 1000
RUN start+ 50

2. Optional entries within optional entries cannot be
used by themselves.
Example:
Syntax Form:

[line-no.] LIST [strexp] [numexp [TO numexp]]
[subname[TO subname]]

The following forms of the LIST statement are
syntactically correct:

LIST
1050 LIST 10 TO 1000
2000 LISTATOB

The following form, however, is incorrect:

LIST TO 2000

1-6

3. Stacked items enclosed in BRACES make up a
selection list from which one item MUST be
selected.

Example:

Syntax Form: [line-no.] ENABLE {DCL[(numexp)}}
{EOI{(numexp)])
{IFCl{numexp)]}
{MLA[(numexp)]}
{MTA[(numexp)]}

SRQl(numexp)]}

TCTI{numexp)]}

——

Any of the following forms of the ENABLE state-
ment may be entered:

ENABLE SRQ
1000 ENABLE TCT(1)
1500 ENABLE IFC(5)

The following cannot be entered:

2000 ENABLE

4. Stacked items enclosed in SQUARE BRACKETS

make up a selection list from which zero or one
item MAY be selected.

Example:

Syntax Form: [line-no.] INIT [VAR var[,varl. .]
[ALL]
[SELFTEST]

Any of the following forms of the INIT statement are
syntactically correct:

INIT

INIT VAR a,b,c,d
INIT ALL

INIT SELFTEST
1000 INIT ALL

4041 PROGRAMMER’S REFERENCE

Three dots (. . .) indicate that the preceding item
may be repeated as often as required.

Keywords and command delimiters should be in
the order and position shown. (Keywords and
delimiters are printed in upper case and boldface
in syntax and descriptive forms.)

Keywords longer than four characters may be
shortened to four-character length when entered.

A space must precede and follow each keyword.

Line numbers must be positive integers in the
range from 1 to 65535.

The construct “line-no.”, when it appears before a
keyword in a syntax or descriptive form, denotes a
line number optionally followed by a line label and
colon.

4041 PROGRAMMER'’S REFERENCE

INTRODUCTION TO 4041 BASIC

Abbreviations

The following abbreviations are commonly used in the syn-
tax and descriptive forms of the commands described in this
manual. See the Glossary (Appendix C) for definitions of
these terms.

exp expression (either numeric or string)

line-no. line number (optionally followed by a
line label and colon)

numarray numeric array variable

numexp numeric expression

numvar numeric scalar variable

strarray string array variable

strexp string expression

strvar string scalar variable

subname subprogram or user-defined function
name

1-7

Section 2

ELEMENTS OF 4041 BASIC

INTRODUCTION

This section defines the fundamental elements and
concepts used in 4041 BASIC. Terms discussed in this
section are used extensively throughout the rest of this
manual.

When a program is being entered, the 4041 treats
upper and lower case letters identically. The first letter
following the statement number in each line is always
displayed in upper case, with remaining characters in
lower case, except for letters in quoted strings or
remarks, which are displayed in the form in which they
were entered.

Some devices (e.g., the front panel, some computer
terminals) are incapable of displaying lower case
letters in lower case. Most such devices display lower
case letters in upper case. Output or listings sent to
such devices will always appear in upper case, but may
appear in lower case on other output devices (depend-
ing on the case of the characters actually sent by the
transmitting device).

REAL NUMBERS

INTERNAL NUMBER STORAGE

The 4041 stores numbers internally in one of three
formats: (1) as integer numbers; (2} as short floating
point numbers; or (3) as long floating point numbers.

Integer numbers take less storage space and are
processed more quickly than short or long floating
point numbers; long floating point numbers allow the
programmer greater precision than integer or short
floating point numbers, but take up more internal space
and take fonger to process.

4041 PROGRAMMER'S REFERENCE

Integers

Integers take up two bytes of memory. Integers may
range from —32768 to + 32767; attempting to assign
values outside this range to an integer variable results
in an overflow error.

NOTE
Although —32768 is treated as an integer value,

it is stored as a floating-point value. It therefore
appears in listings as “—32768.0".

ELEMENTS
REAL NUMBERS

Short Floating Point Numbers

Short floating point numbers take up four bytes of
memory.

The allowable range for short floating point numbers is:
maximum + /—3.40282E+ 38; minimum
+/—2.983874E—39.

Attempting to assign values outside this range to a
floating point variable results in an error.

Entering a number with a decimal point automatically
stores the number internally as a short-floating point
number, even if the number is in the integer range.
Thus, entering the number 38" stores the value 38 in
integer representation internally, while entering the
number “38.” stores 38 in short-floating-point repre-
sentation internally.

Long Floating Point Numbers

Long floating point numbers take up eight bytes of
memory.

The allowable range for long floating point numbers is:
maximum + /—1.7976931348623E+ 308; minimum
+/—5.562684646269E—309.

Attempting to assign a value outside this range to a
long floating point variable results in an error.

Entering seven or more digits to represent a number
stores the number internally in long-floating point
representation. Thus, entering “1.234" stores the value
1.234 in short-floating-point representation, while en-
tering ““1.234000” stores the value 1.234 in long-
floating-point representation.

2-2

Evaluating Expressions

When evaluating an expression, if the two operands of
a dyadic operator are of the same type, the result of the
operation must be in the range allowed by that type or
an error is generated.

Example:

*print 24%3600

¥%¥% ERROR # 89

This example causes an error because the result of the
multiplication operation is not within the range allowed
by the type of the two operands (integer; —32768 to

+ 32767).

Mixing Number Types Within an Operation

Whenever “mixed-type” operations are performed, the
number of the “less accurate” type (where accuracy
increases in the following order: integer, short floating
point, long floating point) is converted to the more
accurate type before the operation is performed.

Example:

¥print 24.%3600
86400.0

Since one of the operands is entered in short-floating-
point representation, the answer is calculated and
displayed in short-floating-point representation, and
the allowable range of the answer is the short-floating-
point range.

4041 PROGRAMMER’S REFERENCE

EXTERNAL NUMBER REPRESENTATION

While numbers are always stored in the 4041 as
integer, short floating point, or long floating point
numbers, numbers can be input to or output from the
4041 in several formats. These formats can be grouped
as follows: standard positional notation; scientific
notation; engineering notation; binary/octal/
hexadecimal notation.

Standard Positional Notation

Numbers represented in standard positional notation
are numbers written in the way we are used to reading
them.

Examples are the numbers 5, 98.6, —0.043, and
32000.0.

Imbedded spaces and commas are not allowed within
numbers in standard positional representation (nor, for
that matter, in any others).

Scientific Notation

Numbers represented in scientific notation have a base
part called the mantissa and a power-of-ten part called
the exponent. The exponent specifies the power of ten
to which the base part is to be raised.

For example, the number 3.28E+ 6 is a number written
in scientific notation; 3.28 is the mantissa and 6 is the
exponent. The number 3.28E+ 6 means “3.28 times ten
to the sixth power”, or 3280000.

The mantissa and the exponent are separated by the
letter “E” or “‘@”. The mantissa may be a signed or
unsigned integer or floating point number. (If no sign is
specified, + is used.)

The exponent, however, must be a signed or unsigned
integer. (If no sign is specified, + is used.) Attempting
to input a number in scientific notation with an
exponent that contains a decimal point results in an
error.

4041 PROGRAMMER'’'S REFERENCE

ELEMENTS
REAL NUMBERS

Engineering Notation

Any number within the 4041’s range can be written within a
program in engineering notation. This notation gives the
programmer a convenient, shorthand way to write numbers
with such common prefixes as “‘kilo-"’ (1E3), “‘milli-”’ (1E-3),
“micro-"’ (1E-8), “‘nano-"" (1E-9), and *‘pico”’ (1E-12).

Numbers are expressed in engineering notation as
integer or floating point numbers followed by one of the
letters K or k (for kilo-), M or m (for milli-), U or u (for
micro-), N or n (for nano-}, or P or p (for pico-).

Examples:
Engineering
Constant
Number Representation
3280 3.28K
.003 (3.0E-3) 3M
0000065 (6.5E—6) 6.5U

000000000009 (9.0E—12) 9P

NOTE

The letter “M”, when used in as a suffix in
engineering notation, signifies “milli-" (10E—3)
whether the letter appears in upper or lower case.
There is no engineering notation symbol for
“mega-" (10E6).

2-3

ELEMENTS
STRING CONSTANTS

Binary/Octal/Hexadecimal Notation

Integers between —2147483648 and + 2147483647,
inclusive, can be expressed in binary, octal, or hexade-
cimal notation.

Numbers are entered in binary, octal, or hexadecimal
by enclosing the digits comprising their 32-bit 2's-
compliement representations in square brackets, and
including the letters “B” or “b”, “O” or “0”, or “H” or
“h” after the digits to signify binary, octal, or
hexadecimal.

Floating point numbers are rounded to the nearest
integer before being output in binary, octal, or hexade-
cimal notation.

Examples:
The number 4041 can be entered as:

[111111001001B] in binary;
[77110] in octal;
[FCOH] in hexadecimal.

The number —4041 can be entered as:
[11111111111111111111000000110111B} in binary;

[377777700670] in octal;
[FFFFFO37H] in hexadecimal.

STRING CONSTANTS

String constants are sequences of letters, numbers,
and other characters enclosed in quotation marks ().
String constants are sometimes called string literals,
literals, or just “‘strings”. String constants are usually
messages to be stored in or processed by the 4041, or
to be output to the alphanumeric display or other
output device.

Digits entered as part of a string constant cannot be
used in mathematical computations; they are treated

the same way as letters, punctuation, or other symbols.

However, the VAL function may be used to convert
digits that have been entered as part of a string into
numbers that can be used for computation. (For more
information, see the description of the VAL function
under “String Functions”, later in this section.)

The length of a string constant introduced in a program
is limited by the length of the statement required to
introduce it. Statements in 4041 BASIC have a maxi-
mum length of 256 characters.

Resuits of string functions or concatenation opera-
tions can be up to 32767 characters long.

To include quote marks in a string constant, use two
quote marks in a row.

Thus, to enter the string
The boy cried “Help!”
you would type

“The boy cried ““Help!”””

4041 PROGRAMMER’S REFERENCE

ELEMENTS
NUMERIC VARIABLES

NUMERIC VARIABLES

Numeric variables may be of three types: integer, short
fioating point, and long floating point. Unless declared
otherwise, all variables are assumed to be short
floating point variables when they are introduced.

Short floating point variables take up four bytes of
memory; integer variables take up only two bytes; long
floating point variables take up eight bytes of memory.
Integer variables are processed more quickly than
short floating point variables; long floating point
variables take longer to process than either integer or
short floating point variables.

Integer variables are declared in an INTEGER state-
ment; long floating point variables are declared in a
LONG statement. (See Section 6, “Memory Manage-
ment”, for more information on these statements.)

VARIABLE NAMES

Variable names can have at most eight characters in
4041 BASIC. The name must begin with a letter, and
may be followed by a combination of letters, numerals,
or imbedded underscores. (Leading or trailing under-
scores, special characters, and imbedded spaces are
not allowed.)

The only other restriction on variable names is that the
name may not be a reserved keyword (see list of
reserved keywords at the end of this section).

Some examples of legal variable names are:
A
Length
Portland
Ch_Size

Some examples of illegal variable names are:

PayrolINumber (Too long)
Len_ (Trailing underscore)

Hen%ry (% is not legal character for
variable names)

3num (First character must be a letter)

Goto (Reserved keyword)

4041 PROGRAMMER’S REFERENCE

NUMERIC SCALAR AND NUMERIC ARRAY

VARIABLES

A scalar variable has only one value associated with its

variable name. Scalar variables are declared implicitly
through their appearance in a program. For example,
the program statement

¥A=5

declares the variable A to be a short-floating-point
scalar variable, reserves space for it in memory, and
stores the value 5 in that space.

An array variable, on the other hand, represents not
one value but a set of values. The array can have either
one or two dimensions. An array’s dimensions and
number of elements are declared by a DIM statement or
an INTEGER or LONG statement (for an integer or long-

floating-point array). Thus, the statement

*100 Dim a(20)

declares A'to be the array variable for a 20-element,
one-dimensional array and reserves space for the
array, while the statement

¥100 Long num(3,10)

reserves memory space for a 30-element, two-
dimensional array Num of long-floating-point numbers.
The 30 elements of Num are ordered into three
“rows“’and ten “columns”. (See descriptions of the
DIM, INTEGER, and LONG statements in Section 6,
“Memory Management” for more information.)

Individual elements of an array are addressed by a
subscript assigned to each element. Subscripts have
an implied lower bound of 1, and an upper bound given
by the DIM, INTEGER, or LONG statement that declared
the variable to be an array. Thus,

A(10)

signifies the 10th element in the one-dimensional array
“A”, while

Num(2,15)

signifies the element in the 2nd row and 15th column
of the two-dimensional array “Num”.

ELEMENTS
STRING VARIABLES

The maximum allowable array subscript is 32,767.

Subscripts may be any numeric expression. For exam-
ple,

Area(l+ J)

signifies the “I4+ J”’th element of a one-dimensional
array, “Area’’.

The value of a subscript is always interpreted as an
integer. If a numeric expression used as a subscript
evaluates to a floating point number, its value is
rounded to the nearest integer.

STRING VARIABLES

String variables are variables that contain strings.

STRING VARIABLE NAMES

String variable names are formed using the same rules
as numeric variable names, except for two additional
rules: (1) a string variable name has a minimum length
of two characters, and (2) the last character of a string
variable name must be a dollar sign (“$"). (Therefore,
the number of unique characters that can be specified
for a string variable name is 7.)

Examples of legal string variable names are:

A$
Name$
LastNam$
Input$

(Note that “INPUT"” is a reserved keyword, and thus is
not a legal name for a numeric variable. “INPUT$”,
however, is not a reserved keyword, and therefore is a
legal name for a string variable.)

"Examples of illegal string variable names are:

LastName$ (Too long; both numeric and string

variable names have eight-character
limits)

26

Str?$ (Question mark not allowed; only
letters, numerals, imbedded under-
scores, and the trailing dollar sign)

$Word {Dollar sign not in last position)

Str$ (Reserved keyword)

STRING ARRAYS

Arrays of strings may be declared using the DIM
statement. (See the description of the DIM statement in
Section 6, Memory Management, for more information.)

Each element of a string array is itself a string. The
maximum length of the string array elements may be
declared explicitly in the DIM statement. If a maximum
length is not specified, the default maximum length is
72 characters. The maximum allowable length of a
string or string array element is 32,767.

Individual elements of string arrays are addressed in
the same way as elements of numeric arrays, i.e., by
means of subscripts. The rules governing string array
subscripts are the same as those governing numeric
array subscripts.

4041 PROGRAMMER'’'S REFERENCE

4041 PROGRAMMER’S REFERENCE

ELEMENTS

OPERATORS
a
OPERATORS
ARITHMETIC OPERATORS RELATIONAL OPERATORS
4041 BASIC uses the following arithmetic operators: 4041 BASIC uses the following relational operators:
Operator Meaning Result Example Operator Meaning
1 Exponentiation 614 1296 = Equals
* Multiplication 6*4 24 < Less than
/ Floating point division 6/4 1.5 > Greater than
(returns floating point <> Not equal to
result)
= = ter th |
DIV Integer division (re- 6 DIV 4 1 >= lor=>) Greater than or equal to
turns integer result) <= (or=<) Lessthanorequalto
. .. Relational operators require two values as parameters.
+ Add.'tt.'on(gyad';)’) ?_24 12 Each operator returns an integer result of 1 of the
positive imonadic relation is true, or O if the relation is false.
- Subtraction (dyadic); 6-—4 2
negative (monadic) —4 —4 The relational operators are affected by the setting of
the FUZZ parameter. See the description of the SET
MIN The smaller of 6 MIN 4 FUZZ statement in Section 5 for more information.
a MAX The larger of 6 MAX 4
MOD Modulo (returns re- 6 MOD 4
mainder of integer LOG|CAL OPERATORS
division)
4041 BASIC uses the following logical operators:
NOTE
Operator Meaning
THE “/”, “DIV”, AND “MOD” OPERATORS
AND Logical “and” (true if both inputs are
The “/” operator operates on either integer or true)
floating point numbers, and returns a floating OR Logical “or” (true if either input is true)
point result.
XOR Logical “exclusive or” (true if one input
The “DIV” and “MOD” operators can take floating or the other is true, but not both)
point numbers as operands, but always round NOT Logical “not” {converts true to false and
their values to integers before performing the vice versa)
operation.
Results of all three operations can be stored as Logical operators AND, OR, and XOR require two
integers, short floating point or long floating point values as parameters. Each operator returns an integer
numbers, depending on the type of variable the result of 1 (true) or O (false), based on the result of the
user specifies to store the result in. operation performed on the two arguments.
In evaluating arguments, if the absolute value of an
argument is less than 0.5, the argument is treated as a
logical O (false). Otherwise, the argument is treated as
a logical 1 (true).
N

ELEMENTS
OPERATORS

The NOT logical operator requires only one parameter,
and returns the inverse of the logical evaluation of that
parameter (1 if the parameter is false, O if the
parameter is true).

The argument of the NOT logical operator must be

enclosed in parentheses whenever NOT is used in an
expression.

STRING OPERATOR

There is one string operator in 4041 BASIC:
Operator Meaning

& Concatenation

The concatenation operator (&) joins two character
strings.

Any number of concatenation operators may appear in
a statement.

Example:

*AS="BAT"&"MAN"&" AND ROBIN"
*print A%
BATMAN AND ROBIN

The three strings “BAT”, “MAN”, and * AND ROBIN”
are joined. The resulting string, “BATMAN AND ROB-
IN”, is stored in the string variable A$.

2-8 REV JAN 1984

BINARY OPERATORS

Binary operators in 4041 BASIC operate on 32-bit
signed integers. Operands are rounded to the nearest
integer before binary operations are performed.

The binary operators perform bit-by-bit comparisons of
the integer representations of their operands, except
for the BNOT operator, which takes only one operand.

4041 BASIC uses the following binary operators:

Operator Meaning

BAND Binary “and” — returns a value of “1” for
a bit if both corresponding bits are true,
“0" otherwise.

BOR Binary “or” — returns a value of “1” for a
bit if either corresponding bit is true, “0”
otherwise.

BXOR Binary “exclusive or’ — returns a value
of “1” for a bit if either corresponding bit
is true, but not both.

BNOT Binary “not” — reverses the value of

each bit in the operand.

The BNOT operator is, strictly speaking, a function.
BNOT always takes one numeric expression, enclosed
in parentheses, as an argument. BNOT then returns the
2's complement of the argument, i.e., BNOT(X) =
—(X+1).

4041 PROGRAMMER’S REFERENCE

ST

Examples:

*print 13 band 6
y

To find the result of this expression, we convert 13 and
6 to their binary equivalents, and then test each bit in
both numbers for an “AND” result (1 if both are true, 0
if one or the other is false).

13 — 1101
6 — 0110
0100 — 4

Therefore, 13 BAND 6 is equal to 4.

¥print 13 bor 6
15

To find the result of this expression, we convert 13 and
6 to their binary equivalents, and then test each bit in
both numbers for an “OR” result (1 if either bit is true,
0 only if both are false).

13 — 1101
6 — 0110
1111 — 15

Therefore, the result of 13 BOR 6 is 15.

4041 PROGRAMMER'S REFERENCE

ELEMENTS
OPERATORS

¥print 13 bxor 6
11

After converting 13 and 6 to their binary equivalents,
test each bit for an “XOR” result (1 if either bit is true,
but not both).

13 — 1101
6 — 0110

1011 — 11 (decimal)
Therefore, the result of 13 BXOR 6 is 11 (decimal).

*print bnot(13)
-1l

The 32-bit binary equivalent of the decimal number 13
is

0000 0000 0000 0000 0000 0000 0000 1101

The 1’s complement of this number is formed by
converting each Otoa 1,and each 1 to O:

11111111 1111 1111 1111 1111 1111 0010
This number is interpreted as a 32-bit 2’s complement

number and returned as the value of BNOT(13). In this
case, the number returned is ~14.

ELEMENTS
OPERATORS

IMPLIED ARRAY OPERATIONS

Certain 4041 BASIC functions and operators support
operations using implied array references. An implied
array reference is a reference to an array with no
subscripts specified.

The following operators/functions support operations
with implied array references:

+ (dyadic/ ABS LGT
monadic) ACOS LOG
— (dyadic/ AND MAX
monadic) ASIN MIN
* ATAN MOD
/ BAND NOT
1 BNOT OR
= (assignment/ BOR RND
relational BXOR ROUND
operator) CcOoSs SGN
<> DIV SIN
> EOF SQR
< EXP TAN
<= INT XOR
> =

Array Operations Involving Monadic
Operators/Functions

Arrays used as target variables for assignment state-
ments may be of any size, and need not be identically
dimensioned to any array on the right-hand side of the
equal sign.

2-10

If the expression on the right-hand side of the equal
sign includes an operation involving an array and a
monadic operator or function, the following rules apply
when the arrays on the left- and right-hand sides are
not dimensioned equally:

If the target array is dimensioned smaller than the
array on the right-hand side of the equal sign, the
target array is filled with as many elements from the
right-hand side as will fit.

If the target array is dimensioned larger than the
array on the right-hand side of the equal sign,
excess elements in the target array are left un-
changed after the array operation.

If the arrays on the left- and right-hand sides are not
dimensioned identically, the assignment statement per-
forms a “row-major” mapping from the array on the
right-hand side into the target array.

Example:

100 Integer a(4,3),b(6,2)
110 Print "here's array A:"
120 For i=1 to 4
130 For j=1 to 3
140 ACi,3)=3%(i-1)+]
150 Print a(i,j);" ";
160 Next j
170 Print
180 Next i
190 Print
200 B=a
210 Print "and here's array B:"
220 For k=1 to 6
230 For 1=1 to 2
240 Print b(k,1);" ";
250 Next 1
260 Print
270 Next k
280 End

*run

here's array A:

123

456

789

10 11 12

and here's array B:

12

34

56

78

9 10

11 12

4041 PROGRAMMER’S REFERENCE

Line 100 dimensions two arrays, A and B.

Lines 110 through 180 assign values to the 4 X 3 array
A, and prints the array in four rows and three columns.

Line 200 “maps” the values from array A into array B.

Lines 210 through 270 print array B in six rows and
two columns.

Figure 2-1 illustrates the mapping procedure.

ARRAY A ARRAY B
1 2 3 12
-3 4
4 5 61— |5 &
17 s
7 8 9
9 10
10 {11 12 {11 12
3917-11

Figure 2-1. “Row-Major” Mapping in Assignment
Statements.

4041 PROGRAMMER’S REFERENCE

ELEMENTS
OPERATORS

Array Operations Using One Array and One
Scalar

Array operations using one array and one scalar give
an array result. For each element of the original array,

result-array-element = original-array-element
OPERATION scalar

Example:

¥100 integer a(3),b(3)
¥110 a(1)=1

¥120 a(2)=2

%130 a(3)=3

¥140 b=a+b

*#150 print b

*¥run

6 7 8

Each element of array B is equal to 5 plus the
corresponding element of array A.

Array Operations Using Two Arrays

Arrays used in array operations involving two arrays
must be dimensioned identically (same number of
rows, same number of columns).

Such operations yield an array result. For each element
of the result array,

result-element = array-A-element OPERATION ar-
ray-B-element

The rules for mapping the results of such operations
into an array on the left-hand side of the equal sign are
the same as for array assignments involving monadic
operators/functions, discussed previously.

Example:

*¥100 integer a(3),b(3),c(3)
*110 a(1)=1
*#¥120 a(2)=2
¥130 a(3)=3
¥140 b(1)==5
¥150 b(2)=6
¥160 b(3)=-7
*170 c=a+abs(b)
¥180 print ¢
*¥190 end

*run

6 8 10

2-11

ELEMENTS
EXPRESSIONS

N
EXPRESSIONS
Expressions in 4041 BASIC may be of two types: STRING EXPRESSIONS
numeric or string.
A string expression yields a string when a statement
containing the expression is executed. String expres-
NUMERIC EXPRESSIONS sions are combinations of string variables, string
constants, operations with the string (concatenation)
A numeric expression is an expression that yields a operator, and functions that yield string resuits.
numeric value when a statement containing the expres-
sion is executed. Numeric expressions are combina-
tions of numeric variables, numeric constants, numeric Examples:
functions, numeric arrays, and operations with the
arithmetic, relational, and logical operators. A% & BS$
Numeric expressions may also include one or more SEG$(C$,3,10)
string expressions operated on by functions or
operators that return a numeric value. CHR$(65) & Y$
Examples:
X1YMOD3*Z
2+ ASC(“B") P

2-12

4041 PROGRAMMER’S REFERENCE

EXECUTION PRECEDENCE

Operations in 4041 BASIC are evaluated in the follow-
ing order:
User-defined functions

(

Mathematical and other functions (including the
NOT logical operator and BNOT binary operator)

Monadic +, —

1 (exponentiation)

* /,DIV

Dyadic +, —

MIN, MAX, MOD
=,<>,<,<=,>,>=

AND, OR, XOR, BAND, BOR, BXOR
& (concatenation)

)

The term “monadic” refers to an operator that requires
only one operand. The term “dyadic” refers to an
operator that requires two operands. In certain in-
stances '+, for example, is a monadic operator rather
than a dyadic one (as in the statement “A= + 5”).

Operators with the same priority level are evaluated
from left to right within an expression.

4041 PROGRAMMER’S REFERENCE

ELEMENTS
EXPRESSIONS

Example:
The expression

8/4 + 3*2 MIN 5 MAX NOT(1)
is evaluated as follows:

1. The NOT logical operator is evaluated first. Since
NOT(1)= 0, we have:

8/4 + 3*2 MIN 56 MAX 0

2. The division and multiplication are performed next,
yielding:

2+ 6 MIN 5 MAX O
3. The addition is performed next, giving:
8 MIN 5 MAX O
4. The MIN and MAX functions are performed in
order, from left to right within the expression.
Evaluating the MIN function leaves:

5 MAX O

5. Finally, the expression 5 MAX O is evaluated,
yielding:

5

The expression 8/4 + 3*2 MIN 5 MAX NOT(1)
evaluates to 5.

ELEMENTS

FUNCTIONS
FUNCTIONS
NUMERIC FUNCTIONS Other Numeric Functions
Numeric functions are special-purpose mathematical In addition to the trigonometric functions, the other
operations that take a numeric expression and return a numeric functions in 4041 BASIC are:
numeric result.
Function Effect
For example, the SIN function returns the sine of the
angle given by the numeric expression that follows the ABS(X) Returns absolute value of X
SIN keyword.
EXP(X) Returns e (2.718281828459) to the X
Arguments of numeric functions must be enclosed in power
parentheses.
INT(X) Returns largest whole number less than
or equal to X
Trigonometric Functions
LGT(X) Returns logarithm (base-ten) of X
The following trigonometric functions are provided in
4041 BASIC: LOG(X) Returns logarithm (base-e) of X
SIN (sine) ASIN (arc sine) Pl Returns pi (3.1415926535898)
COS (cosine) ACOS (arc cosine)
TAN (tangent) ATAN (arc tangent) RND(X) Returns a random number (see explana-
tion following this table)
Each of these functions takes one argument.
ROUND(X) Returns nearest whole number to value
The arguments following SIN, COS, and TAN are of X
interpreted as radians, degrees, or grads, depending on
the value of the ANGLE parameter: 0 = radians, 1 = SGN(X) Returns + 1 if X>0,0if X=0, —1 if X<0
degrees, 2 = grads. (O is the power-up default)
Similarly, the values returned by ASIN, ACOS, and SQR(X) Returns square root of X
ATAN will be radians, degrees, or grads, depending on
the value of the ANGLE parameter. (See Section 5, SUM(X) Returns arithmetic sum of numeric array

“Environmental Control,” for more information on
setting the ANGLE environmental parameter.)

2-14

X

4041 PROGRAMMER’S REFERENCE

RND Function. The 4041's internal pseudo-random
number generator accepts a numeric expression as an
argument and generates a number between O and 1 as
output.

The RND function effectively forms a “chain” of
random numbers, wherein the vaiue output by the
previous invocation of the RND function becomes the
input or “seed” for the next RND function.

When the RND function’s argument is between O
(inclusive) and —1 (exclusive), the RND function
outputs a predetermined value, which depends on the
value of the input argument, e.g., RND(0) = 0.4041.

When the RND function’s argument is greater than O,
the RND function uses its output from the last time it
was invoked as a new “seed” value to produce a new
output. If the RND function has not been invoked
previously, a “seed” value of O is used.

The RND seed value is set to O upon power-up, and
upon execution of a RUN, DEBUG, INIT, or DELETE ALL

statement.

A reproducible “chain” of random numbers can be
formed by invoking the RND function once with an
argument between 0 (inclusive) and —1 (exclusive),
and an argument greater than O thereafter.

When the RND function’s argument is less than or
equal to —1, the RND function generates an output
based upon the time in milliseconds since power-up.

Using a long-floating point expression for a RND
function argument returns a long-floating point resuit.

4041 PROGRAMMER’S REFERENCE

ELEMENTS
FUNCTIONS

STRING FUNCTIONS

String functions are special purpose functions that
manipulate character strings.

Some string functions produce string constants as
their result; the SEG$ function, for example, extracts a
substring from the main body of a string.

Other string functions produce numeric results; an
example is the LEN function, which returns a numeric
value denoting the length of a string.

All string functions returning a string result have a
dollar sign ($) at the end of their function names; those
returning numeric results do not.

String functions that return numeric results can be part
of a numeric expression.

String functions yielding string results cannot be used
in numeric expressions, unless the resulting string is
acted upon by a function or operator that returns a
numeric result.

The POS, POSN, REP$, SEG$, and CHRS$ functions
take numeric expressions as arguments. The value of
each numeric expression is rounded to the nearest
integer before the function is executed. If a numeric
expression used as an argument in one of these
functions rounds to an integer value less than —32768
or greater than + 32767, an overflow error is generat-
ed.

2-15

ELEMENTS
FUNCTIONS

A description of each string function and the action it
performs follows:

ASC Function

Syntax Form:
ASC(strexp)

Descriptive Form:
ASC(character/string)

The ASC function returns the ASCII decimal equivalent
of the first character of the string expression.

Example:

¥print asc("A")
65

This command returns the ASCII decimal equivalent of
the character “A” (65).

CHRS$ Function: CHR$(numexp)

Syntax Form:
CHR$(numexp)

Descriptive Form:
CHR$(number)

The CHRS$ function performs the inverse of the ASC
function. It evaluates the numeric expression, rounds to
the nearest integer, takes this result modulo 256, and
converts the resulting decimal value to its ASCII
character equivalent.

Example:

¥print chr$(66)
B

This command returns the ASCII character equivalent
of the number 66 (“B”).

2-16

LEN Function

Syntax Form:
LEN(strexp)

Descriptive Form:
LEN(string-to-be-counted)

The LEN function returns a count of the number of
characters in the specified string expression.

Example:

*print len("Jack")
4

This command returns the length in characters of the
string “Jack”.

POS Function

Syntax Form:
POS(strexp,strexp,numexp)

Descriptive Form:
POS(string-to-be-searched,substring,
start-char-pos)

The POS function returns a numeric value giving the
starting character position of a substring within a
string. The first string expression given after the POS
keyword is searched for an occurrence of the second
string expression, starting at the character position
specified by the numeric argument. If a match is found,
the function returns the starting character position of
the second string expression within the first string
expression. If no match is found, the function returns a
value of 0.

If the starting position specified is less than or equal to
zero, the function starts the search at character
position 1.

If the starting position specified is greater than the

length of the string to be searched, the function returns
a value of 0.

4041 PROGRAMMER’S REFERENCE

N

If the substring is not found, the function returns a
value of O unless both the string to be searched and
the substring are null; then, if the starting position is
less than or equal to 1, the function returns a value of
1, else it returns a value of 0.

If the substring being searched for is nuil, but the string
being searched is not, the POS function returns the
starting location for the search.

NOTE

When the 4041 powers up, lower-case letters are
considered equivalent to upper-case letters for
string comparisons. See the description of the
UPCASE parameter under the SET statement,
discussed in Section 5, “Environmental Control”,
for more information about the SET UPCASE
parameter.

Example:

;print pos{"3.14159" ,"159" 1)

The string expression “3.14159" is searched for the
first occurrence of the string “159”, starting with
character position 1 in the original string. When string
“169” is found, POS returns its starting character
position in the first string; in this case, a value of 5 is
returned.

The POSN Function

Syntax Form:
POSN(strexp,strexp,numexp,numexp)

Descriptive Form:
POSN(string-to-search,substring-to-search-for,
start-pos,rep-count)

ELEMENTS
FUNCTIONS

If the substring does not occur within the search string
n times, POSN returns a value of 0, unless both the
substring and the string to be searched are null. Then,
if the starting position specified is less than or equal to
1, POSN returns a value of 1, else it returns a value of
0.

Example:

;print posn("ABABABAB" ,"AB" 1, 3)

This function returns a value of 5, signifying the
starting position of the third occurrence of the sub-
string “AB” within the string “ABABABAB”, starting
from position 1.

REP$ Assignment Statement

Syntax Form:
lline-no.] REPS$(strvar,numexp,numexp)= strexp

Descriptive Form:
[line-no.] REP$(original-string,
character-position-to-
start-deleting,
#-of-chars-to-delete)
= string-to-be-inserted

The POSN function is very similar to the POS function,
except that POSN allows the user to specify a repeti-
tion count for the substring to be searched for. POSN
then returns the position of the first character of the
nth occurrence of a substring.

4041 PROGRAMMER’S REFERENCE

The REP$ assignment statement is a string “function”
that inserts a substring into a string at a specified point
after deleting a specified number of characters from
the original string.

The resulting string can be either shorter or longer than
the original string. However, characters in the resulting
string in excess of the original string’s dimensioned
length are truncated.

Because REPS$ is a form of assignment statement and
not strictly a string function, it cannot be used in a
string expression, e.g., “A$ = REP(B$,3,2) = C$” is not
allowed.

If the starting position specified for deletion/insertion is

less than or equal to O, the new string is inserted
before the start of the original string.

2-17

ELEMENTS
FUNCTIONS

If the starting position specified is greater than the
length of the original string, the new string is simply
appended to the original string.

If more characters are specified for deletion than there
are characters following the starting position in the
original string, then only as many characters as are to
the right of the starting position in the original string
are deleted.

If the number of characters to be deleted is less than or
equal to zero, then no characters are deleted.

If the original string is an array, then a subscript must
be given as part of the REP$ argument or an error
results.

Example:

¥a$="Tom, Jack, and Harry"
*rep$(a$,6,4)="Dick"
¥print a$

Tom, Dick, and Harry

Four characters, stariing with the sixth character of the
original string A$, are deleted, and a new substring is
inserted at the point at which deletion began. The
result, “Tom, Dick, and Harry”, is displayed.

SEGS Function

Syntax Form:
SEG$({strexp,numexp,numexp)

Descriptive Form:
SEGS$(string,start-pos,substring length)

A substring of a specified length is extracted from a
string, starting at a specified character position.

If the starting position specified is less than or equal to
0, it is considered equal to 1.

If the starting position is greater than the length of the
string, SEGS$ returns the null string.

If the specified substring length is less than or equal to
0, SEG$ returns the null string.

2-18 REV JAN 1984

If the specified substring length would require reading
past the end of the original string, SEG$ returns a
substring containing only the characters between the
specified starting position and the end of the original
string.

Example:

¥print seg$("Firstname E. Lastname",14,8)
Lastname

The string returned is the substring of length 8 starting

at character position 14 of the string “Firstname E.
Lastname”.

STRS Function

Syntax Form:
STR$(numexp)

Descriptive Form:
STR${(number-to-be-converted-to-string)

A numeric expression is evaluated and converted to a
string. STR$ forms this string to match the argument’s
default print format.

Example:

*pi$ =str$(3.14159)

The number 3.14159 is converted to string representa-
tion and stored in string variable Pi$.

TRIMS Function

Syntax Form:
TRIMS$(strexp)

Descriptive Form:
TRIMS$(string-to-be-trimmed)

The TRIMS$ function removes leading and trailing
spaces from a string.

4041 PROGRAMMER’S REFERENCE

Example:
100 Ag=" this-is-string-A$ "
110 Print a$
120 Print len(a$)
130 A$=trim$(a$)
140 Print a$
150 Print len(a$)
*run
this-is-string-A$
27
this-is-string-A$
17

Line 130 removes leading and trailing spaces from the
string“ This-is-string-A$ ” and stores the result in
string variable A$.

VAL Function

Syntax Form:
VAL(strexp)

Descriptive Form:
VAL (string-to-be-converted-to-number)

rhe VAL function searches a string expression for an
occurrence of a substring that would form a valid
number if converted to numeric representation. The
substring is then converted to a number. If no legal
number is found, an error occurs.

The VAL function recognizes standard positional and
scientific notations, but does not recognize engineering
or binary/octal/hexadecimal notations.

After the first character is encountered that could be
part of a valid number (either a numeral, or a plus or
minus sign followed by a numeral), the computer
continues to scan the string to the right until it either
.reaches the end of the string or finds a character that
could not be part of a valid number. Note that the letter
“E” is included among characters that could be part of
a valid number.

The ASK(*CHPOS”) function returns the position within
the string of the last character scanned by a VAL or
VALC function. (See the description of the ASK
function in Section 5, “Environmental Control”, for
more information.)

4041 PROGRAMMER'S REFERENCE

ELEMENTS
FUNCTIONS

Examples:

¥print val("3.14159abc")
3.14159

*print val("teststring3.14159e010moreteststring")
3.14159E+10

*print val("teststring3.14emoreteststring”)
3.1

The VALC Function

Syntax Form:
VALC (strexp,numexp)

Descriptive Form:
VALC/(string-to-be-searched,start-pos)

The VALC function works similarly to the VAL function,
except that the user specifies the starting position for
the search. The first ASCIl string that evaluates to a
valid number, beginning with the specified starting
position, is extracted from the original string.

The ASK(“CHPOS”) function returns the position within
the string of the last character scanned by a VAL or
VALC function. (See the description of the ASK func-
tion in Section 5, “Environmental Control”, for more
information.)

Example:

100 Temp$="abec1.23456789012345,6.78"
110 A=val(temp$)
120 B=valc(temp$,ask("chpos"))
130 Print a
140 Print b

¥run

1.23457

6.78

Line 110 stores the value 1.23457 in A. Line 120 then
reads the remainder of string Temp$ from the point at
which the last VAL or VALC function stopped. Line 120
then stores the first valid number found, 6.78, into B.

2-19

ELEMENTS
STATEMENTS

STATEMENTS

STATEMENT NUMBERS

4041 BASIC is a “statement-oriented” language. Each
statement of a 4041 BASIC program is preceded by a
statement number (also called a “line number”). Line
numbers are integers between 1 and 65535, inclusive.

Statements are executed in increasing line-number
order, unless: (1) a statement changes the order of
execution by transferring control to a different state-
ment than the next one in sequence, or (2) a condition
is sensed that transfers control to a special handier for
that condition.

LABELS

An optional alphanumeric label may follow any line
number. The label is followed by a colon to set it off
from the rest of the statement. A line may be referenced
by either its label or its number.

Example:
400 Goto target
500 Target: ! execution continues from here

Line 400 transfers control to the line with the label
“Target”.

Labels are formed using the same rules as numeric
variable names: the label can have a maximum of eight
characters, the first character must be a ietter, and the

_remaining characters can be any combination of
letters, numbers, or imbedded underscores.

2-20

A label is actually a floating point variable, with a
numeric integer value equal to the number of the
program line the label appears on. That value is in the
closed interval 1 to 65535.

There are, however, restrictions that apply to labels
that do not apply to other variables. The only way the
value of a label variable can change is for the line
number of the program line that the label appears on to
change, as with a RENUMBER operation. After renum-
bering, the label variable will have an integer value
equal to the line number that the line has been
renumbered to.

DELETE VAR will not work with label variables. To
make a label undefined, either the program line the
label appears on must be deleted, or the program line
edited and the 1abel removed. Either way, the iabel
variable then becomes a normal undefined short-
floating-point variable.

A label variable can be used anywhere a numeric
expression is valid, either in a numeric expression or
by itself. A label variable referenced anywhere a
numeric expression is invalid (e.g., as an assignment
statement destination, or in an INIT VAR statement) will
generate an error when the statement is executed.

No two lines in the same program segment can have
the same label. In addition, if two lines have the same
label in different program segments, one of the labels
must be specified as a “local” variable to that program
segment. (See Section 11, “Subprograms and User-
Defined Functions”, for more information about local
variables.)

4041 PROGRAMMER’S REFERENCE

RESERVED KEYWORDS

Certain combinations of letters are reserved as keywords in
4041 BASIC. Keywords cannot be used as numeric or string
variable names, or as alphnumeric line labels (with two ex-
ceptions: INDEX and SYSDEV).

Keywords of more than four letters may be abbreviated
to four-letter length when used either in a program or in
immediate mode. Abbreviations of other lengths are not
accepted as keywords; such abbreviations may be
used as variable names in programs.

Stream specification parameters and ASK/ASK$ par-
ameters are NOT reserved keywords.

The following words (and, for those longer than four
letters, their first-four-letter subsets) are reserved
keywords in 4041 BASIC:

ABORT CALL ELSE
ABS CHR$ ENABLE
ACOS CLOSE END
ADVANCE COMPRESS EOF
ALL CONNECT EOI
ALTER CONSOLE ERROR
AND CONTINUE EXIT
ANGLE COPY EXP
APPEND Cos
ASC FILE
ASIN DATA FLOW
ASK DCL FOR
ASK$ DEBUG FORMAT
ATAN DELETE FUNCTION
ATN DELN Fuzz
AUTOLOAD DELS

DIM GET
BAND DIR GETMEM
BNOT DISABLE GO
BOR DISMOUNT GOsSuB
BRANCH Div GOTO
BREAK DRIVER GTL
BUFFER
BXOR

IF

IFC
IMAGE
INDEX*
INIT
INPUT
INT
INTEGER
IODONE

KEY
KEYS

LEN
LET
LGT
LINE
LIST
LLO
LOAD
LOCAL
LOG
LONG

MAIN
MAX

MIN

MLA

MOD
MONITOR
MTA

NEXT
NOBREAK
NOT
NOTRACE

OF
OFF
ON
OPEN
OR

*MAY be used as line label, variable name, or subprogram name.

4041 PROGRAMMER'S REFERENCE

Pl

POLL
POS
POSN
PPC

PPU
PRINT
PROCEED
PROGRAM
PROMPT
PUTMEM

RBYTE
RCALL
READ
REM
REN
RENAME
RENUMBER
REP$
RESTORE
RESUME
RETRY
RETURN
RND
ROUND
RUN

SAVE
SDC
SEG$
SELECT
SELFTEST
SET
SGN
SIN
SLIST
SPD
SPE
SQR
SRQ

ELEMENTS
KEYWORDS

STEP
STOP
STR$
SuB

SUM
SYNTAX
SYSDEV*

TAN
TCT
THEN
TIME
TO
TRACE
TRAP
TRIMS
TYPE

UNL
UNT
UPCASE
USING

VAL
VALC
VAR
VIEW

WAIT
WBYTE

XOR

2-21

Section 3

FRONT PANEL, P/D KEYBOARD,
AND INSTRUMENT OPTIONS

INTRODUCTION

This section discusses the layout and functions of
controls and other features on the front panel. It lists
and describes optional features and interfaces avail-

able for the 4041. It also describes the keys on the
optional Program Development (P/D) Keyboard (Option
31).

FRONT PANEL

The 4041 front panel is divided into seven sections

1.

s

-
2.
3.
4.

TN

(Figure 3-1):

The power switch;
The 20-character thermal printer;
The DC-100 magnetic tape drive;

The jack for plugging in the Program Development
Keyboard;

4041 PROGRAMMER’S REFERENCE

5. The 20-character, 16-segment alphanumeric dis-
play;

6. Four status lights to indicate the state of the
system;

7. The user-definable function/numeric keypad.
Refer to the 4041 Computer/Controller Operator’s

Manual for additional information on the following
items.

3-1

FRONT PANEL, KEYBOARD, & OPTIONS

Tektronix 4041
ALPHANUMERIC SYSTEM LEDs
~J
PISPLAY | POWER BUSY 1
\ /
lle] FUNCTION
(~\ r—AuToﬁ
LOAD ABORT PROCEED
THERMAL
PRINTER it I | SYSTEM
I] PAPER CLEAR EEX PAUSE FUNCTION
' - = ||OO O O KEYS
N J 3
— - =]
DC-100 D 1 =1 & FUNCTION/
TAPE DRIVE [NUMERIC
eecr (| OO (2] [E] KEYPAD
= O o)
LI\ JL)
c 2l
| POwEeR
RO T — I SWITCH
PACK CARRIER

391712

3-2

Figure 3-1. 4041 Front Panel.

4041 PROGRAMMER’S REFERENCE

POWER SWITCH

The 4041 power switch is located in the lower right-
hand corner of the front panel (Figure 3-1).
THERMAL PRINTER

The 20-character printer uses thermal-sensitive 60mm
paper to print program listings and results. Instructions
for loading the printer paper are given on the inside
cover of the paper access door, located atop the 4041,
and in the 4041 Computer/Controller Operator's Manu-
al.

PAPER FEED Button

Pressing the PAPER FEED button advances the printer
paper.

DC-100 TAPE DRIVE

The drive for the DC-100 magnetic tape is located on
the front panel below the paper feed slot for the
thermal printer. The drive is designed to accept 3.18" x
24" x 47" DC-100 magnetic tape cartridges.

TAPE EJECT Button

Pressing the TAPE EJECT button releases the DC-100
magnetic tape cartridge from the drive.

KYBD INPUT

The KYBD INPUT jack is used to attach a Program

" Development (P/D) Keyboard (Option 31) to the 4041.

ALPHANUMERIC DISPLAY

The 20-character, 16-segment alphanumeric display is
located on the top left of the front panel.

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

SYSTEM STATUS LIGHTS

Four LED's that indicate the state of the system are
located at the top right of the front panel. The LED’s
and their meanings are as follows:

— BUSY: Indicates that a program is running. A
blinking BUSY light indicates that the sys-
tem is PAUSEd.

— POWER: Indicates the machine is on.

—1/0: Iindicates an 1/O operation is being per-
formed.

— FUNCTION: Indicates that numeric keys are set to se-

lect user-definable functions, rather than
numeric input.

SYSTEM FUNCTION KEYS

Six system functions keys are located below the
function lights on the front panel. They include the
AUTOLOAD key, the ABORT key, the PROCEED key,
the CLEAR key, the EEX key, and the PAUSE key.

The AUTOLOAD Key

Pressing the AUTOLOAD key loads and runs a file
named AUTOLD from the current DC-100 tape when
the front panel is the system console. If the front panel
is not assigned as system console, this key has no
effect.

The ABORT Key

Pressing the ABORT key cancels execution of a
running program if the ABORT condition is not
disabled. Control transfers to a user-defined ABORT
handler, if one is in effect. The ABORT key also
terminates LIST and SAVE operations in immediate
mode. If the ABORT condition is not disabled, the front
panel ABORT key cancels execution regardless of the
system console assignment.

FRONT PANEL, KEYBOARD, & OPTIONS

The PROCEED Key

When the front panel is assigned as system console,
pressing the PROCEED key: (a) starts execution
beginning with the first line of the current program, if
the system is not PAUSEd, or (b) continues program
execution at the interrupt point following a PAUSE. The
PROCEED key also completes an input operation from
the front panel or P/D Keyboard.

The CLEAR Key

Pressing the CLEAR key clears the alphanumeric
display during input from the front panel keypad or
from the P/D Keyboard. CLEAR has no effect on data
already stored in the 4041’s memory.

The EEX Key

Pressing the EEX key during an input operation
indicates that the numbers that follow are part of the
exponent of a number written in scientific notation. For
example, to input the number 1000 using the numeric
keypad, the user can press the key sequence < 1>,
<0>,<0>,<0>,<PROCEED>, or the user can
press the key sequence < 1>, <EEX>, < 3>,

< PROCEED> . This second sequence of keys tells the
4041 that the user is inputting “one-times-ten-to-the-
third”, or 1000.

The PAUSE Key

Pressing the PAUSE key stops program execution
without cancelling it, regardless of system console
assignment. The PAUSE key also halts execution of a
list or save operation in immediate mode.

Execution can be resumed from the point at which the
program was PAUSEd by issuing a CONTINUE com-
mand or, if the front panel is the system console, by
pressing the PROCEED key or the P/D Keyboard
CONTINUE key. PAUSEd LIST or SAVE operations
cannot be resumed.

If proceed-mode I/0 is in progress at the time the
PAUSE key is pressed, the proceed-mode 1/0 is
allowed to complete before the PAUSE key is recog-
nized. Refer to Section 8, Input/Output.

USER-DEFINABLE FUNCTION/NUMERIC
KEYS

The twelve user-definable function/numeric keys are
located below the six system function keys.

When the front panel is the system console device and
the user-definable functions are enabled, pressing one
of the keys 0 through 9 transfers control to a user-
defined function for the key that was pressed. (Press-
ing key 0 transfers control to a handler for function key
“10”) If the user-definable function keys are not
enabled, the 4041 stores one function key entry in a
buffer until the keys are enabled. If the 4041 already
has an entry stored, it emits a loud “beep” when
another of these keys is pressed.

When an INPUT operation is being performed from the
front panel! (170 system light is on), keys O through 9
act as a numeric keypad. The “.” key is a decimal point,
and the “—" key is a minus sign.

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

PROGRAM DEVELOPMENT (P/D) KEYBOARD

The Program Development (P/D) Keyboard (Figure 3-2)
is available as Option 31 on the 4041. The P/D
Keyboard can be used for alphabetic and numeric
input to the standard 4041, and for program
development on a 4041 equipped with Option 30 (P/D
ROMs and carrier).

The P/D Keyboard resembles a standard typewriter
keyboard with additional keys to perform specific
functions. A description and explanation of the special
keys on the P/D Keyboard follows.

NOTE

The special function keys described in the follow-
ing section, with the exception of ABORT and
PAUSE, only work when the front panel is as-
signed as the system console.

SPECIAL FUNCTION KEYS
The RUN Key

Typing a line number and pressing the RUN key starts
the current program from that line number.

Pressing the RUN key without first typing a line number
starts the current program from the first line.

If the Program Development ROMs (Option 30) are not
installed, the run key begins execution at the program
start. Starting line numbers are not permitted.

Running programs by pressing the RUN key disables
all breakpoints and trace flags within the program. (See
Section 4 on Editing, Debugging, & Documentation for
more information about breakpoints and trace flags.)
The RUN key performs the same “housekeeping”
functions as the RUN statement (described in Section
7, Control Statements).

RECALL RECALL
PREVIOUS __ NEXT

|
INSERT DELETE

AUTO
LOAD

AUTO
NUMBER

TLEAR | RECALL
SCROLL _SCROLL

[|] [1

RUN LSt CURSOR CURSOR DELETE DELETE
— — -— —

ABORT 3 4

 E—

PAUSE
CONTINUE

 w—

STEP

i1 12 1 1

| 1 I
1 2 3
~—— USER DEFINABLE FUNCTIO
1

L

4
NS
19

1HHBNRBE
2 Il 4)]s JjLe Lz

NS

WE[RIT]v]u

i

[

P

BACK LINE
SPACE FEED

NECIE N

K

z|Ix]cliv]iBliN]]im]

1

X

_elele

-

? EOF
.) SHIFT ||| oot

[

J

3917-16

Figure 3-2. 4041 Program Development (P/D) Keyboard.

4041 PROGRAMMER'S REFERENCE

35

FRONT PANEL, KEYBOARD, & OPTIONS

The LIST Key

Pressing the LIST key causes a current program listing
to be printed on the thermal printer.

Typing a line number and pressing the LIST key
causes that line to be printed on the thermal printer.

Typing two line numbers separated by the word TO and
pressing the LIST key prints all program lines with line
numbers greater than or equal to the first number and
less than or equal to the second number on the thermal
printer.

Example:

If the program currently in memory is

10 Rem this is a sample program

20 Apples=10
30 Oranges=20
40 Fruitzapples+oranges

then pressing the LIST key lists the entire program;
typing “20” and pressing the LIST key prints line 20 on
the thermal printer; typing “10 TO 30” and pressing the
LIST key prints lines 10, 20, and 30 on the thermal
printer; and typing “15 TO 35" and pressing the LIST
key prints lines 20 and 30 on the thermal printer.

If the Program Development ROMs (Option 30) are not
installed, the LIST key is ignored.
The AUTOLOAD Key

Pressing the AUTOLOAD key loads a file named
AUTOLD from the DC-100 tape.

"The AUTOLOAD key only takes effect when the 4041
is idle (not executing a BASIC statement). If the
AUTOLOAD key is pressed when a program is execut-
ing, it has no effect.

3-6

The AUTONUM Key

The AUTONUM key activates and de-activates the
4041’s automatic numbering feature.

Pressing the AUTONUM key causes the 4041 to print
the number 100 on the alphanumeric display. The user
then enters a program line and presses RETURN,
whereupon the line number is automatically
incremented by 10.

Typing a number and pressing the AUTONUM key
causes the 4041 to print the number entered, accept a
line, and increment the line number by 10 each time
the RETURN key is pressed.

Typing two numbers separated by a comma and
pressing the AUTONUM key causes the 4041 to
display the first number, accept a line, and increment
the line number by the amount of the second number
each time the RETURN key is pressed.

Pressing the AUTONUM key when the automatic
numbering feature is activated de-activates automatic
numbering.

The AUTONUM key is ignored if the Program Develop-
ment ROMs (Option 30) is not installed.

The CLEAR Key

Pressing the CLEAR key clears the alphanumeric
display during input from the front panel or Program
Development Keyboard.

The RECALL PREV Key

Pressing the RECALL PREYV key brings into the display
the line preceding the last line recalled with the

RECALL, RECALL PREV, or RECALL NEXT keys.

The RECALL PREYV key is ignored if the Program
Development ROMs are not installed.

4041 PROGRAMMER’S REFERENCE

The RECALL Key

Typing a number and pressing the RECALL key brings
the line having that line number into the display.

If the program contains no line with the number
specified, the program line with the next-lower number
appears in the display.

The RECALL key is ignored if the Program Develop-
ment ROMs are not installed.

The RECALL NEXT Key

Pressing the RECALL NEXT key brings into the display
the line following the last line recalled with the
RECALL, RECALL PREV, or RECALL NEXT keys.

The RECALL NEXT key is ignored if the Program
Development ROMs (Option 30) are not installed.

The CURSOR < Key

Pressing the CURSOR < key moves the display cursor
left. When the cursor is in a display position also
occupied by a character, the cursor and the character
are displayed alternately.

If the display cursor is in the first position of the
display, pressing the CURSOR < key scrolls the
contents of the display to the right.

If the first position of the display contains both the first
character of the line being displayed and the cursor,
pressing the CURSOR < key has no effect.

The SCROLL < Key

Pressing the SCROLL < key causes the contents of
the display, including the position of the cursor, to
move one space to the left. The first character currently
in the display moves off the display to the left, while the
character following the rightmost character currently
on the display moves into the display from the right.

The cursor retains its position relative to the message
being displayed (i.e., if it shared a display position with
the first character of a word, it continues to share that
position after the SCROLL < key is pressed).

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

If the cursor is in the first (left-most) position of the
display, however, pressing the SCROLL < key causes
the contents of the display to move one space to the
left, but the cursor remains in the first position. Only in
this case does pressing the SCROLL < key cause the
cursor to change its position within the message.

If the current line contains no characters after the one
in the right-most display position, pressing the
SCROLL < key has no effect.

The CURSOR > Key

Pressing the CURSOR > key causes the cursor to
move one position to the right in the display.

If the cursor occupies the rightmost position of the
display, pressing the CURSOR > key causes the
contents of the display to “scroll” one space to the left.

If the cursor is to the right of the rightmost character in
the current line, pressing the CURSOR > key has no
effect.

The SCROLL > Key

Pressing the SCROLL > key causes the contents of
the display to move one character position to the right.

The cursor retains its position relative to the message
being displayed (i.e., if the cursor is shares a position
with the first character of a word, the cursor shares
that position after the SCROLL > key is pressed).

If the cursor is in the rightmost position of the display,
however, pressing the SCROLL > key causes the
contents of the display to move one space to the right
while the cursor remains in the rightmost position. (The
SCROLL > key can never move the cursor off the
display.) Only in this case does pressing the SCROLL
> key change the position of the cursor within the
message.

If the first character of the the current line is in the

leftmost display position, pressing the SCROLL > key
has no effect.

37

FRONT PANEL, KEYBOARD, & OPTIONS

The DELETE < Key

Pressing the DELETE < key deletes the character to
the left of the cursor.

If the cursor is in the leftmost position of the display,
pressing the DELETE < key has no effect. The DELETE
< key will not delete characters that the user cannnot
see on the alphanumeric display.

The INSERT Key

Pressing the INSERT key places the 4041 in Insert
mode from Replace mode.

Replace Mode. The 4041 is said to be in Replace
mode whenever it is not in Insert mode. The 4041
powers up in Replace mode. In Replace mode, a “
cursor is used.

In this mode, the cursor replaces characters already in
the display with new characters entered from the
keyboard. If the display contained the characters

DEF
with the cursor in the same display position as the
letter “D”, typing the characters “ABC’” with the 4041
in replace mode yields the following display:

ABC
The cursor then occupies the display position to the
right of the letter “'C”. The contents of the original

display have been replaced, hence the name Replace
mode.

3-8

Insert Mode. Pressing the INSERT key puts the 4041
into Insert mode. Pressing the INSERT key again when
the 4041 is in Insert mode returns the 4041 to Replace
mode.

When the 4041 is placed into Insert mode, characters
in the same position as and to the right of the cursor
are shifted right one space. The cursor always occu-
pies a blank space when the 4041 is in Insert mode.
Insert mode usesa*“ " cursor.

Entering a character when in Insert mode causes the
character just entered to appear at the position
previously occupied by the cursor. The cursor and all
characters to the right of it are shifted one space to the
right as each character is entered.

If the cursor occupies the rightmost position of the
display, then the cursor remains stationary when
characters are entered, while all characters to the left
of the cursor are shifted left.

The DELETE > Key

Pressing the DELETE > key when the 4041 is in Insert
mode deletes the character to the right of the cursor.
Display contents to the right of the deleted character
are shifted left one space.

Pressing the DELETE > key when the 4041 is in
Replace mode deletes the character in the display
position occupied by the cursor. Display contents to
the right of the deleted character are shifted left one
space; the cursor then shares a display position with
the character following the deleted character.

In Insert mode, pressing the DELETE > key has no

effect if the cursor is in the rightmost display position.
The DELETE > key never deletes a character that the
user cannot see (i.e.,, one not currently in the display).

If the cursor is to the right of the rightmost character in

the current line, pressing the DELETE > key has no
effect.

4041 PROGRAMMER’S REFERENCE

The DELETE Key

Typing a number and pressing the DELETE key deletes
the line with that number from the program and clears
the display. If no line with that number is in the
program, pressing the DELETE key has no effect.

Typing two numbers separated by the word TO and
pressing the DELETE key deletes program lines with
line numbers equal to or greater than the first and less
than or equal to the second.

Example:

If the program currently in memory is

10 Rem this is a sample program

20 Apples=10
30 Oranges=20
40 Fruit=apples+oranges

typing “40" and pressing the DELETE key deletes line
40; typing “10 TO 20" and pressing the DELETE key
deletes lines 10 and 20; typing “15 TO 35” and
pressing the DELETE key deletes lines 20 and 30; and
typing “25” and pressing the DELETE key has no
effect.

If no number is specified in the display, pressing the
DELETE key has no effect. The DELETE key is ignored
if the Program Development ROMs are not instalied.

The PAUSE Key

Pressing the PAUSE key halts execution of a running
program. The 4041 recalls the point at which the

program was halted. Execution can be continued from
this point by pressing the CONTINUE key or the front

" panel PROCEED key.

The PAUSE key can also terminate a LIST or SAVE
operation. The LIST or SAVE operation cannot be
resumed, though.

This key has the same effect as the BREAK key.

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

The ABORT Key

Pressing the ABORT key cancels execution of a running
program if the ABORT condition is not disabled. Control
transfers to a user-defined ABORT handler, if one is in ef-
fect, or to the system ABORT handler. The ABORT key also
terminates LIST and SAVE operations in immediate mode.
If the ABORT condition is not disabled, the front panel
ABORT key cancels execution regardless of the system
console assignment.

See also the description of the ABORT condition in Section
12, “Interrupt Handling.”

The STEP Key

Pressing the STEP key executes the first line of the pro-
gram or the next line of a PAUSEd program. It puts the
4041 into Debug mode. Refer to Section 4, Editing, Debug-
ging, and Documentation.

The STEP key is ignored if the Program Development
ROMs are not installed.

The CONTINUE Key

Pressing the CONTINUE key restarts execution of a
paused program (stopped by a PAUSE or BREAK or a
STOP statement) from the point at which execution
was interrupted. Execution will resume under Run or
Debug mode, depending on the mode it was in when
the pause occurred.

The CONTINUE key does not start execution of a
program that is not paused. If the CONTINUE key is
pressed when the current program is not being execut-
ed and not stopped or paused, an error is generated.
Pressing the CONTINUE key while a program is
executing has no effect.

REV JAN 1984 39

FRONT PANEL, KEYBOARD, & OPTIONS

THE USER-DEFINABLE FUNCTION KEYS

The user-definable function keys allow the user to
define up to 20 P/D Keyboard interrupts.

When the FRTP is the system console device and the
user-definable function keys are enabled, pressing a
user-definable function key for which a handler routine
is defined transfers control to that handler after the
current statement completes execution. (See Section
12, “Interrupt Handling”, for more information about
function key interrupts.)

Functions 1 through 10 are obtained by pressing the
corresponding user-definable function key alone.
Functions 11 through 20 are obtained by pressing the
SHIFT key and the corresponding user-definable func-
tion key.

(Functions 1 through 10 are also obtainable by press-
ing function keys 1 through 9 and 0 (10) on the front
panel.)

THE CURSOR/NUMERIC KEYPAD

The numeric keypad is used to enter numeric data. In
addition, the keypad can enter the characters +, —, *,
/, .., and space. The numeric keypad can not be used to
select user-definable functions.

THE ALPHANUMERIC KEYBOARD

The alphanumeric keypad is used to enter the 128
ASCII (American Standard Code for Information Inter-
change) characters. This keyboard also contains some
special function keys.

3-10

The BREAK Key

Pressing the BREAK key halts execution of a running
program. The 4041 recalls the point at which the
program was halted. Execution can be continued from
this point with the CONTINUE statement. If the front
panel is the system console, execution can also be
resumed by pressing the CONTINUE key or the front
panel PROCEED key.

The BREAK key also terminates LIST or SAVE
operations. These operations can not be resumed.

If the program currently in memory is not being
executed, pressing the BREAK key has no effect.

If proceed-mode I/0 is in progress when the BREAK
key is pressed, the proceed-mode 1/0 is allowed to
complete before the BREAK key is recognized.

This key has the same effect as the PAUSE key.

The SHIFT Key

This key is similar to the SHIFT key on a typewriter. It
determines whether alphabetic characters are in-
terpreted as upper or lower case; for keys with more
than one associated function, it determines which
function is to be performed.

The CTRL Key

This key is used with other keyboard keys to enter the
32 ASCII control characters (< 0> — <31>.For
example, the ASCII character EXT, or Control-C, is
entered by holding down the CTRL key and pressing
“C".

4041 PROGRAMMER’S REFERENCE

N

/'\\‘

The RUBOUT Key

The RUBOUT key backspaces and erases the previous
character.

The RETURN Key

RETURN, or Carriage Return, ends a line of input and
sends the line to the 4041.

The CAPS LOCK Key

This key is lit when pressed on, and unlit when pressed
off. When on, all letters entered are sent as upper case
characters, regardless of the SHIFT key. This key has

no effect on characters other than the 26 letters of the
alphabet.

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

Control Characters

Control characters are sent by pressing the CTRL key and
another key.

Control characters that are printed as program output are
executed, i.e., a line feed character produces a line feed in
output, etc.

Control characters that are listed as part of a program are
displayed and not executed. On the front panel or on a user
terminal, control characters are displayed as an up-arrow
followed by the appropriate character (J for line feed, | for
tab, etc.). Control characters listed on the thermal printer
are underscored.

The keys to press along with the CTRL key to obtain various
control characters are as follows:

BELL—G

BACKSPACE — H

TAB — |

LINE FEED — J

PAGE — L

CARRIAGE RETURN — M
ESCAPE — |

REV OCT 1984 31

FRONT PANEL, KEYBOARD, & OPTIONS

INSTRUMENT OPTIONS

Table 3-1 lists the available instrument options to the stand-
ard 4041. Note that certain of these options are described
as field installable, as opposed to factory-instalied options.

Options 01, 02, and 03 are mutually exclusive. Any 4041
may be equipped with up 512K of memory, regardless of
other options instalied on the unit.

Table 3-1
INSTRUMENT OPTIONS

Option Description

01 One additional GPIB port with Direct Memory Ac-
cess, and one additional RS-232 port.

02 8-bit parallel TTL Interface.

03 One SCSI interface port and one additional RS-
232-C port.

20 64K bytes total memory.

21 96K bytes total memory.

22 128K bytes total memory.

23 160K bytes total memory.

24 256K bytes total memory.

25 512K bytes total memory.

30 Program development ROMs and carrier.

31 Program development keyboard.

Al Universal European 220V/16A power cord.

A2 United Kingdom 240V/13A power cord.

A3 Australian 240V/10A power cord.

A4 North American 240V/15A power cord.

A5 Swiss 250V/15A/50 Hz power cord.

4041F01 Field-installable Option 01.

4041F02 Field-installabie Option 02.

4041F03 Field-installable Option 03.

4041F30 Field-installable Option 30.

4041F31 Field-installable Option 31.

040-1021-00 Field-installable initial memory expansion; expands
memory from 32K bytes to 64K bytes.

040-1022-00 | Additional 32K bytes field-instaliable memory for
memory expansion above 64K bytes and up to
160K bytes.

3-12 REV OCT 1984

Options 01 and 4041F01 — Additional GPIB
and RS-232-C Interface Ports

Option 01 (and its field-installable equivalent, 4041F01) pro-
vide an additional GPIB and RS-232-C interface port on the
rear panel.

The additional GPIB interface port allows the 4041 to con-
trol up to 30 GPIB devices simultaneously (15 on the stand-
ard interface port and 15 on the optional one). In addition,
the optional GPIB interface port can use Direct Memory Ac-
cess (DMA) to speed data transfers.

With the optional RS-232-C interface port, the 4041 can
communicated with two RS-232-C devices simultaneously.
Thus, for example, a computer terminal connected to the
standard RS-232-C interface port could be used as the sys-
tem console device, while a line printer connected to the op-
tional port could be used to provide program listings or
hardcopy output.

The optional GPIB port is designated by the driver name
“GPIB1:”. Its operation is identical to that of the standard
GPIB interface port (driver name 'GPIB0:"’) except:

1. The TRA parameter may be set to DMA on GPIB1, but
not on GPIBO; and

2. Logical units 0 through 30, if not specified otherwise,
address the devices with corresponding primary ad-
dresses on the standard GPIB interface port. Data
paths to devices on the optional GPIB interface port
must be explicitly specified, either via an OPEN state-
ment orviaa “'#’’ clause in an /O statement.

See Sections 8 (“‘Input/Output’’) and 9 (*‘Instrument Control
With GPIB”), and Appendix D (‘‘Stream Specifications’’) for
more information about the use of the GPIB0O and GPIB1
driver names with OPEN and other 1/O statements.

The optional RS-232-C interface port is designated by the
driver name “COMM1:”’, and data paths to it are specified
by means of that driver name, used within an OPEN state-
mentora “‘#” clause in an I/O statement. In all other re-
spects, the operation of the optional RS-232-C interface port
is identical to that of the standard port.

4041 PROGRAMMER'S REFERENCE

L

Options 02 and 4041F02 — 8-Bit Parallel
TTL Interface

Option 2 and its field-installable equivalent, 4041F02, pro-
vide an 8-bit parallel TTL interface port on the rear panel.
This port allows the user to write custom interfaces to con-
trol non-GPIB and non-RS-232-C devices.

The 4041 communicates with the Option 2 interface port by
means of RCALL routines “‘Opt2in’’ and ““Opt2out’. Both
these routines are described along with the RCALL state-
ment in Section 7, Control Statements.

Options 30 and 4041F30 — Program
Development (P/D) ROMs and Carrier

Option 30 and its field-installable equivalent, 4041F30, con-
sist of the Program Development ROMs and their carrier
that fits into the bottom of the front panel.

A 4041 equipped with Option 30 can translate BASIC state-
ments and data into the 4041’s internal data storage (ITEM)
format, and can execute immediate-mode statements.

4041 units without Option 30 cannot LIST, LOAD, or SAVE
programs in ASCIl, RECALL program lines, or execute im-
mediate-mode statements. For this reason, 4041 units with-
out Option 30 are sometimes referred to as ‘‘execute-only”’
or “XO” versions of the 4041. When more than one 4041 is
available, several XO units can be used to run programs in
the manufacturing or test environment while other Option-
30-equipped units are used to develop programs.

4041 PROGRAMMER’S REFERENCE

FRONT PANEL, KEYBOARD, & OPTIONS

Options 31 and 4041F31 — Program
Development (P/D) Keyboard

Option 31 and its field-installable equivalent, 4041F31, con-
sist of an ASCII keyboard that can be plugged into the 4041
front panel. This keyboard allows the user to enter alphanu-
meric characters to the front panel. The P/D keyboard’s
special functions keys are also useful in debugging pro-
grams.

313

FRONT PANEL, KEYBOARD, & OPTIONS

INSTRUMENT OPTIONS

Option 03 and 4041F03-SCSI and
Additional RS-232-C Interface Ports

NOTE

4041 firmware version 2.0 or higher is required for
this modification.

Option 03 (and the field installable 4041F03) provide a Small
Computer System Interface (SCSI) port and an additional
RS-232-C interface port on the rear panel.

The SCSI adds disk based mass storage to the 4041. It is
designed to interface with the TEK 4925 and 4926 modified
mass storage units, but can be used with other SCSI com-
patible devices. The SCSI can communicate with up to
seven devices (the 4041 is the eighth device).

3-14 ADD OCT 1984

Refer to the 4041 Option 01 for the optional RS-232-C inter-
face port information.

The SCSI interface port is designated by the driver name
“DISK".

The optional RS-232-C interface port is designated by the
driver name “COMM1:", and data paths to it are specified
by means of that driver name, used within an OPEN state-
ment or a “#” clause in an I/O statement. In all other re-
spects, the optional RS-232-C interface port operation is
identical to that of the standard port.

4041 PROGRAMMER'S REFERENCE

Section 4

PROGRAM EDITING, DEBUGGING,
& DOCUMENTATION

INTRODUCTION

This section discusses commands in 4041 BASIC that
are used to edit programs under development, to debug
programs, and to add comments to programs.

An additional debugging feature of 4041 BASIC be-
sides those described here is the ability to examine
contents of variables any time the 4041 is idle (i.e., not
actively executing a program).

To examine the contents of a variable, simply type the
variable name from the P/D keyboard or user terminal
and press RETURN. The value of the variable will
appear on the front-panel display or user terminal.

To examine the contents of variables, simply type one
or more variable names (separated by commas) on the
system console device and press RETURN. The values
of the variables specified will then appear on the
system console.

The user can also change the values of variables by
means of immediate-mode statements (on units
equipped with Option 30, Program Development
ROMs). System functions can also be executed in
immediate mode (e.g., SIN(3)< cr> prints the value of
the sine of 3 in the current trigonometric units on the
system console).

REPORTING ERRORS

The 4041 reports all errors to the system console by
default.

It may not always be desirable, however, to use the
system console device for this purpose. For example, a
programmer may wish to enter commands via a
computer terminal, but have all syntax errors displayed
on the front panel. This way, the user could use the
editing keys on the P/D keyboard to correct syntax
errors.

To make the 4041 report errors to a device other than
the console, the SET SYNTAX statement must be
executed. For example, to send error reports to the
front panel, this statement would take the following
form:

set syntax "frip:"

For more information, see the description of the “SET
SYNTAX" statement, later in this section.

REPORTING DEBUGGING INFORMATION

The 4041 sends all debugging information (i.e., mes-
sages generated during execution in “DEBUG” mode
by means of the BREAK and TRACE commands) to the
system console device by default.

In some cases, however, the user may wish to log

debugging information on a different device, such as
the thermal! printer or the DC-100 tape.

4041 PROGRAMMER’S REFERENCE

To make the 4041 send debugging information to a
device other than the console, the 4041 must execute
a SET DEBUG statement. To send debugging informa-
tion to the thermat printer, this statement would take
the following form:

set debug "prin:"

For more information, see the description of the “SET
DEBUG” statement, later in this section.

4-1

EDITING AND DEBUGGING
BREAK

The BREAK Statement

Syntax Form:

Descriptive Form:

[line-no.] BREAK [numexp [,numexp] . . .]

[line-no.] BREAK [line-number [line-number] . . .]

PURPOSE

The BREAK command sets or lists breakpoints used for de-
bugging.

EXPLANATION

A breakpoint is a point in the program at which
execution halts temporarily when the program is run in
DEBUG mode. While the program is halted, the pro-
grammer can examine the contents of variables or
modify the program.

If a breakpoint is encountered during execution in
DEBUG mode, the line number to which the breakpoint
is assigned is displayed and the program halts
BEFORE that line is executed. Execution can be
continued by pressing the CONTINUE key on the P/D
keyboard, pressing the PROCEED key on the front
panel, or by typing the command “CONTINUE” on a
user terminal or the P/D keyboard (for 4041 units
equipped with Option 30, Program Development
ROMSs).

A single breakpoint is set by typing the keyword
BREAK and the line number at which the program is to
be halted.

Multiple breakpoints are set by typing the keyword

BREAK followed by a series of line numbers, each
separated by a comma.

4.2

Typing the keyword BREAK followed by a carriage
return prints the list of current breakpoints on the
system console device.

Breakpoints can only be set on executable statements.
Attempting to set a breakpoint on a nonexecutable
statement (DATA: IMAGE:; FUNCTION; REM; SUB)
results in an error.

Attempting to set a breakpoint at a line that does not
exist results in an error.

A breakpoint set at the first executable line of the
program is not recognized the first time the line is
executed. However, the breakpoint is recognized if the
line is re-executed later {(e.g., after a GOTO statement
sending control back to the first line of the program).
Once set with the BREAK command, breakpoints can
be cleared with the NOBREAK statement. (See the

description of the NOBREAK statement, later in this
section.)

EXAMPLES

break 100

This command sets a single breakpoint at line 100.

break 200,250,300, 350

This command sets a breakpoint at line 200, line 250,
line 300, and line 350 in the current program.

4041 PROGRAMMER’S REFERENCE

100 Az1

110 B=2

120 C=3

130 Print a+b+c
*break 100,110,120
*break
BREAK LIST =100 110 120
*debug
Line 100
Break at line 110
¥cont
Line 110
Break at line 120
¥cont
Line 120
6.0
Line 130

(For this example, assume that the system debug
device is set to its default value of system console, and
the the TRACE VAR flag is set to its default value of
ON)

4041 PROGRAMMER’S REFERENCE

EDITING AND DEBUGGING
BREAK

The first BREAK command sets breakpoints at lines 100,
110, and 120. The second BREAK command prints the list
of current breakpoints on the system console device.

The DEBUG command executes the program in DEBUG
mode. A message indicating that line 100 has been
executed appears on the system console, followed by a
message that a breakpoint has been encountered at
line 110. {(Note that the breakpoint at line 100 was not
recognized, since line 100 is the first line of the
program.)

The two ensuing CONTINUE commands resume execu-
tion in DEBUG mode after the breakpoints. The TRACE
VAR flag prints the number of each line after it is
executed. Note the program output appearing between
two TRACE VAR messages (see the description of the
TRACE command, later in this section, for more
information).

REV JAN 1984 4-3

EDITING AND DEBUGGING
CONNECT

The CONNECT Statement

Syntax and

Descriptive Forms: CONNECT [program segment]

PURPOSE

CONNECT is an immediate-mode command used to set
up TRACE flags within subprograms.

NOTE

The CONNECT command is only available on
4041 units equipped with Option 30 (P/D ROMs
and carrier).

EXPLANATION

TRACE information is always set up “local” to a given
program segment. Thus, if a programmer is debugging
in the main-program environment, the TRACE VAR ALL
command would produce TRACE information about all
main-program variables, but not about variables local
to any subprograms or user-defined functions.

The CONNECT statement overcomes this restriction.
Entering the keyword “CONNECT” followed by a
program segment name effectively changes the debug-
ging environment to that program segment. The user
may then set TRACE flags affecting debugging during
execution of that program segment only. (The FLOW,
VAR, and VIEW flags may all be set “locally” when the
4041 is connected to a program segment environment.)

Entering the “CONNECT” command followed by a
carriage return, or re-starting the program (via the
“RUN" or “DEBUG"” commands, the “PROCEED"” key
on the front panel, or the “RUN” key on the P/D
keyboard) returns the 4041 to the main-program
environment.

For more information, see the description of the TRACE
statement, later in this section.

4-4

EXAMPLE

100 Vari1=1

110 Call a

120 End

130 Sub a local var?2
140 Var2=2

150 Return

160 End

*notrace prog
*trace var all
*#debug

Line 100 var1=z1.0
¥connect a

*trace var all
*debug

Line 100 var1=1.0
Line 140 var2=2.0

The first TRACE VAR ALL command applies only to the
main program environment. Thus, when the program is
first executed in DEBUG mode, VAR1’s change infor-
mation is traced, but not VAR2's.

By connecting to Subprogram A and executing a
TRACE VAR ALL statement, the user enables the
TRACE VAR flag for all variables in Subprogram A as
well as all variables for which the TRACE VAR flag was
previously set. Thus, the second program execution in
DEBUG mode displays change information about both
VAR1 and VAR2.

4041 PROGRAMMER'S REFERENCE

o

The DEBUG Statement

EDITING AND DEBUGGING
DEBUG

Syntax Form: DEBUG [numexp]

Descriptive Form: DEBUG [line-number]

PURPOSE

DEBUG is an immediate-mode command that executes
a program with breakpoints and TRACE flags enabled.

NOTE
The DEBUG command is only available on 4041
units equipped with Option 30 (P/D ROMs and
carrier).
EXPLANATION
DEBUG functions similarly to the RUN command,
except that DEBUG enables breakpoints and TRACE

information, while RUN does not.

Typing DEBUG and pressing return starts execution in
debug mode from the first line of the program.

4041 PROGRAMMER’S REFERENCE

Typing DEBUG followed by a numeric expression and
pressing return executes the program in debug mode,
starting with the line given by the numeric expression.
A line used to start a program with DEBUG must be in
the main program segment.

While a program started by means of a DEBUG
statement is running, the 4041 is said to be in “debug”
mode.

When a program is executed using the DEBUG
command, execution stops at each breakpoint set by
the programmer. Information called for by enabled
TRACE flags is also displayed on the system debug
device.

DEBUG, in addition to putting the 4041 in “debug”
mode, also performs the same “houseclean-
ing/initializiation” functions as the RUN statement
(described in Section 7, “Control Statements”).

EDITING AND DEBUGGING
DELETE LINE

The DELETE LINE Statement

Syntax Form: [line-no] DELETE LINE {numexp} [TO numexpl]
{subname} [TO subname]
{MAIN}

Descriptive Form:

[line-no.] DELETE LINE first-line-to-delete [TO last-line-to-delete]

PURPOSE

The DELETE LINE statement deletes lines from the
current program.

EXPLANATION

If only one line number is specified, DELETE LINE
deletes that line. If the line does not exist in the current
program, DELETE LINE has no effect.

If a range of line numbers is specified (by means of the
TO keyword), all lines in the current program greater
than or equal to the first line number and less than or
equal to the second are deleted.

If a subprogram or user-defined function name is
specified as the first argument, the entire subprogram
will be deleted from the program.

If a subprogram or user-defined function name is
specified as the second argument of the DELETE LINE
command, the last line of the subprogram will be the
last line deleted.

Delete line will NOT delete lines that cannot be legally
deleted for syntax reasons (e.g., attempting to delete a
SUB or FUNCTION statement without deleting the
remainder of the subprogram or function). Attempting
to delete lines illegally causes an error and does NOT
delete any lines.

4-6

EXAMPLES

300 Delete line 150 to 200

This command deletes lines 150 through 200, inclu-
sive, in the current program.

400 Delete line aaaa to bbbb

If aaaa and bbbb are labels, lines aaaa through bbbb,
inclusive, are deleted.

If aaaa and bbbb are subprograms, aaaa and bbbb and

any subprograms between them (in line-number order)
are deleted.

4041 PROGRAMMER’S REFERENCE

e

The LIST Statement

EDITING AND DEBUGGING
LIST

Syntax Form:

Descriptive Form:

[line-no.] LIST [strexp,}Inumexp
[subname

[line-no.] LIST [stream-spec](line-number
[subprogram

[TO numexpl]
[TO subnamell

[TO line-numberl]
[TO subprogramll

PURPOSE

The LIST statement sends a list of the current BASIC
program to the designated stream spec in human-
readable (i.e., “pretty-printed’) form.

EXPLANATION

If no stream spec is included in the LIST statement, the
program is listed on the system console device.

If no line numbers or subprogram names are included
in the LIST statement, the entire program is listed.

If one line number is included in the LIST statement,
only that line is listed.

If two line numbers are included in the LIST statement,
all program statements with line numbers greater than
or equal to the first and less than or equal to the
second are listed.

Subprogram names include the names of subprogram
segments defined by SUB or FUNCTION statements, as
well as the special keyword MAIN (indicating the MAIN
program segment).

If one subprogram name is included in the LIST
statement, that subprogram is listed.

4041 PROGRAMMER’S REFERENCE

If two subprogram names are included in the LIST
statement, both subprograms and all intervening sub-
programs are listed.

If a line number TO a subprogram name is given in the
LIST statement, all program lines from that line number
through the last line of the subprogram are listed.

If a subprogram TO a line number is given in the LIST
statement, all program lines from the first iine of the
subprogram through the specified line number are
listed.

EXAMPLES

list super to 1200

All program lines from line Super (if Super is a line
label) or the first line of subprogram Super (if Super is
a subprogram) to line 1200 are listed on the system
console device.

list "prin:",120 to super

All program lines from line 120 to line Super (if Super
is a line label) or the last line of subprogram Super (if
Super is a subprogram) are listed on the thermal
printer.

4-7

EDITING AND DEBUGGING
NOBREAK

The NOBREAK Statement

Syntax Form:
[ALL)

Descriptive Form:
{ALL}

[line-no.] NOBREAK {numexp[,numexp]j . . .}

[line-no.] NOBREAK (line-number[,line-number] . . .

PURPOSE

The NOBREAK command clears some or all of the break-
points set using the BREAK statement.

EXPLANATION

The NOBREAK statement clears breakpoints set using
the BREAK statement.

Entering NOBREAK followed by a line number clears a
breakpoint at that line number.

Entering NOBREAK followed by a succession of line
numbers clears breakpoints at each of those line
numbers.

Entering NOBREAK followed by the keyword ALL
clears all breakpoints.

Attempting to clear a breakpoint where none has been
set has no effect.

48

EXAMPLES

nobreak 1000

This command clears a breakpoint set at line 1000.

nobreak 500,600,700, 1000

This command clears breakpoints at lines 500, 600,
700, and 1000.

nobreak all

This command clears all breakpoints.

4041 PROGRAMMER’S REFERENCE

The NOTRACE Statement

EDITING AND DEBUGGING
NOTRACE

Syntax Form:

Descriptive Form:

[line-no.] NOTRACE {FLOW|

{PROGRAM]

{SUB [subname],subname] . . .}}
{ALL}

{VAR {varl,var] . . .}}
{ALL}

[VIEW]

[line-no.] NOTRACE [FLOW|

{PROGRAM;}

{SUB {subname[,subname]. . .}}
{ALL}

{VAR {varl,var] . . .}}
{ALL}

(VIEW)

PURPOSE

The NOTRACE command clears some or all of the flags set
by the TRACE command.

EXPLANATION

TRACE flags are used when running a program in
DEBUG mode to monitor changes in values of
variables, to monitor branch points within the program,
to monitor the progression of the program throughout
execution, and to direct information about the program
to the system debug device.

TRACE fiags are set by means of the TRACE command.
The NOTRACE command “turns off” flags set by
TRACE.

NOTRACE FLOW turns off the FLOW flag.

NOTRACE PROGRAM turns off the PROGRAM flag.
NOTRACE SUB followed by a list of subprogram names
(separated by commas) turns off all TRACE information

during execution of the specified subprograms or user-
defined functions.

4041 PROGRAMMER’S REFERENCE

NOTRACE SUB ALL turns off the FLOW, PROGRAM, or
VAR flags during execution of a specified subprogram.
The VAR flag is only turned off for variables local to
that subprogram; global variables whose values are
changed within a subprogram designated by NOTRACE
SUB ALL are still traced (i.e., information about these
variables is displayed on the system debug device).

NOTRACE VAR followed by a list of variables (separat-
ed by commas) turns off the TRACE flags for those
variables.

NOTRACE VAR ALL turns off the TRACE flags for all
variables.

NOTRACE VIEW stops the display of TRACE informa-
tion on the system debug device. This can be useful
when the user only wishes to examine trace informa-
tion from a section of program under development.
NOTRACE VIEW only allows the “breakpoint”
messages to be displayed on the system debug device;
thus, execution can proceed using the “DEBUG” and
“CONTINUE” commands until the desired breakpoint is
reached. The TRACE VIEW command can then be used
to re-display trace information.

EDITING AND DEBUGGING
NOTRACE

EXAMPLES

notrace var a,b,c,str1$,str2$

This command turns off the TRACE flag for the listed
variables.

notrace sub subl,sub2,sub3

This command turns off the FLOW, PROGRAM, and VAR
flags (for local variables) during execution of subprograms
Sub 1, Sub 2, and Sub 3. Global variables whose values are
set or changed during execution of these subprograms con-
tinue to be traced.

4-10 REV JAN 1984 4041 PROGRAMMER’S REFERENCE

AN

/‘\

EDITING AND DEBUGGING

RE

THE REM OR ! STATEMENT

The REM Statement

Syntax Form: line-no. REM message

Descriptive Form: line-no. REM any-message-goes-here;it-is-ignored-by-the-4041

The ! Statement

Syntax Form: statement!message

Descriptive Form: statement!any-message-goes-here;it-is-ignored-by-the-4041

PURPOSE EXAMPLE

The REM statement allows programmers to add com- 100 Y=x"2+15%x-3 !calculate y

ments (“remarks”) to programs. 110 If y>1000 then goto 200 !branch if y>
The | statement functions the same way as the REM All text to the right of the exclamation point on each
statement, except that | statements can appear on the line is ignored by the system.

same lines as other statements.

EXPLANATION

REM and ! statements are used to insert comments into
a program in order to clarify what the program is doing.

When the 4041 encounters the REM keyword immedi-
ately after a line identifier, the remainder of the line is
ignored. The 4041 goes immediately to the next line.

Any part of a line that follows an exclamation point
(unless the exclamation point is contained within a
string literal) is similariy ignored. Thus, the ! statement
can be used on the same line as other statements.

4041 PROGRAMMER’S REFERENCE

1000

4-11

EDITING AND DEBUGGING

RENUMBER
N
The RENUMBER Statement
Syntax Form: RENUMBER [numexp [numexp] 1 {TO numexpl,numexpl]
[subname [subnamel]]
[ALL 1
Descriptive Form: RENUMBER [beglin Lendlin] 1 [TO newlin[,maxinc}]
[subname {subname]]
[ALL 1
where: beglin = first program line to be renumbered
endlin = last program line to be renumbered
newlin = number that beglin is renumbered to
maxinc = maximum increment between renumbered lines
subname = name of subprogram or user-defined function
PURPOSE The RENUMBER statement can also be used to
transfer lines of code from one position in the program
The RENUMBER command renumbers program lines. It to another.
can also be used to transfer sections of code from one
point in a program to another. The possible forms of the RENUMBER statement and
the results of each form are listed in Table 4-1. s

NOTE

The RENUMBER command is only available on
4041 units equipped with Option 30 (P/D ROMs

and carrier).

The RENUMBER statement in 4041 BASIC may
do more than the RENUMBER statement in other
BASICs you may be familiar with. Make sure you
read and understand RENUMBER’s capabilities
before attempting to use it.

EXPLANATION

The RENUMBER statement renumbers program lines.
The user may specify the first and last lines to be
renumbered. The user may also specify a number to
which the lines will be renumbered, as well as the
maximum number by which the renumbered lines are to
be incremented.

4-12

Table 4-1
TABLE OF DEFAULTS FOR RENUMBER:®

Arguments Beginning Ending New

Entered Line Line Line

none first line last line 100

ALL first line last line 100

lineXX lineXX lineXX lineXX (no-op)
subX first line subX | last line subX | first line subX
lineXX,|lineYY |lineXX lineYY lineXX
subXlineYY first line subX | lineYY first line subX
subX,subY first line subX | last line subY | first line subX
lineXX,subY lineXX last line subY | lineXX

ALL TO lineZZ |first line last line lineZZ

linXX TO linZZ | lineXX lineXX lineZZ

subX TO lineZZ | first line subX | last line subX | lineZ2

XX,YY TO ZZ lineXX lineYY lineZZ
subX,YY TO ZZ | first line subX | lineYY lineZZ
subX,sbY TO ZZ first line subX | last line subY | lineZZ
XX,subY TO ZZ | line XX last line subY | line ZZ

3«MAIN” can be used as a “subprogram” name, and denotes the main program

segment.

4041 PROGRAMMER'S REFERENCE

Destination Line Restrictions

If the line number of an existing line is specified as the
“newline” for a RENUMBER statement, the existing line
must be in the range from “beginning-line” to “ending-
line” for the RENUMBER to occur.

Examples:

100 A
110 B
120 C
130 D

]

*renumber ,110 to 130

#%% ERROR # 23
Line 130 (newline) already exists, and was not within
the range from line 100 (beginning line) to line 110

(ending line). The correct statement to move lines 100
and 110 after line 130 is

¥renumber 100,110 to 140

*list
120 C=3
130 D=4
140 A=1
150 B=2

If the specified destination line does not already exist,
the destination line can have any value.

Maximum Increment Calculations

The increment included in the RENUMBER statement
(if one is given) specifies the maximum increment that
the 4041 will use.

If the increment specified is too large (because there

. are too many lines to “fit” into the space provided), the
4041 calculates the maximum increment that will fit the
lines into the space, using the formula:

increment = INT((maxline-newline+ 1)/#-of-lines-
to-renumber

4041 PROGRAMMER’S REFERENCE

EDITING AND DEBUGGING
RENUMBER

If the increment thus calculated is equal to O, the
RENUMBER operation does not take place and an error
is generated. Otherwise, the RENUMBER operation is
performed using the calculated increment.

Example:
100 { this is line 1
110 ! this is line 2
120 ! this is line 3
130 ! this is line 4
140 ! this is line 5
150 ! this is line 6
¥renumber 120,150 to 101
*¥list
100 this is line
101 this is line
103 this is line

107 this is line
110 this is line

N OV B

!
!
!
105 ! this is line
!
]

Since the lines to be renumbered will not fit in the
space allotted with an increment of 10, the 4041
calculates a new increment for the renumber operation.

Renumbering Line References

The RENUMBER statement renumbers line references
in GOTO and GOSUB statements.

The RENUMBER statement does not renumber line
references in DELETE LINE, LIST, SAVE, or APPEND
statements.

Unresolved Line References

If a line to be renumbered contains an unresolved line
reference, the line containing the unresolved line
reference is renumbered but the reference itself re-
mains unchanged.

Renumbered lines containing unresolved line
references are displayed on the system syntax device
(the device specified in the most recently executed
SET SYNTAX statement; default:system console).

4-13

EDITING AND DEBUGGING
RENUMBER

Examples:

In Example 4-1, line 127 contains an unresoived line
reference. The new line number and the contents of the
line are displayed when the line is renumbered.

Unresolved line references that become resolved by a
RENUMBER operation are also displayed on the sys-
tem syntax device.

in Example 4-2, line 127 contains an unresolved line
reference that becomes resolved by the renumber
operation. The renumbered line 127 (now, line 130)
therefore appears on the system syntax device.

Unresolved line references are checked only in the
portion of the program being renumbered and in the
program segment to which a line or lines are being
moved, except for unresolved BRANCH statements,
which are checked across segment boundaries.

Restrictions on Renumbering
Subprograms and User-Defined Functions

The same basic restriction applies to RENUMBERIing
Subprograms and user-defined functions as to ap-
pending to them and deleting lines from them: no
operation may leave any portion of a Subprogram or
user-defined function without a SUB or FUNCTION
statement to accompany it. RENUMBER commands
that would leave a portion of a subprogram without a
SUB or FUNCTION statement are not performed, and
cause an error.

Re-starting After RENUMBER

If a RENUMBER operation is performed when the 4041
is PAUSEd (i.e., after the PAUSE key was pressed on
the front panel or P/D keyboard, or the BREAK key on
the P/D keyboard or a user terminal, or after a STOP
statement has been executed), the program must be re-
started with a RUN or DEBUG statement and not with
the CONTINUE statement.

130 Goto 300

96 Init
101 Integer a,b,c
105 Input prompt "enter date and time:":time$
1217 Goto 300
*renumber

Example 4-1.
96 Init
101 Integer a,b,c
105 Input prompt "enter date and time:":time$
127 Goto 110
#renumber
130 Goto 110
Example 4-2.

4-14

4041 PROGRAMMER’S REFERENCE

EDITING AND DEBUGGING
SET DEBUG

The SET DEBUG Statement

Syntax Form: [line-no.] SET DEBUG strexp

Descriptive Form: [line-no] SET DEBUG stream-spec

PURPOSE EXAMPLE

SET DEBUG selects the device that debugging infor- set debug "frtp:"

mation (i.e., information generated by TRACE and

BREAK flags) is sent to. This device becomes known Information generated by TRACE and BREAK flags will
as the “system debug device”. appear on the front panel alphanumeric display.

EXPLANATION

The system debug device defaults to the system
console. See the description of SET DEBUG in Section
5, Environmental Control, for more information.

4041 PROGRAMMER’S REFERENCE 4-15

EDITING AND DEBUGGING
SET SYNTAX

The SET SYNTAX Statement

Syntax Form:

Descriptive Form:

[line-no] SET SYNTAX strexp

[line-no.] SET SYNTAX stream-spec

PURPOSE
The SET SYNTAX statement selects the device to

which error messages are sent. This device becomes
known as the “system syntax device”.

EXPLANATION

The system syntax device defaults to the system
console. See the description of SET SYNTAX in

Section 5, Environmental Control, for more information.

4-16

EXAMPLE

set syntax "frtp:"

This statement sends all syntax error messages to the
front panel alphanumeric display. Once there, the line
can be edited with the P/D keyboard editing keys.

When using the P/D keyboard to edit syntax errors, you
may wish to delete an erroneous line and start all over
again. To do this, simply press the CLEAR and RETURN
keys on the P/D keyboard, or the CLEAR and
PROCEED keys on the front panel.

4041 PROGRAMMER'S REFERENCE

EDITING AND DEBUGGING

SLIST
The SLIST Statement
Syntax Form: line-no.] SLIST [strexp,]Inumexp [TO numexpl]
[subname [TO subname]]
Descriptive Form: [line-no] SLIST [stream-spec,] [line-number [TO line-number]]
[subname [TO subname]]
PURPOSE EXPLANATION
The SLIST command lists the current BASIC program The SLIST command works exactly the same as the
(or portions thereof) to the system console or a LIST command, except it sends an un-formatted listing
specified device. instead of a “pretty-printed” one to the output device.

4041 PROGRAMMER’'S REFERENCE 4-17

EDITING AND DEBUGGING
TRACE

The TRACE Statement

Syntax and

Descriptive Forms: [line-no.] TRACE [FLOW]

{ALL}

[ALL]
[VIEW]

[PROGRAM]
[SUB {subname[,subname].. }]

[VAR [varlvar]..]l

PURPOSE

The TRACE command sets flags used during program de-
bugging. When a program is executed using the DEBUG
command or the STEP key on the P/D keyboard, the
TRACE flags are checked after each line is executed, and
the appropriate action is performed.

EXPLANATION

TRACE information is only displayed when a program is
run using the DEBUG command or the STEP key on the
P/D keyboard. All TRACE information appears on the
system debug device, uniess a NOTRACE VIEW com-
mand has been executed.

TRACE FLOW disptays the originating and destination
line numbers whenever a branch is performed (GO TO,
GO SUB, CALL, or user-defined functions, or returns
from GOSUBSs, Subprograms, and user-defined func-
tions).

TRACE PROGRAM displays the line number of each

" line after it is executed. This flag is automatically set on
power-up. TRACE PROGRAM does not trace non-
executable statements (DATA, FUNCTION, IMAGE,
REM, or SUB). TRACE PROGRAM is a global! flag
(affects all program segments).

4-18

TRACE SUB followed by a list of subprogram names
causes the 4041 to trace information throughout the
execution of a subprogram or user-defined function.
TRACE SUB ALL causes the 4041 to trace information
throughout the execution of all currently defined Sub-
programs and user-defined functions.

TRACE SUB ALL is set as a power-up default. The user
overrides this default with NOTRACE SUB commands
(see the description of the NOTRACE statement, earlier
in this section). TRACE SUB is used to negate a
previous NOTRACE SUB command.

TRACE SUB foliowed by a carriage return returns the
names of all program segments for which the TRACE
SUB flag is set.

TRACE VAR followed by a list of variable names
causes the line number, the variable name, and the
value of the variable to be displayed each time the
value of one of the specified variables is changed.

TRACE VAR ALL displays this information for all
variables currently defined in this environment.

The TRACE VAR flag only affects variables currently
defined in the “environment” to which the 4041 is
connected (see the CONNECT statement, earlier in this
section, for more information). Thus, if the 4041 is
connected to the MAIN program environment and a
TRACE VAR ALL command is executed, all currently
defined global variables are traced. If the 4041 is
connected to Subprogram AAAA and a TRACE VAR
ALL command is executed, all of Subprogram AAAA’s
currently defined local variables are traced.

4041 PROGRAMMER’S REFERENCE

TRACE VAR followed by a carriage return lists the
environment to which the 4041 is connected and the

names of all variables being traced in that environment.

TRACE VIEW displays TRACE information on the
device specified by the SET DEBUG statement. This
flag is automatically set upon power-up. The command
is used to turn the flag on again after a NOTRACE
VIEW command has been executed.

TRACE VIEW and NOTRACE VIEW affect only the
environment to which the 4041 is connected when
either command is executed.

TRACE followed by a carriage return lists the names of
the enabled flags from among FLOW, PROGRAM, and
VIEW.

EXAMPLES

For purposes of this example, assume that the follow-
ing program has been entered, and that the TRACE
flags are set to their power-up defauits. Assume also
that the system debug device is the system console.

100 A=z1

110 B=2

120 Call aaaa

130 Call bbbb

140 End

150 Sub aaaa

160 Cz=3 ! ¢ is a global variable
170 D=4 ! d is a global variable
180 Return

190 End

200 Sub bbbb local e,f

210 E=5 ! e is a local variable
220 F=6 ! f is a local variable
230 Return

240 End

- To find out which TRACE flags are set, use the TRACE
command:

®trace
TRACE FLAGS= PROGRAM VIEW

To find out which variables are being traced in the
current environment, use the TRACE VAR command:

®trace var
MAIN PROG VAR=

This response indicates that no variables are being
traced in the main program. To trace all variables in the

4041 PROGRAMMER’'S REFERENCE

EDITING AND DEBUGGING
TRACE

main program, use the TRACE VAR ALL command:

#trace var all
%trace var
MAIN PROG VAR= a b c d

The preceding commands set the TRACE VAR flag for
global variables only. To trace local variables as well
(such as those in Subprogram bbbb), use the CON-
NECT command, followed by a TRACE VAR ALL.:

#conn bbbb
¥trace var all

¥trace var
bbbb SUBVAR= e f

Now debug the program:

¥debug

Line 100 a=1.0
Line 110 b=2.0
Line 120

Line 160 ¢=3.0
Line 170 d=4.0
Line 180

Line 130

Line 210 e=5.0
Line 220 f=6.0
Line 230

Line 140

The NOTRACE VAR ALL statement now turns off the
TRACE VAR flag for all global variables. However, it
leaves the TRACE VAR flag on for “local” variables.
Similarly, the NOTRACE VIEW command turns the
TRACE VIEW flag off for the main program
environment, but leaves it on for Subprograms and
user-defined functions.

®notrace var all
*notrace view
*debug

Line 160

Line 170

Line 180

Line 210 e=5.0
Line 220 f=6.0
Line 230

To trace program flow and execution in the main
program only, use the TRACE FLOW and NOTRACE
SUB commands (among others):

*trace view

*trace flow

*notrace sub aaaa,bbbb

*debug

Line 100

Line 110

Line 120 Branch taken to 150
Line 130 Branch taken to 200
Line 140

4-19

Section 5

ENVIRONMENTAL CONTROL

INTRODUCTION

The INIT and SET commands and the ASK and ASK$ func-
tions allow the programmer to initialize, modify, and inquire

4041 PROGRAMMER’S REFERENCE

into the status of the operating environment, all under pro-
gram control.

51

ENVIRONMENTAL CONTROL
ASK, ASK$

THE ASK AND ASK$ FUNCTIONS

The ASK Function

Syntax and
Descriptive Forms: ASK(‘'ASK-function-name’’[,argument})
where ASK-function-name = [ANGLE]
{AUTOLOAD)]
{BUFFER]
{CHPOS]
{IODONE]
{KEY]
{MEMORY]
{PROCEED)]
{SEGMENT]
{SPACE]
{TIME}
{UPCASE]

The ASKS$ Function

Syntax and
Descriptive Forms: ASK$(‘‘ASKS$-function-name’’{,argument])
ASK$-function name = {CONSOLE]}
DRIVER]

ERROR]|

D}

where [
{
{
{l
LU
{PATH[,ALL]}
{ROMPACK]
{SELECT]
{SELFTEST]
{SYSDEV]
{TIME}
{VAR]
{

VOLUME]}

Purpose

ASK and ASKS$ are general purpose functions used to inter-
rogate the 4041 about the state of the system.

Explanation

The ASK function returns a numeric value. The ASK$ func-
tion returns a string. Using ASK with an ASK$ function, or
ASKS$ with an ASK function, results in a syntax error.

ASK and ASK$ can be used either in immediate mode or
within a program. When used in a program, the numeric
value or string returned by the ASK or ASK$ function may
be stored in a variable.

The ASK or ASK$ function name must be a literal string; it
cannot be a string variable or expression.

4041 PROGRAMMER’'S REFERENCE

ASK FUNCTIONS

ASK (‘“‘ANGLE”’)

ENVIRONMENTAL CONTROL
ANGLE, AUTOLOAD

Syntax and

Descriptive Forms: ASK("ANGLE")

ASK(‘“ANGLE”") returns an integer value indicating the cur-
rent coordinate system for trigonometric functions.

ASK(““ANGLE”’) returns
0 ifthe current coordinate system is radians

1 if the current coordinate system is degrees
2 ifthe current coordinate system is grads

ASK (““AUTOLOAD”’)

Example:
110 Trig=ask("angle")
This statement stores a value indicating the current coordi-

nate system for trigonometric functions in numeric variable
Trig.

Syntax and

Descriptive Forms: ASK("AUTOLOAD”’)

ASK(""AUTOLOAD”) returns an integer value that tells
whether or not the system AUTOLOAD function is enabled.

ASK("*"AUTOLOAD”) returns

1 if the system AUTOLOAD function is enabled
0 ifthe system AUTOLOAD function is disabled

The 4041 powers up with the AUTOLOAD function enabled.
The user invokes the AUTOLOAD function by pressing the
appropriate key on the system console device: the AUTO-
LOAD key on the front panel or P/D keyboard, or CTRL-V on
a computer terminal connected to the 4041 through an RS-
232-C interface port.

4041 PROGRAMMER’S REFERENCE

Invoking the AUTOLOAD function loads and runs a file
named ‘“‘AUTOLD” from the DC-100 tape.
Example:

120 Atld_e=ask("autoload")

After this statement is executed, numeric variabie AtidE will
contain a value (1 or 0) indicating whether or not the AUTO-
LLOAD function is enabled.

ENVIRONMENTAL CONTROL

5-4

BUFFER
TN
ASK (‘‘BUFFER”’)
Syntax Form: ASK("‘BUFFER”’[,numexp])
Descriptive Form: ASK(''BUFFER’[,logical-unit-number])
ASK(‘‘BUFFER”) returns the starting position of unused Example:
data in a buffer string after execution of a GETMEM or
INPUT statement that includes a BUFFER clause. 110 Buffs$="1,2,3,4,5,6,7,8,9,10"
120 Integer num(5),num2(5)
T . 130 Get buff b :
The returned value reflects the point in the string where the 3 30 B§f222562$ (isz;fgik? Erguffer" y+1,20)
internal buffer pointer was positioned when all variables in 150 Getmem buffer buf2$:num2
the variable list were satisfied. This value can be used in a 160 Print "NUMi=";num
. . . . 170 Print "NUM2=";num2
string function to discard ali used data from the buffer varia- 180 End
ble before executing a subsequent GETMEM statement to *run
extract additional data from the buffer. NUM=1 2 3 4 5
NUM2=6 7 8 ¢ 10
If a numeric variable was the last list element to be satisfied,
then the buffer position returned is the position of the last le’\e 130 'retfj:lldsNthe first five numeric values from Buti$ into
character of the ASCII string representing the numeric array variable Num.
lue (if i li s satisfied), or the position of the nu- . . .
va u.e (the'lnput Ist was satisfi). ° e.p nu The Ask('‘Buffer’’) function returns the starting position of
meric delimiter character that terminated input. . .
unused data from Buff$ (in this case, 10).
If a string variable was the last list element to be satisfied, . ah
then the buffer position returned is the position of the last i‘r:ne 140 reatd§ 20_CTa'§C;2eés (?r ct:.haragtﬁrtshupz tﬁ;hiend of
character placed in the string (if the string was completely ¢ e SfOéJI’(:%S fing) into Buf2$, starting wi e charac-
filled), or the position of the delimiter character that termi- erot Bulls.
tedi
nated input Line 150 reads five numeric values from Buf2$ into array
The programmer may also specify a logical unit number for variable Num2.
the request by using the form ASK(*‘BUFFER” lunum). In
this case, the function returns the starting position of un-
used data in a buffer string after execution of the last
GETMEM or INPUT statement with the logical unit number
included in the BUFFER clause.
. If the logical unit is not open, the value 0 is returned.

4041 PROGRAMMER’S REFERENCE

ASK (“‘CHPOS”’)

ENVIRONMENTAL CONTROL
CHPOS

Syntax and
Descriptive Forms: ASK(“CHPOS”’)

ASK (*‘CHPOS”) returns the position of the last character
scanned by a VAL or VALC function. This is the position of
the first non-numeric character after the number scanned.
The value can be one more than the length of the last string
scanned by VAL or VALC (indicating that the entire string
was scanned). A value of 0 indicates that the VAL/VALC
functions have not been invoked.

Example:

100 String$="JOHN SMITH,11,85"

110 Integer grade,score

120 Getmem buffer string$ dels ",":name$
130 Grade=val(string$)

140 Scorezvalc(string$,ask("chpos")+1)
150 Print using 180:"NAME:" ,name$

160 Print using 180:"GRADE:",grade

170 Print using 180:"SCORE:",score

180 Image 6a,n

190 End

*run

NAME: JOHN SMITH

GRADE: 11

SCORE: 85

4041 PROGRAMMER’S REFERENCE

Line 120 reads all characters up to the first comma in
String$ into Names$.

Line 130 reads the first legal numeric value in String$ into
numeric variable Grade.

The Ask('‘chpos”’) function then returns the position of the
last character scanned by a VAL or VALC function; in this
case, the value returned is 14.

Line 140 reads the first legal numeric value found in
String$, starting with the character after the last character
scanned by a VAL or VALC function, into numeric variable
Score.

ENVIRONMENTAL CONTROL
IODONE

ASK (““IODONE’’)

Syntax Form: ASK("IODONE"'[,numexp]})

Descriptive Form:

ASK('‘IODONE’’[,logical-unit-number])

ASK(“IODONE”, logical-unit-number) returns an integer
value reflecting the status (busy or not busy) of a particular
logical unit. ASK(*IODONE"’) returns an integer value re-
flecting the status of the entire 4041 1/O system.

ASK(“IODONE”’, logical-unit-number) returns:
1 if the logical unit is NOT busy performing I/O
0 ifthe logical unit IS busy performing /O
-1 if the logical unit is not open

ASK(“IODONE”) returns:

0 ifl/Ois active on some driver
1 if no I/Ois active on any driver

The ASK(“IODONE”’) functions are usually used when the
4041 is in proceed mode, to ensure that I/0O operations on a
given device are complete before proceeding to a new sec-
tion of code.

See Section 8, Input/Output, for more information about us-
ing INPUT and PRINT in proceed-mode.

Example:

In Example 5-1, line 300 checks to see that the proceed-
mode 1/O operation on logical unit 1 is complete before
jumping to line “GoAhead”. Ifitisn’t, the 4041 waits 5 sec-
onds, then tries again.

100 Set proceed 1
110 Open #1:"outfil(open=new,size=20000)"

200 Print f#1:bigarayl,bigaray2,bigaray3

300 If ask('"iodone",1)=z1 then goto goahead else wait 5

310 Goto 300

500 Goahead:!'execution continues from here

Example 5-1.

5-6

4041 PROGRAMMER’S REFERENCE

ASK (“KEY”’)

ENVIRONMENTAL CONTROL
KEY, MEMORY

Syntax and
Descriptive Forms: ASK(“KEY’’)

ASK("*"KEY”’) returns the number of the next user-definable
function awaiting service. A value of 0 indicates that no
user-definable function is awaiting service.

When the user-definable functions are disabled, the 4041

queues one user-definable key, which is executed the next
time user-definable functions are enabled.

ASK (“MEMORY”’[,ALL])

The system powers up with user-definable functions dis-
abled. User-definable functions are automatically disabled
when the system executes a function key handler, and auto-
matically re-enabled when the function key handler com-
pletes execution.

For more information about user-definable functions, see
Section 12, interrupt Handling.

Syntax and
Descriptive Forms: ASK(“*MEMORY’[,ALL})

ASK (“MEMORY?”) returns the size in bytes of the largest
free block in memory.

4041 PROGRAMMER'’S REFERENCE

ASK (“MEMORY’’,ALL) returns the amount in bytes of all
free space in memory.

ENVIRONMENTAL CONTROL
PROCEED, SEGMENT

N
ASK(‘““‘PROCEED”’)
Syntax and
Descriptive Forms: ASK(“‘PROCEED”)
ASK(“PROCEED”) returns an integer reflecting the current The 4041 is NOT in proceed mode at power-up.
setting of the system proceed mode parameter.
The 4041 is put into proceed mode when a SET PRO-
ASK(““PROCEED”) returns: CEED 1 statement is executed.
0 ifthe 4041 is NOT operating in proceed mode The 4041 returns from proceed mode when a SET
1 ifthe 4041 IS operating in proceed mode PROCEED 0 statement is executed.
ASK(**“SEGMENT”’)
Syntax and
Descriptive Forms: ASK(““SEGMENT"'[,ALL))
ASK (““SEGMENT”’) returns an integer value giving informa- Example: N
tion about the program segment currently executing.
1050 Print ask("segment",all)
Segments indicated by different values of ASK("*SEGMENT"")
are as follows: Suppose a value of 44 is printed when line 1050 is exe-
cuted. Since 44 = 32 + 8 + 4, this indicates that an IODONE
1 main program, subprogram, or function handler, GPIB function handler, and function key handler
2 error handler are active. (A simple way to determine which handlers are
3 function key handler active is to print the result of the ASK(“SEGMENT’’ ,ALL)
4 GPIB function handler function using an image operator of *'6B"’.)
5 ABORT handler
6 IODONE handler
ASK(**'SEGMENT’’ ALL) returns a bit-encoded value giving
information about all program segments currently execut-
ing. The rightmost bit of this value (the 1’s place in its binary
representation) is always 0. Other components of this value
are as follows:
2 error handler
4 function key handler
8 GPIB function handler
16 ABORT handler
32 IODONE handler
TN

5-8

4041 PROGRAMMER'’'S REFERENCE

ASK(‘SPACE”’)

ENVIRONMENTAL CONTROL
SPACE, TIME, UPCASE

Syntax and
Descriptive Forms: ASK(“‘SPACE"’)

ASK(''SPACE”’) returns an estimate of the amount of mem-

ory, in bytes, required to save the current program in ASCIL.

ASK(“‘TIME”’)

(The estimate equals 72 times the number of lines in the
program.)

Syntax and
Descriptive Forms: ASK(“TIME”)

ASK(“TIME”) returns a real number that represents the
time in seconds since power-up.

ASK(‘““UPCASE”’)

(Be careful not to confuse this function with ASK$(**TIME”"),
which returns the date and time.)

Syntax and
Descriptive Forms: ASK(“UPCASE”’)

ASK(*‘UPCASE”’) returns an integer reflecting the status of
the system UPCASE parameter.

ASK(““UPCASE”’) returns

1 if the system UPCASE parameter is set
0 if the system UPCASE parameter is NOT set

4041 PROGRAMMER’S REFERENCE

When the UPCASE parameter is set, lower-case letters are
considered equal to upper-case letters for string
comparisons.

The 4041 powers up with the UPCASE parameter set.

5-9

ENVIRONMENTAL CONTROL
CONSOLE

ASK$ FUNCTIONS

ASK$(‘‘CONSOLE’’)

Syntax and
Descriptive Forms: ASK$(''CONSOLE™)

ASK$(‘“CONSOLE") returns a string containing the stream
spec of the system console device.

This string can be saved in a string variable and analyzed
(using string functions) for information.

Example:

Assume that the last SET CONSOLE statement executed
was

Set console "comm:"

(setting the standard RS-232-C interface port to be the sys-
tem console device).

Then, ASK$(“CONSOLE”) returns a string as shown in
Example 5-2.

")

COMMO(BAU=2400, IBA=0,BIT=8, PAR=NO, STO=2,FOR=ASC, TYP=1.00000E+2,
#TY=0.00000E+0, FLA=OUT, DSR=ON, CTS=0ON, DCD=ON, RTS=0FF , DTR=0OFF , ERR=
LOG, #ER=0.00000E+0, ECH=YES, CON=NO, EDI=RAS, CR=CRL,LF=LF , TIM=

2. 14THBE+T , TMS=2. 14TUBE+7, EOA=<0>, EOH=<0>, EOM="

Example 5-2.

5-10

4041 PROGRAMMER’S REFERENCE

-

ASKS$(“‘DRIVER”’)

ENVIRONMENTAL CONTROL
DRIVER, ERROR

Syntax and

Descriptive Forms: ASKS$(''DRIVER")

ASK$(‘‘DRIVER”") returns a string containing the names of
all device drivers in the system.

ASK$(““ERROR”’)

Syntax and

Descriptive Forms: ASK$("ERROR”)

ASK$(‘‘ERROR") returns a string containing information
about an error currently being handled. This information
includes:

-

The error number.
The line number on which the error occurred.

The logical unit number on which the error occurred.

P eDn

The number of times the same error occurred without
a different error intervening (useful to indicate situa-
tions where an error-handler isn’t taking care of the
real cause of an error).

Avalue of *-1"" in the logical unit’s position indicates that
the error is not associated with a logical unit.

For proceed-mode errors (error #999), a string of eight num-
bers separated by commas is returned. The first four num-
bers are ‘999,0,0,0,” followed by a string containing four
numbers as described above.

4041 PROGRAMMER’S REFERENCE

Example:
1060 Print ask$("error")
Suppose the message printed in response to line 1060 is
999,0,0,0,854,130,1,1
This indicates that error #854 (write-after-read) occurred
during proceed-mode execution of line 130. The error oc-
curred during /O involving logical unit 1. This is the first

time this error has occurred since either the start of the pro-
gram or a different error.

5-11

ENVIRONMENTAL CONTROL

ID, LU
ASK$(*“ID”")
Syntax and
Descriptive Forms: ASK$(“ID"")
ASKS$(“‘ID”’) returns a string containing the 4041’s ID Example:
information.
1000 Print ask$("id™)
This information includes the manufacturer (Tektronix, nat-
urally), instrument identification number, version of the Tek- This statement prints a string of the form
tronix Codes and Formats standard to which the firmware
conforms, and firmware version number. ID TEK/4041,V79.1,2.0
on the system console device, indicating that the instrument
is a TEKTRONIX 4041 supporting version 79.1 of the Tek-
tronix Codes and Formats standard, and having firmware
version 2.0.
ASKS$(‘‘LU")
Syntax Form: ASKS$(“‘LU”’ ,numexp)
Descriptive Form: ASKS$(*‘LU”’ logical-unit-number)
ASK(*'LU”’) returns a string containing the complete stream Example:
spec for a specified logical unit.
Suppose logical unit 24 is opened to the device at primary
A null string is returned if the logical unit is not open. address 24 on the standard GPIB interface port (all other
GPIB parameters are at their default values). Then, the
statement
1100 Print asks("lu" ,24)
prints the information shown in Example 5-3 on the system
console.
GPIBO(MA=30,SC=YES,CIC=5,TL=0,ENA=0,PEN=0,PRI=24,SEC=32,
ECA=<44> EQH=<32>,E0M=<255>,E0Q=<0>,EQU=;, TIM=2, 14TUBE+T,
SPE=1.00000E~-2, TRA=NOR,PNS=0, IST=FAL,SRQ=0,TC=SYN):
Example 5-3.
N

5-12

4041 PROGRAMMER’S REFERENCE

ASKS$(‘“‘PATH”)

ENVIRONMENTAL CONTROL
PATH

Syntax and
Descriptive Forms: ASK$(“‘PATH”’[,ALL))

ASKS$(''PATH”) returns a string containing the sequence of
subprogram names currently executing. This string is of the
form ‘‘SubC,SubB,SubA,MAIN,...””, where MAIN indicates
the MAIN program and SubA, SubB, SubC, etc., are sub-
program names.

ASKS$(““PATH” ,ALL) returns a string containing information
about the entire current activation path. This string contains
the names of all subprograms and user-defined functions
currently executing, along with the numbers of the lines that
called them into execution. The string also contains the line
numbers of GOSUB statements currently in the activation
path.

In addition, the string contains information about all condi-
tion handlers currently being executed; entries denoting
condition handlers are preceded by an appropriate letter fol-
lowed by a dash, as follows:

Letter Condition
A Abort handler
E Error handler
K Function key handler
P lodone handler
|

Other interrupt (e.g., GPIB function)

Example:

In Example 5-4, the string returned by the ASK$(“PATH"” ,ALL)
function indicates that the current activation path is as fol-
lows (reading from right to left):

1. The path starts with the main program segment (this
is always true).

2. Line 170 in the main program segment transferred
control to a subprogram or user-defined function
called Printit.

3. Control transferred to a gosub-type function key han-
dler after line 320 of subprogram/function Printit was
executed.

4. Control was transferred to a call-type abort handler
(subprogram Abohnd) during execution of line 230.

5. Line 410 of subprogram Abohnd was a GOSUB
statement.

6. After line 470 of the subroutine was executed, control
was transferred to a call-type iodone handler (subpro-
gram Donhnd).

7. Execution of line 510 caused control to transfer to a
gosub-type error handler.

100 Print ask$("path",all)

E-510,P-470 donhnd,410,A~230 abohnd,K-320,170 printit,main

Example 5-4.

4041 PROGRAMMER’S REFERENCE

5-13

ENVIRONMENTAL CONTROL
ROMPACK, SELECT, SELFTEST

ASKS$(‘‘ROMPACK’’)

Syntax and

Descriptive Forms: ASK$('"ROMPACK’)

ASK$(‘‘ROMPACK’") returns a string containing the names
of all ROMpacks in the system.

ASKS$(‘‘SELECT”’)

Syntax and

Descriptive Forms: ASK$(‘‘SELECT”)

ASK$(‘“SELECT”’) returns a string containing the currently
SELECTed stream spec. If no SELECT statement has been

ASKS$(‘“SELFTEST"’)

executed and no primitive /O operation has been per-
formed, a null string is returned.

Syntax and

Descriptive Forms: ASKS$(''SELFTEST")

ASKS$(‘““SELFTEST”) returns a string containing the result
of the last seif-test performed (either upon power-up or as a

result of an INIT SELFTEST command).

4041 PROGRAMMER’'S REFERENCE

ASK$(‘“SYSDEV”’)

ENVIRONMENTAL CONTROL
SYSDEV, TIME

Syntax and
Descriptive Forms: ASK$(‘‘SYSDEV"’)

ASKS$(“*SYSDEV”’) returns a string containing the current
SYSDEV driver spec. See the description of the SET

ASKS(“TIME”")

SYSDEV statement, later in this section, for more informa-
tion about the SYSDEYV driver spec.

Syntax and
Descriptive Forms: ASK$(“TIME”)

ASKS$(““TIME"") returns a string giving the date and time of
day. This date and time will only be accurate if a SET TIME
statement has been executed (see the description of the
SET TIME statement later in this section). Otherwise, the
date and time will be shown as the time since the 4041 was
powered up, with power-up time considered to be
“01-JAN-81 00:00:00".

4041 PROGRAMMER’S REFERENCE

Be careful not to confuse this function with the
ASK(*“TIME”) function, which returns the time in seconds
since the 4041 was powered up.

ENVIRONMENTAL CONTROL
VAR, VOLUME

ASK$(‘‘VAR"")

Syntax and
Descriptive Forms: ASKS$(‘‘VAR’’ variable-name)

ASKS$(““VAR’ ,variable-name) returns a string containing in-
formation about the variable requested. Information re-
turned includes a type code, an attribute code, number of
rows (array variables), number of columns (array variables),
dimensioned length (string variables and string arrays), and
current length (string variables). If a field is not applicable, a
value of O is returned.

Values returned for the type code are:

short floating point scalar
label

long floating point scalar
integer scalar

string scalar

short floating point array
long floating point array
integer array

string array

subprogram

function

-

OCQONOODWN—+OO

Attribute code values returned are:

1 defined
0 undefined.

ASKS$(‘“VOLUME”’)

Specifying a single array element in an ASK$(‘‘'VAR”) func-
tion returns information about the entire array. For example,
ASKS$(““VAR’’ ,Number(1)) returns the same information as
ASKS$(“VAR” ,Number).

Invoking the ASK(**VAR’’) function prevents any function
subprograms from executing in the same line. Attempting to
invoke a function subprogram in the same line as an
ASK(**VAR”) function results in an error.

Example:

100 Long a(20)
110 Print ask$("var",a)

The **5” indicates that A is a long floating point array; the
first “*1" indicates that the array is defined; the ‘20’ indi-
cates that the array has 20 rows; the second ““1”’ indicates
that the array has one column.

The two ““0’s”" are not applicable to A, indicating the dimen-
sioned and current lengths of a string variable.

Syntax and
Descriptive Forms: ASK$(‘VOLUME")

ASKS$(“VOLUME”) returns the volume ID (label) of the cur-
rent DC-100 tape. A null string is returned if no tape is in the

5-16

DC-100 tape drive.

4041 PROGRAMMER’S REFERENCE

ENVIRONMENTAL CONTROL
INIT

The INIT Statement
Syntax and
Descriptive Forms: [line-no.] INIT [VAR {var[,var]...}]]
{ALL}
[ALL]
[SELFTEST]

PURPOSE

The INIT command initializes system environmental param-
eters. INIT VAR initializes all variables (including undefined
ones). INIT ALL performs an INIT followed by an INIT VAR.
INIT SELFTEST re-performs the self-testing the 4041 does
upon power-up.

The INIT SELFTEST command deletes all pro-
gram lines and variables from memory. Do not
execute this command without first storing any
required programs or data on tape.

EXPLANATION

If the INIT command is executed in the main program seg-
ment, the command has effect over the entire program. If
INIT is executed within a subprogram segment, the com-
mand only has effect within that segment (except for closing
logical units and re-setting interrupt conditions, which al-
ways have global effect).

" INIT performs the following functions:

® Cilears pending operations in current program segment
(FOR.. NEXT loops, GOSUBs)

® Closes open logical units
® Closes open files
® Deletes handler linkages

® Resets ENABLE and DISABLE on all conditions to their
power-up defauits

® Ressets the ANGLE, AUTOLOAD, FUZZ, and UPCASE
parameters to their power-up defaults

4041 PROGRAMMER’S REFERENCE

® Resets DATA statement pointer in current program
segment

® Clears pending interrupts

® Clears ‘‘last error’’ values and repetition count values on
ASK$(*‘ERROR”) function

Clears last result from VAL function
Takes 4041 out of proceed mode (if in proceed mode)

Clears function key queue

Clears front panel display

INIT VAR followed by one or more variable names sets the
value of any specified numeric variables to 0, and that of
any specified string variables to “‘null’’.

Defined variables retain their type and dimensions.
Undefined and deleted variables are set to default types
(short-floating-point scalars for numeric variables, string-

scalars for string variables).

INIT VAR followed by a label name initializes the label, giv-
ingitavalue of 0.

INIT VAR ALL sets the values of all numeric variables in
memory (including undefined ones) to 0, and the values of
all string variables in memory (including undefined ones) to
null.

INIT VAR ALL has no effect on deleted variables.

INIT VAR ALL has no effect on labels.

INIT ALL performs an INIT foliowed by an INIT VAR ALL.

INIT SELFTEST erases the program and all variables in
memory, and re-performs the 4041’s power-up self-test.

5-17

ENVIRONMENTAL CONTROL
SET

The SET Statement

Syntax Form: [line-no.] SET {ANGLE numexp]

{AUTOLOAD numexp}

{CONSOLE strexp}

{DEBUG strexp}

{DRIVER strexp]

{FUZZ numexp,numexp,numexp,numexp
{PROCEED numexp}

{SYNTAX strexp]

{TIME strexp}

{UPCASE numexp]

ANGLE value of ANGLE parameter]

AUTOLOAD value of AUTOLOAD parameter]

CONSOLE stream spec of system console device]

DEBUG stream spec of system debug device]

DRIVER stream spec giving physical parameters for GPIB or COMM driver]

FUZZ number of digits to compare for short floating point,
number to consider zero for short floating point,
number of digits to compare for long floating point,
number to consider zero for long floating point]

{PROCEED value of PROCEED parameter}

{SYNTAX stream spec of system syntax device]

{

{

Descriptive Form: line-no.] SET

TIME “DD-MMM-YY HH:MM:SS”’}
UPCASE value of UPCASE parameter]

PURPOSE

The SET command changes features of the 4041’s pro-
gramming environment.

5-18 4041 PROGRAMMER’S REFERENCE

SET ANGLE

ENVIRONMENTAL CONTROL
ANGLE, AUTOLOAD

Syntax Form:

Descriptive Form:

[line-no.] SET ANGLE numexp

[line-no.] SET ANGLE current coordinate system for trigonometric functions

SET ANGLE chooses a coordinate system for trigonometric
functions. The ANGLE parameter takes a value of 0 for radi-

ans, 1 for degrees, and 2 for grads. The defaultis 0
(radians).

SET AUTOLOAD

The numeric expression in the SET ANGLE statement is
rounded to the nearest integer. A result otherthan 0, 1, or 2
results in an error.

Syntax Form:

Descriptive Form:

[line-no.] SET AUTOLOAD numexp

[line-no.] SET AUTOLOAD current setting of AUTOLOAD function

SET AUTOLOAD sets the AUTOLOAD parameter, which
enables or disables the 4041’s AUTOLOAD function. An
AUTOLOAD parameter value of 1 enables the AUTOLOAD
function, while an AUTOLOAD parameter vatue of 0 dis-
ables it.

The numeric expression in the SET AUTOLOAD statement

is rounded to the nearest integer. A result other than O or 1
results in an error.

4041 PROGRAMMER’S REFERENCE

The user invokes the AUTOLOAD function by pressing ap-
propriate keys on the system console device: either the
AUTOLOAD key on the front panel or P/D keyboard, or the
CTRL-V keys on a computer terminal attached to the 4041
via an RS-232-C interface port.

The AUTOLOAD function clears memory, then loads and
runs a file called "AUTOLD’” from the DC-100 tape. If no
tape is in the drive, or if the tape does not contain an
“AUTOLD’ file, the AUTOLOAD function has no effect.

5-19

ENVIRONMENTAL CONTROL
CONSOLE, DEBUG

N
SET CONSOLE
Syntax Form: [line-no.] SET CONSOLE strexp
Descriptive Form: [line-no.] SET CONSOLE stream spec of system console device
The SET CONSOLE statement specifies the stream spec devices other than the console be the system debug and
for the system console device. syntax devices, a SET DEBUG or SET SYNTAX statement
must be executed.
The 4041 powers up with the front panel as the system con-
sole device.
Example:
The SET CONSOLE statement is used to designate another
driver as the system console device. COMMO (and COMMH1, 200 Set console "commO(edi=sto):"
in systems configured with Option 1) are legal system con-
sole devices in addition to FRTP. This command makes the standard RS-232-C interface port
the system console device, and sets the ““EDIT"’ logical pa-
NOTE rameter to “‘Storage’” (echoes “‘Rubout’’ as a backslash-
character stringbackslash sequence).
The SET CONSOLE statement affects only logical pa- 9 a)
rameters of tﬁe system consp/g device. Physical pa- 200 Set console "frip(vies3,rat=0.75):"
rameters (while accepted within the stream spec) are
not affected. Physical parameters can only be The front panel and P/D keyboard are made the system

changed by means of the SET DRIVER statement.

After a SET CONSOLE statement is executed, the system
debug and system error devices revert back to the system
console device, if no SET DEBUG or SET SYNTAX state-
ment has been executed previously. If the user intends that

SET DEBUG

console device. Lines appearing on the front panel will be
displayed for three seconds. Lines longer than 20 charac-
ters will ““scroll”’ across the display at the rate of one char-
acter every 3/4 second.

Syntax Form: [line-no.] SET DEBUG strexp

Descriptive Form:

[line-no.] SET DEBUG stream-spec

SET DEBUG selects the device that debugging information
(i.e., information generated by TRACE and BREAK flags) is
sent to.

The SET DEBUG stream spec defaults to the system con-
sole device upon power-up. After a SET DEBUG statement
has been executed, subsequent SET CONSOLE state-
ments will not change the system debug device.

5-20

Example:

Set debug "frip:"

Information generated by TRACE and BREAK flags will ap-
pear on the front panel alphanumeric display.

4041 PROGRAMMER'’S REFERENCE

SET DRIVER

ENVIRONMENTAL CONTROL
DRIVER

Syntax Form:

Descriptive Form:

[line-no.] SET DRIVER strexp

[line-no.] SET DRIVER stream-spec

The SET DRIVER statement sets physical parameters for
the GPIB, COMM, and OPT2 drivers.

Physical parameters for the GPIBO and GPIB1 drivers
include:

® My Address (MA)

® System Controller (SC)

® Polled With Nothing To Say (PNTs)

For more information about these parameters, see Section
9, Instrument Control With GPIB, and Appendix D.

Physical parameters for the COMMO and COMM1 drivers
include:

® Baud Rate (BAUd)

Integer Baud (IBAud)

No. of bits transmitted (BITs)

Parity (PARity)

No. of stop bits (STOp)

ASCllI or Item format (FORmat)

Size of typeahead buffer (TYPe)

Type of flagging in effect (FLAQ)

Data Set Ready Modem Control Line (DSR)
Clear To Send Modem Control Line (CTS)

Data Terminal Ready Modem Control Line (DTR)
Error Reporting (ERR)

For more information about these parameters, see Section
10, RS-232-C Data Communications, and Appendix D.

4041 PROGRAMMER’S REFERENCE

Physical parameters for the OPT2 driver (available on 4041
units equipped with Option 2) include:

® [REG: the number of the register to be written into to turn
off the “SRQ’’ interrupt.

® |VAL: the value to be sent to the IREG register to turn off
the “SRQ’ interrupt.

For more information on these parameters and on the OPT2
driver, see Section 8 Input/Output, Section 12 Interrupt Han-
dling, and Appendix D Stream Specifications.

Physical parameters for the GPIBO, GPIB1, COMMO, and
COMM1 drivers can only be adjusted via the SET DRIVER
statement. Although physical parameters may appear in
stream specs as part of other statements, the values given
for those parameters will be ignored.

Similarly, although logical parameters may appear in the
stream spec following the SET DRIVER keywords, logical
parameter values given will have no effect.

NOTE

The SET DRIVER statement has different effects on
physical parameters not included in the stream spec
when executed on the COMM, GPIB, and OPT2
drivers.

When the SET DRIVER statement sets physical param-
eters for one of the COMM drivers, all physical param-
eters not included in the stream spec given in the SET
DRIVER statement ARE SET TO THEIR DEFAULT
VALUES.

When the SET DRIVER statement sets physical param-
eters for one of the GPIB drivers or the OPT2 driver, all
physical parameters not included in the stream spec
given in the SET DRIVER statement RETAIN THEIR
PREVIOUS VALUES.

REV JAN 1984 5-21

ENVIRONMENTAL CONTROL
Fuzz

Example:

200 Set driver "gpib(ma=29,sczno):"
The 4041 is assigned a primary address of 29 on the bus
connected to the standard GPIB interface port. The 4041 is
also told that it is not the system controller.

400 Set driver "opt2(ireg=5,ival=7):"

This example sets the OPT2 driver’s IREG parameter to 5,
and the IVAL parameter to 7. This means that, when a

device connected to the Option 2 interface port generates
an interrupt, the 4041 will send a value of 7 to the device’s
register number 5 to turn the interrupt off.

In Example 5-5, the device attached to the optional
RS-232-C interface port will communicate with the 4041 at a
baud rate of 4800, transmitting 7-bit characters with even
parity. When communicating with this device, the 4041 will
have a typeahead buffer of 500 bytes. All other physical
parameters are set to their default vaiues.

300 Set driver "comml(bauz4800,bit=7,par=zeve,typ=500):"

Example 5-5.

SET FUZZ

Syntax Form: [line-no.] SET FUZZ

Descriptive Form: [line-no.] SET FUZZ

numexp,numexp,numexp,numexp

number of digits to compare for short floating point,
number to consider zero for short floating point,
number of digits to compare for long floating point,
number to consider zero for long floating point

SET FUZZ sets the number of digits to be compared and the
number to be considered equal to zero for comparisons in-
volving short floating point and long floating point numbers.

SET FUZZ takes four arguments.

Argument 1 is the approximate number of decimal digits
used for comparisons of regular floating point numbers.
(This number is approximate because the comparison of a
decimal number with the binary form in which that number
is stored is not always exact.)

5-22

Argument 2 is the number to consider equal to zero when
comparing short floating point numbers. This argument
must be within the range of short floating point numbers
(maximum: + 3.40282E38; minimum: + 2.93874E-39). Any
short floating point number whose absolute value is less
than or equal to the absolute value of this argument is con-
sidered equal to zero.

Argument 3 is the approximate number of decimal digits
used for comparisons of long floating point numbers.

4041 PROGRAMMER’S REFERENCE

Argument 4 is the number to consider equal to zero when
comparing long floating point numbers. This argument
must be within the range of long floating point numbers
(maximum: + 1.7976931348623E308; minimum:
+5.562684646269E-309). Any long floating point number
whose absolute value is less than or equal to the absolute
value of this argument is considered equal to zero.

The power-up defaults for SET FUZZ are: 6,1E-14,14,
1E-64.

When comparing numbers of ‘unequal’’ precision (e.g., an
integer with a regular floating point number, or a regular
floating point with a long floating point), the less-precise
number is always converted to the more-precise form be-
fore comparison. The FUZZ parameter for the more-precise
number representation is then used to determine the out-
come of the comparison.

ENVIRONMENTAL CONTROL
FUzz

Example:

In Example 5-6, line 100 sets the FUZZ parameters as fol-
lows: for regular floating point comparisons, five digits of
each number are compared, and any number within the
range -1E-16 to + 1E-16 is considered equal to zero. For
long floating point comparisons, ten digits are compared,
and any number within the range -1E-20 to + 1E-20 is con-
sidered equal to zero.

Lines 110 and 120 set the values of short floating point vari-
ables A and B to 3.14159 and 3.14158, respectively.

Line 130 compares A and B and prints a message, depend-
ing on whether A is equal to B. (Since only the first five digits
of short floating point numbers are to be compared, A is
equal to B in this case.)

Line 140 allocates memory space for a long floating point
variable C.

Line 150 sets the value of C to 7.5E-21.

Line 160 compares C to zero, and prints a message, de-
pending on whether or not C is equal to zero. (Since any
number whose absolute value is less than or equal to 1E-20
is to be considered equal to zero, C is equal to zero in this
case.)

100 Set fuzz 5,1E-16,10,1E-20
110 A=3.14159
120 B=3.14158

140 Long ¢
150 C=7.5E-21

170 End
¥run
A=B
C=0

130 If a=b then print "A=B" else print "ALB"

160 If ¢=0 then print "C=0" else print "C<OOM

Example 5-6.

4041 PROGRAMMER’S REFERENCE

5-23

ENVIRONMENTAL CONTROL
PROCEED, SYNTAX

SET PROCEED

Syntax Form:

[line-no.] SET PROCEED |

Descriptive Form: 1]
(0}

[line-no.] SET PROCEED numexp

The SET PROCEED statement puts the 4041 into or out of
proceed mode.

When the 4041 is in proceed mode, program statements
continue to execute after an INPUT or PRINT statement in-
vokes an l/O driver, and while the I/O is being performed.

When the 4041 is not in proceed-mode, program statements
execute strictly sequentially, i.e., an INPUT or PRINT opera-
tion must be completed before the next statement in the
program executes:

The 4041 is NOT in proceed mode after power-up. Execut-

ingan INIT, RUN, DEBUG, or DELETE ALL statement also
takes the 4041 out of proceed mode.

SET SYNTAX

The numeric expression given after the SET PROCEED
keywords must evaluate to a real number rounding to 1 or 0.
Any other value results in an error.

Example:

300 Set proceed 1
This statement puts the 4041 into proceed-mode.
400 Set proceed 0

This statement takes the 4041 out of proceed-mode.

Syntax Form: [line-no.] SET SYNTAX strexp

Descriptive Form:

[line-no.] SET SYNTAX stream-spec

The SET SYNTAX statement selects the device to which
system error messages are sent.

SET SYNTAX defaults to the system console device upon
power-up.

After a SET SYNTAX statement has been executed, subse-

quent SET CONSOLE statements do not affect the setting
of the system syntax device.

5-24

Example:

Set syntax "frtp:"
This statement sends all system error messages to the front
panel alphanumeric display. Syntax errors sent to the front

panel can be corrected using the P/D keyboard’s editing
keys.

4041 PROGRAMMER’S REFERENCE

SET SYSDEV

ENVIRONMENTAL CONTROL
SYSDEV

Syntax Form:

Descriptive Form:

[line-no.] SET SYSDEV strexp

fline-no.] SET SYSDEYV driver-spec

SET SYSDEV sets the default driver spec used in subse-
qguent stream specs that only specify a file spec.

Any TAPE parameter values are legal within the driver spec-
ification except OPEn = REPlace, OPEn = UPDate, and
PHYsical = YES.

The user may override any SYSDEV parameter value by
specifying a different value.

The driver specification given in the SET SYSDEV state-
ment must terminate with a colon.

The SYSDEV driver spec powers up to “TAPE:” by default.

Examples of the use of SET SYSDEV are to enable the user
to get long-form tape directories by default, or to suppress
directory modification or read-after-write verification in order
to save time.

NOTE

The word ““SYSDEV" is still a legal name for variables
and subprograms in 4041 BASIC.

4041 PROGRAMMER’S REFERENCE

Example:

Set sysdev "tape(lon=yes):"

Sets the default value of the LON parameter to ““YES”.
Results in long-form directories when the “DIR’”’ command
is executed.

Set sysdev "tape(ver=zno,clizyes,lonzyes):"
Suppresses read-after-write verification; automatically clips
files when closed; sets default value of LON parameter to

‘'yes’’ (results in long-form directories when the DIR state-
ment is executed).

Set sysdev spec$

Sets the SYSDEYV stream spec to the contents of string vari-
able Spec$.

5-25

ENVIRONMENTAL CONTROL
TIME

SET TIME

Syntax Form: [line-no.] SET TIME strexp

Descriptive Form:

[line-no.] SET TIME day:month:year hours:minutes[:seconds]

SET TIME sets the date-and-time parameter for the 4041.
The argument following the SET TIME keywords must be a
string of the form ‘DD-MMM-YY HH:MM:SS”".

To enter the month into the date portion of the date-and-
time string, use the first three letters of that month's name
(JAN for January, FEB for February, etc), or use the number
of the month (1 for January, 2 for February, etc.).
Regardless of which way the month is entered, the ASK$
("TIME”) function returns the three-letter form.

The TIME parameter uses a 24-hour clock; 2:00 p.m., for
example, is entered in the time portion of the date-and-time
string as "14:00:00". Seconds are optional, and default to
":00”. Midnight is entered as "00:00:00".

The 4041 automatically updates the date portion of the
date-and-time string whenever "00:00:00" is sensed in the
time portion of the date-and-time string after "23:59:59" is
encountered. The 4041 takes leap years into account for
changing the date.

If no SET TIME command is executed, date and time are
measured from the time the 4041 powers up, with the mo-
ment of power-up receiving the date and time “01-JAN-81
00:00:00"". It is a good idea to set the date and time when-
ever the 4041 is powered up.

b-26 REV JAN 1984

The system verification tape includes a step to set the date
and time; another way to guarantee that date and time are
set whenever the 4041 is powered up is to create an
“AUTOLD” file on a DC-100 tape with instructions prompt-
ing the user to set a date and time. This file is run whenever
the user presses the AUTOLOAD key on the front panel or
P/D keyboard (or CTRL-V on a user terminal, if “COMMO:”’
is the system console device).

Example:
2000 Set time "6-JAN-82 1U:45:00"

This command sets the date and time to 2:45 p.m., January
6th, 1982. This parameter is automatically updated by the
4041 as long as it remains powered up; thus, the response
to the function ASK$(' TIME”’) five minutes after time had
been set by the above command would be *‘6-JAN-82
14:50:00".

4041 PROGRAMMER’S REFERENCE

SET UPCASE

ENVIRONMENTAL CONTROL
UPCASE

Syntax Form: [line-no.] SET UPCASE numexp

Descriptive Form: [line-no.] SET UPCASE |1
{0

!
3
!
3

SET UPCASE determines whether or not upper case letters
are considered equal to lower case letters for string
comparisons.

The UPCASE parameter takes a value of 0 for faise (upper
case NOT equal to lower case), and 1 for true (upper case
equal to lower case). The default is 1 (true). Attempting to
assign a value to the UPCASE parameter that does not
round to 0 or 1 results in an error.

Example:

NOTE

Example 5-7 requires the use of either the P/D key-
board or a computer terminal capable of producing
both upper case and lower case characters.)

In Example 5-7, line 100 sets the UPCASE parameter to 0.
When the program branches to line 200, “ABC” is not con-
sidered equal to “abc”, and the message “NOT EQUAL” is
printed on the system console device.

Line 120 sets the UPCASE parameter to 1. When the pro-
gram branches to line 200, ““ABC’’ is considered equal to
“‘abc’’, and the message ‘“‘EQUAL” is printed on the system
console device.

100 Set upcase 0
110 Gosub 200
120 Set upcase 1
130 Gosub 200
140 Goto 300

210 Return
300 End
¥*run

NOT EQUAL

EQUAL
*

200 If "ABC"="abc" then print "EQUAL" else print "NOT EQUAL"

Example 5-7.

4041 PROGRAMMER’S REFERENCE

5-27

Section 6

MEMORY MANAGEMENT

INTRODUCTION
The commands described in this chapter are used to These commands include: COMPRESS, DATA, DELETE
allocate and de-allocate memory space for variables ALL, DELETE VAR, DIM, INTEGER, LET, LONG, READ,
and program lines. and RESTORE.

4041 PROGRAMMER'’'S REFERENCE 6-1

MEMORY MANAGEMENT
COMPRESS, DELETE ALL

The COMPRESS Statement

Syntax and
Descriptive Forms: [line-no.) COMPRESS {ALL]

PURPOSE

The COMPRESS statement compresses blocks of
unused memory into one block.

The DELETE ALL Statement

EXPLANATION

Deleting variables or program lines, either during
execution or during program development, leaves
blocks of fragmented memory. The COMPRESS state-
ment gathers unused memory into one contiguous
block. The 4041 can then service larger requests for
memory.

The ALL keyword is optional.

Syntax and
Descriptive Forms: DELETE ALL

PURPOSE

The DELETE ALL statement deletes all program lines
and variables from memory and closes all open logical
units.

6-2

DELETE ALL waits for any proceed mode 1/0 opera-
tions to complete before executing.

4041 PROGRAMMER’S REFERENCE

The DELETE VAR Statement

MEMORY MANAGEMENT
DELETE VAR

Syntax Form:

Descriptive Form:

fline-no] DELETE VAR {var[varl. .}
{ALL

[tine-no] DELETE VAR {variable-name{,variable-name]. . }
{ALL

}

J

PURPOSE

The DELETE VAR statement releases storage allocated
for one or more variables.

EXPLANATION

DELETE VAR followed by a list of variable names
clears the storage space allocated for each variable in
the list.

The 4041 also marks each deleted variable as “delet-
ed” in the internal symbol table. Such variables can be
re-used in the program (i.e., you can still execute the
statement “X= 20" after deleting X).

The “type” declaration of a deleted variable is also
deleted when the DELETE VAR command is executed.
Thus, you must execute an INTEGER or LONG state-
ment in order to re-use a deleted variable as an
INTEGER or LONG variable.

4041 PROGRAMMER’S REFERENCE

Similarly, an array variable must be re-dimensioned
with the DIM statement if it is to be used as an array
after being deleted.

DELETE VAR ALL deletes all variables in the current
subprogram block.

DELETE VAR does not delete labels. The only way to
delete labels is to delete the line in which the label is
contained.

EXAMPLE

1000 Delete var a,b$,c

This command deletes the variables A, B$, and C.

6-3

MEMORY MANAGEMENT
DIM

The DIM Statement

Syntax Form:

Descriptive Form:

[line-no] DIM {numvar(numexpl[,numexp])} [..1]
{strvar[{(numexp[,numexp])][TO numexpl}

[line-no] DIM {numeric-array(no.-of-rows[,no.-of-columns))} [. .]
{stringl(no.-of-rows[,no.-of-columns]) [TO max-string-lengthl}

PURPOSE

The DIM statement declares a variable to be an array
and allocates storage for it.

EXPLANATION

The DIM statement does not change the type (integer,
short-floating-point, long-floating-point) of an existing
variable. If a variable named in a DIM statement has not
been referenced previously, the DIM statement assigns
it a type of short-floating-point by default.

If a variable has been declared as a scalar prior to
execution of the DIM statement, the variable’s scalar
value is copied into each element of the array when the
DIM statement is executed.

If a variable has been previously declared as an array
prior to execution of the DIM statement, the DIM
statement performs a row-major mapping from the
“old” array size into the “new” array size.

If the new array contains fewer elements than the old
array, the extra elements from the old array are
truncated, after the old array elements have been
copied in row-major fashion.

If the new array contains more elements than the old
array, the old array is copied into the new array in row-
major fashion, then the extra elements in the new array
are assigned a value of O (for numeric arrays) or null
(for string arrays).

Array Subscripts

The lower bound of array subscripts is always 1. The
upper bound of array subscripts is the rounded value
of the numeric expression contained in the latest
executed DIM statement for that array. The maximum
allowable array subscript is 32,767.

6-4

String Arrays

Arrays of strings may be declared, where each element
of the array is a string. A maximum string length may be
set by means of the TO keyword. The default string
length for a string array is 72 characters. The string
size may be decreased, but not increased, without
deleting the current values. The maximum length of any
string or string array element is 32,767 characters.

Array Initialization

When the DIM statement is used on a previously
undeciared numeric variable, each element of the
numeric array is initialized to 0.

When the DIM statement is used on a previously
undeclared string variable, each element of the string
array is initialized to null.

EXAMPLE
2030 Dim ab(5,10),b$(100) to 80

This statement reserves storage space for a 50-
element, two-dimensional numeric array Ab and a 100-
element, one-dimensional string array B$. Each
element of B$ may be up to 80 characters long. If
variable Ab was declared previously, it retains its type
(integer, short-floating-point, long-floating-point), else it
becomes a short-floating-point variable by default.

4041 PROGRAMMER’S REFERENCE

The INTEGER Statement

MEMORY MANAGEMENT
INTEGER

Syntax Form:

Descriptive Form:

{line-no.] INTEGER numvar[(numexp[,numexp])]
[,numvarl(numexpl,numexpil. ..

[line-no.] INTEGER numvar{(no.-rows[,no.-columns])]
[,numvar[{no.-rows[,no.-columns))]l. ..

PURPOSE

The INTEGER statement declares a variable to be of
type integer and (optionally) reserves storage for an
integer array.

EXPLANATION

The INTEGER statement declares a variable to be of
type integer. If the variable has been previously
declared and has a different type, or if the variable was
previously undeclared, the INTEGER statement sets
the value of the variable to O.

An integer variable may be dimensioned as an array in
the INTEGER statement itself or in a separate DIM
statement. Subscript rules are as described in the
“DIM” statement.

if an INTEGER statement declares a previously-de-
clared integer scalar variable to be an array variable,
the scalar's value is copied into each element of the
integer array.

4041 PROGRAMMER'S REFERENCE

If an INTEGER statement changes the dimensions of a
previously-declared integer array variable, the “oid”
array values are mapped into the “new"” array values in
row-major fashion.

If the new array contains fewer elements than the old
array, extra elements from the old array are ignored. If
the new array contains more elements than the old
array, the row-major mapping is performed, and the
remaining elements in the new array are assigned a
value of 0.

EXAMPLE

3040 Integer inum(5,10)

This statement sets up a 50-element array Inum of
values to be stored in integer format.

6-5

MEMORY MANAGEMENT
LET

The LET Statement

Syntax Form:

Descriptive Form:

[line-no.] [LET] {numvar= numexp}
{strvar= strexp}

[line-no.] [LET] {numeric-variable= numeric-expression}
{string-variable = string-expression}

PURPOSE

The LET statement is used to assign value to variables
during program execution.

EXPLANATION

The LET statement requires a variable as a parameter,
followed by the assignment operator (=), followed by
an expression representing the value to be assigned to
the variable.

The variable to the left of the assignment operator can
be any valid variable name for either a numeric or
string simple or array variable. Either entire arrays or
single elements of arrays can be specified. Multiple
assignment, however (i.e., A= B= 2) is not performed.

NOTE

The statement “A= B= 2" is legal, but operates
differently than one might expect. The first equal
sign is interpreted as an assignment operator, but
the second is interpreted as a relational operator;
thus, the variable A is assigned a value of 1 if the
expression “B= 2" s true, and a value of 0 if it is
not.

If the variable to the left of the assignment operator is a
simple numeric variable, a numeric array, or an element
of a numeric array, the value to the right of the
assignment operator must reduce to a numeric expres-
sion.

If the variable to the left of the assignment operator is a
simple string variable, a string array, or an element of a
string array, the value to the right of the assignment
statement must reduce to a string expression.

6-6

Attempting to assign a string into a string variable,
when the string is longer than the string variable
dimension, results in an error. Attempting to INPUT a
string longer than the string variable dimension, how-
ever, does not result in an error; the input string is
simply truncated to the variable's dimensioned length.

String variables that have not been previously
dimensioned are assigned a default dimension of 72
characters.

The LET keyword is optional.

EXAMPLES
1020 Dim a(5)
1030 Let a=10

Line 1020 reserves storage for a five-element floating-
point numeric array A. Line 1030 assigns the value 10
to each element of A. The LET keyword in line 1030 is
optional.

1040 Dim string$ to 20
1050 Input prompt "string:":string$

Suppose the user attempts to input the string “This
string is longer than 20 characters” in response to the
prompt in line 1050. Then, the variable String$ will
contain the first twenty characters on the input string;
in this case, String$ would contain “This string is
longe”. No error would be generated.

Had line 1050 been an assignment statement, an error
would have been generated:

1040 Dim string$ to 5
1050 String$="longstring"
¥run

#** ERROR # 64 LINE # 1050

4041 PROGRAMMER’S REFERENCE

The LONG Statement

MEMORY MANAGEMENT
LONG

Syntax Form:

Descriptive Form:

[line-no] LONG numvar[(numexp[,numexp])]
[,rumvarl(numexpl[,numexp)]l...

{line-no.] LONG numvar[(no.-rows[,no.-columns])]
[,numvarl{no.-rows[,no.-columns])]. ..

PURPOSE

The LONG statement declares a variable to be of long-
floating-point type and (optionally) reserves storage for
a long-floating-point array.

EXPLANATION

The LONG statement stores a variable in “‘double-
precision” format (i.e., up to 14 significant digits are
stored instead of 6).

The LONG statement declares a variable to be of long-
floating-point type. If the variable has been previously
declared and has a different type, or if the variable was
previously undeclared, the LONG statement sets the
value of the variable to 0.

A long-floating-point variable may be dimensioned as
an array in the LONG statement itself or in a subse-
quent DIM statement. Susbscript rules are as de-
scribed in the “DIM” statement.

If a LONG statement declares a previously-declared
long-floating-point scalar variable to be an array
variable, the scalar’'s value is copied into each element
of the long-floating-point array.

4041 PROGRAMMER'S REFERENCE

If a LONG statement changes the dimensions of a
previously-declared long-floating-point array variable,
the “old” array values are mapped into the “new” array
values in row-major fashion.

If the new array contains fewer elements than the old
array, extra elements from the old array are ignored. If
the new array contains more elements than the old
array, the row-major mapping is performed, and the
remaining elements in the new array are assigned a
value of 0.

EXAMPLE
12000 Long e(10)
12010 E(1)=2.718281826

12020 E(2)=3.717654925

Line 12000 allocates storage for a ten-element array E
of eight-byte fioating point values. Each element of E
may contain up to 14 significant digits.

6-7

Section 7

CONTROL STATEMENTS

INTRODUCTION

This section describes statements in 4041 BASIC that
start or stop program execution or change the normal
order in which statements are executed.

The most commonly used statement to start program
execution is the RUN statement. The DEBUG statement
also starts program execution, but differs from RUN in
that DEBUG starts execution with the 4041 in “debug”
mode. The DEBUG statement is described in Section 4,
“Program Editing, Debugging, and Documentation”.

4041 PROGRAMMER’S REFERENCE

Normal order of execution for a 4041 BASIC program is
sequential, from the statement with the lowest line
number to that with the highest. Statements that can
change this order include the CALL statement, the FOR
and NEXT statements, the GO TO and GO SUB
statements, and the IF. . THEN. . .ELSE statement.

The normal order of execution can also be changed by
the sensing of an interrupt condition and transfer of
control to a handler for that condition. Interrupts and
how they are handled are described in Section 12,
“Interrupts and Errors”.

7-1

CONTROL STATEMENTS
CALL

The CALL Statement

Syntax Form:

Descriptive Form:

line-no. CALL subname [(numexp [,numexp]. .)]
strexp

[,strexpl

line-no. CALL subprogram-name [(argument[argument]. .)]

PURPOSE

The CALL statement transfers control to a user-defined
subprogram.

EXPLANATION

The CALL statement transfers control to a user-defined
subprogram and can pass arguments to it.

Numbers and types (string or numeric) of arguments
contained in parentheses in the CALL statement must
match the numbers and types of parameters in the SUB
statement defining the subprogram.

For more information about subprograms, their uses,
and their restrictions, see Section 11, “Subprograms
and User-Defined Functions.”

The CALL statement specifies a subprogram name, as

opposed to the GOSUB or GOTO statements, which
specify a line number or label.

7-2

EXAMPLE

1230 Call bilab(count,id$)

5000 Sub bilab(limit,test$)

Line 1230 sends program control to the subprogram
named BilLab. BiLab is executed, with the parameter
Limit assigned the value of the program variable Count,
and Test$ assigned the string in the variable ID$. When
a RETURN statement is reached, the line following
1230 is executed.

4041 PROGRAMMER'S REFERENCE

AN

The CONTINUE Statement

CONTROL STATEMENTS
CONTINUE

Syntax and
Descriptive Forms: CONTINUE

PURPOSE

The CONTINUE statement is used to resume program exe-
cution after the 4041 is PAUSEJ, or to begin execution with-
out a re-start from a line number specified by a GOTO state-
ment.
NOTE
The CONTINUE statement is only available on

4041 units equipped with Option 30 (Program
Development ROMs).

EXPLANATION

The 4041 becomes PAUSEd when:

1. A breakpoint is encountered in DEBUG mode;

2. The front-panel or P/D keyboard PAUSE keys are
pressed while the ““FTRP:” driver is the system con-

sole device;

3. CTRL-Bis pressed on a user terminal while one of the
“COMM:" drivers is the system console device; or

4, A STOP statement is executed.

4041 PROGRAMMER'S REFERENCE

Continuing from a WAIT

When the 4041 becomes PAUSEAd during execution of a
WAIT statement, executing a CONTINUE statement re-
sumes execution of the WAIT. The exception to this rule oc-
curs when an immediate-mode statement transfers control
elsewhere while the 4041 is PAUSEd.

Executing Without a Re-Start

The CONTINUE statement can be used in immediate
mode along with the GO TO or GO SUB statements to
start a program at a specified line. Thus, the commands

¥*goto 1000
*continue

start program execution at line 1000. When executed
this way, the program is not initialized as it would be if
the program were started using “RUN line-number”.
(See the description of the RUN command, later in this
section, for more information.)

7-3

CONTROL STATEMENTS

END
TN
The END Statement
Syntax and
Descriptive Forms: line-no. END
PURPOSE EXPLANATION
The END statement has two meanings in 4041 BASIC. A 4041 BASIC program consists of a series of program
During program development, entering an END state- segments. The first program segment is the main
ment marks the end of a program segment to the program. The second and succeeding program seg-
translator. During program execution, encountering an ments are subprograms or user-defined functions.
END statement terminates the program. Every program segment besides the main program
starts with a SUB or FUNCTION statement and ends
with an END statement. The END statements indicates
the end of a program segment.
An END statement also terminates the program when
encountered during execution. END closes all open
files, closes all logical units, and flushes all waiting
tasks.
N
T

7-4

4041 PROGRAMMER'’S REFERENCE

The EXIT Statement

CONTROL STATEMENTS
EXIT

Syntax Form:

Descriptive Form:

[line-no] EXIT [numexp] TO numexp

[line-no.] EXIT [no.-of-loops-to-exit-from] TO destination

PURPOSE

The EXIT statement is used to clean up the 4041’s run-
time stack when exiting prematurely from a FOR. NEXT
loop.

EXPLANATION

The EXIT statement clears a specified number of FOR
statements from the run-time stack.

The 4041 has an internal run-time stack for storing
operations requiring more than one statement to
complete (e.g., FOR, GO SUB, and CALL statements,
and invocations of user-defined functions).

An operation is added to the stack whenever one of
these statements is encountered in the program. The
operation is deleted from the stack when its “partner”
statement (e.g.,, the RETURN statement for GO SUBs
and subprograms) is executed.

FOR. NEXT loops present a special case, however,
since not every FOR statement may be cleared off the
run-time stack. If the program exits the FOR.NEXT loop
prematurely, the FOR statement is not cleared off the
run-time stack. Instead, the FOR statement remains on
the stack, taking up a small amount of memory space
that would otherwise be available to the user.

This process is illustrated below. Suppose the 4041 is
executing the following section of code:

150 For izt to 10

200 If (endition) then goto jumpout

210 Next i

220 Jumpout: ! execution continues from here
230 For i=1 to 10

300 Next i

400 End

When line 150 is executed, a FOR statement is added
to the run-time stack.

4041 PROGRAMMER’S REFERENCE

If the condition specified in line 200 is never met, the
FOR. NEXT loop will be executed ten times and wili
exit normally, and the FOR statement will be deleted
from the run-time stack.

If the condition specified in line 200 is met, however,
the FOR. .NEXT loop is terminated prematurely, and the
FOR statement is not cleared from the run-time stack.

This accumulation of FOR statements on the stack is
not necessarily a problem as long as the program
doesn’t try to reenter a loop already on the stack.

When a FOR statement is reached, the stack is
checked for uncleared FOR statements that use the
same index variable. Thus, in the above example, line
230 cannot be executed because another FOR state-
ment using | as an index variable cannot be put on the
stack. Similar reasoning shows why FOR. NEXT loops
that use the same index variable cannot be nested.

The EXIT statement provides the solution. Suppose the
example code was re-written as:

150 For i=1 to 10

200 If (endition) then exit to jumpout
210 Next i

220 Jumpout: ! execution continues from here
230 For i=1 to 10

300 Next i

400 End

Line 200 tells the 4041 to “clean up” (i.e., delete) the
last FOR statement from the run-time stack and
continue execution from the line labeled “JumpOut”.
JumpOut can now be executed, because the conflicting
FOR statement is removed by the exit statement.

Entering a numeric expression between the keyword
EXIT and the keyword TO tells the 4041 to clean up the
specified number of FOR statements from the run-time
stack before continuing execution.

7-5

CONTROL STATEMENTS
EXIT

When using the EXIT statement, take care to exit
outside the FOR. .NEXT loop. Otherwise the EXIT
statement clears away the FOR statement from the run-
time stack, and the program produces an error when
the NEXT statement is encountered.

The EXIT statement does not need to be placed within
a FOR. .NEXT loop. Whenever it is encountered, it
removes the last FOR statement from the stack. If a
FOR statement is not already on the stack, the EXIT
statement causes an error.

7-6

EXAMPLE
100 For i=1 to n
110 For j=1i to i4+50
120 For k=j to j+10
200 If (cndition) then exit 3 to jump
250 Next k
260 Next j
270 Next i
300 Jump: fexecution continues from here

Line 200 clears three FOR statements off the run-time
stack, and resumes execution from the line labeled
“Jump”. Had line 200 read “. EXIT 2 TO Jump”, one
FOR statement would have remained on the run-time
stack.

4041 PROGRAMMER'S REFERENCE

T

The FOR Statement

CONTROL STATEMENTS
FOR, NEXT

Syntax Form:

Descriptive Form:

line-no. FOR numvar = numexp TO numexp [STEP numexp]

line-no. FOR index-variable = starting-value TO limiting-value [STEP increment]

The NEXT Statement

Syntax Form: [tine-no.] NEXT numvar

Descriptive Form:

[line-no.] NEXT index-variable

PURPOSE

The FOR and NEXT statements work together to
control the number of times a section of program is
repeatedly executed.

EXPLANATION

When a FOR statement is executed, an index variable
is specified, and a starting value, limiting value, and
increment (default: 1) are evaluated.

The index variable is assigned the starting value.
Succeeding program lines are then executed until a
NEXT statement with the same index variable is
encountered.

At this point the increment value is added to the
current value of the index variable. The new value of
the index variable is then compared with the ending
value specified by the FOR statement.

If the increment value is positive, control passes to the
line following the NEXT statement if the new value of
the index variable is greater than the limiting value
given in the FOR statement. Otherwise, the line after
the FOR statements for the index variable is executed
again.

4041 PROGRAMMER’S REFERENCE

IF the increment value is negative, control passes to
the line following the NEXT statement if the new value
of the index variable is less than the limiting value
given in the FOR statement. Otherwise, the line after
the FOR statement for the index variable is executed
again.

If the starting value is very large relative to the
increment value, the index variable may not be incre-
mented when the 4041 encounters the NEXT state-
ment (e.g., FOR I= 1E38 TO 2E38 STEP 1).

NOTE

The final value of the index variable need not
equal the limiting value specified in the FOR
statement to terminate the loop. The program
should not rely upon a specific value for the final
index variable.

NOTE

After the FOR statement is evaluated, the starting
value, limiting value, and step increment for the
index variable are placed in temporary storage
and are not evaluated again. These values can
only be changed by re-entering the loop through
the FOR statement.

CONTROL STATEMENTS
FOR, NEXT

“NESTING” FOR/NEXT LOOPS

FOR/NEXT loops can be nested inside each other, as
shown below:

——500FOR X5 = 1 TO 10
——510FORY2= 1TO 20
520

Statements to be
repeated in the Y2 loop

590
—— 600 NEXT Y2
—— 610 NEXT X5

In this example, lines 520 through 590 in the Y2 loop
are executed 20 times for each pass through the X5
loop. When the program exits the X5 loop, the state-
ments in the Y2 loop will have been executed 200
times.

7-8

FOR/NEXT loops cannot “cross”. The following is
illegal:

——800FORD= 1TO 30STEP .5

;340 FORE= 1 TO10STEP A

—870NEXT D

———-890 NEXT E
NOTE

Two loops that use the same control variable
cannot be nested. If two loops do use the same
control variable, one cannot be entered until the
other is completed or exited with the EXIT
statement.

Branching Into and Out of a FOR/NEXT
Loop

Branching out of a FOR/NEXT loop using GO TO or GO
SUB statements is legal, but is not recommended. This is
for two reasons: (1) the current value of the index variable
may be unknown to the programmer unless the program
completes the loop in the normal fashion; and (2) the next
attempt to execute a FOR/NEXT loop with the same index
variable will cause an error.

Branching into a FOR/NEXT loop from another point in
a program is dangerous programming practice. If a
NEXT statement is encountered without a
corresponding FOR statement having been executed
first, an error results.

4041 PROGRAMMER’'S REFERENCE

The GO SUB and GO TO Statements

CONTROL STATEMENTS
GO SUB AND GO TO

Syntax Form:

{GO TO)
(GOTO}
Descriptive Form: [line-nol]

GO TO}
GOTO)

[line-no] {GO SUB} {numexp}
{GOSUB} {numexp OF numexpl,numexp].. }

GO SUB} {line-number}
GOSUB} {index OF targetltarget]. .)

PURPOSE

The GO SUB and GO TO statements transfer control to
specified target lines. The GO TO statement branches
to its target line with no return anticipated; the GO SUB
statement branches to the target line and returns to the
line following the GO SUB when it encounters a
RETURN statement.

EXPLANATION

When the OF keyword is not used, the GO TO and GO
SUB statements branch to the specified target lines
directly. The GO TO statement branches directly to the
target line, with no provision for returning to the point of
branch. The GO SUB statement branches to the target
line, and returns to the line following the GO SUB when
a RETURN statement is encountered.

When the OF keyword is used in the statement, the GO
TO and GO SUB statements compute the value of an
arithmetic expression, and use that value to choose
from a list of N possible destinations. If the expression
evaluates to 1 (i.e, 0.5 <= expression < 1.5), the first
destination in the list is chosen; if the expression
evaluates to 2, the second destination is chosen; and
so on for N specified destinations. If the value of the
expression is less than 0.5 or greater than N+ 0.5, no
branch occurs; execution continues with the line
following the GO TO or GO SUB statement.

4041 PROGRAMMER’S REFERENCE

Destinations for GOTO and GOSUB statements must
be in the same program segment as the GOTO or
GOSUB statement itself, i.e., the target line for a
GOSUB or GOTO in the main program cannot be in a
subprogram or user-defined function.

The GOTO and GO SUB statements may be used in
immediate mode and foliowed by a CONTINUE state-
ment to start execution from a specified line. When a
program is started in this way, the 4041 does not
initialize the program as it would if the program were
started with “RUN line-number”. (See the description
of the RUN statement, later in this section, for more
information.)

EXAMPLES

1000 Goto a+b of bri,br2,br3

The expression A+ B is evaluated. If ROUND(A+ B)= 1,
the program branches to line Br1; if ROUND{(A+ B)= 2,
to line Br2; if ROUND(A+ B) = 3, to line Br3. if

A+ B< 0.5 or A+ B> 3.5, execution continues with the
line after line 1000.

¥goto 1500
*continue

These two immediate-mode statements start program
execution at line 1500. (Available only on 4041 units
equipped with Option 30, Program Development
ROMSs).

7-9

CONTROL STATEMENTS
GO SUB AND GO TO

‘“Recursive” GOSUBs

As a feature for advanced programming applications,
GOSUBs in 4041 BASIC are recursive, ie., you can
GOSUB to a line from within its GOSUB subroutine.

7-10

Note, however, that when GOSUB is used this way, only
the line sequencing and “stacking/unstacking” of the
GOSUB calls are supported. No “copies” of variables
are made, and changes made to variables within the
subroutine affect the values of the same variables as
the GOSUBs “unstack’. Use with care.

4041 PROGRAMMER’S REFERENGCE

P

The IF Statement

CONTROL STATEMENTS
IF..THEN...ELSE

Syntax Form: line-no. IF numexp THEN statement [ELSE statement]
Descriptive Form: line-no. IF condition THEN consequence [ELSE consequence]
PURPOSE EXAMPLES

The IF statement evaluates a condition, then takes
action depending on the result of that evaluation.

EXPLANATION

The expression following the IF keyword is evaluated
and rounded to an integer. If the expression evaluates
to other than 0, the statement following the THEN
clause is executed. If the expression evaluates to 0, the
statement following the ELSE clause, if present, is
executed.

If the IF statement has not transferred control to
another portion of the program, execution continues
with the statement following the IF statement.

The statements contained in THEN and ELSE clauses

may not be IF, FOR, NEXT, SUB, FUNCTION, REM,
IMAGE, or DATA statements.

4041 PROGRAMMER'S REFERENCE

1500 If x>0 then goto greater else goto lessoregq

The condition “X> 0" is tested. If the condition is true,
control goes to the line labeled “Greater”; if the
condition is false, control goes to the line labeled
“Lessoreq”.

4500 If a>1 or b<1 then mar=z55 else mar=65

The condition “A>1 OR B< 1” is tested. If the condi-
tion is true, the variable “Mar” is set to 55; if the
condition is faise, “Mar’’ is set to 65. Execution
continues with the next statement in sequence.

CONTROL STATEMENTS
INVOKING FUNCTIONS

Invoking User-Defined Functions

Syntax Form:

Descriptive Form:

function-name [({(numexp} {numexp] ..)]
{strexp} [strexp]

function-name [(argument[,argument] . . .)]

PURPOSE

Invoking a user-defined function transfers control to a
segment of the program given by the specified function
name. Upon encountering a RETURN statement, the
4041 returns control to the line in which the function
was invoked.

7-12

EXPLANATION

A user-defined function is a form of subprogram that
(a) transfers control to a segment of the program
defining the function, and (b) returns a value to the line
that invoked the function.

A user-defined function begins with a FUNCTION
statement and ends with an END statement. It differs
from a subprogram begun with a SUB statement in that
a function returns a value in place of the function
name, and returns control to the line invoking the
function. (See Section 11, Subprograms and User-
Defined Functions, for more information.)

4041 PROGRAMMER'S REFERENCE

The RCALL Statement

CONTROL STATEMENTS
RCALL

Syntax Form:

Descriptive Form:

[line-no.] [RCALL strexp [,exp]...]
{ strexp [exp[,exp]...{]

[line-no.] {RCALL routine-name [,parameter]...}
{ routine-name [parameter[,parameter]...]}

PURPOSE

The RCALL statement calls a ROM pack routine.

EXPLANATION
RCALL “OPT2IN”

A call to the “OPT2IN” routine (used on 4041 units
equipped with Option 2) takes the form:

[line-no.J RCALL strexp,numexp,numexp,numvar

The string expression must evaluate to the string
“OPT2IN".

The first numeric expression is the number of the
starting register in the device connected to the Option
2 (TTL) interface. This must evaluate to a number from
0 to 127, inclusive.

The second numeric expression is the number of
registers to concatenate. This must evaluate to a
number from 1 to 4, inclusive.

The numeric variable is the location in which the
incoming numeric value will be stored.

The 4041 converts the binary values in the registers

specified by the RCALL statement into an integer, then
stores the result in the specified numeric variable.

RCALL “OPT20UT”

A call to the “OPT20UT” routine (used on 4041 units
equipped with Option 2) takes the form:

[tine-no.] RCALL strexp,numexp,numexp,numexp

4041 PROGRAMMER’S REFERENCE

The string expression must evaluate to the string
“OPT20UT".

The first numeric expression is the number of the
starting register to output to in the device connected to
the TTL interface. This must evaluate to a number from
0 to 127, inclusive.

The second numeric expression is the number of
registers to concatenate. This must evaluate to a
number from 1 to 4, inclusive.

The third numeric expression is the data element to be
output through the TTL interface.

The 4041 converts the data element into a binary
integer with length equal to 8 times the number of
registers to be concatenated, and stores the result
starting with the specified starting register. The 4041
then outputs the result through the TTL interface port.

EXAMPLES

1050 Rcall "opt2in",3,4,nerp

Inputs a value through the TTL interface port from

registers 3, 4, 5, and 6 of the device connected to the
TTL interface port, converts the result into the 4041’s
internal format and stores it in numeric variable Nerp.

1060 Rcall "opt2out",3,4,z00m
Takes the contents of variable Zoom, converts it into a
32-bit binary integer, outputs the value through the TTL

interface port and stores it in registers 3, 4, 5, and 6 of
the device connected to the TTL interface.

7-13

CONTROL STATEMENTS
RCALL

INVISIBLE RCALLS

The word RCALL may be omitted with romcalls less than
nine characters long. Romcalls longer than eight characters
must be abbreviated to exactly eight characters in order to
omit the RCALL keyword.

If the keyword RCALL is omitted, the comma following the
romcall name must be omitted also.

When the RCALL keyword is omitted, rompack routines that
contain a space may be called by substituting an under-
score for the space. Note that certain errors usually re-
turned at translation time are now delayed until run time be-
cause of this new capability. For example, entering the line

100 Foo x + 1

with Version 1 firmware would have returned a syntax error
(indicating that the user probably forgot an equal sign) when
the user tried to enter the line into the program. Under Ver-
sion 2, the 4041 will accept the line and attempt to execute a
romcall routine ‘‘Foo’’. The 4041 wili then return error #491
(Romcall routine not found) at execution time if it does not
find a romcall routine named ““Foo’’ in the available rom
packs.

7-14

Note also that variables can have the same names as rom-
call routines. Variable names of “‘Opt2in”’, *‘Opt2out”,
“Move’’, “‘Draw’’, etc., are legal, and will not conflict with
the romcall routines of the same name.

When the RCALL keyword is omitted in an RCALL state-
ment, the romcall routine name is printed in upper case
when the statement is listed. This helps distinguish romcall
routine names from variable names in the program.

Example: (using R0O1 Graphics Rompack)

100 GINIT 1,4025,1

110 MOVE 50,50

120 DRAW 75,75

130 ASK_WIND lox,hix,loy,hiy

These statements are equivalent to

100 Reall "ginit" 1,4025,1

110 Rcall "move",50,50

120 Rcall "draw",75,75

130 Rcall "ask _window",lox,hix,loy,hiy

4041 PROGRAMMER'S REFERENCE

7

CONTROL STATEMENTS

RETURN

The RETURN Statement

Syntax and

Descriptive Forms: [line-no] RETURN
PURPOSE EXAMPLE
The RETURN statement returns control to the line 328 805‘1’?210002
following a GOSUB or CALL statement, or to the line in . ari=etvar
which a user-defined function was invoked. .

1000 ! gosub subroutine starts here

EXPLANATION 1100 Return

Executing GO SUB and CALL statements or invoking
user-defined functions causes the program to branch
to a designated target line. The program continues
execution from the target line until it encounters a
RETURN statement. The RETURN statement transfers
control back to the statement following the GO SUB or
CALL, or to the statement that invoked the user-defined
function.

4041 PROGRAMMER’S REFERENCE

Line 250 transfers control to line 1000. The program
continues from line 1000, until it encounters the
RETURN statement in line 1100. After the RETURN
statement is executed, control transfers to the line
following the GO SUB statement.

7-15

CONTROL STATEMENTS
RUN

The RUN Statement

Syntax Form: RUN [numexp]

Descriptive Form: RUN [starting-line-number]

PURPOSE

RUN is an immediate-mode command that starts (or re-
starts) program execution. RUN starts execution from
the first line of the program; RUN followed by a line
number starts execution from the specified line.

NOTE

The RUN command is only available on 4041
units equipped with Option 30 (Program Develop-
ment ROMs).

EXPLANATION

RUN executes a program without breakpoints or trace
flags enabled. (See Section 4, “Program Editing, De-
bugging, & Documentation”, for more information about
breakpoints and trace flags).

The RUN command may be entered when the 4041 is
in idle mode, after a BREAK command has been
executed (in debug mode), after the PAUSE key has
been pressed on the front panel or P/D keyboard, or
after the BREAK or CTRL-B keys have been pressed on
a user terminal connected to an RS-232-C interface
port.

The RUN keyword may be followed by an optional
numeric expression designating the line at which
execution is to re-start. This line must be in the main
program segment.

The RUN statement does several “housecleaning”’
functions to ensure that a newly started or restarted

7-16

program is not hampered by assignments or settings
made previously. These housecleaning functions of the
RUN statement are:

® Delete all handler linkages;

® Reset interrupt conditions to their power-up en-
abled/disabled states;

® Reset ANGLE, AUTOLOAD, UPCASE, and FUZZ
parameters to their power-up settings;

® Reset the DATA statement pointer to the first DATA
statement in the program;

® Clear pending operations;

® Close all open files;

® Close all open logical units;

® Clear pending interrupts, last error values, last result
from VAL and VALC functions, and the function key
gueue;

® Clear the front panel display;

® SET PROCEED 0.

EXAMPLES

¥run

Starts program execution from the first line of the
program.

¥run 1250

Starts program execution from line 1250 of the main
program segment.

4041 PROGRAMMER’S REFERENCE

CONTROL STATEMENTS
STOP

The STOP Statement

Syntax Form: line-no. STOP [numexp]

[strexp]

Descriptive Form: line-no. STOP [message-to-print-when-STOP-is-executed]
PURPOSE EXAMPLES
The STOP command stops program execution. 150 Stop

This command, when executed, produces the following

EXPLANATION message on the system console device:
When the 4041 encounters a STOP statement during Stop at line 150
execution, execution stops immediately. A message
appears on the system console device notifying the 150 Stop "SOMETHING'S WRONG!"

user that a STOP statement has been executed.
This command, when executed, produces the following

If the STOP statement includes a message after the message on the system console device:
STOP keyword, that message is printed along with the
word STOP when the STOP statement is executed. Stop SOMETHING'S WRONG!

If the STOP statement includes no message, the word
STOP, the message “AT LINE ”, and the line number
are printed when the STOP statement is executed.

After a STOP statement is executed, program execution
can be resumed from the point at which the program
was stopped by:

1. Pressing the PROCEED key on the front panel or
the CONTINUE key on the P/D Keyboard;

2. Entering the CONTINUE command on the system
console device; or

3. Pressing the STEP key on the P/D keyboard.

(Items 2 and 3 require that the 4041 be equipped with
Option 30, Program Development ROMs.)

4041 PROGRAMMER'S REFERENCE 7-17

Section 8

INPUT/OUTPUT

INTRODUCTION

This section discusses the statements in 4041 BASIC that
exchange data between the 4041’s memory and other

devices.

The section starts by defining the concept of an 1/O driver
and presenting the names of the drivers available on the

4041.

A discussion of the concept of *‘System Console Device”’
and its relationship to 4041 1/0 operations follows.

The section continues with a discussion of stream specifica-
tions (‘‘stream specs’’) and logical units, which are the
means by which the programmer specifies alternate data
paths for 1/O operations. Stream specs and logical units are
also used to vary parameters that control driver operations.

There follows a discussion of ‘‘proceed-mode’’ I/O, which
allows an /O driver to perform INPUTs, PRINTs, RBYTEs,
and WBYTEs in parallel with one or more other drivers.

The I/O commands are then described, in alphabetical

order.

The commands presented are:

CLOSE

COPY

DATA

4041 PROGRAMMER'S REFERENCE

Returns one or more logical unit numbers to
their default stream specs.

Transfers data from one device or file to
another.

Stores data values within a 4041 program block.

GETMEM

IMAGE

INPUT

OPEN

PRINT

PUTMEM

RBYTE

READ

RESTORE

SELECT

WBYTE

REV OCT 1984

Transfers data from a buffer string into string
variables or numeric variables in memory.

Specifies data format for USING clauses.
Transfers data from a device into memory.

Associates a logical unit with a stream spec;
assigns values to logical parameters.

Transfers data from memory to a device.

Transfers numeric or string data into a string
variable.

Transfers “primitive’’ (8-bit) bytes from a device
into memory.

Transfers values from DATA statements into
memory.

Sets the DATA statement pointer to the first ele-
ment of thefirst DATA statement in a program
block.

Specifies the defauit stream spec for RBYTE,
WBYTE, and POLL statements.

Transfers “‘primitive’’ (8-bit) bytes from memory
to a device.

8-1

INPUT/OUTPUT
DRIVERS, CONSOLE

/0 DRIVERS

A driver is a firmware module that controls the operation of
an I/O device. The drivers available on the 4041 are:

FRTP Accepts input from the Program Development
(P/D) keyboard and front-panel function/nu-
meric keypad, and controls operation of the
20-character alphanumeric display (output).

COMM Controls data transfers through the standard

(COMMO0) RS-232-C interface port.

COMM1 Controls data transfers through the optional
RS-232-C interface port (available on 4041 units
equipped with Option 1).

GPIB Controls data transfers through the standard

(GPIBO) GPIB interface port.

GPIB1 Controls data transfers through the optional
GPIB interface port (available on 4041 units
equipped with Option 1).

OPT2 Controls data transfers through the Option 2
(TTL) interface port (available on 4041 units

equipped with Option 2).

PRIN Controls operation of the 20-character thermal
printer on the front panel.
TAPE Controis operation of the DC-100 tape drive.

All /O operations on the 4041 either use default drivers or
use drivers specified by the user within the 1/0O command.

DISK Controls operation of the SCSI disk drive.

THE SYSTEM CONSOLE DEVICE

The system console device, or “console”, is the primary
driver through which the user communicates with the 4041.
This driver must be either the FRTP driver, the COMMO
driver, or (on 4041 units equipped with Option 1 or Option 3)
the COMM1 driver.

For example, the user might communicate with the 4041 by
means of a computer terminal connected to an RS-232-C in-
terface port designated as the system console device.

When the 4041 powers up, the system console device de-
faults automatically to ““FRTP:”. To make the standard RS-
232-C interface port the system console device, the 4041
must execute the following SET CONSOLE statement:

Set console "comm:"
To make the front panel display/keyboard the system con-
sole device (if another device is system console), the 4041

must execute the following SET CONSOLE statement:

Set console "frip:"

8-2 REV OCT 1984

For more information, see the description of the ''SET CON-
SOLE" statement in Section 5, Environmental Control.

NOTE

In order to use an RS-232-C computer terminal as the
system console device on 4041 units NOT equipped
with Options 30 and 31 (P/D ROMs and P/D key-
board), the user MUST have a DC-100 tape or disk
containing an ITEM file named “AUTOLD" that in-
cludes the statement.

Set console "comm:".

This tape must either be inserted at power-up, or the
4041 must be powered up and the AUTOLOAD button
on the front panel must be pressed.

INPUTTING DATA ITEMS FROM THE
CONSOLE

When no other data path is specified, the 4041 always ex-
pects input from the console when it executes an INPUT
statement.

4041 PROGRAMMER’S REFERENCE

Thus, when executing the command

2000 Input numil,num2,num3

the 4041 expects to receive three numeric values from the
system console device (P/D keyboard or RS-232-C com-
puter terminal).
Similarly, the command

2500 Input numl,stringi$,num2,string2$
causes the 4041 to expect to receive a numeric value, a

string, another numeric value, and another string (in that or-
der) from the system console device.

OUTPUTTING DATA ITEMS TO THE
CONSOLE

When no other data path is specified, the 4041 always out-
puts data to the system console device when it executes a
PRINT statement.
Thus, the command

3000 Print numl,num2,num3
causes the 4041 to output three numeric values, separated
by EOU characters, to the system console device. Similarly,

the command

3500 Print numl,stringi$,num2,string2$
causes the 4041 to output a numeric value, a string, another

numeric value, and another string, separated by EOU char-
acters, to the system console device.

SPECIAL CAPABILITIES OF THE SYSTEM
CONSOLE DEVICE

Immediate-mode Statements

Only the system console device can accept immediate-
mode statements.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
CONSOLE

Function Keys

Function keys are only honored when entered from the sys-
tem console device with the KEYS condition enabled. (See
Section 12, Interrupt Handling, for more information about
the KEYS condition.)

When the front panel is the system console device, pressing
keys 1 through 9 invokes the corresponding user function;
pressing key 0 invokes user function 10.

When the COMM is the system console device, pressing
CTRL-F followed by keys 1 through 9 invokes user functions
1 through 9; pressing CTRL-D followed by keys 1 through 9
invokes user functions 11 through 19; pressing CTRL-F fol-
lowed by key 0 invokes user function 10; and pressing
CTRL-D followed by key 0 invokes user function 20.

Abort/CTRL-C

When the ABORT condition is enabled, the ABORT keys on
the front panel and P/D keyboard always cause the pro-
gram to transfer to the current ABORT handler. In addition,
if the COMM is the system console device, pressing CTRL-
C also causes the program to transfer to the current ABORT
handler. The ““current ABORT handler’’ may be either a
user-defined handler or the system handler.

Pause/Continue Functions

When the FRTP is the system console device, pressing the
PAUSE key on the front panel or P/D keyboard pauses the
system, and pressing the PROCEED key on the front panel
or the CONTINUE key on the P/D keyboard causes program
execution to continue.

When the COMM is the system console device, pressing
CTRL-B pauses the system, and typing the CONTINUE
command (if the P/D ROMs are available) or pressing
CTRL-A followed by *C’’ causes program execution to
continue.

INPUT/OUTPUT
DATA PATHS

SPECIFYING DATA PATHS

STREAM SPECIFICATIONS

Data can be transferred between the 4041 and several dif-
ferent devices (e.g., the front panel or program develop-
ment keyboard, a computer terminal, the alphanumeric
display, the thermal printer, etc.).

A firmware driver (a short program that constitutes part of
the 4041’s operating system) controls data transfers be-
tween the 4041 and each device.

A set of parameters specific to each driver controls the way
data are interpreted and 1/O operations are executed.

The programmer selects a driver for an /O operation and
specifies parameters for the driver to use by means of
stream specifications (a.k.a., ‘‘stream specs’’, for short).

Complete information on stream specs and on the parame-
ters that can be used with each driver are given in Appendix
D, *‘Stream Specifications’’.

INPUT and PRINT statements that do not include a stream
spec signify that input is to come from or output to go to the
system console device.

LOGICAL UNIT NUMBERS

Logical unit numbers are ‘‘shorthand’”’ ways of referring to
stream specs in /O commands. Legal logical unit numbers
are integers in the closed interval 0..32767.

Opening Logical Units: the OPEN Statement

A logical unit number is assigned to a stream spec by
means of the OPEN statement. Once the logical unit is
OPENed, the stream spec may be referenced in I/O com-
mands by its associated logical unit number. (See the de-
scription of the OPEN statement, later in this section, for
more information.)

8-4

Example . The statement
1500 Open #1:"frip(view=2.5,rate=.2):"

assigns logical unit number 1 to the stream spec *‘FRTP-
(VIEW =2.5, RATE = .2):”’. /O can be directed to this
stream spec by referencing its logical unit number (e.g.,
“PRINT #1:X,Y” prints the values of X and Y on the alpha-
numeric display).

Closing Logical Units: the CLOSE Statement

The CLOSE statement performs the opposite function of the
OPEN statement; it is used for ““housekeeping’’ purposes
(e.g., to make sure that all contents of I/O buffers have been
transferred, to update tape directories, etc.).

Example. The statement

2000 Close 1,2,a+b

closes logical units 1, 2, and A + B.

Default Stream Specifications for Logical Unit
Numbers

All logical unit numbers are assigned to certain stream
specs by default. Unless the user reassigns a logical unit to
a different stream spec, the stream spec associated with
each is as follows:

® | ogical unit numbers 0 through 30 represent primary ad-
dresses 0 through 30 on the standard GPIB. The default
stream spec is “‘GPIB(PRI = logical-unit-number-
,TIM=4)".

® Logical unit numbers 31 through 32767 are assigned to
the system console device. The console stream spec
powers up to “‘FRTP:” by default. The console stream
spec may be reset by the user via the SET CONSOLE
command.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PROCEED-MODE

“PROCEED-MODE’’ I/0

The 4041 has a special I/O mode called *‘proceed mode”’
that allows it to continue executing program statements
while an {/O driver simultaneously completes execution of a
previous INPUT, PRINT, RBYTE, or WBYTE statement.
The program can set up handlers for completion of proceed-
mode input or output (see the description of the IODONE in-
terrupt condition in Section 12, Interrupt Handling).

This mode is called "‘proceed mode™ because, in effect, the
4041 gives the driver controlling the I/0 device instructions
on how to execute the statement, then ''proceeds’ to exe-
cute subseqguent program statements (which may be 1/O
statements involving other drivers).

When not in proceed mode, the 4041 is said to be in ‘'se-
guential”’ mode, because it executes all statements se-
quentially, waiting for all driver activity caused by one state-
ment to be completed before proceeding with the next
statement.

TOGGLING BETWEEN PROCEED AND
SEQUENTIAL 1/0 MODES

The 4041 is put into proceed mode when it executes the
statement 'SET PROCEED 1.

The 4041 returns to sequential mode when it executes the
statement “SET PROCEED 0", or when it executes an
INIT, RUN, DEBUG, or DELETE ALL statement.

PROCEED MODE INPUT RESTRICTIONS

When the 4041 executes an INPUT statement in proceed
mode, the INPUT statement must call for one data item,
which must be input into a string variable. Multiple data
items cannot be input by the same input statement in pro-
ceed mode, nor can numeric data items be input in numeric
form in proceed mode.

4041 PROGRAMMER'S REFERENCE

Numeric data items can be input indirectly in proceed mode
by inputting the characters of the number into a string varia-
bie, then including a GETMEM statement in the IODONE
handler for the proceed-mode input.

PROCEED MODE PRINT RESTRICTIONS

Any number and type (string or numeric) of data items may
be output by means of a single PRINT statement when the
4041 is in proceed mode. However, the 4041 does not *‘pro-
ceed”’ (begin executing the next program statement) until
the number of characters remaining to be output can fit
within the 4041’s proceed-mode output buffer.

When a proceed-mode PRINT statement calls for more
characters to be output than will fit in the 4041’s proceed-
mode output buffer, the 4041 outputs one “‘buffer-full’’ of
characters without proceeding to the next statement. it then
refilis the buffer. The 4041 only proceeds to the next state-
ment when all characters to be output can fit within the
buffer.

The 4041’s default proceed-mode output buffer can hold up
to 512 ASCIi characters. The programmer can specify that a
larger (or smaller) buffer is to be used by including a
BUFFER clause in the proceed-mode PRINT statement.

PROCEED MODE RBYTE/WBYTE
RESTRICTIONS

In proceed-mode, an RBYTE statement can only input a sin-
gle string variable or string array element per statement.

In proceed-mode, a WBYTE statement may only output a
single string expression per statement.

PROCEED MODE CAVEAT WHEN USING A
WINCHESTER HARD DISK

Since the response from a hard disk is fast, a problem ex-
ists in 4041 Basic when using an "IODONE" handler. The
problem is when using a subprogram or gosub routine via
an “IODONE’", and that segment of code starts another |/O
to the disk, the subprogram or gosub routine may never
execute a return statement prior to the next “IODONE"
call/gosub. If a call to a subprogram is being used, the user
may get an error message stating an active subprogram is
being called. If a gosub is being used, the user may eventu-
ally see a run-time stack overflow error.

REV OCT 1984 8-b

INPUT/QUTPUT
PROCEED-MODE

RESTRICTED ACCESS TO VARIABLES FROM
PROCEED MODE INPUT/RBYTE
STATEMENTS

Statements referring to values obtained from uncompleted
proceed mode INPUT and RBYTE statements are automati-
cally delayed from executing until the values required be-
come available.

Example.

100 Set proceed 1

110 Open #1:"datafi"
120 Dim bigstr$ to 500
130 Input #1: bigstrs

200 Numl=val(bigstr$)

Execution of line 200 is delayed until the proceed-mode IN-
PUT statement of line 130 has been completed.

8-6 REV OCT 1984

THE IODONE CONDITION

The 4041 signals the completion of proceed-mode state-
ments by setting the IOCDONE interrupt condition true. The
4041 can thus be programmed to start a large data transfer
in proceed mode, perform other operations while the data
transfer is going on, interrupt those operations when the
data transfer is complete IODONE becomes true), and re-
turn to its previous operations when the IODONE condition
has been handled.

One example of the use of an IODONE interrupt routine is to
process large amounts of incoming data. The 4041 can
process other data until the input is complete, interrupt its
processing to handle the new data, then return to its other
processing.

The status of proceed-mode I/O on a logical unit can be
queried via the ASK(*'IODONE”’) function, and an interrupt
can be generated by means of the ON IODONE statement.

See Section 12, Interrupt Handling, for more information
about the IODONE interrupt condition.

4041 PROGRAMMER’S REFERENCE

The CLOSE Statement

INPUT/OUTPUT
CLOSE

Syntax Form:
{ALL}

Descriptive Form:
{ALL}

[line-no.] CLOSE {numexp [,numexp ... }}

[line-no.] CLOSE {lunum [,lunum ...]}

PURPOSE

The CLOSE statement returns one or more logical unit num-
bers to their default stream specs. The CLOSE ALL state-
ment closes all open logical units. This is also done implic-
itly when an END, RUN, DEBUG, or INIT statement is
executed.

EXPLANATION

The CLOSE statement performs the opposite function of the
OPEN statement.

CLOSE automatically performs any ‘‘housekeeping’’ nec-
essary to discontinue operations on a given logical unit
(e.g., closing files, ensuring that data transfers are com-
pleted, updating directories, etc.).

4041 PROGRAMMER’S REFERENCE

Memory required to support an open logical unit is returned
to the free memory pool and is available for storing com-
mands or data after a CLOSE statement is performed.
Attempting to close an un-opened logical unit number yields
no result.

EXAMPLE

3020 Close 1, 9+if3

This statement returns logical unit numbers 1 and 9 + IF3 to
their default stream specs.

INPUT/QUTPUT
COPY

The COPY Statement

Syntax Form:

Descriptive Form:

[line-no.] COPY stream-spec TO stream-spec

[line-no.] COPY source TO destination

PURPOSE

The COPY statement copies data from one device or file to
another.

DESCRIPTION

Data is copied from one device to another until an end-of-file
is encountered (source:TAPE), two successive null lines are
entered (source:FRTP, COMM, or GPIB), the EOl line is as-

serted (source:GPIB), the user presses ABORT on the front

panel or CTRL-C on a user terminal (if the COMM is the sys-
tem console device), or an error occurs.

If either stream spec given in the COPY statement is a file
spec only (no driver name appearing to the left of a colon),
the current SYSDEYV driver spec is used by default.

Attempting to copy information from a non-existent file or
device results in an error.

TAPE Driver

COPY statements using the TAPE driver as a source copy
data from a DC-100 tape file exactly as stored. For instance,
if a program was SAVEd onto the tape, copying that pro-
gram to the COMM would produce a listing of the program
in its shortest possible form (four-character keywords, no
unnecessary spaces, etc.)

COPY statements using the TAPE driver as a destination
should specify relevant file parameters (OPEN, CLIP, etc.).

FRTP and COMM Drivers

COPY statements using the FRTP or COMM drivers as a
source accept data and copy it to the destination until the
user types two null lines (i.e., types 2 <cr>"’s without enter-
ing any characters).

8-8 REV JAN 1984

GPIB Driver

COPY statements using the GPIB driver as a source trans-
fer information from the addressed device’s output buffer to
the destination until two successive null messages are en-
countered, or until the EOI line is asserted.

PRIN Driver

The PRIN driver can only be used as a destination in a
COPY statement.

EXAMPLES

3030 Copy "gpib(pri=i):" to "gpib(pri=5):"

This statement copies data from one device on the GPIB to
another device on the GPIB.

3040 Copy "prog'" to "prin:"

This statement copies a file named *‘Prog”’ from the DC-100
tape drive to the front-panel thermal printer.

3050 Copy "filel" to "file2(openznew,clip=yes)"
This statement takes a file called **File1’’ from the DC-100

tape, creates a copy of it on the tape, and calls the copy
“File2,

4041 PROGRAMMER’S REFERENCE

The DATA Statement

INPUT/OUTPUT
DATA

Syntax Form: [line-no.] DATA {str-const]

Descriptive Form:

[,str-const . . .]
{fnum-const} [,num-const. . .]

[line-no.] DATA data-item [,data-item . . .}

PURPOSE

The DATA statement stores data items (i.e., numeric or
string constants) within a 4041 program segment (main pro-
gram, subprogram, or user-defined function).

EXPLANATION

The DATA statement can be thought of as a sequential-read
data file internal to each segment of a 4041 program.

Data items are “‘stored’’ in one or more DATA statements
and are assigned to variables using the READ statement.

These data items can be character strings and/or numeric
data. Neither numeric expressions nor string expressions
can be stored in a DATA statment.

The data values are assigned to variables by means of the
READ statement when the program is executed.

DATA statements may appear at any point within a program
segment, without regard to the relative positions of the
READ statements within the segment.

If a program segment contains more than one DATA state-
ment, then the data items in the DATA statements within
that segment are read sequentially by successive READ
statements.

The DATA statement with the lowest line number in the pro-
gram segment is the first data item to be read. The end of
the first DATA statement in the segment is linked to the be-
ginning of the DATA statement with the next lowest line
number, and so on. The last data item in the highest num-
bered DATA statement in the program segment marks the
end of the internal data file.

An internal pointer is associated with each program seg-
ment to indicate which data item is to be read next. The
pointer is set to the first data item in the first DATA state-
ment in each program segment on system power-up or
when a RUN or DEBUG statement not specifying a line
number is executed.

4041 PROGRAMMER’S REFERENCE

The data statement pointer is moved to the first data item in
the first DATA statement in the current program segment
when an INIT statement is executed, when a RESTORE
statement not specifying a line number is executed, when a
subprogram is called, or when a user-defined function is
invoked.

Note that calling a subprogram or invoking a function initial-
izes the data statement pointer for that subprogram or func-
tion only; it has no effect on the data statement pointer in
the program segment in which the subprogram/function
was called/invoked.

For more information, see the descriptions of the READ and
RESTORE statements, later in this section.

EXAMPLE

100 Dim a(2),b(3)
110 Read a

120 Call subl

130 Read b,c$

140 Data 1,2,3,4,5,"Hello there!"”

990 End

1000 Sub subil

1010 Dim x(5),y(5)
1020 Read x

1030 Restore

1040 Read y

1050 Data 6,7,8,9,10
1060 Return

1070 End

Line 110 reads the values 1 and 2 into array A.

Line 120 calls subprogram Sub1. Line 1020 reads five val-
ues into array X. Line 1030 then re-initializes the data state-
ment pointer for Sub1, and line 1040 reads the same five
values into array Y.

Upon return from statement Sub1, line 130 reads the values
3, 4, and 5 into array B, then reads the string ‘“Hello there!”
into string variable C$. Note that the RESTORE statement
in line 1030 does not affect the data statement pointer in the
main program segment.

89

INPUT/OUTPUT
GETMEM

The GETMEM Statement

Syntax Form:

where:
[#strexp]

Descriptive Form:

[line-no.#] GETMEM BUFFER strvar [clause list]:var[,var . . .]

clause-list = [#numexp] [DELN strexp] [DELS strexp] [USING numexp]

[USING strexp]

[line-no.] GETMEM BUFFER source [clause list]:destination[,destination . . .]

PURPOSE

The GETMEM statement transfers data from a buffer string
into string variables or numeric variables in memory.

EXPLANATION

GETMEM can be used at any time with any string variable,
but is commonly used after an INPUT operation in proceed
mode.

When the GETMEM statement is executed, the string con-
tained in the string variable specified by the BUFFER
clause is examined to fulfill the destination-variable list se-
quentially. If a numeric value is called for, the buffer con-
tents are searched for a numeric item delimiter; if a string
value is called for, the buffer contents are searched for a
string item delimiter. (These delimiters can be specified us-
ing the DELN and DELS clauses; see the description of the
INPUT statement for more information.)

The string variable specified in the BUFFER clause must be
a simple string variable, NOT a string array.

The GETMEM statement may use the same USING clause
operators and modifiers as the INPUT statement.

The ASK('‘BUFFER”’) clause may facilitate the use of muiti-

ple GETMEM statements to ‘‘parse’’ several data elements
from a long buffer string (see ‘‘Examples’’).

8-10

EXAMPLES

4000 A$="2,4,6"
4010 Getmem buffer a$:numil,num2,num3

Line 4010 stores the value 2in Num1, 4 in Num2, and 6 in
Num3.

100 Integer a,b,c,d,e,f
110 A$="1,2,3,4,5,6"

120 Getmem buffer a$:a,b,c
130 Print a,b,c

140 Rep$(as$,1,ask("buffert))=mn
150 Getmem buffer a$:d,e,f
160 Print d,e,f

170 End

*run

1 2 3

4 5 6

Line 120 extracts the first three numeric values from string
a$ and assigns them to numeric variables A, B, and C.

Line 140 uses the ASK(*“BUFFER"’) and REP$ functions to
eliminate the characters that have already been read in
from the beginning of string A$.

Line 150 then extracts three more numeric values from

string A$ and assigns them to numeric variables D, E,
and F.

4041 PROGRAMMER’S REFERENCE

The IMAGE Statement

INPUT/OUTPUT
IMAGE

Syntax Form:

Descriptive Form:

[line-no.] IMAGE any-characters-except-CR

[line-no.] IMAGE format-string-for-INPUT-USING-or-PRINT-USING-statement

PURPOSE

The IMAGE statement specifies the input or output format to
be used with INPUT, PRINT, GETMEM, or PUTMEM state-
ments containing USING clauses.

EXPLANATION

The string contained in an IMAGE statement is calied an
“image string’’.

An image string is a special string of characters that requ-
lates the format for input or output when an INPUT, PRINT,
GETMEM, or PUTMEM statement containing a USING
clause is executed.

The image string consists of a combination of field opera-
tors and field modifiers that defines the format to be fol-
lowed for the PRINT or INPUT operation. Image strings can
be specified in either of two ways: (1) as part of the INPUT,
PRINT, GETMEM, or PUTMEM statement’s USING clause,
or (2) in an IMAGE statement.

IMAGE statements can appear anywhere in a program, be-
fore or after the statements that refer to them. The same IM-
AGE statement can be referred to any number of times in
the same program.

See the descriptions of USING clauses in the PRINT and
INPUT statements for more information on field operators
and modifiers for image strings.

EXAMPLE

In Example 8-1, line 200 tells the 4041 to use the image
string contained in line 1000 to execute the PRINT
operation.

Line 1000 tells the 4041 to print the string “‘A="', then to
print the value of the first numeric variable in the print list in
the next six character positions, with two digits to the right
of the decimal point. The 4041 is then to print spaces until it
reaches character position 16.

It then prints the string ‘B ="', followed by the value of the
next numeric variable in the print list, printed in six charac-
ter positions with one digit to the right of the decimal point.
The 4041 then prints spaces until it reaches character
position 31.

It then prints the string ““C =", followed by the value of the
third numeric variable in the print list, printed in six charac-
ter positions with no digits to the right of the decimal point.

See the descriptions of the USING clause under the INPUT
and PRINT statements for more information about image
strings.

200 Print using 1000:a,b,c

1000 Image 'A=',6.2g,16t,'B=",6.1g,31t,'C=",6.0g

Example 8-1.

4041 PROGRAMMER’S REFERENCE

8-11

INPUT/OUTPUT
INPUT

The INPUT Statement

Syntax Form: [line-no.} INPUT[clause-list:]

where:

[#strexp] [PROMPT strexp]

Descriptive Form:

inumvari[,numvar} . .
{strvar} [,strvar]

clause-list = [#numexp] [ALTER strexp] [BUFFER strvar][DELN strexp] [INDEX [numexpi][USING |[numexpi]

istrexp| istrexp]

[line-no.] INPUT [input clauses:][input list]

PURPOSE

The INPUT statement transfers data from a peripheral de-
vice into variables in the 4041’s memory.

EXPLANATION

An INPUT statement without a USING clause transfers data
into memory using default data conversion rules explained
below. An INPUT statement containing a USING clause
transfers data into memory using conversion rules provided
by the user via the USING clause.

Default Data Input Rules

1f no USING clause is specified, the procedures used by
4041 to satisfy the INPUT command are as follows:

1. When a numeric data item is input, an entire ASCII
number is accumulated until a default terminator is
seen (see the description of the DELN clause, later in
this section) or the end-of-message character is
recognized.

The number is then converted to internal form and
stored in the numeric variable specified by the INPUT
statement.

Non-numeric characters preceding the first numeric
character in the input stream are discarded.

8-12 REV OCT 1984

2. String variables cause data bytes to be input and stored
in the string variable specified by the INPUT command
until either the end-of-message character is recog-
nized, the string is filled, or an error occurs. Null strings
are allowed.

3. Numeric arrays are input element-by-element until the
entire array is filled. Each array element is input using
the rule for numeric variables (#1).

4. String arrays are input element-by-element until the en-

tire string array is filled. Each element is input using the
rule for string variables (#2).

5. If enough data is not provided to satisfy the argument

list, the INPUT statement does not terminate until all ar-
guments in the argument list have been satisfied.

EXAMPLES
3070 Input avar, astr$

This command calls for a numeric value and a string to be
input from the system console device.

3071 Input #5:hdr$,vall

This command transfers data from the device open as logi-
cal unit number 5 into the 4041’s memory. Characters are
input to string variable Hdr$ until the end-of-message-unit
character is seen; a numeric value is then input to Val1.

4041 PROGRAMMER’S REFERENCE

USE OF INPUT STATEMENT WITH
DIFFERENT DEVICE DRIVERS

If no "'#" clause is included in an INPUT statement, the
4041 assumes that input is to be received from the system
console device.

Input Via COMM Driver

When inputting a string via the COMM driver, control char-
acters can be inserted into the string by preceding each one
with an ESCAPE character. (On some terminals, this char-
acter is sent by the ALT MODE key.)

During input, the control character thus inserted will appear
on the terminal in its “‘caret-uppercase-ietter’’ form.

When the string is output, the control character itself will be
printed.

Example.

100 Set console "comm:"
110 Input a$
120 Print a$
run

(user input) ABCJDEF

(output) ABC

DEF

The '$" represents the ESCAPE character; the ‘“‘AJ”’ is the
upper-case character representation of the LINE FEED
character.

NOTE

No character output by the 4041 can affect the opera-
tion of the 4041 itself. However, the character may af-
fect the device attached to the 4041.

Thus, a CTRL-C imbedded within a string will not affect
the 4041 when the string is output.

Input Via FRTP Driver

When an INPUT statement is being executed via the FRTP
driver, the user-definable function keys on the front panel
denote digits to be input, and not user-definable functions.

User-definable functions can still be invoked via the P/D
keyboard’s user-definable function keys.

Control characters may be inserted into a string being input
via the P/D keyboard by preceding each control character
with an ESCAPE character (the same as the COMM driver).
However, CTRL-M’s cannot be imbedded into a string being
input via the FRTP driver.

4041 PROGRAMMER'S REFERENCE

REV OCT 1984

INPUT/OUTPUT
INPUT

Input Via GPIB Driver

Use of the INPUT statement with GPIB drivers is described
under High-Level Message Transfers in Section 9, Instru-
ment Control With GPIB.

Input Via OPT2 Driver

The OPT2 driver does not use the INPUT statement for in-
put. Instead, it uses the “OPT2IN"" romcall, described along
with the RCALL statement in Section 7, Control

Statements.

Input Via Opt3 (SCSI) Driver

Using the INPUT statement to transfer data from the disk
files over the SCSI interface is almost identical to the tape
driver. The only exception is the difference in the stream
specification.

Example:
100 Open #1:%disk(DEV =3, UNI=0):FILE NAME”
110 Dim al (5),22(10)
120 Input #1:al,a2.a3

Input Via TAPE Driver

The file used for input from the DC-100 tape must be
opened with an OPEN parameter of OLD (OLD is the defauit
value).

The 4041 keeps track of its position as it *‘moves through’ a
file. Thus, successive INPUT statements read successive
data elements from the input file.

Example.

100 Open #1:"datafi"
110 Dim a1(5),a2(10)
120 Input #1:a1,a2,a3

A file called “*‘DataFi" is opened (with OPEN parameter of
OLD, by defauit) on the DC-100 tape.

Line 110 dimensions two arrays of short-floating-point num-
bers, A1 (containing five elements) and A2 (containing ten
elements).

Line 120 reads five elements from DataFi to fill array A1, ten
more elements to fill array A2, and a single element to fili ar-
ray A3. The next INPUT statement calling for a value from
DataFi will read the seventeenth element in the file.

A file may be opened for input on more than one logical unit
atatime. The “‘pointer’’ into the tape file is maintained sep-
arately for each logical unit.

INPUT/QUTPUT
INPUT

Example.

100 Open #1: "datafi"
110 Open #2: "datafi"
120 Input #1:a,b,c
130 Input #2:d,e

Line 120 reads the first three data elements from file ‘'Da-
taFi’’ on the DC-100 tape.

Line 130 reads the first two data elements from file *'Da-
taFi” on the DC-100 tape.

The next INPUT statement using logical unit 1 will read data
starting at the fourth data element in file “‘DataFi”.

The next INPUT statement using logical unit 2 will read data
starting at the third data element in file ‘DataFi’’.

No file can be open for both input and output at the same
time.

See Section 14, ““DC-100 Tape”’, for more information on
use of the INPUT statement with tape files.

PROCEED MODE INPUT

The 4041 enters proceed mode upon execution of a SET
PROCEED 1 statement.

In proceed mode, program execution continues while one or
more I/O drivers complete the tasks assigned to them by an
INPUT or PRINT statement, or until further execution re-
quires that the proceed-mode INPUT or PRINT be com-
plete, or until a proceed-mode I/O error occurs.

Example.

100 Set proceed 1

110 Open #1:"datfil"
120 Input #1: string$
130 A=0

140 B=1

190 Z=1.111E111
200 Numl=val(string$)

Line 100 puts the 4041 into proceed mode.
Line 110 opens a file on the DC-100 tape called ‘' DatFil”.

Line 120 reads a string from “'DatFil’”’ and stores it in string
variable String$.

8-14

REV OCT 1984

While line 120 is executing, the 4041 executes lines 130
through 190 “in parallel’’ with the input operation, i.e., while
the input is coming in from the tape.

Line 200, however, requires that the previous input be com-
plete in order to be executed. The 4041 therefore ‘pauses’’
to allow the 1/0 to complete before continuing execution.

Restrictions on INPUT in Proceed Mode

When the 4041 is in proceed mode, INPUT statements can
only be used to input one string variable per INPUT
statement.

The string variable used as a target variabie for a proceed-
mode input operation must be a simple string variable; it
may NOT be an entire string array or string array element.

The GETMEM statement may be used after compietion of
an INPUT in proceed mode to “extract’ the values of sev-
eral numeric or string variables from the contents of the
string variable that was input. (See the description of the
GETMEM statement, eisewhere in this section, for more
information.)

The only legal clause that can be used with an INPUT state-
ment when the 4041 is in proceed mode is the “‘# clause.
The ALTER, BUFFER, DELN, DELS, PROMPT, and USING
clauses areillegal.

The ASK(*‘IODONE’’) Function

The status of I/O operations on a given logical unit at any
time can be determined by means of the ASK(‘‘IODONE"")
function. (See the description of the ASK(*‘IODONE") func-
tion in Section 5, Environmental Control, for more
information.)

The IODONE Interrupt
Control can be transferred to a given subprogram or GO-
SUB subroutine upon completion of proceed-mode I/O on a

given logical unit by means of the ON IODONE statement.

The IODONE interrupt condition is automatically enabled
when the 4041 is put into proceed mode.

See Section 14, Interrupt Handling, for more information

about the ON statement and the IODONE interrupt
condition.

4041 PROGRAMMER’S REFERENCE

i ~

The ASK(‘‘PROCEED’’) Function

Whether or not the 4041 is in proceed mode can be deter-
mined by means of the ASK(''PROCEED”’) function.
ASK(*“PROCEED") returns a value of 1 if the 4041 is in pro-
ceed mode, 0 if not.

Errors During Proceed-Mode INPUT

Input errors occurring during proceed-mode input are han-
dled in a special way. See the description of the ERROR in-
terrupt condition in Section 14, Interrupt Handling, for more
information.

INPUT CLAUSES

Clauses are ‘‘statements within statements’’ used with
GETMEM, INPUT, PRINT, PUTMEM, RBYTE, and WBYTE
commands to define a data transfer path or modify execu-
tion of an 1/0 operation. Clauses are separated from data
lists by a colon.

The following clauses can be used with INPUT statements:

Specifies a logical unit number or stream
spec for the INPUT operation.

ALTER The 4041 outputs a string, which is modified
by the user or device. The modified string is
then sent back to the 4041, Compare

PROMPT clause.

BUFFER A string variable is used directly as an /O
buffer. Allows user to control amount of data

transferred.

DELN The user specifies delimiter characters for

inputting numeric values.

DELS The user specifies delimiter characters for

inputting strings.

INDEX For use with future enhancements that sup-

port random-access peripheral devices.

PROMPT The 4041 outputs a string to a device. The
device’s or user’s response is then sent back
to the 4041. The string originally output by
the 4041 is NOT sent back. Compare ALTER

clause.

USING Data formatting is under user control with an

image string.

Further explanation and examples showing the use of each
clause follow.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
INPUT

The # Clause

Syntax Form:
#numexp OR #strexp

Descriptive Form:
#logical-unit-number OR
#stream-spec

The # clause specifies a data path for an I/O operation.

The # clause is used when 1/O is to be performed to other
than the default device for an 1/O operation, or when the
user wishes to specify other than default attributes for a
driver or file.

if a numeric expression follows the “#", itis interpreted as
the number of the logical unit to be used for the INPUT
operation.

If a string expression follows the “#’, it is interpreted as the
stream specification to be used for the INPUT operation.
The string expression must evaluate to a legal stream spec.

The numeric expression for a logical unit must evaluate to
an integer in the range 0 < lunum < 32767.

INPUT/OUTPUT
INPUT

The ALTER Clause

The BUFFER Clause

Syntax Form:
ALTER string-expression

Descriptive Form:
ALTER string-to-be-sent-and-modified

Syntax Form:
BUFFER strvar

Descriptive Form:
BUFFER string-variable-for-input-data

The ALTER clause sends a string to a device for user modi-
fication prior to an INPUT operation. It is useful for providing
a default for user input, or for re-displaying erroneous data
for correction.

The string specified by the string expression following the
ALTER keyword is output to a peripheral device. The string
may then be modified by the device or by the user.

The string is then returned as data to satisfy the input oper-
ands specified in the INPUT data list.

The modified string can be stored within a numeric variable
if it conforms to the rules for numeric constants, i.e., no let-

ters or special characters (except the letters ““E’” or *‘e”’),
within limits for the type of number being stored, etc.

A number sent to the alphanumeric display can be ‘‘modi-
fied"’ on the front panel numeric keypad by pressing the
“CLEAR?” key on the front panel, then entering a new num-
ber and pressing ‘'PROCEED"".

A string sent to the alphanumeric display can be modified
using the P/D keyboard’s editing keys. When the string has
been modified to the user’s satisfaction, it can be entered
into the 4041 by pressing ““RETURN’’ on the keyboard or
“PROCEED” on the front panel.

Example.

1234 Input alter "Name:":name$
This statement sends the string ““‘Name:” to the system
console device. The user types his/her name and presses

CR. String variable Name$ then contains a string consisting
of the characters ‘“Name:” plus the user’s name.

8-16

The BUFFER clause allows a user to specify a string varia-
ble to use as a buffer. The buffer can be used to store in-
coming data in its *‘pre-processed’”’ form. It can also be
used to tailor the size of the buffer space to the amount of
incoming data, e.qg., specifying a buffer 1,000 characters
long allows 1,000 characters to be input during a single IN-
PUT operation. (The default buffer size is 514 bytes.)

When no BUFFER clause is included in an INPUT state-
ment, the 4041 creates a temporary buffer 514 bytes long to
hold incoming data. The 4041 translates the data in the tem-
porary buffer into the form(s) required by the INPUT argu-
ments, stores the data, then deletes the buffer.

The BUFFER clause allows a user to specify a string varia-
ble in which to store the incoming data. After the data trans-
fer is complete, the buffer’s contents are not deleted, but
remain available for editing or other uses.

Example.

90 Dim a$ to 20
100 Input buffer a$:numl,num2,num3
110 Print numl,num2,num3
120 Print a$
run

(user input) 1,2,3

(output) 1.0<tab>2.0<tab>3.0

1,2,3

Line 100 inputs three numbers, Num1, Num2, and Num3,
and saves the incoming data string in a buffer, A$.

When the INPUT operation is complete, Num1, Num2, and
Numa3 are saved as short-floating-point numbers. in addi-
tion, A$ contains the exact string that was input for Line
100.

4041 PROGRAMMER’S REFERENCE

e ™.

The DELN Clause

INPUT/OUTPUT
INPUT

The DELS Clause

Syntax Form:
DELN strexp

Descriptive Form:
DELN delimiter-list-for-numeric-data-items

Syntax Form:
DELS string-expression

Descriptive Form:
DELS delimiter-list-for-string-variables

The DELN clause specifies the delimiters for numeric data
items when an INPUT statement is executed.

Default numeric data item delimiters are space, tab,
comma, semicolon, colon, and the end-of-message (EOM)
character.

The EOM character is always a delimiter for numeric data
items, regardless of which other characters may be
delimiters.

Sequential spaces and tabs are treated as one delimiter
(i.e., on multiple inputs, you can type one value followed by
any number of spaces, followed by the second value).

Inputting the EOM character in place of a value causes the
4041 to ask for that value again.

Inputting any other delimiter in place of a value causes the
4041 to set that value to 0.

Example.

5678 Input deln "™ ":numl,num2,num3
This statement calls for three numeric values to be input
from the system console device (logical unit 32). Delimiters
for the numeric values include space and carriage-return
(EOM character).
Therefore, typing

1.414<sp>2.323<sp>4.567<cr>

in response to this command stores the value 1.414 in varia-

ble Num1, 2.323 in variable Num2, and 4.567 in variable
Num3.

4041 PROGRAMMER’S REFERENCE

The DELS clause specifies the delimiter characters for
strings when an INPUT statement is executed.

The only default delimiter for string data items is the end-of-
message character (usually carriage-return, but can be set
as a parameter in 2 GPIB or COMM stream spec).

The EOM character is always a delimiter for string data
items, regardless of what other characters are delimiters.

Inputting a delimiter in place of a string sets the string varia-
ble being input to null.

The DELS clause treats multiple spaces and tabs in the
same way the DELN clause does.

Example.

1000 Input dels "!":stringl$,string2$,string3s$
This command tells the 4041 to accept three strings as input
from the system console device, using either an exclama-
tion point (!) or the EOM character as a delimiter.

Thus, typing
AAAIBBBICCC < cr>

in response to this command would store “AAA” in
String1$, “BBB’’ in String2$, and ““CCC”’ in String3$.

Typing
AAANCCC<cr>

sets String1$ to “AAA”’, String2$ to **"’ (null), and String3$
to “CCC"".

8-17

INPUT/OUTPUT
INPUT

The INDEX Clause

The PROMPT Clause

Syntax Form:
INDEX {numexpj
{strexp]

The INDEX clause will be included in a future enhance-
ment, for use with peripheral devices that support random
access.

The word “INDEX’’ can be used as a line label, variable, or
subprogram name in 4041 programs.

8-18

Syntax Form:
PROMPT strexp

Descriptive Form:
PROMPT prompt-message

With this clause the 4041 sends a string to a device prior to
receiving input from that device. Unlike the ALTER clause,
the string does not become part of the input data. This
clause is normally used to request input from a user, or to
query for input from an instrument attached to the GPIB.

The PROMPT clause can be used to ‘‘set up’’ input opera-
tions from devices on the GPIB and to interrogate instru-
ments on the GPIB for their current settings or readings.
When used in this way, the 4041 automatically sends the
End-Of-Query character (EOQ; default is no output) follow-
ing the string specified after the PROMPT clause.

Examples.
1000 Input prompt "Name:":name$

This statement asks for the user’s name, then stores the re-
ply in string variable Name$.

2010 De=19
2020 Open #dc:"gpib(pri="&str$(dec)&",eoq=7):"
2030 Input #dc prompt "Func":func$

Line 2030 sends the string ‘‘Func?’’ to an instrument at the
primary address specified by the value of numeric variable
DC. (The EOQ character ““?"”, as defined by the OPEN
statement, is output after the string given in the PROMPT
ctause.) If the device is a Tektronix digital counter it returns
a string indicating which measurement function is currently
selected. This string is stored in string variable Func$.

4041 PROGRAMMER’'S REFERENCE

The USING Clause

Syntax Form:
USING {numexp] {strexp}

Descriptive Form:
USING {line-number-of-IMAGE-statement}
{image-string]

When used with the INPUT statement, the USING clause al-
lows the user to check the format of input data.

The USING clause either contains an image string, which
defines a format for input data checking, or refers to an
IMAGE statement that contains an image string.

Legal image strings for INPUT USING consist of any combi-
nation of INPUT USING operators, spaces, and commas.
Spaces and commas may be included as needed to im-
prove readability, but are ignored by the BASIC interpreter.

Legal image strings for INPUT USING consist of any combi-
nation of INPUT USING operators, modifiers, spaces, and
commas. INPUT USING modifiers appear before the opera-
tors they modify in the image string. Spaces and commas
may be included within an image string as needed to im-
prove readability, but are ignored by the 4041.

Legal INPUT USING operators are listed in Table 8-1. Legal
INPUT USING modifiers are listed in Table 8-2.

Further explanations and examples of the use of INPUT
USING operators and modifiers follow.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
INPUT

Table 8-1
INPUT USING OPERATORS

Operator Meaning

nA Accept string data item of iength n characters.

nB Accept numeric data item in binary representation.

nD Accept numeric data item in decimal representation.

nE Accept numeric data item in scientific notation.
n.mG Accept numeric data item in floating point
representation.

nH Accept numeric data item in hexadecimal
representation.

l Accept item in binary item format.

J Accept numeric data item in engineering notation.

K Accept numeric data item in any format.

N Accept numeric or string data item.

nO Accept numeric data item in octal representation.

nX Skip n characters.

n% Accept the leftmost n bits of a GPIB byte or pair of
bytes as the rightmost n bits of a 4041 integer, using
binary block format.

n@ Accept the leftmost n bits of a GPIB byte of pair of
bytes as the rightmost n bits of a 4041 integer, using
binary block format.

Table 8-2
INPUT USING MODIFIERS

Modifier Meaning

n() Replicate enclosed image string ntimes.

F Free-format: accept characters until a delimiter is
received.

R (*'E”” and ““G” operators only) Alternate radix: use
comma for radix symbol instead of decimal point
(must use elements from a DELN clause that cannot
include a comma as a delimiter).

\ (**%"’ operator only) accept data in ‘‘data-driven”

mode.

8-19

INPUT/OUTPUT

INPUT
The ‘“‘A’’ Operator. Accept one dataitem of length n The ‘‘D’’ Operator. Accept an n-digit data item in integer
characters. format.
Example: The ““D” operator delimits input when n characters have
100 Input using "5a":string$ beep received, when_a ch.arac'te.r other than a d|g|t§, mo-
110 Print string$ nadic plus, or monadic minus is input, or on the delimiters
run specified in a DELN clause (default: space, tab, comma,
(user input) ABCDEFGHIJ ;
(output) ABCDE semicolon, colon, and the EOM character).
Example:
The ““B’’ Operator. Accept an n-digit data item in binary 100 Input using "3d":num
representation. 110 Print num
The value input is interpreted as a binary number, right-jus- NOTE
tified (with left-zero fill) within an n-space field. The D" operator treats decimal points in the input
The user may input a sign (default: +) and up to 32 digits for stream in a special way. A decimal point is considered
the number. a terminator, not a delimiter, by the “‘D’’ operator.
Numbers that can be input using the *‘B’’ operator range Example:
from —(2A32-1) to + (2A32-1). *dele var numi,num?
Numbers input in the range from 2731 to 2A32-1 are stored 100 Input using "2(3d)":numl,num2
in the range from —(2A31) to -1, respectivel 110 Print nun
n g ’ p Y- 120 Print num2
. RUN
Example: (user input) 123.456
*long x (result) ¥**%¥ ERROR # 751 LINE # 100
¥input using "32b":x Lo
10000000000000000000000000000000 (user input) The decimal point terminated the input in line 100. The solu-
¥print x tion is to use the “‘X’’ operator to skip over the decimal point

-2, TUT4836U48E+9

*input using "32b":X in the input stream. Change line 100 to read

1T1111111111111111111111111111111 (user input) : " .
*print x lgg Input using "3d,x,3d":numil,num2
-1.000000 (user input) 123.456

Numbers input in the range from —(2A31 + 1) to —(2A32) are (output) ;ég 8

stored in the range from +(2A31) to 1, respectively.

Example:
*long x

*¥input using "33b":x
-10000000000000000000000000000001 (user input)
¥print x

2.147U836H47E+9

¥input using "33b":x
-111111711111111111111111111111111 (user input)
¥print x

1.000000

This input scheme allows the user to express binary num-
bers in either signed two’s complement or unsigned
32-bit notation.

8-20 4041 PROGRAMMER'S REFERENCE

The “‘E’’ Operator. Accept an n-digit data item in scientific
notation.

The “*E” operator delimits input when n characters have
been received, when a ‘‘non-scientific-notation’’ character
is received (scientific notation characters include digits 0-
9,., monadic + or -, and “E” or “‘e”), or on the delimiters
specified in a DELN clause (default: space, tab, comma,

semicolon, colon, and the EOM character).

If the nth character of the input string is an E, or if no E ap-
pears in the input string, the number is interpreted as a
floating-point number (long-floating-point, if more than six
digits have been input).

Example:
100 Input using "Te'":num
110 Print num
run
(user input) 1.234E9
(output) 1.234E+9

The ““G’’ Operator. Accept a numeric data item in floating
point representation. The command format is *‘n.mG"’,
where “‘n’’ and ‘“‘m’”’ signify to accept at most n characters
(total) and at most m characters after the radix symbol.

The G’ operator delimits data items when n characters (to-
tal) have been received, or when m characters have been
received after the radix symbol, or when a non-numeric
character is input (where the numeric characters are digits
0-9,., and monadic + or -), or on the delimiters specified in
the DELN clause (default: space, tab, comma, semicolon,
colon, and the EOM character).

The “G” INPUT USING operator truncates values received
on input, according to the value of the m modifier.

Example:
100 Input using "6.3g":num
110 Print num
run
(user input) 12.34567
(output) 12.345

4041 PROGRAMMER’S REFERENCE

INPUT/QUTPUT
INPUT

The ‘“‘H’’ Operator. Accept an n-digit data item in hexade-
cimal representation.

The value input is interpreted as a hexadecimal number,
right-justified (with left-zero fill) within an n-space field.

The user may input a sign (default: +) and up to 8 digits for
the number.

Numbers that can be input using the ““H’’ operator range
from —(2A32-1) to + (2A32-1).

Numbers input in the range from 2A31 to 2A32-1 are stored
in the range from —(2A31) to —1, respectively.

Example:

*long x

¥input using "8h":x
80000000 (user input)
*print x
-2.147483648E+9
*input using "8h":x
FFFFFFFF (user input)
¥print x

-1.000000

Numbers input in the range from —(2A31 + 1) to —(2A32) are
stored in the range from + (2A31)to 1, respectively.

Example:

¥long x

*input using "9h":x
-~-80000001 (user input)
¥print x
2.147483647E+9

*¥input using "9h":x
-FFFFFFFF (user input)
¥print x

1.000000

This input scheme allows the user to express hexadecimal
numbers in either signed two’s complement or unsigned
32-bit notation.

8-21

INPUT/OUTPUT
INPUT

The “‘I’’ Operator. Accept a data item in ITEM format. (All
data elements in the input list must be in ITEM format.)

ITEM format is the internal representation used by the 4041
to store data. Data stored on external devices in ITEM for-
mat require less room to store than ASCII files. Data input in
ITEM format also takes less time to store inside the 4041,
since the data need not be translated from ASCIl into the
4041’s internal representation.

ITEM-format data exchanges are strictly type-checked. The
data formats of incoming and outgoing data must match ex-
actly, or an error is generated. Thus, data stored on a
DC-100 tape in integer format cannot be input directly to
short-floating-point variables.

The TYPE function, which returns a number indicating the
type of the next data item to be read in from a tape file, can
be used to check ITEM data before it is input. (See the de-
scription of the TYPE function in Section 14, DC-7100 Tape,
for more information.)

Example 8-2 writes five data items in item-format into a file
called “‘Dat’’, then reads them back out again.

The “‘J”’ Operator. Accept data item in engineering
notation.

The suffixes used for engineering notation are as follows:

P — pico (1E-12)
N — nano (1E-9)
U — micro (1E-6)

The ‘“‘K’’ Operator. Accept data until a non-decimal char-
acter is received. Decimal characters are digits 0-9, radix

symbol, monadic + or -, and “E’’ or “‘e’’ used to denote
exponent.

Binary, octal, and hexadecimal data can be entered if the
following notation is used:

Binary = [d..dB]
Octal = {d..dO]
Hex = [d..dH]

The “K” operator delimits input on non-decimal characters,
or on the ']’ of a binary, octal, or hexadecimal number, or
on the delimiters specified in a DELN clause (default:
space, tab, comma, semicolon, colon, and the EOM
character).

Example:

100 Integer a
110 Input using "k,k":a,b
120 Print a,b
130 End
run
(user input) 56,3.106E5
(output) 56<tab>3. 106E4+5

The ““N’’ Operator. Similar to the ‘K’ operator except that
string data can be entered as well as numeric data. The de-
limiters specified in a DELS clause delimit input for string
data items (default: the EOM character).

[Tl

Example 8-3 inputs three data items using the ‘‘n”” operator.

Note that the exclamation points used to delimit string data

M — milli (1E-3)
K — kilo (1E3) elements do not become part of the inputted strings.
Example:

100 Input using "j":a
110 Print a

(user input) 1.23M

(output) 0.00123
100 ' PRINT THE ITEM-FORMAT DATA TO A TAPE FILE
110 Open #1: "dat(open=rep,clip=zyes,for=zite)"
120 Print #1 using "5(i)":"HELLO",1,2,3,"GOOD-BYE"
130 Close all
140 ! NOW READ IT BACK OUT AGAIN
150 Open #1: "dat(for=ite)"
160 Integer a,b,c
170 Input #1 using "5(i)":str1$,a,b,c,str2$
180 Print stri1$,a,b,c,str2$
190 End
run

(output) HELLO<tab>1<tab>2<tab>3<tab>GO0D-BYE

Example 8-2.

8-22

4041 PROGRAMMER’S REFERENCE

P

The ‘O’ Operator. Accept an n-digit data item in octal
representation.

The value input is interpreted as an octal number, right-jus-
tified (with left-zero fill) within an n-space field.

The user may input a sign (default: +) and up to 11 digits for
the number.

Numbers that can be input using the ““0”’ operator range
from —(2A32~-1) to +(2A32-1).

Numbers input in the range from 2A31 to 2A32-1 are stored
in the range from ~(2A31) to -1, respectively.

Example:

¥long x

*input using "11o":x
20000000000 (user input)
*print x

-2.147483648E+9

*input using "11o":x
37777777777 (user input)
¥print x

-1.000000

INPUT/OUTPUT
INPUT

Numbers input in the range from —(2A31 + 1) to —(2A32) are
stored in the range from + (2A31) to 1, respectively.

Example:

¥long x

¥input using "120":x
-20000000001 (user input)
¥print x

2.14748364TE+9

*¥input using "120":x
=37777777777 (user input)
*¥print x

1.000000

This input scheme allows the user to express octal numbers

in either signed two’s complement or unsigned 32-bit
notation.

The ‘X’ Operator. Skip past the next n characters in the
input stream.

In Example 8-4, one numeric value is input, then two char-
acters of the input stream are shipped before the next nu-
meric value is input.

100 Input using "n,n,n" dels "!":stri$,num,str2$

110 Print str1$

120 Print num

130 Print str2$

140 End

run
(user input) HELLO THERE!123,GOOD-BYE!
(output) HELLO THERE

123.0

GOOD-BYE

Example 8-3.

100 Input using "3d,2x,3d":numl,num2

110 Print numil,num2
run

(user input) 12345678

(output) 123.0<tab>678.0

Example 8-4.

4041 PROGRAMMER’'S REFERENCE

8-23

INPUT/QUTPUT
INPUT

The ‘%’ Operator (GPIB). Accept data item in binary
block argument format.

Binary block argument format is a data transfer format de-
fined by the Tektronix GPIB Codes and Formats standard to
facilitate rapid data transfers between devices on the GPIB.

When information is exchanged using binary block argu-
ment format, the talking device sends the following informa-
tion over the GPIB after ATN becomes unasserted:

1. Apercent sign (%).

2. Atwo-byte binary count, telling the receiving devices
how many data bytes will be sent in the upcoming data
transfer.

A sequence of bytes representing the data.

A checksum byte, equal to the two’s complement of the
modulo-256 sum of all preceding data bytes sent since
the first percent sign.

The ‘%"’ operator can be used to transfer one or more inte-
ger scalars or integer arrays from a device on the GPIB to
the 4041. Only integer scalars or integer arrays can be
transferred using the ‘%’ operator.

In addition, the *‘n’”’ modifier can be used to control the way
that integers received are stored. The way this is done is ex-
plained below.

The 4041 stores integers in 2 bytes of memory (16 bits), in
2’s complement representation. Thus, numbers from
-32768 to + 32767 can be stored in a 4041 integer.

However, the GPIB has only eight data lines. Therefore,
transmitting a 16-bit value to the 4041 over the GPIB data
lines requires that two GPIB data bytes be transmitted. By
convention, the 4041 assumes that the integer’s most sig-
nificant byte is transmitted first.

The “n’’ modifier, in conjunction with the “%’’ operator,
tells the 4041 how many bits of each byte or pair of bytes to
store. The default value for ‘‘n’’ is 16; thus, using the default
value causes the 4041 to store each pair of data bytes it re-
ceives as a 2-byte integer, most significant byte first.

TSl

If the value of the ‘‘n’” modifier is less than 16 but greater
than 8, the 4041 takes the n leftmost bits of each 2-byte data
value received, and makes them the n rightmost bits of an
integer to be stored in memory.

8-24

Example:

100 Open #1:"gpib(pri=1):"
110 Dim bufr$ to 1000
120 Input #1 using "+12%" buffer bufr$:a

These lines produce the following results upon execution:

1. The 4041 sends the UNLISTEN interface message over
the GPIB (to clear any stray listeners off the bus).

2. The 4041 sends its listen address and the talk address
of the device at primary address 1 over the GPIB.

3. The 4041 then expects to receive the following values
over the GPIB:

a. Apercentsign

b. Two bytes signifying the number of bytes that the
talking device will transmit

c. Thedata bytes
d. A checksum byte sent with EOl asserted.

4. The 4041 then sends the UNTALK and UNLISTEN in-
terface messages over the GPIB.

5. The 4041 takes the first data byte received and the left-
most four bits of the second data byte received and
stores these as the rightmost twelve bits of integer vari-
able A. If the talking device sent more than two data
bytes, the remaining data bytes are stored in string vari-
able Bufr$.

If the ““‘n”” modifier is less than or equal to 8, the 4041 stores
the n leftmost bits of each GPIB data byte received as the n
rightmost bits of a 4041 integer. (Note that when n> 8, the
4041 reads the values of two GPIB data bytes for each inte-
ger; when n< =8, it only reads one.)

If the input list contains an integer array variable, the entire
integer array is input using the format described above, i.e.,
a percent sign is received, followed by two bytes signifying
the number of bytes to be transferred, followed by the array
values, followed by a checksum sent with EOI asserted.

In addition to the ‘‘n’’ modifier, the value of the ** +’ modi-
fier determines the way in which the 4041 stores the data re-
ceived over the bus.

4041 PROGRAMMER’S REFERENCE

If the ** + " modifier is included in the USING clause, the n
leftmost bits of the data received are stored as the n right-
most bits of a 16-bit 4041 integer. Bits to the left of the nth
position from the right are given a value of 0. (Thus, incom-
ing data bytes are stored as positive integers.

Ifa‘*“+ " value is not included in the USING clause, the
value of the *‘ + "’ modifier defaults to “‘="". In this case, the n
leftmost bits of the data received are stored as the n right-
most bits of a 16-bit 4041 integer, AND the value of the nth
bit from the right is copied into all bits to the left of the nth
bit. (Thus, incoming data bytes are stored as signed inte-
gers in 2’s complement representation.)

Example:

100 Open #1:"gpibO(pri=1):"
110 Integer a

120 Input #1 using "8%":a
130 Print a

When the 4041 receives the input called for in line 120, it
stores the first byte received after the binary byte count as a
signed integer (default). The value of the 8th bit (from the
left) of the first byte received over the GPIB will be repli-
cated in all bits to the left when the 4041 stores the number.

To transfer values into an input list more than one element
long, use the “‘n’’ modifier with parentheses around the
0%’ operator to indicate the number of input elements to
be transmitted using binary block argument format. When
inputting more than one element through one INPUT state-
ment using binary block argument format, the 4041 treats
each element of the input list as if it were a separate INPUT
statement.

Example:
150 Open #16:"gpibO(pri=16):"

160 Integer a(10),b(5)
170 Input #16 using "2(%)":a,b

The 4041 treats line 170 as if it were executing the following
lines:

input #16 using "%":a
input #16 using "%":b

INPUT/OUTPUT
INPUT

The 4041 does not send talk addresses when the logical
unit from which it is receiving data is open to no primary ad-
dress (as, for example, with the statement OPEN
#1:“GPIBO:"). In this case, the 4041 simply listens for bytes
being put onto the bus by a previously talk-addressed
device.

When the ‘%"’ operator is used in combination with other
INPUT USING operators, the binary block data should be
preceded by and followed by the EOA character, unless the
binary block data item is the last element on the input list, in
which case it should be followed by the EOM character.

Thus, if the first data byte received over the GPIB is HEX
ES8, the 4041 stores the value HEX FFES in the two bytes
reserved for integer variable A.

Line 130 would then print the value —24 on the system con-
sole device, since HEX FFES8 is the 16-bit 2’s complement
representation of —24.

NOTE

Ifyou get an error #757 (Invalid Header), the instru-
ment your 4041 is connected to is probably not senad-
ing the correct EOA character to delimit the header
before the “%’’ sign. Check the documentation on
your instrument to find out what it sends to delimit the
header, then make that character the EOA character
with an OPEN statement.

The following program segment reads a block of 1000
integers preceded by a 10-character ASCII header
from a device on the GPIB, using the binary block ar-
gument format.

In Example 8-5, the binary-block transmission returned by
an instrument in response to the prompt ‘‘curve?’’ is stored
as a sequence of positive integers in numeric array B. Each
integer transmitted contains eight bits.

100 Dim a$ to 10 ! a$ receives the header

110 Integer b(1000) ! array b receives the data

120 Dim c$ to 1100 ! c$ is a temporary buffer

130 Open #1:"gpibO(pri=1):"

140 ! input the header in response

150 ! to the GPIB message "curve?"

160 Input #1 prompt "curve?" buffer c$ using "fa,+8%":a$,b
Example 8-5.

4041 PROGRAMMER’S REFERENCE

8-26

INPUT/QUTPUT
INPUT

The ‘@’ Operator. Accept a data item in end block argu-
ment format.

End block argument format is a data transfer format defined
by the Tektronix GPIB Codes and Formats standard to facil-
itate rapid data transfers between devices on the GPIB.

When information is exchanged using end block argument
format, the talking device sends the following information
over the GPIB after ATN becomes unasserted:

1. An “at” sign(@).

2. A sequence of bytes representing the data. The last
data byte is sent with EQOI asserted, to indicate the end
of the data transfer.

Like the “‘I” operator, data transmitted using the ‘@’ oper-
ator should be preceded by the EOA character. However,
the “@’’ operator does not require that the EOA character
follow the data.

Modifiers for the " @ INPUT USING operator are identical
to those for “%”” INPUT USING operator.

The ““n’’ Modifier. Designates the number of character
positions in an input field, or the number of times a paren-
thesized image string segment is to be repeated.

When used to designate the number of times a parenthe-
sized image string is to be repeated, n must be an integer
<= 511.

In Example 8-6, the USING operator ‘5(2d)”’ indicates that
five two-digit numeric values are to be input.

The “‘F’’ Modifier. Accept characters until a delimiter is re-
ceived. The default delimiters for numeric data elements
are: space, comma, tab, semicolon, colon, and the EOM
character. The default delimiter for string data elements is
the EOM character.

The only limits on the number of characters that can be re-
ceived for a single data element using the *‘F’’ modifier are
the dimension of the string (for string data elements), the
size of the number that can be accommodated (for numeric
data elements), and the size of the input buffer (default: 514
bytes).

Example:

100 Input using "2(fg)":numl,num2
110 Print num?
120 Print num2
run
(user input) 123.456,789.012
(output) 123.456
789.012

100 Input using "5(2d)":

110 Print num1i

120 Print num2

130 Print num3

140 Print numi

150 Print numb

run
(user input) 1234567890
(output) 12.

34,

56.

78.

90.

joleoleloNe]

numi,num2,num3,numl, numb

Example 8-6.

8-26

4041 PROGRAMMER’S REFERENCE

7

The ‘“‘R’’ Modifier. Accept a numeric data item using
comma for a radix symbol instead of decimal point.

The “R” modifier can be used only with the “E’* and *'G”’
operators.

NOTE

When using the “‘R’’ modifier for input, the user should

include a DELN clause in the INPUT statement to spec-
ify that the comma is NOT a delimiter for numeric input

elements.

In Example 8-7, line 100 requests numeric input with a
comma (not a decimal point) used as a radix symbol.

Line 110 prints the number with a decimal point for a radix
symbol, and line 120 prints the number with a comma for a
radix symbol.

Note that the ‘G’ operator truncates (not rounds) excess
characters on input.

INPUT/QUTPUT
INPUT

The ““V’’ Modifier. (‘% operator only) accept data in ‘‘da-
tadriven’ mode.

By default, binary block data exchanges occur in “‘argument-
driven’ mode. This means that the next argument in the ar-
gument list is not filled with data until the current argument

is filled with data.

In the data-driven mode, the next argument is filled with
data when the 4041 completes the binary block transfer for
the current argument.

Example:

Suppose the data consist of two 512-byte chunks, to be
transferred in binary block format. The following
statements:

100 Integer a(768),b(512)
110 Input using "%,%":a,b

fills ali of array A and half of array B (the first 512 bytes are
transferred to A; since A is not yet full, 256 bytes from the
next chunk are transferred to A to fill it, and the remaining
bytes are transferred to B).

With the V-modifier, however, the following statements:

100 Integer a(768),b(512)
110 Input using "v%,v%":a,b

put the first chunk into array A (filling 512 of its 768 bytes),
and the second chunk into array B (filling it completely).

100 Input using "r6.4g" deln " ":num

110 Print num
120 Print using "r6.4g":num

run
(user input) 1,23456
(output) 1.2345
1,2345

Example 8-7.

4041 PROGRAMMER’S REFERENCE

8-27

INPUT/OUTPUT
OPEN

The OPEN Statement

Syntax Form:

Descriptive Form:

[line-no.] OPEN #numexp:strexp|,strvar]

[line-no.] OPEN #lunum:stream-spec [,open-result-for-tape-files]

PURPOSE

The OPEN statement associates a logical unit number with
a stream spec for subsequent I/O operations.

EXPLANATION

When a logical unit number is associated with a stream
spec, all subsequent /O statements using that logical unit
number perform their /O function as directed by the stream
spec. The logical unit number becomes a ‘‘shorthand’’ form
of the stream spec.

The logical unit number must evaluate to an integer be-
tween 0 and 32767 inclusive.

If no driver spec is included in a stream spec, the current
SYSDEV driver spec is used by default.

If a file is being opened on the DC-100 tape, a string varia-
ble may be specified after the stream spec (and separated
from it by a comma) to receive the directory entry for the
opened file. If a string variable is specified for an OPEN on
any other driver, the string is set to null.

Attempting to open a logical unit that is already open closes
the logical unit, then re-opens it with new stream attributes.

8-28

Example
3110 Open #1:"gpib(pri=21,sec=4):"

This statement designates an instrument at primary ad-
dress 21 and secondary address 4 on the currently selected
GPIB as logical unit 1. This number can be used to direct
subsequent I/O to this device.

4781 Open #2:"test",openres$
4782 Print openres$

Line 4781 designates a file called ‘‘Test’’ on the DC-100
tape as logical unit 2, and stores the directory entry for file
“Test” in OpenRess$.

Line 4782 directs the 4041 to print the value of OpenRes$
on the system console device.

4041 PROGRAMMER’S REFERENCE

~

Defining Stream Spec Parameters During
Execution

ltis often desirable to define stream spec parameters dur-
ing execution. To do this, the user must concatenate sev-
eral substrings that together make up a legal stream spec.
The resulting string can be used directly in I/0O statements
or associated with a logical unit number by means of the
OPEN statement.

Example

In Example 8-8, line 100 asks the user to input a number
representing a primary address of a device, and stores it in
numeric variable Primary.

Line 110 concatenates the string “GPIB(PRI ="’ with the
string equivalent of numeric variable Primary and with the
string *'):”’, then associates the stream spec thus formed
with the logical unit given by the value of numeric variable
Primary.

Thus, if the number input in line 100 were 1", line 110
would associate logical unit 1 with the stream spec “GPIB-
(PRI=1):".

Opening Tape Files

The OPEN parameter of the file spec determines how a tape
file is handled when it is opened.

When OPEN = REPLACE, the file is opened for writing. The
file is deleted (if it exists already) from the tape directory in
memory, and a new file is created with the tape drive’s read/
write head positioned at the beginning of the file. Data items
output to the file over-write the previous contents of the file
(previous contents are lost).

INPUT/OUTPUT
OPEN

When OPEN = NEW, the file is treated in exactly the same
way as OPEN = REPLACE, except that an error is gener-
ated if the file already exists on the tape.

When OPEN = UPDATE, the file is opened for writing. The
tape drive’s read/write head is positioned at the end of the
data in the file. Data items output to the file are added to the
end of the file (both previous and new file contents are
preserved).

When OPEN = OLD (default), the file is opened for reading
as well as writing. File contents are read sequentially, until a
data item is output to the file. At that time, the file is
‘“closed” for reading; data items output to the file over-write
the previous contents of the file after the point at which writ-
ing began (previous contents of the file are lost after the first
data item output).

Error Recovery

If you mistakenly open a file with OPEN parameter equal to
REPLACE when you meant OLD, the file will be deleted
from the copy of the tape directory stored in memory. All is
not lost, however.

BEFORE you start writing to the new file, “‘pop’’ the tape
(remove it from the tape drive).

NOTE

NEVER “pop’’ a tape while data is being written to it.
You might make one record irrecoverable (if the 4041
is not writing out the tape header or directory), or make
the data on the WHOLE TAPE irrecoverabile (if the
4041 is writing the tape header or directory).

After popping the tape, execute a DISMOUNT statement in
immediate mode. You are now back where you started.

100 Input prompt "Primary Address:":primary

110 Open #primary:"gpib(pri=" & str$(primary) & "):"

Example 8-8.

4041 PROGRAMMER’S REFERENCE

8-29

INPUT/OUTPUT

PRINT
The PRINT Statement
Syntax Form [line-no.] PRINT [clause-list:] {numexp] [,numexp]. ..
{strexp] [,strexp]...
where clause-list = [# [numexp]] [BUFFER strvar] [INDEX {numexp}] [USING {numexp]]
{strexp} {strexp] {strexp}
Descriptive Form [line-no.] PRINT [print-clauses:]print-list
PURPOSE 5. Commas are used to separate message units. A

The PRINT statement transfers data from variables in mem-
ory to a device.

EXPLANATION

The PRINT statement transfers data items using default

data formatting rules (explained below). The PRINT USING
statement allows the programmer to specify the printing for-

mat by means of an image string. 6.

The PRINT statement sends data to the system console de-
vice by default. The user can specify which device is to be
the system console and set its logical parameters by means
of the SET CONSOLE statement (described elsewhere in
this section).

Data is sent to devices other than the system console by
means of the “#” clause (described later in this section).

If no USING clause is specified, the PRINT statement con-
verts data items into ASCH character strings and outputs
them to a peripheral device according to the following rules:

1. Numeric expressions are evaluated and reduced to a
numeric constant. The constant is converted to ASCII,
using the most abbreviated format possible for the spe-
cific data type, and sent to the peripheral device.

2. String expressions are evaluated and reduced to a
string constant. The string constant is sent directly to
the peripheral device.

3. Numeric arrays are converted to ASCIl element-by-ele-
ment and sent to the peripheral device.

4. String arrays are sent to the peripheral device element-

by-element. Each element is treated as a string
expression.

8-30

comma in a print list sends the End-of-Message-Unit
character (EOU) to the output device. The default EOU
character for the GPIB is a SEMICOLON; the default
EQU character for other devices is a TAB.

A print element must appear on either side of acomma
in a print list to be syntactically correct. Beginning or
ending a print list with a comma or putting two or more
consecutive commas in a print list results in an error.

Semicolons separate print elements within message
units, or suppress output of the End-of-Message (EOM)
character.

The first semicolon in a message unit sends the End-of-
Header (EOH) character to the output device. The sec-

ond and succeeding semicolons send the End-of-Argu-
ment (EOA) character to the output device.

A semicolon after an array name in a print list sends
EOA characters between array elements. If the array is
the last element in the print list, the semicolon sup-
presses output of the EOM character(s) after the last
element.

EOH defaults to SPACE for the GPIB driver, and de-
faults to no output for all other devices. EOA defaults to
COMMA for the GPIB driver, and defaults to no output
for all other devices.

If a semicolon concludes a print list, it sends neither
EOH nor EOA, but suppresses the EOM normally out-
put after a PRINT statement is executed. (The effect on
a computer terminal, for example, is to suppress car-
riage-return/line-feed and leave the cursor at the end of
the printed line.)

A semicolon concluding a print list in a statement out-

putting data to a GPIB device also suppresses asser-
tion of the EOI line indicating end-of-message.

4041 PROGRAMMER'’S REFERENCE

7. After all print list elements are processed, the End-of
Message (EOM) string is sent to the output device. The
default EOM string for the GPIB is <cr> <lIf>&
< EOl> (carriage return followed by line feed, with the
EOI line on the GPIB asserted). The default EOM char-
acter for other devices is < cr> (carriage return).

If a semicolon terminates the print list, no End-of-Mes-

sage string is set.
Examples

3130 Print

This statement outputs one end-of-message string to the
system console device. If the system console device is a
user’s terminal connected through an RS-232-C interface
port, this statement prints a carriage-return/line-feed; if the
system console device is the front panel/keyboard, this
statement erases the contents of the front panel.

3131 Print

This line generates rio output (semicolon terminating print
list containing no data elements).

3132 Print 1,"word";2
This line produces the following output:
1 <tab >word2

3133 Print 1;" word ";3

This line produces the following output on the system con-
sole device:

1word 3

USE OF PRINT STATEMENT WITH GPIB, OPT
2, OPT 3, OR DRIVERS

The use of the PRINT statement to output to GPIB devices
is described under High-Level Message Transfers in Section
9, Instrument Control With GPIB.

The OPT2 driver does not use the PRINT statement for out-
put. Instead, it uses the “OPT20UT" romcall, described
along with the RCALL statement in Section 7, Control
Statements.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PRINT

Using the PRINT statement to output to a tape file has vary-
ing results depending on the value of the OPEN parameter
in the tape file stream spec.

If OPEN = NEW or OPEN = REPLACE, the tape’s read/write
head is positioned at the beginning of the file. Output to the
file writes over information previously in the file; data in the
file from before the PRINT operation are lost.

If OPEN = UPDATE, the tape’s read/write head is posi-
tioned at the end of the data presently in the file. Output to
the file adds information to the end of the file; data in the file
from before the PRINT operation remain available for later
retrieval.

If OPEN = OLD, the tape’s read/write head is positioned at
the beginning of the file. The file is then open for reading un-
til the first PRINT statement calls for output to the file, at
which time the file is closed for reading and opened for writ-
ing. (All other logical units that may have opened the file for
reading must be closed before the first output to the file oc-
curs, or an error is generated.)

A file can only be opened for output on one logical unitat a
time. A file cannot be opened for input and output at the
same time.

PROCEED MODE PRINT

The 4041 enters proceed-mode upon execution of a SET
PROCEED 1 statement. In proceed-mode, program execu-
tion continues while one or more drivers complete the tasks
assigned to them by an INPUT or PRINT statement, or until
a subsequent statement requires that a previous I/O opera-
tion be complete, or untit a proceed-mode 1/O error occurs.

Example

100 Set proceed 1

110 Open #1:"datafi(openzreplace,clip=yes)"
110 Print #1:srrayl,array2,array3

120 A=1

130 B=2

140 C=3

150 Print #1:a,b,c

Line 110 writes the variables Array1, Array2, and Array3
into file “DataFi’’ on the DC-100 tape. At the same time that
the output is being written to the tape, the 4041 executes
lines 120 through 140. Since line 150 calls for output to logi-
cal unit 1, the 4041 stops at line 150 until the PRINT opera-
tion caused by line 110 is complete.

REV OCT 1984 8-31

INPUT/OUTPUT
PRINT

Restrictions on PRINT in Proceed Mode

When using the PRINT statement in proceed mode, the
4041 only “‘proceeds’’ when it has one buffer-full or less of
data to be output.

If no BUFFER clause is included in the PRINT statement,
the 4041 assigns a temporary buffer 514 bytes long to hold
output data. Program execution does not “‘proceed’’ (i.e.,
succeeding program statements do not begin to execute)
until there are 514 bytes of data or less to be output.

Therefore, if there were 1,000 bytes of data to be output by
a PRINT statement, the 4041 would output the first 514
bytes in ‘‘sequential’’ mode, then proceed to execute other
statements as it output the last 486 bytes.

The way to overcome this restriction is to dimension a buffer
large enough to contain the entire string of output data, then
use that buffer in a BUFFER clause within the PRINT
statement.

Example. Suppose we wish to output three arrays contain-
ing 1100 characters of data, total. The following program
segment would allow the 4041 to proceed during the output
operation:

100 Set proceed 1

110 Dim bufr$(1200)

120 Print buffer bufr$:arrayl,array2,array3
130 ! PROGRAM PROCEEDS FROM HERE

Line 120 reads the characters to be output into string varia-
ble Bufr$, then proceeds to executes succeeding program
statements while printing the contents of Bufr$.

The 4041 will not proceed past a statement calling for pro-
ceed mode /O on a driver that is already busy (even if the
second statement invokes a different logical unit from the
first).

The ASK(‘‘IODONE’’) Function

The status of I/O operations on a given logical unit at any
time can be determined by means of the ASK(‘|ODONE"’")
function. See the description of the ASK(*‘IODONE"") func-
tion in Section 5, Environmental Control, for more
information.

8-32

REV OCT 1984

The IODONE Condition

Control can be transferred to a given subprogram or GO-
SUB subroutine upon completion of proceed-mode /O on a
given logical unit by means of the ON IODONE statement.

The IODONE condition is automatically enabled when the
4041 is put into proceed mode.

See Section 14, Interrupt Handling, for more information
about the ON statement and the IODONE condition.

The ASK(‘*‘PROCEED’’) Function

Whether or not the 4041 is in proceed mode can be deter-
mined by means of the ASK('"'PROCEED"’) function.
ASK(“PROCEED") returns a value of 1 if the 4041 is in pro-
ceed mode, 0 if not.

Errors During Proceed-Mode PRINT

Errors occurring during proceed-mode PRINT are handled
in a special way. See the description of the ERROR inter-
rupt condition in Section 14, Interrupt Handling, for more in-
formation.

PRINT Clauses

Clauses are '‘statements within statements’” used with
GETMEM, INPUT, PRINT, PUTMEM, RBYTE, and WBYTE
commands to define a data transfer path or modify execu-
tion of an 1/O operation. Clauses are separated from data
lists by a colon.

The following clauses can be used with PRINT statements:

Specifies a logical unit number or stream
spec for the PRINT operation.

BUFFER A specified string is used directly as an 1/0O
buffer.
USING Data formatting is under user control.

Further explanation and examples showing the use of each
clause follow.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PRINT

The # Clause The BUFFER Clause
Syntax Form: Syntax Form:
#numexp OR #strexp BUFFER str-var

Descriptive Form:
#logical-unit-number OR #stream-spec

Descriptive Form:
BUFFER string-variable-for-output-data

The # clause specifies a data path for an 1/O operation.

The # clause is used when I/O is to be performed to other
than the default device for an I/O operation, or when the
user wishes to specify other than the default attributes for a
driver or file.

If a numeric expression follows the “‘#", itis interpreted as
the number of the logical unit to be used for the PRINT
operation.

If a string expression follows the “#”’, it is interpreted as the
stream specification to be used for the PRINT operation.

The numeric expression for a logical unit must evaluate to
an integer intherange 0 < = lunum < = 32767.

A string expression following the “'#’’ must evaluate to a le-
gal stream spec. (See the description of stream specs, near
the beginning of this section, and Appendix D for more
information.)

Example.

2048 Print #5:x,y,2z

This statement sends the values of three numeric variables,
X, Y, and Z, to the device opened as logical unit 5.

4096 Print #"prin:":zip$;zap

This statement sends the values of a string variable, ZIP$,
and a numeric variable, ZAP, to the thermal printer.

4041 PROGRAMMER’S REFERENCE

The BUFFER clause allows a user to specify a string varia-
ble to use as a buffer during a data transfer.

When no BUFFER clause is included in a PRINT statement,
the 4041 makes a temporary 514-byte buffer into which data
are read in their output-formatted form. When the buffer is
full or all data to be output have been written into the buffer,
the buffer’s contents are sent to the output device. The con-
tents of the buffer are then erased.

The BUFFER clause allows a user to specify a string varia-
ble into which output data is read during a PRINT operation.
After the PRINT operation is complete, the buffer’'s contents
are not erased, but remain available for editing or other
uses.

In addition, the BUFFER clause can be used to advantage
with PRINT statements during proceed-mode 1/O. See
““Proceed-Mode PRINT”’, later in this section, for more
information.

Example.

100 Read a,b,c,d,e

110 Data 1,2,3,4,5

120 Print buffer bufr$:a,b,c,d,e
130 Print bufr$

run
1.0<tab>2.0<tab>3.0<tab>4,0<tab>5.0
1.0<tab>2.0<tab>3.0<tab>4.,0<tab>5.0

(output)

Note how string variable Bufr$ contains the exact sequence
of characters that were output.

8-33

INPUT/QUTPUT
PRINT

The INDEX Clause

The USING Clause

Syntax Form:
INDEX {numexp}
{strexpj

The INDEX clause will be included in a future enhance-
ment, for use with peripheral devices that support random
access.

The word “INDEX’’ can be used as a line label, variable, or
subprogram name in 4041 programs.

8-34

Syntax Form:
USING {line-reference}
{strexp]

Descriptive Form:
USING {line-number-of-IMAGE-statement]
{format-string|

When used with the PRINT statement, the USING clause al-
lows the user to specify the format in which data are printed,
displayed, or otherwise sent to an output device.

The USING clause specifies a format string, which defines a
format for output. The format string may be any combination
of string literals, string variables, string functions, or opera-
tions with the string operator. The string expression must
evaluate to a legal format string.

The USING clause either contains a format string, which de-
fines a format for output, or refers to an IMAGE statement
that contains a format string. In either case, the format
string may be any combination of string literals, string varia-
bles, string functions, or operations with the string operator,
as long as it forms a string expression that evaluates to a le-
gal format string.

Legal PRINT USING operators and modifiers are listed in
Tables 8-3 and 8-4.

Further explanations and examples of the use of each of
these operators follow.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PRINT

Table 8-3 Table 8-4
PRINT USING OPERATORS PRINT USING MODIFIERS
Operator | Meaning Modifier Meaning
nA Output n characters in string, left-justified, space fill. n Specifies (a) number of character positions in print
nB Qutput binary representation of number; set n digit po- field, (b) mgmbefr ertllmes abflleld o‘;‘)eratkqu _|s reg(?;tBed,
sitions; do not output square brackets or *‘B"’. or () ngm 'er of rightmost bits to “pack™ into
byte(s) in binary or end block format.
nD Integer format: set n digit positions, leading space fill. — - -
F Set a print field (string or numeric) just large enough to
nE Scientific notation format: set n digit positions. accommodate data item.
n.mG Floating point format; set n total character positions R Output comma as radix symbol.
(including radix symbol), with m digits to right of deci- Outout sian: + if it " "
mal point. utput sign: + if positive, — if negative.
nH Output hexadecimal representation of number; set n Output sign: SPACE if positive, - if negative (default).
digit positions, do not output square brackets or “'H’’. A Leading zero fill.
! Print data in binary item format. * Leading *** " fill.
nJ Engineering notation format: set n digit positions, < Left-justify data in a field {"'A”" format only; default).
leading space fill > Right-justify data in a field ("*A”’ format only).
K Output numeric data item in shortest form. _ Center data within a field (“A”" format only).
nL Output n ASCII LF characters.
N Print string or numeric data item in shortest format
(identical to K, except N allows strings).
nO Output octal representation of number; set n digit po-
sitions; do not output square brackets or “O”’.
S Suppress carriage return.
nT Output spaces until character position n reached.
nX Output n spaces.
’ Begin/end imbedded string.
n() Replicate enclosed image string n times.
n/ Output n end-of-message strings.
Output colon.
; Output semicolon.
n% Output the rightmost n bits of a 4041 integer as the
leftmost n bits of a GPIB byte or pair of bytes, using bi-
nary block format.
n@ Output the rightmost n bits of a 4041 integer as the

leftmost n bits of a GPIB byte or pair of bytes, using
end block format.

4041 PROGRAMMER’S REFERENCE

8-35

The ““A’’ Operator. Output n characters in a string, left-jus-
tified, space fill.

This operator sets up a field n characters long to receive an
alphanumeric string. Characters are written into the field
starting with the leftmost character position. Unused field el-
ements are filled with blank spaces. If n is not specified, a
field size large enough to hold the entire string is used.

Example:

100 A$="Name:"
110 Print using "10a":a$

Line 110 produces the following output:

Name: <sp> <sp> <sp> <Sp> <Sp>

The ‘‘B’’ Operator. Output the binary representation of a
number.

A field of print spaces may be reserved for the data element
by means of the “‘n’’ modifier. This field must be large
enough to accommodate both a sign (if the number is nega-
tive) and the digits that make up the number.

The output range for PRINT USING with the “‘B”’ operator is
from -(2A32-1) to + (2A32-1).

When a specified length is allotted to a print-list element be-
ing printed with the *'B’’ operator, the allotted field is left-
zero filled.

Example:

¥x=5

¥print using "8b":x
00000101

*x=-5

¥print using "8b":x
-0000101

8-36

INPUT/OUTPUT
PRINT

The “*D”’ Operator. Output a number in integer formatin n
digit positions, leading space fill.

This operator sets up an n-digit print field for a numeric vari-
able. Numbers are rounded to the nearest integer and
printed right-justified within this field. If a number does not
fit within its designated space, a string of *’s is output.

Example:

100 Number=155
110 Print using "5d":number

Line 110 produces the following output on the system con-
sole device:

<sp><sp>155

The ‘“*E’’ Operator. Output a number in scientific notation.
The user may specify a number of digits n (minimum:3) to
be printed in the mantissa.

Ifn = 3, the 4041 outputs one character for the sign of the
mantissa, one character for the mantissa’s first digit, and
one character for the radix symbol.

If n > 3, n characters are output for the mantissa, including
one for the sign and one for the radix symbol.

In addition, the 4041 outputs an upper-case “‘E’’, a sign for
the exponent, and as many digits as are required for the ex-
ponent.

If n=0, the entire number is output in floating-point format.
Example:

490 A=3.4567E12
500 Print using "3e":a

Line 500 causes the following output to appear on the sys-
tem console device:

<sp>3.E+12

4041 PROGRAMMER’S REFERENCE

The ‘“G’’ Operator. Output a number in floating point for-
mat. The user may specify the total number of character
spaces for the print field, as well as the number of digits to
be output to the right of the decimal point.

When used in an image string, the G operator takes the
form “‘n.mG”’, where n is the total number of spaces re-
served for a number in the output field, and m is the number
of digits to appear to the right of the decimal point. The deci-
mal point takes up one space in the print field.

If a number does not fit within its designated space, a string
of *’s is output.

N can have a maximum value of 31.
Example:
1050 Print using "4.2g":1.41421

This statement produces the following output on the system
console device:

1.41

The ““H’’ Operator. Output the hexadecimal representation
of a number.

A field of print spaces may be reserved for the data element
by means of the *‘n’’ modifier. This field must be large
enough to accommodate both a sign (if the number is nega-
tive) and the digits that make up the number.

The output range for PRINT USING with the *‘H’’ operator is
from -(2A32-1) to + (2A32-1).

When a specific length is allotted to a print-list element be-
ing printed with the *'H’’ operator, the allotted field is left-
zero filled.

Example:

¥x=14

*print using "8h":x
0000000E

¥x=-14

*print using "8b":x
~-000000E :

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PRINT

The “‘I’’ Operator. Output data in binary item format.

The “I”” operator transfers data to a device using the 4041’s
internal data representation. This operator can be used to
store data on mass-storage devices, such as tapes or disks,
in order to speed subsequent data retrieval (because incom-
ing data will not have to be converted to the 4041’s internal
format; they’ll already be in it).

The “I”” operator cannot be used with the *'n’’ modifier; it
must be used by itself or within a repetition count (denoted
by parentheses) only.

The ‘“J’’ Operator. Output data item in ‘‘engineering”
notation.

The ““J” operator functions in the same way as the “E”’
operator, except:

® The minimum field size that can be specified with the
“J” operator is 4.

® [f the number’s exponent is between-12 and + 3, aletter
indicating the exponent’s value is printed. The letters
printed for various exponents are as follows:

Exponent
Value

-12
-9
-6
-3

+3

Letter

AECzO

Example:
2000 Print using "43j":15000
This statement produces the following output:

<sp>15K

8-37

INPUT/OUTPUT
PRINT

The ‘““K’” Operator. Output numeric data item in shortest
form.

This operator causes the 4041 to find the representation of
a data item that takes the fewest print spaces while retain-
ing all the significant digits of a number. The 4041 then out-
puts the data item in that representation.

NOTE

For purposes of finding the shortest form of a data
item, the 4041 uses a ‘‘short-form’’ scientific notation.
The exponent is output as an integer without left-zero
fill; the exponent sign is output only if the exponent is
negative. Likewise, the sign of the characteristic is out-
put only if the characteristic is negative.

Example:

1250 Num=1000000
1260 Print using "k":num

This example produces the following output:
1E6

The integer representation of variable NUM takes up seven
print spaces; the floating point representation takes up
eight. The scientific representation takes up only three print
spaces, so the 4041 prints the data item in that form.

The “‘L’’ Operator. Output n ASCI! line feed characters.

The “L” operator outputs a line feed. The ‘‘L”’ operator
does not print a carriage return along with the line feed; in-
stead, the “‘carriage’’ is moved down one line, remaining in
the same position relative to either margin.

Example:

10 Print using 20:"FE" , "FI" "FO" , "FUM"
20 Image 2a,l,2a,1,2a,l,3a

These statements produce the following output:

FE
Fi
FO
FUM

Each ““A” operator sets up an alphanumeric field of appro-
priate length, while each “‘L’’ operator moves the print line
down by one line without returning the carriage to the first
column. Note the difference between the “‘L’’ operator and
the ‘‘/"" operator, described next.

8-38

The *‘/”” Operator. Output n end-of-message characters.

The ““/”’ operator is similar to the ‘L’ operator, except it
causes printing to start in the first column of a new line.

Example:

10 Print using 20:"FE","FI" “FQ" , "FUM"

20 Image 2a,/,2a,/,2a,/,3a
These commands produce the following output (with the de-
fault EOM character (CR-LF):

FE
Fl
FO
FUM

The ““A’ operators create alphanumeric fields of appropri-
ate size for each data item, while the */”’ operators cause
each data item to be printed on the line below the previous
one, starting in the first column.

NOTE

The */”’ operator will not cause a line feed to be printed
if the EOM character has been changed to (CR). In this
case, the four lines shown above would be printed one
over the other, with predictable results (an unreadable
message, if output was to a printer or DVST terminal;
the word ““FUM”’, if output was to a raster-scan
terminal).

The ““N’’ Operator. Output string or numeric data item in
shortest format.

The “N’’ operator functions similarly to the “‘K’’ operator,
except that ““N”’ can output strings as well as numbers.

The “N’’ operator follows the same rules for determining
the shortest form of a number as the “‘K’’ operator.

Strings output in their shortest form have trailing nulls
deleted.
Example:

1400 Print using 1500: number

1450 Print using 1500: string$

1500 Image n

Because *N’" is an all-purpose, shortest-format operator,
the same IMAGE statement can handle both PRINT com-
mands in lines 1400 and 1450.

4041 PROGRAMMER’S REFERENCE

FlN

The “*O’’ Operator. Output the octal representation of a
number.

A field of print spaces may be reserved for the data element
by means of the “‘n’’ modifier. This field must be large
enough to accommodate both a sign (if the number is nega-
tive) and the digits that make up the number.

The output range for PRINT USING with the *‘O” operator is
from -(2A32-1) to + (2A32-1).

When a specific length is allotted to a print-list element be-
ing printed with the *‘O”’ operator, the allotted field is left-
zero filled.

Example:

¥xz=12

¥print using "8o":x
00000014

¥x=-12

¥print using "8o":x
~0000014

The ‘“S’’ Operator. Suppress output of EOM character.

This operator suppresses the EOM character normally out-
put after a PRINT statement is executed.

Example:

160 Num=450

170 Num2=125

180 Print using "4d,s":num
190 Print using "d4d":num2
*run

These statements produce the following output:
<sp>450<sp>125

Line 180 reserves four print spaces for the value of the vari-
able Num, then prints that value right-justified within the
four-space field. The ‘S’ operator then suppresses printing
of the carriage-return/line-feed that normally follows execu-
tion of a PRINT statement. Thus, when statement 190 is ex-
ecuted, the next data item to be printed appears on the
same line as the previous data item.

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
PRINT

The “T’’ Operator. Output SPACEs until character posi-
tion n reached.

The “T” operator moves the print cursor to a specified char-
acter position on the print line. The specification ‘30T, for
example, tells the 4041 to output spaces until the cursor
reaches the 30th print space on the current print line.

The “T’’ operator cannot force the print cursor to move
backwards over a print line. Thus, if the cursor is currently
positioned in column 20, and a *“15T"’ is encountered in an
image string, no action is taken, because the cursor cannot
move back to position 15 from position 20 on the current
line.

“T” differs from the ““X’’ operator in that *“T"’ specifies the
next column that printing will start in, while *X’’ specifies a
number of spaces to be printed from the current cursor
position.

Example:

200 Able=500

210 Baker=38.875

220 Charli=2.3196E10

230 Print using abc:able, baker, charli
240 Abc: image 4.0g,11t,6.3g,21t,2e

These commands produce the following output:

500<sp> <sp> <SP> <SP> <SP> <SP> <Sp>
<sp>38.875<sp> <sp> <sp><sp>2.E10

The IMAGE statement labeled ‘‘ABC’’ in line 240 tells the
4041 to:

1. Print a numeric data item (Able) in four print spaces,
with no digits to the right of the decimal point.

2. Print spaces until the print cursor is positioned in the
11th column of the current print line.

3. Printanother numeric data item (Baker) in six print
spaces, with three digits to the right of the decimal
point.

4. Print spaces until the print cursor is positioned in the
21st column of the current print line.

5. Print a numeric data item (Charli) in scientific notation,
with two digits in the characteristic.

8-39

INPUT/QUTPUT
PRINT

The ‘*X’’ Operator. Output n spaces from current cursor
position.

The X’ operator outputs n spaces from the current cursor
position. It differs from the *“T"’ operator in that **X’’ does
not specify the column in which printing will resume; it sim-
ply causes the 4041 to count off n spaces from the current
column and prints the next item from there.

Because the X"’ operator does not specify which column
data items will appear in, the *“T’’ operator is most often
used when data are to appear in columns, or in other cases
where output formatting is important. The ‘X'’ operator, on
the other hand, is more convenient to use when neat colum-
nar output formatting is not needed.

Example:

200 Able=500

210 Baker=38.875

220 Charli=2.3196E10

230 Print using abc: able, baker, char
240 Abc: image 4.0g,5x,6.3g,5x,2e

These statements produce the following output:

<sp>500.<sp> <sp> <SP> <Sp> <sp>38.875<
Sp> <sSp> <Sp><sp> <sp>2.E+10

The “*X’’ operators in line 240 cause five spaces to be
printed between the last character of variable ‘**Able”” and
the first character of variable ‘‘Baker’’, and the last charac-
ter of variable *‘Baker’’ and the first character of variable
“Charli’.

The “* ' ** Operator. Begin/end imbedded string.

Strings enclosed in single quotes are reproduced in output.

The ‘*:”’ Operator Output a colon.

Example:
100 Nrpt$="NR.PT"
110 Nrpt=512
120 Print using "5a:3d":nrpt$,nrpt
run
(output) NR.PT:512

The **;’’ Operator. Output a semicolon (see Example 8-9).

The ‘%’ Operator (GPIB). Output data item in binary
block argument format.

Binary block argument format is a data transfer format de-
fined by the Tektronix GPIB Codes and Formats standard to
facilitate rapid data transfers between devices on the GPIB.

When information is exchanged using binary block argu-
ment format, the talking device sends the following informa-
tion over the GPIB after ATN becomes unasserted:

1. A percent sign (%).

2. Atwo-byte binary count, telling the receiving devices
how many data bytes will be sent in the upcoming data
transfer.

A sequence of bytes representing the data.

4. Achecksum byte, equal to the two’s complement of the
modulo-256 sum of all preceding data bytes sent since
the first percent sign.

The "%’ operator can be used to transfer one or more inte-
ger scalars or integer arrays from the 4041 over the GPIB.
Only integer scalars or integer arrays can be transferred us-

Example: ing the ‘%"’ operator.

100 Freg=1000

110 Print using "'FREQ ',4d":freq

run

(output) FREQ 1000
100 Freq$="FREQ "
110 Freq=1E3
120 Ampl$="AMPL "
130 Ampl=1
140 Image$="n,n;n,n"
150 Print using image$:freq$,freq,ampl$,ampl
run
(output) FREQ 1000.0;AMPL 1.0

Example 8-9.

8-40

4041 PROGRAMMER’S REFERENCE

In addition, the “‘n’’ modifier can be used to control the way
these integers are sent. The way this is done is explained
below.

The 4041 stores integers in 2 bytes of memory (16 bits), in
2’s complement representation. Thus, numbers from
-32768 to + 32767 can be stored in a 4041 integer.

However, the GPIB has only eight data lines. Therefore,
transmitting the entire contents of a 4041 integer over the
GPIB requires that two GPIB data bytes be transmitted. By
convention, the 4041 integer’s most significant byte is trans-
mitted first.

The “‘n’’ modifier, in conjunction with the ““%’’ operator,
tells the 4041 how many bits of each integer to put onto the
bus. The default value for ‘'n’’ is 16; thus, using the default
value causes the 4041 to transmit each integer in the print
list as a sequence of two GPIB data bytes, most significant
byte first.

If the value of the “‘n”’ modifier is less than 16 but greater
than 8, the 4041 takes the n rightmost bits of each integer in
the print list, and makes them the n leftmost bits of an inte-
ger to be transmitted over the GPIB, most significant byte
first.

Example:

100 Open #1:"gpib(pri=1):"
110 Print #1 using "12%":16706

These lines produce the following results upon execution:

1. The 4041 sends the UNLISTEN interface message over
the GPIB (to clear any stray listeners off the bus).

2. The 4041 sends its talk address and the listen address
of the device at primary address 1 over the GPIB.

3. The 4041 takes the twelve rightmost bits of the integer
16706 (HEX 4142), and makes them the twelve leftmost
bits of a new integer, 5152 (HEX 1420).

4. The 4041 then sends the following values over the bus:

HEX 25 — percent sign

HEX 0 | these two bytes are

HEX 3 | the binary byte count

HEX 14] these two bytes are

HEX 20 } the data

HEX C9 — this is the checksum byte, sent with
EOI asserted to indicate the end of the
message.

4041 PROGRAMMER'S REFERENCE

INPUT/OUTPUT
PRINT

5. The 4041 then sends the UNTALK and UNLISTEN in-
terface messages.

If the “‘n’’ modifier is less than or equal to 8, the 4041 sends
the n rightmost bits of each integer in the print list as the n
leftmost bits of a single GPIB data byte. (Note that when

n> 8, the 4041 sends two GPIB data bytes for each integer;
when n< =8, it only sends one.)

If the print list contains an integer array element, the entire
integer array is transmitted using the format described
above, i.e., a percent sign is transmitted, followed by two
bytes signifying the number of bytes to be transferred, fol-
lowed by the array values, followed by a checksum sent with
EOI asserted.

To transmit values from a print list more than one element
long, use the “‘n’’ modifier with parentheses around the
‘0’ operator to indicate the number of print elements to be
transmitted using binary block argument format.

Example:

100 Open #1:"gpib(pri=1):"

110 Print #1 using "2(8%)":a,b
This statement tells the 4041 to transfer two integer data el-
ements A and B to the device at primary address 1 on the
standard GPIB interface port, using binary block argument
format. The rightmost 8 bits of each integer will be transfer-
red as a single GPIB data byte.

When the print list contains more than one element, the
4041 treats the binary block transmission of each element
like a separate PRINT statement, sending talk and listen ad-
dresses, binary byte count, data, and checksum for each
print list element.

The EOl line is only asserted after the last print list element
has been transferred.

The 4041 does not send listen addresses when the logical
unit to which it is transferring data is open to no primary ad-
dress (as, for example, with the statement OPEN
#1:*GPIBO:"). In this case, the 4041 simply puts values
onto the bus for receipt by any previously listen-addressed
devices.

No other PRINT USING operator may be used with the %"’
operator. If the 4041 is to send ASCII header information
preceding a block of data, the header must be sent viaa
separate PRINT statement.

8-41

INPUT/OUTPUT
PRINT

The “@’’ Operator (GPIB). Output data item in end block
argument format.

End block argument format is a data transfer format defined
by the Tektronix GPIB Codes and Formats standard to facil-
itate rapid data transfers between devices on the GPIB.

When information is exchanged using end block argument
format, the talking device sends the following information
over the GPIB after ATN becomes unasserted:

1. An “at’ sign (@).

2. Asequence of bytes representing the data. The last
data byte is sent with EOI asserted, to indicate the end
of the data transfer.

in all other respects, the ‘@’ PRINT USING operator
is identical to the “*%’”’ PRINT USING operator.

The ‘‘F’’ Modifier. Set up a print field just large enough to
accommodate all significant digits of a numeric data item, or
current length of a string data item.

Example:
540 SqrTwo=1.414
550 TwoSqr=4

560 Print using 570:sqgrtwo,twosgr
570 Image 2(fg)

This program segment produces the following output:
1.4144

A print field of five spaces is set up to print the value of
SqgrTwo, then a cne-space print field is set up to print the
vatlue of TwoSqr.

The ‘‘n’’ Modifier. Designates the number of character po-
sitions in a field, or the number of times a parenthesized im-
age string segment is to be repeated.

When used to designate the number of times a parenthe-
sized image string is to be repeated, n must be an integer
< = 511.

Example:
350 Image 10a

Sets up a 10-character alphanumeric print field.
400 Image 5(6d)

Sets up print fields of six spaces for each of five integers.

The ‘“‘R’’ Modifier. Use a comma for a radix symbol instead
of a decimal point. Used with the ““E”’ and “‘G’’ operators
only.

Example:
100 Print using "r5.2g":23.4567
run
(output) 23,46

8-42

The ‘2’ Modifier. Set the leading fill character to *‘0’".
Used with the ‘D’ and **G”’ operators only.

Example:
100 Print using "z10.2g":123.456
run
(output) 0000123.46

The ‘“*’’ Modifier. Set the leading fill character to ***”".
Used with integer and floating point formats only.

Example:
100 Print using "¥10.2g":123.456
run
(output) ®RXR1D3 U6

The ““ +*’ Modifier.Print a plus sign before the numeric
value in a print field if the number is positive, and a minus
sign if the number is negative. Used with the ‘D", ““E”’, and
“G’’ operators only.

Example:
100 Print using "+5.2g":123.456
run
(output) +123.
The ‘‘~’’ Modifier. Print a space before the numeric value

in a print field if the number is positive, and a minus sign if
the number is negative. This is the default modifier for the
“D”,“E”, and “‘G’" operators. Used with the “*D”’, “'E”’, and
“G"” operators only.

The ‘* <’ Modifier (default). Left-justify string data within a
field. Used with the ‘A’ operator only.

Example:
100 Print using "<9a":"WATER"
run
(output) WATER<sp><sp><sp><sp>

The ‘“ >’ Modifier. Right-justify string data within a field.
Used with the A’ operator only.

Example:
100 Print using ">9a" :"WATER"
run
(output) <sp><sp><sp><sp>WATER
The *‘ =’ Modifier. Center string data within a field. Used
with the ‘A’ operator only.
Example:
100 Print using "=9a" :"WATER"
run
(output) <sp><Sp>WATER<sp><sp>

4041 PROGRAMMER’S REFERENCE

The PUTMEM Statement

INPUT/QUTPUT
PUTMEM

Syntax Form

where

Descriptive Form

[line-no.] PUTMEM BUFFER strvar [clause list]: inumexp] [,numexp ..]

{strexp] [,strexp...]

clause-list = [#numexp] OR [#strexp]
AND [USING numexp] OR [USING strexp]

[line-no.] PUTMEM BUFFER target-var[clauses]:dataf,data . . .]

PURPOSE

The PUTMEM statement transfers numeric or string data
into a string variable.

EXPLANATION

PUTMEM does the exact opposite of GETMEM; it takes
numeric or string variables from a list and stores them in a
string.

The string in which PUTMEM stores the result of its opera-
tion must be either a simple string variable or a string array
element; it cannot be a string array.

The PUTMEM statement can use the same USING clause
operators and modifiers as the PRINT statement. In addi-
tion, the PUTMEM statement allows the “'%”, “@"’, and *‘I”’
operators to be used in the same image string as other oper-
ators (unlike the PRINT statement).

Semicolons and commas can be used to separate elements
of a PUTMEM list.

Commas separate message units in a PUTMEM list. A
comma between two elements of a PUTMEM list stores the
End-of-Message-Unit (EOU) character in the result string.

Commas in a PUTMEM list must have data elements to ei-
ther side; a comma starting or ending a PUTMEM list or two
or more commas in a row within a PUTMEM list cause an
error.

The default EOU character for the GPIB is a COMMA; the
default EOU character for other devices is a TAB.

4041 PROGRAMMER'S REFERENCE

Semicolons separate elements within a message unit. The
first semicolon in the message unit stores the End-of-
Header (EOH) character in the resuit string, and the second
and succeeding semicolons in the message unit store the
End-of-Argument (EOA) character in the result string.

EOH defaults to SPACE for the GPIB driver, and defaults to
null for all other devices. EOA defaults to COMMA for the
GPIB driver, and defaults to null for all other devices.

EXCEPTIONS:

1. If a semicolon separates two elements of a PUTMEM
list after a comma has appeared in the same list, the
first semicolon after the comma stores the EOH charac-
ter in the result string, the second and succeeding
semicolons store EOA.

2. Asemicolon concluding a PUTMEM list has no effect.

EXAMPLE

5000 Num1=2
5010 Num2=4
5020 Num3=6
5030 Putmem buffer a$:numl,num2,num3

Line 5030 stores the string ““2<tab >4 <tab> 6" in string
variable A$ (assuming that the system console device is the
COMM or FRTP).

Using the same values for Num1, Num2, and Num3, the
command

5030 Putmem #"gpib:" buffer a$:numl;num2;num3

stores the string “2 <sp>4,6"" in string variable(A$ (the
GPIB driver’s default EOH and EOQA characters are used to
output the characters of the message unit.

REV OCT 1984 8-43

INPUT/QUTPUT
RBYTE

The RBYTE Statement

Syntax Form (non-record-read format)
[#strexp:]
Descriptive Form (non-record-read format)

[line-no.] RBYTE [#lunum:]
[#stream-spec:]

[line-no.] RBYTE [#numexp:] {numvar[,numvar]...|
{strvar[,numvar][,strvar[,numvar]} . . . |

inumeric-var[,numeric-var} . . .|
istring-var|,state-of-EOI][,string-var [state-of-EOI]] . . . |

Syntax Form (record-read-format)
[line-no.] RBYTE[#numexp:] numexp,strvar
[#strexp:]
Descriptive Form (record-read-format)

[#strexp:]

[line-no.] RBYTE [#numexp:] physical-record-to-transfer, string-
variable-in-which-to-store-contents

PURPOSE

In non-record-read format, the RBYTE statement transfers
“literal’”’ 8-bit bytes into the 4041’s memory.

in record-read format, the RBYTE statement transfers en-
tire physical records into the 4041’s memory.

EXPLANATION

Non-record-read Format

Any number of string or numeric data items may be transfer-
red using a single RBYTE statement.

When transferring a string data item via RBYTE, a numeric
variable immediately following a string variable in the
RBYTE list will store the state of the GPIB’s EOI control line
at the end of the data transfer (1 = EOl line asserted; 0 = EOI
line unasserted).

NOTE

If the data path for the RBYTE operation does not use a

GPIB driver, the value of a numeric variable immediate-

ly following a string variable in an RBYTE list will always
be 0.

8-44 REV OCT 1984

String data items in the RBYTE list are delimited by the EO!

line's becoming asserted (for GPIB data transfers) or by the —
transfer of a number of characters equal to the dimensioned ‘
length of the string variable. If the string variable is un-di-

mensioned when the RBYTE statement is executed, the

variable is assigned a default dimensioned length of one

byte.

Record-read Format

in record-read format, the 4041 reads an entire physical re-
cord from a driver into a string variable.

The numeric expression in record-read format specifies the
number of the physical record to be read (e.g., from a DC-
100 tape).

Data read from the physical record is stored in the string
variable specified in the RBYTE list. If the string variable
has not been dimensioned previously, it is dimensioned to a
length of 256 characters by the RBYTE statement.

NOTE

Record-read format is intended for use with the TAPE

driver. If an RBYTE statement conforming to record-

read format is executed on other than the TAPE driver,

the numeric expression denoting the record number is

ignored, and the 4041 inputs a string variable from N
whatever device is called for by the RBYTE statement.

4041 PROGRAMMER’S REFERENCE

SPECIFYING DATA PATHS FORRBYTE

The 4041 uses the currently SELECTed stream spec as the
default data path for RBYTE. The 4041 powers up with a se-
jected stream spec of 'GPIBO:".

If all RBYTE and WBYTE commands are to be executed us-
ing a stream spec other than *“GPIB0:"”, a SELECT state-
ment selecting another stream spec should be executed.

If the user wants the standard GPIB interface port to remain
as the selected stream spec, but wishes to execute one or
more RBYTE or WBYTE commands using a different
stream spec, a "'#’’ clause should be included in every
RBYTE or WBYTE statement so executed.

The ASK$(SELECT) function may be used to determine the
currently SELECTed stream spec. (For more information,
see the description of this function in Section 5, Environ-
mental Control.

COMM

When transferring numeric data values via the COMM
driver, RBYTE stores the ASCII decimal equivalent of each
key into a numeric variable in the RBYTE list.

Example
100 Rbyte #"comm:":x,y,z
110 Print x,y,z
run
(user input) 123
(output) 49.0<tab>50.0<tab>51.0

When transferring strings via the COMM driver, RBYTE de-
limits each string when the number of characters received
equals the number of characters to which each string is di-
mensioned.

Example
100 Dim a$ to 2,b$ to 2,c$ to 2
110 Rbyte #"comm:":a$,b$,c$
120 Print a$,b$,c$
run
(user input) ABCDEF
(output) AB<tab>CD<tab>EF

4041 PROGRAMMER’S REFERENCE

INPUT/OUTPUT
RBYTE

FRTP

Using the FRTP to transfer data bytes via RBYTE is similar
to using the COMM driver, except that bytes representing
system function keys may be transferred as well as bytes
representing numbers or characters.

The system function keys and the values they transfer are
as follows:

Function Value

Key

160 <CURSOR
161 CURSOR>
162 SCROLL<

163 SCROLL>

164 DELETE<

165 DELETE>

166 CLEAR

167 INSERT

168 STEP

169 CONTINUE
170 AUTO-LOAD
173 RUN

174 LIST

175 AUTO-NUMBER
176 RECALL

177 RECALL PREV
178 RECALL NEXT
179 DELETE

REV OCT 1984 8-45

INPUT/OUTPUT
RBYTE

GPIB

Use of the RBYTE statement with the GPIB driver is de-
scribed in Section 9, Instrument Control with GPIB, under
“Low Level Data Transfers.”

PRIN

The RBYTE statement cannot be used with the PRIN driver.

Tape

RBYTEs from the DC-100 tape drive read a string from a
specified physical tape record.

To read data from the tape using RBYTE, the tape’s PHYsi-
cal parameter must be set to a value of “YES”’. In addition,
ALL TAPE FILES MUST BE CLOSED AT THE TIME OF
THE RBYTE OPERATION.

in addition, the RBYTE statement must include a stream
spec or logical unit number denoting that the TAPE driver is
to be used, or the TAPE driver must be selected by means
of the SELECT statement.

The numeric expression must evaluate tc an integer greater
than 1 and less than the number of physical records on the
tape. This integer is the physical record of the tape that will
be read from.

(To find the number of physical records on the tape: execute
a DIR command; add up the total number of bytes on the
tape; divide by 255; add 4.)

The string variable should be dimensioned to a length of
256 characters. If the string variable is dimensioned to less
than 256 characters, characters after the current dimen-
sioned size of the string are lost.

Example.

100 Dim string$ to 256

110 Close all !close all tape files
120 Select "tape(phy=1):"

130 Rbyte 5,string$

Line 130 reads the contents of physical record #5 from the
DC-100 tape, and stores the contents in string variable
String$.

DISK

RBYTEs from the disk drive read a string from a specified
sector.

8-46 REV OCT 1984

To read data from the disk using RBYTE, the disk's PHYsi-
cal parameter must be set to a value of “YES”.

In addition, the RBYTE statement must include a stream
spec or logical unit number denoting that the disk driver to
be used, or the disk driver must be selected by means of the
SELECT statement.

The numeric expression must evaluate to an integer greater
than 1 and less than the number of physical sectors on the
disk. This integer is the physical sector of the disk that will
be read from.

To find the number of physical sectors on the disk: execute
a DIR command; note last start sector/rec #, then add used
and un-used length of that file plus the amount free in last
block. Then, divide by 512 and add the last start sector/rec
#.

Example:
2720 (last Start Sector/Rec #)
S1200 (Used Length)

1933312 (Un-used Length)
7268352 (Amount Free)

9252864 / 512 18072 + 2720 = 20792 (physical sectors)

The string variable should be dimensioned to a length of 512
characters. If the string variable is dimensioned to less than
512 characters, characters after the current dimensioned
size of the string are written as zero’s (NULL).

Example:
100 Dim string$ to 512
110 Select “disk (phy=YES):"
120 Rbyte 3, string$

Line 120 reads the contents of sector #5 from the disk, and
stores the contents in string variable String$.

PROCEED MODE RBYTE

The RBYTE statement may be used when the 4041 is in
proceed mode. In proceed-mode, an RBYTE statement can
only input a single string variable per statement.

4041 PROGRAMMER’S REFERENCE

The READ Statement

INPUT/OUTPUT
READ

Syntax and

Descriptive Forms [line-no.] READ var|,var...]

PURPOSE

The READ statement reads values into memory from DATA
statements, starting at the current position of the DATA
pointer within the current program block.

EXPLANATION

When a program is executed, values contained in DATA
statements are ‘‘converted’’ into an internal “file’” within
each program block.

At the start of execution, a ‘‘data pointer’’ is set up for each
block, pointing to the first value of this internal file, which
corresponds to the first value contained in the lowest-num-
bered DATA statement in the program block.

Whenever a value is read from this internal data file by
means of the READ statement, the data pointer is advanced
to the next value in the file.

If an array variable is specified in the READ statement, val-
ues are read from DATA statements until the entire array is
filled.

The data pointer can be repositioned to the first item in the
first DATA statement in the block, or to the first item in any
given DATA statement in the block, by means of the RE-
STORE statement. (See the description of the RESTORE
statement, later in this section, for more information.)

Attempting to read data items past the last DATA statement
in the current program biock results in an error.

4041 PROGRAMMER’S REFERENCE

REV JAN 1984

EXAMPLES

1000 Dim aardvark (10)

1010 Read aardvark, hello$

1020 Data 1,2,3,4,5,6,7,8,9,10,"Hello”
1030 Data 11,12,13,14,15

Line 1000 reserves storage for a 10-element numeric
array called Aardvark.

Line 1010 reads 10 values from DATA statement 1020. If
the data statement did not contain sufficient data to fill
the array, the contents of other DATA statements in the
current program block would be read into AArdvark until
the array was filled.

2000 DATA "Hello”, "LAST", 1,2,3
2010 READ Hello$, Last $, a,b,c

Line 2010 reads the two string in the data statement into
the two string variables. The three numeric data values
are then read into the numeric variables.

If a numeric data value is found when a string is expected
or the reverse situation happens, then an error will occur.

8-47

INPUT/OQUTPUT
RESTORE

The RESTORE Statement

Syntax Form [line-no.] RESTORE [numexp]

Descriptive Form

[line-no.] RESTORE [line-reference]

PURPOSE

The RESTORE statement sets the DATA pointer to the first
item in the first (or alternately, any specified) DATA state-
ment in the current program biock.

EXPLANATION

When a program is executed, all values contained in DATA
statements are put into an internal “*file’’ for each program
block. Values are assigned to variables from this data file by
means of the READ statement.

Whenever a value is read from the file, a data pointer is up-
dated to point to the next value in the file. The RESTORE
statement is used to initialize this data pointer to the begin-
ning of any specified DATA statement in the current pro-
gram block.

When the RESTORE keyword is not foillowed by a line refer-
ence, the data pointer is moved to the first data value in the
lowestnumbered DATA statement in the current program
block.

When the RESTORE keyword is followed by a line refer-
ence, the data pointer is moved to the first value in the spec-
ified DATA statement. The line referred to must be in the
current program block, or an error results.

8-48

EXAMPLES
10000 Restore 10050

This statement moves the data pointer to the first value con-
tained in DATA statement 10050. This value will be the next
one to be read by a READ statement in the current program
block. Line 10050 must be in the current program block or
an error occurs.

4041 PROGRAMMER’S REFERENCE

The SELECT Statement

INPUT/QUTPUT
SELECT

Syntax Form [line-no.] SELECT strexp

Descriptive Form

[line-no.] SELECT stream-spec

PURPOSE

The SELECT statement defines the default stream spec for
RBYTE, WBYTE, and POLL statements.

EXPLANATION

The stream spec '‘GPIB0:" becomes the SELECTed
stream spec when the first RBYTE or WBYTE statement not
including a logical unit or stream spec is executed, unless a
SELECT statement has been executed previously.

The 4041 powers up with the stream spec *GPIB:” selected
by default.

Any RBYTE or WBYTE statements not designating a
stream spec for their operation (i.e., not containing a *‘#”’
clause) use the SELECTed stream spec.

Use of the SPE Parameter with GPIB Drivers

The GPIB driver’'s SPE parameter designates the amount of
time that the 4041 will wait for a response from a GPIB de-
vice when the 4041 is executing a serial poll.

The POLL statement uses the SELECT stream spec to de-
termine the value of the SPE parameter. Therefore, if an
SPE value other than the default (10 milliseconds) is to be
used, the SPE value must be specified by a SELECT
statement.

4041 PROGRAMMER'S REFERENCE

EXAMPLES
3120 Select "gpibi:"

This statement selects the optional GPIB port as the default
stream spec for RBYTE and WBYTE operations.

3200 Select "tape(phy=yes)"

This statement selects the DC-100 tape as the default
stream spec for RBYTE and WBYTE operations.

REV OCT 1984 8-49

INPUT/OUTPUT
WBYTE

The WBYTE Statement

[#strexp:]

where WBYTE-element = {numexp
istrexp
!GPIB-function

Syntax and Descriptive Form (non-record-write format)
[line-no.] WBYTE [#numexp:] WBYTE-element[WBYTE-element] . ..

(all drivers)
(all drivers)
(GPIB drivers only)

Syntax Form (record-write format)
{line-no.] WBYTE [#numexp:] numexp,strexp
[#strexp:]
Descriptive Form (record-write format):

[#strexp:]

[line-no.] WBYTE [#numexp:] physical-record-to-write,data
to-write-to-physical-record

PURPOSE

In non-record-write format, the WBYTE statement transfers
“literal’”” 8-bit bytes from the 4041’s memory to a specified
device.

In record-write format, the WBYTE statement transfers data
from the 4041's memory into a specified physical record on
an output device (such as the DC-100 tape).

EXPLANATION

Non-Record-Write Format

Any number of string or numeric data items may be transfer-
red using a single WBYTE statement.

When a numeric data item is transferred via WBYTE, the
numeric expression specifying the data item is rounded to
an integer. This integer must be a number between -255
and + 255, or an error is returned.

8-50 REV OCT 1984

The 4041 then outputs a byte whose binary representation
is equal to the absolute value of the integer (e.g., if the
integer is 65, the 4041 outputs an ASCH "A”). If one of the
GPIB drivers is being used for output, the 4041 asserts the
EOl line as it transmits the bytes if the value of the integer is
negative.

When a string data item is transferred via WBYTE, a nu-
meric value immediately following the string expression in
the WBYTE list denotes the state of the EOI line concurrent
with the transmission of the last byte of the string. If no nu-
meric value follows the string expression in the WBYTE list,
the EOI line remains unasserted.

NOTE

If the WBYTE statement is not using one of the GPIB
drivers, a numeric value following a string expression
in the WBYTE list is still interpreted as denoting the
state of the EQl line concurrent with the last byte of the
string. Thus, a numeric value following a string expres-
sion in a WBYTE statement is effectively ignored.

The WBYTE statement ignores all EOM, EOU, EOH, and
EOQOA processing.

4041 PROGRAMMER’'S REFERENCE

Record-Write Format

In record-write format, the 4041 writes data onto a specified
physical record of an output device.

The numeric expression in record-write format specifies the
number of the physical record to be written to.

The string expression in record-write format specifies the
data to be written onto the physical record.

NOTE

Record-write format is intended for use with the TAPE
driver. If a WBYTE statement conforming to record-
write format is executed on other than the TAPE driver,
the numeric expression denoting the record number is
ignored, and the 4041 outputs the string expression to
the device called for by the WBYTE statement.

SPECIFYING DATA PATHS FORWBYTE

The 4041 uses the currently SELECTed stream spec as the
default data path for WBYTE. The 4041 powers up with a
selected stream spec of “GPIBO:".

If all RBYTE and WBYTE commands are to be executed
using a stream spec other than ““GPIB0:"", a SELECT state-
ment selecting another stream spec should be executed.

If the user wants the standard GP!B interface port to remain
as the selected stream spec, but wishes to execute one or
more RBYTE or WBYTE commands using a different
stream spec, a "'#”’ clause should be included in every
RBYTE or WBYTE statement so executed,

The ASK$('SELECT”’) function may be used to determine
the currently SELECTed stream spec. (For more informa-

tion, see the description of this function in Section 5, Envi-
ronmental Control.)

4041 PROGRAMMER’'S REFERENCE

INPUT/QUTPUT
WBYTE

COMM

When WBYTE is used to output numeric data values via a
COMM port, the WBYTE statement outputs each value as
an 8-bit byte. if the device attached to the COMM port re-
ceives ASCIl code, each value sent in this way will cause
the ASCII character equivalent of the value sent to be
printed on the device.

When WBYTE is used to transfer string data, the WBYTE
statement outputs a stream of values as a series of 8-bit
bytes.

Example

(To be run with the standard RS-232-C interface port as sys-
tem console.)

200 Num1:=65
210 Num2=66
220 Wbyte #"comm:":numl,num2
run
(output) AB*

Note how the cursor remains to the right of the output. This
is because the WBYTE statement does not output an end-
of-message character (WBYTE ignores all EOM, EOU,
EOH, and EOA processing.

FRTP

When WBYTE is used to output numeric values to the front
panel, each numeric value is rounded to the nearest whole

number, and the ASCII character equivalent of that number
is displayed.

WBYTE can also be used to output a string to the front
panel.

Successive elements of the WBYTE list over-write each
other on the front panel. Therefore, it is best to WBYTE only
one data element per WBYTE statement to the front panel.

REV OCT 1984 851

INPUT/OUTPUT
WBYTE

GPIB

Use of the WBYTE statement with the GPIB driver is de-
scribed in Section 9, Instrument Control With GPIB, under
“Low Level Data Transfers.”

PRIN

WBYTEs to the thermal printer are executed in the same
way as WBYTES to the front panel, except that successive
WBYTE elements appearing on successive lines instead of
over-writing each other.

TAPE

WBYTEs to the DC-100 tape write a string onto a physical
record of the tape. To send data to the tape using WBYTE,
the tape’s PHYsical parameter must be settoa value of
“YES’'. In addition, ALL TAPE FILES MUST BE CLOSED
AT THE TIME OF THE WBYTE OPERATION.

WBYTE commands to the DC-100 tape take the form

[line-no.] WBYTE [#lunum:] numexp,strexp
[#stream
-spec:]

The numeric expression must evaluate to an integer greater
than 1 and less than the number of physical records on the
tape. (To find the number of physical records on the tape:
execute a DIR command; add up the total number of bytes
on the tape; divide by 255; add 4.) This integer is the physi-
cal record of the tape that will be written on.

If the string expression evaluates to a string with length less
than 256, then the record is written with (binary) zero fill for
bytes after the last byte of the string. If the string expression
evaluates to a string with length greater than or equai to
256, only the first 256 bytes are written.

WARNING I

The following example writes over physical record 10
of a DC-100 tape. Don’t run the example unless you
have no need for the data that may already be stored
there.

Example

400 Num=10
410 Dim string$ to 256
420 String$:"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

500 Close all
510 Open #1:"tape{phy=1):"
520 Wbyte #1:num,string$

Line 520 writes the string String$ onto physical record 10 of
the current DC-100 tape. Since String$ is less than 256
characters long, the record is filled with binary zeros (ASCII
null characters) after the string is written out.

8-52

REV OCT 1984

DISK

WBYTESs to the disk write a string onto a sector of the disk. TN
To send data to the disk using WBYTE, the disk’'s PHYsical
parameter must be set to a value of “YES”.

WBYTE commands to the disk take the form
{line-no. JWBYTE[#lunum:]Jnumexp,strexp
[#stream
—spec:]

The numeric expression must evaluate to an integer greater
than 1 and less than the number of physical sectors on the
disk. This integer is the physical sector of the disk that will
be written on. To find the number of physical sectors on the
disk: execute a DIR command; note last start sector/rec #,
then add used and un-used length of that file plus the
amount free in last block. Then, divide by 512 and add the
last start sector/rec #.

Example:
2720 (fast Start Sector/Rec #)
31200 (Used Length)

1933312 (Un-used Length)
7268352 (Amount Free)

9252864 / 512 = 18072 + 2720 = 20792 (physical scctors) TN

The string variable should be dimensioned to a length of 512
characters. If the string variable is dimensioned to less than
512 characters, characters after the current dimensioned
size of the string are lost.

Example:

400 Num==10

410 Dim string$ to 512

420 String$=“ABCDEFGHIJKLMNOP
QRSTUVWXYZ”

L]

L]

500 Open #1:“disk{phy=1):"

510 Sbyte #1:num.string$

Line 510 writes the string String$ onto a physical sector 10
of the current disk. Since String$ is less than 512 characters
long, the sector is filled with binary zeros (ASCII null charac-
ters) after the string is written out.

PROCEED MODE WBYTE
The WBYTE statement may be used when the 4041 is in

proceed mode. In proceed-mode, a WBYTE statement may
only output a single string expression per statement.

4041 PROGRAMMER’S REFERENCE

Section 9

INSTRUMENT CONTROL WITH GPIB

INTRODUCTION

This section is intended as a guide to using the 4041 with
the General Purpose Interface Bus (GPIB). It assumes that
the reader is familiar with such GPIB terminology as ‘“‘con-
troller”’, “‘talker”, “'listener’’, ‘‘primary address’’, etc. If you
are not familiar with these terms, read Appendix E, Introduc-
tion to GPIB Concepts, before reading the remainder of this

section.

Section 9 discusses the applications, with regard to GPIB
instrument control of several statements that are discussed
elsewhere in this manual. The statements and the sections
in which they are discussed are: SET DRIVER (Section 5,
Environmental Control) and OPEN, INPUT, PRINT, RBYTE,
and WBYTE (Section 8, Input/ Output).

SETTING THE GPIB’S PHYSICAL DRIVER PARAMETERS

Before any commands or data are transferred over the
GPIB, a SET DRIVER statement should be executed. For a
complete description of SET DRIVER, see Section 5, Envi-
ronmental Control.

4041 PROGRAMMER’S REFERENCE

The SET DRIVER statement is executed to guarantee
that the 4041 is operating in the correct system controller
mode (i.e., to specify explicitly whether or not the 4041 is
the system controller), to specify the 4041's address on
the bus, and to set other physical parameters (see the
following).

REV JAN 1984 9.1

GPIB
SET DRIVER

The SET DRIVER Statement (GPIB)

Syntax Form: [line-no.] SET DRIVER strexp

Descriptive Form:

[line-no.] SET DRIVER stream-spec

PURPOSE

To establish GPIB driver parameter settings that affect ail
logical data transfers through a GPIB driver.

EXPLANATION

The SET DRIVER statement only affects physical driver pa-
rameters. Attempting to set logical GPIB parameters with
the SET DRIVER statement has no effect.

The physical driver parameters that can be set for the GPIB
driver are:

SC Determines whether or not the 4041 is the sys-
tem controller (default:YES).
MA The interface bus address (default:30).

PNS Value to send when polled with nothing to say
(default:0).

IST Instrument status when a parallei poll is exe-
cuted (default:FALse).

DEL Interface chip T1 delay. Legal values are NOr-
mal or FASt (default:NORmal).

If a parameter is not specified in the stream spec included in
the SET DRIVER statement, its current setting is not dis-
turbed.

9-2

Defaults for SET DRIVER

If no SET DRIVER is explicitly executed within the program,
the 4041 executes the following SET DRIVER statement as
soon as a program statement calls for GPIB activity:

Set driver "gpibx{sc=yes,ma=30,pns=0,1ist=0,
del=nor):"

where “‘x’’ equals either 0 or 1, depending on whether the
standard or the optional GPIB interface is being called for.

The SC Parameter

When the SC parameter is set to YES in a SET DRIVER
statement, the 4041 immediately:

1. Pulses the IFC line for approximately 300 microsec-
onds then waits for approximately 700 microseconds.
2. Assertsthe REN line.
Becomes controller-in-charge (CIC =5).
Clears all pending interrupts.
When the SC parameter is set to NO in a SET DRIVER

statement, the 4041 de-asserts the REN line, and *‘loses”
both system controller and controller-in-charge status.

4041 PROGRAMMER’S REFERENCE

o,

NOTE

There is no formal mechanism for ‘‘passing’’ system
controller status from one controller to another. How-
ever, when the 4041 is not system controller, any other
controller is free to become the system controlier.

Note also that the TCT function, used with the WBYTE
command, can be used to pass controller-in-charge
status to another controller on the bus.

Because the 4041 loses controller-in-charge status when it
executes a SET DRIVER statement with SC = NO, INPUT or
PRINT statements using logical units involving the GPIB in-
terface port specified in the SET DRIVER statement will not
work.

Example.

100 Set driver "gpib(sczyes):"

110 Open #1:"gpib(pri=z1,tim=1):"

120 Set driver "gpib(sc=no):"

130 Print #1:"hi" !t THIS MAY NOT WORK!

When the 4041 gives up system controller status in line 120,
it also gives up controller-in-charge status. Therefore, itis
no longer controlling the ATN line, and cannot put data onto
the bus (as required by line 130} until it recognizes its talk
address being sent by the new controller-in-charge. If the
4041 does not receive its talk address within one second
(the time specified by the TIM parameter in line 110), error
811 is generated.

The MA Parameter
The MA parameter specifies the 4041’s address on the bus.

Legal values are 0 to 30 or 255(default:30). A value of 255
requests that the address remain unchanged.

4041 PROGRAMMER’S REFERENCE

GPIB
SET DRIVER

The PNS Parameter

The PNS parameter specifies the value of the status byte,
which is the value the 4041 returns when serially polied by
another device acting as controller-in-charge. The default
value for PNS is 0.

The PNS value is a bit-encoded value. Bit 7 (counting from
the right, starting with 1), also known as the “‘rsv’’ bit, indi-
cates that the 4041 is asserting SRQ when set. Attempting
to assign a PNS value with bit 7 already set causes an error.
Legal values for the PNS value are therefore 0-63 and 128-
191 or 255. A value of 255 requests that the PNS parameter
remain unchanged.

When the 4041 is asserting SRQ, the rsv bit is set automati-
cally. Thus, if the PNS parameter value is 1 and the 4041
asserts SRQ, the 4041 will return a status byte value of 65
when polled.

The IST Parameter

The IST parameter specifies the value returned by the 4041
when parallel polled by another device acting as controller-
in-charge. Legal values are TRUe or FALse. The default is
TRUe.

The DEL Parameter

The DEL parameter specifies the GPIB interface chip’s T1-
delay setting. It is primarily useful when transferring data
over the optional GPIB interface port using Direct Memory
Access with very fast acceptors on the bus. Legal values
are NORmal or FASt. The default value is NORmal.

Example.
100 Set driver "gpibO(ha:ZB,pns=1):"
This command sets the 4041’s primary address on the

standard GPIB interface port to 28, and sets the ““polled
with nothing to say’’ valueto 1.

GPIB
OPEN

SETTING UP LOGICAL UNITS

Most data transfers to or from a single instrument on the
GPIB should be done by means of logical units, i.e., by as-
signing a logical unit number to a stream spec that de-
scribes a data path to a device, then specifying PRINT or
INPUT to/from that logical unit.

A logical unit can also be associated with a stream spec de-
fining a data path to the bus itself (no specific device). In this
case, output to the logical unit is received by any device that
is listen-addressed at the time.

The OPEN Statement (GPIB)

The OPEN statement associates a logical unit number with
a stream spec.

The ASKS$(*‘LU’") function is used to verify/inspect the
stream spec that has been associated with a logical unit.

Syntax Form:

Descriptive Form:

[line-no.] OPEN #numexp:strexpl,strvar]

[line-no.] OPEN #logical-unit:stream-spec[,open-resuli]

PURPOSE

To associate a logical unit number with a stream spec defin-
ing a data path either to an instrument on the bus, or to the
bus itself.

EXPLANATION

The OPEN statement is used with the GPIB driver to define
a data path to a given instrument on the bus or to the bus it-
self, and to define specific logical parameters associated
with that data path.

The OPEN statement only affects logical parameters. At-
tempting to set physical parameters with the OPEN state-
ment has no effect.

The logical driver parameters that can be set for the GPIB
drivers are:

PRI Primary address of an instrument on the bus
SEC Secondary address of an instrument on the bus
EOA End-of-argument character for default PRINT
EOH End-of-header character for default PRINT
EOM End-of-message driver processing

EOQ End-of-query character for PROMPT clause
EOU End-of-unit character for default PRINT

TIM Data transfer timeout

SPE Serial poll response timeout

TRA Data transfer mode

See the descriptions of the INPUT statement in Section 8,
Input/Output, and later in this section, for more information
on the EQA, EOH, EOM, EOQ, and EOU parameters.

The TIM parameter is described in the discussions of the
INPUT and PRINT statements found later in this section.

The SPE parameter is described in the discussion of the
POLL statement, later in this section.

The TRA parameter’s legal values are NORmal, FASt, and
DMA. DMA can only be used with the optional GPIB inter-
face port. When TRA = FASt, the 4041 effectively operates
in ‘‘non = proceed’’ mode, even if a SET PROCEED 1 state-
ment has been executed. In addition, the 4041 does not
check for timeout during data transfers when TRA = FASt.

See Appendix D, Stream Specifications, for complete infor-
mation on other parameters.

The OPEN Result String

If an OPEN result is called for in the OPEN statement, its
length is always set to 0 and its contents set to null. (This
syntax is included so that the user can open either a DC-100
tape file or any other logical unit with the same OPEN
statement.)

4041 PROGRAMMER’S REFERENCE

TN

The ASK$(‘‘LU’’) Function (GPIB)

GPIB
OPEN

Syntax Form: ASKS$(“‘LU’”’ ,numexp)

Descriptive Form: ASKS$(““‘LU” logical-unit)

PURPOSE

To inspect/verify the current settings of a logical unit on the
GPIB driver. ASK$(*'LLU’") can also be used to capture the
current settings for later program use.

EXPLANATION

When a GPIB stream spec is open as logical unit number
LuRef, invoking the ASK$(*‘LU"",LuRef) function returns a
string with the following format:

GPIBa(MA=b,SC=¢c,CIC=d,TL=¢,ENA=H,
PEN =g,PRl=h,SEC=i,EOA=|,EOH =Kk,
EOM=1EOQ=m, EOU =n,TIM=0,SPE =p,
TRA=q,PNS=rIST=s,DEL=tTC=uy,
SRQ=v):

= port number

interface address on the bus

system controller setting

controller in charge state

addressed state of the bus

= enabled interface interrupts

pending interface interrupts

logical unit primary address on the bus

= logical unit secondary address on the

bus

j = default PRINT end-of-argument char-
acter

k = default PRINT end-of-header charac-
ter

| = end-of-message specifier

where

— o tTo0o a0 T
Il

4041 PROGRAMMER’S REFERENCE

m = default INPUT PROMPT end-of-query
character

n = default PRINT end-of-message-unit
character

o = datatransfer timeout

p = serial poll timeout

q = logical unit data transfer mode

r = talker/listener “polied with nothing to
say’’ value

s = talker/listener IST sense when parallel
poll executed

t = chipT1 delay setting

u = SRQ message parameter setting

v = TC parameter setting (synchronous or
asynchronous)

The string returned can be saved in a string variable and
used in a subsequent OPEN, COPY, LIST, etc.
Example.

200 Open #100:"gpib(pri=z2,sec=10,tim=.01):"
210 Print #100:"set?"
220 Copy ask$("lu",100) to ask$("console")

Line 220 prints the stream spec associated with logical unit
100 on the system console device.

GPIB
INPUT

HIGH LEVEL DATA TRANSFERS

Most GPIB data transfers can be performed using the
INPUT and PRINT statements, as described in Section 8,

The INPUT Statement (GPIB)

Input/Output, and in the ensuing discussion.

Syntax Form:

where:

clause-list =

{#numexp| [ALTER strexp]
i#strexp] [PROMPT strexp]

Descriptive Form:

[line-no.] INPUT clause-list:var[,var...]

[BUFFER strvar][DELN strexp]{DELS strexp][USING {numexpi][INDEX (numexp!]

{strexp! {strexp]

[line-no.] INPUT input clauses:input-list

PURPOSE

To transfer data from the bus into program variables.

EXPLANATION

If the 4041 is the controller-in-charge and PRI< > 31, the
following bus traffic precedes the input:

ATN SPD (if serial poll mode active)

ATN UNListen (if one or more listeners are currently
addressed)

ATN My-Listen-Address (the MA value plus 32)

ATN Other-Talk-Address (generated from the PRI
and SEC logical unit parameters)

If the 4041 is the controller-in-charge and PRI < > 31, the
following bus traffic follows the input:

ATN UNTalk
ATN UNListen

If the 4041 is a talker/listener, it waits patiently to be listen-
addressed before transferring any data over the bus. This
must happen within TIM seconds, or an error is generated.

9-6 REV JAN 1984

Each data byte must be received by the interface within TIM
seconds of the previous data byte, or an error is generated.

The EOM parameter setting specifies the character that
should terminate a message, in addition to the EOl line’s
becoming asserted. (The EOI line’s becoming asserted
ALWAYS terminates a message.) If EOM = < 0>, then only
the EOI line can terminate a message. If EOM = <255 >,
then receipt of a line-feed character terminates a message,
and if a carriage-return precedes the linefeed, the carriage-
return is discarded. Any other EOM parameter setting spec-
ifies the character that should terminate a message.

Default Logical Units

If an INPUT statement is executed that specifies a logical

unit number in the closed interval 0 to 30 that has not been

previously opened, then an implicit open is executed using

the stream spec:
"GpibO(priz=t&str$(logical-unit)&" ,tim=4):"

This logical unit then remains open until a CLOSE state-

ment that closes the logical unit is executed, or until an END
statement is executed.

4041 PROGRAMMER’S REFERENCE

Use of PROMPT Clause/EOQ Character

When a PROMPT clause is used in an INPUT statement
with a GPIB driver, the following bus traffic precedes the
transmission of the PROMPT message over the GPIB data
lines:

ATN UNListen (if one or more listeners are currently
addressed)

ATN My-Talk-Address (the MA value plus 64)

ATN Other-Listen-Address (the listen address of the
device to which the 4041 is sending the prompt)

The PROMPT message is then transmitted, followed by the
End-of-Query (EOQ) character. (Default: no output).

After the PROMPT message is transmitted, bus traffic pre-
ceding the input is as described earlier.

Example.s

1040 Dim setting$ to 300
1050 Input #15 prompt "SET?":setting$

Line 1040 dimensions a string variable Setting$ to a length
of 300 bytes.

4041 PROGRAMMER’S REFERENCE

GPIB
INPUT

Line 1050 sends the device at primary address 15 the mes-
sage ‘‘SET?". if the device adheres to the Tektronix Codes
and Formats standard for GPIB, this asks the device to
transmit its settings when it becomes talk addressed.

After transmitting the message “‘SET?”’, the 4041 sends its
own listen address and the talk address of the device at pri-
mary address 15, then inputs a sequence of bytes and
stores them in string variable Setting$.

DCL Received During Input When 4041isa
Talker/Listener

If the 4041 is in talker/listener mode (not acting as control-
ler-in-charge) and the DCL or SDC command is received
during execution of an INPUT statement involving the GPIB
driver, the 4041 aborts the input and generates a DCL inter-
rupt. The value of any numeric variable whose input was
aborted is unchanged; the value of any string variable
whose input was aborted is set to null.

If the INPUT statement that was interrupted includes an
ALTER clause, the contents of the ALTER clause are re-
turned as though no data had been input.

REV JAN 1984 9-7

GPIB

PRINT
/"\\
The PRINT Statement (GPIB)
Syntax Form: [line-no.] PRINT clause-list: [numexp| [,numexp]...
{strexp] [,strexp]...
where: clause-list = # [numexp{[BUFFER strvar][USING [numexp!}J{INDEX {strexp{]
istrexpl {[strexp] {numexp]
Descriptive Form: [line-no.] PRINT {print-clauses:print-list
PURPOSE Each data byte must be transmitted within TIM seconds of
the previous data byte, or a timeout error occurs.
To transfer data from program variables to instruments on
the bus. The EOM parameter setting directs the message termina-
tion activity of the 4041. The value of the EOM parameter
specifies what characters, if any, are to be appended to
EXPLANATION messages to signify end-of-message.
if the 4041 is the controller-in-charge and PRI< > 31, the If EOM = < 0>, then no characters are appended to the
following bus traffic precedes the print operation: message bytes. The EOI line is asserted concurrently with
the last byte of the message to be transmitted.
ATN SPD (if serial poll mode active)
if EOM = < 255>, the carriage-return and line-feed charac- TN
ATN UNListen (if one or more listeners are currently ters are appended to the message bytes, and the EOl line is
addressed) asserted concurrently with transmission of the line-feed.
ATN My-Talk-Address (the MA value plus 64) Any other value of the EOM parameter specifies the charac-
ter to be appended to the message bytes to signify end-of-
ATN Other-Listen-Address (the PRI value plus 32, message. The EOI line is always asserted concurrently with
and the SEC value plus 96) the transmission of this character.
If the 4041 is the controller-in-charge and PRI < >31, the If a semicolon is used to terminate a PRINT list, the 4041
following bus traffic follows the print operation: does not transmit the EOM character after transmitting its
message, nor does the 4041 assert the EOIl line with the last
ATN UNTalk byte of the message.
ATN UNListen
If the 4041 is a talker/listner, then it waits to be talk-
addressed before sending the data. This must occur within
TIM seconds, or a timeout error occurs.
TN

9-8 REV JAN 1984 4041 PROGRAMMER'S REFERENCE

Default Logical Units

If a PRINT statement is executed that specifies a logical unit
number in the closed interval 0 to 30 that has not been pre-
viously opened, then an implicit open is executed using the
stream spec

“GPIBO(PRI =""&str$(logical-unit)&”’, TIM = 4).”
This logical unit then remains open until a CLOSE state-

ment closing the logical unit is executed, or until an END
statement is executed.

Example.

In Example 9-1, lines 1910 through 1930 assign values to
variables Freq, Ampl, and Func$.

GPIB
PRINT

Line 1940 unlistens all devices on the bus, addresses the
4041 to talk, addresses the device at primary address 10 to
listen, then sends the following over the data lines:

the string ‘freq”’

the EOH character (default:space)

the value of numeric variable Freq

the EOU character (default:semicolon)

the string “‘ampl”

the EOH character

the value of numeric variable Ampl

the EOU character

the string *‘func’’

the EOH character

the value of string variable Func$

the EOM character(s), (default: <cr> < 1f >), with EOI
asserted as the last character is transmitted.

The result is to set the FG5010 to transmit a 1-MHz square
wave with an amplitude of 0.5 volt.

For more information about message units and the EOH,
EQU, and EOM characters, see the description of the
PRINT statement in Section 8, Input/Output.

1900 ' Assume device 10 is an FG5010 function generator

1910 Freq=1Eb
1920 Ampl=0.5
1930 Func$=z="square"

1940 Print #10:"freq";freq,"ampl”;ampl,"func";func$

Example 9-1.

4041 PROGRAMMER’S REFERENCE

99

GPIB

RBYTE
TN
LOW-LEVEL DATA TRANSFERS AND INSTRUMENT CONTROL
Most Tektronix GPIB instruments can be controlled by ex- Such instruments can be controlied using the “‘low-level”’
changing messages representing commands or data, using commands RBYTE and WBYTE, in concert with the GPIB
the PRINT and INPUT statements. functions for WBYTE.
Some instruments, however, might not be controllable (or In addition, using the WBYTE statement with the PPC and
not conveniently, anyway) using PRINT and INPUT; instru- PPE functions is the only way to configure instruments on
ments that don’t understand ASCIi are examples. the bus for parallel polling.
The RBYTE Statement (GPIB)
Syntax Form: [line-no.] RBYTE [#numexp:] (strvar [,numvar]]
[#strexp:] {numvar [,numvar...}}
Descriptive Form: [line-no.] RBYTE [#logical-unit:] {strvar[,state-of-EQI]}
[#stream-spec:] {numeric-variable-list}
PURPOSE Each string variable in the variable list causes the dimen-
sioned length number of bytes to be read from the bus, orall
To transfer 8-bit bytes from the bus into program variables. the bytes up to and including one with EOI asserted, if this
happens before the dimensioned length is reached. The
state of EQl is placed in the numeric variable immediately
EXPLANATION following the string variable, if one exists.
If the 4041 is controller-in-charge, it must be listen-ad- Numeric arrays cause one byte to be read from the bus for
dressed to receive data from the bus or an error occurs. The each array element. The values placed in the array are com-
4041 becomes listen-addressed when the ATN(MLA) func- puted using the same rules specified for simple numeric
tion is executed (by means of the WBYTE statement). variables.
If the 4041 is a talker/listener, it waits to be listen-addressed String arrays cause bus reads for each string array element,
before receiving any data from the bus. If it is not addressed using the same rules specified for simple string variables. If
within TIM seconds, a timeout error occurs. anumeric variable immediately follows the string array,
then the state of EOI for the final element read is placed in
Each numeric variable in the variable list causes one byte to the numeric variable.
be read from the bus, unless the numeric variable immedi-
ately follows a string variable. The value input also indicates If string variables are specified in the list without having
the EOI state: a positive value indicates no EOI, while a neg- been explicitly dimensioned, then they are given a default
ative value indicates EOI. dimension of 1.

9-10

-~ ~.

4041 PROGRAMMER’S REFERENCE

Example.

200 Dim string$ to 80

210 Integer eocistate

220 Wbyte atn (unl, mla, 65)

230 Rbyte string$, eoistate

240 Print string$

250 If not (eoistate) then goto 230
260 Wbyte atn (unt, unl)

Line 200 dimensions a string variable String$ of length 80
characters. Line 210 declares an integer variable Eoistate.

Line 220 asserts the ATN line, unlistens all devices on the
bus, then sends the 4041’s listen address, followed by the
talk address of the device at primary address 1.

Line 230 then reads a sequence of bytes from the bus, and
stores them in string variable String$. Bytes will be read un-
til the EOl line is asserted or until 80 bytes have been read,
whichever comes first. The state of the EOI line (1 if as-
serted, O if not) when the last byte is transmitted is stored in
numeric variable Eoistate.

Line 240 prints the contents of string variable String$.
Line 250 tests the contents of numeric variable Eoistate, to
see if the EOI line was asserted when the last byte was

transmitted. If it was not, control returns to line 230.

Line 260 untalks and unlistens all devices on the bus.

4041 PROGRAMMER’S REFERENCE

GPIB
RBYTE

250 Integer number

260 Whbyte atn (unl, mla, 65)

270 Rbyte number

280 Print number

290 If number > =0 then goto 270
300 Wbyte atn (unt, uni)

Line 250 declares an integer variable Number.

Line 260 asserts the ATN line, unlistens all devices on the
bus, then sends the 4041’s listen address and the talk ad-
dress of the device at primary address 1.

Line 270 reads a value from the GPIB data lines and stores
it in numeric variable Number. Line 280 prints this value.

Line 290 tests the value received to see if it is less than 0.
(Bytes sent with the EOI line asserted are stored into nu-
meric variables as negative numbers.) If not, control returns
to line 270.

Line 300 untalks and unlistens all devices on the bus.

REV JAN 1984 9-11

GPIB
WBYTE

The WBYTE Statement (GPIB)

Syntax Form:
{strexp]

Descriptive Form:

[line-no.] WBYTE [# [numexp}:] expression-list

[line-no.] WBYTE [# {logical-unit]:] sequence-of-expressions-
{stream-spec] and-GPIB-functions

PURPOSE

To execute GPIB functions and to transfer 8-bit bytes from
program variables to the bus.

EXPLANATION

if the 4041 is controller-in-charge, it must be talk-addressed
to send data to the bus, or an error occurs. The 4041 be-
comes talk-addressed when the ATN(MTA) function is
executed.

If the 4041 is in talker/listener mode, it waits to be talk-
addressed before sending any data on the bus. If it is not
addressed within TIM seconds, a timeout error occurs.

The remainder of this description of the WBYTE statement
describes the GPIB functions that can be used with
WBYTE. For more information on the use of WBYTE to
transfer data values, see the description of the WBYTE
statement in Section 8, Input/Cutput.

9-12 REV JAN 1984

The ATN Function

Syntax:
ATN(Numexp[,NumArg]...)

The ATN function causes the values in its argument list to
be sent over the GPIB data lines with ATN asserted.

The 4041 must be the controller-in-charge to execute this
function or an error is generated.

Each numeric argument must evaluate to an integer in the
closed interval 0 to 255. Each argument is sent to the bus
with ATN true. ATN remains true after the function has com-
pleted executing.

Example.
1000 Wbyte atn(unt,unl,mta,33),"SET?",e0i

The 4041 asserts the ATN line, sends the UNTalk and UN-
Listen messages followed by its talk address and the listen
address of the device at primary address 1 (1 + 32), then un-
asserts ATN and sends the string “SET?"’. The EOl line is
asserted with the last byte of the message.

4041 PROGRAMMER’S REFERENCE

GPIB
WBYTE

The DCL Function The GET Function
Syntax: Syntax:
DCL GET[(numexp[,numexp]...)}

This function executes the equivalent function ATN(20),
which sends the universal command Device Clear to the
bus.

The 4041 must be the controller-in-charge to execute the
DCL function, or an error is generated.

Example.

1500 Wbyte decl

The EOI Function

Syntax:
EQI

The EOI function sends the last byte of the preceding data
element with the EOI line asserted.

This function must follow some output data in the WBYTE
statement, or an error is generated.

Example.
1600 Wbyte "FREQ 1000",eo0i

Sends the message ““FREQ 1000’ over the bus, and as-
serts the EOI line as the last byte is transmitted.

4041 PROGRAMMER’S REFERENCE

Bus Traffic:
[ATN UNL}
[ATN Listen-Address-1}
[{ATN Listen-Address-2} ... |
ATNS8

The GET function sends the listen-addresses of devices
specified in its argument list, followed by the Group Execute
Trigger (GET) command, all with ATN asserted.

Used without arguments, the GET function sends a value of
8 over the GPIB data lines with ATN asserted.

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

Each listen address consists of a mandatory primary listen
address part, and an optional secondary address part. Each
part, if there, must be a numeric expression that evaluates
to an integer in the closed interval legal to its appropriate
part.

Valid primary listen addresses are in the closed interval O to
30, or 32 to 62. If the value is in the former interval, it is
added to 32 before being sent to the bus.

Valid secondary addresses are in the closed inverval 96 to
128. If the value is 128, then nothing is sent to the bus.

Example.

1700 Wbyte get(1,2,3,97)

Sends the GET command to the devices at primary address
1 and 2, and the device at primary address 3, secondary ad-
dress 1(96 + 1).

9-13

GPIB
WBYTE

The GTL Function

Syntax:
GTL[(numexp[,numexp...])]

Bus Traffic:
[ATN UNL}
[ATN Listen-Address-1]
[{ATN Listen-Address-2] ...]
ATN 1

The GTL function sends the GoTol.ocal (GTL) command to
the devices in its argument list.

Used without arguments, the GTL function sends a value of
1 over the GPIB data lines with ATN asserted.

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

See the discussion under the GET function for legal listen
addresses.

Example.

1790 Select "gpibl:"
1800 Wbyte gtl(2,4,6)

Sends the GTL command to the devices at primary address
2, 4, and 6 on the optional GPIB interface port.

The IFC Function

Syntax:
IFC(numexp)

The IFC function pulses the IFC line for the amount of time
(in seconds) specified by its argument.

Any argument less than 1E-4 pulses the line for 1E-4 sec-
onds (100uS).

Executing this function unaddresses the 4041 interface as
well as any interfaces connected to the bus.

9-14

The 4041 must be the system controller to execute this
function, or an error is generated.

Example.
1900 Wbyte ifc(.010)

Pulses the IFC line for 10 milliseconds.

The LLO Function

Syntax:
LLO

Bus Traffic:
ATN17

The LLO function sends the universal command LocalLock-
Out (LLO).

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

Example.

2000 Wbyte 1llo

The ML A Function

Syntax:
MLA

This function returns an integer value representing the
4041’s listen address on the bus. It is computed by taking
the MA value and adding 32. This function can appear any-
where a numeric value can appear.

Example.
2100 Wbyte atn(mla,66)
This statement asserts the ATN line and sends the 4041’s

listen address, followed by the talk address of the device at
primary address 2 (2 + 64) over the data lines.

4041 PROGRAMMER'’S REFERENCE

The MTA Function

Syntax:
MTA

This function returns an integer value representing the
4041’s talk address on the bus. It is computed by taking the
MA value and adding 64. This function can appear any-
where a numeric value can appear.

Example.

2200 Wbyte atn(mta,34)
This statement asserts the ATN line and sends the 4041’s

talk address, followed by the listen address of the device at
primary address 2 (2 + 32) over the data lines.

The PPC Function

Syntax:
PPC(listen-address,data-line,sense
[,listen-address,data-line,sense]...)

Bus Traffic:
ATN UNL
ATN Listen-Address-1
ATN 5
ATN PPE or PPD
ATN UNL
{ATN Listen-Address-2]
{ATN 5]
{ATN PPE or PPD}
[ATN UNL] ...

The PPC function configures devices for parallel polling.

Arguments to the PPC function are given in triples. The first
argument of the triple determines which device is being con-
figured; the second argument determines which data line it

4041 PROGRAMMER’S REFERENCE

GPIB
WBYTE

is being configured to respond on; and the third argument
determines the sense of its IST bit on which it is to assert its
assigned data line.

The address argument is interpreted as for the GET func-
tion (see the discussion of the GET function, earlier in this
section).

To configure a device with a secondary address for parallel
poll, both a primary and a secondary address must be sent
before the data-line argument (i.e., send four values, not
three).

The data-line argument determines whether a PPE or a
PPD is output. If the data-line expression evaluates to an in-
teger in the closed interval 1 to 8, then a PPE is generated.
If the dataline expression evaluates to the integer 0, then a
PPD is generated.

The SENSE numeric expression must evaluate to an inte-
ger in the closed interval 0 to 1. If SENSE = 0, the device will
assert its assigned data line when parallel polled if its IST bit
is setto FALSE. If SENSE = 1, the device will assert its as-
signed data line when parallel polled if its IST bit is set to
TRUE.

The actual PPE bus value generated will be:
96 4 SENSE *8 + DATALINE-1.

The actual PPD bus value generated will be 112,
The 4041 must be controlier-in-charge to execute this func-
tion, or an error is generated.
Example.

2200 Wbyte ppc(5,6,0,24,7,1)
This statement configures the device at primary address 5
to assert data line 6 on an IST value of false, and the device

at primary address 24 to assert data line 7 on an IST value
of true.

REV JAN 1984 9-15

GPIB
WBYTE

The PPU Function The SDC Function
Syntax: Syntax:
PPU SDC[(numexp{,numexp...]}]
Bus Traffic: Bus Traffic:
ATN 21 [ATN UNL]

The PPU function clears a parallel poll configuration.

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

Example.

2300 Wbyte ppu

The REN Function

Syntax:
REN(numexp)

The REN function asserts or un-asserts the REN line, de-
pending on the value of its argument.

If the absolute value of the numeric expression is greater
than or equal to 0.5, then the REMOTE ENABLE line is sent
true, else the REMOTE ENABLE line is sent false.

The REMOTE ENABLE line is sent true by default when the
4041 first enters the SC = YES state.

The 4041 must be the system controlier to execute this
function, or an error is generated.
Example.
2200 Wbyte ren(ready)
This statement asserts the REN line if the variable Ready

evaluates to a number whose absolute value is greater than
orequalto 0.5.

9-16 REV JAN 1984

[ATN Listen-Address-1]
[{ATN Listen-Address-2] ...]
ATN 4

The SDC function sends the Selected Device Clear (SDC)
command to the devices in the argument list.

Used without arguments, the SDC function sends a value of
4 over the GPIB data lines with ATN asserted.

Addresses in the argument list are interpreted as for the
GET function (see the discussion of the GET function, ear-
lier in this section).

The 4041 must be controller-in-charge to execute this func-
tion, or an error occurs.

Example.

2400 Wbyte sdc(10,14,98,20)

This statement sends the SDC message to the devices at
primary address 10, the device primary address 14,
secondary address 2 and the device at primary address 20.

The SPD Function

Syntax:
SPD

Bus Traffic:
ATN 25

The SPD function sends the universal command Serial Poll
Disable (SPD).

The SPD function disables talkers from reporting status
bytes when talk-addressed.

The 4041 must be controller-in-charge to execute this func-
tion, or an error occurs.

See the SPE function for an example of the use of SPD.

4041 PROGRAMMER'S REFERENCE

The SPE Function

GPIB
WBYTE

The SRQ Function

Syntax:
SPE

Bus Traffic:
ATN 24

The SPE function sends the universal command Serial Poll
Enable (SPE).

The SPE function enables devices to send their status bytes
over the data lines when talk-addressed.

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

Example.

1000 Wbyte spe

1010 Wbyte atn(unl,mla,65)
1020 Rbyte devistat

1030 Wbyte atn(66)

1040 Rbyte devZstat

1050 Wbyte atn(67)

1060 Rbyte dev3stat

1070 Wbyte spd

Line 1000 sends the SPE command to all devices on the
bus.

Line 1010 un-listens all devices, then sends the 4041’s lis-
ten address and the talk address of device 1.

Line 1020 reads device 1’s status byte into numeric variable
Devistat.

Line 1030 talk-addresses device 2, and line 1040 reads de-
vice 2’s status byte into numeric variable Dev2stat.

Line 1050 talk-addresses device 3, and line 1060 reads de-
vice 3’s status byte into numeric variable Dev3stat.

Line 1070 sends to SPD command to all devices on the bus.

4041 PROGRAMMER’S REFERENCE

Syntax:
SRQ(numexp)

The SRQ function asserts the SRQ line, signifying that the
4041 is requesting service from the controller-in-charge.
The argument accompanying the SRQ function is the status
byte that the 4041 responds with when serial polied.

The 4041 must be in talker/listener mode (not controller-in-
charge) to execute this function, or an error is generated.

The numeric expression must evaluate to an integer in the
closed interval 64 to 127 or 192 to 255, or an error is
generated.

The first time this function is executed, the integer is placed
in the interface chip, which causes the SRQ line to be as-
serted. Program execution then proceeds.

If this function is executed again before the current
controller-in-charge polis the 4041, program execution
suspends until the poll is executed. Then the new value is
placed in the chip.

Example.
2500 Wbyte srq(200)
This statement asserts the SRQ line. The 4041 will respond

with a status byte of 200 when polled by the controller-in-
charge.

REV JAN 1984 9-17

GPIB

WBYTE
The TCT Function The UNL Function
Syntax: Syntax:
TCT[(numexp)] UNL
Bus Traffic: The UNL function returns the value 63. This function is nor-
ATN Talk-Address mally used as an argument in an ATN function to ‘““‘un-listen”’
ATN9 all current listeners.

The TCT function sends the Take Control (TCT) command
to the device specified as an argument.

Used without arguments, the TCT function sends a value of
9 over the GPIB data lines with ATN asserted.

This function must be the last one performed by the 4041 re-
quiring control of the ATN line, or an error is generated.

The 4041 must be controller-in-charge to execute this func-
tion, or an error is generated.

Example.

2600 wbyte tct(1)

This statement passes control to the device at primary
address 1.

9-18

Example.
2700 Wbyte atn(unl)

This statement un-listens all devices on the bus currently
addressed to listen.

The UNT Function

Syntax:
UNT

The UNT function returns the value 95. This function is nor-
mally used as an argument in an ATN function to ‘‘un-tatk”
the current talker.

Example.
2900 Wbyte atn(unt)

This statement un-talks whichever device is presently ad-
dressed to talk.

4041 PROGRAMMER’S REFERENCE

GPIB
SERIAL POLL

SERIAL POLLS

When the 4041 is controller-in-charge, it can be made to poll
devices requesting service by means of the POLL state-
ment or the SPD/SPE WBYTE functions (see the discussion
of these functions earlier in this section).

The usual mechanism for notifying the 4041 that a device

requires service is by a device’s asserting the SRQ line after
the SRQ interrupt condition has been enabled. When the

The POLL Statement

4041 senses that the SRQ line is asserted, it transfersto a
handler for the SRQ interrupt condition.

For more information about the SRQ interrupt condition, the
ENABLE statement, and the ON statement (used to desig-
nate handlers for interrupt conditions), see Section 12, Inter-
rupt Handling.

Syntax Form:

Descriptive Form:

FORM 1: [line-no.] POLL nvar,nvar[,nvar];nexp[,nexp]
FORM 2: [line-no.] POLL nvar,nvar[,nvarl{;nexp[,nexp}|...
FORM 3: [line-no.] POLL nvar,nvar|,nvar]

FORM 1: [line-no.] POLL status,prildp[,secldpj;pri[,sec]
FORM 2: [line-no.] POLL status,prildp|,secldp]i;pri[,sec]i...
FORM 3: [line-no.] POLL status,prildp[,secldp]

where status = variable in which to store status byte
prildp = variable in which to store primary address of last device polieds
secldp = variable in which to store secondary address of last device polled
pri = primary address of a device to be polled
sec = secondary address of a device to be polled
PURPOSE The front-end bus traffic for this statement is:

To serial poll a specific instrument on the currently selected
bus (form 1), or to serial poll a group of instruments on the
currently selected bus (form 2), or to serial poll all possible
addresses on the currently selected bus (form 3).

EXPLANATION

The 4041 must be the controller-in-charge on the currently
SELECTed interface port, or an error is generated.

If form 3 of the POLL statement is used, the SRQ line must
be asserted, or an error occurs.

4041 PROGRAMMER’S REFERENCE

UNListen
SPE
My-Listen-Address

Subsequent bus traffic depends on the statement form
specified.

The interface waits for instrument responses using the SPE
time value to detect the no-response condition.

When the statement completes operation, the terminating
bus traffic is:

UNTalk
UNListen
SPD

GPIB
SERIAL POLL

Form 1

POLL status,primary-address],secondary-address];
primary-address-to-poll[,secondary-address-to-poll]

This form of the poll statement polls one device on the bus,
whether or not SRQ is asserted. Thus, this form of the POLL
statement can be used at any time to read the status byte of
a given device.

Possible results of a POLL statement in this form are:

1. The 4041 reads the status byte of the device and re-
turns that value and the device’s address in the desig-
nated variables; or

2. The 4041 generates a ‘‘nobody home”’ error, if the de-
vice with the specified address does not respond to the
poll within the amount of time given by the SPE param-
eter in the currently SELECTed stream spec. (The
value of the SPE parameter defaults to .01 second.)
This typically happens only if no device with the ad-
dress specified is on the bus at the time of the poll.

If the command specifies a variable to record the device’s
secondary address and it has none, a value of **32”" will be
placed in that variable.

Example.

800 Poll status,priadd;d

This statement polls device 4 on the currently SELECTed

GPIB interface port. The device’s status byte is stored in nu-
meric variable Status, and its primary address (which will al-
ways be 4, in this case) is stored in numeric variable Priadd.

Form 2

POLL status,primary-address[,secondary-address];
primary-address-to-poll[,secondary-address-to-poll]
[;primary-address-to-poll[,secondary-address-to-poll]...]

This form of the POLL statement differs from Form 1 in that
more than one device address is included in the POLL list.

The SRQ line must be asserted in order to execute this form
of the POLL statement.

This form of the POLL statement polls each device in the list
until:

1. The device asserting SRQ is found, in which case its
status byte and address are returned in the designated
variables; or

2. The 4041 goes through the entire list without finding
the device asserting SRQ (generates an error); or

3. One of the devices in the list does not respond to the
poll within the amount of time designated by the SPE
parameter (‘‘nobody home’’ error); or

4. The SRQ line becomes un-asserted (e.g., the device
asserting SRQ unasserts it while the poll is being con-
ducted). This condition causes an error.

If a variable is specified to receive the secondary address of
the device asserting SRQ and the device has none, a value
of “32" is stored in that variable.

Example.

The POLL statement in Example 9-2 polls the following
devices: the device with primary address equal to the value
of numeric variable Dev1; the device with primary address
Dev2; the device with primary address Dev3 and secondary
address Sec1; and the device with primary address Dev3
and secondary address Sec2. When the device asserting
SRQ is found, its status byte is stored in numeric variable
Status, its primary address in numeric variable Priadd, and
its secondary address in numeric variable Secadd.

900 Poll status,priadd,secadd;devl;dev2;dev3,secl;dev3,sec?

Example 9-2.

9-20

REV JAN 1984

4041 PROGRAMMER’S REFERENCE

Form 3
POLL status, primary-address|,secondary-address]

Form 3 of the POLL statement could be called the “auto-
polling’’ form. When executing this form of the POLL state-
ment, no device addresses are specified to be polied. The
4041 polls each primary address from 0 to 30, then polls
every possible combination of primary and secondary ad-
dresses (0-30 primary, 0-30 secondary), stopping when it
finds a device asserting SRQ.

The SRQ line must be asserted in order to execute this form
of the POLL statement.

Because the 4041 polls all possible device addresses in this
form of POLL, no “‘nobody home’’ errors are generated.

If the SRQ line becomes un-asserted while the poll is being

conducted (e.g. if the device asserting SRQ unasserts it
while the poll is being conducted), an error is generated.

4041 PROGRAMMER’S REFERENCE

GPIB
SERIAL POLL

If the user specifies a variable to receive the secondary ad-
dress of the device asserting SRQ and the device has none,
avalue of *‘32”" is stored in that variable.

Example.

1000 Poll status,priadd,secadd

This statement polls all combinations of primary and sec-
ondary addresses on the currently SELECTed GPIB inter-
face port. When the device asserting SRQ is found, the de-
vice’s status byte is stored in numeric variable Status, the
device’s primary address is stored in numeric variable
Priadd, and the device’s secondary address is stored in nu-
meric variable Secadd.

9-21

GPIB
PARALLEL POLL

PARALLEL POLLS

CONFIGURING/UNCONFIGURING
PARALLEL POLLS

Parallel pol!s are configured or unconfigured by using the
PPC, PPE, and PPU WBYTE functions. See the descrip-
tions of these functions under the discussion of the WBYTE
statement, earlier in this section, for more information.

The ATN(EOI) Function

EXECUTING PARALLEL POLLS

Parallel polls are conducted when the ATN(EOI) function is
executed.
NOTE

The ATN(EOI) function need not be invoked within a
WBYTE statement to conduct a parallel poll.

Syntax and

Descriptive Forms: ATN(EOI)

PURPOSE

To execute a parallel poll on the currently selected interface
and return the result as a numeric value.
EXPLANATION

The 4041 must'be controller-in-charge on the currently SE-
LECTed GPIB interface port when this function is executed,

or an error is generated.

The 4041 asserts the ATN and EOI lines simultaneously,
then reads the data lines and returns the resulting value.

9-22

The value returned represents the responses for all confi-
gured bus devices, i.e., the value returned BAND the data-
line-number gives the response of the device configured to
respond on that data line.

This function may be used anywhere a numeric function is
allowed.

Example.

100 Responsezatn(eoi)

This statement conducts a parallel poll and stores the result
in numeric variable response.

4041 PROGRAMMER’S REFERENCE

Section 10

RS-232-C DATA COMMUNICATIONS

INTRODUCTION

RS-232-C is a recommended standard, adopted by the
Electronic Industries Association (ElA), describing a com-
mon interface for serial data transmission.

The RS-232-C standard gives guidelines to ensure that
devices are compatible at three levels:

® Interface — both devices using the interface must agree
on the transmission lines used and on their meanings.
Devices must be able to transmit a digital signal or to
reassemble that digital signal correctly at the interface.

® Hardware — each device must be able to translate the
signal received at the interface into a usable form. The
hardware must be able to control the interface.

® | ogic — each device must know what to do with the
information it receives. The devices must agree on the
meaning and interpretation of the data transmitted
across the interface. The devices must be made logically
compatible.

In practice, RS-232-C interfaces are implemented in a vari-
ety of ways. Most manufacturers provide a variety of
switches that can be set to provide compatibility with other
equipment.

4041 PROGRAMMER’S REFERENCE

Configuring the RS-232-C interface involves setting these
switches on one or both of the devices on either end of the
interface.

The COMM (or “COMMO”) driver controls the standard RS-
232-C interface port on the 4041. The COMM1 driver
controls the operational RS-232-C interface port on 4041
units equipped with Option 1 or Option 3.

RS-232-C interface ports on the 4041 are configured using
“soft switches”, parameters within stream specifications for
the COMMO and COMM1 drivers. Available switches, their
meanings, possible values, and default values are given in
Appendix D.

This section is not intended to be a tutorial on RS-232-C
interfacing. The 4047 Operators Manual describes the elec-
trical aspects of the interface, and some of the concepts be-
hind configuring the interface. For more information about
the basics of RS-232-C data communications, consult the
RS-232-C standard itself, or some publication such as
“Essentials of Data Communications,” available through
Tektronix (Publication #AX-3915-1).

REV OCT 1984 101

RS-232-C DATA COMMUNICATIONS

PARITY

The PARity parameter can have one of five possible set-
tings: None, Odd, Even, High, or Low. The defauit is None.

When parity is set to none, no parity bits are added to outgo-
ing characters, and no parity-checking is done on incoming
characters.

When parity is set to odd or even, a bit with value 1 or 0 is
added to outgoing characters to make the number of bits
with value 1 in the character odd or even, as specified.
Incoming characters are checked to ensure that the number
of bits with value 1 is odd or even, as specified.

When parity is set to high, a bit with value 1 is added to each
outgoing character.

When parity is set to low, a bit with value 0 is added to each
outgoing character.

When the BITs parameter is set to 5, PARity must be set to
None. When the BiTs parameter is set to 9, PARity must be
odd, even, high, or low.

STOP BITS

The STOp parameter specifies the number of stop bits to be
transmitted between characters for synchronization. STOp
can have a value of 1 or 2; the default is 2.

When the BiTs parameter is set to 5 and the STOp parame-
terto 2, 1.5 stop bits are actually transmitted (i.e., a time
equal to one-and-a-half times that required to transmit one
bit is used for synchronization).

TYPEAHEAD BUFFER

The TYPeahead parameter specifies the size of the type-
ahead buffer, used during transfers of large amounts of
data. The default (and minimum) size is 100.

The user need not be concerned about varying the type-
ahead buffer size unless a large amount of data is being
transferred at high baud rates. In this case, the typeahead
buffer size needed will vary with the baud rate and amount
of data to be transmitted.

10-2 REV OCT 1984

FLAGGING

Because different devices operate at different speeds,
devices transferring data via the RS-232-C communications
interface must have some way of signalling one another to
indicate readiness to receive input. The name given to this
signalling procedure is “flagging”.

Upon power-up, the 4041 sets the FLLAgging on the
standard RS-232-C interface port (and on the optional port,
if Option 1 or Option 03 is available) to OUTput. This means
that, when the 4041 is transmitting data via a COMM driver,
it will stop output when it receives an ASCIlI DC3 character
(CTRL-S from a user terminal), and re-start output when it
receives an ASCIl DC1 character (CTRL-Q from a user
terminal).

Other values for the FLAgging parameter include NOne,
INput, BIDirectional, MODem, AMOdem, and EMOdem.
The meanings of these values are as follows:

® |Nput: when receiving data via a COMM driver, the 4041
stops input when its typeahead buffer is almost full by
sending an ASCIi DC3 character. When the typeahead
buffer is empty, the 4041 restarts input by sending an
ASCII DC1 character.

® MODem: on input, stop transmitting characters to the
4041 when typeahead buffer is almost full by setting CTS
line OFF. When typeahead buffer is empty, 4041
requests input by turning CTS line ON.

On output, the 4041 stops transmitting characters when
it senses the DTR line OFF, and resumes transmission
when it senses the DTR line ON.

® AMOdem: on input, stop transmitting characters to the
4041 when typeahead buffer is almost full by setting CTS
line OFF. When typeahead buffer is empty, 4041
requests input by turning CTS line ON.

On output, the 4041 stops transmitting characters when
it senses the RTS line OFF, and resumes transmission
when it senses the RTS line ON.

® EMOdem: on input, stop transmitting characters to the
4041 when typeahead buffer is almost full by setting both
the CTS and DSR lines OFF. When typeahead buffer is
empty, 4041 requests input by turning both the CTS and
DSRlines ON.

On output, the 4041 stops transmitting characters when
it senses either the RTS or the DTR line OFF, and
resumes transmission when it senses both the RTS and
DTR lines ON again.

4041 PROGRAMMER'S REFERENCE

THE EDI PARAMETER

The EDI parameter specifies what kind of terminal you are
using to communicate with the 4041. The value of the EDI
parameter controls the way the 4041 handles line-editing
control keys (Rubout, CTRL-E, -H, -K, -O, -W, -Y, and -Z).

If an output-only device such as a line printer is connected
to an RS-232-C interface port, the value of the EDI param-
eter makes no difference.

The legal values of the EDI parameter are:
® STOrage: used with storage-tube terminals.

® RASter: used with ““generic” raster-scan terminals. This
is the default value for EDI.

® 402: used with Tektronix 4020-Series terminals.

® ANS:I: used with raster-scan terminals that support ANSI
Standard X3.64-1979 Kill to End of Line (KEOL), Delete
Character (DCH), and Insert Character (INS) functions.

® 850: used with CT8500 terminals.

402, ANS, and 850 all default to do something “sensible”
(i.e., friendly and not noticeable by or requiring any work on
the part of the user) when you use these terminals for line
editing. For instance, when you delete a character from a
line using one of these terminals, the character disappears
from the screen as well.

STOrage and RASter, however, treat characters such as
RUBOUT and INSERT differently. More information about
the way the 4041 interacts with a terminal with these param-
eter values appears in the discussion of “Line Editing”,
later in this section.

CONTROL CHARACTERS

Control characters are either executed (sent out as the
actual ASCII code for that particular character) or are shown
in up-arrow format (sent out as a two-character sequence of
up-arrow (A) followed by the printable equivalent of the con-
trol character, which is the ASCIl equivalent of the control
character plus 64).

4041 PROGRAMMER’S REFERENCE

RS-232-C DATA COMMUNICATIONS

The following rules define when the COMM driver executes
control characters and when it sends them out in up-arrow
format.

1. CR/(carriage return) and TAB (horizontal tab) are
always executed.

2. WBYTE statements always execute control characters.

3. When FORMAT =ITEM is specified, control characters
are always executed.

4. The one or two characters, as specified, that are output
as EOM, are always executed.

5. When CR=CRLF or CR=LFCR, the linefeed is always
executed.

6. SAVE statements always execute control characters.

The following rules exclude anything mentioned in Rules 1
through 6 (i.e., Rules 1 through 6 take precedence):

7. LIST and SLIST output control characters in up-arrow
format.

8. Control characters echoed as the result of user input
are in up-arrow format.

9. Control characters displayed as the resulit of an INPUT
ALTER clause are in up-arrow format.

10. Control characters displayed as the result of a PRINT
statement, INPUT PROMPT clause, or COPY state-
ment are executed if CON = YES, and shown in up-
arrow format if CON = NO.

11. lfaLF (linefeed) is output in up-arrow format, based on
the preceding specifications, then the LF parameter is
ignored. If LF is to be executed, then it is sent as speci-
fied by the LF parameter (as LF, CRLF or LFCR}), and
the one or two characters are executed as specified.

12. The default for the CON parameter is YES (execute
control characters).

10-3

RS-232-C DATA COMMUNICATIONS

CONTROL CHARACTER FUNCTIONS

Figure 10-1 shows the control-character functions for the
keyboard, i.e., the functions invoked by pressing various
keys at the same time as the Control (CTRL) key.

Table 10-1 groups these keys by functional group, lists the
functions and the keys that invoke them, briefly describes
the effects of each control key, and states whether the
COMM driver must be the system console device in order
for the control character to function.

Line Editing
For purposes of this discussion, the “line editing” keys
include:

® RUBOUT (usually labeled as such on most terminals; the
same functionality is also provided by CTRL-E and
CTRL-H).

® CTRL-K (Kill to End of Line).

® CTRL-O (Insert Characters).

® CTRL-W (Move to Beginning of Line).
® CTRL-Z (Move to End of Line).

When the EDI parameter is set to 402, ANS, or 850, these
keys work just as you would expect them to; RUBOUT
deletes characters from the screen, CTRL-O inserts charac-
ters at the position of the cursor, etc.

NOTE

When EDI = 402, the terminal command character
must be single back quote (ASCII 96) and the com-
mand lockout light must be off. Otherwise, commands
that the 4041 sends to the terminal to format the dis-
play will appear on the terminal display.

When the EDI parameter is set to STO or RAS, however, the
keys perform their intended function on the input buffer, but
the characters echoed to the screen are different in some
cases.

EDI=STO. When EDI = STO, the line editing keys function
differently depending on whether the cursor is at the end of
a line or somewhere before the end.

If the cursor is at the end of a line, RUBOUT returns a back-
slash (“ \ "), followed by the characters being deleted. Typ-
ing a different character than RUBOUT returns a second
backslash, followed by the characters to be added to the
line.

@ W . : T YDISPLAY v ERASE ° P L
MOVE RECAL
CgSTTF',"S;E TOBEG. | RUBOUT Rf_f&"" STEP INPUT | CURRENT INSERT | PREVIOUS
OF LINE BUFFER LINE LINE
A s D F G H J K L
AUTO STOP | FUNCTION | FUNCTION RUBOUT Iélr!flli (T)g
NUMBER | OUTPUT [KEYS 11-20{ KEYS 1-10 LINE
z X c v B N M
MOVETO DELETE AUTO RECALL
END OF LINE ABORT LOAD BREAK NEXT
LINE LINE

ALSO RECOGNIZE:

CTRL —\: MOVE CURSOR LEFT
CTRL —]: MOVE CURSOR RIGHT
CTRL — A:*“META”’-PREFIX

3917-27A

Figure 10-1, Control Character Functions.

10-4

4041 PROGRAMMER’S REFERENCE

RS-232-C DATA COMMUNICATIONS

N
Table 10-1
CONTROL CHARACTER FUNCTIONS
Category Function Key(s)’ Description Restriction
Program Execution BREAK BREAK CRTL-B Causes program execution to be CONSOLE
interrupted. Execution resumes when
CONTinue is typed.
ABORT CTRL-C Abort. CONSOLE
STEP CRTL-T Executes next program line and stops. CONSOLE
AUTOLOAD CTRL-V Loads and runs file named “AUTOLD" CONSOLE
from DC-100 tape or disk.
Editing RUBOUT RUBOUT Causes character to left of cursor to be
CTRL-E erased.
CTRL-H
Backspace
KILL TO END OF CTRL-K Delete from cursor position to end of
LINE input line.
RECALL NEXT LINE CTRL-N Recall program line following the one CONSOLE
last recalled with CRTL-R, -P, or -N.
INSERT CTRL-O Insert characters at cursor position.
RECALL PREVIOUS CTRL-P Recall program line previous to the one CONSOLE
P LINE last recalled with CTRL-R, -P, or -N.
LINE RECALL CTRL-R Recall program line whose number was CONSOLE
typed prior to CTRL-R.
ERASE INPUT CTRL-U Erase current input buffer.
START OF LINE CTRL-W Position cursor at start of current input
line.
DELETE LINE CTRL-X Delete program line whose number was CONSOLE
typed prior to CTRL-X.
DISPLAY INPUT CTRL-Y Redisplay current input line.
LINE
END OF LINE CTRL-Z Position cursor at end of currrent input
line.
CURSOR < CTRL-\ Move cursor one space to the left.
CURSOR > CTRL-) Move cursor one space to the right.
FUNCTION KEYS KEY FUNCTIONS CTRL-F Function key, 1-10 range. CTRL-F is CONSOLE
1-10 followed by a number in 1-9, 0 range.
NOTE: CTRL-F foliowed by “0” calls
function 10.
KEY FUNCTIONS CTRL-D Function key 11-20 range. CTRL-D is CONSOLE
11-20 followed by a number in 1-9, 0 range.
NOTE: CTRL-D followed by “0” calls
function 20.
* Yo avoid immediate execution of a special controi character, precede the control character by an ESCape character. For example, to enter CTRL-C into a string without execut-
ing an ABORT, type < esc > followed by <CTRL-C .
TN

4041 PROGRAMMER’S REFERENCE

REV OCT 1984

10-5

RS-232-C DATA COMMUNICATIONS

Table 10-1 (cont)
CONTROL CHARACTER FUNCTIONS

Category Function Key(s)’

Description Restriction

FLAGGING HALT OUTPUT CTRL-S

RESUME OQUTPUT CTRL-Q

Stops output from 4041. This feature is
enabled when FLA = OUT or FLA=BID.

Resumes output from 4041 after
CTRL-S. This feature is enabled when
FLA=OUTor FLA=8BID.

AUTONUMBER AUTONUMBER CTRL-A

Automatically number lines starting at CONSOLE
100 with increments of 10. Typing a
subsequent CTRL-A causes exit from

auto-number mode.

* Yo avoid immediate execution of a special control character, precede the control character by an ESCape character. For example, to enter CTRL-C into a string without execut-

ing an ABORT, type <esc> followed by <CTRL-C>.

If the cursor is somewhere before the end of a line,
RUBOQUT prints an “at” sign (“@") over the character being
deleted. The “at” sign does not go into the input buffer, but
simply denotes that a character has been deleted at that
position in the string.

CTRL-O “opens up” the line being entered to allow charac-
ters to be inserted. Characters to the right of the cursor are

shifted ten spaces to the right; the spaces do not go into the
input buffer.

EDI =RAS. When the EDI parameter is set to RAS, the line
editing keys work similarly to the case where EDI = STO,
except that RUBOUT deletes characters from the screen
when the cursor is at the end of a line.

When the EDI parameter is set to STO or RAS, you will
probably find CTRL-Y (Display Input Buffer) to be a useful
key. CTRL-Y always returns the current contents of the input
buffer. This allows the user to view the line being typed with-
out any “at” signs, backslashes, or other characters that
may have accumulated during the editing process.

Control Character Notes

CTRL-B is ignored when the 4041 is in idle mode, or when a
break is already pending.

CTRL-C is ignored when ABORT is disabled, unless the
4041 is PAUSEd.

10-6

REV OCT 1984

CTRL-D and CTRL-F, and the numeric digit(s) following, are
ignored when a function key is already in the function key
queue (i.e., if KEYS are not enabled, the first function key
pressed is placed in the function key queue). Subsequent
function keys are ignored by the system and ring the bell on
the terminal.

When the COMM is the system console, CTRL-B, -C, -D,
and -F cannot be input via an RBYTE statement unless pre-
ceded by an ESCAPE character.

When the COMM is the system console and the 4041 is
PAUSEd, CTRL-A, -N, -P, -R, -T, -V and -X are executed.
Otherwise, they are treated as data. These characters can
be input as data via an RBYTE statement at all times.

CTRL-E, -H, -K, -U, -W, -Y, -Z, -\, -], along with Escape and
Rubout, are always treated as special keys when the value
of the FORMAT parameter equals ASCIl, and are always
treated as data when the value of the FORmat parameter
equals ITEM. These characters can always be input as data
via an RBYTE statement.

CTRL-S and -Q are treated as special keys when

FLA=OUT or FLA =BID, and are otherwise treated as data.

These characters cannot be input as data via an RBYTE
statement when FLA=0UT or FLA=BID.

The ESCAPE character can always be input when the
FORmat parameter is set to ITEm. When the FORmat
parameter is set to ASCii, the ESCAPE character can only
be input by preceding it with itself (i.e., typing <esc>-
<esc>).

4041 PROGRAMMER’S REFERENCE

TN

When in doubt about whether or not to precede a control
key by an ESCAPE character, always do so. If the ESCAPE
character is not needed, it will be ignored.

The “Meta’ Character: CTRL-A

When the COMM driver is the system console:

® Typing CTRL-A followed by a “C” produces the same
result as pressing the CONTINUE key on the P/D
keyboard.

® Typing CTRL-A followed by an “L” produces the same
result as pressing the LIST key on the P/D keyboard.

® Typing CTRL-A followed by an “R” produces the same
result as pressing the RUN key on the P/D keyboard.

® Typing CTRL-A followed by any other character (except
B, C, D, or E when the COMM is the system console, or
Q or Swhen FLA = OUT or FLA = BID) will cause both the
CTRL-A and that character to be ignored. Typing CTRL-A
followed by < esc> followed by any character will cause
all three to be ignored.

4041 PROGRAMMER’S REFERENCE

RS-232-C DATA COMMUNICATIONS

This capability is especially useful when operating with a
4041 without Option 30 (Program Development ROMs).
Effectively, it allows the COMM driver to be used as the sys-
tem console device with such units, with no loss of capabil-
ity during execution.

(Note that the Program Development ROMs are still neces-
sary to develop programs on the 4041. Once saved in ITEM
format, however, programs can be run with or without the
P/D ROMs.)

ITEM FORMAT

When the FORmat parameter is set to ITEm:

® The CR, LF, EOM, and CON parameters are ignored. All
characters are transmitted as-is in ITEM format.

® The INPUT and PRINT statements cannot be used to
transfer data via the COMM driver; only the RBYTE and
WBYTE statements can be used. If the functionality of an
INPUT or PRINT statement is desired while
FORmat = ITEm, use a combination of INPUT and
GETMEM or PUTMEM and PRINT statements.

10-7

Section 11

SUBPROGRAMS & USER-DEFINED FUNCTIONS

INTRODUCTION

This section discusses statements in 4041 BASIC
relating to subprogram segments that: (1) begin with a
SUB statement and are entered via the CALL state-
ment; or (2) begin with a FUNCTION statement.

Statements relating to a third kind of subprogram
segment called “handlers” are discussed in Section
12, Interrupt Handling. Handlers can begin with a SUB
statement, but are not entered via a CALL statement.
Instead, they are entered when the condition they are
meant to handle is sensed after the handler has been
created and the condition enabled. (See Section 12 for
more information.)

DEFINITIONS OF SUBPROGRAMS AND
USER-DEFINED FUNCTIONS

There are two kinds of subprograms in 4041 BASIC:
those defined by the SUB statement and those defined
by the FUNCTION statement.

Subprograms defined by the SUB statement are re-
ferred to in this manual as “Subprograms” (capital S),
while subprograms defined by the FUNCTION state-
ment are referred to as “user-defined functions”, or
simply “functions”.

Since Subprograms and user-defined functions are
very similar, in this manual they are often discussed
together using the term “subprograms”. When the “‘s”
in subprogram is capitalized, the discussion either
refers only to SUB-statement-defined subprograms or
to a particular Subprogram being used as an example.
When the “‘s” in subprogram is not capitalized, the
discussion applies to either Subprograms or user-
defined functions.

4041 PROGRAMMER'S REFERENCE

DIFFERENCE BETWEEN SUBPROGRAMS,
USER-DEFINED FUNCTIONS, AND GOSUB
SUBROUTINES

The main purpose of a subprogram is to transfer
control to a specified segment of the program, perform
some action, and (usually) return control to the point in
the program from which control was transferred out.

Although Subprograms and user-defined functions are
very similar, they have two major differences: (1) the
ways they are called into use; and (2) the ways they
affect the execution of the program when they are
used.

A Subprogram is brought into use by means of the
CALL statement. For example:

1590 Call swap(x1,x2,x3)

9990 End
10000 Sub swap(a,b,c)

100é0 Return
10090 End

Line 1590 calls Subprogram SWAP, giving as argu-
ments X1, X2, and X3. Control transfers to the first line
of Subprogram SWAP (line 10000), where the
arguments X1, X2, and X3 map into parameters A, B,
and C, respectively. (We will have more about parame-
ters shortly.)

Execution continues through line 10080, whereupon
control returns to the line following the one in which
the subprogram was called. (In this case, that's the line
after 1590.)

111

SUBPROGRAMS & FUNCTIONS
INTRODUCTION

Line 10090 marks the end of the Subprogram.

Notice that the Subprogram assigns no value to its own
name. The CALL statement simply calls the Subpro-
gram, control transfers to that Subprogram, the Subpro-
gram is executed, and control returns to the line
following the call.

A user-defined function, on the other hand, returns a
value in its function name. For example,

1590 Sw=formula(x1,x2,%x3)
9990 End

10000 Function formula(a,b,c)

10010 Formula=3¥%¥a"2+l4%¥b+c

10020 Return

10030 End

Line 1590 invokes the function FORMULA. (Note: You
“call” a Subprogram, but “invoke’ a function.)

Control then transfers to the first line of function
FORMULA (line 10000.)

Somewhere in the body of the function, a value is
assigned to a variable that is the same as the function
name. In this case, line 10010 assigns a value to a
variable called FORMULA.

When the 4041 encounters a RETURN statement,
control returns to the line that invoked the function.
Upon return, the value of FORMULA is assigned to
variable SW and the statement finishes executing.
Program execution continues with the next line.

SUMMARY:: The major differences between a
Subprogram and a function are:

1. You call a Subprogram with a CALL statement, but
you “invoke’ a function within another statement.

2. Control returns to the line following the one that
called a Subprogram, but returns to the line that
invoked a function.

3. A function returns a value to its function name; a
Subprogram does not.

PARAMETERS

A subprogram can be thought of as a “program within a
program.” Subprograms accept input from a main
program or calling subprogram, and perform an action
or return a value.

Subprograms receive input by means of arguments and
parameters. SUB and FUNCTION statements list the
parameters of the Subprogram or function they define.
Statements that call/invoke Subprograms/ functions
list arguments that “map into” these parameters. For
example:

480 Call blark(x1,x2,x3)
1490 End

1500 Sub blark(a,b,c)

1510 D=2%¥a"2+8%p-5h*c
1590 Return

1600 End

The CALL statement in line 480 “maps” the values of
X1, X2, and X3 into parameters A, B, and C, respective-
ly, of Subprogram BLARK. X1, X2, and X3 are called
“arguments” of Subprogram BLARK.

“Value” and “Reference’ Parameters

There are two kinds of parameters used in 4041 BASIC
subprograms: (1) “‘value” parameters; and (2) “refer-
ence’” parameters.

Value parameters and reference parameters do differ-
ent things with the arguments that are passed to them
when a Subprogram is called or a function is invoked.

“Value” parameters copy the value of an argument and
use the copy during execution of the subprogram.

“‘Reference” parameters copy the address of the
variable passed as an argument. The subprogram then
reads from or writes to that address when the
parameter is referred to in the subprogram.

The major difference in function between value and
reference parameters is that the value of a variable
used as a value parameter is NEVER changed by a
subprogram, but the value of a reference parameter
MAY be.

4041 PROGRAMMER'S REFERENCE

Reference parameters are distinguished from value
parameters in SUB or FUNCTION statements by the
VAR keyword. Value parameters are listed before the
VAR keyword, while reference parameters are listed
after.

Examples:
2000 Function smurf(a,b var c¢,d)

In this example, A and B are value parameters; C and
D, coming after the VAR keyword, are reference
parameters.

2500 Sub price(var x1,x2,x3)

Parameters X1, X2, and X3 of Subprogram PRICE are
reference parameters. Changing the values of these
variables also changes the values of the corresponding
arguments in the statement that called the subprogram.

Uses of Value and Reference Parameters

A good general rule to help programmers chosee
between value and reference parameters is to use
value parameters to pass values into a subprogram and
reference parameters to return them.

Other factors that must be considered include whether
or not the data to be passed into the subprogram must
be preserved. If the data must be preserved (because
they will be used in later calculations), the use of value
parameters is dictated. If the data need not be
preserved but will be changed by the subprogram
instead, the use of reference parameters is called for.

Another consideration is storage requirements for large
arrays of data. Because value parameters create a
“copy” of the data passed into them, they require more
memory than reference parameters. In effect, passing
an array into a value parameter sets up two arrays of
equal size. If memory space is a potential problem, it is
best to use a reference parameter to pass the data,
taking care that no array contents are inadvertently
changed within the subprogram.

4041 PROGRAMMER'S REFERENCE

SUBPROGRAMS & FUNCTIONS
INTRODUCTION

LOCAL AND GLOBAL VARIABLES

Just as subprograms use two kinds of parameters, so
do they use two kinds of variables: “local” variables
and “global” variables.

A global variable is a variable that has a “universal”
value, i.e., its value is the same no matter where it is
referred to in the program.

A local variable is a variable that has a specific value
within a given subprogram. References to variables
with the same name outside the subprogram (whether
the reference is to global variables or to the local
variables of another subprogram) may have a different
value.

In 4041 BASIC, all subprogram parameters are local
variables. In addition, local variables can be defined by
means of the LOCAL keyword within a SUB or
FUNCTION statement.

In 4041 BASIC, all variables local to a given Subpro-
gram or user-defined function must be named in the
subprogram’s SUB or FUNCTION statement. Thus, all
subprogram parameters are automatically local vari-
ables, as well as all variables named after the keyword
LOCAL within the SUB or FUNCTION statement.

All other variables in the subprogram are global.
Changing the value of a global variable, in either the
main program or a subprogram, changes the value of
that variable throughout the rest of the program.

Example:

100 I=1
110 J=2
120 K=3
130 Call example
140 Print "this is the main progranm"
150 Print "i:";i,"j:";j,"k:";k
160 End
200 Sub example local 1i,]
210 I=3
220 J=i
230 K=5
240 Print "this is subprogram 'example'™
250 Print "i=";i,"j=";3j,"k=";k
260 Return
270 End

2500 Sub price(var x1,x2,x3)

*run

this is subprogram 'example'
i=3.0 j=4.0 k=5.0

this is the main program
i=1.0 j=2.0 k=5.0

11-3

SUBPROGRAMS & FUNCTIONS
INTRODUCTION

Line 200 defines | and J to be local variables for
Subprogram “EXAMPLE”. Values assigned to | and J
within the Subprogram do not affect the values of
global variables with the same name. Thus, lines 210
and 220 only change the values of | and J within
Subprogram Exampile, but not in the main program.

However, since K is not a local variable, it is assumed
to be a global variable. Line 230 therefore changes its.
global value. Thus, when contro! returns to the main
program and line 150 is executed, K has a value of 5.0
instead of the value previously assigned to it in the
main program.

Local Line Labels
It is a good programming practice to declare all line
labels used within a subprogram to be local to that

subprogram. This allows the same line label to be used
in different subprograms.

Example:

200 Sub nerp local finis,cndition

250 If (cndition) then goto finis
ZéO Finis: return
290 End

300 Sub foo local finis,cndition

3éO If (endition) then goto finis
3§O Finis: return
400 End

The same line label (finis) is used in Subprograms Nerp
and Foo to indicate the exit point for the subprogram.

Local Variables as Protection Against
Undesired Accessing

The primary reason for using local variables is to
ensure that variables within a subprogram and vari-
ables outside a subprogram do not affect each other by
being inadvertently given the same name.

114

A good example is the use of local variables as indices
in FOR... NEXT loops. It is common programming
practice to use the letters |, J, or K as indices in
FOR..NEXT loops.

If these variables are used in both the main program
and a subprogram, however, the values of the variables
in one program segment may clobber the values of
variables in the other, with disastrous effect. For
example, suppose we tried to run the following block of
code:

130 For j=1 to 5
140 Call task
150 Print "j=";j
160 Next jJ
490 End
500 Sub task
550 J=1
570 Return
580 End

*run

j=1.0

j=1.0

j=1.0

3=1.0

j=1.0

This program never exits the loop in lines 130 to 150.
This is because J is not defined as a local variable in
subprogram Task. Thus, J always has a value of 1
when control returns from the subprogram, and the
loop in lines 130 to 150 never completes execution.

To remedy this problem, line 500 should read
500 Sub task local j

which makes J a local variable in Subprogram Task.
Then, the code runs as follows:

130 For j=1 to 5
140 Call task
150 Print "j="; j
160 Next J

490 End

500 Sub task local j
550 J=1

570 Return

580 End

WS
L]

o G G 3R
VT EWN —C
QOO0

4041 PROGRAMMER’S REFERENCE

INHERITING ENVIRONMENTS

A subprogram’s “environment” consists of the values
and resources that the subprogram has access to
during its execution.

These include the ANGLE, AUTOLOAD, and UPCASE
system environmental parameters (described in Sec-
tion 5, Environmental Control).

They also include handlers for different kinds of
interrupts that may occur (e.g., function-key interrupts,
GPIB interrupts, etc.).

Subprograms “inherit” these environmental elements
from the program segments that call them. Thus, if the
ANGLE parameter in the main program is set to “1”
(degrees), and the main program calls Subprogram
Sub1, Sub1 “inherits” that value for its ANGLE parame-
ter.

Similarly, if Sub1 left the value of the ANGLE parameter
unchanged and called Subprogram Sub2, Sub2 would
inherit a value of “1” for its ANGLE parameter.

Likewise, Sub1 inherits all interrupt handlers from the
calling program segment. Thus, if the main program is
set to transfer to Subprogram HANDLE when the SRQ
line is asserted on the standard GPIB interface port,
the same transfer will occur if SRQ is asserted during
execution of Sub1.

Should a subprogram change the value of an
environmental parameter during its execution, that
parameter is returned to its original value when the
subprogram stops executing.

ENTERING, EDITING, DELETING,
APPENDING, AND RENUMBERING

The “segmented” structure of programs in the 4041
restricts the programmer’s ability to freely insert, edit,
delete, append, and renumber lines in subprograms.

These restrictions arise because the 4041 must always

be able to determine which program segment a state-
ment belongs to.

4041 PROGRAMMER’S REFERENCE

SUBPROGRAMS & FUNCTIONS
INTRODUCTION

Because indiscriminate inserting, deleting, editing, ap-
pending, or renumbering of subprogram lines could
make it unclear which program segment a given line is
a part of, the following restrictions apply:

Inserting

1. All statements except SUB, FUNCTION, and END
statements may be inserted into the body of any
program segment.

2. SUB or FUNCTION statements may be inserted
only after END statements (i.e., they must be the
next-higher numbered lines in sequence after an
END statement), with one exception.

EXCEPTION: The first statement of a program may
be a SUB or FUNCTION statement. This allows a
programmer to create a file consisting of a collec-
tion of subprograms, which may be appended or
inserted as necessary into another program.

3. END statements may only be inserted after the last
statement in the body of a program segment that
does not already have an END statement. (No
program segment can have two END statements.)

Editing

1. Statements within the body of a program segment
may be edited normally.

2. If a SUB or FUNCTION statement is edited, its
replacement must be a SUB or FUNCTION
statement.

NOTE

Replacing one SUB or FUNCTION statement with
another takes more translation time than replac-
ing any other kind of statement, because the
4041 must erase references to the old subpro-
gram, replace them with references to the “new”
subprogram, and partially re-transliate each state-
ment in the “new” subprogram to check it for
legality. The resulting delay could be noticeable
for large subprograms.

SUBPROGRAMS & FUNCTIONS
INTRODUCTION

Deleting

1. Statements within the body of a program segment
may be deleted normally.

2. SUB and FUNCTION statements may not be
deieted. To delete a SUB or FUNCTION statement,
a “DELETE LINE subname” statement must be
executed, deleting the entire subprogram.

3. END statements may be deleted, but such dele-
tions may result in errors when the program is
executed if the statement is not replaced.

Appending

1. Results of append operations must obey all rules
given for inserting lines within program segments.

2. Appends may be done into the body of a program
segment or to the end of an incomplete subpro-
gram. A new program segment may also be ap-
pended after the last program segment in the
current program, or between program segments.

In order to ensure clarity and avoid complexities
resulting from deleting and appending parts of
subprograms, it is considered good programming prac-
tice to delete or append entire subprograms only.

11-6

Renumbering

1.

When renumbering results in a sequence change
(i.e., a change in the order in which statements will
be executed), the renumbering operation must
obey rules for insertions into and deletions from
program segments.

Use the RENUMBER statement to combine two
subprograms A and B, as follows:

a. renumber the END statement of subprogram A
and all of subprogram B, to make room within A
for subprogram B’s statements;

b. renumber the body of program B to put it after
the last statement before the END statement in
subprogram A;

¢c. delete subprogram B.

Use the RENUMBER statement to (effectively)

insert subprogram B within subprogram A, as

follows:

a. create the first line of subprogram B (i.e., a
SUB or FUNCTION statement) outside subpro-
gram A;

b. renumber the lines from subprogram A that are
to go into subprogram A;

c. be sure toinclude an END statement in both
subprogram A and subprogram B.

4041 PROGRAMMER’S REFERENCE

The CALL Statement

SUBPROGRAMS & FUNCTIONS
CALL

Syntax Form:

Descriptive Form:

lline-no.] CALL subname [({numexp} [,numexp] ..}]
{strexp] [strexp]

[line-no.] CALL subprogram-name [(argument[,argument]..)]

PURPOSE

The CALL statement transfers control to a user-defined
subprogram and passes arguments to it.

EXPLANATION

The number and types (string or numeric) of arguments
contained in parentheses in the CALL statement must
match the number and types of parameters in the SUB
statement defining the subprogram.

4041 PROGRAMMER’S REFERENCE

EXAMPLE

1000 Call slurp(x,y$,z)

8500 Sub slurp(a,b$ var c¢)

Line 1000 transfers control to subprogram “Slurp”, and
passes the values of variables X, Y, and Z as argu-
ments to be used during subprogram execution. When
the subprogram starts executing, A will be equal to the
value of X, B$ to the value of Y$, and C to the value of
Z. The value of parameter C will be “passed back’’ to
variable Z when the Subprogram completes execution.

SUBPROGRAMS & FUNCTIONS
FUNCTION

The FUNCTION Statement

Syntax Form:

where: parm-list

Descriptive Form:

line-no. FUNCTION subname [parm-list][LOCAL loc-var-list]

(expl,expl... VAR var[var]..)
loc-var-list = LOCAL varlvarl..

line-no. FUNCTION subname [parameter-list] LOCAL local-variable-list

PURPOSE

The FUNCTION statement marks the beginning of a
program segment, and defines the parameters and
local variables for a user-defined function.

EXPLANATION

A user-defined function is a subprogram that returns a
value to its function name. It is invoked by another
statement in the program, and upon completion returns
control to the statment that invoked it.

In every other way, a user-defined function is identical
to a Subprogram.

Naming User-Defined Functions

User-defined function names follow the same rules as
other variable names: eight-character maximum; first
character must be a letter; succeeding characters may
be letters, numerals, or imbedded underscores; the
function name may not be the same as a keyword.

One difference between user-defined function names
and Subprogram names is that the last character of a
user-defined function name may be a dollar sign ($),
indicating a function that returns a string value.

Returning a Value to the Function Name

A user-defined function must always return a value to
its function name. This means that somewhere in the
body of the function, an assignment must be made to
the function name. The last value assigned to the
function name is the value returned by the function.

Example:
250 X=2
260 Y=3
270 Z=cubesum(x,y)
960 End
1000 Function cubesum(a,b)
1010 Cubesum=x"3+y"3
1020 Return
1030 End

Line 270 invokes the function CubeSum, which returns
the sum of the cubes of the two arguments used to
invoke the function. Z is assigned a value of 35 when
the statement completes execution.

User-Defined String Functions

User-defined functions can return a string value. The
names of user-defined functions returning a string
value must conform to the rules for forming string
variable names (must end with “$").

Example:

290 Str1$="p"
300 Str2$=next$(str1$)
310 Print "str1$=";str1$
320 Print "str2$=";str2$
1000 End

2000 Function next$(a$)

2010 Next$=chr$(asc(a$)+1)
2020 Return

2030 End

¥run

stri1$=b

str2g$=c

4041 PROGRAMMER’S REFERENCE

Function Next$ returns the next character in the ASCII
code after the first character in its argument. Thus,
Str2$ in line 300 is assigned a value of “c”.

Calling/Invoking Other
Subprograms/User-Defined Functions

A user-defined function may call any Subprogram or
invoke any other user-defined function, subject to one
restriction: the subprogram being called/invoked must
not be in the “active call sequence”.

The “active call sequence” is the sequence of subpro-
grams currently being executed.

For exampile, if the main program invokes Function A,
which calls Subprogram B, which invokes Function C,
the “active call sequence” consists of Function A,
Subprogram B, and Function C. Subprogram C cannot
call/invoke any of these subprograms. (NOTE: Subpro-
grams and user-defined functions can NEVER
call/invoke themselves.)

INTEGER, DIM, and LONG Statements

In order to return INTEGER or LONG values or arrays in
a function name, an INTEGER, DIM, or LONG statement
must be executed within the body of the function.

Example:

2000 Function intrtrn(x,y,z)

2010 Integer intrtrn
2050 Intrtrozxey+z
ZOéO Return

2100 End

Line 2010 makes IntRtrn an integer variable. Line 2050
therefore returns an integer value to the line that
invoked the function.

Function names and local variables shouid be typed
within the body of the function if they are to take on
other than short-floating-point scalar or string scalar
values. Parameters, however, “inherit” their types from
the program segment that invoked the function.

4041 PROGRAMMER'S REFERENCE

SUBPROGRAMS & FUNCTIONS
FUNCTION

“Inheriting” Parameter Types

User-defined function parameters “inherit” the types of
the arguments passed to them when the function was
invoked.

Thus, if an integer variable A is used as an argument to
map into a parameter X, X becomes an integer variable
for that execution of the function.

If, later, a long-floating-point variable L is used as an
argument to map into X, X becomes a long-floating-
point variable for that execution of the function.

Failure to Include a RETURN Statement in
a Function

If a function does not contain a RETURN statement,
program execution stops when the END statement
defining the end of the function is encountered.

Passing Arrays and Array Elements as
Parameters

Array elements may be passed as value parameters
only,

Arrays may be passed as either value or reference
parameters.

To change one or more elements within an array, the
calling program segment should pass the entire array
as a reference parameter and the position(s) of the
element(s) within the array as value parameter(s).

Passing Subprograms as Parameters

A Subprogram name may be passed as a reference
parameter to another Subprogram. A call to that
parameter name will then call the Subprogram whose
name was passed. The Subprogram whose name is
passed may not include any parameters.

SUBPROGRAMS & FUNCTIONS
SuB

The SUB Statement

Syntax Form:

where: parm-list

loc-var-list

Descriptive Form:

line-no. SUB subname [parm-list][LOCAL loc-var-list]

(var[varl... [VAR var|var]..)
LOCAL var(var]..

line-no. SUB subname [parameter-list] LOCAL local-variable-list

PURPOSE

The SUB statement marks the beginning of a subpro-
gram segment, and specifies the parameters and local
variables for a Subprogram.

EXPLANATION

The SUB and FUNCTION statements are identical in
form (apart from their main keywords), and are very
similar in function.

A SUB statement tells the 4041 that any program lines
that follow until the next END statement are part of a
Subprogram.

A FUNCTION statement, similarly, tells the 4041 that
any program lines that follow until the next END
statement are part of a user-defined function.

Subprograms are called and have parameters passed
to them by a CALL statement, and return control to the
line following the CALL statement that called them.

User-defined functions are invoked and have parame-
ters passed to them within another statements, and
return contro! to the line in which they were invoked.

Subprograms do not return a value in their subprogram
name.

User-defined functions return a value in their function
name.

Both Subprograms and user-defined functions return

control to the program segments that called/invoked
them when a RETURN statement is executed.

11-10

Naming Subprograms

The rules for forming Subprogram names are the same
as the rules for forming numeric variable names: (1)
eight-character maximum; (2) first character must be a
letter; (3) successive characters must be letters,
numbers, or imbedded underscores.

The dollar sign ($) is not a legal character for
Subprogram names.

The main program segment has a default name of
MAIN. Program segment names can be used to refer to
enter program segments, such as in the statement
RENUMBER MAIN.

Handler Subprograms

Handler Subprograms are Subprograms written to
handle any of several kinds of interrupt conditions that
may occur, such as the pressing of a user-definable
function key or the assertion of the SRQ line on the
GPIB.

Handlers are a special subset of Subprograms, and are
discussed in detail in Section 12, Interrupt Handling.

Calling/Invoking Other
Subprograms/User-Defined Functions

A Subprogram may call any other Subprogram or
invoke a user-defined function, subject to one restric-
tion: the subprogram being called/invoked must not be
in the active call sequence.

4041 PROGRAMMER’S REFERENCE

-

For example, if the main program calls Subprogram A,
which calls Subprogram B, which calls Subprogram C,
the ‘‘active call sequence” consists of Subprograms A,
B, and C. Subprogram C, therefore, cannot call any of
these Subprograms. (NOTE: A Subprogram or user-
defined function can NEVER call/invoke itself.)

Subprogram and user-defined function names are
globally visible. It is possible to have a local variable
with the same name as a subprogram or user-defined
function, but a subprogram containing such a variable
cannot call or invoke the subprogram of that name.

“Inheriting” Parameter Types
Subprogram parameters “inherit” the types of the

arguments passed to them from a calling program
segment,

4041 PROGRAMMER’S REFERENCE

SUBPROGRAMS & FUNCTIONS
SuB

Thus, if an integer variable A is used as an argument to
map into a parameter X, X becomes an integer variable
for that execution of the Subprogram.

If, later, a long-floating-point variable L is used as an
argument to map into X, X becomes a long-floating-
point variable for that execution of the Subprogram.

Failure to Include a RETURN Statement in
a Subprogram

If a Subprogram does not contain a RETURN statement,

program execution stops as soon as the END statement
defining the end of the Subprogram is encountered.

11-11

Section 12

INTERRUPT HANDLING

INTRODUCTION

This section discusses the statements the 4041 uses to
handle interrupts.

The section starts with a discussion of the different kinds
of interrupts the 4041 recognizes. It then discusses each
different type of interrupt individually.

The statements used to handle interrupts are then
presented, in aiphabetical order.

INTERRUPTS

“Interrupt’’ is the term used to describe the branching of
program control to a user-defined section of program (called
a “‘handler”’) when the 4041 senses a condition’s becoming
true.

The handler handles the condition that caused the interrupt
(in a manner determined by the programmer) and then
takes one of several courses:

1. Returns control to the point in the program at which
execution was interrupted.

2. Branches to a different point in the active call
sequence, and resumes execution from there.

3. Calls the system handier for a condition (e.g., prints an
error message and halts execution).

The 4041 recognizes five different kinds of interrupt condi-
tions: the ABORT condition, the ERROR condition, the
GPIB FUNCTION condition, the IODONE condition, and the
USER-DEFINABLE FUNCTION KEY condition.

The ABORT Condition

This condition is sensed as true when the ABORT key

is pressed on the front panel or P/D keyboard, or when
CTRL-C is pressed on a computer terminal connected to
the 4041 through an RS-232-C interface port.

4041 PROGRAMMER'S REFERENCE

The ERROR Condition

The ERROR condition is sensed as true when an error
occurs during program execution.

GPIB Conditions

The 4041 can be made to branch to a user-defined handler
when the 4041 senses any of several conditions coming
true on the GPIB. Examples include the 4041 sensing a
device asserting the SRQ, EQOI, or IFC management lines,
or the 4041 hearing its talk or listen address.

The IODONE Condition

The IODONE condition becomes true when an /O operation
is completed in proceed-mode.

The KEYS Condition

This condition becomes true when the user presses a user-
definable function key on the system console device. (If

a computer terminal connected to the 4041 through an
RS-232-C interface port is the system console device, the
user-definable functions are invoked by pressing CTRL-F or
CTRL-D, followed by the function number.)

The SRQ Condition (OPT2 Driver)

This condition becomes true when a device connected to
the Option 2 (TTL) interface port requests service from the
4041. The condition is called an ““SRQ"’ condition because
it is handled similarly to the SRQ interrupt on the GPIB
driver; note, however, that THIS INTERRUPT DOES NOT
AFFECT THE STATUS OF THE SRQ LINE ON THE GPIB.

12-1

INTERRUPT HANDLING
INTRODUCTION

DEFINING, ENABLING, AND LINKING

Three tests must be met before the 4041 will transfer control
to a handler upon sensing a condition’s coming true:

1. A handler for the condition must be defined.
2. The condition be enabled.

3. The condition and the its handler must be linked.

Defining Handlers

Two kinds of handlers can be defined to handle a condition:
GOSUB handlers and CALL-type handlers.

The act of entering a handler into a program defines the
handler.

The 4041’s system ABORT and ERROR handlers are auto-

matically defined on power-up. The user may define aiter-
nate ABORT and ERROR handlers, if desired.

Enabling Conditions

The 4041 is enabled to sense a given condition by means of
the ENABLE statement.

The ABORT and ERROR conditions are automatically
enabled on power-up. The user may disable the ABORT
condition, if desired.

The IODONE condition is automatically enabled when the
4041 enters proceed-mode.

Any condition except the ERROR and IODONE conditions
may be disabled using the DISABLE statement.

Linking Conditions and Handlers

Conditions and handlers are linked by means of the ON
statement.

The ON statement defines the section of program to which
control is passed when a condition is sensed.

The 4041’s system ABORT and ERROR handlers are
automatically defined, enabled, and linked on power-up.

The OFF statement negates the effect of a matching ON

statement previously executed in the same program
segment.

12-2

HANDLERS

Two types of handlers can be defined to handle a condition:
GOSUB-type handlers and CALL-type handlers.

GOSUB-type handlers belong to the same program seg-
ments in which they are linked to conditions. ON statements
for GOSUB-type handlers take the form

line-no. ON condition THEN GOSUB line

CALL-type handlers are distinct program segments in them-
selves; in fact, they are special cases of subprograms. ON
statements for CALL-type handlers take the form

line-no. ON condition THEN CALL subprogram

GOSUB- and CALL-type handlers are formed the same as
regular GOSUB subroutines and subprograms, with two
exceptions:

1. The statement used to exit either handler must be an
ADVANCE, RANCH, MONITOR, RESUME, or RETRY
statement, and NOT a RETURN statement.

2. Inthe case of a CALL-type handler, the handler must
not require that any parameters be passed to it
(although the handler’s SUB statement may define
local variables for the handler’s use).

Example.

In Example 12-1, lines 200 through 220 define CALL-type
handlers for user-definable function keys 1 through 3. Lines
230 and 240 define a GOSUB-type handler for user-defin-
able function keys 4 and 5. (Note the use of the RESUME
statement in line 910, instead of the RETURN that usually
ends a GOSUB subroutine.)

Subprogram K1H1 defines several new GOSUB-type han-
dlers for user-definable function keys 1 through 5, then
re-enables the keys. (User-definable function keys were
automatically disabled when program control passed to a
key handler.)

Each GOSUB-type handler performs some action, then
returns to line 1080, which returns control to line 270. The
handlers “‘unstack’, so that function keys 1, 2, and 3 are
once again linked to CALL-type handlers K1H1, K2H1, and
K3H1, respectively, and function keys 4 and 5 are linked to
the GOSUB-type handler starting at line 800.

4041 PROGRAMMER'’S REFERENCE

INTERRUPT HANDLING
INTRODUCTION

200
210
220
230
240
250
260
270

900
910

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1100

1190
1200

1290
1300

1390
1100

.

1490
1500

1590
1600
2000

2éOO
3000

3600

On key(1) then call kth1
On key(2) then call k2ht
On key(3) then call k3h1
On key(4) then gosub 900
On key(5) then gosub 900
Enable keys

Wait

Goto 260

Print "keys 4 and 5 are undefined at this time"
Resume

End

Sub k1h1 ! handler 1 for key #1
On key(1) then gosub 1100
On key(2) then gosub 1200
On key(3) then gosub 1300
On key(4) then gosub 1400
On key(5) then gosub 1500
Enable keys

Wait

Resume

! Handler 1.2 for key #1

Resume
! Handler 1.2 for key #2

Resume
! Handler 1.2 for key #3

Re sume
! Handler 1.2 for key #4

Resume
! Handler 1.2 for key #5

Resume
End
Sub k2h1 ! handler 1 for key #2

End
Sub k3h1 ! handler 1 for key #3

End

Example 12-1.

4041 PROGRAMMER’S REFERENCE

12-3

INTERRUPT HANDLING
INTRODUCTION

HANDLER VISIBILITY

All conditions except ABORT use the following *visibility”’
rules to determine the handler that control will transfer to
when the condition occurs. Visibility rules for ABORT are
presented in the discussion of the ABORT condition, later
in this section.

CALL-type handlers for any condition are “visible from
below’ in the active CALL sequence.

This means that a CALL-type handler linked and enabled in
one program segment is also linked and enabled in any pro-
gram segment the first segment calls or invokes, unless the
handler is superseded by another handler.

GOSUB-type handlers, on the other hand, are only “visible
from below’” when part of the main program segment, and
are otherwise visible only within the program segments that
create them. They are “‘transparent from below’’ when
created in a subprogram segment. (EXCEPTION: ABORT
handlers).

When a condition is enabled and sensed, the 4041
searches for handlers in the following sequence:

1. A CALL- or GOSUB-type handler linked in the current
program segment.

2. A CALL-type handler linked in a preceding segment in
the active call sequence.

3. ACALL-or GOSUB-type handler linked in the main
program segment.

4. Asystem handler (ABORT and ERROR conditions
only).

12-4

Example.

100 On key(1) then call keyilhand

110 Enable keys

120 call a

130 End

200 Sub a

210 On key(1) then gosub 250

220 call b

230 Return

240 Print "gosub-type handler for key #1"
250 Resume

260 End

300 Sub b

310 Wait

320 Return

330 End

400 Sub keythand

410 Print "call-type handler for key #1"
420 Resume

430 End

The main program sets up a CALL-type handler for function
key #1, then calis Sub A.

Sub A sets up a GOSUB-type handier for function key #1,
then calls Sub B.

If function key #1 is pressed while Sub B is executing, con-
trol will pass to Key1hand. Sub A’'s GOSUB-type handler is
“transparent’’ to Sub B.

Disabling Conditions Within CALL-Type
Handlers

When control transfers to a handler, the condition causing
the transfer is automatically disabled for the duration of the
handler’s execution (except for ERROR handiers; the
ERROR condition is never disabled).

The condition is automatically re-enabled when the handler
finishes executing.

The user may over-ride the automatic disabling feature by
enabling the condition within the handler. Once enabled,
the condition may be disabled within the handler as well.
Regardless of whether the condition is enabled or disabled
within the handler, the condition is always automatically
enabled when the handler finishes executing.

4041 PROGRAMMER’S REFERENCE

EXIT STATEMENTS FROM INTERRUPT
HANDLERS

One of the following statements must be used to exit an
interrupt handler: ADVANCE, BRANCH, MONITOR,
RESUME, or RETRY.

(These statements are not legal for use with all interrupt
conditions; see Table 12-1 to find which statements are
legal with which conditions.)

ADVANCE

This statement (which can only be used in ERROR
handiers) resumes execution with the statement after
the one that caused the error.

BRANCH

This statement (which can be used in a handler for any

condition) branches back to a given line in the active call
sequence to resume execution.

INTERRUPT HANDLING
INTRODUCTION

MONITOR

This statement (which can only be used to exit from ABORT
and ERROR handlers) returns control to the 4041’s system
ABORT or ERROR handier.

The system ABORT handler prints a message and aborts
execution.

The system ERROR handler prints a message and halts
execution after the line that caused the error.

RESUME

This statement (which can be used to exit from GPIB
condition, user-definable function key, or iodone handlers)
resumes execution from the point at which control was
transferred.

RETRY

This statement (which can only be used to exit from ERROR
handlers) re-tries the statement that caused the error.

Table 12-1

4041 INTERRUPTS

Exits

Defined/Linked | Enabled
Condition at Powerup? at Powerup? Enable/Disable Advance Branch Monitor Resume Retry
ABORT YES YES YES X X
ERROR YES YES NO X X X X
GPIB NO NO YES X X
FUNCTION
IODONE NO NO NO X X
KEYS NO NO YES X X
SRQ(OPT 2) NO NO YES X X

4041 PROGRAMMER’S REFERENCE

12-5

INTERRUPT HANDLING
ABORT

ABORT

STATEMENT FORMS

[line-no.] DISABLE ABORT
[line-no.] ENABLE ABORT
[line-no.] OFF ABORT

[line-no.] ON ABORT THEN [GOSUB numexp]
[CALL subprogram]

EXPLANATION

The ABORT condition stops execution of the program and
transfers control to the currently defined ABORT handler.
The ABORT condition occurs when the ABORT key is
pressed on the front panel or P/D keyboard, or when
CTRL-C is pressed on a user terminal connected to the
4041 through an RS-232-C interface port. THE DEVICE ON
WHICH ABORT/CTRL-C IS PRESSED NEED NOT BE THE
SYSTEM CONSOLE DEVICE.

Setting Up ABORT Handlers

The 4041 powers up with a “'system’ ABORT handler
defined and linked and the ABORT condition enabled. The
user links the ABORT condition with a user-defined handler
by means of the keywords ON ABORT THEN followed by a
GOSUB or CALL.

Example.

2020 On abort then gosub 2500
Line 2020 links the ABORT condition with a handler at line
2500. (Line 2500 must be in the current program segment.)

if the ABORT condition becomes true during execution of
the current segment, control will transfer to line 2500.

12-6

Effectiveness of ABORT Handlers

The ABORT condition in the 4041 is implemented to allow
the user to set up a user-defined ABORT handler in the
main program segment in the ‘‘standard’’ case. Such a han-
dler is globally visible, as long as no other program segment
sets up a different ABORT handler.

Unlike handlers for other conditions, however, handlers

for the ABORT condition do not “‘stack’ and “‘unstack’.
Instead, linkage of a new handler causes the old linkage to
‘“go away’’, and only the system ABORT handler takes its
place. (You can think of it as stacking and unstacking just
like any other condition, except ABORT has a stack just one
element high.)

A CALL-type ABORT handler is visible from below in the
active call sequence. It is effective as long as the sub-
program that linked it is in the active call sequence.

A GOSUB-type ABORT handler is not visible from below,
but is only effective when the subprogram that linked it is
executing (except for GOSUB-type ABORT handlers linked
in the main program segment).

4041 PROGRAMMER’S REFERENCE

Example.

100 On abort then call aborthan
200 Call a

300 ! if ABORT happens here,
310 ! 4041 goes directly to system handler

490 End !{main program}
500 Sub a
510 On abort then gosub 580

570 return
580 ! gosub-type handler for ABCRT

600 Monitor

610 End ! {sub a}

700 Sub AbortHan

710 ' CALL-type handler for ABORT

790 Monitor
800 End ! {sub aborthan}

The main program sets up a CALL-type handler for the
ABORT condition, then calls Sub A. Sub Asetsup a
GOSUB-type handler for the ABORT condition. When con-
trol returns to the main program, the ABORT condition is no
longer linked to Sub Aborthan, but only to the system
ABORT handler.

Disabling/Re-Enabling the ABORT Condition
The ABORT condition can be disabled by means of the

DISABLE ABORT statement. If the ABORT condition is
disabled, the ENABLE ABORT statement re-enables it.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
ABORT

OFF ABORT

The OFF ABORT statement destroys the linkage between
a user-defined ABORT handler and the ABORT condition,
without disabling the ABORT condition. In effect, OFF
ABORT re-links the ABORT condition with the 4041’s
system ABORT handler.

Exits from ABORT Handlers

The legal exits from ABORT handlers are the BRANCH
statement and the MONITOR statement.

The BRANCH statement causes control to transfer to a
specified line upon completion of the ABORT handier. The
target line of the BRANCH statement must be a line in the
active call sequence.

The MONITOR statement causes the system ABORT han-
dler to be invoked upon completion of the user-defined
ABORT handler. The MONITOR statement causes the 4041
to do the same ‘‘housekeeping’’ as the RUN statement.

System ABORT Handler
The system ABORT handler prints the message SYSTEM
ABORTED, and (if the ABORT condition occurs during

program execution) the line number at which execution was
aborted.

12-7

INTERRUPT HANDLING
ERRORS

ERRORS

STATEMENT FORMS

ASK$(“ERROR”)

[line-no.] TRAP

[line-no.] OFF ERROR(error-no.[TO error-no.][,lunum[TO lunum]})

[line-no.] ON ERROR(error-no.[TO error-no.][,lunum{TO lunum]])THEN {GOSUB numexp)

{CALL subname]

ERROR NUMBERS

Each error that can occur during program execution, or
while the 4041 is executing statements in immediate mode,
is numbered. The user defines a handler for an error by
means of the ON ERROR statement.

Error numbers range from 1 to 32767. Not all numbers in
this range, however, have an error associated with them
that can be handled by the user. Errors 1 through 46 and
141 through 146, for example, cannot be handled by a user-
definable error handler. Errors in these ranges cause con-
trol to transfer to the system error handler for these errors,
even if the user has defined a separate handler for them.
Refer to Appendix A for a complete listing of all error num-
bers and their meanings.

The user can define one handler to handle a range of error
numbers by using the

line-no. ON ERROR (numexp [TO numexp])
THEN {GOSUB line|
{CALL subprogram|

form of the ON ERROR statement. When the TO keyword is
not used, the first numeric expression gives the number of
the error the user wishes to link to a handler. When the TO
keyword is used, the two numeric expressions give the first
and last error numbers, inclusive, of a range of errors that
the user is linking to a handler.

12-8

Logical-Unit-Related Errors

A “logical-unit-related” error is defined to be any error that
occurs in a statement specifying a logical unit number.
Possible statements for logical-unit-related errors are
OPEN, INPUT, PRINT, RBYTE, and WBYTE.

If1/O is being performed on several different devices, the
user may wish to trap only errors coming from certain logi-
cal units and may wish to trap only certain of those. The
user may do this with the following form of the ON ERROR
statement:

line-no. ON ERROR (numexp [TO numexp}
[,numexp[TO numexp]})
THEN {GOSUB line]
{CALL subprogram

The first pair of numeric expressions in this form of the ON
ERROR statement operate as defined earlier.

The third numeric expression, when used without an
accompanying TO keyword, specifies the logical unit over
which the error must occur in order to transfer control to the
specified handler.

When four numeric expressions are used in the ON ERROR
statement, the third and fourth numeric expressions specify
the range of logical unit numbers over which the error must
occur in order to transfer control to the specified handler.

Logical unit numbers range from 0 to 32767.
If no logical units are specified in the ON ERROR state-

ment, control transfers to the specified handler on occur-
rence of the error, regardless of logical unit.

4041 PROGRAMMER’S REFERENCE

SETTING UP ERROR HANDLERS

When an error occurs, the 4041 ““‘matches’’ the error with
the last handler linked with that error. Thus, in setting up
error handlers, it is important to set up the most “‘general”
handlers first, and the more “‘particular’ or *‘restricted”’
handlers last.

Suppose a program segment set up error handlers in this
order:

100 On error (300 to 400) then call hi
110 On error (381) then call h2
120 On error (381,12 to 24) then call h3

After this segment of the program is executed, errors 300
through 380 and 382 through 400 will cause control to
transfer to Subprogram H1. Error 381, occurring on any log-
ical unit other than logical units 12 through 24 (inciuding no
logical unit), will cause control to transfer to Subprogram
H2. Error 381, occurring on logical units 12 through 24, will
cause control to transfer to Subprogram H3.

A different order of ON statements, however, would have
produced entirely different (and possibly undesirable)
results. Suppose the same statements had been executed
in this order:

100 On error (381) then call h2
110 On error (381,12 to 24) then call h3
120 On error (300 to 400) then c¢all h1

In this case, line 120 *‘negates’’ the effects of lines 100 and
110. Any error from 300 to 400, inclusive, occurring on any
logical unit (including no logical unit), transfers control to
Subprogram H1.

INTERRUPT HANDLING
ERRORS

LEGAL EXITS FOR ERROR HANDLERS

Legal exit statements for ERROR handlers are ADVANCE,
BRANCH, MONITOR, and RETRY.

“STATEMENT’’ ERROR NUMBERS

There are two kinds of error numbers: ‘‘statement’’ error
numbers and ‘‘specific’’ error numbers.

“Specific’” error numbers, as the name implies, refer to a
specific kind of error (e.g., division by zero, out-of-range
operation, etc.).

‘“‘Statement’’ error numbers refer to any error that occurs
while a particular kind of statement is being executed (e.g.,
220 is the statement error number for the CLOSE state-
ment).

When an error occurs, the 4041 looks to find the most
recent ERROR handler set up for either the specific or the
statement error number. If it finds such a handler, control
transfers to it. If no such handler is found, control transfers
to the 4041’s system error handler for the specific error.

Only the specific error number is returned by the
ASKS$(''ERROR”) function. (Exception: proceed-mode I/O
errors; see the discussion that follows.)

Example

In Example 12-2, line 100 sets up a handler for error 320,
the statement error for FOR statements. When line 120 at-
tempts to set the value of | out of the integer range, errors
80 (the actual error number) and 320 (the statement error
number) are generated. Since a handler has been set up for
error 320, control transfers to that handler. The ASK$(“ER-
ROR”) function returns the actual error number in its string.

100 On error(320) then call e320han

110 Integer i

120 For iz4.0E+U4 to U4,1E+4

130 Print i

140 Next i

150 End

200 Sub e320han

210 Print "sensed an error in a FOR statement"
220 Print ask$("error")

230 Branch 150

240 End
*run
sensed an error in a FOR statement
80,120,-1,1
*

Example 12-2.

4041 PROGRAMMER’S REFERENCE

12-9

INTERRUPT HANDLING
ERRORS

USE OF THE ASK$(‘“ERROR’’) FUNCTION

The ASK$('*‘ERROR’’) function returns a string containing
four numeric arguments: the specific error number of the
error being handled; the number of the line in which the
error occurred; the logical unit related to the error (if not
LU-related, returns -1); and the repetition count of the error
(i.e., the number of consecutive times the same error has
occurred without another error intervening).

Results of the ASK$("'ERROR”’) function can be stored in a
string variable and analyzed using string functions.

When a proceed-mode l/O error is being handled, however,
the ASKS$('“ERROR"’) function returns a string with eight
numeric arguments (see the discussion that follows).

ASKS$(“ERROR”) returns a string of four zeros separated
by commas if no error handler is active.

PROCEED-MODE I/0 ERRORS

When an error occurs during proceed-mode I/O, the error is
serviced at the completion of the currently executing state-
ment. The proceed-mode /O is aborted, and control trans-
fers to a handler for error number 999 (proceed-mode I/O
error).

The ASK$("'ERROR?”) function returns a string containing
eight arguments (instead of the normal four) when invoked
while a proceed-mode 1/O error is being handled.

The first four arguments give the proceed-mode error code
(999), followed by three zeros separated by commas, fol-
lowed by the actual error number, the line number of the
proceed-mode |/O statement, the logical unit on which the
error occurred, and the repetition count of the error (number
of consecutive times the error has occurred without a
different error intervening).

If the user wishes to continue with the proceed-mode /O,
the I/O operation must be resumed or restarted from within
the handler for the proceed-mode error.

If the program is resumed (by means of the CONTINUE
statement, etc.), execution resumes from the line at which
execution was interrupted, NOT from the line containing the
proceed-mode I/O statement. The proceed-mode /O opera-
tion itself cannot be resumed, only restarted (i.e., by execut-
ing the proceed-mode /O statement again).

The RETRY statement should not be used to exit from a
handler for proceed-mode I/O errors. Use the ADVANCE,
BRANCH, or MONITOR exits instead.

Example

Example 12-3 shows the string returned by ASK$(“ER-
ROR”) for a proceed-mode I/O error.

Because there is no device at primary address 1, line

130 causes error 812, *‘no listener on the bus™, to be
generated. The first four digits of the message returned by
ASK$(*"ERROR”) indicate that the error occurred during
proceed-mode I/0O. The last four digits indicate that error
812 was sensed while the 4041 was executing line 130; the
repetition count for this erroris 1.

100 Set proceed 1
110 On error(1 to 32767) then call errhan
120 Open #1:"gpib(pri=1):"
130 Print #1:"message for GPIB device"
140 Print "message"
150 End
200 Sub errhan
210 Print "error encountered”
220 Print ask$("error")
230 Advance
240 End
*run
error encountered
999,0,0,0, 812,130,1,1
message
*

fnobody at this address

Example 12-3.

12-10

4041 PROGRAMMER’S REFERENCE

USER-DEFINED ERRORS: THE TRAP
STATEMENT

Error 1000 is reserved for a ‘‘user-defined’’ error. This error
is intended for use when it can be determined that an error
condition not defined by the error codes has occurred (e.g.,
the user determines that a certain combination of instru-
ment settings on the GPIB indicates an illegal or undesir-
able condition).

The TRAP statement sets error 1000. Control passes toc a
handler for error 1000 whenever the TRAP statement is
executed.

Example

In Example 12-4, line 100 sets up an error handler for a
user-defined error. If the user inputs too low or too high a
value in line 130, line 140 catches the error and transfers to
the handler, which prints an appropriate message, prints the
values of variables Low and High, then branches back to
the INPUT statement.

INTERRUPT HANDLING
ERRORS

EFFECT OF OFF ERROR STATEMENT

The OFF ERROR statement cancels the effect of any ON
ERROR statement created in the current program segment
whose arguments EXACTLY MATCH the arguments of the
OFF ERROR statement.

Itis important that the OFF ERROR statement exactly
match the ON ERROR statement it is intended to cancel.
For example, if the statement ON ERROR (1 TO 5) was exe-
cuted in a program segment, the statement OFF ERROR (1)
executed in the same segment would have no effect. Both
the error number(s) and the logical unit number(s), if any are
given, must exactly match those given in the corresponding
ON ERROR statement for the OFF ERROR statement to be
effective.

After the OFF ERROR statement is executed, occurrence
of the error passes control to the most recently linked
“‘globally-visible’* handler: either a CALL-type handler
linked in the active call sequence, a GOSUB-type handler
linked in the main program segment, or the 4041’s system
handler for that error.

100 On error(1000) then call u_def
110 Low=5
120 High=100
130 Input prompt "value:":value
140 If value<low or valued>high then trap
500 End
1000 Sub u def ! handler for user-defined error
1010 IT value<low then print "too low" else print "too high"
1020 Print "lowz=";low
1030 Print "high=";high
1040 Print "please try again"
1050 Branch 130
1060 End
*run
value:1
too low
low=5.0
high=100.0
please try again
value:155
too high
low=5.0
high=100.0
please try again
value:50
*
Example 12-4.

4041 PROGRAMMER’'S REFERENCE

12-11

INTERRUPT HANDLING
GPIB CONDITIONS

GPIB CONDITIONS

STATEMENT FORMS

[line-no.] DISABLE GPIB-condition
[line-no.] ENABLE GPIB-condition
[line-no.] OFF GPIB-condition

[line-no.] ON GPIB-condition THEN {GOSUB numexp]
{CALL subname}

where
GPIB-condition = {DCL(logical-unit)}
{EOI(logical-unit)}
{IFC(logical-unit)}
IMLA(logical-unit)}
IMTA(logical-unit)}
{SRQ(logical-unit)}
{TCT(logical-unit)]

WHEN GPIB CONDITIONS ARE RECOGNIZED

Once a GPIB condition is enabled, each of the GPIB condi-
tions is recognized when the following requirements are
met:

® The DCL condition is recognized when the 4041 is in
talker/listener mode (NOT controller-in-charge) and
receives the SDC or DCL commands over the bus
(values of 4 or 20, received with ATN asserted).

® The EOI condition is recognized when the 4041 is operat-
ing as controller-in-charge, but is not participating in a
data transfer, and senses the EOl line being asserted by
some device on the bus.

® The IFC condition is recognized when the 4041 is
operating as controller-in-charge but not system control-
ler, and senses the IFC line being asserted by the system
controller.

12-12

The MLA condition is recognized when the 4041 is in
talker/listener mode (not controller-in-charge) and
receives its listen address over the bus.

The MTA condition is recognized when the 4041 is in
talker/listener mode (not controller-in-charge) and
receives its talk address over the bus.

The SRQ condition is recognized when the 4041 is oper-
ating as controller-in-charge and senses the SRQ line
being asserted by some device on the bus.

The TCT condition is recognized when the 4041 is in
talker/listener mode (not controller-in-charge) and
receives the TCT command over the bus (value of 9 with
ATN asserted).

4041 PROGRAMMER’S REFERENCE

CONDITION ENABLED, NO HANDLER

If a GPIB condition is sensed when the condition is enabled
but not handler is defined for it, an error is generated.

LEGAL EXITS FOR GPIB CONDITIONS

The legal exit statements for GPIB condition handlers are
BRANCH and RESUME.

USE OF SELECTED STREAM SPEC

If no logical unit is specified, the 4041 uses the port given by
the currently selected stream spec as the default. Attempt-
ing to use a non-GPIB stream spec as a default (e.g., ifa
stream spec for a device other than a GPIB interface port is
the SELECTed stream spec), or to enable/disable a GPIB
condition on a non-GPIB logical unit, results in an error.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
GPIB CONDITIONS

EXAMPLE

100 Open #50:"gpib:"

110 Open #100:"gpib1:"

120 On dcl(50) then call decl_h
130 On srq(100) then call srg_h

Line 120 sets up a handler to transfer control to subprogram
dcl__hif the DCL interrupt condition is sensed on the stand-
ard GPIB interface port. (Logical unit 50 is opened to that
port.)

Line 130 sets up a handler to transfer control to subprogram
srg__h if the SRQ interrupt condition is sensed on the op-
tional GPIB interface port. (Logical unit 100 is opened to the
optional GPIB interface port.)

Logical units 50 and 100 could have been opened to any
device on their respective ports; the 4041 only uses the port
designation for purposes of enabling/disabling GPIB
conditions.

Refer to Section 9, Instrument Control With GPIB, for more
information about GPIB programming.

12-13

INTERRUPT HANDLING
IODONE

IODONE

STATEMENT FORMS

[line-no.] OFF IODONE(lunum)

[line-no.] ON IODONE(lunum)THEN {GOSUB numexp}
{CALL subname}

AUTOMATIC ENABLING AND DISABLING

The IODONE condition is automatically enabled when a
SET PROCEED 1 statement is executed.

The IODONE condition is automatically disabled when a
SET PROCEED 0 statement is executed.

USE OF LOGICAL UNIT NUMBERS WITH ON
AND OFF

The ON IODONE statement, when used with a logical unit
number, transfers control to a user-defined handler when
the IODONE condition becomes true on the specified logi-
cal unit, i.e., when proceed-mode I/O on that logical unit is
completed.

When the ON IODONE statement is used without a logical
unit number, control tranfers to a user-defined handler
when the IODONE condition becomes true on the system
console device.

The OFF IODONE statement is used similarly; when used
with a logical unit number, it negates the effect of an ON
IODONE statement specifying the same logical unit. When
used without a logical unit number, it negates the effect of
an ON IODONE statement directed to the system console
device. In both cases, the ON IODONE statement must
have been previously executed in the same program seg-
ment for the OFF IODONE statement to be effective.

12-14

LEGAL EXITS FOR IODONE HANDLERS

Legal exit statements for IODONE handlers are BRANCH
and RESUME.

EXAMPLE

200 On iodone(20) then call 1u20_han

This statement transfers control to subprogram 1u20__han
when proceed-mode I/0 is completed on logical unit 20.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
SRQ INTERRUPTS

SRQ INTERRUPTS (OPT2 DRIVER)

RELATED STATEMENTS

[line-no.] SET DRIVER opt2-stream-spec
[line-no.] OPEN #lunum:opt2-driver-spec

[line-no.] ON SRQ(lunum)THEN {GOSUB numexp}
{CALL subname]

[line-no.] OFF SRQ(lunum)
[line-no.] ENABLE SRQ(lunum)

[line-no.] DISABLE SRQ(lunum}

where
lunum = logical unit numberopt2-stream-spec = “OPT2(IREG = <numexp>,IVAL= <numexp>):"
opt2-driver-spec = "OPT2:”’
OPT2 PARAMETERS ASKS$ Parameters for OPT2 Driver:
The OPT2 driver (available on 4041 units equipped with Possible
Option 2 (TTL interface port) has two physical parameters Parameter | Values Default | Comments
and one ASKS$ parameter, as follows:
ICN any integer | 0 Number of interrupts
sensed since
Physical Parameters for OPT2 Driver: “SRQ” interrupt
was last disabled on
Possible OPT2 driver.
Parameter | Values Default | Comments
- The values of the physical parameters determine the way

IREG 0-127 0 Number of register the 4041 handles SRQ interrupts from a logical unit associ-

to be written into to ated with the OPT2 driver.

turn off “SRQ”’

interrupt.
IVAL 0-255 0 Value to send to

IREG register to turn

off “SRQ” interrupt.

4041 PROGRAMMER'S REFERENCE 12-156

INTERRUPT HANDLING
SRQ INTERRUPTS

‘““ON SRQ”’ INTERRUPT CAPABILITY WITH
OPT2 DRIVER

Devices connected to the 4041 via the TTL (Option 2) inter-
face port may interrupt 4041 execution by means of the
ENABLE SRQ and ON SRQ statements. Interrupts from
devices connected to the TTL interface port may be turned
off by means of the DISABLE SRQ and OFF SRQ state-
ments.

Note that the devices connected to the Option 2 interface
port DO NOT use the GPIB’s SRQ line. The ""ON SRQ”’,
“OFF SRQ”, “ENABLE SRQ"”, and 'DISABLE SRQ”

statements are used because the interrupt is handled
similarly to a GPIB SRQ interrupt.

SETTING UP INTERRUPT HANDLING FOR
OPT2 DRIVER

The procedure for setting up interrupt handlers for the
OPT2 driver is as follows:

1. Setthe OPT2 driver parameters with a SET DRIVER
statement.

Example:
200 Set driver "opt2(ireg=10,ival=128):"
2. Open alogical unit to the Option 2 interface port:
Example:
210 Open #1:"opt2:"
3. Define an SRQ handier for that logical unit:
Example:
220 On srq(1) then call srghnd
4. Enable the SRQ interrupt on that logical unit:
Example:

230 Enable srq(1)

12-16

The IRQ line on the Option 2 interface port will now function
like the SRQ line on the GPIB. When the IRQ line becomes
asserted, the 4041 sends the value specified by OPT2 pa-
rameter IVAL to the register specified by OPT2 parameter
IREG in the user’s device, then transfers control to the user-
specified handler for the interrupt.

The device connected to the Option 2 interface port must be
configured to un-assert the IRQ line when it receives the
IVAL value in the IREG register. if it does not do so, the
4041 will **hang’’ at the program line being executed until
the interrupt is removed.

While the 4041 is handling an SRQ interrupt from the
Option 2 interface port, subsequent interrupts from that port
are disabled. They are automatically re-enabled when the
4041 resumes execution upon exiting the handler. If the
user wishes, the SRQ interrupt may be explicitly re-enabled
during execution of the handler by means of the ENABLE
SRAQ statement.

The ICN parameter keeps count of the number of SRQ
interrupts received from the Option 2 interface port while a
previous interrupt is being handied. The value of the ICN
parameter is contained in the string returned by the
ASKS$(**LU’") function for the logical unit associated with the
Option 2 interface port. The ICN parameter value is cleared
whenever the SRQ interrupt capability for the Option 2
interface port is enabled, either implicitly (upon completion
of a handler), or explicitly (by means of the SET DRIVER
statement).

The user should note that the 4041’s SRQ interrupt routines
for the OPT2 driver do not program the user’s hardware, but
only affect the way the 4041 treats SRQ interrupts from that
driver. Hardware-dependent functions such as the
transmission of values to enable or disable interrupts within
the user’s hardware should be handled by appropriate
“OPT20UT” romcalls.

LEGAL EXITS FOROPT2 SRQ INTERRUPT
HANDLERS

The legal exit statements for SRQ interrupt handlers on the
OPT2 driver are BRANCH and RESUME.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
USER-DEFINABLE KEYS

USER-DEFINABLE FUNCTION KEYS

RELATED STATEMENTS

[line-no.] DISABLE KEYS
[line-no.] ENABLE KEYS
[line-no.] OFF KEY(key-number)

line-no. ON KEY(key-number)THEN {GOSUB numexp|
{CALL subprogramj

ENABLING AND DISABLING KEYS

The ENABLE KEYS and DISABLE KEYS statements
enable/disable all the user-definable function keys. Itis
not possible to enable or disable some of the keys only.
However, the user need not define a handler for every key.

ENTERING USER-DEFINABLE FUNCTION
KEYS FROM A USER TERMINAL

When the system console device is a computer terminal
attached to an RS-232-C interface port, users may enter
user-definable function keys by pressing CTRL-F or
CTRL-D, followed by one of the digits 0 through 9.

Pressing CTRL-F followed by a digit invokes functions 1
through 9 and function 10 (pressing <CTRL-F> <0>-
invokes function 10).

Pressing CTRL-D followed by a digit invokes functions 11
through 19 and function 20 (pressing <CTRL-D> <0>-
invokes function 20).

SYSTEM CONSOLE REQUIREMENT

The 4041 only accepts user-definable function keys from
the system console device. Pressing a user-definable func-
tion key on the front panel or P/D keyboard when the COMM
is system console, or pressing user-definable keys on a
user terminal when the front panel is system console, rings
the bell on the “‘offending’” device.

4041 PROGRAMMER’S REFERENCE

CONDITION ENABLED, NO HANDLER

With the user-definable functions enabled, pressing a key
for which no handler has been defined has no effect.

QUEUEING USER-DEFINABLE KEYS

If the user-definable keys are disabled, the 4041 queues
one key and invokes the handler for that key as soon as the
user-definable keys are enabled.

Since the KEYS condition is automatically disabled while
handling a user-definable function key, this queueing fea-
ture allows the user to queue up one key while another key
is being handled. After the first key is handled, the handler
for the second key is invoked when the KEYS condition is
re-enabled.

The ASK('KEY ") function returns the number of the key
awaiting service, if any. A value of “‘0”’ indicates that no key
is awaiting service.

“THROWING AWAY’’ KEYS

Pressing a user-definable function key when the KEYS con-
dition is disabled or when the function key queue already
contains one key results in the key’s being ignored (thrown
away). In addition, the beli rings on the 4041 if the key was
pressed on the front panel or P/D keyboard, or the bell on
the user’s terminal rings if the key was pressed from that
source.

12-17

INTERRUPT HANDLING
USER-DEFINABLE KEYS

WHEN USER-DEFINABLE FUNCTIONS KEYS

ARE HANDLED

User-definable function keys are handled after the state-
ment during which the interrupt occurs is executed, except
that pressing a user-definable function key during an INPUT

or WAIT statement terminates that statement.

LEGAL EXITS

Legal exit statements from a user-definable function key

handler are BRANCH and RESUME.

12-18

EXAMPLE

100
110
120
490
500
580
590
600
680
690

On key(1) then call keyilhan
On key(2) then call key2han
Enable keys

End
Sub keylhan ! handler for function key 1

Resume
End
Sub key2han ! handler for function key 2

Re sume
End

Lines 100 and 110 set up handlers for user-definable func-
tion keys 1 and 2, respectively.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
ADVANCE

The ADVANCE Statement
Syntax and
Descriptive Forms: [line-no.] ADVANCE
PURPOSE EXPLANATION

The ADVANCE statement tells the 4041 to resume execu-
tion after statement executed is the statement following the
one that caused the error.

4041 PROGRAMMER’S REFERENCE

The ADVANCE statement can only be used to exit from an

ERROR handler.

12-19

INTERRUPT HANDLING
BRANCH

The BRANCH Statement

Syntax Form: [line-no.] BRANCH numexp

Descriptive Form:

[line-no.] BRANCH target-line-in-active-call-sequence

PURPOSE

The BRANCH statement tells the 4041 to resume execution
at a specific line after handling a condition. The line desig-
nated by the BRANCH command must be in the active call
sequence.

EXPLANATION

The BRANCH statement may be used to return from any
condition handler.

BRANCH unconditionally transfers control to a specified
line in the active call sequence.

The ‘“‘active call sequence’ is the sequence of program
segments currently being executed.

Any “‘pending’’ statements (GOSUBs, FOR..NEXT loops)
are cleared when the BRANCH statement is executed.

In addition, any conditions that were automatically disabled
because the 4041 started executing a handler for that
condition are re-enabled. Effectively, the 4041 executes a
RESUME for each condition handier and a RETURN for
each CALL or function invocation back to the target pro-
gram segment.

12-20

EXAMPLE

100 ! this is the main program segment
110 ! on key(1) then call key1l h

120 ! on srq then call srq_h

130 enable keys,srq

140 wait

150 goto 140

160 end

200 sub key_h

! somewhere in here, we get an SRQ

280 resume

290 end

300 sub srq h

310 poll status,priadd,secadd

320 print "I have an srq from: ";priadd,secadd
330 print "with status byte: ";status

340 branch 140

350 end

Suppose this program were to execute, and function key 1
were pressed. Control would then transfer to Subproogram
Key__h, and the KEYS condition would be disabled.

Suppose further that during the handling of function key 1,
the 4041 sensed an instrument asserting the SRQ line on
the GPIB. Control would then transfer to Subprogram
Srqg__h, which polls the devices on the bus, prints a mes-
sage, and branches back to the main program segment.

Because Subprogram Key__h is in the active call sequence,
and because the KEYS condition was automatically dis-
abled when the 4041 started to execute a handler for a func-
tion key, the KEYS condition is re-enabled (along with the
SRQ condition) when control re-enters the main program
segment.

4041 PROGRAMMER’S REFERENCE

The DISABLE Statement

INTERRUPT HANDLING
DISABLE

Syntax Form:

Descriptive Form:

[line-no.] DISABLE {ABORT] [,...]

E

(KEYS]
{DCL[(numexp)]}
{EOI[(numexp)]}
{IFC[(numexp)]}
{MLA[(numexp)]}
{MTA[(numexp)}}
{SRQ[{(numexp)]}
{TCT[(numexp)]}

[line-no.] DISABLE {ABORT] [...]

E

{KEYS]
{DCL[(logical-unit)]]
{EOI[(logical-unit))}
{IFC[(logical-unit)}}
{IMLA[(logical-unit)}}
{MTA[(logical-unit)]}
{SRQ[(logical-unit)}!
{TCT[(logical-unit)]}

PURPOSE

The DISABLE statement disables a condition.

EXPLANATION

After a condition has been disabled, its occurrence no
longer causes control to transfer to a handler, even if a
handler for the condition is defined and linked.

The ABORT, KEYS, IODONE, and GPIB conditions are
automatically disabled when control transfers to a handler
for one of these conditions. The conditions are automati-
cally re-enabled when control exits the handler.

The ERROR condition is always enabled, but if an error
being handled re-occurs within the handler, control passes
to the system handler for that error.

The ABORT condition powers up enabled, but may be
disabled if the user so desires.

The ERROR condition may never be disabled.

4041 PROGRAMMER’S REFERENCE

The IODONE condition is automatically enabled when the
4041 enters proceed mode, and disabled when it exits.

DISABLE KEYS disables all user-definable function keys.
All keys are always either enabled or disabled; it is not pos-
sible to have some enabled and some disabled. However,
handlers need not be defined for all possible user-definable
function keys.
The port associated with the logical unit numberin a
DISABLE “GPIB-CONDITION (logical-unit)”’ statement is
the one on which the function is disabled. The standard
GPIB interface port (port 0) is the default.
EXAMPLE

1500 Disable srq(50)

This statement disables the SRQ interrupt on the GPIB
interface port associated with logical unit 50.

2000 Disable keys

This statement disables all user-definable function keys.

12-21

INTERRUPT HANDLING
ENABLE

The ENABLE Statement

Syntax Form: [line-no.] ENABLE [ABORT] [,.-]
(KEYS]
{DCL[(numexp)]}
{EOI[(numexp)];
{IFC[(numexp)]}
{MLA[(numexp)]}
{IMTA[(numexp)]}
{SRQ[(numexp)}}
{TCT{(numexp)]}

Descriptive Form: [line-no.] ENABLE {ABORT} [,-.-]
{KEYS}
{DCL[(logical-unit)]}
{EOI[(logical-unit)]}
{IFC[(logical-unit)]}
{MLA[(logical-unit)}}
{MTA[(logical-unit))}
{SRQ[(logica!-unit)]}
{TCT[(logical-unit)]}

PURPOSE

The ENABLE statement enables a condition.

EXPLANATION

After a condition has been enabled, its occurrence causes
control to transfer to a handler for that condition, if a handier
has been defined and linked with an ON statement when
the condition occurs.

The ABORT condition powers up enabled. The ENABLE
ABORT command is used to re-enable the ABORT condi-
tion after it has been disabled with the DISABLE ABORT
command.

The ERROR condition powers up enabled and can never be
disabled.

The IODONE condition is automatically enabled when the
4041 enters proceed mode, and disabled when it exits.

12-22

The ENABLE KEYS command causes control to transfer to
a handler for a user-definable function key when the key is
pressed, if the handler has been defined and linked with an
ON statement when the condition occurs.

ENABLE KEYS enables all the user-definabie function
keys. It is not possible to have some user-definable function
keys enabled and some disabled. However, handlers need
not be defined or linked for all possible user-definable
function keys.

The port associated with the logical unit given in an
“ENABLE “GPIB-FUNCTION (logical-unit)** statement tells
the 4041 which GPIB interface port the condition is enabled
on. The standard port (Port 0) is the default.

ENABLE DCL enables the DCL interrupt condition on the
GPIB. When DCL. is enabled, control passes to a DCL
handler when the 4041 is in talker/listener mode (NOT
controller-in-charge) and receives the SDC or DCL com-
mands over the bus (values of 4 or 20, received with ATN
asserted).

4041 PROGRAMMER’S REFERENCE

ENABLE EOI enables the EOI interrupt condition on the
GPIB. When EOI is enabled, control passes to an EOI
handler when the 4041 is operating as controller-in-charge,
but is not participating in a data transfer. This interrupt is
typically used to signal the end of remote data transfers,
e.g., the 4041 tells one device to talk and another device to
listen, then waits for the EOI line to be asserted (indicating
that the talking device has delivered its message) before
issuing any new bus messages.

ENABLE IFC enables the IFC interrupt condition on the
GPIB. When IFC is enabled, control passes to an IFC
handler when the 4041 is controller-in-charge but is not the
system controller. The 4041 loses controller-in-charge
status automatically when the system controller asserts IFC
(whether or not the IFC interrupt is enabled). Therefore,
when the 4041 is operating as controller-in-charge but not
system controller, the IFC interrupt should always be
enabled and a handler defined for it, to prevent the 4041
from attempting to continue execution as if it were still
controller-in-charge after the system controller asserts IFC.

ENABLE MLA enables the MLA interrupt condition on the
GPIB. When MLA is enabled, control transfers to an MLA
handler when the 4041 is in talker/listener mode (not
controller-in-charge) and receives its listen address over the
bus.

ENABLE MTA enables the MTA interrupt condition on the
GPIB. When MTA is enabled, control transfers to an MTA
handler when the 4041 is in talker/listener mode (not
controller-in-charge) and receives its talk address over the
bus.

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
ENABLE

ENABLE SRQ enables the SRQ interrupt condition on the
GPIB. When SRQ is enabled, control transfers to an SRQ
handler when the 4041 is controller-in-charge and senses
the SRQ line being asserted by some device on the bus.

ENABLE TCT enables the TCT interrupt condition on the
GPIB. When TCT is enabled, control transferstoa TCT
handler when the 4041 is in talker/listener mode (not
controller-in-charge) and receives the TCT command
over the bus (value of 9 with ATN asserted).
EXAMPLES

2500 Enable keys
This statement enables the user-definable function keys.

2600 Enable eoi(25)

This statement enables the EQOl interrupt on the GPIB
interface port associated with logical unit 25,

12-23

INTERRUPT HANDLING

MONITOR
The MONITOR Statement
Syntax and
Descriptive Forms: [line-no.] MONITOR
PURPOSE The 4041’s system ERROR handler prints a message giving

The MONITOR statement transfers control to the 4041’s
system ABORT or ERROR handler.

EXPLANATION

The MONITOR statement can only be used to exit from
ABORT or ERROR handlers.

The 4041’s system ABORT handler prints the message

“SYSTEM ABORTED’' and aborts program execution. The

program must then be re-started with a RUN or DEBUG
command, or by pressing the PROCEED key on the front
panel.

12-24

the number of the error and the line in which the error
occurred, then halts execution at that line. Execution can be
resumed at that line by entering the CONTINUE statement
from the P/D keyboard or user terminal (for 4041 units
equipped with Option 30, Program Development ROMSs), or
by pressing the PROCEED key on the front panel.

4041 PROGRAMMER’S REFERENCE

The OFF Statement

INTERRUPT HANDLING
OFF

Syntax Form: [line-no.] OFF [ABORT]

KEY (numexp)}
{DCL(numexp)}
{EOI(numexp)]
{(IFC(numexp))
{MLA(numexp)}
{(MTA(numexp)}
{SRQ(numexp)}
(TCT(numexp)}

Descriptive Form: [line-no.] OFF {ABORT]

{KEY(key-no.)}
{DCL(logical-unit)}
{EOIl(logical-unit)}
{IFC(logical-unit)}
{MLA(logical-unit)}
{(MTA(logical-unit)}
{SRQ(logical-unit)}
{TCT{(logical-unit)]

{

{ERROR(numexp[TO numexp][,numexp[TO numexp]])}
{IODONE(numexp)}
{

{ERROR(error-no.[TO error-no.}
[,logical-unit{TO logical-unit}])!
{IODONE(logical-unit)]

PURPOSE

The OFF statement negates the effect of a matching ON
statement previously executed in the same program
segment. It does not disable the condition.

EXPLANATION

The condition specified in the OFF statement must match
that specified in the ON statement exactly to have any
effect. It is especially important to remember this for the
OFF ERROR statement; both the error number(s) and
logical unit number(s) must exactly match those specified in
the ON statement.

4041 PROGRAMMER’S REFERENCE

EXAMPLES

200 On error(700 to 998,1 to 30) then call errhan

300 Off error(700 to 998,1 to 30)

Line 200 sets up an error handler for errors 700 through 998
occurring on logical units 1 through 30. Line 300 “‘unlinks”
this error handler; if any of these errors occur, control will
pass to the system error handler.

200 On error(700 to 998,1 to 30) then call errhan

300 Off error (700 to 800,1 to 30)

Since the error numbers and logical unit numbers in line
300 do not match those of line 200 exactly, the OFF
statement in line 300 has no effect.

12-25

INTERRUPT HANDLING
ON

The ON Statement

Syntax Form: [line-no.] ON {ABORT}

[
{IODONE(numexp)}
{(KEY(numexp)}
{DCL(numexp)}
{EOKnumexp)}
{IFC(numexp)]
{MLA{(numexp)}
{MTA(numexp)|
{SRQ(numexp)}
{TCT(numexp)}

Descriptive Form: [line-no.] ON {ABORT]

{

{KEY(key-no.)}
{DCL(logical-unit)}
{EOI(logical-unit)}
{IFC(logical-unit)}
{MLA(logical-unit)
{MTA(logical-unit)
{SRQ(logical-unit)
{TCT(logical-unit)]

J
J
J

ERROR(numexp[TO numexp][,numexp[TO numexp]]);

THEN {GOSUB numexp]
{CALL subname}

{ERROR(error-no.[TO error-no.]
[logical-unit[TO logical-unit]])!
IODONE(logical-unit)}

THEN [{GOSUB line]
{CALL subprogram]

PURPOSE

The ON statement “‘links’’ a condition and a user-defined
handler. It does not enable the condition.

12-26

EXPLANATION

In order to transfer control to a user-defined handler upon
occurrence of a condition, three things must apply: (1) the
handler must be defined (i.e., the program lines making up
the handler must actually be in the program); (2) the condi-
tion must be enabled; and (3) the condition and its handler
must be “‘linked’’.

The ON statement links a condition and a user-defined

handler, allowing control to be transferred to the handler
when the condition is sensed.

4041 PROGRAMMER’S REFERENCE

EXAMPLES

150 Set proceed 1

160 Open #1:"outfil(open=new,size=20000)"
170 On iodone(1) then call oneio

180 Enable iodone

190 Print #1:bigarayl,bigaray2,bigaray3
200 Wait 1000

300 End
1000 Sub oneio

1490 Resume
1500 End

Line 170 sets up a handler for completion of proceed-mode
1/0 on logical unit 1. Line 180 enables the IODONE condi-
tion.

Line 190 starts logical unit 1 printing three arrays. Line 200
then causes the 4041 to wait for the completion of the 110
operation on logical unit 1 (assuming it will take less than
1000 seconds to complete).

4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING
ON

If 11O completes on logical unit 1 within the 1000-second
waiting period, control transfers to subprogram OnelO.
Upon return from the subprogram, execution resumes with
the line after line 200.

1990 Open #1:"gpib1:"
2000 On srq(1) then call optpoll
2010 Enable srq

Line 2000 sets up a handler for SRQ interrupts on the
optional GPIB interface port. After line 2010 is executed,
devices asserting SRQ on the bus connected to the optional
GPIB interface cause program control to transfer to sub-
program ‘‘OptPoll’".

12-27

INTERRUPT HANDLING

RESUME
The RESUME Statement
Syntax and
Descriptive Forms: [line-no.] RESUME
PURPOSE EXPLANATION
The RESUME statement is used to resume execution from The RESUME statement may only be used to exit from
the point at which it was interrupted after exiting a GPIB GPIB CONDITION, IODONE, or USER-DEFINABLE
CONDITION, IODONE, or USER-DEFINABLE FUNCTION FUNCTION KEY handlers.
KEY handler.

12-28 4041 PROGRAMMER’S REFERENCE

INTERRUPT HANDLING

RETRY
The RETRY Statement
Syntax and
Descriptive Forms: [line-no.] RETRY
PURPOSE EXAMPLE
The RETRY statement re-tries the statement that caused an 100 On error(80) then call handle
error. 110 Integer number
120 Input prompt "number:":number
130 Print "number=";number
140 End
EXPLANATION 200 Sub handle ! handler for error 80
210 Print "value out of integer range"
. 220 Retry
The RETRY statement can only be used to exit an ERROR 230 End
handler. *run

4041 PROGRAMMER’S REFERENCE

number :36000
value out of integer range
number :-40000
value out of integer range
number :31000
number=31000

When the user attempts to input an out-of-range value in
line 120, control passes to subprogram Handle, which
warns the user that the value is out of range, then re-tries
line 120.

12-29

INTERRUPT HANDLING
TRAP

The TRAP Statement

Syntax and

Descriptive Forms: [line-no.] TRAP

PURPOSE

The TRAP statement “‘sets’’ (i.e., causes) a user-defined
error (error 1000). Control can then be passed to a handler
for that error.

EXPLANATION

The TRAP statement only causes control to transfer if the
user has defined a handler for error 1000 and linked it with
the ON ERROR(1000) THEN... statement.

The handler for error 1000 can be exited via any legal exit
for ERROR handlers (ADVANCE, BRANCH, MONITOR, or
RETRY).

EXAMPLE

in Example 12-5, when the user attempts to input an out-of-
range value in line 130, line 140 “traps” it, prints an appro-
priate message and transfers control back to the INPUT
statement.

100 On error(1000) then call u_def

110 Low=5

120 High=100

130 Input prompt "value:":value

140 If value<low or value>high then trap

500 end

1010 Print "that value is out of range"
1020 Print "low=";low

1030 Print "high=";high

1040 Print "please try again"

1050 Branch 130

1060 End

1000 Sub u-def ! handler for a user-defined function

Example 12-5.

12-30

4041 PROGRAMMER’S REFERENCE

The WAIT Statement

INTERRUPT HANDLING
WAIT

Syntax Form: [line-no.] WAIT [numexp]

Descriptive Form:

{line-no.] WAIT [number-of-seconds-before-next-statement- is-executed]

PURPOSE

The WAIT statement causes the 4041 to wait for a specified
number of seconds before executing the next statement.

EXPLANATION

The WAIT statement idles the system for the number of
seconds specified by the numeric expression after the
WAIT keyword.

The WAIT statement is usually used as a convenient stop-
ping point for a program to pause and await an interrupt.
When an interrupt condition is sensed, the program
branches to a handler for that interrupt.

If no interrupt occurs within the specified time, execution
continues with the next statement.

A negative number given as an argument for the WAIT
statement causes no waiting at all.

The maximum number that can be used as an argument for

the WAIT statement is 2.1478E + 7 seconds (approximately
248 days).

4041 PROGRAMMER'S REFERENCE

The default value for the WAIT statement is the maximum
value.

The maximum resolution of the WAIT statement is 10 milli-
seconds.

if the system becomes PAUSEd during execution of a WAIT
statement, execution resumes with the WAIT statement
unless an immediate-mode statement transfers control
elsewhere during the pause.

EXAMPLE

980 On srq then call polling
990 Enable srg
1000 Wait

This statement causes the 4041 to pause indefinitely before
continuing with program execution. If a device on the bus
sends SRQ (Service Request) in that time, control transfers
to Subprogram “*Polling”’.

12-31

Section 13

PROGRAM MANAGEMENT

INTRODUCTION
This chapter discusses statements in 4041 BASIC that The LOAD statement loads a program from a driver.
transfer programs or portions of programs between the
4041's memory and a peripheral device. The SAVE statement sends a program or program

segment to a driver.
The APPEND statement loads a program or program

segment from a driver and adds it to the program
already in memory.

4041 PROGRAMMER’S REFERENCE 13-1

PROGRAM MANAGEMENT
APPEND

The APPEND Statement

Syntax Form:

Descriptive Form:

[line-no.] APPEND strexpl,numexpl,numexp]]

[line-no.] APPEND stream-specltarget-line[,max-increment]]

PURPOSE

The APPEND statement loads a program (or program
segment) from a DC-100 tape file and adds it to the
program already in memory.

EXPLANATION

The file designated by the stream spec is inserted into
the current program at or immediately after the desig-
nated target line. Lines being inserted are numbered
consecutively using the specified maximum increment
or a calculated increment.

If no target line is specified in the APPEND statement,
the target line defaults to the last line of the program
currently in memory plus the specified increment
(default:10).

If the target line for incoming statements does not
already exist in the current program, the first incoming
line is given a number equal to the number specified in
the APPEND statement.

If the target line already exists in the current program,
the first incoming line is given a number equal to the
number specified in the APPEND statement plus the
increment.

Appending Into an Existing Program

The 4041 uses the following procedure to append a
program or program segment into the body of an
existing program:

1. If the program does not contain a line with the
same number as the target line the user specified,
the first incoming line is given the number speci-
fied by the user for the target line.

13-2

If the program already contains a line with the
same number as the target line, the first incoming
line is given the number specified by the user plus

one.

Successive incoming lines are inserted into the
program, using an increment of one.

If there is room enough in the original program to fit
all incoming lines, the “new” lines are renumbered
after being inserted, according to the following
procedure:

a.

If the increment specified by the user (default:
10) can be used without interfering with previ-
ous program lines, the new program lines are
renumbered using that increment.

If the increment specified by the user cannot
be used without interfering with previous
program lines, the new program lines are
renumbered using an increment calculated by
one of the following formulas:

i. if the target line existed in the program
before the APPEND operation:

{Next line - (target line + 1))

Increment = -
(number of incoming lines + 1)

ii. if the target line did not exist in the main
program before the APPEND operation:

(Next line - target line)

Increment =
(number of incoming lines + 1)

where “next line” is the number of the line
that follows the target line number in the
existing program.

4041 PROGRAMMER’S REFERENCE

N

4. If there is not sufficient room in the existing
program to fit all incoming lines, an error is
generated. All lines that fit between the target line
and the next line with an increment of one remain
in the program. The user should renumber later
program lines to make more room for incoming
lines, delete the lines that just came in, and try the
APPEND again.

EXAMPLES:

Suppose the program currently in memory is as
follows:

100 Rem existing program line #1
150 Rem existing program line #2

Entering the command
append "newfil", 110
has the following effects:

1. if Newfil is four lines long, incoming lines from

Newfil are brought in and re-numbered to 110, 120,

130, and 140;

4041 PROGRAMMER’S REFERENCE

PROGRAM MANAGEMENT
APPEND

2. if Newfil is less than four lines long, incoming lines
from Newfil are brought in and renumbered, start-
ing with line 110 and using an increment of 10;

3. if Newfil is more than four but less than forty lines
long, all lines from Newfil are brought in and
renumbered, starting with line 110 and using an
increment calculated by the 4041;

4. if Newfil is more than forty lines long, forty lines
from Newfil are brought in, starting with line 110
and numbered with an increment of one. An error is
also generated.

3010 Append "dc510p"

This command adds a file “DC510P” from the DC-100
tape drive to the program currently in memory. The first
incoming line is given a line number equal to the last
line of the current program plus 10.

REV OCT 1984 : 13-3

PROGRAM MANAGEMENT
LOAD

The LOAD Statement

Syntax Form: [tine-no] LOAD strexp
Descriptive Form: [line-no] LOAD stream-spec
PURPOSE EXAMPLES:
The LOAD statement clears memory and loads a 3100 Load "errors"

program from a driver.

The program “Errors” is loaded from the DC-100 tape or

disk.
EXPLANATION

If the file being loaded into memory is an ITEM file, the
program is loaded directly into memory. If the file is an
ASCIl file, the 4041 must be equipped with Option 30
(Program Development ROMs) to translate the program
line-by-line as it is being loaded.

13-4 REV OCT 1984 4041 PROGRAMMER'S REFERENCE

The SAVE Statement

PROGRAM MANAGMENT
SAVE

Syntax Form:

Descriptive Form:

[line-no] SAVE strexp [,num-exp [TO num-expl]

[line-no.) SAVE stream-spec [first-line-to-be-saved [TO last- line-to-be-saved]]

PURPOSE

The SAVE statement transfers a copy of the current
program to a driver. All or a portion of a program may
be saved.

EXPLANATION

If a file is to be saved on the DC-100 tape or disk, the SAVE
command must include a file specification. The FORMAT
attribute of the file specification determines the format of the
saved program (default is ASCII).

If no beginning or ending line references are given in
the SAVE command, the entire program in memory is
saved. If only a beginning line reference is given, the
portion of the program from the specified line to the
end is saved. If both beginning and ending line
references are given, that portion of the program
between the two lines (inclusive) is saved.

4041 PROGRAMMER’S REFERENCE

The SAVE command writes the program lines to the
output device in the shortest form possible, shortening
all keywords to four characters and eliminating all
unnecessary spaces.

EXAMPLES:
5550 Save "prog5(opeznew,cli=yes)"

The program currently in memory is saved in ASCIl format
as file “Prog5” on the DC-100 tape or disk.

5560 Save "sub9(opeznew,cliz=yes)"

Lines 4000 through 4999, inclusive, of the program currently
in memory are saved in ITEM format as file “Sub9” on the
DC-100 tape or disk.

REV OCT 1984 13-5

Section 14

DC-100 TAPE

INTRODUCTION

This section discusses commands in 4041 BASIC that af-
fect storage of programs or data on the DC-100 tape drive.
A maximum of 48 files may be stored on the tape.

ASCIl VS. ITEM FILES

Both programs and data may be written on DC-100
tapes in ASCll or ITEM format. The format is specified
by the FORMAT parameter in the output stream spec.

4041 units not equipped with Option 30 (Program
Development ROMs) can only load ITEM-format pro-
gram files from tape. They can, however, read ASCII-
format data from tape.

LOGICAL VS. PHYSICAL TAPE /O

“Logical” tape 1/0 describes a method of accessing the
DC-100 tape using a file name to specify the area of
the tape the user wishes to read from or write to. INPUT
and PRINT statements use logical tape 1/0.

4041 PROGRAMMER’S REFERENCE

“Physical” tape 1/0 describes a method of accessing
the DC-100 tape by dividing the tape into a series of
physical records, then specifying a record to be read
from or written to the tape. RBYTE and WBYTE
statements use physical tape 1/0.

TAPE STREAM SPECIFICATIONS

The driver name “TAPE” need not appear in stream
specifications designating a file on the DC-100 tape. In
addition, the VERify, DIRectory-update, and CLIp par-
ameters may be grouped with the “file-side” parame-
ters in the stream spec.

Example: The following two stream specs are
equivalent:

(1) "tape(clizyes):filel(ope=new,clizyes,siz=10000)"
(2) "filel(ecli=yes,ope=new,siz=10000)"

A complete list of TAPE parameters is included in
Appendix D.

141

DC-100 TAPE
DELETEFILE

The DELETE FILE Statement

Syntax Form: [line-no] DELETE FILE strexpl,strexpl...

Descriptive Form: [line-no] DELETE FILE stream-specl,stream-spec]...

PURPOSE

The DELETE FILE form of the DELETE statement
deletes files from a file-structured device.
EXPLANATION

Attempting to delete a non-existent file has no effect.

When a file is deleted from the DC-100 tape, the
records it occupied are merged with any surrounding
free records into one contiguous free area. New files
will occupy portions of these free areas.

14-2

If no driver is specified in the stream spec, the 4041
uses the driver “TAPE:” by default.

EXAMPLE
3090 Delete file "Tinker","Evers","Chance"

Three files gone, just like that!

4041 PROGRAMMER’S REFERENCE

The DIR Statement

DC-100 TAPE
DIR

Syntax Form:

Descriptive Form:

[line-no.] DIR [strexp] [TO strexp]

[line-no.] DIR [source-stream-spec]][TO target-stream-spec]

PURPOSE

The DIR statement prints a directory of the DC-100 tape to a
specified device.

EXPLANATION

The “‘short-form’’ directory consists of the volume ID, fol-
lowed by a list of each file on the device, along with the file’s
type (ASCH or ITEM) and length in bytes. Each tape can
contain up to 48 files. Free areas on the tape and the length
in bytes of each free area are also shown.

The long-form directory gives complete information about
each file on the device. The long form includes all of the
short-form information, along with the file’s starting record,
length in records, and date and time created. The long form
is obtained by entering a stream spec of ““(LON = YES)"’ af-
ter the DIR keyword.

The date and time of creation for a file are only accurate if a
SET TIME statement has been executed before the file was
written. Otherwise, the date and time recorded represent
the time since power-up, with date and time automatically
set at power-up to ‘‘01-JAN-81 00:00:00"".

The keyword “TO" followed by a stream spec after the DIR
keyword sends the directory information to the device des-
ignated by the stream spec (default: system console).
EXAMPLE

DIR “(LON=YES)” TO “COMM:”

Sends a *‘long-form’’ directory of the current DC-100 tape to
the standard RS-232-C interface port (see Example 14-1).

DIRTO “PRIN:”

Sends a *‘short-form”’ directory of the current DC-100 tape
to the thermal printer on the front panel.

sorts 16-SEP-82 09:28:36 SOFT ERRORS = 0

FILE FILE LENGTH START NUMBER LAST

NAME TYPE IN BYTES RECORD OF REC. MODIFICATION DATE
AUTOLD AS 510 5 2 24-SEP-82 11:29:00
INSERT AS 765 7 3 17-SEP-82 13:36:00
MERGE AS 1785 10 7 27-SEP-82 08:48:00
SHAKER AS 1530 17 6 17-SEP-82 14:12:00
HEAP AS 1020 23 4 17-SEP-82 14:21:00
BUBBLE AS 765 27 3 17-SEP-82 14:38:00
QUICK AS 1785 30 7 17-SEP-82 14:48:00
TSTIN AS 510 37 2 10-DEC-82 11:42:00
TSTOUT AS 510 39 2 10-DEC-82 11:53:00
SSORT AS 765 41 3 10~-DEC-82 11:54:00

157335
Example 14-1.

4041 PROGRAMMER’S REFERENCE

14-3

DC-100 TAPE
DISMOUNT

The DISMOUNT Statement

Syntax and

Descriptive Form: [line-no] DISMOUNT

PURPOSE

The DISMOUNT command is used to recover from

certain kinds of mistakes without destroying tape files.

EXPLANATION

When the DISMOUNT command is executed, the 4041
checks the volume ID of the DC-100 tape in the drive.

144

If the tape in the drive is the same as the one whose
directory is in the 4041’s memory, the DISMOUNT
command acts like a CLOSE ALL.

If the tape in the drive is not the same as the one
whose directory is in the 4041’s memory, or if no tape
is in the drive, the DISMOUNT command simply returns
the internal TAPE driver to its power-up state.

4041 PROGRAMMER’S REFERENCE

Vs ~

The EOF Function

DC-100 TAPE
EOF

Syntax Form: EQOF (numexp)

Descriptive Form: EOF (logical-unit-number)

PURPOSE
The EOF function returns a value of 1 if an end-of-file

condition is encountered on a specified logical unit,
and returns O otherwise.

EXPLANATION

The logical unit given by the EOF function argument
must be open.

Attempting to invoke the EOF function for a logical unit
that has not been opened results in an error.

4041 PROGRAMMER’S REFERENCE

EXAMPLES

1500 If eof(1) then call eofsub
This command transfers control to a subprogram called
“EQFSub” if the file specified by logical unit 1 is at
end-of-file.

250 Eofval=eof(33)

The numeric variable EOFVal is assigned a value of 1 if
logical unit 33 is at end-of-file, O otherwise.

REV OCT 1984 145

DC-100 TAPE
FORMAT

The FORMAT Statement

Syntax Form: [line-no] FORMAT strexp

Descriptive Form:

[line-no.] FORMAT volume-label

PURPOSE

The FORMAT statement prepares a DC-100 tape or disk for
use, writing a volume label in the first record of the tape
creating an empty directory or disk and filling the remainder
of the tape or disk with empty records.

TAPE EXPLANATION

When a DC-100 tape is formatted, all information previously
on the tape is lost. The tape is rewound, a volume label and
the date and time of formatting are written onto the first
record, an empty directory is created, and the remainder of
the tape is filled with empty records.

The date and time of formatting are only accurate if the
SET TIME statement has been executed before the
FORMAT statement. If pot, the date and time of
formatting represent the time since power-up. The date
and time are automatically set to “01-JAN-81 00:00:
00" at power-up.

The volume label can contain up to 10 letters or
numerals.

14-6 REV OCT 1984

EXAMPLE

2500 Format "tapeone"

This command formats a tape and labels it “TapeOne”.

DISK EXPLANATION

if the DC-100 tape is the system device and a disk requires
formatting, the following command will format a disk:

Format “DISK(DEV=1,UNIT=0):", “Volume — Name”

The first string is the stream specification for the disk and
the second is the volume name associated with that disk.

If the disk is the system device the format command is the
same as that for the tape, except the volume name may
contain up to 12 characters.

4041 PROGRAMMER’S REFERENCE

The INPUT Statement (TAPE)

DC-100 TAPE
INPUT

Syntax Form:
where: clause-list =
[strexp] [PROMPT strexp]

Descriptive Form:

[line-no) INPUT [clause-list:]{var [var..]

[numexp][ALTER strexp] [BUFFER strvar][DELN strexp] [DELS strexp] [USING nemexp]

[line-no.] INPUT [input clauses:][input list]

[USING strexp]

PURPOSE

The INPUT statement transfers data from a peripheral
device into variables in the 4041’s memory.

EXPLANATION

The file used for input from the DC-100 tape must be
opened with an OPEN parameter of OLD. (OLD is the
default.)

When used with the TAPE driver, the INPUT statement
reads data from a file using the default characters for
delimiting successive numeric and string data items
(delimiters for numerics are space, tab, comma, semi-
colon, colon, and the EOM character; delimiter for
strings is EOM).

Reading Data from Logical Unit

If a pound sign (#) clause is followed by a logical unit
number in an INPUT statement involving tape files, the
4041 keeps track of the read/write head’s position as it
“moves through’ the file. Thus, successive INPUT
statements read successive data elements from the
file.

4041 PROGRAMMER'S REFERENCE

Reading Data from Files Named in Stream
Specs

If a pound sign (#) clause is followed by a stream spec
designating a tape file for INPUT, that file is automati-
cally opened, read from, and closed during execution of
the INPUT statement. The 4041 returns the read/write
head to the beginning of the file each time the
statement is executed.

See Section 8, Input/Output, for more information about
the INPUT statement.

EXAMPLE
100 Open #1:"datafi"
110 Dim a1(5),a2(10)
120 Input #1:a1,a2,a3

A file called “DataFi” is opened (with OPEN parameter
of OLD, by default) on the DC-100 tape. Line 110
dimensions two floating point arrays. Line 120 reads 5
values from DataFi to fill array A1 and the next 10
values to fill array A2. The next value read is stored in
numeric variable A3. The next INPUT statement calling
for a value from logical unit 1 will read the 17th
element in the file.

14-7

DC-100 TAPE
OPEN

The OPEN Statement (TAPE)

Syntax Form:

Descriptive Form:

[line-no.] OPEN #numexp:strexpl,strvar]

[line-no.] OPEN #unum:stream-spec|,directory-entry]

PURPOSE

The OPEN statement associates a logical unit number
with a stream spec for subsequent I/0 operations. The
stream spec defines a data path and specifies logical

parameters for 1/0 operations through that logical unit.

EXPLANATION

If a stream spec does not include a driver spec, the
driver “TAPE:.” is used.

A complete listing of stream spec parameters that can
be used with the TAPE driver and with tape files is
included in Appendix D.

A string variable may be specified to receive a string
containing directory information about the file at the
time the file is opened. This directory information
includes the file name, type (ASCIl or ITEM), and length
in bytes.

EXAMPLE

In Example 14-2, line 110 opens a new 10,000-byte-long file
called “Datafi” on the DC-100 tape. The file will be
“clipped” when closed, i.e., unused space will be removed
from the end of the file. Line 110 also stores directory infor-
mation about Datafi in the string variable Dirinf$.

Line 120 causes the following message to be printed
on the system console:

DATAFI AS 10200

This indicates that. when opened, file “Datafi” was an
ASCII filte 10,200 bytes long. (Note that the length
specified in the OPEN statement was rounded up to the
nearest multiple of 255))

120 Print dirinf$

110 Open #1:"datafi(ope=new,siz=10000,cli=yes)",dirinf$

Example 14-2.

14-8

4041 PROGRAMMER’S REFERENCE

The PRINT Statement (TAPE)

DC-100 TAPE
PRINT

Syntax Form:

where:
[#strexp]

Descriptive Form:

[line-no] PRINT [clause-list:][numexp] [numexp..]
[strexp]

clause-list = [#numexpl{BUFFER strvarl[USING numexp]

[line-no] PRINT [print-clauses:][print-list]

[strexp..]

[USING strexp]

PURPOSE

The PRINT statement transfers data from the 4041 to
an /O driver.

EXPLANATION

The 1/0 drivers available on the 4041 include FRTP
(front panel), PRIN (thermal printer), TAPE (DC-100
tape drive), COMMO (standard RS-232-C interface
port, and GP!BO (standard GPIB interface port).

4041 units equipped with Option 1 or Option 3 also have a
COMM1 (optional RS-232-C interface port) and GPIB1
(optional GPIB interface port) driver.

Replace and Update Parameters

For writing data to a DC-100 tape, the OPEN parameter
may be given any legal value (OLD, NEW, REPLACE, or
UPDATE).

When the value of the OPEN parameter is REPlace,
NEW, or OLD, the 4041 writes data from the beginning
of the file; therefore, old data are lost.

When the value of the OPEN parameter is UPDate, the
4041 searches for the specified file, and positions the

If a data file opened with an OPEN parameter of
UPDate is not the last file on the tape, attempting to
write over another file results in an error.

EXAMPLES

First, let’s create a file on the tape. (Make sure you
don’t already have a file called “Datafi” on your tape; if
you do, use a different name for the file you are about
to create.)

100 Open #1:"datafi(ope=new,siz=5000)"
110 Integer i

120 For i=1 to 2%

130 Print #1:1

140 Next 1

150 Clcse all

160 Copy "datafi" to ask$("console")
170 End

This program puts the numbers 1 through 25 into a file
called “Datafi” on the DC-100 tape. (NOTE: Line 160
isn’t strictly necessary; it's there to allow you to see
the contents of file “Datafi” on your system console
device)

To replace the contents of this file with other data, we
assign the file an OPEN parameter of REPlace, and
write the new data.

tape head at the end of the data on that file. Then, when 1?8 ?ggggﬁl:;datafi("pe:r”’512:5000)"
data is written to the tape, writing begins from the point 120 For i=26 to 50
where the previously written data ended. No data are 130 Print #1:1
lost 140 Next i

) 150 Close all

160 Copy "datafi" to ask$("console")

A file must already exist on tape to be opened with an 170 End
OPEN parameter of UPDate.
4041 PROGRAMMER’S REFERENCE REV OCT 1984 14-9

DC-100 TAPE
PRINT

This program puts the numbers 26 through 50 into
“Datafi”. The previous contents of the file are lost.

To add data to the end of this file, we assign the file an
OPEN parameter of UPDate, and write more data.

100 Open #1:"datafi(ope=upd,siz=5000)"
110 Integer i

120 For i=101 to 110

130 Print #1:1

140 Next i

150 Close all

160 Copy "datafi" to ask$("console™)
170 End

The numbers 26 through 50 and 101 through 110 will
appear on the system console device.

Delimiters

The 4041 writes an EOM character onto the tape after
writing the last message unit designated by a PRINT
statement, unless the last message unit in the PRINT
statement is followed by a semicolon. The semicolon
suppresses the writing of the EOM character after the
last message unit.

The default EOM character for the tape is CARRIAGE-
RETURN (ASCII 13).

Example
100 Open #1:"junk(opeznew)"
110 For i=1 to 3
120 Print #1:1
130 Next i

This sequence of statement prints the following infor-
mation into file “Junk’’:

1<cr>2<cer>3<cer>
If line 140 were
120 Print #1:1;
the following information woul!d be printed into the file:
123

{Semicolon at the end of the PRINT statement
suppresses EOM)

14-10 REV OCT 1984

The 4041 writes EOU characters between message
units and between elements of an array.

The default EOU character for the tape is SPACE
(ASCII 32). The default EOH and EOA character for the
tape is SPACE (ASCII 32).

Example:

Suppose lines 110 — 130 in the previous example
were replaced by

110 Print #1:1,2,3

The foliowing information would be written into file
“Junk’:

1<sp>2<sp>3<er>
Example:
100 Open #1:"junk(ope=new,eoh=<65>,eca=<66>"
110 Integer num(4)
120 For i=1 to 4
130 Num(i)=1i
140 Next i
150 Print #1:num(1);num(2);num(3);num(4)

Line 100 opens a new file called “Junk” and sets the
EOH character to “A” and the EOA character to “B”.

Line 150 prints the following information into file
“Junk':

1A2B3B4<cr>

(First semicolon of the message unit causes the EOH
character to be printed; second and succeeding semi-
colons cause the EQOA character to be printed. Since
the PRINT list does not end with a semicolon, the EOM
character is printed the last element in the list)

When writing arrays onto a tape file, the 4041 puts an
EOA character between successive elements of the
array, and an EOM character after the last element. In
such cases, it is often convenient to open the logical
unit such that the EOA and EOM characters are the
same.

4041 PROGRAMMER’S REFERENCE

Example:

100
110
120
130
140
150

Open #1:"junk(ope=rep,clizyes,eoa=<13>)"
Integer array(100),i
For i=1 to 100
Array(i)=i
Next i
Print #1:array

Line 150 writes the following into file ‘junk‘ on the DC-

100 tape:

1<cr>2<cer>3<cer>4<cer>b<er>6<cr>7<cr>
.100<cr>

4041 PROGRAMMER'S REFERENCE

DC-100 TAPE
PRINT

When the user needs to read the data in again, the
logical unit used to read them in should set the EOM
character to <cr> (ASCIH 13). The data can then be
read in groups of any size (subject only to end-of-file
limitations).

14-11

DC-100 TAPE
RBYTE

The RBYTE Statement (TAPE)

Syntax Form:
[#strexp:]

Descriptive Form:

[tine-no.} RBYTE [#numexp:]{numexp,strvar}

{tine-no] RBYTE [#lunum:]{physical-record-to-transfer,string-
[#stream-variable-in-which-to-store-contents} spec:]

PURPOSE

The RBYTE statement transfers 8-bit bytes from the
GPIB, COMM, or FRTP drivers into the 4041’s memory.
The RBYTE statement transfers physical records from
the DC-100 tape into the 4041’s memory.

EXPLANATION

The 4041 uses the currently SELECTed stream spec
as the default data path for RBYTE. The 4041 powers
up with a default SELECTed stream spec of “GPIBO:”.

In order to execute an RBYTE command using a driver
other than the standard GPIB interface, the RBYTE
statement must either specify the logical unit or stream
spec to be used, or a SELECT statement specifying a
new defauit stream spec for RBYTE and WBYTE must
be executed.

RBYTESs from the DC-100 tape drive read a string from
a specified physical tape record.

To read data from the tape using RBYTE, the tape’s
PHYsical parameter must be set to a value of “YES”. In
addition, ALL TAPE FILES MUST BE CLOSED AT THE
TIME OF THE RBYTE OPERATION.

14-12

The numeric expression must evaluate to an integer
greater than or equal to 1 and less than or equal to the
number of physical records on the tape. This integer is
the physical record of the tape that will be read.

(To find the number of physical records on the tape:
execute a DIR command; add up the total number of
bytes on the tape; divide by 255; add 4.)

The string variable should be dimensioned to a length
of 256 characters. If the string variable is dimensioned
to less than 256 characters, characters after the
current dimensioned size of the string are lost.

Reading physical records from the tape ignores all file
boundaries.

EXAMPLE
100 Open #1:"tape(phy=yes):"
110 Dim bigstr$ to 256
120 Rbyte #1:10,bigstr$

Line 120 reads physical record 10 from the DC-100
tape and stores its contents in string variable Bigstr$.

4041 PROGRAMMER’S REFERENCE

The RENAME Statement

DC-100 TAPE
RENAME

Syntax Form:

Descriptive Form:

[line-no.] RENAME strexp TO strexp

[line-no.] RENAME old-stream-spec TO new-stream-spec

PURPOSE

The RENAME statement is used to rename a file on a
file-structured device. The old file name is simply
replaced by the new file name.

EXPLANATION

The 4041 only allows one file on the tape to be
renamed at a time. Attempting to rename a file that
does not exist or to rename an existing file to the name
of another existing file results in an error.

4041 PROGRAMMER’S REFERENCE

The two driver specs in the stream specs must match,
or an error results.

If no driver spec is provided, the files are renamed
using the driver “TAPE:".

EXAMPLE
3500 Rename "this" to "that"

A file named “This” on the DC-100 tape is renamed to
“That”.

14-13

DC-100 TAPE
TYPE

The TYPE Function

Syntax Form: TYPE (numexp)

Descriptive Form: TYPE (lunum)

PURPOSE
The TYPE function returns an integer from 0 through 4
indicating the type of data stored as the next data item
in a file.
EXPLANATION
The TYPE function returns the following values, de-
pending on the type of data stored in the next item of a
file:

0 Empty File or File Not Open

1 End-of-File Character

2 Numeric Data or Character String Data, ASCII
Format

3 Numeric Data, ITEM Format

4 Character String Data, ITEM Format

Data stored in ITEM format are stored using the
internal data representation of the device the data were
stored from.

The TYPE function is especially useful when working

with files of ITEM data containing both numbers and
character strings.

EXAMPLE

See Example 14-3.

1200 Rem ASCII character routine

1&60 Rem ITEM string data routine

1560 Rem ITEM integer data routine

1700 Rem ITEM-format program routine

1100 Rem "end-of-file" character routine

990 Dattype=type(33)
1000 Goto dattype of 1100,1200,1300,1400,1500,1600,1700
1010 Print "empty file or file not open”

1360 Rem ITEM short-floating-point data routine

1660 Rem ITEM long-floating-point data routine

Example 14-3.

14-14

4041 PROGRAMMER’S REFERENCE

The WBYTE Statement (TAPE)

DC-100 TAPE
WBYTE

Syntax Form:
[#strexp:]

Descriptive Form:

[line-no] WBYTE [#numexp:] {(numexp,strexp}

[line-no] WBYTE [#lunum:]{physicai-record-number, string-to-transfer]
[#stream-spec:]

PURPOSE

The WBYTE statement transfers 8-bit bytes from the
4041's memory to the GPIB, COMM, FRTP, or PRIN
drivers. The WBYTE statement transfers strings from
the 4041’s memory onto physical records of the DC-
100 tape.

EXPLANATION

If no stream spec or logical unit number is specified in
the WBYTE statement, the 4041 uses the currently
SELECTed stream spec (default: “GPIBO:") to perform
the WBYTE operation.

WBYTESs to the DC-100 tape write a string onto a
physical record of the tape. To send data to the tape
using WBYTE, the tape’s PHYsical parameter must be
set to a value of “YES”. In addition, ALL TAPE FILES
MUST BE CLOSED AT THE TIME OF THE WBYTE
OPERATION.

The numeric expression must evaluate to an integer
greater than or equal to 1 and less or equal to than the
number of physical records on the tape. (To find the
number of physical records on the tape: execute a DIR
command; add up the total number of bytes on the
tape; divide by 255; add 4.) This integer is the physical
record of the tape that is to be written.

4041 PROGRAMMER’S REFERENCE

If the string expression evaluates to a string with length
less than 256, then the record is written with zero fill
for bytes after the last byte of the string. If the string
expression evaluates to a string with length greater
than or equal to 256, only the first 256 bytes are
written.

Writing physical records to tape ignores all file bounda-

ries.

The following example writes over physical
record 10 of a DC-100 tape. Don’t run the
example unless you have no need for the data
that may already be stored there.

EXAMPLE
100 Rem !!!!1 WARNING t1t1t!
110 Rem !!!t! DON'T RUN THIS EXAMPLE tttitn!
120 Open #1:"tape(phy=yes):"
130 Dim bigstr$ to 256
150 Wbyte #1:10,bigstr$

Line 150 writes the contents of string variable BigStr$
onto record 10 of the DC-100 tape. If the string
contained in Bigstr$ is shorter than 256 characters, the
record will be filled with zeros to the 256th position.

14-15

SCSI Disk Sub-System

Section 15
SCSI Disk Sub-System

INTRODUCTION

This section lists examples and applications programs (soft-
ware) and discusses commands in 4041 BASIC that affect
storage of program or data on any magnetic disk device
connected to the 4041 via the SCSI interface.

All of the commands used with the 4041 DC-100 Magnetic
Tape device (refer to Section 14 of the 4041 Programmers
Reference Manual) are compatible with the SCSI interface
disk device driver. The SCSI interface may either be used

with floppy disks, winchester hard disks, or both.

The stream specification for the SCSI interface contains all
the parameters that the DC-100 Magnetic tape contains,
with additional parameters that are required to specific disk
information.

ASCII Vs. ITEM FILES

Both programs and data may be written on disk in ASCII or
ITEM format. The format is specified by the FORMAT pa-
rameter in the output stream specification.

4041 units not equipped with Option 30 (Program Develop-
ment ROMS) can only load ITEM-format program files from
disk. They can however, read/write ASCIll-format data
from/to disk.

LOGICAL Vs. PHYSICAL
DISK I/O

“Logical” disk /O describes a method for accessing disks
using a file name to specify the area of the disk the user
wishes to read from or write to. INPUT and PRINT state-
ments use logical disk /0.

“Physical” disk /O describes a method for accessing disks

by sector number. RBYTE and WBYTE statements use
physical disk 1/O.

4041 PROGRAMMER'S REFERENCE

REV JAN 1985

WILD CARDS AND OTHER
SPECIAL CHARACTERS

Files are normally specified by filenames; however, “wild
cards” may be used to name a file or group of files in an
abbreviated fashion. Consider the following wildcard
characters:

A

When the DIR or DELete commands encounter these
characters in a command word, they replace the word with
a sorted list of matching filenames. The filenames come
from your directory. Consider the following pattern matching
(also called expansion):

* Most characters match themselves

» The ? matches any single character

+ The * matches any string of characters

» The set of characters in [...] matches any one
character in that set.

A pair of characters seperated by a dash [—] includes all the
characters in the alphabetic or numeric range of the pair.

The following examples show wildcard characters used in
commands:

DIR * Lists all files in the directory.

DELETE FILE *.doc Removes all files ending in
“.doc”.

DIR sec? Directory of all files whose
name begins with “sec”
followed by any single
character.

DIR Chap[1—3] List the directories Chap1,
Chap2, and Chap3.

The wild-card characters should be used carefully. For
example, DELETE FILE * will delete all files in your
directory.

15-1

SCSI Disk Sub-System

EXAMPLES

DIRECTORY Example:

HARD_DISK File Used Unused Start Last

File Name Type Length Length Rec # Modification Date

puTOLL as 147 I65 17 O1-JAN-81 00:02:40

ASCIIFILE AS 51200 7216 18 01-JAN-81 02:57:00
3230049

ITEMFILE IT S1200 1933317 2720 01-JAN-81 02:57:17
7268352

ASKS$ (“lu”,n) Example:

DISKD(EDH={13}§EDU=i32},EDé={G},EDH={D}):QUTDLD(DFE=DLD,SIZ =3. 12000E+2,
ENT=256,FDR=ﬁSE,ELI=NU,PHY=ND,UER=YES,DIR=ND,LDN=YES,CTL=TEK,HAR=YES,QDR
=7,DEV=1,UNI=0,8EN=0,CYL=304 ,HEA=4 ,SEC=17. FAR=NI)

15-2 REV JAN 1985 4041 PROGRAMMER’S REFERRENCE

SCSI Disk Sub-System

100 ! 06 36 36 3 3 3636 3 36 2 36 36 36 36 36 36 36 96 JO0 3636 36 3 6 36 36 36 6 96 JE 36 6 0 26 D6 36 30 3 36 36 36 I 36 I 36 6 06 I 36 I 36 I D6 36 I I 3 3¢ 3 I 3
110 (N 2 FILE TO FILE COPY ROUTINE * %
120 I % %%
130 ! *»% June 1S5, 1984 **
140 I %% #* #
150 I %% Copyrisht (c) 1984, Tektronix, Inc. All rights reserved. *x*
160 I %% This software is provided on an "as is” basis without * ¥
170 I %% warranty of any kind. It is not suprorted. # %
180 (. 24 ¥* 3%
190 I %% This software may be reproduced without prior permission, ¥
200 I %% in whole or in part., Corpies must include the above * %
210 ! ¥ copuright and warranty notice. * %
220 [1 * %
230 I %x REQUIRED EQUIFMENT: * %
240 b w% 4041 oPT 3 * %
250 1 %% 4925 (SCSI Dusl Floeepy Disk Dirive) * %
260 ! ¥* 3% * 3%
270 I %% PFURFOSE #* %
280 L #% To copy 3 file from sny device to another device * %
290 ! ¥ ¥ * %
300 b %% OFERATING PROCEDURE : #* %
310 I %% Connect eauvirment as per 4041 manual. The syztem device %%
320 I %% will be set according to the orerators inputs in the Sub %%
330 I %% prodgram "sys_dev". The destination device will be set in *x
340 ! *¥% tLhe same way. * ¥
350 U 30696 3 36 96 36 36 36 36 36 36 36 36 36 36 36 96 36 36 2 36 36 26 96 36 36 36 36 36 36 36 36 96 36 36 3 3 36 3 3 36 96 34 36 36 3 36 3 96 36 36 I I 36 36 36 9 M 36 3 96 3
360 Init

370 Ilelete var all

380 !

390 ! Initialize prodgram varishles

400 !

4190 ODim ans$ to 1

420 Init var sysdev$,crudevd,stild,dfils

430 Inteder i1sfile

440]

450 ! Error handler for destinstion file name thalt aiready exists

4860 1

470 On error (850) then call isfil ! Tare error

480 On error(1204) then call isfil ! Disk error

490 !

500 ! Select source device for file copy

510 !

320 Soul print "“J JSelect source device, "

530 Input prompt ""JEnter tare or disk (L or d) 1"ilans$

S40 If ans$dd>"t"” anid anss{(>"d" then soto szou

950 Sysdevé=ans$

360 Call sys devisysdevs)

570 !

580 I Set system device to susdev$

990 !

600 Set sysdev sysdevs

610 !

420 ! Select destination device for file cory

630 !

640 lesg: print ""JrldSelect destination device.”

650 Input promet "~JEnter tare or disk (L or d) 1"ians$

660 If anaedd>"t" and anst>"d" then goto des

Fig. 15-1. Option 3 (SCSI) file-to-file copy routine.

4041 PROGRAMMER’S REFERENCE REV JAN 1985 15-3

SCSI Disk Sub-System

670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
910
920
230
240
950
260
970
280
990
1000
1010
1020
1030
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1300
1310
1320
1330

!
i
}
End

Sub

Itew

Lus

Ret

Sub

Cruydevé=ans$
Cail suys_dev(crydevs)

Dim sfil$% and dfil$ asccording to

If pos(sysdevs,"TAFE"»1) then dim
If pos(cpudev$,"TAFE",1) then dim

Directory promet

Inerut promet "“JFrint s directory
If ans$="9" then dir sysdevs

Enter source file name
Input pPromet "“JEnter source file
Directory promept for destination

Input promert ""“JPrint & directory
If ans$="9" then dir crpydevs

whether digsk or tare

sfil$ to 6 else dim sfil$s to 12
dfile to 6 else dim dfil$ to 12

of "&susdevsd” (y or ndi"iasnss

name, "isfil$
file name

of "&cpuydevEd” (v or nYi"ianst

Enter destination device file name

(] input prompt “"JEnter destination file name. ":dfils

Actual cory process

Isfile=0 ! Clear error flas incase this is & retry

Cory sfilt to crydevéddfils&" (ope=

If isfile then goto dfil
End of coepy process
[close 211

Frint ""~J"G"GCory completed,"”
End

newscli=yes)"”

sus_devivar device$) locasl temp$,rsusidrdevd,lub,devsiu

Dim dev$ to 1,1u$ to 1

If device$="d" then doto dev
Devicet="TaFE:"
Return

: I This section for disk device number

Input prompt "“JEnter the disk device # <0 thru &) !"idevé
If ssc(dev$) >=48 and asc (dev$) (=54 then goto lu

Frint "“JInvalid device number.....try adgain,"

Goto dev

' This section for disk todical

unit number

Input prompt “"JEnter the disk losical unit # <0 or 1> " lus
If 3sc(lu$)>=48 and asc(lu$){=49 then goto ret
Frint “~Jinvalid logical unit number..,..try asain, "

Goto Ilu

: device$="IISK (dev="&dev$&"runi="& | us&"> "

Return
End

isfil ! Sub erosram error handler

Isfile=l | Set flad for error
Advance
End

for file siready exists

15-4

Fig. 15-1. Option 3 (SCSI) file-to-file copy routine (cont.).

REV JAN 1985

4041 PROGRAMMER’'S REFERRENCE

SCSI Disk Sub-System

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
320
240
359
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
3510
520
9530
540
950
560
570
580
290
600
510
620
630
6540
650
60
670

D 369636 36 36 36 36 36 96 36 36 26 06 36 36 96 36 36 3 36 36 36 36 36 BE 36 36 26 6 3 36 36 H 3 36 3 6 36 96 36 3 36 36 3 3 36 96 B 3 96 I 36 9 36 3 3 3 96 I 3 I 3 ¥
bR TAFE TO DISK COFY ROUTINE 3 %
L %% %
! *% June 15, 1984 * %
TR 3
! #* Copyright (c) 1984, Tektronixs Inc. All rights reserved, *=
! *% This software is eprovided on an "a8s is” basis wilthout 3 ¥
! *¥* warranty of any kind. It is not supported. * %
f % ¥ ¥#
! *% This software may be reproduced without prior pPermission, *%
! *¥ in whole or in part, Copies must include the shove * %
I %% copyright and warranty notice, * %
I %% * %
I %% REQUIREDI EQUIFMENT: * %
b %% 4041 OoFT 3 * ¥
! ¥% 4925 (SCSI Nwal Florry Disk Drive) * %
! * ¥ * ¥
I %% PURFOSE: * %
! #¥¥ To duelicate 3 tare on to & floery dishk %
| * % * %
tow% OFPERATING FROCEDURE : * ¥
! *% Connect eauierment as rper 4041 manusal. The sustem device %%
I %% will he set to "TAFE:" and the destination device will be *x
! ** zet according to the operators inputs in the Sub program #x%
! ¥%¥ "gyg dJev”, Tare file names will appear on Jdisk with the %%
! *% form "TAFE filnam” where filnam is the file naswme as it * %
! ## gpresrs on Lhe tare directory. ¥ 3
! 323232323333 3323333332313 3333312323223 333223222 a e e ey

Init

Ilelete var all
!
] Initialize rrodram variabies
!

Iim s¢ to 296:pr% to JBlérvolE Lo éransE to 1

Init var s$,pérsysdevircprydevs

Integer irerren
]
i Select destination device for duelication
]

Frint ""J~JSelect destination device zstream specs.”

Call svs devicpydevs$)
i

Input promet ""JlInsert tare and destination disk (RETURN>:"ianst
1
I Set sustem device to "TAPE:”
)

Sysdeve="TAPE "

Set sysdev sysdevs
1
| Fromet for formstting of new disk (not reauvired)
]

Fropt input promet "“JFormat the disk {(w or nd> 7 "ianst

If ans$="n" then dgoto rdir

Frint ""“J"GHARNING! Formast will destroy il files on digkttt”

Input promet ""JIs this what vou want to do? {4 or n> "izng$

I+ ansd="u" then goto vol else soto prupt

Vol: vol$=sedt (ask$ ("volume”) »1.:6)
Formaltl cpydevérvol$

Fig. 15-2. Option 3 (SCSI!) tape-to-disk copy routine.

4041 PROGRAMMER’S REFERENCE REV JAN 1985 15-5

SCSI Disk Sub-System

680 {
690 I call to sub prosram to reed tarpe directory
700 !
710 Rdir: call readir
720 |
730 ! Actus! cory Process
740 !
750 For i=1 to iast ster 16
760 Fifnamé=trimé (cedgdb(p$,rirb))
P70 Copw filnam$ to cpudevi&"TAPE
780 Next i
790 !
600 i End of cory srocess
810 4
B20 Endit: close ail
830 Frint ""J"G°GCopy compieted.,”
B840 End
900 Sub suws deviver device$) locsl temp$rsusdrdeverludsdevsriu
710 Dim devd to 1,lut to 1
P20 ley: i This section for disk device number
GED Ineput prometl ""JEnter the disk device # (0 thru &) "idevs$
Y40 I+ asc(devd) >=48 and ascidev$) (=54 then dgoto lu
Yoo Frint "“JInvelid device number,....try again.”
Y460 Goto dey
GFO L i This section for disk logics!l unit number
Y50 Input rromet “"“UEnter the disk logical unit # (0 or 1) 1"tlus
Y90 ¥ sscilud) >=48 and ssclud){=4Y% then soto ret
1006 Frint "~JdInvaiid lodgical unit number,....try again,”
Goto 1w
Ret: deviced="DISK (dev="&devs& " runi="&lut&") "
RFeturn
1040 End
1190 Sub resdir locel retrzs Sub progrem to reasd tare directoru
hrd (OJ&chrd (M &chrd (D) &chrs (D &chrd (M &chr$(0)
Oren ¥1:"tereiphy=yes) 1"
Fr

"o

Afilnam¥&” (ope=newrcl izyes) "

Read Lape directoruy

For r=0 to 2
FKhwate $#1ir+ersd
Fiaptlaf
Mext r

Close 1

Checlk for last file on tape

For n={endr¥) to 1é& step ~-16
ft=segd(PrErn-15,6)
IV 24<{>z% then exit to ret
Mext n

21, ¢ feat=n-19

faturn

End

Fig. 15-2. Option 3 (SCSI) tape-to-disk copy routine (cont.).

15-6 REV JAN 1985 4041 PROGRAMMER’S REFERRENCE

SCSI Disk Sub-System

100 U 60 36 96 36 30 06 96 96 36 36 26 6 36 06 96 36 36 36 36 36 36 96 36 36 36 36 36 36 36 36 6 36 36 06 2 36 3K 6 36 36 36 36 3 36 36 36 36 96 6 36 36 34 36 26 B 26 06 36 36 36 M
110 I %% DISK TO DISK COFY ROUTINE *
120 (I 2 FLOFFY TO FLOPPY * ¥
130 (I 21 *H
140 L %% June 15, 1984 %* 3
150 [1] * %
160 ! #% Copurisht (c) 1984, Tektronix: Inc, All rights reserved, ##
170 I' %% This software is provided on an “"3s is"” basis without %* %
180 I %% warranty of any kind. It is not sueported. * ¥
1920 [¥ * %
200 I #% This software may be reproduced without Prior permission, %%
210 ! %% in whole or in epart. Cories must include the above * %
220 Vo %% copyright and warranty notice. # ¥
230 ! * % * %
240 ' x% REQUIRED EQUIFMENT: * %
230 I %% 4041 OFrT 3 * %
260 bo%% 4905 (SCS8T Tuzl Flopey Disk Drive) * %
270 L 14 * %
280 b o#x PURFOSE : M
290 ' %% To duplicate one floppy disk to another florepy disk * %
300 ! 3* % # 3%
310 I %% OFPERATING FROCEDURE: * %
320 I #% Connect eauirment 38 per 4041 manual. The system device #%
330 ' %% will be set according to the operators inruts in Lhe Sub %%
340 bo#% prodgrem "sys _dev”, * %
350 o 3696960636 36 9 36 36 96 36 36 36 6 36 38 96 366 36 36 36 96 36 36 36 36 36 36 36 36 36 36 96 36 96 36 36 26 36 36 96 96 36 96 36 26 6 96 96 36 06 36 36 36 26 96 36 3 36 2 B
360 Init
370 leiete var aill
380 !
390 ! Initialize program variahies
400 !
410 Iim 8% to 512,3ns% to l,vol$ to 12
420 Init var a$,doneflg,susdevs,;cpudevs
430 Inteder i
440 !
450 [Error handler for end of disk error
460 !
470 On error(1250) then cal!l donecewu
480 !
490 I Select sustem device (susdev)
500 !
3510 Frint ""J*JSelect source device stresm spercs,”
520 Call sys_dev(sysdev$)
530 !
540 1 Select destination device for durlication
550 !
560 Frint "~J"JSelect destination device stresm specs, "
570 Call sus_dev(crydev$)
3580 !
590 Input eprompt "Insert source and destination disks {RETURNY!"tanst
600 !
6190 ' Set sustem device per operators entries
620 |
630 Set susdev susdevs
640 !
650 ! Prompt for formatting of new disk (not resuired)
660 !
670 Input promet ""JFormat the new disk <9 or ndy 7 "iansé
Fig. 15-3. Option 3 (SCSI) disk-to disk copy routine.
4041 PROGRAMMER’S REFERENCE REV JAN 1985 15-7

SCSI Disk Sub-System

480
690
700
710
720
730
740
750
760
PRy
780
790
200
810
8220
830
849
850
860
870
8890
890
900
L0
Qa0
230
940
1000
1010
1030
1030
1100
1110
1120
1130
1140
1150
1160
1170
1180
11990
1200
12190
1220
1230
1240

Rer s

!
!
]

Endi

Sub

Sub

Nev:

[T

Ret:

If ansé="n" Lthen goto ree
Vol $=sedgé(asks ("volume")»1,12)
Format ceydevérvols$

Insert in stream sepec "phy=ves"” for rbhyte and wbylte commands

repfisvysdevirros(susdever: ™) ", 1),0)=",phu=yes"
Rer¢ (crydevirros (cpudevé, ™) ;1) ,0)=",phy=yesg"

Open logical units for copy seauence

Open #1izusdevd
Oren #2icprydevsd

Actual cory Process

For i=1 to 700
Rbhwte #1:i,8%
If donefls then exit to endit ! Filss to indicate end of disk
Hhyte #2:i,3%
Next i

End of copy process

t close ail
Frint "~J"6"GCopy completed."”
End

donecey | Sub program to set end of disk error flag
lonefldg=1
ardvance
Endd
sus_devivar device$) local temp$,susdrdevsrius,dev)iu
INim devd to 1,1u$ to 1

! This section for disk device number
Input promet ""JEnter the disk device % <0 thru &) t"tdevs
If asc{dev$) d=48 and asc (dev$) (=54 then dgoto lu
Frint "“JInvaiid device number.....try again,”
Goto dev

! This section for disk losgsical unit number
Input promet ""JEnter the disk logical unit & <0 or 1) 1":lus$
If escdlud) >=48 and ssc{lu$) (=49 then soto ret
Frint "~JInvalid logical unit number,....try adgain.”
Goto lu

devices="DISK (dev="&dev$& " runi="&lus&") "

Return
End

15-8

Fig. 15-3. Option 3 (SCSI) disk-to-disk copy routine (cont.).

REV JAN 1985 4041 PROGRAMMER’S REFERRENCE

SCSI Disk Sub-System

STREAM SPECIFICATION SETTINGS FOR SCSI DISK INTERFACE

Driver Parameters

ADR =|n|

CLip~YES,NO

CTL = xxx

CYLinders—In}

DEVice=|n]}

DIRectory=YES,NO

ENTries =[n]

EQA =|n|
EOH =|n]
EOM=[n|
EOU =|n]

FORmat=ASCii,ITEm

HARd=YES NO

Meaning

[n] indicates the switch settings for the SCSI device address of the 4041. The number
range is 0-7. When the SCSI system device switch is set on, this number range is 80-87,
with the device number being the low order digit and the system device switch setting
indicated in the high order digit.

If YES, the remaining free space is clipped from the end of a file when closed. The default
is NO.

This parameter simply displays the type of disk controller being used. The displayed
values are:

TEK - The disk controller is a 4925 floppy disk controller or a moditied 4926 hard
disk controller.
ADP - The disk controller is an Adaptec disk controller (Model 4000 or 5500).
DTC - The disk controlier is a Data Technology Corp. disk controller (Model 520A or
520B).
Specifies the number of cylinders on the disk device. 'This parameter only has meaning at
format time.

The SCSI disk device number being accessed. If none is specified, the device number from
the rear panel is used.

NOTE
When using multiple disks attached to the SCSl interface,
the device number defaults to the rear panel system

device unit switch, setting and not the specific system
device setting.

Has no affect; used for DC-100 magnetic tape compatibility only. For example, if program
used magnetic tape but now uses this parameter with the disk; no error occurs.

Specifies the number of directory entries to be allocated on the disk at format time. Default
is 256 entries. Each disk sector (512 bytes) can contain 16 directory entries. When an
entry is specified, that number is rounded up to the next whole sector. For example, if
1603 was specified, the actual number of entries would be 1616.

End-of-Argument character. Default is <0>.

End-of-Header character. Default is <0>.

End-of-Message character. Default is <<13>.

End-of-Message-Unit character. Default is <32>.

ASCii-data stored on disk as ASCIl characters. Default is ASCii.

ITEm-data stored on disk in ITEM format (4041 internal representation).

Specifies disk type being accessed. Setting at OPEN time has no affect.

4041 PROGRAMMER'S REFERENCE REV JAN 1985 15-9

SCSI Disk Sub-System

Stream Specification Settings for SCSI Disk Interface (cont.)

Driver Parameters Meaning IR
HEAds=|[n] Specifies the number of disk heads. 'This parameter only has meaning at format time.
LONg=YES.,NO Default is YES and only has meaning at format time and specifies if the disk device is to be
physically formatted. If NO, the volume header and empty directory are recorded on the
disk.
OPEn==NEW, OLD, REPIace, NEW - opens a new file for writing; error if file already exists.
UPDate

OLD - opens existing file and positions it at beginning of file; error if file non-existing.
REPIlace - write only; deletes existing file. Opens and positions new file at beginning of file.
UPDate - write only. Opens and positions file at end of file. Error occurs if file is non-

existing.

PARity = YES,NO If YES, this parameter specifies that the disk controller (being accessed) has the parity
option set. Errors result if this parameter is not set to reflect the disk controllers actual
setting.

NOTE: Since the default is NO, a disk controller set for parity cannot be used as the
default system boot device.

PHYsical=YES,NO If YES, the disk is in physical mode (/O via Rbyte, Wbyte). Other logical units can open to
same disk in logical file mode with no error generated.

SECtors=|[n] Specifies number of sectors per track (cylinder) on a disk device.

'This parameter only has meaning at format time.

SENse={n]| Used to report disk sensed error. Has no meaning if specified during OPEN time. Will not
cause an error.

SlZe={nn} Maximum size of file (bytes).

UNIt=|n]} SCS! system device unit number address that overrides rear panel SCSI switch setting.
Defaults to SCSI switch setting, if not specified. If parameter is incorrect, an error can
occur.

VERify=YES NO If YES (default), Read after Write is performed and all data bytes are verified. If No, there is

no Read after Write performed.

'"The CYLinder, HEAds, and SECtor settings are only used at format time to specify a larger or smaller disk device than the default 10
Mbyte full height hard disk or the 320 kbyte floppy disk. This information is sent to a disk controller at format time to specify the
capacity of the connected disk drive.

15-10 ADD JAN 1985 4041 PROGRAMMER’S REFERRENCE

Section 16

UTILITY AND ARRAY HANDLING ROMCALLS

INTRODUCTION

Utility and array handling romcalls are part of an internally
mounted ROM pack (“UTL2") that gives the 4041 added
capabilities for high-speed binary block transfers, array seg-
mentation, array scaling, and histograms.

Romcalls supplied by UTL2 are briefly described below:

ARRSEG— copies a segment of one array, starting with a

GETARR—

GETSCL—~

4041 PROGRAMMER'S REFERENCE

specified point and ending with a specified
point, into a new array. ARRSEG provides a
convenient and fast way to extract a segment
of a larger array for processing or display.

reads a binary data block from an instrument
on the IEEE-488 bus into an integer array. The
block must conform to Tektronix Standard
Codes and Formats. An input parameter speci-
fies the number of significant bits per array vai-
ue, and checksums are automatically tested.

reads a binary data block from an instrument
on the {EEE-488 bus into an array, much the
same as the GETARR romcall does. As with
GETARR, the block must conform to Tektronix

ARRSCL —

HISTOG—

Standard Codes and Formats. This romcall dif-
fers in that it also applies specified
zero-reference and scaling values to the array,
so that the result is a scaled floating-point
array.

performs the same array scaling as GETSCL,
except the scaling is appiied to an existing
data array in 4041 memory. No new data are
transferred from an instrument.

generates the histogram of a source array. The
histogram shows how often each value in a
source array occurs. A histogram is a simple
way to find the most common values in a
source array —such as the top and base of a
pulse waveform.

The routines can be called using the RCALL statement in
4041 BASIC or by simply inserting the romcall name with
the required arguments into the program.

ADD DEC 1985

16-1

uTL2
ARRSEG

The ARRSEG Romcall

Syntax Form: [line no.] ARRSEG numarray, numexpr, numexpr, numarray

Descriptive Form: [line no.] ARRSEG source array, begin pt., end pt., destination array
PURPOSE EXAMPLE
The ARRSEG romcall will zone the source array into a new 100 Dim wfmdata (1024) ,wfmdatl (512)
destination array. This routine is particularly useful for seg- 110 Open #1:"gpib (pri=11):" ! Setup

menting an array from other than the first point. 7D20T for lun #1

120 Print #l:"curve?"® ! Tell 7D20T to
send array of data
130 GETSCL 1,wfmdata,0.005,128,8 ! Go
get scaled data
EXPLANATION 140 Begin=513
150 Ending=1024

The second and third arguments specify the segment of the 160 ARRSEG wtmdata,begin,ending,wfmdatl

source array that is transferred to the destination array. The
destination array must be of the same type as the source
array and must be large enough to receive the range of
data.

Line 160 segments array “wfmdata” from location 513 to
1024 into array “wfmdat1”.

If used in a subprogram, ARRSEG must reference global
data, or data passed by reference only (not by value), or NOTE

local data created within the subprogram.
The value passed for the first point in the destination

array must be at least a value of 1, otherwise the des-
tination array will be filled with zeros.

16-2 ADD DEC 1985 4041 PROGRAMMER'S REFERENCE

The GETARR Romcall

uTL2
GETARR

Syntax Form:

Descriptive Form:

[line no.] GETARR numexpr, numarray [,numexpr]

{line no.] GETARR lun, integer array [,# of bits]

PURPOSE

The GETARR romcall is used to transfer a binary block of
data into the 4041 from an instrument on the IEEE-488 bus.

EXPLANATION

The GETARR romcall brings a binary block data transfer
directly into an integer array, greatly increasing the speed
with which the 4041 can acquire an array. The instrument
specified in the first argument must have been previously
told to prepare to send the data, and the integer array must
have been previously dimensioned. If the optional number of
bits argument is not used, the default number of bits (of
resolution) is 16.

4041 PROGRAMMER'S REFERENCE

EXAMPLE

100 Integer wfm (1024)

110 Open #1:"gpib (pri=11):" ! setup
7D20T for lun #1

120 Print #l:"curve?" ! Tell 7D20T to
send array of data

130 GETARR 1,wfm,8 ! Bring the data into
the integer array

Line 130 will bring in a binary block from lun #1 and store it
in array “wfm” with 8 bits per value.

ADD DEC 1985 16-3

uTL2
GETSCL

The GETSCL Romcall

Syntax Form: [line no.}] GETSCL numexpr, numarray, numexpr, numexpr, numexpr
Descriptive Form: [line no.] GETSCL lun, real array, volts/bit value, zero reference value, # of bits
PURPOSE

The GETSCL romcall works much like the GETARR romcall,
but also provides scaled data in the floating point (real) tar-
get array. This romcall can be used in place of GETARR if
the data must be in volts/bit resolution, such as for pulse
parameter anaiysis.

EXPLANATION

The GETSCL romcali will transfer a binary block of data into
the 4041 from the specified instrument, then subtract the
zero-reference value and muitiply by the bits/volt value. The
zero reference value is applied first (to find the baseline in bit
levels), so this value must be in vertical bit levels.

EXAMPLE

100 Dim wfmdata (1024)

110 Open #l:"gpib (pri=11):" ! Setup
7D20T for lun #1

120 Print #l:"curve?” ! Tell 7D20T to
send array of data

130 GETSCL 1,wfmdata,0.005,128,8 !Go get
scaled data

Line 130 will bring in from lun #1 a binary biock transfer (8

bits per value), subtract 128 from each value, multiply them
by .005, and store the results in the array “wfmdata”.

16-4 ADD DEC 1985

4041 PROGRAMMER'S REFERENCE

N

The ARRSCL Romcall

uTL2
ARRSCL

floating point array

Syntax Form: [line no.] ARRSCL numarray, numexpr, numexpr, numarray

Descriptive Form: [line no.] ARRSCL source integer array, voits/bit value, zero reference value, destination

PURPOSE

The ARRSCL romcall takes an integer data array and ap-
plies scaling values to the destination floating point array
like the GETSCL romcalt does. Unlike GETSCL, this routine
takes an existing integer array and scales it, instead of ac-
quiring the data over the IEEE-488 bus. It is useful for scai-
ing an integer array brought into memory from mass storage
or from an instrument with the GETARR romcali.

EXPLANATION

The source integer array is scaled using the second and
third arguments, then the scaled data are stored in the des-
tination floating point array. The destination array must
have been previously dimensioned to at least as large as the
integer source array.

EXAMPLE

100 Integer wfm (1024)

105 Dim wfmdata (1024)

110 Open #l:*gpib (pri=11):" ! Setup
7D20T for lun #1

120 Print #l:"curve?" ! Tell 7D20T to
send array of data

130 GETARR 1,wfm,8 ! Bring the data into
an integer array

140 ARRSCL wfm,0.005,128,wfmdata

Line 140 takes the integer array “wfm” and performs the
same scaling process of GETSCL romcall. The result is
stored in the floating point array “wfmdata’”. This routine
would most likely be used if the original integer data were
needed elsewhere or if the integer source array was saved.
Using GETARR instead of GETSCL speeds up the transfer
of data, so ARRSCL is useful when processing can be done
later.

4041 PROGRAMMER'S REFERENCE ADD DEC 1985

16-5

UTLZ
HISTOG

The HISTOG Romcall

Syntax Form (Integer Source Array):' 2

[line no.] HISTOG integer array, integer array, integer scalar

Syntax Form (Real Source Array): 3

line no.] HISTOG real array, integer array, real scalar, real scalar, integer scalar

Descriptive Form (Integer Source Array):

[line no.] HISTOG source, destination, minimum value

Descriptive Form (Integer Source Array):

[line no.] HISTOG source, destination, minimum vaiue, maximum value, number of siots

' The calling syntax is ditferent for integer source arrays and real source arrays.

2)t the source array is integer, the values must not be negative.

3 |t the source array is real, only short floating point numbers are supported (not long floating point).

PURPOSE

The HISTOG romcall is used to find the number of
occurences of a value, or range of values, in a waveform.

EXPLANATION

The algorithm for this romcall computes the number of
occurences of particular values in the source array (real or
integer) and returns the number of each value's occurence
in the destination array. The routine will work much faster
on integer source arrays than on reai source arrays. Re-
gardless of the source array type, the destination array
must always be integer. |

EXAMPLES

The following sample program shows how to determine
waveform base and top values with a histogram. Exampiles
1a, 1b, and 1¢ show three different methods of establishing
the number of slots to sort. In these three examples, the
base value is assumed to be in the lower half of waveform
data values, while the top value is assumed to be in the
upper half of waveform data values.

In Exampie 1a, the digitzer's resolution is used to determine
the number of slots to sort. The source array for this exam-
ple is an integer array.

Example 1b again has an integer array as its source, and
uses the span of values in this array to determine the num-
ber of slots to sort.

Example 1c operates on a scaled waveform, the source ar-
ray being a short floating point array output from the
ARRSCL romcall. This example uses the digitizer's “volts
per bit" to determine the number of slots to sort.

16-6 ADD DEC 1985 4041 PROGRAMMER'S REFERENCE

2000

2110

2120

2130

2140

2130

2160

2170

2180

2190

2200
2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2300

4041 PROGRAMMER'S REFERENCE

Example 1

Integer I _wfm (1024),num_bit,slots,
] min,I_max,PL,PL1

Call get_wfm (scope,ch_num,]l_wfm,
Y _mult,Y_zero,num_bit,volt_bit)
! Get a waveform froma digitizer
! scope =digitizer 1EEE-488 bus
address
! ch_num = which channel of digi-
tizer to get data from
! T_wfm = integer array containing
binary wfm values
! Y_mult = Y value multiplier - re-
lationship between volts/div and
number of discrete levels/div.
! Y 2ero =Y value zero reference -
value that represents O volts on
screen
' num_bit = vertical resolution of
digitizer expressed as the power
to which to raise 2 to (e.g., 8, 9,
10)
! volt_bit = the quantity a change

of one digitized level represents
I

In the preceeding sample program segment, line 2100 gets
the waveform data from a digitizer.

Example 1a

Rem *** integer HISTOG type 1l ***

Slots=2tnum_bit ! Number of possi-
ble digitized levels

Integer hist_arr (slots),top,base,
top_arr (slots/2),base_arr
(slots/2)

I1_min=0

HISTOG I _wfm,hist_arr,I_min, !
Histogram of data "UTL2"

ARRSEG hist_arr,l,slots/2,base_arr
! *"UTL2®

ARRSEG hist_arr,slots/2+1,base_arr
 "UTL2"
! Determine base value from histo~-
gram-modal value

AMAX bagse_arr,Il_max,PL ! 4041R03 or
Option 10

Base=PL ! Since arrays start at 1l
and digitizers start at O
! Determine top value from

UTL2
HISTOG
In example 1a, line 2210 sets up the the number of sorting

slots for the histogram based on the digital resolution of the
digitizer.

Line 2220 creates arrays for the histogram output and for
lower and upper halves of the histogram output.

Line 2240 performs a histogram on the array “!__wfm”; the
output array is “hist _arr’. -.

Lines 2250 and 2260 put the iower and upper halves of the
histogram data into the arrays “base_arr™ and “top _arr”,
respectively.

Lines 2280 and 2290 determine the waveform base leve! as
the largest data point in the lower half of the histogram
output.

Lines 2310 and 2320 determine the waveform top leve! as
the largest data point in the upper half of the histogram
output.

Example 1b

2540 Rem *** integer HISTOG type 2 ***

2550 AMIN I _wfm,I_min,PL ! 4041R03 or
Option 10

25360 AMAX I _wfm,I max,PLl1 ! 4041R03 or
Option 10

2370 Slots=Imax-1 min+l

2380 Integer hist_arr (slots,top_arr (int
(slots/2)),base_arr (round
(slots/2))

2390 HISTOG I_wefm,hist_arr,l _min ! His-
togram of data *UTL2"

2400 ARRSEG hist_arr,l,round (slots/2),
base_arr ! "UTL2"

2410 ARRSEG hist_arr,round (slots/2)+1,
slots,top_arr ! "UTL2"

2420 ! Determine base value from
histogram-modal value

2430 AMAX base_arr,]l_max,PL ! 4041R03 or
Option 10

2440 Base=PL+]1 _min-1 ! Arrays start at 1l
and digitizers start at O

2450 ! Determine top value from
histogram-modal value

2460 AMAX top_arr,I_max,PL1 ! 4041R03 or
Option 10

2470 Top=Pll+round (slots/2)+I_min-1 !
Arrays start at 1 and digitizers

histogram—modal value start at O
AMAX Top=PLl+slots/2-1 ! Since ar- 2480 !
rays start at 1 and digitizers
start at O
i
ADD DEC 1985 16-7

UTLZ
HISTOG
In example 1b, lines 2350 and 2360 find the minimum and

maximum data values of the integer source array,
respectively.

Line 2370 calculates the number of slots based on the span
of values in the source array.

Line 2380 defines the data arrays for histogram output data.

Line 2390 performs the histogram, putting the output into
the array “hist__arr”.

Lines 2400 and 2410 put the lower and upper halves of the
histogram data values into the arrays “base _ arr” and
“top _arr’, respectively.

Lines 2430 and 2440 determine the waveform base level as
the largest data point in the array “base_ arr”.

Lines 2460 and 2470 determine the waveform top level as
the largest data péint in the array “top__arr”.

Example 1¢

2490 Rem *** real HISTOG **~*

2600 Dim wfm_act (1024)

2510 ARRSCL I _wfm,volt_bit,Y zero,
wfm_act ! *UTL2"

2520 AMIN wfm_act,R_min,PL ! 4041R03 or
Option 10

2530 AMAX wfm_act,R_max,PL1 ! 4041R03 or
Option 10

2540 Slots= (R_max-R_min)/volt_bit-1

2550 Integer hist_arr (slots+l),top_arr
(int ((slots+1)/2)),base_arr
(round { (slots+l1)/2))

2560 HISTOG wfm_act,hist_arr,R_min,
R_max,slots ! Histogram of data
"UTLZ2*"

25070 ARRSEG hist_arr,l,round
({(siots+l1)/2),base_arr ! "UTL2"

2580 ARRSEG hist _arr,round

: ((slots+1l)/2)+1,slots+l,top_arr

! *UTL2"

2590 ! Determine base value from histo-
gram—modal value

2600 AMAX base_arr,]l _max,PL ! 4041R03 or

Option 10
2610 Base= (PL~-1)*volt_bit+R_min
2620 ! Determine top value from histo-

gram—modal value

2630 AMAX top_arr,I _max,PLl ! 4041R03 or
Option 10

2640 Top= (PLl+round (slots+1l)/2)
*volt _bit+R_min

16-8 ADD DEC 1985

In example 1c, line 2500 defines real array “wfm _act” with
the same number of elements as integer array “I_ wfm".

Line 2510 produces the scaled array “wfm _act” using the
digitizer “volts per bit” and vertical offset (Y _ zero”).

Lines 2520 and 2530 get the minimum and maximum values
of the waveform, respectively.

Line 2540 calculates the number of siots (bits), using the
span of voitage values divided by the “volts per bit".

Line 2550 defines data afféys for the histogram output data.

Line 2560 performs a histogram bounded by the minimum
and maximum voltage values of the source array, using a
calculated number of slots; the output is placed in the array
“hist _arr”.

NOTE —the actual number of slots could be different: more
siots provide better resolution and immunity to arithmetic
round-off errors (4"slots is recommended as optimum).

Lines 2570 and 2580 put the lower hélf_ of the histogram
data into the array “base _ arr” and the upper half of the
histogram data into the array “top _ arr”.

Lines 2600 and 2610 calculate the base value as the maxi-
mum vailue of array “base __arr” muitiplied by “voits per bit”
plus the minimum waveform voitage value.

Lines 2630 and 2640 calculate the top value as the maxi-
mum value of array “top _ arr” multiplied by “volts per bit”
plus the minimum waveform voltage vaiue.

4041 PROGRAMMER'S REFERENCE

Appendix A

ERROR MESSAGES

Group | (1-19) Translation Errors. These cannot be han-
dled by the user.

1

3

10

11

12

Syntax error. User visible as “Syntax Error”.

Subprogram syntax error. A SUB/FUNCTION state-
ment was entered that did not follow an END state-
ment, or a statement was entered following an END
statement that was not a SUB/FUNCTION statement.

END statement error. An END statement was entered
in a program segment that already has an END state-
ment, or that has lines numbered greater than that of
the END statement.

Label error. A label name was entered that is already
in use as either a label or a subprogram/function
name.

Subprogram name error. A subprogram/function
name was entered that is already in use as a subpro-
gram/function name.

Parameter label error. A parameter name was used as
alabel.

Symbol table full. The main symbol table, with room
for 1024 entries, is full. The program in memory must
be saved, and a DELETE ALL done to remove deleted
entries from the symbol table.

Local label error on subprogram edit.

Statement too complex.

Too many tokens in statement.

Edit of active subprogram statement

4041 PROGRAMMER’S REFERENCE

Group Il (20-49). Other errors that cannot be handled by
the user.

20

21

22

23

24

25

26

27

28

29

40

a1

Unable to continue. There is no next valid line to con-
tinue with, or the program is in a state where continua-
tion is invalid.

Subprogram not found. The subprogram name speci-
fied in a CONNECT statement does not exist.

lllegal variable trace. An argument to a TRACE VAR
was not a variable, or an argument to a TRACE SUB
was not a subprogram/function name.

llegal syntax for RENUMBER. The specification of
the operands for a RENUMBER was not valid.

Line limit reached in RENUMBER. There is not suffic-
ient space in the program to renumber without moving
existing lines which are outside the renumbered
segment.

Break point on non-executable statement. Break-
points may not be set on SUB,FUNC,REM,DATA or
IMAGE statements.

Function in immediate mode. User functions may not
be invoked in immediate mode.

Program statement in immediate mode OR attempt to
enter immediate-mode statement into program.

Immediate mode statement during load or append.

Line cannot be listed. A RENUMBER operation has
made the line too long to be listed. The line can still be
executed, however.

Run time stack full. The internal stack that manages
CALLs, GOSUBs, FORs, handler and user- function
invocations does not have room for any more entries.

BRANCH not into active program segment. The target

of a BRANCH statement must be a line within a pro-
gram segment in the active call sequence.

A-1

ERROR MESSAGES

Group lil (50-69) Common (Utility Routine) Errors.

50

51

52

53

54

55

56

57

58

60

61

62

63

64

A-2

Number expected, string found. In the course of eval-
uating an expression, an operand of improper type
was encountered.

Invalid logical unit/error number. An error number or
key or logical unit number specified for an ON/OFF or
ENABLE/DISABLE statement is not valid.

Undefined variable. An identifier was referenced that
has no current value.

Zero or minus subscript. An array subscript did not
evaluate to a positive value.

Scalar variable subscript. A non-array variable was
referenced with a subscript.

Wrong number of subscripts. An array variable was
referenced with the wrong number of subscripts.
Invalid combination of operands. An array name was
assigned to a scalar.

Type mismatch. An attempt was made to assign an
entire array to a scalar variable, or a string value to a
numeric variable, or a numeric value to a string vari-
able. Also given for invalid array-to-array assignment
by a rompack (RCALL).

Numeric expected, something else found. A state-
ment was expecting a numeric argument, and a string
or other value was encountered.

Array reference without required subscripts. An array
variable was referenced in its entirety in a context
where only an array element reference is valid.

Different size arrays specified in implied operation. An
array-array operation was attempted on arrays that
are dimensioned to different sizes.

String expected but not found. A statement expected
a string argument, but encountered a non-string
value.

Subscript exceeds dimensioned value.

Value or variable expected. Something else, such as
a function reference, or the result of an implied array

operation, was found.

String truncated on assignment or READ operation.

REV AUG 1985

Group IV (70-79) Program Structure Errors.

70

7

72

73

74

75

Incomplete subprogram. An attempt was made to
enter a subprogram that does not have an END
statement.

Invalid line number. An attempt was made to execute
a line that does not exist, or is not valid for execution.

Label error. An attempt was made to assign a value to
a label.

PD roms not available. A requested action required
the program development option, which was not
available.

Invalid use of subprogram name. A subprogram name
was used where a string or numeric value is required.

Main program incomplete. A program has subpro-
grams, and there is no END statement in the main
program.

Group V (80-99) Mathematical Errors.

80

81

82

83

84

85

86

87

88

89

Overflow. This error may also be generated during
internal conversions for some statements such as
DIM.

Underflow.

Divide by zero.

Logarithm error. Attempt to take log of a number less
than or equal to zero.

Exponential overflow.

Trigonometric range error. An argument to an inverse
trig function is out of the valid range (e.g., ASIN(2)).

Exponentiation error. XAY where X< 0, Y non-integer
or OAO.

Square root of negative number.
Tangent overflow.

Integer overflow.

4041 PROGRAMMER’S REFERENCE

90

91

SUM function error. The argument passed to the SUM
function was invalid.

ASK/ASKS function error. The number, order, type or
value of the arguments passed to an ASK or ASK$
function were invalid.

Group VI (100-109) String Function Errors.

100

101

102

103

Error in ASC function. A null string was passed as an
argument to the function.

Error in VAL function. No number was found in the
string argument passed to a VAL or VALC.

REPS$ result length error. The call to REP$ resulted in
a string longer than 32767 chars.

Concatenation error. The concatenation of two strings
resulted in a string longer than 32767 characters.

Group VII (110-119) Memory Errors.

110

111

112

113

114

Memory full. It is still possible to perform certain
tasks, such as DELETEs and SAVEs, in order to free
up memory.

String allocation failure. There is not enough free
memory to allocate a string variabie or temporary.

Insufficient memory to complete a SAVE or LIST
operation.

Data element overflowed input buffer OR illegal
clause used in proceed-mode INPUT statement OR
illegal element in proceed-mode INPUT list.

Memory fragmented.

4041 PROGRAMMER’S REFERENCE

ERROR MESSAGES

Group VI (120-139) User-defined Function Invocation
Errors.

124

125

126

Function assignment error. No value was assigned to
the function name by a function subprogram.

Scalar function error. At the beginning of execution of
a statement, an identifier was a variable, but before
the end of execution of the statement a user function
has been entered with that name.

Invalid function use. A function name is not valid in
the current statement.

Group IX (140-159) User Handler Activation and Return.

140

141

142

143

144

145

146

147

148

Interrupt error. There is no user handler for an en-
abled interrupt.

GOSUB handler existence error. The destination
specified by a GOSUB handler does not exist at the
time of activation.

GOSUB handler segment error. The destination spec-
ified by a GOSUB handler is not in the current subpro-
gram segment.

CALL handler in use error. The subprogram specified
by a CALL handler is already active in the call
sequence.

CALL handler complete error. The subprogram speci-
fied by a CALL handler does not have an END
statement.

CALL handler defined error. The subprogram speci-
fied by a CALL handler is not defined.

CALL handler type error. The name specified for a
CALL handler is not a subprogram name.

Failure on return. It was not possible to returnin a
valid manner after execution of a handler.

Improper return. The type of return is not appropriate

for the handler or subprogram/ function being
returned from.

A-3

ERROR MESSAGES

Group X (200-579) Basic Statement Errors.

Each subgroup is preceded by a universal error code that
maiches any error arising from execution of that BASIC
statement, but is not in itself an actual error code.

* 200 Statement error code for APPEND

201 APPEND line limit reached. It is no longer possible to
append any more lines without moving existing lines.
Lines already appended remain.

202 APPEND file format in error. The file format or type of
file is not valid for an append.

* 210 Statement error code for CALL

211 Subprogram in use. The subprogram or user function
is already active in the call sequence.

212 Expression passed to variable parameter. An expres-
sion (rather than a variable) was passed as an argu-
ment to a variable (reference) parameter.

213 CALL name not subprogram. The name called by a
subprogram or user function is not a valid subpro-
gram/function name.

214 CALL name not defined. The name called by a sub-
program or user function is not currently defined.

215 Subprogram incomplete. The subprogram or user
function that was called does not have an END
statement.

216 Parameter not defined. An argument passed to a sub-
program or user function does not currently have a
value.

217 Subprogram passed as value parameter. The name of
a suprogram or user function was passed to a value
parameter.

218 Wrong number of arguments. The number of argu-
ments in a call to a subprogram or user function do
not match the number of parameters defined for that
subprogram.

219 Parameter types don’t match. The type of an argu-

ment passed to a subprogram or user function does
not match the type of the parameter passed to.

A4

* 220 Statement error code for CLOSE

* 230 Statement error code for COMPRESS
* 240 Statement error code for COPY

* 250 Statement error code for DELETE

251 Deleted subprogram active. A subprogram to be
deleted is currently active in the call sequence.

252 DELETE of SUB statement. An attempt was made to
delete a SUB or FUNCTION statement without delet-
ing the entire subprogram segment.

* 260 Statement error code for DIM, INTEGER, LONG

261 lllegal DIM type. The type of the identifier in a DIM
statement is not valid for array typing.

262 lllegal DIM value. The subscript for a DIM statement is
not a valid positive number.

* 270 Statement error code for DIR

* 280 Statement error code for DISABLE —

* 290 Statement error code for DISMOUNT

* 300 Statement error code for ENABLE

* 310 Statement error code for EXIT

311 Invalid level count on EXIT. An EXIT statement had a
level count greater than the number of nested FOR
loops.

* 320 Statement error code for FOR, NEXT

321 FOR not local. The FOR statement and its matching
NEXT statement are in different subprogram
segments.

322 Control variable error. The FOR statement specifies a
different control variable than its matching NEXT
statement.

323 FOR statement deleted. The FOR statement has

been deleted from the program list before the FOR
loop finished execution.

4041 PROGRAMMER'’S REFERENCE

324 Invalid flow of control on FOR. An attempt was made
to return to a FOR statement from a NEXT statement
without exiting a subprogram or subroutine that had
been called since the FOR statement was last
executed.

325 Nested FOR used same control variable as an outer
loop.

* 330 Statement error code for FORMAT

* 340 Statement error code for GETMEM

341 No buffer specified on a GETMEM.

* 350 Statement error code for GOSUB, GOTO

352 Line number not local. The line to branch to is not in
the current subprogram segment.

* 360 Statement error code for IF
* 370 Statement error code for INIT
* 380 Statement error code for INPUT

381 Input data not valid for this argument or data ran out
before argument list did.

* 390 Statement error code for assignment, REP$

391 Invalid target variable. The variable being assigned to
is not valid for the value being assigned.

* 400 Statement error code for LIST, SLIST

401 Line cannot be uncompiled. A RENUMBER of a line
has made it impossible to list that line.

402 Invalid line number. The value of a line numberin a
LIST statement is not valid.

* 410 Statement error code for LOAD
* 420 Statement error code for OFF

* 430 Statement error code for ON

* 440 Statement error code for OPEN

* 450 Statement error code for POLL

4041 PROGRAMMER’S REFERENCE

ERROR MESSAGES

451 Bad primary address in POLL list.
452 Bad secondary address in POLL list.
* 460 Statement error code for PRINT

* 470 Statement error code for PUTMEM
471 PUTMEM overflowed user buffer.
472 No buffer specified on a PUTMEM.
* 480 Statement error code for RBYTE
481 Operand(s) invalid in proceed mode.
* 490 Statement error code for RCALL

491 Romcall routine not found. Probably due to an error in
typing the romcall routine name.

* 500 Statement error code for READ

501 End of READ data. There was insufficient data to
complete the READ item list.

* 510 Statement error code for RENAME

* 520 Statement error code for RESTORE

522 RESTORE line not DATA statement. The line number
referenced by a RESTORE statement is not a DATA
statement.

523 RESTORE line number not local. The line number
referenced by a RESTORE statement is not in the
current subprogram segment.

* 530 Statement error code for SAVE

531 Incomplete subprogram error. An attempt was made
to save a subprogram segment after saving an incom-
plete (no END statement) subprogram segment.

532 Bad item file format. The file specified for a load or ap-
pend in item format is either not a program file or is
damaged.

* 540 Statement error code for SELECT

* 550 Statement error code for SET

A-5

ERROR MESSAGES

551

552

553

554

Errorin SET statement. There is an error in the con-
struction of a SET statement.

SET argument out of range. An argument to a SET
statement is not within a valid range for that
argument.

Invalid FUZZ argument. An invalid number of digits
were specified for FUZZ.

Bad date and time string. The string specifying the
date and time in a SET TIME statement does not form
a valid date and time.

* 560 Statement error code for WAIT

561

WAIT value not valid. The value specified in a WAIT
statement does not represent a valid time unit.

* 570 Statement error code for WBYTE

571

572

WBYTE operand invalid.

Operand(s) not valid in proceed mode.

Group Xl (700-769) 1/O Errors.

700

701

702

703

704

705

706

A-6

Specified driver not present in the system. Probably a
misspelled driver name, or a port number for an
option that isn’t available.

Too many left parenthesis characters.

Too many right parenthesis characters.

Unrecognized parameter. Each driver has a set of
legal parameters.

Missing parameter right half. Each parameter must
have a value assigned.

Boolean parameter has a bad value. Booleans must
have values of O or 1.

Integer parameter has a bad value.

707

708

709

710

711

712

713

714

715

716

717

718

719

750

751

752

753

754

755

756

757

758

759

Real parameter has a bad value.

Clock tick parameter has a bad value.
Stream spec ended with a quote character.
Stream spec ended inside a string value.
Too many colon characters in stream spec.
Right parenthesis encountered in bracket.
Non-numeric encountered in numeric value.
Not enough characters in stream spec.

No number found by operating system call.
Missing left half of a parameter.

Bracket number too big.

Driver name not satisfied.

The SYSDEYV stream spec has no driver spec
component.

USING syntax error.

Data type and format do not match.

Data did not match %, @,| USING format.

Logical unit not open when it should be.

No logical unit open when data transfer attempted.
Input buffer too small.

Checksum failure on % format data.

Header failure on @,1,% format data.

Run out of data on % format data.

Numeric overflow on binary, octal, or hexadecimal
input.

4041 PROGRAMMER’S REFERENCE

Group Xl (770-799) GPIB Function Errors.

770

771

772

773

774

775

777

778

779

Bad data byte value in ATN function.
Missing DIO operand in PPC function.
Missing sense operand in PPC function.
Invalid DIO operand in PPC function.
Invalid sense operand in PPC function.

Invalid listen address. invalid listen address in PPC
function.

Invalid address in an addressed command function
(GTL,SDC,GET,TCT).

Invalid operand in SRQ function.

Invalid use of GPIB function.

Group Xill (800-839) GPIB Driver Errors.

800

801

802

803

804

805

Invalid MA value in stream spec. Value must be in the
range 0..30.

Invalid SC value in stream spec. Value must be either
YES (1) or NO (0).

Invalid PRI value in stream spec. Value must be in the
range 0..31. Note that the value of 31 is interpreted as
addressing the interface itself, rather than a particular
instrument attached to the bus.

Invalid SEC value in stream spec. Value must be in
the range 0..32. Note that the value of 32 is inter-
preted as a request for no secondary address to be
associated with the logical unit.

Invalid TRA value in stream spec. Value must be
either NOR (0), FAS (1), or DMA (2).

Interface does not support DMA transfer mode. The
standard interface supports normal and fast transfer
modes, while the optional interface also supports di-
rect memory access mode.

4041 PROGRAMMER’S REFERENCE

806

807

810

811

812

814

815

816

817

818

820

821

822

ERROR MESSAGES

Invalid IST value in stream spec. Value must be TRU
(1) or FAL (0).

Invalid PNS value in stream spec. Value must be in
range 0. .63 or 128. .191.

Operation attempted which is not supported. File
operations are not supported by the interface.

Data transfer operation timed out. Each data byte is
given a programmable amount of time to be transfer-
red before this error is reported.

No listener on the bus. This indicates either no instru-
ments on the bus, or no instrument at the particular
address specified in the stream spec.

Serial poll attempted when interface not CIC. Only the
controller-in-charge can execute a POLL statement.

Autopoll attempted when SRQ not true. One or more
instruments must be sending SRQ before an autopoll
is executed.

Autopoll failed to detect SRQ source. Autopoll only
succeeds if a status byte is received from an instru-
ment with the rsv bit true.

Instrument failed during autopoll. This error occurs if
an instrument returns a status byte with rsv faise, and
releases SRQ.

Explicit poll of non-existent instrument. If a list of
addresses is supplied in the POLL statement, all
addresses must respond with status bytes when
polled.

WBYTE tried to send {FC when interface not SC. Only
the system controller can send the interface clear
message.

WBYTE tried to send REN when interface not SC.
Only the system controller can send the remote
enable message.

WBYTE tried to send ATN when interface not CIC.

Only the controller-in-charge can send the ATN
message.

A.7

ERROR MESSAGES

823

824

825

826

827

831

WBYTE tried to output when interface not talk
addressed. The interface must be talk addressed
before data can be output to the bus.

RBYTE tried to input when interface not listen
addressed. The interface must be listen addressed
before data can be input from the bus.

WBYTE tried to send SRQ when interface not talker/
listener. Only a talker/listener can send the service
request message.

Parallel poll attempted when interface not CIC. Only
the controller-in-charge can execute a parallel poll
(ATN(EOI)).

WBYTE sent TCT when no talker addressed. Some
instrument must be talk addressed before the TCT
command is sent.

830 Interface unable to take control of bus. The atten-
tion message was false even after the interface tried
to take control asynchronously. This indicates a hard-
ware problem.

Take control synchronous operation timed out.

Group XIV (840-879) Tape Driver Errors.

840

841

842

843

844

845

A-8

Lamp/Servo failure. The hole detect lamp has burned
out or the servo could not get the tape up to speed in
allotted time.

End of tape detected. An attempt to locate a record on
the tape has caused the end of tape to be detected.
This normally means that an inter-record gap was not
detected.

Cartridge not in place. An attempt was made to ac-
cess the tape drive without a tape cartridge in the
drive.

Write inhibit. An attempt was made to write to the tape
while the write protect tab was set to write protect.

Data overflow. The data service for the tape was not
made in the time required and data was lost.

Additive checksum failure. The additive checksum for
a header did not match the caculated checksum. This
means the record data was read in incorrectly.

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

Incorrect record header. The record number read was
not the record number expected.

Cyclic redundancy check failure. The cyclic redun-
dancy check at the end of a record was in error. Prob-
able cause: bad tape.

Gap detected. An inter-record gap was detected while
writing or reading.

Timeout failure. The tape drive did not respond within
the time expected.

File already exists. An attempt was made to create a
file as “new” that already exists on the tape.

No space available. An attempt was made to create a
file larger than the available space on the tape or an
attempt was made to create a 49th file.

lllegal record number. An attempt was made to do a
physical read/write to a non-existent record number
for the tape being used.

No file exists. An attempt was made to open afile
name that does not exist on the tape.

Write after read. An attempt was made to write to a
tape file after one or more reads was made to a file.

End of file reached. The end of file was reached while
accessing a tape file.

lllegai command. An illegal command was given to
the tape drive (firmware error).

File not open. An attempt was made to access a tape
file when the file had not been opened.

Wrong data type. An attempt was made to access a
tape file with the wrong data type. An item file was
passed ASCII data or an ASCII file was passed binary
data.

Cannot access directory in physical mode.

File access failure. An attempt was made to open a
tape file for reading while it was already open for writ-
ing, OR the tape was in logical mode and an attempt
was made to open it in physical mode, OR the tape
was in physical mode and an attempt was made to
open it in logical mode.

4041 PROGRAMMER’S REFERENCE

861

862

863

864

865

invalid tape. The tape inserted in the tape drive is not
the original tape for the file being accessed.

lllegal SYSDEV request or attempt to set tape as sys-
tem console device. A SET SYSDEYV statement
attempted to set a parameter to an illegal value

(OPE = REP, OPE = UPD, or PHY = YES), ora SET
CONSOLE statement attempted to make the tape the
system console device.

Directory read error. The directory could not be read
without detecting an error.

Invalid tape. An attempt was made to close an up-
dated file with a different tape inserted in the drive.

Read after write failure. The read after write function
detected an error.

Group XV (880-899) RS-232 Driver Errors.

880

884

885

886

887

888

889

890

Invalid request in item format. The EOM parameter
may specify one or two characters, and each must
have an ASCII code in the range 0 thru 127.

Invalid driver request. An I/O operation was attempted
which was not posssible to perform on an RS-232
interface.

Time out limit exceeded. The /O operation could not
be completed within the time specified by the time out
parameter.

Typeahead buffer overflowed. The size of the type-
ahead buffer specifed is not large enough to hold all
incoming data.

Invalid combination of BITs and PARity parameters.
Only some combinations of these are valid.

Invalid baud rate specified.

Overrun error. A character received was lost, because
a second character was received before the first could
be placed in the typeahead buffer.

Parity error. A character was received with a parity bit
that did not have the correct value as specified by the
PARity parameter.

4041 PROGRAMMER’S REFERENCE

891

ERROR MESSAGES

Framing error. The RS-232 hardware did not detect a
stop bit or bits (as specified by the STOP parameter)
following the character that was received.

Group XVI(900-919) Front Panel Driver Errors.

900

901

902

903

904

905

906

907

908

909

910

911

Interrupt Output Routine Mistakenly Called. The front
panel ACIA has been enabled for output interrupts
without a flag being set indicating to the interrupt rou-
tine that it is in the output state.

ACIA overrun error. During data transmission the
ACIA data register has been overrun and data has
been lost.

ACIA framing error. The transmission to the ACIA is
out of synchronization.

ACIA fatal error. The ACIA has interrupted without any
indication of what the interrupt is.

Unwanted Query Response. The front panel interrupt
routine has been sent a handshake from the front
panel processor when it was not expecting one.

Front Panel Printer Problem. On a print request the
front panel processor is reporting that some error has
occurred while accessing the printer.

litegal wakeup message. The front panel driver has
been woken up by a message that was not sent from
the interrupt routine.

Flush Task Code. The operating system has flushed
the front panel driver or the driver has timed out.

Unable to allocate memory. The front panel driver was
not able to allocate enough memory to perform the
specified task.

lilegal Request Message. The format of the message
sent to the front panel driver is illegal.

lilegal Driver Request. The front panel driver does not
recognize the specified request.

Front panel timeout.

APPENDIX A
Group XIX

ERROR MESSAGES
ERROR 1208
CODE DEFINITION

1201 llegal file/volume name. The file or
volume name specified contains illegal
characters. The legal characters allowed
are ‘A-Z, 1-9’, underscore and period.
The underscore and period cannot be
the first character, but can be any other

character including the last character. 1209

1202 Insufficient room on disk for file. An
attempt was made to create a file with a
size specified that exceeds the largest

free space on the disk. 1210

1203 Insufficient space in directory for file
specified. An open for ‘'NEW’ was issued
with a full directory. If this occurs often
and the full disk space is not entirely
used, future disks should be formatted
with additional directory entries. See the
‘ENT=nnn' stream specification
parameter for more details.

1211

1204 Attempted to open an existing file as

‘NEW'. This warning message indicates

file already exists. If the file is to be

overwritten, use the 'REPlace’

parameter for the open type.

1212

1205 Attempted to open a non-existing file.

An attempt was made to open a non-

existing file with a stream specification

stating ‘OLD’ or ‘UPDate’. 1213

1206 END-OF-FILE reached for disk file
specified. While reading from a file an
attempt was made to obtain data 1214
beyond the last item on the file. If the
end-of-file must be detected prior to
data access, use the ‘ON EOF(n)y’
feature of 4041 Basic. 1216

1207 Unformatted or illegal disk/diskette. An
attempt was made to access a hard disk
or floppy disk that was not formatted
with 4041 Basic. This message may also
be reported when a disk does not
contain a disk/diskette or the 1217
drive/controller is malfunctioning.

4041 PROGRAMMER'S REFERENCE ADD OCT 1984

ERROR MESSAGES

An error also occurs when system
device and logical unit addresses do not
match the address of the device on the
SCSI cable.

Wrong data type. An attempt was made
to input item data from a disk file with
the target variable being an incorrect
data type (i.e. input to a string and data
item is a scalar). The next data type can
be obtained by issuing a ‘type(n)
function for the logical unit assigned to
the disk file.

Rbyte/Wbyte record number out of
range. An attempt was made to access
a non-existing sector on a disk in
physical mode.

Physical mode access failure. An
attempt was made to issue a
Rybte/Wbyte to a logical unit open in
logical file mode. To use Rbyte/Wbyte to
the disk, the logical unit must be open
with the ‘PHYsical=yes’ stream
specification.

Directory entries greater than 1/16 of
disk. An attempt was made to format a
disk specifying more directory entries
that can be placed on 1/16 of the disk.
The ‘ENT’ parameter specifies the
number of directory entries. The number
of sectors used for the directory can be
obtained using the following formula.

lllegal physical mode operation. The
number of parameters being passed
were incorrect or out of range.

Write protected media. An attempt was
made to write to a file on a disk that had
a write protect tab in place.

Read after Write verification failure. The
data read back, from a sector just
written, was incorrect.

Parity error on data transfer. The data
transferred to/from the disk drive caused
a parity error. This error can only occur if
the PARity stream specification param-
eter is set to YES.

An attempt was made to rename a file to
an existing file name on the same disk.

A-11

ERROR MESSAGES

NOTE
The following error codes are specific to the SCSI HIW
contained on the Option 03 board and normally should
not be encountered by the user. If these error codes
appear regularly, they may indicate an Option 03 hard-
ware problem.

1221 SCSI chip detected an illegal command.
This error normally indicates that the
firmware and hardware are out of sync
with each other.

1222 No function complete after SELECT with
Attention. When the Option 03 firmware
issued a select to a disk device, the first
response was not a function complete.
This indicates Option 03 board hardware
problems.

1223 SCSI aux register incorrect after SELECT
with Attention. This error, similar to error
1222, indicates Option 03 board hardware
problems.

1224 No function complete on disconnect.
When the disk device tasks were
completed, the response received from
the Option 03 specified the device had
disconnected from the SCSI bus, but the
interrupt status register did not contain
the correct status for this operation. This
also indicates possible Option 03 board
hardware problems.

1225 SCSI Operation Complete error. This
error indicates that during the disk
operation completion phase, an error was
discovered. This error should never be
displayed to the user because the error
detected was sent from the disk controller
and the actual error number sent is
mapped into error codes 1240-1299.
Thus, if a disk controller sent an error
code 01, the user would see error code
1241. Since each manufacturer of disk
controllers uses different error numbers,
the user needs to subtract the base value
of 1240 (decimal) to obtain the actual
error code sent from the disk controlier.
The same error number sent can also be
obtained by issuing an 'ASK$(“lu”,n)’ for
the logical unit numbering being used and
obtain the error code from the 'SEN-xxx’
parameter.

1226

1227

1228

1229

SCSI chip data byte timeout error. The
SCSI chip indicated a data byte reading
was available, but did not present that
byte of data within a reasonable period of
time. This error indicates possible Option
03 board hardware problems.

Command Complete not received for last
operation issued. This error indicates
possible Option 03 board hardware
problems.

SCSI chip power-up diagnostic failure.
This error indicates the SCSI controller
chip did not pass its power-up diagnostic
tests. The user may wish to try powering
off the 4041 and then re-applying power
to see if this error goes away. If the error
remains, the SCSI chip is in operative and
Tektronix service personnel shouid be
notified.

SCSI selection timeout. An operation was
issued to a device on the SCSI bus with
no respeonse received. This error may
indicate a hardware problem with the
Option 03 board or the device being
accessed.

N
NOTE

The following errors are controller and device specific

errors.

A-12 ADD OCT 1984

1240 - 1499 These errors indicate actual errors

received from a disk controller with the
base of 1240 (decimal) added. The same
error code can be examined using the
‘ASKS$(“lu”,n) function (‘'n’ being the
device's logical unit number) and the
stream specification parameter
‘SEN=xx" (the sensed error code
received from the disk controller). The
stream specification parameter is not
cleared by Option 03 until the logical unit
is closed or until another device error is
received.

4041 PROGRAMMER'S REFERENCE

Error Codes 2000 and Up

Error codes 2000 and up are reported differently. The 4041
adds an offset vaiue of at least 2000, and divisible by 1000,
to the error code. The offset value added represents the
error code group. Associating an offset value with a particu-
lar error code group is dependent on the configuration of the
4041, and can be determined by the command:
ASK3(“rompack”). For example, a 4041 with Options 01,
10, and 30 will return the following to the command
ASK$(“rompack™).

GRPH,2000:PLOT,3000;SGPR,4000;: UTL1,5000;
OPT1.PD:I0: X0O;UTL2,6000

If the 4041 should report an error of, let's say, 6014, the
command ASK$(“rompack”) would be used to determine
the error code group. First, the highest number divisible by
1000 that can be subracted from the error code, with the
result being a positive integer, is subracted; in this case,
6000. Next, ASKS$(“rompack”) is used to find the error code
group in that range (6000 - 6999). In the above example, it
would be found to be “UTL2". Refering now to the error
codes listed for UTL.2 (below), error 14 (6014 — 6000 = 14)
is found to be “array types not the same’.

in the above example, error codes for Option 10 are listed in
the range 2000 to 5999 (GRPH = Graphics, PLOT = Plot-
ting, SGPR = Signal Processing, UTL1 = Option 10 Utili-
ties), and UTL2 errors begin at 6000. Refer to the Option 10
instruction manual for error code listings for Option 10.

UTL2 Errors

NOTE

Errors for UTLZ2 will be reported with an offset value
added. Refer to the above discussion, “Error Codes
2000 and Up".

1 Incorrect number of parameters passed.

2 Integer array type expected as parameter and not
found.

3 Integer scalar type expected as parameter and not
found.

4041 PROGRAMMER'S REFERENCE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ADD DEC 1985

ERROR MESSAGES

NO data bytes transferred over the IEEE-488 bus.

Not enough memory available for data passed over
the IEEE-488 bus.

Bit count is out of range (i.e. 8 < bit count < 16).

Odd number of bytes transferred over the iEEE-488
bus.

Checksum failure.

Parameter type incorrect.

Real array type expected and not found.

Source array not defineij.

Segment extends beyond array bcundaries.
Destination array not large enough for segment.
Array types not the same.

Destination array parameter not numeric array type.

Real scalar type expected as parameter and not
found.

Destination array dimensioned too small for source
array.

Source array not real or integer array type.

Destination array dimensioned too small for incoming
data.

No percent sign found in data transfered.
Source array not integer array type.
Source array not real or integer array type.

An attempt was made to reference an array element
out of bounds.

Integer array expected as destination array and not
found.

A-13

Appendix B

ASCII (GPIB) CODE CHART

B7 g)4 4)4 1 1 1 1
B6 - 4 4 1 1)4 g 1 1
BS -4 1 & 1 4 1)4 1
BITS
NUMBERS
CONTROL SYMBOLS UPPER CASE | LOWER CASE
B4 B3 B2B1
0 20 40 0|60 16§ 100 of 120 16f 140 o[160 16
55002 NUL | DLE| SP | 0 @ P . p
Q 0]10 1620 32 |30 48 40 64 | 50 80 60 96 | 70 112
1 GTL| 21 LLOJ 4t 161 174 101 11121 17§ 141 1] 161 17
g o 1| SOH | DC1 ! 1 A Q a q
1 111 1721 33 |31 49 4 41 65 | 51 81461 97 | 71 113
2 22 42 2|62 184 102 2] 122 18] 142 2162 18
g # 1 g STX | DC2 " 2 B R b r
2 212 18§22 34 |32 50 f42 66 | 52 82 62 98 | 72 114
3 23 43 ale3 19103 3| 123 19 143 3]163 19
91 1] ETX | DC3 # 3 C S c s
3 3113 19423 35 |33 51§43 67| 53 834 63 99 (73 115
4 sDC | 24 DCL | 44 4 (64 20104 4] 124 20f 144 4164 20
e 1+ o #| EOT | DC4 $ 4 D T d t
4 4114 20024 36 |34 52 g 44 68 | 54 84§64 100 | 74 116
5 PPC | 25 PPU{ 45 5 |65 21105 5[125 21 145 5[165 21
1 9 1] ENQ | NAK % 5 E) e u
5 5115 21125 37 {135 53 g 45 69| 55 85 65 101 (75 17
6 26 46 & |66 22106 6| 126 22 146 6| 166 22
211 g| ACK | SYN & 6 F A f v
6 6|16 22126 38 |36 54 46 70 | 56 86 || 66 102 | 76 118
7 27 47 7 |87 234107 71127 23 147 7167 23
’
11 1] BEL | ETB 7 G w g
7 7117 23§27 39 [37 55 47 71157 87967 103 | 77 119
10 GET | 30 SPE | 50 8 |70 244110 8| 130 24] 150 8| 170 24
199 2| BS | CAN (8 H X h X
8 8118 2428 40 |38 56 g48 72|58 8s) 68 104 | 78 120
1 TCT | 31 SPD | 51 ‘R EAl 25111 gl 131 26 15t 9|17 25
1298 1| HT EM) 9 I Y i
8 9119 25§29 41 139 57 §49 73| 59 89469 105 | 79 121
12 32 52 10 |72 o6 112 10} 132 26 152 10 {172 26
191 2] LF | SUB > : J p4 i z
A 10 [1A 26 2A 42 13A 58 J4A 74 | 5A 90 g 6A 106 | 7A 122
13 33 53 11 |73 27113 11| 133 270 153 11 {173 27
1911 VT | ESC| + ; K [k (
B 11118 274 2B 43 |3B 59 §4B 75|58 9168 107 |78 123
14 34 54 12 |74 2 f114 12} 134 28§ 154 12 | 174 28
*
11929| FF | FS , < L \ | |
Cc 1211C 28g2C 44 {3C 6044C 76 | 5C 9246C 108 | 7C 124
15 35 55 13 |75 29115 13135 294155 13 175 29
1191] CR GS - = M m }
o] 131D 29420 45 13D 61§40 77 | 50 936D 109 | 70 125
16 36 56 14 |76 aof116 14 [136 30 156 14 | 176 ~ 30
111 8| SO RS . > N n
E 14 11E 30) 2E 46 |3E 62 J4E 78 | 5E 94 § 6E 110 { 7E 126
17 37 57 15 |77 UNL 117 15| 137 UNT§ 157 15 | 177 DEL
11 11 SI us / ? o —_ o (RUBOUT)
F 15 | 1F 31 2F 47 |3F 63 §4F 79§ 5F 95 § 6F 111 | 7F 127
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS
(PPE) (PPD)

KEY *: on some keyboards or systems

octal {25 PPU | GPIB code aniXQ
NAK ASCII character COMMITTED TO EXCELLENGE

hex 115 211 decimal REF: ANSI STD X3. 4-1977
IEEE STD 488-1978
ISO STD 646-1973

TEKTRONIX STD 062-5435-00 4 SEP 80
COPYRIGHT © 1979. 1980 TEKTRONIX, INC. ALL RIGHTS RESERVED.

4041 PROGRAMMER’S REFERENCE

Term

abort

active call
sequence

argument

arithmetic
operator

array

array variable

ASCll Code

assignment
statement

Appendix C

GLOSSARY

Definition

To terminate the execution of a
program or command. The terminated
program or command can be restarted,
but cannot be continued from the
termination point.

The sequence of program segments
executing. The sequence always
contains the main program segment,
and also includes any subprogram
segments that are invoked or being
returned from.

A value operated on by a function or
keyword.

An operator that describes an
arithmetic operation. Arithmetic
operators in 4041 BASIC include +,
—*,/,1,DIV, MOD, MIN, and MAX.

A collection of data items referenced
by a single variable name. in 4041
BASIC, arrays may be one- or two-
dimensional, i.e., organized into rows,
or rows and columns.

A name corresponding to a (usually)
multi-element collection of data items.

A standardized code of alphanumeric
characters, symbols, and special
“control” characters. Each of the 128
characters in the ASCII character set
is uniquely represented by a seven-bit
binary code and by a decimal
equivalent. ASCll is an acronym for
American Standard Code for
Information Interchange.

A statement used to give a valueto a
variable.

4041 PROGRAMMER’S REFERENCE

Term

BASIC

BASIC
interpreter

binary
operator

bit

byte

character

string

concatenate

console

constant

Definition

An acronym derived from Beginner’s
All-purpose Symbolic Instruction
Code. BASIC is a high-level
programming language that uses
English-like instructions.

A set of microprocessor instructions
that give the 4041 the ability to
understand and execute BASIC
statements. The BASIC interpreter
resides in Read Only Memory and is
part of the operating system.

Operators that return values based on
the binary representations of their
operands. Binary operators in 4041
BASIC include BAND, BOR, BXOR, and
BNOT.

A binary digit. A unit of data in the
binary numbering system; a 1 or O.

A group of consecutive binary digits
operated on as a unit. One ASCII
character, for example, is represented
by one binary byte.

A connected sequence of ASCII
characters, sometimes referred to
simply as a “string”’.

To join together two character strings
with the concatenation operator (&),
forming a longer character string.

The part of the computer system used
for communication between the
operator and the computer.

A number that appears in an
expression in its actual form. In the
following expression, 4 is a numeric
constant: X =4 *P_In the following
expression, “JOHN"” and “DOE” are
string constants: Name$ = “JOHN” &
CHR$(32)&"“DOE".

C-1

GLOSSARY

Term

debug

default

delimiter

degree

direct memory
access (DMA)

driver

dyadic

error

error handler

execute

expression

C-2

Definition

The process of locating and correcting
errors in a program; also, the process
of testing a program to ensure that it
operates properly.

The property of a computer that
enables it to substitute values for
statement parameters when none are
specified.

A character that fixes the limits, or
bounds, of a string of characters.

1/90th of a right angle.

A 4041 optional feature (Option 01)
which allows data transfer directly
from the GPIB bus to memory without
processor intervention. This allows for
a very high-speed transfer burst.

A special firmware program that
controls an external device or
interface between devices.

Referring to an operator having two
operands.

A discrepancy between an expected
or required condition and the observed
condition; a fault or failure.

Instructions within a program that
determine what action is taken when
an error is detected.

To perform the operations indicated by
a statement or group of statements.

A collection of variables, constants,
and functions connected by operators
in such a way that the expression as a
whole can be reduced to a constant.
Expressions can be either numeric
expressions or string expressions.

Term

function

GPIB

grad

handshake

index

initialize

input

integer

interrupt

justify

keyboard

keyword

Definition

A special purpose operation referring
to a set of calculations within an
expression, as in the sine function,
square root function, etc. The user
may define functions in 4041 BASIC
using the FUNCTION statement.

An acronym for general-purpose
interface bus. An eight-bit parallel
interface that meets IEEE 488-1978
specifications.

1/100th of a right angle.

Greeting protocol between two
devices. Each device must send and
respond to this series of signals prior
to data transfers.

A number used to identify the position
of a specific quantity in an array or
string or quantities. (For arrays, also
referred to as a “subscript”.)

Set all parameters to their initial
power-up or default values.

Data transferred to the 4041 memory
through a firmware driver.

A whole number in the range from
—32768 to 32767. It cannot contain a
decimal point.

To cause an operation to be halted in
such a fashion that it can be resumed
at a later time.

To align a set of characters to the right
or left of a reference point.

The device that encodes data when
keys are pressed.

An alphanumeric code that the 4041

recognizes as a function to be
performed.

4041 PROGRAMMER’S REFERENGCE

Term

line number

logical
operator

logical unit

mantissa

memory

monadic

numeric
constant

numeric
expression

Definition

A number establishing the sequence
of execution of lines in a program. In
4041 BASIC, line numbers must be
whole numbers in the range from 1 to
65535.

Operators that return logical 1’s and
0’s; specifically, the AND, OR, XOR,
and NOT operators. “True” operations
return “1”, “false’” operations return
“0".

A way of symbolically referencing an
170 driver. The OPEN statement
connects the symbolic logical unit
number with the 1/0 driver and its
parameters (/0 stream specification).

In scientific notation, that part of the
number that precedes the exponent.
For example, the mantissa in the
number 1.234E+ 200 is 1.234.

Generally refers to the random access
memory, RAM, used to store 4041
BASIC programs and data, as opposed
to the read-only memory, or ROM.

Referring to an operator that has only
one operand.

Any real number entered as numeric
data; also, the contents of a numeric
variable.

Any combination of numeric
constants, numeric variables, array
variables, subscripted array variables,
numeric functions, or string relational
comparisons enclosed in parentheses,
joined together by one or more
arithmetic, logical, or relational
operators in such a way that the
expression as a whole can be reduced
to a single numeric constant.

4041 PROGRAMMER’S REFERENCE

Term

numeric
function

numeric
variable

operand

operator

output

parameter

polling

program

program
segment

protocol

radian

GLOSSARY

Definition

Special purpose mathematical
operations that reduce their
associated parameters (or arguments)
to a numeric constant.

A variable that can contain one or
more numeric values. Simple (or
“scalar’’) numeric variables contain a
single numeric value; array numeric
variables may contain more than one.

Any of the quantities involved in an
operation. Operands may be numeric
expressions or constants. In the
numeric expression A = B+ 4*C, the
numeric variables B and C and the
numeric constant 4 are operands.

A symbol indicating the operation to
be performed on one or two operands.

Data transferred from the 4041
memory to a driver.

A quantity whose value affects the
way the 4041 executes statements.

Interrogation of devices to determine
status or to avoid contention.

A series of instructions in a form
understandable to a computer.

A section of a program bounded by
either: a) the program start and an
END statement (the main program
segment) or b) a SUB or FUNCTION
statement and an END statement (a
subprogram segment).

A code or precedence that must be
strictly adhered to.

A unit of arc equal to 360°%/(2*PI).

C-3

GLOSSARY

Term

RAM

relational
operator

ROM

ROM pack

rounding

scalar

scientific
notation

segment

c-4

Definition

Random access memory; the memory
used for temporary storage of
programs and data and as workspace
during program execution.

An operator that causes a comparison
of two operands and returns a logical
result. Comparisons that are “true”
return a “1”, comparisons that are
“false” return a “0”. The relational
operators in 4041 BASIC are =, < >,
<, >, < =,and > =.

Read-only memory; that portion of the
system memory that cannot be
changed by the user. The 4041 BASIC
operating system and firmware resides
in ROM.

A portion of ROM supplied in a form
that can be added to or removed from
the 4041. It generally supplies
additional instructions or features to
the standard ROM.

Adjusting the least significant digits
retained in truncation to partially
reflect the dropped portion. For
example, when rounded to three digits,
the number 2.7561 becomes 2.76.

A single numeric or string value.

A format representing numbers as a
fractional part, or mantissa, and a
power of 10, or characteristic, as in
1.23E45.

A portion of a 4041 program.
Segments can be of two types: (1)
“main” program segments, bounded
by the first statement in the program
and the first END statement; or (2)
“subprogram’” segments, bounded by
a SUB or FUNCTION statement and an
END statement.

Term

statement

string

string constant

string
expression

string function

string variable

subprogram

subscript

substring

Definition

A keyword plus any associated
parameters.

A connected sequence of
alphanumeric characters.

A string of characters of fixed length
enclosed in quotation marks; also, the
contents of a string variable.

An expression that evaluates to a
string constant.

Special purpose functions that
manipulate character strings and
produce string constants.

A variable that contains only
alphanumeric characters, or “‘strings”’.
String variables have a dollar sign ($)
in the last character of their variable
names. They have a default length of
20, i.e., they can contain up to 20
characters without being dimensioned
in a DIM statement.

A segment of a 4041 program
bounded by a SUB or FUNCTION
statement and an END statement.
Sometimes used to denote specifically
subprograms that begin with SUB
statements. Subprograms are usually
arranged in such a way that control
passes to the subprogram and returns
to the point at which the subprogram
was called/invoked when the
subprogram has completed execution.

An index used to refer to an element of
an array. In the following example, 10
is a subscript that refers to the 10th
element of array B: B(10).

A portion of a larger string; “BC”, for

example, is a substring of the string
“ABCD”.

4041 PROGRAMMER’S REFERENCE

Term Definition

target line A program line specified as a
destination for program control or
alteration.

target variable Any variable specified as a target to
receive incoming data or the results of
an operation.

truncating Reducing the number of least
significant digits present in a number,
without reflecting the dropped portion.
For exampie, the number 5 is the
result of truncating the fractional part
of the number 5.76.

4041 PROGRAMMER'S REFERENCE

Term

variable

variable name

GLOSSARY

Definition

A symbol, corresponding to a location
in memory, whose value may change
as a program executes.

A name selected by the programmer to
represent a specific variable.

Cb

Appendix D

STREAM SPECIFICATIONS

When an I/O operation is to be performed using a device
other than the system console, the user must specify the
path the data will take. The user does this by means of
stream specifications and logical units.

A stream specification (*‘stream spec”’, for short) selects a
driver for an I/O operation and specifies parameters (i.e.,
settings) for the driver to use.

Thus, stream specifications define paths for data during I/O
operations.

FORM OF A STREAM SPECIFICATION

Stream specifications are string expressions that take the
form

driver-spec
or
file-spec
or
driver-spec file-spec

If a stream specification does not inciude a driver spec, the
current SET SYSDEV driver spec (default:*TAPE:") is
assumed.

FORM OF A DRIVER SPECIFICATION
Driver specifications take the form
driver-name[(driver-parameter|,driver-parameter)...)]:

Driver specifications consist of a driver name, followed
optionally by one or more parameters in parentheses
describing or modifying the operation of the driver, FOL-
LOWED BY A COLON.

Legal driver names consist of four characters, followed
optionally by a port number for GPIB and COMM drivers. If
no port number is included in the driver name, the port num-
ber 0" is assumed.

The legal driver names can be discovered by invoking the

ASKS$(“‘DRIVER”) function, e.g., executing the statement
PRINT ASK$(‘DRIVER’”’) in immediate mode.

4041 PROGRAMMER'’S REFERENCE

Including the colon in the stream spec is very important,
because if no colon is included the 4041 will assume that
the spec is a file spec, and that the user wants the 1/O oper-
ation performed on the “TAPE:” driver.

Example. Consider the stream spec
"gpibO: ™

This stream spec designates the standard GPIB interface
port as the data path for an 1/O operation.

Now consider the stream spec
"gpibO"

Since no colon is included in the stream spec, the 4041
interprets it as a file spec. Thus, the 4041 assumes the user
wishes the 1/0O operation to be performed with a file named
“GPIBO” on the DC-100 tape.
FORM OF A FILE SPECIFICATION
File specifications take the form

file-name|(file-parameter|,file-parameter]...)]
File specifications, used with directory-oriented file-struc-
tured devices, consist of a file name followed optionally by
one or more file parameters.
If a stream spec does not include a driver spec, the current
SET SYSDEV driver spec is chosen by default, and the

stream spec is interpreted as a file spec (see the preceding
example).

D-1

STREAM SPECIFICATIONS

PARAMETERS

Parameters are ‘‘settings’’ that the user can adjust to mod-
ify the way 1/O operations are performed.

Examples of these settings include:

® The baud rate for the RS-232-C interface(s), controlied
by the “BAUd"’ parameter associated with the COMM
driver(s).

® The primary address of a device on the GPIB (when I/O
is addressed to a particular GPIB device), controlled by
the ‘PRI’ parameter associated with the GPIB driver(s).

® The rate at which characters are scrolled across the
alphanumeric display, controlled by the **‘RATe’’ param-
eter associated with the FRTP driver.

® The End-Of-Message delimiter, controlled by the *“EOM”
parameter associated with each driver.

Parameter names are only significant to three characters.
Additional characters may be included for documentation or
readability, but are ignored otherwise. Parameter names
are given in this section with significant characters in upper
case and additional characters (if any) in lower case.

Within a stream spec, parameters may be specified in any
order.

Parameters are of three types: “logical’”’, “‘physical’’, and
“ASKS$”.

LOGICAL PARAMETERS

Most driver parameters are ‘“‘logical’’ parameters. These
parameters are associated with the characteristics of the
message and the way it is input or output.

Example.

"frip(view=2.0,rate=.25):"

This stream spec specifies that output is to appear on the
front-panel alphanumeric display and remain on the display
for two seconds before the next statement is executed. (If
the next statement is not a PRINT statement to the front
panel, the message will remain on the display.) If the mes-
sage takes up more than twenty characters, characters
after the twentieth “‘scroll”’ in to the right-hand side of the
display at the rate of one every 0.25 second.

Setting Logical Parameters

A logical parameter can be set within any statement that
includes a stream spec by specifying the value of the pa-
rameter within parentheses after the driver/file name.

Default values are used for any logical parameters whose
values are not specified within the stream spec.

Example.
Save "filel(ope=znew,clizyes)"

This command saves a file called File1 on the DC-100 tape,
and specifies that File1 is a new file (not already on the
tape). The SiZe parameter defaults to one-half of the largest
free block remaining on the tape. The file will be **clipped”
when closed, i.e., any unused space previously reserved for
the file is deleted from the file and returned to the available
space pool.

When a logical unit is opened, the logical parameters asso-
ciated with the stream spec used in the OPEN statement
become associated with that logical unit. Any unspecified
parameters in the stream spec go to their default values.

Example.

100 Open #5:"gpibi(pri=5):"
111 Dim setting$ to 300
120 Input #5 prompt "set?":setting$

Line 100 assigns the stream spec ““GPIB1(PRI =5).", desig-
nating the device at primary address 5 on the optional GPIB
interface port, and assigns it to logical unit 5. All other logi-
cal parameters of this stream spec (SEC, EOU, EOQ, etc.)
go to their default values.

Line 120 then asks for input from this device, via logical
unit 5.

4041 PROGRAMMER’S REFERENCE

PHYSICAL PARAMETERS: COMM, GPIB,
AND OPT2 DRIVERS

The COMM, GPIB and OPT2 drivers each have several
“physical’’ parameters. These parameters are not associ-
ated with the logical characteristics of individual message
transfers, but with the device drivers themselves (and
hence only one value can be ve typically set at the start of
program execution and not changed thereafter. [EXCEP-
TION: The GPIB drivers’ IST (Interface STatus) parameter,
used during parallei polls (see description following).]

Examples of physical parameters inciude the baud rate
(BAUd), number of stop bits (STOp), and parity (PARity) for
the COMM drivers, and the system controller (SC) and the
4041’s primary address (MA) for the GPIB drivers.

Physical parameters are set by means of the SET DRIVER
statement. For example, the command in Example D-1 tells
the 4041 that the device connected to the standard RS-232-
C interface port will communicate at a baud rate of 4800
bps, transmit 8-bit bytes with even parity, and use two stop
bits for synchronization.

Setting Physical Parameters: The SET
DRIVER Statement

Physical parameters are set by including their values in a
stream spec inside a SET DRIVER statement.

Both physical and logical parameters may appear in the
stream spec used with the SET DRIVER statement, but only
physical parameters are affected.

Defaults: COMM Drivers

Physical COMM parameters whose values are not specified
within a stream spec contained in a SET DRIVER statement
go to their default values.

STREAM SPECIFICATIONS

Example.

200 Set driver "commO{(bau=300,bit=7,par=odd):
500 Set driver "commO(par=no):"

Line 200 sets the standard RS-232-C interface portto a
baud rate of 300 bps, exchanging seven-bit characters with
odd parity.

Line 500 changes the setting of the PAR parameter to NO
parity; however, it also changes the baud rate back to its
default value of 2400, and the BIT parameter back to its
default value of 8.

Defaults: GPIB and OPT2 Drivers

GPIB and OPT2 physical parameters whose values are not
specified within a stream spec contained in a SET DRIVER
statement remain unchanged from their previous values.

Example.
100 Set driver "gpibO(sc=no,ma=29,ist=fal):"

260 Set driver "gpibO(ist=tru):"

Line 100 specifies that the 4041 is not the system controlier
on the bus attached to the standard GPIB interface port,
that the 4041’s primary address on that bus is 29, and that
the value of its interface STatus message (used for
responding to parallel polis) is false.

Line 200 sets the value of the Interface STatus message to
true, but does not change the other physical parameters.

(Note the difference between the way the GPIB drivers and
the COMM drivers handle the default values for physical pa-
rameters.)

120 Set driver "comm(bau=z4800,par=zeven,bits=8,stop=2):"

Exampie D-1.

4041 PROGRAMMER’S REFERENCE

STREAM SPECIFICATIONS

ASK$ PARAMETERS

Certain parameters on the GPIB and COMM drivers cannot
be specified by the user, but are assigned values by the
4041 during execution. These values provide the user with
information about the status of the driver.

Line 210 invokes the ASK$(“'LU”) function, and prints the
current stream spec associated with that logical unit on the
system console device. Assuming that the standard GPIB
interface port is set to its default settings, the stream spec
contains the settings shown in Example D-2.

“CIC=4" Indicates that the 4041 is in the controller ac-
The user can examine the values of these parameters for a tive state (CACS).
given logical unit by invoking the ASK$(*‘LU"") function. . .) ,
(See Section 5, Environmental Control, for more information TL=0 Ic’ndtpates tr;]at Senher(tjr;e 4041dnor a|r‘1(y other
about ASK and ASK$ functions.) fevice on the bus is addressed to talk or
listen.
“ENA=0" Indicates that no GPIB interrupts are enabled.
Example. . . .
“PEN=0" Indicates that no GPIB interrupts are pending.
200 Open #3:"gpibO(pri=3):"
210 Print ask$("lu",3)
Line 200 assigns the device at primary address 3 on the bus
connected to the standard GPIB interface port to logical
unit 3.
GPIBO(MA=30,SC=YES,CIC=4,TL=0,ENA=0,PEN=0,PRI=3,...
Example D-2.

D-4

4041 PROGRAMMER'’S REFERENCE

STREAM SPECIFICATIONS

LOGICAL UNITS

LOGICAL UNITS AS ““SHORTHAND”’ FOR
STREAM SPECIFICATIONS

A logical unit can be used as a ‘“‘shorthand’ way of refer-
encing a stream spec in an INPUT, PRINT, RBYTE, or
WBYTE statement.

A logical unit is associated with a particular stream spec via
an OPEN statement. After the logical unit is opened, that

stream spec can be referenced by means of the logical unit
ina “#” clause.

Example 1.

1150 Print #"frtp(vie=2.5,rat=0.5):":a,b,c

Example 2.

1140 Open #1: "frip(vie=2.5,rat=0.5):"
1150 Print #1:a,b,c

Examples 1 and 2 produce the same output, with the same
parameters, on the front-panel alphanumeric display. (The
second example would run faster, and hence shows the
preferred method.)

Logical unit numbers may range from 0 to 32767, inclusive.

4041 PROGRAMMER’S REFERENCE

THE “‘# CLAUSE

When a "'#"’ is followed by a string expression in an INPUT,
PRINT, RBYTE, or WBYTE statement, the expression is
interpreted as the stream spec to be used for the 1/O
operation.

When a "'#” is followed by a numeric expression in an
INPUT, PRINT, RBYTE, or WBYTE statement, the expres-
sion is interpreted as the logical unit to be used for the I/O
operation.

When the 4041 recognizes a “‘#" followed by a string
expression, it automatically opens a temporary logical unit,
performs I/O on that logical unit, then closes the logical unit.

When the 4041 recognizes a “‘#"’ followed by a numeric ex-
pression, it performs I/O on that logical unit without closing
it when the 1/0 is complete.

LOGICAL UNIT DEFAULTS

Logical units 0 through 30 default to the corresponding pri-
mary addresses on the standard GPIB interface; logical
units 31 through 32767 default to the system console
device.

STREAM SPECIFICATIONS

,/‘\\
Table D-1
PHYSICAL PARAMETERS FOR ‘‘COMM:”’ DRIVERS
Parameter Possible Values Default Comments
BAUd 75, 150, 300, 600, 1200, 2400 Baud rate, transmitting and receiving, bits/sec.
2400, 4800
1Baud Any integer from 2 to 9600 Integer baud rate: any integer specified (except 0) takes
or0 precedence over BAUd. 0 means use the BAUD parameter value.
BIT 5,6,7,8,9 8 # bits/character. Includes parity bit if used. If BIT = 5, cannot use
parity. If BIT =9, must use parity.
PARity NO, ODD, EVEn, HIGh, NO PAR = NO: No parity bits are set on output, no parity checking
LOW performed on input.
PAR = ODD, EVEn: On output, parity bit is set to make number of
1’s in each character odd or even, as appropriate; on input,
characters are checked for specified parity.
PAR = HIGh,LOW:on output, bit of 1 or 0 is added to each
character; on input, characters are checked for bit of 1 or 0.
If BIT =5, cannot use parity. If BIT =9, MUST use parity.
STOp 1or2 2 # of stop bits appended to each character transmitted. When
BiTs =5 and STOp = 2, actual stop value used is 1.5.
FLAgging NO, INPut, OUTput, OUTput FLA = NO: No flagging.
iﬁgzct:’“gbgg?:m‘ FLA = INP: Stop input into 4041 when typeahead buffer is % full by
em. transmitting DC3. When typeahead is empty, 4041 requests input
continue by transmitting DC1. .
FLA = OUT: 4041 stops output when DC3 received (CTRL-S from
user terminal). 4041 resumes output when DC1 received (CTRL-Q
from user terminal).
FLA = BID: Combine INPut and OUTput.
FLA = MOD: uses CTS/DTR lines for flagging.
FLA = AMO: uses CTS/RTS lines for flagging.
FLA = EMO: uses CTS/DSR and DTR/RTS line pairs for flagging.
EDIt RASter, STOrage, 402, RASter ED! = RAS: “'generic’’ raster-scan terminal.
ANSI, 850 EDI = STO: storage or non-video terminal.
EDI| = 402: TEKTRONIX 4020-Series terminal.
EDI = ANS: ANSI “‘standard’’ terminal (must have Kill-to-end-of-line,
Delete-character, Insert capabilities).
EDI = 850: CT8500 terminal.
FORmat ASCii, ITEm ASCii 1f FOR = ASCii, character codes between 128 and 255 have 128
subtracted from them, thus mapping them to the ASCIl codes O to
127.
i FOR =TEm, each character code is used as-received.
TYPeahead =>100 100 Size of typeahead input buffer in bytes.

Maximum size: up to 32767 bytes, llimited by amount of memory
available.

If a size smaller than 100 bytes is specified, a size of 100 is used.

D-6

(continued) —

4041 PROGRAMMER’S REFERENCE

STREAM SPECIFICATIONS

Table D-1 (cont)
PHYSICAL PARAMETERS FOR ‘‘COMM:’’ DRIVERS

Parameter Possible Values Default Comments
DSR OFF, ON ON Data Set Ready modem control line (output).
CTS OFF, ON ON Clear To Send modem control line (output).
DCD OFF, ON ON Data Carrier Detect modem control line (output).
ERR LOG, REPort REP LOG adds parity, framing, or overrun errors into #ERror counter,
but no immediate report of the error is given.
REPort immediately displays error messages on the console for
parity, framing, or overrun errors.
Table D-2
LOGICAL PARAMETERS FOR ‘“COMM:’’ DRIVERS
Parameter Possible Values Default Comments
ECHo YES, NO YES If ECHo = YES, 4041 echoes all characters received.
CONitrol YES, NO YES If NO, control characters are transmitted as a caret followed by the
control character’s upper-case equivalent.
If YES, control characters are transmitted as control characters
(i.e., ASCli range 0 through 31).
CR CR, CRL{, LFCr CRLf How carriage return is transmitted.
LF LF, CRLf, LFCr CRLf How line feed is transmitted.
TIMeout Any positive # 2.14748E7 Maximum time4041 will wait for COMM input (seconds).
TMStop Any positive # 60 (FLA = MOD, AMO, Maximum time (seconds) 4041 will wait before outputting
EMO); 2.14748E7 consecutive characters to the COMM.
otherwise
EOM Any ASCII character in the <13> End-of-Message string (EOM = <0> means no EOM character).
range <0> <255>;0OR
One or two printable ASCII
characters; OR
A string of one or
two-character length.
EOA Any printable ASCII <0> End-of-Argument character.
character; OR any ASCII
character in the range
<0>-<255>
EOH Any printable ASCII <0> End-of-Header character.
character; OR any ASCII
character in the range
<0>-<255>
EQU Any printable ASCI! <9> End-of-Message-Unit character.

character; OR any ASCI
character in the range
<0>-<255>

4041 PROGRAMMER’S REFERENCE

D-7

STREAM SPECIFICATIONS

Table D-3
ASK$ PARAMETERS FOR ‘‘COMM:’’ DRIVERS

Parameter Possible Values Default Comments
#TY Any non-negative integer Returns number of characters currently in typeahead buffer.
#ER Any non-negative integer Returns number of parity, framing, or overrun errors since last
ASK$(*‘LU"’) on COMM driver; used only when ERR = LOG.
RTS OFF, ON Returns status of RTS (Request to Send) line.
DTR OFF, ON Returns status of DTR (Data Terminal Ready) line.
Table D-4
LOGICAL PARAMETERS FOR ‘‘FRTP:”’ DRIVER
Parameter Possible Values Default Comments
RATe Any positive number 0.25 Amount of time display ‘‘stops’’ before next character scrolls into
right-hand side of display.
VIEw Any positive number 1.5 Amount of time line is displayed before next statement is executed.
TIMeout Any positive number 2.14748E7 Maximum amount of time (in seconds) front panel will wait for input
before an error is generated.
EOA Any printable ASCII < 0> (no output) End-of-Argument character.
character; OR any ASCI
decimal equivalent
enclosed in angle
brackets.
EOH Same as EOA < 0> (no output) End-of-Header character.
EQU Same as EOA < 32> (space) End-of-Message-Unit character.
Table D-5
PHYSICAL PARAMETERS FOR ‘‘GPIB:’’ DRIVERS
Parameter Possible Values Default Comments
MA 0-30 30 4041’s primary address.
SC YES/NO YES States whether or not 4041 is system controller. When set to YES,
{FC is pulsed for 100 microseconds, then REN is asserted.
PNS 0-63, 128-191 0 Polled with Nothing To Say. 4041 responds with PNS when polled
by C-I-C and not asserting SRQ.
IST TRUe/FALse FALse Interface STatus. Value of interface status message, used when
parallel polied.
DEL NORmal, FASt NORmal GPIB8 chip T1 delay parameter. Useful with TRA = DMA, when
exchanging messages with very fast acceptors.
TC SYN/ASYn SYN TC = SYN: take control synchronously on TCT (default);
TC = ASY: take control asynchronously on TCT (may corrupt data).
D-8 4041 PROGRAMMER'’S REFERENCE

STREAM SPECIFICATIONS

Table D-6
LOGICAL PARAMETERS FOR ‘‘GPIB:”’ DRIVERS

Parameter Possible Values Default Comments
PRI 0-31 31 0-30: primary address of device on bus.
31: Interface port itself.
SEC 0-32 32 0-31: Secondary address of device on bus.
32: No secondary address.
EOCA Any printable ASCII < 44> (comma) End-of-Argument character.
character; OR any ASCII
decimal equivalent
enclosed in angle brackets
(< >).
EOH Same as EOA < 32> (space) End-of-Header character.
EOM Same as EOA, plus CRLF < 255> (CRI/LF) End-of-Message character (EOM = <0 > means delimit on EOl line
only).
EOCQ Same as EOA < 0> (no output) End-of-Query character (appended to messages sent with
PROMPT clause on INPUT).
EQU Same as EOA <59> (semi End-of-Message-Unit character.
TIM Any positive number 2.14748E7 (open lu); 4 Data transfer timeout.
(lu not open prior to 1/0)
SPE Any positive number 10 msec Serial Poll Timeout. Amount of time 4041 waits for response from a
device before going on to next device or generating Error 818
(“‘Explicit Poll of Non-existent Instrument’’). Used with SELECT
statement.
TRA NORmal/FASt/DMA NOR Data TRAnsfer Mode. NOR = Normal (interrupt-driven);

FAS = Fast (sense status, no proceed mode);
DMA = Direct Memory Access (requires Option 1 hardware).

4041 PROGRAMMER’S REFERENCE

D-9

STREAM SPECIFICATIONS

Table D-7

ASKS$ PARAMETERS FOR “*GPIB:’’ DRIVERS

Parameter Possible Values Default Comments
ciCc 0,1,2,3,4,5 Controller-in-charge status:
0= power-up state, no bus activity yet.
1= controller idle (4041 in talker/listener mode).
2= controller addressed (TCT command received).
3= controller transferring control (TCT command sent).
4= controller active (ATN message being sent TRUE).
5= controller standby (data transfer in progress; ATN message
being sent FALSE).
TL 0-63 Talker/listener status. Bit-encoded number, with following values:
0= bus unconfigured.
1= serial poll active; SPE has been sent. (Only valid if 4041 is
CIC).
2= 4041 istalk addressed.
4= 4041 is listen addressed.
8= some device is talk addressed (may be 4041; only valid if 4041
is CIC).
16 = at least one device is listen-addressed (may be 4041; only valid
if 4041 is CIC).
32 = parallel poll is active (only valid if 4041 is CIC).
ENA 0-127 Enabled GPIB Interrupts. Bit-encoded number, with following
values:
0= nointerrupts enabled.
1= |FC (received while CIC).
2= SRQ
4= EOI (seen during remote data transfer).
8= MLA and byte available on bus.
16 = DCL or SDC
32= MTA and all listeners ready.
64=TCT
PEN 0-127 Pending GPIB Interrupts. Same values as ENA.
SRQ 0,1 If controller-incharge: SRQ = 1 if SRQ message is being received

true, else SRQ=0.

If not controllerin-charge: SRQ = 1 if 4041 is sending SRQ message
true, else SRQ=0.

D-10

4041 PROGRAMMER’'S REFERENCE

STREAM SPECIFICATIONS

Table D-8

PHYSICAL PARAMETERS FOR “OPT2:” DRIVER

Parameter Possible Values Default Comments
IREg 0-127 Number of register to be written into to turn off *SRQ’’ interrupt.
IVAI 0-255 Number to send to IREg register to turn off “SRQ’’ interrupt.
Table D-9
ASK$ PARAMETERS FOR ‘‘OPT2:”” DRIVER
Parameter Possible Values Default Comments
ICN any integer 0] Number of interrupts sensed since ‘‘SRQ’’ interrupt was last
disabled on OPT2 driver.
Table D-10
LOGICAL PARAMETERS FOR “‘PRIN:”’ DRIVER
Parameter Possible Values Default Comments
INDent Any positive number 3 Number of spaces by which successive lines of long output
messages (i.e., > 20 characters) are indented.
EOCA Any printable ASCII < 0> (no output) End-of-Argument character.
character; OR an?t
enclosed in angle
brackets.
EOH Same as EOA < 0> (no output) End-of-Header character.
EOU Same as EOA < 32> (space) End-of-Message-Unit character.
Table D-11
LOGICAL PARAMETERS FOR ‘‘TAPE:"’ DRIVER
Parameter Possible Values Defautt Comments
VER YES/NO YES Read-after-write verification.
DIR YES/NO YES Automatic directory updating when files are closed.
WARNING: if DIR = NO, an explicit DISMOUNT statement must be
executed when files are closed to force new directory information to
be written to the tape.
PHY YES/NO NO YES = Tape is in physical mode (/O via RBYTE, WBYTE only; all
files must be closed).
NO =Tape is in logical mode (/O via INPUT, PRINT to files).
LON YES/NO NC YES = Print long-form directory when executing DIR command;
NO = Print short-form directory when executing DIR command.

4041 PROGRAMMER’S REFERENCE

(continued)

STREAM SPECIFICATIONS

Table D-11 (cont)
LOGICAL PARAMETERS FOR ‘““TAPE:”’ DRIVER

Parameter Possible Values Default Comments

EOA Any printable ASCI <0> (no output) End-of-Argument character.

character,

OR

Any ASCII decimal
equivalent enclosed in
angle brackets.

EOH Same as EOA < 0> (no output) End-of-Header character.

EOM Same as EOA <13> (cr) End-of-Message character (EOM = <0> means NO EOM).

EOQOU Same as EOA < 32> (space) End-of-Message-Unit character.

Table D-12
LOGICAL PARAMETERS FOR TAPE FILES®
Parameter Possible Values Default Comments
OPEnN NEW, OLD, REPlace, OLD NEW = Write only. Open new file, position tape head at beginning.
UPDate Error if file already exists on tape.

REPIlace = Write only. Delete file if already on tape. Open new file.
Position tape head at beginning.
UPDate = Write only. Open file, position tape head at end of file.
Error if file is not already on tape.
OLD = Read or write. Open existing file, position tape head at
beginning of file. File is open for reading until first write. Writing
over-writes data previously in the file after position of last read. Error
if file does not already exist on tape.

CLlp YES/NO NO YES = Clip files (remove unused space before end-of-file) upon
closing.

SiZe Any positive number V2 of largest free block Maximum size of file. If more data are to be written than the size
allows, the tape driver will expand the file, if enough free space is
available on tape.

FORmat ASCI/ITEm ASCii Format in which data are stored in file.

ASCii: Data are stored as ASCIi characters.
ITEm: Data are stored in 4041 internal representation.

2 TAPE driver parameters may appear along with the file parameters on the ‘‘tile spec’” side of TAPE stream specs.

D-12

4041 PROGRAMMER’S REFERENCE

TN

Notes on the TAPE Driver Parameters

If VER = YES, a read-after-write verification is done after
each record is written to the tape.

If DIR = YES, the tape directory is written out to the tape
whenever a file has been created or updated and the file is
closed. If DIR = NO, the directory will NOT be written out to
the tape.

If PHY = YES, the tape becomes a record-addressable
memory, only accessible via RBYTE and WBYTE state-
ments. if PHY = NO, the tape becomes a file-structured
storage device.

4041 PROGRAMMER’S REFERENCE

STREAM SPECIFICATIONS

Notes on the TAPE File Parameters
Tape file names must be unique in the first six letters.

Legal values for SIZE are any integer value corresponding
to available bytes of storage on the tape (that is, bytes that
are not currently being used by an existing file, and not
exceeding the number of bytes available in the largest con-
tiguous collection of bytes on the tape). The defaultis a
value equal to one half the number of bytes available in the
largest contiguous collection of bytes on the tape.

D-13

Appendix E

INTRODUCTION TO GPIB CONCEPTS

The General Purpose Interface Bus (GPIB) is a digital
interface that enables the components of an instru-

mentation system to communicate.

MECHANICAL ELEMENTS OF IEEE-488 STANDARD

CONNECTOR

IEEE Standard 488-1978 specifies a standard connec-
tor/cable system for instruments. Standardizing the
connectors and cables ensures that standard-conform-
ing instruments are pin-compatible when linked.

The GPIB connector has 24 pins, with 16 assigned to
specific signals and eight to shields and grounds.

ALLOWABLE CONFIGURATIONS

Instruments can be connected to the GPIB in “linear”
or “star” configurations, or in a combination of both
(Figure E-1).

Restrictions

Instruments connected to a single bus cannot be
separated by more than two meters for each device on
the bus. In addition, the total cable length of the bus
cannot exceed 20 meters.

4041 PROGRAMMER'’S REFERENCE

To maintain proper electrical characteristics on the
bus, a device load must be connected for every two
meters of cable length, and at least two-thirds of the
instruments connected to the bus must be powered on.
(For further details, consult IEEE Standard 488-1978,
Section 6.2.4, “Devices Powered Off and On.”)

Although instruments are usually spaced no more than
two meters apart, they can be separated further if the
required number of device loads is lumped at any point
on the bus.

More than 15 devices can be interfaced to a single bus
if they do not connect directly to the bus, but are
interfaced through a primary device. Such a scheme
can be used with programmable plug-ins attached to a
central device, where the central device is addressed
with a primary address code and the plug-ins are
addressed with a secondary address code.

E-1

GPIB CONCEPTS

A
B
/
ER
CONTROLL CONTROLLER A 8
- (B) LINEAR
(A) STAR
A
CONTROLLER D E G
B

(C) COMBINATION

3917-18

E-2

Figure E-1. Allowable Configurations for GPIB Devices.

4041 PROGRAMMER’S REFERENCE

GPIB CONCEPTS

ELECTRICAL ELEMENTS

The IEEE-488 standard defines the voltages and
current values required at connector nodes. All
specifications are based on the use of TTL technology.
The logical states are defined as follows:

Logical

State Electrical Signal Levels

0 corresponds to 20V < = volts < = 52V
(called high state)

1 correspondstoOV < = volts < = 08V

(called low state)

FUNCTIONAL ELEMENTS: THE

Interface functions are the system elements that
provide the basic operational facilities through which
devices receive, process, and send messages.

Ten different interface messages are defined in all.

The AH (Acceptor Handshake) function provides a
device with the capability to guarantee proper recep-
tion of remote multiline messages. The AH function
delays initiation or termination of a multiline message
transfer until the device is ready to receive the next
data byte.

The SH (Source Handshake) function works in concert
with the AH function on a listening device to guarantee
proper transfer of multiline messages. The SH function
controls the initiation and termination of the transfer of
multiline message bytes.

The L (Listener) and LE (Extended Listener) functions
provide a device with the capability to receive device-
dependent data over the interface. This capability
exists only when the device is addressed to listen. The
L function uses a 1-byte address; the LE function used
a 2-byte address. In all other respects, the capabilities
of both functions are the same.

The T (Talker) and TE (Extended Talker) functions
provide a device with the capability to send device-
dependent data over the interface. This capability
exists only when the device is addressed to talk. The T
function uses a 1-byte address; the TE function uses a
2-byte address. In all other respects, the capabilities of
both functions are the same.

4041 PROGRAMMER’'S REFERENCE

Messages can be sent as either active or passive true
signals. Passive true signals occur in the high state
and must be carried on a signal line using open
collector devices. (Driver requirements are expanded
upon in IEEE Standard 488, Section 3.3)

10 INTERFACE FUNCTIONS

The DC (Device Clear) function provides a device with
the capability to be cleared (initialized), either individu-
ally or as part of a group of devices.

The DT (Device Trigger) function provides a device
with the capability to have its basic operation started,
either individually or as part of a group of devices.

The RL (Remote/Local) function provides a device with
the capability to select between two sources of input
information. The function indicates to the device that
either input information from the front panel controls
(local) or corresponding information from the interface
{remote) is to be used.

The SR (Service Reguest) function provides a device
with the capability to request service asynchronously
from the controlier in charge of the interface.

The PP (Parallel Poll) function provides a device with
the capability to present a status message to the
controller in charge without being previously ad-
dressed to talk.

The C (Controller) function provides a device with the
capability to send device addresses, universal
commands and addressed commands to other devices
over the interface. It also provides the capability to
determine which devices require service.

GPIB CONCEPTS

ADDRESSES: PRIMARY, TALK, LISTEN, AND SECONDARY

PRIMARY ADDRESSES

Every instrument connected to the bus has a unigue
primary address. On most devices, this address is set
by a system of binary switches located at the rear of
the device. The primary addresses of most of these
devices can be set by the user.

Some devices, however, have their primary addresses
pre-set by the manufacturer. The primary addresses of
many devices in this group cannot be changed except
by qualified service personnel. If in doubt, check the
user’'s manual for each device.

A “typical” binary switch system is shown in Figure E-
2.

Each switch in the system represents a binary digit,
with value equal to 1 if the switch is in the “on”
position, or O if it is in the “off” position. Reading from
right to left, the place value of each succeeding switch
increases by a factor of two; thus, the rightmost switch
has a place value of 1, the second switch from the right
a place value of 2, the third a place value of 4, and so
on.

% t 3 ki 1
* * o
16 8 4 2 1

16 + 0 + 0 + 2 + 1 =19

This device’s listen address is 51 (19+32).
This devices’s talk address Is 83 (19 + 64).

3917-19

Figure E-2. “Typical” Binary Switch System, With Address
Setto19.

E-4

To determine the value of the address represented by a
given switch setting, simply add up the place values of
all the switches in the “on” position. in the example
shown, switches with place values of 16, 2,and 1 are in
the “on” position. Since 16 + 2+ 1 = 19,an
instrument on the GPIB with switches set in these
positions would have a primary address of 19.

No two instruments on the GPIB can have the same
primary address. Primary addresses can vary from O to
30.

LISTEN ADDRESSES

A device’s Listen Address is determined by adding 32
to its Primary Address. Thus, a device with Primary
Address 19 has a Listen Address of 19 + 32 = 51.

When a device senses its Listen Address being sent
over the data lines while the ATN iine is asserted, the
device prepares itself to “listen” (i.e., accept data sent
over the data lines) when ATN becomes unasserted.

Any number of devices on the bus may be addressed to
listen at the same time.

TALK ADDRESSES

A device’s Talk Address is determined by adding 64 to
its Primary Address. Thus, a device with Primary
Address 19 has a Talk Address of 19 + 64 = 83.

When a device senses its talk address being sent over
the data lines while the ATN line is asserted, the device
prepares itself to “talk” (i.e.,, send data over the data
lines) when ATN becomes unasserted.

Only one device on the bus may be addressed to talk at
one time. When a device previously addressed to talk
senses another device’s talk address being sent over
the data lines with ATN asserted, the first device
automatically “un-talks” itself.

4041 PROGRAMMER'’S REFERENCE

SECONDARY ADDRESSES

Some devices support a special addressing scheme
called “secondary addressing,” which uses addresses
in the range from 96 to 126. Not all IEEE-488
compatible devices, however, support secondary ad-
dressing.

Among devices that do support secondary addressing,
different manufacturers implement it in different ways.
In fact, different devices from the same manufacturer
may implement secondary addressing in different
ways.

4041 PROGRAMMER’S REFERENCE

GPIB CONCEPTS

For example, for some devices secondary addressing is
an addressing method that allows two or more devices
to share the same primary address.

For other devices, however, secondary addressing is a
method of transmitting certain device-dependent com-
mands to a device.

There are several other variations of secondary ad-

dressing implementations. When in doubt, check the
manual for the device.

E-b

GPIB CONCEPTS

DATA, MANAGEMENT, AND “HANDSHAKE” BUSES

The 16 signal lines can be divided into three “buses”
(Figure E-3) as follows:

Eight signal lines make up the data bus, which carries
the data to be transferred on the GPIB; five lines make
up the management bus, used to control the data
transfers; and three lines make up the transfer or
“handshake” bus, used to synchronize data transfers
between instruments.

DATA BUS

The data bus contains eight bidirectional signal lines,
numbered DIO1 through DIO8. One byte of information
(eight bits) is transferred over the bus at a time. DIO1
carries the least significant bit of the byte; DIO8 carries
the most significant bit.

Each byte of information transferred over the data bus
represents either a command, a device address, or a

device-dependent message. Data bytes can be format-
ted in ASCII code or in device-dependent binary code.

A A

. .—w!'r‘&%.s;c-‘}. ‘53'73.3;‘. N &F N £
3£ GPIB CONNECTORSIYY
3y DT TN ARG B SO T

o %: Bt S

LRSI *ﬁ*ﬁ
.:l!\,-w.‘. PG S .}_,,.

& GRAPHIC SYSTEM Y3250

% MAIN CHASSIS J&#

SpE VT

D101
D102
DIO3
DI04
D105
D106
D107

DIO8
DATA BUS

NRFD

NDAC
HANDSHAKE BUS

ATN
SRQ
ey IFC
REN

EOI
MANAGEMENT BUS

(2056)-3917-17

Figure E-3. Data, Management, and “Handshake” Buses.

4041 PROGRAMMER’'S REFERENCE

MANAGEMENT BUS Line

The Management Bus is a group of five signal lines
{ATN, EOI, IFC, REN, and SRQ) used in managing data
transfers over the data bus. Signal definitions for each

line follow. SRQ
Line Definition
ATN The ATN (Attention) management line is

activated by the controller to send
universal and addressed commands, and
to designate peripheral devices as talk-
ers and listeners for an upcoming data

GPIB CONCEPTS

Definition

When REN is de-activated, all devices on
the bus revert to front-panel control.

The SRQ (Service Request) line can be
activated by any device on the bus to
request service from the controller. The
controlier responds (if programmed to do
so) by serial polling all devices on the
bus in order to find the device requesting
service. The SRQ line is de-activated
when the device requesting service is
poiled.

transfer.

When ATN is asserted, messages sent TRANSFER OR “HANDSHAKE” BUS

over the data bus are interpreted as)

commands or addresses. Three lines (NRFD,DAV,and NDAC) make up the trans-
fer or “handshake” bus. These three lines control the

When ATN is unasserted, messages sent sequence of operations each time a byte is transferred

over the data bus are interpreted as over the data bus. This sequence is NOT under user

device-dependent messages. Only peri- control, but information about the three transfer lines is

pheral devices addressed by the controli- presented here for completeness.

er to talk or listen (with ATN asserted)
take part in a device-dependent data .
transfer when ATN becomes unasserted. Line

EQI The EOI (End-Or-ldentify) signal line can NRFD
be used by any talker to indicate the end
of a data transfer sequence. Talkers that
use EOI activate the EOQI line as the last
byte of information is being transmitted.

IFC The IFC (interFace Clear) line is
activated by the system controller to (1)
unaddress all talk-addressed and listen-
addressed devices on the bus, (2) take
controller-in-charge status, and 3) take
all devices out of serial poll mode (same
as sending SPD). Only the system con-
trolier can agctivate this signal line.

DAV

NDAC

REN The REN (Remote Enable) signal line is
activated by the system controlier to give
all devices on the bus the capability of
being placed under remote {program)
control.

When the REN signal line is activated,
devices receiving their listen addresses
over the data bus will accept and execute
commands from the controller-in-charge.

4041 PROGRAMMER’S REFERENCE

Definition

An active NRFD (Not Ready For Data) line
indicates that one or more listeners are
not ready to receive the next data byte.
When the NRFD line goes inactive, the
talker places the next data byte on the
data bus and activates the DAV signal
line.

The DAV (Data Valid) line is activated by
the talker shortly after the talker places a
valid data byte on the data bus. This tells
each listener to capture the data byte
currently on the bus.

The NDAC (Not Data ACcepted) line is
held active by each listener until the
listener captures the data byte currently
on the data bus. When all listeners have
captured the data byte, NDAC goes inac-
tive. This tells the talker to take the byte
off the data bus.

E-7

GPIB CONCEPTS

GPIB COMMUNICATIONS PROTOCOL.:
CONTROLLERS, TALKERS, AND LISTENERS

We can think of the 16 data, management, and
“handshake” lines as a “common’” area that all devices
on the bus monitor constantly.

Each device on the bus at any given time may be either
a talker, a listener, or a controller. Some instruments
have two or even all three of these capabilities, i.e.,
some instruments are talk-only, others are listen-only,
others can talk and listen, others can talk, listen, and
control.

Talkers are instruments that have the capability to put
data out onto the eight data lines. Once on the data
lines, data can be read by any active listener. Only one
device is allowed to talk at one time, to eliminate
possible confusion.

Listeners, conversely, are instruments that can read
information from the data lines. Any number of devices
can be listening to the talker at the same time. The rate
at which the talker can put information onto the data
lines is restricted, by means of the “three-wire
handshake” sequence, to the rate at which the slowest
active listener on the bus can accept data.

Controllers are devices that assign talk and listen
status to other devices on the bus. Since not every
device can be allowed to talk at the same time, and it is
seldom desirable for every device to listen, we need a
controller to designate which device is to talk and
which are to listen during any data transfer.

Controllers and talker/listeners each have special
properties and requirements that programmers must
remember in writing programs to control instrument
networks. The next two subsections deal with the
special properties and requirements of controllers and
of talker/listeners, respectively.

E-8

CONTROLLERS

Two kinds of controllers are allowed on the GPIB: {1) a
system controller, and (2) a controller-in-charge.

At any time, a GPIB network can have at most one
instrument acting as system controller and one instru-
ment acting as controller-in-charge. The system con-
troller and the controller-in-charge may be the same
instrument.

The configuration may, however, include any number of
instruments capable of acting as system controlier or
controller-in-charge, subject only to the limitations on
the total number of instruments allowed on the bus.

System control cannot be passed from instrument to
instrument; controller-in-charge status can. Once an
instrument becomes system controller, no other instru-
ment on the bus can assume that role without
(essentially) powering down the entire system and
powering it up again.

Only the system controller can affect the status of the
InterFace Clear {IFC) and Remote ENable (REN) man-
agement lines. Asserting the IFC line makes the system
controller the controller-in-charge, and untalks, unlis-
tens, and disables serial polling for all devices.

Asserting the REN line enables instruments on the bus
to be remotely operated via the controller. (NOTE:
Asserting REN does not automatically put all instru-
ments on the bus into “Remote State” (REMS), but
simply allows the controller to put them into this state))

Any instrument acting as controller-in-charge may

pass control to any other instrument on the bus
capable of assuming control.

4041 PROGRAMMER’S REFERENCE

The controller-in-charge is the only instrument on the
bus capable of sending messages with the ATN line
asserted. Messages sent with ATN asserted are
interpreted as either primary addresses, secondary
addresses, universal commands, or addressed com-
mands.

To summarize:

1. Any GPIB network can have at most one system
controller and one controller-in-charge at one time.
The system controller and the controller-in-charge
may be the same instrument.

2. Controller-in-charge status can be passed; system
control cannot.

3. The system controller can take controller-in-
charge status from another controller on the bus by
asserting the IFC (InterFace Clear) line.

4. The controller-in-charge is the only device that can
send messages with the ATN line asserted.

TALKERS

A talker is a device that has sensed its talk address
being sent over the data lines with the ATN line
asserted.

After a device has been addressed to talk, it will send

data over the data lines as soon as the ATN line
becomes un-asserted.

4041 PROGRAMMER’S REFERENCE

GPIB CONCEPTS

Only one device on the bus may be addressed to talk at
one time.

When a device previously addressed to talk senses
another device’s talk address being sent over the data
lines with ATN asserted, the first device automatically
“un-talks” itself (i.e., will not put data out over the data
lines when ATN becomes unasserted).

Devices may also “un-talk” themselves when they
sense their listen addresses being sent over the data
lines with ATN asserted. In this case, the device
becomes a listener as soon as the ATN line is un-
asserted.

LISTENERS

A listener is a device that has sensed its listen address
being sent over the data lines with the ATN line
asserted.

After a device has been addressed to listen, it will
accept data coming over the data lines as soon as the
ATN line becomes un-asserted.

Any number of devices on the bus may be addressed to
listen at the same time.

When a device previously addressed to listen senses
its talk address being sent over the data lines with ATN
asserted, the device may “un-listen” itself and become
a talker as soon as the ATN line is un-asserted.

E-9

GPIB CONCEPTS

UNIVERSAL COMMANDS

Universal commands are values the controller sends
over the data lines with ATN asserted. These com-
mands are obeyed by all devices on the bus with the
appropriate subsets (see below).

The universal commands include DCL (Device Clear),
LLO {(Local LockOut), PPU (Parallel Poll Unconfigure),
SPD (Serial Poil Disable), and SPD (Serial Poll Disable).

Also included in this description are UNL (Unlisten)
and UNT (Untalk). Although not “commands” in the
strictest sense, the values of UNL and UNT act like
universal commands when sent over the data lines with
ATN asserted.

DCL (DEVICE CLEAR)

To send the DCL (Device Clear) command, the controli-
er sends a value of 20 over the data lines with ATN
asserted.

The DCL command “clears” (initializes) all devices on
the bus that have a DC1 or DC2 subset of the DC
interface function.

LLO

To send the LLO (Loca!l LockOut) command, the
controller sends a value of 17 over the data lines with
ATN asserted.

The LLO command “locks out” the front panels of all
devices on the bus that have an RL1 subset of the RL
interface function. (Devices with RLO or RL2 subsets of
the RL interface function ignore LLO.) After receiving
the LLO command, all devices ignore any subsequent
inputs from front panel keys that have corresponding
remote controls, and only obey commands coming to
them through the GPIB interface.

PPU

To send the PPU (Parallel Poll Unconfigure) command,
the controller sends a value of 21 over the data lines
with ATN asserted.

E-10

The PPU command unconfigures all devices on the bus
for parallel polling.

SPD

To send the SPD (Serial Poll Disable) command, the
controller sends a value of 25 over the data lines with
ATN asserted.

The SPD command returns all devices on the bus from
the Serial Poll Enabled state.

SPE

To send the SPE (Serial Poll Enable) command, the
controller sends a value of 24 over the data lines with
ATN asserted.

The SPE command puts ail devices on the bus with an
SR1 subset of the SR interface function into the Serial
Poll Enabled state. In this state, each device will send
the controller its status byte when the device receives
its talk address over the data lines with ATN asserted.

UNL

To send the UNL (Unlisten) “command”, the controller
sends a value of 63 over the data lines with ATN
asserted.

The UNL command takes all listen-addressed devices
on the bus out of the listen-addressed state.

UNT

To send the UNT (Untalk) “command”’, the controller
sends a value of 95 over the data lines with ATN
asserted.

The UNT command takes any talk-addressed device on
the bus out of the talk-addressed state.

4041 PROGRAMMER’S REFERENCE

GPIB CONCEPTS

ADDRESSED COMMANDS

Addressed commands are values the controller sends
over the data lines with ATN asserted that are intended
for specific devices.

These commands include GET (Group Execute
Trigger), GTL (Go To Local), PPC (Parallel Pol! Config-
ure), SDC (Selected Device Clear), and TCT (Take
Control).

All the above commands except TCT require that the
device receiving the command be listen-addressed.
The TCT command requires that the device be talk-
addressed.

GET

To send the GET (Group Execute Trigger) command,
the controller sends a value of 8 over the data lines
with ATN asserted.

The GET command causes all listen-addressed de-
vices incorporating a DT1 subset of the DT interface
function to start their basic operation (e.g., measure-
ment devices to make their measurements, output
devices to output their signals, etc.).

GTL

To send the GTL (Go To Local) command, the
controller sends a value of 1 over the data lines with
ATN asserted.

The GTL command causes all listen-addressed de-
vices to obey incoming commands from their front-
panel control buttons. These devices may store, but not
respond to, commands coming through the GPIB
interface until the device is once again listen-ad-
dressed.

PPC

To send the PPC (Parallel Poll Configure) command,
the controller sends a value of 5 over the data lines
with ATN asserted.

The PPC command enables a listen-addressed device

incorporating a PP1 or PP2 subset of the PP interface
function to respond to a parallel poll.

4041 PROGRAMMER’S REFERENCE

PPE

The PPE command is used to designate the sense and
the DIO line on which devices incorporating a PP1
subset of the PP interface function will respond to a
parallei poll. If the device’s individual status bit match-
es the assigned sense at the time the parallel poll is
executed, the device asserts its assigned data line.

Devices incorporating a PP2 subset of the PP interface
function have their senses and DIO lines hardwired;
such devices cannot be configured by the controller to
respond to a parallel poll. They may be enabled or
disabled for parallei poll by the controller.

PPD

The PPD message unconfigures a previously
configured device from responding to a parallel poll.
(PPD acts as a “local” PPU message.)

PPU

The PPU command unconfigures all previously config-
ured devices on the bus from responding to a parallel
poll.

SDC

To send the SDC (Selected Device Clear) command,
the controller sends a value of 4 over the data lines
with ATN asserted.

The SDC command “clears” (initializes) all listen-
addressed devices.

TCT

To send the TCT (Take Control) command, the controll-
er sends a value of 9 over the data lines with ATN
asserted.

The TCT command passes controller-in-charge status
to a talk-addressed device.

E-11

GPIB CONCEPTS

SERIAL POLLING

STATUS BYTES

Each device on the GPIB incorporating the SR1 subset
of the SR interface function has an eight-bit “status
byte”. The status byte’s contents describe (by means
of a device-dependent code) the device's status.

REQUESTING SERVICE

The “coding” of a device’s status byte is almost
entirely up to the device designer, with one restriction:
bit 7 (the second-most-significant bit) is reserved to
indicate whether or not a device is requesting service
from the controller-in-charge.

Bit 7 of the status byte is known as the “rsv”, or
“requesting service”, bit. A value of 1 in this bit
indicates that a device is requesting service from the
controller-in-charge. A value of 0 in this bit indicates
that the device is not requesting service.

Devices that require service do two things in order to

request it: (1) set the rsv bit of the status byte to “1”;
and (2) assert the SRQ line.

E-12

CONDUCTING SERIAL POLLS

When the controller senses a device on the bus
asserting the SRQ line, it customarily generates an
interrupt and serially polls each device on the bus, in
order to find out which device is requesting service.

(NOTE: A device need not actually be requesting
service for the controller to initiate a serial poll.)

The controller conducts the poll by sending out the
SPE (Serial Poll Enable) command, followed by a
sequence of listen addresses. As each listen address
is sent, the device that is listen-addressed sends its
status byte to the controller. The controller then checks
the status byte to see if the rsv bit is set. The act of
receiving the status byte from the device requesting
service “‘clears” the rsv bit of that device (i.e., sets it
back to 0).

When the device asserting SRQ is discovered, the
controller usually terminates the serial poll (by sending
out the SPD command), and transfers control to a user-
defined handler for the device requesting service. The
act of reading the devide’s status byte clears the
device’s rsv bit; however, the factors that caused the
device to request service in the first place must be
handled, or the device will simply request service again
and again.

4041 PROGRAMMER’S REFERENCE

GPIB CONCEPTS

PARALLEL POLLING

Parallel polling is a means of simultaneously reading
the individual status messages of all devices config-
ured to respond to a parallel poll.

INDIVIDUAL STATUS MESSAGES

All devices with a PP function have an individual status
message. This message is capable of being set to
“true” or “false”, either remotely (i.e., by the controller)
or locally (i.e., by the device itself), depending on the
device's design.

CONFIGURING THE BUS FOR PARALLEL
POLL

A series of PPC commands is used to configure the bus
for paralle! polls. “Configuring” the bus means
designating which devices are to respond to parallel
polls, which data line each device is to respond on, and
on which “sense” of its individual status message the
device is to assert its assigned data line. (Devices
incorporating the PP2 subset of the PP interface
function are configured locally, meaning that their
sense and data line is set by the manufacturer, and
cannot be changed by the controller.)

4041 PROGRAMMER’S REFERENCE

CONDUCTING THE PARALLEL POLL

The controller conducts a parallel poll by asserting the
ATN and EOI lines simultaneously.

When the devices configured for parallei polling sense
the ATN and EOI lines asserted simultaneously, each
device checks its individual status message and
asserts its assigned line if the message sense matches
the sense assigned for the device to assert its line.

The result of the parallel poll is a bit-encoded integer

that the controller can use to calculate which devices
asserted their data lines during the parallel poll.

E-13

Appendix F

INTRODUCTION TO TEK CODES
AND FORMATS FOR GPIB

INTRODUCTION

As their measurements grew more numerous and
complex, instrument users realized their need for
instruments that could be combined into interactive
and automated systems that would:

1. Reduce labor costs;

2. Increase the effective use of research and
design skills by freeing people for creative
work;

3. Provide insight into products and processes by
coupling analysis with measurements; and

4. Reduce human errors in applications requiring
precise, repeated measurements.

Meeting these needs would require instruments, con-
trollers, and peripheral devices that would be “compati-
ble” — easy to use with each other.

The first major step toward device compatibility was
taken in 1975 when the IEEE published the 488
standard, defining an interface for programmable in-
struments. This interface is usually called the GPIB, or
General Purpose Interface Bus.

Before GPIB, connecting programmable instruments to
a computer or to a desktop calculator was a major job
because each instrument’s interface was different. The
IEEE-488 standard defines an interface that makes it
much easier to put together computer-controlled
instrument systems.

4041 PROGRAMMER'S REFERENCE

The IEEE-488 standard defines three aspects of an
instrument’s interface:

1. mechanical — the connector and the cable;

2. electrical — the electrical levels for logical
signals and how the signals are sent and
received;

3. functional — the tasks that an instrument’s
interface is to perform, such as sending data,
receiving data, triggering the instrument, etc.

Using this interface standard, instruments can be
designed to have a basic level of compatibility with
other instruments that meet the standard. However, this
is only the first step toward complete compatibility.

Tektronix has taken the next step by adopting a new
standard called the Tek Codes and Formats for GPIB. It
is intended to:

1. define device-dependent message formats and
codings and thus enhance compatibility among
instruments that comply with IEEE-488;

2. reduce the cost and time required to develop
system and application software by making it
easier for people to generate and understand
the necessary device-dependent coding.

Beyond the Codes and Formats standard, there is also
a need for a philosophy of designing instruments to be
friendly to the user. They should be controlled over the
bus with easily understood commands and should be
resistant to operator errors. Since the application of
this philosophy is different for each type of instrument,
it is not included as a specific standard.

F-1

INTRO TO CODES AND FORMATS

COMPATIBILITY

Using the GPIB is like using the telephone system. in
both cases, a physical connection can be established
and data can be transmitted, i.e., one person or one
device can talk to another.

However, on the telephone system, unless both people
speak and understand the same language, very little
communication can take place. Beyond having a
common language, they must also share a common
vocabulary.

Similar problems can arise between instruments that
exchange data.

The IEEE-488 standard defines a “telephone system”
describing how the physical communications system is
to be used, but it does not define the “language’ sent
over the bus. This can cause incompatibilities, even
among devices that meet the standard.

For example, suppose a digital multimeter (DMM) has
made a measurement of + 3.75 volts and now has to
transmit this information over the GPIB to a computer.
Eight data lines are available to send information in
byte-serial fashion.

F-2

The first question is: “What codes should be used to
encode the five characters?” The 488 standard recom-
mends ASCI| code, but the DMM designer is free to
choose any available one. If BCD is selected but the
computer only understands ASCII, the DMM and the
computer will be incompatible, even though both
devices meet the IEEE-488 standard.

Suppose the DMM does send ASCII code. The question
now is: “What format is the data to be in?” Does the
DMM send the character sequence + 3.75 most-
significant-byte first, least-significant-byte first, or
some other way?

Again, the IEEE-488 standard says nothing, and the
designer is free to create incompatibility. Figure F-1
shows three possible formats for transmitting data from
a DMM.

For system products, it is important that designers use
a common format. Thus, the Tek Codes and Formats
Standard specifies that instruments are to send ASCII
data with the most significant byte first. This makes it
easier for users to configure instruments into systems.

4041 PROGRAMMER’S REFERENCE

INTRO TO CODES AND FORMATS

+
w
()
~

00000
00000
ASCII T
01011
MSB 10100
First 00111
11101
11011
\BEL
8?8 DDDDDDD gggn
BCD 198 ooooao :ggg
2)1? Doooo O
"388° 00
00 1
[D000DO0RC00A00R00000000 3)
75 .3+
00000
000060
ASCII 11111
11010
mMSB 00101
Last 11100
10111
11011

3917-20

Figure F-1. Three Valid Data Representations for the Same Data on the GPIB. Tektronix Codes and Formats Standardizes
on ASCII Code With the Most Significant Byte First.

4041 PROGRAMMER’S REFERENCE F-3

INTRO TO CODES AND FORMATS

HUMAN INTERFACE

People designing measurement systems must be inti-
mately involved with the instrument-to-instrument com-
munication process.

People designing instruments should design them to
communicate with one another in ways that can be
easily understood by the people designing measure-
ment systems.

For example, suppose a GPIB-programmable power
supply needs to be set to 20.0 volts. The power supply
can be designed in one of two basic ways: easy on the
designer or easy on the user.

The first way is to design the instrument with minimal
intelligence, so that it can accept some
“hieroglyphics”, which it can in turn interpret and
execute.

Some power supplies must receive the ASCII character
sequence “0O8E3” in order to put out 20 volts. The “0”

stands for the 0-t0-36 volt range, and the “8E3” is the
ASCII representation in hexadecimal of the machine-
language instructions required to carry out the com-
mand.

The second way is to design the instrument with a
microprocessor and intelligence to accept easily un-
derstood numbers. A power supply designed this way
would output 20 volts when it received the character
sequence “VPOS 20".

This second method of interacting with the user is
obviously a great deal more convenient for people, not
only when the program is first written but also later,
when someone other than the original programmer has
to find out what the program is supposed to do.

In the future, most instruments will be “intelligent” and
designed to interact with people. The Tek Codes and
Formats standard promotes this type of instrument
“friendliness”.

REPRESENTING NUMBERS

Because most GPIB instruments use ASCll-code
characters to send and receive data, Tektronix has
chosen ASCII coding as standard.

In addition, most instruments that send or receive
numbers use the ANSI X3.42 standard format. This
format states in effect that there are three types of
numbers — integers, reals, and reals with exponents —
and that they should be sent with the most significant
character first. Table F-1 shows examples of these
formats.

Unless there are numeric needs that cannot be met by
this standard format, present and future Tektronix
instruments will also use this format.

Table F-1

NUMBER FORMATS (ANSI X3.42)

Format | Example Notes
NR1 375 Value of “0” must not contain a
+ 8960 minus sign.
—328
+ 00000
NR2 + 12589 Radix point should be preceded by
1.37592 at least one digit.
-00037.5
0.000
NR3 -1.51E+ 03 Value of “0” must contain NR2 zero
+ 51.2E-07 followed by a zero exponent.
+ 00.0E+ 00

4041 PROGRAMMER’S REFERENCE

TN

INTRO TO CODES AND FORMATS

DEVICE-DEPENDENT MESSAGE STRUCTURE

A message represents a given amount of information
whose beginning and end are defined. It is communi-
cated between a device functioning as a talker and one
or more devices functioning as listeners.

The Tek Codes and Formats Standard defines the
structures of device-dependent messages as foliows:

A message begins when the ATN line becomes unas-
serted after the transmitting device is addressed to
talk and the receiving device(s) are addressed to
listen.

A message is composed of one or more message units
separated by message unit delimiters (semicolons).

A message ends when the talking device asserts the
EOIl line.

There are two message unit types: Mixed Data Mes-
sage Units, and Query Message Units.

4041 PROGRAMMER’S REFERENCE

MIXED DATA MESSAGE UNITS

There are two acceptable formats for mixed data
message units: Header Format, and Non-Character
Argument Format.

Header Format

A header-format message unit consists of a “header”,
or sequence of ASCII characters describing the
contents of the message unit, followed by a space,
followed by a sequence of arguments applying to the
header (separated by commas, if more than one
argument).

Header format message units are usually used to
transfer programming information about a device. For
example, sending the message “FUNC SINE;OUT ON”
to an FG5010 function generator causes the function
generator to start outputting (“OUT ON”) a sine wave
(“FUNC SINE"} at its current settings.

F-5

INTRO TO CODES AND FORMATS

Non-Character Argument Format

A message unit in Non-Character Argument format
consists of a sequence of non-character arguments,
separated by commas.

Non-Character Argument format is usually used to
transfer measurement data. There are six non-charac-
ter argument types: number arguments; string argu-
ments; 1ISO block arguments; binary block arguments;
end block arguments; and link arguments.

Table F-2 lists and gives examples of the various non-
character argument types, and gives the definition and
purpose of each.

QUERY MESSAGE UNITS

A query message unit consists of a character argument
such as “SET”, “ID”, or “FREQ" followed by a question
mark. Query message units are normally used to
interrogate a device for data or settings.

Table F-2

NON-CHARACTER ARGUMENTS

Type

(Example) Definition Purpose

Number Numeric value in any of | Used to pass nu-

(—12.3) the formats shown in meric values in AS-
Table F-1. Cll.

String Opening delimiter (sin- | Provides a means

(“Remove gle or double quote) fol- | for transmitting AS-

Probe”) lowed by a series of any | Cll text to an output
ASCII characters except | device.
opening delimiter, and a
closing delimiter identi-
cal to opening delimiter.

Binary Block | “%” followed by two-byte | Used to transfer
binary integer arrays of | large arrays of nu-
numeric data specifying | meric data such as
number of data bytes to | waveforms in binary
be transmitted plus 1 for | format.

a checksum byte.

End Block “ followed by a block of | Used when a block
data, with EOI set con- of data must be
current with last byte. sent and neither the
End block can only be amount of data nor
the last argument in a its format is known.
message and cannot be
followed by a message
unit delimiter.

Link Argu- Character argument (la- | Used to attach a

ment bel) followed by “:” and | name or label to

(NR.PT:1024) | a value in one of the another argument.

above argument types.

4041 PROGRAMMER’S REFERENCE

INTRO TO CODES AND FORMATS

MESSAGE CONVENTIONS

While standardizing the “language” used on the bus
fosters greater compatibility between devices, it alone
does not solve all compatibility problems. Well-defined
operational conventions are also needed.

END-OF-MESSAGE

For example, both talking and listening devices should
agree on when a message ends. Obvious difficulties
can arise when talker and listener don't agree; if the
listener thinks the message has ended too soon, it will
miss part of the message, while if it doesn’t think the
message is ended when it actually has, the listener will
“hang” the bus waiting for a message that will never
come.

Other complications can arise as well. Figure F-2
illustrates what can happen if a talking device (a DMM)
delimits messages by transmitting carriage-return/line-
feed while the listening device (in this case, the
controller) delimits on carriage-return alone.

When the DMM sends the character sequence

“+ 3.75<cr> <If>", the controller receives only the
characters “+ 3.75<cr>", leaving the “<If>" in the
DMM'’s output buffer.

When the DMM sends another character sequence, the
controller receives the “< If>" character first. The
controller doesn't know what to make of a number
preceded by a line feed character, so it stops and
indicates an error.

Figure F-3 illustrates another complication. Suppose
the listening device understands <cr><If> as a
message terminator. Further suppose that the talking
device is sending binary data, as many devices do that
have to transmit large amounts of data. If the talking
device sends a sequence that coincidentally has the
same binary values as <cr> < If>, the listener will
stop listening. Any incoming data after that point are
lost.

Use of the EOl line as a message terminator avoids
such problems. The TEk Codes and Formats Standard
specifies that talking devices are to assert the EOIl line
concurrent with the last byte of their messages.
Listening devices are to understand the EQl line’s
becoming asserted to signify that the last byte of a
message has been transmitted.

4041 PROGRAMMER’S REFERENCE

CONTROLLER

3917-21

i BINARY WAVEFORM

000000O0CO
0000O0O0O0CO0
° o 0000O0O0O0CO
as S /DATA J1 1 000000
gs eC——) LINES YO 0 1 17 1 1 0 0
=20 — 00 1t100C 11
) t01 01010
11110000
Same Code
as ASCII
CRLF
N ——
THESE VALUES WILL

BELOST

BINARY WAVEFORM

O L4000 00

O —wa L0000
© —“0—-—=0000
O O-O0O—-C000

o coo-0oO0O0OC
O O=20000O0

[+ - co-ooo0o0
!

G

3917-22

Figure F-3. Problem: Sending Binary Data, Using
< CR> < LF> as Message Terminator.

INTRO TO CODES AND FORMATS

STATUS BYTES

The IEEE-488 standard defines a facility for an instru-
ment to send a byte of status data to the computer, but,
except for bit 7, the standard does not define the
meaning of the bits. (The IEEE-488 standard defines bit
7 to tell whether or not a device is requesting service.)

However, there is a common need for instruments to
report certain kinds of status or errors to the controller,
so the Tek Codes and Formats Standard establishes a
status byte convention to do this.

One common need is for instruments to report if they
are processing or executing a command, or ready to
receive another command. Bit 5 is used for this
purpose.

Another common need is for instruments to report if
they are encountering abnormal conditions. Examples
of abnormal conditions are internal error conditions
within the device functions, erroneous program data
sent to a device, incomplete or erroneous measurement
data, or device-dependent limit or alarm conditions. Bit
6 of the status byte indicates abnormal conditions.
There are more complex conditions besides
busy/ready or normal/abnormal. These are listed in
Table F-3.

Certain instruments may have conditions that are
peculiar to them. To report these status states, bit 8 is
used to indicate that the status byte is not the common
type but particular to the instrument.

Providing a standard coding for the status byte en-
hances the convenience to the person programming
the system. if all the instruments have common status
byte codings, then a common status byte handling
routine can be written for all instruments, instead of a
separate one for each.

F-8

STATUS BYTE DEFINITIONS

Table F-3

Conditions Binary Decimal
X =0 X =1

Abnormat

ERR query requested 011X 96 112
0000

Command error 011X 97 113
0001

Execution error 011X 98 114
0010

Internal error 011X 99 115
0011

Power fail 011X 100 116
0100

Execution error warning 011X 101 117
0101

Internal error warning 011X 102 118
0110

Normal

No status to report out of 000X 0 16

the ordinary 0000

SRQ query request 010X 64 80
0000

Power on 010X 65 81
0001

Operation complete 010X 66 82
0010

4041 PROGRAMMER’S REFERENCE

INTRO TO CODES AND FORMATS

QUERIES

Even with all the possibilities allowed by the status
bytes, it is often necessary to send more detailed
information from an instrument to a computer. This can
be done via “queries’.

Queries take the form of a header foliowed by a
question mark (see Figure F-4). Here are some queries
and their uses:

® ERR? is used for investigating detailed error condi-
tions in an instrument. The response an instrument
sends back is ERR followed by NR1 numbers that
code the particular problem.

e SET? requests an instrument to send the controller
its present settings and other current state informa-
tion. Sending this information back to the instrument
at a later time returns the instrument to the state it

was in when queried. This query makes it possible
to develop a program using an instrument’s front
panel as input to the computer. Using this feature, a
programmer never needs to know the instrument’s
GPIB commands.

ID? makes an instrument identify itself by sending
such information as its instrument type, model
number, version of firmware, etc. This feature is
useful for identifying a particular device in the field
and potentially for self-configuring systems.

Defining a standard way to elicit responses from an
instrument enhances the convenience to the system
designer. When all instruments in a system use the
same form to perform similar functions, the designer
has to learn only one convention, not many.

| 0
Doo 5 W 222 = O

o BOoO o @me o
OO0 5 a O

i UDJ OO o FREQ 12.1E+06 0 %oco0o00gg?

[o R |

O0Ooa /

CONTROLLER

3917-25

Figure F-4. Query Commands Are Formed by Adding a Question Mark to the Mnemonic for the Setting to be Queried.

4041 PROGRAMMER'S REFERENCE

F-9

INTRO TO CODES AND FORMATS

ADDITIONAL FEATURES

Besides standardizing the language that instruments 3. Instruments always send numbers in correct

use to communicate, the Tek Codes and Formats
Standard specifies certain instrument characteristics
that guarantee maximum friendliness and dependable

operation. Here are some examples: mal points.

NR1, NR2, or NR3 formats, but receive
numbers “forgivingly”, e.g., they accept values
such as “—0"” or NR3 numbers without deci-

1. An instrument always says something when 4, If an instrument receives a number whose

made a talker. If it has nothing to say, it sends
a byte of all ones concurrent with EOI. This lets
the listening device know that no meaningful
data is forthcoming, and prevents tying up the

precision is greater than the instrument can
handle internally, the number is rounded off
(not truncated) to enhance accuracy.

GP1B while one device waits for another to talk. 5. Instruments recognize both spaces and com-
mas as argument delimiters. Multiple spaces or

2. A listening device always handshakes. It does
not stop handshaking just because it doesn't
understand or can’t execute a message. After

commas are NOT construed as delimiters for
null arguments.

EOI is received, if the device is confused, it 6. Instruments receive both characters and argu-

sends out a service request and, when serial
polled, notifies the controller that the command
cannot be executed as sent (Figure F-5).
UNDER NO CIRCUMSTANCES DOES A DE-
VICE EXECUTE A MESSAGE IT DOES NOT

ments in upper and lower case and equate
them, e.g.,a=A, b =B, etc. This is important,
because some computer terminals cannot
send both upper and lower case characters.

UNDERSTAND. 7. Aninstrument sending data about its front
panel uses headers and character arguments

that correspond to the front panel’s nomenclature.

POWER SUPPLY
000 00 10,000 VOLTS
0000000a0a000ood0oon00e CJ T COMMAND ERROR

CONTROLLER
|
‘== _|338
[10 EEE
o I}
|
a1~

3917-26

Figure F-5. Devices Should Assert SRQ When an lllegal Command is Received.

4041 PROGRAMMER'S REFERENCE

ABORT Interrupt Condition, 12-6
ABS function, 2-14

ACOS function, 2-14

Addressed commands (GP!B), E-11
Addresses, GPIB, E-4
ADVANCE, 12-19

ALTER Clause, 8-16

AND Operator, 2-7

APPEND, 13-2

ASC function, 2-16

ASCII (GPiB) Code Chart, B-1
ASIN function, 2-14

ASK functions, 5-3

“ANGLE”, 5-3
“AUTOLOAD”, 5-3
“BUFFER”, 5-4
“CHPOS”, 5-5
“IODONE”, 5-6
“KEY", 5-7
“MEMORY”, 5-7

“PROCEED”, 5-8
“SEGMENT”, 5-8
“SPACE”, 5-9
“TIME”, 5-9
“UPCASE”, 5-9
ASKS$ functions, 5-10
“CONSOLE”, 5-10
“DRIVER”, 5-11
“ERROR”, 5-11
“ID”, 5-12
“LU”, 5-12
,with GPIB devices, 9-5
“PATH”, 5-13
“ROMPACK”, 5-14
“SELECT”, 5-14
“SELFTEST”, 5-14
“SYSDEV”, 5-15
“TIME”, 5-15
“VAR”, 5-16
“VOLUME”, 5-16
ATAN function, 2-14
ATN (WBYTE function), 9-12
ATN(EOI), 9-22
AUTOLD File, 1-3
BAU (parameter), D-6
Binary Operators (BAND, BOR, BXOR, BNOT), 2-8
BIT (parameter), D-6
BRANCH, 12-20
BREAK, 4-2

4041 PROGRAMMER’S REFERENCE

INDEX

BUFFER clause
with GETMEM, 8-10
with INPUT, 8-16
with PRINT, 8-33
with PUTMEM, 8-43
CALL, 7-2
CHRS$ function, 2-16
CIC (parameter), D-10
Clause
with GETMEM, 8-10
with INPUT, 8-15
with PRINT, 8-33
with PUTMEM, 8-43
with RBYTE, 8-44
with WBYTE, 8-50
CLI (parameter), D-12
CLOSE, 8-7
Codes & Formats, GPIB, App. F
COMPRESS, 6-2
CON (parameter), D-7
CONNECT, 4-4
Conditions, Interrupt, 12-1
ABORT, 12-6
ERROR, 12-8
GPIB, 12-12
IODONE, 12-14
SRQ INTERRUPTS (OPT2 DRIVER), 12-15
USER-DEFINABLE FUNCTION KEYS, 12-17
Control Character Functions, 10-4
Controller-In-Charge (GPIB), E-8
COPY, 8-8
COS function, 2-14
CR (parameter), D-7
CTS (parameter), D-7
DATA, 8-9
DCD (parameter), D-7
DCL (WBYTE function), 9-13
DEBUG, 4-5
DEL (parameter), 9-3, D-8
DELETE ALL, 6-2
DELETE FILE, 14-2
DELETE VAR, 6-3
DELN Clause
with GETMEM, 8-10
with INPUT, 8-17
DELS Clause
with GETMEM, 8-10
with INPUT, 8-17
DIM, 6-4

INDEX

DIR (statement), 14-3
DIR (parameter), D-11
DISABLE, 12-21
DISMOUNT, 14-4
DIV Operator, 2-7
DSR (parameter), D-7
DTR (parameter), D-8
ECH (parameter), D-7
EDI (parameter), D-6
ENA (parameter), D-10
ENABLE, 12-22
END, 7-4
Environments
inherited, 11-5
local, 11-5
EOA (parameter), 8-30, D-7, D-8, D-9, D-11, D-12
EOF, 14-5
EOH (parameter), 8-30, D-7, D-8, D-8, D-11, D-12
EOI (WBYTE function), 9-13
EOI (interrupt), 12-12
EOM (parameter), 8-30, 8-31, D-7, D-9, D-12
EOQ (parameter), 8-18, 9-5, D-9
EOU (parameter), 8-30, D-7, D-8, D-9, D-11, D-12
#ER (parameter), D-8
ERR (parameter), D-7
ERROR Interrupt Condition, 12-8
Error Messages, App. A EXIT, 7-5
EXP function, 2-14
Expressions, 2-12
FLA (parameter), D-6
Flagging (parameter), 10-2
Flow (TRACE Flag), 4-18
FOR (parameter), D-6, D-12
FOR, 7-7
FORMAT, 14-6
Front Panel, 3-1
Function, 11-8
Functions, Numeric, 2-14
Functions, String, 2-15
GET (WBYTE function), 9-13
GETMEM, 8-10
Glossary, App. C GOSUB, 7-9
GOTO, 79
GPIB Interrupt Conditions
(DCL, EQV, IFC, MLA, MTA, SRQ, TCT), 12-12
GTL (WBYTE function), 9-14
IBA (parameter), D-6
IF..THEN. ELSE, 7-11
IFC (WBYTE function), 9-14
IFC (interrupt), 12-12
IMAGE, 8-11
IND (parameter), D-11

INIT, 5-17
INPUT, 8-12
with GPIB driver, 9-6
with TAPE driver, 14-7
INPUT USING
modifiers (table), 8-19
operators (table), 8-19
instrument Options, 3-12
INT function, 2-14
INTEGER, 6-5
Interrupt Conditions, 12-1
IST (parameter), 9-3, D-8
ITEM Format, RS-232-C, 10-7
Keywords, 2-21
Labels, 2-20
LEN function, 2-16
LET, 6-6
LF (parameter), D-7
LGT function, 2-14
Line Numbers, 2-20
LIST, 4-7
Listeners (GPIB), E-9
LLO (WBYTE function), 9-14
LOAD, 13-4
Local environments, 11-5
LOG function, 2-14
Logical Operators (AND, OR, XOR, NOT), 2-7
Logical Units, 8-4
LON (parameter), D-11
LONG, 6-7
MA (parameter), 9-3, D-8
MAX Operator, 2-7
MIN Operator, 2-7
MLA (WBYTE function), 9-14
MLA (interrupt), 12-12
MOD Operator, 2-7
MONITOR, 12-24
MTA (WBYTE function), 9-15
MTA (interrupt), 12-12
NEXT, 7-7
NOBREAK, 4-8
NOT Operator, 2-7
NOTRACE, 4-9
Number Representation,2-3
Numeric Variables, 2-5
OFF, 12-25
ON, 12-26
OPE (parameter), D-12
OPEN, 8-28
with GPIB driver, 9-4
with TAPE driver, 14-8
Operators, 2-7

4041 PROGRAMMER'’S REFERENCE

OPT2 Driver, 12-15, D-11
Opt2in (romcall), 7-13
Opt2out (romcall), 7-13
Options, Instrument, 3-12
Option 2 (TTL Interface Port), 3-13, 7-13
OR Operator, 2-7
Parallel Polling, 9-22
Parameters
reference (subprograms), 11-2
stream specifications, D-2
value (subprograms), 11-2
Parity, 10-2
PAR (parameter), 10-2, D-6
P/D Keyboard, 3-5
PEN (parameter), D-10
PHY (parameter), D-11
Physical Mode (TAPE), 8-46, 8-52, 14-12, 14-15
Pl function, 2-14
PNS (parameter), D-8
POLL, 9-19
POS function, 2-16
POSN function, 2-16
PPC (WBYTE function), 9-15
PPU (WBYTE function), 9-16
PRI (parameter), 9-5, D-9
PRINT, 8-30
with GPIB driver, 9-8
with TAPE driver, 14-9
PRINT USING
modifiers (table), 8-35
operators (table), 8-35
Proceed Mode, 8-14, 8-31
Errors, 12-10
Program Development Keyboard, 3-5
PROGram (TRACE Flag), 4-18
PROMPT Clause, 8-18
PUTMEM, 8-43
RAT (parameter), D-8
RBYTE, 8-44
with GPIB driver, 9-10
with TAPE driver, 14-12
RCALL, 7-13
use with Option 2 (TTL Interface Port), 7-13
READ, 8-47
Reference Parameters, 11-2
REM, 4-11
REN (WBYTE function), 9-16
RENAME, 14-13
RENUMBER, 4-12
REP$ Assignment Statement, 2-17
Reserved Keywords, 2-21
RESTORE, 8-48
RESUME, 12-28

4041 PROGRAMMER’S REFERENCE

INDEX

RETRY, 12-29
RETURN, 7-15
RND function, 2-14
ROUND function, 2-14
RTS (parameter), D-8
RUN, 7-16
SAVE, 13-5
SC (parameter), 9-2, D-8
SDC (WBYTE function), 9-16
SEC (parameter), 9-5, D-9
SEGS$ function, 2-18
Segment Structure, 4041
Program, 1-3
SELECT, 8-49
Serial Polling, 9-19
SET, 5-18
ANGLE, 5-19
AUTOLOAD, 5-19
CONSOLE, 5-20
DEBUG, 5-20
DRIVER, 5-21
FUzZz, 5-22
PROCEED, 5-24
SYNTAX, 5-24
SYSDEV, 5-25
TIME, 5-26
UPCASE, 5-27
SGN function, 2-14
SIN function, 2-14
SIZ (parameter), D-12
SLIST, 4-17
SPD (WBYTE function), 9-16
SPE (WBYTE function), 9-17
SPE (parameter), 9-5, D-9
SQR function, 2-14
SRQ (WBYTE function), 9-17
SRQ (interrupt), 12-12
with OPT2 Driver, 12-15
STO (parameter), 10-2, D-6
STOPR, 7-17
Stop bits, 10-2
Statement Numbers, 2-20
Statements, 2-20
Stream Specifications, App. D
String Constants, 2-4
String Variables, 2-6
STR$ function, 2-18
SuB
statement, 11-10
TRACE flag, 4-18
SUM function, 2-14
System Console, 1-3, 5-20
System Controller (GP!B), E-8

INDEX

Talker/Listeners (GPIB), E-9
Talkers (GPIB), E-9
TAN function, 2-14
TCT (WBYTE function), 9-18
TCT (interrupt), 12-12
TIM (parameter), D-7, D-8, D-9
Timeout (serial poll),
see “SPE” TL (parameter), D-10
TMS (parameter), D-7
TRA (parameter), 9-5, D-9
TRACE, 4-18
TRIMS$ function, 2-18
TTL Interface Port (Option 2), 3-12, 7-13
#TY (parameter), D-8
TYP (parameter), D-6
TYPE, 14-14
Typeahead Buffer, 10-2
Universal commands (GPIB), E-10
UNL (WBYTE function), 9-18

1-4

UNT (WBYTE function), 9-18

VAL function, 2-19
VALC function, 2-19
Value Parameters, 11-2
VAR

reference parameter indicator, 11-2

TRACE Flag, 4-18
Variables

Numeric, 2-5

String, 2-6
VER (parameter), D-11
VIE (parameter), D-8

VIEW (TRACE flag), 4-19

WAIT, 12-31
WBYTE, 8-50

with GPIB driver, 9-12
with TAPE driver, 14-15

XOR Operator, 2-7

4041 PROGRAMMER’S REFERENCE

	0-1
	0-2
	i
	i.1
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	13-1
	13-2
	13-3
	13-4
	13-5
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	B-1
	C-1
	C-2
	C-3
	C-4
	C-5
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	E-12
	E-13
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	I-1
	I-2
	I-3
	I-4

