Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon

MANUAL PART NO.
070-2059-01

Tektronix

COMMITTEL TO EXCELLENCE

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

PLOT 50

INTRODUCTION TO
GRAPHIC PROGRAMMING
IN BASIC
INSTRUCTION MANUAL

97077

First Printing DEC 1975
Revised JUL 1981

Copyright © 1975, 1978 Tektronix, Inc.
All Rights Reserved.

All software products including this document, all associated
tape cartridges and the programs they contain are the sole
property of Tektronix, Inc., and may not be used outside the
buyer's organization. The software products may not be
copied or reproduced in any form without the express written
permission of Tektronix, Inc. All copies and reproductions
shall be the property of Tektronix and must bear this copy
right notice and ownership statement in its entirety.

PRODUCT 4051, 4052, 4054 Graphic Computing Systems

This manual supports the following versions of this product; Version 1 and un

MANUAL REVISION STATUS

REV. DATE DESCRIPTION
12/75 Original Issue
AB 9/78 Revised Pages
B 7/79 Revised Pages
B,C 4/80 Revised Pages

PLOT 50 GRAPHIC PROGRAMMING REV C, APR 1980

WE KNOW YOU'RE ANXIOUS TO LEARN ALL ABOUT THE GRAPHIC SYSTEM, BUT...

you'll miss valuable information if you don't start at the beginning!

No matter what your objectives are, you should begin by reading the
introduction in the Graphic System Operator's Manual. It presents an
overview of the complete Graphic System documentation package, and
it will help you select the study material you need to use the Graphic
System effectively.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Section 1

Section 2

CONTENTS

INTRODUCTION Page
Material Covered......... i Vi
Graph Nomenclature e vii
Example viii

GRAPHIC STATEMENTS

MOVE and DRAW. 1-1
WIND OW e 1-3
VIEWPORT . .. e 1-10
WINDOW and VIEWPORT e 1-15
CHPRING . .o 1-16
SCALE. ... e 1-18
Graphic Output.o e 1-21
PAGEandHOME e 1-21
MOVE and DRAWo i 1-21
RMOVE and RDRAW i 1-22
ROTATE. .. e e 1-25
Graphing Arrays ... e 1-30
WINDOW and VIEWPORT Examples e 1-32
WINDOW and VIEWPORT Summary............... 1-41
AXIS Command...... e 1-41
Character Output.........o R 1-48
Positioning With MOVE. i i 1-48
Character Size........ ... e 1-52
Positioning With PRINT. 1-52
Graphic Input e 1-59
GIN L e e 1-59
SUMMaANY o i e e e 1-63
DATA INPUT
ATTaY S . o e 2-1
FromtheKeyboard..........................ca.L. e 2-3
Editingan Array ...t 2-10
ListingData. ... e 2-10
ChangingData.............. ... i 2-11
AppendingData.............. . i i 2-12
DeletingData ...t 2-13
InsertingData..............cco i 2-14
FromaFunction............ e 2-15
From Tape ... e 2-18
SUMMAIY ..o e 2-22

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

iv

Section 3

Section 4

Section 5

GRAPHING Page

Initial Considerations i 3-1
Line Graph. 3-2
Pointand Symbol Graphooi i 3-4
Point Graph. ... i 3-4
Printed Symbols 3-5
Drawn Symbols 3-7
Multi-Line Graphs. 3-11
Other Typesof Graphs................... i i ... 3-14
TRANSFORMATIONS
Introduction. 4-1
EXamples 4-2
TWO ApProaches i 4-7
Useful Types. . ..o e e 4-10
AXIS
AXIS Command Review . ..o 5-1
Without Arguments............... ..o 5-1
With Arguments.ot i 5-3
Without AXISCommand, 5-5
Without TicMarks. e 5-5
WithTicMarks. ... i 5-6
Unaligned TicMarks ... 5-8
Alignment Correction.t 5-9
General Correction.o 5-11
MinorTicMarks i 5-13
Using RDRAW i 5-14
GridS . 5-16
Lines. . e 5-18
Dots. ... 5-17
LOg AXiS .o 5-18
LinearExample 5-18
Adapted to LOg. . ..o vt 5-19
LessThanOneDecade................. i iiiiiiununann... 5-20
More ThanOneDecadec.ccoviiiniinnnnin. 5-21
Polar AXiS. .t 5-23
TWO AXiS Lines. 6-2¢
Two LinesandOneCirclecovniiiieiiinnn 5-24
Multiple Linesand Circles.cccoivii ... 5-25
Using RDRAW 5-26

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Section 6 LABELS ‘ Page

Introduction........ e 6-1
ConstantSize 6-2
TIIING. .o 6-9
AxisLabels ... 6-15
Horizontal AxisLabel...................cvviiiie i, 6-15
Vertical Axis Label o, 6-16
TicMark Labels......... .o i 6-20
ReservingSpace i 6-24
PoSItioNiNg. 6-25
Printing........ e e e e e 6-27
Section 7 ENHANCEMENTS
“Neat” TicIntervals..............coiiiiiiiii . 7-1
Dashed Linescoo i 7-12
GraphicData Editing.oo i 7-15
Cross-Hatching e 7-19
Section 8 PICTURES
Implications of SCALE 8-1
ManipulatingObjects............... ... i 8-6
Reverse Viewpoint. 8-13
Section 9 THREE DIMENSIONS
Another Transformo 9-1
Transformation Limitations.......................... 9-2
Programming Considerations.cvouunivnn... 9-3
Oblique Projection. 9-10
WINDOW Parameters...............cooviuueiuinnne .. 9-13
Orthographic Projectiono 9-15
True Perspective 9-20
Appendix REFERENCE MATERIAL
GlOSSaIY . . A-1
Error Messages ..o A-7
Graphicsas I/0 o A-16
GraphicPointControl............ A-22
TCS Subroutines......... ... i A-25
References i A-26
ASCliCode Chart............ A-27
INDEX

PLOT &0 GRAPHIC PROGRAMMING REV A, SEPT 1978

INTRODUCTION

MATERIAL COVERED

The major part of this manual discusses how to use the Graphic System to make graphs of
data and functions. Some additional data, covering graph enhancements, drawn pictures and
three-dimensional transformations, is also included. The material covered is appropriate for

a person with no experience in graphic programming and only a brief introduction to BASIC.

The programs shown are intended to be easily understood examples. Many af them can be
made smaller, faster or otherwise better. Each example program is not preserited as the best
way to perform a given task, only as a way which is easy to understand.

Although this manual can be used as a quick reference guide, it is primarily written to be
instructional. Each section assumes that all preceding sections have been reac.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

Vi

INTRODUCTION
GRAPH NOMENCLATURE

GRAPH NOMENCLATURE

Below is a typical graph which includes many features of a complete graph. The data curve
itself, although very important, is among the simpler components. Second in importance
are the axes and the tic marks which can be added. Major tic marks can be extended to be-
come a grid system; minor tic marks can be added to improve clarity.

The remaining additions all involve characters, either letters or numbers.

The tic marks can be labeled. Labels on each axis indicate the meaning of the tic labels. The
entire graph can be titled as shown.

TITLE
-
TIC MARKS
B - DATA CURVE

\om = = -

TIC MARK LABELS

AXIS LABELS

vii REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

INTRODUCTION
EXAMPLE

EXAMPLE

The following is an example to illustrate how Graphic System statements are used to make
a simple graph. (The auto line number feature makes entering the program much easier.)

89 INIT
18 WINDOW -100,100,-100,100
20 AX1S 20,20

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 viii

Section 1

GRAPHIC STATEMENTS

MOVE AND DRAW

The fundamental building block of drawn information is the line, just as the fundamental
building block of written information is the letter. To draw a line on a piece of paper, the
pen is first moved to the line’s starting point. The pen is placed on the paper and the line is
drawn to the endpoint. Drawing a line on the Graphic System (GS) is the same process. The
first step is to move to the line’s starting point. The second step is to draw to the line’s end-
point.

e

DRAW TO FINISH POINT

/
MOVE TO STARTING POINT

The Graphic System commands for these tasks are MOVE and DRAW.

[Line number] MOVE [1/0 address] X coordinate in user data units , Y courdinate
DRAW

in user data units

When drawing a line (sometime called a vector) on the GS, the starting and ending points of
the line must be specified. A point on the display is located by specifying a horizontal posi-
tion and a vertical position. As a result, each MOVE and DRAW command has two arguments:
one for the horizontal position and one for the vertical position. By convention, the argu-
ment specifying the horizontal position is the first of the pair, and the argument specifying
the vertical position is the second.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

11

GRAPHIC STATEMENTS
MOVE AND DRAW

'

|

[VERTICAL
: POSITION
1

|

4

HORIZONTAL POSITION

The arguments of the MOVE and DRAW commands can be any of the following:

NUMERIC CONSTANT Examples: 1.5
-.0809
5025.45
-1,324E207
VARIABLE Examples: g_’
2(68)
EXPRESSION Examples:

A+1
~R+BX((COSCG)/URT)

MOVE and DRAW alter the position of the GRAPHIC POINT. The position of the graphic
point is analogous to the position of a pen on a plotter. When no program is running, the
graphic point’s position is shown by the blinking rectangular cursor.

1-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW

WINDOW

The WINDOW command defines the limits of the data space that the Graphic System display
is “looking at’’. The person using the GS defines what these data limits are. For this reason,
the units in the MOVE, DRAW, and WINDOW commands are called USER DATA UNITS

in this manual. Similarly, the limits defined in the WINDOW command form what is called

a USER DATA SPACE.

Before a graph is drawn on a sheet of paper, the paper must be marked off, both horizontally
and vertically, into units appropriate for the information to be graphed. For instance, the
same piece of graph paper can be used to show the progress of a glacier moving a few centi-
meters per year or a jet aircraft moving many kilometers per second. Before a graph is drawn
on the display of the GS, the same marking process must be done. The WINDOW command
accomplishes this.

[Line number] WINDOW minimum horizontal (X) value in user data units , maximum
horizontal (X) value in user data units , minimum vertical : Y) value in

user data units , maximum vertical (Y) value in user data units

The WINDOW command tells the GS what data values mark the boundaries of the display.
For example, the graph program in the Introduction included the following statement:

/')

WINDOW ~-20,20,-1,1

The WINDOW command tells the GS how to interpret the values specified in the MOVE and
DRAW commands. After the above WINDOW command is executed, a MOVE —20,—1
command will place the graphic point at the lower left corner of the display, a MOVE 20,1
command will place the graphic point in the upper right corner of the display, and a MOVE
0,0 command will place the graphic point in the exact middle of the display. WINDOW al-
ways requires four arguments, just as MOVE and DRAW always require two arguments.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-3

GRAPHIC STATEMENTS
WINDOW

As with MOVE and DRAW commands, the WINDOW arguments can be constants, variables,
or expressions. There is no limit to the values these arguments can be, other than the numeric

limits of the GS itself.

For example, here is a valid WINDOW command:

— !

WINDOW 196%,1973,4.8,8,5

{This WINDOW command might be defining years on the horizontal axis and interest rates
on the vertical axis.)

After this command is executed, placing the graphic point at the lower left corner of the
display requires a MOV E 1965, 4.8. Here is another valid WINDOW command:

-— /

WINDOW ~-1E300,1E300,-1E-300, 1E-300

14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW

After this command is executed, placing the graphic point at the lower left corner of the
display requires a MOVE —1E+300,—1E—300. The horizontal data minimuin (the first
argument of the WINDOW command) must always be less than the horizontal data maxi-
mum (the second argument). The vertical data minimum (the third argument) must always
be less than the vertical data maximum (the fourth argument).

The WINDOW command also tells the GS how to interpret the arguments of MOVE and
DRAW commands. How does the System interpret these arguments when no WINDOW
command has been executed, such as when it is first turned on? To handle this situation,
the GS establishes default window limits as shown below.

— 100

0 130

Whenever it is turned on, the System in effect executes the following command:
NINDOW 9,120,0,100

(The origin of these numbers is discussed later in this section.) These default window limits
are also defined whenever any of the following commands are executed:

INIT
OLD

DELETE ALL

WINDOW limits which differ from these default values are usually desired. A WINDOW
command defining the desired limits must be executed after any of the following events
oceur:

— The GS is turned on
— Any of these commands are executed:

INIT
oLD
DELETE ALL

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 15

GRAPHIC STATEMENTS
WINDOW

The example program shown below will illustrate some of these concepts. After pressing
the PAGE key, enter the following statements into the GS:

DELETE ALL

189 PAGE

116 INIT

120 MOUE 0,8

130 ORAKW 138,100
140 HOME

150 END

RUN

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW

The GS will erase its display and then draw a line from the lower left corner to the upper
right corner. The actual positioning of the graphic point during execution of this program
can be observed by entering GOTO 100 into the System and then repeatedly pressing the
“STEP PROGRAM" key. (This technique is useful for finding'errors in comnlex programs.)

A series of example programs will now demonstrate how WINDOW affects the display. First
press the PAGE key (this clears the display and places the cursor in the upper left corner,
allowing space for the program to be entered). Now enter the following program:

DELETE ALL

INIT

109 PAGE

118 MOUE 35,20

120 DRaW 35,80

ﬁg gggﬂ gg:gg This program draws a square box centered on the screen.
150 DRAW 35,20

160 HOME

170 END

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-7

GRAPHIC STATEMENTS
WINDOW

Now enter the following:

NINDOW -70,209,-38,130
RUN

The result is a square box with each edge measuring half the length of the one previously on
the screen. It is half size because the WINDOW statement defined the edges of the user data
space to be twice as far apart as they were at the default values. The window defined by the
above WINDOW statement extends from —70 to 200 user data units on the horizontal axis
and from —50 to +150 user data units on the vertical axis. So the screen is, in effect, looking
at four times as much area.

1-8 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW

With the WINDOW statement, the display can be told to “/look at’’ any rectengular area in
user data space. Enter the commands shown below:

WINDOW -5@0,600,0, 100
RUN

This produces a box the same height as the first box but very narrow. This éccurs because
the last WINDOW statement defined the data space the screen is “looking at’* to be 1100
user data units wide, almost ten times wider than the width implied on the default value.
Thus, the box looks very narrow even though its width in data units has not been changed.
Note that the height is unchanged from the first time it was displayed because neither the
box height in user data units nor the window height in user data units is different in this
example. This demonstrates how to change the horizontal and vertical arguments in the
WINDOW statement independently. They are totally independent.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 19

GRAPHIC STATEMENTS
VIEWPORT

1-10

VIEWPORT

When a graph is drawn on a piece of graph paper, it is not always appropriate for the graph
to totally fill the paper on which it is drawn. There are times when space is needed around
the edges for labeling or titling. In other situations more than one graph is to be drawn on a
single piece of paper. These same situations can arise when drawing graphs on the Graphic
System. The command used to handle them is VIEWPORT.

[Line number] VIEWPORT minimum horizontal value in GDU’s , maximum
horizontal value in GDU’s , minimum vertical value in GDU’s ,

maximum vertical value in GDU’s

The VIEWPORT command is used to specify the size and location of an image on the GS
display (and any other graphic device in the 4050 family). In the VIEWPORT command, the
display of the GS is considered to be a rectangle 130 units wide by 100 units high.

— 100

These units are called GRAPHIC DISPLAY UNITS. Unlike user units, Graphic Display
Units (GDU's) are fixed for a given device and never change. A horizontal GDU on the dis-
play represents the same distance as a vertical GDU on the display. GDU's are used in the
VIEWPORT command to specify the size and position of a graph or image on the display
of the GS. As with MOVE, DRAW, and WINDOW, the arguments of VIEWPORT may be
constants, variables, or expressions. However, the arguments of the VIEWPORT command
are interpreted as being GDU'’s. All four arguments refer to the actual limits for graphic in-
formation on the display. The GS will draw no lines outside these limits. The first argument
is the location on the display of the left-most limit for graphic information. The GS will
draw no lines to the left of this location.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
VIEWPORT

The second argument is the right-most limit. The third argument is the lower limit. The
fourth argument is the upper limit. To specify that an image occupy the whole display, a
VIEWPORT command with the arguments shown below is executed:

UIEWPORT 9,130,0,100

To specify that an image is to occupy only the lower left corner of the display, a VIEW-
PORT command with the arguments shown below is executed:

VIEWPORT 8,65,8,50

Just as there are default values for the WINDOW command, there are default values for the
VIEWPORT command. The default size for an image is the full display. Whenever the GS is
turned on, it in effect executes the following command:

VIEWPORT 8,130,0,100

This default viewport size is also defined whenever any of the following commands are
executed:

INIT
OLD
DELETE ALL

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-11

GRAPHIC STATEMENTS
VIEWPORT

For this reason, all examples so far in this section have referenced the whole display. They
have been run as if a VIEWPORT 0,130,0,100 command had been previously executed.
(The default WINDOW limits are 0,130,0,100. This defines a one-to-one correspondence
between GDU’s and user data units when the GS is first turned on.)

If a viewport is desired which is different from the default size, a VIEWPORT command
defining the desired size must be executed after any of the following events occur:

— The GS is turned on

— Any of these commands are executed:

INIT
oLp
DELETE ALL

For the next two examples, the square box program listed below should be in the GS
memory. (Pressing the PAGE key and entering a LIST command will confirm if it is.)

182 PAGE
118 MOVE 35,28
128 DRAW 35,80
132 DRAW 95,88
148 DRAN 95,28
158 DRAW 35,20
168 HONME
178 END

After pressing the PAGE key, enter the following:

INIT
RUN

The square box should now appear centered on the display. Now enter the following com-
mands:

WINDOW ©,130,0,100 -
gaﬁHPORT 8,65,8,%0

The square box reappears but with a different size and location. The graphic output of this
program can be examined two ways. One way is to see what the viewport command has done
(shown in the following diagram):

1-12 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
VIEWPORT

VIEWPORT @,65,0,50

What formerly occupied the whole display now occupies only the lower left corner, as
specified by the VIEWPORT 0,65,0,50 command, above.

The left edge of the viewport is still the left edge of the display because the “irst argument

is zero (as in the default VIEWPORT 0,130,0,100). However, the right edge of the viewport
is now only half way across the display because the second argument is 65 GDU’s, half the
display width of 130 GDU'’s. In specifying the vertical size of the viewport, & similar situation
exists. The bottom of the viewport is still the bottom of the display but the top of the
viewport is defined to be half way up the display (because the last argument in the above
VIEWPORT command is 50 GDU’s).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-13

GRAPHIC STATEMENTS
VIEWPORT

Another way to look at the output of this program is to see how the window has been af-
fected. This is shown below:

WINDOW 8,130,0, 100

The same window as in previous examples is now drawn with a different size and location
on the display. It is otherwise unchanged.

As with other GS commands, WINDOW and VIEWPORT are executed immediately if entered
without a preceding statement number. An entered command becomes part of a stored pro-
gram if it is entered with a preceding statement number. For example,

WINDOW 9,136,0,1080

is executed immediately while

250 WINDOW 9,130,9,100

becomes statement 250 in whatever program is currently in GS memory.

1-14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW AND VIEWPORT

WINDOW AND VIEWPORT

WINDOW and VIEWPORT accomplish conceptually similar tasks. As shown in the diagram
below, the combination of these two statements allow the selection of what is to be seen
(WINDOW) and where on the display it is to be located (VIEWPORT). The WINDOW com-
mand manipulates the size and location of the window on the user's data sp:ace. Its argu-
ments are interpreted as user data units. The VIEWPORT command manipuiates the actual
size and location of the image on the display. Its arguments are interpreted as Graphic Dis-
play Units. WINDOW can be used to “zoom’’ in on a particular area of a graph to display
more detail. VIEWPORT can be used to make several graphs appear on the display at one
time.

To repeat: VIEWPORT specifies the physical area on the display to be used for graphic in-
formation; WINDOW specifies how many units of measure (that is, user data units) will be
included within this physical graphing area.

WINDOW DEFINIE:D ON
USER DATA SPACE (SIZE
& POSITION DETERMINED
BY WINDOW STATEMENT
WITH ARGUMENTS IN
USER DATA UNITS)

DISPLAY VIEWPORT (SIZE & POSITION _ -
DETERMINED BY VIEWPORT STATE- -~
MENT WITH ARGUMENTS IN GDU'’s)

N

\\/

N\

LS

/

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

GRAPHIC STATEMENTS
WINDOW AND VIEWPORT

Clipping

These commands (WINDOW and VIEWPORT) also serve another function. As an example,
try the following. Confirm that the square box program on page 1-7 is in the GS by entering
the following statements:

INIT
RUN

The square box should again appear on the center of the display. Now enter the following:

INIT
NINDOW 63,138,50, 100
RUN

Notice now that because of the changed arguments in the WINDOW statement, only the
upper right corner of the square appears (although it is filling the display). Because the
VIEWPORT statement’s arguments are at their default values (0,130,0,100), this upper right
corner fills the display.

1-16 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
WINDOW AND VIEWPORT

WINDOW is used to specify what is to be seen and what is not to be seen. Any lines which
a program attempts to draw outside the data limits specified in the WINDOW command are
not drawn. Now enter the following:

VIEWPORT 65,130,50,100
RUN

Preventing any drawing outside a specified WINDOW is called clipping. Only the upper right
corner of the square appears, located in the upper right quarter of the display. The remainder
of the square is not drawn because of the clipping capability of the GS.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 117

GRAPHIC STATEMENTS
SCALE

SCALE

[Line number] SCALE horizontal scale factor , vertical scale factor

As shown earlier, the WINDOW statement allows the user to define what portion of the data
space is to be seen. The SCALE command is an alternative way to do this. In effect, SCALE
allows the user to do the same thing that WINDOW does but in a slightly different way. After
confirming that the box program on page 1-7 is in memory, enter the following:

INIT
80 MOVE 9,0
90 SCALE 2,2
RUN

1-18 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
SCALE

The box appears half size in the lower left corner of the screen. Each argument in SCALE is
interpreted to be the number of user data units which are to be represented by each GDU.
The default values for these areguments are SCALE 1,1. SCALE 2,2 indicates that the data
should appear half the size it would have appeared with the default argumernit values. This
also implies that, if the VIEWPORT arguments are unchanged, the same viewport on the dis-
play should contain four times as much user data space area.

Enter the following:

INIT
88 MOVE 65,58
98 SCALE 2,2
RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-19

GRAPHIC STATEMENTS

SCALE

1-20

The square box is drawn in the upper right quadrant of the screen. The only difference in
these two examples is the MOVE command which preceded the SCALE command. These
examples demonstrate another function of the SCALE command. SCALE sets the location
of the point X = 0 and Y = 0 in user data space to be the current location of the graphic
point. This sequence of statements:

INIT
MOVE 0,0
SCALE 2,2

is equivalent to: WINDOW 0,260,0,200. Similarly:

INIT
MOVE 65,50
SCALE 2,2

is equivalent to: WINDOW —130,130,—100,100. (The INIT commands in the two examples
are not strictly required but are used to ensure that the first MOVE 0,0 is actually a move
to the lower left corner of the display and that the second MOVE 65,50 is actually a move
to the center of the display.)

The INIT statement is used in this section to ensure that the examples have been run from a
common starting point. INIT, in addition to other functions, restores the arguments of the
WINDOW, SCALE, and VIEWPORT statements to their default values. These are:

WINDON @,130,9,100
SCALE 1,1
VIEWPORT 9,130,0,100

Because of the INIT command the arguments of the MOVE commands (which immediately
preceded the SCALE commands in the examples) were all interpreted the same way.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

GRAPHIC OUTPUT

Earlier in this section, the MOVE and DRAW statements were discussed. These statements
and the other graphic output statements are now covered in somewhat more detail. All

these statements affect the location of the cursor (also called the graphic point). The location
of this point is always maintained internally by the GS and, if a program is not running, the
GS constantly shows the physical location of this point on the screen. The graphic point is
actually located in the lower left corner of the cursor's flashing rectangular ¢lot matrix. This
is the starting point for any graphic output operation.

PAGE and HOME

Two functions useful for cursor housekeeping tasks are PAGE and HOME. These commands
can be executed either from the keyboard (using the PAGE and HOME key) or under pro-
gram control (by entering a line number before the words PAGE and HOME). The box pro-
gram on page 1-7 contains HOME used under program control.

The PAGE command erases the display and moves the cursor to the “home”’ position. On
the display, this is the position of the upper left most character the display is capable of
printing. The HOME command, in contrast, only moves the cursor to the hame position and
does not erase the display. The HOME position is fixed. It is not affected by WINDOW,
VIEWPORT, or SCALE.

MOVE and DRAW

Execute an INIT command and press the PAGE key. The cursor will appear in the display’s
upper left corner. A DRAW 0,0 will cause a line to be drawn from the current cursor loca-
tion to the location X =0 and Y = 0 in user data units, which, because of the INIT com-
mand, is the lower left corner of the screen. The arguments of the DRAW cammand specify
the end point of the line. The execution of a DRAW will cause a line to be drawn from
wherever the graphic point is to the location specified in the DRAW commard. The resulting
line is, of course, subject to the limits imposed by WINDOW. The cursor is moved from the
HOME position in the upper left corner of the display to the position of the and point of the
line. Press the PAGE key and enter DRAW 64.5,49.5.

This will cause a line to be drawn to a location which is approximately in the middle of the

display. The line ends at the cursor’s lower left corner. The arguments of the DRAW com-
mand (or any other graphic command) need not be integers.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-21

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

RMOVE and RDRAW

There are two types of MOVE and DRAW commands. The type that has been used so far in
this section is called an “‘absolute’”” MOVE or DRAW command. These commands cause the
cursor or graphic point to be moved from its present location (wherever that happens to be)
to the location specified by the command’s arguments (in user data units).

[Line number] RMOVE [I/O address] X increment in user data units , Y
RDRAW -

increment in user data units

The other type of MOVE and DRAW command is called “relative’””. RMOVE and RDRAW
are the relative move and draw commands. Either of these commands will cause the graphic
point to be moved relative to its present location. That is, the arguments of the RMOVE and
RDRAW commands are interpreted to be the distances (in user data units) to move away
from the graphic point’s present location. If the command RDRAW 64.5,49.5 is executed,

a line is drawn from the current graphic point to a point 64.5 horizontal and 49.5 vertical
user data units away from the beginning point of the line.

Enter the following into the machine:

DELETE ALL

PAGE

1e@ INIT

119 MOVE 9,0

128 RDRAW 64.5,49.5
130 RDRAN 64.5,49.5
148 HOME

158 END

RUN

1-22 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

Each of the RDRAW commands causes a line to be drawn from the current location of the
graphic point to a point 64.5 horizontal and 49.5 vertical data units away.

MOVE and DRAW cause the graphic point or cursor to be moved relative to the origin or

0,0 point of the user data space. The arguments of these commands are treated as if they
described an absolute location in user data space. RMOVE and RDRAW cause the graphic
point or cursor to be moved relative to its current location. The arguments of these commands
are treated as incremental distances from the current point. Another example |Ilustrates

these differences. Enter the following into the Graphic System:

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-23

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

DELETE ALL
PAGE

180 INIT

1180 PAGE

128 MOVE @,0
138 DRAW 60,208
140 MOVE 8,30
158 RDRAW 60,20
160 DRAW 6@,20
170 HOME

180 END

Notice how the command which precedes each of the three DRAW commands affects
execution. The first DRAW could have been a RDRAW without affecting the shape of the
drawn pattern. This is because its beginning point is also the origin of the user data space
coordinate system, that is, the point where X =0and Y = 0.

1-24 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

ROTATE

[Line number] ROTATE rotation angle measured in the current trigonometric units

A command which applies only to RMOVE and RDRAW is ROTATE. This command causes
each RMOVE and RDRAW to be drawn rotated a specified angle from its expected direction.
The point around which each RMOVE or RDRAW is rotated is its starting point. For
example; enter the following commands:

PAGE
DELETE ALL
INIT

100 PAGE
118 MOVE 65,50
128 RDRAW 28,0
130 HOME
148 END

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-26

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The above program draws a horizontal line 20 data units long with its beginning point
centered on the display. Now enter the following:

SET DEGREES
ROTATE 45
RUN

The same RDRAW command is executed, but the resulting line is rotated 45 degrees counter-
clockwise around its beginning point. The significant feature about this, other than the ro-
tation, is that the line is rotated around its beginning point. This also happens to be the
ending point of an absolute MOVE, which was not rotated. The following example demon-
strates the usefulness of this characteristic:

1-26 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

DELETE ALL

188 INIT

118 SET DEGREES
120 PAGE

130 ROTATE @

148 HQUE 65,50
158 REM DRAN A TRIANGLE
160 RDRAW 48,10
178 RDRAW -40,19
188 RDRAW ©,-20
198 HOME

208 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-27

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The display should now show a narrow isosceles triangle “‘pointed” to the right. Add the
following statements:

132 GOSUB 148
134 ROTATE 90
136 GOSUB 140
138 END

200 RETURN

RUN

The triangle has been drawn again but rotated 90 degrees counterclockwise around the
vertex that corresponds to the endpoint of the MOVE command. This point of rotation can
be placed anywhere desired. For example, enter the following statement into the GS:

135 RMOVE -10,-10

1-28 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Below is a listing of the program as it now looks:

188 INIT

118 SST DEGREES

120 PAGE

130 ROTATE @

132 GOSUB 148
134 ROTATE 90
136 GOSUB 148

138 END

14@ MOQUE 65,50

DRAW A TRIANGLE
155 RMOVE -10,-18

168 RDRAW 48,10

170 RDRAKW -40,10

180 RDRAKW 8,-20

138 REM

198 HOME

288 RETURN

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978

1-29

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

If the program is run again by entering RUN, the result (shown in the preceding diagram)

is a triangle oriented like the first one in the previous example, “pointed to the right”, and
another triangle. This triangle is also oriented at right angles to the first one but the axis of
rotation is now centered inside both triangles. This effective rotation point is still the end
point of an absolute MOVE command. The reason why the rotation axis changed was that
the inserted RMOVE command at line 155 shifted the triangle in relation to the end point:
of the last absolute MOVE. This rotation axis can also be determined by the end point of
an absolute DRAW.

It should be emphasized again that the ROTATE statement affects only relative moves
and draws, that is, only the RDRAW and RMOVE commands. Some uses of the ROTATE
command are discussed later in this manual.

Graphing Arrays

The MOVE, RMOVE, DRAW, and RDRAW commands all have a similar array output cap-
ability which greatly simplifies outputting a series of connected lines or other large amounts
of graphic information. If forty lines are to be drawn on the screen, two one-dimensional
arrays of length 40 are dimensioned as follows: DIM X(40),Y (40). Each successive X and Y
value is placed in the corresponding array element by usinga FOR . .. NEXT loop or any
other appropriate process. In other words, the horizontal location (in user data units) of
the first point is placed into X(1), the vertical location of the first point is placed into Y (1)
and so forth until the arrays are filled. To draw these lines, all that is necessary is the command
DRAW X.,Y. This command will cause a line to be drawn from the current cursor location
to the X(1),Y(1). From there it draws a line to X(2),Y(2). This continues until both arrays
are exhausted. The arguments of the DRAW command can be either scales or arrays. The
command will automatically handle either situation. Of course, both arguments must be
scalars or both must be arrays. The types cannot be mixed.

If the variables X and Y are arrays, DRAW X,Y is the equivalent to:

318 FOR I=1 TO 40
320 DRAW X(I>,¥Y(I>
330 NEXT 1

This implied output sequence is applicable to DRAW, RDRAW, MOVE, and RMOVE. Here
is an example:

1-30 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

PAGE

DELETE ALL

188 PAGE

118 INIT

120 DIM X(48),Y(40)

138 REM FULL ARRAYS WITH DATA
148 FOR I=1 TO 40

130 X(I>=1%3.25

168 Y(1)=SQR(ABS(I-20)>%20

178 HEXT I

188 REM MOVE TO THE FIRST POINT
198 MOVE X¢1),Y(1)

200 REM DRAW BOTH ARRAYS

218 DRAN X,Y

220 HOME

230 END

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1078 1-31

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

Both arrays used must-have the same number of elements. |f they do not, an error condition
results. Note also that this alternating output of array elements is different from that of the
PRINT statement. If the statement PRINT X,Y is executed with the arrays X and Y dimen-
sioned as above, the sequence of output is as follows: X(1),X(2),X(3), ... X(39),X(40),
Y(1),Y(2),Y(3),...Y(39),Y(40). All elements of the X array are output before the first
element of the Y array is output.

WINDOW and VIEWPORT Examples

As a review, here are seven examples which illustrate capabilities of WINDOW and VIEW-
PORT. All seven examples use the same figure for output: a circle of radius 75 centered at

X =0and Y = 0. They demonstrate how WINDOW and VIEWPORT determine what is shown
on the display. Each exampie program performs three functions:

1. Fill arrays X and Y with data necessary to draw the circle
2. Define a window and viewport

3. Draw the circle.

In all seven examples, the statements which perform the first and third functions (above)
are identical. The only difference among the programs is in function 2 — the window and
viewport definition.

Please enter the following statements (this is the first of the seven examples):

PRGE

DELETE ALL

188 REM FILL ARRAYS WITH DATA
110 REM_ REPRESENTING A CIRCLE
120 INIT

138 DIM X(P2),Y(?2)

140 SET DEGREES

158 FOR I=} TO 72

168 X(I)=?5%COSCIXS)

170 YC{I)=75%SINCI¥S)

188 NEXT I

190 REM

288 PAGE

210 REM DEFINE WINDOW AND UIEWPORT
228 WINDOW 9,130,0,1080

220 VIEWPORT ©,1308,0,100

240 REM DRAW THE CIRCLE

250 GOSUB Sea

268 HOME

278 END

588 REM SUBROUTINE TO DRAW CIRCLE
518 MOUE X(72),Y(72)

920 DRAW X,Y

530 RETURN

1-32 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

In all seven examples, statements 100 through 190 are identical. These stataments fill arrays
X and Y with the appropriate data. Statements 500 through 530 are also identical in all
seven examples. These statements form a subroutine to draw the data in arrays X and Y.
The MOVE command at statement 510 positions the graphic point to the cerrect starting
point for the circle to be drawn. This program’s output is shown below:

As a result of these window limits, only the upper right quarter of the circle is shown on

the display.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-33

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

In the example below, the window is changed so that the whole circle is visible. Enter
the following statements:

220 WINDOW -130,130,-100,100
RUN 200

This produces the output shown below:

In the preceding example, the program was executed with the following command: RUN
200. (This causes the program execution to start at statement 200.) Once data arrays X and
Y have been filled with data, as they were in the first example of this series, they need not
be filled again. Since filling the arrays with data is the function of statements 100 through

190, these statements are skipped.

1-34 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

There is an implied horizontal and vertical scaling whenever a window is defined. The im-
plied horizontal scaling and implied vertical scaling can be varied independently. The next
two examples show that data which represents a circle will be drawn with a different shape
if the window is defined inappropriately. Enter the following statements:

228 WINDON -138,130,-300,500
RUN 200

In the program output above, the width of the drawn figure is the same as in the example
which immediately preceded it. The WINDOW command arguments which soecify the hori-
zontal data range are identical in both examples. However, the WINDOW coimmand argu-
ments which specify the vertical data range are different. This causes the different shaped
figures.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-35

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The next example changes the horizontal range. Enter the following:

220 WINDOW -500,500,-100,100
RUN 200

To draw a figure with no distortion, the ratio of the viewport’s height and width must be the
same as the ratio of the window's height and width. This is discussed in more detail in
Section 8.

1-36 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

In the next example the window is restored to its previous dimensions (—130,130,—100,100)
but the viewport is changed so that it no longer coincides with the full size of the display.
Enter the following:

220 WINDOW -130,130,-100,100
230 VIEHWPORT 65,130,0,50
RUN 208

As the program output shows, the viewport is now defined to be the lower right corner of
the display. This was specified in the VIEWPORT command in statement 230. There has
been an implied change of scale because the same window must fit into a smaller portion
of the display.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-37

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The next example shows how different windows can be defined for the same display area.
Enter the following statements:

PAGE

220 WINDOW 9,130,0,1080

230 VIEWPORT @,130,0,100

2408 GOsSuB Jee

250 WINDOW -130,130,-100,100
260 GOSuB See

278 HOME

280 END

RUN206O

The command GOSUB 500 appears twice. As a result, the circle is drawn twice. There are
two WINDOW commands. Each causes a different portion of the circle to be visible when
the routine at statement 500 is called. However, only one viewport is defined (in statement
230). This means that both windows occupy the same area on the display.

1-38 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

In the previous example, statements 220 through 260 determine what is placed on the dis-
play. Here is a summary of their functions:

220 WINDOW 0,130,0,100 Specifies a window which covers the upper right section
of the circle.
230 VIEWPORT 0,130,0,100 Specifies a viewport which fills the display.

240 GOSUB 500

Draws the circle subject to the defined window and view-
port. Because of the WINDOW command at statement
220, only the upper right section of the ¢ircle appears on
the display.

250 WINDOW —130,130,—100,100 Specifies a window which covers the whole circle.

260 GOSUB 500

Draws the circle subject to the defined window and view-
port. Because of the WINDOW command at statement
2560, the complete circle appears on the display.

The next example draws everything seen on the display in the above example but, through
a change in viewport parameters, draws the image in the upper right quarter of the display.
It also adds some additional data in the lower left quarter of the display. Enter the following

statements:
PAGE

230 VIEWPORT 65,130,508,100
279 WINDOW ~-130,0,0,100
280 VIEWPORT @,65,0,%50
299 GOSUB See

300 HOME

318 END
RUN2@@

The entire program now looks like this:

PLOT 50 GRAPHIC PROGRAMMING

108 REM FILL ARRAYS WITH DATA
116 REM REPRESENTING A CIRCLE
120 INIT

130 DIM X(?2),Y(?72)

148 SET DEGREES

138 FOR 1=1 TO 72

160 X(I)=?3xCOSC1xS)

170 Y(I)=7SXSINCIXS)

180 NEXT 1

196 REM

200 PAGE

210 REM DEFINE WINDOW AND VIEWPORT
228 WINDOW @,130,0,100

230 VIEWPORT 65,130,58,109

2408 GOSUB S@e8

258 WINDOW —130,139,-100,196
260 GOSUB See

278 WINDOW -130,8,0,100

280 VIEWPORT 8,65,0,59

298 GoSuB See

388 HOME

318 END

560 REM SUBROUTINE TO DRAW CIRCLE
310 MOVE X(?72),Y(?72)

9208 DRAW X,Y

530 RETURN

REV A, SEPT 1978 1-39

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The output from this program looks like this:

The above example demonstrates that any portion of the user data space can be shown at
any place on the display. Statements 220 through 290 determine what is visible on the dis-
play. Here is a summary of their functions:

220 WINDOW 0,130,0,100
230 VIEWPORT 65,130,50,100

240 GOSUB 500

250 WINDOW —130,130,—100,100
260 GOSUB 500

1-40

Specifies a window which covers the upper right section
of the circle.

Specifies a viewport to be the upper right quarter of the
display.

Draws the circle subject to the defined viewport and
window. Because of the WINDOW command at staternent
220, only the upper right section of the circle appears on
the display.

Specifies a window which covers the whole circle.

Draws the circle subject to the defined window and view-
port. The complete circle appears because of the WINDOW
command at statement 250.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS

GRAPHIC OUTPUT
270 WINDOCW —-130,0,0,100 Specifies a window which covers the upper left section of
the circle.
280 VIEWPORT 0,65,0,50 Specifies a viewport to be the lower left quarter of the
display.
290 GOSUB 500 Draws the circle subject to the defined window and view-

port. Because of the WINDOW commarki at statement
270, only the upper left section of the c:rcle appears.

WINDOW and VIEWPORT Summary

All seven examples illustrate the same two principles:

— The window and viewport are defined independently. Different windows can be de-
fined for one viewport; different viewports can be filled with the same window.

— The currently defined window and viewport together determine what appears on the
display.

WINDOW defines what data is seen. VIEWPORT defines where on the display it appears.

AXIS Command

[Line number] AXIS [I/O address] [X axis tic interval in user data units ,

Y axis tic interval in user data units [, X axis intercept in user data units ,

Y axis intercept in user data units] :l

The AXIS command draws horizontal and vertical axis lines, with tic marks if desired. The
command can be used with four arguments, with two arguments or with na arguments. De-
fault values are supplied in place of any missing arguments. The AXIS comrmand with no
arguments draws a horizontal and a vertical line through the origin of the user data space

(X =0and Y =0 in user data units) if this point is inside the defined windaw. If this point

is not inside the window, the axis lines are drawn through the minimum X and Y data values.
In other words, unless X = 0 is within the window, the vertical or Y axis is tirawn at the left
edge of the window; and unless Y = 0 is within the window the horizontal ¢r X axis is drawn
at the bottom edge of the window.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-41

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The following examples illustrate the default location of the axes. Enter the following:
DELETE ALL
PAGE
100 PAGE
116 INIT
120 AXIS
138 END

RUN

Since INIT is equivalent to WINDOW 0,130,0,100, the point X =0 and Y =0 is at the lower
left corner of the display. So the vertical axis is at the left edge of the display and the hori-
zontal axis is at the bottom edge. After the AXIS is drawn, the graphic point is placed at the
intersection of the two axes. In the above example, the two axes intersect at the lower left
corner of the display. When execution is complete, that is the cursor’s location.

Press the PAGE key and enter the following statements:

115 HINDOW -58,50,-58,58
123 HOME -
RUN

142 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The axis lines cross at the center of the display because that is the location pf the origin

(X =0and Y = 0) of the user data space. {The HOME command at statement 125 is added
to make updating this program easier.)

Enter the following:

115 WINDOW -108,-50,-103,-38
RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 143

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The axis lines cross at the lower left corner of the screen, because that is where the mini-
mum values of X and Y occur. Notice that the AXIS statement defines minimum value to
be minimum algebraic value, not minimum absolute value.

Enter the following:

115 WINDOW -50,30,50, 100
RUN

1-44 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The vertical axis is now centered on the display because the point X = 0 is located halfway
between the left and right edges of the display. The horizontal axis, as before, passes through
the Y data minimum and, as a result, is located at the lower edge of the display.

The first two arguments of AXIS (whether it is being used with four arguments or only two)
specify the interval in user data units between tic marks. The first argument is the interval
between tics on the horizontal or X axis; the second argument is the interval between tics
on the vertical or Y axis. If an interval of zero units is specified in either argument, no tics
at all are drawn on the axis corresponding to that argument.

Enter the following:

115 WINDOW -25,25,-2%5,25
.115: AX1S 0,180

Because the arguments in the WINDOW statement have placed the point X=0and Y =0in
the middle of the screen, the axes are drawn with their crossing point centered on the screen.
Notice there are no tic marks on the horizontal axis (because the first argument of the AXIS

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-45

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

statement is zero). However, because the second argument of AXIS is 10, there are tic marks
on the vertical axis spaced 10 user data units apart. The tic marks are always aligned with
the crossing point of the axes, as they are here. The length of the tic marks is always 1%

of the viewport size in the corresponding direction. For example, if the AXIS statement is
executed after a VIEWPORT 0,50,0,100 statement, the tic marks on the vertical axis are

.5 GDU in length (1% of the 50 GDU width of the defined viewport) and the tic marks on
the vertical axis are 1 GDU in length (1% of the 100 GDU height of the defined viewport).

The third and fourth arguments of the AXIS statement allow the user to specify the hori-
zontal and vertical intercepts of the axes. The third argument is the location in horizontal
or X data units of the vertical axis intercept. Similarly, the fourth argument is the location
in vertical or Y data units of the horizontal axis intercept.

Enter the following:

128 WINDOW ©,260,0,200
égg AXIS 0,0,10,100

1-46 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC OUTPUT

The AXIS statement causes the vertical axis to be drawn through X = 10, a point near the
left edge of the display, and causes the horizontal axis to be drawn through Y = 100, a point
in the middle of the display.

Axis can be used to easily draw a box around the specified window. The example below
illustrates how this is done. Press the PAGE key and enter the following statements:

DELETE ALL

188 PaGE

118 INIT

128 DATA -40,55,~-22,89
130 READ W1,MW2W3, W4
148 WINDOW Wi, W2,W3,H4
158 AXIS 9,0, W1, U3

168 RAXIS D40, W2, W4

178 HOME

{386 END

RUN

The AXIS command at statement 150 draws lines at the left and bottom edyes of the window.
For this particular task, two AXIS commands perform the function of one MOVE and four
DRAW commands.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-47

GRAPHIC STATEMENTS
CHARACTER OUTPUT

CHARACTER OUTPUT

This part of the manual discusses output of characters (letters and numbers) to a graphic
device. This is done with the PRINT statement. A fundamental concept of outputting in-
formation to a graphic device is that the cursor’s location defines the starting point for both
character output and graphic output (lines). [f a DRAW statement is executed, the starting
point of the resulting line is the lower left corner of the cursor’s current position. If a
PRINT statement is executed, the first character is normally output at the cursor’s current
position and the cursor is moved to the position of the next character (to the right of the
cursor’s starting position).

Positioning with MOVE

Character output can be placed anywhere on the display by preceding the PRINT with a
MOVE. For example; press the PAGE and enter the following statements:

DELETE ALl

188 PAGE

118 INIT

120 PRINT "MESSRAGE"§
138 HOME

148 END

RUN

MESSAGE

148 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
CHARACTER OUTPUT

The message is placed at the upper left corner of the display because that is the cursor’s
position after the PAGE statement is executed. Enter the statements below:

115 MOVE 8,9
RUN

MESSAGE

The message is placed in the lower left corner of the screen because of the MOVE 0,0 state-
ment. Enter the following statements:

115 MOVE 65,50
RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 149

GRAPHIC STATEMENTS
CHARACTER OUTPUT

MESSAGE

In this case the message is placed in the middle of the screen because of the MOVE 65,50
which places the cursor in the center of the screen. Enter the following statements:

DELETE ALL

188 PAGE

118 RINDOW 9,130,0,100

129 VIENPORT 63,138,50,100
130 MOVE 138, 1080

148 DRAW -130,-100

158 MOVE -138,-100

168 PRINT "MESSAGE"S

178 HOME

180 END

RUM

1-50 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
CHARACTER OUTPUT

LESSQQ_&;

Notice that, although the line resulting from the DRAW statement is clipped at the bound-
aries set up by VIEWPORT, the MOVE and PRINT statements are not clippad. After the
WINDOW and VIEWPORT statements are executed, the center of the display is equivalent
to X =0and Y = 0 in user data units. It is also the lower left corner of the viewport. The
DRAW statement attempts to draw a line beyond this point but is prevented from doing
so. However, the MOV E statement can place the cursor at any point on the display and the
PRINT statement can place characters at any point on the display.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-561

GRAPHIC STATEMENTS
CHARACTER OUTPUT

Character Size

Characters placed on an 11-inch display with a PRINT command have only one size and
orientation. The size of the characters has four components: the height of the five by
eight rectangular dot matrix which is used to form the character, the width of that matrix,
the horizontal distance between adjacent characters in a line of characters, and the vertical
distance between adjacent lines of characters. Refer to the figure below. These distances
on an 11-inch display are all constant and are expressed in GDU'’s as follows:

CHARACTER
WIDTH
00000 00000
00008 Ses0e
00000 00000 CHARACTER
00000 00000 HEIGHT
00000 00000
00000 00000
00000 00000
$3338 s388s
GITACTER 90000 ©0000
00000 00000
HEIGHT 00000 00000
000086 00000
00000 00000
90000 00000
CHARACTER
SPACE
WIDTH Height of character 1.88 GDU's
Width of character 1.65 GDU'’s
Character space width 1.79 GDU's
Character space height 2.82 GDU'’s

1-52

Positioning with PRINT

As described previously, the cursor can be moved to any point on the display by using the
MOVE statement. There are also four characters which move the cursor on the display hori-
zontally in increments of the distance between adjacent characters and vertically in incre-
ments of the distance between adjacent lines. Using these characters, the cursor can be
moved in any direction and thus can also be moved to any point on the display.

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS

CHARACTER OUTPUT
The following chart summarizes these four characters:

Action Character Obtainable How to Place ASCII

Moves Name From Key- Into a Charac- Value

Cursor board With ter String

To the right SPACE SPACE BAR Ag=1 n ?

To the left BACKSPACE CTRLH A% ="H" }

Down LINE FEED CTRLJ A$="J" 10

Up VERTICAL TAB | CTRLK A$ = K" 11

Three of these characters are entered as control characters: Control H, Contiol J, and Con-
trol K.

To enter a control character into the Graphic System, the CTRL key is used much like the
SHIFT key. A control character is entered by pressing the desired character xey while simul-
taneously pressing and holding the CTRL key. The “space’” character (entered with the
SPACE BAR) moves the cursor to the right by 1.79 GDU'’s, the distance which separates
adjacent characters. The ““backspace’” character (which prints on the screen us “‘H’’ or
“Control H"") moves the cursor to the left by the same distance. The “linefeed’’ character
(which prints on the screen as “’J”" meaning “Control J’) moves the cursor down by 2.82
GDU'’s, the vertical distance which separates adjacent lines of characters. The “‘vertical tab”’
character (which prints on the screen as “’K"” or ““Control K'') moves the cursor up by the
same distance. These distances are all GDU’s and are not affected by the WINDOW, VIEW-
PORT, or SCALE statements. When manipulating the cursor in this way, it must be remem-
bered that the cursor is moved to the right whenever a non-control character is output. For
an example of this method of cursor manipulation, press the PAGE and enter the following:

DELETE ALL

108 INIT

118 PAGE

120 NMOVE 65,50

139 PRINT “A BHJJCHHHOHKK"
148 END HJJCHHHOHKK " 3

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 7 1-63

GRAPHIC STATEMENTS
CHARACTER OUTPUT

The resulting output looks like this:

w8
D C

1-54 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
CHARACTER OUTPUT

When the program has finished execution, the cursor is placed in the same position as the
first character output (the A).

As mentioned earlier, a fundamental point about outputting information ta a graphic de-
vice is that the cursor’s location defines the starting point for both character output and
graphic output. For example, here is a program which draws two connected lines from the
upper left corner of the display to the lower right corner of the display. Press PAGE key
and enter the following statements:

DELETE ALL

180 PAGE

118 INIT

120 MOVE 8, 180
130 DRAN 65,50
140 DRAN 130,08
150 HOME

160 END

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1078 1-65

GRAPHIC STATEMENTS
CHARACTER OUTPUT

if a PRINT statement is added between the two drawn lines, the end point of the first line
and the beginning point of the second line no longer coincide. Enter the following statements:

135 PRINT "RBCDEF*;
RUN

ABCDEF

N

The beginning point of the second line is displaced by the characters printed by the PRINT
command at statement 135. The DRAW command at statement 140 specifies only the end
point to which the line will be drawn. |t draws the line from wherever the graphic point is
located when statement 140 is executed.

This example illustrates that care must be taken when lines and printed characters are out-
put in the same program.

1-56 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

One way to avoid inadvertent distortion of graphic output is to keep track of the number of
characters being output at a given PRINT statement. Then, by using the cantrol characters
described above, backspace and up-space to the beginning location of any character output.
Subsequent graphic output may be continued as if nothing had been output at that point.
The next example illustrates a way to do this. Press the PAGE key and enta- the following

statements:

DELETE ALL
198 PAGE

118 INIT

128 A$="RBCDEF"

138 NOUVE 8,100

148 DRANW 65,50

138 PRINT A$

1680 FOR I=1 TO LEN(A$)
170 PRINT "H"3

188 NEXT 1

190 DRAW 130,0

2088 HOME

21@ END

RUN

Here is the resulting output:

BCDEF

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

GRAPHIC STATEMENTS
CHARACTER OUTPUT

1-57

GRAPHIC STATEMENTS
CHARACTER OUTPUT

Control H is a backspace character. The FOR ... NEXT loop at statements 150 to 170
simply backspaces the number of characters output in A$. The DRAW at line 180 is then
continued appropriately.

Statements 160 through 180 use only the number of characters in A$ to determine the
graphic point’s movement. This is appropriate when the PRINT command is placed in a sub-
routine. No positional information is then required by the subroutine. In the example pro-
gram (above) statements 160 through 180 could easily be replaced by the following com-
mand: MOVE 65,50. This approach is simpler in the context of the example. However, it
might not be appropriate when used in a different program. The example here simply shows
an alternative way to perform the same function which requires different information. Cne
way requires the number of characters in the character string which is printed. The other
way requires the position on the display where it was printed. Both approaches are valid.

1-568 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC INPUT

GRAPHIC INPUT
GIN

[Line number] GIN [1/0 address] target variable for X coordinate

target variable for Y coordinate

Several commands in the Graphic System language are useful for finding out where the
graphic point is located. The GIN or graphic input command is the principal means of per-
forming this task. For example, press the PAGE key and enter the following statements:

DELETE ALL
188 PAGE
110 INIT
120 WINDOW @,880,0,800
139 MOVE 9,0
140 DRAN 200,100
158 GIN a8
168 HOME
178 PRINT A,B
END

208.0873846154 99.328

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-59

GRAPHIC STATEMENTS
GRAPHIC INPUT

In the above example, the endpoint of the line shows the position of the graphic point when
the GIN command is executed. The location of the graphic point in user data space deter-
mines what values are placed in the GIN command’s target variables.

In a program such as the example above, it is unlikely that the values returned by the GIN
command will exactly match the values in the DRAW command (statement 140). The ac-
curacy of GIN is determined by the resolution of the graphic device being addressed, not

on the GS. Each type of graphic device has a different resolution. For instance, the re-

solution of a CRT display, such as the one on the GS, is different from the resolution of a
plotter. If a full size viewport is defined for the display, the values returned from GIN will

have less than .125% error. This represents a worst-case accuracy (for a full size viewport)

of better than 1 part in 800. In the above example, the window is defined to be 800 by 800
user units. An accuracy of better than 1 part in 800 means that the values returned by the

GIN command will never differ more than 1 data unit from the values in the DRAW command.

The values returned by GIN are user data units. Running the above example with a different
window illustrates the significance of this fact. Enter the following:

128 KINDOW 0,309,08,300
RUN

1-60 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
GRAPHIC INPUT

Because of the totally different window, the actual displayed location of the line’s endpoint
has changed. However, the values returned from GIN are virtually identical. The arguments
of the DRAW command are unchanged. Therefore, the location of the line’s endpoint in user
data space is the same.

As in the previous example, the maximum error (in user data units) will be no greater than
1/800 of the defined window size.

300*(1/800) = .375 user data units.

Below is an example which uses GIN. This program moves the position of the graphic point
with the user definable keys. The position of the graphic point is always indicated by the
flashing dot matrix which is normally seen on the display. Enter the following:

DELETE ALL

1 GO TO 198
4 RMOVE 8,1
S RETURN

8 RMOVE -1,0
3 RETURN

12 RMOVE 1,8
13 RETURN

24 RMOUE 8,-1
25 RETURN

36 GIN X,Y
37 RETURN

48 GIN A,B
41 MOUVE X,V
42 DRAW A,:B
43 x=R

44 Ys=B

45 RETURN
188 INIT

118 PAGE

120 X=0

136 Y=0

148 MOVE ©,0
158 END

RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-61

GRAPHIC STATEMENTS
GRAPHIC INPUT

Here is a summary of the key functions and a diagram of each function’s relative position:

Key 1 Moves the graphic point up one data unit.

Key 2 Moves the graphic point to the left one data unit.

Key 3 Moves the graphic point to the right one data unit.

Key 6 Moves the graphic point down one data unit.

Key 9 Saves the current location of the graphic point as the beginning point of
aline.

Key 10 Draws a line from the last specified beginning point to the current location

of the graphic point.

e v

lgDOWNJ|m MOVE L-DRAW 1'
6 7 8 9 10

1-62 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
SUMMARY

SUMMARY

The fundamental building block of drawn information is the line. Any line is defined by a
beginning point and an end point. To draw lines on the Graphic System, the DRAW com-
mand is used. The arguments of the DRAW command determine the end point of a line.
The starting point for output on the GS display is the graphic point. DRAW causes a line to
be drawn from the current location of the graphic point to the location specified in the
DRAW command’s arguments. The MOVE command simply moves the position of the
graphic point to the location specified by the MOVE command'’s arguments.

The WINDOW command specifies the minimum and maximum limits of disptayed data
values. These are called user data units. The arguments of MOVE and DRAW are interpreted
to be expressed in these units.

-

&
na

"
"

V/\\] {

N

WINDPOW -100,100,-100,100

I v/\v

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 V 1-63

GRAPHIC STATEMENTS
SUMMARY

The VIEWPORT command specifies the actual size and location of the rectangle on the dis-
play which contains data limits defined by WINDOW. The arguments of VIEWPORT are ex-
pressed in GRAPHIC DISPLAY UNITS. These units of measure are constant. GDU's are
used to specify an actual physical location on the display.

p
—
+—t

r

>

e
<
J

<

UIEWPORT 30,50,30,70 -——/

WINDOW specifies what data is to be seen. VIEWPORT specifies where on the display it
is located.

1-64 REV A, SEPT 1078 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC STATEMENTS
SUMMARY

Both the WINDOW and VIEWPORT are set to default sizes whenever any ¢f the following
events occur:

— the GS is turned on

— any of these commands are executed:

INIT
oLb
DELETE ALL

WINDOW explicitly defines the data limits. WINDOW and VIEWPORT together imply scale
factors. The SCALE command (with arguments expressed in user data units per GDU) ex-
plicitly defines horizontal and vertical scale factors. SCALE and VIEWPORT together im-
plicitly define the data limits.

MOVE and DRAW specify a location in user data space which is "absolute”, independent
of the starting point. RMOVE and RDRAW specify a location relative to the present loca-
tion of the graphic point.

ROTATE applies only to RMOVE and RDRAW. A positive argument produiices counter-
clockwise rotation, a negative argument produces clockwise rotation.

If the arguments of a DRAW command are arrays, all the data points in the arrays are con-
nected with lines. For example, if X and Y are arrays, the command DRAW X,Y draws a
line to the point X(1),Y(1), then the point X(2) .Y(2), and so forth. RDRAW, MOVE, and
RMOVE also have this capability.

The AXIS command produces axis lines with tic marks if desired. If the intersection of the
axis lines is not specified, a default location is computed.

The PRINT command is used to place character information on the dlsplay The characters
can be located using the MOVE command or any of several control characters. Since the
graphic point determines the starting point for both lines and characters, care must be ex-
ercised when lines and characters are mixed in the same image.

The current location of the graphic point in user data space can be found w th the GIN
command. It returns values in user data units.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 1-65

Section 2

DATA INPUT

ARRAYS

Any data to be graphed must first be input into the Graphic System. This section discusses
input techniques appropriate for various types and sources of data. While each example pro-
gram in this section can be run as listed, each one represents only the data input sub-section
of a larger, more complete program.

In this section of the manual, the term ‘“data value’ denotes a single number while the term
"“data point” denotes a pair of data values used to specify a location in user data space.

Beginning at this point in the manual, the following assumption is made abcut all example
programs: the GS memory has been cleared of any other program and data before the ex-
ample is entered. Clearing memory is the function of the DELETE ALL corimand. It was
used prior to each example in Section 1. There are a few instances where th: example state-
ments are to be added to a program already in memory. Each of these instances is specifically
mentioned.

Data to be graphed may be stored in a group of simple (non-subscripted) variables. For
example, the first value plotted can be stored in Scalar variable A, the second value in B and
so forth. As can be quickly seen, editing, plotting and otherwise manipulating data stored in
this fashion is very cumbersome. A better technique is the use of arrays. With data stored in
arrays, it is easier to have the machine do more of the required work. Either one or two
dimensional arrays can be appropriate for a given situation. Ways to use one dimensional
arrays are discussed in most of this section. Changes necessary for the use of two dimensional
arrays are discussed at the end of this section.

Before any data can be placed in an array, the array’s size must be initializet! so that it con-
tains at least as many elements as the minimum number of data values expected. The DIM
command is used for this purpose. Any program which uses the data in this array needs to
know how many data values it contains. (This number may be less than the size of the
array.) The user must set up some convention so that this may be accomplished easily.

The most versatile way to communicate how many data points the array contains is to de-
dicate one simple (non-subscripted) variable to contain the number of data values in the
particular array. |f any deletions or additions are made to the data array, then the number
contained in the dedicated variable must also be decremented or incremented appropriately.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

21

DATA INPUT
ARRAYS

Another way of accounting for the number of data values in an array is to have the dedicated
location (containing the number of data values in the array) be the first element in the array.
This has several disadvantages. The index of a particular data value (in relation to the other
data values) is not the same as its location in the array. For example, the sixth data value in

a given array of data values is the seventh element in the array. Another major disadvantage
has to do with retrieving the array after it has been placed onto an external storage device,
such as tape. This will be discussed in more detail in the part of this section which deals with
tape.

Another method is to write the program so that it will recognize some number, such as
—999.999, as a non-valid data value. This number is then placed in every array element
which does not contain a valid value. Along with the storage-related disadvantage of the
previous method, this method does not allow rapid determination of the number of data
values a given array contains.

All three of these methods require the same amount of storage: one more variable than the
number of data values actually being stored. So the criteria of versatility and ease of use
should determine which method is preferable. As described above, having a separate variable
containing the number of data values is the best method for most applications.

2-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM THE KEYBOARD

FROM THE KEYBOARD

To enter data into the GS from the keyboard, the INPUT command is used. There are four
fundamental methods for using the INPUT command to bring data into an array.

One way to place data from the keyboard into an array is with a FOR .. . NEXT loop, as in
the following example:

298 PAGE

308 PRINT "SIZE OF ARRAY = ";
318 INPUT N

328 DELETE A

338 DIN AN

348 FOR I=1 TO N

35@ INPUT A

3608 NEXT I
378 REM END OF INPUT
388 END

First, the desired size of the array is placed into the variable N (statement 310). Statement
320 deletes the array. This is done to be sure that no other arrays are in memory with the
same designation and that this array is dimensioned properly. Next, the size of array A is
specified (statement 330). Then, a FOR ... NEXT loop is used to cause the INPUT state-
ment to be executed the appropriate number of times, with each data value inputted being
placed into the correct array element.

There is a simpler way to perform the same task, taking advantage of the implied FOR . ..
NEXT loop in the input statement. When the statement INPUT A is executed with variable
A being an array, the GS automatically executes the INPUT statement enough times to fill
the array. In effect, it sets up the FOR ... NEXT loop of statements 340 to 350 in the pre-
vious example. So the last example can be replaced with the one below:

299 PAGE

380 PRINT "SIZE OF ARRAY = “;
318 INPUT N

328 DELETE A

338 DIM A(ND

348 INPUT A
350 REM END OF INPUT
368 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-3

DATA INPUT
FROM THE KEYBOARD

2-4

The input statement at line 340 will always start filling array A at its first element and con-
tinue until the array is filled. 1 either of these actions is inappropriate thena FOR . ..
NEXT loop, such as the one shown in the previous example, must be set up. Using the
intrinsic array capability of the INPUT command allows a series of input values to be
separated by keys other than the carriage return. Some of them are the comman, the
asterisk (*), the slash (/), or the up arrow (1).

The other two methods of keyboard input (described below) involve setting up a continuous
input loop which is then terminated in various ways. These methods share a common advant-
age (the exact number of elements in the array does not need to be specified in advance)

and two common disadvantages: the array must be dimensioned to a size which is estimated
to be greater than the largest number of data values expected to be input; and a check is re-
quired to ensure that the array size is not exceeded.

It is possible to set up a loop to input data points into an array so that a particular data
value, specified in advance, terminates the loop. For example:

290 PAGE

380 PRINT "SIZE OF ARRAY = "3
318 IHPUT N

320 DELETE A

330 DIM ACHD

348 A=0

350 C=0

368 INPUT Ki

370 IF K1=-999.999 THEN 419
380 C=C+1

398 A(C)H=K1

400 IF C<H THEN 360

418 REM END OF INPUT

420 END

Again, the count of valid data values, C, is only incremented after the input of a valid
number has been completed. When this method is used, one data value must be specified
as the flag. This particular value cannot be a valid data value.

REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM THE KEYBOARD

A way to minimize this disadvantage is to specify what the flag value is to be: before the be-
ginning of the input loop. For example:

298
308
318
313

PRGE

PRINT “SIZE OF ARRAY = ";

INPUT N

PRINT "VALUE OF TERMINATING FLAG = "

317 INPUT T

320
330
340
356
3680
370
3860
398
400
410
420

DELETE A

DIM A(ND

A=0

C=0

INPUT K1

IF K1=T THEN 410
C=C+1

A(C)=K1

IF C<N THEN 3689
REM END OF INPUT
END

In this case, each data value input is compared with T, rather than a constant, to determine
if the final data value has been entered.

Another method is to use the character string capabilities of the GS. If a string of letters is
used to terminate the input loop, there is no requirement for any numeric velue to serve as
a flag. This method uses the string function VAL (which converts a character string composed
of the characters 0.1, ...,9,E+,—) to a number.

For example:

PLOT 50 GRAPHIC PROGRAMMING

290

319
320
338
348
350
360
370
388

488
419

PRGE

PRINT "SIZE OF ARRAY = *;
INPUT N

DELETE A

glg ACN>, K$(20)

C=0

INPUT K$

IF K$="DONE" THEN 410
C=C+1

ACCY=VAL (K$)

IF C<{N THEN 360

RSN END OF INPUT

420 END

REV A, SEPT 1978

DATA INPUT
FROM THE KEYBOARD

Using the program example above, data values can be entered into successive elements of
array A until the character string DONE is entered. This will cause the GS to exit from the
loop and begin executing the statements following the loop. Memory space will be conserved
if the string variable K$ is dimensioned to the length of the longest anticipated terminating
character string. The default size for K$ is 72 characters, an unneeded length in this con-
text. A statement such as 330 DIM A(N),K$(20) would be appropriate for this example,
since most of numeric data values require fewer than 20 characters to express.

It is also possible for the terminating character string to be specified just prior to the input
loop. For example:

PAGE
388 PRINT “SI,ZE OF ARRAY = "3
INPUT

328 PRINT “TERHINQTING STRING = “j
330 DIM T#(2

3408 INPUT TS

350 DELETE A

360 DIM ACH),K$(28)
370 A=0

380 C=@

390 INPUT K$

480 IF K$=T$ THEH 440
410 C=C+1

428 ACC)=YAL(K$)

430 IF C{N THEN 398
440 EEE END OF INPUT

Both T$ and K$ have been dimensioned to conserve memory space. If not dimensioned,
each would have space for 72 characters. When a character string identical to the one entered
into T$ is input, the test in statement 400 is true and the loop is exited via statement 430.

There is one terminating string which is very convenient to use: the null string. This is the
character string which contains nothing. In the previous example, T$ contains the null string
if the user enters only a carriage return in response to the “TERMINATING STRING =
request. Another way to specifying the null string as the terminating string is shown in the
following example.

290 PAGE

360 PRINT "SIZE OF ARRAY = '3

318 INPUT N

320 PRINT "TERMIHRTING STRING = "3
330 DIM T$¢

340 INPUT T$

358 DELETE A

360 DIM ACNY,K$(205
378 A=9

380 C=0

390 INPUT K¢

408 IF K$=T$ THEN 449
410 C=C+1

420 ACCI=UAL(K$)

430 IF C<N THEN 390
449 REM END OF INPUT
450 END

2-6 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM THE KEYBOARD

To terminate this loop, merely follow the carriage return which enters the last data value
with an extra carriage return. The extra carriage return inputs a null string, which is recog-
nized and causes the loop to be exited.

Another technique for terminating an input loop is to set up a user definable key as the
terminating event. For example:

1 GO TO 296
4 GO TO 396

290
300
318
320
336
348
350
368
378
388
390

PAGE

PRINT "SI2E OF ARRAY = "j
INPUT N

DELETE A

DIM ALHD

f=0

SET KEY

FOR I=1 TO N
IHPUT AC(D)

NEXT 1

REM END OF INPUT

408 END

In the previous example, pressing the user definable key 1 causes an immed ate branch to
statement 390. When statement 390 is executed, | will be one greater than the number of

data values input.

A similar example:

TO 389
PRGE
PRINT "SI2E OF ARRAY = "i
INPUT N
DELETE A
DIM ACND
A=-999,999
SET KEY
INPUT A
REM END OF INPUT
FOR I=1 TO N
IF A(I)>=-999,999 THEN 418
NEXT 1
C=I-1
Eﬁg C IS NUMBER OF UALID DATA UALUES

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-7

DATA INPUT
FROM THE KEYBOARD

This example uses the array capability of the GS to do much of the required work. State-
ments 380 through 410 are required because, with this approach, there is no intrinsic way to
determine how many values have been input into the array. (In the previous example, the
value of | after leaving the FOR ... NEXT loop provided that information.) Statement 340
is needed to initialize all the array elements to a specified dummy value. Any element con-
taining this value has not had a valid data value placed into it. Statements 380 through 410
determine how many valid data values have been entered.

Prior to graphing the input data, the minimum and maximum must be known. There are two
times this can be done: as the data is entered, and just prior to graphing. If variable R1 is
the minimum and R2 is the maximum, the following is an example of how the minimum

and maximum might be determined at entry time:

290
300
310
328
338
348
343
347
358
368
378
386
398
393
397
400
410
428

The min-max determination adds only four statements (343, 347, 393, 397). The two initi-
alization statements (343 and 347) set the minimum to an artifically large positive number
and the maximum to an artificially large negative number. This ensures that any given data
entry will be detected as a minimum or a maximum. (If statements 343,347,393 and 397
are removed, the above example is identical to the one on page 2-6 which uses the null

PRGE

PRINT "SIZE OF ARRAY = "}
INPUT N

DELETE A

glg ACN) K$(20)
Ri=1,0E+300

R2=~1,0E+300

C=8

INPUT K$

IF K$="" THEN 410
C=C+1
ACC)I=VAL(KS)
Ri=R1 MIN ACC)

R2=R2 MAX A(C)

IF C{N THEN 360
REM END OF INPUT
END

string to terminate the input loop.)

The other time to determine the minimum and maximum is just prior to graphing. This
technique has the advantage of including any changes to the data which occurred after it
was entered. In the following example, C is the number of data items in array A and R1
and R2 are the minimum and maximum respectively.

2-8

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM THE KEYBOARD

298 PAGE

388 PRINT "SI2E OF ARRAY = *;
318 INPUT N

320 DELETE A

330 glg A(N),Ke$C20)

330 C=8

360 INPUT K$

370 IF K$="" THEN 410
388 C=C+1

398 A(C)=UAL(KS)

488 IF C<N THEN 360
418 REM END OF INPUT, FIND MIN & MAX
420 Ri=1.8E+3080

438 R2=-1.8E+300

440 FOR I=1 TO C

450 R1=R1 MIN ACD)
460 R2=R2 MAX ACD)
478 NEXT 1

488 END

This technique of scanning after entry is useful when data is entered from sources other than
the keyboard, as examples later in this section demonstrate.

Use of the minimum and maximum values is discussed in Section 3 of this manual.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 29

DATA INPUT
EDITING AN ARRAY

2-10

EDITING AN ARRAY

Editing a data array already in the GS memory is sometimes necessary. Data editing is made up

of five processes:

— Listing current data

— Replacing a data value with a new one

— Deleting a data value

— Appending a data value to the end of the current array

— Inserting a data value into the current array.

Referring to any data item within an array can only be done two ways: by referring to the
item’s position or index within the array (e.g., A{4)), or by referring to the value of the data
item (e.g., the first data item equal to 3). Because a data item’s index is so often used for
reference, and because the five editing processes each have a different effect on the contents

of a data array, care must be exercised during an editing operation.

The five editing processes are now discussed in the order mentioned, with examples. The
array used, A, can contain no more than N data values. In the following five examples, N is
20. C is the working size of the array. |t represents the number of valid data values currently
contained in array A. In each of the following examples, 10 is the beginning value of C. Each
of the first ten elements of A is filled with a value which is ten times the element’s index.

(Statements 160 through 180 in each program perform this function).

Listing Data

When listing an array, it is very useful to print each item beside that item’s index. This
simplifies further reference to each data point. Here is a way this can be done:

100
110

PAGE

INIT

N=20

C=19

DIM AKND

A=8

FOR I={ TO C

ACI)=10x1

NEXT I

REM LIST VALUES IN ARRAY A
IF C>8 THEN 220

PRINT "NO DATA UALUES IN ARRAY A"
GO TO 269

FOR I=]1 TO C

PRINT I,A(DD

NEXT 1

END

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
EDITING AN ARRAY

These statements cause each data item to be printed on the display just to the right of that
data item’s index. There is a check to ensure that the program will not atternpt to print an
empty array (statement 200). If C is zero, there are no valid data values in the array. An
array with no data values should not be listed.

In the next four example programs the index number of an array element is required before
the specific editing function can be performed. If the null string is entered when the pro-
gram requests the element index (by pressing only the carriage return key a- that point),
program execution is terminated in each case.

Changing Data

If a given data value is to be changed, the following statements can be used; they allow
changes to be made very easily.

188 PAGE

110 INIT

120 N=20

13@ C=10

140 DIM ACND

158 a=9

168 FOR I=1 T0 C

178 ACI)=10%]

188 NEXT 1

198 REM CHANGE DATA UALUE

208 PRINT "INDEX OF ITEM TO CHANGED = "j
218 INPUT Is

228 IF I$="" THEN 310

230 I=VUAL(1$>

240 IF I=>1 AND I<=C THEN 279

250 PRINT "INDEX IS OUT OF RANGE"
260 GO TO 318

278 PRINT "CURRENT VALUE OF AC"3iI:") IS "3AcD)
280 PRINT "CHANGE THIS TO ";

298 INPUT ACID

368 GO TO 190

318 END

Included is a check for a proper item number (statement 240). The current -tem’s value is
printed prior to the change being made. In this example, the input to the process is treated
as a string which is tested to see if it is the terminating string. If it is, the process is exited
(in the example, control branches to statement 310). If it is not the terminating string, then
the change process is continued.

Neither of the previous two examples resulted in any change of the number of data items in

the array. All three following processes will result in a change in the number of data items
in the array.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-11

DATA INPUT
EDITING AN ARRAY

Appending Data

If a given data point is to be appended to an array, the following statements will accomplish
the task:

188 PAGE

11@ INIT

128 N=20

130 C=18

140 DIM ACN?
/=9

169 FOR I=] TO C

170 All)=10xI

188 NEXT I

198 REM APPEND DATA VALUE
289 IF C{N THEN 230

219 PRINT “ARRAY IS FILLED"
228 GO TO 290

230 PRINT "VALUE OF ITEM TO BE APPENDED = "%
248 INPUT U$

258 IF Us="" THEN 290

268 C=C+1

278 A(C)=VALU$)

286 GO TO 200

258 END

The number of data points in the array (C) is changed only after valid input has been entered.
The array A has been dimensioned to contain N data elements. A check has been included
so that the array’s size will not be exceeded and thus cause an error {(check is statement 200).

2-12 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
EDITING AN ARRAY

Deleting Data

If a given data point is to be deleted from an array, the following statement: can be used:

108 PaGE
118 INIT
122 N=29
130 C=18
148 DIM ACND
158 A=8
168 FOR I=f TO C
178 ACId=18x1
180 NEXT I
199 REM DELETE DATA VALUE
200 IF C>8 THEN 230
219 PRINT “ARRAY IS EMPTY"
228 GO TO 370
239 PRINT "INDEX OF ITEM TO BE DELETED = *3
240 INPUT 1Is
250 IF I$="" THEN 378
260 I=UAL(I$)
278 IF I=>1 AND I<{=C THEN 208
288 PRINT “INDEX IS OUT OF RANGE"
298 GO TO 208
388 PRINT "UALUE DELETED = ";
318 PRINT ACDD
328 FOR J=1+41 TO C
330 ACJ-1)=ACD)
340 NEXT J
356 C=C-1
368 GO TO 200
END

The program must “ripple’’ through the array, moving all data items after th: deleted one
toward the beginning of the array by one position.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-13

DATA INPUT
EDITING AN ARRAY

Inserting Data

The last kind of editing mentioned is the insert process, allowing a data value to be inserted
at any point in the array. This process must also “‘ripple’” through the array, but it moves
all the data items toward the end of the array by one position.

100 PAGE

118 INIT

128 N=20

138 C=18

148 DIN ACND

150 A=0

168 FOR I=1 TO C

178 ACI)=18%]

188 NEXT 1

190 REM INSERT DATA VALUE

288 IF C{N THEN 238

218 PRINT “"ARRAY IS FILLED®

228 GO TO 370

238 PRINT "INDEX OF ITEM TO BE PRECEDED = "3
240 INPUT I$

250 IF Is="" THEN 379

260 I1=UAL(1$>

270 IF I=>1 AND I<{=C THEN @8
280 PRINT "INDEX IS OUT OF RANGE"
296 GO TO 200

308 FOR J=C TO I STEP -1

318 ACJ+1)=A(DH

320 NEXT J

338 C=C+1

340 PRINT "UALUE TO BE INSERTED = “;
350 INPUT A(D)

3608 GO TO 190

376 END

The working size of the array (C) must be incremented to make room for the insertion
(statement 330). Statement 270 is a check to ensure that the item preceded is within the
working size of the array. Statement 200 is a check to ensure that the array is large enough
to contain the insertion.

2-14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM A FUNCTION

FROM A FUNCTION

Graphing a single-valued function is fundamentally similar to graphing an array of data
values. However, there are some differences in the way the data is supplied to the graphing
program,

The most satisfactory way to set up the graphing of a function is to place the function to

be graphed within a FOR ... NEXT loop. This can be done directly, as in the first program
example in Introduction. It can also be done indirectly, by placing within the FOR. . .NEXT
loop a GOSUB reference to the function. For example:

188 FOR X=B TO E STEP 1
118 GOSUB 6B0Bd

128 DRAW X, Y

138 NEXT X

6808 REM SAMPLE FUNCTION
6818 Y=SIN(X)
6020 RETURN

Any function to be graphed need only be keyed into the GS starting at line 6000 and followed
by a RETURN statement.

Notice that the FOR ... NEXT loop requires certain information about the function’s in-
dependent variable (called X in this example). Three values must be specified: the beginning
value (called B in this example), the ending value (called E in this example), and the in-
crement (called | in this example). This data allows the GS to successively evaluate the func-
tion within a specified domain at specified intervals.

A minor change is necessary if graphing a specified number of points within the domain of
the function is desired. The FOR . .. NEXT loop lends itself to using a speci‘ied increment.
In order to graph a specified number of points, divide the total domain (the maximum
minus the minimum) by the number of points desired. The quotient will be the increment.
With this approach, statement 100 of the previous example would look like the following:

100 FOR X =B TO E STEP (E—B)/N

In this case, N is the desired number of points to be graphed.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-15

DATA INPUT
FROM A FUNCTION

In order to graph the function, two additional data are required: the minimum and maxi-
mum of the function within the specified domain. Unless these values are estimated, they
must be determined by evaluating the function throughout its domain just as if it is being
graphed. An example of how this is done follows (this example cannot be run as listed):

100 REM FIND MINIMUM AND MAXIMUM

110 REM MINIMUM IS M1, MAXIMUM IS M2
128 M1=1,0E+380

138 M2=-1.0E+308

148 FOR X=B TO E STEP I

158 GOSUB €098

168 Mi=M1 MIN Y

170 M2=M2 MAX Y

188 NEXT X

196 WINDOW ByE,M1 N2

6008 REM SAMPLE FUNCTION
€818 Y=SINCGY)
6028 RETURN

The minimum and maximum resulting from this calculation can be used directly in a
WINDOW statement. This ensures that the viewport is filled with the appropriate part of the
user data space.

Parametric functions are handled in much the same way as simple functions. (This manual
calls Y = SIN(X) a simple function and

Y =SIN(T) a parametric function.)
x=cos(T) 2P '
To graph a parametric function, or to find its minimum and maximum, the only change
needed in the above examples is in the variables in the FOR and NEXT statements (this
example cannot be run as listed):

2-16 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMM:NG

DATA INPUT
FROM A FUNCTION

182 FOR T=B TQ E STEP I
119 GOSUB 6006

128 DRAW X,Y

130 NEXT T

68068 REM SAMPLE PARAMETRIC FUNCTION
6818 Y=SIN(T)

6828 X=COS(T)

6838 RETURN

It is possible to have the same program graph both simple and parametric functions. A
convention must be made as to which variables are dependent and independent in simple
and parametric functions. The chart shows the convention used in the following example:

Simple Function ‘ Parametric Function
Independent X I T
Variable
Dependent Y X&Y
Variable
199 FOR T=B TO E STEP I 169 FOR T=B TO E STEP 1
118 X=T 118 X¥=T
12@ GOSUB 60800 128 GOSUB 6@Bd
130 DRAK X, Y 138 DRAW X,Y
148 NEXT T 140 NEXT T

6000 REM SIMPLE FUNCTION 6800 REM PARAMETRIC FUNCTION
6618 Y=SINX) 60818 X=COS(T)

6029 RETURN 6829 Y=SIN(T)
6030 RETURN

The function at line 6000 will be evaluated properly regardless of whether it is simple or
parametric.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-17

DATA INPUT
FROM TAPE

FROM TAPE

Any discussion of graphing data stored on tape must be prefaced with a discussion of appro-
priate ways to store data onto tape. The GS internal tape drive is a sequential access device.
This means that in order to read a data item at the end of a tape file, the whole file must be
read in first. Reading a data item that precedes one which was just read is a two step pro-
cess. First, the tape must be positioned back to the beginning of the file. Then, in order to
find the desired item, the file must be re-read up to the desired item’s location. (The tape
can only be positioned within a file by reading data.) This means that the kind of data
manipulation done by a program should influence the way it stores and reads data on the
tape. Here is one method of storing data on the tape which is suitable for data to be graphed.
The first value to be stored in a tape file is the number of graphed points which will fill

the remainder of the file. Each graphed point might typically require 1, 2, or 3 numeric
values to describe. If, for example, the data stored on the tape is to be used in a two-variable
(or X—Y) graph, each point on the graph will require two data values to describe it: an X
value (usually used for the graphed point’s horizontal location) and a Y value (usually used
for the vertical location). Therefore N, the first value in the tape file, will be equal to the
number of pairs of data items in that tape file. The total number of data items in that file
will be (2*N)+1. The best way to store these items is with the X and Y data values for a
given graphed point adjacent to each other on the tape. For a two-variable graph’s data, the
tape file looks like this:

N,X(1),Y(1),X(2),Y(2), ... X(N=1),Y(N—1),X(N),Y(N)

Below is a program which will write and read files with this arrangement:

PAGE
INIT
REM WRITE THE DATA FILE
C=20

FIND ©
MARK 1,10%(2¥C+1)
FIND 1

178 WRITE C

188 FOR I={ TO C

196 WRITE 10%1,10x%0.1
200 NEXT 1

CLOSE
228 REM READ THE DATA FILE
230 FIND 1
240 READ @33:N
2506 FOR I=1 TO N
268 READ @33:X,Y
270 PRINT X,Y
280 HEXT 1
290 END

2-18 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM TAPE

Prior to writing data to tape, the tape must be marked into files. The file be:ng written to
must be MARKed large enough to contain the data to be stored into it. Each data value
stored on the tape with the WRITE command requires 10 bytes. Therefore, the number of
bytes required for a given file is 10 times the number of data values to be stored. The storage
arrangement described above includes an extra value containing the number of data points
in the file. The number of data values stored in the file is the product of the number of
graphed points and the number of data values per point, plus one. The “plus one’’ reserves
space for the extra data value (at the beginning of the file) which contains the number of
data points within the file. If C is the number of graphed points and P is the number of data
values per point, then the number of bytes of space in a tape file required tc contain this
data is 10*(P*C+1). Statement 150 performs this function in the above exaimnple.

Statement 190 writes sample data onto the tape in the order described. The CLOSE com-
mand (statement 210) should be executed after the last data item has been written to a file.

It ensures that the data has been properly written to the tape.

To read the tenth data point on the tape, the following program can be usec:

160 PAGE

118 INIT

}%g EEgeHRITE THE DATA FILE (C IS THE NUMBER OF DATA PAIRS)
148 FIND @

158 MARK 1,10%(2%XC+1)

160 FINHD 1

170 WRITE C

188 FOR I={ TO C

190 WRITE 10xI, 10%0.1

200 NEXT I

210 CLOSE

220 REM P IS THE INDEX OF THE DATA PAIR TO BE READ
238 P=19

240 FIND 1

230 READ @33:N

260 IF P<{=N THEN 40

270 PRINT "INDEX IS GREATER THAN NUMBER OF PAIRS IN FILE"
280 GO TO 340

290 FOR I=1 TO P

300 Rgﬁg :33 QsQ

320 READ @33:X
330 25{)“7 "IOTH DATA PAIR IS "$X,Y

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1078 2-19

DATA INPUT
FROM TAPE

2-20

The Q variables in statement 300 are used merely to allow the READ statement to move the
tape; Q is a ““dummy”’ variable having no direct usefulness. Use of the variable P {in state-
ments 230, 260, and 290) is not necessary. The constant 10 could have been used in this
case. The variable P was used to show how any data point within the file may be accessed
with this method.

The method of storing data on tape described in this section has one inherent disadvantage.
It requires the user to keep track of how many data values are associated with each data
point. There is no intrinsic indication on the tape whether each data point requires one, two,
or more data values to represent it. It is imperative to remember whether there are one,

two, or more data values for each data point within a file.

An easier way to store data on the tape is to use the implied looping of statements which
have arrays for arguments. For example:

PAGE
INIT
REM WRITE THE DATA FILE <(C IS THE NUMBER OF PAIRS)

C=20

DIM X(C)yY(CO
FIND ©

H?Rg 1510%(2XC+1>

FIN

FOR I-l T0 C
X(I>=10%]
Y(I)=18%x1+40.1

o e Pt Pt i Pt P G Pt P
e OUONAAL N =
AOOOPOOPORODO

N

The data is stored on the tape in the following arrangement:
N,X(1),X(2), ... X{N=1), X(N),Y(1),Y(2), ... Y(N=1,Y(N)

All of the data is written onto the tape by statement 220 (above). All of the data is read
from the tape by statements 260 and 280.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM TAPE

Although this method is very simple and easy to use, it has a significant disadvantage. It re-
quires a GS whose memory is large enough to hold all the data internally at one time. Since
the X and Y data values for a given point are located at two different places on the tape, at
least one FOR ... NEXT loop is required to access one data point.

100 PAGE

116 INIT !
1280 REM WRITE THE DATA FILE (C IS THE NUMBER OF PAIR3)
138 C=20

148 DIM X(C),Y(C>

150 FIND ©

160 MARK 1,10X(2%C+1)>

170 FIND 1

186 FOR I=1 T0 C

190 X(I)>=10xI

200 Y(I)310*1+0 i

218 NEXT

220 HRITE CiXs¥

230 CLOS

240 INIT

230 FIND 1

260 REM P IS THE INDEX OF THE DATA PAIR TO BE READ
270 P=10

280 READ @33:N

300 READ @33:4

328 READ €33:Q
NE 1

This kind of program is necessary unless the entire contents of both X and Y arrays have
been read into memory.

The first method described, with the X and Y data values for a given point adjacent to each
other on the tape, is the superior method in cases where all data to be graphad cannot be
contained in the GS memory at one time. |f all the data can be contained in the GS memory
at one time, then the method shown immediately above is preferable.

Finding the minimum and maximum of the data prior to graphing is necessary when the

data comes from tape. This can be done two ways: if all the data is contained in memory at
one time, the min-max scanner on page 2-9 can be used; if all the data is not in memory,

the tape can be scanned using the following kind of program (X and Y are the two data
values for each data point, X1 and Y1 are the minimums, and X2 and Y2 are the maximums).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-21

DATA INPUT
FROM TAPE

PAGE
INIT
REM WRITE THE DATA FILE <C IS THE NUMBER OF DATA PAIRS)

C=20

FIND ©

MARK 1,10%(2%C+1)
FIND 1

WRITE C

FOR I=1 TO C

WRITE 10%I,10%I+0.1
NEXT I

210 CLOSE

220 REM FIND_MIN AND MAX OF DATA OM TAPE
230 Xl‘l.OE 300

248 Yi=1,0E+300

250 X2=-1,0E+300

260 Y2=-1,0E+300

270 FIND 1

280 READ @33:N

290 FOR I=i TO

300 READ @33:X

[\ 1= St b P Pt P P P Pt Pt
QUDNAND W=D
POOPDOPOIOOO

340 Y2=Y2 MAX Y

330 NEXT I

360 PRINT * ", "MINIMUM", “MAXINUN"
370 PRINT “X",X1,X2

380 gg(l)NT "YU, Y1,Y2

After the FOR ... NEXT loop at statements 290 through 350 is complete, X1 will contain
the minimum X data value, X2 will contain the maximum X data value, Y1 will contain the
minimum Y data value and Y2 will contain the maximum Y data value. No arrays or other
large areas of memory were reserved or required. These minimum and maximum values can
be used directly in a WINDOW command, allowing the data on tape to be graphed one pair
of values at a time. The technique above is important because it is a key to graphing more
data than the GS can contain in memory at one time.

Summary

The procedure described above is one approach to storing data arrays on tape using READ
and WRITE. Here is a summary of that approach.

If the GS memory is large enough to contain all the data of interest, then the most con-
venient way to store and retrieve data on tape is to use the inherent looping of the WRITE
and READ commands. (In the examples below, F is the number of the file to contain the
data and N is the number of data points. Each data point can be specified with one, two, or
three data values. Data is contained in arrays A, B, or C, and in simple variables X, Y, or Z.
None of the program segments below can be run as listed.)

2-22 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM TAPE

For one data value per point:

To write data:

200 DIM AN

218 FIND F

220 MARK 1410%(N+1)
230 FIND F

248 WRITE NyA

258 CLOSE

The tape file looks like:
NLA(1),A(2), ... A(N=1},A(N)

To read data:

280 FIND F

218 READ @33:N
228 DELETE R
238 DIM AN
249 READ @33:A

For two data values per point:

To write data:

2068 DIM AC(HO4BCH)

218 FIND F

220 MARK 1,18%(2xN+1)
230 FIND F

240 WRITE NyA,B

250 CLOSE

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-23

DATA INPUT
FROM TAPE

2-24

The tape file looks like:

To read data:

289
218
228
230
248

N,A(1),A(2), ... A(N),B(1),B(2),...B(N)

FIND F

READ @33:N
DELETE w,B
DIN ACN),BCH)
RERD 823:A.B

For three data values per point:

To write data:

200
218
220
238
240
258

DIM ACND,B(N),C(N)
FIND F

MARK 1,10%(3¥N+1)
FIND F

WRITE NyA,B,C
CLOSE

The tape file looks like:

To read data:

208
210
220

N,A(1), ... ,A(N),B(1),...,B(N),C(1),

FIND F
READ €33N
DELETE A,B,C

238 DIN A{N)BI{N),C{ND

240

RERD B32:R,B,C

REV A, SEPT 1978

...,C(N)

PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM TAPE

When data with more than one value per point is stored on tape, an additional consideration
becomes important. When using the approach in the above six examples, the data values for

a given point are not placed on the tape in adjacent locations. Retrieving the data values for
just one point is cumbersome unless the GS memory is large enough to contain all data values
at one time.

If all the data cannot be contained within the GS memory at one time, then the above ap-
proach is not suitable. Below is another method in which data values are stored and retrieved
individually.

For one data value per point:

To write data:

288 FIND F

2180 MARK 1,18%{H+1>
228 FIND F

238 WRITE N

240 FOR I=1 TO N
258 WRITE ¥

268 NEXT 1

278 CLOSE

The tape file looks like:
N, X(1),X(2), ... X{(N—=1),X(N)

To read data:

288 FIND F

210 READ @33:N
228 FOR I=1 TO N
230 READ @33:%
240 NEXT 1

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 2-25

DATA INPUT
FROM TAPE

2-26

For two data values per point:

To write data:

288
218
229
238
249
258
268
27

L4

FIND F

MARK 1,10%(2XN+1)
FIND F

WRITE N

FOR I=1 TO N
HRITE X,¥

NEXT I

CLOSE

The tape file looks like:

N,X(1), Y(1),X(2),Y(2), ... X{N=1),Y(N—1),X(N),Y(N)

To read data:

200
218
230
248

FIND F

READ @33:N
FOR I=1 TO N
READ @33:X,Y
NEXT I

For three data values per point:

To write data:

200
210
228
238
2480
256

268
279

FIND F
MARK 1,10X(3XN+1)
FIND F

NEXT 1
CLOSE

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

DATA INPUT
FROM TAPE

The tape file looks like:
N,X(1),Y(1),Z2(1),X(2),Y(2),Z(2), ..., X(N),Y(N),Z(N)

To read data:

208 FIND F

210 READ @33:N
228 FOR I=1 TO N
238 READ 833:iX,Y
248 NEXT I

L

MAG TAPE ERROR IN LINE 94 - MESSAGE NUMBER 55

The WRITE and READ @33: commands used in this section pertain to BINARY data files.
Numbers in binary data files are in the same form as they are internally in the GS. Data can
also be stored and retrieved on tape with the following commands: PRINT @33: and IN-
PUT @33: . (The primary address of 33 refers to the internal tape drive on th2 GS.) These
commands pertain to ASCI| data files. Since numbers in ASCI| data files are strings of ASCI|I
characters, ASCII data files can be read by devices outside the GS family. Binary data files
can be read only by another GS. However, data stored in ASCI| data files tak2s longer for
the GS to transfer to and from tape because an additional conversion process must be per-
formed. All the example programs in this section using the WRITE and READ @33: com-
mands would remain virtually unchanged if the PRINT @33: and INPUT @33: commands
were substituted. Only the amount of space reserved on the tape for each data value would
need changing. In a binary file, 10 bytes must be MARKed. In an ASCI| file, 18 bytes must
be MARKed for each data value. In virtually all instances, it is best to use the WRITE and
READ @33: commands to store and retrieve data on tape.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

2-27

Section 3

GRAPHING

INITIAL CONSIDERATIONS

Before any graphing can be done, the minimum and maximum of the data or function to be
graphed must be established. This can be done by scanning the actual data values, evaluating
the function over the specified domain of interest, or by merely estimating. ‘n any event,
this must be done to provide values to use in the WINDOW statement, or to stherwise
specify what will be graphed.

The next consideration is how the data or function will be displayed. For graphing one data
array, a single valued function or other data where there is some logical connection between
adjacent points, a line drawn through all the data points is usually appropriate. For graphing
two independent data arrays, certain parametric functions, or other points where there is
not necessarily a logical connection between adjacent points, some kind of point or symbol
graph is more appropriate. Several methods will be suggested in this section.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

GRAPHING
LINE GRAPH

LINE GRAPH

The line graph as shown below is used to display data which one of the variables associated
with each point is an orderly progression of values, such as would be generated by a function
(Y = f(X)) evaluated at regular intervals throughout the X domain of interest. A line is also
appropriate for graphing array data items versus their indices within an array.

The line graph, or rather the actual data curve at the heart of a line graph, is generated by

a series of DRAW commands. An important aspect of this process is that the DRAW com-
mand causes a line to be drawn from wherever the graphic point is currently located to the
specified location within the window. When the first point on the data curve is drawn to,
the graphic point is usually at some unknown or irrelevant location on the screen. So a
MOVE to the first point to be graphed, rather than a DRAW, is appropriate. As a result, the
FOR ... NEXT loop which draws the remainder of the data starts with the second data
point. A line graph of a one-dimensional array can be produced with the following state-
ments (these must be run as part of a complete program):

220 WINDOW 9yN.R1,R2
230 MOUE 1,Y{1>

240 FOR I=2 TO N
230 DRAN I,Y(D

260 NEXT I

N is the number of data values in the array Y.
R1 is the minimum data value in the array Y.
R2 is the maximum data value in the array Y.

A complete program to draw a line graph of ten random data values is shown below:

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
LINE GRAPH

100 PAGE

118 INIT

128 N=10

138 DIM Y(N

140 R1=1,0E+300
158 R2=-1.8E+300
168 FOR I=1 TO N
178 Y(I)>=RND(-2)
188 Ri=Y(I) MIN Ri
198 R2=Y(1) MAX R2
208 HEXT I
218 UIEWPORT 1
220 WINDOW 8, N,
238 MOVE 1,Y(1)
240 FOR I=2 T0
258 DRAW I,Y(I
260 NEXT 1

270 END

A graph is sometimes easier to look at if it has some blank space around it. This is why the
viewport is defined to be slightly smaller than full size in the above example (statement 210).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 3-3

GRAPHING
POINT AND SYMBOL GRAPH

POINT AND SYMBOL GRAPH

Point Graph

When there is no direct relationship between adjacent data points, or no reason to connect
them together with lines, a point graph or symbol graph is appropriate. The following ex-
ample graphs two arrays. The first value in the X array determines the horizontal location
of the first point, the first value in the Y array determines the vertical location of the first
point, and so forth. (The statements below must be run as part of a larger program:)

258 WINDOW R14R2+51,82
268 FOR I=1 TO N

27@ MOUE X(D.Y(D

280 DRAW X{IY,Y(ID

298 NEXT 1

N is the number of data values in each array, R1 is the minimum value in the X array, R2 is
the maximum value in the X array, S1 is the minimum value in the Y array and S2 is the
maximum value in the Y array. In the FOR ... NEXT loop, there is a MOVE to each point
followed by a DRAW to each point. Since the graphic point is already located at the point
drawn to, only a dot, not a line, is drawn.

A complete program to draw data points on the display is shown below:

188 PAGE

118 INIT

128 RESTORE

130 DATA 10,1.QE+308,~1.0E+308,1.0E+390,-1,0E+208
148 READ N.R1,R2,51,852

1358 DIM (N> V(W)

160 FOR I=1 TO N

178 B{1)=RND(-2)

188 R1=X(I)> MIH RI

198 R2=XK(I) MAX R2

208 Y(I)=RND{-2)

218 S1=Y(I) MIN S1

228 §2=Y(I) MAX S2

238 NEXT 1

248 VIEWPORT 18,120,10,90

250 WINDOMW R 181,82

2608 FOR I=1
278 MOVE X(
280 DRAW ¥(¢
298 NEXT 1
300 END

34 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
POINT AND SYMBOL GRAPH

This is the program’s output:

Printed Symbols

To make individual data points distinguishable, each point’slocation can be marked with a
symbol instead of just a dot.

The simplest method is to use a standard GS character for the symbol. Witt: this method, the
graphic point is positioned on the display with a MOVE command (statement 270 in the
examples above and below). Then the symbol is written onto the display w:th a PRINT
command, as shown in the program fragment below (these statements mus: be run as part
of a larger program):

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 35

GRAPHING
POINT AND SYMBOL GRAPH

3-6

250 WINDOW R1.R2,81,82
268 FOR I=1 TO N

278 NMOUE X{ID,Y(I)

288 FRINT "+"%

299 NEXT I

Although the character ““+'* is shown in the example, any character can be used. |f these
statements (above) are used, the center of the printed character will be above and to the
right of the desired location on the display (see diagram below).

Positions Graphic Point Here.

The above diagram shows that the MOVE command positions the lower left corner of the
character. If the center of the printed character is to coincide with the point specified by the
MOVE command, the graphic point must be re-positioned slightly after the MOVE command
(statement 270) and before the PRINT command (statement 280). The statements added

in the following examplie (273, 278, and 285) center the ‘’+" over the graphic point.

258 WINDOW R1,R2,S51,52

268 FOR I=1 TO H

278 MOUE ROTD.YCID

273 SCALE 141

278 RHOUVE -8.5%1.55,-0.5%1.88
288 PRINT "+"j

282 RMOVE ©.5%1.55,0,5%1.88
285 WINDOW R1,R2,S51,82

298 NEXT 1

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
POINT AND SYMBOL GRAPH

Since the characters written by the PRINT command are always the same size, the graphic
point must always be re-positioned the same distance, regardless of how the window has
been defined. The SCALE 1,1 command at statement 273 defines a new data space to fill
the viewport. Within this new data space, 1 data unit is the same length as 1 GDU. The
RMOVE command is then used to re-position the graphic point relative to i1s current posi-
tion. In order to center the character, the graphic point should be moved ha!f a character
width to the left and half a character height down. The RMOVE command ut statement 278
performs this function. After the character is printed, the window must be restored to its
previously defined limits. If it is not restored, the remainder of the graphed noints will be
placed inaccurately on the display.

Care must be exercised if the above technigue (PRINTed characters as symbols) is used when
a default (full size) viewport has been defined. If the graphic point is at the very top, bottom,
left or right edge of the physical display when the character is printed, the character will

not be printed in the correct location. This inaccuracy is prevented whenever the defined
viewport is less than full size. The largest viewport which still prevents this inaccuracy from
occurring is defined with the following command:

VIEWPORT 2,128,2,98.

Drawn Symbols

Another way to place a symbol at the location desired is to actually draw it. This is done
with a series of relative moves and draws from the location the symbol indicates. The following
example draws a diamond to indicate a location:

258 WINDOW Ri,R2,81,82
268 FOR I=1 TO N

278 MOVE X{D), YD

288 SCALE 1,1

298 RMOVE 1,0

388 RDRAKW -1,-1

318 RDRAN -1,1

320 RDRAMW 1,1

338 RDRAW 1,-1

348 RMOVE -1,8

350 WINDOW R1,R2,851,82
368 NEXT I

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 3-7

GRAPHING
POINT AND SYMBOL GRAPH

3-8

The SCALE 1,1 at statement 280 ensures that the symbols will always be the same size re-
gardless of how the window and viewport have been defined. Line 290 ensures that the
symbol is centered over the location to be indicated. Lines 300 through 330 draw the symbol.
Line 340 restores the graphic point to its location before the symbol was drawn. Line 350
restores the window so that subsequent data points will be graphed correctly.

Below is the complete program and the output it produces.

189
118
120
138
140
156
168
178
188
198
208
210
228
230
248
258

370

PAGE

INIT
RESTORE
DATA 19,1
READ N.R1
DIM X<N),
FOR I=1 T
X(I)=RND{
R1=X<(I) MIN Ri
R2=X(I)> MAX R2
Y({I)=RND(-2)

S1=Y{I) MIN S1
§2=Y{I) MAX S2

NEXT I

UIEWPORT 18, 120,10,90
WINDOW Ri,R2,81,52
FOR I=1 TO N

MOUE X(I2,Y(ID

SCALE 1,1

RMOUVE 1,0

RDRAW -1,-1

RORAW -1,1

RDRAK 1,1

RORAN 1,-1

RMOVE -1,0

WINDOW Ri,R2,S1,82
NEXT 1

END

+300,-1,0E+300,1.0E+308,~1,0E+300
;SlpSE

| O =

QE
R2
(N
N
2
N

REV A, SEPT 1978 . PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
POIMNT AND SYMBOL GRAPH

Drawn symbols are subject to clipping. Printed symbols are not.

The symbol size can be made proportional to a data value or function result as shown in the
following program fragment: =

PLOT 50 GRAPHIC PROGRAMMING

NINDOW Ri,R2,51,82
FOR I=1 TO N

MOVE X(D),Y(DD
SCALE 1,1

RMOVE 2¢1),0
RORAN -2¢15,~2¢D>
RDRAN -2¢15,2¢1)

—

RDRAK Z2CI),2¢I)
RDRAW Z2(I),-2¢(D)
RMOVE -2¢I),8
NINDOW R1,R2,51,52
NEXT I

REV A, SEPT 1978

39

GRAPHING
POINT AND SYMBOL GRAPH

3-10

More than one kind of symbol can be drawn by a program. In addition, the actual symbol
can be selected by a data value. Using the GOSUB .. . OF
makes this very easy.

258 WINDOW R1,R2,81,62

260 FOR I=1 TO N

278 MOVE X<DD,Y(D

280 SCALE 1,1

298 GOSUB 2¢1) OF 500,600,700
308 WINDOW Ri,R2,51,S2

310 NEXT I

320 END

580 REM DRAH A DIAMOND SYMBOL
558 RETURN

600 REM DRAW A SQUARE SYMBOL
658 RETURN

700 REM DRAW A TRIANGLE SYMBOL
750

RETURN

REV A, SEPT 1978

... command, as shown below,

PLOT 50 GRAPHIC PROGRAMMING

L

GRAPHING
MULTI-LINE GRAPHS

MULTI-LINE GRAPHS

If there are several lines on one graph, a very good technique to identify each line is to draw
a symbol at each graphed point. A program like this:

220 WINDOW 9,N,R1,R2
238 MOVE 1,a(1)

248 GOSuUB 400

2508 FOR I=2 TO N

268 DRAW I.ACID

270 GOSUB 400

288 NEXT 1

488 REM PRINT SYMBOL
418 PRINT "+";
428 RETURN

will produce a line like this:

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

3-1

GRAPHING
MULTI-LINE GRAPHS

312

To properly position the printed character, the correction described on page 3-6 must be
included. The corrected program segment is shown below:

WINDOW 8,N,R1,R2
MOVE 1,A(1)
GOSUB 400

FOR I=2 TO N
DRAK I,ACID
GOSuB 400

NEXT 1

REM PRINT SYMBOL WITH CORRECTED POSITION
SCALE 141

RMOVE -8.5%1,55,-2.5%1,.88

PRINT "+"3§

RMOVE 9.5%1.55,0.5%1.88

WINDOW 8,N,R1,R2

RETURN

Below is a complete program which uses the above technique. The program output is shown

also.

104
118
129
132
148
150
168
178
188
198
200
210
220
238
249
250
260
278
280
299
400
485
410
420
430
440
450

PAGE

INIT

RESTORE

OATA 18,1.0E+4300,-1.0E+300
RERD N,R{,R2

DIM ACN)

FOR I=1 TO N

A(D=112

Ri=ACI> MIN Ri

R2=ACI) MAX R2

NEXT 1

UIEWPORT 1@,120,10,90
WINDOW @,N,R1,R2

MOVE 1,A(1)

GOSuB 400

FOR I=2 TO N

DRAK I,ACD)

GOSUB 498

NEXT 1

END

RERM PRINT SYMBOL WITH CORRECTED POSITION
SCALE 141

RMOVE -0.5%1.55,-8.5%1.88
PRINT "+"§

RMOVE @.5%1.55,8.5%1.88
WINDOW 9,N,R1,R2

RETURN

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
MULTI-LINE GRAPHS

Even with this correction included, the characters are not positioned with their centers ex-
actly over the desired point. If the position of the symbol must precisely co ncide with the
indicated location, drawn symbols are more appropriate than printed symbcis.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 3-13

GRAPHING
OTHER TYPES OF GRAPHS

OTHER TYPES OF GRAPHS

Another way to represent certain kinds of data is with vertical or horizontal rectangles in-
stead of lines and points.

||‘| ||l |

These are called bar charts or histograms. They are really a special type of symbol graph.
The symbol in this case is a rectangle or line whose height is proportional to the data value
being represented. One end of the rectangle or line is usually on a base line (as in the first
example graph, above). However, depending upon the data being presented, this will not al-
ways be the case (as in the second example graph). This second technique is sometimes used
to present the performance range of a variable at a given time, such as daily stock market
averages.

3-14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
OTHER TYPES OF GRAPHS

Here is a way to draw vertical lines whose lengths represent data values:

200 WINDOW 0,N¥1.1,0,R
218 AXIS

220 FOR I=1 TO N

239 MOVE 1,0

240 DRAW I,ACD

250 NEXT 1

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 3-15

GRAPHING

OTHER TYPES OF GRAPHS

The vertical lines can be changed to vertical bars by replacing the DRAW statement at state-
ment 240 with a subroutine branch.

200
219
228
230
240
258

400
410
429
430
449

WINDON 8,N¥1.1,8,R
Ax1s

FOR I=f TO N
MOVE 1,0
GOSUB 400
NEXT 1

RDRAW -9.5,0
RDRAKW B8, ACID
RDRAW 0.5,8

RDRAK 0, -AC

RETURN

1
ach

3-16

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
OTHER TYPES OF GRAPHS

The heights of the bars are the same as the heights of the lines in the previous example.

Here is the complete program which generated the output shown above:

108
119
128
139

PAGE

INIT

N=i8
R=-1{,0E+300
DIN AlND

FOR I=i TO N
ACD=SQRCI)
R=A(I) MAX R
NEXT 1

VIENPORT 20,110,20,80

NINDON 8,N%x1.1,8,R
AXIS

FOR I=1 TO N
MOVE 1,0
G0sSuB 400
NEXT 1

END

RDRAW 9, -
RETURN

In the previous example, the height of each bar represented a value contained in a specific
array item, i.e., the value of one variable. Often this bar graph technique will be used to
graph a continuous variable, such as the distribution of 50 occurrences of a random number
which can have any value between 0 and 1. The next example shows how th s can be done.

188
118
128
138
140
158
168
178
186
190
208
218
228
238
248
250
260
278
280
400
418
420
439
440

PLOT 50 GRAPHIC PROGRAMMING

PAGE

INIT

S=100
R=-1,0E+300
OIM AI®)
A=0

FOR I=1 TO S
J=INT(RND(-2)>%18)+1
AU =R+

R=A(J) MAX R

NEXT I

UIEWPORT 20,110,20,80

WINDOW @,11,8,Rx1.1
AXIS 1,1

FOR I=1 TO 1@
MOVE 1,8
GOSUB 408
NEXT 1

END

RDRAW ~1,0
RDRAN @4R(CI)
RDRAN 1,0
RDRAW 8, ~ACI)
RETURN

REV A, SEPT 1978

3-17

GRAPHING
OTHER TYPES OF GRAPHS

L]

LS 4 LA v

The loop which actually does the graphing (statements 240 through 270) is similar to pre-
vious examples. The width of the bars has been increased until the bars are now adjacent to
each other. The array A is filled by statements 160 through 200. A(1) contains the quantity
of random numbers whose values fell between 0 and .1, A(2) contains the quantity of ran-
dom numbers whose values fell between .1 and .2, and so forth. The MAX function is use-
ful to find the maximum number of incidences in any category (statement 190). The re-
sulting maximum value (R) is used in the WINDOW command in statement 220.

3-18 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHING
OTHER TYPES OF GRAPHS

Graphing the percentage each category is of the total number of incidences (50 in this
example) requires only a vertical rescaling determined by the data. The quantity of incidences
in each category is divided by the total number of incidences to yield a decimal fraction.

This is multiplied by 100 to yield a percentage. The graph looks the same, so only the listing
is shown as the example.

108 PAGE

118 INIT

128 §5=%8

138 R=-1,0E+3020

140 DIN A(1O)

150 a=0

160 FOR I=1 TO S

170 J=INT(RND(-2)%18)+1
188 AlNI=ACN)+1

190 R=ACJ> MAX R

208 NEXT 1

218 UIEWPORT 20,110,20,80
228 WINDOW 8,11,08,R-58%1080%1.1
238 AXIS 1,5

248 FOR I=1 TO 1@

230 MOVE I1-1,9

260 GOSUB 408

278 NEXT 1

288 END

400 RDRAW B,A(1)-50%100
410 RDRAW 1,0

428 RDRAN 8,-ACI)/58%109
438 RETURN

Data expressed in this percentage form can be graphed in another way. The height of each
vertical bar, now a percentage, can be interpreted to be the width of a slice of a circle. This
produces a “pie chart”’, shown in the following example. The same data is being used.

108 PAGE

119 INIT

129 9=58

139 R=-1,BE+300

140 DIN Al10)

150 A=0

168 FOR I=1 T0 S

178 J=INT(RND(=-2)%10)+1
188 ACN=ACI)+1

198 R=ﬂ§J; MAX R

NEX
210 UIEWPORT 2@,80,20,80
228 WINDOW -1,1,-1,1
225 SET DEGREES
238 MOVE 1,0
248 FOR I=1 TO 1@
242 FOR T=10 TO 360 STEP 10
244 DRAN COSCT),SINCT)
246 NEXT T
258 B=8
260 FOR I=1 TO 19
270 B=B+360X(AC1),50)
280 MOVE 9,0
290 DRAW COS(B)>,SIN(B)
NEXT 1

318 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 3-19

GRAPHING
OTHER TYPES OF GRAPHS

3-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Section 4

TRANSFORMATIONS

INTRODUCTION

Up to this point, the discussion has covered graphs where the actual function or data is pre-
sented. None of the data has been manipulated between entry and graphing. However, there
will be many instances where the actual raw data or function will not be of interest unless
it is suitably transformed. Three examples:

temperature data taken in Fahrenheit degrees but used in a formula which requires
Celsius degrees;

data taken in miles per hour but used in the form of meters per seconc;

data taken in the form of dollars per hundred weight but used in the furm of francs
per kilogram,

There will be many situations where the transformation is neither linear noi simple. For
example, in a laboratory situation, temperature might be measured with a resistor whose
resistance varies as a function of its surrounding temperature. Thus the insttumentation
which supplies data to the GS will be sending data values in the form of ohras. The GS pro-
gram handles data in the form of degrees Celsius. The formula for the relationship between
ohms and degrees Celsius over the range of interest is used as a transformation. During data
editing and graphing, the data being dealt with will then be degrees, not ohras.

PLOT 50 GRAPHIC PROGRAMMING REV A SEPT 1978

4-1

TRANSFORMATIONS
EXAMPLES

4.2

EXAMPLES

In the three examples which follow, lines 100 through 210 are identical. They fill array A

with data values and place the smallest and largest of these values into M1 and M2 respectively.
And, in all three examples, lines 250 through 280 perform identical functions: graphing the
data in array A.

In the first example, the data is graphed with the index of the array item on the horizontal
axis and the actual array value on the vertical. Both scales are linear.

192 PRGE

119 INIT

128 UIEWPORT 20,118,20,80
138 N=10

148 DIM ACND

130 Mi=1,0E+300

160 N2=-1.8E+300

1708 FOR I=1 TO N

189 A{I>=I12

190 Mi=M1 MIN ACDD

208 M2=M2 MaX ACD)

218 NEXT 1

220 REM GRAPH ACTUAL DATA C(HORIZ & VERT.:
230 HINDOW 1,N,Mi,M2

248 AXIS

258 MOVE 1,A(1D

26@ FOR I=2 TO N

278 DRAN I,ACD)

288 NEXT 1

298 END

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TRANSFORMATIONS
EXAMPLES

In the next example, the horizontal information is as before, the index of the array item.
The vertical information is not the actual value contained in the array item but the log to
the base 10 of the value in each array item.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 4-3

TRANSFORMATIONS
EXAMPLES

180
118
128
130
140
150
160
170
180
190
200
218
220

PAGE

INIT

UIEWPORT 20, 110,20, 30
N=18

DIM ACN)

M1=1,0E+300

M2=-1,0E+300

FOR I=y TO N

ACI =112

Mi=M1 MIN ACDD

N2=M2 MAX ACID)

NEXT I

REM UERTICAL DATA TRANSFORMED BY LOG BASE 19
WINDOM 15Ny LGT(M1),LGTCM2)
AXIS

MOUE 1,LGTC¢ACI)

FOR 1=2 TO N

DRAH I4LGTCACI))

NEXT 1

END

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TRANSFORMATIONS
EXAMPLES

In the third example, the logs of bofh the array item index and the value cantained in the
array item are graphed.

168
110
120

130 N

140
130
168
176

PAGE
INIT
UI%gPDRT 20,119,20,80

DIM ACND

Mi=1,0E+300

M2=-1.0E+300

FOR I=1 TO N

A(T) =112

Mi=N1 MIN ACID

M2=M2 MAX ACD)

NEXT I

REM BOTH HORIZ. & VERT. DATA TRANSFORMED BY LOG BASE 1@
:§?EOH LGTC1Dy LGTC(N) s LGTCML >, LGTCN2)
MOVE LGT(1),LGTC(ACL))

FOR I=2 TO N

DRAW LGTCIDyLGTCACID)

NEXT 1

END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 4.5

TRANSFORMATIONS
EXAMPLES

In all of the previous examples, the type of transformation used is reflected in three areas:

% In the WINDOW command (line 230 in eachexample). The transformation is used to
make sure that the data completely fills the specified viewport. Because each example
uses a different transformation, the viewport in each case is ‘“looking at” slightly dif-
ferent areas of the user’s data space. As a result of the transformation being reflected
in the WINDOW statement, the starting and ending points of all three data curves are
in the same place on each graph.

* In the MOVE command (line 250 in each example). As described previously, this state-
ment is necessary so that the data curve will start at the first data point, not at where-
ever the graphic point is when the program is run. The transformation must appear here
for the data curve to start in the appropriate location.

* |n the DRAW command (line 270 in each example). Since this is the statement which
actually causes the data curve to be drawn, the transformation must appear here so that
the curve is drawn as desired.

4-6 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TRANSFORMATIONS
TWO APPROACHES

TWO APPROACHES

There are two significantly different approaches to this transformation process. In one
approach, the data is stored and edited in the GS in its original incoming form. The data is
transformed to a new form only when it is graphed. This approach is appropriate if the data
in its incoming form is the primary concern. The way in which it is graphed is of secondary
interest only. This approach was used in the group of three examples. A polar graph is an-
other example. It is always appropriate to deal with polar data in its original form of angle
and radius. But to graph it on the GS, it must be transformed into cartesian coordinates. As
in the three examples, this transformation must be reflected in the WINDOW command
(statement 240, below) in the initial move to the starting point of the data curve (statement
270, below), and in the DRAW command which actually draws the curve (statement 290,
below).

In a polar graph, as in some other types, the transformation used must also be reflected in
the minimum-maximum determination (statements 190, 200, and 230, belaw). This is be-
cause the data minimum and maximum do not coincide with minimum and maximum hori-
zontal and vertical locations on the screen. (This is the case in the three examples.)

188 PAGE

118 INIT

120 SET DEGREES

130 DINM R(10),T(10>

140 M1=1.0E+300

150 M2=-1.0E+300

160 FOR I=1 TO 10

170 T(I1)=36x1

180 R(I)=1

190 Mi=M1 MIN RC(I)

200 M2=M2 MAX R(I)

219 NEXT 1

228 REM NOW FIND MAXIMUM RADIUS
238 M3=ABS(M1) MAX ABS(M2)

240 WINDOW -M3,M3,-~M3,M3

258 VIEWPORT 28,80,20,80

2680 AXIS

278 NOUE RC1)>XCOSCTC(1)),RCIIXSINCTCLY)
288 FOR I=2 TO 10

298 DRAN RCIDXCOSCTCIN)yRCIDXSINCT(IND
300 NEXT 1

318 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 4-7

TRANSFORMATIONS
TWO APPROACHES

Polar graphs have another special characteristic. They require equal horizontal and vertical
scaling. This means that a vertical user data unit must have the same displayed length as a
horizontal user data unit. If this is not the case, objectionable distortion will result. For ex-
ample, a circle might be drawn as an ellipse. This requirement can be satisfied by using the
SCALE command with equal arguments. Another solution, shown in the polar graph ex-
ample, is to make sure that the window and viewport have the same aspect ratio. This is
another way of saying that their shapes are proportional. In the above example, both the
window and viewport are square. As a result, the spiral data curve is undistorted.

In the second approach to the transformation process, the data is transformed prior to
storage. This approach is desirable when the form in which the original data is received is
never appropriate or convenient to use (such as when the incoming data is in the form of
degrees Fahrenheit and is to be used in the form of degrees Celsius). In this approach, the
actual transformation is done when the data is input. This means that the transformation
needs to be used only when the data is transformed for storage (statement 210 in the ex-
ample below). The min-max determination, the WINDOW and the MOVE to the first point
all are performed on the transformed data. This approach is less cumbersome than trans-
forming the data just prior to graphing and is more convenient to use when the situation
allows.

4-8 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TRANSFORMATIONS
TWO APPROACHES

180 PRGE
118 INIT
120 gIEgPDRT 29,129,20,80

140 Mi=1,0E+300

158 M2=-1.0E+300

168 DIM C(ND

178 FOR I=1 TO N

180 REM STATEMENT 150 SIMULATES INPUT @D:
198 F=RND(~2)>%1808+12

288 REM CONVERT INPUT DATA FROM FAHRENHEIT TO CELSIUS
218 C(I>=5%(F-32>-9

220 Mi=mi MIN CCID

238 M2=M2 MAX CCID

240 NEXT 1

258 WINDOW 84H,M1,N2

268 RAXIS

278 MOVE 1,C(1)

288 FOR I=2 TO N

290 DRAW 1,CC(D

300 NEXT I

310 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 4-9

TRANSFORMATIONS
USEFUL TYPES

USEFUL TYPES

Occasionally, the transform which operates on the incoming data must be variable. For ex-
ample, a different temperature probe might be used for another run in the same experiment.
If one program is to be used to graph data passed through a variety of transforms, it is ap-
propriate to place the transform in a defined function. The following is an example of this.

110 INIT
113 DEF FNACA)=SX(R-32)-9
120 VIEWPORT 20,120,20,80

200 REM CONVERT INPUT DATA FROM FAHRENHEIT TO CELSIUS
218 CCI)=FNACF)
220 Mi1=M1 MIN CCD)

The above example is identical to the one before it except that the transform used is defined
in a function (in statement 115). Each subsequent use of the transform will be identical —
merely a function call as in statement 210. So by changing one statement, the transform
used by the entire program can be changed. The next section will illustrate a particularly
useful application for this capability.

There are several classes of transformations which are commonly used for transforming data.
(In the following formulae: X,Y,R, and T represent variables; A and B represent constants.)

TRANSFORMATION EXAMPLE OF USAGE

Log to the base 10 DRAW X ,A*LGT(B*Y)

Log to the base e DRAW X ,A*LOG(B*Y)

Polar (R = radius, T = angle) DRAW R*COS(T),R*SIN(T)
Exponential DRAW X,A 1 (Y+B)

Power DRAW X,YTA

Logit DRAW LOG(X/(1—X)),Y for0< X <1

4-10 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Section 5

AXIS

AXIS COMMAND REVIEW

An axis or grid makes graphed data much easier to understand. This section describes two
classes of ways to add axes and grids to a graph: with use of the AXIS command, and with-
out the use of AXIS. For most graphs, use of AXIS will be appropriate. Teckniques which
use the AXIS command are discussed first. However, there are some types of data for which
use of AXIS is inappropriate, such as logarithmic and polar data. So the other class of pro-
cedures discussed is how to make axes and grids without using AXIS.

Without Arguments

The simplest way to add axis lines to a graph is with the AXIS command, described in
Section 1. Here is a brief review. Please enter and run the following program:

188 PAGE

119 INIT

120 VIEWPORT 5,55,55,95
139 RXIS

148 REM

158 VIEWPORT ?5,125,355,95
168 WINDOR -10@,100,50,100
170 AXIS

REN
198 VIEWPORT 3,55,5,45
208 :)I(?gOH 5e,100,-100,100

220 REN
238 VIEWPORT ?5,125,5,45
248 WINDOW -25,75,-25,75
258 AXIS
268 HOME
278 END

Shown below is the output produced by the above program:

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

5-1

AXIS
AXIS COMMAND REVIEW

[n the above program, the AXIS command is used four times. Each time it is used, no argu-
ments are specified. When an AXIS command is executed with no arguments, the locations
of the resulting axis lines are determined by the last defined window. With no arguments,
AXIS draws each axis line through the data minimums specified in the last WINDOW com-
mand. However, if zero lies within either data range, the corresponding axis line is drawn
through zero instead of the minimum. The above example program is a demonstration of
how WINDOW determines the default locations of the AXIS lines.

When AXIS is first used (statement 130), only the default window (0,130,0,100) is defined.
(The VIEWPORT command at statement 120 causes the window which contains the axis
lines to be placed in the upper left part of the display.) In the second use of AXIS in the
above example (the upper right set of axis lines in the above output), the WINDOW com-
mand at 160 places zero in the middle of the horizontal range. In the third use of AXIS

(the lower left axis lines in the above output), zero is in the middle of the vertical data range.
In the fourth use of AXIS, zero is near the lower end of both data ranges.

5-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
AXIS COMMAND REVIEW

With Arguments

AXIS can also be used with two or four arguments. In either of those cases, the two argu-
ments immediately following the AXIS command specify the distance in user data units be-
tween tic marks. The first argument refers to the horizontal axis tic marks and the second
argument refers to the vertical axis tic marks. The following program illustrates how these
arguments change the AXIS command'’s function.

188 PRGE

118 VIEWPORT 5,55,55,95
128 WINDOW 1@,180,-180,100
138 AX1IS 18,28

140 UIEWPORT 75,125,55,95
158 AXIS 108,90

160 VIEWPORT 5,55,5,45

179 AX1S 19,0,90,-50

188 HOME

198 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-3

AXIS

AXIS COMMAND REVIEW

54

Both axis lines in the upper left of the display (drawn by the AXIS command at statement
130) have tic marks. Tic marks are not drawn on an axis line if the corresponding argument
in the AXIS command is zero. In statement 150, the second argument of the AXIS com-
mand is zero. As a result, the vertical axis in the upper right set of axes lines does not have
tic marks.

The third and fourth arguments of the AXIS command specify the crossing point of the
axes. The third argument specifies the horizontal location of the vertical axis. The fourth
argument specifies the vertical location of the horizontal axis. In spite of their being drawn
in an identical window, the set of axis lines in the lower left of the display cross at a dif-
ferent location than the other two sets of axis lines shown. The crossing point was specified
by the third and fourth arguments of the AXIS command in statement 170.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
W:THOUT AXIS COMMAND

WITHOUT AXIS COMMAND

Another way to place an axis on the screen is to actually draw the lines using MOVE and
DRAW. The remainder of this section describes how this is done for linear, logarithmic, and
polar axis types. Understanding the material in the remainder of this section is necessary
only for an application which requires an axis different from that produced by the AXIS
command. |f the axis requirements are adequately satisfied by the AXIS command, you
may want to skip to the beginning of the next section.

Without Tic Marks

The next example uses MOVE and DRAW to place axis lines on the screen. For the vertical
axis line, all this entails is moving to the point where the vertical axis and the Y data mini-
mum meet (X and —500 in this case) and drawing to the point where the vertical axis and
the Y data maximum meet. A similar process is used for the horizontal axis. Inherent in a
program of this nature is the location for the crossing point of the two axis !ines, which is
X'=1950 and Y =0 in the next example.

18@ PAGE

118 VIEWPORT 20,110,20,80

128 WINDOW 13950@,1980,-500, 500
130 REN VERTICAL AXIS LINE
140 MOVE 1958, -500

150 DRAW 19508, 500

168 REM_HORIZONTAL AXIS LINE
178 MOUE 1950,8

180 DRAN 1980,8

190 HOME

288 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 b-5

5-6

AXIS
WITHOUT AXIS COMMAND

With Tic Marks

The addition of tic marks makes the axis lines more helpful in understanding the data graph.

The best way to add tic marks is to use a MOVE and a DRAW ina FOR ... NEXT loop.
This is shown in the next example.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

188 PAGE

118 VIEWPORT 2@,110,20,80

12@ WINDOW 1358, 19808,~-500, 500
138 REM UVERTICAL AXIS LINE

140 MOUE 1950,-3508

158 DRANW 1950, 500

168 REM HORIZONTAL AXIS LINE
179 MOVE 1950,9

180 DRAW 13980,0

198 REM VERTICAL AXIS TICS
2080 REM TIC LENGTH = 2% OF RANGE
210 T=(1588-1950)%0.01

220 FOR I=-50@ TO 500 STEP 100
230 MOVE 1998-T,I

240 DRAW 1958+T,1

258 NEXT 1

260 REM HORIZONTAL AXIS TICS
270 T=(560--508)%8.01

288 FOR 1=1930 TO 1986 STEP S
298 MOVE I,-T

380 DRAW I,T

318 NEXT 1

328 HOME

330 END

AXIS
WITHOUT AXIS COMMAND

+

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

AXIS
WITHOUT AXIS COMMAND

The axis crossing point and the distance between tic marks must be specified. With this
technique, the distance between tic marks is implied by the STEP size in each FOR state-
ment.

With the AXIS command, the actual size of the tic mark is defined to be 1% of the window
size. With the technique in the above example, it must be explicitly specified. In the above
example, it is 2%. (The length of the tics on the horizontal axis is 2% of the vertical data
range.) The variable T contains a value equal to 1%: half of a horizontal axis tic is below the
horizontal axis and half is above it. The total length is then 2%. This value can be made any
appropriate length by changing statements 210 and 270. In the above example, the tics on
the vertical axis are partially clipped because each tic's left half is outside the window.

Unaligned Tic Marks
Here is the same program with slightly different data.

108 PAGE

119 VIEWPORT 20,110,20,80

120 WINDOW -23,87,-25,25

138 REM VERTICAL AXIS LINE
140 MOVE @,-25

150 DRAW 8,25

160 REM HORIZONTAL AXIS LINE
70 MOVE -23,0

188 DRAW 87,0

198 REM VERTICAL AXIS TICS
208 REM TIC LENGTH = 2% OF RANGE
218 T=(87--23)%0.01

220 FOR I=-25 TO 25 STEP 1@
238 MOVE ©-T,1I

248 DRAN B8+T,1

258 NEXT I

268 REM HORIZONTAL AXIS TICS
2780 T=(25--25)%0.01

280 FOR I1=-23 TO 87 STEP 10
298 MQUE I,-T

368 DRAN I,T

310 NEXT I

320 HOME

338 END

5-8 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS

WITHOUT AXIS COMMAND

+

s
+
4

*
4
t
<+
4

In the above example, the tics are aligned with the window, not the axis intersection point.
This is caused by each FOR ... NEXT loop using the data minimum for a starting point.
For example, the FOR statement at line 220 specifies a starting value of —2b, the vertical
data minimum. This will always produce a tic mark on the lower end of the vertical axis, at
the bottom edge of the window.

Alignment Correction

If the tics are always to be aligned with the axis crossing point, the following correction can
be used:

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

AXIS

WITHOUT AXIS COMMAND

5-10

213
228

=(25/10-INT(25/10))%10
OR I=-254U TO 25 STEP 10

s s o TS o o

273 U=(23/10-1NT(23-10))>%x10
280 FOR I=-23+U TO 87 STEP 10

(Statements 215 and 275 are added; statements 220 and 280 are changed.)

This correction changes the starting point of each FOR . . .

NEXT loop. The change is just

enough to place a tic mark at the intersection point of each axis line. A more complete
explanation of the correction follows the next example. Here is what the complete pro-
gram looks like:

100
118
120

130 REM

140
138
168
1ve
180
190
208
219
215
2208
238
248
250

318
328
330

PAGE

VIEWPORT 29:110;20:80
NINDOW -23,87,-25,25
UERTILRL AXIS LINE
MOVE 8,-25

DRAW 8,25

REM HDRIZONTGL AXIS LINE
MOUE -23,0

DRAW 87,8

REM VERTICAL AXIS TICS
REM TIC LENGTH = 2% OF RANGE
T=(87--23)x0,01
U=(25/18-INT(25-/108))x10
FOR I=-25+U TO 25 STEP 18
MOVE 0-T,1

DRAW 8+T, I

NEXT 1

REM HORIZONTAL AXIS TICS
T=(25--25)%0.081
U=(23/18-INT(23-18))%10
FOR I=-23+U TO 87 STEP 10
MOUVE I,-T

DRAK I,T

NEXT I

HOME

END

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

AXIS
WITHOUT AXIS COMMAND

-
+
L 4
<>
4+
4

In each FOR ... NEXT loop, the value placed in U is the distance between the edge of the
window and the first tic mark.

General Correction

To show how this correction is applicable to the general case, the next examyple replaces the
number constants with variables. Here is a list of the variables used:

M1 = horizontal data minimum

M2 = horizontal data maximum

N1 = vertical data minimum

N2 = vertical data maximum

X = horizontal location of vertical axis

Y = vertical location of horizontal axis (X,Y is the crossing point of the two axis lines)
11 = distance between tics, horizontal axis

12 = distance between tics, vertical axis

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-11

AXIS

WITHOUT AXIS COMMAND

5-12

330

PAGE

UVIENPORT 20,119,20,80
RESTORE

DATA -23,87,-25,25,0,08,10,10
RERD M1,M2,N1,N2,X,Y,11,12
WINDOW M1,M2,N1,N2

REM VUERTICAL AXIS LINE
MOVE X, N1

DRAK XyN2

REN HORIZONTAL AXIS LINE
MOUE M1,Y

DRAW M2,Y

REM VERTICAL AXIS TICS

REM TIC LENGTH = 2% OF RANGE
T=(M2-M1)>%0.01
Us(CY=N1)/I2=-INT((Y=-N1D/12)0)%12
FOR I=N1+U TO N2 STEP 12

MOVE X-T,1

DRAW X+T,1

HEXT 1

REN HORIZONTAL AXIS TICS
T=(N2-N1)18.01
U=((X=-M1>/T1=-INTCCK-M1>-110)0%]1
FOR I=M1+U TO M2 STEP Ii

MOVE I,Y-T

DRAW I,Y+T

NEXT I

HOME

END

(Since the output from this program is identical to the output from the one before it, no
output is shown.)

As stated before, the corrections included at statements 215 and 275 merely find the dis-
tance between the edge of the window and the first tic. For the case of the vertical axis

correction (line 215), here is a detailed description of the process:

1. Find the distance between the axis crossing and the data minimum (in this example it

is Y=N1).

2. Divide this distance by the distance between tics (in this case | 2). This quotient is the
total number of full and partial tic intervals which will fit between the vertical data
minimum and the axis crossing point.

3. Subtract from this number its integer part. What remains is the distance between the
edge of the window and the first tic, expressed as a decimal fraction of a tic interval.

4. Multiply this fraction by the distance between tics. The product is the desired distance.

This program duplicates the function of the AXIS command, a capability which will be
useful when labeling tic marks.

REV B, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

AXIS
WITHOUT AXIS COMMAND

Minor Tic Marks

The addition of minor tic marks, i.e., marks that are shorter than the major tic marks, can
often make a graph clearer. |f the following statements are added to it, the example pro-
gram above will draw minor tic marks. (There are four minor tic intervals for each major
tic interval.)

242 FOR J=1 TO I+I2 STEP I2-4
244 MOVE X,J

246 DRAN X+T,J

248 NEXT J

302 FOR J=1 TO I+I1 STEP Ii-4
384 NOVE J,Y

3086 DRAW J,Y+T

388 NEXT J

»
L]

s

3 [rY
TTT[
i

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-13

AXIS

WITHOUT AXIS COMMAND

5-14

Only statements 242 through 248 and 302 through 308 were added. For the vertical axis,
statements 242 through 248 comprise an inner loop which draws the minor tics in the same
manner that the outer loop (statements 220 through 250) draw the major tics. Statements
302 through 308 serve a similar function for the horizontal axis.

Using RDRAW

Another way to draw axis lines with major tic marks is to use the relative RDRAW com-
mand instead of the absolute DRAW. All the examples so far have used DRAW. There will
be a few instances where the use of RDRAW and RMOVE is appropriate for drawing an
axis. However, in most cases, using MOVE and DRAW will produce a program which oc-
cupies slightly less space in machine memory and which executes faster. The example below
draws axis lines and tic marks using RDRAW:

108 PAGE

119 UIEWPORT 20,118,20,80

113 RESTORE

115 DQTQ ‘23’8?"25'25’0, 0, 109 10
117 RERD M1,M2,N1,N2,X,Ys11,12
128 WINDOW M1,M2,N1,N2

130 REM VERTICAL AXIS

140 T=(M2-M1)%x0.01

138 U=((Y-N1)/12-INTC(Y~N1)/12))>%12
168 MOUE X,Ni

178 RDRAW 08,U

188 FOR I=U+Ni TO N2 STEP I2

198 RDRAW 6,12

208 RDRAW T,8

210 RDRAW -TXx2,0

228 RDRAW T,0

238 NEXT 1

240 REM HORIZONTAL AX1S

258 T=(N2-N1>x8.01

260 Ux((X-M1)/11-INTCC(X=-M1>-11))%11
270 MOVE Mi1,Y

2808 RDRAW U,0

290 FOR I=U+M1 TO M2 STEP Ii

380 RDRAW 11,80

310 RDRAW 0, T

320 RDRAW 8,-Tx2

338 RORANW 8, T

348 NEXT 1

350 HOME

368 END

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
WITHOUT AXIS COMMAND

<*
*
3
-
S
<+
+
3
<+

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-15

AXIS
GRIDS

5-16

GRIDS

Lines

The next example shows that a grid covering the whole window can be drawn by repeated
use of the AXIS command within a FOR ... NEXT loop.

188 PAGE

118 VIEWPORT 28,110,20,80
120 NINDOW @,140,0,100

130 FOR I1=0 TO 140 STEP 20
149 axIs 0,08,1,!

158 NEXT 1

168 HOME

1?70 END

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Dots

For some applications, a grid such as the one shown above clutters the window excessively.
A grid of dots, shown in the example below, is sometimes more satisfactory.

109
110
128
123
138
140
130
160
170
180
190
200

PRGE
UIEWPORT 20
WINDOW 9,14
AXIS 20,20
FOR I=28 TO
FOR J=20 TO
MOVE I,J
DRAW 1,J
NEXT J

NEXT 1

HOME

END

19,20,80
0,100

40 STEP 20
80 STEP 20

3!
2,

i
1

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

AXIS
GRIDS

5-17

AXIS
LOG AXIS

LOG AXIS

Linear Example

Non-linear axis types, appropriate for certain transformations, can be drawn using the tech-
niques of previous examples. The next example shows a vertical axis with tic marks drawn at
linear intervals.

1808 PAGE

118 UIEWPORT 20,110,20,80

1206 WINDOW 1,5,1,10

136 REM DRANW AXIS LINES

140 AXIS 1,0,1,1

198 REM DRAN UERTICAL AXIS TICS WITH LINEAR INTERUAL
160 REN TIC MARK LENGTH IS 2% OF DATA RANGE
170 T=(5-1)%0.02

188 FOR I=1 TO 1@

198 MOVE 1,1

200 DRAW 1+T,1

218 NEXT 1

228 HOME

238 END

b-18 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
LOG AXIS

Adapted to Log

An often used non-linear transformation is log to the base 10. In the exampla below, the tic
marks on the vertical axis are drawn with a log interval between them. The example below
is adapted from the example above with only a few modifications.

188 PAGE

118 VIEWPORT 20,118,20,80

128 WINDOW 1,5,LGT¢1),LGTC10)

130 REM DRAW RXIS LINES

149 AXIS 1,8

138 REM DRAN VERTICAL AXIS TICS WITH LOG INTERVAL
168 REM_ TIC MARK LENGTH IS 2% OF DATA RANGE
170 T=(5-1)%0.02

180 FOR I=1 TO 1@

198 MOQUE 1,LGTCI)

200 DRAW 1+T,LGTC(D

218 NEXT I

220 HOME

238 END

rrri

¥

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-19

AXIS
LOG AXIS

Just as in the previous example, statement 140 draws the axis lines and statements 170
through 210 draw the tic marks. The only changes required were in the WINDOW, MOVE
.and DRAW commands (statements 120,190, and 200, respectively). In those commands,
each reference to vertical data has been made the argument of the LGT function. These are
the only changes required.

Less Than One Decade

The previous example’s data range runs from 1 to 10, an exact decade. Quite often it is ne-
cessary to graph data with a range of less than one decade. The simplest way to draw a log
axis for such data is to expand the graphed data range so that it will span exactly one decade.
(The data range of the original data remains unchanged.) The example below illustrates this
technique.

N1 = Actual vertical data minimum
N2 = Actual vertical data maximum
N3 = Adjusted vertical data minimum

N4 = Adjusted vertical data maximum

(The output of the program below is identical to the axis presented immediately above. For
this reason, it is not shown.)

180 PAGE

110 VIEWPORT 20,110,20,80

111 N1=2000

112 N2=8008

113 N3=104INTCLGT(NLI))

114 N4=101CINT(LGT(NZ>)+1)

115 IF N4/N3<=18 THEN 120

116 PRINT "ERROR: N4 > 10xN3"
117 END

120 WINDOW 1,5,LGT(N3>4LGT(N4>
130 REM DRAW AXIS LINES

140 AXIS 1,0

150 REM DRAW VERTICAL AXIS TICS WITH LOG INTERUAL
160 REM TIC MARK LENGTH IS 2% OF DATA RANGE
170 T=(5-1>%0,82

188 FOR I=N3 TO N4 STEP N3

198 MOVE 1,LGTC(ID

288 DRAW 1+T,LGTC(I)

218 NEXT I

220 HOME

230 END

5-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
LOG AXIS

The only additional statements required are 111 through 117. Statements 111 and 112
specify the actual data minimum and maximum. Statements 113 and 1 14 adjust the range.
Statement 115 ensures that the data is within one decade. Statements 116 and 117 com-
prise an error exit.

More Than One Decade

The example below handles more than one decade with a similar adjustmen< technique:

@ PAGE
9 VIENPORT 20,110,20,80

1 Ni=2000

2 N2=380000

3 H3=10tINTC(LGT{NL))

4 N4=101CINTCLGT(N2))+1)

120 WINDOW 1,5,LGT(N3),LGT(N4)

138 REM DRAW AXIS LINES

140 AXIS 1,0

150 REM DRAW VERTICAL AXIS TICS WITH LOG INTERUAL
168 REM_ TIC MARK LENGTH IS 2% OF DATA RANGE
170 T=(5-1)%0.02

175 H=LGT(N3)

188 FOR I=101H TO 10%(H+1)> STEP 10tH

138 MOVE 1,LGT(I)

2088 DRAN 1+T,LGT<I)

218 NEXT 1

211 H=H+1

212 DRAW 5,LGTC101H)

213 IF HCLGT(N4)> THEN 180

228 HOME

238 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-21

AXIS
LOG AXIS

This example is identical to the one which preceded it with the following exceptions:

Statements 115 through 117 have been removed. They are no longer needed.

Statements 175 has been added. This sets up the beginning value for the first decade to
be drawn.

Statement 180 has been changed. It still draws one decade’s tic marks but its beginning
point, ending point, and increment change during program execution.

Statement 212 has been added. This is an optional statement. It is really just a “major
tic” which extends across the entire graphing surface. This adds clarity to the graphed
results. |f statement 212 is removed, a normal tic will remain.

Statement 213 checks if the axis has been completely drawn, and branches back into
the loop if it has not.

Statement 211 updates the starting point for the loop which draws the tic marks.

5-22 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

AXIS
POLAR AXIS

POLAR AXIS

Two Axis Lines

The polar transformation is also very useful. The simplest polar axis is just 2 crossed lines,
dividing the graphing window into quadrants. The next example shows how a FOR . . .
NEXT loop is used to draw these lines. The STEP value in the FOR . . . NE;’XT loop specifies
the included angle between adjacent axis lines.

102 PAGE

118 SET DEGREES

128 REM R1 = MAXIMUM RADIUS VALUE
138 R1=9

148 WINDOW -R1,R1,-R1,R1

138 UIEWPORT 10,90,18,90

168 REM DRAN AXIS LINES

178 FOR I=9 TO 188 STEP 9@

180 MOVE R1¥COSCI),RI1XSINCI)

198 DRAW R1xCOS(I1+188),R1XSIN(1+180)
2008 NEXT I

210 HOME

220 END

In the above example, the defined window and viewport both have the same shape (square).
If they did not the data would be distorted, causing a circle to be drawn as an ellipse.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 5-23

AXIS
POLAR AXIS

Two Lines and One Circle
The next example adds a subroutine which can draw a circle of any given radius.

108 PAGE

110 SET DEGREES

120 REM Ri = MAXIMUM RADIUS VALUE
138 Ri=3

148 WINDON -Ri,R1,-Ri,R1

150 UVIEWPORT 10@,90,10,90

168 REM ORAW AXIS LINES

178 FOR I=8 TO 188 STEP 90

160 MOUE R1xCOS(I),RIXSINCID

190 DRAW R1¥COS(I+188),R1XSIN(1+180)
280 NEXT 1

218 REM DRAW CIRCLE OF RADIUS R
228 R=Ri

238 GOSUB See

240 HOME

258 END

588 REM SUBROUTINE TO DRAW CIRCLE
518 MOVE R,0

528 FOR J=1@8 TO 360 STEP 1@

530 DRAW RE¥COSCJ)yRESINCD)

548 NEXT J

556 RETURN

=
N

5-24 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

In the above example, the straight lines which comprise the circle are just becoming dis-
cernible. This is due to the STEP size in statement 520 being relatively large. A smaller value
results in a somewhat more satisfactory-looking circle which takes longer to draw.

Multiple Lines and Circles

The example below shows the axis line loop and the circle subroutine being used to make

additional lines and circles.

180
118
129
130
140
150
160
170
180
198
208
218

PAGE

SET DEGREES

R§N9 R1 = MAXIMUM RADIUS VALUE
WINDOW ~-R1,4R1,-R1,R1

VIEWPORT 10,90,10,50

REM DRANW aXIS LINES

FOR 1=0 TO 180 STEP 30

MOUVE RIXCOSCI),RIXSINCI)

ggg¥ ?l*COS(I#lBO)sRIXSIN(I+180)
EEEI DRAW CIRCLE OF RADIUS R

GOSUB 580

R=R1%(2/3)

GOSuB_5ee

R=R1-3

GOSuB See

HOME

END

REM SUBROUTINE TO DRAW CIRCLE
MOVE R,8

FOR J=18 TO 360 STEP 10
DRAH RXCOS(J),RASINCJ)

548 NEXT J

350

RETURN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

AXIS
POLAR AXIS

5-25

AXIS
POLAR AXIS

In the above example, the STEP value in the FOR .. . NEXT loop (beginning at statement
170) has been changed from 90 to 30. As a result, the axis lines now occur every 30 degrees.
The circle subroutine has been used 3 times: with the maximum radius value, with 2/3

the maximum radius value and with 1/3 the maximum radius value. Some care should be
exercised when choosing how many axes and circles to place on a polar graph. Too many
lines and circles lead to a cluttering effect which can obscure data.

Using RDRAW

A slightly different approach will avoid this cluttering effect: a polar axis made up of just
straight lines and tic marks. RDRAW is the most appropriate command for this purpose.
The next example illustrates this.

b-26 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

188 PAGE

118 SET DEGREES

120 REM R1 = MAXIMUM RADIUS VALUE
130 Ri=14

149 HINDOW -R1,R1,-R1,R1

158 VIEWPORT 10,90,10,90

168 REM A IS ANGLE BETWEEN AXIS LINES
178 A=45

188 REM I IS TIC INTERVAL

198 I=5

288 REM DRAW AXIS LINES

218 REW T IS SIZE OF TIC MARKS
220 T=R1%¥8.82

238 FOR J=A TO 368 STEP A

248 ROTATE J

250 MOVE 0,0

260 FOR K=I TO Ri+I STEP I

270 RDRAK 1,0

280 RDRANW B4 T

290 RDRAW B,-T¥2

300 RDRAW 0,7

318 NEXT K

328 NEXT J

336 HOME

340 END

AXIS
POLAR AXIS

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

b-27

AXIS
POLAR AXIS

Two nested FOR . .. NEXT loops draw the axes in the above example. The inner loop
(statements 260 through 310) draws each axis line with tic marks. The outer loop (state-
ments 230 through 320) determines how many axis lines will be drawn.

It is desirable for the tic marks to be lined up with the pole of the graph. The easiest way
to accomplish this is to start each axis line at the pole and draw it outward. This requires
that the outer FOR ... NEXT loop (beginning at statement 230) extend through one full
revolution of 360 degrees rather than through one half revolution of 180 degrees, as in

the above examples. The inner FOR ... NEXT loop’s terminating value (R1 + | in statement
260) ensures that the axis lines will extend outward at least as far as the maximum radius,
R1. If the terminating value of the inner loop is specified (in statement 260) as simply R1,
the axis lines will extend outward only as far as the last tic inside a radius of R1, an unsatis-
factory condition. The axis lines should extend at least as far as R1 and preferably farther.
There is no particular disadvantage in having the axis lines extend too far (other than ex-
cessive execution time). Any part of an axis line or tic mark which extends outside the de-
fined window is clipped. This is why half the axis lines in the above example have termi-
nating tic marks and half do not.

5-28 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Section 6

LABELS

INTRODUCTION

There are three types of character information customarily added to a graph: the title, the
axis label, and the tic mark labels.

There are literally dozens of ways to title and label a graph. This section dis:usses the con-
siderations which influence the addition of characters to a graph and suggests examples of

how the required tasks can be accomplished.

Adding characters to a graph in an orderly fashion is a three step process:

1. Making sure that there is appropriate space on the display for the charucters.

2. Positioning the beginning point of the character output so that the characters will
correctly fill the reserved space.

3. Printing the characters.

This entire section describes various ways of performing these three steps.

PLOT 50 GRAPHIC PROGRAMMING REV A SEPT 1978

6-1

LABELS
CONSTANT SIZE

CONSTANT SIZE

The most significant consideration for labeling graphs on the GS display is that the size

and orientation of the characters on the display are constant. For example, the size and
orientation of a letter “A” is not affected by any previously executed commands. In conftrast,
the length and orientation of a line produced by a DRAW command is determined by the

last executed WINDOW and VIEWPORT commands. The following examples show some of
the implications of this fact.

The first example, demonstrates how the size of the viewport does not affect the size of the
characters. Enter the following statements into the GS:

188 PAGE

119 WINDOW 8,2,9,
120 REM DRAW A B
138 AXIS

140 AXIS 8,0,242
158 REM PRINT A CHARACTER STRING

168 REM POSITIONED AT LEFT EDGE OF WINDOW
170 MOVE 8,1

180 PRINT “ABCDEFGHIJKLMNOPQRSTUUWXYZ";

199 HOME

208 END

VIEWPORT 48,90,40,90
RUN

2
OX ARDUND WINDOW

6-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

Here is the resulting output:

LABELS
CONSTANT SIZE

ABCDEFGHI JKLMNOPQRSTUUNXYZ

Now enter the following statements into the GS:

VIEWPORT 48,50, 40,50
RUN

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978

6-3

LABELS
CONSTANT SIZE

Here is the output that is produced:

RBCDEAGHI JKLMNOPQRSTUUKKY2

The first viewport is 40 GDU’s wide. It contains the printed characters easily. The second
viewport is only 10 GDU’s wide. Although the viewport has become smaller, the characters
have remained the same size. They no longer fit into the smaller viewport. The window has
remained unchanged. When the viewport shrinks, the amount of display space occupied by a
user data unit also shrinks.

The following four examples illustrate the effect of the WINDOW and VIEWPORT com-

mands on character output. The initial pair of examples demonstrate the effect of changing
the window size while holding the viewport size constant. The first example is shown below:

6-4 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
CONSTANT SIZE

188 PAGE

119 UIEHPORT 4@, 909,40, 90
128 MOUE 9

13@ PRINT “FIRbT MESSAGE;
140 MOUE 1,1

158 PRINT “bELOND MESSRGE";
le HOME

170 END

HINDOW 8,2,0,2
RUN

FIRST MESSAGE SECOND MESSAGE

The two character strings above are separated by a comfortable distance. If the width of the
window is doubled, that is if the viewport’s horizontal dimension is made to contain twice
as many user data units as above, notice what happens. (The result is shown below.)

WINDOW B,4,8,4
RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-b

LABELS
CONSTANT SIZE

FIRST MBEEEBAE MESSAGE

In the above example, the distance between the starting points of the two character strings
(one user data unit in this case) now becomes less than the length of the first string. As a
result, the two character strings now overlap. In any graphing application, this would be
unacceptable.

The next two examples show the effect of holding the window size constant and varying
the viewport. The first example is essentially a return to the previous case, where the strings
do not overlap. Enter the following statements:

118 WINDOW 0,2,0,2
UIEWPORT 40,58,48,98
RUN

6-6 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
CONSTANT SIZE

FIRST MESSAGE SECOND MESSAGE

The viewport is reduced to less than half its size in the above example by entering the

following statements:

VIEWPORT 48,69,40,60

RUN

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978

LABELS
CONSTANT SIZE

FIRST SHIBMLBIESSAGE

In the above example, the same number of user data units now occupy half the display
space as before. The distance between the starting points of the two character strings, al-
though being the same distance in user data space, is now half what it was before. So the
second character string begins before the first one has ended. If the titling and labeling on
a graph within a certain window and viewport is satisfactory, the same titling and labeling
might be too sparse, too crowded, or totally unreadable if the window or viewport dimen-

sions change.

6-8 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
TITLING

TITLING

Below is a sample function graph with a basic set of axes.

The program will be gradually expanded as various kinds of titles and labels are added to it.

100 PAGE
110 INIT
129 DATA 0,130,0,10
13@ READ VU1,U2,V3,V
149 VIEWPORT V1,V2
138 WINDOW 9 P1x6,

’)
’ 4
1,V2,U3,V4

1%6,0, 30

)

180 FOR !tPI/lO TO PIX6 STEP PI-10
190 DRAN I,SINCI)XI+15

200 NEXT I

210 HOME

2208 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 ’ 6-9

LABELS
TITLING

Adding a title above this graph (or any graph) is a three step process:

1. Reserve the space for the title

2. Properly position the beginning of the title
3. Print the title

Each of these steps can be performed in a variety of ways.

in the graph shown above, the data and axes totally fill the screen because of the VIEW-
PORT parameters. Therefore, no characters can be printed outside the specified viewport
area. However, the top edge of the viewport can be lowered to allow room for the title. The
statements shown below perform that function when added to the previous example program.

148 UIEWPORT Ul,U2,U3,U4-3%2,82

210 REM RDD TITLE TO GRAPH
228 A$="THIS THE GRAPH’S TITLE"
238 MOVE 3%PI,30

248 PRINT "K"i

230 FOR I=1 TO LENCR$3>-2

260 PRINT "H";

278 NEXT 1

280 PRINT A$;

298 HOME

388 END

6-10 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
TITLING

THIS THE GRAPH‘S TITLE

—

The MOVE command at statement 230 (above) places the graphic point in the middle of the
horizontal data range and at the top of the vertical data range. The space between this point
and the top of the allowable viewport (the vertical location specified by var-able V4) is three
character heights. This space was reserved by the VIEWPORT command in statement 140.
Therefore, a move up of one character height will vertically center a line of characters within
that reserved space. Statement 240 does just that: moves the graphic point uip one character
space. Centering the title horizontally is just a matter of moving the title’s beginning point
to the left by half the number of characters in the title, much as a title is cantered on a
typewritten page. The FOR ... NEXT loop in statements 250 through 270 does this. It
prints a number of backspace characters (CTRL H) equal to half the number of characters

in the title string. The graphic point is now positioned at the correct location for the begin-
ning of the title string.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-11

LABELS
TITLING

How much room should be reserved for the title string? |t depends mainly on how many
lines of characters the title will have. The distance between adjacent lines of characters is
approximately 2.82 GDU's. This is the smallest vertical space that should be reserved for one
line of characters. In the above example, three lines of space are reserved, one for the title,
one for a space above the title and one for a space below the title. This is 2.82*3 or about
8.5 GDU's. This change is implemented in the VIEWPORT command at line 140, above.
This change lowers the height of the viewport which actually contains the data curve and
axes, leaving 8.5 GDU's of vertical space between the top of this adjusted viewport and the
top of the display. This unadjusted top is specified by the variable V4 and is the highest
allowable location for anything to appear on the screen.

The title was positioned using a MOV E command and two control characters: CTRL K for
moving up and CTRL H for moving left. Below is a summary of the characters which move
the graphic point in increments of one character space.

Action: Character Obtainable How to ASCII
Moves Name From Key- Place Into Value
board With A Character
String
To the right | SPACE SPACE BAR Ag=" " 32
To the left BACKSPACE CTRLH A$ ="H" 8
Down LINE FEED CTRL J A$="J" 10
Up VERTICAL TAB | CTRLK A% ="K"” 11

Three of these characters are entered as control characters: Control H, Control J, and Con-
trol K.

This means that in order to enter the character into the GS, the CTRL key is used much

like the SHIFT key. A control character is entered by pressing the desired character key
while simultaneously pressing and holding the CTRL key. The “space” character (entered
with the SPACE BAR) moves the graphic point to the right by 1.79 GDU'’s, the distance
which separates adjacent characters. The “‘backspace’” character (which prints on the display
as “‘H’’ or “Control H"’) moves the graphic point to the left by the same distance. The “line-
feed” character (which prints on the display as *’J’" meaning ““Control J') moves the graphic
point down by 2.82 GDU'’s, the distance which separates adjacent lines of characters. The
“‘vertical tab’’ character (which prints on the display as ‘’/K’’ or ‘“Control K"') moves the
graphic point up by the same distance. These distances are all GDU's and are not affected by
the WINDOW, VIEWPORT, or SCALE statements. When manipulating the graphic point in
this way, it must be remembered that the graphic point is moved to the right whenever a
non-control character is output. ’

6-12 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
TITLING

Centering the title within the viewport does not guarantee that the viewport is wide enough
to contain the title. In the following example, the viewport is narrower than the title.

120 DATA 30,60,30,60

THIS THE GRAPH’S TITLE

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-13

LABELS
TITLING

It is easy to add a test which allows the title to be printed only when it will fit. Statement
225 performs such a test.

220 A$="THIS THE GRAPH’S TITLE"
225 IF 1.79%LENCA$) >U2-Ul THEN 299

290 HOME
300 END

The test at statement 225 compares the amount of horizontal space the title will occupy

(1.79 GDU's times the number of characters in A$) with the width of the viewport (V2-V1).
If the title is wider than the viewport, the title is not printed.

6-14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
AXIS LABELS

AXIS LABELS

Horizontal Axis Label

The same three steps are used when labeling an axis:

1. Reserve space.
2. Position the beginning of the character string.
3. Print the string.

Shown below are the additional statements required to add a label to the horizontal axis.

120 DATA ©,130,0,100

148 UIEWPORT U1,U2,U3+43%2,82,U4-3x%2,82

290 REM ADD HORIZONTAL AXIS LABEL
308 H$="HORIZONTAL AXIS LABEL"

318 MOVE 3%PI,®

328 PRINT “JJ";

330 FOR I=1 7O LENCH$)-2

348 PRINT "H";

358, NEXT I

368 PRINT H$;

378 HOME

388 END

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-15

LABELS

AXIS LABELS

6-16

THIS THE GRAPH‘S TITLE

HORIZONTAL AXIS LABEL

The space is reserved in the same manner as before except that the bottom of the viewport
is raised. This is done by forming an adjusted viewport with a bottom 3*2.82 GDU'’s above
the previously specified value. In statement 140, 3*2.82 is added to V3, the third argument
of the viewport statement. The additional statements (290 through 380) are almost identical
to those added for the title. There is one exception: line 320. Execution of statement 310
places the graphic point at the middle of the bottom edge of the window. In order to center
the character line in the provided space, the graphic point must be moved down two lines.
This is because the graphic point is at the lower left corner of the dot matrix which forms
the characters. So statement 320 (above) outputs two line feed characters. The other state-
ments function exactly the same as the corresponding ones which place the graph title on the
display.

Vertical Axis Label
When labeling the vertical axis, being able to print a character string vertically saves much
space on the display. The following is an example of how this is done.

REV A, SEPT 1978 PLOT 50 GRAPHIC FROGRAMMING

LABELS
AXIS LABELS

(This program can be entered and run without affecting the program being developed if the
statement numbers are carefully chosen.) Enter the following statements:

280 PRGE

818 INIT

828 DIM AISH,X(1)
830 A$="THIS IS A TEST"
840 PRINT R$

858 GOSUB 1088

868 C=1339+59

878 PRINT C

888 A$=STR(C?

890 PRINT A$

988 GOSUB 1eee

918 END

1808 FOR I=1 TO LENCA$)
1810 X$=SEGI(R$,1,1)
1620 PRINT X$;"HJ"}
1830 NEXT 1

1848 RETURN

RUN 888

Here is the output produced:

x
Lol
7
g
o

A TEST

-4 IM—4 D D T4~

1988
1980

© 00 WO

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-17

LABELS
AXIS LABELS

The DIM command at statement 820 is optional. While its use saves memory, its presence
in the above example is mainly to show that X$ only has to be one character long. The
SEG command (statement 1010) extracts a character at a time from A$. After each char-
acter is extracted, it is printed and followed by a backspace (CTRL H) and a line feed
(CTRL J). This same process can be done easily to numbers by using the STR function.

The STR function (statement 880) converts the number in C into a character string. It
can then be placed into A$ and printed vertically, just as the string “THIS IS A TEST”
was printed vertically. The subroutine which begins at statement 1000 simply prints the
string A$ but in a vertical orientation.

A vertical axis label can be added with the following statements:

DELETE 800, 10840

140 UIEWPORT Ul1+3%1.79,U2,U3+3%2,82,U4-3%2,82

378
380
390
400
410
420
430
440
450
460
470
480
450

6-18

REM ALD VERTICAL AXIS LABEL
U$="UERTICAL AXIS LRBEL"
MOVE 8,15

PRINT "HH";

FOR I=1 TO LEN(U$)-2
PRINT "K"}

NEXT I

FOR I=1 TO LENCU$)
X$=SEG(V$,1,1)

PRINT X$;"HJ"$

NEXT I

HOME

END

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

LABELS
AXIS LABELS

THIS THE GRAPH’S TITLE

FMImODIrE WOeXID DI 0OMmM S

HORIZONTAL AXIS LABEL

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-19

LABELS
TIC MARK LABELS

TIC MARK LABELS

Labeling individual tic marks, though not difficult, requires more programming effort and
GS memory space than is appropriate for many applications. It is sometimes preferable just
to print the parameters of the AXIS command somewhere within the viewport. The most
suitable location for this information is usually just above the lower edge of the viewport,
either to the right or left of the horizontal axis label. If only one line is being printed, the
space reserve specified at the third parameter of the VIEWPORT statement (line 140 above)
need not be changed. However, in this next example, three lines are printed for the AXIS
and tic information. So five lines of space are reserved.

140 UIEMPORT V1+43%1.79,U2,U3+5%2.82,V4-3%2,82

480 REM PRINT TIC & AXIS DATA

492 MOVE 8,0 .

508 PRINT *JJAXIS CROSSING = 0,0";

518 MOVE 8,0 N

528 PRINT *JJJX TIC INTERVAL = P1-2";
v

MOVE 8,08 .
548 PRINT "JJJJY TIC INTERVAL = 5%
558 HOME
568 END

6-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
TIC MARK LABELS

THIS THE GRAPH’S TITLE

FRMoDr Or==eXD TDO—~~4MC

A A r's s b » e VN 'y A - e

AX1S CROSSING = 8,40 HORIZONTAL AXIS LABEL
X TIC INTERVAL = P12
Y TIC INTERVAL = S

A technique which makes the graphed data easier to comprehend is to place a value cor-
responding to each tic adjacent to the actual tic mark itself. Below is an example of this
method, including a list of all statements that were changed or added to the example above.

148 UIENPORT U1+48%1. 79,U2-4%1,79,U3+4%2.82,U4-3%2.82

320 PRINT *JJJ";

488 PRINT "HHHHHHH":

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-21

LABELS

TIC MARK LABELS

6-22

489
498
568
o18
528
538
J48
550
568
Sve
586
596

REM LABEL HORIZ. AXIS TIC MARKS
FOR I=0 TO 6%PI STEP PI

MOVE 1,0

PRINT "HHJ"$I-/PI3"%PI1";

HEXT I

REM LABEL VERT. AXIS TIC MARKS
FOR I=08 TO 30 STEP 5

MOVE @,1

PRINT "HHH"$1I3

NEXT I

HOME

END

rFrooDr AXD FDCOre40Mo

30

25

20

15

1)

THIS THE GRAPH’S TITLE

aOtFT

¥ T Y 12 W R YT,
HORIZONTAL AXIS LABEL

REV A, SEPT 1978

The VIEWPORT statement (line 140) is changed because more space is required for the
labels. Eight character widths are reserved to the left (V1+8*1.79). This is larger than before
because space must be reserved for more characters. Four character widths are reserved to

PLOT 50 GRAPHIC PROGRAMMING

LABELS
TIC MARK LABELS

the right (V2—4%1.79) to make room for the last tic label on the end of the horizontal axis.
Five character heights are reserved below the graph. More space is needed here mainly to
make the labels easier to read. No additional room has been reserved above the graph in this
example because nothing else has been added to that area.

Because of these changed space allocations, the initial positioning of both the horizontal
axis label (statement 320) and the vertical axis label (statement 400) are also changed. If

they are not changed, the axis labels will conflict with the tic labels printed in statements
480 through 590.

Statements 490 through 520 label the horizontal axis tics. Inherent in the VIEWPORT com-
mand at line 140 are assumptions about the amount of space occupied by these tic labels.
One character height of space below the axis is reserved, along with four character widths
to the right of the last tic mark on the axis. If this last space is not reserved, part of the last

label is printed outside the viewport, an unacceptable situation. An assumption about the
width of the labels is implied in two statements: in the STEP size of the FOR command at

statement 490 (if this step size is too small, the labels will be printed on top of each other),
and in the number of backspaces printed at statement 510. The number I/P! will always be
an integer in this situation because of the FOR ... NEXT loop’s beginning value and step
size.

The “*P1" in statement 510 (above) shows that the addition of characters ta each tic label
requires only the presence of the desired character string in the PRINT statement. The com-
bination of a one digit integer and the “*P1"’ is always four characters long. Hence the two
backspace characters (CTRL H) in statement 510.

Unless special considerations are made in the program, it must be assumed that each tic
label is made up of no more than a certain number of characters. Only after this assumption
is made can the step size in the FOR statement (statement 490 in this example) and the
label position (statement 510 in this example) be set up. The step size in the FOR state-
ment also determines the frequency of the tic labels. If the tic mark labels are too close
together, they become more difficult to read.

Most of the horizontal axis tic label description applies with only slight changes to the
vertical axis tic labels. The major difference is that the assumed maximum for the number
of characters allowable in a vertical axis tic label has a more direct effect on the STEP size
in the FOR statement (statement 540). The first parameter of the VIEWPQRT at line 140
was changed to V1+8%1.79 (eight character widths reserved). The assumed maximum
number of characters for the label is three. There are several ways to ensure that the number

of characters in a given label will not exceed the assumed maximum. These are described
later in this section.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-23

LABELS
RESERVING SPACE

RESERVING SPACE

As was stated earlier in this section, the three steps required for adding characters to a graph
are:

1. Reserving space

2. Positioning

3. Printing

The first of these three, space reservation, is now discussed.

The technique used so far in all this section’s examples is to adjust the parameters of the
viewport command by the appropriate number of GDU's in each direction. This is the best
general method because the amount of space reserved is always known exactly. Another ap-
proach is to alter the VIEWPORT by specified percentages of the VIEWPORT height and
width. The example below decreases the size of the viewport so that the adjusted rectangle
is smaller than the unadjusted one.

Unadjusted:

VIEWPORT U{,V2,U3,V4

Percentage Adjustment:
VIEWPORT U1+{U2-U1)>%0.1,U2-C(V2-U13%0,1,U2+{U4-U3)%8, 1,U4-CU4-U3)%8, |

Advantages: Space reservation changes with viewport size; a more pleasant appearance
results.

Disadvantages: The exact quantity of space reserved is unknown.
Too little space is reserved with small viewports, too much with large ones.

Both of these techniques have the characteristic of adjusting the size of the clipping rectangle,
that area outside which no graphic output will appear.

The size of the window can also be adjusted to make room for labels. This technique is not

appropriate for the above example. However, it is described and used in the next section,
where its use is very appropriate.

6-24 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
POSITIONING

POSITIONING

The second required process is to position labels within the allotted space. After the graphic
point is placed at the location to be labeled, it must then be moved a certain number of
character spaces to ensure that the printed characters are positioned property. The following
situations are among those which require this capability: centering a graph title within the
allotted space, properly positioning a tic mark label, and centering a character over a point
on the display. There are three ways this can be done.

The simplest way is to use the control characters described in Sections 1 and 6: SPACE,
BACKSPACE (CTRL H), LINE FEED (CTRL J), and VERTICAL TAB (CTRL K). All
examples so far in this section have used this technique. The following prog-am fragment
shows its use:

»

390 REN TOJNOUE ONE CHARARCTER SPACE HEIGHT DOWN
"4

318 PRINT *

328 REM TO HDUE ONE CHARACTER SPACE HEIGHT UP

338 PRINT “K"}

340 REM TO NOUE ONE CHARACTER SPACE WIDTH TO THE RIGHT
350 PRINT * »

368 REM TO) MOUE ONE CHARACTER SPACE WIDTH TO THE LEFT
370 PRINT "H"$

Advantages: Simple to use.
Doesn’t require keeping track of WINDOW and VIEWPORT parameters.
It is a true relative move in character distance incremer ts.

Disadvantages: Can only move in increments of one entire character height or width
(is therefore too imprecise for some situations).

The second way is to totally rescale the graph at the point desired, use RMOVE to position
the graphic point, and re-window to restore the original mapping situation. The example
below moves 1.3 character widths to the left and .2 character heights below the point X,Y.

300 WINDOW W1.HW2,W3,W4

318 MOVE X.Y

328 SCALE 1,1

338 RMOVE -1,3%1.79,-0.2%2.82
348 PRINT "LABEL";

358 WINDOW Wi,W2,KH3,W4

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-25

LABELS
POSITIONING

In the preceding program fragment, the SCALE command at statement 320 establishes a one-
to-one correspondence between user data units and GDU's. It is also possible to establish

a one-to-one correspondence between user data units and character spaces. The number of
character widths and heights to be moved can then be used directly as arguments of the
RMOVE command (statement 330). The program fragment below demonstrates this technique
showing the appropriate arguments to use in the SCALE command.

308 WINDOW W14H2yH34H4

319 MQUE X,Y

328 SCALE 1-1.79,1-2.82
338 RMOUE -1,3,-0@.2
348 PRINT "LRBEL"}

358 WINDOW W1sW2y W3, W4

Advantages: Allows movement in fractional character increments.
Simple to use.

Disadvantages: The previously defined window must be restored after this technique
is used (as in statement 350, above).

The third way is to use the window and viewport parameters to compute the number of
horizontal and vertical user data units required for a movement on the display of 1 GDU.
Below is an example illustrating this technique.

388 WINDOW W1,W2,W34 N4

318 VIEWPORT U1,U2,U3,U4

328 REM S1 IS NUMBER OF HORIZONTAL USER DRT# UNITS PER GDU
338 Si=(W2-MW1)-(U2-U1)

348 REM S2 IS HUMBER OF UERTICAL USER DATA UNITS PER GDU
350 52=(W4-H3)~(U4-U3)

368 REM TO THE LEFT 2.4 CHARACTER WIDTHS AND

378 REM DOWN 1.5 CHARACTER HEIGHTS

388 RMOVE -2.4%S1%1.79,-1,5%82%2.82

Advantages: Allows movement of fractional character increments.
Disadvantages: Can be cumbersone if window or viewport specifications are intricate.

Requires keeping track of WINDOW and VIEWPORT parameters.
Can require two extra variables.

6-26 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

LABELS
PRINTING

PRINTING

The third required process is to actually print the label. The most useful enhancement for
printing is the guarantee that a number’s printed image on the screen will not exceed a cer-
tain number of characters. There are several ways to provide this guarantee. One way is to
use the INTeger function to round the number to a specified quantity of significant digits.
Another method is to utilize PRINT . . . USING, documented in the Plot 50 Introduction
to Programming in BASIC. These techniques can ensure that numbers of excessive length
are never printed. An example which utilizes the PRINT . .. USING command is described
in the next section {Section 7).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 6-27

Section 7

ENHANCEMENTS

“NEAT” TIC INTERVALS

Manually calculating the appropriate tic intervals for a given data range can b= tedious. A
preferable situation is to have a program do it. Below are two example graphs with “neat’’
tic intervals on the horizontal X axis calculated by the Graphic System.

HORIZONTAL MIN & MAX = - 9023,.0068

<4
-

+
4

-0.08082 b 9,002 9.604 8.006

PLOT §0 GRAPHIC PROGRAMMING REV A, SEPT 1978

7-1

ENHANCEMENTS
“NEAT” TIC INTERVALS

HORIZONTAL MIN & MAX = 1234567,9876543

<+
<
4
J

20000800 4000909 6090000 8009008

The program used is listed below.

i?g sguE SRMPLE LABELED "NEAT" TICS FOR HORIZONTAL AXIS
L

120 DATA 19,120,10,90,-130,130,-25,75,6

1380 RESTORE

148 READ U1,U2,U3,U4, N1, N2 W3 W4, N

159 VIEWPORT U1,V2,U3,U4

168 HOME

170 PRINT "HORIZONTAL MIN & MAY = “;

188 INPUT Wi,W2

196 REM CALCULATE "NEAT"™ INTERUAL & EXPANDED DATA LIMITS

200 GOSUB 2000

218 WINDOW Mi M2,W3, W4

228 AXIS 8,0,M1 W3

238 AXIS 0,9,M2,U4

248 AXIS 5,0

250 GOSUB 3006

260 END

7-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
‘NEAT” TIC INTERVALS

2888 REM COMPUTE "“NEAT" TIC INTERUAL FOR HORIZONTAL AXIS
2810 REM R="RAW" TIC INTERUAL

2028 R=(W2-W1)-N

2030 REM S=LARGEST INTEGER POMER OF TEN STILL SMALLER THAN RAW INTERUAL
2848 S=101INT(LGT(R))

2850 REM T= RAW INTERUAL ~ NEXT SMALLEST POWER OF TEN
2868 T=R-/S

2878 IF T>2 THEN 2110

20880 IF T=1 THEN 2150

20890 5=2%S

2108 GO T0 2150

2118 IF T>S THEN 2140

2128 S=5%S

21308 GO TO 2150

2148 S5=10%S

2150 REM S="NEAT" TIC INTERVAL

2168 REM ADJUST DATR MINIMUM
2170 Hi=INT(N1/S)

2180 M1=Sx{M1+2)

2138 IF MI<W1 THEN 2220

2200 M1=N1-§

2210 GO TO 2198

2220 REM FOUND ADJUSTED MINIMUM
2233 REM ADJUST DATA MAXIMUM
2240 M2=INT(W2-$)

2230 M2=5%{N2-2)

2268 IF W2{M2 THEN 2299

2278 M2=M2+8

22808 GO TO 22¢@

229@ REM FOUND ADJUSTED MAXIMUM
2388 RETURN

2338 REM LABELING ROUTINE FOR HORIZONTAL AXIS
3888 S7=H1

3818 $8=K3

3828 S1=M2-5-2

3038 S7=57+S

3848 IF S7>S1 THEN 3128
3858 MOVE S7,S8

30868 A$=STR(S?)

3878 FOR 9=1 TO LENCA$)-2
3688 PRINT "H"j

3898 NEXT @

3188 PRINT §7

3118 GO TO 3830

3128 RETURN

A subroutine beginning at line 2000 calculates an appropriate tic interval for the horizontal
axis based on the three parameters: the horizontal data minimum (assigned to variable W1)
the horizontal data maximum (assigned to W2), and the maximum number of tic marks de-
sired (assigned to N). The tic interval calculated is a multiple of 1, 2, or 5. Tit intervals
calculated in this manner are referred to as “‘neat’’. N is initialized to 6 in the READ state-
ment at line 140. Lines 2020 through 2150 calculate a tic interval which will result in no

’

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1078 7-3

ENHANCEMENTS
“NEAT” TIC INTERVALS

more than N tic intervals being drawn. This interval is passed back to the main program in
variable S. Lines 2160 through 2220 adjust the data minimum downward so that the new
data minimum will be an integer multiple of the tic interval. This adjusted data minimum is
passed back in variable M1 leaving the original data minimum, W1, undisturbed. Similarly,
lines 2230 through 2290 adjust the data maximum upward, passing the new data maximum
back in variable M2.

After the tic interval, adjusted data maximum and adjusted data minimum have been deter-
mined, the window can be defined with the WINDOW command (line 210). Note that the
arguments for the horizontal range of the WINDOW command are the adjusted data mini-
mum (M1) and the maximum (M2), not the original data minimum (W1) and maximum
(W2). The two AXIS statements at lines 220 and 230 simply draw a box around the window
to show that no tic labels extend outside it. The AXIS statement at line 240 draws the axis
with the ““neat’’ tic interval S. Then the subroutine beginning at line 3000 is called to label
the horizontal axis.

This routine to label the tics requires the following information: the adjusted data minimum
(M1) to know where to start; the adjusted data maximum (M2) to know where to stop; the
tic interval (S); and the vertical data minimum (W3) to know where to position the labels
vertically. All other variables used are scratch variables.

The subroutine positions the labels with the same technique that was used at the end of the
previous section. Line 3050 places the graphic point directly below the tic to be labeled. The
value to be printed is converted to a character string using the STR function. Then a FOR. ..
NEXT loop (statements 3070 through 3090) outputs a number of backspaces equivalent to
half the niumber of characters in the label to be printed. If a situation arises where the labels
are too close together and begin to overlap, changing N to a smaller number will cause fewer
labels to be printed, reducing the chance of overlap. In the above program, space for the
labels is reserved by expanding the window. The entire program requires no access to the
viewport parameters. |f the viewport is specified from the keyboard just prior to program
execution, there is no need for any VIEWPORT command (such as the one at line 140) in
the program at all.

For certain applications, tic labels with a normalized scientific notation are desirable. The
example below shows such labels.

7-4 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS

“NEAT” TIC INTERVALS

RORIZONTAL MIN & MAX = 39E?,201E?

L o

e S
-
-

1.00 1,20 1.40 1.60

-

The program which generated these labels is identical with the previous example program,
listed above, with the exception of the labeling subroutine beginning at stat:ment 3000. It

is listed below.

2939
3oge
3618
3820
3839
3848@
3asa
3068
3a7o
3880
3890
3108
3118
3120
3138
3148
3158
31c8

REN LABELING ROUTINE FOR HORIZONTAL AXIS

S?=M1

§8=K3

§3=RBS{M1+S) MAX ABS(M2-S5)
S3=INT(LGT(S3)+1,0E-8)
S2=101-53

S1=M2-5-2

§7=§7+S

IF §7>S1 THEN 3120

MOVE $§7,S8

PRINT "HH"i

PRINT USING "-D,2D,S8":S7%82
GO TO 3060

IF S3=8 THEN 3160

§7=51

MOVE §7¢,S8

PRINT USING "2A.+FD,S":" E"3S3
RETURN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

75

ENHANCEMENTS
“NEAT” TIC INTERVALS

The required input variables are the same (M1, M2, W3, S). But the way they are handled is
slightly different. Statements 3020 through 3040 calculate a normalizing factor, used when
the tic values are printed (statement 3100) and to determine if an exponent needs to be
printed (statement 3120 through 3150). The example program above prints the tic labels
with a PRINT USING command. This guarantees that the tic labels never exceed a certain
number of characters in length (4 + 1 space in this example). Therefore, the labels can be
positioned properly with a constant number of backspaces. Statement 3090, which outputs
two backspaces, replaces a FOR ... NEXT loop. In addition, the task of reserving space for
the labels is simplified by knowing for certain how many characters comprise each label.

The next example extends the techniques of the above example to the general case of
labeling tics on both the horizontal and vertical axes.

WINDOW PARAMETERS = -150,200,-.857,.02
NUMBER OF TICS - HORI2ONTAL & VERTICAL AXIS = 5,7
T
E-2
2.00 1
9,90 1
-2.08 1
F4.88 + + + -
-1 8.08 1.00 2,88 E+2

7-6 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
“NEAT” TIC INTERVALS

198 REMN LABELED "NERT" TICS - GENERAL CASE
119 PAGE
120 PRINT "WINDOW PARAMETERS = "j
138 INPUT MWi1,W2,W3,K4 v
149 PRINT "NUMBER OF TICS - HORIZONTAL & VERTICAL AXIS = "y
130 INPUT Ni,N2
168 VIEWPORT 19,120,10,99
78 DIM P(8)
188 P{1)=W1
198 P{2)=W2
288 P{2)=NI1
218 P(S)=W3
228 P{oI=W4
238 P(?)=N2
248 REM CALCULATE NEW LIMITS AND INTERVALS
258 P5=3
268 GOSUB 2000
278 PS=7
288 GLOSUB 2008
298 WINDOW P{134P(2)4P{5)4P{8)
380 AXIS P(3) P72 4PCLI+P(3),PISI+P(T)
316 REM LABEL THEM
328 P5=4
338 A$="HHH"
340 GOSUB 32080
3568 P5=8
368 R$=""
370 GOSUB 3e00
386 HOME
398 END

2828 REM P(P5)> = MINIMUM NO. OF TICS
2818 P1=(P{PS-1)-P(PS-2))+P(F5)

2020 P2=181TINTLLGTCPLIY)

2838 P1=P1~P2

2849 IF P1>2 THEN 2039

28398 IF P1=1 THEN 2129
2060 P2=2%pP2

2878 GO TO 2120

2888 IF P1>5 THEN 2118
20839 P2=5%P2

2189 GO TO 2128

2119 P2=18%P2

2128 REM ADJUST DRTA MIN
2138 Pi=INT(P(PS-2)-P2)

2148 P3=P2%¥(P1+2)

2158 IF P3{P(PS-2> THEN 2186
21606 P3=P3-P2

2178 GO TO 2156

2188 P(P5-2>=P3

2190 REM ADJUST DATA MAX
2208 P1=INT(P{PS-1)/P2)

2218 P3=P2X(P1-2)

2228 1F P(PS5-1>{P3 THEN 2256
2238 P3=P3+pP2

2248 GO TO 2229

2258 P(PS-1)=P3

2268 REM P(PS)=ADJUSTED TIC INTERVAL
2278 P(PSi=P2

2288 RETURN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 7-7

ENHANCEMENTS
“NEAT” TIC INTERVALS

7-8

3900 REM LABEL XIS

3019 P4=P(PS5-1

3828 P(4)=P{1)

3838 P{8)=P(S)

3042 P3=ABS{(P(PS-3)+P4) MAX RBS(P(P5-2)-P4)
3858 P3=INT(LGT(P3>+1.0E-3)

3868 P2=181-P3

3879 P1=P{P5-2)-P4-2

3888 P(PS)=P{P3)+P4

3898 IF P(PS)>P! THEN 31480

3188 MOVE P(4),P(E>

3118 PRINT A%}

3128 PRINT USING "-D.2D.S":P(PS)¥P2
3138 GO 70 3088

3148 IF P3=0 THEN 3189

3158 P(PS)=P1

3168 MOUE P(4),P(8)

3178 PRINT USING "2A,+FD,S":" E"31P3
3188 RETURN

Neither of the routines in the program listed above requires any knowledge of what the view-
port has been set to. The VIEWPORT statement at line 160 could be deleted and the view-
port set from the keyboard just prior to program execution. (An INIT command anywhere
in the program would restore the viewport parameters to the default, full size, values.)

Lines 120 through 150 cause the data limits and the desired number of tics to be input from
the keyboard. Statements 170 through 230 set up array P, which is used to pass values to and
from the routines. (The values assigned to variables W1, W2, W3, W4, N1, and N2 remain un-
changed after they are input.) Array P is set up to allow a subroutine to be usable for both
the horizontal and vertical axes. The subroutines listed in the example above perform func-
tions identical to those in the first two examples of this section. They have been changed
only to allow them to be used on both the horizontal and vertical axes.

The routine beginning at line 2000 affects only the variables P(P5), P(P5-1), and P(P5-2).
All other variables in the routine are used for scratch purposes. (The values they contain are
of use only while the subroutine at statement 2000 is being executed.) When the routine at
statement 2000 is called with P5 equal to 3 (as it is at statement 260), the routine affects
only the elements P(1), P(2), and P(3) in array P. When the routine is called with P5 equal
to 7 (as it is at statement 280), the routine affects only P(5), P(6), and P{7). When entering
the routine with P5 equal to 3, meaning that all data values pertain to the horizontal axis,
the subroutine uses P(1) as the original data minimum, P(2) as the original data maximum
and P(3) as the specified number of tic marks. The routine uses these same locations to re-
turn the values it calculates. It returns the adjusted data minimum in P(1), the adjusted data
maximum in P(2), and the ‘‘neat’’ tic interval in P{3). Similarly, when called with Pb =7,
the routine returns the adjusted data minimum P(5), the adjusted data maximum in P(6),
and the “‘neat’” interval in P(7). These values are then used directly in the WINDOW com-
mand in line 290 and the AXIS command in statement 300.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
“NEAT” TIC INTERVALS

The routine beginning at line 3000 has data passed to it in a similar manner. There are, how-
ever, two significant changes. The labeling routine at 3000 prints A$ (statement 3110) be-
fore printing each label (statement 3120). A$ contains positioning charactets as needed:
three backspaces for horizontal axis labels, no characters at all for vertical axis labels. The
other difference is that P(4) and P(8) are used to position each label, with P{4) being the
horizontal position and P(8) being the vertical position. The variable P5 determines which

of them is updated in the loop formed by statements 3080 through 3130. This scheme, which
may appear complex, allows very efficient use of memory space for both data and program
statements.

The next example (shown below) is identical to the above example with the following
exceptions: lines 140 through 160, line 200, and line 230.

NINDOW PARAMETERS = -33,122,-.833,.08

UIEWPORT PARAMETERS = 19,120,10,80
T
E-2 +
6.00 1
4.00 1
2.998 +

8.00, + ' + 4
-2.08 4

-8.58 9.‘;3 8.50 E+2

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 7-9

ENHANCEMENTS

“NEAT” TIC INTERVALS

398
400

gENE LABELED "NEAT" TICS - GENERAL CASE
NG

PRINT “WINDOW PARAMETERS = "

INPUT Wi, W2, H3,H4

PRINT "UIEWPORT PARAMETERS = “;

INPUT U1,02,U3,U4

UIENPORT VU1+6%1,8,U2,U3+3%2.8,V4

DIM P(8)

PC1)=W1

P{2)=KW2
P{)=INT(CU2-CUL146%1.8)>-(8%1.8>2 MAX 1
P{5)=H3

P(6)=R4
P(P)=INT((U4-(U3+3%2.82)-(3%2,8>) MAx 1
R§H3CQLCULQTE NEW LIMITS AND INTERUALS

P5=

GOSUB 2088

P5=7

GOSUB 2000

HINDOW PC1),P(2)4P(5),P(6) _
REM AX1 P(3)4P(7),PCII4P(3) P(SI4P(T)
AXIS P(3),P(?)

REM LABEL THEM

P5=4

A$="HHH.J.)"

GOSUB 3908

PS=8

A$="HHHHH"

GOSUB 3008

HOME

END

These changes allow the program to determine the number of tic labels which will fit into
the specified viewport. The number of desired tics on each axis does not have to be entered.
After the viewport parameters are entered in line 150, the viewport can be set up. As in
examples in Section 6, the effective viewport size is reduced to make room for the labels.
The viewport's horizontal minimum is increased by 6 character widths.

168 VIEWPORT U1+6%1.8,U2,U3+3%2.8,V4

This adjustment is based on the assumption that the vertical axis labels will be no wider
than 5 characters. The viewport’s vertical minimum is increased by 3 character heights.

168 VIEWPORT U1+6%1.8,U2,U3+3%2.8,U4

This adjustment is based on the assumption that the horizontal axis labels will occupy no
more than one character line.

7-10

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
“NEAT” TIC INTERVALS

Line 200 determines the number of horizontal axis labels which will comfortably fit within
the specified viewport width. It does this by dividing the effective viewport width

[(V2 —(V1+6%1.8))] by the horizontal space taken up by 8 characters [8“1.8] . The
figure 8 characters is used to ensure that the labels will not be too close together, causing a
cluttered appearance. The MAX 1 in lines 200 and 230 prevents the number of labels re-
quested from being less than 1, an event which the algorithm in the routine at 2000 is not
prepared to handle.

Line 230 performs a similar task for the vertical axis labels. However, in this line, the effective
viewport height is divided by 3 character heights to determine the approprigte number of
labels. If the complete program is run with a variety of viewport sizes specif ed, the smaller
viewports will produce fewer labels as appropriate.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 7-11

ENHANCEMENTS
DASHED LINES

DASHED LINES

Below is a sample graph of dashed lines.

K1,¥1 = -158,0
X2,Y2 = 150,-%0

-
->

o

7-12 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
DASHED LINES

The point X1,Y1 is located by the ““1” to the left of the window. The point X2,Y2 is
located by the 2" to the right of the window. The routine at statement 1000 draws a
dashed line from X1,Y1 to X2,Y2, subject to the appropriate clipping perfarmed by the
window and viewport.

189
{18
128
138
148
150
169
178
188
198
208

1128
1132
1148
1158
1168
1178
1189
1190
1280
1218

gggg PASHED LINE PROGRAM - GENERAL CASE
RESTORE

0ATA 38,188,109
RERD VU1,u2,U

é 9
UIEWPORT V1,V

d

A

,8 83!1069'198, 100
UG W25 W3, W4

-
W1
s U3\
3
H

i
]
U4
4

LINE FROM X1,Y1 TO X2,v2

o

WINDOW W1,W2
REM DRAW A D
PRINT "X1,v1
INPUT Xi,¥Y1
PRINT "X2,Y2 = "

INPUT X2,Y2

RAXIS 25,25

REM DRRAW BOX AROUND VIEWPORT
AXIS B,8, N1, W3

AXIS 8,0,W2, N4

MOUE X2,Y2

PRINT "2H";

MOUE X1,¥1

PRINT "1H":

GOSUB 1608

END

REM S1 IS NUMBER OF HORIZONTAL USER DATA UNITS PER GDU
S1=(W2-W1)/(U2-U1)

REM 52 IS NUMBER OF UERTICAL USER DATA UNITS PER GDU
$2=(W4~N3) 7 {U4-U2)

REM FIND HORIZONTAL DISTANCE IN GDU’s

D1=(X2-X1)>/S1

REM FIND VERTICAL DISTANCE IN GDU‘s

b2=(Y2-Y1>,82

REM D IS DISTANCE BETWEEN POINTS IN GDU's
D=SQR(D112+D242)

IF D=8 THEN 1348

REM DESIRED DASH LENGTH IN GDUs IS L

L=i

REM FIND HORIZONTAL COMPONENT OF DASH IN USER UNITS
Ui=Lx{D1-D>XS1

REM FIND VERTICAL COMPONENT OF DASH IN USER UNITS
U2=LX(D2-D>%S2

MOUE X1,Y1

§E§1CURRENT HORIZONTAL POINT IS H

5E¢1CURRENT VERTICAL POINT IS V

y
2
W3,
SHE
2 N

'
3
W
D
H

1228 REM CLEAR FLAG

1238 F=8

1248 REM BEGIN LOOP TO DRAW DASHED LINE
1258 GOSUB 1358

1268 IF F=1 THEN 1330

1278 DRAW H,V

1288 GOSUB 1350

1298 IF F=1 THEN 1338

PLOT 50 GRAPHIC PROGR

AMMING REV A, SEPT 1978 7-13

ENHANCEMENTS
DASHED LINES

1388 MOVE H,U

1318 GO TO 1258

1328 REM DONE

1330 DRAW X2,Y2

1348 RETURN

1358 REM SUBROUTINE TO CHECK IF DONE
1368 H=H+U1

1378 U=U+U2

1380 IF ABS(H-X1)>ABS(X2-X1) THEN 1410
1390 IF ABS(U-Y1)>ABS(Y2-Y1) THEN 1410
1488 RETURN

1418 F=1

1420 RETURH

In order to draw the dashed line, the routine requires the following information: the view-
port parameters (in this example V1, V2, V3, V4), the window parameters (in this example
W1, W2, W3, W4), the desired dash length in GDU's (L in this example), and, of course, the
beginning point (X1,Y2) and ending point (X2,Y2) of the dashed line. The subroutine is log-
ically divided into two sections. The first section (from statements 1000 through 1160 in the
above listing) uses the dash length, window and viewport information to calculate the hori-
zontal and vertical components of the dash in user units. Once these two components are
known, the dashed line can be drawn in user space, which makes the line subject to clipping.

This is very desirable, as the sample dashed line graph (above) shows. The second logical por-
tion of the routine, beginning at statement 1170, is a loop which actually draws the dashed
line. Since both the move and draw segments of the line need to be checked to see if the
ending point of the line has been reached, this checking function has been placed in a sub-
routine beginning at line 1350. The variable F is a flag to tell the main loop in the routine if
the ending point has been reached.

7-14 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GRAPHIC DATA EDITING

ENHANCEMENTS
CRAPHIC DATA EDITING

The Graphic System can be used to edit data graphically. The program listed below shows

a method for performing this task.

PLOT 50 GRAPHIC PROGRAMMING

3 GO TO 109

4 RMOVE 8,P2

3 RETURN

8 RMOVE -P1,0

9 RETURN

12 RNOUE P1,8

13 RETURN

16 GO TO 269

20 REM BEGIN EDITING

21 GOSuB 1e0@

22 PRINT @32,24:" "

23 GO TO 22

24 RMOUVE @,-P2

25 RETURN

36 REM FIND POINT

37 GOSuB 2000

38 RETURN

40 REM CHANGE POINT

41 GOSUB 3008

42 RETURN

44 RMOVE 0, 10%P2
RETURN

48 RMOVE -10%P1,0
RETURN

32 RMOVE 18%P1,0
RETURN

4 RMOVE 0,-18%P2

63 RETURN

97 REM USER DEFINABLE KEYS:

98 REM up LEFT RIGHT REGRAPH
99 REM DOWN FIND

188 INIT

11@ SET KEY

128 REM GENERATE SAMPLE DATA
138 DIN A(S@®

148 M1=1.0E+300

158 M2=-1,9E+300

168 R{1)=19

178 FOR I=2 TO 50

188 ACI)=SXRND(-1>+5+1%1.5
138 IF I<{>48 THEN 218

200 AC4B8>=R(39>-2

218 Mi=M1 MIN ACDD

228 N2=M2 MAX ACDD

238 NEZT I

248 REM GRAPH DATA

2958 PAGE

268 UIEWPORT 18,125,10,95
278 WINDOW 8,51,8.1@0

288 AXIS 5,180

298 C1=51-120%1.55-2

3008 C2=109-90%1.88-2

318 FOR I=1 TO 5@

328 MOVE I-Cl,AR(I)-C2

338 PRINT "+H"%

348 NEXT 1

358 HOME

368 END

REV A, SEPT 1978

EDIT
CHANGE

7-15

ENHANCEMENTS
GRAPHIC DATA EDITING

7-16

1899 REM BEGIN EDITING

1818 REM_CALCULRTE .5% OF WINDOW IN EACH DIRECTION
1920 P1=50%8. 005

1832 P2=100%0.00S

1848 REM INITIAL PLACEMENT OF POINTER

1858 GIN G1,G2

1860 MOUE G1,G2

1870 REM CHANGE FONT

1880 PRINT €32,18:5

1838 RETURN

2880 REM FIND POINT

2810 GIN G1,G2

2828 D=1.QE+3080

2038 REM SEARCH DATA POINTS FOR CLOSEST FIT
2848 FOR I=1 TO S

2858 DI=SQR({(G1-1)12+(G2-ACI)) 12>

2068 IF D1>D THEN 2880

2878 D=D1

2080 NEXT 1

2898 REM TEST TO INSURE POINT REALLY FOUND
2180 J=INT(G1+0.5)

2118 IF J1 OR J>50 THEN 215@

2120 1F ABS(J-G1)>2%P1 OR ABS(G2-ACJ))>2%P2 THEN 2158
2138 REM POINT FOUND

2148 RETURN

2158 REM POINT NOT FOUND, RESTORE DEFAULT FONT
2166 EﬁéNT €32,18:0

32008 REN CHANGE POINT

3018 REN RESTORE FONT
3820 PRINT @32,15:9

3030 HOME

3949 PRINT "CHANGE A{"3Ji™»
3858 PRINT "FROM "“iA(J)

3068 PRINT " TO “i

3870 INPUT Aa(d

3888 END

Typing RUN causes lines 100 through 360 to be executed. Lines 140 through 230 fill array
A with sample data. The minimum and maximum values are placed in M1 and M2, respec-
tively. Lines 190 and 200 cause an obviously out of line data point to be placed in A{40).
Lines 250 through 340 graph the data in array A, marking the location of each data point
with a ““+"". In order to be centered over the data point, each ““+'’ is offset by a vertical
distance equal to one half a character height and a horizontal distance equal to one half a
character width. Line 290 calculates the distance, in horizontal user units, equal to one half
character width. It divided the horizontal data range (51 in this example) by the width of the

viewport in GDU’s and multiplies the quotient by the character width in GDU’s divided by
two (1.55/2). The result, placed in C1, is half a character width in user units. The vertical

offset distance is determined in a similar manner.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
GRAPHIC DATA EDITING

K
-
+
+
" PN
+
+
+tet
= *++
+++
- +++
+ .
+
+4+
- +
++*
* +
+
- PO
W1
a4t
I PR
+
++++
e
b 4 3 1. ' A ;Y A) . |

When the graph is drawn (shown above), it is seen immediately that a point"s out of ap-
parently normal range. In some applications, it is useful to select this data value for editing
by merely pointing at it. Pressing user definable key 5 begins an editing mode which allows
this to be done.

Whenever the editing mode is entered by pressing key 5, the arrow pointer aopears on the
display at the last position of the graphic point. After the program graphs the data in array
A, the cursor is placed in the home position. If key 5 is pressed then, the pointer will appear
in the home position in the upper left corner of the display. User keys 1, 2, 3, and 6 change
the pointer’s position. Key 1 moves it up; key 6 moves it down; key 2 moves it to the left;
and key 3 moves it to the right. When each key is pressed in lower case, the pointer is moved
.5% of the window size in the appropriate direction. When the key is pressed in upper case,
the pointer is moved 5% of the window size in each direction. Holding any key down enters
commands into the GS faster than they can be processed. It is best to move ‘the arrow by
tapping the desired key repeatedly, rather than by holding the key down. When the pointer

REV A, SEPT 1978

7-17

ENHANCEMENTS
GRAPHIC DATA EDITING

is as close as possible to the data point to be changed, press user key 9. This directs the pro-
gram to search all the data values to determine if the pointer is acceptably close to a data
value in the array. The pointer disappears while this search is executed. If the program fails
to find a data value within 1% of the data ranges to the pointer, the program stops execution
and the flashing rectangular cursor appears at the arrow’s last location. | an acceptable
match is found, the arrow reappears. Key 10 is now pressed to change the selected array
element. In the upper left corner of the display is printed the index of the element selected,
the element’s current contents, and a request to input a new value. Pressing user key 4 re-
graphs the data, showing the position of the changed data point.

In several places, the program uses a non-default display secondary address. The secondary
address 18, as used in lines 1080, 2160, and 3030, tells the display that one of the 6 char-
acter fonts in the GS display will be invoked.

The font determines what characters are actually printed on the display when certain ASCI|
character codes are sent to it. The normal font, called font number zero, is invoked with
the following command: PRINT @32,18:0. There are six fonts, numbered O through 5. The
arrow pointer, ASCII character code 124, is printed via font 5. Font 5 is invoked by ling
1080 when the data edit mode is entered.

The secondary address 24, used in line 22, tells the display to “refresh” a character. The
statement PRINT @32,24: ‘A’ causes the character A to be written but not stored per-
manently on the display. Each time that statement is executed, the character “A"’ is refreshed
on the display for about % second. If the character “A’" is to be observed for more than %
second, the statement PRINT @32,24; *'A’ must be executed repeatedly. Since line 22 is
executed repeatedly, the refreshed arrow character remains steadily visible on the display but
does not leave any trace when its position is changed. Only the first character of the string

in the PRINT statement is refreshed. For example, the statement PRINT @32,24: “XYZ"
will cause only the X’ character to be refreshed.

Any of the data editing functions described in Section 2 can be incorporated into a program
of the type listed above. In order to keep this example as simple as possible, only the “‘change”
function is implemented.

7-18 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

CROSS-HATCHING

ENHANCEMENTS
CROSS-HATCHING

Cross-hatching is a useful technique for highlighting data in certain applications. The clipping
capability of the Graphic System makes this an easy task. A viewport corresponding to the
area to be cross-hatched is set up. A FOR ... NEXT loop is then executed, which covers

the entire display with diagonal lines. The only lines which appear are those which fall in-
side the viewport. The lines which fall outside the viewport are clipped and tlo not appear.
The example below shows how this is done.

358 INIT

368 DIN P4, 2

372 UIEWPORT 9,130,0,100
388 WINDOW 8,1300,0,1000
930 MQUE 808,200

PLOT £§0 GRAPHIC PROGRAMMING

INPUT 832,24:PC1,12,PCL1,2)
RDRAN 0,400
INPUT 832,24:P(2,1),P(2,2)
RDRAN 208,80
INPUT 832,24:P¢3,1),P(3,2>
RDRANW 8,-400
INPUT @32,24:P¢4,1>,P¢(4,2)
RDRAW -280,0

UIEMPORT P14 13+PC301),P(1,2)4PC

MOUE 8,0

SCALE 1,1

FOR I=-18@ 70 160 STEP 5
MOVE 8,1

DRAW 100,1+100

NEXT I

WINDOW 8,1300,0,1000
VIEWPORT @,139,0,100
HOME

END

REV B, SEPT 1978

2420

[~8 X4

7-19

ENHANCEMENTS
CROSS-HATCHING

NN

This example fills a rectangle 200 units wide by 400 units high with diagonal lines. The
lower left corner of the rectangle is located by the MOVE command in line 990. In the
above example, it is specified to be (800,200). The example has five functional sections:
initialization (lines 950 through 990), placing the actual display location (in GDU’s) of cach
corner of the rectangle into each row of the array P (lines 1000 through 1080), setting up
the proper scale and viewport for the diagonal lines (lines 1080 through 1100), drawing the
diagonal lines (lines 1110 through 1140), and restoring the original window and viewport
specifications. Each section is now discussed in more detail.

The first section dimensions array P, sets up the desired window and viewport, and locates
the lower left corner of the rectangle by placing the graphic point there.

The second section draws the rectangle while storing the actual display location of each

corner into a row of array P. The command used to determine the actual display locaticn
of the graphic pointis INPUT @32,24: X,Y. This command is analogous to the GIN com-

7-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
CROSS-HATCHING

mand. The major difference between the two commands is that GIN places the position

of the graphic point in user data space into the two target variables. INPUT @32,24: X,Y
places the actual display location of the graphic point in GDU's into the two target vari-
ables. Executing either of these commands is similar to asking ''where is the pen?", except
that the display and not a plotter is being addressed. GIN returns the locations of the graphic
point in user data space; INPUT @32,24: returns the actual physical locatian of the graphic
pointin GDU's, the units used to designate specific locations on the display .

The third section sets up a viewport which coincides with the rectangle which has been drawn
(line 1080). A SCALE command is executed to ensure the diagonal lines alvays appear at

the same slope with the same distance between them, regardless of what viewport is defined.
In this case, VIEWPORT's only function is to specify where the lines are to be clipped. Before
a scale command can be executed, the graphic point must be moved to the place where the
origin or (0,0) point of the new coordinate system is to be located. The MAVE 0,0 at line
1090 does this. It places the graphic point at (0,0), the lower left corner of both the window
and viewport. However, because of the revised VIEWPORT command line 1080, the point
(0,0) is now at the lower left corner of the box drawn on the display. (This zan be observed
by temporarily inserting the following statement into the program: 1095 END. When the
program stops execution just after line 1090, the flashing cursor will appear at the lower

left corner of the box drawn on the display, not at the lower left corner of the whole
display.) When the SCALE command is executed, the new origin of user data space, i.e., the
point (0,0), will be located at the lower left corner of the box drawn on the display. The
diagonal lines drawn by the FOR ... NEXT loop at lines 1110 through 1140 are drawn
identically, regardless of the size or location of the box. Statements 1150 ar:d 1160 restore
the window and viewport to their original specifications.

The next example program, listed below, is identical to the histogram program in Section 3.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 7-21

ENHANCEMENTS
CROSS-HATCHING

NN

N
M.

N

NN

NN

NN
NN\

NN

RIS

180 INIT

118 PAGE

128 DIN AC1@),P(4,2)
139 RESTORE

148 DATA 10,120,108,50
138 READ U1,U2,U3,U4
160 A=0

178 H=0

188 FOR J=1 TO S@

1989 R=RND(-2)

280 I=INT(RX10+1)

218 ACD=ACI+]

220 M=M MAX A(I)

238 NEXT J

248 UIEWPORT Ui,U2,U3,u4
2568 W1=8

260 W2=11

270 W3=0

280 W4=Mx1.2

290 WINDOW W1,W2,W3,4 K4

7-22 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

ENHANCEMENTS
CROSS-HATCHING

380 AXIS 1,1

318 FOR K=1 TO 1@
328 MOVE K-1,8
338 GOSUB 1098
348 NEXT K

350 HOME

360 END

1888
1818
1829
1832
1849
1858
1068
1878
1880
1830
1188
1118
1128
1138
1148
1158
1166
1178
1ig0

INPUT @32,24:P1,1),P(1,2)
RDRRN 84 ACK?

INPUT 932924:P(2,1):P(2s2)
RDORAW 1,08

INPUT B32,24:P(3,1),P(3,2)
RDRAW 8, -A<K)

INPUT @32,24:P(4,1),P(4,2)
RDRAW ~-1,0

UIEWPORT PC141X4P{30 1) 4PUL 20 P(2,2)
MOUE W1, W3

SCALE 141

FOR I=-100 TO 100 STEP 5
MOUE 6,1

DRAN 106, 1+109

NEXT I

WINDOW W1,W2,W3sH4
UVIEWPORT U1,U2,U3,44

MOVE 8,pCK>

RETURN

The major change is that the vertical bars which comprise the histogram are cross-hatched
with diagonal lines. The subroutine beginning at line 1000 is the same program which was
just discussed, except that the location and height of each vertical bar is determined by a
data value in array A. This shows that a cross-hatching capability is easily added to a program

by including it in a subroutine.

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978 7-23

Section 8

PICTURES

IMPLICATIONS OF SCALE

Drawing pictures with the GS is slightly different from representing data. When drawing a
picture, it is important that the horizontal and vertical scale be equal. If they are not, ob-
jectionable distortion results. The aspect ratio of a rectangle is the quotient ¢f its width and
height. Whenever the aspect ratios of the window and viewport differ, the implied scaling
factors, horizontal and vertical, will differ also. This was illustrated in Section 1. When
drawing a picture, the limits in the WINDOW command must be changed wh:znever the
viewport aspect ratio changes. |f the SCALE command is used, the viewport determines
only where the picture will be drawn on the display and what the clipping limits will be.
With SCALE, the defined viewport has no direct influence on what the scale factors are.
The following program serves as an illustration of this characteristic.

188 INIT

118 PAGE

128 RESTORE

138 DATA ©,130,8,180

140 READ U1,U2,U3,U4

158 VIEWPORT U1,U2,U3,U4

168 REM DRAN A BOX AROUND THE UIEWPORT

178 AXIS

180 QXIS @,0,130,160

190 REM CENTER GRAPHIC POINT IN UIEWPORT

200 MOVE 65,50

216 REM SPECIFY SCALE (DATA UNITS PER GDU>

228 SCALE 1,1 V
10068 REM DRAW A CIRCLE OF RADIUS 2@, CENTERED AT (0,8
1ei@ SET DEGREES

1828 MOVE 20,0

1038 FOR I=10 TO 368 STEP 10

1648 DRAW 20XCOS(I)>,20¥SINCID

1050 NEXT 1

1860 END

The INIT statement at line 100 sets up the default window and viewport. Stetement 150
changes the viewport, but the window remains defined as it was in the INIT statement: an
implied WINDOW 0,130,0,100. The two AXIS statements draw a box arount! the viewport
so that its limits may be seen in the example programs. When the SCALE corhymand is ex-
ecuted, the entire mapping transformation between user data space and screen space is re-
defined. The new origin, or (0,0) point of this coordinate system is defined to be the posi-
tion of the graphic point when SCALE is executed. The clipping limits of the viewport, that
is, the locations in user data space of the viewport edges, are therefore implied by the posi-
tion of the graphic point relative to the viewport at the time the SCALE command is exe-
cuted. The MOVE 65,50 command at line 200 thus becomes very important. Because it
determines the graphic point’s location when SCALE is executed, it also determines

PLOT §0 GRAPHIC PROGRAMMING REV A, SEPT 1978

8-1

PICTURES
IMPLICATIONS OF SCALE

what clipping limits will be implied by the SCALE statement. The SCALE command ex-
plicitly specifies scale factors and implicitly specifies clipping limits. In contrast, the
WINDOW command explicitly specifies clipping limits and implicitly specifies scale factors.
In all the sample runs which use this program (outputs shown below), the circle drawn by
lines 1000 through 1060 is always centered in the viewport. This is the case regardless of
what the viewport has been defined to be. Even though the viewport changes, the circle

is always the same size and shape.

130 DATA 9,138,35,65
RUN

8-2 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PICTURES
IMPLICATIONS OF SCALE

130 DATR 8,130,18,90
RUN

PLOT 50 GRAPHIC PROGRAMMING REV B, SEPT 1978 8-3

PICTURES
IMPLICATIONS OF SCALE

138 DATA 46,84,0,100
RUN

8-4 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PICTURES
IMPLICATIONS OF SCALE

138 DATA 85,130,65,100
RUN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 8-5

PICTURES
MANIPULATING OBJECTS

8-6

MANIPULATING OBJECTS

To define an object which is part of a picture, RDRAW and RMOVE commands are used
most often. These commands permit the most flexibility when manipulating the resulting
image. There are three ways an object or graphic entity is manipulated: changing its posi-
tion, changing its orientation, and changing its size. If the object is drawn several times, the
RDRAW and RMOVE commands which define it are placed in a subroutine. The size,
orientation and location of the object can then be specified before the subroutine is called.

The following example

10d
118
12@
138
148
158
168
ive
188
13@
208
218
2208
238
Seou
5818
5828
5038
58440
5858
5060

programs show this process.

INIT

PRGE

DPATR @,130,08,100,8,130,0,100
RERD U1,U2,U3, U4, W1 W2 W3 K4
VIENPORT U1,U2,U3,U4

WINDOW M1i.H2sW34We

SET DEGREES

ROTATE @

MOVE 65,58

GOSUB So0a

MOVE 65,25

GOsSuUR Seee

HONE

END

REM DRAW TRIANGULAR FIGURE
RMOUE -18,18

RDRAK 8,-2@

RORAW 48,18

RDRAW -49,186

RDRAW 38,-12.5

RETURN

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

PICTURES
MANIPULATING OBJECTS

Beginning at line 5000 is a subroutine to draw the triangular figure and the € xtra line it con-
tains. The MOVE command at statement 180 positions the graphic point in the center of
the display. Control is passed to the subroutine at line 5000. After the subrcutine draws

the triangle and returns control, the MOVE at statement 200 is executed. Tkis positions the
graphic point at the lower center of the display. The subroutine at line 5000 is called again,
drawing another triangle below the first one. In both cases, the location of the graphic point
when line 5000 is executed determines where the triangle is drawn on the di:play.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 87

PICTURES
MANIPULATING OBJECTS

8-8

The next example is functionally identical to the previous one except that the lower tri-

angular figure is rotated.

i8e
119
129
138
148
150
168
179
189
199
2088
218
220
238
240
5600
5819
58280
5638
5840
5ese
5860

INIT
PRGE
OATR 8,139,8
RERD VU1,u2,V
UVIERPORT V1,
WINDOW W1,W2
SET DEGREES
ROTATE ©
NOUE 65,358
GOSuB 5000
MOUE 65,25
ROTATE 28
GOSUB Soee
HONE
END -
REM DRAN TRIANGULAR FIGURE
RMOUE -10,18

RDRAW 8,-20

RDRAN 48,18

RDRAW -48,10

RDRAW 384-12.5

RETURH

29,9, 130,08, 100
Ud, W1 W2, K3, He

1109,
3, U4,
U2,U3,U4
s W3 W

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PICTURES
MANIPULATING OBJECTS

Inserted between the MOVE which positions the lower triangle (statement 200) and the GO-
SUB 5000 which actually draws the triangle (statement 220) is a ROTATE 20 statement.
This rotates all subsequent RMOVEs and RDRAWSs 30 degrees counterclockwise from their

normal orientation. As a result, the second triangle is drawn rotated 30 degrees from its pre-
vious orientation.

The next example is the same as the previous one except that the window is changed. Its
height is now 200 units, meaning that the aspect ratio of the window differs from the aspect
ratio of the viewport. As a result, the horizontal and vertical scaling factors are no longer
equal.

189 INIT

118 PAGE

128 DATA @,130,08,100,0,130,0,200
138 RERD U1,U2,U3,U4,W1,KH2,W3,H4
149 UIEWFORT U1,U2,U3,U4

138 WINDOW W1,MW2,W3,H4

168 SET DEGREES

1798 ROTATE @

188 MOVE 65,50

138 GOSuUB See0

288 MOUE 65,25

218 ROTATE 3@

228 GOSUB Seee

238 HONE

248 END

o088 REM DRAW TRIANGULAR FIGURE
5618 RMOVE -18,18@

39028 RDRAW @,-20

5838 RDRAW 40,10

56848 RDRAW -48,180

5858 RDRAW 38,-12.%5

5860 RETURN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 8-9

PICTURES
MANIPULATING OBJECTS

Although both triangles are distorted, the rotated triangle’s shape is completely altered.

8-10 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PICTURES
MANIPULATING OBJECTS

The next example combines positioning, rotation, and scaling. (The window parameters have
been restored to their previous values. The horizontal and vertical scaling factors are again
equal.)

108 INIT

119 PAGE

128 DATA 8,130,0,100

138 RESTORE

148 RERD U1,02,V3,V4

158 VIEWPORT U1,U2,U3,u4
168 SET DEGREES

1?70 FOR I=2 TO 99 STEP 15
188 WINDOW 8,118,0,110
198 MOVE 19+I,15+]

208 ROTATE I%4

218 SCALE 1+1-38,1+41-38
220 GOSUB Svee

238 NEXT 1

248 HOME

258 END

5608 REM DRAW TRIANGULAR FIGURE
96810 RMOUE -18,18

5820 RDRAK 8,-20

2838 RDRAW 48,19

9840 RDRAW -48,10

o858 RDRAW 38,-12.S5

5068 RETURN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 8-11

PICTURES
MANIPULATING OBJECTS

The heart of the example is the FOR . .. NEXT loop at statements 170 through 230. The
WINDOW statement at line 180 restores a known window, ensuring that the MOV E com-
mand at statement 190 always places the graphic point consistently on the display. It is this
statement which determines the position of each triangular figure on the display. The
ROTATE 1*4 command (at statement 200) specifies the orientation of each triangular
figure. The SCALE 1+1/30,1+1/30 command (at statement 210) determines the size of each
figure. Because of the MOVE, ROTATE, and SCALE commands, the same subroutine draws
the triangular figure with seven different locations, orientations and sizes.

RDRAW and RMOVE do not intrinsically determine the position, orientation or size of the
image they draw. For that reason, RDRAW and RMOVE are the most convenient graphic
commands with which to define objects.

REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

PICTURES
REVERSE VIEWPORT

REVERSE VIEWPORT

The example below shows an irregular four sided figure drawn in each of the four quarters
of the display.

188 PAGE

11& INIT

128 WINDOW 9,188,0,508

130 UIEWPORT ©,65,8,50

149 GOSUB 16099

159 VIEWPORT €5,138,8,5@
168 GOSUB 186D

178 VIEWPORT 0,65,58,108@
18@ GOSUB 1889

138 UVIEWPORT 65,139,598,1608
288 GOSUB 1081

218 HONME
228 END
1880 MOUE
1819 DRANW
1820 DRAW
1938 DRANW
1940 DRAW 90,48
1858 RETURN

Y A Yl 4
D00
[4 JOI R 8 -3

L~ Y]

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 8-13

PICTURES
REVERSE VIEWPORT

8-14

The viewport is changed to alter the figure’s position on the display. (This example is very
different from other examples in this section. The image is drawn solely with absolute
MOVE and DRAW commands. No RDRAWSs and RMOVEs are used at all.)

The following example is identical to the previous one with three exceptions: the VIEW-
PORT statements at lines 150, 170, and 190.

1@
118
128
138
140
159
160
17@
188
198
288
218
228

PAGE

INIT

WINDOW 9,100,0,50
UIEWPORT 9,865,08,50
GOSUB 198d

UVIEWPORT 130,65,9,50
GOSUB 108

UIEWPORT @,65,100,58
GOSUB 1080

UIEWPORT 130,65,100,50
GOSUB 19060

HOME

END

1888 MOVE 99,40
1819 DRAK 18,49
1820 DRAW 28,328
1838 DRAW 98,5

1848 DRAW 50,48
1858 RETURN

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

PICTURES
REVERSE VIEWPORT

In line 1560, the first two arguments of the VIEWPORT statement are reversed. In line 170,
the second two arguments are reversed. In line 190, both pairs of arguments are reversed.
The result in each case is a corresponding reversal of the displayed image. If the first two
viewport arguments (which specify the horizontal location of the viewport) are reversed,
the image is reversed horizontally. If the second two arguments (which specity the vertical
locations of the viewport) are reversed, the image is reversed vertically.

This capability is useful in applications where the GS must draw symmetrical images.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 8-15

Section 9

THREE DIMENSIONS

ANOTHER TRANSFORM

With a Cartesian coordinate system, specifying a point in space requires three coordinate
values. Specifying a point on a plane, such as the display of the Graphic System, requires
only two coordinate values. In order to draw three dimensional objects and surfaces on the
GS, the three-value location for each point in space must be transformed into a two-value
location on the GS display. In effect, the display serves as the mathematical analog of a pane
of glass. The object or surface of interest is then examined ““through’’ this viewplane.

This transformation process is very similar to the one described in Section 4, where applying
a transform to data was categorized into two fundamental approaches. If the data in its raw
form is of no interest, it is transformed when it is input and stored in its transformed state.
In the second approach, the data is stored and edited in the GS in its original incoming state.
It is transformed to a new state only when it is graphed.

Three-dimensional transformations fall into the latter category. In several ways, three-
dimensional transforms are similar to the polar transform in Section 4. Both are applied just
before the data is graphed. In both transforms, the minimum and maximum of the raw data
has no direct proportional relationship to the minimum and maximum of the: data as dis-
played on the GS. In both cases, polar and three-dimensional, the minimum ‘and maximum
determination for display locations must reflect the transformation being used. Objection-
able distortion is introduced in both cases if the horizontal and vertical scale factors are
different. In other words, the aspect ratio of the window must match the aspect ratio of
the viewport.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

9-1

THREE DIMENSIONS
TRANSFORMATION LIMITATIONS

9-2

TRANSFORMATION LIMITATIONS

Conceptually, the GS display is a single plane, just as an artist’s canvas or a photographic
print is a plane. The process of representing a three dimensional object on any plane pre-
vents true depth information about the object from being presented. This flatness creates
ambiguities which can make the image on the display confusing. Some kind of stereo im-
aging device, which presents slightly different images to each eye of the viewer, is the only
way to accurately convey this depth information.

If a three dimensional object is represented by a set of lines, as is usually the case with ¢com-
puter driven displays and plotters, there is another significant limitation. In certain circum-

stances, showing all the edges of the object introduces confusion.

What is the object shown below?

It could be any of the following:

There have been several algorithms written to remove the hidden lines which make the sketch
of the cube so confusing. These algorithms all require sufficient topological information about
the object to determine what lines to hide. While such algorithms are beyond the scope of

this manual, they are discussed in works listed in the Reference Section.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

PROGRAMMING CONSIDERATIONS

The three dimensional coordinate system used in each example is the same.

+Z
+Y

+X

The positive X axis extends horizontally to the right of the origin. The positive Z axis ex-
tends vertically from the origin. The Y axis extends horizontally but “into’ ‘the paper (as
depicted above). The positive Y axis is, in effect, the depth axis. This is a right-handed co-
ordinate system.

Each example program in this section draws the same object, a variation on the unit cube.
(The unit cube in standard position is a cube with one corner at the origin of the coordinate
system, the (0,0,0) point. The diagonally opposite corner is at the point (1,1,1) in the co-
ordinate system. All the edges of the cube are one distance unit in length.)

In all views shown of this object, the viewer is looking ““down’’ upon it. It consists of a square
drawn in the X-Y plane which has an additional line parallel to and 1/2 unit.away from the

Y axis. The four edges of this square are all one distance unit in length. There are four addi-
tional lines. These form a rectangle which has one corner at the origin or (0,0,0) point, and
the diagonally opposite corner at the (1,1,1) point.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978) 9-3

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

The example programs in this section draw three dimensional objects on the display with
slightly different methods. However, each program can be separated into the same seven

steps, shown below:

r1.|3D Data Acquisition |

L2.DD Data Minimum and Maximum Determination |

p— —

3.[Select 3D Transform Parameters

| 4.[Initialize 3D Routine |

5. [Find Minimum and Maximum Values of Displayed LocationsJ

| 6. [Specify Window Parameters l

7. [Draw Data J i

—

In the flow chart, the seven steps have been separated into four logical sections. Each of the
three example programs in this part of the manual has the structure depicted above. In addi-
tion, each example program has another feature. The displayed image is automatically scaled
and positioned such that it could not be any larger and still fit completely on the display.
This function is performed by the two steps ‘/find minimum and maximum of displayed
locations’’, and “‘specify window parameters’’, listed above. |f this automatic scaling feature
is inappropriate for a particular application, it is easily removed.

The steps listed above are appropriately executed in the order shown. Furthermore, the
paired steps logically go together. The first step in each pair derives or acquires some type
of data.

The second step in each pair acts appropriately on that data. Examining the first pair

of steps (above) provides an example. If the three dimensional data minimums and maxi-
mums have been determined at some point in the program’s execution, there is no

need to ever re-determine them unless the three dimensional data changes. Likewise,
once the three dimensional routine is initialized, there is no need to re-initialize it unless
there is a change in its parameters. However, if either the three dimensional data or

the transform parameters change, the previously defined window may become inappro-
priate. Unless the window is intended to be constant, it should be re-defined.

9-4 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

Three methods of 3D to 2D transformations are described in this section. In all three
methods, the structure and statement numbering of the sample programs are very similar.

100 |
CONTROLLING PROGRAM
780 |
4000 |
THREE DIMENSIONAL ROUTINE INITIALIZATION
4550 |
; 5000
THREE DIMENSIONAL TRANSFORMATION
5300

The controlling program begins at statement 100 and never extends beyond statement 780.

It has the structure shown in the seven step flow chart. The 3D routine initialization segments
always begin at statement 4000 and never extend beyond statement 4550. The actual trans-
formation routines always begin at statement 5000 and never extend beyond statement

5300. The array O always contains the object to be drawn. The array’s size and contents are
identical in all three examples.

Since the same object is drawn by each program, the statements which perform the ““3D
data acquisition’” and 3D data minimum and maximum determination” furctions are
identical in all three examples. They are listed below.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-5

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

9-6

188 INIT
110 DIN ECD L)y 0C011,4 304 PCI),RC24 D)
128 RESTORE
1390 REM XXXXXXkxx¥xkxxxx
148 REM FILL 30 DATA ARRAY
158 0=9
0.5,1,

168 DATA 0.5,
178 READ 0<1 (1,2),0(2 15,0¢4,2)>,0¢5,1>
(6,1),0(3;3?90(9;1)

0
188 DATA
138 READ 0
0(9,30.,0¢10,1>,0¢108,2)
N AND MAX OF 3D DATA
8
@
2

i

0

280 DATA 1
219 READ O
F

1.BE+300, 1, BE+308

(1,25,0(1, 3

XT
320 REM XXXX¥RXXXRKEKREXKXK

With the exception of the DIM command at statement 110, statements 100 through 320 of
each example are identical. Statements 100 through 120 perform initialization. Statements
130 through 210 fill the data array O. Statements 220 through 310 determine the minimum
and maximum of the data in each direction. These minimums and maximums are placed in
array Q arranged as follows: row 1 of Q holds the minimums, row 2 of Q holds the maxi-
mums, column 1 of Q holds the X minimum and maximum, column 2 of Q holds the Y
minimum and maximum, and column 3 of Q holds the Z minimum and maximum. In the
three examples, the minimums are all 0 and the maximums are all 1.

ARRAY Q
COLUMNS
1 2 3
ROWS X v G
1 MINIMUM MINIMUM MINIMUM
X Y z
2 MAXIMUM MAXIMUM MAXIMUM

For example, the X maximum is contained in Q (2,1).

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

The individual 3D point to be transformed is passed to the transformation routine (at state-
ment 5000) in the three-element array P. The 2D values to be displayed are returned to the
controlling program in variables X and Y.

The transformation methods are discussed in increasing order of complexit

340
348 DATA 45,0.5,0.130,0, 100 —]

OBLIQUE PROJECTION

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-7

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

348 DATA 35.2,0,-25

ORTHOGRAPHIC PROJECTION

9-8 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
PROGRAMMING CONSIDERATIONS

348 DATH 0.8,-1,0.6,0.5,0.5,0.5

PERSPECTIVE PROJECTION ’

The oblique transformation routine occupies the smallest amount of memory space, exe-
cutes the most quickly, and introduces the most visual distortion. The perspective trans-
formation routine occupies the largest amount of memory space, executes the most slowly,
and introduces the least distortion. In all three criteria, the orthographic transformation
routine falls in between the other two.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-9

THREE DIMENSIONS
OBLIQUE PROJECTION

OBLIQUE PROJECTION

As used here, the term oblique transformation describes a class of transformations commonly

o i1

used in certain technical drawing applications and variously called “‘oblique’’, ““cabinet”, and
“cavalier”. This class might appropriately be called ““shear” transformations because of the
distortion they introduce. Lines parallel to the X and Z axes are projected onto the view-
plane with no distortion. Lines parallel to the Y axis, when projected onto the viewplane,
become lines drawn at an angle to horizontal in the viewplane. This angle is the projection
angle, variable A in the program. It is typically not less than 30 degrees and not greater than
45 degrees. The lengths of lines parallel to the Y axis are multiplied by the foreshortening
factor prior to being drawn. This foreshortening factor is never greater than 1 and is usually
not less than . With a foreshortening factor of %, lines parallel to the Y axis are drawn half
the length they would be drawn if the foreshortening factor were equal to 1.

In technical drawing terminology, the cavalier projection has a projection angle of 45 degrees
and a foreshortening factor of 1, the cabinet projection has a projection angle of 45 degrees
and a foreshortening factor of 2, and the oblique projection has a projection angle of 30 de-
grees and a foreshortening factor of 1. In this manual, the term oblique is used in a more
general sense. All surfaces of the object which are parallel to the X-Z plane are drawn un-
distorted. All surfaces of the object parallel to the X-Y and Y-Z planes are distorted in
varying amounts. This inherent distortion can be reduced for certain applications by
specifying a projection angle of greater than 45 degrees and a foreshortening factor less

that %.

The entire oblique projection program is as follows:

fea INIT

118 DIN EX L3001 e D)4 PCN B2, D)
128 RESTORE

138 REM ¥Xxxxxkkircraikx

148 REM FILL 3D DATA ARRAY

159 0=0

168 DATA 0.5,1,08.5,1,1

179 READ 0C141),0¢1,254002,12,0¢4,22,0(5,1)
180 DRTA 1,141,411

198 READ 00S5,2),0¢6,13,0¢8:3),0¢9,1>
280 DATA 1,1,141

218 READ 00(9,2)>,0¢3,2),0018,13,00108,2
228 REM FIND MIN AND MAX OF 30 DATA
238 G=-1.8E+20d

248 DATA 1.BE+300,1.0E+300,1.0E+300
268 FOR I=1 TD i@

279 FOR J=1 T0 3

280 Q{1,0=0<C1,J0> MIN D¢l 2

298 0{2, J)=R(2,J> MAX 0¢I,J>

388 NEXT J

318 HEXT 1

328 REM XX¥k¥yixsrixkirxy

330 REM SPECIFY 3D PARAMETERS - PROJ ANGLE AND FORESHORTENING FACTOR

340 DATA 45,0.5,8,130,08,108
358 READ AyFyWl, W2 W3y N4
368 REM INITIALIZE 3D ROUTINE

9-10 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
OBLIQUE PROJECTION

3708 GOSuB 4000

388 REM XXXEXXXELiprrysx

396 REM SET UP UIEWPORT AND 2D WINDOW
400 VIEWPORT ©8,139,0,100

410 WINDOW W1,M2yW3, W4

428 REM XXEXXEXXXEXAEKXKKKEK

430 REM MOVE TO FIRST POINT

448 P(1>=0(1,1)

458 P{2)=0(1,2)

460 P()=0(1, 3

478 GUSUB Soee

489 MOVE X, Y

430 REM DRAW OBJECT

980 FOR I=2 TO 11

518 P(1)=0(1,1)

328 P(2)=0(1,2?

938 P<(IX=0(1,3>

548 GOSUB Seee

9550 DRANW X, Y

960 NEXT 1

978 HOME

588 END

4800 REM FIND SCALING FACTOR

4010 SET DEGREES

4820 REM FIND WHETHER HORIZ OR VERT 1S LARGEST SIZE OF (MAGE
4830 REM H=HORIZONTAL IMAGE SIZ2E, U=UERTICAL IMRGE SI2E
4840 H=0(2,1)-0C1, 1>)+(Q(242)-0(1,2) 2¥F¥COS(A)
4830 U=0(2,3)-Q(1,3>+(0(2,2)-0(1,2) 3XFXSINCA)
4060 IF H/U>1.3 THEN 4100

4878 REM VERTICAL LARGER

4888 S=(W4-W3) -V

4898 GO TO 4120

4160 REM HORIZONTAL LARGER

4110 S=(W2-W1)>/H

4120 H=SXFXCOS{A)

4130 U=SXFXSINCA)

4140 RETURH

9000 REM TRANSFORM FROM DATA X,Y,2 TO SCREEN X,Y
5610 X=Ni+P(1)>XS+P(2)%H

9828 Y=W3+P(3)¥S+P(2)%V

5038 RETURN

Statements 330 through 370 initialize the projection angle A, the foreshortening factor F
and the window parameters. The initializing routine starting at statement 4000 computes
the scale factor for the image. The computation of the scaling factor is based on the as-
sumption that anything drawn on the display should be as large as possible within the
specified window. The initialization section determines whether the limitint factor on the
size of the displayed image is the viewport height or viewport width. The IF command at
statement 4060 is the decision point. The scale factor is calculated on that basis. The re-
maining two statements in the section (4120 and 4130) merely calculate canstants which
allow faster execution of the two transformation statements (5010 and 5020).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 ‘ 9-11

THREE DIMENSIONS
OBLIQUE PROJECTION

When using oblique projection, the minimums and maximums in the display’s coordinate
system do not need to be computed. They are specified in advance. This is the oblique pro-
jection’s principal advantage over the orthographic and perspective transformations. The
initialization and transformation statements ensure that no data will be drawn outside the
specified window. As a result, defining the window requires one WINDOW command and
nothing else. Of course, the window height and width must have the same ratio as the view-
port height and width if distortion is to be minimized.

Statements 430 through 480 transform the first point in array 0 and position the graphic
point there with a MOVE command.

The remainder of the object is drawn with the FOR ... NEXT loop at statements 500

through 560. As with the other examples in this section, the routine required to transform
three data points into two data points for graphing begins at statement 5000.

9-12 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
WINDOW PARAMETERS

WINDOW PARAMETERS

As stated previously, the aspect ratio of the viewport must match the aspect ratio of the
window. This requirement complicates the initialization of the parameters used by the

WINDOW command in the orthographic and perspective transformations (statements 390
through 610 in both examples).

389

430

620

REM XXXXXXXEXRTEERKEXK

REM FIND MIN AND MAX IN UIEWPLANE‘'S COORDINATE SYSTEM
ORTA 1.@E+300,-1.0E+300,1.0E+300,-1,0E+300

READ X1,X2,Y1,Y2

FOR I=1 TO 2

FOR J=1 TO 2

FOR K=1 7O 2

PC1Y=Q{1,1)

P{2)=Q(J, 2>

P(3)=R{K,3)

GOSUB Seve

X1=X1 MIN X

X2=X2 MaX X

Y1=Y1 MIN ¥

Y2=Y2 MAX Y

NEXT K

NEXT J

NEXT 1

REM SET UP UIEWPORT AND 20 WINDOW

VIEWFORT 8,138,06,160

IF (K2-X1)/(Y¥2-Y1)>1.3 THEHN 618

WINDOW 332+X1)¥0.5-B.65*(YZ-Y1),(X2+X1)*B.5+9.65*(Y2"Y1),Y19Y2
GO TO 630

WINDOW X1,X2,(Y24Y1)%0,5-(X2-X1)-2,6,(V24Y1)¥0.5+(R2-X1)r/2.8
REM XEXXXEXKXIXXARXRRKKN

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-13

THREE DIMENSIONS
WINDOW PARAMETERS

9-14

Since there is no simple way to determine where on the display the transformed image will
appear before the three dimensional transformations are initialized, the window minimums
and maximums must be computed from the three dimensional minimums and maximums
after the transform is initialized. This is precisely the function performed by lines 390
through 610. Each corner of the cube created by the three dimensional minimums and maxi-
mums, a total of eight points in three dimensional space, is transformed into two dimen-
sional coordinates. The window parameters are then derived from the minimums and maxi-
mums of these two dimensional values. The parameters are defined (in the two WINDOW

commands in statements 590 and 610) such that the image on the display is always centered
in the viewport.

The remainder of the main line program (statements 630 through 760) simply moves the
graphic point to the location of the first transformed point and draws the object.

620 REM XEXXXRXREXXXXXRXRKKK
6328 REN MOUVE TO FIRST POINT
648 P{1Y=0(1, 1)

658 P{2)>=0(1,2)

668 P(3)=0(143)

678 GOSUB Seoe

688 MOVE X,Y

698 REM DRAW OBJECT

788 FOR I=2 TO 11

718 P(1)=0(1,1D

728 P(2x=0(1y2?

730 P(32=0(1,2>

740 GOSUB 5000

750 DRANW ¥.Y

760 NEXT I

770 HOME

788 END

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
ORTHOGRAPHIC PROJECTION

ORTHOGRAPHIC PROJECTION

Orthographic projection has less inherent distortion than oblique projectior. In orthographic
projection, a straight line connecting a point on the object and the projecticn of this point
on the viewplane is always perpendicular to the viewplane.

As a result of this, all lines connecting points on the object to the corresponding points on
the viewplane are parallel. In an actual three dimensional situation, this couid happen only
if the observer were an infinite distance away from the object being viewed. Having all the
tines of projection parallel introduces ambiguities of perspective similar to those which
occur when viewing an airplane silhouette at great distance. In that situatior;, it is often easy
to recognize the silhouette as an airplane but difficult to tell whether it is coming toward
you or going away.

g

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-1b6

THREE DIMENSIONS
ORTHOGRAPHIC PROJECTION

Listed below are the statements which comprise the heart of the orthographic example.

338 REM SPECIFY 30 PARAMETERS - THREE ROTATION ANGLES
348 DATA 35.2,8,25
358 RERD N1¢R24R3

4900 SET DEGREES
4818 C1=COS{R1)
4928 S1=SIN(A1)
4838 C2=C0S{Ad>
4048 S2=SIN(A2)
4858 C3=COS(RI
4868 53=5IN(A3}
4079 RETURN

58088 REM TRANSFORM P{1)4P(2),P{3) INTO Ky

5818 K=C2¥CI¥P{1)-C2ASIAP{2)+S2XP (3 i .
5828 V=(S1%¥S3-CI¥S2ACII¥P {1+ (SIRCI+CIAS2KSI P21 +C1¥C2ZAP (3
5638 RETURN

The initialization section (beginning at statement 4000) requires three parameters. They are
rotation angles which specify the object’s orientation when viewed: a rotation angle around
the X axis (A1), a rotation angle around the Y axis (A2), and a rotation angle around the Z
axis (A3). The rotation specified is in a consistent direction around each axis. |f the thumb
of the right hand is pointed in the positive direction of the axis to be rotated around, the
fingers curl in the direction of a positive angular rotation. Inherent in the transformation
section (beginning at statement 5000) is the order in which the rotations are performed:
first around the Z axis, then around the Y axis, and finally around the X axis. This ordering
is fixed in the transformation equations and has an important characteristic: it is not com-
mutative. A rotation around X followed by a rotation around Y produces a different
orientation than a rotation around Y followed by a rotation around X. The ordering used
in this example {first Z, then Y, then X) is one of six ways to specify the order in which
the rotations occur.

When the orientation angles are all zero, the object’s coordinate system is oriented as de-
scribed earlier in this section. The 3D Z axis is parallel to the display’s vertical axis (with
the positive direction being up), the 3D X axis is parallel to the display’s horizontal axis

(with the positive direction being to the right), and the 3D Y axis is perpendicular to the
display’s surface (with the positive direction being “into’’ the display).

9-16 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
ORTHQGRAPHIC PROJECTION

When rotation angles are specified, they occur relative to this coordinate system which al-
ways remains fixed, regardless of the specified rotation angles. An example is the case of a
rotation around the Z axis followed by a rotation around the X axis. Regardless of the ob-
ject’s orientation after its rotation around the Z axis, the X axis it is then ratated around
will always be parallel to a horizontal line on the display’s surface, not to the rotated X
axis of the object’s coordinate system.

For example, the object is rotated 90 degrees around the Z axis followed by 90 degrees
around the X axis. This produces the image below.

The object’s X-Y plane becomes parallel to the display’s surface. The visibility of the diag-
onal line proves this to be the case. If the X axis rotation occurred around the rotated X
axis, the object’s X-Y plane would become perpendicular to the display’s surface, making
the diagonal line invisible.

Of interest is a particular orthographic projection. A rotation around the Z axis of 45 de-
grees followed by a rotation around the X axis of 35.2 degrees produces an isometric pro-

jection, common to a variety of drawing applications.

For reference, a complete listing of the orthographic projection example is given:

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

THREE DIMENSIONS

ORTHOGRAPHIC PROJECTION

iea

[44

430
440

660

9-18

INIT

RIM 01143 PC Q24D

RESTORE

REM ®kkxerrkxkrkkrkk

REM FILL 3D DATA ARRAY

0=

DATA 8.5,1,0.5,1,

RERD 0(1;1),0(1 25 0¢2:1),004,2),0(5,1)
DATA 1,1.1,1

READ 0(S5,2),00641340(8:3)>,0¢(9: 17
DATA 1141,

RERAD 009,2),0¢9,33,0¢18,41>,0010,2)
REM FIND MIN AND MAx OF 3D DATA
=-1.B8E+360

DATH 1.BE+300,1.06E+3680,1,0E+300
READ Q(l,l:,@\l 23,4Q01, 3!

FOR I=1 TO 1b

FOR J=1 TO 3

Q{1, D=R¢1,J> MIN O<I, 1>

Q(2, 10=R(2,J> MAX 0CI,J>

NEXT J

NEXT 1

REM fXX¥kkkXrkkixs¥sy

REM SPECIFY 3D PARAMETERS - THREE ROTATION ANGLES
DATR 35.248425

READ A1,A2,R3

REM INITIALIZ2E 3D ROUTINE

GOSUB 4900

REM XEXxxxkkixsytxikx

REM FIND MIN AND MAX IN UIEWPLANE’S COORDINATE SYSTEM
DATA 1.0E+300,~-1.8E+300,1.0E+300,~-1.0E+308

READ X1:X2,Y1,Y2

FOR !={ T0 2

FOR J=1 TO 2

FOR K=1 T0 2

PCL=QCTL, 1D

P{2)=Q{d,2)

P{3=0{K,)

GOSuB Seee

Xi=X1 MIN X

X2=X2 MAX X

Yi=Y1 MIN Y

Y2=Y2 MAX Y

NEXT K

NEXT J

NEXT

REM SET UP VIEWPORT AND 2D WINDOW

UVIEWPORT @,130,0,100

IF (%9-\1)r(Y°-Y1)51 3 THEN 619

WINDOW (X2+¢X1)%0.5-0.65%CY2~Y1), (X2+4X1)%0.5+8,65%(Y2-Y1),Y1.Y¥2
GO TO 639
WINDOW X14X2,(Y2+4Y1)%0,5-~(X2-X1)<2.6,(Y2+Y1)¥0.T+(K2-X13-2.6
REM XXEXXXXXXKXREXRIKKEN

REM MOVE TO FIRST POINT

P{15=0¢1,1)

P(2)=0(1,2)

P(3)=0C(1,3

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

670
680
696
708
710
720
730
748
750
760
778
760

4008
4218
4829
4838
4848
4858
4060
4878
J088
5019
S820
5038

GOsuB Seee
MOVE ¥,Y

REM DRAW OBJECT
FOR I=2 TO 11
P(1>=0(I,1)
P(2)=0(1,42)
P(3)=0¢(1,3)
GOSuB Seee
DRAR X,Y
NEXT I

HOME

END

SET DEGREES
C1=C0S(AL)
S1=SINCAL
C2=C0S(R2)
S2=SIN(A2)
C3=COS(A3)
S3=SINCAD
RETURN

REM TRANSFORM P(1),P(2),P(3) INTO ¥,¥
X=C2XCIXP(1>~C2XSIXP(2)+52%P (3>

THREE DIMENSIONS

ORTHOGRAPHIC PROJECTION

Y=(S1%83-C1XS2¥CIIAP (1) +(SIKCI+C1¥S2XS2IXP (2> +C1XC2XP(3)

RETURN

Listed below are the equations which cause rotation first around the X axis, then around the

Y axis, then around the Z axis. These can be substituted for similarly numberad statements
in the listing above.

o888 REM TRANSFORM PC1a,PC2),P(3) INTO ¥,V¥

5818 X=CIXC2KP 1)+ (CI¥S2¥S1-STHCL1I¥P 21+ (CIXS2KC1+STHCIIXPCT)

9028 Y=-S2XP{1)+C2¥S1¥P (2D +C2XCIXP(3)

5030

RETURN

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978

9-19

THREE DIMENSIONS
TRUE PERSPECTIVE

TRUE PERSPECTIVE

The only transformation which does not introduce artifical distortion is a true perspective
transformation. The controlling program in the perspective example (statements 100 through
780} is identical to that of the previous orthographic example. The only exceptions are
statements 340 and 350, a DATA statement and a READ statement.

-

340 DATA g

8y
358 RERD E(1D

1,9- .
YEC2) Le2),L(2

.
\

These are the parameters used to initialize the transformation. The array E contains the
location in three dimensional space of the observer’'s eye. The array L contains the location
in three dimensional space of the point toward which the eye is looking. This point should
be close to the center of the scene being viewed. This will ensure the minimizing of a certain
type of distortion, the kind seen at the edges of photographs taken with extreme wide

angle lenses.

In order to depict scenes in true perspective, a Renaissance artist would observe his sub-
ject through a pane of glass, marking where the lines between his eye and his subject passed
through the pane.

The algorithm in this example duplicates that process mathematically:

9-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
TRUE PERSPECTIVE

320 REM FXRXETEXLEXNKKELK
330 REM SPECIFY 3D PARAMETERS - EYE POSITION & POINT TO BE LOOKED RT
340 DATR 9.8,-1,0.6,0.5:0.5,0.5
350 RERD EC1)4EC2)4E(3) L1, L{2)yL(D)
360 REM INITIALIZE 3D ROUTIHE
78 GOSUB 4988
380 REN xxxxkikkrktxix

4800 REM 3D TO 20 PERSPECTIVE INITIALI2ATION

4819 REM MUST BE RUN BEFORE USING TRANSFURM ROUTINE AT 5803

4828 REM PURFOSE: 1. FIND LOCATION AND ORIENTATION OF UIEWPLANE
4838 REM 2. DEFINE 2D CUORDINATE SYSTEM ON UIEWPLANE

4848 REM E IS VIEWER'S EYE LOCATION IN 3 SPACE .
4858 REM_ L IS 3 SPACE POINT BEING LOOKED AT BY UIEWER-S EVE
4868 DELETE T1,72,T3,74,75

4876 DIN T1\3),T2(3) T3C33:T4030, T

4880 IF EC1X<3L (1) OR EC2)<3L(2) THEN 4128

4838 PRINT "E AND L LIE IN SAME UERTICAL LINE "

4108 PRINT "PLEASE CHANGE ONE OF THE FOLLOWING: EC(1),EC2h,L¢1) OR L(2)"
4118 END

4128 REM

4138 T3=E-L

4140 REM T3 IS NOW VECTOR FROM L TO E

4158 T7=0

4168 FOR T9=1 TO 3

4178 T7=T7+T3(T3)H12

4186 NEXT T9

4198 T7=SQR(T?>

4200 REM T7 IS NOW DISTANCE FROM L TO E

4210 T12=T3/77

:ggg ggg T2 CONTRINS DIRECTION COSINES OF NORMAL VECTOR TO VIEWPLRNE
4248 REM_ PLACE VIEWPLANE HALF WAY BETWEEN E AND L

4250 T6=T7-2

42608 REM T6 IS DISTANCE FROM E TO UIEWPLANE

4278 TI=TIX(TE/TT)

4289 T1=€-T3

429@ REM T1 IS THE INTERSECTION OF UIEWFLANE AND LINE FROM E TO L

:g?g EEN PEFINE T1 TO BE ORIGIN OF VIEWPLANE'S 2D COORDINATE SYSTEM
H

4328 REM NOW DEFINE "UP" IN UIEWPLANE'S 2D COORDINATE SYSTEM

4339 T3=L

4348 TI(32=T3(3)+}

4358 REM T3 IS NOW ENDPOINT OF THE UECTOR ¢@.0,1) RELNTIVE TO L

4368 REN PROJECT ONTO VIEW PLANE

4370 GOSUB S17@

4388 REM T3 IS NOW 3 SPACE POINT DEFINED TO BE "RBOWE" PLANE‘S QRIGIN

4398 REN

4488 T7=8

4418 FOR T9=1 T0 3

4420 TP=T7+(T3(TY-T1(TI12

4438 NEXT T9

4448 T7=SQR(T?)

4450 REN T? IS NOW DISTANCE FROM T1 TO T3

4468 REM

4478 T3=73-T1

4488 T5=T3/77

4498 REM T3 NOW CONTAINS DIRECTION COSINES OF UIEWPLANE'S ‘'VERTICAL®

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-21

THREE DIMENSIONS
TRUE PERSPECTIVE

4508 REM CROSS PRODUCT WITH UIEWPLANE‘S NORMAL UECTOR IS "HORIZONTAL*
4518 T4(1)=TS(2XXT2(3)-TS(I))%T2¢(2)

43528 T4(2)=TS(IXT2C1H>-TSC1IXT2(

4530 T4(3)=TS(1)XT2(2)-T5(2%T2(1)

4548 REM T4 CONTAINS DIRECTION COSINES OF UIEWPLANE’S “"HORIZONTAL®
4558 RETURN

45686 REM

3088 REM ENTRY POINT FOR 3D TO 2D TRANSFORM

5010 REN P CONTAINS 3 SPACE COORDINATES OF PUINT

gggg ggﬂp TO BE TRANSFORMED TO 2D COORDINATES OF UIEWPLANE
9848 REM PROJECT INPUT POINT ONTO VIEWPLANE

9858 GOSUB 517e@

3060 REM

507@ REM COMPUTE 20 COORDINATES OF PROJECTED POINT

9080 X=8

5890 Y=0

5160 FOR T9=1 TO 3

3118 X=X+(T3(TH-TI(TII¥T4(T

9128 YsY+{T3(THI-TI(TH IXTS(TH

9138 NEXT 719

9148 RETURN

9158 REM INTERNAL ROUTINE: FIND 3 SPACE POINT WHERE LINE FROM
51608 REM T3 TO E INTERSECTS UIEWPLANE

5178 T7=0

9180 T8=0

5198 FOR 79=1 T0 3

5208 T7=TP+(T1(T9)-TIC(TIIXT2(T
5210 T8=T8+(E(TI)-TI(T))XxT2(T9
5220 NEXT T9

5230 IF T8>8 THEN 5268

3248 PRINT "E IS TOO CLOSE TO POINT BEING VIEWED"
3250 END

5268 T7=T7/T8

5270 FOR T9=1 T0 3

5280 TI(TI)=(ECTII~TI(TINATP+TI(TI)

9298 NEXT T9

5380 RETURN

)
)

9-22 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
TRUE PERSPECTIVE

5849 REM PROJECT INPUT POINT ONTO UIEWPLANE
5858 GosSuB Sire

REN
5878 REM COMPUTE 20 COORDINATES OF PROJECTED POINT
5888 X=8
5899 Y=8
5188 FOR T9=1 T0 3
5118 X=X+{TI(T~T
5120 Y=Y+(TI(T-T
5138 NEXT T9
5140 RETURN
51590 REM INTERNAL ROUTINE: FIND 3 SPACE POINT WHERE LINE FROM
5168 REM T3 TO E INTERSECTS VIEWPLANE :
Si78 17=
5180 T8=8
5198 FOR T9=1 TO 3
52088 Te=T7+(T1(TI5=-TI(TI2¥T2(TI
5218 T8=TB+(E(TI-T3I(TI>¥T2(TI}
5220 NEXT T9
5230 IF 78>86 THEN 5268
5248 PRINT "E 1S TOO CLOSE TO POINT BEING VIEWED"
5258 END
5268 T7=17-78
5278 FOR T9={ TO 3
5288 T3(T9)=CE(TI)-TI(TINXT?+TI(TH
$298 NEXT T9
5388 RETURN

1(T95%T4(TI
LCTINIXRTSCT

The initialization section (statements 4000 through 4550) has one error termination: state-
ment 4110. The routine must have a direction to call ““up’’. In statement 4840, a line pointing
up is defined to be parallel to the Z axis, with ““up’ being the positive Z ditaction. If the

line between E and L is parallel to the Z axis, the program cannot define which way is up.
The |F statement at line 4080 prevents this from happening.

The transformation section also has one error termination: statement 525Q. If a point in the
object being viewed is at or behind E, the transformation produces inappraoriate results. The
check at statement 5230 prevents this occurrence.

Both the initialization and transformation sections include REMARK statgnents which suf-
ficiently describe the mathematical operations being performed. A backgraund in the ap-

propriate mathematics will permit a complete understanding or the algorithm used in these
routines.

A complete listing of the perspective projection program follows. To help::n understanding
the algorithm used, an excessive number of REMARK statements have been included. These
are superfluous and may be removed without affecting program execution,

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-23

THREE DIMENSIONS
TRUE PERSPECTIVE

9-24

INIT

DIM EC3),L(32,0¢11,3),P(3),0(2,3)
RESTORE

REM XXXXKXXXRKRRXAXXX

gEg FILL 3D DATA ARRAY

DATA 0.5,1,0,5,1,1

1,
RERD 0¢1,1),0¢1,2),0¢2,1>,0¢4,2),0¢5,1)
DATA 1,1,1,1
READ 0¢5,2),0¢6,1),0¢8,35,0¢(9,1)
DATA 1,1,1,1
READ 0¢9,2),0¢9,37,0¢(10,1),0018,2)
REM FIND MIN AND MAX OF 3D DATA
=-1,0E+300
DATA 1.BE+300,1.0E+3080,1.0E+300
READ QC1,15,0¢1,2>,0¢1,3)
FOR I=1 TQ i@
FOR J=1 T0 3
B, D=Q{1,J) MIN OCI, D)
A2, H=QC2,J) Max 0CI, N
NEXT J
NEXT 1

REM XXXXX¥XXX¥RXXXX%%K

REM SPECIFY 3D PARAMETERS -~ EYE POSITION & POINT TO BE LOOKED AT
DQTR 9. 89‘1;0- 6,9- 59 B- 5,9-5

READ EC1),EC2)4E(3)yL{1),LC2),L(D)

REM INITIALIZE 3D ROUTINE

GOSUB 4000

REM XXXXKXXXRXXXEXIKK

REM FIND MIN AND MAX IN VIEWPLANE‘S COORDINATE SYSTEM
DATA 1.0E+300,-1.BE+300,1,.0E+300,-1,0E+300

RERD X1,X%2,Y1,Y2

FOR I=1 TO 2

FOR J=1 TO 2

FOR K=1 T0 2

P{1)=Q(1,1)

P(2)=0(J,2)

P(I)=Q(K,3)

GOSUB 5000

X1=X1 MIN X

X2=X2 MAX X

Yi=Y1 MIN Y

Y2=Y2 MAX Y

NEXT K

NEXT J

NEXT 1

REM SET UP VIEWPORT AND 2D WINDOMW
VIEWPORT 8,138,0,108

IF (X2-X1)>7C(Y2-Y1)>>1.3 THEN 610
WINDOW (X2+X1)%8,5-8,65K(Y2-Y1), (X2+KX1)¥0,540,65%(V2-Y1),¥1,¥2
GO TO 630

WINDON X14X2, (Y24Y12%0,5-(X2-K1372,6, (Y24Y1)%D,5+4(X2-%1)-2.6
REM RXXXXREXRIXRKERRELEX

REM MOVE TO FIRST POINT
P(1>=0(1,1)

P(2)=0(1,2>

P(3)=0¢1,3>

GOsSUB 50800

MOVE X,Y

REM DRAW OBJECT

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

THREE DIMENSIONS
TRUE PERSPECTIVE

768 FOR I=2 T0 11
718 P(1)=0C(I,1)
728 P(2)=0(1,2)
738 P(3>=0(I,3)
740 GOSUB 5008
758 DRAW X, Y

768 NEXT 1

770 HOME

780 END

4008 REM 3D TO 20 PERSPECTIVE INITIALI2ATION

4818 REM MUST BE RUN BEFORE USING TRANSFORM ROUTINE AT 5006

4023 REN PURPOSE: 1. FIND LOCATION AND ORIENTATION OF UJEWPLANE

4838
4840

REM 2., DEFINE 2D COORDINATE SYSTEM ON UIEWPLANE
REM E IS VIEWER’S EYE LOCATION IN 3 SPACE

4050 REM L IS 3 SPACE POINT BEING LOOKED AT BY VIEWER’S EYE
4260 DELETE T1,72,73,T4,75

40870 DIM T1<(3), T°(3) T3C(3)yT4(3), TSC(I)

4080 IF E(l)()L(l> OR E(2)<>L(2) THEN 4128

4890 PRINT "E AND L LIE IN SAME VERTICAL LINE * ,
4188 PRINT "PLEASE CHANGE ONE OF THE FOLLOWING: EC1),Ec2),L(1) OR L(2>"
4118 END

4128 REM

4139 T3=E-L

4148 REM T3 IS NOW VECTOR FROM L TO E

4158 T7=8

4160 FOR T9=1 70 3

4170
4189
4158
4200
4210
4228
4230
4240
4250
4268
4278
4286
4256
4308
4310
4320
4330
4340

T7=T7+T3(TI12
NEXT T9
T7=SQR(T7)
REM T7 1S NOW DISTANCE FROM L TO E
T2=13/T7 |
REM T2 CONTAINS DIRECTION COSINES OF NORMAL VECTOR TO VIEWPLANE
REM PLACE UIEWPLANE HALF WAY BETWEEN E AND L
16=1772
REM__T6 IS DISTANCE FROM E TO UIEWPLANE
T3=T3%(T6/T7)
T1=E-T3
REN T1 IS THE INTERSECTION OF UIEWPLANE AND LINE FROM E TO L
REM DEFINE Ti TO BE ORIGIN OF VIEWPLANE'S 20 COORDINATE SYSTEN
REH NOM DEFINE "UP* IN VIEWPLANE'S 20 COORDINATE SYSTEM
E 1
T3(3)=T3(3)+1

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 9-25

THREE DIMENSIONS
TRUE PERSPECTIVE

4330 REM T3 IS NOW ENDPOINT OF THE VECTOR (©,@,1> RELATIVE TO L

4360 REM PROJECT ONTO VIEW PLANE

4378 GOSuUB 5179

4388 REM T3 IS NOW 3 SPACE POINT DEFINED TO BE "ABOUE" PLANE'S ORIGIN
4330 REM

4490 T7=0

4410 FOR T9=1 70 3

4420 T7=T?4(T(TH-TI(TI 312

4430 NEXT T9

4440 T7=SQR(T7)

4458 REM T7 IS NOW DISTANCE FROM T1 TO T3

4460 REM

4478 T73=T3-T1

448@ T5=T3/77

4498 REM T35 NOW CONTAINS DIRECTION COSINES OF UIEWPLANE'S "UERTICHL®
4588 REM CROSS PRODUCT WITH UIEWPLANES MWORMAL VECTOR IS "HORIZONTAL®
4518 T4(1)=TS(2)¥T2(33-TI(31¥T2(2>

4528 T4(2)=T3(XT2(1)-TS{H¥T2(I

4530 T4(3>=TS{13XT2(2)-TS(2:¥T2(1)

4540 REM T4 CONTAINE DIRECTION COSINES OF UIEWPLANE-S "HORIZONTAL"
4550 RETURN

4568 REM

o880 REM ENTRY POINT FOR 3D TO 2D TRANSFORM

9818 REM P CONTAINS 3 SPACE COORDINATES OF POINT

gggg ?gﬂp TO BE TRANSFORMED TO 2D COORDINATES OF UVIEWPLANE

5840 REM PROJECT INPUT POINT ONTO YIEWPLRNE

9858 GOsSuB 5179

5868 REM

9678 REM COMPUTE 20 COORDIMATES OF FROJECTED POINT

5680 X=0

56908 Y=0

5180 FOR T9=1 T0O 3
5118 X=X+(T3(T9,-T
51208 Y=Y+(T3(T9)-T

1(T9)HXT4(TI)
1CTIATS(TIY

S13@ NERT 19

5140 RETURN

9138 REM INTERNAL ROUTINE: FIND 3 SPACE POINT WHERE LINE FROM
9168 REM T3 TO E INTERSECTS VIEWPLANE

Jira T7=9

5188 T18=9

5198 FOR T9=1 T0 3

5280 TP=T?+(TI{TI=-TI(TIIXT2(TH

5218 T8=T8+(E(TI-TI(TINIXT2¢(TH

5228 NEXT T3

5238 IF T8>8 THEN 5268

5248 PRINT "B 1S TOO CLOSE TO POINT BEING UIEWED"
5258 END

3268 Tr=T7?-T8

5278 FOR TS=1 T0 3

5288 T3{(TI=C(ECTI-TI(TINXTF+TICTS

5298 MEXT T9

5380 RETURN

9-26 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

GLOSSARY

TERM

Accumulator

Algorithm

Argument
Arithmetic Operator

Array

Array Variable

ASCII Code

Assignment Statement
BASIC

Binary String

Bit

Byte

Character String

PLOT 50 GRAPHIC PROGRAMMING

Appendix A

REFERENCE MATERIAL

DEFINITION

A temporary storage area used for storing a number, summing
it with another number, and replacing the first number with
the sum.

A step-by-step method for solving a given problem.

A value operated on by a function or a keyword. Also called
a parameter.

Operators which describe arithmetic operations, such as +, —,
/, 1.

A collection of data items arranged in a meaningful pattern.
In the Graphic System, arrays may be one or two dimensional;
that is, organized into rows, or rows and columns.

A name corresponding to a (usually) multi-element collection
of data items. Array variables may be named with the char-
acters A through Z and AOQ through Z9.

A standardized code of alphanumeric charactzrs, symbols, and

special “‘control”’ characters. ASCI| is an acranym for American

Standard Code for Information Interchange.

A statement which is used to assign, or give, a value to a
variable.

An acronym derived from Beginners All-purpose Symbolic
Instruction Code. BASIC is a “high level”’ programming
language because it uses English-like instructions.

A connected sequence of 1’s and O's.

A Binary digit. A unit of data in the binary numbering
system;a 1 or O.

A group of consecutive binary digits operated upon as a unit.
One ASCII character, for example, is represented by one
binary byte.

A connected sequence of ASCIH characters, scmetimes refer-
red to as simply “‘string”’.

REV A, SEPT 1978

A-1

APPENDIX A
GLOSSARY

TERM

Coding

Concatenate

Constant

CRT

Cursor

Debug

Default

Delimiter

Dyadic

Execute

Expression

Flowchart

Function

DEFINITION

The process of preparing a list of successive computer in-
structions for solving a specific problem. Coding is usually
done from a flowchart or algorithm.

To join together two character strings with the concatenation
operator (&) forming a larger character string.

A number that appears in its actual numerical form. In the
following expression, 4 is a constant: X =4 * P

An abbreviation for Cathode Ray Tube. In the Graphic System,
the CRT is a “'storage’’ display, as opposed to a ‘‘refreshed”’
or TV-like display.

The flashing rectangular dot matrix on the Graphic System
display that is located at the position of the ‘“next’’ character
to be printed.

The process of locating and correcting errors in a prograrn;
also, the process of testing a program to ensure that it oper-
ates properly.

The property of a computer that enables it to examine a
statement requiring parameters, to see if those parameters
are present; and, finding none, assigning substitute values for
those parameters. Default actions provide a powerful means
for saving memory space and time when program statements
are entered into memory.

A character that fixes the limits, or bounds, of a string of
characters.

Refers to an operator having two operands.

To perform the operations indicated by a statement or group
of statements.

Refers to either numeric expressions or string expressions.

A collection of variables, constants, and functions connected
by operators in such a way that the expression as a whole can
be reduced to a constant.

A programming tool that provides a graphic representation
of a routine to solve a specific problem.

A special purpose operation referring to a set of calculations
within an expression, as in the sine function, square root
function, etc.

REV B, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

TERM

Graphic Display Unit
(GDU)
Graphics

Hardware

Index

Input

Instruction

Integer

Interrupt

Iterate

Justify

Keyboard
Keyword

Line Number

Logic

Logical Expression

Logical Operator

PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GLOSSARY

DEFINITION

An internal unit of measure representing one one-hundredth
of the vertical axis on the graphic drawing surface.

Computer output that is composed of lines rather than letters
numbers, and symbols.

The physical devices and components of a computer.

A number used to identify the position of a specific quantity

in an array or string of quantities. That is, in the array A, the
elements are represented by the variables A(*), A(2),...A(B0);
the indexes are 1, 2, . . . 50.

Data that is transferred to the Graphic Systeim memory from
an external source.

A line number plus a statement (i.e., A line number plus a
keyword plus any associated parameters).

A whole number; a number without a decimal part.

To cause an operation to be halted in such a fashion that it
can be resumed at a later time.

To repeatedly execute a series of instructions in a loop until
a condition is satisfied.

To align a set of characters to the right or left of a reference
point.

The device that encodes data when keys are pressed.

An alphanumeric code that the Graphics System recognizes
as a function to be performed.

An integer establishing the sequence of execution of lines in
a program. In the Graphic System, line numbers must be in
the range of 1 through 65,535.

In the Graphic System, the principle of truth tables, also, the
interconnection of on-off, true-false elements. etc., for com-
putational purposes.

A numeric expression using the logical operators AN D, OR,
and NOT. The numeric expression is arranged in such a way
that the numeric result is a logical 1 or a logical 0. A logical
expression may be part of a larger numeric expression in-
volving relational operators and/or arithmetic operators.

Operators which return logical 1's and 0's, specifically, the
AND, OR, and NOT operators. ““True’” operations return *'1 ",
"“false’’ operations return *'Q".

REV B, SEPT 1978 . A-3

APPENDIX A

GLOSSARY
TERM DEFINITION
Loop Repeatedly executing a series of statements for a specified
number of times. Also, a programming technique that causes
a group of statements to be repeatedly executed.
Mantissa In scientific notation, the term mantissa refers to that part of

the number which precedes the exponent. For example, the
mantissa in the number 1.234E+200 is 1.234.

Matrix A rectangular array of numbers subject to special mathematical
operations. Also, something having a rectangular arrangernent
of rows and columns.

Memory This generally refers to the Read/Write Random Access

Memory that contains BASIC programs and data, as opposed
to the Read Only Memory which contains the BASIC inter-

preter.
Monadic Refers to an operator that has only one operand.
Numeric Constant Any real number that is entered as numeric data; also, the

contents of a numeric variable.

Numeric Expression Any combination of numeric constants, numeric variables,
array variables, subscripted array variables, numeric functions,
or string relational comparisons inclosed in parentheses, joined
together by one or more arithmetic, logical, or relational
operators in such a way that the expression, as a whole, can
be reduced to a single numeric constant when evaluated.

Numeric Function Special purpose mathematical operations which reduce their
associated parameters (or arguments) to a numeric constant.

Numeric Variable A variable that can contain a single numeric value. Numeric
variables can be named with the characters A through Z and
A0 through Z9, and can be used in numeric expressions.

Operand Any one of the quantities involved in an operation. Operands
may be numeric expressions or constants. In the numeric ex-
pression A = B+4*C, the numeric variables B and C, and the
numeric constant 4 are operands.

Operator A symbol indicating the operation to be performed on two
operands. That is, in the expression Z + Y, the plus sign (+)
is the operator.

Output The results obtained from the Graphic System; also, infor-
mation transferred to a peripheral device.

A4 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TERM

Parameter

Peripheral Device

Program

Programming

Relational Operator

ROM

Scientific Notation

Software

Statement

String

String Constant

String Function

String Variable

PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GLOSSARY

DEFINITIONS

A quantity that may be specified as different values; usually
used in conjunction with BASIC statements. For example,
in the statement WINDOW —50, 50—100, 101), the para-
meters are —50, 50, —100, and 100.

Various devices (Hard Copy Unit, Plotter, Magnetic Tape
Drive, etc.) that are used in the Graphic System to input data,
output data, and store data.

A sequence of instructions for the automatic solution of a
problem, resulting from a planned approach.

The process of preparing programs from the standpoint of
first planning the process from input to output, and then
entering the code into memory.

An operator that causes a comparison of two operands and re-
turns a logical result. Comparisons that are ‘‘true’’ return a
1", comparisons that are “‘false’’ return a ““0". The relational
operators in the Graphic System are =, <>, <, >, =>,

and <=,

Read Only Memory. The ROM is that portion of the system
memory that can not be changed. The information in the
ROM can only be read. In the Graphic System, the BASIC
operating system resides in a ROM.

A format representing numbers as a fractional part, or man-
tissa, and a power of 10, or characteristic, as in 1.23E45.

Prepared programs that simplify computer operations, such
as mathemetics and statistics software. Software must be re-
loaded into memory each time the system power is turned on.

A keyword plus any associated parameters.

A connected sequence of alphanumeric charai:ters. Often
called a character string.

A string of characters of fixed length enclose¢! in quotation
marks; also, the contents of a string variable. .

Special purpose functions that manipulate character strings
and produce string constants.

A variable that contains only alphanumeric ckaracters, or
“strings’’. String variables can be represented by the symbols
A$ through Z$. They have a default length of 72; i.e., they
can contain up to 72 characters without being dimensioned
in a DIM statement.

REV B, SEPT 1978 A-b

APPENDIX A
GLOSSARY

TERM DEFINITION

Subroutine A part of a larger ““main’’ routine, arranged in such a way
that control is passed from the main routine to the subroutine.
At the conclusion of the subroutine, control returns to the
main routine. Control is usually passed to the subroutine
from more than one place in the main routine.

Subscripted Array An array variable followed by one or two subscripts, as in
Variable A(9), B3(1,2), and Z(N). The subscripts refer to a specific
element within the array.

Substring A portion of a larger string; ““BC", for example, is a substring
within the string “"ABCD"".

System A purposeful collection of interacting components (hardware
and software) forming an organized whole and performing a
function beyond the capability of any one component.

Truncate To reduce the number of least significant digits present in a
number, in contrast to rounding off. For example, the number
5 is the result of truncating the decimal part of the number
5.382.

User Data Units The units of measure the programmer elects to work with for
a particular graphing application. These units are established
in the WINDOW statement as a numeric range for each axis.
For example the vertical axis range can be set starting at 0
“dollars” and ending at 100 ““dollars;"’ the horizontal range
can be set starting at the “year’” 1962 and ending at the year
“1975.” All coordinate values for graphic statements are
specified in user data units (except VIEWPORT).

Variable A symbol, corresponding to a location in memory, whose value
may change as a program executes.

Variable Name A name selected by the programmer that represents a specific
variable. Numeric variables and array variables may be named
with the characters A through Z and AQ through Z9. String
variables may be named with the characters A$ through Z.$.

A-6 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
ERROR MESSAGES

ERROR MESSAGES

MESSAGE

ERROR MESSAGE
NUMBER

0 A system error @ is generated whenever a firmware failure condition
occurs. An INIT command and a DELETE ALL command are igsued to
recover firmware program control. An example of firmware fail.re
condition occurs when a program is stored on magnetic tape in binary
format from a 4052 Graphic System, and the program contains
commands not available on the 4051 Graphic System. When guch a
program is loaded into the 4051 Graphic System, the firmware fails, and
a system error () results.

1 An arithmetic operation has resulted in an out of range number.
Example:
1/1.0E-308

2 A divide by zero operation has resulted in an out of range number.
Example:
4/0

3 An exponentiation operation has resulted in an out of range number.
Example:
511.0E+300

4 An exponentiation operation involving the base e has resultec in an
out of range number.
Example:
EXP (1.0E+234)

5 The parameter of a trigopnometric function is too large. That is, the
variable N in the statement A=SIN(N=*2=*Pl)} is greater than 65536.
Example:
A=SIN(4.2E+5) when the trigonometric units are set to RADIANS.

6 An attempt has been made to take the square root of a negative number.
The positive square root is returned by default.
Example:
SQR (—4)

7 The line number in the program line is not an integer within the range
1 to 6553b.
Example:
@ REM THIS IS AN INVALID LINE NUMBER

PLOT 50 GRAPHIC PROGRAMMING REV B, APR 1980 A-7

APPENDIX A
ERROR MESSAGES

MESSAGE RRO E
NUMBER E R MESSAGE
8 The matrix arrays are not conformable in the current math operation.
That is, they are not of the same dimension and/or do not have the
same number of elements.
Example:
INIT
DIM A(2),B(2),C(3)
A=1
B=2
C=A+B
9 A previously defined numeric variable can not be dimensioned as an
array variable without deleting the numeric variable first.
Example:
INIT
B=3
DIM B(2,2)
10 There is an error in the subscript of a variable due to one of the following
reasons:
1. A numeric variable can’t be subscripted.
2. A subscript is out of range.
Example 1: Example 2:
INIT INIT
B=3 DIM A(2,2)
PRINT B(4) A(2,3)=5
11 An attempt has been made to use an undefined DEF FN function.
12 There is a parameter error in the CALL statement to a ROM pack.
13 A WBYTE parameter is not within the range —255 through +255.
Example:
WBYTE 300
14 A parameter for the APPEND statement is invalid.
15 An attempt has been made to APPEND to a non-existent line number.
16 There is an invalid parameter in the FUZZ statement.

Example: FUZZ 0

A-8 REV C, APR 1980 PLOT 50 GRAPHIC PROGRAMMING

MESSAGE
NUMBER

17

18

19

20

21

22

23

APPENDIX A
ERROR MESSAGES

ERROR MESSAGE

There is an invalid parameter in a RENUMBER operation clue to one of
the following reasons: '
1. The first or third parameter is not a line number within the range
1 through 65535.

2. The increment (second parameter) is not within the renge 1 through
65535 or is so large that out of range line numbers are generated
during the RENUMBER operation. '

3. Statement replacement or statement interlacing will accur if the
RENUMBER operation is attempted.

This error may occur during an APPEND operation.

Not used.

There is an invalid parameter in a GOTO, FOR, or NEXT s:atement.
Example:
500 FOR I=1 to 20 where | has been previously defined as an
array variable.

The logical unit number specified in the statement is not within the
range O through 9.
Example:

100 ON EOF (10) THEN 500

The assignment statement is invalid because of one of the following
reasons:
1. An attempt has been made to assign an array to a nurreric variable.
2. Two arrays in the statement are not conformable (not of the same
dimension and/or do not have the same number of elements).

3. An attempt has been made to assign a character string to a string
variable and the character string is larger than the dimensioned
size of the variable.

There is an error in an exponentiation operation because the base is
less than O and the exponent is not an integer less than 256
Example:

—101257.6

An attempt has been made to take the LOG or LGT of a nt mber which
is equal to or less than 0.
Example:

LOG (—1)

PLOT 50 GRAPHIC PROGRAMMING REV B, APR 1980 A9

APPENDIX A
ERROR MESSAGES

MESSAGE
NUMBER ERROR MESSAGE
24 The parameter of the ASN function or the ACS function is not within
the range —1 to +1.
Example:
ASN (2)
25 The parameter of the CHR function is not within the range 0 through 127.
Example:
A$=CHR(128)
26 Not used.
27 The parameter is out of the domain of the function.
Example:
A$=STR(X)
where X has been previously defined as an array variable.
28 A REP function parameter is invalid.
29 The parameter in the VAL function is not a character string containing
a valid number.
Example:
A=VAL("Hi")
30 The matrix multiply operation failed because the arrays are not conformable.
31 The matrix inversion failed because the determinant was 0. This error
is treated as a SIZE error.
32 The routine name specified in the CALL statement can not be found.
Example:
CALL “"FIX IT"” where the routine “"FIX IT" resides in a ROM pack
which is not plugged into the system.
33 Not used.
34 The DATA statement is invalid because of one of the following reasons:
1. There isn't a DATA statement in the current BASIC program.
2. There is not enough data in the DATA statement from the present
position of the pointer to the end of the statement.
3. An attempt has been made to RESTORE the data statement pointer to
a nonexistent DATA statement.
35 The statements DEF FN, FOR, and ON. . .THEN. . . can not be entered

without a line number.

A-10 REV B, APR 1980 PLOT 50 GRAPHIC PROGRAMMING

MESSAGE
NUMBER

36

37

38

39

40
41

42

43

44

45

46

47

48

49

APPENDIX A
ERROR MESSAGES

ERROR MESSAGE

There is an undefined variable in the specified line. A numeric variable
has not been assigned a value or an array element has not been assigned
a value.
Example:

INIT

DIM A(2,2)

A(1,2)=4

PRINT A

An extended function ROM (Read Only Memory) is required to perform
this operation.

This output operation cannot be executed because the current BASIC pro-
gram is marked SECRET.

This operation can not be executed because the Random Access Memory
is full. Some program lines or variables must be deleted.

Not used.

A SIZE interrupt condition has occurred and an ON SIZE THEN
statement has not been executed in the current BASIC program.

A PAGE FULL interrupt condition has occurred.

A peripheral device on the General Purpose Interface Bus is requesting
service and an ON SRQ THEN statement has not been executed in the
current BASIC program.

The EOI signal line on the General Purpose Interface Bus has been acti-
vated and an ON EO!l THEN statement has not been activated in the
current BASIC program.

A ROM pack is requesting service and the ON UNIT for exiernal interrupt
number 1 has not been activated in the current BASIC program.

A ROM pack is requesting service and the ON UNIT for external interrupt
number 2 has not been activated in the current BASIC program.

A ROM pack is requesting service and the ON UNIT for external
interrupt number 3 has not been activated in the current BASIC program.

The end of the current file has been reached on an 1/0 device and an ON
EOF THEN statement has not been executed in the current BASIC program.

The statement with the specified line number is too long. This error
situation occurs if an attempt is made to LIST or SAVE a BASIC pro-
gram which contains a line with more than 72 characters. Sometimes a
RENUMBER operation can make a line longer than 72 characters.

PLOT 50 GRAPHIC PROGRAMMING REV B, APR 1980 A-11

APPENDIX A
ERROR MESSAGES

MESSAGE ROR MESSAGE
NUMBER ER

50 The incoming BASIC program contains a line with more than 72 characters.

51 The line number specified in this statement cannot be found or is in-
valid.,

Example:
GO TO 500 where the line 500 doesn’t exist or PRINT
USING 100: where line 100 isn’t an IMAGE statement.

52 Either the specified magnetic tape file doesn’t exist or an attempt has
just been made to KILL the LAST (dummy) file.

b3 After 10 attempts, the internal magnetic tape unit has been unable to
read a portion of the current magnetic tape. The tape head has been posi-
tioned after the bad portion in the file to allow the rest of the file to be
read.

b4 The end of the magnetic tape medium has been detected. Marking a
file longer than the remaining portion of the tape can cause this error.

515) An attempt has been made to incorrectly access a magnetic tape file.
Example:

Executing an OLD statement when the tape head is positioned in
the middle of a data file.

b6 An attempt has been made to send information to a write-protected
tape. Remove the tape cartridge, rotate the lock-out plug until the black
arrow points away from SAFE, insert the tape cartridge, and try the
operation again.

57 An attempt has been made to read to or write to a non-existent tape cart-
ridge. Insert a tape cartridge into the tape slot and try the operation
again.

58 An attempt has been made to read data which is stored in an invalid
magnetic tape format. The tape format must be compatible with the
Graphic System standard.

59 A program was not found when the OLD statement was executed.

60 Not used.

61 An attempt has been made to execute an invalid operation on an open
magnetic tape file.

Example:
Executing a MARK statement’with the tape head positioned
in the middle of an open data file.

62 There is a Disk File system parameter error.

A-12 REV B, APR 1980 PLOT 50 GRAPHIC PROGRAMMING

MESSAGE
NUMBER
63
64

65

66

67

68
69

70

71

73

74

PLOT £0 GRAPHIC PROGRAMMING REV B, APR 1980 A-13

APPENDIX A
ERROR MESSAGES

ERROR MESSAGE

There is an error in a binary data header, most likely caused by a mach-
ine malfunction.

The character string is too long to output in binary format. The length
is limited to 8192 characters.

A parity error has occurred in the 4052 or 4054 RAM meinory. Although
the error is nonfatal (and the message will not be repeated), further
operations are unreliable until power has been turned off and back on.
In the 4051 this error is not used.

The primary address in the specified line is not within the range 0
through 255,

An attempt has been made to execute an illegal 1/0 operation on an in-
ternal peripheral device.
Example:

DRAW @33:50,50
The diagnostic loader failed.

An input error or an output error has occured on the General Purpose
Interface Bus. Both the NDAC and NRFD signal lines are inactive high,
which is an illegal GPIB state. This usually means that therz are no
peripheral devices connected to the GPIB.

There is an incomplete literal string specification in the format string.
Example:
100 IMAGE 6D,5("MARK

A format string is not specified for the PRINT USING operation.
Example:

100 IMAGE 6D

110 PRINT USING 100: 23,24,25
Line 100 should be: 100 IMAGE 3(6D)

There is an invalid character in the format string specified in the PRINT
USING statement.

An n modifier in the format string is out of range or is incarrectly used.
n modifiers must be positive integers within the range 1 through 11
when used with E field operator and must be within the rarge 1 through
255 when used with A,D,L,P,T,X,”,(, and / field operators.

APPENDIX A
ERROR MESSAGES

MESSAGE

NUMBER ERROR MESSAGE

75 The format string specified in the PRINT USING statement is too long
(i.e., there are too many data specifiers for the PRINT statement).
Example:
100 IMAGE 3(6D)
110 PRINT USING 100:A,B
Line 100 should be: 100 IMAGE 2(6D)

76 Parentheses are incorrectly used in the format string which is specified
in the PRINT USING statement.
Example:
- 100 IMAGE 2(6D
110 PRINT USING 100:A,B
Line 100 should be 100 IMAGE 2(6D)

77 There is an invalid modifier to a field operator in the format string which
is specified in the PRINT USING statement.
Example:
100 IMAGE 2(6D),2S
110 PRINT USING 100:A,B
Line 100 should be: 100 IMAGE 2(6D),S
An n modifier is not allowed

78 An S modifier is incorrectly positioned in the format string which is
specified in the PRINT USING statement. The S modifier must always
be positioned at the end of the format string.

Example:
100 IMAGE 4D,S,8A
Line 100 should be: 100 IMAGE 4D,8A.S

79 A comma is incorrectly used in the format string which is specified in
the PRINT USING statement.
Example:

100 IMAGE 6,D,S
Line 100 should be: 100 IMAGE 6D,S

80 A decimal point is incorrectly used in the format string which is specified
in the PRINT USING statement.
Example:
100 IMAGE .3D
110 PRINT USING 100:812.345
Line 100 should be: 100 IMAGE FD.3D

81 A data type mismatch has occurred in the PRINT USING statement.
Example:
100 IMAGE 6D,6A
110 PRINT USING 100: "MARY",26
Line 100 should be: 100 IMAGE 6A,6D

A-14 REV B, APR 1980 PLOT 50 GRAPHIC PROGRAMMING

MESSAGE
NUMBER

82

83

84

85

86

87

88
89
90
91
92
93
94
95

96

APPENDIX A
ERROR MESSAGES

ERROR MESSAGE

A tabbing error has occurred in the format string which is specified in
the PRINT USING statement.
Example:

100 IMAGE 10A,2T,FD

110 PRINT USING 100: "ENTER DATA",D
The absolute tab to position 2 specified by 2T in line 100 cannot occur
because the cursor has already advanced beyond position 2. The tab
specification must be at least 11T in this case.
A number specified in the PRINT USING statement contains an exponent
outside the range + 127.
Example:

100 IMAGE FD.3D

110 PRINT USING 100:8.5E+200

The IMAGE format string was deleted during the PAGE FULL interrupt
routine.

A portion of the IMAGE format string was deleted or altered during
the PAGE FULL interrupt routine.

A portion of the data specified in the PRINT statement was deleted
during the PAGE FULL interrupt routine.

A data item specified in the PRINT USING statement is too large to
fit into the print field specified in the format string.
Example:

100 IMAGE 5A

110 PRINT USING 100: "HORSE FEATHERS”
In this example, the string constant “HORSE FEATHERS” is too large
to fit into the 5 character field which is specified in line 100.

Not used.
A ROM pack has issued an error message.
Not used.
Not used.
Not used.
Not used.
Not used.

An internal conversion error has occurred because a parameter in the
specified statement is negative.

An internal conversion error has occurred because a parameter in the
specified statement is greater than 65535.

PLOT 50 GRAPHIC PROGRAMMING REV B, APR 1980 A-15

APPENDIX A
GRAPHICS AS I/0

GRAPHICS AS I/0

The Graphic System can be considered to be a ''central processing unit'' which commuri-
cates to various peripheral devices, some of which are internal and some of which are ex-
ternal. Internal peripheral devices are the keyboard, the tape, the display, and the General
Purpose Interface Bus. External peripherals are those connected to the Graphic System via
the GPIB. The Graphic System is very consistent when ASCI! information is sent to or re-
ceived from any peripheral. Implicit in each Graphic System output command (such as
PRINT) are three functions:

Any conversion to be performed on the stored data prior to its output.
Specifying which peripheral is to receive the data.
Specifying the function to be performed by the peripheral.

The PRINT command is an example.

Any data sent to a peripheral via the PRINT command must be converted from internal
storage form to ASCII characters. The command itself can be used in three forms:

PRINT
PRINT @P:
PRINT @P,S:

The P in the above forms is the primary address. This number determines which peripheral
device will receive the data.

When no primary address is specified (as in the first form of PRINT, above), the PRINT
command itself specifies a default primary address of 32, signifying the display. When no
primary address is specified, PRINT sends data to the display.

The S in the above form is the secondary address. This tells the peripheral what type of data
to expect and what to do with it. The default secondary address for PRINT is 12, which tells
the display that it will receive ASCII characters and that these characters are to be printed
on the display in their ASCII form.

Another ASCII output command is DRAW, which performs the same three types of func-
tions as PRINT:

Convert data from internal to external form.
Determine device if no primary address is specified.

Determine device function if no secondary address is specified.

REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GRAPHICS AS I/0

Graphic information is sent to any graphic device as GDU's expressed in the. form of ASCII
characters. An important point is that the DRAW command outputs graphic information
in the same fundamental form that the PRINT command outputs ASCI! chdracters. It is
useful to compare the DRAW command with the PRINT command. They arz listed below
with their default primary and secondary addresses: '

PRINT @32,12; DRAW @32,20:

Both commands output ASCII characters. They both send this ASCI! information to the
display (primary address 32). There are, however, two fundamental different:es: what is

done to the information before it is sent out (determined by the keyword) and what the
display does with the information when received (determined by the secondary address).

The secondary address 12 tells the display to print the characters which are rquivalent to
the ASCII characters it receives. The secondary address 20 tells the display to draw a line
from wherever the graphic point is currently located to a location on the display specified
(in GDU's) by the ASCII characters received.

Enter the following into the Graphic System:
PRINT @32,12: 65,50

This command instructs the Graphic System to output the ASCII characters6 5 and 5 0.
The primary address of 32 means that characters are sent to the display. The secondary
address of 12 instructs the display to print the characters as received. Now enter the following
command:

PRINT @32, 20: 65,50

This command causes a line to be drawn to the center of the display. The only difference
between the two commands is the secondary address. Both commands send the same ASCI|
characters to the display. However, the same characters are interpreted differently because
of the different secondary address.

Now enter the following commands into the Graphic System:

INIT
WINDOW —-50,50,-50,50
DRAW @32,20: 0,0

The DRAW command causes a line to be drawn to the origin of the user datu: space defined
by the WINDOW command. The INIT and WINDOW commands (above} def:ned the user
data space such that the center of the display corresponds to the location (0.0) in that data
space. Therefore, a DRAW 0,0 in this context really is saying ‘‘draw a line té the center of
the display’’. The center of the display is the location 65,50 in GDU's. So tH2 DRAW com-
mand must convert user data units into GDU's prior to outputting the graph:c information.
A secondary address of 20 specifies that the ASCII information received is to be interpreted
by the display as graphic information.

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 A-17

APPENDIX A
GRAPHICS AS I/0

If a DRAW command with a secondary address which is not 20 is executed, the display

will interpret the information it receives differently.

Now enter the following command into the Graphic System:
DRAW @32,12: 0,0

As shown above, a secondary address of 12 instructs the display to interpret the infor-
mation it receives only as ASCI| characters, not as graphic information. When the command
DRAW @32,12: 0,0 is executed, the numbers 65 and 50 are printed on the display. This
shows that the user data space location of (0,0) has been transformed into the display

location of (65,50).

The above commands demonstrate two principles. One: that graphics are really device
independent mathematics until the information is sent to a graphic device. Two: graphic
commands perform several operations on graphic data before it is output. The example
below shows that these operations require varying amounts of time to perform. (When run,
the program below calculates for several seconds before any output is displayed. After the
program has been run once, pressing user definable key one causes the output to be re-
peated without re-performing the calculations.) Enter the following statements into the

Graphic System:

1 GO 7O 100

4 GO TO 310

100 N=100

119 D=1880-N

120 DELETE A,B,X,Y,2

138 DIM ACN) s BCND» XCND 5 YCND 4 2(N,y2)

148 SET DEGREES

138 FOR I=1 TO N

16@ X(I>=1%D

178 Y(I)=SINCIXD)>+1
NEXT I

190 A=D

208 B(1>=Y(1)-1

218 FOR 1=2 TO N

228 B(I)=Y(I)-Y(I-1)

238 NEXT I

248 Di=1308/N

250 FOR I={ TO N

260 2(1,1>=1%D1

278 Z(I1,2)=Y(I>%18
EXT 1

318 UIEWPORT ©,130,80,100
320 WINDON 8,1080,0,2

330 MOVE 0,1

340 RDRAN A,B

350 VIEWPORT 0,130,48,60
368 MOVE o,1

378 DRAW X, Y

386 PRINT ©32,21:0,10

390 PRINT @32,20:2

400 END

REV A, SEPT 1978

PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GRAPHICS AS I/0

N4

N4

S

The above program demonstrates that there are three fundamental ways to draw a line on
the Graphic System display: RDRAW (statement 340), DRAW (statement 370) and PRINT
(statement 390). The program also shows that each of these three commangis requires dif-
fering amounts of time to draw a series of lines. The PRINT command is th= fastest be-
cause its only function is to output ASCII characters. The additional functions performed
by the DRAW command slow its execution. Whenever graphic information is output with
the DRAW command, two additional functions must be performed: clipping and trans-
formation from user data units to GDU’s. RDRAW is slower still because it performs two
more functions: rotation and computing absolute coordinates. (Only absolute graphic infor-
mation is output. All relative calculations are completed inside the Graphic System prior

to output.)

The above example program also demonstrates that PRINT handles arrays differently from
DRAW and RDRAW. PRINT outputs data from an array in simple sequential order. The
secondary address of 20 instructs the display to interpret the first ASCII number received

PLOT 50 GRAPHIC PROGRAMMING A-19

APPENDIX A
GRAPHICS AS 1/0

as a horizontal location in GDU'’s, the second ASCII number received as a corresponding
vertical location in GDU's, the third number received as a new horizontal location, and so
forth. When outputting data from arrays, DRAW and RDRAW require two data arrays. In
the above example program, examine the DRAW command at statement 370. The location
of the first displayed point is specified by X(1) and Y(1). The second point’s location is
specified by X(2) and Y(2).

The graphic commands DRAW, MOVE, and GIN each have a counterpart which addresses
an actual display location.

These counterparts are listed in the following table:

Arguments interpreted Arguments interpreted
as User Data Units as GDU's

DRAW X,Y PRINT @32,20: A,B
MOVE X,Y PRINT @32,21: A,B
GIN X,Y INPUT @32,24: A,B

For example, the execution of the statement PRINT @32,20: 65,50 always draws a line

to the center of the screen regardless of the parameters of the WINDOW, VIEWPO RT, and
SCALE statements, and the present position of the graphic point. This command will draw
a line to a point which is outside a specified window and viewport; the clipping and trans-
formation done to lines produced by the DRAW command is not done to lines produced by
the PRINT command. PRINT @32,21: A,B causes the graphic point to be moved to a point
on the display specified by the contents of variables A and B. INPUT @32,24: A,B causes
the actual location of the graphic point in GDU'’s to be placed in variables A and B. (This
command and the GIN statement are two commands useful for determining where the
graphic point is at a given time.) With all three of these statements, the first argument (called
A in the above examples) is interpreted to be the horizontal location in GDU'’s, and the
second argument (called B in the above examples) is interpreted to be the vertical location
in GDU'’s.

There are no statements corresponding to RMOVE and RDRAW which operate in GDU'’s
only.

Since graphic information is sent to any graphic device in the maximum precision of which
the Graphic System is capable, the displayed resolution is determined by the graphic device
hardware, not by the Graphic System. The number of addressable points on the Graphic
System display is 1024 (horizontal) by 780 (vertical). Therefore, the display’s resolution

is approximately 1/8 or .125 GDU. With 3000 by 2000 addressable points, the 4662
plotter is significantly more precise. Its resolution is approximately .05 GDU.

A-20 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GRAPHICS AS I/O

The WINDOW and VIEWPORT commands determine how user data units are transformed
to GDU's. This transformation process is entirely internal to the Graphic System and is
totally independent of any graphic device, including the Graphic System display. Within

the numeric limits of the Graphic System, any window can be transformed into any view-
port. A command such as VIEWPORT 500,1000,200,400 will define a conceptually valid
transformation which is used by the Graphic System. However, no graphic information will
ever reach the display because all graphic information would be transformed into locations
outside the 130 by 100 GDU limits of the Graphic System display. This cordition is known
as scissoring. It occurs when the graphic device hardware attempts to execute an action it

is not capable of performing, such as moving the graphic point to the position 500,200 in
GDU'’s. Scissoring usually reflects some kind of user error. What action actually results when
scissoring occurs is determined by the hardware of the particular graphic davice. Since
graphic devices have different hardware configurations, scissoring produces different actions
in different devices. When commanded to perform an action it is not capable of performing,
the Graphic System display does nothing: the physical graphic point does not move.

Scissoring is very different from clipping, a needed function performed by the Graphic
System before the graphic information is output to the graphic device. Clipping permits
drawing to and from points located anywhere in user data space, even those which are out-
side the defined window.

Scissoring occurs when two types of errors have been made: when an improper viewport
has been defined (e. g., VIEWPORT 300,500,200,400), and when the display is directly
instructed to place the graphic point outside the GDU limits with a PRINT command

(e. g., PRINT @32,20: 200,200).

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978 A-21

APPENDIX A
GRAPHIC POINT CONTROL

GRAPHIC POINT CONTROL

Throughout this manual, the words “‘cursor’’ and ““graphic point”’ have been used almost
interchangeably to specify a location on the display. There are situations where they do
not represent the same location. [t is sometimes necessary to distinguish between the
location of the physical graphic point on the display and the location of the graphic
point in user data space. When a program is not running, the location of the physical
graphic point on the display is shown by the position of the blinking rectangular dot
matrix. This is always the starting point for character information printed on the display.
In the vast majority of instances, this is also the starting point for any lines drawn on

the display.

The location of the graphic point in user data space is called the logical graphic point in

this appendix. The position of the logical graphic point is affected only by graphic commands,
such as MOVE and DRAW, not by other output commands such as PRINT. Whenever
WINDOW, VIEWPORT, or SCALE are executed, the physical graphic point is not moved

but the location of the logical graphic point (in user data space) is changed so that the two
locations coincide. The physical and logical graphic points will not coincide after any of

the following events occur:

The execution of any non-graphic command which moves the physical graphic point on
the display. PRINT is such a command. It changes the actual location of the graphic
point without changing the location of the logical graphic point in user data space.

#® The execution of a DRAW command to a point outside the defined window. Although
the location of the logical graphic point is updated correctly, the physical graphic point
is placed at the intersection of the drawn line and the defined window boundary.

.7 Logical

< Graphic
/\ Point

™~ Physical
Graphic
Point

All subsequent graphic commands are executed properly. However, the values returned
by GIN will not reflect the location (in user data space) which coincides with the physi-
cal graphic point, not the logical graphic point.

A-22 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

APPENDIX A
GRAPHIC POINT CONTROL

* The execution of a MOVE command to a point whose transformed location is outside
the GDU limits of the graphic device being addressed. In the case of the Graphic System
display, this situation is produced by the following commands:

INIT
MOVE 200,200

-
-
rd
-,
.
-
-
-
-

-] Logical
P Graphic

\ Point

™~ Physical
Graphic
Point

When these commands are executed, the physical graphic point does not move at all, even
though the logical graphic point is located correctly. As with the situation produced by a
DRAW command described above, subsequent graphic command are executed properly
but the GIN command will reflect the location of the physical graphic point, instead of the
logical graphic point. '

There are several ways to ensure that the physical and logical graphic points coincide.
Here is one:

250 GIN A,B
260 MOVE A,B

The values returned by the GIN command show the location in user data space which
coincides with the location of the physical graphic point. A MOVE to that point updates
the location of the logical graphic point so that the two points coincide. This is useful when
graphic and non-graphic information is mixed, as shown below:

310 GIN A,B

320 PRINT “HELLO";
330 MOVE A.B

PLOT 50 GRAPHIC PROGRAMMING REV B, SEPT 1978 A-23

APPENDIX A
GRAPHIC POINT CONTROL

Here is another method:

320 PRINT “HELLO"
330 RMOVE 0, 0

The RMOVE command at line 330 (above) will cause the physical and logical graphic
points to coincide whenever the logical graphic point is inside the physical limits of the
graphic device. This is another way to approach the problem solved on page 1-57.

A-24 REV B, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

TCS SUBROUTINES

APPENDIX A
TCS SUBROUTINES

Many Graphic System users may already be familiar with the Terminal Control System
software of Tektronix. Listed below are TCS subroutines which are similar to Graphic

System graphic commands:

TCS

DRAWA
DRAWR
DRWABS
DWINDO
HOME

MOVE A
MOVER
MOVABS
NEWPAG
RROTAT
SEELOC
TWINDO
VCURSR

GRAPHIC SYSTEM

DRAW
RDRAW
PRINT @32,20:
WINDOW
HOME

MOVE

RMOVE
PRINT @32,21:
PAGE
ROTATE
INPUT @32,24:
VIEWPORT
POINTER

No TCS subroutines are equivalent to the Graphic System commands GIN and SCALE. The
RSCALE subroutine in TCS applies only to relative vectors while the SCALE command of
the Graphic System applies to both absolute and relative lines. The TCS common vari-
ables TREALX and TREALY contain the same type of values which GIN places in its
target variables: the location of the virtual cursor (or logical graphic point) in user data
space. The Graphic System command AXIS has no TCS equivalent.

PLOT 50 GRAPHIC PROGRAMMING

REV B, SEPT 1978 : A-25

APPENDIX A
REFERENCES

REFERENCES

Listed here are some materials which discuss computer graphics in general. Since much more
has been published regarding specific topics in computer graphics, this is only a tiny fraction
of the available literature.

BOOKS:
Newman, W. and Sproull, R., Principles of Interactive Computer Graphics, McGraw-Hill,

NewYork, 1973. (Text book with detailed discussions of hardware, software, algorithms,
data structures, and other topics. Includes large bibliography.)

Nelson, T. H., Computer Lib/Dream Machines, $7 from Hugo's Book Service, Box 2622,
Chicago, lil. 60690. (Informal introduction to computers in general. Also discusses com-
puter graphics and other computer related topics.)

PERIODICALS:

Computer Graphics available from ACM-SIGGRAPH 1133 Avenue of the Americas, New
York, New York 10036. SIGGRAPH is the special interest group for computer graphics,
part of the Association for Computing Machinery. The Spring 1975 issue of Computer
Graphics {Vol. 9 No. 1) is The Proceedings of The Second Annual Conference on Computer
Graphics and Interactive Techniques.

ACM Computing Surveys Vol. 6, No. 1 (March 1974). ACM 1133 Avenue of the Americas,
New York, New York 10036. This issue has two articles: ''A Characterization of Ten Hidden
Surface Algorithms'' and ' Computer Processing of Line Drawn Images”’.

Proceedings of The IEEE (April 1974). Institute of Electrical and Electronic Engineers,
347 East 47 Street, New York, New York 10017. Special issue on Computer Graphics.

ARTICLES OF GENERAL INTEREST:
Sutherland, 1. E., "'Computer Displays'", Scientific American, June 1970, pp. 57-81.

CONFERENCE PROCEEDINGS:

Significant papers about computer graphics appear in proceedings from the National
Computer Conference, The Fall Joint Computer Conference, and The Spring Joint
Computer Conference. Available from:

AFIPS Press
210 Summit Avenue
Montvale, New Jersey 07645

A-26 REV B, SEPT 1978 PLOT 50 GRAPHIC FROGRAMMING

ASCIl CODE CHART

NUL

DLE

P

®

(0) (16) (32) 0 (48) (64)
SOH[DCL| ¢ | T [A
Sx [0c2 | " [2 | B_
ETX D63 | # | 3 | ¢
E0T, DCA 5 |1 D
ENQ. NAK % 5 E
ACK S| &6 F
BEL (€| / [7|6
BS [CAN| (| 8 | A
F SUB| * | = | J
HEIEAERES
FF_ i <
R G| = | = M,
S| (s |/ [7 [0

Note

APPENDIX A
ASCIlI CODE CHART

During string comparisons, lower case characters (gray tint) are converted to their upper:ase equivalents.

PLOT 50 GRAPHIC PROGRAMMING

REV A, SEPT 1978

A-27

INDEX

Aspect Ratio 4-3, 8-1
AppendingDatatoan Array ... 2-12
AXL S . 1-41, 5-1
Axis Labels. o e, 6-15
Bar Chart ... 3-4
Centeringa Printed Character............... e ... 3-b
ChangingaDatalteminan Array.............cc.oooi ... 2-+1
Character Refresh 7-.8
Character Size 1-52
CliPPING. e 1--7
Control Characters i 1-53
Data Input. e 2-°
Deleting a Data Item From an Array 2-"3
DRAW 1-5,1-21
EditingDatain an Array............ 2-10
Exponential Transform. 4-50
EXPressiono 1-2
Fonts, Character. 7-18
Function, Graphing a. 2-15
GIN 1-£9
Graphic Display Unit. oo 1-10
Graphic Input 1-£9
Graph Nomenclature. vii
GriOS . 5-16
Histogram. 3-14
HOME . . 1-21
Inserting a Data fem intoan Array. 2-14
ListingDatainan Arrayo i 2-10
Log Transform. oo o 4-10
Log AXIS . 5-18
Logic Transform 4-10
MOVE. . 1-1,1-21

PLOT 50 GRAPHIC PROGRAMMING REV A, SEPT 1978

INDEX

Numeric Constant i i i e e e e 1-2

P AGE ..o e 1-21
Pie Chart. ..o e e e 3-19
Polar Transform e e e e 4-10
Polar AXIS . e 5-24
Positioning Character Strings i i i 6-10
Positioning with Control Characters................................. 1-53
Power Transform ... i i e e 4-10
Refresh Character. i i e e e 7-18
RO R AW L e e 1-22
Retrieving Data from Tape. i i it 2-18
RMOVE . e e e e e 1-22
ROT ATE .o e 1-25
SO ALE . ..o 1-18
Sizeof Character. ... 1-562
Storing Data on Tape ...t e e 2-18
Symbols, Drawno e e s 3-7

Symbols, Printed o e i 3-5

TicMark Labels e 6-20
TiiNG. o 6-9

User Data Unit. e 1-3

Variable. . .. e 1-2

VIEW P OR T . it e e e e 1-10
WIN D OW . i e e e e e e 1-3

1-2 REV A, SEPT 1978 PLOT 50 GRAPHIC PROGRAMMING

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	I-01
	I-02

